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Abstract

This thesis consists of four chapters. The first chapter explains the relevance of the

research that has been undertaken and it contains an overview of this research for a general

audience. The second chapter studies a multi-unit assignment with endogenous quotas in

a dichotomous preference domain. The main conclusion I obtain is that pseudo-market

mechanisms perform poorly in this type of environment.

The third and fourth chapters use matching theory to understand segregation in

matching environments ranging from integrating kidney exchanges platforms to the increase

in interracial marriages after the popularization of online dating platforms. In both

Chapters, using different formulations, I show under which conditions social integration

can be obtained.
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Chapter 1

Introduction

Economics can be described as the systematic study of how to allocate scarce resources to

a group of heterogeneous individuals. If we are interested in allocating those resources

efficiently, we would give them to the persons who value them most. If we are interested

in distributing them fairly instead, we should procure that every agent is relatively happy

with the number of goods they obtain compared to what other persons get. Both ideas

have been formalised in economics: efficiency as the maximisation of a social welfare

function, and fairness as a no-envy test, that requires that each person receives a bundle

of items that they value as much as the one received by any of their peers.

Luckily, when dividing scarce resources, we can generally find allocations that are

efficient and fair by using prices: agents are endowed with budgets, and spend their

endowments rationally. The division produced is always efficient and envy-free: agents

spend their money on the goods they value most, and nobody envies the assignment

obtained by someone else because they could have afforded it but instead choose another

bundle in their budget set. My thesis studies how to find fair and efficient allocations

whenever prices cannot be used. This type of problem is referred in the literature as a

matching problem.

Matching problems have been extensively studied because economists and mathemati-

cians realised that there are practical situations in which pricing scarce resources is either

considered disgusting or unfeasible. Examples include using prices to allocate organs for

transplantation, like kidneys or lungs, seats in public schools, or online dating partners.
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The economics discipline understood that these assignment environments were in practice

very distinct from markets, and thus deserved a systematic study on their own.

However, because of very different reasons, we as a community started studying those

matching problems in the same way we studied markets and employing the same techniques.

An example is the competitive equilibrium mechanism with equal incomes. The way it

works is that we do not use prices but create a fake currency instead so that it is the

market designer, and not the agents through their interaction, who finds the equilibrium

allocations. Agents are asked what they would consume for every combination of prices,

then the market designer computes an allocation, and informs each player of their bundle

received at such prices. The take away from this literature is that pseudo-market methods

work well: they are envy-free and Pareto efficient, and furthermore are non-manipulable

whenever there are many agents interacting with each other.

The first contribution of my thesis is to show that pseudo-market mechanisms sometimes

do not work as well as we may expect, producing outcomes that are neither fair nor hard

to manipulate. In Chapter 2, I show that market mechanisms perform poorly in the case

of multi-unit assignment, a fair division problem in which every person can receive several

goods. By poorly I mean that

1. market mechanisms are unfair,

2. market mechanisms are not single-valued, and

3. market mechanisms can be manipulated by groups.

Surprisingly, we can use a Rawlsian type of mechanism that avoids all those problems

present in the competitive equilibrium mechanism. Even more surprisingly, while the

competitive mechanism is used in applications, I am unaware that the Rawlsian or leximin

mechanism has ever been applied in practice.

Chapters 3 and 4 use matching models to understand segregation: i.e. understanding

which are the real-life restrictions that make partners of the same race match among

themselves in a much higher proportion than they match with people from other races.
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In Chapter 3, I consider the following problem: individuals belong to different com-

munities, and match among themselves. How many people prefer to match as a unified

community instead? I am interested in this type of problem because economics has pro-

vided a rationale for behavioural patterns we encounter frequently in human interactions:

envy, altruism, and cooperation are all words often used in the game-theoretic literature.

What I attempt to do is to provide a theoretical framework to understand why some

people may oppose social integration, and what characteristics those people theoretically

share.

I show that there is no way to integrate isolated communities that guarantee that

every agent is better off after integration occurs, as long as integration produces either

an efficient or a Pareto optimal pairing. Remarkably, this is true even for large societies:

computational simulations show that with five or fewer societies, the number of agents

that become worse off after integration occurs remains around 25 percent of the society

as a whole. It is also surprising that those agents who get hurt by social integration are

indistinguishable in terms of expected ranking of any other agent.

Finally, Chapter 4 presents a Schelling-type model that explains how people marry.

The idea behind it is simple: people want to marry other agents that have personality

traits close to theirs. However, a person can only marry another person who they know,

so being poorly connected to people of other races would inevitably yield a low rate of

interracial marriages.

However, online dating often allows us to meet people who would otherwise be complete

strangers to us, breaking an old phenomenon in networks usually referred as the strength

of weak ties. But how much do those new ties through social networks will influence the

decision of who do we end up marrying? We combine the tools of stable matching with

those from random graph theory to answer this question with an unexpected result: even

with a small number of new edges in a generalized random graph, the number of interracial

marriages present in a society increases dramatically. We contrast our theory against the

existing data on interracial marriages in the U.S., and find that our results are in line with

current demographic trends.
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In this last model, which has benefited from the collaboration with Philipp Hergovich

from the University of Vienna, real life restrictions in matching strike again. Our results

show that those absent ties or edges in a random graph make an important difference, and

suggest that the actual ethnic composition of marriages in our societies may not be owing

to intraracial preferences but could arise solely by social networks restrictions.

What should be taken away from this idea, then, is that in order to gain a proper

understanding of how matching environments without money work, we need to detect the

key aspects of each environment. These then need to be captured within our theoretical

models, instead of forcing the use of solutions to different problems to our new environments.

Matching environments are quite different from markets, and our understanding of them

will be more profound as we become able to capture that difference in our research.
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Chapter 2

The Random Multi-Unit Assignment

Problem with Endogenous Quotas

Abstract

We study the random multi-unit assignment problem in which the number of

goods to be distributed depends on players’ preferences.

In this setup, the egalitarian solution is more appealing than the competitive

equilibrium with equal incomes because it is Lorenz dominant, unique in

utilities, and impossible to manipulate by groups when agents have dichotomous

preferences. Moreover, it can be adapted to satisfy a new fairness axiom that

arises naturally in this context. Both solutions are disjoint.

Two standard results disappear. The competitive solution can no longer be

computed with the Eisenberg-Gale program maximizing the Nash product,

and the competitive equilibrium with equal incomes is no longer unique in its

corresponding utility profile.

KEYWORDS: multi-unit assignment, random assignment, endogenous quotas,

dichotomous preferences, fair division, scheduling, course allocation, tennis.

JEL CLASSIFICATION: D63 (equity, justice, inequality), C78 (matching theory).
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2.1 Our Problem and its Relevance

Consider a tennis club organizer who has to assign double tennis matches. He knows the

players self-reported availability over the weekdays, and tries to find a reasonable schedule

such that 1) no person plays on a day she is not available, 2) no person plays more than

once per day, and 3) each match has exactly four players.

The previous assignment problem can be described by a matrix containing players’

availability and a quota indicating how many players are required to create a game (four

for our tennis example). Table 2.1 presents a real-life example from Maher (2016), in

which two games of four people each can be created on both Tuesday and Thursday, one

game on both Monday and Wednesday, and zero games on Friday, when less than four

players are available.

Table 2.1: A tennis problem with a deterministic solution in parenthesis.

Players \ Days Mon Tue Wed Thu Fri Total
Barry 0 0 1 (1) 1 (1) 0 2 (2)
Tom 1 (0) 1 (1) 0 1 (1) 0 3 (2)
Peter 1 (1) 1 (1) 0 0 0 2 (2)
Colin 1 (1) 0 0 1 (1) 0 2 (2)
Mike 0 1 (1) 1 (0) 1 (1) 1 (0) 4 (2)
Keith 0 1 (0) 1 (1) 0 0 2 (1)
Alan 1 (0) 0 0 1 (1) 0 2 (1)
John 0 1 (1) 0 0 0 1 (1)
Ringo 1 (1) 0 1 (1) 0 0 2 (2)
George 1 (0) 1 (0) 1 (0) 1 (1) 0 4 (1)
Michael 0 0 1 (1) 0 0 1 (1)
Phil 0 1 (1) 0 0 0 1 (1)
Brian 1 (1) 1 (1) 0 0 0 2 (2)
Paul 0 1 (1) 0 1 (1) 0 2 (2)
Willie 0 0 0 1 (1) 0 1 (1)
Ken 0 1 (1) 0 0 0 1 (1)
Total 7 (4) 10 (8) 6 (4) 8 (8) 1 (0)

The scheduling problem above is representative of a large class of multi-unit assign-

ment problems where the number of available resources depends on agents’ preferences.

Other examples include scheduling teamwork, distributing provisions to food banks, lung
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transplantation or allocating courses to students. We describe them in detail in the next

subsection.

For such assignment problems, we would like to have a systematic procedure to decide

fairly which players should get which games, that at the same time incentivize players to

reveal truthfully their availability.

Our contribution is to propose an egalitarian solution that achieves this purpose for a

wide class of multi-unit assignment problems in the dichotomous preference domain.

The egalitarian solution is based on the well-known leximin principle, and performs

better than the competitive equilibrium with equal incomes solution, which is theoretically

appealing in similar assignment models (Hylland and Zeckhauser, 1979; Budish, 2011) and

has been successfully applied in practice to allocate courses in business schools (Budish

et al., 2017). By better, we mean that the egalitarian solution is, unlike the pseudo-market

solution, Lorenz dominant, unique in utilities, and impossible to manipulate by groups.

Lorenz dominance is “a ranking generally accepted as the unambiguous arbiter of

inequality comparison” (Foster and Ok, 1999) and is “widely accepted as embodying a

set of minimal ethical judgments that should be made” (Dutta and Ray, 1989). Given

two vectors of size n, the first one Lorenz dominates the second one if, when arranged in

ascending order, the sum of the first k ≤ n elements of the first one is always greater or

equal than the sum of the k first elements of the second one. A utility profile is Lorenz

dominant is it Lorenz dominates any other feasible utility profile.

In our setup, that a utility profile is Lorenz dominant implies that it uniquely maximizes

any strictly concave utility function representing players’ preferences, like the Nash product,

and is, therefore, a strong fairness property.

Uniqueness of the solution (in the utility profile obtained) is also a very desirable

property, for it gives a clear recommendation of how the resources should be split. A

multi-valued solution leaves the schedule designer with the complicated task of selecting a

particular division among those suggested by the solution, thus raising the opportunity

of rightful complaints by some agents, who may argue that there were other allocations

recommended by the solution that were more beneficial to them.
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It is equally interesting that the egalitarian solution is not manipulable by groups,

implying that coalitions of players can never profit from misrepresenting their availability,

not even when reducing the total number of resources created. The competitive solution is

manipulable by groups in our setup, as in many others. Yet, it is remarkable that even in

our small dichotomous preference domain, where possibilities to misreport are very limited,

the pseudo-market solution can still be manipulated. Manipulating a solution can be done

easily, by groups reducing their availability strategically on days where the demand for

resources almost equals its supply.

The fact that the egalitarian solution satisfies these three desirable properties is a strong

argument for recommending its use in this environment, instead of the pseudo-market

mechanism. The egalitarian solution also satisfies these three properties in the multi-unit

assignment problem with exogenous quotas, for which other solutions have been proposed

in the literature, but for which the egalitarian solution has not yet been considered.

Throughout the article, we stick to the tennis jargon and denote by generalized tennis

problems (GTPs) the set of random multi-unit assignment problems with endogenous

quotas and dichotomous preferences. GTPs include several real-life problems, which we

discuss below.

2.1.1 Applications

GTPs are motivated by the real-life allocation of tennis slots to players, which can be

generalized to other sports (the quota required to create one game could be 2 for tennis

singles, 22 for football, etcetera) but include several other problems in which the number

of goods to be assigned depends on agents’ preferences or characteristics. Some of them

are:

1. Scheduling team work. Scheduling is an intuitive example that fits the dichotomous

preference domain. Consider the scheduling problem faced by airlines, whose flights need

a specific number of cabin crew members required by law, or the one faced by policemen

who need to be in groups of certain size to patrol in some area. Other examples of this

kind can be constructed.
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2. Allocation of provisions to food banks. Food banks distribute provisions to people in

need, which in turn they receive from large storage centers. A food bank may need a specific

type of meal, but it is often impractical to ship a whole truckload from a distribution

center to serve only a small food bank. Therefore, shipments from the storage centers can

only be sent whenever a specific number of food banks request one (see Section 3.1 in

Prendergast, 2017, also Aleksandrov et al., 2015).

3. Organ Exchange. Dichotomous preferences have been used to model whether a person

is compatible or not with a particular organ for transplantation. Roth et al. (2005) write

“the experience of American surgeons suggests that preferences over kidneys can be well

approximated as 0 - 1, i.e. that patients and surgeons should be more or less indifferent

among kidneys from healthy donors that are blood type and immunologically compatible

with the patient”.

In particular, a (living donor lobar) lung transplant requires two compatible donors to be

succesfully performed, each giving a lower lung lobe to the patient (Cohen et al., 2014;

Ergin et al., 2017).1 The problem of organizing lung transplantation can be formulated

as a compatibility matrix, in which rows represents hospitals, and columns denote types

of compatible donors available. Note that even though the entries of the matrix can be

larger than 1, the problem is equivalent to ours as it will be seen in our Examples. Each

row becomes a “large” agent, whose compatibility is the sum of several individual 0-1

compatibility entries.

4. Course Allocation. Our problem is also similar to the real-life allocation of courses or

tutorials in Universities. The number of seats available for each course is not entirely fixed,

as Universities are able to open new courses if the demand for a course is significantly

larger than its supply. For example, if the maximum number of students for a course is 50,

and there are 125 students willing to take it, the University is likely to open two of such

courses so 100 students can be served. Opening courses to fit the supply particularly fits

1A healthy person has five lung lobes: three in the right one, two in the left one. Given that the rows
represent hospitals, it is unlikely that their constraints on the number of transplantation procedures they
can perform are binding, as currently lung transplantation is rare. In the UK, only 198 were carried out
in 2013-14, none of those in Scotland. Source: “Lung transplant”, NHS, 28/06/2016.
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the case of tutorials or recitation sessions, because these are usually taught by graduate

students which tend to be easy to hire.2

There is a subtle difference, however, as students may have horizontal constraints on the

maximum number of courses they can take. Including this type of constraints makes our

problem much more difficult to solve, so we postpone its discussion to Section 7.

2.1.2 Related Literature

Our theoretical model is closely related to three existing problems in the literature:

1. Single-unit random assignment with dichotomous preferences by Bogomolnaia and

Moulin (2004), henceforth BM04. Our model generalizes theirs in two regards. Firstly, in

their setup agents can only get one good. Secondly, agents do not need others to obtain

their desired assignment, i.e. quotas are exogenous.

They study the egalitarian and the equal income competitive solution. They show that the

egalitarian solution is Lorenz dominant and can always be supported by competitive prices.

Therefore, because the competitive solution is Lorenz dominant, the competitive solution

can be easily computed as the maximization of the Nash product of agents’ utilities. They

also prove that the egalitarian solution is group strategy-proof.

Roth et al. (2005) show that the egalitarian solution is also Lorenz dominant in assignment

problems on arbitrary graphs that are not necessarily bipartite. Assignment on the

dichotomous domain of preferences has been further studied by Bogomolnaia et al. (2005),

Katta and Sethuraman (2006), and Bouveret and Lang (2008).

2. Shubik’s bridge economy (Shubik, 1971). He considers an economy that needs four

players to create one good, eight to create two, and so on. He shows that the core of

that economy may be empty. We generalize Shubik’s model by considering the division of

games in multiple days.

2For example, LSE requires undergraduate classes and graduate seminars to have a maximum of 15
students. King’s College London has a maximum size of 18 students per class.
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3. Multi-unit assignment with exogenous quotas, commonly known as the Course Allocation

Problem (CAP), described by Brams and Kilgour (2001); Budish (2011); Budish and

Cantillon (2012); Kominers et al. (2010); Krishna and Ünver (2008); and Sönmez and

Ünver (2010), with an important difference. In CAP the number of seats available for each

course (in this case game slots per day) is fixed and given exogenously, whereas in GTPs

the number of seats is determined endogenously by players’ preferences, representing the

real possibility that the number of courses is not fully fixed in practice. This difference

is important theoretically, because players may manipulate an allocation mechanism by

changing the total number of seats available.

Additionally, in the combinatorial CAP version (Budish, 2011), players may have arbitrary

preferences over the set of days. However, reporting combinatorial preferences is unfeasible

for even few alternatives, and in practice combinatorial mechanisms never allow players

to report such preferences fully, not only because such revelation would be complicated,

but also because players may not know their preferences in that detail. Consequently,

a new strand of theory has focused on allocation mechanisms with simpler preferences

(Bogomolnaia et al., 2017; Bouveret and Lemâıtre, 2016), which are used successfully in

modern fair division procedures in real life: see Spliddit.com (Goldman and Procaccia,

2015).

Although our preference domain is much smaller than those considered in CAP, it is not

contained in any of those because CAP rules out indifferences.

Finally, Budish (2011) only considers deterministic assignments. We study random-

ized assignments instead: in practice many allocation mechanisms use some degree of

randomization to achieve a higher degree of fairness.3

3Randomization is used to assign both permanent visas and housing subsidies in the US, or school
places in the UK. Sources: “A one in a million chance at a better life”, The Guardian, 2/5/2017, “Why
does random chance decide who gets housing subsidies?”, NPR, 3/5/2016, and “School admissions: is a
lottery a fairer system?”, The Guardian, 14/3/2017.
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2.2 Summary of Results

We define the egalitarian and the constrained competitive solution. The egalitarian one is

Lorenz dominant in the set of efficient utility profiles (Theorem 1), while the competitive

one exists (Theorem 2) but is multi-valued (Example 1). The egalitarian solution is group

strategy-proof, but the competitive one is not (Theorem 3). Both solutions are disjoint

(Example 2).

We show that there are no competitive prices supporting the egalitarian solution, which

is a stark difference between our model and BM04. As a consequence, the classical result

stating that the competitive solution can be computed as the maximizer of the Nash

product of utilities no longer holds: a result known as the Eisenberg-Gale program.

This result is key for algorithmic game theory as it establishes an easy method for

computing economic equilibria. Its failure is important not only because leaves us with no

known algorithm for computing equilibria, but also because the Eisenberg-Gale program

is a rather robust result that applies to a large class of utility functions beyond the linear

case (Vazirani, 2007) and to the division of goods and bads (Bogomolnaia et al., 2017).

The fact that the competitive solution is not unique is also interesting, as a unique

utility profile is always obtained in Fisher markets (which is itself another consequence of

solving the Eisenberg-Gale convex program, see Theorem 5.1 in Vazirani, 2007).

We show that the egalitarian solution violates a natural fairness requirement called

independence of perfect days. We construct a refined egalitarian solution that achieves

this property, while at the same time being Lorenz dominant for the set of overdemanded

days. This refined solution, while appealing, violates group strategy-proofness, unlike the

classical egalitarian solution (Example 3).

This article is structured as follows. Sections 3 and 4 formalize the model and the

solutions we consider, respectively. Section 5 analyzes the solutions’ manipulation, while

Section 6 introduces the property of independence of perfect days. Section 7 discusses how

our findings extend to the model in which agents face upper limits on the number of days

they want to play.
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We defer all proofs to the Appendix. In all of our Examples (not in the proofs), we fix

the quota to 4, but it is easily seen that our arguments generalize.

2.3 Model

Let R be a n×m binary matrix containing the availability of each person i ∈ N about

playing on day k ∈M . The entry rik = 1 if person i is available to play on day k, and 0

otherwise. Abusing notation slightly, RiM (resp. RNk) denotes both the i-th row (k-th

column) of R and the set of days k ∈M (resp. players i ∈ N) for which rik = 1.

Let q ≥ 2 be the number of people required for making a game. The notation bxc

denotes the floor function applied to x, i.e. b3.2c = 3. For each day k ∈M , there are δ(k)

identical slots to assign, where δ is given by

δ(k) = q ·
⌊
|RNk|
q

⌋
(2.1)

and δ = (δ(1), . . . , δ(m)) is the vector of available slots. The set of slots for a day k is

denoted by Sk, and S represents the set of all slots, i.e. S =
⋃
M Sk. The pair (R, q) is

called a generalized tennis problem or GTP. The matching size of a GTP is denoted

by ν(R, q) =
∑

k∈M δ(k).

A random assignment is a probability distribution over allocations of slots to players

such that no player receives more than one slot per day. It can be represented by a

random allocation matrix (RAM) Z, which entry zik denotes the probability of person

i playing on day k.

F(R, q) denotes the set of all RAMs for the GTP (R, q). To describe it, we need to

define individually rational (IR) matrices first, i.e. those that assign positive probabilities

only to days in which a player is available. Formally, the matrix X is IR for R if they are

of same size and, ∀i ∈ N, k ∈M , xik > 0 only if rik > 0. Then

F(R, q) = {Z ∈ [0, 1]n×m | Z is IR for R and ∀k ∈M,
∑
i∈N

zik = δ(k)} (2.2)
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As before, the notation ZiM (resp. ZNk) denotes both the i-th row (k-th column) of Z

and the set of days k ∈M (resp. players i ∈ N) for which zik = 1.

Several random assignments can have the same corresponding RAM. Theorem 1 in

Budish et al. (2013) implies4 that

Lemma 1. Any RAM can be decomposed into a convex combination of deterministic

binary RAMs, and thus can be implemented.

We assume that players are indifferent between when and with whom they play, as

long as they do it on an available day. The canonical utility function representing those

preferences is

ui(Z) =
∑
k∈M

zik =
∑
k∈M

rik · zik (2.3)

for an arbitrary agent i ∈ N and an arbitrary Z that is IR for R. This function is

clearly not unique but it is convenient to work with. The preference relation represented

by it is a complete order over all feasible and individually rational random assignments.

The preference relation represented by the utility function above implies that a RAM

Z is Pareto optimal in a GTP (R, q) if and only if Z ∈ F(R, q).

The set of efficient utility profiles U(R, q) can be described as

U(R, q) = {U ∈ Rn | ∃Z ∈ F(R, q) : Ui =
∑
k∈M

rikzik, ∀i ∈ N} (2.4)

We do not distinguish between ex-ante and ex-post efficiency because in our preference

domain they coincide. This equivalence occurs because in all efficient assignments the

sum of utilities is constant and equal to the matching size of the problem ν(R, q).5 In our

setup, efficiency simply requires that no game slot is wasted.

A welfarist solution is a mapping Φ from (R, q) to a set of efficient utility profiles in

U(R, q), and hence it only focuses on the expected number of slots received by an agent

4The implication follows because the set of vertical constraints on any RAM is a hierarchy. Hierarchies
are also known as laminar families in combinatorial optimization.

5A RAM is ex-post efficient if it can be written as a convex combination of deterministic Pareto optimal
RAMs, and ex-ante efficient if it is optimal with respect to agents’ preferences over lotteries. Both notions
are equivalent in assignment problems with dichotomous preferences (BM04, Roth et al., 2005).
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and not on the exact probability distribution over deterministic assignments. Whenever a

solution is single-valued we use the notation φ instead.

For each GTP (R, q) there exists a corresponding course allocation problem (CAP),

defined as a tuple (N,M, δ,R) in which N is the set of students, M is the set of courses,

δ is the vector of exogenous capacities for each course, and R contains the preferences

of each student over the set of courses. Therefore, any statement we make about the

efficiency and fairness for GTP solutions also applies to the corresponding CAP.6

2.3.1 Reductions and Decompositions

Any day in which there are less than q players available is irrelevant and can be deleted.

Players who are always unavailable or that are only available on irrelevant days are

inconsequential too and are also removed. Henceforth we work with the corresponding

irreducible problem of any GTP, which satisfies

∀i ∈ N, RiM 6= ∅ (2.5)

∀k ∈M, |RNk| ≥ q (2.6)

Furthermore, for any GTP (R, q), we can partition the corresponding set of days

M into two subsets P(R, q) and O(R, q), which are called perfect and overdemanded

respectively.7 The set of perfect days is defined as

P(R, q) = {k ∈M : |RNk| = δ(k)} (2.7)

Given a GTP (R, q), a perfect complement for player i represents adding an arbitrary

perfect day in which i can play. Formally, a perfect complement for player i in a GTP (R, q)

is a pair (k′, RNk′) such that k′ /∈ M , rik′ = 1, and k′ ∈ P([RRNk′ ], q), where [RRNk′ ]

6We emphasize again that the equivalence between GTPs and CAPs only holds for CAP without
horizontal constraints, i.e. without limits on how many days each agent can play.

7These categories can be thought of as the Gallai-Edmonds decomposition of the bipartite graph
G = ((N,Sk), RNk) associated with the matching problem in day k.
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denotes the n × (m + 1) juxtaposition of the two matrices. The GTP ([RRNk′ ], q) is a

perfect extension of the original problem for player i.

2.4 Three Efficient Solutions

2.4.1 The Egalitarian Solution

An intuitive solution equalizes players’ utilities as much as possible respecting efficiency

and individual rationality: this is the well-known leximin solution. We refer to it as the

Egalitarian Solution (ES), proposed theoretically by BM04, and applied to the exchange

of live donor kidneys for transplant by Roth et al. (2005) and Yılmaz (2011).

To define it formally, let �l be the well-known lexicographic order.8 For each U ∈ Rn,

let γ(U) ∈ Rn be the vector containing the same elements as U but sorted in ascending

order, i.e. γ1(U) ≤ . . . ≤ γn(U). The leximin order �LM is defined by U �LM U ′ if and

only if γ(U) �l γ(U ′). The ES is defined by

φES(R, q) = arg max
�LM

U(R, q) (2.8)

The ES satisfies a strong fairness notion called Lorenz dominance, defined as follows.

Define the order �ld on Rn so that for any two vectors U and U ′, U �ld U ′ only if∑t
i=1 Ui ≥

∑t
i=1 U

′
i ∀t ≤ n, with strict inequality for some t. We say that U Lorenz

dominates U ′, written U �LD U ′, if γ(U) �ld γ(U ′). A vector U ∈ U(R, q) is Lorenz

dominant for a GTP (R, q) if it Lorenz dominates any other vector in U(R, q).

Lorenz dominance is a partial order in U(R, q) and therefore a Lorenz dominant utility

profile need not exist. Nevertheless, the ES solution is Lorenz dominant.

Theorem 1. The ES solution is Lorenz dominant in the set of efficient utility profiles.

We prove Theorem 1 using Theorem 3 in Dutta and Ray (1989), which states that

the core of every supermodular cooperative game has a Lorenz dominant element. We

postpone to the Appendix the construction of the corresponding cooperative game.

8So that for any two vectors U,U ′ ∈ Rn, U �l U ′ only if Ut > U ′
t for some integer t ≤ n, and Up = U ′

p

for any positive integer p ≤ t.
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The reader may think that Theorem 1 extends to the case when players may have

arbitrary preferences that are not dichotomous. This is not the case. Consider a problem

with n = 7, m = 3, q = 4, and players utilities given by subtable 2.2a. The players give

a 2 to a day in which they really like to play on, a 1 on a day they are available but do

not prefer as much as a day to which they gave a 2, and 0 to a day in which they are not

available at all.

Table 2.2: The limits of Theorem 1

N\M M T W
a 2 1 1
b 1 2 0
c 1 2 0
d 0 2 2
e 1 0 2
f 1 0 2

(a) Corresponding R matrix.

M T W
4/9 1 1
8/9 1 0
8/9 1 0
0 1 1
8/9 0 1
8/9 0 1

(b) RAM supporting ES.

M T W
1 1 1
0 1 0
1 1 0
0 1 1
1 0 1
1 0 1

(c) Alternative RAM.

The egalitarian solution suggests the utility profile (2.89, 2.89, 2.89, 4, 2.89, 2.89),

which produces a total of 18.44 units of utility. However, consider the RAM in subtable

2.2c, suggesting the utility profile (4, 2, 3, 4, 3, 3). The ES utility profile does not Lorenz

dominate this feasible utility profile, showing that Theorem 1 only works with dichotomous

preferences.

2.4.2 The Constrained Competitive Equilibrium with Equal In-

comes

A second solution, substantially more complicated, requires to find an equilibrium between

supply and demand of slots when players are endowed with equal budgets. These equal

budgets are often normalized to one currency unit, a normalization that we also use. This

solution is known as the Competitive Equilibrium with Equal Incomes or CEEI

(Varian, 1974; Hylland and Zeckhauser, 1979). In our tennis problem, each agent can

consume at most one slot per day, hence having particular constraints on their consumption
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set that play a major role. We use the term Constrained Competitive Equilibrium

(CCE, still with equal incomes) from now on to make this distinction obvious.9

The CCE solution is different from the CEEI as defined in Hylland and Zeckhauser

(1979) in that they impose no constraints in the goods to be consumed: in our case agents

never partially consume goods that have different prices, see their Table 1 in their paper.

This difference justifies the different terminology of CCE.

Definition 1. A CCE for a GTP (R, q) is a pair of a RAM Z∗ and a non-negative price

vector p∗ such that, ∀i ∈ N , agents maximize their utilities

Z∗iM ∈ arg max
ZiM∈βi(p∗)

ui(ZiM) (2.9)

where βi(p) is the budget set defined as βi(p) = {ZiM |
∑

k∈M zik ≤ |RiM | ; p ·ZiM ≤ 1},

and the market clears, so that

Z∗ ∈ F(R, q) (2.10)

As we shall see in Theorem 2, the set of CCE is never empty but may be large. The

optimality conditions of CCE imply

k /∈ P(R, q) =⇒ p∗k > 0 (2.11)

z∗ik, z
∗
ik′ ∈ (0, 1) =⇒ p∗k = p∗k′ (2.12)

[p∗k < p∗k′ ] ∧ [0 < z∗ik′ ] =⇒ z∗ik = 1 (2.13)∑
k

z∗ik < |RiM | =⇒
∑
k

p∗k · z∗ik = 1 (2.14)

These are the equivalent of the Fisher equations in our model, see Brainard and Scarf

(2005). Condition (2.11) allows a zero price only for perfect days, while expression (2.12)

forces the same marginal benefit for every good in which the agents plays with a strictly

positive probability but not with certainty.

9We stress that the CCE is a standard competitive equilibrium with restricted preferences.
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The CCE is in general multivalued. Given a GTP, we denote the set of pairs (Z∗, p∗)

as C(R, q). The CCE solution is defined by

ΦCCE(R, q) = {u(Z ′) | ∃ p′ : (Z ′, p′) ∈ C(R, q)} (2.15)

2.4.3 The Naive Egalitarian per Day

Finally, a naive and most intuitive solution (that we use as a benchmark only) breaks

up the allocation problem into m sub-problems of assigning Sk into RNk, giving an equal

share of the slots in day k among all players available on that day. We call this solution

Egalitarian Per Day (EPD). This is, given a GTP (R, q), the EPD solution assigns to

each player

φEPDi (R, q) =
∑
k∈M

rik ·
δ(k)

|RNk|
(2.16)

We note that, in our preference domain, EPD is equivalent to the well-known random

priority mechanism, aka random serial dictatorship.10 We do not consider EPD an

appropriate solution for GTPs because it ignores the interaction between the m fair

division problems of each day.

EPD also fails the following basic fairness property: if n−1 players get at least 1 utility

unit, the n-th player also gets at least 1 utility unit too; see Example 1 for an illustration.

2.4.4 Two Examples Showing that All the Solutions Differ

Example 1 (Multivalued CCE differs from EPD). Table 2.3 shows the different outcomes

these three solutions produce for a problem with n = 6, m = 3, q = 4, and R given

in subtable 2.3a. The CCE utilities are written in brackets in subtable 2.3b because

there are CCE that support utility profiles between (2.4, 1.4, 1) and (2.25, 2, 1) with

0 ≤ pW ≤ 4
9
. This multiplicity is interesting: the competitive solution is always unique in

the corresponding utility profile in Fisher markets, and also in the more general Eisenberg-

10EPD would not be efficient in a more general domain of preferences. The equivalence with random
priority would also disappear.
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Gale markets; see for example Theorem 5.1 in Vazirani (2007) or p. 87 in Jain and Vazirani

(2010). It is also problematic, as there is no obvious selection from the CCE.

Table 2.3: Example 1

N\M Mon Tue Wed Total
a : d 1 1 1 3
e 1 1 0 2
f 1 0 0 1
Total 6 5 4

(a) Corresponding R matrix.

N\Solution ES CCE EPD
a:d 2.25 [2.25 - 2.4] 2.47
e 2 [1.4 - 2] 1.47
f 1 1 0.67

(b) Utility profiles for each solution.

Any CCE in example 1 gives a slot with probability one to player f . This implies that

there are no CCE prices that support the EPD outcome, and thus is a strong argument

against this solution, as competitive equilibria are considered “essentially the description

of perfect justice” (Arnsperger, 1994), and the base of Dworkin’s “equality of resources”

(Dworkin, 1981).

The EPD solution is therefore not ideal, as expected. But interestingly, the ES solution

can also produce outcomes that cannot be supported as a CCE.

Example 2 (ES differs from CCE). We show it using a GTP with n = 9, m = 6, q = 4,

and R given in subtable 2.4a. Note that in the single-unit case (Theorem 1 in BM04), the

ES is always supported by competitive prices.

Table 2.4: Example 2.

N\M M T W:Th F:S Total
a : c 1 1 0 0 2
d 0 1 1 0 3
e 0 1 0 1 3
f : i 1 0 1 1 5
Total 7 5 5 5

(a) Corresponding R matrix.

M T W:Th F:S Total
1 0.97 0 0 1.97
0 0.54 1 0 2.54
0 0.54 0 1 2.54
0.25 0 0.75 0.75 3.25
4 4 4 4

(b) Corresponding Z∗.

If the ES solution (2, 2.5, 2.5, 3.25) could be supported as a CCE, then pM = pW =

pTh = pF = pS because agents f :i play with positive probability in those days. Furthermore,
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players d:i must spend their whole budget, implying prices pM = 4
13

and pT = 10
13

. However,

at such prices, the ES utility for players a:c is unaffordable.11

The fact that ES and CCE do not coincide is interesting: in the non constrained

context, the competitive solution can be computed by maximizing the Nash product,

solving what is known as the Eisenberg-Gale program (Eisenberg, 1961; Eisenberg and

Gale, 1959; Chipman, 1974, see chapter 7 in Moulin (2003) for a textbook treatment or

Sobel (2009) for a brief overview). That the competitive solution cannot be computed

solving the Eisenberg-Gale program implies that we lack an algorithm for computing the

competitive equilibrium, which can be a hard task (Uzawa, 1962; Othman et al., 2010,

2014).

The Eisenberg-Gale program is otherwise a rather robust result since it extends to a

large family of utility functions beyond the linear case (Jain and Vazirani, 2010), as well

as to the mixed division of goods and bads (Bogomolnaia et al., 2017).

The multiplicity of the competitive solution and its non-equivalence with the egalitarian

outcome justify the new terminology of CCE. For any GTP, the set of CCE is non-empty,

a result we prove in the Appendix using a classical fixed point argument with a small

twist. We summarize our findings in Theorem 2.

Theorem 2. For generalized tennis problems, the ES solution is well-defined and single-

valued, and the CCE solution exists. Their intersection can be empty.

2.4.5 Minimal Fairness Guarantees

It is easy to see that both the ES and CCE solutions achieve minimal fairness guarantees

existing in the literature: namely equal treatment of equals and envy-freeness.

A solution φ treats equals equally if, for any GTP (R, q) that has players i and j such

that RiM = RjM , φi(R, q) = φj(R, q). A solution φ is envy-free if, for any GTP (R, q)

with players i and j such that RiM ⊆ RjM , φi(R, q) ≤ φj(R, q). Clearly, envy-freeness

implies equal treatment of equals. For a multi-valued solution, both properties hold if they

hold for any selection of it.

11We do not consider the possibility that prices are defined over bundles, an interpretation which is not
very intuitive in our model, but which is often used in combinatorial auctions.
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Lemma 2. ES and CCE are envy-free, and hence treat equals equally.

We postpone an easy proof. Note that there is no efficient solution that is strongly

envy-free, i.e. that for any GTP (R, q) with players i and j such that |RiM | < |RjM |,

φi(R, q) ≤ φj(R, q), see Theorem 1 in Ortega (2016).

2.5 Manipulation by a Group of Players

We consider players’ manipulation in the direct revelation mechanism associated with

each solution. To do so, we need to know exactly how the tennis slots are assigned. A

detailed solution ψ maps every GTP (R, q) into a RAM Z ∈ F(R, q), specifying which

agents play in which day, whereas a welfarist solution φ maps every GTP into a utility

profile U ∈ U(R, q) and only tells us the expected number of games received by each player.

Every detailed solution ψ projects onto the welfarist solution φ(R, q) = u(ψ(R, q)).

The direct revelation mechanism associated with a detailed solution ψ is such that all

players reveal their preferences RiM , and then ψ is applied to the corresponding irreducible

problem (R, q), implementing the RAM ψ(R, q) = Z.

We assume that player i with true preferences RiM can only misrepresent her preferences

by declaring a profile R′iM ⊂ RiM . The intuition is that, declaring to be available on days

players are not, would be strongly punished by the schedule designer in case of a game

cancellation. Such assumption has already been imposed in scheduling problems in the

context of algorithmic mechanism design (Koutsoupias, 2014). We say then that R′iM is

IR for RiM (Section 3).

Considering manipulations in which players can exaggerate their availability is compli-

cated for a number of reasons. First, to define it properly we would need to specify how

the players substitute between goods and bads, i.e. in our tennis example, how many good

days is a bad day worth. Secondly, if we allow transfers of days, so that a player obtains

a game in a day she is unavailable, she can transfer it to another player, it is very likely

that no rule, even a dictatorship, would be non-manipulable.
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A detailed solution ψ is group strategy-proof12 if for every GTP (R, q) and every

coalition S ⊂ N , @ R′ satisfying i) R′jM = RjM ∀j /∈ S, and ii) R′SM is IR for RSM , such

that

∀i ∈ S, ui(ψ(R′, q)) ≥ ui(ψ(R, q)) (2.17)

with strict inequality for at least one player in S. A welfarist solution φ is group

strategy-proof only if every detailed solution ψ projecting onto φ is group strategy-proof.

BM04 show that any deterministic solution fails group strategy-proofness for single-unit

assignment, including priority solutions, i.e. those in which players choose sequentially

their most preferred available bundle according to a specific order. The reason is that the

player with the highest priority could change his report and still receive one acceptable

alternative, leaving his utility unchanged, and at the same time benefiting a player with

low priority: a property known as bossiness.

The argument does not extend to GTPs. Because agents can play on multiple days,

the player with higher priority can belong to a manipulating coalition only by claiming

fewer days. But since she has the highest priority, it is immediate that such manipulation

would always give her strictly less utility, so she cannot be in the coalition. The same

argument applies to all remaining players and, consequently,

Lemma 3. Any deterministic priority solution is group strategy-proof.

The previous Lemma shows that group strategy-proofness is relatively easy to achieve

for GTPs in the dichotomous domain, in fact we show below that the ES solution also

satisfies it. Is CCE also group strategy-proof? There are two extensions of our group

strategy-proofness definition to set valued solutions.

One requires that for every GTP (R, q), there is no equilibrium of the manipulated

GTP (R′, q) that is weakly better than every equilibria of the original problem (R, q), for

every member of the manipulating coalition S. A stronger extension is that there is at

least one equilibrium of (R, q) that yields a weakly higher utility than some equilibrium of

12We note again that our definition corresponds to the one of partial group strategy-proofness, as we do
not consider manipulations in which players exaggerate their availability.
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(R′, q), with strict inequality for at least one member of the deviating coalition S. It turns

out that CCE violates both conditions.13 The reason is that a group can coordinate to

make several days perfect, and thus price them at 0.

Theorem 3. ES is group strategy-proof but CCE is not.

We postpone the proof of ES being group strategy-proof to the Appendix, but we show,

using a simple example, that CCE is unambiguously manipulable by groups.

Example 3 (CCE not group strategy-proof). Let n = 7, m = 4, q = 4, and R given by

Table 2.5.

Table 2.5: Example 3.

N\M M T W Th ΦCCE

aaa 1 1 1 1 2.5
bbb 1 1 1 1 2.5
ccc 1 1 1 1 2.5
d 1 0 1 1 2.5
e 1 1 0 1 2.5
f 1 1 1 0 2.5
g 1 0 0 0 1
Total 7 5 5 5

(a) True preferences R.

M T W Th ΦCCE

1 0 1 1 [2.5 - 2.57]
1 1 0 1 [2.5 - 2.57]
1 1 0 1 [2.5 - 2.57]
1 0 1 0 [2.5 - 2.57]
1 1 0 1 [2.5 - 2.57]
1 1 1 0 [2.5 - 2.57]
1 0 0 0 [0.57 - 1]
7 5 5 5

(b) Misreport R′ for S = {e, f, g}.

Consider the coalition S = {a, b, c}. When players submit their real preferences, there

exists a unique CCE that supports the ES solution: players a, b, c obtain 2.5 expected

tennis games. By changing their report each on a different day, as in subtable 2.5b, they

make Tuesday, Wednesday, and Thursday perfect days, thus enlarging the set of CCE

solutions, which includes utilities that are always weakly above 2.5 and up to 2.57. By

misrepresenting and creating artificially perfect days, they allow those days to be priced

at 0, weakly increasing the number of expected slots received in any equilibria of (R′, q),

at the expense of players with limited availability, in this case g.

Given that ES is impossible to manipulate, unique, and Lorenz dominant, we suggest

its use as a solution for GTPs. The competitive solution lacks these three properties.

13A weaker notion of group strategy-proofness is satisfied if there is a selection of the CCE solution in
which no coalition of agents can weakly benefit, with one making positive gains. We are unsure whether
the CCE satisfies this condition, we conjecture that it does.
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Two remarks on the manipulation of our solutions. First, we do not discuss strategy-

proofness (manipulation by individuals on their own) as it is immediate that ES (and

EPD) satisfy it. For CCE, we can construct a selection of it that is strategy-proof, as

reducing the total availability for a day either reduces the day’s price, relatively increasing

the price of other days, or it leaves the day’s price unchanged.

Secondly, even though ES is group strategy-proof, it may offer weak incentives for

truthful preference revelation for some players, so that they may misreport without affecting

the solution outcome. This is a concern only inasmuch as the designer cares to perfectly

capture players’ availability. Players who may misreport never affect the number of slots

available, so this lack of truthful revelation has no effect on the solution outcome.

Efficiency, fairness, and non-manipulability are standard goals in the design of resource

allocation mechanisms. Now we consider a new goal that arises naturally for GTPs.

2.6 Independence of Perfect Days

Some solutions do not depend on the number of perfect days on which a player is available.

If an agent is available on an extra perfect day we could expect that she would always

receive one extra expected day in full. This is what our following property captures.

A solution φ is independent of perfect days (IPD) if, for every GTP, every i ∈ N

and for any of its perfect extensions ([R RNk′ ], q),

φi(R, q) + 1 = φi([R RNk′ ], q) (2.18)

IPD is a desirable property because of two reasons. Firstly, perfect days belong

unambiguously to players available on them, so they can argue that they should obtain

them fully, irrespectively of the share they obtain from overdemanded days. Secondly, if

the clearinghouse used a solution that was not IPD, the set of players who are available on

perfect days could avoid reporting their availability for perfect days and organize a game

on perfect days outside the centralized mechanism. That way, they would obtain a better

share from the overdemanded days while fully receiving the benefits of perfect days.
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Only one of our solutions (partially) satisfies this requirement.

Lemma 4. Although ES is not IPD, there exists a selection of CCE that satisfies IPD.

Lemma 4 highlights that CCE can always assign a zero price to all perfect days: this

is the how we construct the selection of CCE that satisfies IPD. But it may also assign a

zero price to some perfect days only, or to no perfect day at all. The designer has a high

flexibility choosing the equilibrium prices.

The selection problem extends to Budish (2011) competitive mechanism for CAP in

which students reveal their preferences to a centralized clearinghouse who announces a

corresponding equilibrium allocation. Budish argues that this mechanism is transparent,

meaning that students can verify that the allocation is an equilibrium. But the mechanism

can be “manipulated from the inside”, assigning selectively zero prices to hand-picked

courses, while at the same time rightly arguing that it produces a competitive allocation.

If IPD must be achieved (a decision depending on the context and the designer’s

objectives), we would like to have a solution that, at the same time, avoids the multiplicity

problem of the CCE, while being envy-free and as egalitarian as possible.

Such solution exists: we call it the refined egalitarian solution or ES*. To define

it, we use the partition of M into P(R, q) and O(R, q), and split the original GTP (R, q)

into two independent problems (RNP(R,q), q) and (RNO(R,q), q), which correspond to the

independent GTPs with perfect and the overdemanded days, respectively. ES* is given by

φES∗

i (R, q) = φES(RNO(R,q), q) +
∣∣RiP(R,q)

∣∣ (2.19)

ES* takes the egalitarian solution for the GTP with overdemanded days only, and adds

the number of perfect days in which a player is available. ES* is close to a suggestion in

Budish (2011). Budish, recognizing that some courses may be in excess supply, informally

proposes to run the allocation mechanism only on the set of overdemanded courses: “if

some courses are known to be in substantial excess supply, we can reformulate the problem

as one of allocating only the potential scarce courses”. ES* does exactly that, making

precise what “substantial” means. It also satisfies several desiderata.
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Lemma 5. The ES* solution is well-defined and single-valued, efficient, IPD, envy-free,

and Lorenz dominant for the problem (RNO(R,q), q).

It is immediate that ES* is single-valued, efficient and IPD. The remaining properties

are straightforward modifications of the proofs of Lemmas 1 and 2 and Theorem 1.

Unfortunately, the properties in Lemma 4 come at a cost: ES* is not group strategy-

proof.14 ES* can be manipulated by groups reducing their availability so to make certain

days perfect. Therefore, the members of the manipulating coalition obtain those days fully,

while obtaining also an egalitarian fraction of the remaining overdemanded problem.

Group strategy-proofness and IPD are compatible: priority solutions like EPD sat-

isfy them both. However, their poor performance with respect to fairness make them

inappropriate for the problems we have considered, as argued in subsection 4.3.

Before concluding the article, we discuss the complexity of solving GTPs with upper

limits on the number of games an agent can play. We refer to those as horizontal quotas.

2.7 Adding Horizontal Quotas

An intuitive generalization of GTPs is to add upper limits or quotas on the number of

games a player is willing to participate in, e.g. an agent that is available on 5 days

but wants to play on at most 3. We did not present the results using this more general

framework because our results do not extend to this setup.

The formalization of this generalized problem is similar to the one of a GTP defined in

Section 3, with minor notational changes. A GTP with horizontal quotas (GTPQ) is a

triple (R, q, κ), where (R, q) is a GTP with n agents, and κ = (κ1, . . . , κn) is a vector of

positive integers such that, ∀i ∈ N , κi ≤ |RiM |.

The set of all canonical RAMs for a GTPQ (R, q, κ) is defined as

F̃(R, q, κ) = {Z ∈ [0, 1]n×m | Z is IR for R, and ∀i ∈ N,
∑
k∈M

zik ≤ κi

and ∀k ∈M,
∑
i∈N

zik mod q = 0} (2.20)

14For a manipulation example, use the GTP and manipulation R′ illustrated in Table 4.
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Given a GTPQ (R, q, κ), the set of feasible RAMs15 is

F(R, q, κ) = {Y ∈ [0, 1]n×m | Y =
∑
l

αlZl} (2.21)

where 0 < αl ≤ 1,
∑

l αl = 1, and every Zl ∈ F̃(R, q, κ).

As before, the set of utility profiles is only defined over the set F(R, q, κ). In the direct

revelation mechanisms for GTPQs, players reveal (RiM , κi), and then a detailed solution

φ is applied to the corresponding irreducible problem (R, q, κ).

Solving a GTPQ is substantially more difficult than solving a GTP. First of all, the

matching size is not constant across Pareto optimal assignments, as we illustrate in

Example 4. Furthermore, we can use the same GTPQ to show that the ES solution is no

longer Lorenz dominant nor group strategy-proof.

Example 4. (ES not Lorenz dominant nor group strategy-proof for GTPQs) Consider

a GTPQ with n = 13, m = 5, q = 4, and (R, κ) given by subtable 2.6a. Two RAMs for

this GTPQ are given in subtables 2.6b and 2.6c. While both are Pareto optimal, their

matching size is 12 and 20, respectively. This is a first stark difference with the structure

of Pareto optimal RAMs in GTPs.

Table 2.6: Example 4

N\M M T W Th F κ
a 1 0 0 0 0 1
b 1 1 0 0 0 1
c 1 0 1 0 0 1
d 1 0 0 1 0 1
e : g 0 1 0 0 1 2
h : j 0 0 1 0 1 2
k : m 0 0 0 1 1 2
Total 4 4 4 4 9

(a) (R, κ)

M T W Th F
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0
0 0 0 0 8/9
0 0 0 0 8/9
0 0 0 0 8/9
4 0 0 0 8

(b) Z

M T W Th F
0 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 1 0 0 8/9
0 0 1 0 8/9
0 0 0 1 8/9
0 4 4 4 8

(c) Z ′

The egalitarian solution for this problem, UES = (UES
a , UES

b:d , U
ES
e:m) = (1, 1, 1), is obtained

by randomizing between RAM Z with probability 17
18

, and RAM Z ′, with probability 1
18

.

15Defining F(R, q, κ) more succinctly is not possible because the matching size of Pareto optimal RAMs
is not constant. Note also that F̃(R, q, κ) ( F(R, q, κ), as the latter contains RAMs with columns whose
sum is not mod q = 0, that can be obtained from randomization between RAMs in the former.
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The ES solution does not Lorenz dominate the feasible utility profile corresponding to the

RAM Z ′, which is U ′ = (U ′a, U
′
b:d, U

′
e:m) = (0, 1, 17

9
). Moreover, the ES solution is not even

efficient here because more slots can be created by imposing a zero utility for agent a.

The egalitarian solution can be manipulated by groups in several ways. One manipu-

lating coalition is S = {b, e}, with agent b reporting that he is only available on Tuesday

(and agent e reporting her true availability). It is straightforward that now the ES solution

to the new GTPQ (R′, q, κ) is U ′, which benefits agent e (and 8 other agents g : m) while

leaving the utility of agent b unchanged.

Which solution should we use for GTPQs? The problems of CCE that we have discussed

obviously remain, so CCE is as at least as bad as ES, and EPD is not even defined for

GTPQs. Finding a fair, efficient, and non-manipulable solution for GTPs with horizontal

quotas remains an open question that we leave for further research.

2.8 Conclusion

We introduced a novel assignment problem, which differs from the previous literature

in that the number of the goods to be shared is endogenously determined by players’

preferences. Our problem is inspired by scheduling, but can be applied to several other

matching problems in which the number of resources to be assigned is not fixed.

The egalitarian solution is single-valued, Lorenz dominant, and impossible to manipu-

late. For these reasons, we recommend its use as a solution in the dichotomous domain. If

the market designer is interested in satisfying independence of perfect days, the refined

egalitarian solution becomes an appealing alternative.

Two open questions are 1) whether the CCE is single-valued for GTPs with no perfect

days, and 2) whether there are efficient, fair, and non-manipulable solutions for GTPs

with horizontal quotas. Both are hard questions.
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Appendix: Omitted Proofs

Theorem 1 The ES solution is Lorenz dominant in the set of efficient utility profiles.

Proof. Fix a GTP (R, q). Consider the concave cooperative game (N,µ) where µ : 2N → R

is a function that assigns, to each subset of players, the maximum number of slots they

can obtain together, fixing the total number of slots available at ν(R, q). To formalize this

intuitive function, given a coalition S ⊂ N , let us partition the set of days M into M+(S)

and M−(S), defined as

M+(S) = {k ∈M : |RSk| ≤ δ(k)} (2.22)

The function µ is given by

µ(S) =
∑

k∈M+(S)

∑
i∈S

|rik|+
∑

k∈M−(S)

δ(k) (2.23)

This function is clearly submodular, i.e. for any two subsets T, S ⊂ N

µ(S) + µ(T ) ≥ µ(S ∪ T ) + µ(S ∩ T ) (2.24)

The “core from above” is defined as the following set of profiles

C(R, q) = {x ∈ Rn |
∑
i∈N

x = ν(R, q) and @S ⊂ N :
∑
s

xi > µ(S)} (2.25)

It follows from Theorem 3 in Dutta and Ray (1989) that the set C(R, q) has a Lorenz

dominant element and is the egalitarian solution. But by construction of the “core from

above”, U(R, q) ⊂ C(R, q), the ES solution is also Lorenz dominant in the set of efficient

utility profiles U(R, q).

Theorem 2 For generalized tennis problems, the ES solution is well-defined and single-

valued, and the CCE solution exists. Their intersection can be empty.

Proof. Fix a GTP (R, q). Let p ∈ Rm
+ be an arbitrary price vector such that p · δ = n, and

use the notation yi = RiM to denote the optimal consumption bundle for player i ∈ N ,
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and yN = (|RN1| , . . . , |RNm|). Note that

p · yN ≥ p · δ (2.26)

Define the vector ~λ as

~λ(p) = (λ1, . . . , λn) = UNIF{p · yi;n} (2.27)

where UNIF denotes the uniform rationing rule: a mapping that gives to every player

the money needed to buy her preferred schedule as long as it is less than λ, chosen so that

p · ~λ = n. Define the sets of satiated and non-satiated players

N0(p) = {i ∈ N | λi = p · yi} (2.28)

N+(p) = {i ∈ N | λi < p · yi} (2.29)

So that λi = λ∀i ∈ N+. Define the demand correspondence di(p) as

di(p) = arg max
ZiM∈I(RiM )

{p · ZiM ≤ λi} (2.30)

where I(RiM) denotes the set of individually rational assignments for RiM . Note

that di(p) = {yi} for every i ∈ N0(p), while for agents in N+(p), any vector zi ∈ di(p)

satisfies p · zi = λ. By Berge’s maximum theorem, the demand correspondence is upper

hemi-continuous and convex valued. The excess demand correspondence for the whole

society, which inherits the properties of di, is given by

e(p) = dN(p)− δ (2.31)

where dN(p) denotes the aggregate demand correspondence for each day. Using the

Gale-Nikaido-Debreu theorem (Theorem 7 in pp. 716-718 of Debreu (1982)), we know

that there exists both a price vector p∗ ∈ R+ and an excess demand vector x∗ ∈ e(p∗) for
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which the following two conditions are satisfied

x∗ = ~0 (2.32)

p∗ · x∗ = 0 (2.33)

Where Walras’ law in equation (2.33) holds by construction of ~λ and d. Finally, ∀i ∈ N

Z∗iM = di(p
∗) (2.34)

so that the corresponding Z∗ ∈ F(R, q) by equation (2.32), concluding the proof of

existence of CCE. That ES is single-valued follows from Theorem 1. We have shown in

Example 2 that for some GTP there do not exist prices that support the ES as a CCE.

Lemma 2 ES and CCE are envy-free, and hence treat equals equally.

Proof. For an arbitrary GTP, let φES(R, q) = (U1, . . . , Ui, Uj, . . . , Un), and assume player

i is envious of j, which means that RjM ⊆ RiM and that there exists a Pigou-Dalton

transfer ε so that the utility profile U ′ = (U1, . . . , Ui + ε, Uj − ε, . . . , Un) ∈ U(R, q). But

U ′ Lorenz dominates φES(R, q), so φES(R, q) was not the ES solution, a contradiction.

Any selection of the CCE solution is envy-free because of the standard argument: if

there is any player who is envious, she could afford the schedule of the player she envies.

Theorem 3 ES is group strategy-proof but CCE is not.

That CCE is not group strategy-proof was shown in the main text. To show that ES is

group strategy-proof, we start with a few preliminaries. Let Z denote the set of all feasible

RAMs supporting the egalitarian solution, i.e.

Z = {Z ∈ F(R, q) | ∀i ∈ N :
∑
k∈M

zik = φES
i (R, q)} (2.35)

As we mentioned in the main text, a rule is non-bossy if no player can change anyone’s

else utility without changing his own. This is, a solution φ is non-bossy if, for every

GTP (R, q), ∀i ∈ N , and any manipulation R′ such that 1) ∀j 6= i, RjM = R′jM , and 2)
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R′iM ( RiM , we have

φi(R, q) = φi(R
′, q) only if φ(R, q) = φ(R′, q) (2.36)

We show that ES is non-bossy now.

Proof. We proceed by way of contradiction. Let R′ be as specified in the previous definition.

The manipulation may come from a reduction of availability in three types of days:

1. k ∈ P(R, q), but if player i reduces the number of perfect days, she always reduces

the utility she obtains (we postpone this proof), so her utility is not constant and she

cannot be bossy.

2. k ∈ O(R, q) and {k ∈ M | ∃Z ∈ Z : zik = 0}, and hence there is a way to

implement the ES solution even when player i misreported, so her change in availability is

inconsequential and all utilities remain the same, so player i cannot be bossy.

3. k ∈ O(R, q) and {k ∈ M | ∀Z ∈ Z : zik > 0}, so clearly player i’s utility changes,

so she cannot be bossy.

Now we prove our postponed claim: reducing the number of perfect days in which

player i is available always strictly reduces her utility. The certain loss of the perfect

day(s) must be (at least) exactly compensated by an increase of the shares she gets from

all overdemanded days, which is constant in any Z ∈ Z. Player i was not getting full

shares on those day (as otherwise we obtain a contradiction) so another player(s) j must

be obtaining shares those days, implying φES
j (R, q) ≤ φES

i (R, q). Moreover,

φES
i (R, q)− 1 < φES

j (R, q) ≤ φES
i (R, q) (2.37)

as otherwise j does not transfer any shares to i when i reduces the number of perfect

days. Let γ be the Pigou-Dalton transfer from j to i required so that the utility of i is

kept constant. We have

φES
i (R′, q) = φES

i (R, q)− 1 + γ = φES
j (R, q)− γ < φES

i (R, j) (2.38)
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showing that indeed reducing the number of perfect days always yields lower utility,

and thus concluding the proof that ES is non-bossy.

We are now ready to prove that ES is group strategy-proof. We will do it by showing

that nobody can join a manipulating coalition.

Proof. By way of contradiction, assume there exists a GTP (R, q), a coalition S ( N ,

and a manipulation R′ such that, for all i ∈ S φES
i (R′, q) ≥ φES

i (R, q), and for some j ∈ S

φES
j (R′, q) > φES

j (R, q).

Let φES(R, q) = UES and order the players such that UES
1 ≤ . . . ≤ UES

n . We will show

by induction on the order of players the following property

i /∈ S (2.39)

There are two cases in which an agent i can be in S. Case 1) either he gets more utility,

φES
i (R′, q) > φES

i (R, q), or case 2) he gets the same utility but he changes his reported

preferences to help another member of S. This is ruled out by non-bossiness of ES so we

focus on case 1) only.

We prove it for i = 1 first, i.e. the player with lowest utility. Player 1 gets a strictly

higher number of slots with the new profile R′, which must come from a set of days K ⊆

O(R, q) in which he was not playing with certainty (K = {k ∈M | ∃Z ∈ Z : 0 < zik < 1}),

for which players 2, . . . , q, . . . , t are also available and UES
1 = UES

2 = . . . = UES
t . Those

players exhaust δ(k) entirely; i.e. ∀k ∈ K, ∀Z ∈ Z,
∑t

1 zik = δ(k).

Let T = {1, . . . , t}∩S. For any availability matrix R′TM that is individually rational for

RTM , the days {k ∈ K | RNk 6= R′Nk} become less overdemanded for players {1, . . . , t} \T ,

and therefore the players in T get less games as a whole. Therefore there must be at least

one player in T who is worst off, and the coalition S is not viable. Therefore 1 /∈ S.

Now we assume that i /∈ S for player i = h − 1 and we show it holds for player h.

We must have that UES
h < |RhM |. We assume φES

1 (R, q)ES
1 < φES

h (R, q) as otherwise our

argument for player 1 works exactly the same.
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If player h ∈ S, it must be that there exists a manipulation R′ so that φh(R
′, q) >

φh(R, q). The increase in her utility must come from more game shares on overdemanded

days in which she was not playing with certainty, i.e. Kh = {k ∈M | ∃Z ∈ Z : 0 < zhk <

1}. Some of these days are exhausted by players 1, . . . , h− 1. There is no way player h

could get more shares in any of those days because {1, . . . , h− 1}∩S = ∅ by our induction

step.

Therefore, the increase must come from days that are not exhausted by {1, . . . , h− 1}.

Those days become less overdemanded for {h, . . . , n} \ S, and therefore players in S get

less game shares as a whole. It follows that there must be a player in S who gets less

utility, so coalition S is not viable. Therefore h /∈ S, and this concludes the proof.

As a technical remark, in some assignment problems strategy-proofness plus non-

bossiness implies group strategy-proofness. This is not the case for GTPs: see for example

the refined egalitarian solution ES*, which is strategy-proof and non-bossy, and yet fails

group strategy-proofness.

Lemma 4 Although ES is not IPD, there exists a selection of CCE that satisfies IPD.

Proof. It is straightforward to show that ES is not IPD. Let n = 5,M = {Mon}, q = 4,

and R> = [1 1 1 1 1]. φES
i (R, 4) = 0.8 for any player, but adding a perfect day k′ for any

player i changes φES
i ([RRNk′ ], 4) = 1.75 6= 2.

To show that there is a selection of ΦCCE that is IPD, let (Z∗, p∗) be a CCE of (R, q).

Then fix p∗k′ = 0 and, for every i ∈ N let z∗ik′ = 1 if rik′ = 1, and 0 otherwise. The pair

([Z∗ Z∗Nk′ ], (p
∗
1, . . . , p

∗
n, 0)) is a CCE of the new problem ([RRNk′ ], q), because everybody

interested in the perfect day is able to afford it, and the demand for k′ equals its supply,

because the new day is perfect.
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Chapter 3

Can Everybody Benefit from Social

Integration?

Abstract

There is no matching mechanism that satisfies integration monotonicity and

stability. If we require integration monotonicity, we cannot even achieve Pareto

optimality: the only option is to remain segregated.

A weaker monotonicity condition is compatible with Pareto optimality but not

with path independence, which implies that the dynamics of social integration

matter.

If the outcome of integration is stable, integration is always approved by ma-

jority voting, but a non-vanishing fraction of agents always oppose segregation.

The side who receives the proposals in the deferred acceptance algorithm suffers

significant welfare losses, which nevertheless become negligible when societies

grow large.
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3.1 Our Problem and its Relevance

Imagine several completely isolated communities that match within themselves, but that

could expand their boundaries to merge and match as a unified community instead. The

question I ask is whether every person would prefer that all communities integrate as

one, provided that the matching outcome is either stable or efficient. Some examples that

motivate my research question are:

1. Interracial marriage. Three infamous cases of societies that banned interracial

marriage are i) the U.S. before the Virginia vs Loving case in 1967 (Arrow, 1998; Fryer,

2007), ii) Nazi Germany, where the marriage between arians and non-arians was

forbidden (Caestecker and Fraser, 2008), and iii) South Africa during the apartheid

era, when the the Prohibition of Mixed Marriages Act was established (Hyslop, 1995).

In all cases, social integration occurred only after complicated social movements,

and without unanimous approval.

2. Centralized Kidney Exchange. After 2000, kidney exchanges began to take place

internally in hospitals around the U.S. Few years after, centralized programs started

to conduct regional kidney exchanges by asking hospitals to share their donor-patient

pairs. Using a centralized procedure would always weakly increase the number of

transplants, yet it has been noticed that some hospitals may not have incentives

to integrate into to the central clearinghouse, preferring to conduct exchanges only

internally. The aforementioned rejection to integrate to a centralized clearinghouse

has been documented in practice (Ashlagi and Roth, 2014).

3. School Desegregation In 1954, school segregation was declared illegal in the U.S.

following the Brown vs Board of Education case. Although the desegregation ruling

was widely acknowledged as a major accomplishment, it was not well-received by

some. A shameful example is the resistance by the governor of Arkansas, who tried

to prevent a few Black students from attending a newly desegregated school. The
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students were able to enter the school only when they were escorted by federal forces

(U.S. Commission of Civil Rights, 1977).

All these examples show instances on which social integration was complicated to

achieve in matching environments. I formalize these environments with an extended

version of the Gale and Shapley (1962) matching problem with non-transferable utility.

The idea of the model is simple: we take several classical Gale-Shapley problems and

find their segregated women-optimal stable partner. Then we put them together and

compute the integrated women-optimal stable matching, and compare who prefers the

integrated matching to the segregated one. Stability is natural requirement to ask for,

because decentralized matching environments produce outcomes close to those predicted

by stability c, and because centralized mechanisms that produce stable outcomes are

widely regarded as successful (Roth, 2002).

I derive several impossibilities showing that social integration cannot benefit everyone

whenever the matching outcome is stable or efficient.1 The impossibility disappears when

only weak integration monotonicity and Pareto efficiency are required: an observation which

may be obvious, but the reader is reminded that weak monotonicity is still incompatible

with stability. Weak integration monotonicity only requires that when the complete society

merges, everybody is better off than remaining in disjoint segregated communities. It says

nothing about the process of partial integration of all communities. I also prove that social

integration is always approved by a weak majority of the population.

Interestingly, such majority rarely surpasses 80% of the population when considering

random instances of matching problems, emphasizing the complicated dynamics of deseg-

regation, and making evident that a non-vanishing minority may oppose social integration

because they foresee that they will be worse off belonging to an integrated community.

Also interestingly, the welfare losses for those who oppose integration become negligible

with respect to the size of the grand society as communities grow large, but in small

societies the side who receives the proposals in the deferred acceptance algorithm suffers

1The impossibilities occur when we require that for every union of disjoint communities, the resulting
matching is weakly better off for each agent.
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significant welfare losses. Finally, it is also surprising that those who oppose integration

are indistinguishable in terms of expected ranking from those who prefer integration.

I use a one-to-one matching framework, but all the impossibility results obviously

extend to the many-to-one matching case. Since the interracial marriage example is the

one closer to one-to-one matching, I will present the model in those terms, but the reader

should keep in mind that the results apply to general matching problems.

After reviewing the related literature in Section 2, Section 3 introduces the model and

defines the integration monotonicity property. Section 4 presents several impossibility

theorems regarding the existence of integration monotonic matchings that have also any

degree of efficiency, emphasizing the rigid structure that monotonicity imposes in matching

problems.

Section 5 details the limits of our impossibility results, showing that although some

agents oppose social integration, they are always a minority. It also describes the size of

such group when the societies become large. Section 6 explores the properties of those

who oppose integration and their welfare loss. Finally, section 7 concludes.

3.2 Related Literature

3.2.1 Comparative Statics in Matching Problems

Within the matching literature, there is a body of work that studies how the set of stable

outcomes changes when a new agent joins an existing society. The main result in this

literature is that, when a new man joins a stable matching problem, every women weakly

improves, while every man becomes weakly worse off. This result is robust to various

formulations of the problem such as many-to-one extensions and preferences determined

by choice functions: see theorem 5 in Kelso and Crawford (1982), theorems 2.25 and 2.26

in Roth and Sotomayor (1992), theorems 1 and 2 in Crawford (1991), and theorem 2 in

Chambers and Yenmez (2017).

The aforementioned welfare loss that men suffer when a new men joins the problem

has been recently quantified, by assigning agents with independent random preferences
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over all their partners. Pittel (1989) shows that, in expectation, the side of the society

that proposes in the deferred acceptance algorithm, say men, gets matched to a woman

ranked log(n) in their preference lists, whereas women get in expectation a man in the

n
log(n)

position of theirs. The partner ranked first is the best possible partner, and so on,

and n is the number of potential partners for each agent.

Using the same probabilistic framework as Pittel, Ashlagi et al. (2017) find that just by

adding an additional man, men receive a partner ranked n
log(n)

with high probability (in the

men-optimal matching), whereas women will receive someone close to log(n). Interestingly,

all stable marriages are similar whenever societies are even slightly unbalanced in their

ratio between men and women.

In all cases, the discussion centers on what happens when adding an individual alone

to a society and not when merging isolated societies of same size. This is my main

contribution with respect to the surveyed literature.

3.2.2 Integration and Population Monotonicity Elsewhere

Chambers and Hayashi (2017) introduced integration monotonicity and derived similar

results for economic integration. They consider several exchange economies, in which

each agent has an initial endowment, that integrate as one. They find that there is no

path-independent exchange mechanism that is integration monotonic and Pareto efficient.

If the integration mechanism is Pareto efficient and satisfies the additional property of

equal treatment of equals, it must necessarily harm one third of all agents in the economy.

Sprumont (1990) considers population monotonic schemes in cooperative games with

transferable utility. An allocation scheme is population monotonic if each time an agents

joins an existing problem, the payoff for every existing member increases. He shows that

every convex game admits a population monotonic allocation scheme, and provides a

tighter characterization using linear combinations of games with veto control. His work

deals with transferable utility games only.

Related population monotonicity concepts in cooperative games are widely used in

different environments, based on the seminal work of Moulin and Thomson (Thomson
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(1983), Moulin (1990, 1992); Moulin and Thomson (1988)). This paper’s title is inspired

on the last of those articles. As in the matching literature, all these monotonicity concepts

deal with adding an agent to a problem instead of merging problems of the same size.

Sprumont (2008) presents a detailed review of the work in this area.

3.3 Model

Let Sk be a society of race k that consist of n men Mk and n women W k. I refer to

man i (woman j) that belongs to society k by mk
i (wkj ). When I refer to an agent of

arbitrary gender I use xki ; I omit the subindices when n = 1. There are r ≥ 2 races

and R = {1, . . . , r}. For any subset T ⊆ R, let MT =
⋃
k∈T M

k, W T =
⋃
k∈T W

k, and

ST = MT ∪W T . SR is called the grand society.

Each man (woman) has strict preferences over the entire set of women WR (men

MR) and not only over those belonging to her own race. I represent the preferences of

an arbitrary person xki by P (xki ). F (xki ) denotes the weak preference relation associated

to P (xki ) so that for any two agents ylj and zeg, y
l
j F (xki ) z

e
g if and only if ylj P (xki ) z

e
g or

ylj = zeg. I assume that every person prefers matching with any potential partner of the

opposite gender than remaining alone.

P T will denote the preference lists of every person in ST ⊆ SR. The pair (SR, PR) is

an interracial matching problem (IMP).

A matching µ : MR ∪WR × 2R →MR ∪WR is a mapping such that, ∀T ⊆ R,

∀mk
i ∈MT , µ(mk

i , T ) ∈ W T (3.1)

∀wki ∈ W T , µ(wki , T ) ∈MT (3.2)

∀xki ∈ ST , µ(µ(xki , T ), T ) = xki (3.3)

so that every man is married to a woman in the specified society ST and vice versa. The

function µ indicates who marries whom under every union of races. Naturally, µ(xki , T ) is

only defined whenever xki ∈ T .
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In the majority of matching literature, a matching is defined instead as a mapping

µ′ : M ∪W →M ∪W . My definition of µ corresponds to the one of an allocation scheme

of the matching µ′, as defined by Sprumont (1990), which specifies a matching µ′ for each

subset of R. For convenience, I just refer to such allocation scheme as a matching.

Let T and Q be an arbitrary partition of R, with T = {a, b, . . . , r′}. Let the colorblind

equivalent of ST be denoted by ST , in which every agent xki ∈ ST becomes of a new

race ab . . . r′, and in which the preferences of each agent in SR remain the same up to the

renaming in agents’ race.

We define the following properties of interest for an arbitrary matching µ, given an

IMP.

Pareto Optimality There is no different matching µ′ such that, for all T ⊆ R and all

xki ∈ ST

µ′(xki , T ) F (xki ) µ(xki , T ), (3.4)

and for some Q ⊆ R and some ylj ∈ SR ,

µ′(ylj, Q) P (ylj) µ(ylj, Q) (3.5)

Pareto optimality is a classical requirement and a basic efficiency concern. It can be

strengthened to the stronger efficiency concept of stability.

Stability For every subset T ⊆ R, and for every mk
i , w

l
j ∈ ST , such that

mk
i /∈ µ(wlj, T ) and wlj /∈ µ(mk

i , T ) (3.6)

either

µ(mk
i , T ) P (mk

i ) w
l
j or µ(wlj, T ) P (wlj) m

k
i (3.7)

Stability is an important requirement because it closely predicts realized outcomes

in decentralized environments and because if the final outcome was not stable, it would
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be unlikely that it lasted long from a game-theoretical perspective.2 Now we turn to

integration monotonicity.

Integration Monotonicity For all disjoint subsets T,Q ⊆ R, and for every xki ∈ ST

µ(xki , T ∪Q) F (xki ) µ(xki , T ) (3.8)

Note that integration monotonicity not only requires that the matching obtained when

all races have integrated is better than the one obtained with a society alone. It requires

that anytime another race joins, it always benefits every agent in the existing societies.

We will relax this requirement in Section 5. Finally, we define path independence.

Path Independence For all disjoint subsets T,Q ⊆ R, and for every xki ∈ SR

µ(xki , T ∪Q) = µ(xki , T ∪Q) (3.9)

where T denotes the colorblind equivalent of T .

Path independence is a more technical requirement, but nevertheless relevant because

if a matching violates path independence, the dynamics of integration would play a role in

determining the final pairings.

From our four properties, only stability and Pareto optimality are related.3

Lemma 6. Every stable matching is Pareto optimal.

Proof. Let µ be stable. Therefore in any alternative matching µ′ that is better for person

xki at T ⊆ R, we have that µ(µ′(xki , T ), T ) P (µ′(xki , T )) xki , which means the new partner

of xki prefers matching µ to µ′ at T , and hence µ′ is not a Pareto improvement.

The converse statement is clearly not true.

2For example, realized romantic pairings are similar to those predicted by stability, see Hitsch et al.
(2010) and Banerjee et al. (2013). Stability is also related to the successful operation of centralized
matching mechanisms such as kidney exchanges programs and school choice (Roth, 2002).

3In exchange economies integration monotonicity and efficiency imply core stability (Lemma 2 in
Chambers and Hayashi (2017)). A similar conclusion applies in the housing model of Shapley and Scarf
(1974). For two-sided matching that relationship does not hold.
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3.4 Results

Unfortunately, stability and integration monotonicity are not compatible even with just

two societies with two persons each.4

Proposition 1. Not every IMP admits a matching that satisfies stability and integration

monotonicity.

Proof. (Example 1) Let R = {a, b} and n = 1, and let agents’ preferences be

mamama : wa P (ma) wb wawawa : mb P (wa) ma

mbmbmb : wa P (mb) wb wbwbwb : mb P (wb) ma

The unique stable matching has µ(mk, {k}) = wk for k ∈ {a, b} but µ(wa, R) = mb and

µ(wb, R) = ma. Yet µ violates integration monotonicity forma because µ(ma, {a}) P (ma) µ(ma, R).

The same occurs for wb.

Given that stability and integration monotonicity are incompatible, an obvious question

is whether we can weaken any of those two properties to avoid the impossibility. To address

it, let us define a particular matching, called the segregated matching.

Let λ be a matching such that λ(xki , T ) assigns to each agent xki the women-optimal

stable matching5 in the matching problem (MT ,W T ;P T ) for each T ⊆ R. The segregated

matching σ is defined as

∀T ⊆ R, ∀xki ∈ SR, σ(xki , T ) = σ(xki ) = λ(xki , {k}) (3.10)

so that for any subset T , it assigns to each individual the women-optimal matching obtained

when matching each race alone. The segregated matching is clearly integration monotonic,

4Sprumont (1990) proves a similar result: any assignment game with two men and two women lacks a
population monotonic assignment scheme. His result does not imply any of mines because his works deals
with transferable utility games only.

5I always pick the women-optimal stable matching to have a consistent selection from the set of stable
matchings. We could consider the men-optimal one as well. The selection problem is not a big issue, as in
large societies there is a unique stable matching whenever agents have short preferences or the societies are
unbalanced in their ratio between men and women (Immorlica and Mahdian, 2005; Kojima and Pathak,
2009; Ashlagi et al., 2017).
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but it fails to be stable when aggregating the individual societies. The segregated matching

even fails Pareto optimality, as the preferences in Example 2 shows.

Example 2: The segregated matching is not Pareto optimal.

mamama : wb P (ma) wa wawawa : mb P (wa) ma

mbmbmb : wa P (mb) wb wbwbwb : ma P (wb) mb

I start by weakening stability and requiring Pareto optimality only. Can we obtain

always a matching that is Pareto optimal and integration monotonic? The answer is that

not even such weakening of optimality is enough.

Proposition 2. Not every IMP admits a Pareto optimal and integration monotonic

matching.

Proof. (Example 3) Let R = {a, b, c} and n = 3, and let agents’ preferences be

mamama : wb P (ma) wc P (ma) wa wawawa : mb P (wa) mc P (wa) ma

mbmbmb : wc P (mb) wa P (mb) wb wbwbwb : mc P (wb) ma P (wb) mb

mcmcmc : wa P (mc) wb P (mc) wc wcwcwc : ma P (wc) mb P (wc) mc

Any Pareto optimal matching µ has µ(wa, {a, b}) = mb and µ(wa, {a, c}) = mc.

Therefore µ(wa, R) = mb by integration monotonicity. But exactly the same argument for

mb shows that he gets µ(mb, R) = wc. Therefore, no Pareto optimal matching satisfies

integration monotonicity.

Note that Chambers and Hayashi (2017) are always able to find a mechanism that is

Pareto optimal and integration monotonic, although not path-independent. Therefore, the

impossibility we obtain is stronger. A first conclusion is that achieving complete social

integration is more difficult than obtaining complete economic integration.

An immediate corollary follows, showing that if one is to pursue integration monotonic-

ity, there is no room for efficiency even in its weakest form.
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Corollary 1. The only matching that satisfies integration monotonicity in every IMP is

the segregated matching.

Given the negative result obtained, let us focus on matchings that satisfy a more

flexible monotonicity condition, defined below.

Weak Integration Monotonicity For any race k ∈ R, and for every xki ,

µ(xki , R) F (xki ) σ(xki ) (3.11)

Weak integration monotonicity only requires that the corresponding matching when

all races have integrated is better than the segregated matching when all societies are

segregated. It says nothing about the relationship between matchings obtained under

partial integration.

This mild monotonicity is still inconsistent with stability, as our previous Example 1

shows. It can be combined with optimality, yet not without consistency problems.

Proposition 3. Every IMP admits a matching that is weakly integration monotonic and

Pareto efficient. If we add path-independence, we obtain an impossibility.

Proof. For any T ⊆ R, implement the matching σ. If the segregated matching is not

Pareto optimal, then implement a Pareto optimal matching µ that dominates σ, and so

on. Trivially, every agent is better off. Note that every agent has a veto power over stable

matchings that benefits others but hurt her/him.

To show that path-independence cannot be added, consider the society in Example

3. Let us merge societies into their colorblind equivalents: a and b into ab, and a and

c into ac. The unique Pareto optimal matching µ is such that µ(ma
1, {ab, c}) = wb1, but

µ(ma
1, {ac, b}) = wc1.
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3.5 The Limits of Segregation

How many people prefer segregation over complete integration, provided that the (women-

optimal) stable matching will realize when societies merge? If there will be a referendum

asking whether all individual societies should merge, could it be that segregation would

obtain a majority of votes?

Let us assume that everybody who does not get hurt by integration votes in favor of it.

In Example 1, half of the society votes against integration. Can it be more? The answer

is no.

Proposition 4. For any IMP (SR, PR), at most brnc agents prefer segregation. The

bound is tight.

Proof. Let us partition SR into three sets A, B+ and B−, defined as

A = {xki ∈ SR | λ(xki , R) = σ(xki )} (3.12)

B+ = {xki ∈ SR | λ(xki , R) P (xki ) σ(xki )} (3.13)

So A is the set of people who keep the same partner after integration, B+ are those who

prefer their “integrated” partner, and B− are those who prefer the “segregated” partner.

Now consider the directed graph which contains all women from B+ and B−, in

which every woman points to the woman from whom she “stole” her new husband in the

integrated society, i.e. this is each woman wki points towards σ(λ(wki , R)). A cycle always

forms whenever A 6= SR.

Now consider an arbitrary woman in B+, which must exist if A 6= SR because λ

produces the women-optimal stable matching. She points to a woman wlj, who can either

be in B+ or in B−. If she is in the latter, it must be that σ(wlj) is in B+, because she

proposed to him at some point in the woman-proposing deferred acceptance algorithm

but he rejected her. This goes on for any woman who is worst off after integration: her

previous partner must necessarily be better off after integration, because he rejected her

when she proposed to him in the deferred acceptance algorithm.
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It follows that |B+| ≥ |B−|, and thus |A|+ |B+| ≥ |B−|, which implies that always at

least half of the society supports integration, completing the proof.

ma, wa

mb, wb

mc, wc

Figure 3.1: The procedure in the proof of Proposition 4 applied to Example 3.

Proposition 4 only applies to one-to-one matching. To extend it to many-to-one

matching one needs to be careful to define: 1) the structure of the preferences, which may

exhibit substitutes and complements; and 2) how do we count colleges. It could be that

either each college counts as one, or that each college counts for as many seats it has, i.e.

its quota. It is well-known that if preferences are responsive, each many-to-one matching

has a corresponding one-to-one matching, in which each college with capacity or quota qc

is replaced with qc copies of itself. Using this equivalence, our Proposition 4 extends to

many-to-one matchings too.

Proposition 4 is interesting because it tells us that a referendum for integration will

always be accepted by a weak majority. However, it could be that the voting rule we need

is a supermajority, that implements integration only if the number of agents that get hurt

from integration are at most a fraction ε of the population.6

A natural conjecture is that, for large societies, integration is always approved in any

ε-supermajority, for any arbitrarily small ε. The conjecture is natural because, when

the number of agents grows, agents win a larger pool of potential partners when social

integration realizes. Stated differently, that the fraction of people that reject social

integration is vanishingly small when the societies become large. Yet, this conjecture

6Chambers and Hayashi (2017) use the equivalent concept of integration monotonicity under P-vetoes,
in which at most a group of people of size |P | may oppose integration. Both concepts are mild versions of
integration monotonicity.
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appears to be false for small values of r. Looking at what happens when r is small is

particularly interesting because in reality we have only a few races.

Let (SR, PR) be an IMP in which each agents’ preferences are chosen independently

and uniformly at random from the set of possible strict preferences. Let Ωr(n) denote the

expected number of agents who prefer the segregated matching over the women-optimal

stable matching in the grand society.

Conjecture 1. For r ≤ 5,

lim
n→∞

Ωr(n)

2rn
6= 0 (3.14)

Our conjecture that Ωr(n)
2rn

does not vanish is supported by Monte Carlo simulations

using Matlab presented in Table 1.7 The code used is available from my webpage. I

stopped the simulations at 2n = 1000 because it already took three days to run in a high

performance computing facility (2n is the number of agents of each race). It is clear from

Table 1 that convergence occurs in all cases.

Table 3.1: How many people (in percentage) prefer segregation?

r\2n 100 200 1000

2 25.42 25.76 25.47
(0.04) (0.02) (0.01)

3 25.43 25.83 25.99
(0.03) (0.01) (0.01)

4 24.84 25.14 25.57
(0.02) (0.01) (0.01)

5 24.30 24.60 25.05
(0.02) (0.01) (0.01)

Average over a thousand simulations with preferences drawn uniformly at random. Standard errors in parenthesis.

Our Ωr(n)
2rn
≈ .25 is related to theorem 2 in Chambers and Hayashi (2017). Their result

states that when societies merge, the fraction of people who oppose economic integration

is always above one third under equal treatment of equals. Their result, looking at a worst

case scenario, is obtained in a very different fashion. The comparison of our results suggest

7The code was run on the high performance computing facilities of the University of Glasgow, and it
uses the Matlab package to compute the women-optimal stable marriage, developed by S. Gopalakrishnan.

50



a second conclusion: it is easier to achieve partial social integration than partial economic

integration.

Using the same probabilistic IMP with random preferences, we can find the expected

welfare gains derived from integration. Applying the well-known result from Pittel (1989)

about expected rankings of partners in random matching problems, it is easy to see that

women get a higher ranked partner in expectation after integration occurs, because

log(n)

(
rn+ 1

n+ 1

)
︸ ︷︷ ︸

exp. ranking w. segregation

− log(rn)︸ ︷︷ ︸
exp. ranking w. integration

=
n(r − 1)

n+ 1
log(n)− log(r) (3.15)

which is positive for all sensible values of r and n, meaning women get a partner

that appears earlier on their preference lists. Similarly, men get a better partner after

integration for sensible values of r and n, because

n

log(n)

(
rn+ 1

n+ 1

)
︸ ︷︷ ︸

exp. ranking w. segregation

− rn

log(rn)︸ ︷︷ ︸
exp. ranking w. integration

= A[(rn+ 1) log(r)− (r − 1) log(n)] (3.16)

where A = n/[(n + 1) log(n) log(rn)]. The gains from integration in an IMP with

random uncorrelated preferences are given by the sum of the previous expressions multiplied

by rn. The normalized gains from integration for a man and a woman are depicted in

Figure 2.

(a) r = 2 (b) r = 5

Figure 3.2: Individual gains from integration divided by rn, by gender
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3.6 Who Prefers Segregation?

First let us look at the expected relative number of people who keep the same partner

after integration. Since the preferences are drawn uniformly, everybody has the same

probability of matching an agent from their own race: this is 1/r. A natural guess is that,

among those, 1/2 of them do not change their marriage, which provides a good intuition

of the real numbers described in Table 2.

Table 3.2: How many people (in percentage) keep the same partner after integration?

r\2n 100 200 1000 1/2r

2 27.26 27.14 27.02 25
(0.12) (0.07) (0.02)

3 18.39 18.23 17.89 16.66
(0.06) (0.03) (0.01)

4 13.93 13.62 13.41 12.5
(0.03) (0.02) (0.01)

5 11.31 11.21 10.84 10
(0.02) (0.1) (0.01)

Average over a thousand simulations with preferences drawn uniformly at random. Standard errors in parenthesis.

Table 2 shows that, as r grows, the number of people who are indifferent between

integration and segregation becomes smaller. Since the proportion of people who oppose

social integration keeps relatively constant as described in Table 1, the number of people

who strongly prefer integration does grow, although as we saw it rarely goes over four-fifths

of the entire society.

Another natural conjecture is that the people who oppose social integration have a

lower expected desirability than those who do not. In other words, they are usually ranked

lower in the preference lists of the potential partners. And this new conjecture is false

too. Table 3 describes the expected rank of people who prefer segregation: it is immediate

that those who prefer segregation have the same expected ranking as a random person,

showing that people who prefer segregation are not particularly undesirable agents, they

are just like anybody else.8

8This result depends crucially on the assumption of independent preferences, as it can be noted in the
next Chapter.
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Table 3.3: Average rank of people who prefer segregation, by gender.

r\2n 100 200 1000
women men women men women men

2 50.7 50.5 100.6 100.5 500.5 500.5
(0.30) (0.07) (0.22) (0.10) (0.21) (0.09)

3 75.7 75.5 150.7 150.5 750.6 750.5
(0.25) (0.09) (0.24) (0.08) (0.25) (0.08)

4 100.6 100.5 200.6 200.5 1000.7 1000.5
(0.25) (0.09) (0.27) (0.07) (0.24) (0.08)

5 125.6 125.5 250.6 250.5 1250.6 1250.5
(0.29) (0.08) (0.29) (0.08) (0.28) (0.08)

Average over a thousand simulations with preferences drawn uniformly at random. Standard errors in parenthesis.

Finally, we look at the welfare losses suffered by those who prefer segregation when

integration realizes, in terms of ranking of their current partner. If their loss was relatively

small it would be a strong argument for saying that the impossibilities described in Section

3 are basically irrelevant. Table 4 summarizes an interesting result: the side of the society

who does not propose, in this case men, get severely hurt by integration for moderate

values of n. Women, the proposing side, suffer a moderate hurt at most.

Table 3.4: Average welfare loss by people who prefer segregation, by gender.

r\2n 100 200 1000
women men women men women men

2 4.9 19.7 5.7 34.9 7.4 136.6
(0.91) (9.47) (0.95) (22.91) (1.04) (246.83)

3 5.4 27.4 6.2 49.2 7.9 193.8
(1.01) (14.57) (0.96) (39.22) (0.83) (409.86)

4 5.7 35 6.5 62.1 8.1 250.8
(1.08) (21.67) (1.03) (60.48) (0.84) (623.95)

5 6 41.8 6.8 74.9 8.4 303.3
(1.07) (28.26) (1.14) (84.86) (0.88) (709.15)

Average over a thousand simulations. Welfare loss measured in difference in ranking of partners. Standard errors in

parenthesis.

Table 4 reveals that the welfare loss becomes smaller with respect to the size of the

grand society as n grows, suggesting that they become negligible in the limit. This finding

suggests that integration could be more easily implemented in large societies.
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3.7 Integration with Correlated Preferences

The numbers in Table 4 should be understood as a lower bound for the welfare losses,

which would increase when agents are endowed with correlated preferences. Correlation in

preferences is evident for certain matching environments, like school choice and marriage.

We also assume that preferences are independent from race, an ideal scenario but probably

not the case in reality for many matching environments, see Fisman et al. (2008) and

Garcia (2008) for evidence of racial preferences for dating and school choice, respectively.

In this section, we modify the assumption that preferences are independent, and see

how our results change. The theoretical results of course apply, but what about our

simulation results?

How we introduce correlation in preferences is by defining a random status quo in

preferences for both men and women. This is, an order over all possible partners. Then,

each agent’s preferences is identical to the status quo, except for c positions. The expected

correlation coefficient between each person preferences and the status quo equals ρ = 1− c
nr

.

Note that in all of our previous results the expected correlation coefficient is ρ = 0.

For example, if nr = 6, c = 2, and the status quo is 1, 2, 3, 4, 5, 6, a person preferences

could be 1, 2, 6, 4, 5, 3. In two places of her preference list there were changes. The

changes are chosen randomly, so it could be as well that a person’s preferences are the

status quo itself.

The results we find is that the fraction of people against integration remains similar

around 25% independently of the correlation in preferences, and so does the fraction of

agents who keep the same partner. The expected ranking of those against integration

increases, as expected, implying that those who oppose integration seem to be less likable

by their peers. Also, not surprisingly, the welfare losses of men and women become similar,

because it is well-known that with highly correlated preferences the set of stable matchings

becomes a singleton. We summarize our observations in Table 3.5
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Table 3.5: Statistics for correlated preferences, n = 100, r = 2.

ρ % % Exp. rank Welfare loss
worse same women men women men

0.9 24.61 21.49 105.55 93.92 30.53 31.90
(0.02) (0.06) (59.22) (50.78) (17.75) (24.36)

0.7 26.06 23.13 114.29 89.15 17.22 34.72
(0.02) (0.06) (25.51) (20.07) (8.45) (25.87)

0.5 26.12 25.55 109.67 93.37 10.86 34.81
(0.02) (0.06) (15.81) (11.85) (3.46) (22.99)

0.3 25.89 26.92 104.39 97.46 7.79 34.12
(0.02) (0.07) (6.46) (4.43) (1.83) (21.68)

0.1 25.81 27.18 101.11 100.13 6.14 34.11
(0.02) (0.07) (1.05) (0.62) (1.24) (22.35)

Average over a thousand simulations, 2n = 200. Columns (2) and (3) refer to the expected number of people who get a

worse partner and those who keep the same partner after integration occurs, respectively. All the other columns refer to

statistics of those who get a worse partner under integration. Welfare loss measured in difference in ranking of partners.

Standard errors in parenthesis.

3.8 Conclusion

When two or more communities integrate to match, there are always some people that

become worse off. If the final matching pattern is stable, integration is always approved

by a majority of agents, but the fraction of those that oppose social integration does not

vanish, even when communities grow large. The welfare losses of those hurt by integration

become negligible with respect to the size of the grand society when communities grow

large, suggesting that social integration is easier to achieve in sizable communities.

Two interesting questions remain open. The first one is studying the limits of social

segregation in many to one matching. The impossibility results carry over, but the question

on whether more or less people get hurt by integration, and the exact magnitude of the

welfare losses, remains open.

Secondly, there is a recent literature that studies matching in the large using cardinal

utilities: e.g. Che and Tercieux (2015) and Lee (2017). Their formulation of preferences

makes it easier to introduce correlation, and can provide cardinal measures on the welfare

loss of agents that get hurt by integration. Although I conjecture one would obtain similar

results using their type of formulation, this remains to be shown formally.
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3.9 Appendix: Matlab Code

1 % Matlab Code by JOSUE ORTEGA, Un ive r s i ty o f Glasgow , used in

the a r t i c l e ”Can everyone b e n e f i t from s o c i a l i n t e g r a t i o n ?”

2 %The s t a b l e marr iage package i s needed , a v a i l a b l e at

3 %https : // uk . mathworks . com/ mat labcentra l / f i l e e x c h a n g e g a l e−shapley

−s tab l e−marriage−a lgor i thm

4 %The func t i on march10 computes i n t e g r a t e d and seg regated

matchings , and we l f a r e ga ins and l o s s e s

5 %The func t i on in t eg ra t i on10 , below , runs the MonteCarlo

s imu la t i on s to obta in the average over many random i n s t a n c e s

6 f unc t i on [ x , y ,SMP,SWP,LOSSM,LOSSW] = march10 (n , r ) ;

7 %n−> Number o f males ( f ema le s ) in each race , balanced s o c i e t i e s

8 %r−> Number o f r a c e s

9 %x−> Number o f people who d i s l i k e i n t e g r a t i o n

10 %y−> 1+Number o f people i n d i f f e r e n t to i n t e g r a t i o n

11 %SM(SW)−> Index o f males ( f emale s ) who p r e f e r s e g r e g a t i o n

12 %SMP(SWP)−> Average rak ing o f s eg r egated males ( f emale s )

13 %LOSSM(LOSSW)−> Average l o s s o f SM (SW) by i n t e g r a t i n g

14 A = ze ro s (n∗ r ) ; %Men p r e f e r e n c e s

15 B = ze ro s (n∗ r ) ; %Women p r e f e r e n c e s

16 f o r i =1:n∗ r

17 A( i , : ) = randperm (n∗ r ) ;%Generates random p r e f e r e n c e s

18 B( i , : ) = randperm (n∗ r ) ;

19 end

20 f o r i =1: r

21 aa{ i } = transpose (A) ;

22 bb{ i } = transpose (B) ;
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23 ind icesA { i } = f i n d ( aa{ i}> i ∗n | aa{ i }<( i −1)∗n+1) ; %

R e s t r i c t i n g p r e f e r e n c e s to t h e i r own race

24 i nd i ce sB { i } = f i n d (bb{ i}> i ∗n | bb{ i }<( i −1)∗n+1) ; %aa{1}

conta in s p r e f e r e n c e s o f men o f race 1 over women o f race 1

25 aa{ i }( ind icesA { i }) = [ ] ;

26 bb{ i }( ind i ce sB { i }) = [ ] ;

27 aa{ i } = transpose ( reshape ( aa{ i } , [ n , n∗ r ] ) ) ;

28 bb{ i } = transpose ( reshape (bb{ i } , [ n , n∗ r ] ) ) ;

29 aa{ i}=aa{ i } ( ( i −1)∗n+1: i ∗n , : ) ;

30 bb{ i}=bb{ i } ( ( i −1)∗n+1: i ∗n , : ) ;

31 end

32 i n t=ga l e shap l ey (n∗r ,A,B) ;%Computes i n t e g r a t e d marriage

33 seg=ze ro s (n , r ) ;

34 f o r i =1: r

35 seg ( : , i ) =(( i −1)∗n)+ga l e shap l ey (n , aa{ i}−n∗( i −1) ,bb{ i}−n∗( i

−1) ) ;%Computes s eg r egated marriage

36 end

37 seg=reshape ( seg , [ r∗n , 1 ] ) ;

38 match=cat (2 , int , seg ) ;%Who marr i e s whom in both s c ena r i o s ,

39 %Women 1 marr i e s guy in the 1 s t po s i t i on , and so on

40 i f match ( : , 1 )==match ( : , 2 )

41 x=0;

42 y=1

43 r e turn ;

44 end%Just in case everybody keeps t h e i r same match

45 i n d i c e s=f i n d ( ( match ( : , 1 ) ˜=match ( : , 2 ) ) ) ;%Women with d i f f e r e n t

partner

46 y=1+mean( match ( : , 1 )==match ( : , 2 ) ) ;%This g i v e s the value o f y

s t r a i g h t away
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47 sum=0;

48 SW=ze ro s ( s i z e ( i n d i c e s ) ) ;%Women who d i s l i k e i n t e g r a t i o n

49 f o r i =1: s i z e ( i n d i c e s ) ;

50 i f f i n d (B( i n d i c e s ( i ) , : )==i n t ( i n d i c e s ( i ) ) )>f i n d (B( i n d i c e s ( i

) , : )==seg ( i n d i c e s ( i ) ) ) ;

51 sum=sum+1;

52 SW( i )=i n d i c e s ( i ) ;

53 end

54 end

55 xx=seg ( i n d i c e s ) ;%Men with d i f f e r e n t par tne r s

56 SM=ze ro s ( s i z e ( xx ) ) ;%Men who d i s l i k e i n t e g r a t i o n

57 f o r i =1: s i z e ( xx )

58 i f f i n d (A( xx ( i ) , : )==f i n d ( i n t==xx ( i ) ) )>f i n d (A( xx ( i ) , : )==

f i n d ( seg==xx ( i ) ) ) ;

59 SM( i )=xx ( i ) ;

60 sum=sum+1;

61 end

62 end

63 SW(SW==0) = [ ] ; SM(SM==0) = [ ] ;

64 match ;

65 x=sum/(2∗n∗ r ) ;

66 SMP=ze ro s ( s i z e (SM, 1 ) ,1 ) ;SWP=ze ro s ( s i z e (SW, 1 ) ,1 ) ;%Average ranking

o f those who p r e f e r s e g r e g a t i o n

67 LOSSM=ze ro s ( s i z e (SM, 1 ) ,1 ) ;LOSSW=zero s ( s i z e (SW, 1 ) ,1 ) ;%Average

l o s s o f those who p r e f e r s e g r e g a t i o n

68 f o r i =1: s i z e (SM, 1 )

69 SMP( i )=mean( f i n d (B.’==SM( i ) ) −(0:( r∗n) : ( ( r∗n) ˆ2)−1) . ’ ) ;

70 j=SM( i ) ;
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71 LOSSM( i )=f i n d (A( j , : )==f i n d ( i n t==j ) )−f i n d (A( j , : )==f i n d ( seg==j

) ) ;

72 end

73 f o r i =1: s i z e (SW, 1 )

74 SWP( i )=mean( f i n d (B.’==SW( i ) ) −(0:( r∗n) : ( ( r∗n) ˆ2)−1) . ’ ) ;

75 j=SW( i ) ;

76 LOSSW( i )=f i n d (B( j , : )==i n t ( j ) )−f i n d (B( j , : )==seg ( j ) ) ;

77 end

78 SMP=mean(SMP) ; SWP=mean(SWP) ;

79 LOSSM=mean(LOSSM) ; LOSSW=mean(LOSSW) ;

80 end

81

82 −−−

83

84 f unc t i on [ e ] = i n t e g r a t i o n 1 0 ( t , n , r )

85 v=ze ro s ( t , 6 ) ;

86 pa r f o r i =1: t

87 [ x y SMP SWP LOSSM LOSSW]=march10 (n , r ) ;

88 v ( i , : ) =[x y SMP SWP LOSSM LOSSW] ;

89 end

90 e=sum(v , 1 ) / t ;

91 end
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Chapter 4

The Strength of the Weak Ties:

Online Integration via Online Dating

Abstract

We used to marry people to which we are somehow connected to: friends

of friends, coworkers, or colleagues from school. Since we are much more

connected to people that are like us, this implies that we were likely to marry

someone that share our own characteristics, in particular our race.

The irruption of online dating platforms have changed this pattern: other

online daters are very likely to be complete stranger to us. Given that one

third of modern marriages start online, we investigate theoretically the effects

of those previously absent ties in the diversity of modern societies.

We find that when a society benefits from previously absent ties, that we

interpret as online dating contacts, social integration occurs rapidly, even

if the number of partners met online is arbitrarily small. Our findings are

consistent with the sharp increase in interracial marriages in the U.S. after the

popularization of online dating platforms.
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In the most cited article on social networks,1 Granovetter (1973) argued that the most

important connections we have may not be our close friends but our acquaintances: people

that are not very close to us, either physically or emotionally, help us to relate to groups

that otherwise we would not be linked to. It is from acquaintances, for example, that

we are more likely to hear about job offers. Those weak ties serve as bridges between

our group of close friends and other clustered groups, hence allowing us to connect to the

global community in several ways.2

Interestingly, the process of how we meet our romantic partners in at least the last

hundred years closely resembles this phenomenon. We would probably not marry our

best friends, but we are likely to end up marrying a friend of a friend or someone we

coincided with in the past. Rosenfeld and Thomas (2012) show how Americans meet their

partners in the last decades, listed by importance: through mutual friends, in bars, at

work, in educational institutions, at church, through their families, or because they became

neighbors. This is nothing but the weak ties phenomenon in action.3

But in the last two decades, the way in which we meet our romantic partners has

changed dramatically. Online dating has become the second most popular way to meet a

spouse for most U.S. residents, as can be observed in Figure 4.1, taken from Rosenfeld

and Thomas (2012).4

The aforementioned article explains: “ the Internet increasingly allows Americans

to meet and form relationships with perfect strangers, that is, people with whom they

had no previous social tie”. We suspect that this is happening not only to Americans,

but is a consistent global phenomenon. If the reader needs another example, Figure 4.2

shows one of the author’s Facebook friends graph. The yellow triangles reveal previous

relationships that started in offline venues. It can easily be seen that those ex-partners

had several mutual friends with the author; in the corresponding graph, their edge had

1“What are the most-cited publications in the social sciences according to Google?”, LSE Blog,
12/05/2016.

2Strong ties are also valuable, and in the case of job search, they may outweigh weak ones (Kramarz
and Skans, 2014; Gee et al., 2017).

3Backstrom and Kleinberg (2014) reinforce the previous point: given the social network of a Facebook
user who is in a romantic relationship, the node which has the highest chances to be his romantic partner
is, perhaps surprisingly, not the one who has more friends in common with him.

4We thank Michael Rosenfeld for allowing us to use his figure.

62

http://blogs.lse.ac.uk/impactofsocialsciences/2016/5/12/what-are-the-most-cited-publications-in-the-social-sciences-according-to-google-scholar/


Figure 4.1: How we met our partners in the last decades.

a high embeddedness in graph theoretical jargon. In contrast, nodes appearing as red

stars represent partners he met through online dating. It is easily seen that those have

no contacts in common with him, and thus it is likely that, if it would not have been for

online dating, those persons would have never interacted with him.

Because one-third of modern marriages start online (Cacioppo et al., 2013), and up

to 70% of homosexual relationships, the way we match online with potential partners

shapes the demography of our communities, in particular its racial diversity. Meeting

complete strangers online can intuitively increase the number of interracial marriages in

our societies, which is remarkably low: only 6.3% and 9% of the total number of marriages

are interracial in the U.S. and the U.K., respectively.5 The low rates of interracial marriage

are expected, given that in the U.S. it was illegal in 16 states 50 years ago, until the

Supreme Court ruled out anti-miscegenation laws in the famous Loving vs. Virginia case

(Arrow, 1998; Fryer, 2007).6

The research question that motivates us is to understand how many more interracial

marriages, if any, will occur after online dating becomes available in a society, and what

5“Interracial marriage: Who is marrying out”, Pew Research Center, 12/6/2015; and “What does the
2011 census tell us about inter-ethnic relationships?”, UK Office for National Statistics, 3/7/2014.

6Interracial marriage in the U.S. has increased considerably from 1970, but it is still rare (Kalmijn,
1998; Fryer, 2007; Furtado, 2015). Interracial marriage occurs far less frequently than interfaith marriages
(Qian, 1997).
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Figure 4.2: How one of us met his partners in the last decade.

drives this increase. In addition, we are also interested in whether marriages created online

are any different from those that existed before.

Understanding the evolution of interracial marriage is a relevant problem, for inter-

marriage is widely considered a measure of social distance in our societies (Wong, 2003;

Furtado, 2015), just like residential or school segregation. In the words of Fryer (2007),

“social intimacy is a way of measuring whether or not a majority group views a minority

group on equal footing”.

Moreover, the number of interracial marriages in a society has important economic

implications. Interracial marriage is known to affect the employment status7 (Meng and

Gregory, 2005; Goel and Lang, 2009; Furtado and Theodoropoulos, 2010) and the social

identity (Bisin and Verdier, 2000; Duncan and Trejo, 2011) of those engaging into it, as

well as the education levels of their offspring (Furtado, 2012).

4.0.1 Overview of Results

This article builds a theoretical framework to explain how many more interracial marriages

occur after the popularization of online dating. Our model builds an intuitive combination

7Intermarriage affects the probability of finding a job, but surprisingly, not the average wage earned
(Kantarevic, 2004).
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of non-transferable utility8 matching à la Gale and Shapley (1962) in random graphs, first

studied by Erdős and Rényi (1959) and Gilbert (1959). Our theoretical framework is easy

to grasp and has an intuitive graphical visualization.

We take several disjoint Gale-Shapley marriage problems, with agents randomly located

on the unit square. Agents want to marry the person who is closest to them, but they

can only marry people who they know, i.e. to whom they are connected. As in real life,

agents are highly connected with agents of their own race, but poorly so with people from

other races. Also, as it seems to be the case in real life,9 we assume that the marriages

that occur in our society are are those predicted by game-theoretic stability.

Then, to model online dating, we introduce absent ties, by slightly increasing the

probability that any two agents of different races are connected, and compare how many

more interracial marriages we observe now in the expanded society. We also keep an eye on

the characteristics of those newly formed marriages. In particular, we focus on the average

distance between partners before and after the introduction of online dating. Assuming

that marriages between partners who are closer to each other are stronger, given that they

are less susceptible to break up when new agents arrive, we can also measure whether

marriages created after online dating are more or less likely to divorce.

The graphical interpretation of our model is similar to the one used by the mathematics

literature in matching of Poisson point processes (Holroyd et al., 2009; Holroyd, 2011; Amir

et al., 2016), from which we borrow useful technical results (see the proof of Proposition

1). Our model also roughly resembles the graphical model of residential segregation of

Schelling (1969, 1971, 1972). However, unlike the famous Schelling model, our model

predicts that nearly complete racial integration occurs when online dating emerges, even if

the number of partners that individuals meet from newly formed ties is small.

We contrast our model with empirical data from U.S. and find that, as predicted, the

number of interracial marriages substantially increases after the popularization of online

8Most of the literature studying marriage with matching models uses transferable utility, following the
seminal work of Becker (1973, 1974, 1981). A review of that literature appears in Browning et al. (2014).
Although our model departs substantially from this literature, we point out similarities with particular
papers in this field when we detail the model in Section 4.1.

9See Banerjee et al. (2013), also Hitsch et al. (2010) for the case of online dates.

65



dating. We discuss how the observed sharp increase cannot be purely due to changes in

the composition of the U.S. population.

Our result contributes to clarify the relationship between social networks and interracial

marriage. In a related paper, Furtado and Theodoropoulos (2010) find that immigrants

who intermarry have a higher chance of finding employment than those who marry within

their own ethnic group. Interestingly, most of this effect is due to the valuable social

networks that immigrants gain by marrying a local (and not because an easier chance to

get a visa). In their model, intermarriage creates social networks. In ours, social networks

generate intermarriage, by creating previously absent ties within races via online dating.

This increase is not due to changes in agents’ preferences.

Our model also predicts that marriages created in a society with online dating should

be stronger, another feature that has been documented empirically.

4.0.2 Structure of the Article

We present our model in Section 1, and discuss the welfare measures we consider in Section

2. Sections 3 and 4 analyze how our welfare measures change when societies become more

connected using theory and computations, respectively.

Section 5 contrasts our model predictions with observed demographic trends from the

U.S. Section 6 concludes and details on other applications of our theoretical framework,

which is a general model of matching under network constraints. Those applications

include social integration after student participate in exchange programs and collaboration

between interdisciplinary researchers, among others.

4.1 Marriages in a Network

4.1.1 Agents

There are r races or communities, each with n heterosexual agents. Each race is assigned

a particular color. Each agent i is identified by a pair of coordinates (xi, yi) ∈ [0, 1]2, that
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can be understood as measures of agents’ social and political opinions,10 to which we refer

as personality traits. Both coordinates are drawn uniformly and independently for all

agents.11

Each agent is either male or female. Female agents are plotted as stars and males as

dots. Each race is balanced in its ratio between men and women.

4.1.2 Edges

Agents are connected to others of their own race with probability p: these edges are

represented as solid lines and occur independently of each other. Agents are connected to

others of different race with probability q: these interracial edges appear as dotted lines

and are also independent. We present an example in Figure 4.3.

Our model is a generalization of the random graph model (Erdős and Rényi, 1959;

Gilbert, 1959; for a textbook reference, see Bollobás, 2001), in which there are r random

graphs with parameter p and n nodes, interacting across graphs with probability q. The

intuition in our model is that two agents are connected if they know each other. In

expectation, each agent is connected to n(r − 1)q + (n− 1)p persons.

A society S is a realization from a generalized random graph model, defined by a

four-tuple (n, r, p, q). A society S has a corresponding bipartite graph S = (M,W ;E)

where M and W are the set of men and women, respectively, and E is the set of edges.

We use the notation E(i, j) = 1 if there is an edge between agents i and j, and 0 otherwise.

We denote such edge by either (ij) or (ji).

10For a real-life representation using a 2-dimensional plane see www.politicalcompass.org. A similar
interpretation appears in Chiappori et al. (2012) and in Chiappori et al. (2016), in which the traits include
age, education, race, religion, weight or height.

11Another way to understand how agents’ personality traits are drawn is to consider a Poisson point
process (PPP) defined on the unit square with intensity λ = n. In a PPP the number of agents is not
fixed but drawn from a Poisson distribution, although there are n in expectation. In our case, the number
of agents is fixed throughout.
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Figure 4.3: 4 agents, 2 races, linked with p = 1 and q = 0.2.

4.1.3 Agents’ Preferences

All agents are heterosexual and prefer marrying anyone of different gender instead of

remaining alone.12 We denote by Pi the set of potential partners for i. The preferences

of agent i are given by a function δi : Pi → R+ that has a distance interpretation.13 An

agent i prefers agent j over agent k if δi(i, j) ≤ δi(i, k). The intuition is that agents like

potential partners that are close to them.

The function δi could be arbitrary, or could be the same for agents of the same race. It

could also be weighted to account for strong intraracial preferences that are often observed

in reality (Wong, 2003; Fisman et al., 2008; Hitsch et al., 2010; Rudder, 2014; Potarca

and Mills, 2015; McGrath et al., 2016).14 Inter or intraracial preferences can easily be

incorporated into the model, as in equation (4.3) below, but for ease of exposition and

12Heterosexuality is assumed for convenience, because it is well-known that in one-sided matching there
may be no stable pairings.

13Although δ can be generalized to include functions that violate the symmetry (δ(x, y) 6= δ(y, x)) and
identity (δ(x, x) = 0) characteristic properties of mathematical distances.

14It is not clear whether the declared intraracial preferences show an intrinsic intraracial predilection
or capture external biases, which, when removed, leave the partner indifferent to match across races.
Evidence supporting the latter hypothesis includes: Fryer (2007) documents that White and Black U.S.
veterans have had higher intermarry rates after serving with mixed communities. Fisman et al. (2008)
finds that people do not find partners of their own race more attractive. Rudder (2009) shows that online
daters have a roughly equal user compatibility. Lewis (2013) finds that users are more willing to engage
on interracial dating if they interacted earlier with a dater from another race.
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mathematical convenience (see Proposition 5) we only consider two intuitive and simple

functions that do not incorporate homophily.

The first one is the Euclidean distance for all agents, so that for any agent i and every

potential partner j 6= i,

δE(i, j) =
√

(xi − xj)2 + (yi − yj)2 (4.1)

and δE(i, i) =
√

2 ∀i ∈ M ∪W . Euclidean preferences are intuitive and have been

widely used in social science (Bogomolnaia and Laslier, 2007). The indifference curves

associated with Euclidean preferences can be described by balls around each point.

The second preferences we consider are such that every agent prefers a partner close to

them in personality trait x, but they all agree on which is the best in personality trait y.

The intuition is that the y-coordinate indicates something like attractiveness, wealth, or

any other attribute usually considered desirable by all partners. We call these preferences

assortative,15 so that for any agent i and every potential partner j 6= i,

δA(i, j) = |xi − xj|+ (1− yj) (4.2)

and δE(i, i) = 2 ∀i ∈M ∪W . The indifferences curves of assortative preferences are

depicted in Figure 4.4.

Both Euclidean and assortative preferences can be generalized by weighting them by

specific constants βij, such that

δ′i = βij δ(i, j) (4.3)

The constant βij captures intraracial specific preferences whenever it is constant for

all pairs i, j who belong to the same race. Similarly, it can capture specific reluctance to

match with agents from specific races whenever above 1.

A society in which all agents have either all Euclidean or all assortative preferences will

be called Euclidean or assortative, respectively. We focus on these two cases. In both cases

15If we keep the x-axis fixed, so that agents only care about the y-axis, we get full assortative mating
as a particular case.
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Figure 4.4: Indifference curves for assortative preferences (the blue star is the best partner
for the red dot).

agents’ preferences are strict because of our assumption on the distribution of personality

traits.

4.1.4 Marriages

Agents can only marry potential partners that they know: i.e. if between them and their

partner there exists a path of length at most k between them in the society graph.16 We

consider two types of marriages:

1. Direct marriages: k = 1. Agents can only marry if they know each other.

2. Long marriages: k = 2. Agents can only marry if they know each other or if they

have a mutual friend in common.

To formalize the previous marriage notion, let ρk(i, j) = 1 if there is a path of at most

length k between i and j, with the convention ρ1(i, i) = 1. A marriage µ : M∪W →M∪W
16A path from node i to t is a set of edges (ij), (jk), . . . , (st). The length of the path is the number of

such pairs.
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of length k is a function that satisfies

∀m ∈M µ(m) ∈ W ∪ {m} (4.4)

∀w ∈ W µ(w) ∈M ∪ {w} (4.5)

∀i ∈M ∪W µ(µ(i)) = i (4.6)

∀i ∈M ∪W µ(i) = j only if ρk(i, j) = 1 (4.7)

We use the convention that agents that remain unmarried are matched to themselves.

We use M∗ = {m ∈M | µ(m) ∈ W} to denote the set of all married men.

Because realized romantic pairings are close to those predicted by stability (Hitsch

et al., 2010; Banerjee et al., 2013), we assume that marriages that occur in each society

are stable. A marriage µ is k-stable if there is no man-woman pair (m,w) who are not

married to each other such that

ρk(m,w) = 1 (4.8)

δ(m,w) < δ(m,µ(m)) (4.9)

δ(w,m) < δ(w, µ(w)) (4.10)

Condition (4.8) is the only non-standard one that ensures that a pair of agents cannot

block a direct marriage if they are not connected in the corresponding graph, even if they

prefer each other to their respective partner. Given our assumptions regarding agents’

preferences,

Proposition 5. For any positive integer k, every Euclidean or assortative society has a

unique k-stable marriage.

Proof. For the Euclidean society, an easy algorithm computes the unique k-stable marriage.

Let every person point to their preferred partner to whom they are connected to by a

path of length at most k. In case two people point to each other, marry them and remove

them from the graph. Let everybody point to their new preferred partner to which they

are connected to among those still left. Again, marry those that choose each other, and
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repeat the procedure until no mutual pointing occurs. The procedure ends after at most

rn iterations. A similar algorithm has been suggested by Holroyd et al. (2009, Proposition

9) for 1-stable matchings.17

For the assortative society, assume by contradiction that there are two k-stable match-

ings µ and µ′ such that for two men m1 and m2, and two women w1 and w2, µ(w1) = w1 and

µ(w2) = w2, but µ′(w1) = w2 and µ′(w2) = w1.18 The fact that both marriages are k-stable

implies, without loss of generality, that for i, j ∈ {1, 2} and i 6= j, δ(mi, wi)−δ(mi, wj) < 0

and δ(wi,mj) − δ(wi,mi) < 0. Adding up those four inequalities, one obtains 0 < 0, a

contradiction. �

Figure 4.5 shows the direct and long stable marriages for the Euclidean and assortative

societies depicted in Figure 4.3.

(a) Direct marriage, Euclidean pref. (b) Long marriage, Euclidean pref.

(c) Direct marriage, assortative pref. (d) Long marriage, assortative pref.

Figure 4.5: Direct and long stable marriages for the assortative society in Fig. 4.3.

17Holroyd et al. (2009) require two additional properties: non-equidistance and no descending chains.
The first one is equivalent to strict preferences, the second one is trivially satisfied. In their algorithm,
agents point to the closest agent, independently if they are connected to them.

18It could be the case that in the two matchings there are no four people who change partner, but that
the swap involves more agents. The argument readily generalizes.
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4.1.5 Online Dating on Networks

We model online dating in a society S by increasing the number of interracial edges. Given

the bipartite graph S = (M,W ;E), we create new interracial edges between every pair

that is disconnected with a probability ε.19,20

Sε denotes a society that results after online dating has occurred in society S. Sε has

exactly the same nodes as S, and all its edges, but possibly more. We say that the society

Sε is an expansion of the society S.

4.2 Welfare Indicators

We want to understand how the welfare of a society changes after online dating becomes

available, i.e. after it becomes more interracially connected. There are three clear indicators

of agents’ welfare in a given society, namely its

1. Size, i.e. the total number of marriages in a society. Formally,

sz(S) = |M∗| (4.11)

2. Diversity, i.e. how close is the society to having the marriages produced in a completely

connected and colorblind society. We normalize this measure so that 0 indicates a society

with no interracial marriages, and 1 indicates a society in which r−1
r

of the marriages are

interracial. Note that it may well be the case that diversity is above 1.

Let R be a function that maps each agent to their race. Then

dv(S) =
|{m ∈M∗ | R(m) 6= R(µ(m))}|

sz(S)
· r

r − 1
(4.12)

19Online dating is likely to also increase the number of edges inside each race, but since we assume
that each race is already highly connected, these new edges play no role in the results of the model. We
perform robustness checks in Appendix 4.6.2, increasing both p and q but keeping its ratio fixed.

20We could assume that particular persons are more likely than others to use online dating, e.g. younger
people. Data shows that, from 2013 to 2015, the percentage of people who use online dating has increased
for people of all ages. See: “5 facts about online dating”, Pew Research Center, 29/2/2016. While this
occurs at a different rate, to obtain our main result we only need an infinitesimal increase in the probability
of interconnection for each agent.
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3. Strength, defined as
√

2 minus the average Euclidean distance between each married

couple, denoted as ds(S). A marriage with a small distance is better than one with a large

one because is less susceptible to break up when random agents appear on the unit square,

and the new outcome is to be k-stable too. The previous observation holds for assortative

societies too.

The above indicator is divided by
√

2 (or the maximal distance possible) to normalize it

between 0 and 1.

Formally,

ds(S) =

∑
m∈M∗ δ

E(m,µ(m))

sz(S)
(4.13)

st(S) =

√
2− ds(S)√

2
(4.14)

If every married agent gets paired with her perfect match, then st(S) = 1.

4.3 Edge Monotonicity of Welfare Indicators

Given a society S, the first question is whether the welfare indicators of a society grow

when its number of interracial edges grow, i.e. when online dating becomes available. We

refer to this property as edge monotonicity.21

Definition 2. A welfare indicator w is edge monotonic if, for any society S, and any of

its extensions Sε, we have

w(Sε) ≥ w(S) (4.15)

If a welfare indicator is edge monotonic it means that a society unambiguously becomes

better off from becoming more interracially connected. Unfortunately,

Proposition 6. Diversity, strength, and size are all not edge monotonic.

21Edge monotonicity is different from node monotonicity, in which one node, with all its corresponding
edges, is added to the matching problem. It is well-known that when a new man joins a stable matching
problem, every woman weakly improves, while every man becomes weakly worse off (Theorems 5 in Kelso
and Crawford, 1982, 2.25 and 2.26 in Roth and Sotomayor, 1992, and 1 and 2 in Crawford, 1991).
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Before proving Proposition 6, let us build some intuition about it. It may be surprising

that the number of interracial marriages can decrease when more interracial edges are

formed. The intuition behind it is that an interracial edge may create one interracial

marriage at the cost of destroying two existing ones, and the left-alone partners may now

marry partners of their own race.

An interracial edge may similarly increase the average distance between couples if it

provides a link between very desirable partners, i.e. those in the center for the case of

Euclidean preferences. Those desirable partners drop their current spouses, which now

have to match with partners that have been dropped too. That their new partner has

been previously dropped implies it is far from the center, and thus the marriage between

dropped partners may marry people in the corners of the unit square.

Finally, size may be reduced if the new interracial edge links people who were already

highly connected in the society, making them leave partners who are poorly so. The

left-alone partners may now become unable to find a partner.

We present now a formal proof for Euclidean societies with direct marriages.

Proof. To show that size is not edge monotonic, consider the society in Figure 4.3 and its

direct stable matching in Figure 4.5a. Remove all interracial edges: it is immediate that

in the unique stable matching there are 4 couples now, one more than when interracial

edges are present.

For the case of strength, consider a simple society in which all nodes share the same

y-coordinate, as the one depicted in Figure 4.6. There are two intraracial marriages and

the average Euclidean distance is 3.5. When we add the interracial edge between the two

central nodes, the closest nodes marry and the two far away nodes marry too. The average

Euclidean distance in the expanded society increases to 4.5, hence reducing its strength.

Figure 4.6: Strength is not edge monotonic.
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To show that diversity is not edge monotonic, consider Figure 4.7. There are two

men and two women of each of two races a and b. Each gender is represented with the

superscript + or −.

(a) dv(S) = 2 (b) dv(Sε) = 1/3

Figure 4.7: Diversity is not edge monotonic.

Stability requires that µ(b−1 ) = a+
1 and µ(b+

2 ) = a−2 , and everyone else is unmarried.

However, when we add the edge (a+
1 b
−
2 ), the married couples become µ(b−1 ) = b+

1 , µ(a+
2 ) =

a−1 , and µ(a+
1 ) = b−2 . In this extended society, there is just one interracial marriage, out

of a total of three, when before we had two out of two. Therefore diversity reduces after

adding the edge (a+
1 b
−
2 ). �

The failure of edge monotonicity by our three welfare measures makes evident that

to evaluate welfare changes in societies, we need to understand how welfare varies on an

average society after introducing new interracial edges. We develop this comparison in the

next Section.
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A final comment on edge monotonicity. The fact that the size of a society is not edge

monotonic, as shown in Proposition 6, implies that adding interracial edges may not lead

to a Pareto improvement of the society, i.e. some agents may become worse off after the

society becomes more connected. Nevertheless, the fraction that becomes worse off after

adding an extra edge never more than one-half of the society. Ortega (2017) discusses this

phenomenon in detail and the associated welfare losses of those hurt by integration.

4.4 Average Welfare Indicators

In the last Section we found that our three welfare indicators may increase or decrease

after adding interracial edges. Therefore, we need to analyze what happens in an average

case: i.e. what is expected to happen to the diversity, strength and size of a society when

agents become more connected.

There are two ways to answer this question. The first one is to provide analytical

expressions for the expected welfare indicators as a function of the number of interracial

edges. However, providing analytical solutions is incredibly complicated, if not impossible.

Already solving the expected average distance in a society with just one race containing

only one man and one woman requires a complicated computation (which equals to

2+
√

2+5 ln(
√

2+1)
15

≈ 0.52).22

The second way to approach the problem is to simulate several random societies and

observe how their welfare change when they become more connected. This is the route we

follow. We create ten thousand random societies, and increase the expected number of

interracial edges by increasing the parameter q. In the following subsections, we describe

the changes of our welfare indicators for different values of q.

In all cases we fix n = 50 and p = 1.23 We consider the following four scenarios:

1. Two races and direct marriages, appears in blue with diamond markers �.

2. Five races and direct marriages, appears in grey with square markers �.

22The detailed computation appears in “Distance between two random points in a square”, Mind your
Decisions, 3/6/2016.

23We limit ourselves to n = 50 and ten thousand replications because of computational limitations, even
though we used the high performance computing facilities at the University of Glasgow.
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3. Two races and long marriages, appears in orange with triangle markers N.

4. Five races and long marriages, appears in yellow with cross markers ×××.

4.4.1 Diversity

In the case of long marriages, even the smallest increase in the probability of interracial

connections (in this case of 0.05) achieves perfect social integration with either two or

five races: diversity is exactly one. For the cases with direct marriages, the increase in

diversity is slower but still fast: an increase of q from 0 to 0.1 increases diversity to 0.19

for r = 2, and from 0 to 0.37 with r = 5.24

(a) Euclidean society. (b) Assortative society

Figure 4.8: Average diversity (y-axis) of a random society for different values of q.
The yellow and orange curves are indistinguishable in this plot because they are identical. Exact values and standard errors

(which are in the order of 1.0e-04) provided in Appendix 4.6.2.

Figure 4.8 summarizes our main result, namely

Result 1. Diversity is fully achieved with long marriages, even if the increase in interracial

connections is arbitrarily small.

With direct marriages, diversity is achieved partially but still substantially, so that

an increase in q always yields an increase in diversity of a larger size, i.e. diversity is a

concave function of q.

24Empirical evidence suggests that q is close to zero. Echenique and Fryer (2007) find that the typical
American public school student has 0.7 friends of another race. It is also a sensible assumption that p is
large, given the clear residential segregation patterns in the U.S. (Cutler et al., 1999) and that around
90% of people who attend religious services do so with others from their same race (Fryer, 2007).
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The intuition behind full diversity for the case of long marriages, in which agents are

allowed to marry any person with whom they have a friend in common, is that once an

agent obtains just one edge to any other race, he gains n
2

potential partners, i.e. just one

edge to a person of different race gives access to that person’s complete race.

The reader may think that the full diversity result heavily depends on each race being

fully connected, i.e. p = 1. This is not the case. Full diversity is also for many other values

of p, as we present in Appendix 4.6.2. When same-race agents are less interconnected

within themselves, agents gain fewer connections once an interracial edge is created, but

those fewer connections are relatively more valuable, because the agent had himself less

potential partners before the creation of new interracial edges.

Result 1 implies that, assuming long marriages are formed, very few interracial links

can lead a society to almost complete racial integration, and leads to very optimistic

views on the role that dating platforms can play in the reduction of racial segregation

in our society. Our result is in sharp contrast to the one of Schelling (1969, 1971) in its

well-known models of residential segregation, in which a society always gets completely

segregated.

What is the ingredient in our model that allows us to get predictions so different from

the ones derived from the celebrated Schelling’s model? It is not specific preferences, which

can be accommodated in our model so that an agent will slightly prefer her own race as

in Schelling’s (for example as a tie-breaker, an event of probability zero). It is not the

parameters of the society, which in both cases can be easily generalized (think for example

of nodes represented in Rn instead of R2). The whole difference, it would appear, is the

formation of romantic links. In our model, agents’ utility only depends on the location of

agent they marry, instead of depending on all their neighbors.

We pose this finding as the first testable hypothesis of our model

Hypothesis 1. The number of interracial marriages should increase after the populariza-

tion of online dating.
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4.4.2 Strength

A second observation, less pronounced that the increase in diversity, is that the strength of

the society goes up when increasing q. For an illustration, see Figure 4.9, which considers

the same four cases as before in both Euclidean and assortative societies.

(a) Euclidean society. (b) Assortative society

Figure 4.9: Average strength (y-axis) of a random society for different values of q.
Exact values and standard errors (which are in the order of 1.0e-04) provided in Appendix 4.6.2.

It is clear that, for all combinations of parameters (see Appendix 4.6.2 for further

robustness checks), there is a consistent trend downwards in the average distance of

partners after adding new interracial edges, and thus a consistent increase in strength of

the societies. We present this observation as our second result.

Result 2. Strength increases after the number of interracial edges increases. The increase

is faster whenever the society has more races, and converges to a higher level with long

marriages.

Assuming that marriages with a higher average distance have a higher chance to end

up divorcing, because they are more susceptible to break up when new nodes are added to

the society graph, we can reformulate our result as our second hypothesis.

Hypothesis 2. Marriages created in societies with online dating should have a lower

divorce rate.

Finally, our last welfare indicator, size, keeps constant for most of our simulations,

so we do not discuss it further. The detailed data behind Figures 4.8 and 4.9, with its

standard errors, appear in Appendix 4.6.2.
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Our analysis of the expected changes in welfare gives us with two testable hypotheses.

In the next Section, we contrast them against data on of interracial marriage in the U.S,

and the quality of the marriages created through online dating.

4.5 Hypotheses and Data

4.5.1 Hypothesis 1: More Interracial Marriages

What does the data reveal? Is our model consistent with observed demographic trends?

Figure 4.10 presents the evolution of interracial marriages among newlyweds in the U.S.

from 1967 to 2015, based on the 2008-2015 American Community Survey and 1980, 1990

and 2000 decennial censuses (IPUMS). In this Figure, interracial marriages include those

between white, black, Hispanic, Asian, American Indian or multiracial persons.25,26

In the data, we observe that the number of interracial marriages has consistently

increased in the last 50 years, as it has been documented by several other authors

(Kalmijn, 1998; Fryer, 2007; Furtado, 2015). However, it is intriguing that, shortly after

the introduction of the first dating websites in 1995, like Match.com, the percentage of

new marriages created by interracial couples increased rapidly. The increase becomes

steeper around 2004, when online dating became more popular: it is then when well-known

platforms such like OKCupid emerged. During the 2000’s decade, the percentage of new

marriages that are interracial changed from 10.68% to 15.54%, a huge increase of nearly

5%.

After the 2009 increase, the proportion of new interracial marriage jumps again in 2014

to 17.24%, remaining above 17% in 2015 too. Again, it is interesting that this increase

occurs shortly after the creation of Tinder, considered the most popular online dating app.

25We are grateful to Gretchen Livingston from the Pew Research Center for providing us with the
data. Data prior to 1980 are estimates. The methodology on how the data was collected is described in
Livingston and Brown (2017).

26Although Hispanic is not a race, Hispanics do not associate with other races. In the 2010 U.S. census,
over 19 million of Latinos selected to be of “some other race”. See “For many Latinos, racial identity is
more culture than color”, New York Times, 13/1/2012.
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Figure 4.10: Percentage of interracial marriages among newlyweds in the U.S.
Source: Pew Research Center analysis of 2008-2015 American Community Survey and 1980, 1990 and 2000 decennial

censuses (IPUMS). The red, green, and purple lines represent the creation of Match.com, OKCupid, and Tinder, three of

the largest dating websites. The blue line represents a prediction for 1996 – 2015 using the data from 1967 to 1995.

Tinder, created in 2012, has approximately 50 million users and produces more than 12

million matches per day.27

We do not claim that the increase in the share of new marriages that are interracial in

the last 20 years is a direct consequence of the emergence of online dating in the same

period, but this finding is in line with Hypothesis 1 in our model.

Another cause for the steep increase described could be that the U.S. population is

more interracial now than 20 years ago. The reduction of the percentage of Americans

who are white, falling from 80.3% to 72.4% from 1990 to 2010,28 combined with the fact

that white people are the ones who show higher reluctance to intermarriage (Livingston

and Brown, 2017, and even to date interracially, see Rudder, 2009), provides an alternative

explanation.

27“Tinder, the fast-growing dating app, taps an age-old truth”, New York Times, 29/10/2014. The
company claims that 36% of Facebook users have had an account on their platform.

28“Demographic trends in the 20th century”, and “The White Population: 2010 Census Briefs”, U.S.
Census Bureau.
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However, this explanation is inconsistent with the empirical observation that white

people are intermarrying more. By 1980, only 4% of the interracial newlyweds involved

white persons, while the percentage raised to 11% in 2015 (Livingston and Brown, 2017).

4.5.2 Hypothesis 2: Marriages Created Online Are Less Likely

to Divorce

Cacioppo et al. (2013) find that marriages created online were less likely to break up and

reveal a higher marital satisfaction, using a sample of 19,131 Americans who married

between 2005 and 2012. They write: “What is clear from this research is that a surprising

number of Americans now meet their spouse on-line, meeting a spouse on-line is on average

associated with slightly higher marital satisfaction and lower rates of marital break-up than

meeting a spouse through traditional (off-line) venues”.

The findings of Cacioppo and his coauthors show that our model predictions closely

match the observed properties of marriages created online, and its strength compared to

marriages created on other, more traditional venues.

Our model predicts that, on average, marriages created when online dating becomes

available last longer than those created in societies without this technology. Yet, it is

silent regarding comparisons between the strength of interracial and intraracial marriages.

There is empirical evidence showing that interracial marriages are more likely to end up in

divorce (Bratter and King, 2008; Zhang and Van Hook, 2009).

Our model is also silent on why some intraracial marriages from a particular race

last longer than intraracial marriages from another race (e.g. Stevenson and Wolfers,

2007 show that Blacks who divorce spend more time in their marriage than their White

counterparts).
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4.6 Final Remarks

4.6.1 Further Applications

The theoretical model we present discusses a general matching problem under network

constraints, and hence it can be useful to study other social phenomena besides interracial

marriage. The races or communities in our model can be understood as arbitrary groups of

highly clustered agents. Agents can be clustered by race, but also by ethnicity, education,

socieconomic status, religion, etcetera. Thus, our theoretical model can be also applied to

study interfaith marriages, or marriages between people of different social status.

The role of connecting highly clustered groups is also not only linked to online dating.

Another example is the European student exchange program “Erasmus”, which helped

more than 3 million students and over 350 thousand academics and staff members to

spend time at a University abroad.29

The matching of agents also goes beyond marriage. Think of nodes being researchers

at a University, races being academic departments, and edges represting who knows

whom. Matchings indicate academic collaboration in articles or grants. The Euclidean

distance interpretation makes sense, as a microeconomist in a business school may be

better off partnering with a game theorist at the biology department rather with an

econometrician in his own business school. Diversity in a University would be then a

measure for interdisciplinary research, often encouraged by higher education institutions

and funding bodies. Interdiscplinary seminars, for example, could take the role of creating

links between academics in different departments.

It would be interesting to test our model against in this other scenarios. We leave this

task for further research.

29“ERASMUS: Facts, figures and trends.”, European Comission, 10/6/2014.
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4.6.2 Conclusion

We introduce a simple theoretical model which tries to explain the complex process of

deciding whom to marry in the times of online dating. As any model, ours has limitations.

It categorizes every individual with only two characteristics, it assumes a very simple

structure inside each race, it poses restrictions on agents’ preferences. Furthermore, it fails

to capture many of the complex features of romance in social networks, like love. There

are multiple ways to enrich and complicate the model with more parameters.

However, the simplicity of our model is its main strength. With a basic structure, it

can generate very strong predictions: the diversity of societies, measured by the number

of interracial marriages in it, should increase drastically after the introduction of online

dating. And societies with online dating available should produce marriages that are less

likely to break up. Both predictions are consistent with observed demographic trends.

Simple models are great tools to convey an idea. Schelling’s segregation model clearly

does not capture many important components of how people decide where to live. It could

have been enhanced by introducing thousands of parameters. Yet it has broadened the

way how we understand racial segregation, and has been widely influential: according

to Google Scholar, it has been quoted 3,258 times by articles coming from sociology to

mathematics. It has provided us a way to think about an ubiquitous phenomenon.

Our model goes in the same direction.

Appendix A: Simulation Results
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Table 1: Supporting data for Figures 4.8 and 4.9

q 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

Panel A: Welfare on Euclidean societies
r = 2, direct marriages
Dv 0.00 0.10 0.19 0.27 0.34 0.41 0.47 0.57 0.66 0.75 0.82 0.89 0.94 1.00
St 0.85 0.87 0.87 0.87 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.89
Sz 1.00 0.98 0.98 0.98 0.98 0.99 0.99 0.99 0.99 0.99 1.00 1.00 1.00 1.00
r = 2, long marriages
Dv 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
St 0.85 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.88 0.89 0.89
Sz 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
r = 5,direct marriages
Dv 0.00 0.22 0.37 0.47 0.56 0.62 0.68 0.77 0.83 0.88 0.92 0.95 0.98 1.00
St 0.85 0.88 0.89 0.89 0.90 0.90 0.91 0.91 0.91 0.91 0.92 0.92 0.92 0.92
Sz 1.00 0.97 0.98 0.98 0.99 0.99 0.99 0.99 0.99 1.00 1.00 1.00 1.00 1.00
r = 5, long marriages
Dv 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
St 0.85 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92
Sz 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Panel B: Welfare on assortative societies
r = 2, direct marriages
Dv 0.00 0.11 0.20 0.28 0.35 0.41 0.47 0.57 0.66 0.75 0.82 0.88 0.95 1.00
St 0.84 0.85 0.86 0.86 0.86 0.86 0.86 0.87 0.87 0.87 0.87 0.87 0.87 0.87
Sz 1.00 0.98 0.98 0.98 0.98 0.99 0.99 0.99 0.99 0.99 1.00 1.00 1.00 1.00
r = 2, long marriages
Dv 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
St 0.84 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87
Sz 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
r = 5,direct marriages
Dv 0.00 0.23 0.37 0.48 0.56 0.63 0.68 0.77 0.83 0.88 0.92 0.95 0.98 1.00
St 0.84 0.87 0.88 0.89 0.89 0.89 0.90 0.90 0.90 0.90 0.90 0.91 0.91 0.91
Sz 1.00 0.97 0.98 0.98 0.99 0.99 0.99 0.99 0.99 1.00 1.00 1.00 1.00 1.00
r = 5, long marriages
Dv 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
St 0.84 0.91 0.91 0.91 0.91 0.91 0.91 0.91 0.91 0.91 0.91 0.91 0.91 0.91
Sz 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
∗Average over 10,000 random simulations, n = 50, p = 1.

Sz equals the percentage of agents married.

Standard errors in the order of 1.0e-04, so we do not present them.
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Appendix B: Robustness Checks

In this Appendix we conduct several robustness checks to show that the fast increase in

the diversity of societies that we described in Result 1 occurs for many combinations of

parameters of the model.

The first exercise we perform is to conduct again 10,000 simulations as those supporting

Figures 4.8 and 4.9, but now changing the probability of intraracial connectivity p to 0.7,

0.5, and 0.3. We allow q to vary within 0 and p, as we have explained in the text that

q ≤ p, since persons tend to be more connected to people from their own race.

With respect to diversity, with long marriages we always observe an almost immediate

increase to 1, meaning complete social integration. This increase appears in Figure 11. As

expected, the increase becomes steeper as p increases.

With respect to strength, we also observe minor variations, which appear in Figure 12.

As expected, a smaller p makes agents less connected to potential partners, and thus the

strength of resulting marriages becomes weaker when agents are poorly connected. With

long marriages, strength converges quite quickly to its optimal value, around 0.9, which

again, is smaller in societies with low values of p and q.

The detailed results of our simulations with p equal to 0.7, 0.5, and 0.3 appear in

Tables 2, 3 and 4 at the end of this Appendix.
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(a) Euclidean society, p = .7. (b) Assortative society, p = .7

(c) Euclidean society, p = .5. (d) Assortative society, p = .5

(e) Euclidean society, p = .3. (f) Assortative society, p = .3

Figure 11: Average diversity (y-axis) of a random society for several values of p.
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(a) Euclidean society, p = .7. (b) Assortative society, p = .7

(c) Euclidean society, p = .5. (d) Assortative society, p = .5

(e) Euclidean society, p = .3. (f) Assortative society, p = .3

Figure 12: Average stregth (y-axis) of a random society for several values of p.
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The second robustness test we perform is to vary p and q simultaneously but keeping

its ratio fixed. Both parameters indicate how connected is a person to people of his race

compared to people of other races.

To find a good estimate of the ratio p
q
, we use data from the American Values Survey

by the Public Religion Research Institute (PRRI), a nonpartisan, independent research

organization. The data is well described in the following article from the Washington Post:

“Three quarters of whites dont have any non-white friends”.

The PRRI data shows that, if a White American had 100 friends, 91 are expected to be

of his own race, and 1 Black, 1 Latino, and 1 Asian (the rest are multiracial or of unknown

race). Black Americans are more interracially connected, with 83 friends expected to be of

his own race, 8 Whites, 2 Latinos, and and no Asians.

Based on this data, we use the ratio p/q = 10, based on the ratio between the expected

number of Black and White friends for Black people. We vary p from 0 to 1. We present

the results for Euclidean societies only (as we have seen that Euclidean and assortative

societies produce almost identical results).

(a) Diversity. (b) Strength.

Figure 13: Average diversity and strength of a random society for p ∈ [0, 1].

A first conclusion we obtain is that, with long marriages, we again obtain complete

integration. However, this time is not as fast as with an increase of q alone. With direct

marriages the increase is again very fast but full integration is not obtained, only around

20% and 40% of it in societies with 2 and 5 races, respectively.

We could say that the diversity achieved when agents intra and interracial circles both

grow is much lower, compared to the results shown in the main text. But this lecture is
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not accurate, because we are comparing the diversity to the one that obtains in a fully

connected society, i.e. a complete graph. Therefore, the diversity obtained already is

20% and 40% of the diversity in a complete graph, and that is a very high percentage of

interracial marriages, because we are fixing that agents are 10 times more connected to its

own race.

Finally, the strength levels we observe with direct marriages are the lowest we have

found so far, which is not a surprise given the small number of potential partners that

agents have when p is small. It is equally expected to observe that the strength of a society

increases when p grows.
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Table 2: Welfare with p = 0.7

q 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.40 0.50 0.60 0.70

Panel A: Welfare on Euclidean societies
r = 2, direct marriages
Dv 0.00 0.13 0.25 0.35 0.44 0.52 0.59 0.72 0.83 0.92 1.00
St 0.84 0.85 0.86 0.86 0.86 0.87 0.87 0.87 0.88 0.88 0.88
Sz 0.98 0.97 0.97 0.97 0.97 0.98 0.98 0.98 0.99 0.99 0.99
r = 2, long marriages
Dv 0.00 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
St 0.85 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89
Sz 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
r = 5, direct marriages
Dv 0.00 0.28 0.45 0.57 0.66 0.73 0.79 0.87 0.92 0.97 1.00
St 0.84 0.87 0.88 0.89 0.89 0.90 0.90 0.91 0.91 0.91 0.92
Sz 0.98 0.97 0.97 0.98 0.98 0.98 0.99 0.99 0.99 0.99 1.00
r = 5, long marriages
Dv 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
St 0.85 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92
Sz 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Panel B: Welfare on assortative societies
r = 2, direct marriages
Dv 0.00 0.14 0.25 0.35 0.44 0.52 0.59 0.72 0.83 0.92 1.00
St 0.83 0.84 0.85 0.85 0.85 0.85 0.86 0.86 0.86 0.86 0.87
Sz 0.98 0.97 0.97 0.97 0.98 0.98 0.98 0.98 0.99 0.99 0.99
r = 2, long marriages
Dv 0.00 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
St 0.84 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87
Sz 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
r = 5, direct marriages
Dv 0.00 0.28 0.45 0.57 0.66 0.73 0.79 0.87 0.93 0.97 1.00
St 0.83 0.86 0.87 0.88 0.88 0.89 0.89 0.90 0.90 0.90 0.90
Sz 0.98 0.97 0.97 0.98 0.98 0.99 0.99 0.99 0.99 1.00 1.00
r = 5, long marriages
Dv 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
St 0.84 0.91 0.91 0.91 0.91 0.91 0.91 0.91 0.91 0.91 0.91
Sz 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
∗Average over 10,000 random simulations, n = 50.

Sz equals the percentage of agents married.

Standard errors in the order of 1.0e-04.
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Table 3: Welfare with p = 0.5

q 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.40 0.50

Panel A: Welfare on Euclidean societies
r = 2, direct marriages
Dv 0.00 0.17 0.32 0.45 0.56 0.66 0.74 0.89 1.00
St 0.83 0.84 0.85 0.85 0.85 0.86 0.86 0.86 0.87
Sz 0.96 0.95 0.96 0.96 0.96 0.97 0.97 0.97 0.98
r = 2, long marriages
Dv 0.00 0.95 1.00 1.00 1.00 1.00 1.00 1.00 1.00
St 0.85 0.88 0.89 0.89 0.89 0.89 0.89 0.89 0.88
Sz 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
r = 5, direct marriages
Dv 0.00 0.35 0.55 0.68 0.77 0.83 0.88 0.95 1.00
St 0.83 0.86 0.87 0.88 0.89 0.89 0.90 0.90 0.91
Sz 0.96 0.96 0.97 0.97 0.98 0.98 0.98 0.99 0.99
r = 5, long marriages
Dv 0.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00
St 0.85 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92
Sz 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Panel B: Welfare on assortative societies
r = 2, direct marriages
Dv 0.00 0.18 0.33 0.45 0.56 0.66 0.74 0.88 1.00
St 0.58 0.58 0.59 0.59 0.59 0.60 0.60 0.60 0.61
Sz 0.96 0.96 0.96 0.96 0.97 0.97 0.97 0.98 0.98
r = 2, long marriages
Dv 0.00 0.95 1.00 1.00 1.00 1.00 1.00 1.00 1.00
St 0.84 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87
Sz 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
r = 5, direct marriages
Dv 0.00 0.35 0.55 0.68 0.77 0.83 0.88 0.95 1.00
St 0.58 0.60 0.61 0.62 0.62 0.63 0.63 0.63 0.64
Sz 0.96 0.96 0.97 0.98 0.98 0.98 0.99 0.99 0.99
r = 5, long marriages
Dv 0.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00
St 0.84 0.91 0.91 0.91 0.91 0.91 0.91 0.91 0.91
Sz 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
∗Average over 10,000 random simulations, n = 50.

Sz equals the percentage of agents married.

Standard errors in the order of 1.0e-04.
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Table 4: Welfare with p = 0.3

q 0 0.05 1 0.15 0.2 0.25 0.3

Panel A: Welfare on Euclidean societies
r = 2, direct marriages

Dv 0.00 0.27 0.49 0.66 0.80 0.90 1.00
St 0.80 0.82 0.82 0.83 0.84 0.84 0.85
Sz 0.91 0.92 0.93 0.93 0.94 0.95 0.95

r = 2, long marriages
Dv 0.00 0.87 0.98 1.00 1.00 1.00 1.00
St 0.85 0.88 0.89 0.89 0.89 0.89 0.89
Sz 1.00 1.00 1.00 1.00 1.00 1.00 1.00

r = 5, direct marriages
Dv 0.00 0.49 0.71 0.83 0.91 0.96 1.00
St 0.00 0.05 0.10 0.15 0.20 0.25 0.30
Sz 0.91 0.94 0.95 0.97 0.97 0.98 0.98

r = 5, long marriages
Dv 0.00 0.96 1.00 1.00 1.00 1.00 1.00
St 0.85 0.92 0.92 0.92 0.92 0.92 0.92
Sz 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Panel B: Welfare on assortative societies
r = 2, direct marriages

Dv 0.00 0.28 0.49 0.66 0.80 0.91 1.00
St 0.78 0.79 0.80 0.81 0.82 0.83 0.83
Sz 0.92 0.93 0.93 0.94 0.95 0.95 0.96

r = 2, long marriages
Dv 0.00 0.87 0.98 1.00 1.00 1.00 1.00
St 0.84 0.87 0.87 0.87 0.87 0.87 0.87
Sz 1.00 1.00 1.00 1.00 1.00 1.00 1.00

r = 5, direct marriages
Dv 0.00 0.49 0.71 0.83 0.91 0.96 1.00
St 0.78 0.82 0.84 0.86 0.87 0.88 0.88
Sz 0.92 0.94 0.96 0.97 0.98 0.98 0.98

r = 5, long marriages
Dv 0.00 0.97 1.00 1.00 1.00 1.00 1.00
St 0.84 0.91 0.91 0.91 0.91 0.91 0.91
Sz 1.00 1.00 1.00 1.00 1.00 1.00 1.00
∗Average over 10,000 random simulations, n = 50.

Sz equals the percentage of agents married.

Standard errors in the order of 1.0e-04.
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Table 5: Welfare with p
q

= 10

p 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Welfare on Euclidean societies
r = 2, direct marriages

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00
0.18 0.17 0.17 0.17 0.18 0.18 0.18 0.18 0.19 0.19
0.75 0.79 0.81 0.83 0.84 0.85 0.86 0.86 0.87 0.87

r = 2, long marriages
0.75 0.87 0.91 0.94 0.95 0.96 0.97 0.97 0.98 0.98
0.34 0.52 0.73 0.88 0.96 0.99 1.00 1.00 1.00 1.00
0.84 0.88 0.88 0.88 0.89 0.89 0.89 0.89 0.89 0.89

r = 5, direct marriages
0.91 0.98 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.36 0.36 0.36
0.76 0.80 0.83 0.85 0.86 0.87 0.87 0.88 0.88 0.89

r = 5, long marriages
0.79 0.89 0.93 0.94 0.96 0.96 0.97 0.97 0.98 0.98
0.60 0.76 0.90 0.96 0.99 1.00 1.00 1.00 1.00 1.00
0.87 0.91 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92
0.94 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
∗Average over 10,000 random simulations, n = 50.

Sz equals the percentage of agents married.

Standard errors in the order of 1.0e-04.

95



Bibliography

Aleksandrov, M., H. Aziz, S. Gaspers, and T. Walsh (2015): “Online fair division:

analysing a food bank problem,” in Proceedings of the Twenty-Fourth International

Joint Conference on Artificial Intelligence, IJCAI 2015, 2540–2546.

Amir, G., O. Angel, and A. Holroyd (2016): “Multidimensional Poisson matching,”

unpublished.

Arnsperger, C. (1994): “Envy-freeness and distributive justice,” Journal of Economic

Surveys, 8, 155–186.

Arrow, K. J. (1998): “What has economics to say about racial discrimination?” Journal

of Economic Perspectives, 12, 91–100.

Ashlagi, I., Y. Kanoria, and J. D. Leshno (2017): “Unbalanced random matching

markets: The stark effect of competition,” Journal of Political Economy, 125, 69–98.

Ashlagi, I. and A. E. Roth (2014): “Free riding and participation in large scale,

multi-hospital kidney exchange,” Theoretical Economics, 9, 817–863.

Backstrom, L. and J. Kleinberg (2014): “Romantic partnerships and the dispersion

of social ties: A network analysis of relationship status on Facebook,” in Proceedings

of the 17th ACM Conference on Computer Supported Cooperative Work &#38; Social

Computing, New York, NY, USA: ACM, CSCW ’14, 831–841.

Banerjee, A., E. Duflo, M. Ghatak, and J. Lafortune (2013): “Marry for

what? Caste and mate selection in modern India,” American Economic Journal:

Microeconomics, 5, 33–72.

96



Becker, G. (1981): A Treatise on the family, Harvard University Press.

Becker, G. S. (1973): “A Theory of Marriage: Part I,” Journal of Political Economy,

81, 813–846.

——— (1974): “A Theory of Marriage: Part II,” Journal of Political Economy, 82,

S11–S26.

Bisin, A. and T. Verdier (2000): “”Beyond the melting pot”: Cultural transmis-

sion, marriage, and the evolution of ethnic and religious traits,” Quarterly Journal of

Economics, 115, 955–988.

Bogomolnaia, A. and J.-F. Laslier (2007): “Euclidean preferences,” Journal of

Mathematical Economics, 43, 87 – 98.

Bogomolnaia, A. and H. Moulin (2004): “Random matching under dichotomous

preferences,” Econometrica, 72, 257–279.

Bogomolnaia, A., H. Moulin, F. Sandomirskiy, and E. Yanovskaya (2017):

“Competitive division of a mixed manna,” ArXiv e-prints.

Bogomolnaia, A., H. Moulin, and R. Stong (2005): “Collective choice under

dichotomous preferences,” Journal of Economic Theory, 122, 165 – 184.

Bollobás, B. (2001): Random graphs, Cambridge Studies in Advanced Mathematics,

Cambridge University Press, 2 ed.

Bouveret, S. and J. Lang (2008): “Efficiency and envy-freeness in fair division of in-

divisible goods: logical representation and complexity,” Journal of Artificial Intelligence

Research, 32, 525–564.
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