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Abstract

Over the past decades, the emerging omics technologies have enabled scientists to take a step
further in the investigation of biological systems. From food safety to stratified medicine,
omics technologies are now an essential and powerful means to study biological processes.
Omics technologies are however at different stages of maturity, and the most recent field of
the omics family, metabolomics, is still in its infancy. Metabolomics attempts to catalogue,
characterise and quantify all small molecules constitutive of a biological system. Liquid
Chromatography - Mass Spectrometry (LCMS) is now the most commonly used technique
to generate metabolomics data. The method allows the detection of hundreds of metabolites
from a single sample and can provide a rapid assignment of formulae to detected masses
using high accuracy mass spectrometers. While analytical methods are well developed, sup-
port for linking metabolites to detected features and interpreting the results of a data analysis
in a biological context is still poorly developed. Significant challenges also arise from the
additional steps required to export the data to third party environments to create a biolog-
ical context. The study of integrated omics datasets as a single system has also shown to
provide greater inferences than the study of each omics separately. Methods to integrate the
different omics layers of biological systems are, however, at an early stage of development
and no standard approach currently exists to provide a holistic view of organisms systems
organisation.

The objective of this thesis is to formalise, standardise and unify the data analysis of the
metabolomics field, by providing to biologists the tools to support them from planning to
analysis to biological impact reporting. The work presented here focuses particularly on
untargeted LC-MS metabolomics approaches and attempts to assist non-expert users in per-
forming their own analysis of metabolomics datasets. The project also aims to enable sys-
tematic biological interpretation of metabolomics datasets. The first part of the thesis focuses
on creating the foundation of a unified environment for LC-MS metabolomics data analysis.
Subsequently, the created environment will be expanded to integrate and support the latest
technological advances in the field and provide better support for both designing studies and
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interpreting analysis results in a biological context. Finally, the last part of this thesis con-
centrates on integrating metabolomics data with other omics datasets in an attempt to provide
a holistic view of a biological system.
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Chapter 1

Introduction

This chapter presents the necessary background to understand the organisation of biologi-
cal systems into omics layers with an emphasis on liquid-chromatography mass spectrome-
try metabolomics (LCMS). Measurement technologies, data formats and data processing of
LCMS metabolomics are discussed, highlighting the challenges that the field is facing. The
representation of omics data into biological networks is also introduced and reviewed in this
section.

1.1 Omics technologies

Omics technologies attempt to characterise, quantify and help understanding relationships
between all molecules constitutive of an organism. Over the past decades, the collection and
interpretation of large-scale datasets have been powering new discoveries across all disci-
plines in biomedical sciences. The recent advances in high-throughput omics technologies
such as genomics, transcriptomics, proteomics and metabolomics and improvement in bioin-
formatics have enabled the investigation of thousands of genes, proteins and metabolites si-
multaneously. Omics technologies have now an essential role in many fields of biological
research: toxicology [1] and environmental health [2], biomarker discovery [3] and cancer
diagnostics [4], food safety [5] and nutrition [6] are some examples of the disciplines that
now make systematic use of omics technologies to drive their research.

1.1.1 Omics layers

Omics technologies are divided into four main disciplines, each of them allowing the inves-
tigation of four different parts of an organism or biological systems.
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Genomics focuses on the large-scale study of the genes and how they interact with one an-
other by sequencing DNA molecules to determine the order of nucleotides. This technology
enabled the Human Genome Project [7] whose aim was to determine the sequence of nu-
cleotides that make human DNA. Transcriptomics is the study of messenger RNA (mRNA).
The identification and quantification of these molecules provide a way to understand the ex-
pression of genes better. The technology has evolved to allow the investigation of all species
of transcripts such as small RNAs, non-coding RNAs as well as mRNAs [8]. Proteomics
aspires to the large-scale identification and quantitation of the entire set of proteins present
in an organism [9, 10]. Proteins are the reflection of gene expression through transcription
and play a major role in the regulation of cell processes. Finally, the latest technology of the
omics family, metabolomics, is the large-scale study of the metabolites - small molecules -
present in an organism [11].

The complexity of omics technologies is however not linear. As illustrated in Figure 1.1, the
complexity increases as the omics get closer to the phenotype. This is due to the growing
number of arrangements the building blocks of each omics can take. Similarly, the number
of molecules constitutive of each layer is not linear either. A single gene can indeed en-
code for hundreds of protein isoforms (due to post-translational modification (PTMS) and
alternative splicing) [12] which makes the system incredibly intricate to study as a whole.
Moreover, mRNA transcript levels do not always correlate with respective protein expres-
sion levels [13]. Omics technologies also attempt to explain the modification mechanisms
that happen at different layers in the cells such as DNA methylation [14] which plays a
significant role in gene expression, alternative splicing [15] and RNA editing [16], or post-
translational modification of proteins [17].

Figure 1.1: Omics layers organisation
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1.1.2 Omics interactions

While individual omics datasets are informative, and combined analysis of genomics, tran-
scriptomics, proteomics and metabolomics data has been found to be useful for a deeper un-
derstanding of fundamental biological processes, greater inferences can be obtained by inte-
grating those datasets that are collected at different levels of biological organisation. Indeed,
the first approach to multi-omics experiment has been to analyse them separately, in isolation
of one another, and use the results as informative means to interpret another layer [18]. This
combined analysis approach is an iterative process consisting of using information from one
layer to focus the analysis of an another layer on a specific and narrow part. It, however, does
not allow the study of omics layers as one system like integrative analyses. Indeed, integra-
tive approcahes attempt to bring the datasets together in deifferent ways to interpret them as
a whole. Various correlation-based approaches have been explored in an attempt to integrate
multiple omics layers and extract meaningful information [19, 20]. Similarly, methods and
software have been developed to assist and automate these approaches [21, 22, 23]. These
methods have been successful in many cases, but all face the same challenge of connecting
the different layers in a biological context, representing the interaction and process happen-
ing between and within layers. Although progress is made towards that goal [24], standard
methods to integrate multiple omics datasets in a biological context is yet to be developed to
unleash the full potential of omics technologies [25].

1.2 Metabolomics

Metabolomics aims to provide a snapshot, at a specific point in time, of all chemical activities
occurring in a cell, tissue or organism, allowing the study of the biological processes in
place in response to a stress. The metabolome, however, unlike the genome, is not static, it
reflects the changes happening at every level of a biological system and can be influenced by
environmental factors. Two cells of the same organism can indeed reveal an entirely different
set of small molecules while sharing the same genome. Thus, metabolomics is often seen as
the layer linking genotypes and phenotypes [26].

Two leading measurement technologies are currently used in metabolomics, Nuclear Mag-
netic Resonance (NMR) and Mass Spectrometry (MS). These two types of analysis offer dif-
ferent views of the metabolome and are used for varying purposes. NMR, a non-destructive
technology, is highly reproducible, provides structural information and absolute quantitation
of the compounds observed. Mass spectrometry, in comparison, is a destructive technology,
and requires isotopically labeled standards to provide anything other than relative abundance.
However, MS offers higher sensitivity than NMR which allows the detection of many more
metabolites. The choice of the technology usually depends on the design of the study and
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the question addressed. NMR can be used for studies requiring the absolute quantitation of
a definite set of metabolites while mass spectrometry is preferred for the exploration of the
metabolome in a more untargeted approach.

1.2.1 Mass spectrometry metabolomics workflow

Over the past decade, many MS approaches based on different instrumentations have been
implemented to study the metabolism. LCMS is often used for untargeted approaches due to
the diverse range of separation available, its large sample capacity, and straightforward sam-
ple preparation methods. Gas chromatography - mass spectrometry (GCMS) is generally for
targeted approaches as it offers absolute quantification for known compounds, a very high
retention time reproducibility, but requires a derivatization step to make compounds volatile.
Other analytical methods are available such as capillary electrophoresis - mass spectrome-
try (CEMS) which offers high separation power but poor retention time reproducibility, or
direct infusion - mass spectrometry which offers rapid analysis but no separation. These
different type of approaches can be coupled with tandem mass spectrometry to provide a
better structural elucidation of the compounds analysed. Tandem MS can be performed fol-
lowing different protocol, Data dependent acquisition (DDA) allow the fragmentation and
elucidation of the structure of a set predefined compounds, while data independent acquisi-
tion (DIA) proceed to the fragmentation of all ions present in the matrix. The measurement
technologies, separation techniques and fragmentation procedures are introduced in more
detailed in section 1.3 of this introduction.

Metabolomics laboratories and core facilities across the world use very similar overall work-
flows in term of data handling. The raw data acquired on the MS instrument is generally
stored in in-house servers and archived, the vendor formatted files are then duplicated and
converted to an open format for processing purposes. Two types of processing workflows
have been adopted by different laboratories, one uses commercial software such as Com-
pound Discoverer (Thermo Fisher Scientific) or Progenesis QI (Nonlinear Dynamics - Wa-
ters), the other makes use of freely available tools. Amongst the laboratories that use the free
option, some use end to end data processing pipelines, other prefer to build their own pipeline
using different tools for each step of the analysis. The different data analysis tools and plat-
forms are discussed in section 1.3.4. Although there is a wide range of tools available, they
all follow the same data processing steps. The analysis pipeline generally consist in 6 main
steps: peak detection, peak alignment, data filtering, peak grouping, peak identification and
statistical analysis. The order of these steps can slightly differ from one tool to another and
several quality control steps can be introduced at a different stages of the pipeline. Those
steps are detailed in section 1.3.3 of this introduction.

While the data processing steps are conserved across metabolomics facilities, data capture is
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not yet standardised in LCMS. Laboratories use different ways to capture data and document
studies which can go from electronic lab books to internal Laboratory Information Manage-
ment Systems (LIMS). No tool or LIMS is however used across metabolomics community
as they are often very specific to the need of laboratory which implemented it. This creates
disparity in the way studies are documented. The Metabolomics Standard Initiative (MSI) is
however attempting to standardise the reporting of studies by providing rules and best prac-
tices guidelines. Data repositories such as MetaboLights also now provides strict guidelines
regarding the type of data that need to be captured to properly document a metabolomic
study.

1.3 LCMS Metabolomics

1.3.1 Measurement and separation technologies

Mass spectrometry is an analytical technique that separates ionised chemical compounds
by their mass-to-charge ratio (m/z) [27]. A mass spectrometer is constituted of 3 principal
components with different purposes: the ion source imparts a charge to a molecule, the mass
analyser separates ions, and the detector records ion signals. Several types of ionisation tech-
niques are available, they are however not all appropriate for LCMS. Electron ionisation, for
example, which produces a high degree of fragmentation is ordinarily coupled to gas chro-
matography as it cannot be used at atmospheric pressure and require the entire system to be
under high vacuum [28]. Electrospray ionisation [29] is the most widely used ion source
for LCMS metabolomics and produces soft ionisation (which reduces fragmentation). Al-
ternatively, matrix-assisted laser desorption/ionisation (MALDI) [30] is used for imaging, to
inform on the spatial distribution profiles of metabolites in tissues [31]. Many mass analysers
exist with different characteristics; however, modern instruments used in LCMS share high
mass resolving power. The mass resolving power is the ability of the mass spectrometer to
separate ions with close m/z and evaluated using mass accuracy. Mass accuracy is measured
in parts per million by calculating the ratio of the m/z measurement error to the real m/z.
Three types of mass analysers are widely used for LCMS: time of flight (ToF), quadrupoles,
and ion traps. ToF analysers create an electric field to accelerate the ions and measure the
time ions take to reach the detector. Quadrupole analysers use oscillating electrical fields
and a changing potential allowing only ions in a particular range of m/z to reach the detector
at a given time scanning a wide mass range in a short period. Several types of ion traps
exist; three-dimensional quadrupole ion traps, linear quadrupole ion traps and Orbitraps are
examples.

Many of the instruments can also perform tandem MS (MS/MS). MS/MS is the succession
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of at least two rounds of mass spectrometry separated by fragmentation. Fragmentation data
can inform on the structure of the molecule analysed and is, therefore, a valuable resource in
metabolomics to help with the identification of metabolites. Two types of fragmentation can
be performed, fragmentation in time and fragmentation in space. Fragmentation in space can
be done by using three quadrupoles (Triple Quadrupole) as seen in Figure 1.2; the first mass
analyser isolates an ion, the second analyser acts as a collision cell to fragment the ion, the
third analyser isolates a fragment ion. This means a signal will only occur if a characteristic
molecular mass is detected, followed by a diagnostic fragment ion [32]. Fragmentation
in time is done using one ion trap mass analyser over time such as quadrupole ion trap,
and typically involves trapping the ions, selecting an ion of interest by manipulating the
electrostatic field in the trap, then collisionally dissociating the analytes using a neutral gas.

Figure 1.2: Representation of a triple quadrupole performing fragmentation in space. The
precursor ion is isolated by the first quadrupole, then fragmented in a collision cell, and the
fragments are separated by the third mass analyser. Simpler mass spectrometer only have
one mass analyser.

Liquid chromatography adds another dimension to the compound separation (Figure 1.3). In
LCMS, this separation is made using High-Performance Liquid Chromatography (HPLC).
The sample to be analysed is injected into the stream of mobile phase and passes through
the stationary phase, part of the chromatographic column. Analytes are infused into the mass
spectrometer for mass separation as they elute from the column. Diverse columns with differ-
ent stationary phase properties are used. Hydrophilic interaction liquid chromatography [33]
(HILIC) columns are used in LCMS metabolomics and separate compounds by increasing
polarity. Alternatively, Reversed-phase chromatography methods, which uses a hydrophobic
stationary phase is also often used to separate non-polar compounds [34].

1.3.2 Data format

The data produced by mass spectrometers during an LCMS experiment can be very large.
The different mass spectrometer manufacturers have developed their own proprietary data
format to store and process the data. However, these data formats are not adequate for an
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Figure 1.3: Liquid Chromatography - Mass Spectrometry system

academic research environment as they are binary, which make them difficult to read with-
out dedicated software provided by their respective manufacturers. However, several open
source data formats have been created over the years in an attempt to provide a unified stan-
dard format for MS. Over the past 15 years, two open formats were concurrently developed
by the Proteomics Standard Initiative and Seattle Proteome Center, respectively called mz-
Data and mzXML [35, 36]. A joint effort has however emerged since to create a unified
open format, mzML [37], which integrates and extend mzData and mzXML data formats.
Instrument manufacturers now all provide software libraries to access the data within the
binary files and convert it to an open format. This task can be handled by the tool MSCon-
vert [38, 39], part of ProteoWizard Software.

While some specifications such as metadata information change between the different open
formats, the LCMS data itself is stored in a similar manner and can be described as a 3-
dimensional chromatogram. Figure 1.4 illustrates this data by plotting m/z versus the re-
tention time in y and x-axes respectively. The z-axis represents the intensity of the signal
corresponding to ion counts, the highest signal being set at 100%. This data represents one
polarity only. Two of these data structures are, therefore, present if the instrument is operated
in polarity switching mode. Alternatively, positive and negative polarity data can be stored
in two separate files.

This complex data structure allows to approaching the data in two different manners. Fig-
ure 1.5 illustrates a mass spectrum and the information it contains in the context of LCMS
data structure. For each of the time points there is a corresponding mass spectrum contain-
ing MS peaks. Those peaks in a mass spectrum represent the molecules that eluted from the
column at a specific retention time. Mass spectra become more complex as the number of
compounds eluting from the column at the same retention time.

The data can also be approached in a transversal manner from mass spectra in order to look
at a single ion (m/z) over time. Chromatographic peaks observed in extracted ion chro-
matograms as shown in Figure 1.6 show the elution of a single ion through the chromato-



1.3. LCMS Metabolomics 21

Figure 1.4: Representation of a 3-dimensional chromatogram produced by LCMS data ac-
quisition. The x axis represent the elution time in the chromatographic column (retention
time), the y axis represent the m/z measured by the mass spectrometer, and the z axis repre-
sent the intensity of the detected ions.

graphic column. It can, therefore, show the separation of two species of the same mass but
different affinity with the column.

1.3.3 Data processing

Many tools have been developed to support LCMS data processing, while they do not always
provide the same features, a common data processing pipeline is conserved across those
different tools. The user interface can, however, vary from command lines to a dedicated
graphical user interface for stand-alone tools. In the recent years, web-based data processing
pipelines have also emerged, providing a graphical user interface through web browsers such
as Galaxy based pipelines [40] and overcoming any installation requirements. This section
below describes the different steps of LCMS data processing although some tools can provide
some variations of this general pipeline.

Peak detection

The peak detection is applied to LCMS data as it reduces considerably the size of the data
to handle. During this step, the data structure previously presented is converted to a list
of peaks, each entry being characterised by its m/z, retention time and intensity. Peak de-
tection is complex, and many tools tend to use the same algorithm to perform this task.
CentWave [41], the most widely used peak detection algorithm is implemented as part of
XCMS [42] and is based on centroid mode spectra. Other peak detection algorithms are
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Figure 1.5: Single mass spectrum selected from an LCMS data file. This figure plots the
intensity of ions against the m/z

available such as MetAlign [43] or CentroidPicker in MZmine [44], but cannot be used by
third party tools as they are part of stand-alone software. These algorithms treat each sam-
ple spectrum independently and rely on manually defined parameters that have a significant
impact on the quality of the peak detection. Some of these parameters are in direct relation
to specifications of the instrument used for the data acquisition such as the mass deviation
parameter in CentWave which requires knowing the mass accuracy of the instrument. These
algorithms are therefore aimed to be used by experienced users for optimal results.

Peak alignment

The vast majority of metabolomics experiments are based on the assumption that differences
will be observed between two different experimental group of samples, defined by either bio-
logical or technical replicates. This assumption implies that metabolite levels are comparable
within and across experimental groups. As the peak detection is performed independently
for each replicate sample (LCMS run), matching peaks across LCMS runs corresponding to
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Figure 1.6: Extracted ion chromatogram of a LCMS file. This figure plots the intensity of
one ion against the retention time.

the same molecular ion is essential for the downstream analysis. However, analytical plat-
forms used in LCMS can produce data with large, non-linear retention time drift between
LCMS runs. The peak alignment step addresses this issue and has been implemented using
different methods. It produces as an output a list of peaksets containing the aligned peaks
from each LCMS run.

Different warping-based alignment methods are widely used for LCMS data processing.
These methods attempt to model the retention time drift between runs to correct it. Two main
types of warping based alignment have been implemented and are based either on the total
ion current (TIC) or the extracted peaks themselves. TIC-based algorithms such as Dynamic
Time Warping (DTW) [45], Parametric Time Warping (PTW) [46, 47], Correlation Optimal
Warping (COW) [48] and Continuous Profile Mode (CPM) [49] are not used by modern
software as they take a reductive approach by using TICs only and ignoring the complex
information of LCMS data. These methods were found to be inadequate for LCMS data as
they often fail to align overlapping peaks (co-eluting compounds). An improvement of the
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COW methods which combine it to a component detection algorithm (CODA) was however
developed and showed a higher alignment quality [50]. The same type of approach was taken
to improve PTW and DTW algorithms for LCMS data by combining it with CODA [51].
An extension of DTW termed Ordered Bijective Interpolated Warping (OBI-Warp) [52],
available in XCMS, shows improved alignment results and is now commonly used.

Alternative alignment methods can also be used such as Direct Matching which compares
peaks across LCMS runs based on similarities without warping. Many implementations of
this method have been proposed using different similarities measures [53, 54, 55] and are
available in various LCMS data analysis tools such as Join Aligner in MZmine [44].

Finally, a simpler labelled LCMS data alignment can also be used; it, however, requires the
injection of internal standards in the experimental samples, which increases the complexity
of sample preparation.

While several algorithms can suit the task of LCMS peak alignment, it is hard to assess what
algorithm provides the best solution. This is in great part due to the lack of comparative
evaluation at the time of publication as outlined by R. Smith, et al. [56]. The choice of an
alignment algorithm can, however, be made by using recent comparative reviews [57, 58].

Data filtering

Many data filters can be used to remove undesired signal [59]. For example, Reproducibility
Standard Deviation filter [60] available in mzMatch [61] helps to eliminate signal that is too
variable between replicates. More common filters are available in the different data process-
ing tools such as blank filter, noise filter or a minimum number of detection. The blank filter
discards any peak that is higher in the blank samples (generally extraction solvent) than the
experimental samples as they can be considered as contaminants. The minimum detection
number allow discarding peaks that are present in a limited number of samples, which often
correspond to noise signals.

Gap filling

In some cases, peaks can be missing from a peakset due to a misalignment or rejection during
peak detection because of a poor shape or high background signal. The gap filling step aims
to recover this missing signal directly from the raw files. This step gives better insurance on
the true absence of a peak.
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Peak grouping

Undesired in-source fragmentation often happens during the ionisation process which results
in the production of multiple peaks per metabolite. Similarly, the sample preparation can
cause the formation of adducts formed by the adduction of an ionic species such as different
salts to a molecule. Beyond the ion suppression resulting from these formations [62], it
also results on the production of multiple peaks for a single molecule. Finally, naturally
occurring isotopes such as 13C can produce several peaks that follow the isotopic distribution
of the element. The signal generated by these products of the precursor ion caused by those
different mechanisms are commonly called related peaks.

The peak grouping step attempts to identify these related peaks and group them together
with the precursor ion. Different methods often based on known chemical relationships
can be used to create these peak groups. For example, mzMatch uses a clustering method
based on intensity and peak shapes while CAMERA [63] groups related peaks using multiple
integrated methods reconstructing a similarity graph.

This grouping step can be applied to the data at different stages of the pipeline but results in
a consistent reduction in the number of relevant peaks which facilitate the peak identification
stage.

Peak identification

Peak identification is crucial in order give a biological meaning the data generated. This
process attempts to match peaks from a given LC-MC dataset to molecular formulas and
compound identities. It is however not a trivial task due to a high number of possible as-
sociations between a peak and metabolites. The Chemical Analysis Working Group as part
of the Metabolomics Standard Initiative (MSI) created a 4 level scheme to help to report
metabolite identification and annotation in a uniformed manner between studies [64]. The
first level, considered as highest ranked identification, necessitate a match of a minimum of
two independent and orthogonal data relative to an authentic compound analysed under iden-
tical experimental conditions such retention time and accurate mass. Authentic compounds
data is acquired by running authentic standards mix on the instrument. The second level of
identification is based upon spectral similarity with a public spectral library. The level 3 cor-
responds to putatively characterised compound classes, and the level 4 designate unknown
compounds.

In standard untargeted approaches, a finite set of authentic standard compounds is run, which
limits the number of peaks that can be annotated as level 1 identification. The majority of
the other peaks are identified using accurate mass from public databases, KEGG [65], Pub-
Chem [66], HMDB [67] and LIPID MAPS [68] are some examples amongst many available.
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However, mass accuracy is often not enough for unambiguous identification [69].

While in silico retention time prediction can help with the identification process [70], the
most promising avenue for addressing this issue is the use of fragmentation data acquired
by tandem MS (MS/MS). Fragmentation data can indeed offer structural information about
compounds and therefore provide better support for peak identification. The same approach
can be used for the identification process, matching fragmentation spectra against publicly
available libraries. Many libraries are available with different degree of curation, matching
options, and a varying number of spectra. MassBank [71] and ChemSpider [72] figure among
the most widely used spectral databases.

Peak identification process is improving every day as spectral libraries cover an increasing
number of compounds, it remains, however, one of the biggest challenges the metabolomics
community has to overcome to lead to a better data interpretation in biological context.

Statistical analysis

A normalisation step is often required proceeding to the differential analysis of the dataset.
The complexity of this task is highly dependent upon the size and the property of the dataset.
Over a certain number of samples analysed, the data collection needs to be performed in
separate batches before being merged into one large dataset. This procedure results in biased
dataset values due to the variation of LCMS platforms over time. Solutions proposed are
still in their infancy although the problem has been addressed many times over the past few
years [73, 74]. Several methods for single batch data normalisation use different approaches
that can be divided into two main approaches [75]. Methods-driven approaches use internal
standard material references to base the normalisation upon. The standard used as reference
rarely cover all metabolite classes present in the samples which limit the normalisation effi-
ciency. This method is also not cost effective as the stable isotopes used as internal standards
are expensive. Data-driven approaches are the most widely used normalisation methods and
are based on the assumption that most metabolites produce a constant signal across samples,
these methods have the benefit not to require to know the identity of the metabolites.

Once normalised, statistical analysis such as ANOVA, t-test, false discovery rate [76] and
principal component analysis can be performed.

1.3.4 Data analysis platforms

Data generated by LCMS experiments is very complex, and its visualisation is essential at
many steps of the analysis pipeline. Visualisation of the overall signal or raw files produced
by the instruments is well supported by proprietary software provided by manufacturers.
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This software also provides search and curation tools to explore the data and revealed to be
technical. They are therefore aimed at trained users which are expert in the field. Similarly,
some software also offers visualisation tools for open source raw data formats [77, 44].
Most software, however, provides visualisation tools corresponding to the specific analysis
tasks they support. For instance, mzMatch supports the visualisation of extracted peaks with
PeakML Viewer, and XCMS allow the visualisation of peaks before and after alignment.

There is, however, no standard when it comes to visualisation of data analysis results of
metabolomics experiments. The typical representation of the data being a matrix where
each row corresponds to a metabolite or an unannotated peak and each column a biological
sample, and each matrix entry the intensity value of a metabolite in a sample. This very
crude data representation is very limiting for the interpretation and omits major biological
and statistical related information. Many attempts have been made to organise the results in a
coherent manner to highlight the different type of information connected to the metabolites.
These efforts are specifically made in end-to-end data analysis software which integrates all
processing steps. IDEOM [78] proposes an organisation into tabs in an excel spreadsheet
(Figure 1.7), with one of them summarising the metabolites found in the dataset along with
t-test p-values and biological pathway information.

Figure 1.7: Comparison tab showing the results of LCMS data analysis in IDEOM. The
columns A and B display the Mass and retention time of the peaks. Columns C to I show
information about the identity of the compound corresponding to the peak such as the for-
mula, the metabolite name or its pathway. Columns J to O show the fold changes between
the different experimental conditions. The other columns give statistical information.

Other standalone applications propose similar approaches such as MAVEN [79] which give
information about the biological compound under investigation in its pathway view.

More recently, web-based software has been developed which enable an easy access with no
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installation requirements for the user. This very accessible software has attracted consider-
able interest from the biological research community and helps disseminate and systematise
the use of metabolomics in biological science. Some of these programs support the entire
data analysis such as XCMS Online [80] or Workflow4Metabolomics [81], others tend to
focus particularly on a particular task. MetaboAnalyst [82] for example, offer extensive
statistical tools for metabolomics data. XCMS Online is the first end-to-end data analysis
software which attempts to allow non-experts to perform their own data analysis [83]. It
was in part achieved by introducing simplified parametrisation and interactive visualisation
(Figure 1.8). Other software such as OpenMS [84] which was first developed for proteomics
provides now support for metabolomics data analysis.

Figure 1.8: Innovative interactive visualisation tool available in XCMS Online. In this
figure, m/z is plotted against retention time. Each bubble correspond to a feature, the colour is
indicative of the directionality of the fold change between two experimental conditions, and
the size is indicative to the extent of the fold change. The intensity of the color correspond
to the statistical significance.

Shortcoming of current data analysis platforms

This section presents the shortcoming of the current software attempting to support end-to-
end LCMS metabolomics data analysis, from raw data to biological interpretation.

The first common limitation of the tools presented in the previous section is the level of
understanding required for the user to perform an analysis. Indeed, many settings needing
an in-depth knowledge of LCMS technology has to be manually entered by the user. Mass
and retention time window for feature detection, alignment parameters, are some of many
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examples. This requirement currently limits the usage of these tools to mature audience
forcing inexperienced users such as biologists or clinicians to outsource their metabolomics
analyses to bioinformaticians.

The second limitation shared by most tools is the static and fragmented structure of the
applications. While modular designs can be useful to expand the feature set that software
has to offer responsively and can provide the user with many analysis options, the lack of
connectivity between these modules results in a fragmented overall architecture. Two ma-
jor problems arise from this approach. First, tools such as MetaboAnalyst present the data
analysis pipeline in the form of functional modules that the user has to choose from, which
implies some level of understanding from the user in order to run modules in a coherent, se-
quential manner. Other tools such as IDEOM present the workflow as an integrated pipeline.
However, user intervention is still required at each step of the pipeline which limits the turn-
around time for a complete analysis of the data considerably. Finally, Galaxy based software
also necessitates basic understanding on how to organise a data analysis pipeline.

The same static approach is often taken with regards to data visualisation. While most soft-
ware provide features to generate figures such as Principal component analysis (PCA) or
volcano plots which can be interpreted on their own without surrounding information, the
same method is often taken to present extracted-ion chromatograms (EICs) or mass spectra.
This approach of generating static pictures to display specific information isolates the data
from the general context of the analysis which makes it harder to interpret. XCMS Online
started addressing these issues by organising the analysis pipelines into jobs and creating dy-
namic and interactive visualisation tools which can help users in better understanding their
data.

Currently, available tools can be divided into two main groups, stand-alone software and
web-based applications. Stand-alone applications necessitate the local installation of the
software and its library dependencies on personal computers. This task is often difficult
for users with no fundamental skills in computer science. Collaborative work within such
environments can also become a challenge as it requires every party involved to have access
to the same version of the same tool. Moreover, sharing large metabolomics datasets is not
a trivial task due to the size of the raw and processed data. Web-based applications do not
suffer from these limitations as they usually offer sharing features and direct access to the
data through a web browser.

One of the key components to enable users to extract meaningful biological insight from
metabolomics datasets is the biological context under which the results are investigated.
While the fragmented structure previously discussed substantially limits this interpretation
process, some tools are beginning to integrate pathway enrichment and analysis tools. How-
ever, many still require the use of third-party software to replace metabolomics data into
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a larger biological context. Manual export, formatting, and import of the data is required
whether these applications are web-based [85, 86, 87, 88], stand-alone [89] or Cytoscape
plugins [90, 91], which creates yet another barrier for inexperienced users to interpret their
data entirely.

1.4 Programming languages, libraries and frameworks

Many programming languages are available for developing bioinformatics tools. The choice
of a programming language can depend on many parameters such as the performance re-
quired (i.e. computation time, hardware requirement), the development time and the aim of
the tool developed. However, Perl and Python have been the two languages of choice for
bioinformaticians as they need fewer lines of code than other languages such as C, C++ or
Java. They, therefore, enable faster development. Those two languages benefit now from a
wide range of biology-oriented libraries which provide many commonly used algorithms in
the field. Python presents, however, advantages over Perl due to a syntax more straightfor-
ward and less permissive, which facilitate the development of reusable scripts and collabo-
rative work. All languages are, however, used in bioinformatics, and the choice depends on
the aims and requirements of the tool or script being developed [92].

Statistical languages are also commonly used in bioinformatics, MATLAB (matrix labora-
tory) [93] and R [94] are the two most popular languages. MATLAB presents the disadvan-
tage of being a proprietary language which makes it expensive. For this reason, R, which is
open source, can reach a wider audience than Matlab and is often preferred by bioinformati-
cians.

Nowadays, web technologies are also commonly in bioinformatics as they enable the straight-
forward development of user interface available through web browsers. Frameworks have
been developed over the past decades to standardise and ease the development of web appli-
cations. Like the programming languages, the choice of a web framework is made according
to the project, its aim and its target audience. For example, Shiny [95], an R web framework,
allow the rapid development of a web interface around an R script. However, larger appli-
cations tend to use frameworks such as Ruby on Rails [96] or Django [97] which provide a
more structured environment and enable scalability.

The choice of languages is always closely related to the objective of the tool being developed
and the available libraries and frameworks. In-house scripts aimed to be used by a bioinfor-
matics laboratory will not necessarily need a user interface; applications with an audience of
biologists, however, require streamlining and interfacing to facilitate their use.
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1.5 Biological networks

High throughput omics technologies allow the large-scale study of the systems organisation
of organisms. Each omics technology attempts to describe the state of a particular layer
of a system and the interaction between their constitutive components. Representing these
interactions using networks helps to understand the different relationships between omics
components. Thus, biological networks are often used to understand the process occurring
in a system. Each omics layer can be represented by a different network to inform on var-
ious interactions. Gene-gene interaction networks, for example, are often used to attempt
to understand the different relationship between genes [98]. In transcriptomics, gene co-
expression networks are widely used to understand the processes regulating the expression
of genes [99]. Other types of networks are commonly used to explore genomics and tran-
scriptomics data such as co-localization or gene regulatory networks [100].

While these networks offer comprehensive support to study the interactions occurring in a
biological system, they need to be processed to extract meaningful biological information.
For example, as illustrated in Figure 1.9 a protein-protein interaction network can be formed
of thousands of nodes highly connected with one another, which limits the amount of in-
formation that can be extracted from it. Reducing the size of the network can, for instance,
be done by a semantic enrichment using Gene Ontology annotations [101]. The resulting
network would highlight proteins sharing particular biological processes, molecular func-
tions or found in the same cellular component; and interacting with one another, conveying
a greater biological meaning than the initial network.

At the metabolome level, genome-scale reconstructions of metabolic networks [102, 103]
can be used for studying the flux of metabolites within a system using flux balance analysis [104].
This type of network is also used to make different predictions on biological systems using
in silico constraints-based approaches [105]. Figure 1.10 illustrates the genome-scale recon-
struction of the human metabolic network [106].
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Figure 1.9: Example of a Gene Ontology semantic enrichment of protein-protein interac-
tion network. On the left, a three degrees separation protein-protein interaction network was
reconstructed from one seed protein (in red, in yellow are proteins with one degree sepa-
ration, in blue two degrees, in green three degrees). On the right, the same network was
reconstructed using a Gene ontology semantic enrichment to keep only proteins involved in
the same molecular processes. The network was reconstructed for illustration purposes, the
seed protein and ontologies were selected randomly. The network was reconstructed using a
python script developed by the author and visualised using Cytoscape.

Figure 1.10: Genome-scale reconstruction of the human metabolic network using MetEx-
plore. The network as such is not informative but can serve as a support to study flux data
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1.6 Related work

The work presented in the following chapters aims to better support researchers in their
LCMS metabolomics experiments. From data capture to result interpretation, the tools im-
plemented and presented here provide platforms using state-of-the-art technology to facili-
tate the LCMS data capture, data analysis and interpretation. Every result chapter focuses on
a different stage of the LCMS metabolomics workflow, the specific aims and objectives are
defined in the related work section of each chapters.
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Chapter 2

Materials and methods

The research discussed in this document mainly involve the development of new approaches
to analyse, visualise and interpret metabolomics and to some extent omics data. These ap-
proaches are based on the development of new tools to support the different operations to
perform on the data. The section below, therefore, outlines the programming languages, the
programming libraries, the existing tools that were used for the development of the different
part of the software and the data analysis presented in Chapter 3, Chapter 4 and Chapter 5.

2.1 Software engineering

The software presented in this document was developed following the agile software devel-
opment method. Requirements were initially captured through extensive interaction with
collaborators of Glasgow Polyomics (GP) metabolomics facility, and gathering feedback
from Glasgow Polyomics data analysts. Agile development method was put in place once
the first working prototype was developed. A pool of 10 test users with different background
were given an early access to the tool to analyse their own LCMS data and to provide feed-
back on the features and report issues encountered.

Acceptance testing was performed in the form of a one day workshop, gathering test users
as well as new users. Two acceptance tests were organised during the development of the
software presented in this document, they allowed to refine different part of the project from
the data structure to the user interface.

All software developed as part of this work were put under version control using Git and
a private GitLab repository hosted on GP servers. A production environment and several
development environments were created for each tools, every features newly developed was
tested before being deployed on the publicly available production server.
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Besides being under version control, the tools were encapsulated into docker containers to
facilitate their deployment. This encapsulation was not carried out by the author and will,
therefore, not be discussed in this document.

Unless specified in the text, the work presented below has been carried out by the author.

2.2 Data format

Several data formats were used for different purposes. The metabolomics data file format
that the developed software uses is “mzXML” format. All instruments used for Liquid-
Chromatography Mass-Spectrometry data acquisition produce result files in a different type
of proprietary format. This files can be converted to the “mzXML” open file format by using
the freely available tool ProteoWizard [38]. mzML format [99] was used for fragmentation
data.

Web transactions involving data transfer use Javascript Object Notation [100] (JSON) which
is a data-interchange format commonly used for web data exchange as it is language inde-
pendent. This format is used for client-server asynchronous communication.

The data analysis pipeline used in Chapter 3 creates intermediary “PeakML” [61] files that
contain pre-processed data of “mzXML” or “mzML” files.

One XML [107] based exchange format was also created as an intermediary data format
between the software developed and the data analysis pipeline, and explained in Chapter 3.
The exact purpose of the file format (pimpxml) is detailed in section 3.4.5.

2.3 Data analysis pipeline

The data analysis pipeline of the software described in chapter 3 is implemented in R [108,
94] and based around XCMS [42] for feature detection and mzMatch.R [61] for metabolomics
data pre-processing tasks. mzMatch.R uses backend functions implemented in Java through
the rJava library. The analysis pipeline also uses a collection of other R libraries; the full list
is available in Appendix A.1. Extra pipeline functions are implemented in R.

The data analysis pipeline is run asynchronously by the implemented software using Cel-
ery [109]. Celery is an asynchronous task queue allowing both scheduling and concurrent
tasks to run on several worker nodes. RabbitMQ [110] is used as the message broker for Cel-
ery. Reversed communication from the pipeline to the program is done through a dedicated
“XML” format.
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2.4 Web framework

The software and tools presented in Chapter 3 and 4 are developed in Python 2.7 [111]
using Django (version 1.7) [97] web framework. Django is an open source web framework
written in Python, which follows the Model View Template (MVT) architectural pattern. It is
developed and maintained by the independent Django Project Foundation as a 501(c)(3) non-
profit. Django consists of an object-relational mapper that mediates between data models
and a relational database, a web templating system with a HTTP requests processor, and
a regular-expression-based URL dispatcher. A MySQL [112] relational database is used to
store data in production environments and SQLite on development environments. Nginx web
server [113] is used in conjunction with Django in production environments, interfaced by
Gunicorn [114], a Python Web Server Gateway Interface HTTP server written in Python. As
mentioned in the previous section, long running asynchronous tasks and queueing systems
are handled by Celery.

Mathematical operations are performed on the server side (in Django) using NumPy [115],
SciPy [116] and Scikit-learn [117] Python libraries. NumPy extends Python support to large
multidimensional arrays and matrices, and high-level mathematical functions. SciPy is built
on NumPy array objects and expand the mathematical and scientific functions. Scikit-learn
implements visualisation, preprocessing, cross-validation and machine learning algorithms.

Communication between Python and R is performed using rpy2 [118] to enable the use of
XCMS functions in Python. Rpy2 is a python library interfacing Python with R using NumPy
array objects.

The full list of Python libraries and Django plugins used for the implementation of the pro-
gram and tools presented in Chapter 3 and 4 are available in Appendix A.2.

2.5 Data visualisation

The user interface of the tools presented in the different Chapter 3 and 4 are developed using
common web standards such as HTML and CSS. The user interface represents the template
layer of Django web framework. An extra layer developed using JavaScript programming
language to create an interactive user interface. This layer is based on the jQuery JavaScript
library and uses AJAX (Asynchronous JavaScript and XML) web development techniques
to improve perceived response time and create a dynamic user interface. Charts and plots
are designed using Highcharts and D3.js libraries to allow interactions such as zooming and
download features. The tables are based on DataTables library for interaction purposes. The
full list of JavaScript used is available in appendix A.3
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Chapter 3

A semi-automated pipeline for
untargeted metabolomics

3.1 Introduction

Metabolomics is a relatively new field which requires the combination of different scientific
disciplines. From analytical chemistry to systems biology, metabolomics combines complex
analytical applications to advanced bioinformatics and biochemistry expertise. This interdis-
ciplinary breadth of metabolomics creates tremendous challenges in making it approachable
to the scientific community as very few people are experts in all of those fields. Performing
adequate and well-designed experiments to obtain good quality data that can be taken for-
ward for analysis and interpretation becomes, therefore, an obstacle for non-experts. Indeed,
the high complexity of Liquid Chromatography Mass Spectrometry data compared to other
’omics’ data necessitates expert knowledge in the field to plan an experiment to be able to
process the data post acquisition. This concept of post-acquisition data analysis to reduce
noise or filter unprocessed raw data is also poorly understood by biologists who need to be
guided through the design of their experiment as well as through the different data analysis
steps. The biggest challenge, however, lies in the data analysis and interpretation of the re-
sults [119, 120]. Indeed, due to data complexity and currently available tools, the analysis
of metabolomics data is usually performed by expert bioinformaticians or data analysts with
a strong knowledge of the data structure, format and analysis process as well as advanced
computer skills. These challenges can, however, be addressed by creating a tool to accom-
pany and guide biologists from designing their experiments to interpreting their data. In
order to overcome these issues, the tool needs to streamline the data analysis process into a
semi automated tool reducing the necessary user interventions; presenting a simple ’step by
step’ pipeline to allow users them to proceed to their own analysis, but also assist them in the
data interpretation. The second point can be achieved using data visualisation techniques to
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provide the user with contextual information and create a self-learning environment.

Metabolomics is a rapidly evolving field, analytical tools and algorithm need therefore to
adapt to meet new requirements continuously. This is usually achieved in two different
manners, existing algorithms and tools can be modified to meet the new requirements and
provide an alternative data analysis, or for entirely new approaches, new modules need to
be created and incorporated into an existing pipeline. For this to happen, however, the tool
needs to be developed in a structured and highly scalable manner. This can be achieved by
creating modular software in which the modification of one module would not affect the rest
of the software; such orthogonal design would allow an easy addition or removal of modules
from the pipeline to adapt to new requirements in a responsive way.

3.2 Related work

At the commencement of this project several metabolomics data analysis pipelines necessi-
tating different levels of understanding of the metabolomics and bioinformatics fields were
available. XCMS [42] introduced in 2006 as an R package allows the analysis of untar-
geted metabolomics. While the tool provides all features necessary for full data processing
from peak detection to statistical analysis, it requires prior knowledge in programming and
is therefore limited to the use of bioinformaticians. mzMatch [61], a Java and R library pro-
vide a collection of small tools that enrich the features available in XCMS. The tool provides
filters in order to improve data processing such as Relative Standard Deviation filter during
peak grouping. mzMatch also provides a peak annotation tool which allows basic biological
interpretation of the dataset. IDEOM [78] was the first tool introducing more extended bio-
logical interpretation feature. IDEOM is a wrapper around XCMS and mzMatch presented
in the form of an Excel spreadsheet. A collection of macros allows data processing from
peak detection to biological interpretation through calls to XCMS, mzMatch and indepen-
dent algorithms. IDEOM displays the results of the data processing as tables within Excel; it
provides pathway information and export functionalities to analyse the results further using
external software. MZmine [44], an alternative to XCMS was first released in 2006 as a stand
alone application for Mass Spectrometry data analysis. MZmine is written in Java and pre-
sented to the user in a dedicated user interface; it allows users to analyse MS data from peak
detection to statistical analysis without the requirements of prior knowledge in programming
once installed. Results can be exported for further analysis such as data interpretation using
external tools.

The first and shared limitation of these tools is the installation requirement. The instal-
lation process of these tools requires advanced knowledge in informatics systems and can
present significant challenges to biologist without skills in computer science. MZmine and
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IDEOM give the advantage of providing a dedicated user interface to interact with the soft-
ware once installed. However, analysing LCMS data using these programs still requires
extensive knowledge of the underlying data to process it from end to end. All the tools also
require user interventions at each and every step of the data processing to progress in the
analysis pipeline; this limits the time efficiency of the analysis considerably. Other limi-
tations related to stand-alone software such as specific hardware requirements for running
intensive processing task also arise from these types of tools. Another major limitation for
biologists to use the presented software is the basic capabilities they offer for assisting the
user in their data interpretation and providing biological context. This critical step of trans-
forming LCMS data into valuable biological insight currently necessitate third party software
and the intervention of biochemistry experts to provide the biological context in which the
data should be interpreted. Finally, as metabolomics data is extremely complex, the size of
raw data files and analysis results present a barrier to collaborative projects. Although tools
exist to transfer big data files, collaborating on a metabolomics data analysis project requires
every party involved to have the same software installed on their personal computers to make
collaborative approaches to metabolomics studies possible.

The work presented in this chapter will, therefore, try to answer these research questions:

• Can bioinformatics tools support non-expert users in the analysis and interpretation of
metabolomics datasets?

• Can software solutions be scalable enough to support the rapid expansion of the metab-
olomics field and its ever growing requirements?

• Can software solutions overcome issues related to big data and enable world-wide
collaboration in the field of metabolomics?

Five main project aims have been drawn to attempt answering these questions:

1. Support end users in their metabolomics data capture and analysis.
Objective 1: Develop an installation free tool with user friendly UI to allow re-
searchers with no computing skills to set up their own metabolomics data analysis.

2. Streamline the data analysis pipeline to limit or eliminate the need for user interaction
after initial data capture.
Objective 2: Create a wrapper and data exchange format to enable the encapsulation
of data analysis pipeline within the developed tool.

3. Develop a modular tool to allow responsive feature integration.
Objective 3: Decouple the various part of the tool using object oriented and model-
view-controller design pattern to enable module integration.
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4. Support end users in the interpretation of the results of the metabolomics data analysis.
Objective 4: Develop a metabolomics data specific exploration environment to enable
analysis results visualisation and interpretation within the developed tool.

5. Enable end users to collaborate by easily sharing metabolomics data from study design
to analysis results.
Objective 5: Develop a user session system with sharing capabilities.

The source code of the tool developed in the context of this work and described below is
freely available on GitHub at https://github.com/RonanDaly/pimp and licence under GPL.
An instance of the tool running on Glasgow Polyomics servers is available at http://polyo
mics.mvls.gla.ac.uk, access is freely available on request, 50 GB of space is allocated for
data storage, with unrestricted number of samples and analyses per user. Over 60 active
users are currently using the tool (September 2017), which has been used for LCMS data
analysis in published work [121, 122]. The tool has been published as an application note in
bioinformatics [123].

3.3 Integrated metabolomics workflow

3.3.1 Data analysis workflow

The aims of the project specify that the software solution needs to support end users for the
entire metabolomics workflow, from experiment design to data interpretation. To achieve
this aim, a clearly defined integrated metabolomics workflow was designed and is presented
in Figure 3.1.

Figure 3.1: Model of an integrated metabolomics workflow from hypothesis generation to
biological interpretation.

Most of the limitations are data dependent and appear to be downstream of the data acquisi-
tion step in the metabolomics workflow. As shown in Figure 3.1, the data processing requires



3.4. Untargeted metabolomics pipeline 41

many steps from data acquisition to interpretation, and most of these steps require the user
intervention in the existing software solutions. However, these steps can be automated and
run sequentially: all parameters and information required from the user can be captured at
once at the beginning of the processing pipeline. Another major limitation appears to be at
the very end of the pipeline and concerns the data interpretation. Interpreting the data within
their biological context currently, requires exporting the data to other tools completely sep-
arate from the data processing pipeline. Integrating this support within the pipeline and
providing visualisation tools to help the user in the interpretation of the data could overcome
this limitation. Finally, although the experiment design comes before the data acquisition,
guiding the user on how best to design their experiment during the data capture step after
the data acquisition could help biologists understand how to perform metabolomics experi-
ment in an optimal manner. Figure 3.2 shows the different part of the workflow that can be
improved by addressing these limitations.

Figure 3.2: Area of limitation in a standard untargeted metabolomics workflow that need
support. Highlighted in light blue is the hypothesis definition that need guidance support.
Highlighted in red is the data processing which require centralised data capture and stream-
lining. In green is biological context and interpretation limitation that need integration within
the analysis software, and visualisation tools required to support the user in the interpretation.

3.4 Untargeted metabolomics pipeline

3.4.1 Data structure

All the aims of the project rely on having all data, either captured or computed, accessible
at all time. The data underlying the entire metabolomics workflow needs, therefore, to be
centralised in a common structure. Sharing data between users (aim number 5) is highly
dependent on the data structure and is addressed in this section. The modularity of the tool
being another key objective of the system (aim number 3), the data structure needs to follow
a modular design to support scalability and rapid development. The data structure proposed
below is implemented as a relational database developed using MySQL.
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The structure is organised in modules to separate the different types of data. Captured data
and computed data have been identified as being the two main data types. Those two data
types are then organised in sub-modules to form a coherent data structure supporting the
capture of all the information and parameters required for an untargeted metabolomics ex-
periment. Figure 3.3 shows the general organisation of the data structure implemented in
PiMP. The following modules structure the data capture: projects, fileupload, groups and
experiments; the computed data which form the results of the analysis pipeline is stored in
the data and compound modules.

The first module called “projects” showed in Figure 3.4 allows the recording of a project’s
metadata such as its name, creation and edition dates as well as its owner. The module
also captures the users that are granted access to the project through the UserProject table,
recording also the level of permission a user may have to an individual project.

The second module represented in Figure 3.5 allows the storage and organisation of raw files
generated by the instrument. The user may upload two types of samples, hence the separation
of the module in two similar structures. The first type of sample supported and simply called
“sample” corresponds to the biological samples of the experiment. Each sample when run on
the instrument can contain either one or both positive and negative polarities, each polarity
being contained in a different file. These files describing the same sample are stored using the
“file” table and are organised using the “SampleFileGroup” joining table. The other sample
type stored by the table “CalibrationSample” is used for quality control purposes; it is used
to store and organise pooled, blank and external standard samples. The main difference with
the biological samples is that the standard files can be stored in csv file containing both
polarities. This difference is reflected by the ”data” field in the “StandardFileGroup” table.
This table and its equivalent for the biological samples, the “SampleFileGroup”, also allow
defining the format of the file that is stored. Finally, the “Curve” table is used to store the
total ion chromatogram of each sample. This table was created for optimisation purposes as
the TIC is also accessible from the file itself but requires more time and processing power
than a simple query.

The “groups” module (Figure 3.6) captures the experimental information of a particular
study. This adds an extra layer to the organisation of the samples. Two primary information
is stored in this module which is the levels and factors respectively stored in the Attribute
and Group tables. The factor represents a category of a biological sample and the level its
condition within the category. For instance, if a factor is “gender”, the level could be “male”,
“female” or “undefined”. To be flexible, sample entries are attached to the attribute table
through a joining table. This structure allows the storage of one level per factor for each
sample. For example, sample A could be annotated with the level “male” under the factor
“gender”, and “time 0” under the factor “time”. One sample can only be attached to one level
under a specific factor; however, the number of factors is not limited to allow the definition
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Figure 3.3: Database structure showing the general organisation of the data storage in mod-
ules. Four data modules (projects, fileupload, groups and experiment) are used to store the
data captured from the user, the other two modules (data and compound) are used to store
the processed and biological data generated by the the data processing pipeline.

of complex experiments that contain many factors and levels.
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Figure 3.4: Detailed structure of the Projects module showing the organisation of meta data
and user permission capabilities.

Figure 3.5: Detailed structure of the Fileupload module showing the organisation of the
different files required for LCMS data analysis

Figure 3.6: Detailed structure of the Groups module showing the organisation of the biolog-
ical samples between factors (groups) and levels (attributes)

The next module represented in Figure 3.7 and named “experiments” captures two types
of information, the analysis parameters and the different levels to compare. The “params”
table store all the parameters and information required for the back-end pipeline to run, the
”experiment” table store the information about the comparisons to perform. The analysis
table brings together those two sets of information along with extra fields such as the status
of the analysis (i.e. “Running” or “Finished”) and time stamps.

The “data” module in Figure 3.8 corresponds to the extracted and computed data resulting
from running the sample files through the back-end pipeline with the selected set of parame-
ters and comparisons. The main information stored in this module is the peaks (in the “peak”
table). The other tables are all joining tables that store extra information in relation to other
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Figure 3.7: Detailed structure of the Experiments module showing the organisation of the
levels to compare and the analysis parameters.

data entries. The dataset table represents the set of peaks that has been extracted from the
sample files for a particular analysis. The presence or absence of a peak (and its intensity
if present) in a specific sample is stored in the joining table called “peakDTsample”. More
information about the peak is also stored directly within the peak table such as the mass,
the retention time or the polarity. The “peakQCsample” table stores the same information
as the “peakDTsample” table but for the calibration samples (pooled and blank samples).
The last table of this module (“PeakComparison”) stores precomputed data resulting from
the analysis pipeline such as the p-value and log fold change of two peaks in two different
conditions. This table is a joining table between the peak and comparison table.

Figure 3.8: Detailed structure of the Data module showing the organisation of extracted and
processed raw data into features (peaks) with attached values.

The last module is only attached to the rest of the data structure through the peak table. The
“compound” module which structure is shown in Figure 3.9 stores data from external re-
sources about biological compounds and pathways. Entries in the compound table must be
unique, and the information about the external database can be found in the “RepositoryCom-
pound” table. One compound can have many repository entries to be flexible and extendable
with any external database. The four other tables in this module allow the storage and organ-
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isation of pathway information. The “pathway”, “superPathway” and “DataSource” tables
respectively store the name of pathways, super-pathways which are a set of pathways re-
lated with one another, and the external data source from which the information has been
extracted. One big joining table brings all the information together by joining a pathway to
a super pathway, a data source and many compounds.

Figure 3.9: Detailed structure of the Compound module showing the organisation of the
biological data used to enriched the processed data explained in the previous Data module

The modular design of the data structure has been implemented for flexibility and scalability
purposes (Figure 3.3). Although the current structure supports any type of metabolomics
data, the field evolves rapidly, and it is important that modules can be extended or replaced
with ease to support long-term changes. For example, the file module supports the current
files generated by mass spectrometers. However, it is possible that the file structure generated
by these instruments changes in the future, it is, therefore, important to be able to adapt the
module with minimum repercussion on the rest of the database.
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3.4.2 Context-sensitive visualisation

To address the objectives 2, 3, and 4, data visualisation tools are essential as they can help
users capturing the required data, performing quality control or any necessary tasks on the
data before data analysis. Data visualisation tools can also provide support for data in-
terpretation. Ultimately, the approach to data and task support presented below can help
streamlining the analysis pipeline by limiting user interaction upstream of the data analysis
pipeline.

Existing programs are focusing on specific activities within the workflow such as raw data
visualisation (i.e. Xcalibur, Thermo Fisher), peak set visualisation and annotation [61], and
pathway annotation [87, 86]. Each of these different activities involves context-sensitive
forms of data visualisation. However, none of the existing solutions support all types of
visualisation and more importantly, none of them connect them together within the same en-
vironment. The complexity of metabolomics data and the relationships between its different
components makes the field difficult for novices to approach. End users often focus on inter-
preting the presented data and are not sufficiently critical its reliability itself. As other omics
are more advanced, they provide a high confidence in their results; however, metabolomics is
still at its early stage and the community needs to educated on the uncertainty of compound
annotation [124, 125].

First, a series of quality control tasks must be performed before the data can be processed to
assess the quality of the overall signal and the reproducibility between samples. Then, during
data interpretation, manual validation is often required to evaluate the quality of specific
features. This manual validation relies on many variables such as peak shape, mass and
retention time error, and therefore need a strong understanding of the underlying data. Data
visualisation can help performing these activities by providing different visualisation types
according to the task to perform; we say that the visualisation is context-sensitive. The
data visualisation tools described in this section aim to support the user in these validation
tasks and basic interpretation tasks. These visualisation tools are developed as modules to
be reusable anywhere within the software. The advanced data interpretation environment
presented in section 3.4.6, in particular, make use of many of these visualisation tools. The
parts of the metabolomics workflow supported by those tools are shown in Figure 3.10.

Raw data visualisation

The raw data contains the unprocessed signal measured by the instrument (mzXML, mzML
or mzData). Raw data visualisation and curation tools are well supported by proprietary
software such as Xcalibur (Thermo Fisher) that allows the user to drive the mass spectrometer
itself. They are usually designed to support analytical chemists to run samples through the
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Figure 3.10: Metabolomics workflow activities that need support by context-sensitive data
visualisation.

instrument and assess the quality of the data acquired. In the context of PiMP, raw data
visualisation is essential at the pre-processing stage (Figure 3.11) to quality control the data
and allow internal standard checks. To support these tasks, several visualisation tools are
required.

Figure 3.11: Raw data visualisation support within the metabolomics workflow.

The first module supports the visualisation of the total ion current (TIC) of individual samples
to assess the quality of the signal (Figure 3.12).

Figure 3.12: Total ion current of a single sample as viewed in PiMP.

This basic representation of the raw data is particularly useful to visualise the overall signal
present in the file as well as the background noise. The evaluation of individual mass scans
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(Figure 3.13) allows the identification of potential contaminants by locating specific signals
throughout the run.

Figure 3.13: Mass spectra of the sample displayed in Figure 3.12 at retention time 2064.05
seconds .

As metabolomics studies require biological replicates to be run to be statistically relevant and
interpretable, the reproducibility of these replicates is a critical part the quality control stage.
Three types of charts are usually used for the user to achieve this task easily. A stacked line
plot of the TIC of each replicates (Figure 3.14 a) allows the identification of potential signal
exclusive to one replicate which can be the signature of a contaminant. This visualisation also
allows the user to easily identify potential time drift that might have appeared throughout the
run of the samples during data acquisition, in which case a realignment of the signal would
be necessary during data processing (Figure 3.14 b).

Two alternative plots of the mean and median TICs are also presented to the user and allow
the assessment of the reproducibility of the overall signal of the replicates (Figure 3.15).

The search for known peaks of internal standards or other compounds in the samples is also
an important task that the user may want to perform before proceeding to a more global
analysis of the dataset. The control of the presence of specific features in the samples can
have several purposes such as assessing the presence of essential compounds for the study or
the reproducibility of an internal standard. A simple tool presented in Figure 3.16 was created
allowing the user to browse through the raw data by defining the following parameters: the
mass, the retention time, the retention time and mass windows, the ionisation mode and the
samples in which the search must be performed.

Once the search has finished processing, the signal found in every sample is presented within
the same window as shown in Figure 3.17, allowing the user to assess the peak shape or
identifying samples with missing signals. Users can refine their search by clicking the New
screening button and changing the parameters. The tool also allows the download of each
figure as a picture for presentation purposes.
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Figure 3.14: Total Ion Current of the positive ionisation of biological replicates as seen in
PiMP. a. Replicate samples show high reproducibility, no time drift or contaminants can be
identified. b. Replicate samples show good signal reproducibility but a time drift is clearly
visible between the three replicates. Retention time correction will therefore be required
during the analysis.

Figure 3.15: a. Mean Total Ion Current of the replicate samples of condition 2. b. Median
Total Ion Current of the replicate samples of condition 2.

Peak set visualisation

During the data analysis pipeline, peaks are extracted from the raw files of each samples
using a peak picking algorithm. At this step, the data describing each sample is a list of
peaks, one peak being identified by two values which are the retention time and the mass of
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Figure 3.16: Peak discovery tool interface allowing the user to search for specific features.
In this example, the user is performing a search for the signal corresponding to the glucose
compound or its isomers.

Figure 3.17: Peak discovery tool result interface displaying the extracted ion current for
each individual sample.

the peak. Peaks need to be aligned across samples and replicates in order to be comparable
for differential analysis at a later stage. Peaks are matched between replicates and samples
using a retention time and mass window to account for time drift and mass shift across the
samples, a set of peaks aligned together across samples is called peak set. The quality of
the alignment is highly dependent on the parameters selected during the alignment step. For
example, if a wide mass and retention time window is used, a higher number of peak set will
be retrieved compare to applying narrow windows; however, the number of misassignment
will also consistently increase. The visualisation of the peak sets resulting from the matching
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algorithm can help assess the relevance and quality of the alignment. The task that the user
may want to perform at this stage is to visualise the peak sets resulting from the grouping
algorithm; this allows to assess the quality of peaks that have been grouped together, and
identify potential time drift or peaks missing from specific samples. As the intensity of the
peak can significantly vary between samples, it is also important that the visualisation tool
supports a zooming feature as a low-intensity signal from certain samples may appear as a
flat line when compare to high-intensity signal in other samples. The Figure 3.18 shows the
interactive visualisation tool that was developed within PiMP to allow the user to perform
this task.

Figure 3.18: Peak set visualisation showing on the left a clear time drift in the sample MC2.
The figure on the right shows the same tool with all samples hidden except the MC3, this
last sample does not contain any peak and only noise signal is detected.

Peak set interpretation

The interpretation of peak sets consists of identifying what compounds could correspond to
the observed signal of a feature using all the data available as a support. It is usually done by
using the mass to derive the potential chemical formula, and the retention time to rank the
potential compounds corresponding to this formula if many isomers exist. The second piece
of information that needs to be reported is the difference of intensities between the different
conditions and their significance. This is usually done by using p-values or adjusted p-values
and log fold changes. The standard way of displaying this information and support the user
in peak sets interpretation is a table as described in Table 3.1. This type of visualisation is
however not optimal to support biologists as their primary interest lies in the compounds
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LogFC C1/C2 LogFC C1/ C3 p-value C1/C2 p-value C1/C3
Peak 1 1.34 2.31 0.0012 0.043
Peak 2 -0.52 -1.05 0.05001 0.021
Peak 3 0.19 0.15 0.237 0.1267

Table 3.1: Example of a typical table presenting changes three biological groups (C1, C2,
C3). Here, C1 was compared to C2 and C3 and the log fold changes for the first three peaks
are presented in the second and third columns. Only the p-value for the two comparison is
shown in this table in column 4 and 5.

rather than the peaks themselves. A more appropriate interpretation module that supports
the action of interpreting the compounds rather than the peak is detailed in section 3.4.6.

Pathway annotation

Pathway annotation is used to place putatively identified metabolites into biological context
and enable biologists to extract meaningful biological insight. As discussed in Chapter 1.3.4,
this type of analysis often necessitates the export of the data and the use of external tools. To
avoid the problems that arise from exporting the data to external tools such as data formatting
or controlled vocabulary, a pathway annotation tool was developed and embedded into PiMP.
The second benefit of having this tool incorporated into the pipeline is the data loss-free na-
ture of it. Indeed, the external software requires specific formats which do not support data
such as peak shapes or other LCMS specific data. This makes the interpretation of LCMS
data into biological context disconnected from the LCMS data itself as it only uses a list of
compound names that were derived from the raw data. Having all the contextual data avail-
able and accessible in one place during the interpretation such as all the evidence supporting
the annotation of a compound by a particular peak can give more power and confidence to
the user. The pathway annotation in PiMP uses KEGG pathways, and the visualisation tool
that supports it has been integrated in two different manners in the data exploration environ-
ment. The first one, dedicated to the pathway interpretation is described in section 3.4.6, the
second tool implementing search and filter functions is part of the metabolite interpretation
environment developed as a new approach for biologists to interpret their data. The second
tool is also described in section 3.4.6.

3.4.3 Module based pipeline

Continuous development being a key objective of the project (aim number 3), the modularity
of the tool proposed is essential. Modularity of the data structure and its implementation
was discussed in section 3.4.3, however, this represent only the first step towards responsive
feature integration capabilities. The rest of the software need therefore to follow a modular
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design in order to address those problems. The back-end of the pipeline is written in Python
(version 2.7) using Django web framework (version 1.7), it therefore follows a Model View
Template (MVT) architecture [126]. This allow to separate the data structure (Model) from
the logic applied to it (View) and its visualisation (Template) as shown in Figure 3.19.

Figure 3.19: Modular organisation of the PiMP software separated in three major units
corresponding to the main activities performed by the software, those activities are the data
capture, data processing and data interpretation. The data storage is handled by a fourth
module which includes the database and data files uploaded by the user.

The model layer fills the role of object-relational mapping (ORM) [127] which creates a
virtual version of the database allowing the rest of the program to access the data. This type
of architecture restrict the access to the database to the model layer only, which means no
other part of the program can read, write or modify the data persistently in the database.
This separation of tasks per modules or layers limits potential conflicts that can happen if
different parts of the software try to perform a transaction on the same data at the same time.
It is especially important in a modular software such as PiMP in which new modules can
be added as conflicts can emerge rapidly if data transaction is not supervised. Limiting the
access to a defined part of the software facilitate greatly the integration of new modules.

The view layer therefore only manipulates the virtual objects created by the model layer.
This layer has multiple roles: (i) send commands to the model to update, modify, delete or
create data, (ii) organise the data retrieved from the model and send it to the template for
presentation, (iii) receive commands from the user through the template layer and perform
the associated task such as performing actions on some data through the model layer, perform
calculation and update the presentation of the data to the user through the template.

The template layer is the interface between the user and the program. Its role is to present
the data and allow the user to interact with it. The template communicate to the rest of the
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software through the view layer only, if an action is requested by the user on certain data,
the template will send the request to the view, which in turn will send the command to the
model layer to apply the changes. The view will then communicate to the template about the
outcome of the request which will generate a new output that will reflect the changes to the
user.

The high complexity of metabolomics data generated by LCMS analysis and its processing
requires a robust data structure as explained in Chapter 3.4.1. Different approaches need
to be supported for the user to visualise and interpret the data in an optimal manner. For
example a data model might need several visualisation modules in order to present the data
to the user in several different ways. The user may also require to visualise several data
models at the same time within the same visualisation module, hence the need to separate
the data itself from the logic applied to it and its visualisation. This flexible design also give
the possibility to easily add or remove modules without affecting the rest of the software and
allows high responsiveness to user needs.

As illustrated in Figure 3.19, PiMP is divided in three main units. Those units correspond
to the three main tasks required to support the user in the analysis and interpretation of
metabolomics data.

Data capture

The data capture unit supports the user in providing all the information necessary to perform
the data analysis. The unit itself is separated in four ”apps”, each supporting a specific task.

As shown in Figure 3.20, each app follow the MVT design. The first app supports the user
in the administration of his project such as giving access to collaborators and defining meta
data about the design of its experiment, specifying the organism, tissue or disease studied.
The second app assists the users in uploading the raw data files to the system supporting
them with raw data visualisation as discussed in Chapter 3.4.2. The third app allows the
user to organise the files into groups representing the different conditions of the experiment.
The last app assists the user in defining the analysis to perform, specifying the conditions to
compare and optionally defining custom parameters for the data processing.

Data processing

The data processing unit follows a different architecture from the two other units, this is due
to the fact that the data processing needs to happen asynchronously without interaction with
the user. The design of this unit is detailed in section 3.4.4.
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Figure 3.20: The data capture unit is fragmented in four apps, each one of them is organised
using the MVT layers architecture. Each of the app also correspond to a data module in the
database.

Data interpretation

The last unit also follows the MVT design and support the user in his data interpretation.
This unit is made of one complex app that bring together both experiment design, raw data
information and analysis results. The views present in this app relate therefore to most data
models present in the program and organise them in order to best support the users in their
interpretation. The complex data visualisation which form the template layer of this app is
described in section 3.4.6.

3.4.4 Data analysis

Figure 3.19 shows that the data processing unit does not follow the MVT standard design.
The first main difference is the view which is replaced by a ”Task” layer. This is in fact a
distributed task queueing system that allow to distribute work across several threads. There
are several benefits of using this system when a program needs to run intensive data pro-
cessing such as PiMP. The first one is to limit the processing power given to one process in
order to make sure that the rest of the program can run as intended. This queueing system
also allows the program to run a predefined number of analyses at the same time, keeping the
other ones in a queue waiting to be processed. Another advantage of such system for PiMP is
its asynchronous nature, this means that this type of design is non-blocking for the user. In-
deed, metabolomics data processing is heavy and can take several hours to complete, hence
the need to make sure that the interface is still reactive to allow the user to perform other
tasks during data processing. As PiMP is written in Python, running the pipeline within the
Django framework would be limiting the number of tools that can be used for the processing
of the data, the queueing system also give the possibility to export the data analysis pipeline
outside Django, and therefore use pipelines built in other languages. An extra interesting
feature of this system is that the data processing can be exported to another machine such as
a computational cluster, this allows to separate the computationally intensive tasks from the
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system in direct communication with the client side (the user). However, due to hardware
limitations, PiMP currently does not take advantage of this feature.

Figure 3.21 shows in more details the architecture of the data processing unit. The data
analysis pipeline runs from end to end and therefore does not require any user interaction,
hence the absence of a template layer. As explained for the ”view” layer, the ”task” layer
retrieve the necessary data and parameters through the model layer to launch the pipeline.
The task layer supervise the pipeline and will update the model layer in case of interruption
to inform the user. In order to limit conflicts, the pipeline does not access to the data directly
as explained in section 3.4.3. There is therefore a need for the pipeline to communicate the
results back to the task in order to be persistently saved in the database. This is made possible
through a data exchange format specifically designed for PiMP. This format is discussed in
section 3.4.5. As a result, the main requirement for the analysis pipeline is to be able to
export the results to the PiMP specific file format. This approach follows the same modular
design of the entire software to allow easy replacement or addition of new analysis pipeline to
the software. Although only one analysis pipeline is currently available in PiMP, developers
can easily integrate new pipelines as long as the output is formatted correctly.

Figure 3.21: Data processing unit showing the external and independent nature of the
pipeline to increase the modularity and flexibility of the software. The communication be-
tween the pipeline and the task is made using a standardised and PiMP specific data format.

The current data analysis pipeline present in PiMP is not detailed in this document as the
author only developed the communication system between the framework and the pipeline.
However, the overall architecture and tools used within the data analysis pipeline is given
below for comprehension purposes. The backend pipeline in R was developed By Fraser
Morton and Ronan Daly, the author developed the communication system to integrate it into
PiMP.

The data analysis pipeline is written in R and make use of two main metabolomics packages.
The feature detection is perform using XCMS. Peak alignment, filters and peak identification
are then applied using mzmatch.R. Pathway annotation was developed specifically for PiMP
using R and KEGG pathways. An R module to export the results from R to the PiMP
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specific format was also developed in order to connect the analysis pipeline to the Django
framework.

3.4.5 Data exchange and data sharing

Data exchange

Data exchange is the transformation process of data structured under a source schema into
data structured under another schema called target schema. The target data must be an
accurate representation of the source data and therefore require an exchange format that
captures every piece of information that can be found in the source data structure. In the
field of metabolomics, the Metabolomics Standards Initiative (MSI) support and coordinate
the development of data formats for metabolomics through the coordination of standards
in metabolomics (COSMOS) global effort [128]. COSMOS work aims to create standard
formats for data exchange and is primarily focusing on raw data in MS, metabolite quantifi-
cation and identification, and experimental metadata.

The PiMP data structure contains a large amount of information such as statistical values
and biological pathways data that are not currently supported by any standard format. As
PiMP is a modular software, the backend pipeline running the analysis can be replaced,
or alternative analysis pipelines can be created to give a larger range of options and more
flexibility to the user. Hence, to ease the integration of new analysis pipeline modules in the
PiMP platform, a robust and PiMP specific data exchange format is required to transform
the data structure of the analytical tool to the PiMP data structure. A new exchange format
called pimpxml was therefore created allowing the transfer of all the information about the
experimental design, data analysis parameters as well as the results of analysis such as the
peaks information, statistical values, metabolite identification and biological context data.
This data format is then used to populate the PiMP database and store the data permanently.
In order to help the development of new pipelines, a python parser for the pimpxml format
was created, and a database population function can be called within the Django framework
to transform the data from the pimpxml file to the database. The pimpxml schema is an XML
representation of the data structure discussed in the data structure section of this chapter. The
schema is constantly evolving to support extra information created by external modules such
as fragmentation data. However, as external modules are optional, the schema has a flexible
design, and the definition of extra information such as fragmentation data is not mandatory.
Therefore, although the schema is enriched to hold data from new modules, the minimal
information required for a pimpxml file to be validated against the schema remain static and
correspond to the standard pipeline output currently in place.
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Data sharing

Collaborative research has become more and more common, and the size of the data in
biotechnologies is a well-defined problem and an apparent obstacle to collaborative work.
Raw data in metabolomics often exceed one gigabyte, and although the analysed data may
be smaller, sharing the data results implies that all parties involved in the project have access
to the same software to appropriately explore the data. As PiMP is a web-based application
with a login system, it is by nature the type of application that can be used to share data
between collaborators working on the same project. A sharing system has therefore been
developed allowing users to share one or more projects with a some level of permission.
Three permissions rights can be set when sharing a project with another user. The ”read”
access permission is the most restrictive one; it only allows the invited user to view the
project information, experiment design and access the results. The ”write” access is more
permissive and allows the guest user to upload new samples and perform new analyses with
chosen parameters. The ”admin” permission gives the guest user the same right as the project
owner except the possibility to delete the project.

The sharing capability of PiMP is enabled by the user interface and its modular design, it is
supported by the structure of the database and powered by a user session system. This ca-
pability enable multiple researchers without limitation to work at the same time on the same
project and share any piece of data, allowing users to access the analysis design, analysis
parameters, results or raw data of a single project. As the system does not require any in-
stallation, PiMP is not affected by versioning issues encountered by desktop applications.
Furthermore, once the raw data is uploaded to the system, it becomes accessible to all col-
laborators of a project which overcome the problem of large data file transfer.

The architecture of PiMP also allows the possibility of making projects and analysis results
publicly available, which would make them accessible to everyone without the necessity to
create an account. Although this feature is currently disabled, as each analysis result page is
given a unique url, it will allow easy data publication once activated.

3.4.6 Data interpretation

The interpretation of metabolomics data is a complex task that can require knowledge in dif-
ferent domains such as mass spectrometry, analytical chemistry, biochemistry or metabolism.
It also often requires expertise in the specific question that the experiment is trying to address
such as a broad knowledge of the organism, tissue or disease studied. However, guiding the
user in the interpretation of the data resulting from a metabolomics experiment can help over-
come the lack of knowledge in those fields. The work described is this section present the
data exploration environment that was developed within the PiMP software to assist the user
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in the interpretation of its results; it, therefore, addresses the aim number 4 of this project.
The data exploration environment makes use of the modular model of PiMP and more specif-
ically of the context-sensitive visualisation modules discussed in chapter 3.4.2 to present the
data to the user in a coherent and intuitive manner.

The data exploration environment is presented as one unified page to the user and structured
into tabs, each tab being laid out as a table with the exception of the summary page which
provides an overview of the experiment in the format of a scientific paper, containing key
findings of the experiment and associated metadata.

Summary page

The summary page is designed to attract the user attention to potential findings in his dataset
as well as another quality control of the analysis performed. Three sections are presented to
the user, each of which having a different purpose.

The first section contains metadata about the experiment provided by the user, a summary of
the comparisons performed and a table containing the experiment design. This section also
provides information about the method use for processing the data.

The second section is for quality control purposes. A principal component analysis (PCA)
plot showed in Figure 3.22 is provided and allow the assessment of reproducibility between
biological replicates and separation or clustering between biological conditions. TIC plots
of the samples grouped by biological conditions as shown in Figure 3.14 are also provided
to assess the reproducibility of the replicates in both positive and negative ionisation mode.

Figure 3.22: Principal Component analysis plot showing the clear separation of the two
biological conditions being compared.
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The third and last section of the summary page provides the user with the most significant
quantitatively changing metabolites for each comparison. Those differences are highlighted
using histograms and interactive volcano plots as shown in Figure 3.23. Zooming into the
volcano plot and accessing to the annotated metabolite corresponding to a particular feature
by clicking on dots on the figure allows quick exploration of the most changing compounds
in the dataset.

Figure 3.23: Interactive volcano plot allowing a rapid assessment of the number of peaks
that significantly changing between the two conditions. Clicking on a dot allows access to the
list of compound annotated by the feature. The visualisation tool also has zooming features.

Raw data

The list of extracted peaks from the raw data, often referred to as the raw data at this stage of
analysis is available in the ”peaks” tab. The table contains the mass and retention time of the
extracted features, the polarity in which it was detected, and the relative abundance value of
all the replicates. This page contains no extra statistical or biological data. The purpose of
this page is to allow the users to export it in a comma separated format to perform their own
statistical analysis using external tools. The evidence side panel provides access to the peak
chromatograms and quantitative information as interactive bar plots (Figure 3.24).

Statistical analysis

The results of the statistical analysis performed during the analysis pipeline are presented in
two different manners to support two different tasks. The first visualisation module displays a
separate table for each performed comparison containing all statistical values available attach
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Figure 3.24: Main figures accessible in the evidence panel of the peak tab, showing a typical
dataset derived from a metabolomics experiment comparing biofilm and planktonic staphy-
lococcus aureus [129]. a. Extracted Ion Chromatogram of the peak using the peak set vi-
sualisation module. b. Bar plot showing the average intensity and standard deviation of the
two conditions and the blank samples. c. Bar plot showing the intensity of the investigated
feature in each sample of the planktonic condition.

to the peaks. The table contains the peak id, the log fold change, the p-value and adjusted
p-value, and the log odds. While this table is not straightforward to interpret, it gives access
to the user to all statistical values available that are essential for reporting purposes.

The second module is a unique table summarising the changes for all comparisons per-
formed. For each peak entry represented as a row in the table, the log fold change values
for every comparison is given in individual columns (Figure 3.25). A heat map type visu-
alisation is overlayed on top of the comparison cells when the adjusted p-value is under the
0.05 significance limit. This module allows the user to identify peaks that are significantly
changing between biological groups quickly. As no biological information is attached to the
table, it allows potential discovery of unknown compounds that would not be reported when
interpreted within biological context. However, if potential compounds have been matched
to a particular peak, the information is reported in the right panel for the user’s information.

Figure 3.25: First 4 entries of the summarised comparison table. The first column shows
the peak id, the following three column show the log fold change values of the peak in every
comparison. The number of column is dependant on the number of comparison performed.
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Biological pathways

The Metabolic maps tab replaces the data in the context of biological pathways. Biological
pathways used in this module originate from KEGG. The table displays the list of all KEGG
pathways alongside with the number of compounds that form this pathway, the number of
annotated and identified compounds found in the dataset that are part of the pathway, and
the of coverage of the pathway by the dataset. A visual version of the coverage is available
on the side panel in the form of a pie chart. The side panel also gives access to the pathway
visualisation tool which displays the KEGG pathway with contextual data extracted from the
dataset.

Figure 3.26: Pathway visualisation accessible from the evidence panel of the Metabolic map
tab. This example shows the Kegg pathway of Purine metabolism with identified metabolites
in yellow and annotated metabolites in grey. A specific comparison was selected (top left of
the window) resulting on the display of log fold change indication on the representing the
metabolite with a coloured border. The colour scale is indicated at the top of the window.

Figure 3.26 shows the visualisation of a KEGG pathway within the PiMP data environment,
identified and annotated metabolite can be identified by gold and silver dot colour respec-
tively. The user can select a specific comparison that was performed during the data analysis
to overlay log fold changes data. The log fold changes value are represented by a red and
blue border of the dot representing the compound. If several peaks annotate a compound
with conflicting log fold changes (one negative and one positive log fold change), the border
of the dot is then coloured in purple to inform the user.
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Metabolites

The metabolite tab presented in Figure 3.27 brings together all the data such as the statistical
values, biological pathways, peak information or compound structure in a unified environ-
ment to assist the user in the interpretation of his results. The interface follows the same
structure as the other tabs with a main table and an interactive and contextual side panel
displaying pieces of evidence for the compound being investigated.

The table contains the minimum information of interest to the user to guide its interpretation.
A row in the table correspond to a compound, with the number of columns depending on the
number of comparisons performed. The first two columns respectively contain the name
of the compound detected and its formula. The following columns contain the log fold
change values for all the comparisons, and the last column contains the level of identification
of this compound. The identification level can take two values, ”identified” if the peak
matched by mass and retention time to a standard compound, and ”annotated” if the peak
matched by mass only to an external compound database. As several peaks can annotate one
compound, there can be several possibilities available for the log fold change value. The
value displayed is selected according to several criteria: (i) M+H and M-H, the first criterion
filters the peaks corresponding mono-isotopic mass calculated from the molecular formula
(M) of the compound with an added or subtracted proton (H) depending on the ionisation
mode. (ii) When both ions (M+H and M-H) are available, the peak set with the highest
intensity value is kept.

The evidence panel is structured into collapsible cards that give contextual information and
evidence on the compound being investigated by the user. This information is accessible to
the user by simple a click on a row of the metabolite table. Three main cards are displayed by
default in the evidence panel, each of which relating to different data. The first card, called
compound card, inform on the external or internal (if standards compounds were provided)
database in which the compound was found. There can be several databases available with
different names given to the same compound. For example, the lactic acid in HMDB is
named lactate in KEGG. The structure of the compound is also available when the card is
expanded, as seen in Figure 3.28.

The second card lists all the pathways in which the compound is found, in its collapsed state,
the card only gives the number of pathways.

The last card informs on the peaks which annotate the compound under investigation; there
are as many cards as there are peaks. This card is designed to give the user the essential
information to quickly assess the quality of the peak and the relevance of the match. Each
peak card contain the following information: (i) Retention time, (ii) Mass, (iii) Polarity or
ionisation mode, (iiii) Type of peak which can be for example a base peak, a related peak or
an adduct, (iiiii) The ion information (i.e. M+H, M+Na), (iiiiii) the mass error in ppm. The
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Figure 3.28: Compound card showing the structure of the compound detected, changing the
database allows to display the database specific name of the compound and its structure.

card also contains the number of other compounds annotated by this peak (excluding the one
being investigated) and an identification flag to show that this feature matches the peak of the
standard compound. Two visualisation modules are also embedded within the card allowing
the visualisation of the peak set and intensity plots as shown in Figure 3.29.

The last module to support the user in the interpretation of the results is a set of tools to sort,
filter and search the data. The sorting tool is directly embedded within the table and allow
to sort the results by alphabetical order or high to lowest log fold changes for example. The
filtering tool is only based around biological pathways found in KEGG, KEGG organises the
pathways into groups forming wider metabolic maps called super-pathways. As shown in
Figure 3.30, the user can select a super-pathway which will filter down the pathway selection
options to the pathways present in this super-pathway. However, a user can directly select
a pathway without narrowing down the selection by choosing a super pathway. The search
tool is meant to be used by more experienced users who are looking for something specific.
When the user types characters into the search box, the search is launched on the fly on all
data available in the table (name, formula, log fold change and identification level). The
search box also applies the search on the pathway names. For example, typing ”glycolysis”
in the search box would apply the same filter as selecting the glycolysis pathway from the
pathway filter selection.
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Figure 3.29: General organisation of the peak card. In the centre is default collapsed card
giving the essential information about the peak. On the left, the peak button has been clicked
in order to display the EIC of the peak. On the right, the bar plot button has been clicked in
order to visualise the average intensity per condition.

Figure 3.30: Search tools available at the top of the metabolite tab
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3.5 Discussion

The use of LCMS methods for untargeted metabolomics experiment is still in its infancy,
while it is a powerful way of getting a better insight on the metabolism of a biological sys-
tem, the scientific community uses it for a variety of applications. Defined approaches can
be used for biomarker discovery or the study of a particular part of metabolism, but untar-
geted metabolomics is also often used for wider approaches such as hypothesis generation.
Indeed, the study of the differences found in the metabolism of a biological system can help
to narrow down the area of research to some specific pathways. This implies an iterative
process starting from a general hypothesis that some metabolite will show differences when
one system is exposed to a specific stress, to a refined and more focused hypothesis. How-
ever, limitations intrinsic to the field such as data analysis and interpretation time, and high
variability of the system studied create tremendous challenges to make this iterative process
straightforward. Overcoming these limitations could have a transformative effect on the field
and its impact on the scientific community.

One of the limitations comes from a poor experimental design when metabolomics is used
for hypothesis generation, and often the data produced during the first iteration cannot be
used again as they do not cover the refined hypothesis or do not have enough replicates to
produce significant results. Assisting biologists in designing their experiments and support-
ing them with, for example, the minimum number of replicates that should be used for their
experiment to be valid could reduce the number of iteration. This issue can be in part sup-
ported at the data analysis stage guiding the user in structuring its experiment; however, to
fully overcome this problem, supports needs to come before data acquisition, when planning
and designing the experiment.

The second limitation is the complexity of the data produced by LCMS instruments. Simpli-
fying and streamlining the tasks to perform to process the data by guiding the biologist step
by step would make the field more approachable to the scientific community, and eliminate
the need for bioinformaticians to generate the results themselves. This would also accelerate
significantly the turn around time between data acquisition and interpretation.

Finally, supporting biologists in the interpretation of their data by providing biological con-
text would both accelerate the iterative process and improve the interpretation of the results
itself. This would enable biologists to interpret their results fully and therefore have a major
impact on their research outcome.

The tools discussed in section 3.2 of this chapter did not offer solutions to these limitations
at the beginning of the project. PiMP, the software developed and presented in this chapter
was designed to overcome all those limitations and therefore improve the current state of
the metabolomics field by making it available to a wider scientific community. The three
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research questions were all successfully addressed by the developed web-enabled tool which
presents a modular design to allow scalability and responsive feature development while en-
abling users to collaborate worldwide and interpret their results in biological context. How-
ever, the tools available at the start of this work have evolved [42, 61, 78, 44] and several
new non-commercial tools have been developed [81, 82, 79, 80] during the development of
PiMP. Some of these tools now provide new support to the end users and therefore address
some issues introduced in this chapter.

Table 3.2 presents some of the capabilities of the most commonly used non-commercial
software. All capabilities presented in this table are crucial to addressing the issues intro-
duced in this chapter to support a wider scientific community in LCMS data analysis for
untargeted metabolomics experiments. While some of those tools cover a large amount
of the requirements, they still present limitations for biologists with little knowledge in
bioinformatics and metabolomics. Some of the tools still require installation on a per-
sonal computer which can represent a barrier for users and substantially limits collaborative
work [42, 61, 78, 44, 79]. Many software does not provide biological interpretation capa-
bilities or do not cover the entire metabolomics pipeline with visualisation tools to support
the end users in performing all required tasks [42, 61, 78, 44, 79, 80, 82, 81]. While most
software are designed to support untargeted analysis, some are too technical for users with
little knowledge in bioinformatics and mass spectrometry. They also do not present a stream-
lined pipeline which requires the intervention of the user during the analysis. This forces the
user to supervise each step of the analysis and limits the turn around time for iterative ap-
proaches [42, 61, 78, 44, 79, 80, 82, 81]. Finally, tools such as MAVEN and MZmine allow
external developers to access the code base to integrate their own features to the pipeline;
this is a real asset for rapid development when the tool present a modular design as discussed
in section 3.4.3 of this chapter.

By providing full support and features presented in Table 3.2, PiMP addresses all research
questions introduced in section 3.2. By streamlining the pipeline, providing full visualisation
and biological interpretation support, PiMP offer support to non-expert users in the analysis
and interpretation of metabolomics datasets (addressing the first research question). Its mod-
ularity of data structure and layer separation addresses the second research question by en-
abling developers to responsively adapt the feature set of the software to the ever expanding
requirements in the metabolomics field. The web-based nature of the tool and sharing func-
tionalities also enable worldwide collaboration and therefore overcome the issues related to
big data in the field (addressing the third research question).

The first objective which consisted in creating a metabolomics data analysis tool accessible to
non experience users has been met by the development of a web enabled software supported
by a metabolomics specific data structure and user interface as presented in section 3.4.1 and
3.4.2.
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The externalisation and encapsulation of the data analysis pipeline and the development of a
new data exchange format respectively detailed in section 3.4.3 and 3.4.5 fulfilled objective
2 while objective 3 was met by the modularity of the architecture and the data structure of
the developed tool as described in section 3.4.3 and 3.4.1.

The development of a metabolomics data specific exploration environment which formed
objective 4 was addressed and is described in section 3.4.6.

Objective 5 was met by developing user sessions supported by the overall design of the
software developed, from modular architecture and data structure to data exchange and vi-
sualisation.

While it was demonstrated with PiMP that metabolomics analysis can be made more ap-
proachable to users novice to the field, the current version does not yet offer alternative back
end pipeline which can limit the possibilities in the parametrisation of the analysis. Although
the modularity of the tool provides an opportunity to integrate new pipeline as discussed in
section 3.4.3, the alternative software currently offers more choices to expert users in term
of pipeline options to analyse their metabolomics datasets.

3.6 Conclusion

As the most recent of the omics technology family, Metabolomics attempts to provide unbi-
ased ways of analysing the small molecules of a biological system. Although the technology
shows great potential, it is yet still immature and faces enormous challenges in providing
streamlined analysis methods and interpretation of the data in a biological context. Within
the past decade, Metabolomics has grown into a powerful tool for biological and biomedical
communities for the study of the metabolism and is now used by many applications such
as biomarkers discovery or synthetic biology. From medicine to the biosynthesis of fuels
or food security, improving a critical tool such as metabolomics could have a tremendous
impact. The work presented in this chapter tackle some of the challenges currently faced
by the field that limits its expansion. The novel approach to metabolomics data analysis
and interpretation and the tools developed as part of this work provide the scientific com-
munity with a new environment to overcome challenges such as data interpretation. This
allows metabolomics end users to extract more meaningful insight from the biological sys-
tems studied with a potential repercussion on all the fields making use of it.
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Chapter 4

Extended metabolomics workflow for
biological sciences

4.1 Introduction

LCMS based Metabolomics is a fast evolving field [130] which often requires the interven-
tion of many stakeholders. From experiment to design to biological insight, principal investi-
gators, laboratory scientists, mass spectrometry technicians, bioinformaticians, statisticians,
biochemists and other scientific field specialists can participate in order to carry a single ex-
periment to completion. Chapter 3 demonstrated that the burden on some of the contributors
such as bioinformaticians, statisticians and biochemists can be reduced by improving the
support of the analysis and interpretation of the metabolomics data, metabolomics experi-
ments still require the intervention of many specialists. Two main issues can emerge from
this multi-contributor study set up: (i) first, the scientist in charge of the study, generally the
principal investigator or the lab scientist (biologists, clinicians, PhD student or postdoctoral
researcher), often has limited knowledge of LCMS technologies and what they can offer, and
therefore risks taking an approach that is not optimal for their study design. (ii) Secondly,
the documentation of every step of the study becomes a shared task where every piece of
information needs to be recorded and passed on to the next contributor. The careful docu-
mentation of a study is imperative in order to allow the scientist reporting the work to provide
information about the experiment performed in its entirety and with exactitude. A minimum
reporting scheme was proposed by R. Goodacre et al. in 2007 [131]. This reporting task rep-
resents a real challenge not only because of the number of contributors involved in one study
but also because the reporter may not be familiar with the technical approach and protocol
followed during the LCMS data acquisition. The issue could be overcome by standardis-
ing and unifying the data capture and documentation of metabolomics studies, but also by
providing to scientists in charge of a study more information about what a metabolomics
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experiment can offer to answer the specific questions their study addresses.

As described in Chapter 3, data analysis capabilities need to continually adapt in order
to offer a better understanding of the increasingly complex data generated by LCMS ap-
proaches. While LCMS based metabolomics applied to biological science can provide a
detailed snapshot of the metabolism state of a biological system, the variable annotation con-
fidence of the compounds found in the system currently poses great limitation [132]. Mass
spectrometry technologies allow acquisition of fragmentation data using data dependent or
data-independent acquisition (DDA and DIA) to further inform on the structure of molecules
analysed [133]. In untargeted metabolomics, taking advantage of these technologies can im-
prove the annotation confidence and provide a better representation of a biological system.
However, coupling the analysis of fragmentation data generated by DDA or DIA to a stan-
dard untargeted metabolomics pipeline is imperative in order to make this possible. The de-
velopment of new data analysis features to fit technologies advances is however not the only
adaptation challenge that the field is facing. Biological resources are constantly growing, and
computational tools applied to systems biology are constantly emerging which create great
potential for LCMS based untargeted metabolomics data to be further investigated. Network
models, such as genome-scale metabolic reconstruction, for example, represent a promising
approach for metabolomics data to be interpreted in [134]. Not only these metabolism mod-
els can provide biological context, but they can also serve as a support to expand a study
to other omics technologies. Expanding metabolomics pipelines to integrate the analysis
of LCMS data within metabolic networks could have a significant impact on the potential
biological insight that can be extracted from the data.

4.2 Related work

Laboratory Information Management Systems supporting the recording of laboratory pro-
cedures for multi-omics technologies have already emerged at the time this project started.
However, no freely available tool offer multi-omics support and only proprietary software
can be used at considerable costs. Whilst some data repositories have begun appearing [135]
allowing scientist to report their studies thoroughly, these tools do not offer any support
for information capture at the time of the study. The support for designing untargeted
metabolomics experiments was also non-existent and rely on the scientist in charge of the
study to investigate and learn about the technology to design his own study. Other parts of the
metabolomics workflow such as fragmentation data analysis are however better supported.
Several online repositories allow similarity based comparison of experimental fragmentation
data to annotated reference spectra. MassBank [71], for example, was introduced in 2010
and keeps expanding its library of reference spectra and tools available. MAGMa [136] was
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first published in 2012 and used for the automatic annotation of a complete metabolite pro-
file of green tea in 2013 [137]. No tool or repository, however, provides a way of coupling
standard untargeted metabolomics data analysis to fragmentation data analysis to improve
compound identification. Finally, some software offers the possibility to visualise and mine
networks, some tools such as Tulip [138] can be used for any type of relational data, others
are dedicated to the study of biological networks [139]. They, however, present the same
limitations as the fragmentation data analysis tool as they are third party tool which needs to
be used on their own. Moreover, performing a network reconstruction from metabolomics
data require a deep understanding the underlying data structure and bioinformatics skills.
This task can currently only be conducted by scientist expert in the field.

As seen in the previous chapter, the core analysis of LCMS data is supported by many tools
offering very divers features with varying coverage of the data analysis pipeline. How-
ever, LCMS experiment does not only consists in data processing and many other aspects
of LCMS metabolomics studies require specific support. As discussed previously, the ex-
isting tools that support these step of LCMS metabolomics workflow are either non free,
non LCMS specific and often disparate. The overarching aim of the work presented in this
section is therefore to better support important steps of the LCMS workflow in a unified en-
vironment. Details on the different steps to support are given below in 4 specific aims and
objectives.

The work presented in this chapter will try answer the following questions:

• Can the documentation and data capture of a metabolomics study be unified to facili-
tate an accurate reporting of the work?

• Is it possible to accurately inform biologists on the potential outcome of a metabolomics
experiment according to the system studied?

• Can metabolomics pipeline responsively integrate new analysis capabilities to match
the advances in LCMS technologies?

• Can biological network analysis be integrated to metabolomics pipelines to expand the
context of interpretation?

Four aims were outlined in order to address these research questions:

1. Support contributors of a metabolomics study in documenting each step of the study
within the same environment.
Objective 1: Develop a tool allowing the easy capture of all necessary information
during a metabolomics experiment.
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2. Provide biologists with information about the compounds that can be detected in a
particular biological system using untargeted metabolomics.
Objective 2: Integrate a new module to the PiMP platform allowing the mapping of a
set of compounds onto metabolic networks prior to analysis.

3. Make use of PiMP modular design to integrate support for fragmentation data analysis
as part of the untargeted pipeline.
Objective 3: Integrate a new django module to PiMP to allow the analysis of fragmen-
tation data alongside MS1.

4. Expand the PiMP data interpretation environment to allow biological network analysis
and visualisation.
Objective 4: Integrate to PiMP data exploration environment a network visualisation
module allowing the visualisation of analyses results in the context of biological net-
works.

4.3 Supporting study documentation

The work presented in this section addresses the first two objectives outlined in the previ-
ous part of this chapter. In chapter 3 was discussed the support of different tasks such as
data capture or quality control during the data analysis steps of the metabolomics workflow.
However, the purpose of the work presented in this section is to support every step of the
workflow upstream to the data analysis. Figure 4.1 shows the area of the workflow for which
the work presented here attempt to provide support with.

Figure 4.1: Area of limitation in the metabolomics workflow that need support. Highlighted
in light blue is the hypothesis definition and study design that need informed guidance. High-
lighted in red is sample preparation and data acquisition steps which require a unified docu-
mentation and data capture support.
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4.3.1 Project management system

The approach taken to unify the documentation across every step of the workflow to the data
analysis part is to develop a web-based tool that offers access and support to every contrib-
utor involved in a metabolomics experiment capturing all pieces of information necessary
to document a study. As the omics technologies are constantly evolving, the developed tool
requires a robust and flexible data structure as well as a modular design to be adaptable and
scalable. Indeed, as the technologies mature, new information might need to be captured at
every step of the workflow. In order to be flexible, the structure of the project management
system follows the same design pattern as PiMP presented in chapter 3. The tool presented
here was primarily developed to support metabolomics experiment documentation based on
the metabolomics workflow shown in Figure 4.1; it was then expanded to support the docu-
mentation and data capture of three other omics: genomics, transcriptomics and proteomics.

Data structure

The data structure needs to support two types of users: (i) the principal investigator or lab
scientist in charge of the study (collaborator), (ii) the metabolomics technologists, bioin-
formaticians or other scientists (staff) contributing to the workflow. The main difference
between these two user types is that the staff contributors use the tool to record information
about the work being done, while the PI of the study uses the tool to access this informa-
tion. The action that needs to be supported for the PI is therefore limited to accessing the
information recorded by the staff users and attached to his projects. The staff users need
greater support to be able to capture the information at every step of the workflow. The data
structure supports the two different types of user using the table “User”, its field “is staff”,
and the table “Collaborator”. A staff user will, therefore, have an entry in the User table
with the field “is staff” set to True. A collaborator user would have an entry in the User and
Collaborator table with the field “is staff” set to False. This flexible design allows one user
to either be staff, collaborator or both.

The “Group” table in the authentication module is used to separate the staff users into the
different omics; one user can be involved in one or more omics fields. This information can
then be used for various purposes such as knowing what staff user can contribute to a specific
omics project.

The “Project” table is the main table that organises the information that needs to be cap-
tured for a study. The “Genomics”, “Proteomics” and “Metabolomics” table inherit from
the “Project” table; they, therefore, share the fields defined by the “Project” table, and also
define their own fields in their respective table. As shown in the diagram in Figure 4.2, a
project is divided into a set of tasks, each task being assigned to a staff user. The “Task”
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table, therefore, contains all information about every task performed during a study such as
its status and date of completion. The note field can contain free text entry to give further
details about a particular task, and the “Comment” table allows staff users to capture any
issue or comments they may have encountered while performing a task.

Figure 4.2: Database structure of the project management system. The structure define
three modules, each of them used to store different type of data. The authentication module
is used to store user’s information and authentication details. The profile module store users’
preferences. The project module store and organise the information related to experiments.
The inheritance design of the project table makes it extendable to any other omics.



4.3. Supporting study documentation 78

Three omics are currently supported and shown in the data structure in Figure 4.1, but the in-
heritance design enable an easy extension of the structure to other omics. The metabolomics
table supports LCMS and GCMS metabolomics experiments, allowing the capture of every
component of the workflow such as instruments and columns used, as well as the organ-
ism studied, the number of samples or the storage of files related to the experiment such as
forms and reports. The proteomics table follows the same pattern as the metabolomics table
with different fields specific to proteomics experiments. Finally, the genomics table supports
DNA and RNA sequencing experiments allowing the capture of all information related to
this omics technology.

As the management system was primarily developed to support LCMS metabolomics, the
data captured by the tool is general enough to support other metabolomics laboratories. The
genomics and proteomics parts of the system were, however, designed for Glasgow Poly-
omics platforms only and are too specific to be transferred to other omics laboratories.

Web-enabled tool

The aim of the project management system is to support all contributors of an omics study,
and more specifically a metabolomics study, in documenting their experiments within a uni-
fied environment. Two main requirements were drawn to address this objective, the tool
and data captured needs to be readily available for all contributors, and the users need to be
guided during the documentation process. A web-enabled tool following the same MVT de-
sign as PiMP presented in chapter 3 was chosen to address the first requirement. The second
requirement was addressed by structuring the data capture task. The documentation process
requires the capture of different types of information that can be separated into two groups:
(i) Static information, (ii) dynamic information. The static information is usually captured
at a particular time of the project and is not or rarely changed after. Most of the static in-
formation such as the organism studied, the number of samples or the instrument chosen to
perform the experiment is set at the beginning of the project, but other information such as
quality control reports on the data acquired can be recorded later in the project. The second
type of information which is dynamic evolve during the project, this type of information
relates to a specific step of the workflow involving an action such as the sample preparation,
data acquisition or data analysis.

The two different types of data to capture are reflected in the data structure by simple fields
in the project table for the static information, and the task table for dynamic information.
The task, therefore, supports the capture of complex information such as time stamp, com-
pletion status or the staff member performing the task. Every step of the metabolomics or
other omics workflow requiring an action is therefore translated into a task to store all the
information related to it.
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The user interface is accessible through a web browser and is developed using the same web
standard as PiMP. Figure 4.3 shows one page of the user interface.

Figure 4.3: Screen shot of the user interface of the management system. This picture shows
the form to be filled in to create a new project. The navigation bar at the top allows the user
to access the project list, the client list, its assigned tasks, and its account and preferences.
The client users only have access to ”my projects” page to visualise the details of their own
projects and their progress. The management system user interface is developed using the
same web technologies as PiMP (Django, html5, CSS3, javascript)
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4.3.2 Biochemical library

Untargeted metabolomics aims to provide a snapshot of the metabolism state of a biological
system at a specific time. It is therefore not possible to predict accurately the pool of chemical
compounds that will be detected. However, the method chosen and the system studied can be
used to provide information on chemicals that can potentially be detected and therefore help
biologists designing their experiments. The chemical library presented in this section aims
to help biologists understand what part of the metabolism of the system studied can be seen
using untargeted metabolomics. The work from this section has been published in Frontiers
in Molecular Biosciences [140] and tries to inform biologists about the potential outcome
of an untargeted metabolomics experiment according to the organism studied (aim number
3). The role of the author was to develop the user interface and controllers on the PiMP
side, the communication protocol between the two servers in collaboration with MetExplore
developers.

The approach taken here is to use the list of standard compounds run at Glasgow Polyomics
routinely for metabolite identification and map them onto genome-scale reconstruction of
metabolic networks available in MetExplore [88]. The information returned by this type
of approach would allow the user to know the coverage of the standard compounds on a
particular metabolic network or organism. PiMP was used to communicate with MetExplore
and display the results to the user.

Metabolite identifiers

In order to map metabolites present in Glasgow Polyomics standard compound library onto
MetExplore’s metabolic networks, the same identifiers need to be used by both tools. Many
database specific identifiers can be utilised for metabolites such as KEGG [65], ChEBI [141]
and PubChem [66] identifiers. However, those identifiers cannot be used for this type of
mapping as they are not commonly used to reference metabolites in metabolic networks, and
some metabolites found in metabolic networks are not referenced in any of those databases.
While the metabolomics community is currently putting effort in standardising the identifi-
cation of metabolites using specific identifiers and controlled vocabulary [128], alternative
identifiers based on chemical structures can be used to overcome the issues met with the
database specific identifiers. MetExplore uses the InChI (IUPAC International Chemical
Identifier) and InChIKey identifiers to reference the metabolites in metabolic networks. The
InChI identifiers provide a non-ambiguous identification of compounds organised in layers
that provide different information about the structure of the molecule. The InChIKey is a
hashed version of the InChI forming a 27 uppercase characters identifier. The InchIKey can
be calculated from the InChI using a hash algorithm and is the identifier that was selected to
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map metabolites from the Glasgow Polyomics chemical library to MetExplore’s metabolic
networks.

Metabolite mapping and communication protocol

Communication between the network database and the chemical library is necessary to map
the metabolites onto the biological networks. The protocol proposed for this communication
is based on a dialogue between web services located on the two servers. As illustrated in Fig-
ure 4.4, a four steps dialogue process has been created to perform the mapping and receive
the results back on the chemical library server to be then presented to the user. The communi-
cation process is initiated by the chemical library server (PiMP) informing the network web
server that a mapping is requested and providing some specific information. The informa-
tion provided is the location (URL of chemical library web service) of the list of metabolite
to map. As discussed in the previous section, the identifiers used for the metabolites are
InChIKey identifiers formatted as a JSON array. Once the call is received by the network
web service, the URL passed by the chemical library is used to retrieve the list of metabolites
to map by calling the chemical library web service. This second call goes therefore from the
network server to the chemical library server. The chemical library server simply returns the
list of InChIKey identifiers that need to be mapped as a JSON array. The network server then
performs the mapping and returns the results to the chemical library server as a response to
its very first call.

Figure 4.4: 4 steps communication protocol between the chemical library and network
database. 1. PiMP contact the newtork library to request a mapping. 2 and 3. MetEx-
plore gather the list of InChI using the chemical library webservice. 4. The result of the
mapping is sent back to the chemical library.

Metabolite mapping response

The results are formatted according to the JSON encoding, divided into sections correspond-
ing to individual BioSource (MetExplore’s biological network). Each BioSource section
contains general information related to the BioSource itself, its name and organism strain,
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the source (KEGG, BioCyc, SBML), the version number and MetExplore identifier. The
section also contains information related to the network, the total number of metabolites in
the network, the total number of metabolites which have an identifier (InChIs or InChIKeys),
the total number of unique identifiers present in the network. Finally, each BioSource section
contains information related to the mapping, the total number of identifiers from the network
mapped in the chemical library and the total number of unique identifiers from the network
mapped in the chemical library. Those two numbers may be different from the total number
of metabolites in a network as it is based on the compartments (cellular compartment), this
means that if a metabolite is present in n compartments it will then be counted x times. If
a metabolite is present in different parts of the network within the same compartment, it is
considered as one. The mapping information also contains the library and network coverage,
respectively the relative number of library identifiers mapped on the network and the relative
number of metabolites from the network present in the library. It also contains the percent-
age of identifiers found in both the library and the network compare to the number of unique
identifiers in the network. The last information is a MetExplore mapping id, which allows
the user to access the mapping results directly in MetExplore user interface.

Metabolite mapping results

This tool was developed within the context of Glasgow Polyomics (GP) metabolomics plat-
form services; the GP compounds library contains a list of 240 metabolites that are routinely
run as standard compounds for identification purposes during the data analysis. GP is in-
volved in a wide range of research areas; it is therefore important for GP users to have access
to the coverage information of a maximum number of organisms. Thus, the mapping of GP
chemical library is performed on all networks available in MetExplore database. The results
of the mapping returned by MetExplore web service is presented as table accessible through
PiMP web interface. The table is automatically generated by PiMP Django backend which
parses the JSON formatted results and converts it in a Javascript enriched HTML file. The
table (presented in Figure 4.5) currently contains almost 60 different metabolic networks
with the mapping information attached to it, Javascript functions make the table interactive
allowing the user to search, sort and filter it. The name of each network is also clickable to
allow the visualisation in a new web browser window of a selected mapping in MetExplore.
Figure 4.6 and 4.7 respectively show the metabolite mapping and pathway coverage infor-
mation as seen in MetExplore. Finally, the tools available in MetExplore allow the user to
visualise the entire network or a selected subnetwork as shown in Figure 4.8.
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Figure 4.5: Glasgow Polyomics standard library table showing the coverage of the first 8
metabolic networks (alphabetically sorted).

Figure 4.6: Metabolite table as seen in MetExplore showing the compounds mapped in an
extra column.

Figure 4.7: Pathway table as seen in MetExplore displaying information related to the map-
ping.
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Figure 4.8: Visualisation of the network resulting from the mapping within MetExplore.
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4.4 Fragmentation data analysis

”Fragmentation is when you make big
bits of stuff into teeny tiny wee bits.”

Erin D. T. Manson

Metabolite identification remains the major challenge in metabolomics. Although external
standards increase the degree of confidence in the identification of compounds, LCMS based
metabolomics provides evidence to support metabolite identification but rarely with absolute
certitude. This level of uncertainty is even more applicable to metabolites absent from the
external standard compounds and therefore only annotated from the mass. Whilst in some
cases putative annotation can be informative enough to guide the biological interpretation
of results and extract meaningful insight from a dataset, it often leads to further investiga-
tion to ascertain the identity of a compound that might play an important role in the system
studied. It is possible to routinely run liquid chromatography tandem mass spectrometry
on mass spectrometers [142] (LCMS/MS). MS/MS acquisition produces product ion spec-
tra (Figure 4.9) from which compounds’ structural information can be derived. Coupling
LCMS to MS/MS acquisition can, therefore, improve the level of confidence with which
the compounds are identified and lead to a better interpretation of the results. As shown in
Figure 4.10, the identification step is upstream of the biological interpretation in the data
analysis pipeline, the quality of compound identification has therefore a critical impact on
the biological interpretation.

Figure 4.9: Representation of fragmentation spectra produced by tandem MS.

Two type of acquisition can be used to gather MS/MS information, (i) Data-Dependent ac-
quisition (DDA) which is supervised and only fragment precursor ions above a predefined
abundance threshold, (ii) Data-Independent acquisition (DIA), however, fragments all ions
within a certain m/z window without selection between compounds eluting at the same re-
tention time. However, fragmentation spectra produced by DIA are more complex to analyse
as no precursor ion selection is performed [143].
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Figure 4.10: Fragmentation helps improving the identification part of the metabolomics
workflow and ultimately improves the biological interpretation of the results.

The approach taken here attempt to support DDA fragmentation data analysis as part of the
untargeted metabolomics workflow to improve metabolite identification. The tool developed
was designed as a flexible internal PiMP plugin to be used as part of the data analysis pipeline
in place or as a separate analysis tool. The Fragmentation Annotation Kit (FrAnK) was
implemented by Scott J. Greig, Karen McLuskey and Joe Wandy, the role of the author was
to coordinate the development and the integration of the tool within PiMP.

As FrAnK is developed for identification purposes, the minimum requirement for the tool
to run is the upload of the files corresponding to the pool samples which contain fragmenta-
tion data. Indeed, as the pool samples contain every compound present in all experimental
samples of a study, it is the only input data required to perform the peak annotation.

4.4.1 Annotation tool and library

Several tandem mass spectra libraries and tools to search them and compare experimental
mass spectra to known and annotated fragmentation spectra exist. However, many of them
are not adequate for the development of FrAnK. Indeed, some libraries are only accessible
through a web browser, others offer a web service alternative but do not allow the submission
of several peaks at the same time. Finally, although some tools are programmatically acces-
sible, they do not permit local installation and force the database search to be performed
through the web which increases the processing time greatly. The tool chosen to overcome
these limitations is MS PepSearch, which was associated with the MassBank [71] and the US
National Institute of Science and Technology (NIST) library. The tool and libraries were de-
ployed in a Docker [144] container so they can be installed and used easily on any operating
system.
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4.4.2 FrAnK architecture and design

As FrAnK was developed as an internal plugin of PiMP, the same design approach was taken.
FrAnK is, therefore, a complex Django app that extends the core functionalities of PiMP. As
explained in Chapter 3, PiMP is built using three main modules supporting data capture, data
analysis and result exploration, each modules being divided into ’apps’. As FrAnK needs to
support fragmentation data analysis both independently and as part of the PiMP pipeline, it
was designed as a single app supporting data capture, analysis and result exploration. The
FrAnK app, therefore, defines its own data models, its own views and templates.

The data processing happens asynchronously using the same task system as PiMP. A python
wrapper was created around the annotation tools to allow communication between the task
layer and the data analysis pipeline. This means that no exchange format is required to
transfer the data output of the annotation tools back to the task and store them permanently
in the database.

4.4.3 Data capture and visualisation

Data capture visualisation support was developed so the tool can be used independently
from PiMP. The data capture follows the same design as PiMP asking the user to perform a
sequence of tasks from file upload to starting the annotation pipeline. Metadata can also be
entered to document the experiment and analysis performed.

The results of FrAnK annotation pipeline can be explored in a dedicated data exploration
environment and consist of two main pages. The first page display a table containing the
list of MS1 peaks detected with associated information such as the mass, retention time and
intensity. Each peak can then be explored further by clicking on the identifier, giving access
to the ”single peak” page displaying the fragmentation spectra and the different putative
annotations respectively shown in Figure 4.11 and Figure 4.12. Extra information is given
such as the structure of the compound annotated by the peak and confidence score returned
by the annotation tools.

4.4.4 PiMP-FrAnK integration

In order for the user to be able to use FrAnK seamlessly within PiMP, the two tools had to be
integrated at different levels. However, as PiMP offers a modular design, only very specific
parts of the source code had to be modified with no impact on the rest of the tool. Three main
points of communication had to be created for the tools to run in concert. First, a connection
between the two different data structures is required to give PiMP access to the fragmentation
data. Then, PiMP “data capture” modules need to encapsulate FrAnK data capture to unify
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Figure 4.11: Fragment spectrum as seen in FrAnK dedicated data visualisation interface.
Courtesy of Karen McLuskey, personal communication.

Figure 4.12: FrAnK dedicated annotation page. Courtesy of Karen McLuskey, personal
communication.

the data capture as a single task, and finally, PiMP data interpretation module has to present
the fragmentation results to the user.

Data structure connection

FrAnK was developed as an integral part of PiMP but also a fully independent Django app.
The same technologies were used across the two tools. They, therefore, share a MySQL
database, both tools defining its own tables with the exception of the user table which is
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shared between the two systems. For the tools to communicate and share data, two joining
database tables had to be created to form a cohesive data structure. The first joining table
connects an experiment in FrAnK to a PiMP project as shown in Figure 4.13; this high-level
join allows PiMP to access FrAnK data tables corresponding to the data capture.

Figure 4.13: Connection between PiMP and FrAnK at the project level of the data structure.
The user table is shared between the two tools.

The second joining table was created to unify the results of the two pipelines at the peak
level; this joining table, therefore, connects MS1 peaks from FrAnK to peaks in PiMP (Fig-
ure 4.14). This join creates a ”one to one” relationship between MS1 peaks found in the two
systems. This connection gives then an extra layer of information for every peak extracted by
the PiMP analysis pipeline which has now access to the fragmentation annotations generated
by FrAnK.

Figure 4.14: Connection between PiMP and FrAnK at the peak level of the data structure.
This connection allows to bring together the results of the two data analysis pipelines.
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Integrated data analysis pipeline

Whilst LCMS/MS gives in-depth information on the structure of the compounds analysed,
the acquisition of several isolated MS/MS spectra for each MS spectrum typically requires a
longer duty cycle than for MS alone. This results in a lower number of mass scans acquired
per run for the MS1 as seen in Figure 4.15. As peak detection algorithms’ performances
are closely related to the peak shapes and therefore the number of time points available to
assess if a signal corresponds to a peak or simple noise, the reduction in datapoints reduces
the quality of peak detection. Peak detection can be used independently in FrAnK. The
Peak detection in PiMP is more robust, applied to MS1 data only. This can, however, be
used as an advantage by using the list of peaks detected in PiMP to feed the fragmentation
data analysis. Consequently, when FrAnK is run as part of the PiMP pipeline, no peak
detection step is required. This implies that the two data analysis pipeline cannot be run
simultaneously as FrAnK requires an input from PiMP data analysis pipeline. As shown in
Figure 4.16, the asynchronous task system used to run the data analysis pipelines offers the
possibility to chain tasks. The fragmentation data analysis pipeline, when running as part of
PiMP, only starts when the untargeted metabolomics data analysis pipeline is complete. The
implementation of the modular pipeline architecture is detailed in section 3.4.4 of chapter 3.
The connection between the peak entries created by both tools is performed as an extra trivial
step during the storage of the results in the database.

Figure 4.15: Schematic of a MS1 chromatographic peak comparing MS and MSMS acqui-
sition. A higher number of number of MS1 mass scans in single MS allows better resolution.

Integrated data visualisation

That last integration step happens in the template layer in order to let users start a fragmen-
tation data analysis as part of PiMP. PiMP data capture template was therefore extended to
allow the upload of fragmentation files. When PiMP detects the presence of fragmentation
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Figure 4.16: Representation of chained pipelines, FrAnK using the results of PiMP as an
input, this input being the list of detected peaks.

file, it allows the user to choose to run FrAnK annotation pipeline at the time of starting the
analysis using a simple tick box. The upload of fragmentation files is optional to the user
who can choose to run the PiMP data analysis pipeline on its own.

The results of the fragmentation data analysis were also integrated into PiMP data explo-
ration environment. The first point of integration is located in the peak tab where an extra
column is added to the table to display fragmentation information. When a peak entry is
selected, the right panel gives direct access through a link to FrAnK dedicated result page
for the selected peak (Figure 4.17).

Figure 4.17: Integration of FrAnK information in the peak tab of PiMP data exploration
environment. An extra column shows if a fragmentation data annotation exist for every
peak. The right panel also shows this information and allow access to FrAnK result page.
Courtesy of Karen McLuskey, personal communication.

The fragmentation information was also integrated into the metabolite tab of PiMP data ex-
ploration environment. As this tab is central to the interpretation of the results, including
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fragmentation information in this part of the user interface can greatly help the user in as-
sessing the quality of peak annotations. The fragmentation information is embedded in the
contextual right panel of the metabolite tab by extending the peak card. As shown in Fig-
ure 4.18, when a peak has fragmentation information attached to it, an extra line is added
to the peak card giving the name of the compound with the highest score provided by the
fragmentation analysis. An extra button at the bottom of the card also gives access to FrAnK
dedicated result page (opened in a blank page of the browser) to explore the MSn spectra and
the different possible annotations.

Figure 4.18: Peak card from the metabolite tab of PiMP data exploration environment show-
ing fragmentation data. FrAnK best annotation is given and an extra button (in green) gives
access the to FrAnK dedicated peak page.

4.5 Biological network analysis

As outlined in the different chapters of this document, the interpretation of the results of the
data analysis of an untargeted metabolomics experiment is a complex task. This is due to
several factors such as the limited features that the existing software offer but also the com-
plexity of the data. In chapter 3, the issues in supporting the metabolomics users were partly
addressed by providing some biological context to the results. Hence, pathways visualisation
tools and filters around the biological context were developed to improve the users’ experi-
ence and help them extracting meaningful information. Also, PiMP was developed using
a modular design; the previous section made use of it to extend the features with the inte-
gration of an internal plugin to analyse fragmentation data. The work presented here makes
use of this modular design to integrate an external plugin to extend the data interpretation
capabilities of PiMP by adding biological network analysis support (aim number 4).
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4.5.1 Network reconstruction

A similar approach as the chemical library (section 4.3.2) was taken to develop this tool.
Several steps are required to present the metabolic network of the system or organism studied
to the user; the network also needs to be enriched with the metabolomics data present in
PiMP. This multi-step task requires user interaction in order to select the appropriate model
and sub-network to visualise; it was therefore developed as a semi-automated tool. Two
types of information need therefore to be captured by the user, (i) the network model, (ii) the
sub network parts divided in biological pathways. Figure 4.19 shows the form presented to
the user for this purpose.

Figure 4.19: Dynamic Network analysis form allowing the user to select the organism and
pathways to visualise.

MetExplore’s metabolic networks database was chosen to reconstruct the network. The
communication is, however, different than the protocol used for the chemical library as it
requires user interaction. As PiMP provides InChIKey identifiers for all metabolites present
in its database, the metabolite mapping onto MetExplore network was developed using these
identifiers. Figure 4.20 shows the communication protocol between PiMP and MetExplore
based on REST web service.

The first step is to provide the user with the list of different networks available, therefore,
when the user requests a network analysis, PiMP sends a request to MetExplore web service
to gather this information. The list of networks is returned to PiMP as a JSON array and pre-
sented to the user in a drop-down list (Figure 4.19). Once the user has selected the desired
network, a new call is sent to MetExplore to retrieve information regarding the pathways
available in this network. This second call to MetExplore web service is sent with the list of
metabolites to map on the network, the data returned to PiMP is, therefore, a list of pathway
present in the network with both the total number of metabolites present in the pathway and
the number of metabolite mapped from the list sent by PiMP. The data sent and received by
PiMP is also formatted as JSON arrays. This allows presenting to the user more accurate
information to assist with the pathway selection as seen in Figure 4.19. Finally, once the
selection of pathways has been performed, a“launch” button allows the user to start the net-
work visualisation; however, a last call is required to reconstruct the network using the user
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Figure 4.20: Communication between PiMP and MetExplore web service to dynamically
perform a metabolite mapping on the model selecting and build the network requested. 1.
Request from the user is sent to the view. 2 and 3. The view request the list metabolites to
map from the model layer. 4. The list is sent to MetExplore webservice with the selected
organism and pathway. 5. The reconstructed network is sent back to PiMP. 6. After en-
richment of the network with intensity values, the network is sent back to the template for
display purposes.

selections. The request sent from PiMP to MetExplore contain the following information, (i)
the BioSource id, (ii) the list of pathways, (iii) the list of InChIKey identifiers to map. Met-
Explore create the network using this information and return it to PiMP as a JSON structure.
PiMP then add the intensity values for each mapped metabolite to the network by parsing the
JSON structure. The resulting network contains all information necessary to be visualised
and explored by the user; it is therefore sent to the PiMP template for visualisation purposes.

4.5.2 Network visualisation

Several software and computing libraries provide user interfaces to visualise, explore and
mine biological networks. However, the library used needs to meet specific requirements to
be integrated into PiMP. As PiMP uses the web browser to present the data to the user, the
network visualisation library needs, therefore, to use web technologies to be integrated into
PiMP data exploration environment. MetExploreViz was chosen for this purpose, MetEx-
ploreViz is a network visualisation plugin that is used and developed as part of MetExplore.
It has been developed using D3.js javascript library [145] which is specifically designed to
develop web-enabled data visualisation tool. MetExploreViz integrates network mining and
comparison tools as well as most of the common features such as search and export fea-
tures. As this library is specifically designed for biological network visualisation, it also
includes bespoke features to support tasks that biologists may want to perform, visualising
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pathways, cell compartments or duplicating highly connected nodes to simplify the network.
In metabolic networks, highly connected nodes, also known as side compounds, are com-
pounds that take part in many reactions and have little biological meaning such as water
or CO2. If displayed as one single node, it can create a hairball effect and increase the
complexity of the network by generating biologically irrelevant paths between the different
compounds of the network, making it difficult to interpret (Figure 4.21). The last benefit of
using this javascript library is the input format. Indeed, as the network is reconstructed using
MetExplore web service, it is already in the right format and can directly be loaded in the vi-
sualisation plugin. This avoids unnecessary network transformation and therefore limits the
generation of errors that can happen during the translation of the network to another format.

Figure 4.21: Visualisation of the same network before and after duplication of ”side com-
pounds”. A. Original network. B. Same network after duplicating nodes considered as ”side
compounds” to allow a better interpretation.

Once the user has performed all the tasks necessary to reconstruct the network (as explain
in the previous section), PiMP template receive the signal from the view layer to start Me-
tExploreViz and load the network. The communication between PiMP and MetExploreViz
plugin is directly happening within the template using javascript. Figure 4.21 shows how
MetExploreViz network visualisation is integrated into a new tab of PiMP data exploration
environment. The user can perform new network reconstruction using the same interface as
used initially (Figure 4.19) to load a new network.
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4.6 Discussion

Chapter 3 exposed some of the major limitations met by untargeted metabolomics experi-
ment with a primary focus on data analysis and interpretation. The proposed solution took the
form of a tool that attempts to overcome the different challenges by assisting metabolomics
users for each step of the workflow. However, some of these limitations can be better han-
dled before analysis and many other, either unique to LCMS based untargeted metabolomics
or more generally to omics technologies cannot find their answers in standard data analysis
only.

Amongst these limitations, two can be generalised to many of the omics technologies. Study
design remains one of the biggest challenges for biologists to overcome when using a tech-
nology that is still in its infancy. Whilst other omics involving sequencing, for instance,
have made considerable progress on this part of the workflow due to their systematic use,
emerging technologies such as LCMS metabolomics need tailored support to help biologist
designing their experiments and understanding its potential outcome.

The second limitation concerns all omics technologies and could be extended to any emerg-
ing complex technology. The data capture and documentation of a study have become a real
challenge as the technologies used in biological studies have become more complex. Indeed,
many contributors are now taking part in the same study when any of the omics technology
is involved, and relevant information is not always captured and followed properly along the
entire process. Well documented studies are however crucial when it comes to reporting and
publishing, and are the foundation of reproducible science. There is, therefore, a pressing
need to support the scientists contributing to these complex studies in recording and sharing
every information that needs to be reported for the comprehension and reproducibility of the
study.

Untargeted LCMS metabolomics also face its own limitations, many of which have been
addressed in Chapter 3 by better supporting data analysis. However, standard LCMS data
analysis still faces challenges when it comes to unambiguous compound identification. This
has major repercussions in the interpretation of the data produced by LCMS metabolomics
and consequently on the impact of the field. Improving this part of the metabolomics work-
flow can, therefore, help to exploit better the potential that the field has to offer.

Finally, many advances in metabolic modelling can now contribute to improving the inter-
pretation of LCMS data in a biological context. The challenge of interpreting metabolomics
data was addressed in Chapter 3 by providing pathway information from public databases.
However, data interpretation can be taken further by using biological network models as a
support to extract meaningful information. Improving this area of the metabolomics work-
flow can also have a significant impact on all studies using the field to understand biological



4.6. Discussion 98

systems.

The work presented in this chapter attempted to offer solutions to all these limitations in
different manners. Either by providing new dedicated tools, by extending the Polyomics
integrated Metabolomics Pipeline making use of its modular design, or by incorporating
external tools in this same software.

The first objective which consisted on developing a tool allowing data capture of all im-
portant information during the course of metabolomics experiments has been met by the
development of a web enabled management system as seen in section 4.3.1 of this chapter.

Many proprietary software offer Laboratory Information Management System (LIMS) to
support the task of documenting research and laboratory’s operations, however, very few
freely available tools exist. In metabolomics, the existing tools are either very specific to the
needs of a certain laboratory [146] or limited to one approach [147] (e.g. MetabolomExpress
for GCMS). Although metabolomics databases allowing the reporting and publication of
metabolomics studies have emerged in the past few years [135, 148, 149], they do not support
scientist in capturing information at the time of the experiment. The project management
system proposed in this chapter presents a flexible modular design allowing its extension to
any omics technology, supporting the recording of information within the same environment
by giving access to all contributors of a study to the same tool. The resulting software could
even further benefit to biologist by integrating it into PiMP. This can be envisaged as a future
work as they have been developed using the same modular technology and design. It would
create a complete and unique environment for metabolomics studies documentation, analysis
and interpretation. Another improvement that could be considered would be to automate the
export of information captured to one of the metabolomics reporting databases; this would
facilitate and shorten the process of reporting this information manually using dedicated
software provided by those repositories.

Objective 2 was fulfilled by the creation of biochemical library presented in section 4.3.2
allowing the visualisation of a set of compounds in the context of specific metabolic network.

Whilst many facilities and laboratory across the world offer LCMS metabolomics as a ser-
vice to analyse biological systems, no systematic methods has yet been developed to inform
the user what part of the metabolome can be explored depending on the system studied. The
automated tool informing on network coverage of a chemical library built by the association
of a metabolic network database and the standard compound library run at Glasgow poly-
omics offer here a new way for biologists to better plan their experiments. They now have
the possibility to know with precision the potential outcomes of a metabolomics study. As
the necessary tools (web services) have now been developed to automate this task, this could
be easily extended to any other laboratory.

Objectives 3 and 4 required the integration of two plugins to respectively enable the analysis
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of fragmentation data alongside an untargeted analysis, and extend the PiMP interpretation
capabilities to biological networks. These objectives were successfully met by the integration
of two new tools to the PiMP platform as detailed in section 4.4 and 4.5

Whilst, as suggested as a further work, a unified and unique tool supporting the complete
metabolomics workflow could have a transformative effect on the impact of metabolomics,
this impact is still limited by LCMS metabolomics own challenges such as compound iden-
tification. Many laboratories have now gathered thousands of fragmentation spectra at dif-
ferent collision energy in the attempt to produce an exhaustive library collection that can
be used as a reference to compare experimental spectra. Some tools provide web access
through the web browser, others provide an API to automate the mass spectra matching pro-
cess, but they are all however dedicated to the analysis of fragmentation data only. Some
data analysis pipeline have now integrated fragmentation data analysis capabilities such as
XCMS, but the analysis process and results still lacks the seamless integration that PiMP and
FrAnK discussed in this chapter offer. However, while the tool proposed in this chapter has
the advantage to be easy to use as part of the standard metabolomics data analysis workflow,
only two external databases are currently used for spectra matching. The next step in the de-
velopment of this tool would be then to extend the connections to other databases to increase
the confidence in the annotation of the peaks. Connecting the tool to in-silico fragmentation
tool such as ChemSpider could also be informative to the user when spectra do not present
any match in any other database.

This improvement in compound identification brings more confidence in the interpretation
of the data. However, the use of external tools is still required to interpret metabolomics
data outside the conventional pathway analysis. Network models offer an excellent oppor-
tunity to find new potential paths and connections between metabolites that would be easily
missed during a pathway analysis. The analysis of biological networks requires the use of
specialised software that are not easy to use without prior training. Indeed, while software
such as Cytoscape [139] or Tulip [138] provide valuable resources to extract meaningful
information from biological networks, they imply that the user is capable of exporting his
metabolomics data into a particular format allowing them to reconstruct a biological net-
work, before loading it into the analysis tool. Other software such as MetExplore assists the
user by providing the network and requiring as an input a simple list of metabolite with asso-
ciated data. The tool presented in this chapter takes advantage of this feature in MetExplore
and automate every manual step. The resulting tool brings network analysis to any scientist
who can focus on the interpretation of the data without having to understand the backend file
that describes the investigated network. This metabolic network approach can also offer a
way to analyse several omics data simultaneously.

The overall objective of this chapter which consisted in better support certain steps of LCMS
metabolomics workflow in a unified platform has been successfully achieved. The inte-
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gration of the management system to the data analysis platform (PiMP) leaves, however,
opportunities for improvement.

While the tools developed in the first two chapters have revealed themselves useful and have
been used in published research work, a real case study is necessary to fully test the platform.
The work presented in the next chapter will therefore attempt to better understand biological
processes analysing omics data using the tools newly developed.

4.7 Conclusion

Study design, experiment documentation, data interpretation, all have a crucial role in any
type of biological sciences. Omics technologies, from the study of genes to the understanding
of small molecules of a biological system, share a great potential for understanding better
the biology of all living things. But they also share a great complexity in the laboratory
operations that they require, in the instrumentation they use and in the data they produced.
Understanding a biological system as a whole cannot be achieved by simply repeating exper-
iments and looking at different part of the system. Although trying to understand the various
connections involved between the different ”omics” layers shows great potential and promise
to take the understanding of the interactions between biological molecules to a new level, it
can only be enabled by improving the quality, the confidence and the reproducibility of each
of these technologies on their own. A better documentation and reporting of the research can
help towards that goal, but scientists need support to improve and systematise this process.
Indeed, data repositories created for the purpose of thoroughly reporting studies are currently
not used to their full potential. For example, since MetaboLights was launched in 2013, 216
studies have been uploaded to the repository and are fully described (as of January the 23rd
2017) , which leaves thousands of metabolomics studies published and simply described in
journal articles with no properly formatted and organised documentation. Improving the
impact of omics technologies has to go through the process of developing the technologies
themselves and the way they are exploited, providing better study documentation to allow
control studies and reuse of generated data, better supporting study design and data inter-
pretation to extract meaningful biological insight. This only, can lead to considering every
omics layers as one complex system and unleash the full potential of omics approaches.
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Chapter 5

Integrative analysis of omics
datasets using a network approach

5.1 Introduction

Networks are used in many scientific and non-scientific fields to address a variety of prob-
lems. They can also be used to capture the knowledge of a system at a certain point in time.
A network representation of a system can be very powerful to understand or highlight the
existing connections, sometimes complex, between the different components constitutive of
a system. Networks can be used in areas from urban traffic flow management to the study
of social interactions. In biology, and more specifically in omics technologies, networks are
used for both problems solving and knowledge capture and dissemination. Each omics layer
can indeed be represented by a list of components (nodes) connected with each other (edges)
forming a network. The nodes generally representing biological components and edges the
relationships they have with one another. The omics technologies based on sequencing, ge-
nomics and transcriptomics, which are the most established fields of the omics family, have
now long taken advantage of network representations to interpret the generated data. Gene
interaction networks, gene co-expression networks or gene regulatory networks are some
of the most used network representations of genomics and transcriptomics data. Network
approaches are also often used to study Proteomics data, protein-protein interaction net-
works are commonly used for different purposes such as functional module identification. In
metabolomics, networks are used for diverse applications, some have been commonly used
for years such as metabolic networks for flux balance analyses, others have just been devel-
oped such as substructure networks for untargeted metabolomics data exploration [150]. As
seen in chapter 4, metabolic networks can also be used in metabolomics to help with data
interpretation as they provide an alternative approach from the common pathway analysis.
However, the metabolic networks used in this approach also hold information about reac-
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tions happening in the biological system; reactions that can be directly or indirectly related
to quantitative proteomics or gene expression data. Integrating these types of data together
with metabolomics data creating a multi-layer network has the potential to highlight cell pro-
cesses that cannot be seen in one omics alone. The increased complexity of such integrated
network may, however, present a barrier to its interpretation.

The development of an integrative method required the use of a test dataset. In this study,
we apply the methodology to attempt understanding the effect of the activation of nicotinic
receptors on signalling pathways and the metabolism.

The contribution of nicotine to cancer incipience and growth is subject to thorough investi-
gation by a vast research community [151]. The nicotinic acetylcholine receptors, activated
by nicotine, can trigger tumorigenic effects by the activation of signalling pathways [152].
The oral keratinocyte alpha 7 nicotinic receptors, which choline is a selective agonist [153],
has been of particular interest to attempt understanding the signaling pathways connected to
cancer onset and nicotine carcinogenic mechanisms. These signaling pathways are however
still poorly understood, and their comprehension could make them a target for cancer therapy
or prevention. The experimental design of this study is detailed in the following sections.

5.2 Related work

Omics technologies are now routinely used for the investigation of biological systems in
many biology related fields. From clinical to plant studies [154, 155], the understanding
of a system often requires an in-depth examination of the components that it is made of,
their states and their relationship with one another. Omics technologies offer the opportunity
to observe and annotate genes directly, measure their expression levels, study proteins and
their functions in a system, take a snapshot of a metabolism state or measure their fluxes
to understand the metabolites flow of a system. These individual applications are however
often performed in isolation from the others, and only allow the assessment of one partic-
ular part of a system. The combination of these applications could offer the possibility to
understand better the relationships that exist between all the components that make a biolog-
ical system. The previous chapters presented the development of new tools and methods to
help biologists in designing, analysing and interpreting metabolomics experiments with an
attempt to extend the context of interpretation to the whole system by using genome-scale
metabolic models. The work presented in this chapter is a direct continuation of the pre-
vious chapter: an attempt to combine metabolomics data to gene expression data to further
investigate metabolomics data analysis results in a holistic approach. Many attempts of in-
tegrating multi-omics data using different approaches have been made in the past decade
with varying degrees of success [156, 25]. None of these studies, however, approach the
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subject of automating the integration process. Gomez-Cabrero et al. [157] present an inter-
esting view of the current and future challenges encountered in data integration within the
omics context such as data heterogeneity due to the use of many different standards in life
sciences. B. Palsson, K. Zengler also raise challenges faced to interpret integrated omics
data in a biological context [158]. Overcoming these challenges is essential to generalise
omics integration methods and therefore generalise system-wide studies to enhance current
omics-related research.

The work presented in this chapter will attempt to answer the following questions:

• Can metabolomics and RNA-seq data be integrated using metabolic network model?

• Can the integration of metabolomics and RNA-seq data be automated?

• Does the interpretation of the integrated network bring added information to the inter-
pretation of metabolomics data on its own?

Four aims were drawn from these research questions; it is implied that metabolomics and
RNA-seq data are acquired from the same samples and experiment:

1. Analyse and interpret untargeted metabolomics data using the tools previously devel-
oped.
Objective 1: Analyse and interpret LCMS metabolomics data using exclusively the
PiMP platform to highlight metabolic processes involved in the case study.

2. Analyse RNA-seq data and prepare its integration.
Objective 2: Analyse RNA-seq data and format results for the mapping of genes onto
human metabolic networks.

3. Integrate RNA-seq and metabolomics data together.
Objective 3: Reconstruct a human metabolic network mapping both metabolomics
and RNA-seq datasets.

4. Interpret the reconstructed integrated metabolic network
Objective 4: Attempt to derive new biological insight from the reconstructed network.

5.3 Study design

To develop, assess and validate the network approach presented in this chapter, RNA-seq and
metabolomics data of human keratinocytes were acquired. This section describes the study
and its objectives.
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The oral keratinocyte alpha 7 nicotinic receptor (↵7nAChR) has been implicated to play a
role in the pathogenesis of oral squamous cell carcinoma (OSCC) and periodontal disease
(PD). OSCC is a malignant tumour of the oral epithelium, and over 5000 new cases are
diagnosed each year in the UK only. The ↵7nAChR has been suggested to mediate nicotine-
induced abnormal keratinocyte cell cycle progression leading to squamatization and OSCC.
PD is a microbially induced chronic inflammatory disease of the oral cavity. Nicotine act-
ing via the ↵7nAChR mediated “cholinergic anti-inflammatory pathway” is suggested to
enhance smokers susceptibility to PD by suppressing oral immune responses resulting in the
persistence of oral pathogens and chronic inflammation.

These findings, however, are based on studies applying a reductionist approach investigating
isolated signalling pathways, the complete picture of ↵7nAChR mediated signalling path-
ways in oral keratinocytes remains unknown.

For the purpose of this study, primary human keratinocytes have been cultured in vitro and
stimulated with a specific ↵7nAChR agonist (PHA 543613 HCl). Cells have been stimulated
for 24 hours with data collection at three different time point, 4 hours, 9 hours and 24 hours.
Unstimulated cells are used as a control with data collection at the same time points. The
experiment was conducted in triplicate and samples were prepared for metabolomics and
RNA-seq experiments.

5.4 Data acquisition

The samples were prepared by laboratory scientists at Glasgow university dental school, tran-
scriptomics and metabolomics data was then acquired by Glasgow Polyomics. The author
was not involved in the data acquisition process, his role was limited to the data analysis.

Primary human keratinocytes were cultured in vitro and stimulated with a specific ↵7nAChR
agonist (PHA 543613 HCl). Cells were stimulated for 4, 9 and 24 hours. Unstimulated cells
acted as a control. The experiment was repeated three times with cells from three different
donors.

At each time point, RNA was harvested using the RNeasy kit (Qiagen, UK). Ribosomal
RNA was depleted using RiboMinusTM technology (Life Technologies, UK). The samples
were prepared following Illumina standard protocol using the Illumina TruSeq Stranded To-
tal RNA kit. The RNA- seq data was acquired using paired-end RNA sequencing on Illumina
NextSeq 500.

Similarly, metabolites were extracted at a ratio of 1:3:1 chloroform:methanol:water.

Hydrophilic interaction liquid chromatography (HILIC) was carried out on a Dionex Ulti-
Mate 3000 RSLC system (Thermo Fisher Scientific, Hemel Hempstead, UK) using a ZIC-



5.4. Data acquisition 105

pHILIC column (150 mm 4.6 mm, 5 µm column, Merck Sequant)

The column was maintained at 30�C and samples were eluted with a linear gradient (20 mM
ammonium carbonate in water, A and acetonitrile, B) over 24 min at a flow rate of 0.3 ml/min
as follows:

Time / minutes %A %B
0 20 80

15 80 20
15 95 5
17 95 5
17 20 80
24 20 80

Table 5.1: Table describing the elution gradient used for Liquid Chromatography. A = 20
mM ammonium carbonate in water. B = acetonitrile.

The injection volume was 10 µl and samples were maintained at 5�C prior to injection. For
the MS analysis, a Thermo Orbitrap QExactive (Thermo Fisher Scientific) was operated in
polarity switching mode and the MS settings were as follows:

• Resolution 70,000

• AGC 1⇥ 106

• m/z range 70 – 1050

• Sheath gas 40

• Auxiliary gas 5

• Sweep gas 1

• Probe temperature 150�C

• Capillary temperature 320�C

For positive mode ionisation: source voltage +3.8 kV, S-Lens RF Level 30.00, S-Lens Volt-
age -25.00 (V), Skimmer Voltage -15.00 (V), Inject Flatopole Offset -8.00 (V), Bent Flat-
apole DC -6.00 (V). For negative mode ionisation: source voltage-3.8 kV.

The calibration mass range was extended to cover small metabolites by inclusion of low-mass
calibrants with the standard Thermo calmix masses (below m/z 138), butylamine (C4H11N1)
for positive ion electrospray ionisation (PIESI) mode (m/z 74.096426) and CoF3 for negative
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ion electospray ionisation (NIESI) mode (m/z 84.9906726). To enhance calibration stability,
lock-mass correction was also applied to each analytical run shown below.

Positive Mode Lock masses:

Number of Lock Masses: 3

Lock Mass #1 (m/z): 83.0604

Lock Mass #2 (m/z): 149.0233

Lock Mass #3 (m/z): 445.1200

Negative Mode Lock masses:

Number of Lock Masses: 1

Lock Mass #1 (m/z): 89.0244

5.5 Metabolomics data analysis

As outlined in the previous sections, the experiment contains six experimental biological
groups. For quality control purposes, two more groups are routinely run during metabolomics
data acquisition, these are the blank samples which correspond to the extraction solvent and
allows the identification of contaminants, and the pooled samples to assess the quality of the
instrumentation. As this a pilot study, only three replicate samples were acquired for each
group. The six experimental groups are presented in the table below:

Condition / Time point 4 hours 9 hours 24 hours
Control C4 C9 C24

PHA-stimulated PHA4 PHA9 PHA24

Table 5.2: Table describing each of the experimental groups analysed in the study. Each
sample has been collected in 3 biological replicates.

5.5.1 Quality control

Once the data acquisition is performed, the running of the instrument can be assessed using
the pooled samples. Pooled samples are acquired every 5th sample throughout the instrument
run and therefore representative of the stability and reproducibility of the instrumentation.
As shown in Figure 5.1, the instrument shows high reproducibility over time, and no issue
can be detected with the instrumentation.
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Figure 5.1: Minimum/maximum and interquartile range of the TIC signals for the positive
mode pooled samples.

The analysis was performed using PiMP standard untargeted pipeline without fragmentation
data. All results and figures presented in this section were generated by the PiMP software.
Parameters used for the data processing are as follow:

• Ppm window: 3.0

• Retention time window: 5%

• Rsd filter: 0.80

• Minimum intensity: 5000

• Minimum detection number: 3

• Alignment: CowCoda

• Noise filter: 0.80

A total of 3 592 signals were identified as likely a metabolite. Figure 5.2 shows the unsuper-
vised clustering of experimental samples performed using Principal Component Analysis.
As seen in the figure, no clear cluster can be identified from the plot which indicates a high
variability between samples within the same biological group.

Seven pairwise comparisons were performed to assess the differences that the metabolites
present in each of the biological groups. To evaluate the evolution of the metabolites over
time, time points were compared to one another within the same biological class (Control
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Figure 5.2: Plot of the first two principal components calculated for the experimental groups.

and PHA-activated). Control samples at 4 hours were therefore compared to control sam-
ples at 9 and 24 hours. Similarly, PHA-activated samples at 4 hours were compared to PHA
activated samples at 9 and 24 hours. Finally, three comparisons were performed across the
biological classes for each time point (i.e. Control 4 hours versus PHA-activated 4 hours).
Out of 3 592 signals, 58 matched to authentic standards. However, a total of 5 of these iden-
tified metabolites were found to be significantly different in a minimum of one comparison
(adjusted p-value under 0.05). Table 5.3 shows the list of 5 metabolites with their respec-
tive fold changes values (log2 transformed), the full list of detected standard metabolites is
available in Appendix B.1.

The comparisons performed allowed the analysis of the data in two manners. First, a time
course analysis of the separate experimental classes (Control and PHA-activated) allows the
detection of metabolites changing over time. The trends of these changes can then be com-
pared between the two classes. The analysis of the differences between the two experimental
classes at each time point can also be performed to have a global view of the differences
induced by the PHA treatment.
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5.5.2 Time course analysis

Control class

No significantly changing annotated peaks were found between the first two time points of
the control group (Control 4 hours and control 9 hours). Therefore, the analysis focused
on the changes appearing between 4 hours and 24 hours. 56 features were found to be
significantly changing over time in the control class. Only 30 features were kept for further
analysis as 4 were identified against a standard peak and 26 were putatively identified. The
volcano plot in Figure 5.3 shows the significance versus fold change of these peaks in y and
x-axes respectively.

Figure 5.3: Volcano plot showing the changes of the detected peaks in the Control group
at 4 and 24 hours. In y axis is the significance, x axis plots the fold change. Significantly
changing features are coloured in black.

As mentioned in chapter 3, peaks need to be manually checked as the peak picking algorithm
can sometimes consider noise signal as peaks. The peaks were also compared to the blank
samples to remove contaminants from the list. These tasks were performed directly in PiMP
using the dedicated tools. After filtering, only the four standard matching peaks and one
annotated peak were kept. The annotated peak was found to be a lipid with the following
chemical formula C51H74O2. The chemical formula was derived from the m/z recorded for
the base peak and is considered level 2 annotation according to the MSI. The four standard
compounds were not used for pathway interpretation as none of them takes part in the same
pathway, however, changes in the transcriptome could help further inform and interpret these
changes.
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PHA activated class

The same process was applied to the PHA-activated group. 18 peaks were found to be
significantly different between 4 and 9 hours, 48 between 4 and 24 hours, 3 out of the 48
peaks matched against a standard (Table 5.3). The volcano plots showing these results is
presented in Figure 5.4. After filtering to account for contamination, non-annotated peaks
and artefacts, only the three standard compounds were kept.

Figure 5.4: Volcano plots showing an overview of the features changing in the pairwise
comparisons of the time points in PHA-activated experimental group. It is import to note
that while the majority of the changes are not significant, many differences are observed.

Time course comparison

Very few metabolites revealed to be statistically changing over time in both experimental
classes, which may indicate that the effect of the drug is well controlled or part of a signalling
pathway that has limited effect on the metabolome. Three identified metabolites (L-Alanine,
L-Ornithine and Nicotinamide) are common to the two groups; a trend comparison revealed
that they change the same way over time with comparable intensities as seen in Figure 5.5.
Guanine, which was found to be significantly changing over time in the control group only
follow the same pattern, Figure 5.5 shows a higher standard deviation in PHA-activated time
points, hence an adjusted p-value over 0.05.

5.5.3 Biological class analysis

The analysis of the time course of the two experimental classes did not reveal any difference
in metabolism between the control and PHA-activated groups in the changes of the metabo-
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Figure 5.5: Average intensities of the 4 identified metabolites significantly changing over
time.

lites levels. A more global approach comparing the two groups directly against each other
may, however, reveal differences between the groups across every time points. Each time
point of the control group was therefore compared to the corresponding time point of the
PHA-activated group.

In total, 59 peaks were significantly different between the control and PHA-activated groups
for time point 4 hours, 53 at 9 hours and 63 at 24 hours. Only one compound for which a
standard was available: choline phosphate (ChoP), was found to be significantly different
across all time points. Volcano plots corresponding to each of the three comparisons are
shown in Figure 5.6. The same filtering process as the time course analysis was applied to
these peaks and metabolites common to all time points were kept for further investigation.

Figure 5.6: Volcano plots showing the differences found between the control and PHA-
activated group at each respective time point.

After filtering process, only one annotated compound was found to be relevant. This com-
pound is found in one known metabolic pathway (2-C-Methyl-D-erythritol 4-phosphate in
Terpenoid backbone biosynthesis), which however does not allow a pathway analysis. An in-
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silico analysis of potential reactions connecting this metabolite to choline phosphate could,
however, be an avenue to explore. The differences in the levels of the annotated and identified
metabolites in the two groups are shown in Figure 5.7.

Figure 5.7: Average intensities of the two metabolites significantly different in the two
biological groups.

5.5.4 Standard compounds analysis

As mentioned in section 5.5.1 of this chapter, 58 peaks matched against authentic standards.
While only five were statistically significant across all comparisons performed, analysing
these identified compounds may reveal differences in the experimental groups that were
missed due to low statistical power. Each of the metabolites was assessed individually. The
vast majority of the peaks can be considered of high quality with no time shift and high
reproducibility (shown in Figure 5.8). The metabolites show small differences between the
two experimental groups. Although the results were not significant, they could be indicative
of a trend and repeating the experiment with more replicates could improve this analysis.

5.6 RNA-seq data analysis

The primary objective of the work presented in this chapter is to expand the interpretation of
metabolomics data analysis results by connecting other omics data to further inform about
the biological context. The RNA-seq data analysis presented here, therefore, describes the
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Figure 5.8: Extracted ion chromatogram of three peaks corresponding to standard metabo-
lites (amino acids), showing high quality and reproducibility.

sequential steps performed to extract meaningful data that can potentially be integrated with
metabolomics data. The interpretation of the RNA-seq analysis output on its own is not
part of this work and therefore not described here. The experimental work was performed
the Genomics unit of Glasgow Polyomics, the complete data analysis presented in the next
section was carried out by the author.

5.6.1 Data acquisition and analysis pipeline

The samples were prepared using the Illumina TruSeq Stranded Total RNA kit. The RNA-
seq data was acquired using paired-end RNA sequencing on Illumina NextSeq 500.

The data analysis consist in a four steps pipeline. First, the adapters were removed from the
reads using Cutadapt [159]. Low-quality bases were then trimmed using Sickle [160]. The
reads were aligned against the human reference genome GRCh38 using HISAT [161]. The
differential expression analysis was then performed using CuffDiff [162].

A quality control step was conducted to assess the quality of the identification of the nucle-
obases generated by the sequencing. This quality control was done using Phred quality score
of a base call which estimates the probability of error and was described by Cock et al. in
2010 [163]. The base call accuracy was found to be higher than 99.9% on average as shown
in Figure 5.9.

The same seven comparisons as the metabolomics data analysis were performed resulting
in 378 genes differentially expressed in at least one of the comparisons. The data presented
below was extracted from the output generated by CuffDiff using script developed in Python.

A time course analysis was performed separately on the two biological classes. The con-
trol group showed 204 genes significantly differentially expressed while the PHA-activated
group had 233 genes differentially expressed over time.
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Figure 5.9: Plot showing the average base call accuracy of the reads. It plots the Phred score
versus the read position in y and x axes respectively.

The comparison of the respective time points across the two biological groups revealed fewer
differences, 25 genes are differentially expressed at 4 hours, 13 genes at 9 hours and 29 at
24 hours.

5.6.2 Gene networks

As the aim of this work is to connect metabolomics data to gene expression data through
metabolic network reconstruction, the data available in the reconstructed network could be
limited to genes having a role in metabolic regulation. However, many associations and
interactions exist between genes with no direct impact on the metabolome. The reconstruc-
tion of gene interaction and association networks before building the metabolic network
can extend the information available in the final network by adding an extra gene-specific
layer. Seven types of gene interaction or association networks were created using GeneMA-
NIA [164] to create this additional layer which could then be plugged into the metabolic
network. The Cytoscape app of GeneMANIA which searches through publicly available
datasets and databases to create different networks was used for this task. The network was
reconstructed using the following interactions or associations:

1. Co-expression

2. Physical Interaction

3. Genetic interaction
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4. Shared protein domains

5. Co-localization

6. Pathway

7. Predicted functional relationship

As shown in Figure 5.10, the reconstructed network when visualised as is suffers from “hair-
ball effect” which makes it hard to interpret. However, this network is, in fact, a combination
of seven different networks represented by different edge colours. Each of these networks
can be turned on and off to allow the visualisation of a single or a subset of networks. This
represents a vast amount of organised data that can potentially be added to the multi-omics
metabolic network as “meta-data” once reconstructed. The network presented in Figure 5.10
also shows log fold changes values as colour scale applied to the nodes.

Figure 5.10: Reconstructed and integrated gene interaction and association network. Node
colour is based on the log fold changes of the comparison of Control 4 hours against Control
24 hours, no significance threshold was used in this example.
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5.7 Integrative analysis

The previous sections of the chapter presented the analysis of two different omics data of the
same samples. It was shown that greater changes are detected at the gene expression level
than the metabolomics level. However, while very few significant changes can be observed
on the metabolomics level, the investigation of standard metabolites revealed many subtle
changes. Repeating the experiment with a longer time course and more replicates could give
more significant results on the metabolomics level.

The work presented in this section attempt to answer the following research question: “Can
metabolomics data be further interpreted when integrated with other omics?”

The subset of metabolomics data selected for this section are the significantly changing
metabolites presented in section 5.5.3, and the list of standard metabolites which present
subtle changes from which no conclusion can be drawn.

The approach taken to connect metabolomics and gene expression data is based on genome-
scale reconstructed metabolic networks. This is considered as the direct extension of the
work presented in Chapter 4 on network analysis of metabolomics data.

5.7.1 Multi omics network reconstruction

The network reconstruction approach taken here consists of three main steps; (i) network
building from gene expression data, (ii) mapping of metabolomics data on the network, (iii)
integrated network interpretation.

The model chosen for this approach is the human genome-scale metabolic reconstruction
Recon2.2 [106]. MetExplore, tool presented in previous chapters and partly integrated into
PiMP was chosen to build and investigate the network.

Gene mapping

One of the requirement to create a network from gene expression data is to use the same
gene identifiers. MetExplore (Recon2.2) uses Entrez gene ids to describe the network, while
the output of the RNA-seq data analysis was given using Ensembl identifiers. The identifiers
were, therefore, converted from Ensembl to Entrez using DAVID conversion tool [165]. It
was found that one Ensembl gene ids [166] can sometimes correspond to several Entrez
gene ids [167]. The Entrez gene ids derived from one Ensembl id correspond however to
one gene only, they were, therefore, all kept; the list of 378 differentially expressed was then
described by a list of 439 Entrez gene ids. 38 genes related to 125 metabolic reactions could
be matched to Recon2 model using MetExplore.
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The network was reconstructed from this list of reaction by keeping only metabolites di-
rectly involved in, at least, one reaction as a substrate or product. This first step of network
creation allowed to filter down the list of metabolites present in the model from 5063 to
289. The number of pathways represented in this network is of 41. A pathway is considered
represented if one of the reactions present in the network is also part of the pathway, this
means that the 41 pathways present generally a very low coverage. This can, however, be
indicative of a very controlled effect of the drug. While knowing which pathway is involved
in the network is not a specific objective of the network reconstruction, it gives an overview
of the different part of the metabolism potentially affected by the differential expression of
the detected genes. This list of pathways is available in Appendix C.1.

Figure 5.11 shows the network obtained after application of the filters based on genes pre-
viously mentioned. Some highly connected nodes (metabolites) can easily be detected and
will need to be duplicated as side compounds for better visualisation. As seen in the net-
work, some reactions are disconnected from the network; it was decided to keep them for
the metabolite matching step as they can potentially reveal relevant information.

Figure 5.11: Reconstructed metabolic network by mapping the list of genes differentially
expressed onto Recon2.2 human metabolic model.
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Metabolite mapping

While the web service version of MetExplore allows a mapping based on InChIKey identi-
fiers, this option is not available on the online version. Metabolites were therefore matched
using their names, which required manual curation of the metabolites to map on the network.
The list of metabolites selected for the mapping was restricted to the standard metabolites
with the addition of the annotated metabolites showing a statistically significant difference in
the two biological groups, which makes 59 metabolites in total. 21 of these metabolites were
found to be present in the network reconstructed from the differentially expressed genes, the
list is available in the appendix table D.1. Figure 5.12 shows the final reconstructed network
after duplication of “side compounds” for better visualisation. The metabolite nodes consid-
ered as side compounds in this network were CO2, H2O, NA+, ADP, Coenzyme A and H+.
The metabolites mapped on the network are highlighted with a red border.

Figure 5.12: Integrated network showing the mapping of metabolites (with red border)
onto the previously reconstructed metabolic network. This network has been processed by
duplicating side compounds for better readability. The network shows two highly connected
clusters at the bottom and the right of the figure.

The mapping allowed the identification of two main clusters showing a high number of
connection between the RNA-seq and metabolomics data. The meaning of these clusters
is discussed in the next section.
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5.8 Discussion

The combined and integrated study of multi-omics data has the potential to offer a holistic
approach to understanding biological systems of organisms. Chapter 3 and 4 addressed the
limitation met by the most immature technology of the omics family, metabolomics. It ad-
dressed the issues in designing, documenting and reporting complex experiments performed
in omics fields in an effort to standardise, automate and streamline the tasks assigned to the
different contributors of an omics study. The common and general aim of the work presented
in those two chapters, however, is to provide the necessary tools to optimise experiment de-
sign and fully exploit the results of an omics study, with a particular focus on untargeted
metabolomics. Due to the complexity of both the data generated by omics technologies and
the biological system studied, it is currently not possible to assert if an omics dataset has
been fully mined or still hold unexploited biological insight. With the aim of improving data
exploration and mining, the work presented in Chapter 4 attempted to expand the context of
interpretation of untargeted metabolomics data using genome-scale metabolic models.

The limitations met in single omics field such as the ones presented in metabolomics can be
transferred to the integrative approach. For example, the simple existence of many standards
for each omics field makes their integration a great challenge [157]. The differences in
variability of the different components of a biological system increase the complexity of
designing a study when planning to interrogate several omics layers at once. These issues
raise the question whether it possible or not to connect different omics to one another to
study them in concert. The work presented in this chapter attempted to answer this question.
Another question that was addressed in this chapter was to assess whether the study of two
integrated omics gives a better overview of a biological process than the study of a single
omics layer.

As presented in this chapter, six annotated or identified metabolites have been found to be
significantly changing over time or significantly different across the two biological groups.
However, many peaks didn’t find any match in the metabolite public databases used in PiMP.
Indeed, the last filtering step brought the list of metabolites significantly changing to less than
10% of the initial list, due to a vast majority of unassigned peaks. No fragmentation data was
acquired at the time of data collection, but as PiMP now allows the analysis of fragmentation
data as part of the standard untargeted metabolomics data analysis pipeline, repeating this
experiment with fragmentation data acquisition could produce valuable data to explore. The
statistical power issue observed in this experiment could also be further investigated by a
repeated study with a higher number of replicates. As the samples studied seem to be highly
variable between replicates, it could help identifying potential outliers and have a better
confidence on the metabolite levels seen in each group.

From the five metabolites that were found to be either changing over time or be at different
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levels in the biological groups, choline phosphate is of particular interest as it is one of the
binding targets of C-reactive protein (CRP) which is known to be involved in inflammatory
response. The low levels of choline phosphate in PHA-activated cells could indicate a very
little abundance of this metabolite in free form, but a high abundance attached to C-reactive
protein binding sites. Many studies addressed the question of whether a relationship ex-
ists between CRP levels and smoking. In their review [168], S. Tonstad and J. L. Cowan
discuss the conflicting results from different studies approaching this relationship. A more
recent study [169], however, indicates that while CRP levels in the blood are associated with
smoking, it does not correlate with smoking intensity. Current methods of measurement of
CRP levels using high-sensitivity C-reactive protein test could be considered to confirm the
hypothesis formulated earlier. This could also help understand better the response time of
keratinocyte to their stimulation, and the delay to its observation at the metabolome level.

It is apparent that the metabolomics experiment of the system studied suffered from a low
statistical power which translated into a low number of compounds that can potentially be
interpreted into biological context with confidence. While one of the compounds, choline
phosphate, may reflect the immune response triggered by the stimulation of oral keratinocyte
↵7nAChR, the rest of the dataset couldn’t be further exploited with high confidence. How-
ever, the trends showed by the metabolites can be informative and are discussed next.

The integration of metabolomics data together with gene expression gave, however, some an-
swers. Indeed, two main clusters can be identified from the reconstructed network. The first
one, at the bottom of Figure 5.12 represents the purines metabolism in which can be found
AMP and adenine linked together through AMP pyrophosphorylase, the enzyme which takes
AMP as a substrate to produce adenine. One of the genes involved in the production of the
enzyme was found to be significantly down-regulated over time in both biological condi-
tions. This change is reflected in the levels of adenine in the metabolomics data which are
going down over time. An increase of AMP might be expected but is not observed in the
metabolomics data (Figure 5.13), the regulation of AMP levels cannot be explained with the
data available in this network. Gene expression data also suggests a down-regulation of the
production of ribonucleosides over time, data partially reflected in the metabolomics data
in the levels of adenosine, cytidine and guanosine, in direct link with this reaction as prod-
ucts (Figure 5.13). While transcription data suggest a general down-regulation of the purine
metabolism after a few hours, metabolomics data tends to reflect these changes after 24 hours
only. The regulation of nucleotide synthesis has been found to play a significant role in can-
cer cells and represent a therapeutic target, however, these processes at the metabolic level
are still poorly understood [170].

A second cluster disconnected from the main network can be identified on the right of Fig-
ure 5.12. This network link the amino acids present in the metabolomics data to amino acids
transporter. The expression of the gene coding for the ATP-binding cassette sub-family A
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Figure 5.13: Average intensities of metabolites found in the first cluster identified in the
network.

member 1, subunit of amino acid transferase, shows a clear up-regulation over time (log fold
change of 1.6 in PHA group over 24 hours, 0.9 in Control group but not statistically signifi-
cant). Many of the connected amino acids were identified during the metabolomics analysis
but did not present significant changes. They are however part of the standard compounds
showing subtle changes of levels going down over time in PHA activated samples as shown
in Figure 5.14. This result shows that the levels observed in the metabolomics results should
be further investigated in a separate study as they are not statistically significant. These re-
sults support previous studies showing that the expression levels of amino acids transporters
are elevated in primary human cancers [171].

Choline phosphate, the main identified metabolite significantly different in the biological
classes, has not been matched onto the network and no related genes appear in gene expres-
sion data. It, therefore, could not be further interpreted.

The integrative analysis seems to support a potential biological meaning of the subtle diminu-
tion of the amino acids levels after 24 hours. This conclusion tends to suggest that a repeated
experiment with more replicates and longer time course - to account for the time required
for the regulation of genes to be reflected on the metabolome; may be necessary to have
a better view at the metabolome levels during the processes operating in the system when
stimulated. Many differences were however seen in this dataset but couldn’t be credited
to any compounds using a standard untargeted metabolomics approach, taking benefit of
fragmentation data analysis combined with standard untargeted methods could improve this
identification coverage and bring a better understanding of the system. This would, in turn,
improve and expand the connections seen in the integrated network and therefore lead to a
more in-depth interpretation.

While the first and third research questions have been addressed as an integrated metabolic
network approach seem to be achievable to connect two omics datasets together and brings
added information on their understanding, the automation of this process (Research question
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Figure 5.14: Average intensities of amino acids found to be highly connected with gene
expression data as seen in the integrated network.

number 2) requires additional work beyond the current state of omics technologies. The
issue of no unique standard identifiers was raised many times at several levels, and manual
interventions to curate and filter the datasets to proceed to their integration are still key steps
that no automated algorithm can currently handle.

During this work, other attempts using different approaches to integrating gene expression
and metabolomics data have been reported. R. Cavill et al., for example, present different
techniques that can be applied for statistical data integration of metabolomics and gene ex-
pression data [172]. These methods, however, do not fully address how the processed and
integrated data should be interpreted in a biological context, which is one of the biggest chal-
lenges of multi-omics data analysis as B. Palsson and K. Zengler point out in their commen-
tary [158]. The network and knowledge-based approach presented in this chapter attempted
to fill this missing step of contextual interpretation to lead to biological knowledge.
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5.9 Conclusion

The collection and interpretation of large-scale datasets are powering new discoveries across
all disciplines in biomedical science. The recent advances in high-throughput ’omics’ tech-
nologies such as genomics, metagenomics, transcriptomics, proteomics and metabolomics
and improvement in bioinformatics have enabled the investigation of thousands of genes,
proteins and metabolites simultaneously. However, while individual datasets are informative
and combined analysis of transcriptomic, genomic, proteomic and metabolomic has been
found to be very useful for a deeper understanding of key biological processes, greater in-
ferences can be obtained by integrating those datasets that are collected at different levels
of biological organization. No standard approach for integrating these datasets is currently
available and the existing tools to assist this process are in their infancy. The development
and standardisation of new integrative approaches is a crucial step towards providing a holis-
tic perspective of the systems of organisms and can have a major impact beyond the fields of
biomedical science.
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Chapter 6

General discussion

Nowadays, omics technologies play a major role in the study and the understanding of bi-
ological systems. As discussed previously, omics approaches are regularly applied in many
biological research fields. However, all omics fields do not have the same maturity, and
many challenges are yet to be overcome to use the technologies to their full potential.
Metabolomics, the most recent and immature omics is offering great promises for the un-
derstanding of biological systems. Indeed, metabolomics forms the link between phenotype
and all processes occurring in a biological system, and as such, opens many new possibili-
ties. It also offers the opportunity of finally studying biological systems as a whole, linking
genotype to phenotype, environmental stress to direct biological processes offering a holistic
view of organisms systems’ organisation. However, many limitations still have to be ad-
dressed to reach the possibility to systematise and automatise this global approach. The field
of metabolomics itself is not yet at its maturity, and many issues from study design to data
interpretation in a biological context have yet to be addressed.

Chapter 3 presented the development of a new data analysis and interpretation environment
with the aim to expand the reach of the field of metabolomics and improve the biological
insight that can be extracted from the dataset. To achieve this objective, three questions
were addressed: (i) Can software solutions support non-expert in their metabolomics data
analysis? (i) Can software solutions adapt to the rapidly evolving technology requirements?
(i) Can world-wide collaboration be enabled in this era of big data?

As discussed in Chapter 3, those three questions were successfully addressed by the devel-
opment of a semi-automated web-enabled LCMS metabolomics data analysis pipeline. The
program integrates a simple step by step data capture pipeline offering the necessary tools to
quality control the data, share results directly online and support data interpretation. More-
over, the modular design of the software offers the possibility for developers to expand the
functionalities in a responsive manner. Rather than yet another LCMS data analysis pipeline,
the developed platform should be considered as the foundation of what could become a com-
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munity effort to standardise and unify metabolomics data analysis; offering the possibility
to add new blocks for everyone’s needs and every advance made on the technology side.
The next stage for the PiMP is, therefore, to be easily deployable on any platform, from
production server for laboratories treating sensitive information and with specific security
requirements, to personal computers development purposes. This transition can be enabled
by the Docker container technology and should allow developers around the world work on
the development of the same platform in a collaborative effort. One of the limitations dis-
cussed in Chapter 3 was the current availability of a single back-end data analysis pipeline;
this should also be considered as a future improvement to enlarge the options available to the
user. Significant efforts have been made to support the interpretation of the data within the
biological context, but this could also be extended by, for example, providing pathway infor-
mation from databases other than KEGG such as MetCyc. The last short term improvement
that should be brought to the platform is the visualisation support of peaks after alignment.
Indeed, the results environment currently allow the visualisation of unaligned peaks from
the raw files only. This, however, will require careful planning to preserve the modularity of
the platform as the alignment is dependent on the back-end pipeline used for the analysis,
and therefore, the data format and structure produced. Finally, it was revealed during the
development of the fragmentation module presented in Chapter 4, that, while the design of
PiMP allows the integration of new features, the modules could have been broken down into
smaller units. Limiting each block to a single feature would have made the platform even
more modular and ease new modules integration.

In comparison to the current tools, as discussed in Chapter 3, the PiMP platform offer several
advantages such as no installation, sharing capabilities or a semi-automated pipeline central-
ising the data capture at the start. The modularity of the tool is also an asset which is further
discussed next.

In their review [173], B. Misra and J. van der Hooft list over one hundred tools, software
and databases in an attempt to make researchers aware of the recent development to analyse
metabolomics data. While the review is a useful resource, it also shows the sparse state of the
current solutions in the field. The diversity of approaches is a necessity for a developing field,
but their uncoordinated development can be detrimental to the research. In a fast-evolving
field such as metabolomics, it seems imperative for the community to join efforts to organise
and standardise the different approaches. This would enable responsive development of new
solutions to progress alongside the technology and facilitate systematic control studies.

While the work presented in Chapter 3 was exclusively focused on the support of data
analysis, visualisation and interpretation, in Chapter 4 were discussed the support of tasks at
various stages of the metabolomics workflow. The work presented in Chapter 4 attempted to
provide support for study design and data capture as well as extending the data analysis and
interpretation, areas of limitation which require critical support to improve the field. Four
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research questions were outlined to address these limitations.

The development of an online tool to support data capture and accurate reporting of the
work in a unified manner successfully addressed the first question. The resulting online
platform allows data capture from many contributors in a unified environment, logging every
piece of information from sample preparation to data analysis. As the developed tool used
the same technology as the PiMP software, its modularity allows its extension to support
any omics technology. The development of chemical library was developed in complement
to the management system, attempting to inform biologist on the potential outcome of an
LCMS experiment depending on the organism studied (Second research question). These
two platforms bring support to a critical part of omics experiments, study design. In the
same way as PiMP, the management system and chemical library should be considered as
a framework that can be enriched to support better the different tasks required during a
metabolomics study. The first, short-term, improvement to bring to the management system
is to plug it to the PiMP program to create a single platform supporting scientists from study
design to data interpretation. In a longer term, however, connecting this unified platform
to a metabolomics data repository such MetaboLight or Metabolomics Workbench could
automate the entire process of publishing data. This would have two immediate effects;
more scientists would publish their data along with scientific articles, which would, in turn,
enrich the current base knowledge available in these repositories and enable systematic study
validation.

The other two questions both related to the improvement of data analysis and interpretation
by the extension of PiMP. A fragmentation module was developed and demonstrated the
modularity of the PiMP pipeline, and an external tool, MetExploreViz, was integrated into
the PiMP platform to expand the data interpretation features. The fragmentation module
allowed for the first time the automated analysis of fragmentation data as part of a standard
untargeted metabolomics pipeline, bringing better confidence in metabolites annotation and,
therefore, better coverage of the metabolome for data interpretation. It is, however, currently
limited in the number of external databases used, and could give better confidence enlarging
the fragment spectra comparison to other databases. The integration of MetExploreViz and
the development of a communication protocol between PiMP and MetExplore web services
extension of the data interpretation within the PiMP platform. This new tool has the benefit of
eliminating all manual steps required to visualise metabolomics data at a system level, and,
therefore, enable scientists with no experience in data formatting to proceed to a network
analysis. The current state of the tool is, however, limited to metabolites identified against a
standard compound. It will be imperative as a future improvement, to allow users to select
annotated compounds (matched by mass only) to have more flexibility and control over the
network analysis.

The work presented in Chapter 4 shows that the PiMP platform can be used as the foun-
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dation to support the development of new features. It also indicates that the tool still has a
great potential for improvement. While this work demonstrated that it is possible to sup-
port metabolomics users from study design to data interpretation; unifying the tools to-
gether into one unique semi-automated platform, would have an even greater impact on the
metabolomics community. From a broader perspective, this approach could be applied to
many data analysis software in biological science and other omics, providing simple, stan-
dardised platform of analysing data without compromising on the diversity of analysis ap-
proaches. While KNIME and Taverna offer the possibility to create data analysis pipelines,
Galaxy is currently the main solution used within the metabolomics community for this pur-
pose [174]. These solutions have, however, severe limitations in term of data visualisation
and user assistance. The PhenoMeNal consortium, in an effort to standardise metabolomics
data analysis, is proposing an alternative approach using docker containers to encapsulate
data analysis tools and standardise their usage. This very same approach has been imple-
mented in PiMP and enables the creation of pipelines by linking several docker containers
together. A full data analysis pipeline has, however, yet to be implemented as part of the
PhenoMeNal e-infrastructure.

Chapter 5 focused on the analysis of metabolomics data in a broader context. The work
presented integrates metabolomics and RNA-seq data in an attempt to inform and interpret
further metabolomics data analysis results. The approach taken makes use of genome-scale
metabolic networks reconstruction to link the two omics together. This work also attempted
to assess whether the automation of integrated analysis is possible. The integration resulted
in network connecting metabolites to transcripts data which validated the method. However,
little biological information could be extracted from this network for several reasons. First,
the lack of statistical power of the metabolomics data due the low number of replicates re-
sulted in a small list of metabolites significantly changing between the different groups. The
second issue was the number of metabolites with no putative annotations, which could not
be included in the integrative analysis. As mentioned in the discussion of chapter 5, the
acquisition of fragmentation data could have improved the identification of metabolites, and
a higher number of replicates would have given better confidence in the changes observed.
Some information could, however, be extracted but should be confirmed by a new experi-
ment. The subtle changes in amino acid contents show a correlation with RNA-seq data,
however, not significant. The significant difference of choline phosphate in the two biolog-
ical groups clearly suggests that the activation of nicotinic receptors has not only an effect
on the cascading pathways but also on the metabolisms. The hypothesis was made that this
difference could reflect an inflammatory response and would be related to choline phosphate
binding to C-reactive proteins. This assumption, however, would require testing using a hs-
CRP test. While no real conclusion could be made from this integrative approach, the results
suggest that the processes involved in the tumorigenic effects of activated nicotinic receptors
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could have an effect on the metabolism.

The approach taken was also found to require too many manual transformations of the data
to be automatised at this stage. While efforts are being made towards standardisation of
omics data, the lack of standard identifiers at every omics level still represents a barrier to
automated holistic approaches.

High-throughput omics technologies have enabled an in-depth investigation of the organ-
isation of the systems of organisms. The potential of the data, is, however, not yet fully
exploited. Omics technologies still need to evolve towards an overall standardisation to offer
holistic approaches to biological science. The disparity between omics data generation and
its in-depth analysis needs to be addressed. As suggested in this commentary [158], one
way of improving the analysis and integration of omics data is to increase community-driven
development. Another way of improving data analysis and integration is the systematic pub-
lication of datasets in dedicated public data repositories. As mentioned in this review [157],
the integration of Laboratory Information Management Systems and its standardisation and
use in submission to public data repositories can lead to a more efficient use of the data.
However, while the development of resources to support scientists in this task is in progress,
it will require fundamental changes in the way the scientific community publishes research
to make this process of data documentation and publication a standard requirement.
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Appendix A

PiMP libraries

A.1 R libraries

• AnnotationDbi

• acepack

• BH

• Biobase

• BiocGenerics

• BiocInstaller

• Biostrings

• bitops

• brew

• caTools

• cluster

• codetools

• colorspace

• curl

• DBI

• devtools

• dichromat

• digest

• doParallel

• evaluate

• fields

• foreach

• foreign

• Formula

• gdata

• ggplot2

• git2r

• gplots

• gptk

• gridExtra
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• gtable

• gtools

• Hmisc

• httr

• impute

• IRanges

• iterators

• jsonlite

• KEGGREST

• KernSmooth

• labeling

• lattice

• latticeExtra

• limma

• magrittr

• maps

• MASS

• Matrix

• memoise

• mime

• munsell

• mzR

• mzmatch.R

• nloptr

• nnet

• outliers

• packrat

• plyr

• png

• PiMP

• PiMPDB

• ProtGenerics

• proto

• ptw

• RColorBrewer

• Rcpp

• RCurl

• rJava

• RJSONIO

• RMySQL

• reshape2

• roxygen2

• rpart

• RSQLite

• rstudioapi

• RUnit

• rversions

• R.methodsS3

• R.oo

• R.utils

• R6

• scales
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• snow

• spam

• stringi

• stringr

• survival

• S4Vectors

• whisker

• xcms

• XLConnect

• XLConnectJars

• XML

• xml2

• XVector

• yaml

• zlibbioc

A.2 Python libraries

• amqp

• amqplib

• anyjson

• billiard

• celery

• Django

• django-celery

• django-chartit

• django-extensions

• django-registration

• django-jquery-file-upload

• funcsigs

• honcho

• jsonpickle

• kombu

• lxml

• matplotlib

• mock

• MySQL-python

• nose

• numpy

• pbr

• Pillow

• pip

• pyparsing

• PySide

• python-dateutil

• pytz

• rpy2

• scipy

• scikit-learn
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• setuptools

• simplejson

• six

• sqlparse

• suds

• virtualenv

• virtualenvwrapper

• wheel

A.3 JavaScript libraries

• Highcharts

• jQuery

• Select2

• Bootstrap 2 and 3

• DataTables

• -prefix-free
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Appendix B

List of Standard compounds
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Appendix C

Integrated network pathway list

Name Gene Coverage (%) Nb of Mapped

Alanine and aspartate metabolism 5.26 1

Aminosugar metabolism 2.86 1

Arginine and Proline Metabolism 1.89 1

Bile acid synthesis 1.43 1

Cholesterol metabolism 2.04 1

CoA synthesis 3.13 1

Eicosanoid metabolism 1.02 1

Folate metabolism 5 1

Fructose and mannose metabolism 2 1

Glycerophospholipid metabolism 1.04 1

Glycolysis/gluconeogenesis 1.67 2

Glyoxylate and dicarboxylate metabolism 2.5 1

Heme degradation 20 1

Heme synthesis 10 1

Histidine metabolism 3.7 1

Inositol phosphate metabolism 1.37 1

Methionine and cysteine metabolism 1.92 1



140

Name Gene Coverage (%) Nb of Mapped

Miscellaneous 2.5 2

NAD metabolism 5.56 1

Nucleotide interconversion 2.21 4

Oxidative phosphorylation 5.11 7

Pentose phosphate pathway 2.86 1

Phenylalanine metabolism 6.25 1

Propanoate metabolism 5 1

Purine catabolism 5.77 3

Pyrimidine catabolism 4.65 2

Pyruvate metabolism 1.96 1

Selenoamino acid metabolism 2.78 1

Sphingolipid metabolism 1.59 1

Squalene and cholesterol synthesis 20 1

Steroid metabolism 2.33 1

Transport, extracellular 3.57 11

Transport, golgi apparatus 8.33 1

Transport, mitochondrial 1.85 1

Triacylglycerol synthesis 3.7 1

Tryptophan metabolism 1.61 1

Tyrosine metabolism 1.27 1

Unassigned 3.31 4

Urea cycle 8.33 3

Vitamin A metabolism 3.03 1

Vitamin C metabolism 5.88 1

Table C.1: List of pathways covered by the network reconstructed from the differentially
expressed genes.
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Appendix D

List of metabolites mapped to the
metabolic network
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Metabolite name Formula

Guanosine C10H13N5O5

Hypoxanthine C5H4N4O

L-citrulline C6H13N3O3

L-tryptophan C11H12N2O2

L-tyrosine C9H11NO3

L-threonine C4H9NO3

L-proline C5H9NO2

D-Fructose 6-phosphate C6H11O9P

L-glutamate C5H9NO4

L-valine C5H11NO2

L-aspartate C4H7NO4

Thymine C5H6N2O2

AMP C10H12N5O7P

Xanthine C5H4N4O2

Cytidine C9H13N3O5

D-glucose C6H12O6

adenine C5H5N5

Adenosine C10H13N5O4

L-homoserine C4H9NO3

L-leucine C6H13NO2

L-alanine C3H7NO2

Table D.1: List of metabolites found to be in the human metabolic network reconstructed
from the RNA-seq data.
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C. Duperier, M. Tremblay-Franco, J.-F. Martin, D. Jacob, S. Goulitquer,
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