

Wang, Jing (2017) Optimizing graph query performance by indexing and
caching. PhD thesis.

http://theses.gla.ac.uk/8272/

Copyright and moral rights for this work are retained by the author

A copy can be downloaded for personal non-commercial research or study, without prior
permission or charge

This work cannot be reproduced or quoted extensively from without first obtaining
permission in writing from the author

The content must not be changed in any way or sold commercially in any format or
medium without the formal permission of the author

When referring to this work, full bibliographic details including the author, title,
awarding institution and date of the thesis must be given

Enlighten:Theses
http://theses.gla.ac.uk/

theses@gla.ac.uk

http://theses.gla.ac.uk/8205/
http://theses.gla.ac.uk/
http://theses.gla.ac.uk/
mailto:theses@gla.ac.uk

OPTIMIZING GRAPH QUERY
PERFORMANCE BY INDEXING AND

CACHING

JING WANG

SUBMITTED IN FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF

Doctor of Philosophy

SCHOOL OF COMPUTING SCIENCE

COLLEGE OF SCIENCE AND ENGINEERING

UNIVERSITY OF GLASGOW

JUNE 2017

c© JING WANG

Abstract

Subgraph/supergraph queries, though central to graph analytics, are costly as they entail the
NP-Complete problem of subgraph isomorphism. To expedite graph query processing, the
community has contributed a wealth of approaches that gradually form two categories, i.e.,
heuristic subgraph isomorphism (SI) methods and algorithms following “filter-then-verify”
paradigm (FTV). However, they both bear performance limitations. And a significant draw-
back of current studies lies in that they throw away the results obtained when executing
previous graph queries.

To this end, the current work shall present a fresh solution named iGQ, principle of which
is to acquire and utilize knowledge from the results of previously executed queries. iGQ en-
compasses two component subindexes to identify if a new query is a subgraph or supergraph
of previously executed queries, such that the stored knowledge will be turned on to acceler-
ate the execution of the new query graph through reducing the subgraph isomorphism tests
to be performed. The correctness of iGQ is assured by formal proof. Moreover, iGQ affords
the elegance of double use for subgraph and supergraph query processing, bridging the two
separate research threads in the community.

On the other hand, using cache to accelerate query processing has been prevalent in data
management systems. In the realm of graph structured queries, however, little work has
been done. Meanwhile, modern big data applications are emerging and demanding the high
performance of graph query processing. Therefore, this thesis shall put forth a full-fledged
graph caching system coined GraphCache for graph queries. From the ground up, Graph-
Cache is designed as a semantic graph cache that could harness both subgraph and super-
graph cache hits, expanding the traditional hits confined by exact match. GraphCache is
featured by well-defined subsystems and interfaces, allowing for the flexibility of plugging
in any general subgraph/supergraph query solution, be it an FTV algorithm or SI method.

Furthermore, GraphCache incorporates the iGQ as the engine of query processing, where
previously issued queries are leveraged to expedite graph query processing. With the con-
tinuous arrival of queries and the finite memory space, GraphCache requires mechanisms to

effectively manage the space, which in turn emerges the problem of cache replacement. But
none of the existing replacement policies are developed specifically for graph cache. This
work hence proposes a number of graph query aware strategies with different trade-offs and
emphasizes a novel hybrid replacement policy with competitive performance.

Following the established research in literature, GraphCache handles graph queries against
a static dataset, i.e., all graphs in the underlying dataset keep untouched during the continual
arrival and execution of queries. However, in real-world applications, the graph dataset
naturally evolves/changes over time. This poses a significant challenge for the current graph
caching technique and hence gives rise to the requirement of advanced systems that are
capable of accelerating subgraph/supergraph queries against dynamic datasets. To address
the problem, this work shall contribute an upgraded graph caching system, namely Graph-
Cache+, stressing the newly plugged in subsystems and components of dealing with the
consistency of graph cache. GraphCache+ is characterized by its two cache models that
represent different designs of ensuring graph cache consistency, as well as the novel logics
of alleviating subgraph and supergraph query processing with formal proof of correctness.

Additionally, this work is bundled with comprehensive performance evaluations of Graph-
Cache/GraphCache+ with over 6 million queries against both real-world and synthetic datasets
with different characteristics, revealing a number of non-trivial lessons.

In overall, this work contributes to the community from three perspectives: it provides a
fresh idea to expedite graph query processing, applicable for both SI methods and FTV
algorithms; it presents GraphCache, to the best of our knowledge the first full-fledged graph
caching system for general subgraph/supergraph queries; it explores the topic of graph cache
consistency, putting forth a systematic solution GraphCache+.

Acknowledgements

It is a long long journey to go through the tunnel. Fortunately, I am not alone, as a torch of
hope and courage is always there, lightening my way ahead.

First, I would like to express my great gratitude to my supervisor Prof. Peter Triantafillou. I
am so lucky to be a PhD student directed by Peter – an outstanding supervisor who affords
us the opportunity of meeting him every day if we need help; a dedicated scientist with
immense knowledge and strict attitude to assure we are on the right track of research. Peter
has spent a large amount of time and efforts in supervising my work from baby-steps. I can
never thank him enough.

Moreover, I owe a big thank to my second supervisor Dr. Nikos Ntarmos. Nikos has given
me far more help than an averaged second supervisor would do. I shall always appreciate
the interesting discussions of addressing trivial technical issues, the diagrams covering the
whole whiteboard, and the package of meaningful conversations.

Furthermore, I am grateful to my friends and colleagues for their accompanies and sincere
helps during the days when I am away from home. They are Foteini Katsarou, Georgios
Sfakianakis, Atoshum Cahsai, Fotis Savva, Gudrun Seebauer, Anja Schott, SvetLana Si-
monyan, Jieting Chen and Chloe Gray.

I dedicate this thesis to my family – the tranquil harbor of my mind and the endless source
of my happiness.

To my grandfather Yujun Liu. Grandpa had taught me to bravely pursue the integrity and
follow the heart when I was a kid. Time may fade a lot of things; but I will memorize
Grandpa’s instructions for ever.

To my parents Limu Wang and Defu Liu for their unconditional love. Dad and Mum en-
lighten each milestone of my life in an imperceptible manner.

To my younger brother Wenjie Wang, who is continually bringing fun.

To my husband Dr. Zichen Liu. His unwavering love supports me to proceed courageously.
Nothing is better than exploring the whole world with him together.

Dedication to Grandpa, Dad, Mum and Zichen.

Author’s Declaration

I declare that, except where explicit reference is made to the contribution of others, that this
dissertation is the result of my own work and has not been submitted for any other degree at
the University of Glasgow or any other institution.

Jing Wang

Abbreviations

FTV Graph Query Processing: Filter-Then-Verify Paradigm

SI Graph Query Processing: Subgraph Isomorphism Method

sub-iso Subgraph Isomorphism Testing

Qsub Subgraph Query

Qsuper Supergraph Query

iGQ Indexing Graph Queries Approach

GC GraphCache System

GC+ GraphCache+ System

POP Graph Cache Replacement Policy: Popularity Based Strategy

PIN Graph Cache Replacement Policy: POP + Number of Sub-Iso Tests

PINC Graph Cache Replacement Policy: PIN + Sub-Iso Tests Costs

HD Graph Cache Replacement Policy: The Hybrid Dynamic Strategy

EVI Cache Model: Evicting Graph Cache Contents

CON Cache Model: Ensuring Graph Cache Consistency

Table of Contents

1 Introduction 1

1.1 Thesis Statement . 2

1.2 Key Questions and Contributions . 3

1.3 Thesis Structure . 6

1.4 Publications . 7

2 Literature Review 8

2.1 Graph Query Processing and Subgraph Isomorphism Problem 8

2.1.1 Problem Formulation . 8

2.1.2 Brute Force Approach: SI Methods 9

2.1.3 FTV Paradigm . 12

2.2 Leveraging Cache to Accelerate Queries 14

2.3 Summary . 16

3 Indexing Query Graphs to Speed Up Graph Query Processing 17

3.1 Avoiding the Obstacles . 17

3.1.1 Insights . 18

3.1.2 iGQ Perspectives . 21

3.2 iGQ Frameworks for Subgraph Queries 21

3.2.1 The Subgraph Case: Isub . 22

3.2.2 The Supergraph Case: Isuper . 27

3.2.3 Two Optimal Cases . 30

3.3 iGQ Frameworks for Supergraph Queries 31

3.3.1 The Subgraph Case: Isub . 31

3.3.2 The Supergraph Case: Isuper . 35

3.3.3 Two Optimal Cases . 38

3.4 iGQ Algorithms and Structures . 39

3.4.1 Finding Supergraphs in Isub . 39

3.4.2 Finding Subgraphs in Isuper . 39

3.5 Summary . 46

4 GraphCache: A Caching System for Graph Queries 48

4.1 System Design and Architecture . 49

4.1.1 Overview of Cache Issues . 49

4.1.2 Designing GraphCache . 50

4.1.3 System Architecture . 51

4.2 Query Processing . 55

4.2.1 Candidate Set Pruning . 55

4.2.2 Statistics Monitoring . 60

4.3 Cache Management . 62

4.3.1 Data Layer . 62

4.3.2 Window Manager with Admission Control 64

4.3.3 Cache Replacement Policies . 71

4.3.4 Running in Parallel with Query Processing 83

4.4 Summary . 84

5 Ensuring Consistency in Graph Cache for Graph-Pattern Queries 86

5.1 Exploring Graph Cache Consistency . 87

5.1.1 Consistency in Caches . 87

5.1.2 Designing GraphCache+ . 88

5.1.3 System Architecture of GraphCache+ 89

5.2 Brute Force Approach: EVI Cache . 92

5.3 Advanced CON Cache . 93

5.3.1 Interpreting the Rationale of CON 93

5.3.2 Algorithms and Structures . 97

5.3.3 CON Expediting Subgraph Query Processing 99

5.3.4 CON Expediting Supergraph Query Processing 106

5.4 Summary . 113

6 Performance Evaluation 114

6.1 Experimental Setup . 115

6.1.1 Graph Datasets . 115

6.1.2 Query Workloads . 116

6.1.3 Algorithmic Context . 118

6.1.4 Dataset Change Plan . 118

6.1.5 Parameters and Metrics . 119

6.2 Results and Insights . 120

6.2.1 HD Wins . 120

6.2.2 GC/FTV versus FTV . 121

6.2.3 GC/SI versus SI . 123

6.2.4 GC/SI versus FTV . 125

6.2.5 GC+/SI versus SI . 128

6.2.6 Varying the Skewness of Query Distribution 129

6.2.7 Various Cache Sizes . 131

6.2.8 Higher Gains with Cache Admission Control 132

6.2.9 Negligible Space Overhead . 133

6.2.10 Query Time Break-down Analysis 135

6.3 Summary . 136

7 Conclusions 138

7.1 Summary of Contributions . 138

7.1.1 Contributions: Algorithms . 138

7.1.2 Contributions: Systems . 140

7.2 Future Work . 141

A Approximation of the Time Element for PINC and HD Strategies 143

A.1 Enlarging the Dataset Graph . 145

A.2 Labeling Each Graph Node . 146

A.3 An Example of the Use Case in GraphCache 147

A.4 Summary . 150

Bibliography 151

List of Tables

3.1 Extracting Features from Queries {g1, g2, g3, g4} 41

3.2 Decomposing the New Query Graph g into Features 42

3.3 Comparing Each Query Feature against the Trie 42

3.4 Counting the Occurrences of Graphs in multiset G 44

4.1 Metrics Pertaining to Cached Queries in GraphCache 61

4.2 An Example: Cached Query Statistics . 75

4.3 POP Replacement Policy: Looking into the Example of Table 4.2 77

4.4 PIN Replacement Policy: Looking into the Example of Table 4.2 79

4.5 PINC Replacement Policy: Looking into the Example of Table 4.2 82

5.1 Mapping Each State to the Containment Relationship of an Executed Query
g′ versus a Dataset Graph G . 94

5.2 State Transition Analysis: the Subgraph Case when g′ is a Qsub 102

5.3 State Transition Analysis: the Supergraph Case when g′′ is a Qsub 104

5.4 State Transition Analysis: the Subgraph Case when g′ is a Qsuper 108

5.5 State Transition Analysis: the Supergraph Case when g′′ is a Qsuper 111

6.1 Characteristics of Multiple Datasets . 116

A.1 Number of States on Each Level in the Worst Case 144

A.2 Number of States Per Level when Dataset Graph is Larger than Query . . . 145

A.3 Number of States Per Level with Node Label and Larger Dataset Graph . . 147

A.4 Matching Process of Subgraph Isomorphism Test 149

List of Figures

1.1 Thesis Structure: Organization of Seven Chapters 6

2.1 FTV Paradigm for Subgraph/Supergraph Query Processing 12

3.1 Dominance of the Verification Time on the Overall Query Processing Time
of Three FTV Algorithms on Two Different Real-world Graph Datasets . . 18

3.2 Average Number of Candidate Set Size, Answer Set Size, and False Positives
in the AIDS Dataset . 19

3.3 Average Number of Candidate Set Size, Answer Set Size, and False Positives
in the PDBS Dataset . 19

3.4 An Example: the New Query g with Two Previous Queries g′ and g′′; g is a
subgraph of g′ (g ⊆ g′) and a supergraph of g′′ (g ⊇ g′′). 23

3.5 iGQ Subgraph Case for Subgraph Query Processing (when g is a Qsub) . . . 24

3.6 When g is a Qsub, the Uncertain Status of Dataset Graph G3: g ⊆ G3y and
g * G3n . 25

3.7 Benefit Analysis: iGQ Subgraph Case when g is a Qsub (Areas Satisfy III ⊆
II ⊆ I; Each Notation is inside its Area.) 26

3.8 When g is a Qsub, the Uncertain Status of Dataset Graph G1: g ⊆ G1y and
g * G1n . 28

3.9 iGQ Supergraph Case for Subgraph Query Processing (when g is a Qsub) . . 29

3.10 Benefit Analysis: iGQ Supergraph Case when g is a Qsub (Areas Satisfy II
⊆ I, III ⊆ I, IV ⊆ II and IV ⊆ III; I, II and III are Round; Each Notation is
inside its Area; II Has a Solid Border and III is Enclosed by Dashes.) 30

3.11 iGQ Subgraph Case for Supergraph Query Processing (when g is a Qsuper) . 32

3.12 When g is a Qsuper, the Uncertain Status of Dataset Graph G1: g ⊇ G1y and
g + G1n . 33

3.13 Benefit Analysis: iGQ Subgraph Case when g is a Qsuper (Areas Satisfy II
⊆ I, III ⊆ I, IV ⊆ II and IV ⊆ III; I, II and III are Round; Each Notation is
inside its Area; II Has a Solid Border and III is Enclosed by Dashes.) 34

3.14 iGQ Supergraph Case for Supergraph Query Processing (when g is a Qsuper) 35

3.15 When g is a Qsuper, the Uncertain Status of Dataset Graph G3: g ⊇ G3y and
g + G3n . 36

3.16 Benefit Analysis: iGQ Supergraph Case when g is a Qsuper (Areas Satisfy III
⊆ II ⊆ I; Each Notation is inside its Area.) 38

3.17 An Example with Four Previous Queries in iGQ: {g1, g2, g3, g4}. 40

3.18 New Query g Entering the System . 42

3.19 Indexing the Features of Previous Queries by a Trie 43

4.1 GraphCache System Architecture . 51

4.2 The Data and Control Flow in GraphCache 54

4.3 Mapping iGQ Operations to GraphCache Components: Using GraphCachesub
Processor to Deal with the Subgraph Case 56

4.4 Mapping iGQ Operations to GraphCache Components: Using GraphCachesuper
Processor to Deal with the Supergraph Case 58

4.5 Performance of GraphCache for PCM and Synthetic Datasets 65

4.6 Query Times for Grapes6 on the Synthetic Dataset: with and without the Cache 66

4.7 Coefficient of Variation of Query Time for PCM, Synthetic and PDBS Datasets 67

4.8 Query Time Speedups: Grapes6/PCM Dataset 68

4.9 Reduction (Speedup) in Number of Sub-Iso Tests: Grapes6/PCM Dataset . 68

4.10 Query Time Speedups: Grapes6/Synthetic Dataset 69

4.11 Reduction (Speedup) in Number of Sub-Iso Tests: Grapes6/Synthetic Dataset 69

4.12 Query Times for Grapes6, C and C+AC on the Synthetic Dataset 70

4.13 Query Time Speedups: Grapes1/Synthetic Dataset 70

4.14 Reduction (Speedup) in Number of Sub-Iso Tests: Grapes1/Synthetic Dataset 71

4.15 GraphCache Framework for Cache Replacement 72

5.1 System Architecture of GraphCache+ . 89

5.2 GraphCache+ System: The Data and Control Flow 91

5.3 State Transitions of Containment Relationship in GraphCache+ 94

5.4 CON Cache Model: An Example with Timeline 96

5.5 State Transitions in GraphCache+ for Subgraph Query Processing 99

5.6 GraphCache+ Subgraph Case when g is a Qsub 101

5.7 GraphCache+ Supergraph Case when g is a Qsub 104

5.8 State Transitions in GraphCache+ for Supergraph Query Processing 106

5.9 GraphCache+ Subgraph Case when g is a Qsuper 107

5.10 GraphCache+ Supergraph Case when g is a Qsuper 110

6.1 GC Speedup in Query Time over CT-Index across Replacement Policies . . 120

6.2 GC Speedup in Query Time over Grapes1 across Replacement Policies . . . 121

6.3 GC Speedup in Query Time over GQL across Replacement Policies 121

6.4 GC Speedup in Query Time for PDBS across FTV Methods M 122

6.5 GC Reduction (Speedup) in Number of Sub-Iso Tests for PDBS across FTV
Methods M . 122

6.6 GC Speedup in Query Time for AIDS across FTV Methods M 123

6.7 GC Reduction (Speedup) in Number of Sub-Iso Tests for AIDS across FTV
Methods M . 123

6.8 GC Speedup in Query Time for AIDS/PDBS across SI Methods M 124

6.9 GC Reduction (Speedup) in Number of Sub-Iso Tests for AIDS across SI
Methods M . 125

6.10 Speedup in Query Time of GC/SI vs FTV across Datasets and Workloads:
GC/VF2 vs GGSX . 126

6.11 Speedup in Query Time of GC/SI vs FTV across Datasets and Workloads:
GC/VF2+ vs CT-Index . 126

6.12 Reduction (Speedup) in Number of Sub-Iso Tests for GC/SI vs FTV across
Datasets and Workloads: GC/VF2 vs GGSX 127

6.13 Reduction (Speedup) in Number of Sub-Iso Tests for GC/SI vs FTV across
Datasets and Workloads: GC/VF2+ vs CT-Index 127

6.14 GC+ Speedup in Query Time for Type A Workloads 128

6.15 GC+ Speedup in Query Time for Type B Workloads 128

6.16 GC+ Reduction (Speedup) in Number of Sub-Iso Tests 129

6.17 GC Speedup in Query Time for Type B Workloads on the AIDS Dataset, for
Various Values of Zipf α . 130

6.18 GC Speedup in Query Time against GGSX with Various Cache Sizes 131

6.19 GC Performance vs Grapes6 for Type B Workloads on PCM/Synthetic Datasets132

6.20 Absolute Index Sizes (in MByte) for AIDS with GC Cache Size of 500 . . . 133

6.21 GC Space Overhead (in KByte) with Various Cache Sizes 134

6.22 GraphCache: Average Execution Time and Overhead (in Millisecond) Per
Query for the 20% Workload on AIDS Dataset 135

6.23 GraphCache+: Average Execution Time and Overhead (in Millisecond) Per
Query Graph . 136

7.1 Contributions in Algorithm/Technique . 139

7.2 Contributions Pertaining to System . 141

A.1 An Example of Query g and Dataset Graph G. 148

1

Chapter 1

Introduction

Graph structured data are prevalent in many modern applications, ranging from chemical,
bioinformatics, and other scientific datasets to social networking and social-based applica-
tions (such as recommendation systems). In biology, for example, there is a great need
to model “structured interaction networks”. These abound when studying species, proteins,
drugs, genes, and molecular and chemical compounds, etc. In these graphs, nodes can model
species, genes, etc. and edges reflect relationships between them. Molecular compounds, for
instance, which consist of atoms and their bonds are naturally modeled as graphs. Ditto for
social networks, where nodes refer to people and edges represent their relationships, or for
recommendation engines where graph nodes model entities and attributes.

Boosted by real-world applications, a formidable challenge is to develop systems and algo-
rithms that can store, manage, and provide analyses over large numbers of graphs. Already,
there exist several very large graph datasets. For instance, the PubChem [1] chemical com-
pound database contains more than 35 million graphs and ChEBI [2] (the Chemical Entities
of Biological Interest) database contains more than half a million graphs. Further appli-
cations extend to software development and debugging [3] and for similarity searching in
medical databases [4]. As a result, a very large number of graph database (DB) systems,
optimized for handling graph data have emerged, such as Neo4j [5] and InfiniteGraph [6].
This is in addition to graph DBs designed by big data companies for their own purposes,
such as Twitter’s FlockDB [7], and Google’s graph processing framework, Pregel [8] (and
the list is continuously expanding, this being a very lucrative investment direction and an
area promising important technological advances). Hence, the demand for high performance
analytics in graph data systems has been steadily increasing.

1.1. Thesis Statement 2

1.1 Thesis Statement

Central to graph analytics is the ability to locate patterns in dataset graphs. Informally, given
a query (pattern) graph g, the system is called to return the set of graphs in the dataset that
contain g (subgraph query 1) or are contained in g (supergraph query [9] 2), aptly named
the answer set of g.

The fundamental problem entailed by subgraph/supergraph query processing is subgraph
isomorphism, which could have two versions. 3 The decision problem answers Y/N as to
whether the query is contained in each graph in the dataset. The matching problem locates
all occurrences of the query graph within a large graph (or a dataset of graphs). For both
versions, the brute-force approach is to execute subgraph isomorphism (abbreviated as sub-

iso or SI in the rest of this work) tests of the query against all dataset graphs. Unfortunately,
these operations can be very costly and even the popular SI algorithms [10, 11, 12] are known
to be computationally expensive. Moreover, SI algorithms deteriorate when the dataset is
comprised of a large number of graphs, as each graph will have to be tested.

This has prompted the prevalence of the “filter-then-verify” (FTV) paradigm: dataset graphs
are indexed so as to allow for the exclusion (filtering) of a number of those that are definitely
not in the query’s answer set; the remaining graphs, called the candidate set of g, need then
to undergo testing (verification) for subgraph isomorphism. However, recently extensive
evaluations of FTV methods [13, 14] show significant performance limitations, i.e., different
algorithms are good for different datasets and query workloads.

All in all, the high-performance graph analytics requirement of emerging big data appli-
cations, the NP-Complete nature of subgraph isomorphism problem, and the performance
limitations of current research give rise to significant questions: Can one design and im-
plement a suite of techniques and accompanying system that can be used to ensure
high-performance graph query processing? And do so while being able to work com-
plementing existing state of the art approaches and perform well across a variety of
datasets and workloads?

Recall the procedures of graph query processing. SI algorithms shall verify each dataset
graph for subgraph isomorphism. Although FTV solutions can produce candidate sets that
are much smaller than the original dataset, they still end up executing unnecessary sub-iso
tests: in the simplest of cases, if the same query is submitted twice to the system, it will also
be sub-iso tested twice against its candidate set.

Furthermore, a key observation is that in many real-world applications, graph queries submit-
ted in the past share subgraph or supergraph relations with future queries. These relationships

1In such case, g itself is usually referred as a subgraph query; this work uses “g is a Qsub” for abbreviation.
2In turn, g is a supergraph query, abbreviated as “g is a Qsuper” in this thesis.
3In the context of this work, graph query processing is of subgraph/supergraph queries by default.

1.2. Key Questions and Contributions 3

arise naturally. Queries against a biochemical dataset could range from queries for simple
molecules and aminoacids, all the way to queries for proteins of multi-cell organisms. In
exploratory smart-city analytics, queries referring to road networks may pertain to neighbor-
hoods, towns, metro areas, etc. In social networking queries, exploratory queries may start
off broad (e.g., all people in a geographic location) and become increasingly narrower (e.g.,
by homing in on specific demographics). In time-series graph analytics, queries are typically
associated with time intervals, which contain (or are contained within) other intervals.

Therefore, to deal with the aforementioned questions, the basic idea of this work is to make
use of the knowledge gained from previously executed queries rather than throwing
them away and expedite future graph query processing in the end. Such approach had
not been investigated by the community yet and in turn motivates the research of this thesis.

1.2 Key Questions and Contributions

Regarding the execution framework, FTV advances by including an extra filtering stage than
that of standard SI algorithms, such that fewer graphs shall be verified for subgraph isomor-
phism and the query processing time is reduced. However, solutions in literature still bear
excessive graph query time. By looking into the top performing FTV methods, this thesis
first identifies the performance bottleneck of graph queries – the overwhelming verification
time. SI solutions follow this conclusion naturally as their query processing involves only a
verification stage (no filtering).

A significant drawback of approaches in literature lies in the fact that they all throw away
executed queries without exploiting the knowledge to accelerate future query processing.
On the other hand, a large number of real-world applications indicate that graph queries
submitted in the past share subgraph/supergraph relationships with future queries. Such
status puts forth the first key question for this work.

• Q1: How can the knowledge gained from processing of past subgraph/supergraph
queries be harnessed to expedite future such queries?

Employing cache to accelerate queries has long been a mainstay in data management sys-
tems. However, little work had been done for graph structured queries, high performance of
which is demanded by modern big data applications as never before. Hence, the second key
question is delivered.

• Q2: How can a cache be designed for subgraph/supergraph queries so as to deal effec-
tively and efficiently with central aspects of caching, such as admission control, graph
replacement, etc.?

1.2. Key Questions and Contributions 4

The current research of graph query processing is confined with a static dataset, where all
graphs in the underlying dataset remain untouched during the continual arrival and execution
of queries. Whereas in real-world applications, the graph dataset naturally evolves/changes
over time. This poses a significant challenge for the community and thus motivates the third
key question.

• Q3: How can consistency of a subgraph/supergraph query cache be ensured in the face
of updates to the graph dataset?

Answering these questions identifies the fundamental work of this thesis, which contributes
to the community a suite of techniques and systems that could optimize graph query process-
ing across a variety of datasets, workloads and algorithm contexts in the end. The following
shall give an overview of such research contributions.

C1: A Fresh Perspective of Expediting Graph Queries

This thesis proposes a novel approach of optimizing graph query processing, namely iGQ,
with insights as to how the work performed by the system when executing queries can be ap-
propriately managed to improve the performance of future queries. Unlike related works that
index graphs in the dataset, iGQ rests on a query index, which consists of two components to
determine the subgraph/supergraph status between new and previous queries. Indeed, all the
indexing methods in literature could be utilized, since queries are graphs as well. Neverthe-
less, we manage to put forth a new solution for the supergraph component of iGQ, so as to
avoid heavy overheads and other unnecessary sophisticated issues. Furthermore, iGQ affords
a complete paradigm of accelerating graph queries, with the formally proved correctness.

C2: A Full-fledged Graph Caching System

Underpinned by the query method of iGQ, a graph caching system coined GraphCache is
presented. To the best of our knowledge, GraphCache is the first full-fledged caching system
for general subgraph/supergraph query processing. GraphCache is designed as a semantic
graph cache from ground up. By harnessing the subgraph/supergraph cache hits, Graph-
Cache substantially expands the traditional exact-match-only hit. Regarding the central is-
sue of replacement in any caching system, GraphCache is bundled with a number of GC
exclusive strategies that are aware of graph queries. A novel hybrid graph cache replacement
policy with performance always better or on par with the best alternative is highlighted.
Moreover, GraphCache is accompanied with a novel cache admission control mechanism to
enhance the performance gains.

1.2. Key Questions and Contributions 5

C3: Ensuring Graph Cache Consistency

Much like related works, GraphCache deals with graph query processing against a static
dataset. But it is inherent that the underlying dataset graphs evolve over time. To this end,
this thesis explores the topic of graph cache consistency and provides an upgraded system
GraphCache+, which manages to handle graph queries against a dynamic dataset. Graph-
Cache+ system is featured by two cache models, namely EVI and CON, reflecting different
designs of ensuring the consistency of graph cache. Furthermore, GraphCache+ extends the
paradigm of iGQ that is static dataset oriented, so as to accommodate the new setting in
which dataset graphs keep changing during the query workload proceeding. The correctness
of the new paradigm is assured by formal proofs.

C4: Double Use Characterizing The Design Space

The design of this work demonstrates the elegance of killing two birds using one stone in a
number of situations. First of all, iGQ provides the complete logics for subgraph/supergraph
query processing, putting two categories of queries under the roof of GraphCache(Graph-
Cache+) and bridging the separate research threads so far in the community. Moreover, the
query paradigm of GraphCache(GraphCache+) is applicable for both FTV and SI methods,
complementing state of the art approaches in literature. Furthermore, in the heart of iGQ
lies a query index, which is shared by two components in detecting the subgraph/supergraph
status between new and previous queries.

C5: Extensive Performance Evaluations of GraphCache(GraphCache+)

Like any system, GraphCache(GraphCache+) must be evaluated by a large number of queries
so as to achieve reliable results. However, the NP-Complete [15] nature of subgraph isomor-
phism testings could lead to queries with very long execution times. Nevertheless, this work
manages to utilize over 6 millions queries to conduct the performance evaluation, from which
a variety of non-trivial lessons are delivered.

C6: SI + GC >= FTV

As aforementioned, GraphCache(GraphCache+) affords speedup of graph query processing
by removing unnecessary sub-iso testings. Essentially, such approach is similar as that of
FTV paradigm, which alleviates SI methods by filtering out some dataset graphs. Hence, it
naturally follows the investigation of “SI + GC versus FTV”, i.e., operating GraphCache on
simple SI methods and comparing with state of the art FTV algorithms. Through extensive
experiments, “SI + GC” is proved competitive, obtaining comparable or better performance

1.3. Thesis Structure 6

for a fraction of the space and no pre-processing cost than the counterpart. The conclu-
sion that using GraphCache on top of SI methods could replace the best-performing FTV
algorithms is noteworthy.

1.3 Thesis Structure

 Introduction

 Conclusions

 Literature Review

 iGQ GraphCache+ GraphCache

 Performance Evaluation

§1 §2

§3 §4 §5

§6

§7

Figure 1.1: Thesis Structure: Organization of Seven Chapters

This thesis is structured into seven chapters in total, as illustrated in Figure 1.1.

• Chapter 1 presents the thesis statement, identifies fundamental questions and overviews
the contributions.

• Chapter 2 reviews related work in literature, summarizing the approaches pertaining
to graph query processing, subgraph isomorphism problem and caching system.

• Chapter 3 provides a fresh principle of indexing graph queries (iGQ) to speed up query
processing. iGQ framework for subgraph/supergraph query processing is highlighted,
each is accompanied with formally proved correctness and benefit analysis. In addi-
tion, the key algorithms and structures of iGQ are presented.

• Chapter 4 puts forth GraphCache, to the best of our knowledge the first full-fledged
caching system for general subgraph/supergraph query processing. GraphCache is
pictured by the system architecture that could easily plug-in all current FTV and SI
methods, the materialized iGQ query processing engine, the cache admission control
mechanism and a number of graph cache exclusive replacement policies.

1.4. Publications 7

• Chapter 5 shows GraphCache+, the first study in literature to explore the topic of graph
cache consistency, affording a systematic solution to deal with graph queries against
dynamic underlying datasets.

• Chapter 6 performs extensive evaluations (with millions of queries) using the well-
established FTV and SI methods, on real-world and synthetic datasets with different
characteristics and different workload generators, quantifying the benefits and over-
heads, and revealing a number of insights.

• Chapter 7 summarizes the contributions of this work from different perspectives, of
algorithm/technique and system respectively, concluding a comprehensive solution for
optimizing graph queries across the board.

1.4 Publications

The majority of the contents in this thesis has been accepted by the community through
publications in related conferences/workshops.

• P1: J. Wang, N. Ntarmos, P. Triantafillou, “Indexing Query Graphs to Speedup Graph
Query Processing”, 19th International Conference on Extending Database Technology,
(EDBT16), March 15-18, 2016.
(This publication is included in Chapter 3.)

• P2: J. Wang, N. Ntarmos, P. Triantafillou, “GraphCache: A Caching System for Graph
Pattern Queries”, 20th International Conference on Extending Database Technology,
(EDBT17), March 21-24, 2017.
(This publication is included in Chapter 4.)

• P3: J. Wang, N. Ntarmos, P. Triantafillou, “Ensuring Consistency in Graph Cache for
Graph-Pattern Queries”, Sixth International Workshop on Querying Graph Structured
Data (GraphQ 2017), with EDBT2017, March 2017.
(This publication is included in Chapter 5.)

• P4: J. Wang, N. Ntarmos, P. Triantafillou, “Towards a Subgraph/Supergraph Cached
Query-Graph Index”, In Proc. IEEE International Conference on Big Data, (Big-
Data2015), pp. 2919–2921, 2015 (poster paper).
(This publication is included in Chapter 3.)

8

Chapter 2

Literature Review

As aforementioned, subgraph/supergraph query processing could be costly due to the en-
tailed NP-Complete subgraph isomorphism problem. Researches usually fall into two cate-
gories, i.e., SI algorithms and FTV methods. The former uses heuristics so as to improve the
efficiency of subgraph isomorphism tests themselves, whereas the latter targets at enhanc-
ing the filtering power such that fewer dataset graphs will undergo sub-iso testing. However,
both SI and FTV solutions could render excessive query processing time, which in turn poses
the fundamental performance limitation of graph queries.

On the other hand, caching of query results is prevalent in accelerating the performance
of data management systems, from filesystem block caching to web proxy caching and
the cache of query result sets in relational databases. But using cache to expedite sub-
graph/supergraph query processing has not been investigated yet.

This chapter shall review the relevant studies pertaining to graph query processing approaches
and representative caching systems, highlight their differences from that of our work and po-
sition this thesis in literature in the end.

2.1 Graph Query Processing and Subgraph Isomor-

phism Problem

2.1.1 Problem Formulation

Graph queries, either in term of subgraph query processing or supergraph query processing,
share the essence of dealing with NP-Complete subgraph isomorphism problem.

In this thesis, we consider undirected labelled graphs, as is typical in the literature (e.g.,
[16, 17, 18]). For simplicity, we assume that only vertices can have labels. All results and
discussions straightforwardly generalize to the case of graphs with edge labels.

2.1. Graph Query Processing and Subgraph Isomorphism Problem 9

Definition 1. A labeled graph G = (V,E, l) consists of a set of vertices V (G) and edges

E(G) = {(u, v), u ∈ V, v ∈ V }, and a function l : V → U , where U is the label set,

defining the domain of labels of vertices.

A sequence of vertices (v0, . . . , vn) : ∃(vi, vi+1) ∈ E, constitutes a path of length n. A
simple path is a path where no vertices are repeated. A cycle is a path of length n > 1, where
v0 = vn. A simple cycle is a cycle which has no repeated vertices (other than v0 and vn).
A connected graph is a graph in which there exists at least one path between any pair of its
vertices.

Definition 2. A graph Gi = (Vi, Ei, li) is subgraph isomorphic to a graph Gj = (Vj, Ej, lj),

by abuse of notation denoted by Gi ⊆ Gj , when there exists an injection φ : Vi → Vj , such

that ∀(u, v) ∈ Ei, u, v ∈ Vi,⇒ (φ(u), φ(v)) ∈ Ej and ∀u ∈ Vi, li(u) = lj(φ(u)).

Informally, there is a subgraph isomorphism Gi ⊆ Gj if Gj contains a subgraph that is
isomorphic to Gi. As is common in the relevant studies, we focus on non-induced subgraph
isomorphism.

Definition 3. Given two graphs Gi = (Vi, Ei, li) and Gj = (Vj, Ej, lj), when Vi ⊆ Vj ,

Ei ⊆ Ej and li is the projection of lj onto the domain Vi ∪ Ei, Gi is called a subgraph of

(contained in) Gj denoted by Gi ⊆ Gj , or that Gj is a supergraph of (contains) Gi denoted

by Gj ⊇ Gi.

Definition 4. The subgraph (supergraph) query problem entails a set D = {G1, . . . , Gn}
containing n graphs, and a query graph g, and determines all graphs Gi ∈ D such that

g ⊆ Gi (g ⊇ Gi, respectively).

2.1.2 Brute Force Approach: SI Methods

To process subgraph/supergraph queries, the brute force approach is to perform subgraph
isomorphism tests, i.e., SI methods. The subgraph isomorphism problem is a generalization
of graph isomorphism problem [9, 19], which has attracted considerable attention [20, 21, 22,
23, 24, 25, 26, 27, 28, 29, 30]. As suggested by [9, 19], the classical subgraph isomorphism
problem is a decision problem, which answers Y/N as to whether the query is contained
in each graph in the dataset. Another version coined matching problem, which locates all
occurrences of the query graph within a large graph (or a dataset of graphs), has also attracted
the attention of community. The matching problem shares the same time complexity with
that of the decision problem and could be viewed as an extension. Think of the example
when a query g is not a subgraph of a dataset graph G. Whatever the problem to address,
decision or matching, the system will have to enumerate all the possible cases, so as to finally

2.1. Graph Query Processing and Subgraph Isomorphism Problem 10

determine that g is not a subgraph of G (decision problem) and there is zero occurrence of g
within G (matching problem). Currently, this work is focusing on the fundamental decision
problem of subgraph isomorphism.

The first practical subgraph isomorphism algorithm is proposed by Ullmann [12] in 1976.
For a given dataset graph G and a query graph g, a matrix M is created where M [i, j] stores
whether the i-th node in g matches the j-th node in G. Ullmanns algorithm employs a
backtracking way to enumerate all matrices M(s) such that g = M(MG)T where g and
G refer to the adjacency matrix of query graph g and dataset graph G respectively, and T
represents the operation of matrix transpose.

Subsequently, another influential SI algorithm VF2 [10] was proposed in 2004. By means
of State Space Representation (SSR) [31], VF2 relies on the adjacency analysis between
matched nodes and those not matched yet. Each state of matching process is associated to
a partial mapping between the dataset graph G and query graph g. A transition adds one
unused node of g to the used set according to the matching rules. One vector stores the
matching information for one state. The depth-first search strategy assures that there can
be at most N states in memory at a time, where N is the vertex number of query graph g.
Hence, unlike Ullmann [12] that requires O(N2) memory for matrix, VF2 reduces the space
cost to O(N), which is significant when dealing with large graph queries.

Following the fundamental principle of VF2 [10], several heuristic algorithms have been
proposed over the years. These heuristics usually fall into the three categories as follows.

• Optimizing the matching order of query vertices to minimize redundant Cartesian
products: QuickSI [32] computes the global statistics of vertex label frequency and
accesses query vertices with infrequent labels as early as possible; Unlike QuickSI’s
global matching order selection, TurboISO [33] divides candidate vertices into several
regions and computes the local matching order within each region, following the rule
of prioritizing query vertices with higher degrees and infrequent labels; CFL-Match
[34] proposes a framework of postponing Cartesian products by considering the struc-
ture of query graph.

• Enlarging the pattern to be matched per partial mapping: SPath [35] proposes a path-at-
a-time fashion, which proves to be more efficient than the traditional vertex-at-a-time
methods.

• Grouping similar vertices to avoid duplicate computations: TurboISO [33] merges
query vertices sharing the same label and same neighborhood; On the other hand,
BoostIso [36] provides a framework to combine vertices in dataset graph based on
their equivalence and containment relationships.

2.1. Graph Query Processing and Subgraph Isomorphism Problem 11

Furthermore, [11] provides an insightful presentation and comparison of several SI ap-
proaches. Through extensive experiments, a significant conclusion is drawn [11] – among a
variety of SI algorithms of interest [10, 32, 17, 35], GraphQL [17] is the only solution that
could scale with query size (up to 10 edges) when the dataset graph is relatively large (Hu-
man dataset [37] with ≈4.6K vertices and ≈86K edges per graph). This lies in the advanced
heuristic strategies of GraphQL [17].

• Essentially, GraphQL employs pseudo subgraph isomorphism tests in an iterative man-
ner, during the process of adding each vertex pair (i.e., (u, v), where u is the query ver-
tex and v is the vertex in dataset graph) to form a partial mapping. In the first iteration,
two breadth-first search trees Tu and Tv are obtained with depth of one (d = 1), where
vertex v is discarded if Tu is not contained in Tv. Such process is iterated by increas-
ing the depth d, until it reaches the predefined refinement level. By doing so GraphQL
manages to throw redundant candidate vertices in dataset graphs at early stage, which
in turn cut down the magnitude of intermediate Cartesian products and expedite the
matching process in the end.

• Moreover, GraphQL utilizes the vertex signature of neighborhood labels to reduce the
search space, which is followed by TurboISO [33] later.

The community has also looked into subgraph queries against a single, very large graph (con-
sisting of possibly billions of nodes). [38] and [39] employ scale-out architectures and large
memory clusters with massive parallelism respectively. [33] and [36] provide a centralized
solution to the same problem via efficient heuristics.

Indeed, all SI approaches can be leveraged in the verification stage of FTV paradigm. Ar-
guably, VF2 [10] is the most widely used nowadays by a large number of FTV methods
[16, 40, 41, 18, 42]. To further alleviate the time consuming subgraph isomorphism verifica-
tions, most competitive FTV approaches manage to utilize information from the index (for
those graphs that survive the filtering process) and render performance gains [18, 42].

Specifically, CT-Index [18] developed an upgraded version of VF2 (coined VF2+ in this
work) for subgraph isomorphism verification. Compared with vanilla VF2, VF2+ is charac-
terized by a number of additional heuristics.

• First, in the aforementioned index, each dataset graph is accompanied with an extended
vertex sequence, construction of which follows two criteria: (i) each vertex is adjacent
to a predecessor in the sequence whenever possible; (ii) vertices with rare labels are
prioritized than their counterparts.

• Second, before performing the expensive operation of subgraph isomorphism tests,
dataset graphs with fewer vertices/edges than query are discarded.

2.1. Graph Query Processing and Subgraph Isomorphism Problem 12

Graph Dataset

Dataset
Graph
Index

Query g
Candidate
Set CS(g)

Subgraph
Isomorphism

Test
Result

Figure 2.1: FTV Paradigm for Subgraph/Supergraph Query Processing

• Third, during the matching process, each partial mapping assures that the newly added
vertex of dataset graph bears higher or equal degree than that of query graph.

Due to these effective heuristics, VF2+ [18] manages to substantially optimize the perfor-
mance of subgraph isomorphism testing than the plain VF2 [10].

2.1.3 FTV Paradigm

When the dataset is comprised of a large number of graphs, SI algorithms deteriorate since
each graph will have to be tested. Thus appeared the “filter-then-verify” (FTV) paradigm.

FTV methods try to reduce the set of graphs to run the subgraph isomorphism test, by filtering
out graphs which definitely do not belong to the query answer set. At the heart of these
methods lies an index on the dataset graphs. Figure 2.1 illustrates the three major stages of
subgraph/supergraph query processing.

• Indexing: Dataset graphs are reduced to their features (i.e., substructures of the graph,
such as paths, trees, cycles, or arbitrary subgraphs), which are then indexed in an
appropriate data structure (e.g., trie, hash table, etc.).

• Filtering: Given a query graph g, g is also decomposed into its features, following
the same process as for dataset graphs. Then the index is searched for g’s features;
for subgraph queries, the set of graphs that contain all of said features are returned,
whereas for supergraph queries the returned set consists of graphs all of whose features
are contained in g’s features. This set is called the candidate set, coined as CS(g).

• Verification: All known FTV algorithms guarantee that there will be no false negatives;
that is, for subgraph (supergraph) queries, all graphs in the dataset that can possibly
contain (resp. are contained in) the query graph g will be included in the candidate

2.1. Graph Query Processing and Subgraph Isomorphism Problem 13

set CS(g). However, false positives are possible – not all graphs in the candidate set
contain (resp. are contained in) the query graph. Hence, each graph in the candidate
set CS(g) must be verified by subgraph isomorphism test, so as to determine whether
it falls into the final query result.

FTV approaches in the literature can be classified along two dimensions: whether they em-
ploy (frequent) mining techniques or an exhaustive enumeration for the production of fea-
tures, and based on the type of features of the dataset graphs they index (e.g., paths, trees,
subgraphs). Note that exhaustive enumeration can yield huge indices and may take a pro-
hibitively long time to do so. For this reason, all exhaustive enumeration approaches limit
the size of features to a typically fairly small number of edges (i.e., 10 or less).

Mining-based approaches, both for supergraph queries ([43, 44, 45, 46, 47]) and subgraph
queries (e.g., [40, 48, 47]) utilize techniques to mine for frequent (or discriminating, in [46])
(sub)graphs among the dataset graphs that are then indexed. Other mining-based approaches
like Tree+∆ [49] and TreePi [41] mine for and index frequent trees.

Lindex [50] and LWindex [51] utilize the frequent mining algorithms of previous approaches,
and are thus able to index and query several feature types. Typically such approaches tend
to mine for more complex structures, which presents a trade-off between the complexity and
time required for the indexing process vis-a-vis the potential for higher pruning power during
query processing. However, numerous related performance studies [14, 52, 42, 13, 18] have
shown that feature-mining approaches tend to be comparatively worse performers.

On the other hand, SING[52], GraphGrep[53] and GraphGrepSX[16] perform exhaustive
enumeration, listing all paths of dataset graphs up to a certain path length. Similarly, CT-
Index[18] indexes trees and cycles, whereas Grapes[42] indexes paths along with location
information.

A different approach, which does not index features as above, is presented in gCode[54]. For
each graph G in the graph dataset, gCode computes a signature per vertex of G (essentially
reflecting the vertex’s neighborhood) and then computes a signature for G itself. The latter
is a tree structure combining the signatures of all its vertices.

Recent performance studies [13, 14] have shown that CT-Index[18] and Grapes[42] are high
performing approaches. CT-Index [18] is based on deriving canonical forms for the (tree,
cycle) features of a graphG, to the fact that for trees and cycles finding string-based canonical
forms can be done in linear time (unlike general graphs). These string representations of a
graph’s features are then hashed into a bitmap structure per graph G. Checking whether a
query graph g can possibly be a subgraph of a graphG, can be done with simple and efficient
bitwise operators between the bitmap of g and that of G (as supergraphs must contain all
features of a subgraph). Last, in the verification stage, CT-Index upgrades the plain VF2 [10]
and results the VF2+ algorithm for subgraph isomorphism testing (see details in §2.1.2).

2.2. Leveraging Cache to Accelerate Queries 14

Grapes [42] is designed to exploit parallelism available in multi-core machines. It exhaus-
tively enumerates all paths (up to a maximum length), which are then inserted into a trie with
their location information. This operation is performed in parallel by several threads, each of
which works on a portion of the graph, producing its own trie, and subsequently all tries are
merged together to form the path index of a graph. Grapes then computes (typically) small
connected components of graphs in the candidate set, on which the verification (subgraph
isomorphism test) is performed by employing VF2 algorithm [10].

An insightful discussion and comparative performance evaluation of several indexing tech-
niques for subgraph query processing (published prior to 2010) can be found in [13]. Further-
more, [14] presented a systematic performance and scalability study of several older as well
as current state-of-the-art index-based approaches for subgraph query processing. We are
not aware of similar in-depth studies of solutions to supergraph query processing; however,
[51] provides a concise overview of related approaches.

On a related note, recent work also deals with graph querying against historical graphs,
identifying subgraphs enduring graph mutations over time [55], which can be viewed as a
variation whereby graph snapshots in time can be viewed as different graphs. Note that
[55] bears different scenarios than that of our work GraphCache+. The former is regarding
a certain (fixed) query graph against a dataset (collection of the historical graphs), i.e., the
basic subgraph query processing. Whereas GraphCache+ handles a much more complex
case, in which continually arrived queries are executed against a dataset that keeps changing.

There has also been considerable work on approximate graph pattern matching. Relevant
techniques (e.g., [18, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67]) perform (sub)graph
matching with support for wildcards and/or approximate matches. These solutions are not
directly related to our work, as we expedite exact subgraph/supergraph query processing.

Apriori [68] based pruning method (i.e., supergraphs of infrequent patterns are definitely
infrequent) has been widely applied in frequent mining [69, 70, 71] to reduce searching
space. This is expressed by the second optimal case of iGQ in our work. However, our
approach covers more than that, e.g., previously issued queries, whatever the status over
dataset graphs, will be well utilized by future queries.

2.2 Leveraging Cache to Accelerate Queries

Though caching of query results has long been a mainstay in data management systems, little
work has been done in the realm of graph-structured queries.

For XML datasets, views have been used to accelerate path/tree queries [72, 73, 74]; Besides,
[75] firstly proposed the MCR (maximally contained rewriting) approach for tree pattern

2.2. Leveraging Cache to Accelerate Queries 15

queries and [76] revisited it by providing alternatives; both exhibit false negatives for the
query answer. Our work GraphCache does not produce any false negative or false positive.
Also, GraphCache is capable of dealing with much more complex graph-structured queries,
which entail the NP-Complete problem of subgraph isomorphism.

More recently, caching has also been utilized to optimize SPARQL query processing for
RDF graphs. [77] introduced the first SPARQL cache, where a relational database was em-
ployed to store the metadata. [78] contributed a cache for SPARQL queries based on a novel
canonical labelling scheme (to identify cache hits) and on a popular dynamic programming
planner [79]. Similar to GraphCache, query optimization in [78] does not require any a priori
knowledge on datasets/workloads and is workload adaptive.

However, like XML queries, SPARQL queries are less expressive than general graph queries
and thus less challenging [80, 39]; SPARQL query processing consists of solving the sub-
graph homomorphism problem, which is different from the subgraph isomorphism problem,
as the former drops the injective property of the latter. Moreover, GraphCache discovers
subgraph, supergraph, and exact-match relationships between a new query and the queries in
the cache, something that the canonical labelling scheme in [78] fails to achieve. SPARQL
query processing also aims at optimizing join execution plans [81] (based on join selectiv-
ity estimator statistics and related cost functions), and the cache in [78] is focusing on this
goal, whereas GraphCache aims to avoid/reduce costs associated with executing SI heuris-
tics whose execution time can be highly unpredictable and much higher. As such, the overall
rationale of GraphCache and the way cache contents are exploited differs from that in [78]
and in related SPARQL result caching solutions.

On a related note, [82] presents a cache for historical queries against a large social graph,
in which each query is centered around a node in the social graph, and where the aim is to
avoid maintaining/reconstructing complete snapshots of the social graph but to instead use
a set of static “views” (snapshots of neighborhoods of nodes) to rewrite incoming queries.
[82] does not deal with subgraph/supergraph queries per se; rather, the nature of the queries
means that containment can be decided by just measuring the distance of the central query
node to the centre of each view. Moreover, [82] does not deal with central issues of a cache
system (cache replacement, admission control, overall architecture/design, etc.).

Central to cache management is the replacement policy. Indeed, there are an abundance of
cache replacement policies that usually target at fast data access. In this case, each cache
hit saves one disk I/O. However, the scenario of GraphCache is different and much more
complex – each cache hit shall evoke various numbers of savings in subgraph isomorphism
testing, which could in turn render quite different query processing time. Such special cir-
cumstance had not yet been investigated by any of the policies in literature. GraphCache
hence contributes a number of exclusive replacement strategies that are graph query aware;

2.3. Summary 16

details shall be presented in §4.3.3.

Finally, an advanced topic of caching system is to ensure cache consistency. [83] first ex-
plicitly specified the consistency constraint in a query-centric approach and presented how
it could be expressed succinctly in SQL. Microsoft SQL Server provides a solution for the
application server to register queries with database and receive notifications from database
upon changes of query result, so as to ensure that query results cached at the application
server are up-to-date. Correspondingly, there are studies of cache consistency regarding
XML datasets [84] and SPARQL query processing [85]. However, the topic of ensuring
graph cache consistency for general subgraph/supergraph queries had not been discussed
yet.

2.3 Summary

This chapter has summarized the solutions of graph query processing and reviewed the re-
searches regarding utilizing cache to expedite queries. The challenge of subgraph/supergraph
queries stems from the entailed subgraph isomorphism problem, which is NP-Complete [15].
Hence formed two categories of solutions, where SI methods rest on heuristics to accelerate
the matching process of subgraph isomorphism and FTV algorithms focus on pruning out
dataset graphs that can not possibly enter the final query result before performing the costly
subgraph isomorphism verification. However, they both suffer performance limitations.

Therefore, a general solution is on demand such that it could ensure high performance of
graph queries across a variety of datasets, workloads and algorithm contexts. Thus emerges
the fundamental challenges of technique and system.

• A novel principle of expediting graph queries is required, such that (i) it could afford
the elegance of double use for subgraph/supergraph query processing; (ii) it should
have the capability of incorporating and exceeding every subgraph/supergraph litera-
ture, be it an SI or FTV method; (iii) it could achieve good performance across various
datasets, workloads and algorithms.

• A comprehensive system is required to evaluate the applicability and appropriateness
of the aforementioned solution, using a large number of queries. Ideally, this system
could back on well-established principles, of which the central issues will be addressed
in the circumstance of dealing with graph query processing. Moreover, the system
should come with good designs and implementations, assuring the flexibility of easy
plug-in and the convenience to explore advanced topics.

17

Chapter 3

Indexing Query Graphs to Speed Up
Graph Query Processing

To expedite graph queries, the community has continuously contributed novel SI and FTV
approaches. As to the framework design, FTV improves by adding a filtering stage on top
of standard SI algorithms. Filtering makes fewer graphs undergo the test for subgraph iso-
morphism and reduces the query processing time. But solutions in literature still suffer
performance limitations.

For this reason, this chapter starts from analyzing the performance of state of the art FTV
methods, identifying the bottleneck of graph query processing – the overwhelming verifica-
tion time. Such conclusion naturally applies for SI solutions, since their query processing is
covered by verification only.

A significant drawback of current solutions lies in the fact that they all throw away executed
queries without exploiting the knowledge to accelerate future query processing. Moreover,
a large number of real-world applications indicate that graph queries submitted in the past
share subgraph/supergraph relationships with future queries.

Why not make use of the knowledge accrued by previous queries to facilitate the overwhelm-
ingly expensive verifications for subgraph isomorphism? Base on these considerations, this
chapter shall present a fresh perspective of indexing graph queries (iGQ) to speed up query
processing, which is applicable for both FTV algorithms and SI methods of handling sub-
graph/supergraph queries.

3.1 Avoiding the Obstacles

Graph query processing could render expensive execution time, for essentially solving the
NP-Complete subgraph isomorphism problem. The current work targets at optimizing graph

3.1. Avoiding the Obstacles 18

queries through investigating a general solution. Hence, this chapter shall first employ state-
of-the-art approaches to identify the performance bottleneck, i.e., what makes graph queries
costly, towards which the perspective of this work will be positioned.

3.1.1 Insights

Here reports on the fundamentals of the performance of three state-of-the-art FTV approaches,
GraphGrepSX [16] (GGSX), Grapes [42], and CT-Index [18], over two real graph datasets
AIDS [86] and PDBS [87]. Characteristics of these algorithms and datasets shall be de-
tailed in §6. Briefly, AIDS is a graph dataset consisting of 40,000 graphs with averaged edge
size 47, while PDBS is a graph dataset containing 600 graphs with 3,064 edges on average.
Please note that the way the queries were generated is standard among related work [42, 18].

Subgraph Query Performance: Where Does Time Go?

0%

25%

50%

75%

100%

GGSX CTindex Grapes GGSX CTindex Grapes

AIDS PDBS

Filtering Time % Verification Time %

Figure 3.1: Dominance of the Verification Time on the Overall Query Processing Time of
Three FTV Algorithms on Two Different Real-world Graph Datasets

There are two key components of the overall query processing time: filtering time (to process
the index and produce the candidate set) and verification time (to perform the verification of
all candidate graphs). Figure 3.1 shows what percentage of the total query processing time
is attributed to each component.

The dominance of the verification step is clear. This holds across the three different ap-
proaches that employ different indexing methods and utilize different strategies for cutting
down the cost of subgraph isomorphism. Recall that subgraph isomorphism performance is
highly sensitive to the size of both the input graph and the stored graph. Hence, one would
expect that for smaller stored graphs (as in the AIDS dataset) the verification step would
be much faster. Notably, however, even when graphs are very small, the verification step is
the biggest performance inhibitor and as graphs become larger (e.g., PDBS) the verification

3.1. Avoiding the Obstacles 19

step becomes increasingly responsible for nearly the total query processing time. Of course,
given the NP-Completeness of subgraph isomorphism, one would expect that verification
would dominate, especially for large graphs. But the fact that even with very small graphs
this holds is noteworthy.

Filtering Power: Is It Good Enough?

5,486

2,622
3,064

2,352 2,352 2,352

3,134

270
712

0

2,000

4,000

6,000

GGSX CTindex Grapes

Candidate Answer False Positive

Figure 3.2: Average Number of Candidate Set Size, Answer Set Size, and False Positives in
the AIDS Dataset

351
321

180 167 167 167 184
154

13
0

100

200

300

400

GGSX CTindex Grapes

Candidate Answer False Positive

Figure 3.3: Average Number of Candidate Set Size, Answer Set Size, and False Positives in
the PDBS Dataset

The second fundamental point pertains to how the verification cost can be reduced. Related
works highlight that their approaches prove to be very powerful in terms of filtering out the
vast majority of dataset graphs. Figures 3.2 and 3.3 show the results with respect to the
average size of candidate sets and of the answer set, as well as the average number of false
positives for the AIDS and PDBS datasets.

First, note that different algorithms behave differently in different datasets (e.g., Grapes sig-
nificantly outperforms CT-Index in PDBS while the reverse holds for AIDS). Second, note

3.1. Avoiding the Obstacles 20

that despite the powerful filtering of an approach, when the dataset contains a large number
of graphs (see Figure 3.2) in absolute numbers, there is a very large number of unnecessary
subgraph isomorphism tests (i.e., false positives) that is required. The above two combined
imply that even the best algorithm will suffer from a large number of unnecessary subgraph
isomorphism tests under some datasets.

Turning the attention to Figure 3.3 one see that for datasets with medium to small number
of graphs, the high filtering power can indeed result in requiring only a relatively small
number of subgraph isomorphism tests. However, considerable percentages of false positives
can appear in the candidate sets of even top-performing algorithms; e.g., CT-Index, which
exhibited the best filtering in the AIDS dataset, has an almost 50% false positive ratio in
the PDBS dataset. Furthermore, not all subgraph isomorphism tests for the graphs in the
candidate set are equally costly. As the cost of subgraph isomorphism testing depends on the
size of the graph, the larger graphs in the candidate set contribute a much greater proportion
of the total cost of the verification step. Note that, naturally, false positive graphs tend to be
the largest graphs in the dataset, since these have a higher probability to contain all features
of query graphs.

Note that this work placed emphasis on the number of unnecessary subgraph isomorphism
tests (i.e., the false positives), as filtering can be further improved by reducing this number.
However, it is not the only source of possible improvements; iGQ can improve on the number
of subgraph isomorphism tests even beyond this, by exploiting knowledge gathered during
query execution (to be detailed later).

The insights that can be drawn are as follows:

• Despite the fact that state-of-the-art techniques (based on indexing features of dataset
graphs) can enjoy high filtering capacity, there is still large room for improvement, as
even the best approaches may perform large numbers of unnecessary subgraph iso-
morphism tests.

• Improving further the filtering power of approaches can significantly reduce query
processing time, as this will cut down the number of subgraph isomorphism tests,
which dominates the overall querying time.

• Even approaches that are purported to enjoy great filtering powers, can behave much
more poorly under different datasets.

• Unnecessary subgraph isomorphism tests are not solely caused by false positives; even
graphs in the candidate set that are true positives can be unnecessarily tested if the
system fails to exploit this knowledge (accrued by previous query executions).

3.2. iGQ Frameworks for Subgraph Queries 21

3.1.2 iGQ Perspectives

Providing the analyses on the graph query obstacles, the current work shall offer a new per-
spective to improve the performance of subgraph/supergraph query processing, with insights
pertaining to utilizing executed queries to accelerate future query processing. This approach
rests on the following three observations.

• In related works, there exists an implicit assumption that graph queries will be simi-
larly structured to the dataset graphs. In general this is not guaranteed to hold (e.g., in
exploratory analytics), and when query graphs have no match in the dataset graphs,
query processing cannot benefit at all from indexes that are solely constructed on
dataset graphs.

• Even when query graphs have matches against dataset graphs, the system performs ex-
pensive computations during query processing and simply throws away all (painstak-
ingly and laboriously) derived knowledge (i.e.,previous query results).

• The success of known approaches depends on and exploits the fact that dataset graphs
share features (e.g., when mining for frequent features) and/or that dataset graph fea-
tures contain or are contained in other graph features (e.g., when using tries to index
dataset graph features). However, they completely fail to investigate and exploit such
similarities between query graphs.

Furthermore, many applications indicate that new queries could share subgraph/sueprgraph
relationships with previous queries; see examples in §1.1. The above combined motivates
iGQ of this work.

Instead of “mining” only the stored graphs and creating relevant indexes on them, iGQ also
“mine” query graphs and accumulate the knowledge produced by the system when running
queries, creating a query index in addition to the dataset index. The insights identify which
is the relevant accumulated knowledge and how to exploit it during query processing in order
to further reduce the number of subgraph isomorphism tests. iGQ is capable of accommo-
dating any proposed approach for subgraph/supergraph query processing and help expedite
both query categories.

3.2 iGQ Frameworks for Subgraph Queries

iGQ aims to augment the functionality and benefits offered by any one of the subgraph and/or
supergraph query processing methods in the literature. Say, the chosen method is called M.

3.2. iGQ Frameworks for Subgraph Queries 22

The iGQ framework consists of method M and the two components of I, namely Isub and
Isuper.

For the sake of simplicity, we shall first describe the operation of iGQ when M is a method
for subgraph query processing (denoted Msub) here and leave the frameworks for supergraph
query processing in §3.3.

Initially, method Msub builds its graph dataset index as per usual. The iGQ index, I, starts
off empty; it is then populated as queries arrive and are executed by Msub.

Upon the arrival of a query g, the query processing is parallelized. One thread uses method
Msub’s algorithms and indexing structure to breakdown the query graph into its features,
and uses its index to produce a candidate set of graphs, CS(g), as usual. Additionally, I
will obtain as many of the intermediate and final results from method Msub’s execution as
possible; e.g., it will obtain the features of the query graph, to be compared to those stored
in I (from previously-executed queries). At this point, two separate threads will be created:
one will check whether the query graph is a subgraph of previous query graphs and the other
will check whether it is a supergraph of previous query graphs. These cases yield different
opportunities for optimization and are discussed separately below.

The following proceeds to describe the function of each component of the iGQ framework
and how it is all brought together. For the formal proofs of correctness that follow, for
simplicity, assumptions are made as follows.

Assumptions The iGQ index components, Isub and Isuper work correctly. That is:

g′ ∈ Isub(g)⇒ g ⊆ g′ (3.1)

and
g′′ ∈ Isuper(g)⇒ g ⊇ g′′ (3.2)

Figure 3.4 presents a running example showing the status of g ⊆ g′ and g ⊇ g′′, namely g
is a subgraph of g′ (g′ contains g) and g is a supergraph of g′′ (g contains g′′). §3.4.1 and
§3.4.2 shall prove that these assumptions hold.

3.2.1 The Subgraph Case: Isub

This case occurs when a new query g is a subgraph of a previous query g′. When g′ was
executed by the system, the Isub component of iGQ indexed g′’s features. Additionally, iGQ
stored the results computed by Msub for g′.

Figure 3.5 depicts an example for the subgraph case of iGQ. A new query g is “sent” to
method Msub’s graph index, producing a candidate set, CS(g), which in this case contains

3.2. iGQ Frameworks for Subgraph Queries 23

A

B

A C
(a) New Query g

A B

A C

BA
(b) Previous Query g′

A

B

A

(c) Previous Query g′′

Figure 3.4: An Example: the New Query g with Two Previous Queries g′ and g′′; g is a
subgraph of g′ (g ⊆ g′) and a supergraph of g′′ (g ⊇ g′′).

the four graphs {G1, G2, G3, G4}. Similarly, g is “sent” to the iGQ subgraph component,
Isub, from where it is determined that there exists a previous query g′, such that g ⊆ g′.
iGQ then retrieves the answer set, Answer(g′) (previously produced by method Msub and
indexed by Isub); in this case, Answer(g′) = {G1, G2}.
The reasoning then proceeds as follows. Consider graph G1 ∈ CS(g). Since from Isub it has
been concluded that g ⊆ g′ and from the answer set of g′ we know that g′ ⊆ G1, it necessarily
follows that g ⊆ G1. Similarly, it concludes that g ⊆ G2. Hence, there is no point in testing
g for subgraph isomorphism against G1 or G2, as the answer is already known. Therefore,
one can safely subtract graphs G1, G2 from Msub’s candidate set, and test only the remaining
graphs (reducing the number of subgraph isomorphism tests in this example by 50%). After
the verification stage, G1, G2 are added to the final answer set.

Turing our attention toG3. ProvidingAnswer(g′) = {G1, G2}, it naturally follows g′ * G3.
Though Isub has concluded that g ⊆ g′, whetherG3 contains g is mysterious. Still, the queries
g and g′ in Figure 3.4 are used for illustration. As shown by Figure 3.6, there could exist both
G3y and G3n satisfying the requirement of g′ * G3. However, G3y and G3n result different
outcomes as to the status of G3 and g – apparently, G3y contains g whereas G3n does not.
Therefore, G3 has to be left for subgraph isomorphism test, in order to conclude the final
status. For the same reason, G4 will be tested for subgraph isomorphism as well.

In the general case, g may be a subgraph of multiple previous query graphs g′i in Isub. Fol-
lowing the above reasoning, we can safely remove from CS(g) all graphs appearing in the
answer sets of all query graphs g′i, as they are bound to be supergraphs of g; that is, the set
of graphs submitted by iGQ for subgraph isomorphism testing is given by:

CSsub(g) = CS(g) \
⋃

g′i∈Isub(g)

Answer(g′i) (3.3)

where each graph g′i is such that g′i ∈ Isub(g), with answer set Answer(g′i) (when g′i was

3.2. iGQ Frameworks for Subgraph Queries 24

Subgraph
Query

Start

Dataset Graph Index iGQ Query Index
(SUB)

g ✓ g0

Answer(g0) = {G1, G2}

Subgraph
Isomorphism Test

Answer(g) = Answer [{G1, G2}

End

g

CS(g) = {G1, G2, G3, G4}

CS(g) � Answer(g0) = {G3, G4}

Answer

Figure 3.5: iGQ Subgraph Case for Subgraph Query Processing (when g is a Qsub)

processed by Msub). The set union operation on Answer(g′i) is based on the fact that for any
g′i ∈ Isub(g) with G ∈ Answer(g′i), it applies with g ⊆ G.

Finally, if Answersub(g) is the subset of graphs in CSsub(g) verified to be containing g

through subgraph isomorphism testing, the final answer set for query g will be:

Answer(g) = Answersub(g) ∪
⋃

g′i∈Isub(g)

Answer(g′i) (3.4)

Lemma 1. The iGQ answer in the subgraph case does not contain false positives.

Proof. Assume that a false positive was produced by iGQ; particularly, consider the first

3.2. iGQ Frameworks for Subgraph Queries 25

A

B

A C
(a) New Query g

A B

A C

BA
(b) Previous Query g′

A B

A C

A
(c) G3y

A

B

A

C
(d) G3n

Figure 3.6: When g is a Qsub, the Uncertain Status of Dataset Graph G3: g ⊆ G3y and
g * G3n

ever false positive produced by Isub, i.e., for some query g, ∃GFP such that g * GFP and
GFP ∈ Answer(g). Note that GFP cannot be in Answersub(g), as the latter contains only
those graphs from CSsub(g) that have been verified to be supergraphs of g after passing the
subgraph isomorphism test, and hence g * GFP ⇒ GFP 6∈ Answersub(g). Therefore, by
formula (3.4), GFP ∈ Answer(g) ⇒ ∃g′ such that g′ ∈ Isub(g) and GFP ∈ Answer(g′).
But by equation (3.1) g′ ∈ Isub(g)⇒ g ⊆ g′, and GFP ∈ Answer(g′)⇒ g′ ⊆ GFP . Thus
g ⊆ GFP (a contradiction).

Lemma 2. iGQ in the subgraph case does not introduce false negatives.

Proof. Assume that a false negative was produced by iGQ; particularly, consider the first ever
false negative produced by Isub, i.e., for some query g, ∃GFN such that g ⊆ GFN andGFN /∈
Answer(g). As method Msub is assumed to be correct, it cannot produce any false negatives
when processing query g, hence g ⊆ GFN ⇒ GFN ∈ CS(g). Then, the only possibility for
error is that GFN was removed using formula (3.3); i.e., GFN /∈ CSsub(g). That implies that
∃g′ such that g′ ∈ Isub(g) and GFN ∈ Answer(g′). But then, by formula (3.4), GFN will be
added to Answersub(g) and thus GFN ∈ Answer(g) (a contradiction).

3.2. iGQ Frameworks for Subgraph Queries 26

Theorem 1. The iGQ answer in the subgraph case of query processing is correct.

Proof. There are only two possibilities for error; iGQ can produce false negatives or false
positives. The theorem then follows straightforwardly from Lemmas 1 and 2.

Interpreting the Subgraph Case: Where Does Benefit Come From?

Dataset

[

g0
i2Isub(g)

Answer(g0i)

CS(g)

IIIIII

Figure 3.7: Benefit Analysis: iGQ Subgraph Case when g is a Qsub (Areas Satisfy III ⊆ II ⊆
I; Each Notation is inside its Area.)

By pruning the candidate set, iGQ manages to expedite subgraph queries. More specifically,
the subgraph case identifies dataset graphs that definitely contain the new query, exempting
their testings for subgraph isomorphism.

Figure 3.7 shows the source of benefit for subgraph case when g is a Qsub. The complete
set, i.e., area I, covers all the graphs in dataset. Inside I, there exists a subset II denoting the
candidate set for new query g, i.e., CS(g). If there were no iGQ, each dataset graph inCS(g)

will have to undergo the expensive subgraph isomorphism tests to determine the answer set
of g. iGQ, however, could utilize the knowledge derived from previous queries and detect
those test-free graphs among CS(g). Such graphs are covered by the area III in Figure 3.7.
Recall formula (3.3). III represents exactly the minus part

⋃
g′i∈Isub(g)

Answer(g′i), which

3.2. iGQ Frameworks for Subgraph Queries 27

shall be added to the final answer of query g by equation (3.4). In other words, for subgraph
query processing, benefit of iGQ in the subgraph case rests on the covering of area III –
larger III renders higher benefit.

3.2.2 The Supergraph Case: Isuper

This case occurs when a new query g is a supergraph of a previous query g′′. Figure 3.9
depicts an example for the supergraph case of iGQ. Again, the subgraph query processing
method Msub produces a candidate set,CS(g) that, say, contains four graphs {G1, G2, G3, G4}.
Running g through Isuper, it is determined that there exists a previous query graph g′′ such
that g′′ ⊆ g. Also Isuper supplies the stored answer set for g′′, Answer(g′′) = {G1, G20}.
The reasoning then proceeds as follows. Consider graph G2 ∈ CS(g). We know from Isuper
that G2 /∈ Answer(g′′). Now, if g ⊆ G2 were to indeed be true, since g′′ ⊆ g, then it must
also hold that g′′ ⊆ G2; that is, Answer(g′′) would have to contain G2 as well, which is
a contradiction. Therefore, it is safe to conclude that g * G2 and thus G2 can be safely
removed from CS(g). Similarly, one can also safely remove graphs G3, G4 from CS(g),
reducing in this case the number of required subgraph isomorphism tests by 75%.

Next, consider G1 ∈ CS(g). Since Answer(g′′) = {G1, G20}, g′′ ⊆ G1 is at hand. And
Isuper has discovered that g ⊇ g′′. However, the status of G1 and g is still unknown. Again,
using queries g and g′′ in Figure 3.4, Figure 3.8 shows the possible instances of G1 such that
g ⊆ G1y and g * G1n. As a result, G1 will have to undergo subgraph isomorphism testing.

In the general case, g may be a supergraph of multiple previous query graphs g′′i in Isuper.
By the above reasoning, only those graphs appearing in the answer sets of all queries g′′i
may actually be supergraphs of g; thus the set of graphs submitted by iGQ for subgraph
isomorphism testing is:

CSsuper(g) = CS(g) ∩
⋂

g′′i ∈Isuper(g)

Answer(g′′i) (3.5)

where g′′i ∈ Isuper(g), with answer set Answer(g′′i) (when g′′i was processed by Msub). It is
intersection on multiple sets Answer(g′′i), because only those stored graphs containing all
g′′i ∈ Isuper(g) could possibly contain g.

The final answer produced for query g by iGQ, Answer(g), will be the subset of graphs in
CSsuper(g) that have been verified by the subgraph isomorphism test.

Lemma 3. The iGQ answer in the supergraph case does not contain false positives.

Proof. This trivially follows by construction as all graphs inAnswer(g) have passed through
subgraph isomorphism testing at the final stage of processing.

3.2. iGQ Frameworks for Subgraph Queries 28

A

B

A C
(a) New Query g

A

B

A

(b) Previous Query g′′

A

B
A

C

A

(c) G1y

A B

A

A
(d) G1n

Figure 3.8: When g is a Qsub, the Uncertain Status of Dataset Graph G1: g ⊆ G1y and
g * G1n

Lemma 4. The iGQ answer in the supergraph case does not introduce false negatives.

Proof. Assume false negatives are possible and consider the first ever false negative pro-
duced by Isuper; i.e., for some query g, ∃GFN such that g ⊆ GFN and GFN /∈ Answer(g).
Method Msub does not produce in its candidate set any false negatives, henceGFN ∈ CS(g).
Then, the only possibility for error is for iGQ to have removed graph GFN from CSsuper(g)

with formula (3.5). This implies that ∃g′′ such that g′′ ∈ Isuper(g) and GFN /∈ Answer(g′′).
But since g′′ ∈ Isuper(g), by equation (3.2), g′′ ⊆ g, and then g ⊆ GFN ⇒ g′′ ⊆ GFN ⇒
GFN ∈ Answer(g′′) (a contradiction).

Theorem 2. The iGQ answer in the supergraph case of query processing is correct.

Proof. There are only two possibilities for error; iGQ can produce false negatives or false
positives. The theorem then follows straightforwardly from Lemmas 3 and 4.

3.2. iGQ Frameworks for Subgraph Queries 29

Subgraph
Query

Start

Dataset Graph Index iGQ Query Index
(SUPER)

g00 ✓ g

Subgraph
Isomorphism Test

Answer(g)

End

g

CS(g) = {G1, G2, G3, G4}

CS(g) \ Answer(g00) = {G1}

Answer(g00) = {G1, G20}

Figure 3.9: iGQ Supergraph Case for Subgraph Query Processing (when g is a Qsub)

Interpreting the Supergraph Case: Where Does Benefit Come From?

Like in the subgraph case, the supergraph case accelerates query processing by reducing
the candidate set. Whereas in the supergraph case, by making use of the previous queries,
graphs in the candidate set are further differentiated – some are determined that they can
never contain the query and hence no need for subgraph isomorphism testing, while the
remaining will be tested as per usual.

Figure 3.10 interprets the iGQ benefit for supergraph case when g is a Qsub. The area I
covers the whole dataset. Note that the candidate set CS(g) is covered by a round area
II and dataset graphs in

⋂
g′′i ∈Isuper(g)

Answer(g′′i) are included by another round area III.
Apparently, both II and III are inside area I. The intersection of II and III is coined as IV, i.e.,
CS(g) ∩⋂g′′i ∈Isuper(g)

Answer(g′′i) in formula (3.5), which consists of the new candidate set.
Performing subgraph isomorphism tests on graphs in IV hence evicts the answer set of query

3.2. iGQ Frameworks for Subgraph Queries 30

Dataset

CS(g)

CS(g) \
\

g00
i 2Isuper(g)

Answer(g00i)

I

II

III

IV

Figure 3.10: Benefit Analysis: iGQ Supergraph Case when g is a Qsub (Areas Satisfy II ⊆ I,
III ⊆ I, IV ⊆ II and IV ⊆ III; I, II and III are Round; Each Notation is inside its Area; II Has
a Solid Border and III is Enclosed by Dashes.)

g. Therefore, for subgraph queries, iGQ supergraph case effects by subtracting candidates
that do not fall into the area IV; hence smaller IV results higher benefit.

3.2.3 Two Optimal Cases

For subgraph queries, there are two special cases that warrant further emphasis, since they
introduce the greatest possible benefits.

First, note that iGQ can easily recognize the case where a new query, g, is exactly the same as
a previous query contained in I. Specifically, this holds when ∃g′ ∈ I such that g ⊆ g′ or g ⊇
g′, and g and g′ have the same number of nodes and edges. When this holds, since I stores the
result for g′, we can return directly and completely avoid the subgraph isomorphism testing
as the actual result for g is known! As the subgraph isomorphism test dominates the query
execution time, this is expected to be a large performance improvement.

Second, consider the supergraph case of iGQ. If ∃g′ ∈ Isuper(g) such that g′ ⊆ g and
Answer(g′) = ∅, then we can completely omit the verification stage again: If there were

3.3. iGQ Frameworks for Supergraph Queries 31

a dataset graph G such that g ⊆ G, since g′ ⊆ g we would conclude that g′ ⊆ G, which
necessarily implies that G ∈ Answer(g′), which contradicts the fact that Answer(g′) = ∅.
Thus, no such graph G can exist and it is safe to stop query processing at this stage.

3.3 iGQ Frameworks for Supergraph Queries

Turing our attention to the iGQ operations for supergraph queries, i.e., when M is a method
for supergraph query processing (denoted Msuper). Similarly, method Msuper builds its graph
dataset index. The iGQ index, I, starts off empty; it is then populated as queries arrive and
are executed by Msuper.

Upon the arrival of a query g, three threads are set off: (i) a thread employing method
Msuper’s algorithms to result a candidate set of graphs, CS(g); (ii) another two threads
checking whether the query graph is a subgraph/supergraph of previous query graphs.

The following shall proceed with the assumptions (3.1) and (3.2) stated in §3.2 and use the
example of Figure 3.4, so as to illustrate the operations of each component in iGQ framework
and how they are bundled together.

3.3.1 The Subgraph Case: Isub

Such case occurs when a new supergraph query g is a subgraph of a previous query g′. As
shown in Figure 3.11, the supergraph query processing method Msuper generates a candidate
set CS(g), which contains four graphs {G1, G2, G3, G4}. Running g through Isub discovers
a previous query graph g′ such that g ⊆ g′. The answer set for g′, Answer(g′) = {G1, G20}
is also accompanied.

Here comes the reasoning process. First, consider graph G2 ∈ CS(g). We know from Isub
that G2 /∈ Answer(g′). If g ⊇ G2 were to indeed be true, since g ⊆ g′, then it must follow
that g′ ⊇ G2; that is, Answer(g′) would have to containG2 as well, which is a contradiction.
Therefore, it is safe to conclude that g + G2 and thusG2 can be safely removed from CS(g).
Ditto for the removal of graphs G3, G4 from CS(g), which reduces in this case the number
of required subgraph isomorphism tests by 75%.

Next, consider G1 ∈ CS(g). Since Answer(g′) = {G1, G20}, g′ ⊇ G1 is at hand. And Isub
has discovered that g ⊆ g′. However, as to the containment relationship between G1 and g,
it still bears uncertainties. Providing the queries g and g′ in Figure 3.4, Figure 3.12 shows
the possible instances of G1 such that g ⊇ G1y and g + G1n. Due to such uncertain status,
G1 will have to be left for subgraph isomorphism verification.

3.3. iGQ Frameworks for Supergraph Queries 32

Supergraph
Query

Start

Dataset Graph Index iGQ Query Index
(SUB)

Subgraph
Isomorphism Test

Answer(g)

End

g

CS(g) = {G1, G2, G3, G4}
g ✓ g0

Answer(g0) = {G1, G20}

CS(g) \ Answer(g0) = {G1}

Figure 3.11: iGQ Subgraph Case for Supergraph Query Processing (when g is a Qsuper)

In general, g may be a subgraph of multiple previous query graphs g′i in Isub. As illustrated,
only those graphs appearing in the answer sets of all such queries g′i may actually be sub-
graphs of g; hence dataset graphs submitted by iGQ for subgraph isomorphism testing is
given by:

CSsub(g) = CS(g) ∩
⋂

g′i∈Isub(g)

Answer(g′i) (3.6)

where g′i ∈ Isub(g), with answer set Answer(g′i) (when g′i was executed by Msuper). It is
intersection on multiple sets Answer(g′i), as only those stored graphs being contained in
all g′i ∈ Isub(g) could possibly be subgraphs of g. The final answer produced for super-
graph query g by iGQ, Answer(g), will be the subset of graphs in CSsub(g) that survive the
subgraph isomorphism test.

Lemma 5. The iGQ answer in the subgraph case does not contain false positives.

3.3. iGQ Frameworks for Supergraph Queries 33

A

B

A C
(a) New Query g

A B

A C

BA
(b) Previous Query g′

A

BA
(c) G1y

A

B

A

BA
(d) G1n

Figure 3.12: When g is a Qsuper, the Uncertain Status of Dataset Graph G1: g ⊇ G1y and
g + G1n

Proof. This trivially follows by construction as all graphs inAnswer(g) have passed through
subgraph isomorphism testing at the final stage of processing.

Lemma 6. The iGQ answer in the subgraph case does not introduce false negatives.

Proof. Assume false negatives are possible and consider the first ever false negative pro-
duced by Isub; i.e., for some supergraph query g, ∃GFN such that g ⊇ GFN and GFN /∈
Answer(g). Method Msuper does not produce in its candidate set any false negatives, hence
GFN ∈ CS(g). Then, the only possibility for error is for iGQ to have removed graph
GFN from CSsub(g) with formula (3.6). This implies that ∃g′ such that g′ ∈ Isub(g) and
GFN /∈ Answer(g′). But since g′ ∈ Isub(g), by equation (3.1), g ⊆ g′, and then g ⊇ GFN

⇒ g′ ⊇ GFN ⇒ GFN ∈ Answer(g′) (a contradiction).

Theorem 3. The iGQ answer in the subgraph case of query processing is correct.

Proof. There are only two possibilities for error; iGQ can produce false negatives or false
positives. The theorem then follows straightforwardly from Lemmas 5 and 6.

3.3. iGQ Frameworks for Supergraph Queries 34

Interpreting the Subgraph Case: Where Does Benefit Come From?

Dataset

CS(g)

I

II

III

IV
CS(g) \

\

g0
i2Isub(g)

Answer(g0i)

Figure 3.13: Benefit Analysis: iGQ Subgraph Case when g is a Qsuper (Areas Satisfy II ⊆ I,
III ⊆ I, IV ⊆ II and IV ⊆ III; I, II and III are Round; Each Notation is inside its Area; II Has
a Solid Border and III is Enclosed by Dashes.)

Turning attention to the iGQ for supergraph query processing. Again, the benefit of iGQ is
analyzed in the subgraph case and the supergraph case individually.

Figure 3.13 shows the benefit for subgraph case when g is a Qsuper. Inside the area I that
covers all dataset graphs, there are two round subsets, namely II and III. The former denotes
the candidate set CS(g); the latter is for dataset graphs in

⋂
g′i∈Isub(g)

Answer(g′i). Their
intersection results the area IV, i.e., CS(g) ∩ ⋂

g′i∈Isub(g)
Answer(g′i) in formula (3.6). IV

includes graphs in the new candidate set, upon which subgraph isomorphism tests shall be
performed to determine the final query answer of g. All in all, for supergraph query process-
ing, iGQ subgraph case subtracts candidates that do not enter area IV – the smaller IV is, the
larger benefit achieves.

3.3. iGQ Frameworks for Supergraph Queries 35

Supergraph
Query

Start

Dataset Graph Index iGQ Query Index
(SUPER)

Subgraph
Isomorphism Test

Answer(g) = Answer [{G1, G2}

End

g

CS(g) = {G1, G2, G3, G4}

Answer

g00 ✓ g

Answer(g00) = {G1, G2}

CS(g) � Answer(g00) = {G3, G4}

Figure 3.14: iGQ Supergraph Case for Supergraph Query Processing (when g is a Qsuper)

3.3.2 The Supergraph Case: Isuper

This case occurs when a new query g is a supergraph of a previous supergraph query g′′.
Figure 3.14 depicts an example for the supergraph case of iGQ in processing a supergraph
query. For the new query g, method Msuper’s graph index produces a candidate set, CS(g),
which contains four graphs {G1, G2, G3, G4}. Meanwhile, Isuper discovers that there exists
a previous query g′′, such that g′′ ⊆ g. The answer set of g′′ is then retrieved; in this case,
Answer(g′′) = {G1, G2}.
The reasoning proceeds as follows. Consider graph G1 ∈ CS(g). Since from Isuper it
has been concluded that g′′ ⊆ g and from the answer set of g′′ we know that g′′ ⊇ G1,

3.3. iGQ Frameworks for Supergraph Queries 36

it necessarily follows that g ⊇ G1. Similarly, g ⊇ G2 can be concluded. Hence, there is
no point in testing G1 or G2 for subgraph isomorphism against g, as the answer is already
known. Therefore, one can safely subtract graphs G1, G2 from Msuper’s candidate set, and
test only the remaining graphs (reducing the number of subgraph isomorphism tests in this
example by 50%). And G1, G2 are added to the answer set in the end.

Now consider the dataset graph G3. Since Answer(g′′) = {G1, G2}, it naturally follows
g′′ + G3. Though Isup has concluded that g ⊇ g′′, whether G3 is contained in g is uncertain.
Again, queries g and g′′ in Figure 3.4 are used for illustration. As shown by Figure 3.15,
there could exist different instances of G3 such that G3y is contained in g whereas G3n is
not. Therefore, G3 will go for subgraph isomorphism testing to determine the final status.
Similarly, G4 will be tested for subgraph isomorphism as well.

A

B

A C
(a) New Query g

A

B

A

(b) Previous Query g′′

A

B

A C

(c) G3y

A

B

A

C
(d) G3n

Figure 3.15: When g is a Qsuper, the Uncertain Status of Dataset Graph G3: g ⊇ G3y and
g + G3n

In the general case, g may be a supergraph of several previous query graphs g′′i in Isuper.
Following the above reasoning, one can safely remove from CS(g) all graphs appearing in
the answer sets of all query graphs g′′i , as they are bound to be subgraphs of g. Hence, the set

3.3. iGQ Frameworks for Supergraph Queries 37

of graphs submitted by iGQ for subgraph isomorphism verification is given by:

CSsuper(g) = CS(g) \
⋃

g′′i ∈Isuper(g)

Answer(g′′i) (3.7)

where each graph g′′i satisfies g′′i ∈ Isuper(g), with answer set Answer(g′′i) (when g′′i was
executed by Msuper). The set union operation on Answer(g′′i) rests on the fact that for any
g′′i ∈ Isuper(g) with G ∈ Answer(g′′i), it applies with g ⊇ G.

Finally, if Answersuper(g) is the subset of graphs in CSsuper(g) verified to be contained in g
through subgraph isomorphism testing, the final answer set for query g will be:

Answer(g) = Answersuper(g) ∪
⋃

g′′i ∈Isuper(g)

Answer(g′′i) (3.8)

Lemma 7. The iGQ answer in the supergraph case does not contain false positives.

Proof. Assume that a false positive was produced by iGQ; particularly, consider the first
ever false positive produced by Isuper, i.e., for some query g, ∃GFP such that g + GFP and
GFP ∈ Answer(g). Note that GFP cannot be in Answersuper(g), as the latter contains only
those graphs from CSsuper(g) that have been verified to be subgraphs of g after passing the
subgraph isomorphism test, and hence g + GFP ⇒ GFP 6∈ Answersuper(g). Therefore, by
formula (3.8), GFP ∈ Answer(g)⇒ ∃g′′ such that g′′ ∈ Isuper(g) and GFP ∈ Answer(g′′).
But according to equation (3.2), g′′ ∈ Isuper(g) ⇒ g ⊇ g′′; hence GFP ∈ Answer(g′′) ⇒
g′′ ⊇ GFP . It thus follows that g ⊇ GFP (a contradiction).

Lemma 8. iGQ in the supergraph case does not introduce false negatives.

Proof. Assume that a false negative was produced by iGQ; particularly, consider the first
ever false negative produced by Isuper, i.e., for some query g, ∃GFN such that g ⊇ GFN and
GFN /∈ Answer(g). As method Msuper is assumed to be correct, it cannot produce any false
negatives when executing query g, hence g ⊇ GFN ⇒ GFN ∈ CS(g). Then, the only possi-
bility for error is that GFN was removed using formula (3.7); i.e., GFN /∈ CSsuper(g). That
implies that ∃g′′ such that g′′ ∈ Isuper(g) and GFN ∈ Answer(g′′). However, by equation
(3.8), GFN will be added to Answersuper(g) and thus GFN ∈ Answer(g) (a contradic-
tion).

Theorem 4. The iGQ answer in the subgraph case of query processing is correct.

Proof. There are only two possibilities for error; iGQ can produce false negatives or false
positives. The theorem then follows straightforwardly from Lemmas 7 and 8.

3.3. iGQ Frameworks for Supergraph Queries 38

Dataset

CS(g)

IIIIII

[

g00
i 2Isuper(g)

Answer(g00i)

Figure 3.16: Benefit Analysis: iGQ Supergraph Case when g is a Qsuper (Areas Satisfy III ⊆
II ⊆ I; Each Notation is inside its Area.)

Interpreting the Supergraph Case: Where Does Benefit Come From?

As to the supergraph case when g is a Qsuper, Figure 3.16 shows the source of iGQ benefit.
Inside the area I (the whole dataset), the candidate set CS(g) takes the area II, of which a
subset III covers the the minus part

⋃
g′′i ∈Isuper(g)

Answer(g′′i) in equation (3.7). In the end,
area III is added to the final answer of query g by formula (3.8). As a result, for supergraph
query processing, iGQ supergraph case benefits by removing graphs in III from subgraph
isomorphism testing – the larger III is, the higher profit obtains.

3.3.3 Two Optimal Cases

Similarly, iGQ renders two special cases for supergraph query processing. First, iGQ can
easily discover the case where a new supergraph query, g, is exactly the same as a previous
query contained in I. Specifically, this holds when ∃g′ ∈ I such that g ⊆ g′ or g ⊇ g′, and g
and g′ have the same number of nodes and edges. In such case, the stored answer set for g′

can be returned directly, completely avoiding the subgraph isomorphism tests as the actual

3.4. iGQ Algorithms and Structures 39

result for g is known already! As the subgraph isomorphism test dominates the query time,
a large performance improvement is expected.

Second, consider the subgraph case. If ∃g′ ∈ Isub(g) such that g ⊆ g′ and Answer(g′) = ∅,
the verification stage can be omitted again. The reasoning lies in that if there were a dataset
graph g such that g ⊇ G, since g ⊆ g′ one can conclude that g′ ⊇ G, which in turn follows
G ∈ Answer(g′), being a contradiction with the fact that Answer(g′) = ∅. Hence, no such
graph G can exist and it is safe to return an empty answer set directly.

3.4 iGQ Algorithms and Structures

The proofs of correctness presented in the previous subsections assume that Isub and Isuper
provide correct results; recall formulas 3.1 and 3.2. Now we shall discuss the associated
mechanisms and prove that they hold.

3.4.1 Finding Supergraphs in Isub

This case represents a microcosm of our original subgraph query problem, where instead of
indexing and querying dataset graphs, iGQ index and query previous query graphs. Hence,
any approach from the related works can be adapted for this purpose. Actually, as iGQ
can complement any existing approach, Msub, one can utilize Msub’s method for subgraph
query processing for the subgraph case of iGQ, or any other method appropriate for iGQ’s
characteristics.

Note that the assumed correct method Msub precludes false negatives and subgraph isomor-
phism testing of all candidates precludes false positives. Hence, formula (3.1)’s assumption
is trivially satisfied.

3.4.2 Finding Subgraphs in Isuper

The problem of supergraph query processing has also received some attention (e.g., in [43,
51, 45, 46, 44]). In principle, any of these algorithms can be utilized for the task at hand
within iGQ. However, this work chooses to propose a new approach, which is efficient yet
simple and avoids the complexities and overheads involved in the above general approaches.
An ideal such method should meet the demands that it can easily fit within the framework of
iGQ and share the query index with Isub.

3.4. iGQ Algorithms and Structures 40

A Running Example

Inside the component Isuper runs the supergraph query processing. Given a newly com-
ing query g, finding subgraphs in Isuper returns previous queries {gi} such that g ⊇ gi.
Following the FTV paradigm, the query processing is divided into two stages.

• First, by specific filtering rules, some of the previous queries are pruned out and the
remaining consists of a candidate set CS(g).

• Then, each graph in CS(g) is tested by subgraph isomorphism to determine whether
it is a subgraph of query g.

This work contributes the first step, by presenting a set of rules as to deriving the candidate
set CS(g). Next, we shall use an example to demonstrate such filtering process inside
Isuper.

A

CA

B

(a) g1

C

B

A

(b) g2

A B

A

D

(c) g3

A

B

AB

C

(d) g4

Figure 3.17: An Example with Four Previous Queries in iGQ: {g1, g2, g3, g4}.

To start with, previous queries stored in iGQ are preprocessed for their features. According
to Figure 3.17, there are four such queries {g1, g2, g3, g4}. Features of these graphs are
first extracted (see Table 3.1). For simplicity, features with no more than two vertices are

3.4. iGQ Algorithms and Structures 41

Table 3.1: Extracting Features from Queries {g1, g2, g3, g4}

query feature occurrence

g1 A 2
g1 B 1
g1 C 1
g1 AA 1
g1 AB 2
g1 AC 2

g2 A 1
g2 B 1
g2 C 1
g2 AB 1
g2 AC 1
g2 BC 1

g3 A 2
g3 B 1
g3 D 1
g3 AB 2
g3 AD 2

g4 A 2
g4 B 2
g4 C 1
g4 AB 4
g4 AC 1

considered – a vertex or a path, where each vertex is represented by its label, e.g., AB is a
path bridged by two vertices with label A and B respectively. Features with occurrences in
each graph are then inserted into an indexing structure of trie, where the route starting from
root to each leaf constitutes the canonical form of a feature, as shown in Figure 3.19.

When the new query enters, it is also decomposed into a set of features, which are then
compared with those of indexed graphs to determine the candidate set. Specifically, Figure
3.18 shows a query g, with its features F (g) detailed in Table 3.2 where each feature f ∈
F (g) is accompanied with its occurrence in query g (namely o).

Every feature f then looks up the trie in Figure 3.19, retrieving graphs {gi}with occurrences
no more than o and inserting {gi} into a multiset G. Table 3.3 details the retrieved {gi}
per feature f ∈ F (g). Please note that g4 is not included in the retrieval result of (AB,2)
– the feature AB appears four times in g4 (see the trie in Figure 3.19), violating the require-
ment that occurrence in gi should not exceed that of query g (i.e., 2). Hence, the returned
multiset is G = {g1, g1, g1, g1, g1, g1, g2, g2, g2, g2, g2, g3, g3, g3, g3, g4, g4, g4}.

3.4. iGQ Algorithms and Structures 42

A

B

AC B

Figure 3.18: New Query g Entering the System

Table 3.2: Decomposing the New Query Graph g into Features

query feature occurrence

g A 2
g B 2
g C 1
g AA 1
g AB 2
g AC 2
g BB 1

Table 3.3: Comparing Each Query Feature against the Trie

(f , o) {gi}

(A, 2) {g1, g2, g3, g4}
(B, 2) {g1, g2, g3, g4}
(C, 1) {g1, g2, g4}

(AA, 1) {g1}
(AB, 2) {g1, g2, g3}
(AC, 2) {g1, g2, g4}
(BB, 1) ∅

3.4. iGQ Algorithms and Structures 43

B
A

C
D

B
A

D
C

g i
o

g 1 g 3 g 4

2 2 2

g i
o

g 1 g 3 g 4g 2

2

g i
o

g 1 g 3 g 4

2

g i
o

g 1

g i
o

g 3
2

g i
o

g 2

g i
o

g i
o

g 3

g 2

g 2
2 4

C

g i
o

g 1
2

g 2 g 41

1
1 1

1 1 1
1

g 1
1 1

g 2 g 4
1

1

1

Fi
gu

re
3.

19
:I

nd
ex

in
g

th
e

Fe
at

ur
es

of
Pr

ev
io

us
Q

ue
ri

es
by

a
Tr

ie

3.4. iGQ Algorithms and Structures 44

Table 3.4: Counting the Occurrences of Graphs inmultiset G

graph count

g1 6
g2 5
g3 3
g4 4

Next, the derived multiset is analyzed, evicting the candidate graphs. First, each graph
gi ∈ G results a count of its occurrences in this multiset, as shown in Table 3.4. Then,
the count of graph gi is compared with the number of distinct features in gi (see the number
of rows per graph in Table 3.1; namely NF [gi]). If count(gi) == NF [gi] holds, gi is
added to the candidate set CS(g).

For example, themultisetG accommodates six occurrences of g1. Providing the statistics
in Table 3.1, g1 consists of six unique features. Satisfying the requirement count(gi) ==

NF [gi], g1 enters the candidate set. Turning our attention to graph g2. It appears five
times in G but has six distinct features in total. Thus, g2 is filtered out, as it possesses an
extra feature that query g does not have. Similarly, g3 and g4 are precluded by the filtering
process.

In overall, when generating the candidate set CS(g) among previous queries gi, our ap-
proach is characterized by the two following rules.

• Previous query gi should not possess extra features that do not appear in the query g.

• For each feature shared by gi and g, occurrence of the former should be no more than
the latter.

Violating any of the two requirements would preclude gi from the candidate set CS(g).
Each graph inCS(g) is then verified for subgraph isomorphism, returning subgraphs of the
query g.

Algorithms with Proof of Correctness

Algorithm 1 shows how Isuper is created. Briefly, Isuper is a trie, storing features of queries.
For each feature f it stores a pair {gi, o} for each graph gi in which f appears, where o
is its number of occurrences in gi. For each gi it also stores the number of distinct features
(NF [gi]) it contains.

Algorithm 2 illustrates how Isuper identifies candidates CS that are potential subgraphs of
query g. The idea is to find those graphs that contain only features included in the query

3.4. iGQ Algorithms and Structures 45

Algorithm 1 The Supergraph Index in iGQ
1: Input: Set Q of (previous) queries g1, g2, . . . , gn
2: Output: Supergraph index of previous queries Isuper
3:
4: Initialize Isuper to an empty TRIE

5: for all gi ∈ Q do
6: Extract all features of gi and insert them in set F (gi)
7: NF [gi] = |F (gi)|
8: for all features f ∈ F (gi) do
9: o = number of occurrences of f in gi

10: Isuper.insert(f, {gi, o})
11: end for
12: end for
13: return Isuper

graph g (lines 19–22; the check for count(gi) on line 20, ensures that all individual features
of gi are contained in g), and where for each such graph gi a feature f occurs at most as
many times as f occurs in g (line 12). Last, the graphs in CS are tested for subgraph
isomorphism to verify that gi ⊆ g.

Lemma 9. Finding subgraphs in Isuper does not contain false positives.

Proof. This trivially follows by construction as all found subgraphs have passed through
subgraph isomorphism testing at the final stage of processing.

Lemma 10. Finding subgraphs in Isuper does not introduce false negatives.

Proof. Assume there were a false negative gi such that gi ⊆ g and gi /∈ CS. Since gi ⊆ g,
any feature f in gi appears no more times than f appears in g, thus gi would be added to
G on every execution of line 12. As gi ⊆ g, all of gi’s features must appear in g. Then gi
would pass the if-clause at line 20 and be added to CS (contradiction).

Theorem 5. Finding subgraphs in Isuper is correct.

Proof. There are only two possibilities for error; finding subgraphs in Isuper can produce
false negatives or false positives. The theorem then follows straightforwardly from Lemmas
9 and 10.

Hence, formula (3.2)’s assumption holds.

3.5. Summary 46

Algorithm 2 Supergraph Query Processing in iGQ
1: Input: Query graph g and Isuper
2: Output: Candidate set CS of potential subgraphs of g
3:
4: Initializemultiset G = ∅
5: Extract all features of query graph g, F (g)
6: for all features f ∈ F (g) do
7: O[f, g] = number of occurrences of f in g
8: end for
9: for all features f ∈ F (g) do

10: if f ∈ Isuper then
11: for all {gi, o} ∈ Isuper.get(f) do
12: if o ≤ O[f, g] then
13: G.insert(gi)
14: end if
15: end for
16: end if
17: end for
18: for all graphs gi ∈ G do
19: count(gi) = number of occurrences of gi in G
20: if count(gi) == NF [gi] then
21: CS.add(gi)
22: end if
23: end for
24: return CS

3.5 Summary

This chapter has contributed a novel perspective and solution of expediting graph queries,
which departs from related work in three ways: First, it constructs the indices for queries, as
opposed to simply relying on the index of dataset graphs, which especially facilitate cases
when the query shares little characteristics of graph dataset; Second, it maintains the knowl-
edge the system produced when executing previous queries to accelerate graph query pro-
cessing; Third, it can be used to expedite both subgraph and supergraph queries, substantially
demonstrating iGQ’s elegance of killing two birds using one stone.

Contents of this chapter are mainly pertaining to the three aspects as follows.

• Demonstrating a new perspective to the problem of subgraph/supergraph query pro-
cessing, with insights as to how the work performed by the system when executing
queries can be appropriately managed to improve the performance of future queries.

• Presenting the iGQ framework as to how iGQ complements the existing approaches
with two components that are responsible of discovering the subgraph/supergraph sta-

3.5. Summary 47

tus between queries and manages to reduce the number of subgraph isomorphism tests
to be performed.

• Showing the details of iGQ approach such as the query index structure and accompa-
nying algorithms.

Furthermore, iGQ offers food for thought.

• It “mines” the relationships among queries. By indexing query graphs, in addition
to queries that are frequently submitted to system, it also benefits queries that share
subgraph/supergraph relationships with those executed. This is significant as it leads
to further interesting research topics for graph query processing.

• It presents a simple yet efficient solution to deal with supergraph query processing. By
following a set of straightforward logics, this approach swiftly avoids heavy overhead
and other unnecessary sophisticated issues. Its elegance is further emphasized by the
formally proved correctness.

48

Chapter 4

GraphCache: A Caching System for
Graph Queries

Underpinned by the proposed iGQ framework, this chapter shall put forth GraphCache, a
full-fledged caching system for graph queries. To obtain the inspiration of designing Graph-
Cache, this work starts off with a quick overview of the well-established cache principles
and applications. By considering the specific characteristics of graph queries, the design
issues of GraphCache are figured out, each with the corresponding solution. It then follows
the system architecture of GraphCache, featured by well defined subsystems and interfaces,
allowing for the flexible plug-in of any general subgraph/supergraph query method in the
literature, be it an FTV algorithm or SI solution.

Essentially, GraphCache is a semantic graph cache that is capable of harnessing both sub-
graph and supergraph cache hits, extending the traditional exact-match-only hit and hence
leading to significant speedups for graph queries. GraphCache incorporates iGQ framework,
where previously executed graph queries benefit future query processing. As queries arrive
continuously and the memory space is finite, GraphCache requires mechanisms to efficiently
deal with cache replacement.

To address this problem, an instant idea is to employ existing cache replacement policies
directly. However, none of the policies proposed so far had taken the particularity of graph
queries into consideration. GraphCache hence contributes a number of replacement strate-
gies that are graph query aware, emphasizing a novel hybrid dynamic policy for its competi-
tive performances. To the best of our knowledge, GraphCache is the first caching system in
the literature for general subgraph/supergraph queries.

4.1. System Design and Architecture 49

4.1 System Design and Architecture

4.1.1 Overview of Cache Issues

Caching is a prevalent technique in designing computer systems. Typically, cache functions
by exploiting locality, which could have two cases, temporal locality and spatial locality. In
a program having good temporal locality, a memory location that is accessed once is likely
to be frequently accessed in the near future. And in a program with good spatial locality, if
a memory location has been accessed, then in the near future, its nearby location is likely to
be accessed. Fundamentally, the two cases share the same principle, i.e., using the past to
predict and facilitate the future – essence of caching.

In a modern computer system, caching is well utilized. At the bottom hardware layer, small
fast memories (namely cache memories) hold the most recently referenced blocks of data
and instruction items, allowing the high speed access of main memory. The intermediate
operating system layer allows the main memory to cache the most recently used blocks in
the disk file. On the top layer of application programs, caching is also widely employed. For
example, Web browsers cache recently visited documents on a local disk and high-volume
Web servers hold the recently requested documents in a front-end disk cache.

Cache contents differ in various systems. Microsoft SQL Sever caches query plans and
pages from database files. For example, the world-wide distinguished library in University
of Glasgow boasts more than 25 million books. Say there is a query SELECT DISTINCT
country FROM book GROUP BY country. Microsoft SQL Sever will scan the whole table of
book with over 25 million records, on which the aggregation operations return a few entries
only. When this query is resubmitted, Microsoft SQL sever will reuse the query plan and scan
the table cached in memory from scratch. Obviously, it is not efficient enough, especially in
the era of big data when queries come in an overwhelming rush.

For this reason, increasing numbers of application systems extend their architectures by plug-
ging in a data cache, where query results are stored in a RAM named Memcached [88].
As a distributed memory object caching system, Memcached is highlighted by alleviating
database load and accelerating dynamic web applications. Memcached is widely employed
in mainstream big data applications such as LinkedIn [89] and Facebook [90]. Interestingly,
Memcached also dedicates the elegant principle of being simple yet powerful – its simple
design promotes quick deployment, ease of development, and swift solution towards many
problems in large data caches.

All in all, these examples demonstrate good practices of designing cache systems and hence
pave the way for this chapter, which targets at developing a graph cache system GraphCache
to accelerate graph query performance. Following the fundamental principle of cache, a

4.1. System Design and Architecture 50

quick idea at hand is to use previous graph queries to facilitate future query processing.
Then, an interesting issue emerges: how to make good use of the previous graph queries?
By the nature of locality, cache effects when the same query is submitted again. Also, re-
call the graph applications with subgraph/supergraph status of queries. Therefore, as to the
designing of GraphCache, the inspiration obtained is – besides the traditional cache hits
(caused by isomorphic queries), it is significant to consider and exploit the cache hits of
subgraph/supergraph cases.

4.1.2 Designing GraphCache

In designing GraphCache, a set of design issues and goals are first identified, pertaining to
the characteristics of (i) the query workloads, (ii) the underlying graph datasets, and (iii)
the algorithmic and system context within which GraphCache will operate (e.g., categories
of research methods GraphCache will complement). GraphCache is intended to expedite
graph queries whatever the algorithm of choice may be and across a wide variety of query
workloads and graph datasets.

Query Workloads As with any caching system, the assumption is that previous queries
can help expedite future queries. This is reasonable, given the example applications men-
tioned in §1. Most works [16, 42, 13, 18, 40] test algorithms for queries directly generated
from dataset graphs. Though this is of particular interest, workloads should also include
queries that are not guaranteed to have any answer. Furthermore, in general, of particular
interest to any caching system is the probability distribution of possible queries. For Graph-
Cache this in effect refers to the popularity of query graphs or of regions of the dataset
graphs. GraphCache should thus be able to deal effectively with various skewness levels of
this distribution (e.g., from uniform to highly skewed Zipf distributions). Finally, a practical
problem emerges when creating workloads: it must contain a large number of queries so as
to obtain reliable results on the performance of any method. But subgraph isomorphism is
NP-Complete. This leads to queries with possibly very long execution times, regardless of
the heuristic used, making the experiments very time consuming. Nevertheless, the current
work shall utilize well over 6 million queries for performance evaluation.

Graph Datasets Fortunately there exist a number of real-world graph datasets that are
commonly used in related research. These of course help concretize the effects of any so-
lution on real-world data and allow direct comparison of methods and result repeatability.
For this reason, evaluations conducted over three popular such graph datasets will be re-
ported; namely, AIDS[86], PDBS[87], and PCM[91]. However, it is worth creating addi-
tional synthetic datasets so to perform evaluations under characteristics unseen in the real-

4.1. System Design and Architecture 51

world datasets. Specifically, this thesis shall use a synthetic dataset [14] presenting interest-
ing characteristics regarding the number, size and node degrees of graphs in the dataset.

Algorithmic Context GraphCache is intended to be a general-purpose front-end for
graph query processing. GraphCache entails a query indexing strategy that, as explained
in §3, can accommodate both subgraph and supergraph queries. In addition, the design of
GraphCache must be able to accommodate both FTV methods and SI algorithms; its current
implementation comes bundled with well-established FTV methods and SI algorithms. In
fact, any such algorithm is viewed as a pluggable component into the architecture, allowing
any future algorithm to be incorporated.

4.1.3 System Architecture

GraphCache is designed from the ground up as a scalable semantic cache for subgraph/sup-
ergraph queries, capable of expediting any SI or FTV method (henceforth denoted Method

M). Figure 4.1 shows the main architectural components of GraphCache, comprising three
major subsystems: Method M, Query Processing Runtime, and Cache Manager. The last
two are internal subsystems of GraphCache; the first is the method that GraphCache is called
to expedite and hence external to GraphCache.

Figure 4.1: GraphCache System Architecture

4.1. System Design and Architecture 52

Method M Subsystem

The Method M subsystem includes, at a minimum, the base graph dataset and a sub-iso
test implementation, denoted Mverifier. Additionally, if M is a FTV method, then it also
features its index, denoted Mindex, and a filtering component, Mfilter. The index is built in
a pre-processing step, by using Method M’s indexing component (not shown in Figure 4.1
for simplicity).

When GraphCache is not used, subgraph/supergraph query processing proceeds by first using
Mindex through Mfilter to prune away dataset graphs definitely not containing (or contained
in) the query, thus forming its candidate set, MCS . Then Mverifier executes a sub-iso test
against all graphs in MCS , reading their structure directly from the graph dataset store. For
SI methods, MCS contains all graphs in the dataset.

Query Processing Runtime Subsystem

Within GraphCache, the Query Processing Runtime is responsible for the execution of queries
and the monitoring of key operational metrics. The key components inside the Query Pro-
cessing Runtime subsystem consist of:

• A resource/thread manager that is in charge of dispatching queries to the various fil-
tering/verification modules.

• The internal subgraph/supergraph query processors, which evict the set of previous
queries that contain or are contained in the new query, respectively.

• The logic for GraphCache’s candidate set pruning, discovering the how GraphCache
leverages the knowledge of previous queries to expedite graph query processing.

• A statistics monitor taking the key measurements for the Query Processing Runtime
subsystem.

These components communicate with Method M and the Cache Manager via well-defined
APIs. Section 4.2 shall present the Query Processing Runtime in detail.

Cache Manager Subsystem

In turn, the Cache Manager deals with the management of data and metadata stored in the
cache. Specifically, the Cache Manager subsystem comprises the following components:

• The cache replacement mechanisms that are designed and developed towards the spe-
cific characteristics of graph queries.

4.1. System Design and Architecture 53

• A Window Manager that is responsible for the cache admission control and the main-
tenance of cache contents.

• A Statistics Manager taking charge of metadata, pertaining to past or current queries.

• The stores for all GraphCache-related data, including cached queries and their answer
sets, currently executing (not cached) queries, metadata/statistics for both past and
current queries.

These components constitutes the fundamental of the Cache Manager subsystem. More
details shall be provided in section 4.3.

System Data and Control Flow

Figure 4.2 depicts the flow of control and data in GraphCache during processing of a query,
following the below procedures:

• The query first arrives at the Resource Manager (1) and is then dispatched to Mfilter

and GC’s filtering processors in parallel (2). At the same time, a copy of the query
is added to the set of currently processed queries, called the Window Manager (to be
discussed shortly).

• The filtering components use their respective indexes to produce intermediate can-
didate sets (3). More specifically, Mfilter uses Mindex, while the two GraphCache
processors use GCindex, the set of cached graph queries and their answer sets.

• The results of this stage are then fed to the Candidate Set Pruner which produces the
final candidate set GCCS (4); at the same time, statistics regarding GCCS and the
contribution of cached graphs are gathered by the Statistics Monitor and forwarded to
the Statistics Manager.

• The final candidate set then undergoes sub-iso testing using Mverifier(5); metadata
pertaining to the verification time are also gathered by the Statistics Monitor and sent
to the Statistics Manager.

• When the Window is full, the Window Manager selects the set of current queries to be
considered for admission in the cache (6) and invokes the cache replacement algorithm
(7); i.e., updates to the Cache are batched through the Window, instead of refreshing
the cache on every query arrival.

4.1. System Design and Architecture 54

Fi
gu

re
4.

2:
T

he
D

at
a

an
d

C
on

tr
ol

Fl
ow

in
G

ra
ph

C
ac

he

4.2. Query Processing 55

4.2 Query Processing

This section shall discuss the design and implementation of GraphCache’s Query Process-
ing subsystem, which is responsible for the execution of queries and the monitoring of key
operational metrics. To be clear, it shall first describe the operations of GraphCache when
caching subgraph queries and then illustrate how GraphCache can be used for supergraph
queries as well.

4.2.1 Candidate Set Pruning

For completeness, this subsection shall overview the essence of iGQ [92], mapping the oper-
ations of iGQ to the components of GraphCache. With respect to more details and the formal
proofs of correctness, please refer to §3.

Initially, if Method M is a FTV method, its indexing subsystem is used to build its graph
dataset index as per usual. The GraphCache’s data stores are initially all empty and are then
populated as queries arrive and are processed. When a query g arrives at the system, Mfilter

is used to produce a first candidate set. Concurrently, GraphCache checks whether the query
graph is a subgraph or supergraph of previous query graphs, through its GCsub/GCsuper
Processors, to be discussed separately.

GraphCachesub Processor

The GraphCachesub Processor is responsible for identifying when a new query g is a sub-
graph of a previous query g′. It can be assumed that, when g′ was first executed by the
system, GC indexed g′’s features in GCindex and stored its result set and relevant statistics
in the cache data stores.

Figure 4.3 shows an example of such case. The new query g is processed through Mfilter,
producing candidate set CSM(g) (with four graphs {G1, G2, G3, G4}). Similarly, g is
processed by the GCsub Processor, which determines that there exists a previous query g′,
such that g ⊆ g′. GC then retrieves g′’s cached answer set, {G1, G2}.

Now, consider graphG1 ∈ CSM(g). Since g ⊆ g′ and from the answer set of g′ we know
that g′ ⊆ G1, it necessarily follows that g ⊆ G1 (and, similarly, g ⊆ G2). Hence, there
is no point in testing g for subgraph isomorphism againstG1 orG2 as the answer is already
known. Therefore, one can safely remove {G1, G2} from CSM(g), sub-iso test only the
remaining graphs, and add them directly to the final answer set.

4.2. Query Processing 56

Subgraph
Query

Start

Dataset Graph Index iGQ Query Index
(SUB)

g ✓ g0

Answer(g0) = {G1, G2}

Subgraph
Isomorphism Test

Answer(g) = Answer [{G1, G2}

End

g

CS(g) = {G1, G2, G3, G4}

CS(g) � Answer(g0) = {G3, G4}

Answer

Mindex

CSM (g) Answersub = {G1, G2}

CSM (g) � Answersub(g) = {G3, G4}

Mverifier

GCsub Processor

Figure 4.3: Mapping iGQ Operations to GraphCache Components: Using GraphCachesub
Processor to Deal with the Subgraph Case

4.2. Query Processing 57

In the general case, g may be a subgraph of multiple previous query graphs g′i. Then, the set
of graphs that need be sub-iso tested is given by:

CSGCsub(g) = CSM(g) \
⋃

g′i∈Resultsub(g)

Answer(g′i) (4.1)

where Resultsub(g) contains all query graphs currently in GCindex of which g is a subgraph.

Finally, if AnswerGCsub(g) is the set of graphs in CSGCsub(g) verified to be containing
g through subgraph isomorphism testing, the final answer set for query g will be:

Answer(g) = AnswerGCsub(g) ∪
⋃

g′i∈Resultsub(g)

Answer(g′i) (4.2)

GraphCachesuper Processor

In turn, the GraphCachesuper Processor is responsible for identifying when a new query
g is a supergraph of a previous query g′′, as illustrated in Figure 4.4. Again, Method M
produces its candidate set, CSM(g) (e.g., {G1, G2, G3, G4}). GCsuper then determines
that there exists a previous query graph g′′ such that g′′ ⊆ g and whose cached answer set
is {G1, G20}.

The reasoning then proceeds as follows. Consider graph G2 ∈ CSM(g). We know from
the cached answer set above that G2 is not in the answer set of g′′. Since g′′ ⊆ g, if
g ⊆ G2 were to be true then it should also hold that g′′ ⊆ G2; i.e., the answer set of g′′

would contain G2, which is a contradiction. Therefore, it is safe to conclude that g * G2

and thus G2 can be removed from CSM(g). Similarly, we can also safely remove graphs
G3 andG4 from CSM(g), and only run a sub-iso test forG1.

In the general case, g may be a supergraph of multiple previous query graphs g′′j . By the
above reasoning, only those graphs appearing in the answer sets of all queries g′′j may pos-
sibly be supergraphs of g; Then, the set of graphs tested for sub-iso by GC is:

CSGCsuper(g) = CSM(g) ∩
⋂

g′′j ∈Resultsuper(g)

Answer(g′′j) (4.3)

where Resultsuper(g) contains all query graphs currently contained in GCindex of which g
is a supergraph. The final answer produced for query g by GC,Answer(g), will be the set
of graphs in CSGCsuper(g) that pass the sub-iso test.

4.2. Query Processing 58

Subgraph
Query

Start

Dataset Graph Index iGQ Query Index
(SUPER)

g00 ✓ g

Subgraph
Isomorphism Test

Answer(g)

End

g

CS(g) \ Answer(g00) = {G1}

Answer(g00) = {G1, G20}

Mindex GCsuper Processor

Answersuper(g) = {G1, G20}

CSM (g) \ Answersuper(g) = {G1}

Mverifier

CSM (g)

CS(g) = {G1, G2, G3, G4}

Figure 4.4: Mapping iGQ Operations to GraphCache Components: Using GraphCachesuper
Processor to Deal with the Supergraph Case

4.2. Query Processing 59

Putting It All Together

The Candidate Set Pruner collects CSM and the results of the above two Processors; it then
first applies equation (4.1) on CSM , then applies (4.3) on the result of the previous operation.
The end result is a reduced candidate set CSGC , which is given by:

CSGC(g) = (CSM(g) \
⋃

g′i∈Resultsub(g)

Answer(g′i))∩
⋂

g′′j ∈Resultsuper(g)

Answer(g′′j)

(4.4)

Mverifier then performs subgraph isomorphism test on CSGC , within which graphs con-
taining query g are identified, coined ResultGC . Finally, the subgraph query answer of g
is returned as:

Answer(g) = ResultGC ∪
⋃

g′i∈Resultsub(g)

Answer(g′i) (4.5)

Two Special Cases

Additionally, there are two cases that warrant further emphasis, since they introduce the
greatest possible gains.

First, note that GraphCache can easily recognize the case where a new query, g, is isomor-
phic to a previous cached query. Specifically, for connected query graphs, this holds when
∃g′ ∈ GCindex such that g ⊆ g′ or g ⊇ g′, and g and g′ have the same number of
nodes and edges. In this case, GraphCache can return the cached result of g′ directly and
completely avoid any further processing, including the subgraph isomorphism testing. As
the subgraph isomorphism test dominates the query execution time, this is expected to be a
large performance improvement.

Second, consider that ∃g′ ∈ Resultsuper(g) (i.e., g′ ⊆ g) and Answer(g′) = ∅; then
GraphCache can directly return with an empty result set. The reason is that if there were a
dataset graph G such that g ⊆ G, since g′ ⊆ g we would conclude that g′ ⊆ G, which
implies that G ∈ Answer(g′), contradicting the fact that Answer(g′) = ∅; thus, no
such graphG can exist and the final result set is necessarily empty.

Supergraph Query Processing

As mentioned earlier, GraphCache can expedite both subgraph and supergraph query pro-
cessing. In the latter case, the filtering components of GraphCache remain unchanged, but
the handling of the return answer sets is the exact inverse of what happens for subgraph
queries. Briefly, given a supergraph query processing Method M and a supergraph query

4.2. Query Processing 60

g, the union of the answer sets of graphs in Resultsuper(g) are removed from CSM(g)

and added to AnswerGCsuper(g), and the graphs not appearing in the intersection of the
answer sets of graphs inResultsub(g) are completely subtracted from CSM(g).

Also, the first special case still holds, but for the second special case processing terminates
when ∃g′ ∈ Resultsub(g) such thatAnswer(g′) = ∅. The intuition behind this design
follow the same reasoning as those in subgraph queries and are not repeated here.

4.2.2 Statistics Monitoring

The final component of Query Processing Runtime subsystem is the Statistics Monitor. This
is a lightweight layer, implemented as a wrapper library allowing components of this sub-
system to record various statistics (see §4.3.1) and to communicate them to the Statistics
Manager component of the Cache Manager subsystem.

As to the GraphCache system, the Statistics Monitoring component works for two purposes:
(i) measuring the quantities of query processing for performance evaluation; (ii) collecting
metrics to provide support for the cache management. Hence, statistics pertaining to these
two categories shall be demonstrated separately as follows.

Measurement of Query Performance

Metrics in this category focus on the performance of the newly coming query that is executed
with the aid of previous queries. Currently the following quantities are monitored:

• Static metrics regarding the characteristics of the query graph, including the number
of nodes, edges and distinct labels in the query.

• The number of dataset graphs in the candidate set and answer set.

• Total filtering time pertaining to executing the three filtering components in parallel,
including Mfilter, GraphCachesub Processor and GraphCachesuper Processor, as well
as the break-down time of each said component.

• Total verification time of the query, i.e., testing each dataset graph in the candidate set
so as to determine whether it appears in the answer set of the query graph.

• The number of times that the query was identified being subgraphs of previous queries
by GraphCachesub, ditto for the number of matches discovered by GraphCachesuper.

• Signals indicating whether the new query benefits from the two special cases and hence
warrant the exemption of any sub-iso tests in the verification stage.

4.2. Query Processing 61

Metrics for Cache Management

As mentioned earlier, the processing of each new query utilizes the knowledge derived from
those stored queries. Hence, the following shall present relevant measurements with regard
to the contribution of cached queries.

Table 4.1: Metrics Pertaining to Cached Queries in GraphCache

metric description

hit num the number of times that a cached graph has been hit
last hit the most recent time of a cached graph being hit
CSM reduction total reduction in the candidate set of new queries
SI cost reduction total time saving for new queries

According to Table 4.1, metric hit num counts the occurrences when a cached graph facilities
query processing, either the hits happen in GraphCachesub Processor or GraphCachesuper
Processor. In turn, last hit is constantly refreshed by the most recent hit time of a graph in
cache. The said time of hit is expressed by the serial no. of query that benefits from this exact
cached graph.

Metric CSM reduction quantifies the contribution of a cached query in terms of the re-
duction on the candidate set of new queries. Hits in GraphCachesub Processor and Graph-
Cachesuper Processor shall render the reductions with different principles.

More specifically, when a cached query g′ is identified by GraphCachesub Processor such
that the new query g is a subgraph of g′, g′ shall benefit the query processing of g, by
subtracting some candidate graphs from verification, i.e., reducing sub-iso tests of CSM(g).
Such reduction, namelyRsub, is due to the hit of g′ in GraphCachesub Processor:

Rsub(g
′, g) =

⋃

Gi∈Answer(g′)

Gi (4.6)

The reasoning proceeds as follows. To determine the reduction of cached graph g′ towards
the sub-iso tests for new query g, two situations are required to consider, i.e., the sub-iso tests
pertaining to g with and without the alleviation of g′. As to the former situation, according
to formula (4.1), the number of sub-iso tests is given by:

CSM(g) \
⋃

Gi∈Answer(g′)

Gi (4.7)

And the latter comes with CSM(g) by nature. Hence, the gap between these two situations
consists of the reduction on the sub-iso tests of g, as shown in equation (4.6). For more
analyses and proofs of correctness, please refer to §3.

4.3. Cache Management 62

Similarly, when a cached query g′′ is detected by GraphCachesuper Processor such that
the new query g is a supergraph of g′′, g′′ will reduce sub-iso tests of CSM(g) as well.
Reduction of this case is coinedRsuper, which is given by:

Rsuper(g
′′, g) =

⋃

Gi∈CSM (g) \CSM (g) ∩Answer(g′′i)

Gi (4.8)

The intuition behind follows the similar reasoning process as that of equation (4.6), through
applying formula (4.3) specifically.

Finally, the metric CSM reduction in Table 4.1 covers the reductions captured by processors
of both GraphCachesub and GraphCachesuper.

CSM reduction(x) =
∑

gi
|Rsub(x, gi)|+ |Rsuper(x, gi)| (4.9)

where x is a cached graph and {gi} denotes the set of new queries that benefit from x.

The quantity SI cost reduction further extends metric CSM reduction by taking time sav-
ings into consideration. This statistic is computed as the sum of the estimated costs of all
sub-iso tests alleviated. Regarding the estimation of the individual sub-iso test time c(g,G)

for a query graph g against a dataset graphG, it uses the formula:

c(g,G) =
N ×N !

Ln+1 × (N − n)!
(4.10)

where L is the number of distinct labels, n is the number of nodes in g, and N the number
of nodes inG havingN ≥ n. Appendix §A shall provide more details of formula (4.10).

4.3 Cache Management

In GraphCache, the Cache Manager subsystem, which runs in parallel with the Query Pro-
cessing Runtime subsystem, is dealing with the management of the data and metadata stored
in the cache. We shall first discuss the various data stores handled by this subsystem and
then dive into the design of its various components.

4.3.1 Data Layer

The Cache Manger maintains a number of complementary data stores, conceptually bundled
together into two groups: the Cache stores and the Window stores.

4.3. Cache Management 63

Cache Stores

In overall, there are three components in the Cache stores.

First, a component storing copies of cached queries (i.e., the actual graph submitted as a
query to GraphCache), alongside their result sets – the sets of dataset graph IDs containing
(for subgraph queries) or being contained in (for supergraph-queries) the query graph. This
component is implemented as an in-memory hash table, loaded from disk on startup and
written back to disk on shutdown of the Cache Manager subsystem. In said hash table, the
serial number of the query is used as the key and the query graph and result set as the value.
At startup, an upper limit is set on the size of this hash table (expressed in number of records);
the Cache is deemed full when this upper limit is reached.

Second, a combined subgraph/supergraph index, indexing the aforementioned query graphs
to expedite subgraph/supergraph matching of future queries against past queries. We have
loosely based our query index design on the GraphGrepSX subgraph query index[16], aug-
mented with additional metadata to allow for the processing of supergraph queries. This
index is loaded on startup and written back on shutdown of the Cache Manager subsystem.
Our index design allows us to have a single index for both subgraph and supergraph queries,
thus providing for lower disk space and I/O overhead, and a memory footprint low enough
to allow for the index to be easily resident in main memory throughout the lifetime of the
Cache Manager process.

Third, a component storing statistics for each cached query, implemented as an in-memory
key-value store, loaded from disk on startup and written back on shutdown of GraphCache.
The query serial number is again used as the key, pointing to a variable size array of columns,
sorted by column name. Columns in this store include, but are not limited to:

• static query metrics such as the number of nodes, edges and distinct labels in the query;

• total filtering and verification time of the query when first executed;

• count of times the query was matched by either of the GCsub/GCsuper Processors plus
number of optimal matches (see §4.2.1);

• last (most recent) time a query was matched by either Processors, expressed as the
serial number of the matching query;

• total contribution of the cached query in reducing the candidate sets and processing
times of future queries, expressed respectively as the number of dataset graphs re-
moved from the candidate set of queries and the cumulative sub-iso test time allevi-
ated.

4.3. Cache Management 64

Window Stores

On the other hand, the Window stores include two components.

First, a component storing new graph queries and their result sets, implemented in the same
manner as the first component of the Cache stores above. An upper limit on the size of this
store is also configured at startup; the Window is deemed full when said limit is reached.

Second, a component storing statistics for each query in the previous component, also imple-
mented as an in-memory key-value store like the statistics component of the Cache stores. In
this case, the statistics include only static information regarding the new queries, including
the number of nodes, edges and distinct labels in the query, as well as the total filtering and
verification time of the query.New queries are sent to the Window Manager directly from the
Query Dispatcher to be added to the appropriate store, while their answer sets are added at
the end of their processing.

All updates to the query statistics stores are performed through the Statistics Manager using
values supplied by the Statistics Monitor. The Statistics Manager is currently implemented
as a lightweight wrapper library, encapsulating accesses to the statistics stores. The design
of this subsystem has explicitly been abstract enough to allow for an easy replacement of the
data stores with other in-memory, on-disk or even remote/distributed stores without requiring
changes to the rest of our code.

The Statistics Manager exposes an interface akin to that of contemporary key-value stores;
i.e., it stores triplets of the form {key, column name, column value}, accessible either by
key (returns a “row” with all triplets with the given key), or by column name alone (returns a
“column” with all triplets with the given column name), or by key and column name (returns
a single triplet).

4.3.2 Window Manager with Admission Control

The principle of batch management is prevalently employed for cache designs and imple-
mentations. Consider the memory hierarchy of modern computer systems. Every level
caches the most recently used contents of the next level in a block-wise manner, instead
of per record or per byte. Similarly, in GraphCache system, there is a specific component
named Window Manger dealing with the batch management of issued queries.

The Window Manager, implemented as a separate thread, is the brain of the Cache Manager
subsystem. In overall, role of the Window Manager centers in the following two aspects:

• Keeping track of the queries in the current Window and invokes the Cache Admis-
sion Control algorithm to decide whether each new query should be considered as a
candidate for addition to the cache.

4.3. Cache Management 65

76.33%
82.31%

41.18%

74.81%

20.63%

31.97%

0.00%

25.00%

50.00%

75.00%

100.00%

PCM Synthetic

Hit ratio Reduction in number of sub-iso tests Query time reduction

Figure 4.5: Performance of GraphCache for PCM and Synthetic Datasets

• Executing the Cache Replacement algorithms when the Window is full, and rebuilds
GCindex to reflect any changes in the cached queries store.

The driving force behind this design was the fact that, much like all index-based graph-
matching methods, our current version of GCindex does not support dynamic concurrent up-
dates for the time being. Nevertheless, the design of GraphCache allows for low-latency/high-
throughput processing of new queries, even while the index is rebuilt, and incurs minimal
locking overhead (i.e., only for the swapping of old and new cache contents/index structures,
implemented as simple in-memory reference (pointer) swaps), trading off some possible
cache hits.

Cache Admission Control in GraphCache

Among the various experiments, we discovered that for some common graph datasets and
workloads, the overall query time reduction attained by graph caching was very low, despite
the fact that it benefited the majority of queries. Such phenomenon is coined cache pollution.
For example, Figure 4.5 depicts the overall hit ratio (i.e., the % of queries benefiting from
the cache), and the reduction in number of sub-iso tests and overall query processing time,
against the “filter-then-verify” approach [42] which was found to be a top performer in [14],
for two datasets: a real-world dataset PCM [91], containing 200 graphs with 377 nodes and
4,340 edges per graph on average, and a synthetic dataset consisting of 1,000 graphs with 892
nodes and 7,991 edges per graph on average. Results for other top-performing algorithms
(e.g., GGSX[16]) are similar and hence omitted.

As we can see, for PCM 76.33% of executed queries were cache hits, leading to a 41.18%
reduction in the number of sub-iso tests executed across the whole workload. However,

4.3. Cache Management 66

16,547

205

15,081

100

1

10

100

1,000

10,000

100,000

Top 1% time-consuming queries Remaining 99% queries

T
im
e
(m
ill
is
ec
on
ds
)

Grapes6 Graph cache

Figure 4.6: Query Times for Grapes6 on the Synthetic Dataset: with and without the Cache

the reduction in overall query time was only 20.63%. Similarly for the Synthetic dataset, a
82.31% hit ratio translated to a 74.81% overall reduction in the number of sub-iso tests, but
a mere 31.97% reduction in overall query processing time. Of course, we did not expect the
cache hit ratio to translate into equal reductions in sub-iso tests or query time, but the dif-
ference between said numbers is noteworthy. These results for both the PCM and Synthetic
datasets across several workloads are further verified.

Figure 4.6 shows an analysis of individual query times for one of the workloads against the
Synthetic dataset shown in Figure 4.5. We can see that the average query processing time
of the top 1% most time-consuming queries is 2 orders of magnitude higher than that of
the remaining 99% queries in the workload. The vanilla GraphCache does reduce the query
time of the latter queries by half; however, for the top 1% queries, which dominate the overall
query processing time, the reduction in query time was negligible. This observation explains
the results in Figure 4.5 and echoes the phenomenon of graph cache pollution: that is, the
graph cache is filled with graphs from the 99% part, leaving little space for graphs from the
top-1%, which leads to low overall query time reduction.

To further explore the problem of graph cache pollution, more datasets with different charac-
teristics are used. An interesting finding is that datasets with higher average degree of nodes
tend to exacerbate cache pollution more than datasets having lower node degrees. Figure
4.7 depicts the coefficient of variation (i.e., standard deviation over the absolute value of the
mean) of the query time for 6 workloads (W1, W2, . . ., W6) against 3 different datasets
(PCM, Synthetic and PDBS [87]). These workloads, each with 5,000 queries, are generated
following the typical procedure for Type B workloads (see section 6.1.2 for detail).

More specially, there are two parameters being considered for the workload generations: (i)
α = 1.4 and 1.1 for the Zipf distribution (probability density function: p(x) = x−α

ζ(α)
, where

4.3. Cache Management 67

0.00

3.00

6.00

9.00

12.00

W1 W2 W3 W4 W5 W6

Synthetic PCM PDBS

Figure 4.7: Coefficient of Variation of Query Time for PCM, Synthetic and PDBS Datasets

ζ is the Riemann Zeta function[93]). (ii) the percentage of no-answer queries – 0%, 20% and
50% Hence, each dataset results 2× 3 = 6 workloads (named W1, W2, ..., W6) in the end.
Apparently, datasets pertaining to higher average node degrees (PCM, Synthetic) exhibit a
considerably higher coefficient of variation in query time, compared with the counterpart
having lower node degrees (PDBS), echoing the situation depicted in Figure 4.6.

The above analysis explained that plain GraphCache produces only small reduction in query
processing time when under the influence of graph cache pollution. In order to alleviate this
situation, a key principle is to effectively manage the contents of the graph cache. Recall
that the essence of caching is that past popular items are expected to be popular in the fu-
ture. Then, a natural conjecture for graph cache management is that past expensive queries
(time-wise) are more likely to benefit later coming expensive queries. This thesis therefore
proposes an admission control mechanism rewarding expensive queries to tackle the prob-
lem of graph cache pollution.

Such mechanism works orthogonally to the vanilla GraphCache system – new queries are
batched in windows; when a window is full, its contents replace the least “useful” graphs in
the cache, identified using a utility score. With respect to the graph cache, it is optimized by
adding a switch to prevent inexpensive queries from polluting the cache.

To quantify the expensiveness of a query graph, the ratio of its verification time over its
filtering time is employed. Each executed query is thus assigned an “expensiveness” score
and only queries with such a score above a threshold are considered as candidates for entering
the graph cache. To compute said threshold, the said mechanism examines the queries in the
first few windows and computes an expensiveness value which would result in a predefined
percentage of queries (set to 10% in the experiments) being classified as expensive.

The reasoning behind the above lies in the fact that, given a graph query processing frame-

4.3. Cache Management 68

1.92

4.35

1.66

3.04

2.02

2.94
2.59

5.71

2.31

4.05

2.63

5.44

0.00

2.00

4.00

6.00

zipf 1.1 zipf 1.4 zipf 1.1 zipf 1.4 zipf 1.1 zipf 1.4

0% no answer queries 20% no answer queries 50% no answer queries

C C + AC

Figure 4.8: Query Time Speedups: Grapes6/PCM Dataset

1.67

3.20

1.71

2.97

1.59

2.50

1.65

2.57

1.62

2.31

1.50

2.28

0.00

1.00

2.00

3.00

4.00

zipf 1.1 zipf 1.4 zipf 1.1 zipf 1.4 zipf 1.1 zipf 1.4

0% no answer queries 20% no answer queries 50% no answer queries

C C + AC

Figure 4.9: Reduction (Speedup) in Number of Sub-Iso Tests: Grapes6/PCM Dataset

work, the filtering time is relatively constant across queries (e.g., retrieving trie index [42],
checking fingerprints [18], etc.), in contrast to the dramatic variance of verification times.
Moreover, the verification stage dominates the query time, as has been shown in related
work [13, 14], and the larger the verification time the more overwhelming this dominance
is. For example, recall Figure 3.1 where the verification of queries against the PDBS [87]
dataset (with averaged 3,064 edges per graph) nearly covers the total query processing time.
Thus, the above expensiveness score and admission control mechanism, are a simple yet
effective technique to guarantee that more complex queries are prioritized in the cache.

The effectiveness of cache admission control is tested using Grapes[42] and GGSX[16], for
being top-performers in literature [14]. For Grapes, two alternatives with 1 (6) threads are
used, denoted by Grapes1 and Grapes6. We report performance gains in terms of query
processing time and of the number sub-iso tests performed, expressed as a speedup; that is,

4.3. Cache Management 69

1.15

1.67

1.15

1.73

1.21
1.47 1.47

2.50

1.38

2.24

1.47

1.92

0.00

1.00

2.00

3.00

zipf 1.1 zipf 1.4 zipf 1.1 zipf 1.4 zipf 1.1 zipf 1.4

0% no answer queries 20% no answer queries 50% no answer queries

C C + AC

Figure 4.10: Query Time Speedups: Grapes6/Synthetic Dataset

1.91

4.36

1.87

4.05

1.67

3.97

1.45
1.93

1.52
1.95

1.42

2.59

0.00

2.00

4.00

6.00

zipf 1.1 zipf 1.4 zipf 1.1 zipf 1.4 zipf 1.1 zipf 1.4

0% no answer queries 20% no answer queries 50% no answer queries

C C + AC

Figure 4.11: Reduction (Speedup) in Number of Sub-Iso Tests: Grapes6/Synthetic Dataset

as the ratio of the average performance (query time, number of sub-iso tests) of the base
Method M, over the average performance of our solution when deployed over Method M
(i.e., a speedup of X>1 indicates an improvement by a factor of X). The reported speedups
are regarding both the plain GraphCache system, denoted byC, and the same cache with the
addition of our admission control mechanism, denoted by C+AC.

Figures 4.8 and 4.9 show the speedup in query time and number of sub-iso tests for the
PCM dataset. As expected, in both cases one can see that the cache performs better for
higher values of the Zipf α parameter and thus more skewed query distributions. With the
admission control mechanism turned on, the speedup of query times increases considerably
across all workloads. It is interesting to note, though, that the corresponding speedup in
the number of sub-iso tests is reduced. This validates our claim that prioritizing expensive
queries over inexpensive ones can improve the overall query processing time, even if it leads

4.3. Cache Management 70

16,547

205

15,081

100

10,065

92

1

10

100

1,000

10,000

100,000

Top 1% time-consuming queries Remaining 99% queries

T
im
e
(m
ill
is
ec
on
ds
)

Grapes6 C C + AC

Figure 4.12: Query Times for Grapes6, C and C+AC on the Synthetic Dataset

1.42

2.39

1.78

3.26

1.42

2.29

1.73

3.85

1.92

3.71

1.82

2.93

0.00

1.00

2.00

3.00

4.00

zipf 1.1 zipf 1.4 zipf 1.1 zipf 1.4 zipf 1.1 zipf 1.4

0% no answer queries 20% no answer queries 50% no answer queries

C C + AC

Figure 4.13: Query Time Speedups: Grapes1/Synthetic Dataset

to a number of inexpensive sub-iso tests not alleviated.

Similarly, Figures 4.10 and 4.11 depict the speedups of C and C+AC against Grapes6
on the Synthetic dataset. Again, the cache admission control mechanism leads to further
improvements in query time over the plain graph cache, despite the somewhat higher number
of sub-iso tests performed overall.

To better understand these trends, let us concentrate on the results for 50% no-answer queries
and Zipf α=1.4 in Figures 4.10 and 4.11, corresponding to the analysis shown in Figure 4.6
and now extended in Figure 4.12. The plain graph cache yields a speedup as high as 3.97 in
the number of sub-iso tests; however, the resulting query time speedup is only 1.47, as the top
time-consuming queries hardly benefit from the polluted cache. With the admission control
mechanism, despite the lower reduction (speedup) in sub-iso tests, the overall query time

4.3. Cache Management 71

1.92

4.36

1.87

4.05

1.67

3.97

1.81

3.35

1.73

3.07

1.52

3.01

0.00

2.00

4.00

6.00

zipf 1.1 zipf 1.4 zipf 1.1 zipf 1.4 zipf 1.1 zipf 1.4

0% no answer queries 20% no answer queries 50% no answer queries

C C + AC

Figure 4.14: Reduction (Speedup) in Number of Sub-Iso Tests: Grapes1/Synthetic Dataset

speedup is increased due to accelerating the top time-consuming queries in the workload.

Last, Figures 4.13 and 4.14 present results against Grapes1 for the Synthetic dataset, where
we can see the same trends as in the case of Grapes6. Results of other cases and for
GGSX[16] are similar and hence omitted. In overall, the proposed cache admission con-
trol mechanism is effective in further improving the query time speedup of graph caches, as
showcased with different workloads on both real-world and synthetic datasets.

4.3.3 Cache Replacement Policies

With queries continuously arriving and the limited memory for cache stores, GraphCache
requires strategies to handle the replacement. This section shall first describe a general
framework of GraphCache in dealing with the cache replacement and then propose a set of
replacement policies exclusively for GraphCache, using an example to illustrate the different
tradeoffs of various polices.

GraphCache Framework for Cache Replacement

GraphCache is designed with a framework allowing for the flexibility of accommodating
various strategies. Figure 4.15 shows the operations in such framework, among which there
exist two “black boxes” that are dependent with the replacement policy, i.e., steps accompa-
nied with notations of “Step 2” and “Step 11”.

4.3. Cache Management 72

Y

Y

N

Y

Start

End

Analyze GraphCache Benefit

Update Statistics Store

Find Isomorphic Query ?

Pass Admission Control ?
N

Batch Query in Window Stores

End of Batch ?
N

New Queries to Cache ?
N

Compute x = | New Queries | and
y = | Available Positions in Cache |

Y

x > y ?

Compute Utility Scores

Locate (x-y) Queries
Having Least Scores Add x Queries to Cache

Y

N

Replace with (x-y)
 New Queries

Add Remaining y
 New Queries to Cache

Step 2

Step 11

Step 1

Step 3

Step 4

Step 5

Step 6

Step 7

Step 8

Step 9

Step 10
Step 12

Step 13

Step 14

Figure 4.15: GraphCache Framework for Cache Replacement

4.3. Cache Management 73

• Step 1: The benefit of GraphCache is analyzed, providing the matches in Graph-
Cachesub Processor and GraphCachesuper Processor when executing the query g.
Briefly, matched graphs {g′} are further categorized into three sets: (i) S1 contains
id of graphs that are matched in GraphCachesub Processor only; (ii) S2 consists of (id
of) graphs being matched in GraphCachesuper Processor exclusively; (iii) S3 covers
(id of) those matched in the two above processors.

• Step 2: Specific to the replacement policies, statistics regarding the savings of cached
graphs are updated, such as hit num, last hit, CSM reduction and SI cost reduction
(see their interpretations in §4.2.2).

• Step 3: The system determines whether the query g is isomorphic to a cached graph
g′. This is easily achievable, provided directly by a signal indicating whether query
g benefits from the first special case. If yes, there is no reason to cache g, as its
isomorphic graph g′ has been cached. Hence, further steps can be avoided and the
procedure is ended.

• Step 4: Query g is checked whether it satisfy the requirements of passing the cache
admission control (please refer to §4.3.2 for detail). If not, the procedure comes to an
end as well.

• Step 5: The query graph g, together with its result set and static statistics (detailed in
§4.3.1), is batched in Window Stores.

• Step 6: According to the experiment setting for the upper limit of window size, it is
determined whether the current query g is at the end of batch. If not, the procedure is
ended.

• Step 7: Window Stores are checked whether there are new queries being batched. An
extreme case is that for each query in current batch, either it is isomorphic to those in
cache already, or it does not survive the cache admission control, which in turn leads
to an end of the procedure. Otherwise, further steps are triggered.

• Step 8: Two quantities pertaining to the number of new queries in Window Stores
(represented by x) and of the available positions in cache (in term of y) are calculated.

• Step 9: Numeric comparison between x and y is performed. If x is smaller, go to
Step 10. Otherwise, go to Step 11.

• Step 10: Move x queries directly from Window Stores to Cache Stores and then end
the procedure.

4.3. Cache Management 74

• Step 11: Since there are not enough positions in cache to hold new queries, replace-
ment will take place. During this process, utility scores of cached graphs are first com-
puted, following the formula defined by each replacement policy (to present shortly).

• Step 12: Then, (x− y) cached graphs with the lowest scores are located.

• Step 13: Cache Stores occupied by these located graphs are replaced directly by (x−
y) new queries in Window Stores.

• Step 14: The remaining y new queries in Window Stores are cached in. Thus fin-
ishes the branch involving cache replacement, as well as the whole procedure of cache
management.

Next, the “black boxes” shall be revealed in each concerned replacement policy. To tackle
the cache replacement, GraphCache is bundled with a number of novel strategies (POP, PIN,
PINC and HD), each offering different trade-offs and performance characteristics for various
datasets and query workloads. These strategies shall be described here and their relative
performance is left for §6. In all cases, it will access query statistics through the Statistics
Manager’s key-value store interface and return the IDs of queries to be cached out, i.e.,
queries are assigned a “utility” value and those with the lowest such values are cached out.

To help illustrate all cache replacement algorithms considered for GraphCache, Table 4.2
presents a snapshot of GCstats for a number of hypothetical cached queries, as an example,
say, the cache now is full of 6 entries and window size w is 2. In all cases, assume that
the replacement algorithm is invoked at time point 99 (i.e., right after the query with serial
number 99 was executed 1) and needs to remove two entries from the cache, thus has to find
the two entries with the lowest utility value.

Least Recently Used (LRU)

LRU discards the least recently used items from the cache. Hence, the utility of each cached
graph is its last “hit” time – the serial no. of the last query that are matched and accelerated
by the said cached query, either in GraphCachesub Processor or GraphCachesuper Processor.

Please note that in GraphCache there exist cases that cached graphs are matched however
not rendering savings to the query processing. For example, when a cached graph g′ is hit by
query g in GraphCachesub Processor only and the answer set of g′ in cache stores is empty,
g′ shall not provide any real help for the processing of query g. Therefore, the definition
of last hit time, as well as other metrics regarding the cache management of GraphCache,
stresses the real savings. 2

1The serial number used in GraphCache starts from zero by default, including the id of graph and of batch.
2In GraphCache system, if without any specific illustration, hits of a cached graph by default refer to those

rendering real savings for query processing.

4.3. Cache Management 75

Table 4.2: An Example: Cached Query Statistics

SerialNo /
Query ID Last Hit

Number
of Hits

(H)

CSM
Reduction

(R)

SI Cost
Reduction

(C)

11 91 23 170 2600

13 51 32 80 1200

37 69 26 376 780

53 78 13 210 360

82 90 5 120 150

91 95 4 10 270

Turning attention to the two black boxes in Figure 4.15. For LRU policy, the metric con-
cerned in Step 2 and Step 11 is last hit time of each cached graph. There are two stages
involved in Step 2: (i) among cached graphs, those rendering savings for the query g are first
identified; (ii) the entry last hit time of each identified graph is updated by the ID of g.

Algorithm 3 details the procedures for the first stage. More specifically, a BitSet Bs is ini-
tialized with length of the upper limit of cache size (each bit is false by default). Providing
the various matching categories, the strategies of determining real savings are different. For
each cached graph in set S1, it can introduce query savings only with non-empty answer set,
which is represented by a BitSet structure (lines 5–9). Processing set S2 is more complicated,
where both the candidate set of query g and answer set of cached graph g′ are considered
(lines 10–18). Intersection of these two sets is performed efficiently through one BitSet op-
eration. Comparing the cardinality of said candidate set and intersection result, only if the
former is properly larger can g′ be bound to render savings. As to each graph g′ in set S3, as
long as the candidate set of query g is non-empty, g′ contributes by removing all the sub-iso
tests pertaining to g (lines 19–23).

The returned BitSet Bs is then used by the second stage of Step 2 in a straight-forward
manner. That is, for each bit having value of true, its corresponding graph in cache refreshes
the entry last hit time with the ID of query g. In turn, the utility score of LRU policy could be
retrieved directly from last hit time and the black box of Step 11 hence has none additional
computations.

In the running example, cached queries with serial number 13 and 37 would be cached out.
LRU is a simple and very popular policy in several traditional caches. However, it builds on
the assumption that the longer a query has not been posed, the less probable it is to see this
query again in the future. It thus fails to identify cases of queries which have contributed
huge savings to query processing although not having been used in a while. In the said

4.3. Cache Management 76

Algorithm 3 Identifying Cached Graphs Rendering Real Savings for a Query g
1: Input: Set S1, Set S2 and Set S3 containing id of graphs that are matched in Graph-

Cachesub Processor only, GraphCachesuper Processor only and both, respectively
2: Output: BITSET Bs with each bit indicating whether a cached graph renders real savings

for executing g
3:
4: Initialize BITSET Bs with length of the upper limit of cache size (each bit is set false,

i.e., 0)
5: for all g′ ∈ S1 do
6: if g′.answer.cardinality()> 0 then
7: Bs.set(g′)
8: end if
9: end for

10: for all g′ ∈ S2 do
11: BITSET tmp = g.candidate
12: tmp.and(g′.answer)
13: x = g.candidate.cardinality()
14: y = tmp.cardinality()
15: if x > y then
16: Bs.set(g′)
17: end if
18: end for
19: for all g′ ∈ S3 do
20: if g.candidate.cardinality()> 0 then
21: Bs.set(g′)
22: end if
23: end for
24: return Bs

example, one can see that query 13 has been matched the most times, but still is evicted.

Popularity-based Ranking (POP)

Ideally, we would prefer a replacement policy that would take into account the popularity
of queries. This leads to the second policy considered in GraphCache system: POP (short
for Popularity-based Ranking).

More specifically, the utility of each cached graph is assigned by:

Upop =
H

A
, (4.11)

whereH is the number of times a cached query was hit andA reflects its age given by:

A = (b
gid

w
c − b

g′id
w
c)× w (4.12)

4.3. Cache Management 77

Table 4.3: POP Replacement Policy: Looking into the Example of Table 4.2

SerialNo/
Query ID

Number
of Hits

(H)

Age
(A)

Utility
(U)

11 23 88 0.26
13 32 86 0.37
37 26 62 0.42
53 13 46 0.28
82 5 16 0.31
91 4 8 0.5

in which w is the upper limit of window size (i.e., number of queries per batch); bgid
w
c and

bg
′
id

w
c pertain to the serial batch number of query g and cached query g′ separately. In turn,

A could be interpreted as the number of queries that g′ has “witnessed” (i.e., bearing the
opportunity to expedite) since it is being cached. Take an extreme example. If there exists a
super beneficial query g′ in the cache such that it has been hit by every following query, then
by equation (4.11), the said g′ shall possess a POP utility score of 1.

As to the black boxes in Figure 4.15, POP implements as follows. Similar as LRU, POP
implements Step 2 in two stages. (i) again, Algorithm 3 is called to identify cached queries
that have contributed the execution of query g; (ii) for each identified graph, its entry of
number of hits is increased by 1. By using formulas (4.11) and (4.12), Step 11 returns the
utility score for each cached query, which will then serve as the criteria for replacement of
POP.

In overall, the POP replacement policy manages to take both popularity and age into the con-
sideration of utility score. Table 4.3 shows the break-down analysis of POP policy regarding
the example in Table 4.2, in which the eviction apply for queries 11 and 53.

POP + Number of Sub-Iso Tests (PIN)

As mentioned before, unlike traditional exact-match caching schemes in which each cache
hit saves one disk/network IO, cache hits in GraphCache may result vastly different reduc-
tions in query processing times. One reason lies in that cache hits reduce the candidate set of
the coming query by possibly vastly different amounts. However, neither LRU nor POP (ac-
tually, none of the known replacement policies) take this into account. This gives rise to the
next, exclusive to GraphCache, replacement policy: PIN (short for Popularity and sub-Iso
test Number).

To this end, PIN extends the utility by further considering the different savings in number
of subgraph isomorphism tests rendered by various cache hits. For each cached graph, the

4.3. Cache Management 78

Algorithm 4 Calculating the Savings of Each Cached Query in Number of Sub-iso Tests
Pertaining to the Execution of a Query g

1: Input: Set S1, Set S2 and Set S3 containing id of graphs that are matched in Graph-
Cachesub Processor only, GraphCachesuper Processor only and both

2: Output: HASHMAP Ts with key of each cached query g′ (id) and value of a number
reflecting the amount of sub-iso tests that g′ has reduced when executing g

3:
4: Initialize Ts with an empty HASHMAP

5: for all g′ ∈ S1 do
6: if g′.answer.cardinality()> 0 then
7: Ts.put(g′, g′.answer.cardinality())
8: end if
9: end for

10: for all g′ ∈ S2 do
11: BITSET tmp = g.candidate
12: tmp.and(g′.answer)
13: x = g.candidate.cardinality()
14: y = tmp.cardinality()
15: if x > y then
16: Ts.put(g′, (x− y))
17: end if
18: end for
19: for all g′ ∈ S3 do
20: if g.candidate.cardinality()> 0 then
21: Ts.put(g′, g.candidate.cardinality())
22: end if
23: end for
24: return Ts

utility of PIN is assigned by:

Upin =
R

A
, (4.13)

where R is the total number of subgraph isomorphism tests alleviated by the cached query
andA is the same aging factor as above by equation (4.12). The utility formula of PIN (4.13)
can also be rewritten as:

Upin =
H

A
×
R

H
(4.14)

which can be interpreted as the probability of the cached query being hit (i.e., its popularity),
times the average savings in number of subgraph isomorphism test per hit. The second
factor expresses PIN’s concern regarding the said saving difference in number of subgraph
isomorphism tests.

Recall the two black boxes in Figure 4.15. The implementation of PIN follows the similar
paradigm as LRU and POP, however bearing different metric of interest CSM Reduction.
Again, Step 2 of PIN is further divided into two stages: (i) savings in number of subgraph

4.3. Cache Management 79

Table 4.4: PIN Replacement Policy: Looking into the Example of Table 4.2

SerialNo/
Query ID

CSM
Reductions

(R)

Age
(A)

Utility
(U)

11 170 88 1.93
13 80 86 0.93
37 376 62 6.06
53 210 46 4.57
82 120 16 7.5
91 10 8 1.25

isomorphism tests are calculated per cached graph; (ii) for each concerned query in cache,
the entry of CSM Reduction is updated.

Algorithm 4 shows the operations as to the first stage of Step 2. Different from Algorithm
3 that targets at detecting cached graphs with savings, Algorithm 4 further looks into how
many these savings are, in term of the subgraph isomorphism test numbers. To this end, per
cached query is accompanied with a number reflecting the said saving amount (see line 7, 16
and 21 for the details pertaining to different categories of cache hit).

The second stage of Step 2 is in charge of updating the cache statistics with the HASHMAP

Ts returned by Algorithm 4. More specifically, for each concerned graph g′ (key part of Ts),
its entry ofCSM Reduction is added by a number that associates with g′ (value part of Ts).
And in Step 11, PIN computes the utility score by applying equations (4.13) and (4.12), in
which theR element is directly retrieved from metric CSM Reduction.

Turing attention to the example in Table 4.2. When the PIN replacement policy is evoked,
Table 4.4 presents the detail of processing. According to the principle of evicting queries
with least utilities, graphs with ID of 13 and 91 will be cached out.

PIN + Sub-Iso Tests Costs (PINC)

PIN takes into account the number of sub-iso tests alleviated. Another GraphCache-exclusive
replacement policy PINC (abbreviation of Popularity, sub-Iso test Number, and time Cost)
is proposed, which further considers the possibly vast differences in query execution times.
PINC assigns each cached query a utility value equal to:

Upinc =
C

A
, (4.15)

whereA is the same aging factor as mentioned, andC is the total decrease in query process-
ing time due to the cached query. Alas, this figure cannot be computed unless the concerned

4.3. Cache Management 80

subgraph isomorphism tests are performed, which is a moot point in our case; instead, we
use a heuristic to estimate this cost (see Appendix §A for the detail).

PINC may improve upon PIN’s utility value computation by considering the actual (es-
timated) time cost of alleviated subgraph isomorphism tests instead of deeming them all
equivalent. PINC’s utility formula can be rewritten as:

Upinc =
H

A
×
R

H
×
C

R
(4.16)

which could be interpreted as the probability of a cached graph being hit, times the average
savings in number of sub-iso tests per hit, times the average estimated time cost per saved
sub-iso test.

Regarding the black boxes in Figure 4.15, PINC rests on a more sophisticated structure of
savings, which shall be presented shortly. As per usual, Step 2 is carried out in two stages: (i)
discovering the details of each reduced sub-iso test; (ii) updating the relevant cache statistics.

The first stage is implemented by Algorithm 5, which returns the structure mentioned above
– a HASHMAP Ds having key of each cached query g′ and associated value of a VECTOR

containing dataset graphs such that their sub-iso testings with regard to the query g are
reduced by g′. In the second stage, there are two metrics to update. Besides the CSM
Reduction as per usual, PINC maintains an extra metric of c̄, which records the average
(estimated) time cost per saved sub-iso test by each cached graph. More specifically, for
each said g′, the associated value part in Ds (in term of VECTOR) is retrieved. For each
elementG in the VECTOR, it means that the sub-iso test of query g against dataset graphG
is removed by the cached query g′; hence the CSM Reduction of g′ is added by one and
the said average time cost c̄ of g′ is updated by:

c̄ =
R0 × c̄0 + c(g,G)

R
(4.17)

where the R0 and R represent the value of CSM Reduction before/after the described
adding operation; c̄0 is the currently stored value for g′ (before the update). And the esti-
mated time cost of c(g,G) is given by:

c(g,G) =
N ×N !

Ln+1 × (N − n)!
, (4.18)

where L is the number of distinct labels, n is the number of nodes in g, and N the number
of nodes inG havingN ≥ n (to be detailed in Appendix §A).

As to the Step 11 in Figure 4.15, it performs the computation of the metric of SI Cost
Reduction (C), by returning the product of the said CSM Reduction (R) and c̄. And the
utility score of each cached graph is then calculated using formula (4.15).

4.3. Cache Management 81

Algorithm 5 Discovering Each Sub-iso Test Reduced from the Execution of a Query g
1: Input: Set S1, Set S2 and Set S3 containing id of graphs that are matched in Graph-

Cachesub Processor only, GraphCachesuper Processor only and both
2: Output: HASHMAP Ds with key of each cached query g′ (id) and value of a VECTOR

storing the id of dataset graphs that are reduced from candidate set of query g
3:
4: Initialize Ds with an empty HASHMAP

5: for all g′ ∈ S1 do
6: if g′.answer.cardinality()> 0 then
7: Ds.put(g′, g′.answer)
8: end if
9: end for

10: for all g′ ∈ S2 do
11: BITSET tmp0, tmp1 = g.candidate
12: tmp0.and(g′.answer)
13: tmp0.flip()
14: tmp1.and(tmp0)
15: if tmp1.cardinality()> 0 then
16: Initialize an empty VECTOR tmp2

17: for all i ∈ tmp1.index do
18: if tmp1.get(i) then
19: tmp2.add(i)
20: end if
21: end for
22: Ds.put(g′, tmp2)
23: end if
24: end for
25: for all g′ ∈ S3 do
26: if g.candidate.cardinality()> 0 then
27: Ds.put(g′, g.candidate)
28: end if
29: end for
30: return Ds

PINC also follows the principle of discarding queries with lowest utility score. Recall the
example in Table 4.2. Table 4.5 shows the process of figuring out the two graphs to evict.
And in the end, it is queries 53 and 82 to be replaced.

The Hybrid Dynamic Policy (HD)

As the cost component in PINC is only an estimation, using it does not always lead to im-
provements in GC’s net query processing time. As a matter of fact, we have observed through
a large number of experiments, that when the values of theR utility component exhibit a high
variability, they are discriminative enough on their own. In such cases, taking the estimated
cost into account can actually lead to lower time gains (i.e., PIN performing better than

4.3. Cache Management 82

Table 4.5: PINC Replacement Policy: Looking into the Example of Table 4.2

SerialNo/
Query ID

SI Cost
Reductions

(C)

Age
(A)

Utility
(U)

11 2600 88 29.55
13 1200 86 13.95
37 780 62 12.58
53 360 46 7.83
82 150 16 9.38
91 270 8 33.75

PINC). However, when the values ofR exhibit a low variability, adding in theC component
leads to considerable query processing time improvements.

Thus, the last replacement policy considered in this work (also exclusive to GraphCache),
coined the hybrid dynamic policy (HD), coalesces both PIN and PINC. More specifically,
when the HD policy is invoked, it first retrieves the R component from GCstats and com-
putes its variability [94] by using the (squared) coefficient of variation (CoV).

CoV is defined as the ratio of the (square of the) standard deviation over the (square of the)
mean of the distribution. When CoV > 1, the associated distribution is deemed of high
variability, as exponential distributions have CoV = 1 and typically hyper-exponential
distributions (which capture many high-variance, heavy tailed distributions) have CoV >

1. In this case, HD performs cache eviction using PIN’s scoring scheme; otherwise, it uses
PINC’s scoring scheme.

To this end, HD reuses the implementation of PIN and PINC pertaining to the two black
boxes in Figure 4.15. Step 2 directly leverages that of PINC, refreshing the two metrics of
CSM Reduction and c̄ (recording the average estimated time cost per saved sub-iso test by
each cached graph). On the other hand, Step 11 rests on a hybrid paradigm to determine the
utility score, that is:

• For all graphs in the current cache stores, their entries ofR produce the value ofCoV .

• If the returned CoV is bigger than 1, HD goes to the implementation of PIN that
uses formula (4.13) for scoring; otherwise, it switches to that of PINC, which employs
formula (4.15) for the computation of utility score.

As shown in Figure 4.15, Step 11 is repeated for each batch of queries. The decision pro-
cesses among various batches are independent, echoing the dynamic essence of HD replace-
ment policy.

4.3. Cache Management 83

Recall the example shown in Table 4.2. The mean R value is µ = 161 and its standard
deviation σ ≈ 126; thenCoV = σ/µ ≈ 0.78 < 1 and thus HD will use PINC and evict
queries 53 and 82.

4.3.4 Running in Parallel with Query Processing

A significant characteristic of GraphCache is that the cache management is designed to run
in parallel with query processing. For this purpose, the implementation of Cache Manager is
encapsulated in a thread handling the related operations.

Once the query execution of a query graph g finishes (i.e., returning the answer set against
dataset graphs), GraphCache shall start a thread to deal with the cache management issues
regarding g. The said thread consists of three modules, each is responsible for performing a
set of operations. In Overall, the processing inside each module is as follows.

• Update statistics store. Since the query processing of g benefits from cached graphs,
the contribution pertaining to each relevant graph is recorded. Currently, GraphCache
is designed to use the first batch queries to warm the cache. Hence, this module is
turned off when query g is in the first batch, during which the cache is empty.

• Batch query in window stores. Unless there is isomorphic query in cache already or g
fails the admission control, the query g is batched in window stores, being prepared to
enter the cache and leverage benefits for future queries.

• Update cache and rebuild GraphCache index. Instead of refreshing cache contents
per query graph, GraphCache updates the cache at the end of each batch, except the
extreme case that none of queries in this batch had managed to enter the window stores.
In this module, new queries in window are forwarded to the cache stores, where the
cache replacement is usually incurred. Then the GraphCache index is rebuilt to serve
future query processing, by identifying the subgraph/supergraph cases between the
coming query and cached graphs (see §4.2 for detail).

As aforementioned, each executed query g evokes a thread going through the Cache Man-
ager. In GraphCache, the main thread of system flow shall not be blocked this thread, unless
g is the ending query of the batch. When query with ID i is being executed, there may exist
several such threads pertaining to previous queries (with ID of i− 1, i− 2, ..., etc) chasing
the same data stores within Cache Manager. This in turn results the following consequence:

• On the one hand, the efficiency of query processing is guaranteed, echoing the funda-
mental design concerns of GraphCache.

4.4. Summary 84

• On the other hand, locking mechanism is required to ensure the mutual exclusion for
relevant operations. Calling the module for updating cache and rebuilding index is
exclusively incurred when the query g ends a batch. Under such circumstance, the
described thread shall block the system flow and hence hold the exclusive access for
relevant data stores by nature. Therefore, the module for updating cache and rebuild-
ing index does not need extra locking solutions. However, regarding the modules for
updating statistics store and batching query in window stores, each has to launch a
lock to ensure the mutual exclusion of the operations.

Furthermore, time overhead in GraphCache is generated for blocking the main thread of
system flow, during which operations of updating cache contents and rebuilding index for
cached graphs are performed. Quantified evaluation for such time overhead shall be detailed
during the break-down analysis of query time in §6.

4.4 Summary

This chapter has presented GraphCache [95], to the best of our knowledge the first full-
fledged caching system for general subgraph/supergraph query processing. In overall, the
contribution of GraphCache system lies in that:

• The elegance afforded by the double use of GraphCache in accelerating both subgraph
and supergraph query processing is unique.

• GraphCache can be used to expedite all current FTV and SI methods, bridging these
two separate threads of research so far.

• Designed from ground up as a semantic graph cache, GraphCache manages to harness
subgraph/supergraph cache hits, expanding the traditional exact-match-only hit.

• GraphCache is bundled with a number of GC exclusive graph-query-aware cache re-
placement policies and a novel cache admission control mechanism to enhance the
performance gains.

Despite the large span, contents of this chapter are properly fit into three sections as follows,
proceeding with a clear clue.

• By combining the general rationale of a caching system and the particularity of graph
queries, it first identifies the design goals and builds the system architecture of Graph-
Cache, which consists of two subsystems, namely the Query Processing Runtime and
the Cache Manager.

4.4. Summary 85

• Regarding graph query processing, it has materialized iGQ framework by GraphCache
components. Also, it monitors the statistics for purposes of both query performance
evaluation and cache management support.

• As to the central section of cache management, it has demonstrated the stores in data
layer, presented the window manager with novel mechanism of admission control,
proposed a number of GraphCache exclusive cache replacement policies and “run” the
subsystem of cache management in parallel with that of query processing, concluding
a full-fledged caching system.

86

Chapter 5

Ensuring Consistency in Graph
Cache for Graph-Pattern Queries

Following the established research in literature, the proposed GraphCache system handles
graph queries against a static dataset. That is, throughout the continual arrival and execution
of queries, all graphs in the underlying dataset remain unchanged. However, real-world
applications indicate that the graph dataset could evolve over time. This poses a significant
challenge for the current graph caching technique and hence emerges the requirement of
advanced systems that could deal with dataset changes.

To address this problem, a straightforward and efficient solution is to employ the existing
caching systems in literature, which in turn points to GraphCache. Therefore, this chapter
shall present an upgraded graph caching system coined GraphCache+, highlighting the newly
plugged-in subsystems and components on top of the vanilla GraphCache.

Two GC+ exclusive cache models will be developed, positioning different designs of en-
suring graph cache consistency. Furthermore, GraphCache+ places emphasis on its novel
logics in pruning candidate set for subgraph/supergraph queries with dataset changes; each
is accompanied by the formally proved correctness.

To the best of our knowledge, GraphCache+ is the first study that discusses the topic of graph
cache consistency and provides a full-fledged system that manages to accelerate the general
subgraph/supergraph query processing over dynamic dataset.

5.1. Exploring Graph Cache Consistency 87

5.1 Exploring Graph Cache Consistency

5.1.1 Consistency in Caches

Consistency issues arise from the parallel operations on shared resources. When one alters
the state of the said resource, it must assure that no other can harbor a misunderstanding
about the freshness of relevant data [96].

Web applications are aware of this and having solutions to ensure the consistency of web
cache. For example, on the booking system of National Rail Enquiries [97], it is convenient
to buy train tickets from various providers. To compete for the market share, providers en-
deavour to render attractive services such as seat reservation. The current available seats
are retrievable through the front-end enquiry system. Say, at some time, regarding one spe-
cific train from Glasgow to Edinburgh, among all the seats left, only one is by window that
is viewed and then clicked by 100 customers simultaneously. If the problem pertaining to
consistency were not solved, 100 people might be allocated the same seat on the same train.

A modern computer system is also bundled with mechanisms for cache consistency. An
example is just at hand. As I type this thesis, the new version is stored in the main memory
of computer, while the hard disk holds a version of stale data. When I click to save the file,
the disk and the main memory shall contain the same contents, until I start to type again.
In overall, cache consistency is the term given to the problem of assuring that the contents
of the cache memory and those of main memory for all caches in a multiple cache system
are either identical or under tight enough control that stale and current data are not confused
with each other [96].

In the realm of graph caching system, however, little work had been done. The established
research had been focused on graph query processing against static underlying dataset, in-
cluding the most recent proposed GraphCache system.

But among real-world applications, there are an abundance of situations bearing dynamic
graph datasets. In social networking, the relations/interactions among people in a group
could be easily modeled by one graph, where the edges bridge relevant nodes. And a graph
dataset contains several graphs, e.g, interactions among fans of The Big Bang Theory [98]
in Glasgow could form one graph and the global fans in turn develop a graph dataset (say,
tagged with FansOfTheBigBangTheory). There are millions of such groups on applications
of Facebook [90] and WeChat [99]. As time goes by, newly added groups, break-up of
existed groups, and the changed relations/interactions among group members are frequently
happening. Consider another example. In biochemical datasets, it is common that datasets
are continually refreshed by newly-translated, disregarded or transformed proteins, for either
application or research purpose. All in all, such changes could be modeled as graph addition

5.1. Exploring Graph Cache Consistency 88

(ADD), graph deletion (DEL), graph update by edge addition (UA) and graph update by edge
removal (UR) in graph dataset analytics.

Recall the current two research threads of graph query processing in literature. SI algorithms
could accommodate these changes on the fly as each dataset graph shall undergo subgraph
isomorphism test eventually, whereas FTV methods additionally require an updatable index-
ing mechanism to evict proper candidate set. To the best of our knowledge, however, none
of the FTV algorithms proposed so far has been bundled with updatable index or similar
solutions to tackle dataset changes.

As a result, it turns to SI methods, where each dataset graph is painstakingly verified for sub-
graph isomorphism. On the other hand, caching is proved efficient in accelerating the general
subgraph/supergraph queries (see GraphCache system in §4). Therefore, it naturally follows
an approach of using graph cache to alleviate the costly SI methods for subgraph/supergraph
queries with dataset changes – a topic that has not been discussed yet. In the end, it is to
create an upgraded system GraphCache+, which is capable of ensuring the consistency in
graph cache amid the continual changes over the underlying dataset.

5.1.2 Designing GraphCache+

Like in GraphCache, a number of design goals are first identified for GraphCache+ system.
Regarding the query workloads and graph datasets, GraphCache+ shares that of GraphCache
(see details in §4.1.2). This section shall only present the particular issues in designing
GraphCache+.

Dataset Change Plan

As mentioned, the underlying graph dataset could evolve over time. Hence, GraphCache+
system requires a change plan that could properly model the various mutations of graph
dataset. Fundamentally, the generation of such dataset change plan must meet the following
demands: First, it could well express the different categories of graph changes, such as
{ADD, DEL, UA, UR}; Second, it should assure the flexibility that every mutation could
occur at any time over any possible graph in the dataset. Much like the cache management
in GraphCache system, GraphCache+ shall deal with the graph changes in batches, so as to
guarantee the efficiency of query processing; more details shall be provided in §6.

Algorithmic Context

Similar as GraphCache, GraphCache+ is intended to be a general-purpose front-end for
graph query processing, such that methods of both subgraph and supergraph queries could

5.1. Exploring Graph Cache Consistency 89

Dataset Manager

Cache Manager

Window
Manager

Statistics
Manager

Cache
Replacement

Query Processing Runtime

GC+sub
Processor

GC+super

Processor

Candidate Set Pruner

Statistics
Monitor

Resource
Manager /

Query
Dispatcher

Cache
Validator

Log Analyzer

Method M

MverifierDataset Graphs

Figure 5.1: System Architecture of GraphCache+

be flexibly plugged in.

As aforementioned, over dynamic graph datasets, FTV methods require extra mechanisms to
handle an updatable index. Unfortunately there is a lack of such FTV algorithms in literature.
Whereas SI algorithms could accommodate the dataset changes on the fly, as each graph in
the dataset shall undergo the subgraph isomorphism verification.

To this end, GraphCache+ is designed to be capable of supporting all the SI algorithms in
literature. Again, GraphCache+ shall use three well-established SI methods with good per-
formance, including GraphQL [17] as provided by [13], a modified version of VF2 [10]
(denoted VF2+) provided by [18] and the plain VF2 [10] that is widely used in FTV imple-
mentations [16, 42, 13].

5.1.3 System Architecture of GraphCache+

Similar as GraphCache, GraphCache+ is a scalable semantic cache for subgraph/supergraph
queries. GraphCache+ consists of four subsystems, namely Data Manager, Cache Manager,
Query Processing Runtime and Method M, as shown by Figure 5.1. The first three are
GraphCache+ internal and Method M is the external SI method that GraphCache+ is called
to expedite. Method M subsystem includes an SI implementation, denoted Mverifier, which
performs the subgraph isomorphism testing of the candidate set MCS (the whole dataset
when GraphCache+ is not used).

5.1. Exploring Graph Cache Consistency 90

GC+ Specific Subsystems/Components

Dataset Manager subsystem is GraphCache+ exclusive, containing a component coined Log
Analyzer to handle dataset logs. According to the specific designs of different cache models
(see details in §5.2 and §5.3), Log Analyzer shall launch different operations of dealing with
graph cache consistency.

Cache Manager is responsible for the management of data and metadata stored in the cache.
Besides the components that work as usual as in GraphCache (such as Cache Replacement,
Window Manager and Statistics Manager), the Cache Manager subsystem in GraphCache+
has an additional component named Cache Validator. The significant characteristic of Graph-
Cache+, i.e., ensuring graph cache consistency, rests on the said components of Cache Val-
idator and Log Analyzer; both pertain to mechanisms that are cache model dependent.

Query Processing Runtime subsystem of GraphCache+ is in charge of query execution and
metrics monitoring. Like in GraphCache, it comprises a resource/thread manager, the inter-
nal subgraph/supergraph query processors, the logic for candidate set pruning, and a statis-
tics monitor – these components of Query Processing Runtime communicate with Method
M and the Cache Manager via well-defined APIs. Note that GraphCache+’s logic for Can-
didate Set Pruner is different and more complicated than that of GraphCache, though the
former could be viewed as adapting from the latter. Details of GraphCache+ logics regard-
ing subgraph/supergraph query processing shall be demonstrated in §5.3.3 and §5.3.4 shortly.

Data and Control Flow in GraphCache+

Figure 5.2 shows the flow of data and control in GraphCache+ system in processing a query.

• When a query g arrives, Dataset Manager subsystem first use the Log Analyzer com-
ponent (1) to identify whether the dataset has been changed recently and send out the
result of checking.

• If the result sent by Log Analyzer stating no recent change over the graph dataset,
Cache Validator shall do nothing. Otherwise, providing the selected cache model,
Cache Validator shall launch corresponding operations to reflect these changes to pre-
vious queries that are stored in cache and window (2).

5.1. Exploring Graph Cache Consistency 91

Q
u
e
r
y

P
r
o
c
e
s
s
i
n
g

R
u
n
t
i
m
e

M
e
t
h
o
d

M

C
a
c
h
e

M
a
n
a
g
e
r

W
i
n
d
o
w

C
a
c
h
e

R
e
s
o
u
r
c
e

M
a
n
a
g
e
r

/

Q
u
e
r
y

D
i
s
p
a
t
c
h
e
r

G
C
+
s
t
a
t
s

G
r
a
p
h
C
a
c
h
e
s
u
b

P
r
o
c
e
s
s
o
r

G
C
+
i
n
d
e
x

R
e
s
u
l
t
s
u
b

W
s
t
a
t
s

R
e
s
u
l
t
s
u
p
e
r

C
a
c
h
e
d

Q
u
e
r
i
e
s

&

A
n
s
v
a
l
i
d

W
i
n
d
o
w

Q
u
e
r
i
e
s

&

A
n
s
v
a
l
i
d

C
a
n
d
i
d
a
t
e

S
e
t

P
r
u
n
e
r

M
v
e
r
i
f
i
e
r

C
S
G
C
+

A
n
s
w
e
r

Q
u
e
r
y

C
a
c
h
e

R
e
p
l
a
c
e
m
e
n
t

S
t
a
t
i
s
t
i
c
s

M
o
n
i
t
o
r

S
t
a
t
i
s
t
i
c
s

M
a
n
a
g
e
r

W
i
n
d
o
w

M
a
n
a
g
e
r

4

5 5

4

6

6

7
6

8

7

7

G
r
a
p
h
C
a
c
h
e
s
u
p
e
r

P
r
o
c
e
s
s
o
r

D
a
t
a
s
e
t

M
a
n
a
g
e
r

7

G
r
a
p
h

D
a
t
a
s
e
t

L
o
g

A
n
a
l
y
z
e
r

C
a
c
h
e

V
a
l
i
d
a
t
o
r

2

2

1

3

Fi
gu

re
5.

2:
G

ra
ph

C
ac

he
+

Sy
st

em
:T

he
D

at
a

an
d

C
on

tr
ol

Fl
ow

5.2. Brute Force Approach: EVI Cache 92

• Then, g is sent to Query Processing Runtime subsystem for query execution. The
query g arrives at the Resource Manager (3) and is dispatched to the processors GC+sub
and GC+super in parallel (4) as per usual. Meanwhile, a copy of the query is added
to the Window Manager. The time used by each processor, as well as their overall
execution time, is gathered by the Statistics Monitor.

• The intermediate results of the processors GC+sub and GC+super (5) are forwarded
to the Candidate Set Pruner (6) that generates the final candidate set GC+CS , time of
which is gathered by the Statistics Monitor. And statistics pertaining to GC+CS and
the contribution of cached graphs are collected by the Statistics Monitor and fed to the
Statistics Manager.

• Each dataset graph in GC+CS is then verified for subgraph isomorphism (7), resulting
the answer set of query g. Metadata regarding the verification time is also gathered
by the Statistics Monitor. And the resulted answer set is collected by the Statistics
Monitor and sent to the Statistics Manager.

• When the Window Manager is full of currently executed queries, it shall perform cache
admission control and forward admitted queries to window stores. Cache Manager
subsystem shall then invoke cache replacement (8), concurrently with the Query Pro-
cessing Runtime subsystem executing subsequent queries.

Note that GraphCache+ is capable of dealing with both subgraph and supergraph query pro-
cessing. They share the above data and control flow, despite following different logics in
reducing the candidate set (see §5.3.3 and §5.3.4 for detail).

5.2 Brute Force Approach: EVI Cache

To address the challenge arising from dynamic graph dataset, a straightforward solution is to
abandon the vague cache, i.e., evicting (EVI) graph cache whenever dataset has encountered
changes. Hence, operations of processing each query graph are figured out.

• Step 1: The Log Analyzer of Dataset Manager subsystem first checks whether the
graph dataset has changed. If so, the Log Analyze shall raise a flag, broadcasting the
message that there has been some changes over the graph dataset.

• Step 2: Knowing the dataset has changed, the Cache Validator then clears the contents
of cache stores and window stores indiscriminately.

• Step 3: The query graph goes through the Query Processing Runtime subsystem for
execution, with a cold graph cache that does not render any speedup.

5.3. Advanced CON Cache 93

• Step 4: The executed query, together with its metadata, is forwarded to the Cache
Manager subsystem, preparing to facilitate future query processing.

In this way, the caching system GraphCache in §4 could be easily adapted to tackle graph
queries with dataset changes, as the cleared cache will never produce error for future query
processing. But the limitation is obvious – EVI cache has to warm from scratch upon every
change over the graph dataset.

The problem of EVI cache lies in that it fails to differentiate the validity of stored answers
pertaining to executed queries. For example, AIDS [86] dataset consists of 40K graphs;
the current graph cache is filled with 100 executed queries, each having an answer set that
reflects the containment relationship of the query g against dataset graphs {G}. Hence, the
cache stores 4 million (40K× 100) units of information, where each unit is regarding a graph
pair (g,G). Say, 100 dataset graphs undergo changes and some of the cache contents in turn
become invalid. Indeed, invalid contents cannot be leveraged to accelerate future queries
and should be abandoned. However, EVI abandons the whole cache, including those 3.99
million (39.9K × 100) information units that are still valid towards state of the art dataset.
All in all, the purge in EVI cache throws away contents with good potential in expediting
future query processing, making the cache efficiency truncated.

5.3 Advanced CON Cache

To address the aforementioned problem of EVI, this work contributes another cache model
named CON, which targets at preserving useful information at full steam. Then the key
issue turns to identifying the knowledge from a vague graph cache. Different from EVI that
handles the graph cache as a whole, CON ensures consistency on a fine-grained level – to
each unit of (g,G), i.e., per executed query against per dataset graph.

5.3.1 Interpreting the Rationale of CON

Problem Analysis

Before reaching GraphCache+, recall GraphCache system that handles graph queries against
static dataset. For each executed subgraph query, its containment relationship with per
dataset graph could be fully expressed by one bit, i.e., either 0 (the query is not a sub-
graph of the dataset graph) or 1 (the query is a subgraph of the dataset graph). Despite
queries’ continual arrival and execution, such state (0 or 1) is fixed and utilized by future
query processing.

5.3. Advanced CON Cache 94

0 1 x

0 1 x

Figure 5.3: State Transitions of Containment Relationship in GraphCache+

Table 5.1: Mapping Each State to the Containment Relationship of an Executed Query g′

versus a Dataset GraphG

query category of g′ state description

subgraph query
0 g′ * G
1 g′ ⊆ G
x unknown status

supergraph query
0 g′ + G
1 g′ ⊇ G
x unknown status

Turing attention to GraphCache+. Things become more complicated. Since the underlying
dataset is dynamic, the state that represents the query status over every dataset graph may
undergo changes as well. More specially, state that once was 0 or 1 may become unknown,
which is coined x in Figure 5.3. On the other hand, the state may remain as it was before.
Such uncertainties exacerbate the complex situation of GraphCache+ system.

Nevertheless, Figure 5.3 manages to enumerate the state transitions that could take place in
GraphCache+, in which a specific instance of each state is pertaining to an executed query
and a dataset graph. For different categories of query processing, the states have different
interpretations. Table 5.1 shows the meaning of such state values (i.e., 0, 1 or x) for subgraph
queries and supergraph queries.

5.3. Advanced CON Cache 95

An Example of CON cache

CON cache model is developed to deal with the complicated cases of GraphCache+ system.
We shall first use an example to illustrate how the CON model works for subgraph queries.
With respect to supergraph queries, the CON model follows the similar principles and shall
be detailed shortly in §5.3.4.

Figure 5.4 depicts an example when GraphCache+ is processing subgraph queries. Graph-
Cache+ starts off with a dataset containing four graphs {G0, G1, G2, G3} and an empty
CON cache. At time T1, query g′ arrived at GraphCache+ system and was executed. As-
suming that g′ passed the admission control and entered the cache later. In turn, CON cache
recorded the containment relationship of g′ with each dataset graph, as g′ * G0, g′ * G1,
g′ ⊆ G2 and g′ ⊆ G3.

Think of the dynamic graph dataset: mutations as to the mentioned containment relationships
may occur. Therefore, CON cache employs an extra structure coined GCvalid for each
executed query, storing the validity of its status with each dataset graph. GCvalid employs a
BitSet structure and swiftly implements the aforementioned state x by assigning the relevant
bit to 0. At time T1, it naturally follows thatGCvalid(g′) covers all graphs in current dataset,
i.e., with IDs of 0, 1, 2, 3.

Then, at time T2, dataset was changed by adding a new graph G4, and an update on G3

of edge removals. Obviously, there is no clue of G4 containing g′ or not, i.e., g′ does
not hold validity of its status with the newly coming G4. As to G3, there was g′ ⊆ G3,
which becomes unknown as removing edge may result g′ * G3. Hence, the validity of g′

pertaining toG3 is turned off.

Subsequently, at time T3, another query g′′ was executed and later entered cache, holding the
validity towards each graph in state-of-the-art dataset that contains five graphs. Again, the
dataset changed at time T4 – graph G0 was deleted and G1 was updated by edge additions.
As to the current dataset {G1, G2, G3, G4}, g′ * G1 is not guaranteed, since adding edges
may introduce g′ ⊆ G1. g′, as well as g′′, thus loses the validity overG1.

Therefore, when the new query g comes, it would be facilitated by cached graphs g′ and
g′′, each with the up-to-date valid info pertaining to all current dataset graphs, ensuring the
cache consistency of CON model.

5.3. Advanced CON Cache 96

Ti
m

e

T
0

T
1

T
2

T
3

T
4

T
5

qu
er

y
g'

 e
xe

cu
tio

n
g'

 e
nt

er
in

g
ca

ch
e

[0
]

 [
1]

 [2

]
 [

3]
1

1

1

1
0

0

1

1
g'

A
D

D
 G

4
U

R
 G

3

[0
]

 [
1]

 [2

]
 [

3]

 [4
]

1

1

1

0

0
0

0

1

x

x

g'

[0
]

 [
1]

 [2

]
 [

3]

 [4
]

1

1

1

1

1
0

0

1

1

0

g'
'

D
EL

 G
0

U
A

 G
1

A
ns

w
er

D
at

as
et

C
G

va
lid

A
ns

w
er

D
at

as
et

C
G

va
lid

A
ns

w
er

D
at

as
et

C
G

va
lid

[1
]

 [
2]

 [3

]
 [

4]
0

1

0

0
x

1

x

x
g'

[1
]

 [
2]

 [3

]
 [

4]
0

1

1

1
x

 1

 1

 0

g'
'

A
ns

w
er

D
at

as
et

C
G

va
lid

A
ns

w
er

D
at

as
et

C
G

va
lid

C
O

N
 C

a
ch

e

{G
0
,G

1
,G

2
,G

3
,G

4
}

{G
0
,G

1
,G

2
,G

3
}

qu
er

y
g'

' e
xe

cu
tio

n
g'

' e
nt

er
in

g
ca

ch
e

{G
1
,G

2
,G

3
,G

4
}

qu
er

y
g

ex
ec

ut
io

n

Fi
gu

re
5.

4:
C

O
N

C
ac

he
M

od
el

:A
n

E
xa

m
pl

e
w

ith
Ti

m
el

in
e

5.3. Advanced CON Cache 97

Algorithm 6 Analyzing Log for the CON Cache
1: Input: Dataset update log L
2: Output: A container C with counters to categorize operations performed on dataset

graphs
3:
4: Initialize C with an empty HASHMAP per counter (CT , CA and CR)
5: Extract the incremental records R from L
6: for all r ∈ R do
7: i = id of the dataset graphG in r
8: t = operation type in r
9: switch t do

10: case UA
11: CA.get(i) += 1
12: break
13: case UR
14: CR.get(i) += 1
15: break
16: CT .get(i) += 1
17: end for
18: return C

5.3.2 Algorithms and Structures

GraphCache+ is designed to warrant CON cache possessing the potential to benefit queries
at full steam. To this end, both Dataset Manager subsystem and Cache Manager subsystem
are accompanied with CON specific mechanisms.

Analyzing Dataset Log

Dataset Manager subsystem employs the component Log Analyzer to categorize dataset
changes, acting as a preprocessing step for validating CON cache. Algorithm 6 illustrates
how the corresponding analysis is performed.

Briefly, the incremental records that have not been reflected in cache are first extracted from
dataset log. Log Analyzer then launches a container with three counters, implemented by
HashMap with key of dataset graph id and value of count for the operations on this graph.
The said three counters (CT ,CA andCR) (line 4) are responsible for counting the total, UA
and UR operations, respectively. Each aforementioned record identifies the related dataset
graph and its operation type (lines 7–8). Exhausting these records (lines 9–16) hence results
the total counter CT , UA counter CA and UR counter CR.

5.3. Advanced CON Cache 98

Algorithm 7 Refreshing a cached graph’s validity indicator
1: Input: Counter container C (containing CT , CA and CR), currently maximum graph

id m in dataset, stored info of a cached graph (with its dataset-graph-validity-indicator
CGvalid and query resultAnswer, both structured by BITSET)

2: Function: Updating CGvalid

3:
4: if (m+ 1) > CGvalid.size then
5: Extend CGvalid to length (m+ 1) by assigning false to extended bits
6: end if
7: for all i ∈ CT .keySet() do
8: tc = CT .get(i)
9: uac = !CA.containsKey(i)? 0 : CA.get(i)

10: urc = !CR.containsKey(i)? 0 : CR.get(i)
11:
12: if tc == uac ∧ CGvalid.get(i) ∧ Answer.get(i) then
13: continue
14: else if tc == urc ∧ CGvalid.get(i) ∧ !Answer.get(i) then
15: continue
16: else
17: CGvalid.set(i, false)
18: end if
19: end for

Validating CON Cache

The counter container returned by Dataset Manager subsystem is forwarded to Cache Man-
ager subsystem, where Cache Validator refreshes the dataset-graph-validity-indicator for
cached graphs. CON cache is designed at startup to augment the performance of graph
query processing at full steam. The Cache Validator hence strives to exploit useful previous
query results for CON.

In GC+, once a query is executed, its answer set is finalized, which snapshots the query
status over dataset at the execution time – even the dataset would undergo changes later,
GC+ will not repeat processing previous queries. Therefore, to deal with dataset changes,
GC+ employs a BitSet indicator CGvalid per cached query, with each bit identifying the
up-to-date validity of the query status towards a dataset graph.

Algorithm 7 depicts how the CGvalid of a cached graph g is refreshed by Cache Validator.
To start with, CGvalid is checked whether it contains all the bits required (line 4 where
dataset graph id starts from 0). If not, it implies that there are newly-added dataset graphs.
Obviously, the status of g over those new dataset graphs is unknown and those extended bits
are thus assigned false (line 5). The idea is to make recent dataset changes take effect on
relevant bits of CGvalid (lines 7–19).

Specifically, for each concerned dataset graph Gi (identified by i in line 7), its numbers

5.3. Advanced CON Cache 99

of total operations (tc), UA (uac) and UR (urc) are retrieved from the input counters
(lines 8–10). If operations on dataset graph Gi are exclusively of UA category (tc ==

uac in line 12), together with valid (CGvalid.get(i) in line 12) query result g ⊆ Gi

(Answer.get(i) in line 12), such validity still holds (g ⊆ Gi is not bothered by adding
edges toGi). Similarly, if operations on dataset graphGi are exclusively of UR category, the
query result g * Gi (!Answer.get(i) in line 14) remains valid. Whereas other operations
shall make false the value of g onGi if applicable (line 17).

By harnessing the validity to the level of per cached query and dataset graph, as well as the
optimizations in UA-exclusive and UR-exclusive cases, CON model manages to enhance the
cache efficiency in expediting graph queries.

5.3.3 CON Expediting Subgraph Query Processing

x

x

t2

t3
t4 t5

t6
t7t8 t9

g0 * G

g0 * G

g0 ✓ G

g0 ✓ G

t1

Figure 5.5: State Transitions in GraphCache+ for Subgraph Query Processing

Figure 5.5 uses solid arrows to show the transitions that may take place in GraphCache+
when processing subgraph queries. Each transition is triggered by certain circumstances.

• t1: g′ * G still holds. This happens either since the dataset graph G has not been
changed, orG is updated exclusively by edge removals (UR).

• t2: g′ ⊆ G still holds, either since the dataset graphG has not been changed, orG is
updated exclusively by edge additions (UA).

• t3: The previous containment relationship g′ * G becomes unknown. This could
be attributed to a number of reasons; nevertheless, they can be concluded as the com-

5.3. Advanced CON Cache 100

plementary setting of that for t1, i.e., G has some updates that do not satisfy the
requirement of t1.

• t4: The former status g′ ⊆ G becomes unknown. There exists a number of possible
causes, which could be covered by the complementary scenarios of that for t2, i.e., G
has some updates that do not meet the requirement of t2.

• t5: The subgraph status of g′ against G keeps unknown, due to the fact that Graph-
Cache+ shall not launch further subgraph isomorphism tests to verify the uncertain
status after the execution of g′.

To be complete, Figure 5.5 also lists transitions that are not of interest in GraphCache+
by dotted arrows. For example, t6 could possibly occur, say, when the dataset graph G is
updated by edge removals, the previous g′ ⊆ Gmay turn to g′ * G, after being verified by
subgraph isomorphism tests if they were to perform. However, as mentioned, GraphCache+
dedicates in utilizing previous queries to expedite future query processing and will not repeat
the execution of issued queries, e.g., g′. Therefore, the containment relationship of g′ andG
is vague, i.e., t6 is covered by t4. Similarly, t7 is included in t3 and there exist no transitions
of t8 or t9 in GraphCache+ either.

Think from another perspective. If the said subgraph isomorphism tests were indeed to be
performed, there will not exist unknown state x at all. In that case, a single dataset graph
mutation would make all the executed queries repeat query processing, which is totally out
of the question.

The following contents of this section shall illustrate the specific logic of Candidate Set
Pruner in GraphCache+ system, when processing subgraph queries. When a subgraph query
g arrives, GraphCache+ discovers whether g is a subgraph or supergraph of cached queries
by processors GC+sub/GC+super in parallel, i.e., the subgraph case and the supergraph case,
respectively.

Subgraph Case

For example, in Figure 5.6, the new query g comes with candidate set CSM(g)(the current
dataset) containing four graphs {G1, G2, G3, G4}. 1 2 GC+sub Processor finds that there
exists a previous query g′, such that g ⊆ g′. Then g′’s cached answer set {G2, G3}, as

1Note that examples in Figure 5.6 and in Figure 5.4 represent different perspectives. The former is from the
view of graph dataset mutation categories, while the latter highlights the operations by which GraphCache+
reduces the candidate set and in turn expedites a subgraph query.

2Without specific explanations, each notation effects locally by default, e.g., g′ in Figure 5.6 does not refer
to that in Figure 5.4.

5.3. Advanced CON Cache 101

Subgraph
Query

Start

g ✓ g0, g0 ✓ {G2, G3}

Answer(g) = Answer [{G2}

End

g

CSM (g) � Answersub(g) = {G1, G3, G4}

Answer

Processor

CSM (g) = {G1, G2, G3, G4}

Mverifier

GraphCache+sub

CGvalid(g
0) = {G2, G4}

Answersub(g) = {G2}

Figure 5.6: GraphCache+ Subgraph Case when g is a Qsub

well as its up-to-time validity indicator CGvalid = {G2, G4}, is retrieved. 3 Consider
each graph in CSM(g):

• For graphG2 ∈ CSM(g), providing g ⊆ g′ and g′ ⊆ G2 that still holds for current
dataset since G2 exists in CGvalid(g

′), it must follow that g ⊆ G2. Hence, G2 can
be safely removed from CSM(g) and added directly to the final answer set of g.

• Whereas G3 is not free of sub-iso testing though it appears in g′’s cached answer set,
as g′ ⊆ G3 fails to hold over state-of-the-art dataset, i.e., G3 does not appear in

3As mentioned in Algorithm 7, both Answer(g′) and CGvalid(g
′) are BitSet structures; here, we em-

ploy a set containing the id of dataset graph to help illustrate.

5.3. Advanced CON Cache 102

CGvalid(g
′). That is, g′ ⊆ G3 was found when executing previous query g′ but

has been faded by subsequent dataset changes (e.g., G3 was updated by removing
some edges). Similarly,G1 is not free of sub-iso testing either, for being absent in the
validity indicator CGvalid(g

′).

• Turning attention to G4. Though g′ ⊆ G4 is still valid, there is no clue of the
containment relationship between g and G4, as both g ⊆ G4 and g * G4 could
possibly occur.

Interestingly, the aforementioned operations of the four dataset graphs well represent the
state transitions that could take place in subgraph query processing (see Figure 5.5). Table
5.2 shows such transitions pertaining to the subgraph status of each graph pair.

Table 5.2: State Transition Analysis: the Subgraph Case when g′ is a Qsub

graph pair transition start state end state

(g′,G1) t3 0 x
(g′,G2) t2 1 1
(g′,G3) t4 1 x
(g′,G4) t1 0 0

Therefore, the logic of GC+ for subgraph case is that only dataset graphs inCGvalid(g
′) ∩

Answer(g′) are sub-iso test-free, which can be safely removed from CSM(g) and di-
rectly added to the final answer set of query g. In the general case, g may be a subgraph of
multiple previous query graphs g′i. Then, the said sub-iso test-free graphs Answersub(g)

is given by:

Answersub(g) =
⋃

g′i∈Resultsub(g)

CGvalid(g
′
i) ∩Answer(g

′
i) (5.1)

where Resultsub(g) contains all the currently cached queries of which g is a subgraph.

Hence, the set of dataset graphs for sub-iso testing is:

CSGC+sub(g) = CSM(g) \Answersub(g) (5.2)

Finally, if AnswerGC+sub(g) is the set of graphs verified to be containing g through sub-
iso tests on CSGC+sub(g), the final answer set for query g will be:

Answer(g) = AnswerGC+sub(g) ∪Answersub(g) (5.3)

Lemma 11. For subgraph queries, the final answer of GraphCache+ in the subgraph case

does not contain false positives.

5.3. Advanced CON Cache 103

Proof. Assume false positives are possible and consider the first ever false positive pro-
duced by GraphCache+; i.e., for some query g, ∃GFP such that g * GFP and GFP ∈
Answer(g). Note that GFP cannot be in AnswerGC+sub(g) where each graph has
passed the sub-iso test, which follows that GFP ∈ Answersub(g) by formula (5.3).
Furthermore, formula (5.1) implies ∃g′ such that g ⊆ g′, GFP ∈ CGvalid(g

′) and
GFP ∈ Answer(g′). Hence, GFP ∈ Answer(g′) is valid for up-to-date dataset,
i.e., g′ ⊆ GFP . But g′ ⊆ GFP and g ⊆ g′⇒ g ⊆ GFP (a contradiction).

Lemma 12. For subgraph queries, the final answer of GraphCache+ in the subgraph case

does not introduce false negatives.

Proof. Assume false negatives are possible and consider the first ever false negative pro-
duced by GraphCache+ particularly; i.e., for some query g, ∃GFN such that g ⊆ GFN

and GFN /∈ Answer(g). As GFN ∈ CSM(g) in GraphCache+ by default and sub-iso
testing does not introduce any false negative, the only possibility for error is that GFN was
removed using formula (5.2); i.e., GFN /∈ CSGC+sub(g). That implies that ∃g′ such that
g ⊆ g′ and GFN ∈ Answer(g′). But then, by formula (5.3), GFN will be added to
Answersub(g) and thusGFN ∈ Answer(g) (a contradiction).

Theorem 6. For subgraph queries, the final answer of GraphCache+ in the subgraph case

is correct.

Proof. There are only two possibilities for error; GraphCache+ can produce false negatives
or false positives. The theorem then follows straightforwardly from Lemmas 11 and 12.

Supergraph Case

Figure 5.7 depicts an example of supergraph case in GraphCache+, where GC+super Proces-
sor identifies there exists a previous query g′′ satisfying g′′ ⊆ g. For g′′, the cached answer
set {G2, G3} and the dataset-graph-validity indicator CGvalid(g

′′) ({G2, G4}) are re-
trieved. Again, the new query g comes with candidate set CSM(g) ({G1, G2, G3, G4}).

Now, consider each dataset graph in CSM(g).

• With regard to graph G1 ∈ CSM(g): G1 does not hold validity of its status over
g′′. Hence, no previous query result about G1 could be utilized by g; G1 will have to
undergo sub-iso testing. For the same reason,G3 is not free of sub-iso test either.

• For graphG2 ∈ CSM(g): g′′ ⊆ G2 holds, which does not removeG2 from sub-iso
test despite g′′ ⊆ g, as the subgraph status of g against G2 is still obscure and has to
be verified by sub-iso test.

5.3. Advanced CON Cache 104

Subgraph
Query

Start

g ◆ g00, g00 ✓ {G2, G3}

Answer(g)

End

g

CSM (g) = {G1, G2, G3, G4}

CSM (g) \ Answersuper(g) = {G1, G2, G3}

GraphCache+super

Processor

Mverifier

Answersuper(g) = {G1, G2, G3}
CGvalid(g

00) = {G2, G4}

Figure 5.7: GraphCache+ Supergraph Case when g is a Qsub

• As to graph G4 ∈ CSM(g): G4 holds validity for g′′ * G4. Since g′′ ⊆ g, if
g ⊆ G4 were to be true, it should follow g′′ ⊆ G4, which is a contradiction. So it is
safe to conclude that g * G4 and thusG4 can be removed from CSM(g).

Table 5.3 shows the transitions with respect to each dataset graph in Figure 5.7.

Table 5.3: State Transition Analysis: the Supergraph Case when g′′ is a Qsub

graph pair transition start state end state

(g′′,G1) t3 0 x
(g′′,G2) t2 1 1
(g′′,G3) t4 1 x
(g′′,G4) t1 0 0

In overall, among graphs inCSM(g), those failing to appear in (CGvalid(g′′)∪Answer(g′′)

5.3. Advanced CON Cache 105

can never exist in the final answer set of g and thus become sub-iso test free, whereCGvalid(g′′)

is the complementary set of CGvalid(g
′′) against state-of-the-art dataset. In other words,

the set (CGvalid(g′′) ∪ Answer(g′′) covers all graphs that could possibly exist in the
final answer set of g, denoted as g′′.Answersuper(g), i.e.,

g′′.Answersuper(g) = (CGvalid(g′′) ∪Answer(g′′) (5.4)

Performing sub-iso tests onCSM(g) ∩ g′′.Answersuper(g) therefore results the verified
query answerAnswer(g).

In the general case, g may be a supergraph of multiple previous query graphs g′′j . Then, the
set of graphs tested for sub-iso by GC+ is:

CSGC+super(g) = CSM(g) ∩
⋂

g′′j ∈Resultsuper(g)

g′′j .Answersuper(g) (5.5)

where Resultsuper(g) contains all the currently cached queries of which g is a supergraph.

The final answer for query g, Answer(g), will be the set of graphs in CSGC+super(g)

that pass the sub-iso test.

Lemma 13. For subgraph queries, the final answer of GraphCache+ in the supergraph case

does not contain false positives.

Proof. This trivially follows by construction as all graphs in Answer(g) have passed
through subgraph isomorphism testing at the final stage of query processing.

Lemma 14. For subgraph queries, the final answer of GraphCache+ in the supergraph case

does not introduce false negatives.

Proof. Assume false negatives are possible and consider the first ever false negative pro-
duced by GraphCache+; i.e., for some query g, ∃GFN such that g ⊆ GFN and GFN /∈
Answer(g). Since GFN ∈ CSM(g), the only possibility for error is that GFN is re-
moved from CSGC+super(g) by formula (5.5). This implies that ∃g′′ such that GFN /∈
g′′.Answersuper(g) and g′′ ⊆ g. By formula (5.4), it turns to GFN /∈ (CGvalid(g′′)

and GFN /∈ Answer(g′′), with GFN /∈ (CGvalid(g′′) ⇒ GFN ∈ CGvalid(g
′′).

Hence, for state-of-the-art dataset, GFN /∈ Answer(g′′) is valid, i.e., g′′ * GFN . But
g ⊆ GFN and g′′ ⊆ g⇒ g′′ ⊆ GFN (a contradiction).

Theorem 7. For subgraph queries, the final answer of GraphCache+ in the supergraph case

is correct.

Proof. There are only two possibilities for error; GraphCache+ can produce false negatives
or false positives. The theorem then follows straightforwardly from Lemmas 13 and 14.

5.3. Advanced CON Cache 106

Putting It All Together and Optimal Cases

The Query Processing Runtime subsystem first applies equation (5.2) on CSM and then
applies (5.5) on the result of the previous operation. The end result is a reduced candidate
set, which is then sub-iso tested.

Additionally, there are two optimal cases that warrant further performance gains. First, note
that GraphCache+ can easily recognize the case where a new query, g, is isomorphic to a
previous cached query g′. For connected query graphs, this holds providing that (i) g ⊆ g′

or g ⊇ g′; and (ii) g and g′ have the same number of nodes and edges; and (iii) g′ holds
validity on all the up-to-date dataset graphs. Hence, GraphCache+ can return the cached
result of g′ directly, rendering sub-iso test free.

Second, consider the case: for a new query g, a cached query g′′ is discovered by Graph-
Cache+ that g′′ ⊆ g, Answer(g′′) = ∅ and g′′ holds validity on all graphs currently in
dataset. Thus, GraphCache+ can directly return an empty result set for g. The idea is that
if there were a dataset graph G such that g ⊆ G, since g′′ ⊆ g we would conclude that
g′′ ⊆ G⇒ G ∈ Answer(g′′), contradicting the fact that Answer(g′′) = ∅; thus, no
such graphG can exist and the final result set of g is necessarily empty.

5.3.4 CON Expediting Supergraph Query Processing

x

x

t2

t3
t4 t5

t6
t7t8 t9

g0 + G

g0 + G

g0 ◆ G

g0 ◆ G

t1

Figure 5.8: State Transitions in GraphCache+ for Supergraph Query Processing

GraphCache+ affords the elegance of double use for subgraph/supergraph query processing.
Like in processing subgraph queries, Figure 5.8 enumerates the state transitions that could

5.3. Advanced CON Cache 107

occur regarding a graph pair (g′, G), where g′ is an executed query and G is a dataset
graph (using solid arrows). In turn, dotted arrows show transitions that are not of interest in
GraphCache+, just to be complete. For more details of such cases, please refer to §5.3.3.

With respect to the logics of reducing candidate set, again, processors GC+sub/GC+super are
responsible to identify whether the new supergraph query g is a subgraph or supergraph of
previously executed queries in cache, namely subgraph/supergraph case as follows.

Subgraph Case

Supergraph
Query

Start

Answer(g)

End

g

CSM (g) = {G1, G2, G3, G4}

CSM (g) \ Answersub(g) = {G1, G2, G3}

GraphCache+sub

Processor

Mverifier

Answersub(g) = {G1, G2, G3}

g ✓ g0, g0 ◆ {G2, G3}
CGvalid(g

0) = {G2, G4}

Figure 5.9: GraphCache+ Subgraph Case when g is a Qsuper

Figure 5.9 shows an example of subgraph case when GraphCache+ handles a supergraph
query g, during which GC+sub Processor identifies there exists a previous query g′ such that
g ⊆ g′. Pertaining to g′, the cached answer set is {G2, G3} and the corresponding validity
of dataset graphs is CGvalid(g

′), i.e., {G2, G4}. Again, the new query g comes with the
candidate set CSM(g), i.e., {G1, G2, G3, G4}.

5.3. Advanced CON Cache 108

As per usual, we shall first look into each graph in CSM(g).

• Regarding graphG1, its status with g′ is not valid. Leveraging invalid previous query
result to facilitate query processing is not permitted. Hence, G1 has to undergo sub-
graph isomorphism test, so as to determine g ⊇ G1 or g + G1. Similarly, G3 is not
free of sub-iso test either.

• Consider graph G2 that holds validity of g′. However, combining g′ ⊇ G2 and
g ⊆ g′ does not deliver clear conclusion of g ⊇ G2 or g + G2, as both are possible.
For this reason,G2 shall be tested for subgraph isomorphism.

• As to graph G4, it is valid that g′ + G4. Since g ⊆ g′, if g ⊇ G4 were to be true,
then it should follow g′ ⊇ G4, which is a contradiction. Hence, it is safe to result
g + G4 andG4 can be safely removed from CSM(g).

Table 5.4 shows the state transitions regarding a previous query g′ and each concerned
dataset graph.

Table 5.4: State Transition Analysis: the Subgraph Case when g′ is a Qsuper

graph pair transition start state end state

(g′,G1) t3 0 x
(g′,G2) t2 1 1
(g′,G3) t4 1 x
(g′,G4) t1 0 0

Therefore, for graphs in CSM(g), if they do not exist in (CGvalid(g′) ∪ Answer(g′),
these graphs shall not appear in the final answer set of query g for sure; hence no need
to be tested for subgraph isomorphism. In turn, the set (CGvalid(g′) ∪ Answer(g′)
covers all the dataset graphs that could possibly exist in the final answer set of g, denoted as
g′.Answersub(g), i.e.,

g′.Answersub(g) = (CGvalid(g′) ∪Answer(g′) (5.6)

Performing sub-iso tests on CSM(g) ∩ g′.Answersub(g) hence results the final query
answerAnswer(g).

In the general case, g may be a subgraph of multiple previous supergraph queries g′i. Then,
the set of graphs tested for sub-iso by GraphCache+ is given by:

CSGC+sub(g) = CSM(g) ∩
⋂

g′i∈Resultsub(g)

g′i.Answersub(g) (5.7)

5.3. Advanced CON Cache 109

where Resultsub(g) contains all the currently cached queries such that g is a subgraph.

The final answer for query g, Answer(g), will be the set of graphs in CSGC+sub(g) that
pass the sub-iso test.

Lemma 15. For supergraph queries, the final answer of GraphCache+ in the subgraph case

does not contain false positives.

Proof. This trivially follows by construction as all graphs in Answer(g) have passed
through subgraph isomorphism testing at the final stage of query processing.

Lemma 16. For supergraph queries, the final answer of GraphCache+ in the subgraph case

does not introduce false negatives.

Proof. Assume false negatives are possible and consider the first ever false negative pro-
duced by GraphCache+; i.e., for some query g, ∃GFN such that g ⊇ GFN and GFN /∈
Answer(g). Since GFN ∈ CSM(g), the only possibility for error is that GFN is re-
moved from CSGC+sub(g) by formula (5.7). This implies that ∃g′ such that GFN /∈
g′.Answersub(g) and g ⊆ g′. By formula (5.6), it follows that GFN /∈ (CGvalid(g′)

and GFN /∈ Answer(g′), with GFN /∈ (CGvalid(g′) ⇒ GFN ∈ CGvalid(g
′).

Hence, for the current graph dataset, GFN /∈ Answer(g′) is valid, i.e., g′ + GFN . But
g ⊇ GFN and g ⊆ g′⇒ g′ ⊇ GFN (a contradiction).

Theorem 8. For supergraph queries, the final answer of GraphCache+ in the subgraph case

is correct.

Proof. There are only two possibilities for error; GraphCache+ can produce false negatives
or false positives. The theorem then follows straightforwardly from Lemmas 15 and 16.

Supergraph Case

In turn, Figure 5.10 shows the supergraph query g coming with candidate setCSM(g), i.e.,
{G1, G2, G3, G4}. GC+super Processor discovers that there exists a previously executed
query g′′, such that g ⊇ g′′. Also, the cached answer of g′′, i.e., {G2, G3}, and the
state-of-the-art validity indicator CGvalid = {G2, G4} are available.

Turning attention to each dataset graph that appears in CSM(g).

• First, consider graph G2. As G2 exists in CGvalid(g
′′), g′ ⊇ G2 is valid for the

current dataset. Together with g ⊇ g′′, it must follow that g ⊇ G2. As a result, G2

can be safely removed from CSM(g) and added directly to the final answer set of g.

5.3. Advanced CON Cache 110

Supergraph
Query

Start

Answer(g) = Answer [{G2}

End

g

CSM (g) � Answersuper(g) = {G1, G3, G4}

Answer

Processor

CSM (g) = {G1, G2, G3, G4}

Mverifier

GraphCache+super

CGvalid(g
00) = {G2, G4}

Answersuper(g) = {G2}

g ◆ g00, g00 ◆ {G2, G3}

Figure 5.10: GraphCache+ Supergraph Case when g is a Qsuper

• Then, it is the graph G3 that also appears in the answer set of g′′. Since G3 does
not appear in CGvalid(g

′′), g′′ ⊇ G3 is invalid for state-of-the-art dataset. In other
words, g′′ ⊇ G3 was found when executing previous query g′′ but has been faded by
subsequent dataset changes (e.g.,G3 was updated by adding some edges). As a result,
G3 will have to be verified by sub-iso test. Similarly, G1 is not free of sub-iso testing
either, for failing to hold validity in CGvalid(g

′′).

• Consider graphG4. As the valid g′′ + G4 and g ⊇ g′′ does not lead to the supergraph
status of g overG4,G4 will have to undergo subgraph isomorphism test.

As to the state transitions, Table 5.5 shows the details pertaining to a previous supergraph

5.3. Advanced CON Cache 111

Table 5.5: State Transition Analysis: the Supergraph Case when g′′ is a Qsuper

graph pair transition start state end state

(g′′,G1) t3 0 x
(g′′,G2) t2 1 1
(g′′,G3) t4 1 x
(g′′,G4) t1 0 0

query g′′ and every dataset graph.

In overall, the logic of GraphCache+ handling supergraph queries in the supergraph case is
that only dataset graphs inCGvalid(g

′′) ∩Answer(g′′) are free of sub-iso tests. The said
dataset graphs can be safely removed from CSM(g) and directly added to the final answer
set of query g. In the general case, g may be a supergraph of multiple previous query graphs
g′′j . Then, the aforementioned graphs that are free of sub-iso tests, Answersuper(g), is
given by:

Answersuper(g) =
⋃

g′′j ∈Resultsuper(g)

CGvalid(g
′′
j) ∩Answer(g′′j) (5.8)

where Resultsuper(g) contains all the currently cached queries of which g is a supergraph.

In turn, the set of dataset graphs for sub-iso testing is given by:

CSGC+super(g) = CSM(g) \Answersuper(g) (5.9)

Finally, if AnswerGC+super(g) is the set of graphs verified to be contained in g through
sub-iso tests among CSGC+super(g), the final answer set for supergraph query g will be:

Answer(g) = AnswerGC+super(g) ∪Answersuper(g) (5.10)

Lemma 17. For supergraph queries, the final answer of GraphCache+ in the supergraph

case does not contain false positives.

Proof. Assume false positives are possible and consider the first ever false positive pro-
duced by GraphCache+; i.e., for some query g, ∃GFP such that g + GFP and GFP ∈
Answer(g). Note that GFP cannot be in AnswerGC+super(g) where each graph has
passed the sub-iso test, which follows that GFP ∈ Answersuper(g) by formula (5.10).
Furthermore, formula (5.8) implies ∃g′′ such that g ⊇ g′′, GFP ∈ CGvalid(g

′′) and
GFP ∈ Answer(g′′). Hence,GFP ∈ Answer(g′′) is valid for the current dataset, i.e.,
g′′ ⊇ GFP . But g′′ ⊇ GFP and g ⊇ g′′⇒ g ⊇ GFP (a contradiction).

5.3. Advanced CON Cache 112

Lemma 18. For supergraph queries, the final answer of GraphCache+ in the supergraph

case does not introduce false negatives.

Proof. Assume false negatives are possible and consider the first ever false negative pro-
duced by GraphCache+ particularly; i.e., for some query g, ∃GFN such that g ⊇ GFN

and GFN /∈ Answer(g). As GFN ∈ CSM(g) in GraphCache+ by default and sub-
iso testing does not introduce any false negative, the only possibility for error is that GFN

was removed using formula (5.9); i.e., GFN /∈ CSGC+super(g). That implies that ∃g′′

such that g ⊇ g′′, GFN ∈ Answer(g′) and GFN ∈ CGvalid(g
′′). But then, by for-

mula (5.10), GFN will be added to Answersuper(g) and thus GFN ∈ Answer(g) (a
contradiction).

Theorem 9. For supergraph queries, the final answer of GraphCache+ in the supergraph

case is correct.

Proof. There are only two possibilities for error; GraphCache+ can produce false negatives
or false positives. The theorem then follows straightforwardly from Lemmas 17 and 18.

Putting It All Together and Optimal Cases

In handling supergraph queries, the Query Processing Runtime subsystem of GraphCache+
shall first apply equation (5.9) on CSM and then apply (5.7) on the result of the previous
operation. In the end, it results a reduced candidate set, which is then sub-iso tested. For
supergraph query processing, there are two optimal cases that bear further performance gains
as well.

First, the optimal case of isomorphic query still exists. That is, GraphCache+ can easily
detect the case where a new query, g, is isomorphic to a previous cached query g′. For
connected query graphs, this holds providing that (i) g ⊆ g′ or g ⊇ g′; and (ii) g and g′

have the same number of nodes and edges; and (iii) g′ holds validity on all the up-to-date
dataset graphs. Hence, GraphCache+ can return the cached result of g′ directly, without
performing any sub-iso test.

Second, consider the case: for a new query g, a cached query g′′ is discovered by Graph-
Cache+ that g ⊆ g′′, Answer(g′′) = ∅ and g′′ holds validity on all graphs currently in
dataset. Thus, GraphCache+ can directly return an empty answer set for g. The reasoning
behind is that if there were a dataset graph G such that g ⊇ G, since g ⊆ g′′ one can con-
clude that g′′ ⊇ G⇒G ∈ Answer(g′′), contradicting the fact thatAnswer(g′′) = ∅;
therefore, no such graphG can exist and the final result set of g is necessarily empty.

5.4. Summary 113

5.4 Summary

Underpinned by the work in §4, this chapter has presented an upgraded system GraphCache+.
To the best of our knowledge, GraphCache+ [100] is the first study pertaining to ensuring
graph cache consistency for graph structured queries. GraphCache+ is featured by two exclu-
sive cache models, namely EVI and CON, which reflect different designs in dealing with the
consistency of graph cache. EVI could swiftly adapt from the existing GraphCache system
whereas CON claims advanced requirements. Regarding the CON cache, GraphCache+ af-
fords the logics of reducing the candidate set for subgraph/supergraph queries (with formally
proved correctness), the central algorithms and structures.

Furthermore, to address the problem stemming from the dynamic graph dataset, Graph-
Cache+ takes a swift manner by plugging in new subsystems and components to Graph-
Cache, instead of starting from scratch. Such good practice of well utilizing the existing
resources to tackle new challenges is noteworthy.

114

Chapter 6

Performance Evaluation

As designed at startup, GraphCache/GraphCache+ can be used as a front end, complement-
ing state of the art graph query processing method as a pluggable component. Currently,
GraphCache comes bundled with three top-performing filter-then-verify (FTV) subgraph
query methods and three well-established direct subgraph-isomorphism (SI) algorithms –
representing different categories of graph query processing research.

Recall the particular circumstance of graph queries processed over a dynamic dataset, in
which FTV methods require extra mechanisms to deal with an updatable index. To the
best of our knowledge, however, none of the FTV algorithms in literature is equipped with
updatable index or similar solutions to tackle dataset changes. Whereas SI algorithms could
accommodate such dataset changes on the fly, as each graph in the dataset shall undergo
the subgraph isomorphism verification. Therefore, GraphCache+ is intended to complement
SI algorithms for the time being and the current GraphCache+ is accompanied with three
well-established SI methods.

This chapter shall contribute a comprehensive performance evaluation of GraphCache/Graph-
Cache+. As to the concern of any caching system that a large number of queries are required
so as to obtain reliable results, more than 6 million queries shall be generated using different
workload generators, and executed against both real-world and synthetic graph datasets of
different characteristics. Extensive experiments shall be carried out in a number of dimen-
sions, such as different graph datasets, query workloads, algorithm contexts, replacement
policies and etc, quantifying the benefits and overheads, emphasizing the non-trivial lessons
learned.

6.1. Experimental Setup 115

6.1 Experimental Setup

All aforementioned components and subsystems of GraphCache(+) have been implemented
in Java over ≈6,000 lines of code. Experiments were performed on a Dell R920 host (4
Intel Xeon E7-4870 CPUs, 15 cores each), with 320GB of RAM and 4×1TB disks, running
Ubuntu Linux 14.04.4LTS.

6.1.1 Graph Datasets

Fortunately there exist a number of real-world graph datasets that are commonly used in re-
lated research. These of course help concretize the effects of any solution on real-world data
and allow direct comparison of methods and result repeatability. For this reason, this work
will report evaluations conducted over three popular such graph datasets, namely, AIDS[86],
PDBS[87], and PCM[91].

More specifically, AIDS[86], the Antiviral Screen Dataset of the National Cancer Institute,
contains topological structures of 40,000 molecules. Graphs in AIDS contain on average
≈45 vertices (std.dev.: 22, max: 245) and≈47 edges (std.dev.: 23, max: 250) each, whereby
the few largest graphs have an order of magnitude more vertices and edges. PDBS[87] is a
dataset of graphs representing DNA, RNA and proteins, consisting of fewer (600) but larger
graphs compared to AIDS, with on average ≈2,939 vertices (std.dev.: 3,215, max: 16,341)
and≈3,064 edges (std.dev.: 3,261, max: 16,781) per graph. PCM[91] consists of 200 graphs
representing protein interaction maps, with on average≈377 nodes (std.dev.: 187, max: 883)
and≈4,340 edges (std.dev.: 1,912, max: 9,416) per graph.

However, it is worth using additional synthetic datasets so as to perform evaluations under
characteristics unseen in the real-world datasets. Specifically, this work shall use a synthetic
dataset [14] as a larger counterpart to the PCM dataset, consisting of 5× more graphs, each
being 2-3× larger on average than the average PCM graph. Interestingly, the Synthetic
dataset positions the scalability limit in [14] where experiments verified that none of its
studied methods [40, 49, 54, 18, 16, 42] can scale beyond the said limit - graph datasets
containing 1000 graphs, with on average≈892 nodes and≈7,991 edges per graph, of high
average node degree≈19.52.

Characteristics of these datasets are detailed in Table 6.1. Graphs in AIDS and PDBS have
low average node degree (AIDS ≈2.09, PDBS ≈2.13), whereas graphs of PCM and Syn-
thetic have much higher average node degrees (PCM ≈22.39, Synthetic ≈19.52). With
respect to dataset with graphs having a high average node degree, it is discovered that Graph-
Cache(+) needs special mechanisms, without which its performance benefits degrade.

6.1. Experimental Setup 116

Table 6.1: Characteristics of Multiple Datasets

AIDS PDBS PCM Synthetic
unique
vertex
labels

62 10 21 20

graphs
in dataset 40,000 600 200 1,000

average
node degree 2.09 2.13 22.39 19.52

avg (node #
per graph) 45 2,939 337 892

std.dev (node #
per graph) 22 3,217 187 417

max (node #
per graph) 245 16,341 883 7,135

avg (edge #
per graph) 47 3,064 4,340 7,991

std.dev (edge #
per graph) 23 3,264 1,912 5

max (edge #
per graph) 250 16,781 9,416 8,007

6.1.2 Query Workloads

Recall the identified design goals in §4.1.2, the query workload for GraphCache(+) system
is required to satisfy a number of criteria.

• It should consider queries that are not guaranteed to have any answer, in spite of merely
dealing with queries that are directly generated from dataset graphs as most works
[16, 42, 13, 18, 40] did.

• It should be capable of handling various skewness levels regarding the probability
distribution of possible queries (in term of the popularity of query graphs or of regions
in the dataset graphs), from uniform to highly skewed Zipf distributions.

• It should consist of a large number of queries so as to obtain the reliable experiment
results pertaining to the performance.

In spite of the availability of several graph datasets, unfortunately there is a lack of well
established benchmarks and/or real-world query logs for these datasets. Therefore, all known
works derive queries from the dataset graphs. The current work shall follow the established

6.1. Experimental Setup 117

principle and the design goals for the generation of workloads, using two different algorithms
to synthesize queries from the dataset graphs, to be outlined shortly. Though NP-Complete
subgraph isomorphism leads to queries with possibly very long execution times, it shall
utilize well over 6 million queries for the performance evaluation.

Type A Workloads

Queries in these workloads are generated in the following manner: first, a source graph is
selected randomly from the dataset graphs; then, a node is selected randomly in said graph;
finally, a query size is selected uniformly at randomly from those mentioned above and a BFS
is performed starting from the selected node. For each new node, all its edges connecting
it to already visited nodes are added to the generated query, until the desired query size is
reached. For the first two random selections above, two different distributions have been
used; namely, Uniform (U) and Zipf (Z), with the probability density function of the latter
given by:

p(x) = x−α/ζ(α) (6.1)

where ζ is the Riemann Zeta function[93].

Ultimately, there will be three categories of Type A workloads: “UU”, “ZU” and “ZZ”,
where the first letter in each pair denotes the distribution used for selecting the starting graph,
and the second for the starting node.

Type B Workloads (with no-answer queries)

These workloads are generated as follows. For each of the query sizes mentioned above, two
query pools are first created: a 10,000-query pool with queries with non-empty answer sets
against the dataset, and a second 3,000-query pool with no match in any dataset graph (i.e.,
empty result set).

Queries for the first pool are extracted from dataset graphs by uniformly selecting a start
node across all nodes in all dataset graphs, and then performing a random walk till the re-
quired query graph size is reached. Generation of no-answer queries has one extra step: it
continuously relabels the nodes in the query with randomly selected labels from the dataset,
until the resulting query has a non-empty candidate set but an empty answer set against the
dataset graphs.

Once the query pools are filled up, workloads are generated by first flipping a biased coin to
choose between the two pools (with the “no-answer” pool selected with probability 0%, 20%
or 50%), then randomly (Zipf) selecting a query from the chosen pool. Hence produces three
categories of Type B workloads: “0%”, “20%” and “50%”, denoting the above probability
used.

6.1. Experimental Setup 118

6.1.3 Algorithmic Context

GraphCache(+) is intended to be a general-purpose front-end for graph query processing,
which entails the indexing strategy of iGQ as explained in §3. GraphCache(+) is designed
to assure double use in two dimensions: (i) applicable for both subgraph and supergraph
queries; (ii) capable of accommodating both FTV methods and SI algorithms. In fact, any
such algorithm is viewed as a pluggable component into the architecture, allowing any future
algorithm to be incorporated.

Specifically, GraphCache shall be used on top of three subgraph FTV and three SI meth-
ods 1. For the FTV methods GraphGrepSX [16] (GGSX), Grapes [42], and CT-Index [18]
shall be used, particularly because they are proven to be top performers in their class [14].
GGSX indexes paths in a trie and employs VF2 [10] algorithm for the verification stage.
Like GGSX, Grapes also indexes paths, but utilizes location information to pursue the bet-
ter filtering efficiency. For the verification, Grapes performs on (typically) small connected
components of dataset graphs, with several threads running in parallel. On the other hand,
CT-Index derives canonical representations for (tree, cycle) features of dataset graphs, to the
fact that finding string-based canonical forms for trees and cycles can be done in linear time
(unlike general graphs). These representations are then hashed into a bitmap structure per
dataset graph. Filtering is thus performed by checking bitmaps between query and dataset
graph, with simple bitwise operations.

With respect to the SI methods, GraphCache(+) shall use GraphQL [17] as provided by [13]
and a modified version of VF2 [10] (denoted VF2+) provided by [18], again for being well-
established and good performers [13, 14]; vanilla VF2 [10] is also used since it has been
used by several FTV implementations [16, 42, 13].

GraphCache(+) shall use the Java Native Interface to directly execute the native C++ im-
plementations of Grapes, GGSX, GraphQL and VF2, while CT-Index and VF2+ are imple-
mented in Java and thus invoked directly from GraphCache(+). This diversity in the imple-
mentation languages of the incorporated methods attests to the flexibility of GraphCache(+).

6.1.4 Dataset Change Plan

As GraphCache+ is the first study to explore the topic of handling graph queries against
dynamic underlying dataset, the corresponding dataset plan shall be created so as to test the
performance of GraphCache+. Dataset change operations are performed in batches, with

1We would like to thank the authors of [16, 42, 18, 13] for sharing their source code of subgraph queries, so
that GraphCache could incorporate their native implementations for the performance evaluations. For super-
graph queries, we have tried the utmost efforts in communicating related authors. Though some of them kindly
replied, we have not been granted any access of their source code yet.

6.1. Experimental Setup 119

occurrence time indicated by the IDs of queries in workload (see Figure 5.4). Each plan
consists of 2,000 operations (in 100 batches, 20 operations per batch), during the processing
of 10,000 queries. A batch of operations are generated as following:

• First, an occurrence time for the batch is selected uniformly at randomly from the id
of queries;

• Next, a type uniformly selected from {ADD, DEL, UA, UR}, a graph uniformly se-
lected from dataset (ADD using the initial dataset instead of synthesizing additional
graphs so as to maximumly keep the original dataset characteristics; DEL, UA and UR
using the up-to-date dataset at running time) and a uniformly selected edge within the
graph providing UA or UR being the selected type (UA would add an edge that has not
been in graph yet; UR would remove an existed edge of graph) codetermine a specific
operation – such process is repeated until the batch contain the required number of
operations.

6.1.5 Parameters and Metrics

The default value for the upper limit on the sizes C of the Cache and W of the Window
stores were C = 100 andW = 20 respectively; experiments were also performed with other
values for both C (200, 300) andW (50, 100, 200) to test their impact on performance.

Grapes and GGSX were configured to index paths up to length 4, and CT-Index to index
trees up to size 6 and cycles up to size 8 using 4,096-bit-wide bitmaps. For Grapes, two
alternatives are examined, Grapes1 and Grapes6, with 1 and 6 threads respectively. To be
fair, the code of Grapes is altered so to stop query processing after the first match in each
dataset graph (for the decision problem of interest). Please note that all mentioned values
match their default configurations in [16, 42, 18].

As to the skewed distribution of queries, Zipf α = 1.4 is by default; it also uses α = 1.1

representing a smaller skewness and α = 1.7 for a higher skewness. As a reference point,
web page popularities follow a Zipf distribution with α = 2.4 [93].

Query graphs are generated in different sizes: 4, 8, 12, 16 and 20-edge graphs for the smaller
AIDS and PDBS datasets; 20, 25, 30, 35 and 40-edge queries for the larger PCM and Syn-
thetic datasets (as almost half of the dataset graphs in AIDS contain no more than 40 edges,
larger queries are not usable). Such sizes are typical in the literature [42, 18, 40].

Workloads for AIDS and PDBS consist of 10,000 queries, while workloads for PCM and
Synthetic contain 5,000 queries for practical reasons, as PCM/Synthetic queries take much
longer to execute. GraphCache(+) only allows one for one Window (i.e., 20 queries) before
starting measuring the performance.

6.2. Results and Insights 120

LRU POP PIN PINC HD

0.00

2.00

4.00

6.00

8.00

10.00

ZZ ZU UU 0% 20% 50%

AIDS

0.00

1.00

2.00

3.00

4.00

ZZ ZU UU 0% 20% 50%

PDBS

Figure 6.1: GC Speedup in Query Time over CT-Index across Replacement Policies

Both the benefits and the overheads of GraphCache(+) will be investigated. Reported metrics
include query time and number of sub-iso tests per query, along with the speedups introduced
by GraphCache(+). Speedup is defined as the ratio of the average performance (query time
or number of sub-iso tests) of the base Method M over the average performance of Graph-
Cache(+) when deployed over Method M (i.e., speedups >1 indicate improvements). The
results were produced over more than 6 million queries! As a yardstick, [74] (also a cache
but for XML databases) report a query time speedup of 2.6× with 10,000-query workloads
generated using Zipf α = 1.5, and a 1,500-query warm-up.

6.2 Results and Insights

6.2.1 HD Wins

Figure 6.1/6.2/6.3 depicts the speedups attained by GraphCache when CT-Index, Grapes1 or
GQL was used as Method M respectively. Results for other FTV and SI methods showed
similar trends and are thus omitted. One can see that GraphCache attains significant speedups
(up to 42× lower query processing times in this case), and that it is always one of the GC
exclusive policies that produces the best results. A more subtle observation, though, is that
there are cases where PIN wins over PINC and vice-versa; for example, in Figure 6.1, PIN
dominates the scene for queries against the AIDS dataset but it is PINC that takes the lead
when querying the PDBS dataset.

Ultimately, different cache replacement policies exhibit different performance depending on
the workload and dataset characteristics. The question then is how to choose a replacement

6.2. Results and Insights 121

LRU POP PIN PINC HD

0.00

1.00

2.00

3.00

4.00

5.00

ZZ ZU UU 0% 20% 50%

AIDS

0.00

10.00

20.00

30.00

40.00

50.00

ZZ ZU UU 0% 20% 50%

PDBS

Figure 6.2: GC Speedup in Query Time over Grapes1 across Replacement Policies

LRU POP PIN PINC HD

0.00

2.00

4.00

6.00

8.00

10.00

ZZ ZU UU 0% 20% 50%

AIDS

0.00

2.00

4.00

6.00

8.00

10.00

12.00

ZZ ZU UU 0% 20% 50%

PDBS

Figure 6.3: GC Speedup in Query Time over GQL across Replacement Policies

policy when said characteristics are unknown a priori. Our answer to this question then,
and the first takeaway message, is: When in doubt, use the HD replacement policy, as it
always manages to do better or on par with the best of the alternatives. The remaining
of this section will be using HD as the replacement policy; results for other caching policies
show similar trends and are thus omitted.

6.2.2 GC/FTV versus FTV

Figure 6.4/6.6 depicts speedups in query processing time against all FTV methods for queries
on the PDBS/AIDS dataset (results for other datasets are similar). For example, in Figure
6.4, query processing time speedups range from 1.60× (i.e., 37.5% lower processing time)

6.2. Results and Insights 122

3.43

1.60 1.29

2.54 2.20
1.43

ZZ ZU UU 0% 20% 50%

(a) CT-Index

5.72

1.86 1.53

3.88
2.83 2.17

ZZ ZU UU 0% 20% 50%

(b) GGSX

42.37

14.72 10.92 14.92 16.44 11.69

ZZ ZU UU 0% 20% 50%

(c) Grapes1

22.09

11.24
8.29

11.10 10.39 7.93

ZZ ZU UU 0% 20% 50%

(d) Grapes6

Figure 6.4: GC Speedup in Query Time for PDBS across FTV Methods M

9.60

4.46 3.52

8.77 9.17
7.80

ZZ ZU UU 0% 20% 50%

(a) CT-Index

9.11

4.05 3.25

7.88
6.09

4.19

ZZ ZU UU 0% 20% 50%

(b) GGSX

10.56

4.86 3.75

8.88 9.33
7.31

ZZ ZU UU 0% 20% 50%

(c) Grapes1

10.56

4.86 3.75

8.88 9.33
7.31

ZZ ZU UU 0% 20% 50%

(d) Grapes6

Figure 6.5: GC Reduction (Speedup) in Number of Sub-Iso Tests for PDBS across FTV
Methods M

to more than 42×. A similar picture is drawn in Figure 6.5/6.7 for speedups in the number
of subgraph isomorphism tests performed. Juxtaposing Figure 6.4 and 6.5 (ditto for Figure
6.6 and 6.7) leads to the following interesting insight: Reductions in the number of sub-
graph isomorphism tests do not translate directly into reductions in query time; this
validates our claim that cache hits in GraphCache render different benefits. In all cases,
though, GraphCache achieves significant improvements in both query processing time
and number of subgraph isomorphism tests performed.

6.2. Results and Insights 123

5.78 5.04 5.30

9.68 9.76
8.43

ZZ ZU UU 0% 20% 50%

(a) CT-Index

3.39 3.00 2.81

5.47 5.38 4.98

ZZ ZU UU 0% 20% 50%

(b) GGSX

2.68 2.59 2.41

3.70 4.10
3.45

ZZ ZU UU 0% 20% 50%

(c) Grapes1

1.65 1.69 1.62
1.96 1.96 1.73

ZZ ZU UU 0% 20% 50%

(d) Grapes6

Figure 6.6: GC Speedup in Query Time for AIDS across FTV Methods M

6.86 6.04 5.69

10.55 10.78 10.09

ZZ ZU UU 0% 20% 50%

(a) CT-Index

6.58 6.08 5.15

10.12 10.82 10.17

ZZ ZU UU 0% 20% 50%

(b) GGSX

7.51 6.88 5.95

10.97 11.12 10.86

ZZ ZU UU 0% 20% 50%

(c) Grapes1

7.51 6.88 5.95

10.97 11.12 10.86

ZZ ZU UU 0% 20% 50%

(d) Grapes6

Figure 6.7: GC Reduction (Speedup) in Number of Sub-Iso Tests for AIDS across FTV
Methods M

6.2.3 GC/SI versus SI

Figure 6.8 depicts the query processing speedups of GC over SI methods considered in this
work. One can see that GraphCache improves the performance of well-established SI
methods, with the same meagre 100-query cache configuration as above. This is signifi-
cant in that GraphCache provides a new way to expedite sub-iso tests (as opposed to
developing yet another SI heuristic) which is usable with any mainstream SI method.

6.2. Results and Insights 124

9.02

5.45 5.19
7.32

5.73 5.20
3.71

2.09 2.16

8.78

3.76
2.41

ZZ ZU UU 0% 20% 50% ZZ ZU UU 0% 20% 50%

AIDS PDBS

(a) VF2

8.85

6.49 7.18
9.48

5.35 6.14

3.56
2.02 1.99

4.85

2.23 2.12

ZZ ZU UU 0% 20% 50% ZZ ZU UU 0% 20% 50%

AIDS PDBS

(b) VF2+

6.11
4.80 4.15

8.17 7.56 7.37
9.49

4.35
3.31

5.54
6.54

4.93

ZZ ZU UU 0% 20% 50% ZZ ZU UU 0% 20% 50%

AIDS PDBS

(c) GQL

Figure 6.8: GC Speedup in Query Time for AIDS/PDBS across SI Methods M

Note the interesting finding in Figure 6.8(b) that VF2+ speedup for AIDS UU workload
is close to that of AIDS ZU (7.18 vs 6.49), whereas one might have expected a different
outcome. Intuitively, the ZU workload bears more exact-match hits than UU, due to the
skewness of selecting source graphs during query generation (see §6.1.2). And it does: we
measured circa 2.5X the number of exact-match cache hits in ZU vs UU. However, recall
that GraphCache exploits also subgraph/supergraph hits. When exact-matches are not fre-
quent, GraphCache loads graphs in the cache that can help with their subgraph/supergraph
relationships. Indeed, around 2X such matches are discovered for the UU workload vs ZU.
Of course, the overall performance result is a very complex picture and depends on how big
benefit is each saved exact-match versus each saved subgraph/supergraph match. Ditto for
the similar phenomenons of FTV methods in Figure 6.6. But the key insight here is that by

6.2. Results and Insights 125

9.23

6.81 7.58

10.06

5.51 6.36 6.85

4.12 3.53

9.58

4.30
3.06

ZZ ZU UU 0% 20% 50% ZZ ZU UU 0% 20% 50%

AIDS PDBS

Figure 6.9: GC Reduction (Speedup) in Number of Sub-Iso Tests for AIDS across SI Meth-
ods M

utilizing exact-matches and subgraph/supergraph matches, GraphCache can introduce
significant benefits in both skewed and non-skewed workloads.

Furthermore, Figure 6.9 shows the speedups in the number of subgraph isomorphism tests
performed. Please note that under a given GraphCache configuration (specified by dataset,
workload, replacement policy, the upper limit on the sizes of Cache and the Window
stores), whatever SI solution being the Method M, GraphCache results exactly the same
pruned candidate set for each query. Therefore, Figure 6.9 is independent of the three
methods (i.e., VF2, VF2+, GQL) considered in this work, as well as any other SI method
that the community shall contribute in the future.

6.2.4 GC/SI versus FTV

Let us now take a step back and look at how FTV methods and GraphCache operate: they
both expedite queries by filtering out dataset graphs, thus producing a reduced candidate set.
The logical question then is: what happens if we pitch a full-blown FTV method against
GraphCache operating on top of a simple SI method?

Figure 6.10 shows the results when comparing GraphCache on top of SI methods VF2
against GGSX (using VF2 for verification chores). Correspondingly, Figure 6.11 is for
GraphCache on top of VF2+ versus CT-Index. And Figures 6.12 and 6.13 depict their speed-
ups in the number of subgraph isomorphism tests. Take the Figure 6.11 for example. For the
small 100-query cache, GraphCache performs on par or better than CT-Index in eight out of
twelve cases, slightly worse in two other cases, and takes up to double the time of CT-Index
in the remaining worst case. Note, though, that GraphCache’s space requirements are under
≈15% of the space requirements of CT-Index’s index for PDBS and under 0.2% for AIDS,
and that CT-Index has the fastest verification algorithm and by far the smallest index among
all FTV methods considered in this work. The situation is more impressive when using the
larger (500-query) cache, where GraphCache matches or outperforms CT-Index across the
board (by a factor of 2.6× on average). Note that even for this “larger” cache, GraphCache’s

6.2. Results and Insights 126

1.99 1.27 1.84
3.79 2.89 2.29

3.94 3.60 3.54

10.68
8.38

6.34

ZZ ZU UU 0% 20% 50%

c100-b20 c500-b20

(a) AIDS

2.30
1.30 1.12

2.68
1.07 0.54

9.49

2.37 1.98
4.01

2.58 2.19

ZZ ZU UU 0% 20% 50%

c100-b20 c500-b20

(b) PDBS

Figure 6.10: Speedup in Query Time of GC/SI vs FTV across Datasets and Workloads:
GC/VF2 vs GGSX

0.74 0.55 1.02
2.09

0.96 0.68
1.82 1.80 1.85

6.58

3.63
2.48

ZZ ZU UU 0% 20% 50%

c100-b20 c500-b20

(a) AIDS

1.82
1.02 0.86

2.34

0.94
0.54

3.58

1.69 1.35

2.54 2.19 1.82

ZZ ZU UU 0% 20% 50%

c100-b20 c500-b20

(b) PDBS

Figure 6.11: Speedup in Query Time of GC/SI vs FTV across Datasets and Workloads:
GC/VF2+ vs CT-Index

6.2. Results and Insights 127

1.20 0.88 1.81
3.47

1.54 1.10
3.06 2.99 3.29

11.29

6.06
4.13

ZZ ZU UU 0% 20% 50%

c100-b20 c500-b20

(a) AIDS

5.09 3.25 2.55
6.85

2.64 1.38

26.51

9.55 7.65

15.10
10.82 9.05

ZZ ZU UU 0% 20% 50%

c100-b20 c500-b20

(b) PDBS

Figure 6.12: Reduction (Speedup) in Number of Sub-Iso Tests for GC/SI vs FTV across
Datasets and Workloads: GC/VF2 vs GGSX

0.70 0.52 1.00
2.02

0.90 0.64
1.78 1.76 1.81

6.58

3.53
2.39

ZZ ZU UU 0% 20% 50%

c100-b20 c500-b20

(a) AIDS

4.76 3.12 2.44
6.64

2.39 1.06

24.77

9.16 7.31

14.63
9.80

6.93

ZZ ZU UU 0% 20% 50%

c100-b20 c500-b20

(b) PDBS

Figure 6.13: Reduction (Speedup) in Number of Sub-Iso Tests for GC/SI vs FTV across
Datasets and Workloads: GC/VF2+ vs CT-Index

6.2. Results and Insights 128

space requirements are less than≈70% of CT-Index’s index size for PDBS and less than 1%
for AIDS (results over GGSX and Grapes show similar trends). The conclusion is then that
GraphCache can replace the best-performing FTV methods, achieving comparable or
better performance for a fraction of the space and no pre-processing cost as no indexing
is needed.

6.2.5 GC+/SI versus SI

1.74 1.43 1.28 1.79 1.78 1.52 1.31 1.27 1.23

7.85

4.77 5.13

7.31
5.79 6.21 5.78

4.57 3.90

ZZ ZU UU ZZ ZU UU ZZ ZU UU

VF2 VF2+ GQL

EVI CON

Figure 6.14: GC+ Speedup in Query Time for Type A Workloads

1.90 1.76 1.57 2.17 1.95 1.84 1.34 1.25 1.18

6.52
5.20 4.57

9.50

5.35 6.14
7.31 6.68 6.67

0% 20% 50% 0% 20% 50% 0% 20% 50%

VF2 VF2+ GQL

Figure 6.15: GC+ Speedup in Query Time for Type B Workloads

Now, turning attention to the performance of GraphCache+, where graph query processing
is against a dynamic dataset based on AIDS. Figure 6.14 and Figure 6.15 depict the query
time speedups of GC+ across all method M and workloads. We can see that CON achieves
considerable speedup with the meagre 100-query cache configuration whereas gains of
EVI are limited. Similar to that of GraphCache in Figure 6.8(b); regarding the interesting
finding that speedups of GraphCache+ for UU workload are close to those of ZU (e.g., 4.77
vs 5.13 against VF2 base method), it is due to the fact that the overall performance result is a
very complex picture and depends on how big benefit is each saved exact-match versus each
saved subgraph/supergraph match. This echoes the claim that by utilizing exact-matches
and subgraph/supergraph matches, GraphCache+ can benefit both skewed and non-
skewed workloads.

6.2. Results and Insights 129

1.94 1.81 1.53 2.21 1.96 1.83

8.71
6.53 7.30

9.84

5.42 6.23

ZZ ZU UU 0% 20% 50%

EVI CON

Figure 6.16: GC+ Reduction (Speedup) in Number of Sub-Iso Tests

Correspondingly, Figure 6.16 shows the speedups in the number of subgraph isomorphism
tests performed in GraphCache+. Along with GraphCache, regarding a configuration
specified by dataset, dataset change plan, workload, replacement policy, cache model
EVI/CON, the upper limit on the sizes of Cache and the Window stores, GraphCache+
generates exactly the same final candidate set for each query, for each SI method. Again,
Figure 6.16 is independent of the SI methods considered. Juxtaposing Figures 6.14, 6.15
and 6.16 delivers the similar insight of GraphCache+ as that of GraphCache, i.e., reduc-
tions in the number of subgraph isomorphism tests do not translate directly into reductions
in query time. In all cases, though, GraphCache+ achieves significant improvements in
both query processing time and number of subgraph isomorphism tests.

6.2.6 Varying the Skewness of Query Distribution

Figure 6.17 shows the speedups achieved by GraphCache for Type B workloads against the
AIDS dataset, for various values of the Zipf α skewness parameter (results for number of
sub-iso tests and other workloads show similar trends and are thus omitted). We can see that
the more skewed the query distribution, the higher the gains from caching. This is, of
course, expected and has been shown times and again in related work on traditional caches,
as caches are built on the premise of (temporal) locality of reference and thus more skewed
query distributions have the potential to translate to higher hit ratios. A subtler, but equally
important observation here, reached by examining Figure 6.4 in the light of the above result,
is that GraphCache leads to significant performance gains even for query workloads
with uniform query popularity distributions. These distributions represent worst-case
scenarios for caching schemes, but we can see speedups from 1.29× (≈20% lower times)
up to≈11× for the UU workloads, emphasizing a significant characteristic of GraphCache
where the realm of “locality” is extended by subgraph/supergraph matches among queries,
in addition to the traditional exact-match of isomorphic queries.

6.2. Results and Insights 130

4.42 4.22 4.09

9.68 9.76 8.43

22.99 23.31

16.55

0% 20% 50%

zipf 1.1 zipf 1.4 zipf 1.7

(a) CT-Index

2.82 2.70 2.65

5.47 5.38 4.98

10.22 9.52
8.27

0% 20% 50%

zipf 1.1 zipf 1.4 zipf 1.7

(b) GGSX

2.66 2.52 2.42

3.70 4.10
3.45

5.02 4.82
4.25

0% 20% 50%

zipf 1.1 zipf 1.4 zipf 1.7

(c) Grapes1

1.66 1.57 1.56
1.96 1.96

1.73
2.17 2.18 1.99

0% 20% 50%

zipf 1.1 zipf 1.4 zipf 1.7

(d) Grapes6

Figure 6.17: GC Speedup in Query Time for Type B Workloads on the AIDS Dataset, for
Various Values of Zipf α

6.2. Results and Insights 131

6.2.7 Various Cache Sizes

3.39
3.00 2.81

4.07 3.82 3.87
4.31 4.00 4.05

ZZ ZU UU

c100-b20 c300-b20 c500-b20

(a) AIDS/Type A Workloads

5.47 5.38 4.98

7.94 7.51
6.34

8.48 7.86
6.53

0% 20% 50%

c100-b20 c300-b20 c500-b20

(b) AIDS/Type B Workloads

5.72

1.86 1.53

8.92

2.68 2.04

10.00

3.08 2.30

ZZ ZU UU

c100-b20 c300-b20 c500-b20

(c) PDBS/Type A Workloads

3.88
2.83

2.17

5.23
4.28 4.11

6.83
5.47 5.80

0% 20% 50%

c100-b20 c300-b20 c500-b20

(d) PDBS/Type B Workloads

Figure 6.18: GC Speedup in Query Time against GGSX with Various Cache Sizes

6.2. Results and Insights 132

Figure 6.18 shows the performance of GraphCache against GGSX for queries on AIDS and
PDBS, for varying cache sizes (results for other methods and datasets show similar trends).
We can see that increasing the cache size improves the performance of the cache. How-
ever, this does not mean that one can increase the size of the cache indefinitely; the size of
the cache is first limited by the amount of main memory available for GraphCache, then by
the overhead associated with updating the cache contents (more on this shortly).

6.2.8 Higher Gains with Cache Admission Control

4.35

3.04 2.94

1.67 1.73 1.47

5.71

4.05

5.44

2.50 2.24 1.92

0% 20% 50% 0% 20% 50%

PCM Synthetic

C C + AC

(a) Query Time Speedups

3.20 2.97
2.50

4.36
4.05 3.97

2.57 2.31 2.28
1.93 1.95

2.59

0% 20% 50% 0% 20% 50%

PCM Synthetic

C C + AC

(b) Reduction (Speedup) in Number of Sub-Iso Tests

Figure 6.19: GC Performance vs Grapes6 for Type B Workloads on PCM/Synthetic Datasets

Figure 6.19 shows the speedups in query time (6.19(a)) and number of sub-iso tests (6.19(b))
against Grapes6 for the PCM and Synthetic datasets, attained when the cache admission
control is disabled (C) and enabled (C + AC). For clarity, performance without specific
notes refer to turning off the cache admission control (C) by default. We can see that cache

6.2. Results and Insights 133

admission control leads to even higher speedups, thus validating our observation regarding
cache pollution and the appropriateness of our “expensiveness”-based mechanism.

A subtler observation is that the corresponding speedup in the number of sub-iso tests is
reduced when cache admission control is enabled, as shown in Figure 6.19(b). For better
understanding of this trend, let us concentrate on the Synthetic-50% workload: GC without
admission control yields a speedup as high as ≈4× in the number of sub-iso tests, but the
resulting query time speedup is only ≈1.5×. The reason is that top expensive queries do
not benefit as much when the cache is polluted: more specifically, the average time for the
top-1% most time-consuming queries is ≈16.5 seconds with Grapes6, going down to ≈15
seconds for GraphCache without admission control – a 1.1× speedup; the remaining 99%
“inexpensive” queries enjoy speedups of 2×, going from ≈0.200 seconds down to ≈0.100
seconds, but they account for a much smaller percentage of the overall query processing time
compared to the top-1% ones. When the admission control mechanism is enabled, these
top-1% expensive queries are prioritized, with their average query processing time going
down considerably to≈10 seconds – a much improved 1.65× speedup. Hence, despite the
lower reduction (speedup) in number of subgraph isomorphism tests, the overall query
processing time benefits greatly.

6.2.9 Negligible Space Overhead

0.23

27.36

45.52
38.72

64.35

21.14

42.28

0

10

20

30

40

50

60

70

GraphCache GGSX
LP4

GGSX
LP5

Grapes
LP4

Grapes
LP5

CT-Index
T6C8E12

CT-Index
T7C9E13

In
de

x
siz

e
(M

By
te

s)

Figure 6.20: Absolute Index Sizes (in MByte) for AIDS with GC Cache Size of 500

We have shown so far that GraphCache leads to significant decreases in the query process-
ing time and number of subgraph isomorphism tests of both FTV and SI methods. Recall
that subgraph isomorphism tests take up the majority of the query processing time for FTV
methods. A logical consideration, then, would be to try and increase the filtering power of

6.2. Results and Insights 134

45 42 44 44

120 114 117 117

195 185 187 187

0

60

120

180

240

CT-Index GGSX Grapes1 Grapes6

In
de

x
siz

e
(K

By
te

s)

c100-b20 c300-b20 c500-b20

Figure 6.21: GC Space Overhead (in KByte) with Various Cache Sizes

these methods so as to further decrease the size of the resulting candidate set. This can be ac-
complished by increasing the size of the features recorded by FTV methods; larger features
bear higher discriminative power as, obviously, the larger a feature the less its occurrences
in dataset graphs.

To this end, we reconfigured all FTV methods increasing their feature sizes by just one (i.e.,
max path length of 5 for Grapes and GGSX; trees of size 7, cycles of size 9, and 8192 bits
per bitmap for CT-Index). As shown in Figure 6.20, this minimal increase in feature size
indeed led to better performance, with the average query processing time going down by
approximately 10%; however, it also led to an almost doubling of the space required for the
FTV indexes across all methods. At the same time, GraphCache accomplishes its speedup
for a negligible space overhead; for the AIDS dataset, the memory and disk space required
by GraphCache was just over 1% (0.23 versus sizes of Method M; the shown 0.23 MB being
the maximum query index across all datasets/workloads/replacement policies when the cache
size is 500) of the space required for the indexes of the various FTV methods, but leading to
time speedups of up to 42× (see Figure 6.4).

Along these lines, Figure 6.21 depicts the size of GraphCache data stores (in KByte) for
different cache sizes of AIDS 20% workload. We can see that, as expected, the space over-
head of GraphCache increases almost linearly with the size of the cache. Now, contrast the
numbers in the figure with the more than 20 MBytes required for the index of CT-Index (by
far the smallest of the indexes across FTV methods), keeping in mind that for this meagre
space overhead GraphCache achieves query time speedups of 10×, 19× and 21× against
CT-Index for the cache sizes shown in the figure (i.e., C =100, C =300 and C =500
respectively).

Now, contrast the numbers in the figure with the more than 20 MBytes required for the index

6.2. Results and Insights 135

132
68 60

697

130 93 89

664

338 335 320 6

21 34

7
18 31

7 20 31
M

et
ho

d
M

c1
00

-b
20

c3
00

-b
20

c5
00

-b
20

M
et

ho
d

M

c1
00

-b
20

c3
00

-b
20

c5
00

-b
20

M
et

ho
d

M

c1
00

-b
20

c3
00

-b
20

c5
00

-b
20

CT-Index GGSX Grapes6

Average Query Time (milliseconds) Overhead (milliseconds)

1,285

Figure 6.22: GraphCache: Average Execution Time and Overhead (in Millisecond) Per
Query for the 20% Workload on AIDS Dataset

of CT-Index (by far the smallest of the indexes across FTV methods), keeping in mind that
for this meagre space overhead GraphCache achieves query time speedups of 10×, 20× and
24× against CT-Index for the cache sizes shown in the figure (i.e., C =100, C =300 and
C =500 respectively).

6.2.10 Query Time Break-down Analysis

Figure 6.22 depicts a break-down of query processing time for FTV methods and Graph-
Cache, showing how much of GraphCache time is spent (on average) to update the Window
and Cache data stores (including executing the cache replacement algorithms and re-indexing
the cached query graphs), for various cache sizes. As we can see, the time overhead for
cache maintenance chores is trivial. Another interesting observation is that, although in-
creasing the size of the cache improves query processing time (as also shown in Figure 6.18),
it also leads to an increase in the overhead associated with the maintenance of the cache con-
tents. For the cache sizes considered in this work, one can see that GraphCache loses in
maintenance overhead and gains in query time. The upside is, though, that even with the
meagre cache sizes used in this work, the performance gains are enough to not warrant
a much larger cache.

In turn, Figure 6.23 depicts a break-down of query processing time for method M, EVI
and CON in GraphCache+ against a dynamic dataset based on AIDS. EVI pays overhead
on updating the Window and Cache data stores, including executing the cache replacement
algorithms and re-indexing the cached graphs. Whereas the overhead of CON also covers

6.3. Summary 136

1,217
698

155

1,130
789

237

1,385
1,085

270

4

11

3

9

3

7

VF2 EVI CON VF2 EVI CON VF2 EVI CON

ZZ ZU UU

Average Query Time (milliseconds) Overhead (milliseconds)

(a) Type A Workloads

1,627

856
250

1,383
785

266
990

631
217

3

11

3

10
3

8

VF2 EVI CON VF2 EVI CON VF2 EVI CON

0% 20% 50%

(b) Type B Workloads

Figure 6.23: GraphCache+: Average Execution Time and Overhead (in Millisecond) Per
Query Graph

the time of analyzing dataset log and validating cache (see Algorithm 6 and 7) – such CON
specific cost is trial, taking less than 1% in CON overhead, across all the aforementioned
workloads and methods M. This confirms a significant conclusion – the CON exclusive
algorithms 6 and 7 are efficient. The dominant part of CON overhead (for updating the
Window and Cache data stores) is higher than that of EVI, as the latter is frequently purged
hence bearing less to be updated. Putting the Figures of 6.14, 6.15 and 6.16 aside Figure 6.23,
it is obvious that CON sweeps EVI in speedup regarding both query time and number
of subgraph isomorphism tests, with a negligible additional overhead.

6.3 Summary

This chapter has presented extensive performance evaluations for the GraphCache/Graph-
Cache+ system. It first described the configuration of experiments, regarding a number of
settings such as graph datasets, query workloads, algorithm context, dataset change plan,
the upper limit of cache/window size, workload distributions and etc. Performance met-
rics are highlighted by the speedup, which is defined as the performance gains of Graph-
Cache/GraphCache+ against each underlying algorithm considered in this work. Such speedup

6.3. Summary 137

is expressed in the number of subgraph isomorphism tests and in the query processing time,
which are the two major measurements in literature.

Comprehensive experiments are performed with over 6 million queries, against a number of
graph datasets with different characteristics, and in the context of various algorithms, which
has proven the applicability and appropriateness of our approaches. Analyzing these experi-
ments has revealed a number of key lessons, pertaining to graph caching and query process-
ing. GraphCache/GraphCache+ achieves considerable performance gains in the number of
subgraph isomorphism tests and the query processing time, with meagre space overheads.
A number of GraphCache(+) exclusive replacement strategies are tested for performance,
among which the novel hybrid dynamic (HD) policy wins incontrovertibly, and the cache
admission control affords further gains. Moreover, regarding the two cache models specific
to GraphCache+, CON sweeps EVI in both query time and the number of subgraph isomor-
phism tests, with negligible additional overheads. Furthermore, performing GraphCache on
top of SI is proved competitive even against state-of-the-art FTV methods, which in turn
offers food for thought.

138

Chapter 7

Conclusions

Modern big data applications demand high performing graph query processing. Whereas
recent studies [13, 14] have proved the significant performance limitation of the current
research. Therefore, this work has presented a suite of algorithms and systems for ensur-
ing high-performance graph query processing, complementing existing state of the art ap-
proaches and performing well across the board. Central to the idea is to utilize the knowledge
derived from previously executed queries, rather than throwing them away.

Following the novel approach, this thesis proceeds to afford a number of contributions to
the community, including the iGQ query method [92], the first full-fledge graph caching
system GraphCache [95], and the first study of exploring graph cache consistency Graph-
Cache+ [100]. This chapter shall summarize these contributions and discuss the future work,
concluding the whole thesis.

7.1 Summary of Contributions

7.1.1 Contributions: Algorithms

Figure 7.1 depicts the big picture of contributions pertaining to algorithms and techniques.
Each module itself consists of several microcosm components that closely collaborate, which
are to be illustrated module-wise as follows.

Indexing Queries to Expedite Graph Query Processing

Recall the fresh principle regarding graph query processing, in which knowledge of previous
queries is leveraged to facilitate future queries. This is the soul of iGQ query method. As to
the contribution to the literature, iGQ departs from related work in three ways.

7.1. Summary of Contributions 139

Indexing Queries to Expedite
Graph Query Processing

Graph Cache Replacement

Graph Cache Admission Control

Ensuring Consistency in Graph Cache

Figure 7.1: Contributions in Algorithm/Technique

• As its name, iGQ builds index for graph queries, as opposed to merely resting on the
index of dataset graphs. This substantially benefit query workloads that share little
characteristics of the graph dataset.

• iGQ maintains the knowledge that is laboriously and painstakingly obtained when
executing previous queries, instead of throwing away blindly.

• iGQ can be utilized to expedite both subgraph queries and supergraph queries, bridging
the two separate research threads and affording the elegance of killing two birds using
one stone.

Moreover, iGQ offers food for thought. First, it endeavours to “mine” the containment status
among queries. Besides the queries that are frequently submitted to system, iGQ manages to
expedite queries that share subgraph/supergraph relationships with those executed. Second,
as to the component to detect supergraph status between new and previous queries, iGQ pro-
vides a novel approach that could swiftly avoid the heavy overhead, practicing the principle
of being simple yet efficient.

Graph Cache Replacement

This thesis presents GraphCache, to the best of our knowledge the first full-fledged caching
system for the general subgraph/supergraph query processing. Like any caching system,
GraphCache is required to properly address the problem of cache replacement. To this end,
this work contributes as follows.

• It has materialized the classical caching replacement policies such as LRU and popu-
larity based strategy in GraphCache system, exploring their applicabilities in the new
setting of replacing graph query.

7.1. Summary of Contributions 140

• It has proposed a number of GC exclusive replacement policies with different trade-
offs, by well considering the particularity of graph cache. These graph query aware
strategies are highlighted by a novel hybrid policy with competitive performance.

Graph Cache Admission Control

Furthermore, among the various experiments, we have discovered the phenomenon of cache
pollution, in which the overall query time speedup gained by graph caching was very low
despite the fact that the majority of queries were benefited. To address this problem, this
work has proposed an admission control mechanism that rewards expensive queries time-
wise, which manages to obtain further performance gains than that of vanilla graph cache.

Ensuring Consistency in Graph Cache

Following the established research of the community, GraphCache system deals with graph
queries against a static dataset. Whereas real-world applications indicate that the underlying
graph dataset could change over time. Therefore, this thesis looks into the topic of graph
cache consistency.

• It presents a full-fledged system GraphCache+, which is the first study that explores the
topic of graph cache consistency and manages to expedite the general subgraph/supergraph
query processing against dynamic graph datasets.

• GraphCache+ is characterized by two GC+ exclusive cache models, reflecting the dif-
ferent designs in dealing with the consistency issues of graph cache.

• To accommodate the new setting with dynamic dataset, GraphCache+ extends the iGQ
paradigm for subgraph and supergraph query processing, offering the formally proved
correctness.

7.1.2 Contributions: Systems

In turn, Figure 7.2 shows the contribution of this thesis in system. GraphCache and Graph-
Cache+, the systems afforded by this work, share the characteristic of being full-fledged.
Take GraphCache for example. The following shows the thinkings that direct the design and
implementation.

• Considering the well-established caching principles and the particularity of graph queries,
a number of design goals are first identified.

7.2. Future Work 141

Design Evaluation

Showcasing Significant Performance Gains

Implementation

FTV Algorithms SI Methods

Subgraph Queries Supergraph Queries

Figure 7.2: Contributions Pertaining to System

• It then follows the system architecture of GraphCache, featured by well defined sub-
systems and interfaces, allowing for the flexible plug-in of new components.

• The performance evaluation of GraphCache system uses millions of queries against
both real-world and synthetic datasets of different characteristics, quantifying the ben-
efits and overheads, putting forth a number of non-trivial lessons.

• GraphCache is capable of accelerating all the current FTV algorithms and SI methods.

• GraphCache offers the elegance of double use in expediting both subgraph and super-
graph queries.

• Extensive experiments showcase the significant performance gains achieved by Graph-
Cache system.

GraphCache (GraphCache+) is implemented in Java over ≈6,000 lines of code, pulling ev-
erything together to make a concrete system. GraphCache+ system is further highlighted by
ensuring the consistency of graph cache, for which GraphCache+ plugs in new subsystems
and components to GraphCache system, instead of starting from scratch. Such good practice
of well utilizing the existing resources to address new challenges is also remarkable.

7.2 Future Work

Future work currently focuses on three big ticket items. First, it is to extend GraphCache
(GraphCache+) so as to benefit subgraph queries when finding all occurrences of a query
graph against a single massive stored graph. Recall the two versions of subgraph isomor-
phism problem. The decision problem answers Y/N as to whether the query is contained in
each graph in the dataset. The matching problem locates all occurrences of the query graph

7.2. Future Work 142

within a large graph (or a dataset of graphs). For both the decision and matching problems,
the brute-force approach is to execute sub-iso tests of the query against all dataset graphs,
i.e., the aforementioned SI methods. Currently, this thesis deals with the decision problem.
The community has also looked into subgraph queries against a single, very large graph (con-
sisting of possibly billions of nodes) [38, 39]. GraphCache (GraphCache+) system does not
target such use cases for the time being and extending the system to benefit queries against a
single massive graph is left for the future work.

Moreover, it is to develop a distributed/decentralized version of GraphCache (GraphCache+).
Fundamentally, there are two central issues to figure out. On the one hand, regarding every
query graph, a machine among the cluster is properly selected for execution such that the
query processing could benefit from GraphCache (GraphCache+) to the utmost. On the
other hand, each executed query shall be collected by suitable machines (i.e., a subset of the
cluster) so as to best expedite future queries. Scaling out GraphCache (GraphCache+) could
consider using the Pythia framework [101] that is originally designed to predict and engage
the appropriate subset of cluster when dealing with big data missing value imputations; with
respect to the particular task of graph caching, it requires relevant mechanisms to derive
knowledge from the local cache stores of each machine. These should be further investigated.

Furthermore, it is worthwhile exploring the applicability and appropriateness of Graph-
Cache (GraphCache+) for alternative data types. In principle, GraphCache (GraphCache+)
is a caching system for improving query performance. Such queries could cover various
data types. For data types that can be transformed into or represented as graphs and for
which queries can also be posed in the form of subgraph or supergraph queries, GraphCache
(GraphCache+) can obviously be used to improve query performance. Additionally, Graph-
Cache (GraphCache+) can be used in general for data types that define commutative and
transitive containment operators (e.g., “A contains B” or “A is contained in B”), and for
which queries are also of the form “is Q contained in the items of the dataset D?” or “are
items of the dataset D contained in Q?”. Two prominent examples are image containment
queries (as found in image detection use cases) and string containment queries (often arising
in biological/genome datasets). Future work should be conducted over materializing Graph-
Cache (GraphCache+) components upon use case specialties (e.g., mechanisms for cache
replacement and cache admission control so as to further optimize image queries).

143

Appendix A

Approximation of the Time Element
for PINC and HD Strategies

As illustrated in §4.3.3, GraphCache replacement policies of PINC and HD involve an ap-
proximation for the time cost of those reduced subgraph isomorphism tests when dealing
with the utility of cached graphs. Such “query time” is estimated as the corresponding sub-
iso tests are not performed at all. Fortunately, regarding the backtracking subgraph iso-
morphism algorithms, [102] provides a framework of time complexity analysis, which is
applicable for all the SI methods considered in this work. The following shall first review
the perspective of [102] and then extend it to accommodate the cases of GraphCache.

Subgraph isomorphism testing occurs between two graphs, i.e., a query g = (Ng, Bg) and
a dataset graph G = (NG, BG), where N(.) is the node set and B(.) is the edge (bonding
between nodes) set. SI methods aim to discover whether there exists a mapping M that
covers all nodes of query g, i.e., a mapping M = {(n,m)} pertaining to a set of matched
node pairs (n,m) such that n ∈ Ng and m ∈ NG. Hence, the backtracking paradigm
could be viewed as constantly adding pairs of matched nodes to partial mappings until the
end result is reached (i.e., a mapping M is found or there exists no such M), during which
further exploration of a branch can be avoided if the addition of a node pair violates the
matching criteria [102].

According to the analysis in [102], the time complexity of backtracking sub-iso algorithms
are given by:

O(N ×N !) (A.1)

where N is the node number of query graph g (or dataset graphG), with two assumptions as
follows:

• The query g and dataset graphG have the same number of nodes.

144

• There is no label restriction on nodes, i.e., label information does not involve in differ-
entiating nodes.

More specifically, [102] uses a state to represent a partial mapping solution. Therefore,
analyzing the time cost of a sub-iso test turns to finding out how many states are involved
and the cost pertaining to each state.

Regarding the time cost per state, [102] further decomposes the matching process into two
stages. First, given a selected successor node x to be matched in query g, produce the
candidate node set {c}, from those unmatched nodes in the dataset graphG. Second, decide
whether each candidate c satisfy the feasibility rules of subgraph isomorphism, such that if
there is an edge e bridging node x and node y in query g, there must exist a corresponding
edge e′ in dataset graph G, such that e′ connects node x′ and node y′ (in G), x′ matches
x and y′ matches y. As demonstrated in [102], the first stage dominates the time cost
pertaining to each state, which is given byO(N) where N is node number of query graph
g (or dataset graphG), again with the two aforementioned assumptions.

As to the number of states to compute, [102] had analyzed both the best and worst cases.
The best case results the complexity of O(N) such that each node in query g has only
to go through one state so as to determine that the query g is or is not a subgraph of the
dataset graphG. Whereas the worst case rendersO(N !), in which nodes of query g have to
undergo all possible states to finish the matching process in the end. Still,N is node number
of query graph g (or dataset graphG), resting on the said assumptions.

Table A.1: Number of States on Each Level in the Worst Case

level number of states to explore

0 N
1 N× (N-1)
2 N× (N-1)× (N-2)
3 N× (N-1)× (N-2)× (N-3)
4 N× (N-1)× (N-2)× (N-3)× (N-4)
5 N× (N-1)× (N-2)× (N-3)× (N-4)× (N-5)
... ...
... ...

N-1 N× (N-1)× (N-2)× (N-3)× (N-4)× (N-5)× ... × 2× 1

[102] emphasizes the worst case for generality and concludes the formula as (A.1). Table
A.1 details the number of states to go through of the worst case. On each level, a node x in
query graph g will undergo states in maximum. For example, N states on level 0 indicates
that there are N candidate nodes in the dataset graph to match the first node of query graph
g. Then,N−1 nodes are remained maximumly for the second node of query graph q on the

A.1. Enlarging the Dataset Graph 145

level 1. Such process continues until all the nodes in query graph are covered. It is apparent
that level N-1 dominates, which in turn provides the complexity for the number of states to
compute:

N × (N − 1)× (N − 2)× ...× 2× 1 = O(N !) (A.2)

Turning attention to GraphCache. As is common in literature [16, 42, 13], the settings of
sub-iso tests in GraphCache are featured by two characteristics.

• The dataset graphG is typically much larger than the query g, containing more nodes.

• A graph dataset usually consists of several unique labels. Each graph node possesses
a label, such that two nodes can never be matched unless sharing the same label.

Interestingly, such settings for sub-iso testing turn off the assumptions as stated in [102].
Therefore, to better estimate the time element used in PINC and HD strategies, it requires
a more general approach. Based on the formula (A.1) provided by [102], this work shall
proceed to fit the use case of GraphCache from two aspects, i.e., “enlarging” the dataset
graph and “labeling” each graph node.

A.1 Enlarging the Dataset Graph

Following the analysis in [102], the extension of enlarging the dataset graph considers both
the time cost per state and the total number of states. Say, the dataset graph G has N nodes
whereas the query g has n nodes, such that N > n. Regarding the time cost per state, the
conclusion of O(N) is still applicable. However, pertaining to the total number of states,
things are different, as illustrated by Table A.2.

Table A.2: Number of States Per Level when Dataset Graph is Larger than Query

level number of states to explore

0 N
1 N× (N-1)
2 N× (N-1)× (N-2)
3 N× (N-1)× (N-2)× (N-3)
4 N× (N-1)× (N-2)× (N-3)× (N-4)
5 N× (N-1)× (N-2)× (N-3)× (N-4)× (N-5)
... ...
... ...

n-1 N× (N-1)× (N-2)× (N-3)× (N-4)× (N-5)× ... × (N-n+1)

A.2. Labeling Each Graph Node 146

Among all the levels, again, level n-1 dominates. Hence returns the complexity for the total
number of states to compute during a subgraph isomorphism testing, which is:

N × (N − 1)× (N − 2)× ...× (N − n+ 1) = O(
N !

(N − n)!
) (A.3)

As a result, when dealing with the case of larger dataset graph than query, the time complex-
ity of subgraph isomorphism testing is given by:

O(
N ×N !

(N − n)!
) (A.4)

whereN and n are the node number of dataset graphG and query g, respectively.

A.2 Labeling Each Graph Node

Based on formula (A.4), a further extension is to take the label information of graph node
into consideration. Given a query graph g with n nodes and a dataset graph G with N
nodes, say, there are L unique labels (label varieties) across the dataset. For simplicity, it
assumes that labels distribute uniformly among graph nodes – for a specific node x in the
query g, a node x′ in the dataset graph G possesses the following probability of sharing the
same label as x.

1

L
∗ 100% (A.5)

Acting as a grouping criteria, node label impacts the complexity of both the time cost per
state and the total number of states. The former complexity is adapted as follows:

O(
N

L
) (A.6)

This lies in the fact that while creating the candidate node set {c} in dataset graphG regard-
ing a given query node x, only those bearing the same label as that of x will be considered
for further exploration.

As to the latter element, i.e., the total number of states, Table A.3 shows the details. Again,
level n-1 dominates; hence the complexity regarding the total number of states is given by:

N

L
×

(N − 1)

L
×

(N − 2)

L
×

(N − 3)

L
×...×

(N − n+ 1)

L
= O(

N !

Ln × (N − n)!
)

(A.7)

In the end, compared with [102], a more general time complexity for backtracking sub-iso

A.3. An Example of the Use Case in GraphCache 147

test algorithms is resulted:

O(
N ×N !

Ln+1 × (N − n)!
) (A.8)

where n is the node number of query g,N is the node number of dataset graphG, and L is
the number of unique labels in the dataset.

Table A.3: Number of States Per Level with Node Label and Larger Dataset Graph

level number of states to explore

0
N

L

1
N

L
×

(N − 1)

L

2
N

L
×

(N − 1)

L
×

(N − 2)

L

3
N

L
×

(N − 1)

L
×

(N − 2)

L
×

(N − 3)

L

4
N

L
×

(N − 1)

L
×

(N − 2)

L
×

(N − 3)

L
×

(N − 4)

L

5
N

L
×

(N − 1)

L
×

(N − 2)

L
×

(N − 3)

L
×

(N − 4)

L
×

(N − 5)

L

... ...

... ...

n-1
N

L
×

(N − 1)

L
×

(N − 2)

L
×

(N − 3)

L
× ...×

(N − n+ 1)

L

A.3 An Example of the Use Case in GraphCache

This section shall present an example of sub-iso testing in GraphCache, showcasing the
matching process with the general settings such that the dataset graph is larger than the
query and each graph node is associated with a label.

Figure A.1 depicts a pair of graphs to undergo the subgraph isomorphism verification, i.e.,
testing whether the query g is a subgraph of the dataset graph G. For simplicity, the dataset

A.3. An Example of the Use Case in GraphCache 148

graph G is allocated only one more node than the query g in Figure A.1, where the node
label is described by a capital letter and the tag beside each node represents the node ID.

A

CB

A

Bn1

n2 n3

n4

n5

(a) Query g

C

B

A

B

A

m1

A

m2

m3

m4

m5

m6

(b) Dataset GraphG

Figure A.1: An Example of Query g and Dataset GraphG.

Table A.4 shows the overall matching process, where level (step) pertains to a transition, i.e.,
transferring from state s to state s′ by adding a pair of matched nodes. The mapping M
represents the partial mapping at the moment and n is a node in query g, which is going to
be matched on the current level.

As to the dataset graph G, candidate of m covers the possible matches, i.e., those sharing
the same label as node n (semantic comparison). And m are the matched nodes of n, i.e.,
verified results of candidate of m, by passing the structural feasibility: on level k, if the
node n has an edge with node ni in query g, where ni in Mk.(), node m must have a
corresponding edge with a node mj in the dataset graph G such that (ni, mj) in Mk.()

(syntactic comparison).

Finally, s refers to the start state of the current transition and s′ in turn is for the end
state. As stated by equation (A.9), the mapping M51 covers all nodes of the query g, i.e.,
{n1, n2, n3, n4, n5}. Hence, the matching process is terminated, returning one match of
query g and a subgraph of the dataset graph G (with nodes {m3,m4,m1,m5,m6} and
the bonding edges in accordance with those in the query g). As a result, in this example, the
query g is a subgraph of the dataset graphG.

M51 = {(n1,m3), (n2,m4), (n3,m1), (n4,m5), (n5,m6)} (A.9)

A.3. An Example of the Use Case in GraphCache 149

Ta
bl

e
A

.4
:M

at
ch

in
g

Pr
oc

es
s

of
Su

bg
ra

ph
Is

om
or

ph
is

m
Te

st

le
ve

l(
st

ep
)

m
ap

pi
ng
M

n
ca

nd
id

at
e

of
m

m
s

s
′

0
M

0
=
∅

n
1
{m

2
,
m

3
,
m

5
}
{m

2
,
m

3
,
m

5
}

M
0
{M

1
1
,
M

1
2
,
M

1
3
}

1

M
1
1

=
{(
n

1
,
m

2
)}

n
2
{m

4
,
m

6
}

∅
M

1
1
∅

M
1
2

=
{(
n

1
,
m

3
)}

n
2
{m

4
,
m

6
}

{m
4
,
m

6
}

M
1
2
{M

2
1
,
M

2
2
}

M
1
3

=
{(
n

1
,
m

5
)}

n
2
{m

4
,
m

6
}

{m
4
}

M
1
3
{M

2
3
}

2

M
2
1

=
{(
n

1
,
m

3
),

(n
2
,
m

4
)}

n
3
{m

1
}

{m
1
}

M
2
1
{M

3
1
}

M
2
2

=
{(
n

1
,
m

3
),

(n
2
,
m

6
)}

n
3
{m

1
}

∅
M

2
2
∅

M
2
3

=
{(
n

1
,
m

5
),

(n
2
,
m

4
)}

n
3
{m

1
}

∅
M

2
3
∅

3
M

3
1

=
{(
n

1
,
m

3
),

(n
2
,
m

4
),

(n
3
,
m

1
)}

n
4
{m

2
,
m

5
}

{m
5
}

M
3
1
{M

4
1
}

4
M

4
1

=
{(
n

1
,
m

3
),

(n
2
,
m

4
),

(n
3
,
m

1
),

(n
4
,
m

5
)}

n
5
{m

6
}

{m
6
}

M
4
1
{M

5
1
}

A.4. Summary 150

A.4 Summary

By considering the common settings of subgraph isomorphism testing, this appendix affords
a more general estimation of the time cost for backtracking sub-iso algorithms than that of
[102]. Indeed, it is a straightforward extension and is not that comprehensive to cover so-
phisticated elements such as the variance of graph structures. But it does provide a practical
solution in estimating the time cost of those “unperformed” sub-iso tests for GraphCache,
where the cache replacement rests on the relative rankings instead of the absolute values,
like any caching system.

BIBLIOGRAPHY 151

Bibliography

[1] PubChem, “https://pubchem.ncbi.nlm.nih.gov/.”

[2] K. Degtyarenko, J. Hastings, P. de Matos, and M. Ennis, “ChEBI: An open bioinfor-
matics and cheminformatics resource,” Curr. Protoc. Bioinformatics, vol. 14, no. 26,
pp. 1–20, 2009.

[3] C. Liu, X. Yan, L. Fei, J. Han, and S. P. Midkiff, “SOBER: statistical model-based bug
localization,” in Proceedings of the 10th European software engineering conference

held jointly with 13th ACM SIGSOFT international symposium on Foundations of

software engineering (ESEC/FSE-13), 2005, pp. 286–295.

[4] E. Petras and C. Faloutsos, “Similarity Searching in Medical Image Databases,” IEEE

TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, vol. 9, no. 3, pp.
435–447, 1997.

[5] R. V. Bruggen, Learning Neo4j. O’Reilly Media, 2013.

[6] InfiniteGraph, “http://www.objectivity.com/infinitegraph.”

[7] Twitter FlockDB, “https://github.com/twitter/flockdb.”

[8] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser, and G. Cza-
jkowski, “Pregel: a system for large-scale graph processing,” in Proceedings of the

2010 ACM SIGMOD International Conference on Management of data (SIGMOD

’10), 2010, pp. 135–146.

[9] J. L. Gross and J. Yellen, Graph Theory and Its Applications, 2nd ed. Chapman and
Hall/CRC, 2006.

[10] L. P. Cordella, P. Foggia, C. Sansone, and M. Vento, “A (sub) graph isomorphism
algorithm for matching large graphs,” IEEE Transactions on Pattern Analysis and

Machine Intelligence, vol. 26, no. 10, pp. 1367–1372, 2004.

Bibliography 152

[11] J. Lee, W.-S. Han, R. Kasperovics, and J.-H. Lee, “An in-depth comparison of sub-
graph isomorphism algorithms in graph databases,” Proceedings of the VLDB Endow-

ment (PVLDB), vol. 6, no. 2, pp. 133–144, 2012.

[12] J. R. Ullmann, “An algorithm for subgraph isomorphism,” J. ACM, vol. 23, no. 1, pp.
31–42, 1976.

[13] W.-S. Han, J. Lee, M.-D. Pham, and J. X. Yu, “iGraph: A framework for compar-
isons of disk-based graph indexing techniques,” Proceedings of the VLDB Endowment

(PVLDB), vol. 3, no. 1-2, pp. 449–459, 2010.

[14] F. Katsarou, N. Ntarmos, and P. Triantafillou, “Performance and scalability of in-
dexed subgraph query processing methods,” Proceedings of the VLDB Endowment

(PVLDB), vol. 8, no. 12, pp. 1566–1577, 2015.

[15] M. Garey and D. Johnson, Computers and Intractability: A Guide to the Theory of

NP-Completeness. W.H. Freeman, 1979.

[16] V. Bonnici, A. Ferro, R. Giugno, A. Pulvirenti, and D. Shasha, “Enhancing graph
database indexing by suffix tree structure,” in Proceedings of the 5th IAPR interna-

tional conference on Pattern recognition in bioinformatics (PRIB’10), 2010, pp. 195–
203.

[17] H. He and A. K. Singh, “Graphs-at-a-time: query language and access methods for
graph databases,” in Proceedings of the 2008 ACM SIGMOD international conference

on Management of data (SIGMOD ’08), 2008, pp. 405–418.

[18] K. Klein, N. Kriege, and P. Mutzel, “CT-index: Fingerprint-based graph indexing
combining cycles and trees,” in IEEE 27th International Conference on Data Engi-

neering (ICDE), 2011, pp. 1115–1126.

[19] L. W. Beineke and R. J. Wilson, Topics in Structural Graph Theory. Cambridge
University Press, 2013.

[20] B. D. McKay, “Practical Graph Isomorphism,” Congressus Numerantium, vol. 30, pp.
45–87, 1981.

[21] B. D. McKay and A. Piperno, “Practical graph isomorphism, II,” Journal of Symbolic

Computation, vol. 60, no. 0, pp. 94–112, 2014.

[22] P. T. Darga, K. A. Sakallah, and I. L. Markov, “Faster Symmetry Discovery using
Sparsity of Symmetries,” in Proceedings of the 45th Design Automation Conference

(DAC), 2008, pp. 149–154.

Bibliography 153

[23] H. Katebi, K. A. Sakallah, and I. L. Markov, “Symmetry and Satisfiability: An Up-
date,” in Proceedings of the 13th international conference on Theory and Applications

of Satisfiability Testing (SAT’10), 2010, pp. 113–127.

[24] T. Junttila and P. Kaski, “Engineering an Efficient Canonical Labeling Tool for Large
and Sparse Graphs,” in Proceedings of the Ninth Workshop on Algorithm Engineering

and Experiments (ALENEX), 2007, pp. 135–149.

[25] J. L. Lopez-Presa and A. F. Anta, “Fast algorithm for graph isomorphism testing,” in
The 8th International Symposium on Experimental Algorithms (SEA), 2009.

[26] D. C. Porumbel, “Isomorphism Testing via Polynomial-Time Graph Extensions,”
Journal of Mathematical Modelling and Algorithms, vol. 10, pp. 119–143, 2011.

[27] F. A. Aloul, A. Ramani, I. L. Markov, and K. A. Sakallah, “Solving Difficult Instances
of Boolean Satisfiability in the Presence of Symmetry,” IEEE Transactions on Com-

puter Aided Design, vol. 22, no. 9, pp. 1117–1137, 2003.

[28] F. A. Aloul, K. A. Sakallah, and I. L. Markov, “Efficient Symmetry Breaking for
Boolean Satisfiability,” in Proceedings of the 18th international joint conference on

Artificial intelligence (IJCAI’03), 2003, pp. 271–276.

[29] F. A. Aloul, A. Ramani, I. L. Markov, and K. A. Sakallah, “Symmetry Breaking for
Pseudo-Boolean Formulas,” Journal of Experimental Algorithmics (JEA), vol. 12, no.
1.3, 2008.

[30] Graph Isomorphism, “http://people.cs.uchicago.edu/∼laci/update.html.”

[31] N. J. Nilsson, Principles of Artificial Intelligence. Morgan Kaufmann, 1982.

[32] H. Shang, Y. Zhang, X. Lin, and J. X. Yu, “Taming Verification Hardness: An Efficient
Algorithm for Testing Subgraph Isomorphism,” Proceedings of the VLDB Endowment

(PVLDB), pp. 364–375, 2008.

[33] W.-S. Han, J. Lee, and J.-H. Lee, “TurboISO : Towards ultrafast and robust subgraph
isomorphism search in large graph databases,” in Proceedings of the 2013 ACM SIG-

MOD International Conference on Management of Data (SIGMOD ’13), 2013, pp.
337–348.

[34] F. Bi, L. Chang, X. Lin, L. Qin, and W. Zhang, “Efficient Subgraph Matching by
Postponing Cartesian Products,” Proceedings of the 2016 International Conference

on Management of Data (SIGMOD ’16), pp. 1199–1214, 2016.

Bibliography 154

[35] P. Zhao and J. Han, “On graph query optimization in large networks,” Proceedings of

the VLDB Endowment (PVLDB), vol. 3, pp. 340–351, 2010.

[36] X. Ren and J. Wang, “Exploiting vertex relationships in speeding up subgraph iso-
morphism over large graphs,” Proceedings of the VLDB Endowment (PVLDB), vol. 8,
no. 5, pp. 617–628, 2015.

[37] S. Zhang, S. Li, and J. Yang, “GADDI: Distance Index based Subgraph Matching in
Biological Networks,” in Proceedings of the 12th International Conference on Ex-

tending Database Technology: Advances in Database Technology (EDBT ’09), 2009,
pp. 192–203.

[38] L. Lai, L. Qin, X. Lin, and L. Chang, “Scalable subgraph enumeration in MapReduce,”
Proceedings of the VLDB Endowment (PVLDB), vol. 8, no. 10, pp. 974–985, 2015.

[39] Z. Sun, H. Wang, H. Wang, B. Shao, and J. Li, “Efficient subgraph matching on billion
node graphs,” Proceedings of the VLDB Endowment (PVLDB), vol. 5, no. 9, pp. 788–
799, 2012.

[40] X. Yan, P. S. Yu, and J. Han, “Graph indexing: a frequent structure-based approach,”
in Proceedings of the 2004 ACM SIGMOD international conference on Management

of data (SIGMOD ’04), 2004, pp. 335–346.

[41] S. Zhang, M. Hu, and J. Yang, “TreePi: A Novel Graph Indexing Method,” in IEEE

23rd International Conference on Data Engineering (ICDE), 2007.

[42] R. Giugno, V. Bonnici, N. Bombieri, A. Pulvirenti, A. Ferro, and D. Shasha,
“GRAPES: A Software for Parallel Searching on Biological Graphs Targeting Multi-
Core Architectures,” PloS One, vol. 8, no. 10, p. e76911, 2013.

[43] C. Chen, X. Yan, P. S. Yu, J. Han, D.-Q. Zhang, and X. Gu, “Towards graph contain-
ment search and indexing,” in Proceedings of the 33rd international conference on

Very large data bases (Proc. VLDB), 2007, pp. 926–937.

[44] G. Zhu, X. Lin, W. Zhang, W. Wang, and H. Shang, “Prefindex : An efficient su-
pergraph containment search technique,” in Proceedings of the 22nd international

conference on Scientific and statistical database management (SSDBM’10), 2010, pp.
360–378.

[45] S. Zhang, J. Li, H. Gao, and Z. Zou, “A novel approach for efficient supergraph query
processing on graph databases,” in Proceedings of the 12th International Conference

on Extending Database Technology: Advances in Database Technology (EDBT ’09),
2009, pp. 204–215.

Bibliography 155

[46] J. Cheng, Y. Ke, A. W.-C. Fu, and J. X. Yu, “Fast graph query processing with a low-
cost index,” The International Journal on Very Large Data Bases (VLDBJ), vol. 20,
no. 4, pp. 521–539, 2010.

[47] Y. Zhu, J. X. Yu, and L. Qin, “Leveraging graph dimensions in online graph search,”
Proceedings of the VLDB Endowment (PVLDB), vol. 8, no. 1, pp. 85–96, 2014.

[48] J. Cheng, Y. Ke, W. Ng, and A. Lu, “FG-index: Towards verification-free query pro-
cessing on graph databases,” in Proceedings of the 2007 ACM SIGMOD international

conference on Management of data (SIGMOD ’07), 2007, pp. 857–872.

[49] P. Zhao, J. X. Yu, and P. S. Yu, “Graph indexing: tree + delta >= graph,” in Pro-

ceedings of the 33rd international conference on Very large data bases (Proc. VLDB),
2007, pp. 938–949.

[50] D. Yuan and P. Mitra, “Lindex: a lattice-based index for graph databases,” The In-

ternational Journal on Very Large Data Bases (VLDBJ), vol. 22, no. 2, pp. 229–252,
2013.

[51] D. Yuan, P. Mitra, and C. Giles, “Mining and indexing graphs for supergraph search,”
Proceedings of the VLDB Endowment (PVLDB), vol. 6, no. 10, pp. 829–840, 2013.

[52] R. Di Natale et al., “Sing: Subgraph search in non-homogeneous graphs,” BMC Bioin-

formatics, vol. 11, no. 96, 2010.

[53] R. Giugno and D. Shasha, “GraphGrep: A fast and universal method for querying
graphs,” in 16th International Conference on Pattern Recognition (ICPR 2002), 2002.

[54] L. Zou, L. Chen, J. Yu, and Y. Lu, “A novel spectral coding in a large graph database,”
in Proceedings of the 11th international conference on Extending database technol-

ogy: Advances in database technology (EDBT ’08), 2008, pp. 181–192.

[55] K. Semertzidis and E. Pitoura, “Durable graph pattern queries on historical graphs,”
in IEEE 32nd International Conference on Data Engineering (ICDE), 2016, pp. 541–
552.

[56] H. He and A. K. Singh, “Closure-Tree: An Index Structure for Graph Queries,” in
22nd International Conference on Data Engineering (ICDE), 2006.

[57] Y. Tian and J. M. Patel, “TALE: A Tool for Approximate Large Graph Matching,” in
IEEE 24th International Conference on Data Engineering (ICDE), 2008.

[58] D. W. Williams, J. Huan, and W. Wang, “Graph database indexing using structured
graph decomposition,” in IEEE 23rd International Conference on Data Engineering

(ICDE), 2007.

Bibliography 156

[59] X. Yan, F. Zhu, P. S. Yu, and J. Han, “Feature-based similarity search in graph struc-
tures,” ACM Transactions on Database Systems (TODS), vol. 31, no. 4, pp. 1418–
1453, 2006.

[60] S. Zhang, J. Yang, and W. Jin, “ SAPPER: subgraph indexing and approximate match-
ing in large graphs,” Proceedings of the VLDB Endowment (PVLDB), vol. 3, no. 1-2,
pp. 1185–1194, 2010.

[61] X. Zhao, C. Xiao, X. Lin, W. Wang, and Y. Ishikawa, “Efficient processing of graph
similarity queries with edit distance constraints,” The International Journal on Very

Large Data Bases (VLDBJ), vol. 22, no. 6, pp. 727–752, 2013.

[62] T. Plantenga, “Inexact subgraph isomorphism in MapReduce,” Journal of Parallel and

Distributed Computing, vol. 73, pp. 164–175, 2013.

[63] M. Elseidy, E. Abdelhamid, S. Skiadopoulos, and P. Kalnis, “GRAMI: Frequent sub-
graph and pattern mining in a single large graph,” Proceedings of the VLDB Endow-

ment (PVLDB), vol. 7, no. 7, pp. 517–528, 2014.

[64] J. W. Raymond and P. Willett, “Maximum common subgraph isomorphism algorithms
for the matching of chemical structures,” Journal of Computer-Aided Molecular De-

sign, vol. 16, pp. 521–533, 2002.

[65] N. Shervashidze, P. Schweitzer, E. J. v. Leeuwen, K. Mehlhorn, and K. M. Borgwardt,
“Weisfeiler-lehman graph kernels,” Journal of Machine Learning Research, vol. 12,
pp. 2539–2561, 2011.

[66] S. Vishwanathan, N. N. Schraudolph, R. Kondor, and K. M. Borgwardt, “Graph Ker-
nels,” Journal of Machine Learning Research, vol. 11, pp. 1201–1242, 2010.

[67] T. Gartner, Kernels for Structured Data. World Scientific, 2008.

[68] R. Agrawal and R. Srikant, “Fast algorithms for mining association rules,” Proceed-

ings of the 20th International Conference on Very Large Data Bases (Proc. VLDB),
pp. 487–499, 1994.

[69] M. Kuramochi and G. Karypis, “Frequent subgraph discovery,” Proc. of the 2001

IEEE International Conference on Data Mining, San Jose, California, pp. 313–320,
2001.

[70] X. Yan and J. Han, “gSpan: Graph-based substructure pattern mining,” in IEEE Inter-

national Conference on Data Mining (ICDM), 2002, pp. 721–724.

Bibliography 157

[71] S. Nijssen and N. J. Kok, “A quickstart in frequent structure mining can make a dif-
ference,” Proceedings of the tenth ACM SIGKDD international conference on Knowl-

edge discovery and data mining (KDD ’04), pp. 647–652, 2004.

[72] A. Balmin, F. Ozcan, K. S. Beyer, R. J. Cochrane, and H. Pirahesh, “A framework
for using materialized XPath views in XML query processing,” in Proceedings of the

Thirtieth international conference on Very large data bases (Proc. VLDB), 2004, pp.
60–71.

[73] K. Lillis and E. Pitoura, “Cooperative XPath caching,” in Proceedings of the 2008

ACM SIGMOD international conference on Management of data (SIGMOD ’08),
2008, pp. 327–338.

[74] B. Mandhani and D. Suciu, “Query caching and view selection for XML databases,”
in Proceedings of the 31st international conference on Very large data bases (Proc.

VLDB), 2005, pp. 469–480.

[75] L. V. S. Lakshmanan, H. Wang, and Z. Zhao, “Answering tree pattern queries using
views,” in Proceedings of the 32nd international conference on Very large data bases

(Proc. VLDB), 2006, pp. 571–582.

[76] J. Wang, J. Li, and J. X. Yu, “Answering tree pattern queries using views: a revisit,” in
Proceedings of the 14th International Conference on Extending Database Technology

(EDBT ’11), 2011, pp. 153–164.

[77] M. Martin, J. Unbehauen, and S. Auer, “Improving the performance of semantic web
applications with SPARQL query caching,” in Proceedings of the 7th international

conference on The Semantic Web: research and Applications (ESWC’10), 2010, pp.
304–318.

[78] N. Papailiou, D. Tsoumakos, P. Karras, and N. Koziris, “Graph-aware , workload-
adaptive SPARQL query caching,” in Proceedings of the 2015 ACM SIGMOD Inter-

national Conference on Management of Data (SIGMOD ’15), 2015, pp. 1777–1792.

[79] G. Moerkotte and T. Neumann, “Dynamic programming strikes back,” in Proceed-

ings of the 2008 ACM SIGMOD international conference on Management of data

(SIGMOD ’08), 2008, pp. 539–552.

[80] J. Kim, H. Shin, W.-S. Han, S. Hong, and H. Chafi, “Taming subgraph isomorphism
for RDF query processing,” Proceedings of the VLDB Endowment (PVLDB), vol. 8,
no. 11, pp. 1238–1249, 2015.

Bibliography 158

[81] A. Gubichev and T. Neumann, “Exploiting the query structure for efficient join or-
dering in SPARQL queries,” in Proceedings of the 17th International Conference on

Extending Database Technology (EDBT ’14), 2014, pp. 439–450.

[82] G. Koloniari and E. Pitoura, “Partial view selection for evolving social graphs,” in
First International Workshop on Graph Data Management Experiences and Systems

(GRADES ’13), 2013.

[83] H. Guo, P.-A. Larson, R. Ramakrishnan, and J. Goldstein, “Relaxed currency and
consistency: How to say “good enough” in SQL,” in Proceedings of the 2004 ACM

SIGMOD international conference on Management of data (SIGMOD ’04), 2004, pp.
815–826.

[84] S. Bottcher, “Cache consistency in mobile XML databases,” in Proceedings of the 7th

international conference on Advances in Web-Age Information Management (WAIM

’06), 2006, pp. 300–312.

[85] J. Lorey and F. Naumann, “Caching and prefetching strategies for SPARQL queries,”
in The Semantic Web: ESWC 2013 Satellite Events., P. Cimiano, M. Fernández,
V. Lopez, S. Schlobach, and J. Völker, Eds. Springer, Berlin, Heidelberg, 2013,
vol. 7955, pp. 46–65.

[86] NCI - DTP AIDS antiviral screen dataset, “http://dtp.nci.nih.gov/docs/aids/aids data.
html.”

[87] Y. He, F. Lin, P. R. Chipman, C. M. Bator, T. S. Baker, M. Shoham, R. J. Kuhn,
M. E. Medof, and M. G. Rossmann, “Structure of decay-accelerating factor bound
to echovirus 7: a virus-receptor complex,” Proceedings of the National Academy of

Sciences (PNAS), vol. 99, pp. 10 325–10 329, 2002.

[88] Memcached, “https://memcached.org/.”

[89] LinkedIn: World’s Largest Professional Network, “https://www.linkedin.com/.”

[90] Facebook, “https://www.facebook.com/.”

[91] C. Vehlow, H. Stehr, M. Winkelmann, J. M. Duarte, L. Petzold, J. Dinse, and
M. Lappe, “CMView: Interactive contact map visualization and analysis,” Bioinfor-

matics, vol. 27, no. 11, pp. 1573–1577, 2011.

[92] J. Wang, N. Ntarmos, and P. Triantafillou, “Indexing query graphs to speedup graph
query processing,” in Proceedings of the 19th International Conference on Extending

Database Technology (EDBT ’16), 2016, pp. 41–52.

Bibliography 159

[93] M. Newman, “Power laws, Pareto distributions and Zipf’s law,” Contemporary

Physics, vol. 46, pp. 323–351, 2005.

[94] R. Nelson, Probability, Stochastic Processes, and Queueing Theory. Springer Verlag,
1995.

[95] J. Wang, N. Ntarmos, and P. Triantafillou, “GraphCache: a caching system for graph
queries,” in Proceedings of the 20th International Conference on Extending Database

Technology (EDBT ’17), 2017.

[96] J. Handy, The Cache Memory Book, 2nd ed. Academic Press, 1998.

[97] National Rail Enquiries, “http://www.nationalrail.co.uk/.”

[98] The Big Bang Theory, “https://en.wikipedia.org/wiki/The Big Bang Theory.”

[99] WeChat, “https://weixin.qq.com/.”

[100] J. Wang, N. Ntarmos, and P. Triantafillou, “Ensuring consistency in graph cache for
graph-pattern queries,” in Sixth International Workshop on Querying Graph Struc-

tured Data (GraphQ 2017), with EDBT ’17, 2017.

[101] C. Anagnostopoulos and P. Triantafillou, “Scaling out big data missing value imputa-
tions,” in Proceedings of the 20th ACM SIGKDD international conference on Knowl-

edge discovery and data mining (KDD ’14), 2014, pp. 651–660.

[102] L. P. Cordella, P. Foggia, C. Sansone, and M. Vento, “Subgraph transformation for
the inexact matching of attributed relational graphs,” Graph Based Representations in

Pattern Recognition Computing Supplement, vol. 12, pp. 43–52, 1998.

