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Abstract 

Periodontal disease (PD) and rheumatoid arthritis (RA) are multifactorial chronic 

inflammatory diseases with high prevalence among the global population. There 

is evidence of a bidirectional relationship between PD and RA, although the 

underlying mechanisms remain undefined. Both PD and RA are associated with a 

dysregulated immune response and citrullination, a post-translational 

modification of proteins catalysed by peptidylarginine deiminases (PADs). PADs, 

in particular PAD4, are involved in formation of neutrophil extracellular traps 

(NETs) and may play a role both in generating potential auto-antigens and in 

host defence against bacterial infections. RA onset is preceded by a breach of 

self-tolerance and presence of anti-citrullinated protein antibodies (ACPAs). 

These ACPA have also been found in PD patients. Porphyromonas gingivalis is a 

key pathogen in PD and uniquely among prokaryotes expresses a PAD enzyme 

(PPAD), which is also potential source of citrullinated self-antigens. One 

hypothesis linking PD and RA suggests that the combination of PPAD and PAD4 

activity in an inflamed environment may predispose to autoimmunity to 

citrullinated proteins and generation of ACPAs. This project aimed to determine 

the effect of PAD4 activity in PD and RA disease progression. Using PAD4 

deficient animals or wild type controls, PAD4 was confirmed to be essential for 

NETs formation as bone marrow derived neutrophils from PADi4 knockout (KO) 

mice were unable to generate NETs in vitro. Experimental PD was initiated by 

oral infection with P. gingivalis and animals demonstrated a robust antibody 

response to P. gingivalis. However, there was limited evidence of bone loss in 

the animals, possibly due to inherent resistance in the strain. The immune 

response to P. gingivalis appeared unaffected by absence of PAD4, implying that 

NETS do not play a substantial role in the response to oral infection in this 

system. In experimental arthritis (EA) models, inflammation in EA was greater in 

absence of PAD4.  Further investigation of the underlying mechanisms of PAD4 

modulation of inflammation showed no direct impact in the innate response 

mediated by neutrophils, but confirmed a sexually dimorphic behaviour in PAD4 

regulation of T-cell mediated inflammation. Pharmacological inhibition of PAD4 

has been proposed and trialled as an RA therapy. These data suggest that PAD4 

may impart subtle modulations on inflammation, which may impact on the 

outcome of such intervention. 
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1.1 Periodontal disease   

1.1.1 Clinical characterization of periodontitis  

Periodontal diseases are microbial associated inflammatory diseases of the oral 

cavity, involving the gingivae and supporting structures of the teeth. Gingivitis 

affects up to 90% of adults (as reviewed in Pihlstrom et al., 2005), and is a 

reversible inflammatory reaction of the marginal gingiva predominantly caused 

by plaque accumulation. Gingivitis manifests as gingival bleeding on tooth 

brushing, interdental cleaning or on gentle probing (BOP) at a dental exam. 

There may be a slight increase in clinical probing depth (Figure 1-1) as 

consequence of erythema and swelling of the surrounding tissues. However, the 

condition is reversible upon removal of the dental plaque with no permanent 

loss of attachment (Theilade et al., 1966).  

Unlike gingivitis, periodontitis is a destructive non-reversible condition that 

causes local tissue destruction, bone resorption and eventually tooth loss. 

Periodontitis may be classified as chronic or aggressive periodontal disease, 

although the boundaries between the two forms are not always clear. Aggressive 

periodontitis progresses rapidly and affects around 1% population, mainly under 

the age of 30-35 years of age. Chronic periodontitis is the most common form of 

the disease, mostly affecting adults and exhibiting slower progression. In both 

chronic and aggressive forms, symptoms can range from mild to severe 

(Armitage and Cullinan, 2010). Severe, advanced forms of periodontal disease 

affect between 8 and 15% of the population. Evidence suggest gingivitis precedes 

periodontitis but not all gingivitis cases progress to periodontitis, with presence 

of gingivitis providing only 30% of predictive value of periodontitis (Löe et al., 

1986, Listgarten and Schifter, 1985). Moreover, the association between the 

amount of plaque deposits and the severity of periodontitis is poor (Löe et al., 

1986). Therefore, the microbial challenge is necessary but not sufficient for the 

development of periodontitis, which is accompanied of a dysregulated 

inflammatory response (reviewed in Hajishengallis, 2015).  

Periodontitis can be exacerbated by local or systemic factors including among 

others smoking, stress, malnutrition, obesity, pregnancy, host heritable 
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susceptibility and systemic diseases (AlJehani, 2014). Indeed, epidemiological 

evidence indicates that the severity and the risk of developing PD is increased in 

patients suffering from a systemic chronic inflammatory disease such as 

diabetes, osteoporosis, rheumatoid arthritis (RA) or cardiovascular disease (CVD) 

(reviewed in Araújo et al., 2015, Llambés et al., 2015, Stewart and West, 2016). 

The proposed link between PD and RA (further discussed in section 1.3) remains 

unexplained. Both PD and RA share many pathological features, for example the 

destruction of bone and connective tissue driven by lymphocytes, and there is 

debate whether their relationship can be explained only by shared risk factors. 

Twin studies have shown that approximately 50% of susceptibility to PD has a 

genetic basis (Michalowicz et al., 2000, Torres de Heens et al., 2010), and the 

analysis based on genome-wide association studies (GWAs) found that the 

genetic susceptibility is mainly associated with alterations in the cellular 

immune response, cytokine signalling and the epithelial barrier function (Divaris 

et al., 2013, Offenbacher et al., 2016).  

Periodontitis prevalence and severity increase with age (Velden, 1991, Renvert 

et al., 2013), probably due accumulative risk factors and glitches associated 

with age such as reduction in the responsiveness of the innate immune response 

(Hazeldine et al., 2014) and lesser capacity to repair damage. Periodontal 

studies in mice and non-human primates also demonstrate increasing periodontal 

inflammation and bone loss as function of age (Barnett and Rowe, 1986, Ebersole 

et al., 2008, Liang et al., 2010). Although some studies report higher periodontal 

destruction in men, the relation between gender and the disease varies among 

studies carried out in different areas (Meisel et al., 2008, Shiau and Reynolds, 

2010, White et al., 2012, Thornton-Evans et al., 2013). Discrepancies might 

relate to the numerous environmental factors that can influence the disease, 

some of which are associated with gender-related behaviours.  
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Figure 1-1: Progression from periodontal health to gingivitis or periodontitis 
In health, biofilms on the surface of the tooth at the marginal gingiva are in 
homeostasis with the host immune system and cause minimal inflammation. The 
progression to gingivitis is initiated by the accumulation of the biofilm causing 
localized inflammation, increased local inflammatory infiltrate and swelling of the 
gum. In periodontitis, bacteria form a dysbiotic sub-gingival biofilm on the 
tooth/root surface, both manipulates and perpetuates the inflammatory response 
and causes destruction of the alveolar bone and tooth loss. Image by Dr Emma 
Millhouse reproduced here with artist’s permission. 

Diagnosis of PD is usually achieved assessing gingival inflammation by measuring 

bleeding on probing (BOP) and loss of attachment (LOA), which can be 

calculated as the sum of gingival recession (R) and probing pocket depth (PPD). 

The radiographic evaluation of the alveolar bone crest (ABC) relative to the 

cement-enamel junction (CEJ) helps determine the degree of alveolar bone loss 

(ABL) (Figure 1-2). The criteria for periodontitis severity classification was 

established in 2005 by the European Federation of Periodontology (EFP) and 

amended in 2007 by consensus of the American Academy of Periodontology (AAP) 

and the Center of Disease Control (CDC) (Tonetti and Claffey, 2005, Page and 

Eke, 2007):  

§ Mild or incipient PD: LOA > 3 mm in two or more sites on different non-

adjacent teeth. 

§ Moderate PD: LOA > 4 mm in two or more sites. 

§ Severe PD: LOA > 6 mm in two or more sites. 

Health Gingivitis Periodontitis 
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Figure 1-2: Clinical characterization of periodontitis 
Periodontal tissue in health and periodontitis. Arrows indicate distances used as 
clinical parameters of PD. Abbreviations: ABC, alveolar bone crest; ABL, alveolar 
bone loss; CEJ, cemento-enamel junction; GC, gingival crevice; GM, gingival 
margin; PPD, probing pocket depth; LOA, loss of attachment; R, recession. 
Compared with health, PD is characterized by greater loss of attachment and 
alveolar bone loss. 

Periodontitis (PD) affects a significant proportion of the global population with a 

huge global economic impact, amounting to $442 billion in 2010, and likely to be 

higher in the present (Listl et al., 2015). Gingival bleeding is the most prevalent 

sign of disease, whereas advanced loss of alveolar bone (>6 mm) varies from 10% 

to 15% in adult populations (Petersen and Ogawa, 2012). In the UK, based on the 

Adult Health survey of 2009, only a minority of adults (17%) had a very healthy 

periodontal status. The prevalence of moderate periodontal disease has 

diminished slightly in the last decade in line with an improved oral hygiene. 

However, aggressive periodontitis prevalence had increased slightly from 6% to 

9% (White et al., 2012). Archaeological data from British human remains dating 

3,000 years, indicate PD prevalence was similar as it is today, despite 

considerable changes in the oral environment (Kerr, 1998).  

Treatment of PD currently focuses on physical removal of dental plaque, health 

and oral hygiene education, and periodontal surgery in severe cases. Various 
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antimicrobials such as metronidazole, amoxicillin and chlorhexidine, are used to 

complement physical treatments (Feres et al., 2009, Prakasam and Elavarasu, 

2012); treatment with TNF and IL-6 receptor inhibitors has been shown to 

improve the inflammatory periodontal condition (reviewed in Kobayashi and 

Yoshie, 2015). Although the current treatments offer some reduction of 

inflammation and improvement of the periodontal state, disease recurrence and 

progression are common (Galindo et al., 2015). Therefore, understanding the 

underlying mechanisms ruling the interactions between the oral microbiota and 

the host immune response is essential for prevention and the development of 

more effective treatments. 

1.1.2 Microbiology of periodontitis 

Dental plaque is necessary although not sufficient for manifestation of 

periodontitis. PD is the result of a dysregulated immune response; however, the 

primary etiological factor in PD is dental plaque (Socransky et al., 1998). Dental 

plaque is a microbial biofilm that forms on the surface of the teeth, composed 

of a conglomerate of diverse microbial cells adherent to a surface and/or to one 

another, enclosed in an extracellular matrix of host and microbial origin 

(Costerton et al., 1995, Marsh, 2004). Traditionally, bacteria were thought to 

live in a planktonic state but studies in the last decades have shown that 

bacteria in their natural ecosystems mostly exist within an organized biofilm. 

The formation of a biofilm confers advantages over the planktonic form, as 

mutualistic interactions are established facilitating bacterial survival in adverse 

environments (Marsh, 2004). Microbial biofilms present different characteristics 

of clinical relevance when compared with their planktonic counterparts. In 

particular, biofilms are more resistant to antimicrobial agents and to host 

defence mechanisms (Donlan and Costerton, 2002, Sedlacek and Walker, 2007). 

With current treatments, periodontal biofilms require mechanical disruption for 

their effective removal and this reliance on physical removal, as well as the 

associated de-regulated host response, poses problems for the treatment of PD. 

Biofilm formation (Figure 1-3) begins with adhesion of planktonic bacteria, 

predominantly Streptococcus species, which recognise the components of the 

acquired pellicle of the enamel surface the composition of which includes 
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enzymes such as alpha-amylase, mucins, agglutinins, proline-rich proteins and 

phosphate-rich proteins (reviewed in Siqueira and Custodio, 2012). Not all oral 

bacteria can bind to the pellicle and some bacteria bind instead to the earlier 

colonising bacteria. This co-aggregation of different bacterial species via cell-

cell interactions is essential in the biofilm formation (reviewed in Kolenbrander 

and Andersen, 2002). Intermediate colonizers such as Fusobacterium nucleatum 

can co-aggregate with many oral bacteria and therefore play an essential role 

connecting early and late colonizers most typically associated with disease such 

Aggregatibacter actinomycetemcomitans and Porphyromonas gingivalis (as 

reviewed in Kolenbrander et al., 2010).  

As the biofilm matures, bacterial species establish mutualistic relationships 

enhancing metabolic synergy between compatible species, which often co-

localize in the biofilm. For example, P. gingivalis and Treponema denticola 

produce more biomass together than when grown as mono-species biofilms or 

with other bacteria (Cogoni et al., 2012). Biofilms are complex interactive 

systems, spatially organized according physiological needs. Interactions can 

include cooperation but also competition through mechanisms which kill or 

impede the growth of the competing microorganisms, and consequently remodel 

the composition of the biofilm (reviewed in Flemming et al., 2016). Biofilms also 

modulate their growth in a process known as quorum sensing; bacteria release 

chemical signalling molecules in response to population size inducing the 

coordinated expression of specific genes that influence aspects such as 

virulence, antibiotic susceptibility and biofilm formation (Bassler and Losick, 

2006). The communication molecules named autoinducer-2 (AI-2), which are a 

product of the luxS enzyme, are known to be widespread in the bacteria world. 

Previous studies in luxS deficient P. gingivalis, shown failure in forming multi-

species biofilms with other oral bacteria, lower production of protease and 

stress related genes, and reduced inflammatory response in culture with 

periodontal fibroblasts (Scheres et al., 2015). 
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Figure 1-3: Oral biofilm formation 
Diagram of the steps of oral biofilm formation. (1) Planktonic bacteria in saliva, 
mostly Streptococcus species, recognise the binding proteins in the acquired 
pellicle and adhere to the teeth surface. (2) Early colonizers grow and co-
aggregate with other bacteria within the biofilm and facilitate the incorporation of 
late colonizers to the biofilm. (3) As biofilm matures, bacteria increases 
communications, cooperative or competitive interactions, and acts as a barrier 
against environmental changes; bacteria start dispersing from the biofilm surface 
and spread to colonize new sites. Image adapted from Hojo et al., 2009 by Dr 
Emma Millhouse, reproduced here with permission. 

Of the 700 species that can be found in the oral cavity, around one hundred 

different bacterial species are thought to compose the plaque biofilms. Of 

these, only a few are thought to play an important role either protecting from or 

triggering disease (Kumar et al., 2005). The role of dental plaque in PD has been 

extensively studied over the years, and different hypotheses formulated to 

explain its aetiology. The ‘non-specific plaque’ hypothesis states that PD occurs 

in response to uncontrolled growth of biofilms, whereas the ‘specific plaque’ 

hypothesis implicates specific microbial species in the aetiology of the disease; 

therefore, different PD forms will involve specific bacterial aetiologies.  

Alternatively, the ‘ecological plaque’ hypothesis states that bacterial 

composition of biofilms qualitatively changes between health and disease, and 

that the shift is a result of disrupted equilibrium. Changes can occur due host 

genetics, infections, medical intervention such as antibiotics, or alterations in 

the lifestyle as diet and smoking, allowing the colonization of virulent bacteria. 

The recent model of polymicrobial synergy and dysbiosis (PSD) agrees with this 

hypothesis (Lamont and Hajishengallis, 2015). In this model, in health, bacterial 

Planktonic cells 
(early colonizers)  

adherence to 
surface co-aggregation 

Planktonic cells 
(late colonizers)  

biofilm detachment 

barrier function 

1. Attachment 2. Colonization 3. Biofilm formation 
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colonizers of the oral cavity are physiologically compatible communities that 

establish a bidirectional communication with the host immune system resulting 

in a controlled immuno-inflammatory state. The presence of keystone pathogens 

even in low numbers enhances the virulence of the bacterial community 

establishing synergic interactions with accessory pathogens and disrupting the 

host defence mechanisms. These ‘accessory pathogens’ represent bacteria that 

may appear in health-associated biofilms but under different conditions may 

promote disease. Under those conditions, the dysbiotic community develops and 

pathobionts overgrow, stimulating inflammatory responses. Susceptible 

individuals are more likely to fail to control this biofilm development, and so 

unbalanced and misdirected immune responses will further tissue destruction 

and self-perpetuate an inflamed milieu. 

In periodontitis, the composition of the oral biofilms generally shifts from 

predominantly gram-positive aerobic species to a dominance of gram-negative 

anaerobes, but only a small number of species, usually present in low amount in 

periodontitis patients, are thought to play a key role in the development of the 

disease. Pivotal studies on plaque composition by Socransky defined a 

classification system for microbial plaque into ‘complexes’, based on 

associations between bacterial species and their prevalence in health and 

disease (Socransky et al., 1998, Haffajee et al., 2008). Those studies showed 

that the microbial composition of the biofilms changes between health and 

disease, and depending on location (e.g. supra- compared with sub-gingival) 

(Figure 1-4). Besides changes in the bacterial profile, the total bacterial 

numbers in the plaque increases in disease. The Actinomyces species (‘blue-

complex’) dominate the supra- and sub-gingival biofilm composition in every 

condition, although there is a reduction in the proportion of Actinomyces in 

disease together with an increased proportion of the orange and red complexes. 

In particular, the ‘red-complex’ bacteria show a strong relation with increased 

gingival inflammation (Ximénez-Fyvie and Haffajee, 2000). Species long 

associated with disease such as the ‘red complex’ can sometimes also be found 

in health. Although these ‘disease-associated’ bacteria are found in smaller 

numbers in health than disease, it seems to associate with the emergence of 

newly dominant community members, or changes in biofilm function rather than 

simply replacement of the primary species (Abusleme et al., 2013). 
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Figure 1-4: Supra- and sub-gingival biofilm complexes 
Graphic representation of the relationships between bacterial species within the 
microbial complexes and between the microbial complexes in both (A) supra- and 
(B) sub-gingival biofilms (Socransky et al., 1998, Haffajee et al., 2008).  

A. Supra-gingival

B. Sub-gingival
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1.1.3 Porphyromonas gingivalis and microbial dysbiosis in 
periodontitis 

Microbial dysbiosis is characterized by a change in the composition of resident 

commensal communities relative to the microbiome of health individuals, which 

is usually associated with disease (Petersen and Round, 2014). The bacterial 

species constituting the ‘red-complex’ (Porphyromonas gingivalis, Tannerella 

forsythia and Treponema denticola) had been long studied as PD causative 

agents, based on their virulence properties and association with diseased 

periodontal sites (reviewed in Hajishengallis, 2015).  

In particular, P. gingivalis is proposed as PD pathogen, shown to be present in 

approximately 25% of individuals with good oral health compared with 79% of 

patients with periodontitis (Griffen et al., 1998). However, P. gingivalis does not 

follow the Koch postulates; it is sometimes found in health; it is normally 

present in low numbers in microbial plaque and its introduction in the oral cavity 

in absence of other oral bacteria does not cause disease (Hajishengallis et al., 

2011). However, targeting P. gingivalis interaction with pre-established bacteria 

(e.g. S. gordonii) has been shown to reduce bacteria colonization and protect 

from bone loss in animal models of PD (Daep et al., 2011). Therefore, evidence 

suggest that P. gingivalis do not cause disease per se, but promotes PD by acting 

as a ‘keystone pathogen’ - altering both qualitative and quantitative aspects of 

the commensal bacterial biofilms, resulting in uncontrolled inflammation and 

eventual bone loss.  

P. gingivalis is a non-motile, asaccharolytic Gram-negative bacteria which has an 

absolute requirement for iron for growth. P. gingivalis is an obligate anaerobe, 

thus usually colonizes the sub-gingival sulcus of the oral cavity although it can 

also be recovered from other areas (e.g. saliva, tongue, tonsils or supra-gingival 

plaque samples) (reviewed in How et al., 2016). The P. gingivalis repertoire of 

unique virulence factors not only benefits the bacteria itself but also their 

biofilm associates, in processes of adhesion and colonization, nutrient 

acquisition, neutralization of host defences, manipulation of the inflammatory 

response and tissue destruction.  
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To initiate infection bacteria must adhere to the teeth or the mucosal surfaces, 

a process influenced among other factors by the presence of a capsule 

surrounding the bacteria. P. gingivalis capsule composition differs between 

strains and can be classified according 6 serotypes of capsule antigen (K1-K6) 

(Laine et al., 1997). Encapsulation is correlated with resistance to phagocytosis 

and increased virulence, based on in vitro and in vivo studies. For example, in a 

mouse skin abscess model, larger lesions and greater lethality are observed 

following infection with capsulated compared with non-capsulated strains 381 

and ATCC 33227 (Table 1-1). Studies with the murine model of periodontitis also 

shown that oral infection with encapsulated P. gingivalis strains induced greater 

bone loss than bacteria without capsule (Baker et al., 2000a). However, other 

studies note that P. gingivalis strains with identical capsule serotype 

demonstrate variable virulence, presumably dependent on factors other than the 

capsule (Laine and Winkelhoff, 1998). 

P. gingivalis invasion efficiency directly correlates with periodontitis severity 

(Baek et al., 2015). P. gingivalis has been shown to invade host cells in vitro 

such as epithelial and endothelial cells and gingival fibroblasts (Lamont et al., 

1995, Deshpande et al., 1998, Amornchat and Rassameemasmaung, 2003), and it 

has also been detected in gingival tissues of periodontal patients (Kim et al., 

2010). Differences between strains are determined by the capacity for adhesion, 

but also by other factors controlling the internalization of the bacteria such as 

the presence of a capsule (Irshad et al., 2012). The presence of fimbriae 

associates with increased bacteria adhesion efficiency. P. gingivalis express 

different types of fimbriae on its cell surface, FimA (major-long) or Mfa1 (minor-

short). Based on the fimA gene isoform, FimA are classified into six types (I-V 

and Ib). Strains expressing type I (e.g. 381, ATCC 33277 or HG565) demonstrate 

increased adhesion to host tissues. However, P. gingivalis strains with type II and 

type IV are most commonly found in patients with chronic and aggressive PD 

(Zhao et al., 2007, Fabrizi et al., 2013). Therefore, increased adhesion 

efficiency does not necessarily correlate with increased virulence. For example, 

the AJW4 strain is non-invasive and therefore less virulent, even though it 

expresses the same type IV fimbriae and adhesion capacity as the invasive W50 

strain (Dorn et al., 2000).  
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P. gingivalis W83 is a virulent encapsulated strain with a type IV FimA, identified 

in patients with chronic periodontitis (Table 1-1). This strain was selected for 

use in all the PD murine studies conducted in the following chapters, based on 

the studies carried out by Dr John Butcher comparing the effect of different     

P. gingivalis strains in the development of experimental PD in murine models. 

Both P. gingivalis W83 and 33277 induced marked specific antibody production 

and alveolar loss (personal communication) but both bone loss and antibody 

production were slightly greater following infection with P. gingivalis W83. 

Hence, numerous subsequent studies carried out locally successfully have used 

W83 (Malcolm et al., 2015, Oliver-Bell et al., 2015 Malcolm et al., 2016).  

Table 1-1: Example of P. gingivalis strains isolated from humans  
Virulence classification of some common laboratory P. gingivalis strains based on 
presence and type of encapsulation and fimbriae (Amano et al., 1999).  

Strain Capsule serotype fimA isotypes Virulence 

W83 K1 Type IV High 

W50 (ATCC 53978) K1 Type IV High 

HG184 K2 Type II High 

A7A1-28 (ATCC 53977)  K3 Type II High 

ATCC 49417  K4 Type II High 

HG1690  K5 Type II High 

HG1691  K6 Type Ib High 

381 - Type I Low 

ATCC 33277 - Type I Low 

 

Gram-negative lipopolysaccharide (LPS) is a major trigger of the host immune 

response in bacterial infections. LPS structure varies widely among Gram-

negative bacteria although is generally composed by a conserved core 

polysaccharide flanked by a highly variable O-polysaccharide and a hydrophobic 

domain known as lipid A, which is the active region of the LPS recognized by the 

host immune system. P. gingivalis LPS (PgLPS) exists as two predominant 

isoforms of PgLPS, LPS1690 and LPS1435/1449 reflecting their lipid A structure, which 

induces heterogeneous immune responses in the host. PgLPS1690 has been shown 

to induce upregulation of IL-6 and IL-8 in human gingival fibroblasts, whereas 
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LPS1435/1449 didn’t induce a significant host response (Herath et al., 2016). 

Compared with other Gram-negative bacteria such as Escherichia coli, PgLPS is 

less recognized by innate host defence, interacts with both TLR2 and TLR4 

(Darveau et al., 2004), inhibits epithelial cells IL-8 secretion and osteoblast 

differentiation and mineralization (Darveau et al., 1998, Liu et al., 2008, Kato 

et al., 2014), contributing to a sustained chronic inflammation. 

P. gingivalis proteases are a major virulence attribute to PD. There are two 

families of proteases produced by P. gingivalis, cysteine-proteinases and serine-

proteinases. Cysteine-proteinases, commonly named gingipains, cleave 

polypeptides at the C-terminal after a lysine (Kgp) or arginine residue (RgpA and 

RgpB), and combined account for 85% of P. gingivalis extracellular proteolytic 

activity at the site of infection (Potempa et al., 1997). Studies in gingipain 

deficient P. gingivalis demonstrate that gingipains contribute to PD pathogenesis 

through involvement in several aspects of bacteria survival (Curtis et al., 2001, 

Hamedi et al., 2009, Pike and Potempa, 2013, Maekawa et al., 2014, 

Kristoffersen et al., 2015, Wilensky et al., 2015). Some examples are:  

§ Adhesion and colonization of periodontal pocket: Maturation of major 

fimbriae (FimA).  

§ Tissue destruction and bleeding: Degradation of extracellular matrix 

proteins (e.g. collagen or fibrinogen), degradation of host heme proteins 

and activation metalloproteinases (MMPs). 

§ Alteration of host-defence mechanisms: Failure in the recognition of 

PgLPS by TLR4, degradation of antimicrobial peptides (e.g. neutrophil α-

defensines), degradation of complement factors, degradation of 

immunoglobulines IgG1 and IgG3 impeding opsonization and phagocytosis, 

degradation or alteration of T cell and macrophage receptors expression 

inducing immune responsiveness (e.g. CD4, CD8 or CD14), and modulation 

of cytokines (e.g. IL-1α, IL-8 or IL-18). 

The internal arginines of proteins exposed as consequence of Rgp activity, serve 

as substrate for P. gingivalis peptidylarginine deiminase (PPAD). This secreted 

enzyme has been shown to interfere with complement activity (Bielecka et al., 

2014), inactivation of epidermal growth factors (Pyrc et al., 2013), contribution 
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to the bacterial infection of gingival fibroblasts and induction of prostaglandin E2 

(PGE2) synthesis (Gawron et al., 2014), a key mediator of the immunopathology 

of chronic infections. PPAD is conserved among P. gingivalis strains but absent in 

related species (Gabarrini et al., 2015), and although it shares sequence 

homology with mammalian PAD enzymes, it is not evolutionary related to them 

(reviewed in Vossenaar et al., 2003). In contrast to human PADs, PPAD does not 

require calcium for catalysis, and converts peptide-bound arginine residues to 

citrulline only when located in the C-terminal and not within polypeptide chains 

(Goulas et al., 2015). The importance of PPAD resides in being the unique PAD 

enzyme among prokaryotes able to citrullinate not only its own but also the host 

proteins, proportioning new exogenous citrullinated epitopes which have been 

related to autoimmunity such as citrullinated fibrinogen and α-enolase (Wegner 

et al., 2010). Animal studies suggest that PPAD is associated with disease 

progression in periodontitis and arthritis animal models (Maresz et al., 2013, 

Gully et al., 2014). 

1.1.4 The innate immune response in periodontitis: neutrophils 
and neutrophil extracellular traps (NETs) 

In health, the immune system exists in homeostasis with the oral microbiome, 

prevents invasion of potential pathogens and minimizes damage to the host 

tissues if invasion does occur. The innate immune system reacts immediately 

with low specificity to invading microorganisms regardless of whether the 

pathogen has been encountered before. During the development of PD, the 

integrity of the mucosal barrier is affected by bacteria invading the gingival 

epithelial cells (GECs) and destroying the cell junctions (Andrian et al., 2006), 

triggering GECs distress signalling which promotes the recruitment of immune 

cells to the site (Figure 1-5). 

The recognition of bacterial structures such LPS, DNA or peptidoglycans mainly 

via Toll-like receptors (TLRs) activates the intracellular signalling and 

transcription of proteins essential for the induction of an adaptive immune 

response. There is increased expression of TLR2, TRL4 and TRL9 in the gingivae 

tissues of PD relative to health, associated with increased influx of immune cells 

into the oral cavity (Muthukuru et al., 2005). In particular, TRL2 and TRL9 
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expression positively correlates with P. gingivalis quantification in the 

subgingival plaque (Wara-aswapati and Chayasadom, 2013).  

P. gingivalis has been shown to manipulate the immune response by disarming 

the TRL2-MyD88 pathway instead activating an alternative signalling route (Mal-

PI3K) that blocks phagocytosis and promotes dysbiotic inflammation (Maekawa et 

al., 2014). This process not only favours P. gingivalis but also related bacteria as 

F. nucleatum that cannot modulate the neutrophil responses alone. Besides      

P. gingivalis, other PD associated bacteria such as Prevotella intermedia and T. 

denticola possess mechanisms that allow the inhibition and subversion of the 

host complement pathways facilitating the pathogen survival (reviewed in 

Potempa and Potempa, 2012). P. gingivalis serine phosphatase SerB 

dephosphorylates and inactivates NF-κB temporary re-programming the host-cell 

gene expression of cytokines (Takeuchi et al., 2013), and its gingipains (Rgp) are 

able to degrade chemokines secreted by GECs such as IL-1, IL-6 and IL-8, which 

can further stall the recruitment of leukocytes to the site of infection 

(Stathopoulou et al., 2009). 
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Figure 1-5: Summary of the host immune response in periodontitis 
Schematic representation of the cellular elements involved in the host immune 
response in health and periodontal disease. In health, neutrophils migrate through 
the gingiva and there are a small number of resident immune cells. In susceptible 
individuals, colonization of ‘keystone’ bacteria such as P. gingivalis can induce 
microbial dysbiosis, characterized by increase in the total biofilm biomass and a 
shift in the relative abundance of different species. Bacterial biofilm overgrowth on 
the surface of the tooth affects the integrity of the mucosal barrier and initiates the 
host immune response. There is increased influx of neutrophils and release of 
NETs, activation of mast cells and recruitment of macrophages. Failure in clearing 
bacteria leads to a persistent inflammation and to the initiation of an adaptive 
response following activation of APCs. Lymphocytes are recruited to the tissue 
and activated Th1, Th2 and Th17 cells secrete pro-inflammatory cytokines that 
activate immune cells perpetuating inflammation. The activation of B cells by T 
follicular helper cells (Tfh) result in clonal expansion of B cells and production of 
antibodies against bacterial components but also autoantibodies, promoting 
gingival tissue destruction. The activation of both T cells and B cells trigger 
RANKL production, which causes alveolar bone destruction by osteoclasts. 

Neutrophils (also known as polymorphonuclear (PMN) leukocytes) represent the 

primary line of cellular defence against bacterial infections in the oral cavity. 

Their main functions are to phagocytise and to kill microorganisms, particularly 

bacteria, and thus neutrophil recruitment is important for the maintenance of a 

healthy periodontium. A genetic defect in neutrophil extravasation (e.g. 
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leukocyte adhesion deficiency (LAD)), which has been shown to result in an 

increased IL-17 production in the periodontal tissue, has been associated with 

aggressive forms of periodontitis (Moutsopoulos et al. 2014). Murine models of 

PD have shown that the disease can be exacerbated as consequence of impaired 

recruitment to the gingival site (e.g. mice deficient in P/E-selectin or CXCR2 

(receptor of CXCL1 the murine homologue of IL-8)) (Niederman et al., 2001, 

Zenobia et al., 2013); but also by excessive neutrophil infiltration in the gingiva 

(e.g. Del-1 deficient mice) (Eskan et al., 2012).  

Neutrophils migration to the gingival crevice is coordinated by chemokines (e.g. 

IL-8 and CCL3) and adhesion molecules (e.g. β1- and β2-integrin), which can also 

be activated through TLR signalling, in particular by TLR2 and TLR5 (Chung et 

al., 2014). Although the initial recruitment follows the chemokine gradient 

secreted by the GECs and other resident cells in response to microbial/pro-

inflammatory stimulus (e.g. IL-1, IL-8 or C5a), bacteria derived products such as 

LPS or N-formyl-methionyl-leucyl-phenylalanine (fMLP) act also as potent 

chemoattractants for leukocytes (Ebrahimzadeh et al., 2000).  

In order to facilitate the bacterial colonization of the oral cavity, P. gingivalis 

subverts several neutrophil functions (e.g. chemotaxis, phagocytosis, bacterial 

killing, apoptosis or pro-inflammatory signalling) while promoting inflammation 

(as reviewed in Olsen and Hajishengallis, 2016). Neutrophils phagocytosis is 

triggered by the recognition of pathogens by cell surface receptors (e.g TLRs, 

Fcγ and CR1), but when bacteria are organized in biofilms phagocytosis becomes 

difficult. Thus, the attempts to clear bacteria in PD eventually lead to a 

‘frustrated phagocytosis’ and the activation of the neutrophil killing 

mechanisms. The release of reactive-oxygen species (ROS) through a process 

known as ‘respiratory burst’, and release of proteolytic agents such as MMPs and 

serine proteases (e.g. neutrophil elastase (NE), cathepsin G (CG) or proteinase 3 

(PR3)), can cause collateral damage to the surrounding tissues and perpetuation 

of inflammation. Hydrogen peroxide (ROS precursor) is essential for the 

inactivation α1-antitrypsin (α1-AT), the primary inhibitor of NE (Taggart et al., 

2000). Therefore, elevated ROS production, evident in neutrophils of PD patients 

compared with healthy controls (Matthews et al., 2007), can enhance the effect 
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of proteases as well as causing damage to the connective tissues by its own 

action.  

Neutrophils defence strategies in addition to phagocytosis include the release of 

neutrophil extracellular traps (NETs), whose function is to entrap and kill 

microorganisms (Gram-negative and Gram-positive bacteria, yeast and 

parasites), to increase the bactericidal action of neutrophils and to prevent the 

spread of infection (Brinkmann et al., 2004). NETs are filamentous web-like 

structures that consist of extruded nuclear DNA and histones interspersed with 

about 20 proteins including neutrophil granule enzymes (e.g. myeloperoxidase 

(MPO), CG, NE or lactoferrin). DNA is the major structural component of NETs; 

treatment of NETs with nucleases leads to their total dissolution, but NETs 

remain intact when treated with proteases (Brinkmann et al., 2004). The 

antimicrobial peptide LL-37 of the cathelicidin family is also present in NETs 

structures and is thought to stabilize the DNA against bacterial nuclease 

degradation (Neumann et al., 2014).  

When neutrophils undergo NETs formation (NETosis) (Figure 1-6), initially cells 

become flatter and their nuclei loose the lobed morphology and vesiculates; the 

nuclear and granular membranes disintegrate and the chromatin decondenses 

diffusing into the cytoplasmic space and mixing with proteins before loosing the 

membrane integrity and releasing the cell contents into the extracellular space 

(Fuchs et al., 2007).  

NETs offer a secondary killing approach as an alternative to phagocytosis. 

Neutrophils sense microbe size and selectively release NETs in response to large 

pathogens but not to small yeast or single bacteria (Branzk et al., 2014).  

Commensurate with these findings, bacteria organized in biofilms (e.g. oral 

biofilms) can evade phagocytosis, and NETs release becomes the ultimate option 

for bacterial clearance; hence the potential importance of NETs in PD. Although 

the mechanisms by which NETs kill microorganisms are not yet completely 

unravelled, it has been suggested that NETs DNA strands provide a base for 

adherence and activation of the ‘human contact system’ (Oehmcke et al., 2009); 

a humoral response of the innate immune system whose cascade of events 
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trigger the liberation of the pro-inflammatory mediator bradykinin, 

antimicrobial peptides (AMPs) and coagulation factors.  

Microorganisms can be damaged within NETs; neutrophil elastase in the NET can 

deactivate the invasion-plasmid-antigen proteins (Ipa), which are bacteria 

virulence factors that protect from phagocytosis. The histone complexes present 

in NETs, H2A and H2B, also exert an antibacterial effect probably by disrupting 

the plasma membranes of pathogens; however, histones can be also toxic to host 

cells (reviewed in Kawasaki and Iwamuro, 2008). 

Many factors have been identified to trigger NETosis: IL-8, TNF, INF-γ, LPS, 

bacteria, protozoa, antibody-antigen complexes, autoantibodies or phorbol 12-

myristate 13-acetate (PMA) (reviewed in Yang et al., 2016). Most frequently 

used for in vitro stimulation of NETS is PMA, a diacylglycerol (DAG) analogue and 

therefore capable of directly activating protein kinase C (PKC). PKC 

phosphorylation of gp91phox induces the assembly of the cytosolic and 

membrane-bound subunits of NADPH oxidase into a functional complex that 

generates ROS (Raad et al., 2009). Cells lacking Rac2 but not Rac1 NADPH 

oxidase subunit have impaired NETs formation (Lim et al., 2011). PKC activation 

can also be stimulated by increased Ca2+ release by the endoplasmic reticulum 

(ER), initiated by ligand binding to neutrophils TLRs, the IgG-Fc complement 

pathway or cytokine signalling.  

The requirement for ROS production is consistent with the inhibition of NETosis 

by ROS scavengers (e.g. N-acetylcysteine (NAC)) (Kirchner et al., 2013) or 

NADPH oxidase inhibitors (e.g. diphenylene iodonium (DPI)) (Fuchs et al., 2007). 

Moreover, neutrophils from patients with chronic granulomatous disease (CGD), 

which are deficient in NADPH oxidase, are unable to form NETs, but treatment 

with H2O2 can rescue NETs production (Fuchs et al., 2007). Peptydilarginine 

deiminase enzymes (PADs) convert arginine residues into citrulline. The 

citrullination of histones and the consequent loss of the positive charge in the 

protein promote the decondensation of the DNA, weakening the stability of the 

nucleosomes. As will be further discussed in Chapter 3, PAD4 citrullination of 

histones is proposed to be essential for the formation of neutrophil extracellular 

traps. The role of PAD4 induced NETS in immunity against bacterial infections as 
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has been shown by studies using PAD4 knockout mice that show impairment in 

NETs formation (Li et al., 2010, Hemmers et al., 2011, Rohrbach et al., 2012a). 

In NETosis, NE translocates to the nucleus where it partially-degrades histones 

(e.g. H4) aiding in the decondensation of chromatin (Papayannopoulos et al., 

2010). However, recent studies with NE deficient mice suggest that NE is not 

required for the formation of NETs in mice under PMA stimulation (Martinod et 

al., 2016). During NETosis, NE translocation and activation precedes the 

transference of other granule contents such as MPO, through a mechanism that 

does not involve membrane fusion and is dependent on ROS and MPO (Metzler et 

al., 2014). Previous studies with normal human neutrophils and MPO-deficient 

subjects found that MPO requirements for NETs formation depends on the 

stimulus; is essential for NET formation after PMA stimulation but not bacterial 

stimulation (Metzler et al., 2011, Parker et al., 2012). 

Besides conventional ‘suicidal’ NETosis described above, some studies have 

shown different mechanisms by which extracellular traps are formed. ROS-

independent pathways are mediated by ionophores (e.g. ionomycin derived from 

Streptomyces spp.), which are compounds that form lipid-soluble complexes 

with polar cations and transport ions across biological membranes. Ionophores 

mobilize Ca2+, causing hyper-activation of PADs and hypercitrullination of 

proteins (e.g. histones) eventually triggering the release of DNA mimicking 

NETosis but without any other element required in the process (e.g. NE or MPO) 

(Leshner et al., 2012). PADs hypercitrullination in neutrophils has been shown to 

generate a profile of citrullinated autoantigens characteristic of RA (Romero et 

al., 2013). Likewise, an alternative mechanism termed ‘vital’ NETosis has been 

described in Yousefi et al., 2009. Unlike ‘suicidal’ NETs, cells remain viable, as 

the strands are formed by mitochondrial DNA instead of nuclear. The process has 

been shown to be ROS dependent; however, neutrophils required a different 

type stimulus: previous priming with granulocyte/macrophage colony-stimulating 

factor (GM-CSF) and subsequent stimulation with LPS or C5a. 

Although extracellular traps (ETs) formation was initially thought to be 

restricted to neutrophils, ETs have also been shown to form from mast cells, 

eosinophils and monocytes. The ETs released by mast cells do have bactericidal 
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properties and are similar to NETs in composition, stimuli needed and 

dependence on ROS production (von Köckritz-Blickwede et al., 2008). Eosinophil 

extracellular traps also kill bacteria and are ROS dependent, but unlike NETs 

eosinophil ETs are mainly composed by mitochondrial DNA rather than nuclear 

and require priming with IFN-γ or IL-5 previous stimulation with LPS or C5a 

(Yousefi et al., 2008). Monocytes have been shown to release DNA dependent on 

caspase-1 activation upon bacteria stimulation, although the antimicrobial 

activity of those ETs has not yet been determined (Webster et al., 2010). 

 
Figure 1-6: Neutrophil extracellular traps 
(A) Schematic representation of ‘suicidal’ NETs formation. (B) Fluorescence image 
of neutrophil extracellular traps (NETs) captured with Eclipse TE300 inverted 
microscope (Nikon Instruments Inc.) coupled to pE-2 fluorescence illumination 
system (CoolLED Ltd.). Neutrophils were isolated from bone marrow of C57BL/6 
WT mice and NETs induced after 7 h stimulation with 100 nM PMA at 37°C and 
5% CO2. DNA was stained with cell-impermeant Sytox® Green. 

Neutrophils are terminally differentiated cells, and so they do not divide and die 

shortly after maturation unless stimulated for survival. In neutrophils, the type 

of cell death would determine the extent of the collateral damage. Apoptosis is 

considered the physiological form of cell death, which can occur spontaneously 
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under healthy conditions (‘constitutive apoptosis’) in order to maintain 

homeostatic cell numbers; or it can happen as mechanism to resolve 

inflammation. Apoptosis and autophagy are forms of programmed cell death that 

keep the cellular contents separate from the extracellular media and generally 

do not cause inflammation. Instead, necrosis and NETosis involve the rupture of 

the cellular membranes and the consequent liberation of the toxic intracellular 

components that can damage healthy tissue. Therefore, although neutrophils are 

necessary for the maintenance of the periodontal health, they are also potential 

sources of tissue damage.  

Necrosis occurs as consequence of infection, toxins or trauma and is almost 

always detrimental for the organism. However, evidence suggests that NETosis is 

a programmed rather than random process of cell death, different from necrosis 

and apoptosis. Human neutrophil membranes appear to remain intact after 2 h 

of NETs stimulation with no release of lactate dehydrogenase (a cytoplasmic 

indicator of tissue damage), suggesting that necrosis and NETosis are quite 

distinct processes (Brinkmann et al., 2004). Besides, stimulation with IL-8 or 

LPS, which are known to prolong the neutrophils lifespan (reviewed in 

McCracken and Allen, 2014), also has been shown to induce NETs formation. 

Neutrophils are associated with PD, representing the main cell type present in 

the crevicular fluid exudate of PD sites. NETs in particular, have been visualized 

in the exudates of PD lesions forming an entangled web with bacteria and 

epithelial cells (Vitkov et al., 2009). However, such structures have also been 

found in healthy saliva samples (Mohanty et al., 2015), which suggests a possible 

role of NETs in mantaining the oral homeostasis. Therefore, a reduced NETs 

formation might be associated with increased susceptibility to bacterial 

infections.  Peripheral blood derived human neutrophils showed impaired NETs 

production in older adults, associated with a decline in ROS production 

(Hazeldine et al., 2014), which could provide further explanation of why 

physiological aging relates with increasing incidence of bacterial infections. 

However, the same studies describe no difference in NETs production between 

PD patients and age-matched healthy controls. Yet, the majority of the tissue 

damage in PD is thought to arise from an unbalanced inflammatory immune 

response to oral biofilms.  
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Even with no differences in NETs  formation compared with healthy subjects, the 

exposure to a chronic inflamed environment characterized by increased ROS 

production, priming molecules TNF and C5a (Hazeldine et al., 2014) and rise of 

Ca2+ cellular levels among other NET inducer factors, might turn the proposed 

protective role for NETs into a more damaging response. As consequence of the 

ineffective NET function, more bacteria could infiltrate the periodontal tissues, 

perpetuating inflammation and tissue destruction. NETs structures have been 

observed in non-microbial mediated human disorders as excessive NETs 

production can be counterproductive and contribute to pathological conditions; 

e.g. preeclamsia (Gupta et al., 2005), small vessel vasculitis (Kessenbrock et al., 

2009) and RA (Sur Chowdhury et al., 2014).  

Owing to the invasive nature of obtaining neutrophils for scientific studies, the 

limited accessibility to human tissue samples, the high responsiveness of human 

neutrophils and the multiple factors to which cells are exposed during the 

sample collection that could be influencing the experimentation outcome, bone 

marrow-derived mouse neutrophils and DMSO differentiated HL60 cells (dHL60) 

are often employed in NETs investigation as they mimic human neutrophil 

behaviour with regards to various morphological, biochemical and functional 

characteristics (Wang et al., 2009, Ermert et al., 2009). 

Of the other cells composing the inflammatory lesion in PD, mononuclear cells 

represent approximately 95 % of the inflammatory infiltrate in the PD lesions 

(reviewed in Berglundh and Donati, 2005). Mast cells, monocytes and 

macrophages are also associated with the development of the periodontal 

pathology. Mast cells reside in low numbers in the gingival tissue, but both cell 

density and degranulation (as result of activation) are increased in periodontal 

patients compared with healthy subjects (Huang et al., 2013). Besides, work 

with mast cell-deficient mice (KitW-sh/W-sh), demonstrated mast cell contribution 

to bone loss mediated by P. gingivalis infection (Malcolm et al., 2016). 

Activation of mast cells leads to release of pro-inflammatory mediations such as 

TNF-α (known to prime neutrophils for NETosis) and the activation of classical 

and alternative complement pathways as mast cells express C5a receptor 

(C5aR), besides releasing a vast number of enzymes, cytokines, chemokines to 

the extracellular media. 
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Monocyte recruitment is increased in PD patients in response to MCP-1 (CCL2) 

and MCP-3 cytokine signaling, whose expression is higher in the gingiva of PD 

patients compared with healthy subjects (Hanazawa et al., 1993, Dezerega et 

al., 2010). Unlike neutrophils, monocytes have proliferative capacity and can 

differentiate into resident phagocytic cells, macrophages and dendritic cells 

(reviewed in Dale et al., 2008). Monocytes and their differentiated progeny are 

professional phagocytes, but also play important effector and regulatory 

functions in adaptive immunity including presentation of antigens and cytokine 

secretion (e.g. IL-1, IL-6, TNF, and IFN-α/β). Surprisingly, the presence of 

macrophages in the PD lesions seems to be more beneficial to P. gingivalis than 

to the host; depletion of macrophages has been shown to protect mice from P. 

gingivalis induced alveolar bone loss (Lam et al., 2014).  

1.1.5 The adaptive immune response in periodontitis 

Activated lymphocytes are recruited to the infection site and secrete pro-

inflammatory cytokines that help perpetuate inflammation and promote 

osteoclast mediated bone resorption. Unlike innate immunity, the adaptive 

immune system is a highly specific, long lasting response. Usually, professional 

antigen presenting cells (APCs) such as dendritic cells (DCs) and macrophages, 

uptake, process and present antigens to T cells, which become activated and 

according the stimulus received secrete specific set of cytokines that will define 

the immune response. P. gingivalis fimbriae is known to subvert DCs normal 

function and to modulate the T cell responses (Zeituni et al., 2009). 

CD4+ T cell and B cells overall contribution to PD seems to be pathogenic, based 

on studies with CD4+ T cell and/or B cell deficient mice, which are protected 

from P. gingivalis-induced alveolar bone loss (Baker et al., 1994, Baker et al., 

2002). Activated CD4+ T cells subsets are usually characterized based on the 

transcription factors they express, their cytokine production and function (as 

reviewed in Campbell et al., 2016) (Table 1-2). APCs secretion of cytokines 

influences T helper cell polarisation following interaction with antigen; in turn, 

cytokine secretion by Th1, Th2 and Th17 cells influences B cell activity including 

antibody isotype switching. In mice, Th1 cytokines stimulate the production of 

opsonizing antibodies, mostly IgG2a subclass which aid in the phagocytosis and 
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destruction of intracellular pathogens; Th2 responses promote B cell production 

of neutralizing antibodies, predominantly IgE and IgG1 more effective against 

large extracellular pathogens (Moser and Murphy, 2000); and Th17 effector cells 

support B cell responses stimulating the production of IgM, IgG and IgA 

antibodies but not IgE (Patakas et al., 2012). 

It has been hypothesised that the initial response to oral plaque and the 

development of gingivitis is dominated by Th1 cells, while in periodontitis there 

is a shift towards Th2 response that supports proliferation of B cells (reviewed in 

Berglundh and Donati, 2005, Gemmell et al., 2007). The hypothesis of the 

‘Th1/Th2 paradigm’ agrees at some extend with observations from murine 

models of PD. C57BL/6 and BALB/c mice are more likely to generate a Th1 and 

Th2 responses respectively, BALB/c mice being more susceptible to P. gingivalis-

induced alveolar bone loss than C57BL/6 mice (Baker et al., 2000b). However, 

the extreme polarization of the immune response into a particular T helper 

phenotype is not beneficial, as it has been shown to exacerbate PD in mouse 

models. Mice lacking Th1 (IL-12p40, IFN-γ and TNF) or Th2 (e.g. IL-4 and IL-10) 

key cytokines, present greater alveolar bone loss than WT as consequence of    

P. gingivalis infection (Rohrbach et al., 2012a, Alayan et al., 2007).  

The Th1 cytokine IFN-γ is involved in protection against bacterial infections, but 

it also has been shown to directly promote osteoclastogenesis and to contribute 

to PD progression. In particular, PD studies with IFN-γ knockout mice showed 

reduced bone loss after oral infection with A. actinomycetemcomitans compared 

with WT mice (Garlet et al., 2006). Thus, the protective or destructive effect of 

some cytokines and other chemical mediators in PD progression depends on the 

context. Th1 and Th2 are not the only T cell subsets associated with PD. The 

levels of IL-17 in gingiva tissues of patients with chronic periodontitis have been 

found to positively correlate with disease (Lester et al., 2007). Regulatory T 

cells (Tregs) have also been associated with PD and shown capable of reducing 

inflammation and attenuating experimental periodontitis (Garlet et al., 2010).  

B cells and plasma cells represent the main type of cell infiltrates in 

periodontitis lesions (reviewed in Berglundh and Donati, 2005) and their 

proportion in the gingival tissue increases in association with disease severity 
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(Thorbert-Mros and Larsson, 2015). B cells in PD patients have been shown to 

express the co-stimulatory molecules CD80, CD83 and CD86 and to act as 

antigen-presenting cells in active lesions (Mahanonda and Sa-Ard-Iam, 2002, 

Gemmell et al., 2002). Plasma cells in PD have been shown to actively produce 

antibodies to periodontal bacteria, predominantly producing IgG antibodies, 

followed by IgA and IgM (Okada et al., 1983). PD patients present higher anti-P. 

gingivalis antibody titers in serum than healthy individuals (Lappin et al., 2013). 

In addition, P. gingivalis gingipains have been shown to efficiently destroy IgG1 

and IgG3 opsonizing antibodies, as effective strategy to evade the host immune 

system (Vincents et al., 2011).  

Besides the humoral response to periodontal-associated bacteria, PD patients 

also exhibit increased titers of autoantibodies in serum, indicative of a 

dyregulated B cell function in PD. These autoantibodies, mainly directed against 

components of the extracellular matrix (ECM) (e.g. collagen type I), are believed 

to be involved in the progression of PD and to contribute to more aggressive 

forms of the disease (Koutouzis et al., 2009). In addition, antibodies against the 

citrullinated and uncitrullinated forms of RA-associated auto-antigens have been 

identified in PD patients (Lappin et al., 2013, de Pablo et al., 2014). These types 

of antibody are thought to play a central role in the breach of self-tolerance in 

RA, although the relationship between these PD associated antibodies and RA 

remains speculative. 

In addition to the direct bone destruction by immune cells, the osteoclast-

osteoblast balance can be altered favouring bone resorption. Th17 cells have 

been associated with elevated levels of receptor activator of NF-κB ligand 

(RANKL), which promotes osteoclastogenesis. ROS activation, IL-1 and TNF 

cytokine signalling, and also the members of the dysbiotic oral microbiota can 

modulate RANKL expression and influence bone metabolism (Sato et al., 2006, 

Han et al., 2009).  
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Table 1-2: T cell subsets 
APC-activated naïve CD4+ T cells differentiate into T cell subsets as consequence 
of the stimulation with specific combinations of cytokines. Subsets can be 
characterized by their transcription factors and cytokine release. Other cytokines 
can inhibit differentiation into each subset (Campbell et al., 2016).  

CD4+ T cell 
subset 

Transcription 
factor 

Polarising 
cytokines 

Secreted 
cytokines 

Polarisation 
inhibitors Function 

Th1 T-bet 
IL-12 
IL-18 
IFN-γ 

IL-2 
IFN-γ 
LT-α 
RANKL 

IL-4 
IL-10 
TGF-β 

Cell-mediated 
responses to 
intracellular 
pathogens 

Th2 GATA IL-2 
IL-4 

IL-4 
IL-5 
IL-6 
IL-10 
IL-13 

IFN-γ 
TGF-β 

Extracellular 
pathogens, 
humoral 
responses, 
allergy 

Th9 PU.1 IL-4 
TGF-β 

IL-9 
IL-10 

IFN-γ 
IL-27 

Immunity to 
extracellular 
pathogens 

Th17 RORγt 
IL-6 
TGF-β 
IL-21 

IL-17A 
IL-17F 
IL-21 
IL-22 
RANKL 

IL-12 
IL-4 
IL-27 
IFN-γ 

Promote 
inflammation at 
the mucosal 
sites, 
extracellular 
pathogens 

Th22 AHR IL-6 
TGF-β IL-22 TGF-β 

Epidermal 
repair, skin 
diseases 

Tfh BCL6 IL-6 
IL-21 IL-21 Perforin Humoral 

immunity 

Treg FoxP3 IL-12 
TGF-β 

TGF-β 
IL-10 
IL-35 

IL-6 
IL-17 
IL-23 

Regulation of 
the immune 
responses, 
immune 
tolerance 

Abbreviations: GATA3, GATA-binding factor 3; AHR, aryl hydrocarbon receptor; 
RORγt, retinoid-related orphan receptor-γt; BCL6, B-cell lymphoma 6; Foxp3, 
forkhead box protein 3; TGF-β, transforming growth factor-β; IFN-γ, interferon-γ; 
RANKL, receptor activator of nuclear factor-κB ligand. 
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1.1.6 Experimental models of periodontitis  

1.1.6.1 Human in vivo models 

The first experimental model of gingivitis in humans was documented in 1965 

(Löe et al., 1965). The study consisted in the voluntary withdrawal of teeth 

brushing for 21 days; the consequent accumulation of plaque over time 

correlated with increased gingival inflammation and the restoration of the oral 

hygiene and the removal of the accumulated plaque eliminated inflammation. 

This study had a high impact and demonstrated the causal role of plaque 

bacteria in the induction of gingivitis, and encouraged the investigation of 

different aspects of PD following the same experimental approach such as the 

study of the cellular inflammatory responses, markers of inflammation or 

changes in the transcriptome profile during the induction and resolution of 

experimental gingivitis (Smith et al., 1978, Offenbacher et al., 2009, Eberhard 

et al., 2013).  

The same model of experimental gingivitis has been used in the study of the 

composition and development of the dental plaque by 454-pyrosequencing 

(Kistler et al., 2013), and the study of smoking impact in the supra- and sub-

gingival plaque formation (Camelo-Castillo et al., 2015, Branco et al., 2015, 

Peruzzo et al., 2016), with the final aim of identifying biomarkers able to 

predict the transition from health to disease. However, it is worth noting the 

limitations of extrapolating the results of gingivitis models to periodontitis. 

Experimental gingivitis is characterized by a more acute response to oral biofilm 

overgrowth in a short period of time (days to weeks), which cause inflammation 

but not local destruction. Instead, chronic periodontitis develops over a much 

longer period of time (months to years) and is characterized by an unbalanced 

immune response and bone destruction. 

1.1.6.2 Animal in vivo models 

There are multiple options available for the study of host-pathogen interactions, 

and so models should be carefully selected primarily based on the scientific 

questions it is intended to answer, and secondly based on characteristics such as 

reproducibility, time needed for its development, technical complexity and cost. 
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The study of some aspects of PD pathology would require the use of research 

strategies not applicable to human in vivo models due to ethical considerations. 

Instead, diverse animal models have been developed to facilitate the 

understanding of periodontal disease pathology, which is a complex and dynamic 

process and impossible to fully reproduce in vitro. There is no single animal 

model able to represent all aspects of human PD, but still in vivo models are 

useful for investigating particular features of the disease (Graves et al., 2012). 

Non-human primates offer the closest resemblance with the human anatomy, 

immunology and microbiology and are also susceptible to naturally occurring PD. 

However, the cost of maintenance is high, there are notable ethical issues and 

these animals are highly susceptible to infections; therefore are rarely used. 

Rodents (mice and rats) are the most common models employed, especially due 

the relatively low maintenance costs, easy handling, high reproducibility rate 

and availability and accessibility to mouse-specific reagents. Mouse genetics are 

well studied, which facilitates the manipulation and generation of genetically 

modified strains and the study of cause and effect relationships. Still, rodents 

have anatomical differences with humans, the oral microflora differs from that 

found in human disease and are naturally resistant to PD. Besides, in contrast 

with results in humans, female mice appear to be more susceptible to 

periodontal bone loss than male mice (Duan et al., 2015). 

Most periodontal-associated bacteria are not present in the oral cavity of the 

laboratory rodents. Alternative models of PD were developed by introducing 

human strains of bacteria by oral gavage in the animal recipients to study the 

impact of specific bacteria species colonization on the periodontium. Animals 

are treated with antibiotics prior to repeated oral administration of high doses 

of bacteria in a vehicle solution. The antibiotics partially remove the commensal 

flora and helps in the colonization of the foreign bacteria. Oral gavage with      

P. gingivalis, A. actinomycetemcomitans and T. forsythia has been show to 

induce reproducible alveolar bone loss, antibody production and pro-

inflammatory cytokines (Baker et al., 2000b, Sharma et al., 2005, Garlet et al., 

2006). Although only small numbers of P. gingivalis can be recovered from 

animals orally infected with the bacteria, the oral microbiome of these infected 

animals becomes dysbiotic (Hajishengallis et al., 2011). This model allows the 

study of the different aspects of the host immune response in PD; however, it 
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presents some limitations. For example, the bacterial concentrations used are 

higher than those found within the oral cavity and typically require multiple 

exposures to trigger an immune response and bone loss. The antibiotic 

treatment will undoubtedly impact the gut flora, which in turn may impact on 

subsequent immune responses.  

The ligature model consist in the placement of a ligature around the teeth, 

causing the accumulation of dental plaque, inflammation, alveolar bone loss and 

loss of periodontal attachment. This model allows the study of the contribution 

of bacteria and the host immune response to PD pathogenesis and disease 

progression, and the systemic effects that are derived. In recent studies, the 

ligature model has shown to be more efficient in inducing inflammation and 

tissue destruction than the oral gavage model (de Molon et al., 2016). However, 

this model is highly demanding of technical skills, and requires specialized 

magnification. Moreover, the induced inflammation is localized to a single tooth, 

and there is a tendency for the ligatures to displace, therefore larger 

experimental groups are needed to mitigate this variation and reach enough 

power for the statistical analysis of the results. 

The calvarial (scalp) model was developed by Boyce et al., 1989 to investigate 

the effect of cytokines on osteoclastogenesis; IL-1α injected subcutaneously 

caused increased calvarial bone resorption. The model has been adapted for the 

study of bacteria-induced bone resorption in PD, in particular to assess the 

influence of P. gingivalis in osteoclastogenesis (Graves et al., 2001). Although 

the model causes inflammation at the site, P. gingivalis needs to be injected 

directly into the connective tissue and therefore the interactions with the 

epithelial cells and mucosal surfaces and their downstream effects are missing 

from the model. 

The air pouch model was originally developed to study the function of the 

synovial membrane. The airpouch is produced subcutaneously followed by the 

analysis of both the exudate fluid and the epithelial lining (Edwards and 

Sedgwick, 1981). The model was adapted (Pouliot et al., 2000) to study the 

acute inflammatory responses to P. gingivalis, which proved to be a strong pro-

inflammatory stimulus causing high leukocyte infiltration. The main 
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disadvantage of the model is that the chronic inflammatory responses cannot be 

investigated with this method due the short duration of the airpouch, only acute 

inflammation could be assessed. To solve that inconvenience, the airpouch 

model was adapted into the chamber model (Genco et al., 1991). The chamber 

is a coiled stainless-steel wire surgically implanted subcutaneously into the back 

of the mouse and allowed to heal and epithelialize for 10 days, and then 

bacteria are injected into the chamber lumen. Fluid can be aspirated from the 

chamber for the analysis of cell infiltrates and soluble mediators among other 

factors, and the chamber can be excised for histological studies. The model has 

been used to evaluate the immune response to P. gingivalis, the bacterial 

colonization and differences in virulence between periodontal bacterial strains 

(Genco et al., 1991, Lin et al., 2005), but also in the study of the role of          

P. gingivalis in RA (Maresz et al., 2013). The main advantage is the adaptability 

of the model to long-term experiments simulating chronic inflammation. 

However, the model does not fully represent PD as the colonization of the 

bacteria does not occur in the oral cavity. 

1.1.6.3 In vitro study models of host-pathogen interaction 

Diverse biofilm models of supra- and sub-gingival plaque have been developed to 

delve deeper into the role of plaque and specific oral bacteria in PD. In vitro 

biofilms can be form by defined species or from pooled saliva or plaque samples. 

Biofilms from human saliva or plaque samples usually maintain the composition 

and the complexity of the original samples; however, these biofilms of 

undefined species are usually difficult to reproduce and compare with other 

biofilm studies. The reproducibility of defined biofilms offers some advantages 

in the study biofilm formation and structure, antimicrobial susceptibility, 

resistance to antibiotics, interactions between bacterial species within the 

biofilm and with the host immune system.  

Multiple variables must be considered in the development of a biofilm (e.g. 

inoculum, culture media, culture conditions, substrate and bacteria species), 

which can be adapted to the requirements of the study (Ammann and Gmür, 

2012). The earlier in vitro biofilm studies describe a 10 spp. biofilm grown in a 

constant depth film fermenter (CDFF) in complex medium (Kinniment et al., 
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1996, Kinniment and Wimpenny, 1996). The model has been adapted in multiple 

studies changing, among other factors, the number and type of spp. conforming 

the biofilm or the growing conditions (Shu et al., 2003, Schlafer et al., 2012). 

Biofilms can be co-cultured with host cells such as gingival epithelial cells 

(Guggenheim et al., 2009), gingival fibroblasts (Belibasakis and Guggenheim, 

2011), immortalized epithelial cell line OKF4 (Peyyala et al., 2012) or as 

described in Chapter 3 of the present thesis, bone marrow derived neutrophils. 

Organotypic 3-dimensional tissue models are deemed to be more representative 

of the oral and gingival mucosa than the 2D monolayer models. However, they 

are laborious to develop, expensive and time-consuming methods as most 

models take 2-3 weeks to form (Dongari-Bagtzoglou and Kashleva, 2006). There 

are some organotypic tissue models commercially available (e.g. MatTek® 

EpiOral™/EpiGingival™ and SkinEthic®), tested in toxicological and host-pathogen 

interaction studies (Kimball et al., 2006, Yadev et al., 2011, Hayakumo et al., 

2016). 

1.2 Rheumatoid arthritis 

1.2.1 Clinical characterisation of rheumatoid arthritis  

Rheumatoid arthritis (RA) is a systemic autoimmune disease characterized by a 

chronic inflammation of the synovial joints with cartilage and bone destruction. 

Patients suffer progressive disability, socioeconomic decline and associated 

comorbidities, particularly in the cardiovascular system. Due to various 

comorbidities, the life expectancy of RA patients is reduced by three to seven 

years (Lassere et al., 2013). RA is a common disease with a global prevalence of 

about 0.24% estimated from the GBD 2010 study (Cross et al., 2014), and a 

significant economic burden valued in approximately €45.1 billions in Europe 

(Lundkvist et al., 2008).  

In 1987, the American College of Rheumatology (ACR) and the European League 

Against Rheumatism (EULAR) agreed the criteria for RA classification. Because of 

the complex aetiology of the disease, no single parameter can be used for a 

conclusive diagnosis of RA. Therefore, patients diagnosis is based on physical 

evaluation of the joints affected; X-rays, MRI and ultrasound scans are used to 



Chapter 1 
 

 34 

assess the cartilage and the bone damage in the joints; the blood levels of 

erythrocyte sedimentation rate (ESR) and C-reactive protein (CRP) determine 

the state of non-specific systemic inflammation. Serum immunoassays are used 

to identify RA subsets and to distinguish RA from other forms of arthritis such as 

osteoarthritis (OA, commonly used as negative control in RA clinical studies).  

Rheumatoid arthritis onset is preceded by a pre-clinical phase characterized by a 

breach of self-tolerance and presence of anti-citrullinated protein antibody 

(ACPA) and rheumatoid factor (RF). ACPAs are clinically assessed by serum α-CCP 

(anti-cyclic citrullinated peptide antibodies), which measure serum antibody 

specific for a panel of different cyclic citrullinated peptides. RF is a high-affinity 

autoantibody against the Fc portion of immunoglobulin, with similar sensitivity 

(68%) and moderate specificity (85%) compared with ACPAs, in particular α-CCP 

antibodies (67% sensitivity and 95% specificity) (Nishimura et al., 2007). Both 

parameters had been long used as a serological indicators for RA as stipulated in 

the ACR/EULAR 2010 RA classification criteria (Kay and Upchurch, 2012), and 

when combined improve the probability of true positivity in the diagnosis (Sun et 

al., 2014), especially when used together with indicators of inflammation (e.g. 

ESR, CRP and TNF). Moreover, previous studies have demonstrated that the 

presence of IgM-RF and ACPA autoantibodies are associated with disease 

progression and can be detected in around 50% of patient at least 4.5 years 

before the clinical onset of the disease (Nielen et al., 2004).  

RA patients can be classified into at least two major subsets on the basis of 

presence versus absence of autoantibodies: seropositive (positive for α-CCP or 

RF) and seronegative. There is increasing evidence of different aetiologies and 

pathogenic mechanisms between the RA subsets. In particular, ACPA-positive 

patients present more bone and join destruction than ACPA-negative, respond 

better to particular RA treatments and exhibit a strong association with the HLA 

DBR1 alleles (section 1.3) (as reviewed in Malmström et al., 2016). Although the 

role of autoantibodies in the development of the articular phase of RA has been 

demonstrated by RA studies in animal models (Nandakumar and Holmdahl, 2005, 

Kuhn et al., 2006), is still unclear how the RA pre-articular phase shifts to 

clinical rheumatoid arthritis and the mechanisms that trigger that conversion. 
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The likelihood of suffering rheumatoid arthritis is increased by the complex 

interaction among genetic factors and environmental triggers. The analysis of 

heritability based on twin studies suggest that approximately 60-66% of 

susceptibility to RA is hereditable, with increased risk for monozygotic twins 

compared with dizygotic. The DBR1 shared epitope (HLA-DBR1 SE) account for 

18% of heritability of seropositive RA and only 2.4% for seronegative RA 

(MacGregor et al., 2000, van der Woude, 2009). The HLA-DBR1 alleles dictate 

the peptide-binding specificities of the MHC II, containing a conserved sequence 

of 5 amino acids positively charged known as the shared epitope (SE) (QRRAA, 

RRRAA
 

or QKRAA), which forms the peptide-binding pocket. The SE would 

preferably bind uncharged citrulline amino acids than positive-charged residues 

(reviewed in Holoshitz, 2010). Indeed, the SE has been shown to bind 

citrullinated peptides but not their arginine homologs (Scally et al., 2013). 

Individuals presenting the HLA-DBR1 SE have shown to present increased 

predisposition to develop RA and also rapidly progressing periodontitis (Katz et 

al., 1987).  

As well as the MHC, another identified locus of susceptibility for RA is the 

protein tyrosine phosphatase non-receptor type 22 (PTPN22) 1858T allele, which 

affects the responsiveness of T and B cell receptors and has been shown to 

account for ≈1% of RA familial aggregation (Michou et al., 2007). Many other 

disease-associated genetic factors have been identified using GWAS (e.g. 

Cytotoxic T-Lymphocyte Antigen 4 (CTLA4), IL-12RA, genes of the TNF pathway 

or involved in the regulation of T cell function), differing between disease 

subsets and reinforcing the complex taxonomy classification of rheumatoid 

arthritis (as reviewed in McInnes and Schett, 2011). 

Besides the genetic risk factors, at least one-third of RA susceptibility can be 

explained by environmental variation. Smoking is one of the most important 

lifestyle risk factors for RA. Smokers present increased disease activity and 

severity, with higher production of IgM-RF and IgA-RF. Smoking influence is 

greater in those with background of genetic susceptibility (HLA-DBR1 SE) for the 

development of seropositive but not in seronegative RA; a clear evidence of 

gene-environment interaction (Bang et al., 2010). Smoking has also been 
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associated with increased protein deimination, which in susceptible individuals 

leads to augmented risk of developing ACPA-positive RA (Klareskog et al., 2006). 

Variations in the oral and gut microbiome have also been shown to be involved in 

the development of autoimmunity in RA (Brusca et al., 2014, Zhang et al., 

2015). RA tends to manifests in adults between the ages of 40 and 50, with 

differences between genders in terms of disease prevalence, age at onset, 

response to treatment or autoantibody production (Jawaheer et al., 2006). The 

higher incidence of RA in women is thought influenced by biological elements 

(e.g. hormones). Estrogen has a dual impact on the immune system by the 

downregulation of inflammatory responses but also upregulation of 

immunoglobulin production. RA disease activity has been reported to improve in 

75% of women during pregnancy, but then to increase more than fivefold in the 

first three moths after delivery (Silman et al., 1992). Also, clinical studies with 

hormone replacement therapy (HRT) have shown to ameliorate RA (D'Elia et al., 

2003), and the use of oral contraceptive in women has been shown to reduce the 

risk of developing RF positivity (Bhatia et al., 2007). 

The disease progression and response to treatment is clinically assessed based on 

the DAS28 criteria (Figure 1-7), typically used in conjunction with ESR or CRP. 

DAS28 evaluates the soreness and swelling of 28 joints and integrates patient’s 

perception of disease activity, pain and physical functionality (Prevoo et al., 

1995). The ACR criteria are standard criteria used to compare the effectiveness 

of arthritis medications or treatments, and also as benchmark in clinical trials 

(Ward et al., 2014). It evaluates the improvement in tender (TJC) or swollen 

joint counts (SJC), and in three of five other measurements used to determine 

disease activity; an improvement of 20% meets the criteria for ACR20, 50% for 

ACR50 and 70% for ACR70 (Felson et al., 1995). A patient disease is considered 

to be in remission when TJC ≤ 1, SJC ≤ 1, and CRP ≤ 1 mg/dl according to the 

Boolean-based definition (Felson, 2012). 
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Figure 1-7: Joint targets for the estimation of the DAS28 index  
For the estimation of DAS28, 28 joints are assessed for tenderness and swelling 
as indicated in the figure above. The index can be estimated with the equation: 
𝐷𝐴𝑆28 = 0.56× 𝑡𝑒𝑛𝑑𝑒𝑟28+ 0.28× 𝑠𝑤𝑜𝑙𝑙𝑒𝑛28+ 0.70×𝑙𝑛 𝐸𝑆𝑅 + 0.014×𝐺𝐻 . The 
C-reactive protein (CRP) can be used instead of the erythrocyte sedimentation 
rate (ESR) (mm/h). The general health (GH) value is obtained from patient's global 
assessment of disease activity on a 100 mm visual scale. DAS28 provides a value 
on a scale from 0 to 10 indicating the current disease activity on a patient. A 
DAS28>5.1 denotes high disease activity whereas a DAS28<3.2 means low 
activity. Remission is achieved when DAS28 values are lower than 2.6 (ACR-
EULAR).  

1.2.2 Immunopathology of rheumatoid arthritis 

The cause of RA remains unknown. However, the understanding of disease 

pathogenesis has provided new tools for the early diagnosis and treatment. The 

pathology of RA can be subdivided in three distinct stages: autoimmunity, 

inflammation and tissue destruction (reviewed in Holmdahl et al., 2014). 

Initially, autoimmunity develops in apparently otherwise healthy genetically 

susceptible individuals under the influence of various environmental factors. 

This pre-clinical phase is asymptomatic and characterised by production of 

autoantibodies (e.g. RF and ACPAs) as described previously in section 1.2.1. Most 

of the research studies are focused in the active phase of the disease as tissue 

samples can only be obtained from active RA patients and most of the animal 

models resemble the articular phase of the disease (section 1.2.3).  
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The trigger of the first clinical signs of RA has not been identified yet, but is 

known to be sudden and to trigger the FcR- and complement-dependent 

infiltration of leukocytes in the synovial compartment, in particular neutrophils 

and macrophages causing inflammation. Cell migration is driven by endothelial 

activation and secretion of chemokines, which also activate local fibroblasts 

promoting the development of a chronic synovial inflammation, the hallmark of 

RA. The synovium thickens as consequence of local cell proliferation and influx 

of immune cells (T cells, B cells, natural killer (NK) cells, DCs and mast cells) 

(Figure 1-8). 

 
Figure 1-8: Summary of the host immune response in rheumatoid arthritis 
Schematic representation of the cellular elements involved in the host immune 
response in health and rheumatoid arthritis. Under physiological conditions, the 
synovial membrane is comprised by a thin layer of macrophage-like (type A) and 
fibroblast-like (type B) synoviocyte, while the synovial fluid is acellular. In disease, 
the synovial membrane show dramatic hyperplasia and the cells within become 
activated, proliferating locally and progressively invading the joint cavity. The 
increased cellularity of the RA synovium is accompanied by increased 
angiogenesis. Immune cells are recruited to the inflamed site as consequence of 
cytokine and chemokine signalling, which in combination with other inflammatory 
mediators and degrading enzymes causes cartilage destruction and deregulation 
of the bone metabolism, eventually leading to joint destruction. Image adapted 
from Smolen and Steiner, 2003. 
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The synovial membrane is a specialized connective tissue that lines the inner 

surface of capsules of synovial joints and tendon sheath formed from a lining and 

sub-lining layer; is mainly composed of macrophage-like (type A) and fibroblast-

like (type B) synovial cells (reviewed in Tarner et al., 2005). Type B synoviocytes 

of the lining layer can be identified by the expression of α6β1 integrin (Pirilä et 

al., 2001). Synovial fibroblasts (SFs) in health confer stromal support and are 

responsible for the production of collagen I, III, IV and V and other components 

of the connective tissue such as fibronectin, laminin or chondroitin, and also for 

the secretion of lubricating molecules such as hyaluronic acid into the joint 

cavity (reviewed in Müller-Ladner and Ospelt, 2007). In disease, the synovial 

lining layer undergoes hyperplasia and type A and B cells invade the adjacent 

articular cartilage and subchondral bone, perpetuating the local inflamed 

microenvironment. SFs are known to contribute to RA pathology through the 

production of inflammatory mediators and chemokines (e.g. vascular endothelial 

growth factor (VEGF), IFN-Υ, IL-15, CCL2, CCL5, CXCL1, CXCL5, CXCL8 and 

CXCL10) and proteases (e.g. MMPs and cathepsins). In addition, fibroblasts 

secrete RANKL that promotes osteoclast differentiation and activation 

(Shigeyama et al., 2000), and DKK-1 that inhibits osteoblast metabolism 

intervening in bone repair (Diarra et al., 2007).  

The phenotype of RA fibroblasts is thought to be the consequences of the 

combined effect of particular cytokines and growth factors (e.g. fibroblast 

growth factor (FGF), IL-1, IL-17, IL-18 and TNF) and hypoxia (reviewed in Filer, 

2013). In particular, RA fibroblasts have been shown to exhibit hypomethylation 

compared with normal fibroblasts, which translates in changes in the gene 

expression. The chemokine CXCL12 is overexpressed in RA SFs as consequence of 

reduced methylation of its promoter (Karouzakis et al., 2011). Although there is 

no evidence currently showing CXCL12 citrullination in RA, is worth considering 

that PADs citrullination has been shown to antagonize methylation (Cuthbert et 

al., 2004). PAD4 and PAD2 have been detected in synovial fluid from RA patients 

(Kinloch et al., 2008); thus, it could be speculated that PAD4 activity in the 

synovial compartment could induce hypomethylation in SFs. 

Monocytes and macrophages are central effectors of synovitis. Macrophages are 

the most abundant cell in the inflamed synovial membrane (≈40%) (Sack et al., 
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1994) and their infiltration into the synovial compartment directly correlates 

with articular damage (Mulherin et al., 1996). Apart from their capacity as APCs, 

synovial macrophages probably do not have a direct causal pathogenic effect in 

RA; they mediate inflammation and joint destruction through the production of 

pro-inflammatory cytokines (e.g. TNF, IL-1, IL-6 and GM-CSF), chemokines (e.g. 

IL-8, macrophage inflammatory protein 1α (MIP-1α) and monocyte 

chemoattractant protein 1 (MCP-1)) and overexpression of MMPs (e.g. MMP9 and 

MMP12) (reviewed in Kennedy et al., 2011).  

Dendritic cells (DCs) are critical for the initiation of the adaptive immune 

response and maintenance of the immune tolerance. They comprise a very 

heterogenic population that can be divided in two major subpopulations: 

conventional/myeloid and plasmacytoid DCs (cDCs and pDCs respectively), which 

can be differentiated based on cytokine expression (e.g. IL-12, IFN-α) and the 

expression of surface markers (e.g. BDCA-2 and BDCA-4) among other 

parameters (reviewed in Lutzky et al., 2007). DCs are a source of pro-

inflammatory cytokines such as IL-1, IL-6 or TNF, current targets of biological 

treatments in RA, and have been identified in RA synovial fluid and tissue. 

Although their role in RA pathogenesis is still not well understood, the 

association between RA and the HLA-DR4 class II MHC allele highlights the 

importance of DCs as the major APC population involved in the initiation of 

autoimmune responses (reviewed in Tran et al., 2005). Indeed, DCs have been 

shown able to prime autoimmune responses by presenting self-antigens in a 

experimental model of RA, in which the presentation of collagen-derived 

peptides by bone marrow DCs (BMDCs) is sufficient to induce RA in DBA/1 mice 

(Leung et al., 2002).  

The sub-lining layer also undergoes expansion and infiltration of T cells, B cells 

and plasma cells. The functional role of B and T cells in RA remains poorly 

understood, although the partial success of treatments targeting these cells such 

as ‘rituximab’ (α-CD20-immunoglobulin) and ‘abatacept’ (cytotoxic T 

lymphocyte antigen 4 (CTL4)-immunoglobulin), indicate a role for T and B cell 

activation in chronic RA (Boumans et al., 2011, Diamanti and Rosado, 2014). 

Various studies have reported the presence of T cells in the synovial membrane 

interacting closely with APCs (either DCs or B cells), which suggest an active 
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adaptive immune response at the site (reviewed in Tran et al., 2005). 

Lymphocyte aggregates are observed in approximately 36% of the RA patients 

and have been shown to correlate with the degree of synovitis in early arthritis 

and local expression of cytokines (van de Sande and Thurlings, 2011). These 

ectopic lymphoid structures appear functional and support autoantibody 

production, in particular through the contribution of Th1 and Th17 cytokines 

(Humby et al., 2009). The association with the HLA-DR4 SE in RA patients and 

ACPAs could suggest T cell recognition of citrullinated epitopes, however, the T 

cell profile in RA patients is mostly variable and still no single antigenic epitope 

has been identified as responsible for the pathology. 

The first evidence of B cell contribution to RA is based on the production of 

autoantibodies, hallmark of RA physiopathology, which have been found to 

correlate with disease severity in both human and murine models (Agrawal et 

al., 2007). Of particular note is the association between the production of 

autoantibodies to citrullinated peptides (ACPAs) and the development of RA. 

ACPAs can be detected before RA disease onset, have predictive value and their 

levels correlate with disease severity (Hensvold et al., 2017). The disease course 

in early arthritis is associated with high titers of autoantibodies towards 

citrullinated peptides and epitope spreading (Brink et al., 2013). Antibodies 

against the same native and citrullinated epitopes of collagen type II (CII) are 

largely present in both human and mice, and have been shown to mediate 

arthritis in mice (Uysal et al., 2009). The control mechanisms of both central 

and peripheral B-cell tolerance have been shown to be impaired in RA patients 

(Samuels et al., 2005). This results in B cell tolerance defects that can not be 

solved by treating inflammation, confirming the importance of the genetic 

contribution to RA above the imbalanced inflammation, particularly in the early 

stages of disease development (Menard et al., 2011).  

Besides secreting autoantibodies, B cells can also act as efficient APCs (via 

antigen-IgG immuno-complexes) and activate T cell functions. Previous studies 

have suggested that T cell responses in the RA synovitis are dependent on B cells 

(Takemura et al., 2001). B cell can also stimulate cytotoxic T cell responses 

through the secretion of cytokines such as IL-6, which regulates the balance 
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between Th17 and Tregs in in both experimental and human arthritis critical in 

RA pathogenesis (Thiolat et al., 2014). 

RA is clear evidence of innate and adaptive immune pathways co-existing and 

interacting to perpetuate inflammation and tissue destruction. RA treatments 

are focused preserving function, minimizing pain, and reducing inflammation. 

Disease-modifying anti-rheumatic drugs (DMARDs) are classified as conventional 

DMARDs or biological treatments. Conventional DMARDs act on the immune 

system to slow the progression of RA (e.g. ciclosporin A, leflunomide, 

hydroxychloroquine or methotrexate). However, these drugs do not abrogate RA 

symptoms completely and have severe and frequent side effects. Biological 

treatments represent a different approach (e.g. rituximab, abatacept, α-TNF or 

α-IL-1 drugs). These treatments target individual molecules and tend to work 

more quickly than conventional DMARDs. Generally, biological treatments are 

only given to patients that did not respond to conventional DMARDs or that 

develop side effects (Arthritis Research UK). Because of the complex aetiology 

of RA is impossible to predict the patient response to a certain drug; 

approximately only 27% of patients achieve remission (depending on the criteria 

used to assess disease activity (e.g. ACR or DAS)), meaning that a significant 

proportion of patients do not respond to treatment (Ma et al., 2010). Besides, 

partial control of inflammation does not appear to prevent joint damage, and 

thus the majority of patients with active disease may become disabled in a short 

period of time. However, recent meta-analysis of treatment effects in animal 

studies have been shown that prophylactic and pre-arthritis strategies are 

effective, with a significant reduction of RA severity scores (Dekkers et al., 

2016). 

1.2.3 Experimental models of rheumatoid arthritis 

Animal models are essential for the understanding of the complex pathology and 

aetiology of RA. The study of human samples is limited to patients with active 

disease, as the pre-clinical stage of RA is asymptomatic and the sampling of 

healthy tissue is limited by ethical considerations. For that reason, clinical 

studies usually miss true negative controls using instead tissue samples from 

osteoarthritis (OA) patients.  
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In vivo models offer multiple options for the study of RA. Despite the inherent 

limitations of all animal models, the primary goal of the models is to achieve 

adequate correlation efficiency with human RA to predict the behaviour of 

drugs/treatments, identify the causes that lead to disease onset and discern the 

role of certain elements in RA pathogenesis (reviewed in Roy and Ghosh, 2013). 

Animal models present multiple advantages for the study of RA compared with 

human samples; the most relevant are listed below:  

§ Animals inbreeding significantly reduces the genetic variation, very 

common in human studies. 

§ The environment can be easily controlled and manipulated. 

§ Animals can be genetically modified.  

Animal models of RA can be classified into ‘induced’ or ‘spontaneous.’ The 

former develop arthritis after immunization of animals with an autoantigen or 

protein in presence of adjuvant (e.g. complete Freund’s adjuvant (CFA)); the 

later develop arthritis as consequence of genetic manipulations. 

The most widely used model of arthritis is Collagen-Induced Arthritis (CIA) which 

was initially established in rats (Trentham et al., 1977) and subsequently 

described in genetically susceptible DBA/1 mice carrying the MHC II I-Aq 

haplotype (Courtenay et al., 1980). In this model, mice are immunized with 

heterologous CII in CFA and disease is characterized by anti-CII B and T cell 

responses. Clinical signs of polyarthritis develop 15-25 days after immunization 

peaking at day 35 and then entering remission. CIA shares many similarities with 

human RA such as MHC II susceptibility (HLA-DBR1 SE), breach of tolerance and 

generation of autoantibodies, predominantly IgG2 subclass (reviewed in Asquith 

et al., 2009). The most relevant limitation of the model is its use in genetically 

modified mice strains, usually developed in C57BL/6 background, as are 

generally considered resistant to CIA. However, immunization with chicken and 

not bovine CII has been shown capable of inducing disease in C57BL/6 mice, 

although with lower incidence and increased variability across C57BL/6 

substrains (Inglis et al., 2007). 
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Transferring serum from an immunized mouse into non-immunized recipient has 

been shown to induce arthritis (Stuart and Dixon, 1983). This is the basic 

principle for the model of collagen-antibody-induced arthritis (CAIA), in which 

animals are treated with arthritogenic antibody cocktails that induce clinical 

development of arthritis similar to CIA and RA (Holmdahl et al., 1986). Disease 

develops 48 h after antibody administration with 100% success regardless of MHC 

II haplotype, and is characterized by macrophage and PMN infiltration but not 

associated with B and T cell responses (reviewed in Asquith et al., 2009). Both, 

CIA and CAIA models rely on aggressive immunization with a single self-antigen 

(CII) to achieve breach of tolerance to the same antigen, which is helpful for the 

study of the mechanisms ruling in active disease but limits the understanding of 

how breach of tolerance is likely to occur in human RA.  

The spontaneous models of RA (e.g. TNF transgenic mice, K/BxN, SKG or 

humanized DR4-CD4 mice) represent the progressive development of the disease 

and thus are more suitable for the study of the causes and mechanisms directing 

the initial stages of RA. The inconvenience arises for the study of particular 

aspects of RA using other transgenic lines (e.g. PADi4 KO), as spontaneous 

models are restricted to particular mice strains and the generation of functional 

double transgenic mice is not always feasible.  

Most of the animal models available resemble the active and destructive phases 

of RA and not the pre-clinical phase of the disease. However, a novel model of 

early RA was described over ten years ago, based upon the adoptive transfer of 

Th1 polarised TcR-transgenic T cells specific for ovalbumin (OVA), which induces 

transient arthritis in mice challenged in the footpad with heat-aggregated OVA 

(HAO) (Maffia et al., 2004). This model allows the study of the early events in 

the development of RA that lead to autoimmunity, particularly focusing in Th 

cell contribution to RA pathology. Adoptive Th1 cells can be tracked by flow 

cytometry using the congenic marker CD45.1, as recipient mice (C57BL/6) 

express the CD45.2 molecule instead. The clinical and histopathology signs 

developed with this model are mild compared with other models (e.g. CIA, SKG), 

which resemble a more advanced phase of the human disease. The model is 

characterized by breach of self-tolerance to articular antigens, in particular to 

CII in the form of B and T cell responses and the presence over time of RF, even 
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though mice were never immunized with this particular articular protein but 

with OVA. Previous studies with this model have demonstrated the role of cDCs 

mediating breach of self tolerance, as their absence in the model nullify the 

development of autoreactivity (Jongbloed et al., 2009). This and other relevant 

animal models of RA are summarized in Table 1-3. 

Table 1-3: Animal models of rheumatoid arthritis  
Main characteristics of the most relevant animal models developed for the study of 
RA, classified either as induced or spontaneous (Keystone et al., 1977, 
Courtenay et al., 1980, Holmdahl et al., 1986, Glant et al., 1987, Keffer et al., 
1991, Kouskoff et al., 1996, Eming et al., 2002, Sakaguchi et al., 2003, Maffia et 
al., 2004, Tuncel et al., 2016). 

 
Model Species Characteristics 

In
du

ce
d 

m
od

el
s 

of
 R

A 

CIA Mice 
Rats 

Erosive polyarthritis, T and B cell responses to 
the immunizing antigen, low incidence and 
variability in C57BL/6 background 

CAIA Mice Acute polyarthritis, macrophage and PMN 
infiltration, not limited by MHC II haplotype 

OVA-TcR-induced 
arthritis 

Mice 
Rats 

Polyarthritis, breach of tolerance to non-
immunized self-antigen (α-CII), tracking of T 
cell responses 

Pristane induced 
arthritis (PIA) 

Mice 
Rats 

Polyarthritis, T cell dependent, limited to 
genetically susceptible strains 

Zymosan-induced 
arthritis Mice Monoarthritis, biphasic, PMN infiltration, 

require high technical skills  

Proteoglycan-induced 
arthritis (PGIA) Mice Polyarthritis, PMN infiltration, T and B cell 

responses to the immunizing antigen 

Sp
on

ta
ne

ou
s 

m
od

el
s 

of
 R

A 

TNF transgenic 
(TNF overexpression)  Mice Chronic erosive polyarthritis, close 

resemblance to human disease 

K/BxN  
(TcR reactivity with 
GPI) 

Mice 
Severe arthritis, complement activation and 
mast cells degranulation, mediated by TNF 
and IL-1, high titers of autoantibodies 

SKG (ZAP-70 mutation, 
T cell autorreactivity) Mice 

Erosive arthritis, autoantibodies (RF, α-CII, 
ACPAs) dependent upon environmental 
stimuli, absent in germ-free mice 

Human DR4-CD4 mice Mice Severe arthritis, Th1 responses 

Abbreviations: CIA, collagen-induced arthritis; CAIA, collagen-induced-antibody 
arthritis; GPI, glucose phosphate isomerase; OVA, ovalbumin; PMN, 
polymorphonuclear cells; TcR, T cell receptor; TNF, tumor necrosis factor alpha.  
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1.3 The potential immunological link between 
periodontitis and rheumatoid arthritis  

Rheumatoid arthritis (RA) and periodontitis (PD) are both chronic inflammatory 

diseases with high prevalence in the population. Despite presenting different 

etiological mechanisms, clinical and epidemiological studies suggest an 

association between both diseases. The attempts to date addressing the 

relationship between RA and PD are based on epidemiological data, small human 

studies or animal model studies. However, these have been recently reviewed in 

Araújo et al., 2015 and Fuggle et al., 2016, following critical appraisal and 

meta-analysis approaches respectively, and their results confirmed a greater risk 

of PD for people suffering RA compared with non-RA comparable controls. The 

alveolar bone loss in RA patients suffering PD has been shown to parallel bone 

erosion in other sites (Marotte et al., 2006). Moreover, in small studies, 

mechanical periodontal treatment has been shown improve the clinical measures 

of rheumatoid arthritis (e.g. CRP, ESR or DAS28) (Al-Katma et al., 2007, Ortiz et 

al., 2009, Erciyas et al., 2013). 

PD and RA share environmental risk factors such as smoking or the human 

microbiota, but also genetics risk factors, as for example the human leukocyte 

antigen DBR1 shared epitope (HLA-DBR1 SE), genetic polymorphisms and 

epigenetic modifications of cytokines genes (e.g. IL-1 and IL-6) (reviewed in 

Kobayashi and Yoshie, 2015). Both diseases are characterized by a dysregulated 

immune response that leads to tissue and bone destruction driven by 

inflammatory cells, antibody production and pro-inflammatory cytokines. In 

particular, TNF and IL-6 have been associated with the destruction of soft and 

hard tissues in both pathologies (reviewed in Brennan and McInnes, 2008, Garlet, 

2010). The production of autoantibodies is an important feature in both 

pathologies; in particular, antibodies to citrullinated peptides (ACPAs) that are a 

key diagnose parameter for RA (section 1.2.1). Indeed, antibodies against the 

citrullinated and uncitrullinated forms of certain peptides associated with RA 

such as α-enolase (e.g CEP-1, REP-1) have been detected in PD patients (Lappin 

et al., 2013, de Pablo et al., 2014). 
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Infectious microorganisms have long been suggested to trigger the immune 

responses that eventually lead to autoimmune disorders by stimulating the 

breach of self-tolerance and promoting the generation of autoantibodies via 

molecular mimicry. It is generally accepted that a bacterial insult triggers the 

development of chronic periodontitis and has been hypothesised that oral 

colonization of particular ‘keystone’ bacteria such as P. gingivalis, T. forsythia 

and T. denticola comprising the ‘red complex’ (Socransky et al., 1998), causes 

oral dysbiosis initiating an immune response. Bacterial colonization also has 

proved to be a requirement for the emergence of an autoimmune disease such 

as RA (Brusca et al., 2014). In fact, the oral and gut microbiome of RA patients 

have shown to present dysbiosis that can be partially normalized after treatment 

for RA (Zhang et al., 2015). The detection of P. gingivalis in subgingival biofilm 

samples of RA patients has been found to be associated with increased levels of 

ACPAs and RF (Mikuls et al., 2014). Moreover, recent studies have identified the 

periodontitis-associated bacteria, A. actinomycetemcomitans, as a possible 

bacterial trigger of autoimmunity in RA (Konig et al., 2016). The pore-forming 

toxin LtxA stimulates the generation of NETs-like structures in neutrophils, and 

mediates bacteria-induced hypercitrullination in host neutrophils. These 

pathways have been proposed to generate antigens that correlate with ACPA and 

RF production. 

IgA and IgG antibodies against P. gingivalis have been found in RA patients. The 

former suggest an association with the mucosal surface and periodontitis; the 

latter, has been associated with high serum concentration of CRP and ACPAs. P. 

gingivalis is the only microorganism among prokaryotes whose PAD enzyme 

(PPAD) is capable of citrullinating host proteins. Indeed, PPAD-deficient P. 

gingivalis mutant has proved to be less efficient colonizing the oral cavity and to 

induce less alveolar bone loss in a murine model of PD than the WT strain (Gully 

et al., 2014).  

PPAD citrullination is hypothesized to be the mechanism behind the breach of 

tolerance observed in PD and RA. P. gingivalis gingipains fragment the host 

proteins exposing the internal arginine residues that were previously not 

available for PPAD. Through the action of PPAD, new citrullinated epitopes may 

be created and not recognised by the host as self, which in the inflammatory 
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milieu of PD could stimulate an immune response. NETs formation can 

contribute to total citrullination by releasing the cellular contents to the 

extracellular media, where calcium levels surpassing physiological can induce 

PADs hypercitrullination of host proteins. Also, the release of MPO during 

NETosis can catalyse the conversion of thiocyanate into cyanate and thus 

increase the potential for carbamylation of proteins, which has been also related 

to RA pathogenesis (Mydel et al., 2010). 

Furthermore, ACPAs against PPAD-citrullinated bacterial peptides can cross-

react with homolog host peptides leading to a loss of tolerance through a 

process known as molecular mimicry. This could be the case for P. gingivalis 

enolase that shares 51% homology with the human α-enolase, increasing up to 

82% for a specific region known as CEP-1 and 100% homology for 9 amino acids 

within the CEP-1 region (Table 1-4). CEP-1 is a major ACPA’s epitope in RA, 

strongly associated with HLA-DRB1 SE and smoking, present approximately in 25% 

of RA patients based in the Karolinska and Norfolk Arthritis Register (NOAR) 

cohorts (Fisher et al., 2011). Sera of RA patients were found to react with both, 

human and bacterial forms of the molecule (Lundberg et al., 2008). 

Table 1-4: Amino acid sequence of P. gingivalis and human CEP-1 epitopes 
P. gingivalis and human CEP-1 amino acid sequence with the conserved 9 amino 
acids (shaded area). REP-1 is the native, uncitrullinated form of the human CEP-1 
epitope (Lundberg et al., 2008). X= citrulline, R = arginine. 

Peptide Amino acid sequence 

P. gingivalis CEP-1 K I I G X E I L D S X G N P T V E 

Human CEP-1 K I H A X E I F D S X G N P T V E 

Human REP-1 K I H A R E I F D S R G N P T V E 
 
1.3.1 Citrullination and PAD enzymes 

There is no transfer RNA (tRNA) that encodes for the amino acid citrulline (Cit), 

therefore citrullinated peptides must originate from the post-translational 

modification (PTM) of proteins, L-arginine metabolism or be supplied by diet. 

Citrulline can be found as a single amino acid (L-citrulline) or as 

peptidylcitrulline. L-citrulline is used for the biosynthesis of proteins. It is 

produced in the metabolism of L-arginine and works as intermediate product in 
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the urea cycle and a sub-product of the NO synthesis (Figure 1-9). The 

metabolism of L-arginine in myeloid suppressor cells (MSCs) has been shown to 

control T-lymphocyte functions through the regulation of nitric oxide synthase 

(NOS) and arginase (ARG) activity, which can be activated by Th1 and Th2 

cytokines respectively (Bronte et al., 2003).  

 
Figure 1-9: Schematic illustration of citrulline metabolism 
The production of L-citrulline, peptidyl-citrulline and peptidyl-homocitrulline are 
interconnected through metabolic routes involving NO synthesis, the urea cycle, 
inflammation and apoptosis.  

Peptidlyl-citrulline may be generated by an enzymatic reaction known as 

citrullination, or by non-enzymatic carbamylation (Table 1-5). Carbamylation 

occurs at alkaline pH in presence of cyanate, and transforms the lysine residues 

into homocitrulline by adding an amide group to the terminal amine group 

(Figure 1-9). Smoking is known to increase thiocyanate (SCN) levels in plasma, 

promoting inflammation-driven carbamylation of proteins via MPO catalysed 

oxidation of SCN. Some authors have proposed homocitrullination as the 

mechanism linking inflammation, smoking, uremia and coronary artery disease 

pathogenesis (Wang et al., 2007). Indeed, T cell responses to homocitrullinated-

INFLAMMATION 

Carbamylation 
(homocitrullination) 

L-ornithine 

ARG  
L-arginine 

UREA CYCLE 

OTC 

L-citrulline 

Deimination 
(Citrullination) 

PADS 

H2O 

Po
st

tr
an

sl
at

io
na

l m
od

ifi
ca

tio
ns

 

A
po

pt
os

is
 

C
a2

+ /P
A

D
 re

le
as

e 

iNOS NO + 

NO SYNTHESIS 

ENVIRONMENTAL 
FACTORS: 

H2O 

Pi 



Chapter 1 
 

 50 

derived peptides are critical for the development of autoimmunity in a model of 

experimental erosive arthritis (Mydel et al., 2010). Although there is clearly a 

possible link between carbamylation and inflammation, this thesis focuses on 

PAD4-mediated citrullination of proteins. 

In citrullination, peptidyl-arginine deiminase enzymes (PADs) catalyse protein 

transformation into peptidyl-citrulline in a Ca2+ dependent manner, substituting 

an amine group on arginine residues with an oxygen group (Figure 1-9). As 

consequence of either reaction the protein loses its positive charge, which 

affects the intramolecular bonds and leads to conformational changes that alter 

the protein function and make it more susceptible to proteolytic degradation 

(Klareskog et al., 2008, Mydel et al., 2010).  

Table 1-5: Routes of citrulline biosynthesis 
 

Reaction Target Enzyme Products 

Deimination 
(Citrullination) Peptidyl-arginine PAD Peptidyl-citrulline + NH3 

Carbamylation 
(Homocitrullination) Peptidyl-lysine Non 

enzymatic Peptidyl-homocitrulline 

NO synthesis L-Arginine iNOS L-citrulline + NO 

Urea cycle L-Ornithine OTC L-citrulline + Pi 

Abbreviations: PAD, peptidylarginine deiminase; iNOS, inducible nitric oxide 
synthase; OTC, ornithine transcarbamylase 

There are five PAD isoforms (PAD1-4 and 6) described in humans (PAD5 is the 

human homolog of rodent PAD4). In vertebrates, PADs are a family of highly 

conserved enzymes, with high sequence homology within each PAD isotype and 

conserved exon structure. All five mammalian PADs are located in a single gene 

cluster in the chromosome region 1p36.1 (reviewed in Vossenaar et al., 2003), 

each one with specific tissue distribution and substrate targets (Table 1-6). 

Besides vertebrate eukaryotes and the unicellular parasite Giardia Lamblia, PAD 

is only found in P. gingivalis among prokaryotes. P. gingivalis PAD (PPAD) is not 

evolutionarily related to human PAD enzymes and differs from these in its 

calcium independent action (Goulas et al., 2015).  



Chapter 1 
 

 51 

Human PADs are endoproteases and hence preferably target internal arginine 

resides of proteins. Instead, P. gingivalis secreted PPAD is mostly exoprotease, 

which may citrullinate both bacterial and host proteins with preference for 

citrullination at C-terminal arginine residues, although it may also self-

citrullinate internal residues (Quirke et al., 2014). PPAD but not PADs, are able 

to convert free L-arginine into L-citrulline. However, the enzymatic activity of 

this periodontal pathogen during infection may increase the concentration of 

calcium in the medium, promoting the activity of host PADs and the 

citrullination of gingipains-digested host proteins. PPAD function is believed to 

be related to survival; the citrullination of certain cytokines and chemokines by 

PPAD is known to subvert the host immune response (Moelants et al., 2014) and 

the production of NH3 as by-product may increase the pH in the oral cavity 

favouring bacteria colonization (Marquis et al., 1987).  

The posttranslational modification of proteins is one of the strategies that 

biological systems use to regulate their own physiological processes. 

Citrullination is present in many aspects of the immune system, skin 

keratinization, central nervous system (CNS), gene expression and chemokine 

regulation in inflammation. Under physiological conditions PADs remain inactive 

unless stimulated with Ca2+, of which the cytosolic and nucleoplasmic 

concentration is usually about 100-fold too low for PAD activity (10-8 to 10-6 M), 

The calcium concentration rises during certain events such as apoptosis. Indeed, 

certain molecules involved in apoptosis are known targets for PAD enzymes (e.g. 

PAD2 and vimentin; PAD4 and histones, nucleophosmin or p53; PAD3 and AIF), 

(reviewed in Witalison and Thompson, 2015). PADs, in particular PAD1 and PAD3, 

also target structural proteins in cells undergoing terminal epidermal 

differentiation, which is a process mediated by calcium. Deiminated fillagrin, 

more susceptible to degradation, is fragmented into small units and works as 

scaffold where citrullinated keratin binds, forming a three-dimensional structure 

more resistant to damage (Senshu et al., 1996).  

PAD2 is mainly a cytoplasmic protein; however, it has been shown to bind 

chromatin in breast cancer cells and to citrullinate the histone 3 (H3), 

suggesting a possible role of this enzyme in gene regulation (Zhang et al., 2012, 

Cherrington et al., 2012). PAD4 has a nuclear localization signal (NLS) sequence 
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near the N-terminus and is the only PAD isoform that resides in the nucleus. 

PAD4 is mainly expressed in granulocytes and targets core histones (H2A, H3 and 

H4) among other proteins. The modification of H4 at R3 and H3 at R2, R8 and 

R17 (Wang et al., 2004), induces changes in the net charge and conformation of 

the histones, loosening of the nucleosome and promoting the decondensation of 

chromatin. PAD4 is known to be involved in the regulation of gene expression 

(e.g. p53 pathway); it can convert histone-methylated arginines into citrulline 

reversing the transcriptional activation of genes (Cuthbert et al., 2004), in 

particular the transcription of estrogen-regulated genes (Wang et al., 2004).  

The effects of PADs activity on immune-related pathways are complex and 

assorted. The cells of the hematopoietic lineage (especially monocytes and 

granulocytes) express both PAD4 and PAD2. However, mRNA of PAD2 and not 

PAD4 is found in macrophages indicating that the expression of PAD4 is lost 

during differentiation (Vossenaar et al., 2004). PAD4 hypercitrullination of 

histones is required for chromatin decondensation as a crucial step for NETs 

formation as described in Chapter 3 of the present thesis (Li et al., 2010), an 

important defence mechanism against infections, which might play a role in PD 

and has also been associated with non-microbial mediated human disorders such 

as RA (section 1.3). PAD2 is involved as well in the innate immune defence as it 

interacts with the inhibitor κB kinase and suppresses NF-κB activity, which is a 

key transcription factor in the immune response to infection (Lee et al., 2010). 

Human PAD2 and PAD4 also target chemokines (e.g. IL-8, CXCL5, CXCL10, 

CXCL11 or CXCL12), resulting in reduced binding to their respective chemokine 

receptors compared with the arginine-containing variants, and consequently 

inducing less potent responses (as reviewed by Moelants et al., 2012). 

 

 
 
 
 
 
 



Chapter 1 
 

 53 

Table 1-6: Human PAD enzymes  
 

 Main protein 
distribution Cell type Targets Nuclear 

localization 
Associated 
diseases 

PAD1 Epidermis and 
uterus Keratinocytes Filaggrin and  

keratin No Skin 
disorders 

PAD2 

CNS, spleen, 
skeletal 
muscle, 
secretory 
glands and 
leukocytes 

Macrophages 

MBP, vimentin, 
actin and 
histones (H3 
and H4) 

Yes 

AD, CJD, 
MS, EAE, 
Paget’s 
disease, 
RA 

PAD3 Epidermis and 
hair follicles Sheath cells 

Trichohyalin, 
vimentin, AIF 
and filaggrin 

No Skin 
disorders 

PAD4
/5 

Inflammatory 
cells 
(neutrophils, 
macrophages 
and monocytes) 
epithelial cells, 
mammary 
glands and 
tumours 

Granulocytes 
and monocytes 

Histones (H2A, 
H3 and H4), 
ING4, genes 
p300 and p21, 
nucleophosmin 
and nuclear 
lamin C 

Yes Cancer, 
MS, RA 

PAD6 Eggs, ovary and 
early embryo  

Oocytes and 
embryonic 
cells 

Unknown Yes RA 

Abbreviations: CNS, central nervous system; MBP, myelin basic protein; AIF, 
apoptosis-inducing factor; ING4, inhibitor of growth 4; AD, Alzheimer’s disease; 
CJD, Creutzfeld-Jakob disease; MS, multiple sclerosis; EAE, experimental auto-
immune encephalomyelitis; RA, rheumatoid arthritis (Witalison and Thompson, 
2015). 

The citrullination of proteins by PAD enzymes is a process regulated at three 

levels: transcription, translation and activation. There are several molecules 

involved in PAD regulation, including transcription factors (e.g. Sp1/Sp3, MZF1, 

NF-Y), hormones such as estrogen, vitamin D, dimethyl sulfoxide or retinoic 

acid. PAD activity can be also modulated by methylation of CpG islets, 

dimerization of the enzyme and auto-citrullination (Rodríguez et al., 2009). The 

inhibition of this family of enzymes has become a focus of interest for both 

academic and pharmaceutical industry due the present association between 

citrullination and autoimmune diseases. Most of the inhibitors developed to date 

target PAD4, foremost because it is widely expressed mainly in the 
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hematopoietic lineage. The greatest difficulty to date is to identify the 

contribution of each PAD isoform to human disease, and the need for potent 

specific inhibitors while preserving bioavailability. The strategies to impede PAD 

activity vary from blocking calcium transients or inactivating bound calcium, to 

down regulating mRNA expression.  

Paclitaxel and 2-chloroacetamidine were the first inhibitors used, although their 

main applications were for their anti-tumour effect, and as inhibitor of the 

DDAH enzyme respectively. The second generation of inhibitors were initially 

represented by F-amidine developed by (Luo et al., 2006), which irreversibly 

inhibits PAD4. Later, the same research group synthetized Cl-amidine, a more 

potent variant with a strong inhibitory effect against PAD4 and also against 

PAD1, PAD2 and PAD3 isoforms. Looking for greater specificity, o-F-amidine 

(PAD1), o-Cl-amidine (PAD1 and 4) and Thr-Asp-F-amidine (TFDA) (PAD4) were 

developed; all showed an enhanced potency, selectivity and bioavailability in 

comparison with their predecessors. However, drug development is in continuous 

evolution and recently new molecules have been found to be even more 

effective inhibiting PAD4 activity, BB-Cl-amidine and GSK484. Still, in vitro and 

in vivo uses of those molecules have proved it to lack target specificity (as they 

inhibit more that a single PAD isoform) and efficacy (since not all citrullination is 

abrogated by the addition of the inhibitor) (Lewis et al., 2015, Kawalkowska et 

al., 2016). The ENA® gapmers represent a different approach, following siRNA 

strategy for the modulation of gene expression.  

Lately, citrullination has gained research interest due to its potential pathogenic 

role in some of the most widespread human autoimmune conditions and 

tumorigenesis. The multifactorial nature of these diseases makes it difficult to 

accurately assess the degree of involvement of this posttranslational 

modification in their pathology, and the causes of PAD dysregulation. Psoriasis is 

linked to PAD1 dysregulation (Ishida-Yamamoto et al., 2000) and PAD2 and PAD4 

are the predominant isoforms involved in the abnormal citrullination occurring in 

neurological diseases such as Alzheimer’s, multiple sclerosis and prion disease 

(reviewed in Wang and Wang, 2013, Witalison and Thompson, 2015). PAD 

dysregulation is also associated with cancer; in particular, PAD4 mRNA and 

protein levels are increased in several malignant tumours, but maintain low level 
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of expression in normal and benign tissues (Chang and Fang, 2010). PAD4 

appears to target immunosuppressor genes such as p53, disrupts the cell cycle 

and blocks apoptosis, helping cancer cell reproduction. PAD2 and PAD4 are 

detected in synovial tissue of RA patients, which correlates with the intensity of 

inflammation (Foulquier et al., 2007). Moreover, neutrophils from RA patients 

demonstrate enhanced NETosis compared with healthy and osteoarthritis (OA) 

controls (Khandpur et al., 2013). PAD4-induced NETs are believed to be 

important defence mechanism against microbial infection. Therefore, further 

understanding of the protective and damaging roles of PADs in both infection 

and autoimmunity is required for maximising their therapeutic potential.  

1.4 Summary and aims 

The literature review has demonstrated that PAD4 is a broadly expressed 

enzyme with multiple physiological roles but also associated with disease, in 

particular inflammatory autoimmune disorders such as RA. Among other 

functions, PAD4 participates in the regulation of gene expression besides being 

crucial for the generation of NETs, that function as first line of defence against 

bacterial infections and therefore must play a role in PD pathogenesis, as 

bacterial insult is known to trigger PD disease onset. Evidence suggests an 

epidemiological and immunological link between PD and RA pathologies, in 

particular through citrullination and the production of ACPAs. The hypothesis 

being considered is that an inflamed environment - a consequence of microbial 

infection - would promote dysregulated PAD4 citrullination, perpetuating 

inflammation and the generation of new citrullinated self-epitopes that could 

trigger the production of autoantibodies and mediate tissue destruction. 

The overall aim of this PhD project was to characterize the role of PAD4 in PD 

and RA immunopathology. Specific objectives were as follows: 

§ Confirmation of NETs impairment in PADi4 knockout mice and assessment 

of the neutrophil responses to periodontal-associated oral biofilms 

(Chapter 3) 
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§ Study of the role of PAD4 in the initiation and progression of experimental 

PD (Chapter 4) 

§ Evaluation of PAD4 contribution to the development of experimental 

arthritis (EA), and study of the bidirectional effect of PD infection in a 

combined model of PD and EA (Chapter 5) 

§ Study of PAD4 contribution to cell-mediated inflammation (Chapter 6) 

 

 
Figure 1-10: Summary of PAD4 most relevant associations with disease 
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2.1 Animals 

C57BL/6 mice and B6.FVB-Tg (Ella-cre) mice were obtained from Harlan 

(Bicester, UK); PADi4 floxed mice were a kind gift from Dr Kerri Mowen (The 

Scripps Research Institute, La Jolla, CA, US); PADi4 knockout (KO) mice were 

generated as described below at the Joint Research Facility (JRF) (University of 

Glasgow, UK). C57BL/6 ‘OT-II’ mice with TCR transgenic T cells which recognise 

OVA323-339-MHCII (Barnden et al., 1998) and C57BL/6 ‘TEa’ mice with transgenic T 

cells which recognize Eα52–68-MHCII complex (Grubin et al., 1997) were bred at 

the Central Research Facility (CRF) of the University of Glasgow (Glasgow, UK).  

All mice were maintained either at the CRF or JRF (University of Glasgow, UK) 

on a 12 h light-dark cycle and water and food ad libitum. The ‘TEa’ mice were 

kept in individual ventilated cages (IVCs) as being rag-/- makes them more 

susceptible to infections. Mice over 5 weeks old were used in all experiments 

and males or females were chosen according to the type of experiment. All 

procedures were performed according to local and UK Home Office regulations 

(project licence 708166; personal license I8FD86E1D, Biological Services, 

University of Glasgow). Details of experiment methods are provided in relevant 

sections below.  

2.1.1 Generation of PAD4 deficient mice 

PAD4 deficient mice generation was based on the Cre-loxP recombination system 

(Friedel et al., 2011). PADi4 floxed mice were a kind gift from Dr Mowen’s group 

at The Scripps Research Institute (La Jolla, CA) and were generated as previously 

described in Hemmers et al., 2011. The LoxP sites were introduced into the 

introns flanking the exons 9 and 10 of the PADi4 gene, that are essential for the 

activity of the enzyme. Dr John Butcher carried out the generation of PADi4 KO 

mice by crossing PADi4 floxed mice with mice with a ubiquitous Cre gene 

expression (B6.FVB-Tg (Ella-cre)). The heterozygous individuals (PADi4flox/-) from 

the F1 generation were self-crossed to obtain PADi4-/- individuals in the F2 

generation. The resultant PADi4-/- mice still had Cre alleles, so in order avoid 

possible adverse effects of the Cre gene in the PADi4 KO individuals (Garcia-

Arocena, 2013), PADi4-/- mice were backcrossed with the F1 generation 
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(PADi4flox/- Cre+/-) to obtain PADi4-/- Cre-/- mice (Figure 2-1). These animals are 

referred to as ‘PADi4 KO’ or ‘KO’ in text and figure legends.  

 
Figure 2-1: Breeding strategy in PADi4 KO generation. 
Breading scheme of PADi4 KO mice from the parental generation (F0), comprised 
by PADi4 floxed and B6.FVB-Tg (Ella-cre) mice. The heterozygous individuals of 
the F1 generation (PADi4flox/- Cre+/-) where self-crossed to obtain PADi4-/- mice in 
the F2 generation. The individuals in green open squares were selected as 
breeders of the following generation. To delete the Cre gene in the PADi4-/- 
lineage, the selected individuals of the F2 generation were backcrossed with the 
F1 generation. The individuals in a blue open square were selected as progenitors 
of the PADi4 KO lineage. 

2.2 Reagents 

Sterile de-ionised water was obtained with Milli-Q® Direct 8 Water Purification 

System from Merck Millipore (Hertfordshire, UK). Antibodies for flow cytometry 

were obtained from eBioscience (Hatfield, UK) and BD Biosciences (Oxford, UK). 

Pipette tips and 0.2 ml PCR tubes were obtained from Starlab (Milton Keynes, 

UK). Minisart® syringe filters were obtained from Sartorius Stedim Biotech 

(Göttingen, Germany). Insulin Myjector U-100 needles were acquired from 
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Terumo Medical Corporation (Scotland, UK), 25G needles from BD Biosciences 

and 26G needles from Henke Sass Wolf (Tuttlingen, Deutschland). SureBlue 

Reserve™ TMB Microwell Peroxidase Substrate was obtained from KPL (Maryland, 

USA). All other chemicals and disposable plastic lab equipment were obtained 

from Sigma-Aldrich (Dorset, UK) and all cell culture media and supplements from 

Thermo Fisher Scientific (Paisley, UK) unless otherwise indicated. 

2.3 Preparation of cells for cell separation, tissue culture 
and flow cytometry 

2.3.1 Cell counts 

All cell counts were performed using a haemocytometer (Neubauer improved, 

Marienfeld-Superior, Germany) and BH-2 light microscope (Olympus, UK). Dead 

cells were excluded on the basis of trypan blue staining. The Neubauer chamber 

was prepared by loading 10 µl of the cell suspension diluted 1:2 with 0.4% v/v 

trypan blue solution in PBS. The total cell number was obtained counting the 

cells in 5 squares of the chamber grid discarding the cells in contact with two 

sides of the square (Figure 2-2) and applying the following equation: 

𝑇𝑜𝑡𝑎𝑙 𝑐𝑒𝑙𝑙 𝑐𝑜𝑢𝑛𝑡 = 𝑐𝑜𝑢𝑛𝑡 𝑖𝑛 5 𝑠𝑞𝑢𝑎𝑟𝑒𝑠 × 5 × 𝑑𝑖𝑙𝑢𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟 ×10! × 𝑣𝑜𝑙𝑢𝑚e 

 
Figure 2-2: Counting live cells using a Neubauer chamber 
To perform cell counts with a Neubauer chamber the cell suspension was diluted 
1:2 with 0.4% v/v trypan blue solution in PBS, and 10 µl loaded onto the chamber 
grid covered with a glass coverslip. Dead cells were excluded on the basis of 
trypan blue staining. Cells were counted in 5 squares and the sum was multiplied 
by 5 to extrapolate to a total of 25 squares, by 2 as dilution factor, by 104 as 
volume admitted by the chamber, and by the total volume of the cell suspension. 
Only the cells inside the square and in contact with two sides of the square were 
considered (open circles) excluding the rest (closed circles). 
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2.3.2 Generating a cell suspension from murine lymph nodes and 
spleens 

Mice were sacrificed either by exposure to rising concentrations of carbon 

dioxide, in some cases followed by exsanguination, and in all cases followed by 

neck dislocation. Lymph nodes (LN) and spleens were removed and placed in 4 

ml of complete media (RPMI-1640 supplemented with 2 mM L-glutamine, 100 

U/ml penicillin, 100 µg/ml streptomycin and 10% v/v heat-inactivated fetal calf 

serum (HI-FCS)) and kept on ice. Single cell suspensions were prepared by 

passing the tissues through a cell strainer with a mesh size of 40 µm using a 5 ml 

syringe plunger, then the cell suspension was transferred to 15 ml conical tubes 

and cells were pelleted by centrifugation at 400xg for 5 min at 4°C. Splenocytes 

were resuspended in 1 ml of red blood cell (RBC) lysis buffer containing 

ammonium chloride (eBioscience) per spleen and incubated for 5 min at RT. 

After incubation cells were washed with 10 ml of PBS and centrifuged as before, 

and then resuspended in complete media to determine the total cell number as 

described in section 2.3.1. Cells were pelleted by centrifugation as before and 

then resuspended in complete media at the desired concentration.  

2.3.3 Generating a cell suspension from whole murine paws 

This method was adapted by Dr Robert Benson from Armaka et al., 2009. BL/6 

mice were sacrificed by exposure to rising concentrations of carbon dioxide 

followed by neck dislocation. The hind legs were cleanly removed and the knee 

dislocated to remove the femur, then placed in a bijou with 3 ml of buffer (HBSS 

with 100 U penicillin and 100 µg/ml streptomycin). The skin and tissue were 

carefully removed from around the tibia, and then the tibia and tissues placed in 

a 6 well plate filled with 1.8 ml of buffer (Figure 2-3A). The tibia was separated 

and all the remaining joints dislocated, then the interstitial tissues teased apart 

using forceps (Figure 2-3B).  
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Figure 2-3: Leg preparation for cell extraction 
A cell suspension was generated from the hind legs collected from BL/6 mice over 
6 weeks of age. (A) The femur, the skin and the tissue around the tibia was cleanly 
removed. (B) The joints were dislocated and the interstitial tissues teased apart to 
facilitate the enzymatic digestion. 

Two hundred µl of sterile Collagenase D 10X from Clostridium histolyticum (2.5g 

collagenase in 93.25 ml RPMI-1640) was added to each processed limb and 

incubated at 37°C for 20 min. After incubation, 2 ml of complete media was 

added to each digestion and samples were transfer to a gentleMACs C-tube 

(Miltenyi Biotec, Surrey, UK) and homogenized with a Dispomix Drive Unit (Medic 

Tools, Switzerland) at 3000xrpm for 15 sec, repeated twice. Ten ml of complete 

media was added to the homogenized sample and transferred to a 50 ml conical 

tube through a 40 µm cell strainer to remove the bones and debris. Cells were 

pelleted by centrifugation at 400xg for 5 min at 4°C, counted and resuspended 

in complete media at the desired concentration.  

2.3.4 Isolation of murine T helper cells from lymphatic tissues 

A cell suspension was prepared as in section 2.3.2 and centrifuged at 380xg for 5 

min at 4°C. CD4+ T mouse cells were negatively selected using an cocktail of 

biotin-conjugated monoclonal antibodies against CD8a, CD11b, CD11c, CD19, 

CD45R (B220), CD49b (DX5), CD105, anti-MHC Class II, Ter-119, and TCRγ/δ cell 

markers (Miltenyi Biotec). Cells were resuspended in 40 µl of MACS buffer (PBS 

supplemented with 2% v/v HI-FCS and 2mM EDTA) plus 10 µl of biotin-antibody 

cocktail per 107 total cells, and were incubated for 5 min at 4°C. After 

incubation, 30 µl of MACS buffer and 20 µl of anti-biotin MicroBeads were added 

per 107 total cells and incubated for 10 min at 4°C. Cells were then ready for 

the magnetic purification with a MidiMACS™ Separator (Miltenyi Biotec).  

A B
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A LS column (Miltenyi Biotec) was prepared per sample by adding 3 ml of MACS 

buffer and the flow-through was discarded. The cell suspension was then applied 

onto the column and then rinsed with 3 ml of MACS buffer. The flow-through 

containing unlabelled cells representing the CD4+ enriched T cells, was collected 

in a fresh 15 ml conical tube. 

Cells were counted and resuspended in complete media at the desired 

concentration. A fraction of cells was analysed by flow cytometry (FACS) to 

assess the percentage of T helper cells post-purification as CD4+ cells. On 

average after purification 99% of the single cells within the cell gate were CD4+ 

by FACS analysis (Figure 2-4). 

 
Figure 2-4: Confirmation of CD4+ cells purification by flow cytometry 
Lymph nodes were collected from untreated BL/6 mice over 6 weeks of age. CD4+ 
T cells were purified as described in section 2.3.3. Purification was confirmed by 
flow cytometry to assess the percentage of viable T helper (Th) cells. Data shown 
are mean with SEM of 4 independent experiments (1-2 mice per group per 
experiment, total of 4-8 mice per group across all experiments). (A) 
Representative flow cytometry gate strategy followed to identify Th cells as CD4+ 
cells of the total live single cells population. (B) Percentage of CD4+ cells of the 
total live cells pre- and post-purification.  
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2.3.5 Mouse bone marrow extraction  

Mice were sacrificed by exposure to rising concentrations of carbon dioxide 

followed by neck dislocation. The hind legs were cleanly removed and the tibias 

and femurs placed in a bijou with 4 ml of RPMI-1640. The bones were cut off 

below the joint to expose the marrow and RPMI-1640 was flushed through the 

bone with a 25G needle and a syringe. The marrow was collected into a 50 ml 

conical tube and then passed through a cell strainer into a fresh tube to remove 

debris.  

2.3.6 Isolation and culture of bone marrow derived murine 
dendritic cells (BMDCs) 

A cell suspension from bone marrow was obtained as described in section 2.3.5 

and cell counted as in section 2.3.1. Cells were resuspended at 2x106 cells/ml in 

DCs media (RPMI-1640 supplemented with 2 mM L-glutamine, 100 U/ml 

penicillin, 100 µg/ml streptomycin, 10% v/v HI-FCS and 5% v/v of X63 

supernatant containing mouse granulocyte–macrophage colony-stimulating factor 

GM-CSF). This supernatant, obtained from X63 myeloma cells transfected with 

GM-CSF cDNA, was batch tested to verify differentiation of DCs (Lutz et al., 

1999). 

Bone marrow derived cells were cultured in 6-well plates with 2x106 cells/well 

in a final volume of 3 ml, at 37°C and 5% CO2. After 3 days, 2 ml of fresh DCs 

media pre-warmed to 37°C was added to the cell cultures, and on day 5 all 

media was carefully removed and replaced with 5 ml of fresh DCs media. On day 

6, DCs were harvested using cell scrapers to help remove the cells attached to 

the bottom of the wells and transferred to 50 ml conical tubes. Cells were 

counted as described in section 2.3.1 and pelleted by centrifugation at 400xg for 

5 min at 4°C and resuspended at 1x106/ml in complete media. Cells were then 

transferred to a 96-well plate with 1x105 cells/well in a final volume of 100 µl 

and left to rest overnight at 37°C and 5% CO2. 

Differentiation into DCs was confirmed on day 6 by flow cytometry, staining for 

CD11c, MHC II, CD80 and CD86. On average 70% of the cells in culture were 

CD11c+ of which 68% co-expressed MHC II (Figure 2-5). 
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 Figure 2-5: Confirmation of bone marrow derived dendritic cells 
differentiation on day 6 by flow cytometry 
Bone marrow cells from untreated BL/6 mice over 6 weeks of age were cultured 
with GM-CSF for 6 days and their differentiation into bone marrow DCs (BMDCs) 
was confirmed by flow cytometry. Data shown are mean with SEM of 8 
independent experiments (1 mouse per experiment). (A) Representative flow 
cytometry gate strategy followed to identify dendritic cells as CD11c+ MHC II+ cells 
of the total live single cells population. (B) Percentage of CD11c+ cells of total live 
single cells, MHC II+ cells of CD11c+ live single cells, and live single cells co-
expressing CD11c and MHC II after 6 days of cell culture with GM-CSF. 
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2.3.7 Isolation of bone marrow derived murine neutrophils 

A bone marrow cell suspension was obtained as described in section 2.3.5. 

Murine neutrophils were negatively selected using a premade cocktail of biotin-

conjugated monoclonal antibodies against antigens that are not expressed on 

neutrophil granulocytes (the manufacturer does not specify the antigens; 

Miltenyi Biotec). Cells were pelleted at 300xg for 10 min at 20°C and 

resuspended in 200 µl of MACS buffer plus 50 µl of biotin-antibody cocktail per 

5x107 total cells, and were incubated for 10 min at 4°C. After incubation cells 

were washed with 10 ml of MACS buffer per 5x107 cells and centrifuged as 

before. Cells were resuspended in 400 µl of MACS buffer and 100 µl of anti-biotin 

MicroBeads per 5x107 total cells, and incubated for 15 min at 4°C. Cells were 

then washed again with 10 ml of MACS buffer per 5x107 cells, centrifuged as 

before and resuspended up to 1x108 cells in 500 µl of MACS buffer to proceed to 

magnetic purification with a MidiMACS™ Separator.  

A LS column was prepared per sample by adding 3 ml of MACS buffer and the 

flow-through was discarded. The cell suspension was then applied onto the 

column then rinsed with 9 ml of MACS buffer. The neutrophil enriched flow-

through was collected in a fresh 15 ml conical tube. 

Total cell counts were determined as described in section 2.3.1 and cells were 

resuspended in NETs media (RPMI-1640, supplemented with 2 mM L-glutamine, 

100 U/ml penicillin, 100 µg/ml streptomycin and 2% v/v HI-FCS) at the desired 

concentration. A fraction of cells was analysed by flow cytometry to assess the 

percentage of viable neutrophils after purification, staining for Ly6G (GR-1) and 

CD11b. On average, after purification 97% of the cells were CD11b+ Ly6G (GR-1)+ 

by FACS analysis (Figure 2-6). 
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Figure 2-6: Confirmation of neutrophils purification by flow cytometry 
Bone marrow was harvested from untreated BL/6 mice over 6 weeks of age and 
neutrophils purified. The percentage of viable neutrophils was confirmed by flow 
cytometry after purification. Data shown are mean with SEM of 8 independent 
experiments (1 mouse per experiment). (A) Representative flow cytometry gate 
strategy followed to identify neutrophils as CD11b+ Ly6G (GR-1)+ double positive 
cells of the total live single cells population. (B) Percentage of cells identified as 
viable neutrophils after purification. 

2.3.8 Isolation of Peritoneal Exudate Cells (PEC) 

Brewer thioglycollate media was prepared according to the manufacturer’s 

instructions; 40.5 g of media were added to 1 l of sterile de-ionised water and 

boiled to dissolve it completely, and then aliquoted, autoclaved and stored in 

the dark at room temperature until use. 

PADi4 floxed (WT) and PADi4 KO mice received 1 ml of sterile thioglycollate 

media via i.p. injection and 4 h or 16 h later mice were sacrificed by exposure to 

rising concentrations of carbon dioxide followed by neck dislocation. Cells were 

harvested by peritoneal lavage (Liu, 2011, Ray and Dittel, 2010); a ventral 

midline incision was made with scissors and the abdominal skin was retracted 
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exposing the intact peritoneal wall. The wash fluid (10 ml ice cold PBS with 2% 

v/v HI-FCS) was injected with a 26 G needle and syringe, and the abdomen was 

gently massaged. The fluid was recovered with a 25 G needle and syringe and 

transferred to 50 ml conical tubes. Total cell counts were determined as in 

section 2.3.1, and the cells were then centrifuged at 300xg for 10 min at 20°C 

prior to magnetic labelling and neutrophil purification as described in section 

2.3.7. When cells were collected just 4 h after thioglycollate injection, no 

purification was carried out and the whole PEC population was resuspended in 

NETs media at the desired concentration. In every case, a fraction of cells was 

analysed by flow cytometry to assess the percentage of neutrophils present in 

the peritoneal exudate by staining for CD11b and Ly6G (GR-1) as shown in Figure 

2-7. 
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Figure 2-7: Identification of neutrophils in the peritoneal exudate by flow 
cytometry 
Untreated BL/6 mice over 6 weeks of age received 1 ml of sterile thioglycollate 
media via i.p. injection. The peritoneal exudate cells (PEC) were collected 4 h and 
16 h post-injection and the percentage of neutrophils in the PEC assessed by flow 
cytometry. Neutrophils were identified as CD11b+ Ly6G (GR-1)+ double positive 
cells of the total cells population. (A) Percentage of neutrophils in whole PEC 16 h 
post-injection and in the neutrophil enriched fraction after magnetic purification 
with the Miltenyi system; (B) percentage of neutrophils 4 h post-injection in whole 
PEC; (C) Percentage of neutrophils identified in the whole PEC 4 h and 16 h after 
i.p. injection. Data shown are mean with SEM of 2 independent experiments (2 
mice per experiment). 
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2.4 In vivo models 

2.4.1 Murine model of periodontitis (PD) 

The method for the induction of experimental periodontitis in murine models 

was adapted from Baker et al., 1994. P. gingivalis W83 was cultured as 

described in section 2.9.1 and prepared for infections as in section 2.9.2. PADi4 

KO and either PADi4 floxed or wild type BL/6 control female mice aged 6-8 

weeks were given antibiotics (0.08% sulfamethoxazole and 0.016% trimethoprim) 

in the drinking water ad libitum for 10 days and then plain water for 2 days. The 

antibiotic treatment reduced the commensal bacteria and created a niche for 

colonization of the oral cavity by P. gingivalis. Experimental groups were 

defined as shown in Table 2-1. Periodontitis was induced in half of the groups by 

infecting them orally with approximately 109 colony-forming unit (CFU) of         

P. gingivalis W83 in 75 µl 2% w/v carboxymethyl cellulose (CMC) vehicle. The 

bacteria were delivered into the oral cavity by gavage using pipette tips, on 4-5 

occasions within a week. Control mice received an equal volume of 2% w/v CMC 

delivered to the oral cavity on the same days.  

At 3 weeks post-infection no more than 100 µl of blood was withdrawn by tail tip 

excision for the assessment of antibody levels in serum. At 6 weeks post-

infection animals were terminally anaesthetised by inhalation of isoflurane in O2 

and euthanized by exsanguination by cardiac puncture followed by cervical 

dislocation. Blood was stored for later serum analysis; the maxillae were 

dissected away from the skull and kept for bone loss assessment; the cervical 

lymph nodes and the spleen were removed for analysis by flow cytometry and in 

vitro assessment of T cell proliferation in response to P. gingivalis. The 

experiment is summarized in Figure 2-8. 
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Figure 2-8: Timeline of the murine model of periodontitis 
The commensal flora was depleted with ten days of antibiotic treatment in drinking 
water followed by 2 days without antibiotics, and then oral infections with 109       
P. gingivalis W83 CFU on 5 different days. First day of infections is represented as 
day 0 in the figure above. In some experiments, a blood sample was collected at 3 
weeks post-infection by tail tip excision. The immune response and clinical 
disease were evaluated at the end point 6 weeks post-infection. 

Table 2-1: Experimental groups in the murine model of periodontitis 
 

 
 

2.4.1.1 Assessment of alveolar bone loss in mice 

The alveolar bone loss (ABL) was evaluated 6 weeks after the mice were sham-

infected with CMC or with P. gingivalis W83. The method to dissect the teeth 

from the maxillae was adapted by Dr Jennifer Malcolm from a published protocol 

(Mizraji et al., 2013). BL/6 mice were euthanized and then the oral cavity 

opened by cutting both cheeks with scissors and pulling the mandible down. The 

maxillae were cut away making incisions with a scalpel blade around the gingival 

tissue as shown in Figure 2-9. The gingiva was stripped away using forceps 

exposing the maxillary molars. The left and right sides of the jaw were 

separated and placed into a 24 well plate immersed in 1 ml of PBS. 
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G1  WT sham control C57BL/6 - PADi4 floxed ✔ CMC 
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G3  KO sham control PADi4 KO ✔ CMC 

G4  KO PD PADi4 KO ✔ P. gingivalis W83 
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Figure 2-9: Schematic view of mouse oral cavity  
A schematic representation of the inside of the murine oral cavity from (Mizraji et 
al., 2013). The cartoon indicates the incisions made to dissect the maxillae teeth 
(MM = masseter muscle, HP = hard palate, SP = soft palate, G= gingiva). Incisions 
with a scalpel blade were made along the blue and green lines to remove the hard 
palate from the oral cavity. Gingiva tissue was peeled off using forceps to expose 
the maxillae molars. 

The remaining tissue was removed from the bone by enzymatic digestion. 

Maxillae were incubated with 0.5 ml of 4 mg/ml collagenase IV (from 

Clostridium histolyticum), 100 U/µl DNAse I (Invitrogen, CA, USA) and 2 mg/ml 

hyaluronidase (from bovine testes) for 30 min at 37°C with gentle agitation 

(≈100 rpm). The enzymatic reaction was stopped adding 1 ml of complete 

media. The teeth were washed with distilled water and then immersed in 3% v/v 

H2O2 for 24 h at 4°C. The teeth were then washed as before and fixed with 4% 

w/v PFA overnight at 4°C. The teeth were washed again as before and stained 

with 0.5% v/v methylene blue at RT for 30 min. After staining, the teeth were 

washed as before and air-dried at RT prior to imaging.  

Measurements of alveolar bone loss were made using either a dissection 

microscope or by micro-computed-tomography (micro-CT) as described further 

below. Teeth were randomized before analysis and the mean ABL was calculated 

for each mouse. The mean value of the ABL for the whole sham-infected group 

was subtracted from the mean ABL of each individual mouse in all groups, 

including the sham-infected group itself, in order to normalise the data. The 

mean ABL of the sham-infected group was consequently 0 mm and the SEM of 

the sham-infected group was determined from the deviation of normalised 

measurements of individual sham-infected mice from 0 mm. 



Chapter 2 
 

 73 

Dissection	microscope	

Images were captured at 3.2x magnification (zoom ratio) using a SZX7 dissection 

microscope fitted with a SC100 camera (Olympus). Maxillae were orientated for 

measurements by aligning the buccal and palatal tips of the middle cusp of the 

first (largest) molar. Measurements of the distance between the cemento-

enamel junction (CEJ) and the alveolar bone crest (ABC) were made in images 

with cellSense software (Olympus). The ABL was measured on the palatal side of 

the teeth at 12 points on the left side and the right side of the jaw, generating a 

total of 24 measurements for each mouse (Figure 2-10).  

 
Figure 2-10: Assessment of alveolar bone loss in mice using a dissection 
microscope  
The maxillary teeth and supporting alveolar bone were processed as described in 
the section 2.4.1.1. Images were captured with a SZX7 dissection microscope 
fitted with a SC100 camera (Olympus). To assess the alveolar bone loss (ABL) in 
mice, measurements of the vertical distance between the cement-enamel junction 
(CEJ) and the alveolar bone crest (ABC) were made on the image at 12 points 
across the palatal side of the teeth with the senseCell software (Olympus). A) The 
CEJ is highlighted in yellow, the ABC is highlighted in red, and the 12 
measurements are represented as vertical white dotted lines. B) The 
measurements only are represented as white dotted vertical lines comprised 
between the CEJ and the ABC. 
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Micro-computed-tomography	(micro-CT)	

In some cases, the ABL was measured by Dr Annelie Hellvard and Brith Bergum 

(Broegelmann Research Laboratory, University of Bergen, Norway) using X-ray 

micro-CT with OsiriX software (Pixmeo, Switzerland). This method involved 

measuring the distance between the cemento-enamel junction (CEJ) and the 

alveolar bone crest (ABC) on the mesial and distal sides of the second molar, on 

the left and the right sides of the jaw Figure 2-11B. This measurement was 

guided by a reference line, which indicated the plane of the ABC (Figure 2-11A).  

 
Figure 2-11: Assessment of alveolar bone loss in mice by micro-CT  
A) The roots of the 3 molars were aligned and the orange line indicates where a 
cross-section was visualized. B) On a cross-sectional image of the 3 molars, the 
distance between the CEJ (junction between the white enamel and the grey 
cementum) and the ABC was measured either side of the second molar. The 
vertical green lines represent this distance. Perpendicular to these measurements 
are guidelines, also green, which rest on the plane of the ABC. In some cases, the 
angle of these guidelines was somewhat arbitrary due to the degree of bone 
erosion. 
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2.4.2 Murine model of combined periodontitis and experimental 
arthritis (PD-EA) 

PD was induced as described in section 2.4.1. On day 12 post-infection, a model 

of experimental early arthritis (EA) (Maffia et al., 2004) was induced as 

previously described. To induce EA, CD4+ ovalbumin (OVA) specific transgenic 

cells from OT-II mice were polarised into a Th1 phenotype as described in 

section 2.5.1. On day 15 post-infection, OT-II Th1 cells (identified by flow 

cytometry as CD4+ CD45.1+ Vα2+Vβ5+ cells producing IFN-γ+) were adoptively 

transferred to C57BL/6 wild type (WT) and PADi4 KO mouse recipients (Table 

2-2). Each mouse received intravenously (IV) approximately 3x106 OT-II T cells in 

100 µl of incomplete media (RPMI-1640, supplemented with 2 mM L-glutamine, 

100 U/ml penicillin and 100 µg/ml streptomycin), of which 90% were IFN-γ 

producer cells (2.7x106 Th1 cells). Twenty-four hours later, all animals were 

immunized s.c. into the scruff with 100 µl of complete Freund’s adjuvant (CFA) 

containing 100 µg of OVA. The OVA-CFA emulsion was prepared as described 

further below.  

To induce an immune mediated arthritis, 10 days after immunization the 

recipient mice were challenged in the right hind paw, s.c. proximal to the ankle 

joint, with 50 µl of PBS containing of 100 µg of heat-aggregated ovalbumin (HAO) 

and 25 µg of lipopolysaccharide (LPS from Escherichia coli O111.B4). Control 

groups received PBS alone. The HAO solution was prepared as described further 

below. The mice were monitored daily for signs of arthritis and were scored 

according to Table 2-3. Paw thickness was measured immediately before 

injection and every 24 h, using a dial calliper (Kroeplin GmbH, Germany). The 

thickness of the control contralateral footpad was subtracted to calculate the 

increment in footpad thickness (Δfootpad). To evaluate the differences in 

footpad swelling between experimental groups we analysed the area under the 

curve (AUC) with GraphPad Prism® 6 software. The AUC is an integrated 

measurement of an accumulative effect based on the trapezoid rule (Figure 

2-12). An AUC value was obtained for each individual mouse footpad-swelling 

curve and average AUC value was calculated for each group. 
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Figure 2-12: Calculation of the area under the curve with GraphPad Prism® 6 
software  
A curve was generated for each mouse representing the increment in the right 
footpad thickness (Δfootpad) during the 14 days after the HAO challenge. The 
area under the curve (AUC) (shaded grey area) was calculated for each curve 
setting a horizontal baseline at y = 0. Prism® software computes the area under 
the curve using the trapezoid rule, transforming the trapezoid area comprised 
between two XY points into a rectangle, the area of which can be calculated as  
ΔX (Y1+Y2)/2. The sum of all the areas of rectangles conforming the curve is the 
AUC. 

Fourteen days post-challenge with HAO, mice were terminally anaesthetised by 

inhalation of isoflurane in O2 and euthanized by exsanguination and cervical 

dislocation. Blood was withdrawn by cardiac puncture for later assessment of 

antibody responses in serum; the maxillary teeth were kept for bone loss 

evaluation and the popliteal and inguinal lymph nodes for in vitro assessment of 

T cell proliferation in presence of OVA antigen. Both paws (challenged and 

control) were kept in formalin and later processed for paraffin sections stained 

with hematoxylin and eosin stain (H&E), performed by the MVLS Diagnostic 

Services at the School of veterinary medicine (University of Glasgow, UK). The 

experiment is summarised in Figure 2-13. 
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Figure 2-13: Timeline of the murine model of combined periodontitis and 
experimental arthritis (PD-EA) 
A combined model of PD-EA was induced in PAD4 deficient mice (PADi4 KO) and 
C57BL/6 control mice (WT). The commensal flora was depleted with ten days of 
antibiotic treatment followed by oral infections with 109 CFU P. gingivalis W83 on 4 
different days. On day 15 post-infection, Th1 polarised cells with a transgenic TCR 
specific for ovalbumin OVA were adoptively transferred i.v. and animals 
immunized with OVA in CFA 24 h later. The right hind footpad was challenged s.c. 
with heat-aggregated OVA (HAO) plus LPS or PBS as sham-control 10 days after 
immunisation, to induce an immune mediated arthritis. Footpad swelling was 
measured with dial callipers and a clinical score assigned. Antibody responses 
were assessed in serum and the T cell response to OVA antigen evaluated in vitro 
at the experiment end point. 

Table 2-2: Experimental groups in the murine model of combined PD-EA 
 

 

 
 
 
 
 

Oral infections  
P. gingivalis 

Day -12  

Antibiotic treatment 
(to reduce commensals) 

15    16       

CFA/OVA 
sc C57BL/6  

WT  
PADi4 
 KO 

Initiate arthritis with 
adoptive transfer of 
Th1 OT-II CD4 cells iv 

Induce arthritis 
with HAO-LPS  

footpad challenge  

Measure swelling & clinical 
score daily  

Experimental Arthritis  
 

P. gingivalis induced Periodontitis 

-2   0    1    2   3 

10 days       

26       40       

14 days       

END 

12      

OT-II Th1 
polarisation 

n = 5 / group Mice 
strain 

Antibiotics Oral treatment OT-II Th1 
transfer 

OVA/
CFA 

Footpad 
challenge 

G1   WT sham control C57BL/6  ✔ CMC ✔ ✔ PBS 

G2   WT EA C57BL/6  ✔ CMC ✔ ✔ HAO 

G3   WT PD C57BL/6  ✔ P. gingivalis W83 ✔ ✔ PBS 

G4   WT PD-EA C57BL/6  ✔ P. gingivalis W83 ✔ ✔ HAO 

G5   KO sham control PADi4 KO ✔ CMC ✔ ✔ PBS 

G6   KO EA PADi4 KO ✔ CMC ✔ ✔ HAO 

G7   KO PD PADi4 KO ✔ P. gingivalis W83 ✔ ✔ PBS 

G8   KO PD-EA PADi4 KO ✔ P. gingivalis W83 ✔ ✔ HAO 
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Table 2-3: Clinical scoring system of arthritis 
 

 

Preparation	of	OVA-CFA	emulsion	

An emulsion of OVA-CFA was prepared just before use. A sterile solution of 2 

mg/ml of ovalbumin in PBS was combined with the same volume of agitated 

complete Freund’s adjuvant (CFA), giving a final concentration of OVA protein of 

1 mg/ml. Three ml of the heterogeneous mixture OVA-CFA were placed in a 

bijou with a 1 ml syringe embedded in the lid, and to generate and an emulsion 

it was aspirated and expulsed repeatedly until becoming white and viscous.  

Preparation	of	HAO	

Ovalbumin (from chicken egg white) was diluted in PBS at 20 mg/ml and 

incubated at 100°C for 2 h in 1.5 ml centrifuge tubes containing 200 µl of OVA 

solution each. After incubation tubes were centrifuged at 400xg for 5 min and 

washed once with 0.5 ml of sterile PBS. Tubes were centrifuged again as before 

and the supernatant was aspirated completely before resuspending in 200 µl of 

PBS. HAO aliquots were stored at -20°C until use. 

2.4.3 λ-carrageenan murine model of acute inflammation 

A λ-carrageenan murine model of acute inflammation (Henriques et al., 1987, 

Necas and Bartosikova, 2013) was induced in PADi4 KO and BL/6 control (WT) 

mice aged 5-6 weeks old. A solution of 0.6% w/v λ-carrageenan in PBS was 

prepared immediately before injections. All animals were anaesthetised by 

inhalation of isoflurane in O2, and 50 µl containing 300 µg of λ-carrageenan were 

injected s.c. using an insulin syringe into the plantar region of the right hind 

paw. The experimental groups are detailed in Table 2-4. 

Each limb scored 0-4 

Score 0 : No sign of inflammation, normal 

Score 1 : Mild swelling and/or erythema 

Score 2 : Moderate swelling and erythema 

Score 3 : Severe swelling extended to the ankle and erythema  

Score 4 :  Maximally inflamed limb with involvement of multiple joints 
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The footpad thickness of the injected and the contralateral control paws was 

measured hourly from 0 to 6 h and then every 24 h up to 6 days, using a dial 

calliper. The thickness of the control contralateral footpad was subtracted to 

give a Δfootpad. Mice were euthanized 6 days post-injection by exposure to 

rising concentrations of carbon dioxide followed by neck dislocation. The 

experiment is summarized in Figure 2-14. 

 
Figure 2-14: Timeline of the λ-carrageenan murine model of acute 
inflammation 
Paw oedema was induced in PADi4 KO and BL/6 control (WT) mice right hind paw 
with a subcutaneous injection containing 300 µg of λ-carrageenan dissolved in 50 
µl of PBS to cause oedema. Footpad swelling was measured hourly up to 6 h and 
then daily up to 6 days. Samples were collected at end point. 

Table 2-4: Experimental groups in the λ-carrageenan murine model of acute 
inflammation 
 

 
 

2.4.4 Murine model of Delayed Type Hypersensitivity (DTH) 

A DTH model with ovalbumin (OVA) as target antigen was performed in male and 

female PAD4 deficient (PADi4 KO) and PADi4 floxed (WT) mice of 5-8 weeks old. 

Experimental groups are detailed in Table 2-5. All animals were immunized s.c. 

with 100 µl of complete Freund’s adjuvant (CFA) containing 100 µg of OVA. The 

OVA-CFA emulsion was prepared as described in section 2.4.2. To induce a DTH 

response, eighteen days after immunization mice were challenged s.c. in the 

right hind paw proximal to the ankle joint, with 50 µl of PBS containing of 100 µg 

Day 0  

λ-carrageenan  
sc 

BL/6  
WT  

PADi4 
 KO Measure footpad 

swelling 
6       

END 

n = 5 / group Mice strain λ-carrageenan 

G1  WT Male C57BL/6 - PADi4 floxed ✔ 

G2  WT Female C57BL/6 - PADi4 floxed ✔ 

G3  KO Male PADi4 KO ✔ 

G4  KO Female PADi4 KO ✔ 
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of heat-aggregated ovalbumin (HAO). Control groups received PBS alone. The 

HAO solution was prepared as described in section 2.4.2. Paw thickness was 

measured immediately before injection and at regular intervals up to 24 h, and 

then daily, using a dial calliper. The thickness of the control contralateral 

footpad was subtracted to calculate the daily increment in footpad thickness 

(Δfootpad).  

Three days after the HAO challenge, mice were terminally anaesthetised by 

inhalation of isoflurane in O2 and euthanized by exsanguination and cervical 

dislocation. Blood was withdrawn by cardiac puncture for later assessment of 

antibody responses in serum; the popliteal and inguinal lymph nodes were 

harvested for in vitro assessment of T cell proliferation in response to OVA. On 

some occasions both paws (challenged and control) were processed as described 

in section 2.3.3 and analysed by flow cytometry staining for T and B cell 

markers. The experiment is summarised in Figure 2-15. 

 
Figure 2-15: Timeline of the murine model of Delayed Type Hypersensitivity 
A DTH response was induced in PAD4 deficient (KO) and PADi4 floxed (WT) 
mice. Animals were immunized with ovalbumin (OVA) in complete Freund’s 
adjuvant (CFA), and 18 days after immunisation the right hind footpad was 
challenged s.c. with heat-aggregated OVA (HAO). Footpad swelling was 
measured daily for 3 days. Serum antibody responses were assessed pre-
immunization with OVA/CFA, pre-challenge with HAO and at the end point. The T 
cell response to OVA antigen was evaluated in vitro at the experiment end point. 

 
 
 

 

0  18        

CFA/OVA 
sc 

PADi4 floxed 
WT  

PADi4 
 KO 

Footpad challenge  
with HAO   

Measure footpad 
swelling daily  

21       

END 

Day -1  

Blood 
sample 

17        

Blood 
sample 



Chapter 2 
 

 81 

Table 2-5: Experimental groups in the OVA Delayed Type Hypersensitivity 
model 
 

 

2.5 In vitro cell culture 

2.5.1 Th-1 polarization  

OT-II mice were euthanized by exposure to rising concentrations of carbon 

dioxide followed by neck dislocation. The cervical, axillary, brachial, inguinal, 

popliteal and mesenteric lymph nodes and the spleen were harvested and 

processed in sterile conditions as described in section 2.3.2. CD4+ mouse T cells 

were negatively selected from the lymphocytes suspension as described in 

section 2.3.4 and the CD4+ enriched fraction resuspended at 1x106 cells/ml in 

complete media. The splenocytes plus the remaining lymphocyte fraction 

excluding CD4+ cells, were used as antigen presenting cells (APCs), and were 

treated with 50 µg/ml of mitomycin C (from Streptomyces caespitosus) for 1 h at 

37°C and 5% CO2. After incubation, APCs were washed once with complete 

media and resuspended in complete media at 3x106 cells/ml. The mitomycin 

treated cells and CD4+ cells were combined in equal volumes (17.5 ml) in 75 cm3 

flasks, and were incubated for 72 h at 37°C and 5% CO2 in complete media 

supplemented with 0.5 µg/ml OVA323-339 peptide, 2 µg/ml α-interleukin 4 (α-IL-4, 

R&D Systems, Abingdon, UK) and 20 ng/ml of interleukin 12 (IL-12, R&D Systems) 

After 72 h incubation, a fraction of cells from the culture flasks was treated with 

500 ng/ml ionomycin and 50 ng/ml phorbol myristate acetate (PMA) in presence 

of GolgiPlug™ (BD Biosciences) to stimulate cytokine production. Cells were 

analysed by flow cytometry for CD45.1, CD4, Vα2, Vβ5 and IFN-γ intracellular 

n = 5 / group Sex Mice strain OVA/CFA Footpad challenge 

G1   WT sham control Male PADi4 floxed ✔ PBS 

G2   WT HAO Male PADi4 floxed ✔ HAO 

G3   WT sham control Female PADi4 floxed ✔ PBS 

G4   WT HAO Female PADi4 floxed ✔ HAO 

G5   KO sham control Male PADi4 KO ✔ PBS 

G6   KO HAO Male PADi4 KO ✔ HAO 

G7   KO sham control Female PADi4 KO ✔ PBS 

G8   KO HAO Female PADi4 KO ✔ HAO 
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cytokine to confirm the polarization of cells into a Th1 phenotype. Cells from 

OT-II mice were identified with the CD45.1 molecule, T helpers as cells 

expressing the CD4 molecule, and transgenic T cells co-expressing Vα2/Vβ5 

markers. 

2.5.2 T cell proliferation assay 

2.5.2.1 Proliferation in response to ovalbumin (OVA) 

T cell proliferation in response to OVA protein was assessed in vitro. The 

popliteal lymph nodes were collected at the end point of the PD-EA and OVA 

DTH experimental mice models described in sections 2.4.2 and 2.4.4 

respectively. The lymph nodes were processed as detailed in section 2.3.2 and 

cells resuspended in complete media at 2x106 cells/ml. Cells were incubated in 

a 96-well round-bottom plate for 72 h at 37°C and 5% CO2 with the 

corresponding stimulus. Each well received 2x105 cells in a final volume of 200 µl 

either with 1 mg/ml OVA protein, media alone as negative stimulus control, or 

0.5 µg/ml α-CD28 antibody (BD Pharmingen™) in wells pre-coated overnight at 

4°C with 1 µg/ml α-CD3 antibody (BD Pharmingen™) in PBS as positive control 

stimulus (Figure 2-16). After incubation, cell proliferation could be clearly 

observed by microscopy prior being more accurately quantified by flow 

cytometry (Figure 2-16). T helper and cytotoxic T cells were identified staining 

for CD4 and CD8 respectively and cell proliferation was evaluated based on the 

expression of CD69 and Ki67. CD69 is one of the earliest activation markers to 

appear in the surface of activated lymphocytes and NK and is also involved in 

cell proliferation (Lindsey et al., 2007); Ki67 is a nuclear protein involved in the 

regulation of cell division not expressed in quiescent cells, therefore being 

strictly associated with cell proliferation (Soares et al., 2010). 
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Figure 2-16: Microscopy visualization of cell proliferation 
Microscopy images of cell proliferation under different stimulation conditions. A 
DTH response to ovalbumin (OVA) was induced in BL/6 mice as described in 
section 2.4.4. The popliteal lymph nodes draining the paws were harvested at the 
experiment end point and cell proliferation in response to OVA was evaluated as in 
section 2.5.2.1. Images were taken with an IX51 inverted microscope (Olympus) 
and show proliferation of cells when (A) cultured with media only, (B) cultured with 
OVA protein and (C) cultured with α-CD3 and α-CD28. 

2.5.2.2 Proliferation in response to P. gingivalis 

T cell proliferation in response to heat killed P. gingivalis W83 was assessed in 

vitro. The cervical lymph nodes (LNs) and spleen were collected at the end point 

of the PD experimental mice model described in section 2.4.1 and were 

processed as detailed in section 2.3.2. Lymphocytes were cultured in a 96-well 

round-bottom plate at 2x105 cells/well in a final volume of 200 µl, and 

splenocytes in a 24-well plate at 5x106 cells/well in a final volume of 500 µl. 

P.gingivalis W83 was heat killed as described in section 2.7.2 and 25 CFU/cell 

were added to the wells. Cells were incubated with media alone as negative 

stimulus control, or with 0.5 µg/ml α-CD28 antibody in wells pre-coated 

overnight at 4°C with 1 µg/ml α-CD3 antibody in PBS as positive control 

stimulus. After 72 h incubation at 37°C with 5% CO2, T cell proliferation was 

assessed by flow cytometry staining for CD4, CD8, CD69 and Ki67. 

2.5.2.3 TEα cell proliferation assay 

T cell proliferation in response to Eα peptide was assessed in vitro (Figure 2-17). 

TEα mice were euthanized by exposure to rising concentrations of carbon 

dioxide followed by neck dislocation. The cervical, axillary, brachial, inguinal, 

popliteal and mesenteric lymph nodes were harvested and processed in sterile 

conditions as described in section 2.3.2. CD4+ T mouse cells were negatively 

selected from the lymphocytes suspension as described in section 2.3.4 and the 
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CD4+ enriched fraction resuspended at 1x106 cells/ml in complete media. 

Dendritic cells were differentiated from bone marrow (BMDCs) from PAD4 

deficient (KO) and PADi4 floxed (WT) mice as described in section 2.3.6 and 

seeded in a 96-well round-bottom plate with 1x105 cells/well in a volume of 100 

µl. BMDCs were cultured for 4 h at 37°C and 5% CO2 with the following stimuli 

alone: unstimulated control with media only, 1 µg/ml LPS, 50 µg/ml Eα-GFP 

(produced as described in section 2.9.3), or LPS plus Eα-GFP. One hundred µl 

containing 1x105 CD4+ TEα cells were added to DCs and incubated for 72 h at 

37°C and 5% CO2. As a positive control of stimulation for the TEα cells, these 

were cultured in absence of BMDCs with 500 ng/ml ionomycin and 50 ng/ml 

phorbol myristate acetate (PMA) in complete media. After incubation, T cell 

proliferation and the DCs activation were assessed by flow cytometry staining for 

CD4, CD69, Ki67 and CD11c, GFP and CD40 respectively. 

 
Figure 2-17: Schematic of the Eα-GFP system 
The Eα-GFP fusion protein is composed by a peptide designated as ‘Eα’ 
expressed with the green fluorescence protein GFP. When the Eα peptide is taken 
up by DCs the GFP can be detected in the cells.  When the processed Eα peptide 
binds I-Ab MHC class II, the MHC class II-Eα peptide complex can be recognized 
by the monoclonal antibody YAe allowing for detection and quantification of 
antigen presentation. The T cell response to DC antigen presentation can be 
investigated using C57BL/6 mice expressing the T cell receptor transgenic TEα T 
cells, which also recognizes the MHC class II-Eα peptide complex. Image by Dr. 
Jennifer Malcolm reproduced here with permission. 
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2.5.2.4 T cell activation assay 

The response of T helper cells to stimulus interacting up- and downstream of the 

T cell receptor (TCR) was evaluated in vitro in PADi4 floxed (WT) and PAD4 

deficient (KO) male and female mice over 6 weeks of age. Mice were euthanized 

by exposure to rising concentrations of carbon dioxide followed by neck 

dislocation. The cervical, axillary, brachial, inguinal, popliteal and mesenteric 

lymph nodes were harvested and processed in sterile conditions as described in 

section 2.3.2. CD4+ mouse T cells were negatively selected from the 

lymphocytes suspension as described in section 2.3.4 and the CD4+ enriched 

fraction resuspended at a concentration of 2x106 cells/ml in complete media. 

2x105 cells in a final volume of 200 µl were incubated in a 96-well round-bottom 

plate for 72 h at 37°C and 5% CO2 with various stimuli; each well received either 

with media alone as negative stimulus control, 500 ng/ml ionomycin and 50 

ng/ml PMA, or 0.5 µg/ml α-CD28 antibody in wells pre-coated overnight at 4°C 

with 1 µg/ml α-CD3 antibody in PBS. After incubation, T cell proliferation was 

assessed by flow cytometry staining for CD4, CD69 and Ki67. 

2.5.3 Assessment of antigen processing/presentation by BMDC 

Dendritic cells were differentiated from bone marrow (BMDCs) from PAD4 

deficient (KO) and PADi4 floxed (WT) mice as described in section 2.3.6 and 

seeded in a 96-well plate with 1x105 cells/well in a total volume of 200 µl. 

BMDCs were cultured for 4 h or overnight at 37°C and 5% CO2 with various 

stimuli: unstimulated control with media only, 1 µg/ml LPS, 50 µg/ml Eα-GFP 

(produced as described in section 2.9.3), and LPS plus Eα-GFP. The DCs 

activation state and the ability to process and present antigen were evaluated 

by flow cytometry to investigate GFP presence and with staining for CD11c, 

CD80, CD86, MHC II (IA/IE) and YAe (antibody that recognises the Eα peptide in 

the context of MHC II). 
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2.5.4 Murine neutrophil extracellular traps (NETs)  

2.5.4.1 In vitro generation and visualization of NETs  

NETs were generated either from bone marrow derived neutrophils or peritoneal 

exudate cells (PECs) from PAD4 deficient (KO) and PADi4 floxed (WT) mice. Bone 

marrow derived neutrophils were purified as described in section 2.3.7 and PECs 

as in section 2.3.8. Cells were resuspended at 1x106 cells/ml in NETs media prior 

NETs induction. Cells were cultured in triplicate either in 24-well plates with 13 

mm diameter sterile glass coverslip placed at the bottom of each well, or in a 

96-well flat-bottom plate format. Cells were cultured in NETs media at 2x105 

cells/well in a final volume of 600 µl/well in 24-well plates; and 200 µl/well 

when used the 96-well format. Cells were left to rest for 30 min at 37°C and 5% 

CO2. Then, cells were stimulated with 100 nM/well of sterile PMA diluted in NETs 

media and incubated for different periods of time (from 1 h to 16 h depending 

on the experiment) at 37°C and 5% CO2. An unstimulated control with NETs 

media only was tested for each sample. 

After incubation, when using a 24-well format, cell supernatants were carefully 

removed and cells fixed with 500 µl/well of 4% w/v PFA for 20 min at RT. When 

using a 96-well format, plates were centrifuged at 1200 x rpm for 10 min at 20°C 

and supernatants kept for neutrophil elastase (NE) release quantification as 

described in section 2.5.4.2. Cells were then fixed with 100 µl/well of 4% w/v 

PFA for 20 min at RT. After fixation cells were washed twice with PBS for 5 min 

and left at 4°C immersed in PBS until its preparation for imaging. 

For imaging, PBS was carefully removed and fixed cells were treated with 

permeabilization buffer (0.5% v/v Triton-X100 in PBS) for 1 min at RT and then 

washed 3 times for 1 min with PBS. Cells were incubated in a humid chamber at 

37°C for 30 min with blocking buffer (5% v/v horse serum (Stratech Scientific, 

Suffolk, UK) in PBS). Primary antibodies against neutrophil elastase (NE) (M-18) 

and citrullinated histone 3 (H3cit R2+R8+R17) were diluted in blocking buffer as 

indicated in Table 2-6. Cells were then incubated in a humid chamber with 100 

µl of the primary antibody solution for 1 h at 37°C. Secondary antibodies were 

prepared in blocking buffer as indicated in Table 2-6. After incubation cells were 

washed 3 times for 5 min in PBS and then incubated in a humid chamber with 
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100 µl of the secondary antibody solution for 1 h at 37°C. After incubation cells 

were washed 3 times for 5 min in PBS and then the DNA was stained with 100 µl 

of 1 µg/ml Hoechst 33342 in PBS for 5 min at RT. Then cells were washed twice 

with distilled water for 1 min before mounting the glass coverslips onto a drop of 

ProLong gold on microscope slides. Slides were left to dry overnight at RT and 

then stored at 4°C until visualization by confocal microscopy. Images were taken 

with an AxioVert S100 fluorescence microscope (Carl Zeiss). Some images were 

taken by Dr. Owain Millington (Strathclyde Institute of Pharmacy and Biomedical 

Sciences, Glasgow, UK) using a Leica TCS SP5 laser-scanning confocal microscope 

(Leica Microsystems, Milton Keynes, UK).  

When using the 96 well format, after the final wash in distilled water cells were 

covered with 50 µl/well of PBS and stored at 4°C until visualization with EVOS FL 

auto cell imaging system (Thermo Fisher Scientific). As an alternative to 

immunostaining, in some cases, the extracellular DNA released during NETs 

formation was stained with 1µM of Sytox® Green (Thermo Fisher Scientific) 

diluted in PBS and visualized with EVOS FL auto cell imaging system. 

Table 2-6: Antibodies for immunofluorescence staining of NETs 
 

Primary antibodies 

Target Label Species Clone Dilution Supplier 

NE (M-18) N/A Goat Polyclonal  1:200 
Santa Cruz 
Biotechnology 
(Texas, USA) 

H3cit 
(R2+R8+R17) N/A Rabbit Polyclonal 1:1000 Abcam (Cambridge, 

UK) 

Secondary antibodies 

Target Label Species Clone Dilution Supplier 

Goat IgG (H+L) Alexa 
647 Donkey Polyclonal 1:300 

Thermo Fisher 
Scientific (Paisley, 
UK) 

Rabbit IgG 
(H+L) Cy3 Donkey Polyclonal 1:300 

Jackson 
ImmunoResearch  
(PA, USA) 

    Abbreviations: N/A = not applicable 
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2.5.4.2 NETs quantification 

Micrococcal	nuclease	(MNase)	assay	of	NET	release	

NETs were induced as described in section 2.5.4.1, in 96-well plates for 16 h 

with PMA or NETs media control. Immediately after incubation, to separate the 

extracellular DNA constituting NETs from cellular debris, 1 U/ml of MNase 

(Worthington Biochemical Corporation, NJ, USA) was added to each well and 

incubated at RT for 20 min. Then cells were pelleted by centrifugation at 1800xg 

for 10 min at 4°C. A hundred and fifty µl of supernatant were transferred to 

black 96-well flat-bottom plates and 1 µM of Sytox® Green was added to each 

well. Fluorescence was recorded in arbitrary fluorescence units (AFU) using a 

fluorescence microplate reader PHERAstar FS (BMG Labtech, Aylesbury, UK) with 

and excitation wavelength of 485 nm and an emission wavelength of 520 nm. 

Fluorescence was read 3 times with 2 min intervals between readings, and an 

average value of AFU was obtained per well. 

Neutrophil	elastase	(NE)	assay	

The Neutrophil Elastase Activity Assay Kit (Cayman Chemical, Michigan, USA) 

employs a specific non-fluorescent elastase substrate (Z-Ala-Ala-Ala-Ala)2Rh110, 

which is selectively cleaved by elastase to yield the fluorescent compound R110. 

NETs were induced as described in section 2.5.4.1 in 96-well plates, and 

incubated for 2, 4, 6, 16 and 18 h with PMA or NETs media control. A 

fluorescence blank control without cells was included in duplicate at each time 

point. NE release in the media alone was evaluated before stimulation (0 h) and 

at the indicated time points. After incubation with stimulus cells were 

centrifuged at 1200 rpm for 10 min at 20°C and 10 µl of the culture supernatant 

were transferred to a black 96-well flat-bottom plate. Ninety µl of the Assay 

Buffer was added to each well giving a final volume of 100 µl/well. Then, 10 µl 

of the Substrate Solution ((Z-Ala-Ala-Ala-Ala)2Rh110) was added to all wells. 

Plates were sealed and samples incubated for 1.5 h at 37°C. After incubation, 

fluorescence was recorded in AFU using a fluorescence microplate reader 

PHERAstar FS, with and excitation wavelength of 485 nm and an emission 

wavelength of 520 nm. Fluorescence was read twice with a 2 min interval 

between readings and an average value of AFU was obtained per well. An 8-point 
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standard curve was included of 0-20 mU/ml human NE serially diluted in Assay 

Buffer (PBS). The standard curve was used to transform blank-corrected 

fluorescence values (AFU) into ng/ml of NE with the following equation: 

𝑁𝑒𝑢𝑡𝑟𝑜𝑝ℎ𝑖𝑙 𝐸𝑙𝑎𝑠𝑡𝑎𝑠𝑒 (𝑛𝑔 𝑚𝑙) =
𝐹𝑙𝑢𝑜𝑟𝑒𝑠𝑐𝑒𝑛𝑐𝑒 − (𝑦 − 𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡)

𝑆𝑙𝑜𝑝𝑒  ×10 

2.5.4.3 Co-culture of oral biofilms with bone marrow murine neutrophils 

Bone marrow derived neutrophils from WT BL/6 mice were co-cultured with 3 

different multi-species biofilms kindly provided by Dr. Emma Millhouse (Glasgow 

Dental School), developed to represent the stages of oral microbial biofilm in 

dental health and periodontitis as described in section 2.9.4. Bone marrow 

neutrophils were purified as described in section 2.3.7 and cultured in NETs 

media in a 24-well plate at 2x105 cells/well in a final volume of 600 µl with a 13 

mm diameter sterile glass coverslip placed at the bottom of each well. Cells 

were stimulated with 100 nM/well of sterile PMA diluted in NETs media or with 3 

spp., 7 spp. or 10 spp. oral biofilms as in Figure 2-18. An unstimulated control 

with NETs media only was tested for each sample. Cells were incubated for 16 h 

at 37°C and 5% CO2 and then stained and visualized as described in section 

2.5.4.1. Following stimulation, supernatants were retained for Luminex cytokine 

analysis as described in section 2.8.2. 

  
Figure 2-18: Neutrophils : biofilm co-culture model system 
A schematic representation of the co-culture system. Biofilms were grown on 
Thermanox™ coverslips. The coverslips were attached to the underside of a 
hanging cell culture insert (Millipore, MA, USA) using sterile Vaseline®. The 
hanging baskets were introduced into each well of a 24-well plate with 2x105 
neutrophils. Image by Dr. Emma Millhouse reproduced here with permission. 

Millipore® Cell Culture insert 
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Monolayer of host cells  
(e.g. OKF6-TERT2) 
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Glass coverslip with 
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2.5.4.4 Evaluation of ROS production in neutrophils 

The quantification of oxygen radicals produced by the oxidative burst cascade 

was evaluated as measurement of neutrophils metabolism and activity. The 

reactive oxygen species (ROS) were quantified using a chemiluminescent 

reaction initially described in Matthews et al., 2007. 

The analysis was performed in white flat-bottom 96-well plates pre-treated 

overnight at 4°C with 200 µl/well of 1% sterile solution of BSA in PBS, in order to 

prevent cell adhesion and the unspecific activation of neutrophils. Plates were 

then washed 5 times with PBS before being used. Neutrophils were isolated from 

bone marrow as described in section 2.3.7 and re-suspended in GPBS (PBS 

supplemented with 10 mM glucose, 1 mM CaCl2 and 8 mM MgCl2) for optimal 

superoxide production in neutrophils (Tan et al., 1998, Kummer et al., 2007). 

Cells were seeded at 1x105 cells in 145 µl/well and incubated with 30 µl of 

luminol working solution (1/10 dilution of luminol stock solution (30 mM luminol 

in 94.05 ml of 1 mM NaOH) in pBS, pH 7.3). Luminol is a chemiluminescent 

substrate that reacts with the oxygen radicals derived by myeloperoxidase (MPO) 

catalytic activity, changing luminol oxidative state and emitting light signal once 

excited (Lundqvist et al., 1995). 

Light output was monitored by a microplate luminometer (Berthold Tristar2 

LB942) for an initial 30 minutes to obtain a baseline reading. Afterwards, 25 µl 

of stimuli (PBS media control, 100 nM PMA or supernatants from the 3, 7 or 10 

spp. biofilms) were added in duplicate to the selected wells making a final 

volume of 200 µl/well, and incubated at 37°C for 6 h. The luminescence readings 

were recorded with MikroWin2000 software and expressed in relative light units 

(RLU) as indicative of ROS production. The measurements of RLU over time 

generated a curve for each well measured, and the peak value of each curve was 

calculated with the MAX function of Microsoft Excel software (Figure 2-19). 
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Figure 2-19: ROS curve 
Representation of a ROS curve generated from the luminescence values (RLU) 
obtained over time after bone marrow neutrophils stimulation with 100 nM PMA. 
The curve peak value was obtained with Microsoft Excel software MAX function. 

2.6 Flow cytometry (FACS) 

Single cell suspensions from lymphatic tissues, whole murine paws, bone marrow 

derived cells or PECs were prepared as described in previous sections. Up to 

1x106 cells were placed in either a 96-well round-bottom plate or clear FACS 

tube. Cells from culture originally plated in a 96-well round-bottom plate at a 

density of 1-2x105/well, were pelleted by centrifugation at 400xg for 5 min and 

resuspended in 100 µl of FcR blocking buffer (5% v/v mouse serum in 2.4G2 

hybridoma supernatant containing monoclonal antibodies which block FcRs). 

Cells cultured in other plate formats were pelleted by centrifugation then 

resuspended in 100 µl of FcR blocking buffer before being transferred to a 96-

well round bottom plate. Cells were incubated at 4°C for 15 min. The primary 

antibodies for extracellular staining (EC) were prepared in flow cytometry buffer 

(FACS Buffer, 0.01% w/v NaN3 and 2% v/v HI-FCS in PBS) as indicated in Table 

2-7.  

All subsequent steps were performed protected from light. Details of antibodies 

are shown in Table 2-7. After blocking, cells were incubated with 100 µl/1x106 

cells of diluted primary antibodies per well/tube at 4°C for 30 min. Then, cells 

were washed twice with 200 µl of FACS buffer per well/tube by centrifuging as 

before and discarding the supernatant before resuspending the cells by gentle 

agitation. When primary antibodies were conjugated to biotin, a secondary 
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antibody conjugated to a fluorochrome-labelled streptavidin (SA) was used. The 

secondary antibody was prepared in FACS buffer as indicated in Table 2-7. Cells 

were incubated with 100 µl/1x106 cells of diluted secondary antibodies at 4°C 

for 30 min. Cells were washed twice with 200 µl of FACS buffer per well/tube as 

before. 

When a viability dye was used, cells were washed in the same way with PBS 

instead of FACS buffer. Fixable viability dyes (eFluor®, eBioscience) irreversibly 

label dead cells prior to fixation or permeabilization by binding to free amino 

groups on both surface and intracellular proteins of cells with a compromised 

membrane. Viability dyes were diluted 1:1000 in PBS and then 100 µl added per 

1x106 cells and incubated at 4°C for 20 min. Then cells were washed twice in 

FACS buffer as before. After extracellular and viability staining, cells were fixed 

with 100 µl of 4% w/v PFA per well/tube at 4°C for 15 min. After fixation, cells 

were washed twice with FACS buffer as before and resuspended in 100 µl of 

FACS buffer. 

Intracellular staining (IC) was performed on cultured cells after extracellular and 

viability staining using the Transcription factor buffer set (BD Pharmingen™). 

Cells were fixed in 100 µl/well of fix/perm solution and incubated at 4°C for 20 

min, then washed twice with 200 µl/well of perm/wash solution as before. 

Intracellular antibodies were prepared in perm/wash solution as indicated in 

Table 2-7. Cells were incubated with 100 µl/well of diluted intracellular 

antibodies at 4°C for 50 min. Cells were washed twice with 200 µl/well 

perm/wash solution as before and then resuspended in 100 µl/well of FACS 

buffer. All samples were passed through nitex nylon mesh then analysed with a 

MACSQuant® Flow cytometer (Miltenyi Biotec, Surrey, UK). Data were analysed 

using FlowJo® software (Tree Star Inc.).  
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Table 2-7: Anti-mouse antibodies for flow cytometry  
 

Extracellular staining (EC) 

Target Label Clone Final dilution Supplier 

CD3 PerCP 145-2C11 1:200 BD Biosciences 

CD4 

eFluor®450 RM4-5 1:200 eBioscience 

FITC RM4-5 1:200 BD Biosciences 

PerCP RM4-5 1:200 BD Biosciences 

PE-Cy7 GK1.5 1:200 eBioscience 

APC GK1.5 1:200 eBioscience 

APC-eFluor®780 RM4-5 1:400 eBioscience 

CD8 

eFluor®450 H35-17.2 1:400 eBioscience 

FITC 53-6.7 1:200 eBioscience 

PE 53-6.7 1:200 BD Biosciences 

PE-Cy7 53-6.7 1:200 eBioscience 

CD11b 
PE-Cy7 M1/70 1:200 eBioscience 

APC M1/70 1:200 eBioscience 

CD11c 
PerCP-Cy5.5 N418 1:200 eBioscience 

APC-eFluor®780 N418 1:200 eBioscience 

CD19 APC-eFluor®780 1D3 1:200 eBioscience 

CD19 isotype APC- eFluor®780 Rat IgG2a,κ 1:200 eBioscience 

CD25 alexa 488 7D4 1:200 eBioscience 

CD40 PE 3/23 1:200 BD Biosciences 

CD44 
APC IM7 1:200 eBioscience 

PerCP-Cy5.5 IM7 1:200 eBioscience 

CD45 eFluor®450 30-F11 1:200 eBioscience 

CD45.1 eFluor®450 A20 1:200 eBioscience 

CD62L FITC MEL-14 1:200 BD Biosciences 

CD69 PE H1.2F3 1:200 BD Biosciences 

CD80 
FITC 16-10A1 1:200 eBioscience 

APC 16-10A1 1:200 BD Biosciences 

CD86 PE GL1 1:200 eBioscience 

CD197 (CCR7)* PE-Cy7 4B12 1:200 eBioscience 

Biotin SA-PE-Cy7 N\A 1:200 eBioscience 

Ea 52-68 + I-Ab Biotin  YAe 1:200 eBioscience 

Ly6G (Gr-1) 
PE RB6-8C5 1:200 eBioscience 

APC 1A8 1:200 eBioscience 

Ly6C PerCP-Cy5.5 HK1.4 1:200 eBioscience 

MHC-II (I-A/I-E) eFluor®450 M5/114.15.2 1:200 eBioscience 

Vα2 FITC B20.1 1:200 BD Biosciences 

Vβ5 PE MR9-4 1:200 BD Biosciences 
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Viability staining 

Target Fluorophore Clone Final dilution Supplier 

Dead cells eFluor®450 N/A 1:1000 eBioscience 

Dead cells eFluor®506 N/A 1:1000 eBioscience 

Dead cells eFluor®780 N/A 1:1000 eBioscience 

Intracellular staining (IC) 

Target Fluorophore Clone Final dilution Supplier 

IFN-γ APC XMG1.2 1:100 BD Biosciences 

Ki67 eFluor®660 SolA15 1:400 eBioscience 

Abbreviations: *Incubation at 37°C; CD, cluster of differentiation; N/A, no 
applicable 

2.7 Quantification of antibody levels in serum by ELISA 

2.7.1 Murine blood processing 

On average, 700 µl of blood per mouse was collected by cardiac puncture under 

terminal anesthesia at the experiments end point. During some experiments, 100 

µl of blood was withdrawn by tail tip excision. Blood was left in 1.5 ml 

centrifuge tubes at RT for 2 h to allow the blood to clot. Then, tubes were 

centrifuged at 12,000 rpm at 4°C for 12 min and the supernatant (serum) 

transferred to fresh tubes in 50 µl aliquots. Serum samples were stored at -20°C 

until use. 

2.7.2 Anti-Porphyromonas gingivalis ELISA 

Bacteria were grown as described in section 2.9.1 and prepared as in section 

2.9.2, with the exception that after the last PBS wash, bacteria was aliquoted 

and stored at -80°C. Frozen stocks of P. gingivalis W83 were heat-killed at 65°C 

in a water bath for 30 min, then resuspended at 0.02 OD at 600 nm (4x107 

CFU/ml) in 50 mM carbonate-bicarbonate buffer (pH 9.6). Immulon™ 1B 96-well 

flat-bottom plates (Thermo Fischer Scientific) were coated overnight at 4°C with 

100 µl/well of bacteria dilution in carbonate-bicarbonate buffer. Plates were 

washed 3 times with 200 µl/well of 0.05 % Tween®20 in PBS (PBS-T) and then 

incubated with 200 µl/well of blocking buffer (10 % Hi-FCS in PBS) at 37°C for 1 

h. Serial dilutions of serum ranging from 1/100 to 1/800 were prepared in 

dilution buffer (0.2 % HI-FCS in PBS-T). Previously tested positive and negative 
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serum samples were included in each plate, as well as a no-sample blank 

control. Samples and controls were prepared and measured in duplicate. Plates 

were washed 3 times as before and incubated overnight at 4°C with 50 µl/well 

of pre-diluted serum samples. After incubation plates were washed 4 times as 

before and then incubated at 37°C for 1 h with 50 µl/well HRP-conjugated anti-

mouse antibody prepared in dilution buffer as in Table 2-8. Finally, plates were 

washed 5 times as before and then incubated with 100 µl/well of TMB substrate 

at RT. The reaction was stopped after 1 min with 50 µl/well of 10 % HCl, and 

absorbance was measured at 450 nm (A450) using a Sunrise™ microplate reader 

(Tecan, Männedorf, Switzerland) with a reference absorbance set at 630 nm 

(A630). ELISA units were calculated as described in section 2.7.4. 

Table 2-8: Antibodies used in anti-P.gingivalis ELISAs 
 

Antibody Dilution Supplier 

Anti-mouse IgG 1:25,000 Southern Biotech, USA 

Anti-mouse IgG1 1:10,000 Southern Biotech, USA 

Anti-mouse IgG2c 1:10,000 Southern Biotech, USA 

 

2.7.3 Anti-OVA and anti-collagen II ELISAs 

Costar® 96-well flat-bottom plates were coated overnight at 4°C with 100 

µl/well of antigen: 20 µg/ml of OVA (from chicken egg white) for anti-OVA 

ELISAS or 4 µg/ml of type II murine collagen (Chondrex, WA, USA) for anti-CII 

ELISAs, in 50 nM carbonate-bicarbonate buffer. Plates were washed 3 times with 

200 µl/well of 0.05 % Tween®20 in PBS (PBS-T) and then incubated with 200 

µl/well of blocking buffer (10 % Hi-FCS in PBS) at 37°C for 1 h. Serial dilutions of 

serum ranging from 1/800 to 1/6,400 were prepared in dilution buffer (0.2 % HI-

FCS in PBS-T) for anti-OVA ELISAs and from 1/100 to 1/800 for anti-CII ELISAs. 

Previously tested positive and negative serum samples were included in each 

plate, as well as a no-sample blank control. Samples and controls were prepared 

and measured in duplicate. Plates were washed 3 times as before and incubated 

overnight at 4°C with 50 µl/well of pre-diluted serum samples. After incubation 

plates were washed 4 times as before and then incubated at 37°C for 1 h with 50 

µl/well HRP-conjugated anti-mouse antibody prepared in dilution buffer as in 
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Table 2-8. Finally, plates were washed 5 times as before and then incubated 

with 100 µl/well of TMB substrate at RT. The reaction was stopped after 1 min 

with 50 µl/well of 10 % HCl, and absorbance was measured at 450 nm (A450) using 

a Sunrise™ microplate reader with a reference absorbance set at 630 nm (A630). 

ELISA units were calculated as described in next section 2.7.4. 

2.7.4 Calculation of ELISA Units 

A net absorbance value A450 - A630 was obtained for each well. Net absorbance 

values were blank-corrected by subtracting the average absorbance value of the 

blank wells to each well. A mean blank-corrected value vas obtained for each 

dilution of each serum sample. The transformation of the absorbance data into 

ELISA units (EU) was calculated from the y- intercept of the slope of OD’s from 

the 4 serial dilutions. Each EU equals the intercept value multiplied by 1,000 as 

previously published in (Gmür et al., 1986).  The EU obtained for each sample 

(EUsample) was normalized to the positive control. An arbitrary EU was assigned as 

positive control of reference (EUreference) and the following equation applied: 

EUnormalized = EUsample x (EUreference/EUC+plate). 

2.8 Detection and quantification of cytokine levels  

2.8.1 Cytokine ELISAs 

IFN-γ and IL-10 ELISAs were performed using Ready-SET-Go!® ELISA kits 

(eBioscience) according to the manufacturer’s instructions. Costar® 96-well flat-

bottom plates were coated with 50 µl/well of cytokine capture antibody 

(concentration optimized by manufacturer) diluted in coating buffer and 

incubated overnight at 4°C. All subsequent steps were performed at RT. The 

plates were washed 3 times with 200 µl/well PBS-T and then plates were 

blocked for 1 h with 100 µl/well of assay diluent (provided with the kit). Plates 

were washed once as before and then incubated for 2 h with 50 µl/well of 

standards or samples (prepared in assay diluent). Samples were diluted 1/10 for 

IFN-γ detection but no sample dilution was used for IL-10. After incubation, 

samples were washed 4 times as before and then incubated for 1 h with 50 

µl/well of biotinylated detection antibody (concentration optimized by 

manufacturer). After incubation, samples were washed 4 times as before and 
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then incubated for 30 min with 50 µl/well of avidin-HRP. After incubation, 

samples were washed 6 times as before and then 100 µl/well of TMB substrate 

was added. The reaction was stopped with 50 µl/well of 10 % HCl and 

absorbance was measured at 450 nm (A450) using a Sunrise™ microplate reader 

with a reference absorbance set at 570 nm (A570). The OD’s and known 

concentrations of the standards were used to generate a standard curve, the 

formula of which was then used to calculate the unknown concentrations of 

cytokines in the samples. The standards ranged from 15-2000 pg/ml for the IFN-

γ ELISA and 31-4,000 pg/ml for the IL-10 ELISA. In each case, the limit of 

detection of cytokines by the ELISA was equivalent to the concentration of the 

lowest standard.  

2.8.2 Luminex assay 

Supernatants harvested from bone marrow neutrophils after co-culture with 

multi-species biofilms (2.5.4.3), were tested for the presence of IL-1β, TNF-α 

and KC using Luminex® Singleplex Bead Kits (Invitrogen, Paisley, UK) according 

to the manufacturer’s instructions. Twenty-five µl of 1X beads stock solution 

(2.5x106 beads/ml/cytokine) with defined spectral properties covalently 

conjugated to specific monoclonal antibodies, diluted in working wash solution 

was added to a 96 well filter bottom plate provided in the kit and incubated for 

30 sec before washing by vacuum manifold. Then, 50 µl of cell culture 

supernatant and reconstituted standards were added to the appropriate wells 

and incubated on an orbital shaker (500 rpm) for 2 h at RT in the dark. Known 

concentration of standards provided by the manufacturer were as follows: TNF-α 

(17,000 pg/ml), IL-1β (16,700 pg/ml) and KC (50,500 pg/ml). The plate was 

washed three times using a vacuum manifold to remove the unbound proteins 

and then 100 µl of biotinylated detection antibodies were added to each well 

and incubated for a further hour at RT on an orbital shaker (500 rpm). After 

incubation, two more washes were performed using the vacuum manifold to 

remove any excess of antibody and 100 µl of Streptavidin-R Phycoerythrin 

(Streptavidin-RPE) were added and samples incubated for 30 min on the orbital 

shaker (500 rpm) at RT. Finally, the plate was washed three times using the 

vacuum manifold before the addition of 100 µl of working wash solution to allow 
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the reaction analysis using Luminex®100 hardware (Luminex, USA). The standard 

curves were obtained using a five-parameter algorithm. 

2.9 Microbiology 

2.9.1 Culture of Porphyromonas gingivalifs 

Stocks of P. gingivalis W83 (ATCC BAA-308™, Middlesex, UK) originating from a 

human oral infection (isolated in the 1950s by Werner, H. in Germany (Loos et 

al., 1993)) were stored long-term in 10% v/v glycerol at -80°C. Frozen bacteria 

were applied to sterile blood agar plates (Schaedler anaerobe agar 

supplemented with 10% v/v HI-FCS, 1 µg/ml Vitamin K (menadione) and 5% v/v 

defibrinated horse blood (H&O laboratories, Bonnybridge, Scotland)) following 

the streak dilution method with sterile pipette tips. Bacteria were grown on the 

agar plates for 2-3 days at 37°C in an anaerobic cabinet (Don Whitely, Yorkshire, 

UK) with 85% N2, 10% CO2 and 5% H2. Three to four colonies of bacteria were 

collected using sterile loops and inoculated into 35 ml of deoxygenated sterile 

Schaedler anaerobe broth supplemented with 1 µg/ml menadione and 10% v/v 

HI-FCS, and incubated for a further 2 days in the anaerobic cabinet.  

2.9.2 Porphyromonas gingivalis for oral infections 

The bacteria were grown in 50 ml conical tubes as described in section 2.9.1. 

Culture tubes were centrifuged at 4,000xg for 20 min at RT to pellet the 

bacteria in a Harrier 15/80 centrifuge (MSE, London, UK). The majority of the 

supernatant was poured off and the pellet was resuspended in the remaining 

supernatant, then transferred to several 1.5 ml Eppendorf® tubes and 

centrifuged at maximum speed for 5 min in a Spectrafuge™ 16M microcentrifuge 

(Labnet, Edison USA). The supernatant was removed, the bacteria pooled and 

washed in 1 ml of deoxygenated sterile PBS. Bacteria were centrifuged as 

before, then the supernatant removed and resuspended in 1 ml of deoxygenated 

PBS for a second time. The OD of the planktonic bacteria was measured at 600 

nm in a GeneQuant™ spectrophotometer (Thermo Fisher Scientific). Using a 

previously generated standard curve (kindly provided by Dr. Emma Millhouse, 

Glasgow Dental School) (Figure 2-20), the CFU / ml was estimated then the 
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bacteria resuspended at 1x109 per 70 µl in deoxygenated sterile 2% w/v CMC in 

PBS.  

 
Figure 2-20: P. gingivalis W83 concentration standard curve 
The optical density (OD) of known concentrations of P. gingivalis W83 in PBS 
(CFU/ml) was measured at 600 nm in a spectrophotometer to build a standard 
curve. A linear trendline was adjusted to the data using Microsoft Excel and the 
total CFU in the bacteria suspension was calculated applying the following 
equation: Total CFU = (A600/5x10-10) x dilution factor x volume. Standard curve 
generated by Dr. John Butcher reproduced here with permission. 

After infecting the mice, remaining live P. gingivalis in the suspension used for 

oral infections were quantified using the Miles and Misra method (Miles et al., 

1938) (Figure 2-21) with an average recovery value of 3x108 CFU per 70 µl of 

bacteria inoculum. 
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Figure 2-21: Bacteria quantification 
Live P. gingivalis bacteria were quantified after oral infections using the Miles and 
Misra method. The inoculum was serially ten-fold diluted from neat suspension in 
CMC to 10-10 in PBS. For each dilution, 10 µL was dropped-plated in triplicate on 
blood agar plates and left to dry on the bench for 30 minutes before being cultured 
at 37°C in the anaerobic cabinet for 48 hours. Following incubation, colonies were 
then counted at each dilution where the number of colonies ranged between 30 - 
300 and the CFU/ml calculated as follows: CFU/ml = mean N° of colonies in 
dilution x 100 x dilution factor. 

2.9.3 Production of Eα-GFP 

The Eα-GFP fusion protein was generated from the Eα-RFP fusion protein as 

described in Rush et al., 2009. The Eα peptide alone might bind the MHCII 

without antigen uptake and processing by the antigen-presenting cell. 

Therefore, the construction of the peptide as a fusion protein ensured that any 

Eα-MHCII complexes detected on the cell surface were the result of protein 

uptake, processing and then presentation. DH5α™ E. Coli expressing pTrcHis 

Eα52-68-GFP Clone 1 were maintained as frozen stocks in 10% v/v glycerol. 

Bacteria were applied to sterile LB agar plates (Luria Broth (LB) with 1.5% w/v 

agar supplemented with 100 µg/ml ampicillin) as above, then grown on agar 

plates overnight at 37°C. Three colonies of bacteria were collected using sterile 

loops and inoculated into 20 ml of sterile LB supplemented with 100 µg/ml 

ampicillin. Bacteria were incubated overnight at 37°C and vigorous shaking 

(≈225 rpm). Then, 20 ml of the starter bacteria culture were inoculated into 1 l 

of LB broth pre-warmed at 37°C. The OD of the bacteria culture was measured 

at 600 nm as reference. Then, bacteria was incubated at 37°C with vigorous 

shaking (≈200 rpm), and the OD measured repeatedly until reaching a value of 

10-10	

10-9	10-8	

10-7	
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0.4-0.6. The expression of the Eα-GFP protein was induced with 1 mM Isopropyl 

β-D-1-thiogalactopyranoside (IPTG), triggering the transcription of the lac 

operon by binding the lac repressor (Lacl) in the pTrcHis vector. Bacteria were 

incubated overnight at 30°C with vigorous shaking (≈200 rpm), then transferred 

to Nalgene® centrifuge bottles (250 ml) and pelleted by centrifugation at 3500 x 

rpm for 20 min at 4°C with an Optima™ centrifuge (Beckman Coulter, High 

Wycombe, UK).  

To lysis the bacteria and extract the recombinant protein, pellets were 

resuspended in 10 ml of lysis buffer NPI-10 (50 mM NaH2PO4, 300 mM NaCl, 10 

mM imidazole) supplemented with DNAse I (grade II from bovine pancreas) and 

benzamidine hydrochloride hydrate, per each liter of bacteria culture. All 

resuspended bacteria were pooled and aliquoted in 50 ml centrifuge tubes, and 

then frozen in dry ice for 1 h. Bacteria was thawed and refrozen three times to 

optimize lysis. One ml of 10 mg/ml lysozyme (from chicken egg white) prepared 

in PBS was added to each tube and then incubated for 30 min at RT. After 

incubation, bacteria was sonicated twice for 30 sec on ice, transferred to a 

Nalgene® bottle and then centrifuged at 7000xg for 1 h at 4°C. The supernatant 

was collected and stored at -20 °C until processing. 

HisPur™ Cobalt Spin Columns (Thermo Fisher Scientific) were used to purify the 

Eα-GFP protein. A column was cooled down to 4°C and centrifuged into a 50 ml 

tube at 700xg for 2 min at 4°C to remove the storage buffer. Then the column 

was equilibrated with 6 ml NPI-10 buffer, allowing the buffer to enter the resin 

bed and then centrifuged as before. The protein extract was added to the 

column, 6 ml at the time, allowing it to enter the resin bed and then centrifuged 

as before. The column was washed with 6 ml of NPI-10 buffer and centrifuged as 

before. The wash was repeated twice and then the His-tagged protein was 

eluted from the resin by adding 6 ml NPI-250 buffer (50 mM NaH2PO4, 300 mM 

NaCl, 250 mM imidazole) and centrifuging as before. The elution step was 

repeated once. 

Amicon Ultra centrifugal filter units (15 ml) were use for buffer exchange and 

protein concentration. An Amicon tube containing the protein solution obtained 

in the previous step was centrifuged at 3750xg for 10 min at 4°C. The protein 
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was retained in the filter and the flow-through discarded. The process was 

repeated until all the protein solution had passed through the filter, then the 

filter washed by adding PBS then centrifuged as before. The flow-through was 

discarded, the tube topped up again with PBS and centrifuged 2500xrpm for 20 

min at 4°C, repeating this step 4 times. The protein was concentrated to a total 

volume of 2 ml. 

Detoxi-Gel™ Endotoxin Removing Columns (Thermo Fisher Scientific) were used 

to remove LPS from the fusion protein in sterile conditions. Columns were 

regenerated by adding 5 ml of 1% w/v sodium deoxycholate, followed by 5 ml of 

PBS. Columns were sealed at the bottom, and 1 ml of concentrated protein 

sample was added to each column and incubated for 1 h at RT in the dark. The 

protein was eluted adding 1 ml of PBS and then filtered to sterilize with 0.2 µm 

Minisart® syringe filters.  

The concentration of the protein extract was evaluated by spectrophotometry 

measuring the absorbance at 280 nm (A280) and 340 nm (A340) with a 

NanoDrop1000 spectrophotometer (Thermo Fisher Scientific), in 3 µl of sample. 

The absorbance at 280 nm corresponds with the maximum absorption 

wavelength of proteins, and the absorbance at 340 nm establishes a baseline 

close to zero for the spectrum normalization. The concentration of the protein 

in the sample was calculated applying the relation 1 A280 = 1 mg/ml of protein, 

giving a value of 1.1 mg/ml. The Eα-GFP protein solution was stored at -20°C 

until use. 

2.9.4 Generation of multi-species oral biofilms (3, 7 & 10 species) 

The generation of 3, 7 and 10 spp. oral biofilms was optimized and carried out 

by Dr. Emma Millhouse (Glasgow Dental School). All biofilm cultures were grown 

using artificial saliva (AS) as previously described in Pratten et al., 1998. This 

was comprised of porcine stomach mucins (0.25% w/v), sodium chloride (0.35% 

w/v, VWR, Leuven, Belgium), potassium chloride (0.02% w/v, VWR), calcium 

chloride dihydrate (0.02% w/v, VWR), yeast extract (0.2% w/v, Formedium, 

Hunstanton, UK), lab lemco powder (0.1% w/v, Oxoid, Hampshire, UK) and 

proteose peptone (0.5% w/v in ddH2O). Urea was diluted in ddH2O (40% w/v) and 
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added to a final concentration of 0.05% v/v in AS. Biofilms were prepared in 24 

well plates containing Thermanox™ coverslips (13mm diameter, Thermo Fisher 

Scientific). For the addition of each bacterial species to the biofilm a 

standardized suspension of 1x107 CFU/ml was prepared in 500 µl of AS.  

A three species biofilm model containing Streptococcus mitis, Streptococcus 

intermedius and Streptococcus oralis was developed to model ‘health-

associated’ biofilms in the oral cavity. All species were added together and 

incubated at 37°C in 5% CO2 for 4 days with spent supernatants being removed 

and replaced with fresh AS daily.  

A seven species biofilm model containing S. mitis, S. intermedius and S. oralis, 

as well as Fusobacterium nucleatum, Fusobacterium nucleatum ssp. vincentii, 

Actinomyces naeslundii and Veillonella dispar was developed to model an 

‘intermediate’ biofilms, transitioning from health to a diseased state. Briefly, S. 

mitis, S. intermedius and S. oralis were grown for 24 hours and incubated at 

37°C in 5% CO2. Next, supernatant was removed and standardized F. nucleatum, 

F. nucleatum ssp. vincentii, A. naeslundii and V. dispar were added to the 

biofilms and incubated at 37°C in the anaerobic cabinet for 4 days, with spent 

supernatants being removed and replaced with fresh AS daily. 

A 10 species biofilm model was formed as described in the 7 species, but with 

the addition of Porphyromonas gingivalis W83, Prevotella intermedia and 

Aggregatibacter actinomycetemcomitans which were standardized and added on 

the third day. Biofilms were incubated at 37°C in the anaerobic cabinet for 4 

days, with supernatants and planktonic bacteria being removed and replaced 

with fresh AS daily. 

Biofilms were used directly after culture or AS removed and stored at -80°C until 

required. Frozen biofilms were revived by the addition of 500 µl of AS, 

incubating for 24 hours in the anaerobic cabinet before experimental use. A 

summary of the bacteria strains employed in the generation of the multi-species 

biofilms is presented in Table 2-9. 
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Table 2-9: Bacteria strains in oral biofilms 
 

3 spp. biofilm 7 spp. biofilm 10 spp. biofilm Product ID 

S. mitis S.  mitis S. mitis NCTC 12261 

S. intermedius S. intermedius S. intermedius ATCC 27335 

S. oralis S. oralis S. oralis ATCC 35037 

 F. nucleatum F. nucleatum ATCC 10596 

 F. nucleatum  
ssp. vincentii 

F. nucleatum  
ssp. vincentii ATCC 49256 

 A. naeslundii A. naeslundii ATCC 19039 

 V. dispar V. dispar ATCC 27335 

  P. gingivalis W83 ATCC BA-308™ 

  P. intermedia ATCC 25611 

  A. actinomycetemcomitans OSM 1123 

 

2.10 Genomic techniques 

2.10.1 PCR screening of PADi4 deficient mice 

Tissue	digestion	

Mouse ear punches were used for identification of transgenic animals. The 

discarded sample of ear tissue of approximately 1 mm diameter was immersed in 

100 µl of Alkaline Lysis Reagent (dH2O, 25 mM NaOH, 0.2 mM disodium EDTA; pH 

12) and incubated in a hot block at 95°C for 1 h. After incubation, 100 µl of 

Neutralization Reagent (dH2O, 40 mM Tris-HCl; pH 5) was added to each sample 

and mixed thoroughly (Truett et al., 2000). DNA samples were then ready for 

PCR screening. 

PCR	

The deletion of PADi4 in the knockout mice was confirmed by PCR. A set of three 

primers were use to distinguish between PADi4 floxed mice and PADi4 KO mice 

generating amplicons of 160 and 215 bp respectively (Figure 2-22). A PCR to 

identify the Cre gene was performed as well as a routine check, the product of 

which was of 570 bp. The screening protocol and primers sequences (Table 2-10) 
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were kindly provided by Dr Kerri Mowen (The Scripps Research Insitute, La Jolla, 

CA). Primers were purchased from Integrated DNA Technologies (Leuven, 

Belgium).  

 
Figure 2-22: Identification of PADi4 floxed and PADi4 KO mice by PCR 
A PCR reaction with 3 primers indicated above differentiated between PADi4 
floxed and PADi4 KO mice. When the PADi4 gene is present and flanked by the 
LoxP regions, a fragment of 160 bp is generated by PCR (product of primers 1 and 
2). When the PADi4 gene has been excised, a different combination of the primers 
creates a fragment of 215 bp (product of primers 1 and 3). 

Table 2-10: Primers sequences. 
PADi4 and Cre primers sequences for identification by PCR of PADi4 floxed, 
PADi4 KO, and B6.FVB-Tg (Ella-cre) mice (F, forward; R, reverse). 

 PADi4 primers  

Name Sequence 

PADi4 3’ lox F 5’-CTA AGA GTG TTC TTG CCA CAA G-3’ 

PADi4 3’ lox R 5’-AGT CCA GCT GAC CCT GAA C-3’ 

PADi4 5’ lox F 5’-CAG GAG GTG TAC GTG TGC A-3’ 

Cre primers  

Name Sequence 

Cre F 5’-GAC GGA AAT CCA TCG CTC GAC CAG-3’ 

Cre R 5’-GAC ATG TTC AGG GAT CGC CAG GCG-3’ 

 

 

PADi4 Floxed: 160 bp 

LoxP PADi4 KO:       215 bp 

LoxP 

LoxP PADi4 LoxP 
3’ 

5’ 

5’ 

5’ 

5’ 

3’ 

1 

2 3 
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Each PADi4 PCR reaction consisted of: 

12.5 µl ReddyMix PCR master mix 2X (Thermo Fisher Scientific)  

0.5 µl 10 µM Padi4 3’ lox F 

1 µl 10 µM Padi4 3’ lox R 

0.5 µl 10 µM Padi4 5’ lox F 

9.5 µl dH20 

1 µl DNA template 

Total volume = 25 µl 

 
Each Cre PCR reaction consisted of: 

12.5 µl ReddyMix PCR master mix 2X  

0.5 µl 10 µM Padi4 Cre F 

0.5 µl 10 µM Padi4 Cre R 

10.5 µl dH20 

1 µl DNA template 

Total volume = 25 µl 

PCR amplifications were performed in 0.2 ml Eppendorf® tubes, adding the DNA 

template last. All reactions included a positive control and a blank control 

without DNA. Tubes were sealed and loaded onto a DNA Engine® thermal cycler 

(PTC-200, BIO-RAD, CA, USA), to undergo the thermal cycling conditions shown 

in Table 2-11 and Table 2-12. 

Table 2-11:Thermal cycling conditions for PADi4 screening 
 
Step Cycles number Temperature (°C) Time (min:sec) 

1 Initial denaturation 1 95 5:00 

2 Denaturation 

40 

95 0:30 

3 Alignment 59 0:30 

4 Extension 72 0:30 

5 Final extension 1 72 5:00 
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Table 2-12: Thermal cycling conditions for Cre screening 
 

Step Cycles number Temperature (°C) Time (min:sec) 

1 Initial denaturation 1 94 10:00 

2 Denaturation 

30 

94 1:00 

3 Alignment 60 1:00 

4 Extension 72 1:00 

5 Final extension 1 72 10:00 

 

Electrophoresis	of	the	amplification	products	

PCR results were evaluated by visualising the amplicons by electrophoresis 

(Figure 2-23). Ten µl of each reaction product was loaded to a 1.5% w/v agarose 

gel (Agarose MP) in 1X Tris-Borate-EDTA buffer (TBE) containing 1X Sybr® Safe 

DNA Gel Stain. A 100 bp DNA ladder (BioLabs, MA, USA) was used as a molecular 

weight marker, and the electrophoresis was run at 100 V for 40 minutes using a 

power supply PowerEase 500 (Thermo Fisher Scientific). The results were 

visualized using a BioDoc-it™ Imaging System (UVP, Cambridge, UK) to confirmed 

whether the mice were PADi4 KO (215 bp) or PADi4 floxed (160 bp) and for the 

presence of Cre (570 bp). 
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Figure 2-23: Electrophoresis images of PADi4 and Cre gene screening by 
PCR 
Every transgenic mouse was screened for PADi4 and Cre genes by PCR. (A) 
PADi4 screening by PCR; samples of 1, 3, 4 and 5 have deleted the exons 9 and 
10 of the PADi4 gene in all the chromosomes and therefore are homozygotes 
PADi4 KO and present a unique band at 215 bp; samples 2 and 6 have deleted 
the exons just in one chromosome and therefore are heterozygotes PADi4 
KO/floxed and present two bands, at 215 bp and 160 bp. (B and C) PADi4 and Cre 
screening by PCR; samples 7, 8, 10 and 11 are homozygotes for PADi4 KO and 
Cre positives presenting a band at 570 bp; sample 9 is homozygote for PADi4 KO 
and has eliminated completely the Cre gene, being selected as parental for the 
PADi4 KO lineage. 

2.10.2 RNA extraction and reverse transcription 

Bone marrow dendritic cells (BMDCs), CD4+ T cells and bone marrow derived 

neutrophils were isolated as described in sections 2.3.6, 2.3.4 and 2.3.7 

respectively. One million cells were transferred to 1.5 ml tubes and then 

pelleted by centrifugation at 2500xg for 5 min at 4°C. Cells were washed twice 

in PBS to remove remaining media culture, and then resuspended in 350 µl of 

RLT buffer (RNeasy® Mini kit, Qiagen, The Netherlands) with 1% v/v β-

Mercaptoethanol (Sigma-Aldrich) to lyse the cells. The RLT buffer contains a high 

concentration of guanidine isothiocycanate, which supports the binding of RNA 

to the silica membrane; the β-Mercaptoethanol inactivates the RNases in the cell 
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lysates. Samples were immediately frozen in dry ice and stored at -80°C until 

use to avoid RNA degradation. To continue the RNA extraction with the RNeasy® 

Mini kit (Qiagen), samples were left to thaw in ice and then 350 µl of ice-cold 

70% v/v ethanol in dH2O were added to each lysate to precipitate the nucleic 

acids. Immediately, 700 µl of the sample solution were transferred to an RNeasy 

Mini spin column placed in a 2 ml collection tube, and centrifuged for 15 sec at 

8000xg. The flow-through was discarded and 700 µl of RW1 buffer were added to 

each column and centrifuged for 15 sec at 8000xg to remove the biomolecules 

that were not bound to the silica membrane. The flow-through was discarded 

and 500 µl of RPE buffer were added to remove traces of salts from previously 

used buffers, then centrifuged for 15 sec at 8000xg. The RPE wash was repeated 

a second time, columns were centrifuged for 2 min at 8000xg. Columns were 

transferred to a new 2 ml collection tube and centrifuged at full speed for 1 min 

to dry the membrane. Then, the RNeasy spin columns were placed in a new 1.5 

ml tube and 30 µl of RNase-free water were added directly to the spin column 

membrane and centrifuged for 1 min at 8000xg to elute the RNA. 

The concentration and the quality of the RNA extracts were evaluated by 

spectrophotometry measuring the absorbance at 260 nm (A260), 280 nm (A280) and 

340 nm (A340) with a NanoDrop1000 spectrophotometer (Thermo Fisher 

Scientific), in 1.5 µl of sample. The absorbance at 260 nm corresponds with the 

maximum absorption wavelength of nucleic acid, and at 280 nm with proteins 

and phenol. The absorbance at 340 nm establishes a baseline close to zero for 

the spectrum normalization. The concentration of RNA in the sample was 

calculated applying the Beer-Lambert law with the following equation: 

𝑅𝑁𝐴 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 (𝑛𝑔 𝜇𝑙) = (𝐴!"# − 𝐴!"#)×40 

The quality of the RNA extract was estimated with the A260/A280 ratio. Values 

comprised between 1.8 and 2.1 are generally accepted as indicating reasonable 

quality RNA (Figure 2-24). 
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Figure 2-24: Quality and efficiency of the RNA extraction 
The RNA was extracted from 1x106 BMDCs, CD4+ T cells and bone marrow 
derived neutrophils, using the RNeasy® Mini kit (Qiagen). The quality and the 
efficiency of the RNA extraction were evaluated by spectrophotometry measuring 
the absorbance at 260 nm (A260), 280 nm (A280) and 340 nm (A340) with a 
NanoDrop1000 spectrophotometer (Thermo Fisher Scientific). Data shown are 
mean with SEM of 4-8 mice per group. (A) Quality of the RNA extracts of each cell 
type based on the A260/A280 ratio; the shaded area corresponds with the interval for 
acceptable RNA quality between 1.8 and 2.1 A260/A280 ratio values. (B) Efficiency 
of the RNA extraction from each cell type calculated with the Beer-Lambert law as 
(A260-A340) x 40.  

The conversion of RNA to cDNA was carried out with the High-Capacity cDNA 

Reverse Transcription Kit (Thermo Fisher Scientific). A master mix was prepared 

with RT buffer containing manufacturer optimized concentrations of MgCl2, 

along with dNTPs, random primers, nuclease-free H2O and MultiScribe™ reverse 

transcriptase enzyme (RT) according to manufactures instructions as described 

in Table 2-13. A master mix without RT was used as control to determine 

whether genomic DNA contaminated the RNA sample. Each reaction contained 

350 ng of RNA template in nuclease-free H2O up to 10 µl making a total volume 

of 20 µl/reaction. The reactions were prepared on ice in RNase-free 0.2 ml PCR 

tubes (Thermo Fisher Scientific). Tubes were sealed, briefly centrifuged and 

loaded onto a DNA Engine® thermal cycler (PTC-200, BIO-RAD), to undergo the 

thermal cycling conditions shown in Table 2-14. 

 

 

 

A

BMDCs T cells Neutrophils
0.0

0.5

1.0

1.5

2.0

2.5

A
26

0/
A

28
0

B

BMDCs T cells Neutrophils
0

100

200

300

R
N

A
 (n

g/
µl

)



Chapter 2 
 

 111 

Table 2-13: Composition of the reverse transcription reaction mix 
 

 Volume/Reaction (µl) 

Component Master-mix with RT Master-mix 
without RT  

10X RT Buffer 2.0 2.0 

25X dNTP Mix (100 mM) 0.8 0.8 

10X RT Random Primers 2.0 2.0 

MultiScribe™ Reverse 
Transcriptase (RT) 1.0 - 

Nuclease-free H2O 4.2 5.2 

RNA template (350 ng) 10.0 10.0 

Total volume per reaction 20.0 20.0 

 

Table 2-14:Thermal cycling conditions for conversion of mRNA to cDNA with 
the High-Capacity cDNA Reverse Transcription Kit 
 

Step Number of cycles Temperature (°C) Time (min) 

1 1 25 10 

2 1 37 120 

3 1 85 5 

 

2.10.3 Quantitative real-time PCR (q-PCR) 

The expression of PADi2 and PADi4 genes in bone marrow dendritic cells 

(BMDCs), CD4+ T cells and bone marrow derived neutrophils, was assessed by 

quantitative real-time PCR. The cDNA was generated as described in section 

2.10.2 qPCR performed using TaqMan® reagents (Thermo Fisher Scientific). 

Reactions were prepared on ice in a 96 well plate (Starlab) in duplicate. Each 

reaction consisted of 2 µl of cDNA template, 1 µl of TaqMan® Primer Probe Assay 

Mix (Table 2-15), 10 µl of TaqMan® Fast Advanced Master Mix and 7 µl of 

nuclease-free H2O. The plate was sealed, briefly centrifuged and loaded onto a 

7500 Real-Time PCR System (Fisher Scientific) to undergo the thermal cycling 
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conditions described in Table 2-16. Real-time PCR data were analysed using the 

2-ΔCT method (Schmittgen and Livak, 2008). The expression of the gene of 

interest was determined relative to the expression of 18S.  

Table 2-15: TaqMan® primers used in q-PCR 
Thermo Fisher Scientific supplied all primers. N/A = no applicable 

Gene Species Assay ID Spans 
exon 

18S Eukaryote 4352930E N/A 

PADi2 Mouse Mm01341648_m1 5-6 

PADi4 Mouse Mm01341658_m1  9-10 

 

Table 2-16:Thermal cycling conditions for q-PCR using TaqMan® assay 
 

Amplification step Number 
of cycles 

Temperature 
(°C) 

Time 
(min:sec) 

1 UNG activation Hold 1 50 2:00 

2 Polymerase 
activation Hold 1 95 0:20 

3 PCR 
Denature 

40 
95 0:03 

Anneal/Extend 60 0:30 

 

2.11 Statistical analysis 

All statistical analyses were performed using GraphPad Prism® software version 6 

(GraphPad Software, California, USA). To test if the means of two samples were 

different the two-tailed student’s t-test was used for normally distributed data 

sets. To compare the means of two or more samples one-way analysis of 

variance (ANOVA) was used. When the interaction of two independent variables 

was tested two-way ANOVA was employed. A p value <0.05 was considered as 

significant. 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Chapter 3. The role of PAD4 in murine neutrophil 
extracellular traps (NETs) 
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3.1 Introduction 

Neutrophils can be protective or, when uncontrolled, destructive for the host, 

contributing to many inflammatory diseases such as periodontitis (PD) (as 

reviewed in Mayadas et al., 2014, Hajishengallis et al., 2016, Cortés-Vieyra et 

al., 2016). In healthy periodontal tissues there is a steady-state equilibrium 

between the supra- and subgingival microbiota and the innate and structural 

defence mechanisms. Neutrophils continually migrate through the gingiva and 

there is an accumulation of lymphocytes and macrophages in the connective 

tissues (Page and Schroeder, 1976, Raeste et al., 1977, reviewed in Newman et 

al., 2014).  

Previous studies have demonstrated that gingivitis - inflammation associated 

with increased plaque accumulation - is associated with increased numbers of 

both lymphocytes and other mononuclear cells in the early lesion in periodontal 

disease (reviewed in Berglundh and Donati, 2005). 

Differences in neutrophils shape, granularity, CD molecules and antimicrobial 

strategies such as reactive oxygen species (ROS) and NETs formation, have been 

observed in the different stages of inflammatory disease progression, shaping 

the course of the immunological response to infection (reviewed in 

Kolaczkowska and Kubes, 2013). Based on these characteristics, neutrophils have 

been classified as resting/naïve circulatory neutrophils, parainflammatory 

neutrophils found in healthy oral cavity, and proinflammatory neutrophils 

associated with chronic periodontitis (Fine et al., 2016). These differences do 

not necessarily represent separate cell lineages.  

Some oral bacteria, notably Socransky’s ‘red complex’ species, possess immune 

evasion mechanisms that can directly and indirectly impair neutrophil functions. 

The PD keystone bacteria P. gingivalis has been shown to impair neutrophil 

recruitment, phagocytosis and intracellular killing by altering the expression of 

chemokines, cell adhesion molecules and the inactivation of granular enzymes 

and antimicrobial peptides. In particular, P. gingivalis gingipains can regulate 

neutrophil apoptosis and promote a pro-inflammatory response through the 

regulation of TREM-1 (Bostanci et al., 2013, Olsen and Hajishengallis, 2016). 
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Changes in neutrophil reactivity have been observed with age, with impairment 

in defensive strategies such as NETs formation and ROS production (Hazeldine et 

al., 2014). As neutrophils represent the front line against pathogens, a defect in 

the recruitment and activation of neutrophils might contribute to the increased 

susceptibility to infection observed with age.  

Neutrophils can have both destructive and protective roles in periodontitis. 

Patients with leukocyte adhesion deficiency (LAD), who have deficient 

neutrophil adhesion and migration into tissues, typically have aggressive 

periodontitis at a young age, which suggests a role for neutrophils in maintaining 

oral health (Moutsopoulos et al., 2015). In this context, neutrophils physiological 

actions would involve phagocytosis, degranulation, recruitment and activation of 

other immune cells through the production of pro-inflammatory cytokines, and 

the release of NETs.  

NETs are filamentous web-like structures that consist of extruded nuclear DNA 

and histones interspersed with neutrophil granule enzymes, such as 

myeloperoxidase (MPO), neutrophil elastase (NE), cathepsin G, and lactoferrin. 

NETs formation was initially thought restricted to neutrophils, although two 

studies have also shown extracellular traps (ETs) formation from mast cells and 

eosinophils (Yousefi et al., 2008, von Köckritz-Blickwede et al., 2008). NETs can 

be formed in response to infectious agents and inflammatory mediators such as 

interleukin 8 (IL-8), lipopolysaccharides (LPS) or phorbol 12-myristate 13-acetate 

(PMA) (Brinkmann et al., 2004, Brinkmann and Zychlinsky, 2012). The formation 

of NETs (NETosis) is usually accompanied by the cell lysis and depends, among 

other factors, on the interaction of the enzyme peptidylarginine deiminase 4 

(PAD4) with the histone 3 (H3), allowing the decondensation of the nuclear DNA 

and its release to the extracellular media (Li et al., 2010).  

PADs activity is fundamental for normal healthy physiological conditions, 

modifying the proteins structure in a process known as citrullination (Wang and 

Wang, 2013). This posttranslational modification has also been associated with 

several chronic immune-mediated diseases such as rheumatoid arthritis (RA) and 

PD (Baka et al., 2012). In particular, NETs formation, which as mention before is 

dependant on PAD4 activity, has been observed in the gingival pocket surface of 
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patients with periodontitis (Vitkov et al., 2009). Although their role in the 

periodontal lesions remains to be elucidated, NETS may contribute to regulating 

the adjacent microbial biofilm or may also contribute to inflammation and tissue 

damage, leading eventually to disease.  

3.2 Aims 

The aim of this study was to confirm whether PAD4 is essential in the formation 

of NETs, and to evaluate neutrophil activation and NETs formation in vitro 

following co-culture of neutrophils with multi-species oral biofilms.  
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3.3 Results 

In all experiments, the role of PAD4 was assessed using PADi4 deficient mice 

(KO) and compared with PADi4 floxed (WT) littermate controls.  

3.3.1 PADi4 and PADi2 gene expression in neutrophils  

PADi4 and PADi2 gene expression in bone marrow neutrophils was assessed by 

quantitative PCR (as described in Chapter 2, section 2.10.3). PADi4 expression 

was readily detected in WT controls and undetectable in KO mice (Figure 3-1A). 

PADi2 gene expression was evaluated to assess a possible compensation 

mechanism as consequence of PADi4 deletion. No differences in PADi2 

expression were detected between WT and KO mice (Figure 3-1B). 

  

Figure 3-1: PADi4 and PADi2 mRNA expression in bone marrow derived 
neutrophils 
The total RNA of 1x106 bone marrow derived neutrophils from untreated WT and 
KO mice, was extracted and reverse-transcribed to cDNA. The expression of 
PADi4 and PADi2 genes was assessed by real-time PCR using TaqMan® 
primer/probe sets. Data are expressed as 2-ΔΔCT relative to the housekeeping gene 
18S. Data shown are mean with SEM of 2 mice per group. No gene amplification 
is indicated as non-detectable (n.d) in the panels above. The differences between 
groups were evaluated with two-tailed unpaired Student’s t-test (ns, p>0.05). 

3.3.2 Characterization of neutrophil extracellular traps (NETs) 

Bone marrow neutrophils from WT and KO mice were stimulated with 100 nM of 

PMA for 16 h to induce NETs formation, based on the protocol described in 

Ermert et al., 2009 modified by Dr Jillian Stephen. Cells were stained for 

elements known to be part of NETs structures (Chapter 2, section 2.5.4.1) 
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including Neutrophil Elastase (NE) and citrullinated histone 3 (cit-H3). NETs were 

identified as structures formed by long strands of DNA with co-localized NE and 

cit-H3 released to the extracellular media during NETosis (Figure 3-2).  

 

Figure 3-2: Imaging neutrophil extracellular traps 
Neutrophils were isolated from bone marrow of WT mice and cultured on sterile 
glass cover slips in a 24 well plate. Neutrophils were stimulated with 100 nM PMA, 
for 16 h at 37°C and 5% CO2. An unstimulated control with media only was tested 
for each sample. NETs attached to the glass cover slips were fixed and then 
labelled with antibodies for NE (Alexa 647 - red) and cit-H3 (Cy3 - green). DNA 
was stained with Hoechst 33342 (blue). Images shown are representative of 5 
independent experiments (1-2 mice per group per experiment). (A) Murine NET 
composite image of all fluorescent staining. (B) DNA, (C) NE and (D) cit-H3. The 
white arrow in panel A indicates a NET structure. Scale bar represents 10 µm. 

To confirm that KO mice were functionally knockouts, WT and KO bone marrow 

neutrophils were stimulated with PMA to induce NETs formation or cultured with 

media only as unstimulated control, and then visualized by immunofluorescence 

microscopy (Figure 3-3). Neutrophils cultured with media only showed a round 
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shape with intracellular DNA staining and minimal NE staining on the cell surface 

with no apparent NET formation irrespective of PAD4. NETs formation was 

observed in WT neutrophils following PMA stimulation, with long branching 

strands of DNA co-localized with NE and cit-H3. KO neutrophils didn’t form NETs 

structures when stimulated with PMA, but showed a mature lobed form with an 

increase in NE release surrounding the cells. The use of glass coverslips to grow 

NETs resulted in an unspecific binding of α-NE antibody visualized as small bright 

red dots in the image background.  

 
Figure 3-3: Neutrophil extracellular traps from bone marrow derived 
neutrophils 
Neutrophils were isolated from bone marrow of WT and KO mice and NETs 
induced as in Figure 3-2. Images shown are representative of 5 independent 
experiments (1-2 mice per group per experiment). Scale bar represents 20 µm. 
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NETs formation was quantified by fluorescence (Chapter 2, section 2.5.4.2) using 

assays based either on the release of DNA or the release of NE to the 

extracellular media during NETosis. The DNA released to the media was assessed 

after 16 h of Media/PMA stimulation of WT and KO mice neutrophils, in cell 

supernatants treated with MNase and Sytox® Green (Figure 3-4). The DNA release 

was evaluated only at 16 h due reagent limitations. In WT mice, there was a 

trend to increased extracellular DNA detection in PMA stimulated neutrophils 

compared with the media control, although this difference did not reach 

statistical significance. A high signal background in the WT unstimulated 

neutrophils was observed, probably due to cell death. There was significantly 

less DNA released from KO neutrophils compared with WT mice regardless of the 

stimulation conditions.  

 
Figure 3-4: Quantification of extracellular DNA in NETs by fluorescence  
Neutrophils were isolated from bone marrow of WT and KO mice and stimulated 
with 100 nM PMA, for 16 h at 37°C and 5% CO2. An unstimulated control with 
media only and a blank control with no cells were tested for each sample. The 
extracellular DNA was digested with 1 U/ml of MNase and Sytox® Green added to 
cell supernatants. Fluorescence was recorded in arbitrary fluorescence units 
(AFU). Data shown are mean with SEM of two independent experiments (2 mice 
per group per experiment). The dotted line indicates average AFU of the blank 
control. Differences between groups were assessed with 1-way ANOVA and 
Tukey correction for multiple comparisons (**, p<0.01). 

The NE release to the media was evaluated in cell supernatants over time (0 h - 

18 h) during NETs formation from Media/PMA stimulated WT and KO neutrophils 

(Figure 3-5). An average baseline value of 16.8 ng/ml of NE was found in the 
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unstimulated neutrophils, irrespective of presence of PAD4. A significant 

increase in NE release was observed after PMA stimulation, at all time points, 

compared with the unstimulated controls. The NE release peaked at 6 h after 

stimulation with an average value of 40.8 ng/ml in WT PMA and 42.2 ng/ml in KO 

PMA. No differences were observed in the NE release from WT and KO 

neutrophils stimulated with PMA.  

 
Figure 3-5: Neutrophil elastase release during NETs formation  
Neutrophils were isolated from bone marrow of WT and KO mice and stimulated 
with with 100 nM PMA for 2, 4, 6, 16 and 18 h at 37°C and 5% CO2. An 
unstimulated control with media only and a blank control with no cells were tested 
for each sample at each time point. The NE activity was evaluated in the 
supernatants. Data shown are mean with SEM of two independent experiments (2 
mice per group and experiment). Differences between groups at each time point 
were assessed with 2-way ANOVA and Tukey correction for multiple comparisons. 
(*, p<0.05; **, p<0.01; ****, p<0.0001). No difference was observed between PMA 
or media control groups (p>0.05). 

To verify the results obtained from the DNA and NE quantification during NETs 

formation, cells were stained with cell-impermeant Sytox® Green or with 

fluorescent antibodies specific for NE, cit-H3 and DNA (as described in Chapter 2, 

section 2.5.4.1). When visualizing cells using Sytox® Green (Figure 3-6A), a 

notable amount of cell death was observed in the media controls and PMA 

stimulated KO neutrophils, with no formation of NETs structures. NETs were 

detected exclusively in WT neutrophils under PMA stimulation, with long 

branching strands of DNA across dead cells.  

When visualizing cells by immunofluorescence (Figure 3-6B), media unstimulated 

cells showed intracellular DNA and NE staining and no trace of NETs formation or 
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citrullination of histone 3. PMA stimulated WT neutrophils exhibit a high amount 

of cit-H3 and NE co-localized with spindle shaped DNA release. PMA stimulated 

KO neutrophils show intracellular DNA staining and an increase in NE in the cell 

surface, but no detection of cit-H3. 

  
Figure 3-6.1: Visualization of neutrophil extracellular traps by fluorescence  
Samples were prepared as in Figure 3-5. At each time point, wells were 
fluorescently labelled and visualized with EVOS FL auto cell imaging system. 
Images shown are representative of 6 h incubation with 100 nM PMA or media 
only control. (A) DNA was stained with cell-impermeant Sytox® Green; arrows 
indicate NETs-like structures. (B) Cells were labelled with antibodies specific for 
NE (Alexa 647 - red), cit-H3 (Cy3 - green) and Hoechst 33342 as DNA stain (blue). 
Scale bar represents 400 µm. 
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Figure 3-6.2: Visualization of neutrophil extracellular traps by fluorescence 
For the data presented in Figure 3-6.1, magnified images of PMA stimulated 
neutrophils from WT mice. (A) DNA was stained with cell-impermeant Sytox® 
Green; arrows indicate NETs-like structures. (B) Cells were labelled with 
antibodies specific for NE (Alexa 647 - red), cit-H3 (Cy3 - green) and Hoechst 
33342 as DNA stain (blue). Scale bar represents 400 µm. 
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3.3.3 Characterization of neutrophils response to oral biofilms 

Different microbial biofilms are associated with health, gingivitis and 

periodontitis. The interaction of neutrophils with model biofilms representing 

health, gingivitis or periodontitis was studied; specifically to investigate whether 

NETS might play a role in these neutrophil responses.  

To first determine normal neutrophil responses to different biofilms, neutrophils 

were stimulated for 16 h with three different multi-species biofilms developed 

to represent oral health (3 species), gingivitis (7 species), and periodontitis (10 

species) (Millhouse, 2015), and also stimulated with PMA and media only as 

positive and negative controls respectively. To identify NETs structures following 

co-culture, neutrophils were stained for NE (shown in red), cit-H3 (shown in 

green) and DNA (shown in blue) and visualised by confocal microscopy (Chapter 

2, section 2.5.4.1).  

Neutrophils cultured for 16 h in media only showed intracellular DNA staining 

and minimal NE staining inside the cell with no apparent NET formation (Figure 

3-7A). NETs formation was observed exclusively under PMA stimulation positive 

control with long branching strands of DNA, a modest release of NE at the cell 

surface and cit-H3 (Figure 3-7B). Neutrophils when cultured with the 3 spp. 

biofilms (Figure 3-7C) formed cell aggregates with notable staining for NE and 

moderate amounts of cit-H3, with diffuse DNA release around cells rather than 

forming clear DNA strands. Neutrophil clustering diminished progressively when 

challenged with the 7 spp (Figure 3-7D) and 10 spp (Figure 3-7E) biofilms; this 

apparent reduction in the number of cells visible in the wells could be a 

consequence of excessive fixation or washing. In these cultures, the biofilms 

seemed to grow over the cell cultures, therefore possibly masking the neutrophil 

staining or inhibiting the release of NE and cit-H3.  
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Figure 3-7: Neutrophil stimulation with oral biofilms 
Neutrophils were isolated from bone marrow of WT mice and cultured on sterile 
glass cover slips in a 24 well plate. Neutrophils were stimulated for 16 h at 37°C 
and 5% CO2 with either media only as control, 100 nM PMA or biofilms containing 
3, 7 or 10 species of oral bacteria grown on Thermanox™ coverslips and placed 
upside down in hanging baskets immersed in the cell culture. Cells attached to the 
glass cover slips were fixed with 4% paraformaldehyde (PFA) and then labelled 
with antibodies specific for NE (Alexa 647  - red) and cit-H3 (Cy3 - green). Hoechst 
33342 (blue) was used to stain the DNA. Pictures shown are representative of 
images from 3 different mice.  The upper panels in each section are a composite 
of the 3 fluorescent stains: DNA (blue), NE (red) and citH3 (green); the lower 
panels show ony NE and cit-H3 staining. White arrows in B indicate a NET. Dotted 
open circles in D and E indicate bacteria. Scale bar represents 50 µm. 
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To further investigate the contribution of oral bacteria to NETs generation, the 

production of reactive oxygen species (ROS) was assessed in WT neutrophils 

stimulated with 3, 7 or 10 spp. biofilm supernatants, and PMA or media only as 

positive and negative controls respectively (Figure 3-8). ROS production over 

time was evaluated by luminescence (Chapter 2, section 2.5.4.4) and peak 

values chosen as representative of the cell response to stimulus. A significant 

increase in ROS production was observed under PMA stimulation when compared 

with the other culture conditions. The cell response to biofilm supernatants was 

slightly higher compared to the media negative control, but differences didn’t 

reach significance. 

 
Figure 3-8: Neutrophils ROS production under stimulation with oral biofilms 
supernatants  
Frozen biofilms were revived and supernatants collected after 24 h. Neutrophils 
were isolated from bone marrow of WT mice and stimulated with biofilms 
supernatants for evaluation of ROS production over time. The peak values were 
calculated for each ROS curve using Microsoft Excel software and expressed as 
relative light units (RLU). Data shown are mean with SEM of 2 experimental 
replicates of one experiment (3 mice). Differences between groups were assessed 
with 1-way ANOVA and Tukey correction for multiple comparisons (*, p<0.05; **, 
p<0.01, ***, p<0.001, ****, p<0.0001). 

Next, the cytokine and chemokine release by neutrophils following 16 h co-

culture was analyzed with Luminex® Multiplex assays (Chapter 2, section 2.8.2). 

Seven and ten species biofilms caused a significantly increased release of tumor 

necrosis factor alpha (TNF) compared with the rest of stimulation conditions 

(Figure 3-9A). A trend to increase in TNF release was observed between 7 and 10 

spp. but differences did not reach significance. The chemokine CXCL1 or KC, the 
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murine homolog of human IL-8, was also measured in the co-culture 

supernatants (Figure 3-9B). Low concentrations of KC protein were detected in 

the media control and cell supernatants from co-culture with 3 spp. biofilm, but 

was undetectable in cell supernatants from PMA stimulated control and co-

culture with 7 and 10 spp. biofilms; the differences between different culture 

conditions did not reach significance. Low concentrations of interleukin 1 beta 

(IL-1β) were detected in all co-culture supernatants (Figure 3-9C); no significant 

differences were observed between culture conditions. 

These data did not indicate a definitive clear role for NETS in the neutrophil 

response to multispecies biofilms in vitro.  

 
Figure 3-9: Cytokine profile of neutrophils supernatants under stimulation 
with oral biofilms 
Samples were prepared as in Figure 3-7, supernatants collected after incubation 
and protein release measured by Luminex® Multiplex assay for (A) TNF, (B) KC 
and (C) IL-1β cytokines. Data shown are mean with SEM of 3 experimental 
replicates of one experiment (3 mice). Differences between groups were assessed 
with 1-way ANOVA and Tukey correction for multiple comparisons (ns, p>0.05; *, 
p<0.05; **, p<0.01). 
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3.4 Discussion 

The data presented in this chapter confirm PAD4 involvement in NETs formation 

and question the evaluation of NE as a reliable method for NETs quantification.  

PADi4 deletion was verified directly by normal and quantitative PCR, and 

indirectly by the evaluation of NETs formation under PMA stimulation. PADi4 KO 

mice neutrophils were incapable of forming NETs (as previously described in 

Wang et al., 2009 and Li et al., 2010), confirming PADi4 KO mice as suitable 

candidates for the study of the implication of NETs in the development of PD 

and other citrulline-associated diseases such as RA.  

On occasions, the deletion of a gene can trigger compensation mechanisms that 

can partially restore the phenotype (Rossi et al., 2015, Kim et al., 2015). In the 

case of PADi4 gene, the generation of a KO mice could induce the gene 

expression of other highly related PAD isoforms such as PADi2. However, there 

were no marked differences in PADi2 gene expression between KO and WT mice 

casting aside the compensation hypothesis. Still, a more detailed gene 

expression analysis including other PAD isoforms, tissues and disease states could 

be pursued. 

Previous studies have also documented functional deletion of PADi4 by 

demonstration of a lack of NETS (Li et al., 2010, Hemmers et al., 2011, 

Rohrbach et al., 2012a, Wong et al., 2015). NETS were clearly visible although 

some images included a scattered pattern of bright α-NE antibody aggregates, 

probably as consequence of the unspecific binding of the α-NE antibody to the 

surface of the glass coverslip used to grow and visualize NETs. This non-specific 

signal could be mitigated by pre-treating the glass coverslips with nitric acid to 

avoid immunofluorescence artefacts and reduce the activation of neutrophils by 

interaction with the glass surface and contaminants such as LPS (Allen, 2014).  

The quantification of NETs formation is a complex task, because even though the 

immunofluorescent visualization of NETs is a widely used technique and 

informative as to the presence of absence of NETs, the translation of the 

experimental observations into comparable semi-quantitative data remains a 
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challenge (as reviewed in Naccache and Fernandes, 2016). The images always 

offer a bias approach and there are multiple elements susceptible to be 

evaluated individually (extracellular DNA, core histones, PAD4, NE, NADPH, MPO 

or ROS production). For that reason, the detection of the NE and the DNA 

released to the extracellular media during NETosis were the methods chosen to 

evaluate NETs formation complementary to the fluorescence visualization. 

Previous studies in NE knockout mice have documented discrepant conclusions 

about the requirement of NE activity for the generation of NETs 

(Papayannopoulos et al., 2010, Martinod et al., 2016). Although NE protease 

activity is necessary for host defence against gram-negative bacteria (Belaaouaj 

et al., 1998, Belaaouaj et al., 2000, Weinrauch et al., 2002), from the results 

obtained we can deduce that the release of NE seemed independent of NETosis. 

The quantification data showed no differences in NE release between KO and WT 

stimulated neutrophils over time, but under the same conditions, the 

differences in NETs formation between KO and WT neutrophils were visually 

clear in the fluorescence images; NETs-like DNA release and cit-H3 were only 

detectable in WT stimulated neutrophils and absent in KO stimulated cells. 

Commensurate with the NE assay data, there was a consistent NE staining in 

stimulated WT and KO neutrophils irrespective of presence of NETs structures. 

The translocation of the NE to the nucleus and its participation in histone 

degradation (Papayannopoulos et al., 2010) would probably converge with PAD4 

in the chromatin decondensation process during NETs formation, but would not 

limit it (Rohrbach et al., 2012b).  

The analysis of NADP+/NADPH or MPO levels have been considered as an 

alternative for NETs quantification, since they have been shown to play a major 

role in NETs formation in studies carried out in NADPH knockout mice (p47phox-/-) 

(Röhm et al., 2014) and with neutrophil samples from patients with 

granulomatous disease (CGD) (Metzler et al., 2011). However, both NAPDH and 

MPO result in the production of ROS. ROS is also necessary for NETs formation 

(Fuchs et al., 2007), but acts upstream of chromatin decondensation (Remijsen 

et al., 2011) and therefore its function would not be affected by PAD4 deletion.  
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Neutrophils are terminally differentiated cells and undergo apoptosis shortly 

after maturation unless stimulated for survival (Geering and Simon, 2011). 

Therefore, because of the long periods of stimulation (16 h), there was a general 

increase in cell death in the unstimulated controls. Dead neutrophils freed their 

contents to the extracellular media following a death pathway distinct to 

NETosis, with DNA release surrounding the cells and no cit-H3 detectable. This 

sort of cell death generated a high signal background in the media controls for 

the quantification of NETs based in the release of DNA to the extracellular 

compartment, since this technique cannot distinguish between the extracellular 

DNA derived from NETs or other types of cell death such as apoptosis or necrosis. 

Periodontitis is a perfect example of neutrophil-mediated host tissue injury 

triggered by bacterial infection (Socransky et al., 1998, Kantarci and Van Dyke, 

2002, Li et al., 2014). Therefore, in this chapter we aimed to investigate how 

neutrophils respond to bacterial biofilms developed to recapitulate the stages 

from health to disease in periodontitis and if NETs are involved in such response.  

All biofilms induced a neutrophil response but none stimulated obvious NETs 

formation, which is not concordant with previous in vivo studies in which NETs 

have been observed in the periodontal lesions (Vitkov et al., 2009). The 

generation of ROS in response to biofilm supernatants, as a NETosis key step, 

matched the cellular response observed by fluorescence. The work in this 

chapter was performed in vitro with no in vivo validation, and therefore, the 

neutrophil-biofilm model employed present several limitations to be able to fully 

represent the interactions that might occur in vivo during the development of 

PD. To clearly identify the source of NETs, distinct from - for example - NETs 

formation from eosinophils (Yousefi et al., 2008), the model was restricted to 

the use of a single cell type culture, which would exclude the communications 

between cells and the signalling pathways that are triggered when the innate 

system encounter a pathogen (Chapter 1, Figure 1-5). A solution could be the 

use of supernatants from other cell types (such as epithelial cells or 

macrophages) cultured with the 3, 7 or 10 spp. oral biofilms, added during 

biofilm stimulation for NETs formation. Preliminary studies carried out in 

collaboration with PhD Ilaria Chicca (School of Dentistry, Birmingham, UK) have 

shown that supernatants from OKF6-TERT2 epithelial cells cultured with the 
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described oral biofilms, triggered ROS production (NETs precursor) in human 

neutrophils isolated form peripheral blood (data not shown).  

The co-culture system was composed by biofilms grown on coverslips placed in 

hanging baskets over the neutrophil culture (Chapter 2, Figure 2-18), and so 

inevitably some detached bacteria would contribute to the DNA signal in the 

fluorescence images. Yet, no influence from detached bacteria was expected in 

the cytokine cell responses to bacteria based on the studies carried out in 

(Millhouse, 2015) with biofilms and epithelial cultures, where no differences 

were observed in cytokine production when used an inverted incubation system. 

Therefore, an alternative to avoid bacteria contribution to DNA staining would 

be the use of an inverted system, with neutrophils cultured on fibrinogen-coated 

coverslips (to increase the cell adhesion), hanging over the biofilms.  

There are minor but relevant differences between the neutrophil responses to 

the 3, 7 and 10 spp. biofilms, such as an increased NE and cit-H3 release and cell 

clustering when neutrophils encounter the 3 spp. compared with the 

intermediate and disease-associated biofilm. Such differential responses could 

be analysed by assessing the NE released (Chapter 2, section 2.5.4.2) and the 

PAD activity and protein citrullination (Hensen and Pruijn, 2014) following 

neutrophil co-culture with biofilms.  

From the results observed we could deduce that as biofilm increased in virulence 

and complexity, neutrophils exhibited a more pro-inflammatory response with a 

greater secretion of TNF. This observation agrees with the results obtained in 

previous PD studies (Liao et al., 2014), some of which stress the association 

between susceptibility to PD and elevated levels of TNF in patients with diabetes 

mellitus (DM) (Singh et al., 2014, Zhao et al., 2016), or suffering from 

rheumatoid arthritis (RA) (Nilsson and Kopp, 2008). Additionally, TNF production 

triggers superoxide production from neutrophils, which plays an important role 

in local tissue destruction characteristic of PD (Kantarci and Van Dyke, 2002) and 

can act as intermediate for ROS generation and therefore influence NETs 

formation. 
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Surprisingly KC was barely detectable in cell supernatants, as its expression 

would be expected to show similar increases to TNF release (Vieira et al., 2009). 

In previous studies, the periodontal bacteria P. gingivalis has been shown to 

modulate the inflammatory responses by the degradation of cytokines such as  

IL-6 and IL-8 (KC homologue) by the bacteria proteases (gingipains) 

(Stathopoulou et al., 2009), offering a possible explanation for the non-

detection of KC in the cell supernatants. The cytokine IL-1β has shown to be 

present at higher levels in the gingivae and crevicular fluid of PD patients 

compared with healthy controls (Engebretson et al., 2002), but our results 

suggest no difference in the secretion of IL-1β between unstimulated and 

biofilm-challenged neutrophils. Previous studies show that IL-1α would have 

been a more suitable target to study neutrophil cell death contribution to the 

initiation of inflammation, while IL-1β is mainly secreted by macrophages and 

plays a more directed role in macrophages retention and recruitment (Rider et 

al., 2011).  

There were a number of limitations to the current work. Mouse bone marrow 

derived neutrophils were used throughout these studies, due the limited 

numbers of mature neutrophils that can be recovered from peripheral blood (20 

times less). However, the bone marrow contains neutrophils at different stages 

of maturation, with longer lifespan, no defect in superoxide production (NETs 

precursor) but less responsive to the chemoattractant effect of the N-formyl-L-

methionyl-L-leucyl-L-phenylalanine (fMLF) (Boxio et al., 2004) than circulating 

neutrophils, and hence they might respond differently to bacterial stimulation. 

Preliminary studies demonstrated chemotactic unresponsiveness of murine bone 

marrow neutrophils to fMLP in comparison with human neutrophils isolated from 

peripheral blood (data not shown). Also, the incubation periods needed to 

generate NETs are longer and have lower success; 30% of bone marrow derived 

murine neutrophils would form NETs after 16 h stimulation, compared with 80% 

of human neutrophils isolated from peripheral blood after 3-4 h stimulation 

(Ermert et al., 2009).  

The use of peritoneal exudate cells (PECs) (Chapter 2, section 2.3.8) was 

considered as an alternative to bone marrow derived neutrophils. These 

neutrophils were obtained but the number of viable neutrophils was insufficient 
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for the experimental requirements. It would be of interest for further studies to 

obtain a neutrophil mouse model comparable with the use of human neutrophils. 

A possibility to reduce the time for stimulation needed and avoid cell death, 

would be to prime bone marrow neutrophils previous PMA stimulation with 

granulocyte-colony stimulating factor (G-CSF) (Demers et al., 2016) or TNF 

(Hazeldine et al., 2014). 

Throughout these studies, it would have been of interest to assess the cell death 

pathways operating in addition to NETosis, using for example ELISA based 

techniques assessing histones and caspase release or flow cytometry to assess 

cell surface indicators of early apoptosis such as Annexin V. Notwithstanding 

these limitations, these data provided strong evidence that PADi4 deficient 

neutrophils fail to generate normal NETS.  

3.5 Conclusions 

This study confirmed the participation of PAD4 in the generation of neutrophil 

extracellular traps. NETs were identified by immunofluorescence microscopy. 

However, NETs quantification based on DNA or NE release is not fully 

representative of the NET formation and therefore cannot be used in isolation.  

Model oral biofilms representative of the stages from health to disease in 

periodontitis induced different responses in neutrophils, with an increased 

release of the pro-inflammatory cytokine TNF following neutrophil co-culture 

with biofilms of greater virulence and complexity. 
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4.1 Introduction 

Periodontitis (PD) is a disease characterized by a deregulated inmune response 

to a dysbiotic oral biofilm (Darveau, 2010). The cell response  causes chronic 

inflammation and bone destruction, mediated by, among other factors, the 

infiltration and hyperactivation of neutrophils (Fine et al., 2016) and altered T 

and B cell responses (as reviewed in Nair et al., 2014). The inflammatory 

infiltrates in the crevice fluid of the PD lesions includes approximately 95% 

mononuclear cells (B cells, T cells, mast cells, monocytes and macrophages) and 

numerous neutrophils (reviewed in Berglundh and Donati, 2005). Previous studies 

have shown that several mononuclear cell types contribute to periodontal 

pathology, with reduced bone loss observed in murine models of PD with a 

deficiency in B cells, T cells or mast cells (Baker et al., 1999, Malcolm et al., 

2016, Oliver-Bell et al., 2015).  

Neutrophils are also associated with PD. Individuals with impaired extravasation 

of neutrophils (LAD) exhibit severe periodontal disease (Waldrop et al., 1987, 

Deas et al., 2003). Neutrophil extracellular traps (NETS) have been visualized in 

the exudates of PD lesions forming an entangled web with bacteria and 

epithelial cells (Vitkov et al., 2009). Although neutrophils are believed to be 

mainly phagocytotic, their interaction with oral bacteria are confounded by the 

microbes forming biofilms compromising neutrophil mediated clearance by 

killing and phagocytosis. Therefore, the extracellular defense mechanisms such 

as NETs, also found in healthy saliva samples (Mohanty et al., 2015), might play 

an important role in maintaining the oral homeostasis.  

As shown in Chapter 3, PAD4 activity is necessary for the generation of NETs, 

and consequently its deficiency might have an impact in the interactions taking 

place between neutrophils and oral bacteria in PD development. During NETs 

formation, PAD4 citrullinates histones that are released to the extracellular 

media together with nuclear DNA and granular proteins (Brinkmann et al., 2004). 

Under the inflammatory conditions characteristic of a PD infection, this process 

provides a suitable environment for the interaction between the oral bacteria 

proteases and the host proteins, acting as a new source of antigens sensitive to 

be citrullinated by the PAD enzymes released as consequence of NETs formation 
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(reviewed in Dwivedi and Radic, 2014). The detection of antibodies against 

citrullinated peptides such as CEP-1 (citrullinated α-enolase peptide 1) in 

periodontal patients (Lappin et al., 2013, de Pablo et al., 2014), supports the 

idea of the participation of PAD enzymes in the development of PD 

pathogenesis.  

4.2 Aims 

The aim of this chapter was to investigate whether PAD4 would influence 

periodontal disease progression. 

The study sought to evaluate the differences between health and infection in 

the presence/absence of PAD4 activity following oral infection with P. gingivalis, 

assessing the alveolar bone loss and the humoral and cell mediated immune 

responses to P. gingivalis. 
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4.3 Results  

A murine model of periodonititis was performed in female PADi4 KO mice and 

WT littermate controls, all in C57BL/6 background (Figure 2-8). Disease severity 

was evaluated by measuring bone loss, and the immune response evaluated by 

assessing antibody production and cell response to P. gingivalis. 

 
Figure 4-1: Timeline of the murine model of periodontitis 
The commensal flora was depleted with ten days of antibiotic treatment in drinking 
water followed by 2 days without antibiotics, and then oral infections with 109           
P. gingivalis W83 CFU on 5 different days. First day of infections is represented as 
day 0 in the figure above. In some experiments, a blood sample was collected at 3 
weeks post-infection by tail tip excision. The immune response and clinical 
disease were evaluated at the end point 6 weeks post-infection. 

4.3.1 Evaluation of bone loss 

At six weeks post-infection the alveolar bone loss was evaluated with a 

dissection microscope (as described in Chapter 2, section 2.4.1.1) (Figure 4-2). 

For comparing groups, the alveolar bone loss (ABL) was transformed into relative 

values by subtracting the mean value of the WT control group to all 

measurements. Individual molar teeth were analysed, and data from all molar 

teeth combined were also evaluated. No significant differences could be 

observed between KO and WT experimental groups. The infection with             

P. gingivalis had no impact in the bone level. 
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Figure 4-2: Alveolar bone loss in PADi4 KO mice 
PADi4 KO or WT C57BL/6 littermate controls were orally infected with P. gingivalis 
W83 (PD) or vehicle control (Control). Alveolar bone loss (ABL) was evaluated 6 
weeks post-infection with a dissection microscope and relative values were 
calculated by subtracting the mean value of the WT control group. ABL was 
calculated for the (A) 1st, (B) 2nd, (C) 3rd molar and (D) all molars combined. The 
dotted line indicates the average ABL of the WT control group. Data shown are 
mean with SEM of 4 independent experiments (4-5 mice per group per 
experiment). Each data point shows the mean for a single experiment. The 
differences between groups were evaluated with 1-way ANOVA and Tukey 
correction for multiple comparisons (ns, p>0.05).  

Considering the limitations of a dissection microscope for the analysis of the ABL 

where the depth of the periodontal pocket cannot be assessed easily, the results 

obtained with the dissection microscope were validated by X-ray micro-

computed-tomography (micro-CT). The same group of samples were measured 

independently by Dr Annelie Hellvard and Birth Bergum (Broegelmann Research 

Laboratory, University of Bergen, Norway), who performed a blinded assessment 

of the alveolar bone level. This technique allows more precise investigation of 

the interproximal areas between the teeth with a clear visualization of the 

distance between the cemento-enamel junction (CEJ) and the alveolar bone 
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crest (ABC) (Figure 4-3). The results were similar using both methods of analysis, 

with no significant increase in bone loss in the infected groups compared with 

sham-controls in both WT and KO mice samples, but the data spread was greater 

when evaluating the ABL with a dissection microscope comparing with micro-CT 

analysis. Therefore, the analysis with the dissection microscope was likely 

equally valid as the micro-CT analysis; by either method there were no 

differences between the groups.  

 
Figure 4-3: Validation of bone loss assessment by micro-CT 
PADi4 KO or WT C57BL/6 controls were orally infected with P. gingivalis W83 
(PD) or vehicle only (Control). The alveolar bone loss (ABL) in the 2nd molar was 
evaluated 6 weeks post-infection by (A) micro-computed-tomography (micro-CT) 
and (B) a dissection microscope. The ABL was calculated as the average distance 
between the cemento-enamel junction (CEJ) and the alveolar bone crest (ABC) as 
indicated in images A and B. Relative values of ABL were calculated by 
subtracting the mean value of the WT control group. Data shown are mean with 
SEM of 4-5 mice per group of relative ABL analysed by (C) micro-CT or (D) with a 
dissection microscope. The dotted line indicates the average of the relative ABL of 
the WT control group. The differences between groups were evaluated with 1-way 
ANOVA and Tukey correction for multiple comparisons (ns, p>0.05).  

The genetic background can influence mice susceptibly to P. gingivalis induced 

alveolar bone loss. In particular, C57BL/6 mice seem generally to be more 
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resistant than other strains, for example BALB/c mice (Baker et al., 2000b). 

Moreover, disease phenotypes may manifest differently in different animal 

facilities. In previous experiments in the facility used for the PAD4 experiments, 

BALB/c mice demonstrated significant bone loss following infection with P. 

gingivalis (Malcolm et al., 2015). Experiments carried out in different C57BL/6 

colonies (for the investigation of the role of mast cells in PD) showed 

statistically significant bone loss following infection (Figure 4-4). In both the 

‘PAD4’ and the ‘mast cell’ experiments, there is a small difference difference of 

means between the WT PD and the control group: in Figure 4-4A (0.051±0.048) 

and Figure 4-4B (0.0604±0.015). The biggest disparity between experiments 

resides in the data spread, which is visibly greater in Figure 4-4A. 

 
Figure 4-4: Comparison of alveolar bone loss in C57BL/6 background from 
different mice colonies 
Experimental periodontitis (PD) was induced in C57BL/6 wild type (WT), or in ‘Kit-
W’ mice with a spontaneous mutation in c-kit (CD117), or PADi4 deficient mice 
(PADi4 KO); all on C57BL/6 background. Mice were orally infected with P. 
gingivalis W83 (PD) or vehicle only (Control). Alveolar bone loss (ABL) was 
evaluated 6 weeks post-infection with a dissection microscope. (A) Differences in 
ABL between groups didn’t reach significance when evaluating PD in PADi4 KO. 
(B) A significant increase in ABL was observed between infected and control 
group in WT but not in Kit-W mice. Data shown are mean with SEM of 5 mice per 
group. The dotted line indicates the average ABL of the corresponding WT control 
group. The differences between groups were evaluated with 1-way ANOVA and 
Tukey correction for multiple comparisons (ns, p>0.05; *, p<0.05; **, p<0.01). Data 
shown in B were derived from data obtained by Dr Jennifer Malcolm (Malcolm et 
al., 2016), reproduced here with author’s permission.   
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inflammation and bone loss with age in response to the indigenous oral 
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microbiota and the aging process (Barnett and Rowe, 1986, Liang et al., 2010). 

To evaluate if PAD4 deficiency influenced this bone loss associated with aging, 

the ABL of sham-infected mice 3.5 months old were compared with untreated 

mice of 7 months of age (Figure 4-5). No differences were detected between 

PADi4 KO and WT mice at either time point, but a significant increase in the 

alveolar bone loss was observed with age irrespective of presence of PAD4.  

  
Figure 4-5: Age related alveolar bone loss 
The alveolar bone level (ABL) was evaluated in PAD4 deficient mice (PADi4 KO) 
and C57BL/6 littermate controls (WT). Mice 3.5 months old at the end of a sham-
infection treatment with carboxymethylcellulose (CMC) were compared with 7 
months old untreated mice. Data shown are mean with SEM of 7 to 10 mice per 
group. The differences between groups were assessed with 2-way ANOVA and 
Tukey correction for multiple comparisons (***, p<0.001).  

4.3.2 Evaluation of antibody production 

To corroborate that animals had been infected and developed an immune 

response to P. gingivalis and to evaluate possible effects of PAD4 activity in such 

response, IgG titres were measured in serum 6 weeks post-infection in KO and 

WT mice. The IgG subclasses IgG1 and IgG2c were evaluated in addition to total 

IgG as indicative of a Th2 and Th1 response respectively (Chapter 1, section 

1.1.5).  

The ELISA was optimized prior to analysis in terms of bacteria preparation for 

coating and titration of the detection antibody. The results were evaluated 

based on the signal obtained with specific antibodies for IgG, IgG1 and IgG2c 
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controls and a ‘no sample’ blank control indicative of the test background. 

Different preparations of P. gingivalis W83 were evaluated for coating in 

carbonate buffer (Figure 4-6). Bacteria were used live, or fixed with 4% PFA, or 

heat-killed (hk) 30 min at 60°C, or frozen at -80°C and then heat-killed. The 

most suitable combination for all IgG subtypes was to use frozen-hk bacteria, 

displaying the best specificity, sensitivity and lowest background signal. The 

signal in the positive control was comparable with the use of live-hk bacteria 

and was low or undetectable in the negative and blank controls.  

The detection antibodies were tested at different working dilutions (1:10,000 - 

1:50,000) (Figure 4-7). The results were evaluated as before, obtaining the best 

signal for IgG detection with a 1:25,000 dilution, and a 1:10,000 dilution for IgG1 

and IgG2c. 
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Figure 4-6: Optimization of bacteria preparation for the detection of α-P. 
gingivalis antibodies in serum samples by ELISA 
Different methods of preparing bacteria for coating ELISA plates were evaluated 
for the detection of α-P. gingivalis antibodies in mouse serum samples. ELISA 
plates were coated overnight at 4°C, with either live bacteria (Live), bacteria fixed 
with 4% PFA for 15 min at RT (Fixed), live bacteria heat-killed at 65°C for 30 min 
(Live-hk), or live bacteria stored at -80°C and then heat killed as described before 
(Frozen-hk). Pooled serum from BALB/c mice collected 6 weeks post-infection 
with P. gingivalis W83 (C+), or serum from sham-infected mice (C-) were added 
and then the bound antibody detected with antibodies specific for (A) IgG, (B) IgG1 
and (C) IgG2c mouse antibody isotypes. A no-sample control (Blank) was tested in 
each condition. Serial dilutions of serum were employed to derive an AU. Data 
shown are mean of two experimental replicates of a single experiment. The dotted 
box indicates the optimal condition selected for each antibody isotype. 
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Figure 4-7: Titration of α-mouse IgG antibodies  
Different dilutions of the detection antibody (1:10,0000 - 1:50,000) were evaluated 
for the assessment of α-P. gingivalis antibodies in mouse serum samples. ELISA 
plates were coated with heat killed P. gingivalis W83 as determined in Figure 4-6. 
Pooled serum from BALB/c mice collected 6 weeks post-infection with P. gingivalis 
W83 (C+), or serum from sham-infected mice (C-) were added and then the bound 
antibody detected with antibodies specific for (A) IgG, (B) IgG1 and (C) IgG2c 
antibody isotypes. A no sample control (Blank) was tested in each condition. Serial 
dilutions of serum were employed to derive an AU. Data shown are mean of two 
experimental replicates of a single experiment. The dotted box indicates the 
optimal condition selected for each antibody isotype. 
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The B cell response to oral infection with P. gingivalis was then evaluated in WT 

and KO mice. Total IgG and IgG1 and IgG2c antibodies subtypes were detected in 

serum by ELISA at 3 and 6 weeks after infection (Figure 4-8). The same samples 

were used as positive and negative controls in all the assays. A significant 

increase in IgG and IgG1 antibody production against P. gingivalis were detected 

in the infected groups (PD) compared with controls at 3 and 6 weeks post-

infection. There was an increase in IgG2c levels in PD serum at 3 and 6 weeks 

but differences only reached significance at 6 weeks. No differences were 

observed between WT and KO mice in IgG, IgG1 and IgG2c production levels, 

indicating that PAD4 activity does not appear to be involved in IgG antibody 

production and isotype switching. 
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Figure 4-8: α-P. gingivalis antibody response in PAD4 deficient mice 
α-P. gingivalis antibody titres were assessed by ELISA in mouse serum samples 
at 3 and 6 weeks post-oral infection with P. gingivalis W83. Serum from infected 
(PD) and uninfected (Control) PADi4 KO mice and BL/6 littermate control (WT) 
mice were added and then the bound antibody detected with antibodies specific 
for (A) IgG, (B) IgG1 and (C) IgG2c. Serial dilutions of serum were employed to 
derive an AU. Values were normalized to the positive control. Data shown are 
mean with SEM of 4 independent experiments (5 mice per group per experiment, 
total of 15-20 mice per group across all experiments). The differences between 
groups were evaluated with 1-way ANOVA and Tukey correction for multiple 
comparisons (ns, p>0.05; *, p<0.05; **, p<0.01; ***, p<0.001; ****, p<0.0001).  
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4.3.3 Evaluation of the cellular response to Porphyromonas 
gingivalis 

The cellular response in the lymph nodes during infection was evaluated in WT 

and KO mice in terms of total cell counts, characterization of B and T cell 

populations by flow cytometry, and cell response to antigen in vitro.  

There were no significant differences in the total cell numbers in the cervical 

lymph nodes 6 weeks after treatment in P. gingivalis infected mice (PD) and 

sham-infected controls comparing the response between WT and KO mice 

(Figure 4-9).  

 
Figure 4-9: Cervical lymph nodes cell counts 
PADi4 KO or WT C57BL/6 controls were orally infected with P. gingivalis W83 
(PD) or vehicle control (Control). The cervical lymph nodes draining the oral cavity 
(dLN) from infected and sham-infected controls were collected at the end point 6 
weeks post-infection and then total cell counts were assessed. Data shown are 
mean with SEM of 4 independent experiments (5 mice per group per experiment). 
The differences between groups were evaluated with 1-way ANOVA and Tukey 
correction for multiple comparisons (ns, p>0.05).  

The proportion of CD19 expressing B cells in the dLN was evaluated by flow 

cytometry in the (Figure 4-10), using an isotype of α-CD19 antibody to define the 

B cell population (Figure 4-10A). There were no significant differences in the 

proportions of B cells in the dLN of the infected groups (PD) compared with 

controls in both WT and KO mice (Figure 4-10B).  
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Figure 4-10: Evaluation of B cell population in the dLN by flow cytometry 
PADi4 KO or WT C57BL/6 controls were orally infected with P. gingivalis W83 
(PD) or vehicle control (Control). The cervical lymph nodes draining the oral cavity 
(dLN) from infected and sham-infected controls were collected at the end point 6 
weeks post-infection and then evaluated by flow cytometry to assess changes in B 
cell population. (A) Representative flow cytometry gate strategy used to identify B 
cells as CD19+ cells of the total single cell population. An isotype control antibody 
was used as a negative control to define the CD19+ gate. (B) Percentage of B cells 
in the dLN in all experimental groups. Data shown are mean with SEM of 5 mice 
per group. The differences between groups were evaluated with 1-way ANOVA 
and Tukey correction for multiple comparisons (ns, p>0.05).  
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The T cell population was assessed by flow cytometry in the cervical lymph 

nodes draining the oral cavity (Figure 4-11). T cells were identified and 

classified in cell subsets based on the elevated expression of CD3 (T cells), CD4 

(T helper) or CD8 (cytotoxic T cells). CD4+ and CD8+ were further classified as 

naïve, T central memory (TCM) or T effector memory (TEM) cells based on the 

combined expression of CD44 and CD62L. No differences were observed between 

groups in percentages of CD3+, CD4+ and CD8+ cells and cells co-expressing CD4 

and CD8 in the dLN (Figure 4-12). Similarly, almost identical percentages of 

naïve (CD62L+ CD44-), TCM (CD62L+ CD44+) and TEM (CD62L- CD44+) cells were found 

in all groups of both CD4+ and CD8+ T cell subsets (Figure 4-13). However, in all 

experimental groups there were proportionally more CD4+ cells of TCM phenotype 

than CD8+ cells, and the inverse when evaluating the TEM phenotype. Figure 

4-14). Thus suggesting that T helper cells preferably differentiated into TCM 

while cytotoxic T cells did into TEM. The effector function is increased upon CD8+ 

T cells differentiation, while memory function and proliferation are decreased 

(reviewed in Golubovskaya and Wu, 2016). 
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Figure 4-11: Evaluation of T cell populations in the dLN by flow cytometry 
PADi4 KO or WT C57BL/6 controls were orally infected with P. gingivalis W83 
(PD) or vehicle control (Control). The cervical lymph nodes draining the oral cavity 
(dLN) from infected and sham-infected controls were collected at the end point 6 
weeks post-infection, and then evaluated by flow cytometry to assess changes in 
T cell populations. The total T cell population in the dLN was identified as CD3+ 

cells of the total single cell population. T helper (Th) and cytotoxic T cells (Tc) 
were identified as CD4+ and CD8+ cells respectively of the total single cell 
population. T memory cell subsets in CD4+ and CD8+ populations were identified 
using CD62L and CD44 cell markers. Naïve T cells were identified as CD62L+ 

CD44- cells, T effector memory cells (TEM) as CD62L- CD44+ cells and T central 
memory cells (TCM) as CD62L+ CD44+ cells of the total CD4+ or CD8+ cell 
population. Flow cytometry gate strategy representative of two independent 
experiments (5 mice per group per experiment). 
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Figure 4-12: T cell populations in the dLN 
T helper and cytotoxic T cell populations were evaluated in the dLN by flow 
cytometry (as shown in Figure 4-11), at the end point 6 weeks post-oral infection 
with P. gingivalis W83. (A) Percentage of dLN cells identified as CD3+ cells, (B) % 
of dLN cells identified as CD4+ cells, (C) % dLN cells identified as CD8+ cells, and 
(D) % dLN cells expressing both CD4 and CD8 (DP). All populations are 
expressed as percentages of the total single cell population. Data shown are mean 
with SEM of 2 independent experiments (5 mice per group). The differences 
between groups were evaluated with 1-way ANOVA and Tukey correction for 
multiple comparisons (ns, p>0.05).  
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Figure 4-13: T memory cell populations in dLN  
T helper and cytotoxic T cell memory subpopulations were evaluated in the dLN by 
flow cytometry (as shown in Figure 4-11) at the end point 6 weeks post-oral 
infection with P. gingivalis W83. (A and B) Percentage of CD4+ (A) or CD8+ (B) 
cells identified as CD62L+ CD44- (naïve); (C and D) percentage of CD4+ (C) or 
CD8+ (D) identified as CD62L- CD44+ (T effector memory cells - TEM); (E and F) 
percentage of CD4+ (E) or CD8+ (F) identified as CD62L+ CD44+ (T central memory 
cells - TCM). Data shown are mean with SEM of 5 mice per group. The differences 
between groups were evaluated with 1-way ANOVA and Tukey correction for 
multiple comparisons (ns, p>0.05).  
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Figure 4-14: Comparison of effector and central T memory cells in CD4+ and 
CD8+ cell populations 
For the data presented in in Figure 4-13, T effector and central memory cell 
subpopulations were evaluated. (A) Percentage T effector memory cells (TEM) 
identified as CD62L- CD44+ cells of the CD4+ and CD8+ populations; (B) 
percentage of T central memory cells (TCM) identified as CD62L+ CD44+ cells the 
CD4+ and CD8+ populations. Data shown are mean with SEM of 5 mice per group. 
The differences between groups were evaluated with 2-way ANOVA and Tukey 
correction for multiple comparisons (**, p<0.01; ****, p<0.0001).  

After dismissing the possibility of a constitutive alteration in the lymphoid cell 

compartments due the absence of PAD4, the cell response to antigen in the 

lymph nodes and spleen was assessed in vitro. Lymphocytes and splenocytes 

were stimulated with heat-killed P. gingivalis W83 and T cell proliferation 

assessed 72 h later (Chapter 2, section 2.5.2.2). Cells were cultured with media 

only as negative control and with αCD3-αCD28 antibodies as positive control. T 

helper and cytotoxic cell populations were identified by flow cytometry as cells 
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expressing CD4 and CD8 molecules respectively, and cell proliferation was 

evaluated staining for CD69 and Ki67 (Figure 4-15). 

There was a significant increase in the co-expression of the CD69 and Ki67 of T 

cells from the dLNs stimulated with αCD3-αCD28 compared with media 

unstimulated samples, indicative of cell proliferation and the proper execution 

of the experiment (Figure 4-16A). Cell proliferation in response to P. gingivalis 

was then evaluated in both CD4+ and CD8+ cells. There was a generalised 

increase, in all experimental groups, in percentage of CD4+ cells CD69+Ki67+ in 

response to bacteria compared with the unstimulated media controls (Figure 

4-16B), but no differences were observed when evaluating the same response in 

CD8+ cells (Figure 4-16C). The individual expression of CD69 and Ki67 was 

assessed in CD4+ cells comparing P. gingivalis stimulated groups with media 

control groups. There was a significant increase in the percentage of CD4+ CD69+ 

cells in the P. gingivalis stimulated groups (Figure 4-16D), but differences didn’t 

reach significance when evaluating the expression of Ki67 alone (Figure 4-16E). 

Once determined that P. gingivalis could exert a proliferative response in CD4+ 

cells isolated from the dLN, the response of CD4+ T cells to P. gingivalis 

stimulation in vitro was evaluated looking at differences in CD69 and Ki67 

expression between infected and sham-treated KO and WT mice (Figure 4-17). 

There was a higher percentage of CD69+ cells in WT infected group compared 

with the WT control and KO infected samples, but no differences could be 

observed between groups when looking at the percentage of Ki67+ and double 

positive CD69+Ki67+ cells. 
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Figure 4-15: Identification of proliferative T cells in the dLN and spleen 
isolates by flow cytometry 
PADi4 KO or WT C57BL/6 controls were orally infected with P. gingivalis W83 
(PD) or vehicle control (Control). The spleens and cervical lymph nodes draining 
the oral cavity (dLN) from infected and sham-infected controls were collected at 
the end point 6 weeks post-infection. Single cell suspension of the spleens and the 
dLN were prepared and cultured in vitro with P. gingivalis W83. A positive 
stimulation control with αCD3-αCD28 antibodies and an unstimulated (Media) 
control were tested for each sample. T helper (Th) and cytotoxic T cell (Tc) 
subsets were identified by flow cytometry as CD4+ and CD8+ cells respectively of 
the total live cells population. Proliferation of Th and Tc cells was assessed by flow 
cytometry using CD69 and Ki67 cell markers, identifying proliferative cells as 
CD69+Ki67+ cells. Flow cytometry gate strategy representative of two independent 
experiments (5 mice per group per experiment). 
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Figure 4-16: In vitro proliferation of T helper cells from draining lymph nodes 
compared with media control  
In vitro proliferation of T helper cells from the dLN in response to P. gingivalis was 
assessed by flow cytometry (as shown in Figure 4-15). A positive control with 
αCD3-αCD28 antibodies and an unstimulated (media) control were tested for each 
sample. Cell proliferation was assessed using CD69 and Ki67. (A) Percentage of 
proliferative CD4+ cells in media and positive control (αCD3-αCD28) conditions; % 
of proliferative (B) CD4+ and (C) CD8+ cells in media and P. gingivalis stimulus; % 
of CD4+ cells expressing (D) CD69 and (E) Ki67 only in media and P. gingivalis 
stimulus. Data shown are mean with SEM of 5 mice per group. The differences 
between groups were evaluated with 2-way ANOVA and Tukey correction for 
multiple comparisons (ns, p>0.05; *, p<0.05; **, p<0.01; ****, p<0.0001).  
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Figure 4-17: In vitro proliferation of T helper cells from draining lymph nodes 
to P. gingivalis 
For the data presented in  (Figure 4-16), in vitro proliferation of T helper cells from 
the dLN in response to P. gingivalis was assessed by flow cytometry. T helper cell 
subset was identified by flow cytometry as CD4+ of the total live cells population. 
Cell proliferation was assessed using CD69 and Ki67 cell markers. Data shown 
are mean with SEM of 5 mice per group. Percentage of CD4+ cells expressing (A) 
CD69 only and (B) CD4+ proliferative cells co-expressing CD69 and Ki67. The 
differences between groups were evaluated with 1-way ANOVA and Tukey 
correction for multiple comparisons (ns, p>0.05; **, p<0.01; ***, p<0.001).  

T cells from the spleen increased expression of CD69 and Ki67 following culture 

with αCD3-αCD28 compared with media unstimulated samples (Figure 4-18A). 

There was a generalised increase in expression of Ki67 and CD69 on CD4 and CD8 

cells in response to P. gingivalis in all the experimental groups (Figure 4-18B,C). 

The individual expression of CD69 and Ki67 was assessed in CD4+ cells comparing 

P. gingivalis stimulated groups with media control groups. There was a 

significant increase in the percentage of CD69+ CD4+ cells in the P. gingivalis 

stimulated groups (Figure 4-18D), but differences didn’t reach significance when 

evaluating the expression of Ki67 alone (Figure 4-18E). 

There was a significantly increased percentage of CD69+Ki67+CD4+ cells following 

culture with P. gingivalis in infected, WT mice compared with control 

(uninfected/CMC) mice (Figure 4-19). Differences with the other experimental 

groups, when comparing infected vs control animals and analysing CD69 and Ki67 

expression, didn’t reach significance.  
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 Figure 4-18: In vitro proliferation of T cells from spleens compared with 
media control  
For the data presented in Figure 4-15, in vitro proliferation of T cells from the 
spleens in response to P. gingivalis was assessed by flow cytometry. A positive 
stimulation control with αCD3-αCD28 antibodies and an unstimulated (Media) 
control were tested for each sample. T helper and cytotoxic T cell subsets were 
identified by flow cytometry as CD4+ and CD8+ cells respectively of the total live 
cells population. Cell proliferation was assessed using antibodies specific for 
CD69 and Ki67 cell markers, identifying proliferative cells as CD69+ Ki67+ cells of 
the corresponding T cell subset population. (A) Percentage of proliferative CD4+ 
cells in media and positive control (αCD3-αCD28) conditions; % of proliferative (B) 
CD4+ and (C) CD8+ cells in media and P. gingivalis stimulus; % of CD4+ cells 
expressing (D) CD69 and (E) Ki67 only in media and P. gingivalis stimulus. Data 
shown are mean with SEM of 2 independent experiments (5 mice per group per 
experiment, total of 10 mice per group across all experiments). The differences 
between groups were evaluated with 2-way ANOVA and Tukey correction for 
multiple comparisons (ns, p>0.05; *; p<0.01; ***, p<0.001).  
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Figure 4-19: In vitro proliferation of T helper cells from spleens to P. 
gingivalis 
For the data presented in Figure 4-18, in vitro proliferation of T helper cells from 
the spleen in response to P. gingivalis was assessed by flow cytometry. T helper 
cell subset was identified by flow cytometry as CD4+ of the total live cells 
population. Cell proliferation was assessed using CD69 and Ki67 expression. 
Percentage of CD4+ cells expressing (A) CD69 only and (B) CD4+ proliferative 
cells co-expressing CD69 and Ki67. Data shown are mean with SEM of 2 
independent experiments (5 mice per group per experiment, total of 10 mice per 
group across all experiments). The differences between groups were evaluated 
with 1-way ANOVA and Tukey correction for multiple comparisons (ns, p>0.05; *, 
p<0.05).  

4.4 Discussion 

Neutrophils capacity to generate NETs to trap and kill pathogens is thought to 

influence periodontitis pathogenesis (reviewed in Cortés-Vieyra et al., 2016). 

However, the data presented in this chapter suggest that PAD4 activity, 

essential for NETs formation, may not play a critical role in the host response to 

microbial infection at the mucosal surface.  

Absence of PAD4 did not alter the percentages of helper and cytotoxic T memory 

cells subtypes either classified as T effector (TEM) or T central memory cells (TCM) 

in the draining lymph nodes. The in vitro response to P. gingivalis in the dLN and 

the spleen was similar irrespective of PAD4 activity.  In this model system, in 

both PAD4 KO and WT infected mice, the proliferation of T cells against PD 

associated bacteria was more pronounced in the spleen than in the dLN, 

probably due the abrasions caused in the gingiva during the gavage procedure, 

allowing the diffusion of the bacteria into the blood stream. Besides, the LPS 
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constitutively present in the P. gingivalis used for in vitro cell stimulation 

experiments probably acted as stimulus by itself, increasing the response 

baseline and attenuating the differences observed in cell proliferation between 

uninfected and PD infected sample groups. It would be of interest for further 

studies the use of LPS free bacteria or P. gingivalis W83 soluble antigens as in 

vitro stimuli (Miyauchi et al., 2012), to reduce the background response to the 

unstimulated control levels in the media controls. In summary, although there 

was some suggestion that PAD4 may reduce the proliferative response in T cells 

isolated from spleen, more definitive results could be provided through an 

increased number of experiment replicates.  

P. gingivalis triggered immune response was confirmed with the analysis of 

serum samples harvested at 3 and 6 weeks post-infection. Although there was a 

slight increase in IgG1 and IgG2c antibody titres between 3 and 6 weeks, the 

adaptive response seemed to be well established by 3 weeks. This assumption is 

supported by the results that have been observed in other PD models performed 

in Balb/c mice by PhD Lauren Campbell, in which α-P. gingivalis antibodies were 

detectable at 1 week post-infection (data not shown).  

The antibody production and isotype switching didn’t seem to be influenced by 

PAD4, with no predominance of Th1 or Th2 response to P. gingivalis. There was 

only a small difference detectable between IgG1 and IgG2c levels at 6 weeks, 

but considering that IgG1 is the most abundant IgG subclass with a relative 

abundance of approximately 60% vs. 32% of IgG2 (Vidarsson et al., 2014), similar 

levels of IgG1 and IgG2c could be indicative of a prevalent Th1 response. This 

assumption would be supported by data obtained by PhD Lauren Campbell, in 

which increased levels of IFN-γ could be detected in CD4 and CD8 cell 

supernatants from of P. gingivalis orally infected mice (data not shown).  

The major limitation of the study was that although P. gingivalis triggered 

immune responses as confirmed by the detection of anti-P. gingivalis IgG 

antibodies in serum and a secondary T cell response in the dLN and spleen, the 

bone loss in the WT infected groups was insufficient to validate the recreation of 

a periodontitis state in the mouse models (as shown before in Oliver-Bell et al., 

2015, Malcolm et al., 2015, Malcolm et al., 2016). Different external and 
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internal factors that could be limiting the bone loss in our PD model were 

evaluated. The first element to be considered was the correct handling of the 

bacteria; immediately after infections P. gingivalis was cultured and colonies 

clearly identifiable on plates, therefore still alive and in sufficient numbers 

(Chapter 2, section 2.9.2). The impact of the genetic background and the 

environment were also assessed. It has been previously shown that different 

mouse strains have different susceptibly to P. gingivalis induced alveolar bone 

loss, and C57BL/6 are more resistant than Balb/c (Baker et al., 2000b). The 

environment, for subtle and undefined differences in animal facilities, can have 

cause individuals to respond differently to infectious diseases, even in those 

sharing the same genetics (Martin et al., 2012, Gerdin et al., 2012). To evaluate 

the influence of both factors in the ABL results, the bone loss was assessed at 

the end of a P. gingivalis mediated PD model in KO mice and compared with the 

results obtained with the same model performed in Kit-W mice (Malcolm et al., 

2016). The Kit-W PD model was a success, with an increase in bone loss in the 

WT infected mice compared with the WT sham-controls, but that doesn’t occur 

in the PADi4 model. Considering that the WT control mice in both models shared 

the same C57BL/6 background, the differences between experiments were not 

due genetics but probably environmental. Each experiment was carried out in a 

different facility and therefore exposed to slightly different housing conditions 

that might have influenced the model outcome. Moreover, there is a possibility 

that there are subtle differences in the genetics of different colonies of the 

same strain and these may further confound investigations.  

The prevalence of periodontitis in the population increases with age (Velden, 

1991), and mice like humans, naturally develop bone loss with time (Sarajlić et 

al., 2009, Liang et al., 2010). That seems to be related with an impaired 

antimicrobial activity of neutrophils with age, with a reduced ROS production 

and neutrophil extracellular trap (NET) formation (Wenisch et al., 2000, Shaw et 

al., 2013, Hazeldine et al., 2014). Previous studies showed that PAD enzymes 

participate in the process of bone loss inducing osteoclast differentiation either 

by direct interaction or promoting the generation of autoantibodies against 

citrullinated peptides (Harre et al., 2012, Krishnamurthy et al., 2016). 

Nonetheless, both WT and KO mice developed the same level of bone loss with 
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time showing that PAD4 by itself does not influence the aging associated bone 

loss process in the mouse oral cavity.   

An extended study on this subject could employ an alternative periodontal 

model, with special attention in understanding the immune cell responses to     

P. gingivalis and other related bacteria present in the oral biofilms in the early 

stages of the disease. For example, the ligature model provides a more acute 

inflammation, which may be more neutrophil dependent. Alternatively, 

therapeutic manipulation of PADs could be attempted at different stages of 

disease using PAD4 inhibitors. The use of Cl-amidine (Willis et al., 2011) and 

derivatives such as BB-Cl-amidine (Kawalkowska et al., 2016), or the GSK484 

component (Lewis et al., 2015) has been proved to reduce PAD4 citrullination in 

vivo and in vitro respectively. However, for the treatment success, mice would 

need to be daily-injected i.p. for the entire duration of the experiment, that in 

the PD model extends up to 6 weeks, with a huge increase in the total cost and 

mice suffering. Besides, the in vivo studies about the efficacy of Cl-amidine and 

derivatives in the CIA model of arthritis (Willis et al., 2011, Kawalkowska et al., 

2016), showed a reduction in citrullination but not its complete elimination, still 

with detection of ACPAs in serum and development of disease. The use of 

GSK484 in vitro showed promising results on NETs inhibition, however its 

efficacy in vivo has not been tested. Although considered, these studies were 

outwith the scope of the current project.  

4.5 Conclusions 

The work presented here demonstrates the challenges of reproducing human 

pathology in mouse models. Although repeated oral administration of P. 

gingivalis successfully triggered an adaptive immune response, it didn’t induce 

alveolar bone loss, limiting the study of PAD4 involvement in periodontitis 

disease progression. Nonetheless it can be concluded that PAD4 does not 

influence the cellular or humoral immune response to mucosal infection, nor 

does PAD4 influence bone loss associated with aging.  
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5.1 Introduction 

The association between periodontitis (PD) and rheumatoid arthritis (RA) 

extends back for centuries and has been extensively recently reviewed in the 

general introduction (Chapter 1, section 1.3) (Araújo et al., 2015, Kobayashi and 

Yoshie, 2015, Payne et al., 2015). Both disorders are characterized by chronic 

inflammation and the development of an autoimmune response that leads 

eventually to bone destruction. PD and RA share inflammatory pathways with 

similar cellular participation at the inflammatory site including leukocyte 

infiltration, stromal cells contribution to disease development and osteoclast 

mediated bone resorption. Although the majority of the studies published 

suggests an association between PD and RA (Fuggle et al., 2016), the key 

connecting element remains unknown. 

The genetic predisposition for RA reaches 60-66% in twin studies (MacGregor et 

al., 2000, van der Woude et al., 2009); in PD, the effect of the genetic factors 

has been shown to be variable (Michalowicz et al., 1991, Torres de Heens et al., 

2010). Therefore, there must be an environmental trigger. It is known that PD is 

initiated by a dysbiosis of the oral microbiome and previous animal studies have 

shown that bacteria colonization is necessary for the development of RA (Brusca 

et al., 2014), accompanied by changes in the gut (Scher et al., 2013) and also 

oral microbiota (Zhang et al., 2015).  

In both PD and RA, the development of the disease is associated with the 

dysregulation of normal immune functions, involving increased production of 

both self-reactive antibodies and pro-inflammatory T lymphocytes. The 

association of RA and anti-citrullinated protein antibodies (ACPA) has implicated 

citrullination in RA pathogenesis, thus citrullination is thought to play a central 

role in the breach of self-tolerance in RA. Moreover, antibodies against 

citrullinated peptides (ACPAs) have been found in periodontal patients, for 

example anti-CEP-1 (Lappin et al., 2013, de Pablo et al., 2014). Intriguingly, 

such ACPA antibodies can be detected years before RA disease onset (Rantapää-

Dahlqvist et al., 2003, Nielen et al., 2004). Recent studies highlighting the 

association of PADi3 and PADi4 polymorphisms and anti-histone-4-derived 
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citrullinated peptide (HCP1) antibodies suggest a link between deimination and 

ACPA (Johansson et al., 2016).  

The presence of ACPAs in periodontal patients has speculative associations with 

one of the main oral pathogens associated with the development of PD,            

P. gingivalis which has a unique PAD enzyme (PPAD) that is capable of 

citrullinating not only its own but also the host proteins (Wegner et al., 2010). In 

addition, the identification of neutrophil extracellular traps (NETs), in the 

gingival pocket of patients with periodontitis (Vitkov et al., 2009), has led to the 

hypothesis that exposure of citrullinated antigens by NETs formation in a pro-

inflammatory environment caused by PD infection, combined with the action of 

PPAD, may fuel the production of ACPA (Corsiero et al., 2016). Thus, PAD4, 

which plays a key role in the formation of NETs as shown in Chapter 3, could be 

influencing a link between RA and PD. 

5.2 Aims 

The aim of this chapter was to evaluate the contribution of PAD4 to the 

development of a combined model of experimental arthritis and periodontitis.  
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5.3 Results 

A murine model of combined periodontitis (PD) and experimental arthritis (EA) 

(Figure 5-1) was carried out in female PADi4 KO mice and C57BL/6 WT controls 

(Table 2-2). The OVA-TcR induced model of early arthritis (Maffia et al., 2004) 

was chosen because of the development of polyarthritis in C57BL/6 background, 

combined with the previously reported emergence of auto-reactivity to non-

immunized self-antigen, and the option of tracking the T cells involved in the 

breach of self-tolerance (Nickdel et al., 2009). Arthritis progression was assessed 

measuring the inflammation in the affected paws, and antibody production and 

the cell mediated immune responses in the lymph nodes draining the challenged 

limbs. Periodontitis severity was evaluated at the end of the experiment 

measuring the bone loss in the oral cavity and α-P. gingivalis antibody 

production. 

 
Figure 5-1: Timeline of the murine model of combined periodontitis and 
experimental arthritis 
Depletion of the commensal flora with ten days antibiotic treatment followed by oral 
infections with P. gingivalis W83. Ovalbumin (OVA) specific T cell receptor (TCR) 
transgenic Th1 polarised cells were adoptively transferred and animals immunized 
with OVA in complete Freund’s adjuvant 24 hours later. Footpads were challenged 
with heat-aggregated ovalbumin (HAO) and LPS 10 days after immunisation to 
induce an immune mediated arthritis. Footpad swelling was measured, and a 
clinical score assigned. Antibody responses were assessed in the serum and the T 
cell response evaluated at the end point. 
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Table 5-1: Experimental groups in the murine model of combined PD-EA 
 

 

5.3.1 Confirmation of the OT-II Th1 phenotype  

The OVA-TcR-induced model of early arthritis, depends on the differentiation of 

naïve OT-II T helper cells into Th1 phenotype before their transfer into the 

mouse recipients (Maffia et al., 2004). The percentage of viable OT-II cells 

displaying a Th1 phenotype was assessed by flow cytometry (Figure 5-2). In these 

studies, fifty percent of the OT-II transgenic T cells produced IFN-γ following in 

vitro stimulation, compared with <1% in unstimulated cultures. 

n = 5 / group Mice 
strain 

Antibiotics Oral treatment OT-II Th1 
transfer 

OVA/
CFA 

Footpad 
challenge 

G1   WT sham control C57BL/6  ✔ CMC ✔ ✔ PBS 

G2   WT EA C57BL/6  ✔ CMC ✔ ✔ HAO 

G3   WT PD C57BL/6  ✔ P. gingivalis W83 ✔ ✔ PBS 

G4   WT PD-EA C57BL/6  ✔ P. gingivalis W83 ✔ ✔ HAO 

G5   KO sham control PADi4 KO ✔ CMC ✔ ✔ PBS 

G6   KO EA PADi4 KO ✔ CMC ✔ ✔ HAO 

G7   KO PD PADi4 KO ✔ P. gingivalis W83 ✔ ✔ PBS 

G8   KO PD-EA PADi4 KO ✔ P. gingivalis W83 ✔ ✔ HAO 
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Figure 5-2: Identification by flow cytometry of Th1 differentiated OT-II T cells  
CD4+ cells purified from lymph nodes and spleens of OT-II mice were 
differentiated in vitro into Th1 cells. (A) Viable cells were identified by viability dye, 
OT-II T helper cells identified as CD45.1+CD4+ (≈58%), of which approximately 
96% co-expressed the transgenic markers Vα2+Vβ5+. Th1 cells were identified as 
those positive for intracellular IFN-γ when stimulated with ionomycin and phorbol 
myristate acetate (PMA) (≈90%). (B) Percentage of viable CD45.1+CD4+ Vα2+Vβ5+ 

IFN-γ+ OT-II Th1 producer cells. Data shown are representative of 1 experiment. 
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5.3.2 Influence of PAD4 and periodontitis on experimental arthritis 
disease severity 

5.3.2.1 Arthritis progression in footpads 

Mice developed clinical signs of arthritis in the paw after a secondary challenge 

with OVA antigen, as demonstrated by paw swelling and clinical signs measured 

over 14 days. The experiment was carried out with eight experimental groups as 

indicated in Table 2-2. The data are presented in groups as described below for 

clarity of presentation. As expected, no paw swelling was observed in the 

arthritis controls (groups 1, 3, 5 and 7 in Table 2-2) irrespective of periodontal 

infection (control, PD) (Figure 5-3A,B). Two general trends were observed from 

the footpad analysis of arthritic animals (groups 2, 4, 6 and 8): an increased 

swelling and clinical score in the KO mice compared with WT in all the arthritis 

groups (EA alone or combined PD-EA) (Figure 5-3C,D) (Figure 5-4A,B), and a 

reduction in footpad swelling and clinical score when combining PD-EA compared 

with EA alone, irrespective of presence of PAD4 (Figure 5-3E,F) (Figure 5-4C,D). 

Differences reached significance at the time points indicated in the figures.  Paw 

swelling and clinical score data were further analysed calculating the total area 

under the curve (AUC) for a better representation of the overall inflammation 

(Chapter 2, Figure 2-12). The AUC of footpad swelling was significantly increased 

in KO mice compared with WT in the EA experimental groups, and reduced in KO 

mice when comparing PD-EA with EA alone (Figure 5-5A). The differences in 

clinical scores displayed the same trends but did not reach significance (Figure 

5-5B). 

To further investigate the suggested differences observed in the inflammatory 

response, histological preparations of the affected paws were analysed (Figure 

5-6). No notable differences could be observed between groups, with the 

exception of a generally thickened squamous epithelium in all the EA groups (EA, 

PD-EA) compared with the controls (control, PD). Commensurate with previous 

findings in this pre-arthritis model there were no histological signs of obvious 

cartilage and bone erosion, synovial hyperplasia or lymphocyte infiltration 

beyond the site of injection (Maffia et al., 2004).  
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Figure 5-3: Footpad swelling  
Mice were orally infected with P. gingivalis W83 (PD) followed by experimental 
arthritis (EA) (Figure 5-1). The thickness of the HAO challenged footpad was 
measured daily using callipers following HAO challenge at day 26 (represented as 
day 0 in the panels above). The thickness of the control contralateral footpad was 
subtracted to give a delta footpad thickness. The groups have been segregated for 
ease of presentation. (A) Uninfected/no-EA (control) and (B) infected/no-EA (PD); 
(C) EA vs. combined PD-EA in WT mice and (D) KO mice; (E) EA in WT vs. KO 
mice and (F) combined PD-EA in WT vs. KO mice. Data shown are mean with 
SEM of 5 mice per group. Differences between all eight groups at each time point 
were evaluated with 2-way ANOVA and Tukey correction for multiple comparisons 
(*, p<0.05; **, p<0.01; ***, p<0.001; ****, p<0.0001). 
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Figure 5-4: Clinical score 
For the data presented in Figure 5-3, a clinical score (Chapter 2, Table 2-3) was 
assigned daily following HAO challenge at day 26 (represented as day 0 in the 
panels above). (A) EA vs. combined PD-EA in WT mice and (B) KO mice; (C) EA 
in WT vs. KO mice and (D) combined PD-EA in WT vs. KO mice. Data shown are 
mean with SEM of 5 mice per group.  Differences between all eight groups at each 
time point were evaluated with 2-way ANOVA and Tukey correction for multiple 
comparisons (*, p<0.05; **, p<0.01; ****, p<0.0001). 
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Figure 5-5: Footpad swelling and clinical score as area under the curve 
For the data presented in Figure 5-3 and Figure 5-4, the area under the curve 
(AUC) was calculated for each mouse using GraphPad Prism® software. (A) 
Footpad swelling and (B) clinical score. Data shown are mean with SEM of 5 mice 
per group. Differences between groups were assessed with 1-way ANOVA and 
Tukey correction for multiple comparisons (ns, p>0.05; *, p<0.05; **, p<0.01). 
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Figure 5-6: Histology analysis of the challenged paws 
Mice were orally infected with P. gingivalis W83 (PD) followed by experimental 
arthritis (EA). Histological sections of the joints of the challenged paws at the end 
point 14 days post-challenge, stained with H&E. Images are transverse sections of 
whole paws at 0.8X zoom ratio with the area in the black square at 3.2X. Images 
are representative of 5 mice/group from (A) control, (B) EA, (C) PD and (D) PD-EA 
in KO mice samples (T, tendon; E, epithelial cells; black arrow indicates cartilage; 
open arrow indicates synovial membrane).  
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5.3.2.2 Assessment of the T cell responses to OVA antigen 

To investigate the adaptive immune response to antigen mediated by T cells, the 

cellular response in the lymph nodes draining the paws was analysed.  

The total cell counts in the popliteal lymph nodes (Figure 5-7) mirrored the 

patterns previously observed in the analysis of the paw swelling, with an 

increased cell count in dLN from KO mice compared with WT in all the arthritis 

groups (EA alone or combined PD-EA) and lower numbers of cells in the dLN from 

PD-EA animals compared with EA alone - irrespective of presence of PAD4. 

However, differences only reached significance between the KO EA and PD-EA 

groups. 

 
Figure 5-7: Popliteal lymph nodes cell counts 
Mice were orally infected with P. gingivalis W83 (PD) followed by experimental 
arthritis (EA). Total cell counts were obtained from draining lymph nodes (dLN) at 
the end point 14 days post-challenge. Data shown are mean with SEM of 5 mice 
per group. Differences between groups were assessed with 1-way ANOVA and 
Tukey correction for multiple comparisons (ns, p>0.05; ***, p<0.001). 
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T cells from the dLNs stimulated with αCD3-αCD28 when compared with media 

unstimulated samples, indicative of cell proliferation and the proper execution 

of the experiment (Figure 5-9B,F). Differences in the cell numbers in the culture 

could lead to misleading interpretation of the results when working with cell 

percentages, therefore total CD4+ cell counts were evaluated obtaining similar 

values for all stimulation conditions (Figure 5-9A,C,E). Therefore, the 

differences observed in cell proliferation were not due an analysis artefact.  

The percentage of proliferating cells co-expressing CD69 and Ki67 were 

evaluated in OVA stimulated samples (Figure 5-9D). The same trend patterns 

were observed as described in Figure 5-5A, with a significant increase in cell 

proliferation in KO mice compared with WT in the EA experimental groups, and a 

reduction in KO mice in PD-EA compared with EA alone. 

  
Figure 5-8: Identification of proliferating T cells by flow cytometry  
Mice were orally infected with P. gingivalis W83 (PD) followed by experimental 
arthritis (EA). The popliteal lymph nodes were harvested from all groups at the end 
point 14 days post-challenge, and T cell proliferation to OVA was assessed in 
vitro. A positive stimulation control with α-CD3, and an unstimulated media control 
were tested for each sample. Proliferating T cells were identified by flow cytometry 
as CD69+ Ki67+ cells from the total CD4+ cell population.  
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Figure 5-9: T cell proliferation  
For the data presented in Figure 5-8, the proliferation in vitro of T cells from the 
popliteal dLN in response to OVA antigen was evaluated by flow cytometry. A 
positive control stimulated with αCD3-αCD28 and a negative media control were 
tested for each sample. Total CD4+ cell counts in (A) media, (C) OVA and (E) 
αCD3-αCD28 stimulation conditions. Percentage of proliferative T cells identified 
as CD4+CD69+Ki67+ in (B) media, (D) OVA and (F) αCD3-αCD28 stimulation 
conditions. Data shown are mean with SEM of 5 mice per group. Differences 
between groups were assessed with 1-way ANOVA and Tukey correction for 
multiple comparisons (ns, p>0.05; *, p<0.05; **, p<0.01). 
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5.3.2.3 Assessment of serum antibody titres  

To corroborate animals had developed an adaptive immune response to OVA 

antigen, as is characteristic of the EA model, anti-OVA IgG levels were measured 

in serum of KO and WT mice at the experiment end point, 24 days after the 

initial immunization with OVA-CFA. Previously tested positive and negative 

controls were included in the assay. The IgG subclasses IgG1 and IgG2c were 

evaluated in addition to total IgG as indicative of a Th2 and Th1 response 

respectively (Figure 5-10). No differences were observed in IgG, IgG1 and IgG2c 

production levels between experimental groups in WT and KO mice.  

There was an immediate rise in α-OVA antibody immediately after immunization 

with CFA, (Chapter 6, Figure 6-19). The OVA-CFA challenge would initiate a B 

cell response to OVA, and potentially masking the differences in response to 

subsequent antigen exposure (HAO in the footpad) between the EA and control 

groups. 

The model of OVA-TcR-induced model of early arthritis aims to resemble the 

underlying autoimmune mechanisms that characterize the preclinical stage of RA 

(Maffia et al., 2004). One of the advantages compared with other mice models 

of experimental arthritis, is the reported breakdown in self-tolerance 

characterized by collagen-specific T and B cell responses without the limitation 

of using a specific mice strain for the development of the pathology, and 

without immunising with self antigen. The α-CII IgG antibody levels were 

assessed in serum of KO and WT mice at the experiment end point, 24 days after 

the initial immunization with OVA-CFA (Figure 5-11). Previously tested positive 

and negative controls were included in the assay. There was no generation of α-

CII antibodies in any of the experimental groups and therefore the model did not 

induce a measurable breach in self-tolerance to collagen during the 

development of inflammation. 

Based on the results described so far, although evidence suggest a OVA-specific 

T cell mediated inflammatory response in the challenged paws, the absence of 

cartilage and bone destruction and the absence of evidence of breach of self-

tolerance, suggest this model was in some way not identical to that reported 

previously (Maffia et al., 2004). 
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Figure 5-10: α-OVA IgG antibody titres in serum 
Mice were orally infected with P. gingivalis W83 (PD) followed by experimental 
arthritis (EA). Anti-OVA antibodies were evaluated by ELISA in serum samples at 
the end point 14 days after HAO challenge. Antibody titres were calculated using 
serial dilutions of serum to derive an AU. (A) Total IgG, (B) IgG1 and (C) IgG2c 
antibody titres in serum. Data shown are mean with SEM of 5 mice per group. 
Differences between groups were assessed with 1-way ANOVA and Tukey 
correction for multiple comparisons (ns, p>0.05). 
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Figure 5-11: α-collagen type II IgG antibody titres in serum 
Mice were orally infected with P. gingivalis W83 (PD) followed by experimental 
arthritis (EA). Anti-collagen type II (CII) total IgG antibodies titres were evaluated in 
serum samples at the end point 14 days after HAO challenge. Antibody titres were 
calculated using serial dilutions of serum to derive an AU. A positive sample 
previously tested was included as control (C+). The dotted line represents the α-
CII antibody titres in the negative control sample. Data shown are mean with SEM 
of 5 mice per group. Differences between groups were assessed with 1-way 
ANOVA and Tukey correction for multiple comparisons (ns, p>0.05; ****, 
p<0.0001). 
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Periodontal disease severity was evaluated at six weeks post-infection measuring 

the alveolar bone loss with a dissection microscope (as described in Chapter 2, 

section 2.4.1.1)(Figure 5-13). Individual molar teeth were analysed, and data 

from all molar teeth combined were also evaluated. No significant differences 

could be observed between KO and WT experimental groups. The infection with 

P. gingivalis had no impact on the bone level, and there was no difference in 

bone levels in KO and WT mice.  

 
Figure 5-12: α-P. gingivalis IgG antibody titres in serum 
Mice were orally infected with P. gingivalis (PD) followed by induction of 
experimental arthritis (EA). Anti-P.gingivalis antibodies were evaluated in serum 
samples at the end point 40 days post-infection. Antibody titres were calculated 
using serial dilutions of serum to derive an AU. (A) Total IgG, (B) IgG1 and (C) 
IgG2c antibody titres. Data shown are mean with SEM of 5 mice per group. 
Differences between all eight groups were assessed with 1-way ANOVA and 
Tukey correction for multiple comparisons (ns, p>0.05; *, p<0.05; ***, p<0.001; 
****, p<0.0001). 
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Figure 5-13: Alveolar bone level  
Mice were orally infected with P. gingivalis W83 (PD) followed by experimental 
arthritis (EA). Alveolar bone loss (ABL) was evaluated at the end point 40 days 
post-infection. Data shown are mean with SEM of 5 mice per group. Each data 
point shows the mean value per mouse. ABL was calculated for the (A) 1st, (B) 2nd, 
(C) 3rd molar and (D) all molars combined. The dotted line indicates the average 
ABL of the WT control group. The differences between groups were assessed with 
1-way ANOVA and Tukey correction for multiple comparisons (n.s, p>0.5). 
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5.4 Discussion 

The data presented in this chapter suggest that both PAD4 and prior infection 

with P. gingivalis may influence the pro-inflammatory T cell-mediated responses 

to antigen.  

From these data, there is no interaction between experimental PD and this 

model of EA with respect to clinical outcome of EA. Previous studies have 

implied that infection with P. gingivalis exacerbates experimental arthritis in 

spontaneous (e.g. SKG), CIA or exogenous antibody induced models (Queiroz-

Junior et al., 2011, Maresz et al., 2013, Gully et al., 2014, Yamakawa et al., 

2016, Chukkapalli et al., 2016). In these studies, the infection in some cases is 

via subcutaneous chambers or via i.p. injection and will therefore have a more 

pronounced systemic effect. The studies, in which PD is induced by oral 

infection, employ a different P. gingivalis strain or different combination of 

bacterial species, besides different arthritis model such as collagen antibody-

induced arthritis (CAIA), which is exacerbated by LPS.  

P. gingivalis triggered immune response was confirmed with the analysis of 

serum samples harvested at 6 weeks post-infection. The slight increase in IgG2c 

antibody titres in absence of PAD4 could indicate a shift to Th1 response. 

However, the results obtained in the previous Chapter 4 do not support this 

assumption. The B cell response to antigen is a strong feature in the pathology 

of rheumatoid arthritis; therefore antibody production against OVA antigen was 

also evaluated. The strong background signal, probably due the use of CFA in the 

immunization, complicated the assessment of differences in the B cell response 

between sample groups. Different coating buffers were tested to reduce the 

background signal of the ELISA assay with no success. 

There were a number of limitations to the current work. Principally, the 

experimental models employed failed to reproduce the disease pathology. Thus, 

although P. gingivalis triggered immune responses as confirmed by the detection 

of antibodies in serum, as in Chapter 3, the bone loss in the WT infected groups 

was insufficient to validate the development of a periodontitis state in the 

mouse models (as shown before in Oliver-Bell et al., 2015, Malcolm et al., 2015, 
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Malcolm et al., 2016). In previous studies, gene mutant mice (e.g. ST2 KO and 

mast cell deficient animals) demonstrated variable baseline bone loss compared 

with their wild-type controls, implying that the gene alteration impacted the 

response to normal flora. PAD4 appears to play no role in the normal response to 

oral cavity flora in mice. Moreover, in previous models in BALB/c mice, induction 

of this arthritis alone has caused periodontal bone loss, which was exacerbated 

by concurrent infection with P. gingivalis (J Butcher, personal communication, 

manuscript in preparation). Besides the correct polarization and handling of Th1 

OVA-TcR cells, the absence of histological signs of joint destruction and bone 

loss, and the lack of generation of autoantibodies (α-CII IgG) as indicative of 

breach of tolerance, do not mirror previously published findings in this pre-

arthritis model (Maffia et al., 2004, Nickdel et al., 2009, Benson et al., 2010). 

There was no obvious explanation for these discrepancies; it may be that the 

animal environment is key and variations sufficient to trigger differences in this 

model.  

Despite the failure in reproducing the pathology in the EA model, two general 

trends were observed from the analysis of footpad swelling and proliferation of 

CD4+ T cell from the dLN: an increased inflammatory response in KO mice 

(demonstrated in the arthritic groups), and reduction of inflammation when EA 

is combined with PD. However, the last observation (PD-EA<EA) contradicts 

previous studies on this matter (Maresz et al., 2013, Gully et al., 2014, 

Yamakawa et al., 2016, Chukkapalli et al., 2016). Since the inflammation 

observed in the model has been shown to be mainly driven by CD4+ T cells, 

based on the similar antibody responses, and visualization of cell infiltrates in 

the joints, these results suggest modulation of the inflammatory T helper cell 

responses to antigen by PAD4 is diminished by P. gingivalis oral infection.  

Further studies using the OVA-TcR induced model of early arthritis could include 

a group control with transference of non-polarised transgenic T cells, and the 

inclusion of transgenic T cell markers (Vα2 and Vα5) in the flow cytometry 

analysis of the T cell responses to antigen. Supplementary studies more focussed 

in the effect of PD in the established RA pathology instead of in the disease 

onset, could employ alternative arthritis models such as CIA or antibody induced 

arthritis. Although the initial requirements of the model exclude the use of mice 
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with C57BL/6 background, studies have shown that C57BL/6 mice are susceptible 

to arthritis induction by immunization with chicken type II collagen with the 

development of strong and sustained T cell responses to antigen (Inglis et al., 

2007).  

5.5 Conclusions 

The model failed to reproduce the physiopathology of early arhtirtis, and 

therefore, the influence of experimental arthritis on P. gingivalis infection and 

vice versa could not be assessed. Surprisingly, T helper responses to antigen 

appeared exacerbated in absence of PAD4 in uninfected mice, although the 

underlying mechanisms are still unknown.  
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6.1 Introduction 

Neutrophils are the first cell type that migrate and accumulate at an injured site 

and so are principal components of the acute inflammatory response. Two to 

four days after the initiation of the acute response, mononuclear cell infiltration 

follows and subsequently antigen uptake, processing and presentation will lead 

to proliferation of lymphocytes (as reviewed in Kumar et al., 2014).  

The data presented in previous chapters imply that PAD4 may play a role in 

different parts of this process. Data in chapter 3 demonstrate that PAD4 

citrullination is essential for the formation of neutrophil extracellular traps. 

PAD4 may also influence the T-cell mediated responses to antigen, as shown in 

Chapter 5. The following experiments sought to further investigate these in vitro 

and in vivo observations, to determine whether PAD4 played a role in neutrophil 

function in vivo, and to further evaluate the observed subtle differences in the 

arthritis model in chapter 5.  

The carrageenan induced paw oedema model of acute inflammation is mainly 

driven by neutrophils infiltration (Posadas et al., 2004). The subcutaneous 

injection of λ-carrageenan, a polysaccharide obtained from edible red seaweeds 

(e.g. Chondrus crispus), has been shown to induce a biphasic age-weight 

dependent inflammatory response (Necas and Bartosikova, 2013). NETs 

formation has also been observed when carrageenan is injected in the peritoneal 

compartment (Barth et al., 2016), hence this system is an ideal tool for the 

study of PAD4 contribution to the development of an acute inflammatory 

response.  

The model of arthritis in chapter 5 includes a component of a conventional 

model of a delayed type hypersensitivity reaction (Maffia et al., 2004). 

Hypersensitivity reactions can be a source of chronic tissue damage and 

inflammation due inappropriate activation of the immune system that can lead 

eventually to autoimmune disorders such as rheumatoid arthritis. The delayed 

type IV hypersensitivity (DTH) reaction is a clinical example of a CD4+ T cell-

mediated inflammatory response (as reviewed in Black, 1999). After an initial 

sensitization phase, referring to the initial immunization with specific antigen 
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(e.g. ovalbumin), a second challenge with the antigen mark the beginning of the 

efferent phase of the DTH response, which develops in the following 24-72 h. 

The Th1 cells that have been primed by the previous exposure to antigen 

migrate to the site of injection, recognise the peptide in the context of MHCII 

and become activated, releasing cell mediators (e.g. IFN-Υ and TNF-α) that 

induce the recruitment of pro-inflammatory cell infiltrates and eventually 

causing swelling. The conventional experimental model of DTH was used to study 

PAD4 contribution to the chronic inflammation driven by T cells.  

6.2 Aims 

In a combined murine model of periodontitis and experimental arthritis there 

was increased footpad swelling in the absence of PAD4. The studies carried out 

in this chapter were driven by two hypotheses generated from the results 

obtained in Chapter 5.  

1. Given PAD4 involvement in neutrophil function, increased inflammation in 

the absence of PAD4 may be due to PAD4 playing a role in early stages of 

inflammation, which involve neutrophils.  

2. PAD4 may play a role in regulation or activation of later cell-mediated 

immune responses.  

The aim of this chapter was therefore to investigate PAD4 contribution to the 

inflammatory response.  
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6.3 Results 

In preliminary exploratory experiments a mixture of male and female animals 

were used due to availability of genetically modified animals. These data 

showed unexpected differences in response between male and female. 

Therefore, in the subsequent experiments, data are analysed according to 

male/female as well as KO/WT.  

6.3.1 The role of PAD4 in acute inflammation 

A model of acute inflammation paw oedema induced by λ-carrageenan was used 

to investigate PAD4 contribution to the induction and resolution of the innate 

aspects of inflammation (Figure 6-1). Animals were categorized in four groups 

according gender and mice strain (Table 6-1). Footpad swelling was evaluated as 

indicative of the inflammatory response, hourly up to 6 hours and then daily up 

to 6 days. In order to highlight the possible effect of PAD4 or animal’s gender on 

the oedema progression, the analysis was made in dual comparisons focusing on 

those parameters (Figure 6-2). A biphasic response was observed in all 

experimental groups as expected (Posadas et al., 2004); phase 1 peaked at 4 h 

and phase 2 at 48-72 h. No differences were observed between groups in phase 1 

and phase 2 with exception of 72 h time point, when differences reached 

significance between KO male and female (Figure 6-2D). 

 
Figure 6-1: Timeline of the λ-carrageenan murine model of acute 
inflammation 
Paw oedema was induced in PADi4 KO and PADi4 floxed control (WT) mice right 
hind paw with a subcutaneous injection containing 300 µg of λ-carrageenan 
dissolved in 50 µl of PBS. Footpad swelling was measured hourly up to 6 hours 
and then daily up to 6 days.  

 

Day 0  

λ-carrageenan  
sc 

BL/6  
WT  

PADi4 
 KO Measure footpad 

swelling 
6       
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Table 6-1: Experimental groups in the λ-carrageenan murine model of acute 
inflammation 
 

 

 
Figure 6-2: λ-carrageenan footpad swelling 
PADi4 KO and PADi4 floxed control (WT) male and female mice were challenged 
in the right hind paw with λ-carrageenan to induce oedema as shown in Figure 
6-1. The thickness of the challenged footpad was measured hourly up to 6 hours 
and then daily up to 6 days, using callipers. The thickness of the control 
contralateral footpad was subtracted to give a delta footpad thickness. The 
inflammatory response was biphasic; phase one peaked at 4 h and phase 2 at 72 
h. Footpad swelling in (A) WT vs. KO female and (B) male mice, (C) female vs. 
male WT and (D) KO mice. Data shown are mean with SEM of 3 independent 
experiments (5 mice per group per experiment). Differences between groups at 
each time point were evaluated with 2-way ANOVA and Tukey correction for 
multiple comparisons (*, p<0.05). 
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6.3.2 The role of PAD4 in T cell mediated inflammation 

A model of delayed type hypersensitivity (DTH) in absence of PAD4 was used to 

investigate PAD4 involvement in the adaptive immune response (Figure 6-3). 

Ovalbumin (OVA) was used as antigen and CFA as adjuvant in immunization and 

heat-aggregated OVA (HAO) was used to recall a secondary cellular response to 

antigen in the paw. Animals were categorized in eight groups according gender, 

strain and treatment (Table 6-2).  

 
Figure 6-3: Timeline of the murine model of Delayed Type Hypersensitivity  
A DTH response was induced in PAD4 deficient (KO) and PADi4 floxed (WT) 
mice. Animals were immunized with ovalbumin (OVA) in complete Freund’s 
adjuvant (CFA), and 18 days after immunisation the right hind footpad was 
challenged s.c. with heat-aggregated OVA (HAO). Footpad swelling was 
measured daily for 3 days. Antibody responses were assessed in the serum 
collected pre-immunization with OVA/CFA, pre-challenge with HAO and at the end 
point. The T cell response to OVA antigen was evaluated in vitro at the experiment 
end point. 

Table 6-2: Experimental groups in the OVA Delayed Type Hypersensitivity 
model 
 

 
 

0  18        

CFA/OVA 
sc 

PADi4 floxed 
WT  

PADi4 
 KO 

Footpad challenge  
with HAO   

Measure footpad 
swelling daily  

21       

END 

Day -1  

Blood 
sample 

17        

Blood 
sample 

n = 5 / group Sex Mice strain OVA/CFA Footpad challenge 

G1   WT sham control Male PADi4 floxed ✔ PBS 

G2   WT HAO Male PADi4 floxed ✔ HAO 

G3   WT sham control Female PADi4 floxed ✔ PBS 

G4   WT HAO Female PADi4 floxed ✔ HAO 

G5   KO sham control Male PADi4 KO ✔ PBS 

G6   KO HAO Male PADi4 KO ✔ HAO 

G7   KO sham control Female PADi4 KO ✔ PBS 

G8   KO HAO Female PADi4 KO ✔ HAO 
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6.3.2.1 DTH progression in footpads 

Footpad swelling was evaluated daily up to three days as indicative of the 

inflammatory response (Figure 6-4), peaking 24 h after HAO challenge. As 

expected, PBS challenged control groups showed no paw swelling and there was 

a significant increase in all HAO challenged groups compared to PBS controls, 

indicative of the proper development of the DTH response. When comparing the 

footpad swelling between WT and KO HAO groups, no differences were observed 

in females (Figure 6-4A), but in males (Figure 6-4B), a significantly reduced 

inflammatory response was observed in WT compared with KO. The same pattern 

was observed between HAO groups when the footpad swelling was further 

analysed calculating the total area under the curve (AUC) for a better 

representation of the overall inflammation (Figure 6-4C). 
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Figure 6-4: DTH - Footpad swelling 
A DTH response to OVA was induced in male and female PADi4 KO and PADi4 
floxed (WT) mice, as shown in Figure 6-3. The thickness of the challenged footpad 
was measured daily using callipers following HAO challenge at day 18 
(represented as day 0 in the panels above). The thickness of the control 
contralateral footpad was subtracted to give a delta footpad thickness. Footpad 
swelling progression in (A) female and (B) male mice in HAO challenged and PBS 
control WT and KO experimental groups. (C) The footpad swelling of the HAO 
challenged groups was calculated as the area under the curve (AUC) for each 
mouse using GraphPad Prism® software. Data shown are mean with SEM of 4 
independent experiments (2-5 mice per group per experiment). Differences 
between groups in panels A and B were evaluated at each time point with 2-way 
ANOVA and Tukey correction for multiple comparisons. Differences between 
groups in panel C were assessed with 1-way ANOVA and Tukey correction for 
multiple comparisons (ns, p>0.05; *, p<0.05; ****, p<0.0001).  

Immunization in the context of CFA is common to many experimental animal 

models of autoimmune disease, prolonging the lifetime of the injected antigen 

and inducing a Th1 phenotype favouring the development of a DTH response 

(Billiau and Matthys, 2001). Therefore, the evaluation of immunization in the 

context of CFA was of interest in our DTH model. In a preliminary study, the 

impact of CFA in the inflammatory response was tested by immunizing animals 

with OVA antigen in CFA or PBS, and then inducing a DTH response following 

HAO injection in the paw as usual. The magnitude of the response was slightly 
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increased when immunizing in CFA context instead of PBS. Differences did not 

reach significance even though CFA created a more sustained response (data not 

shown). 

To investigate if the increased swelling observed in the paws was due increased 

cell retention in the injection site, the challenged paws were evaluated by flow 

cytometry. Total cell counts were obtained from the right hind paws challenged 

either with PBS or HAO, using the untreated left paw (L) as reference control 

(Figure 6-5). No significant differences were observed between experimental 

groups in females (Figure 6-5A) and males (Figure 6-5B).  

  
Figure 6-5: DTH - Hind paws cell counts 
Total cell counts were obtained from the hind paws that had been injected with 
either HAO or PBS (control) at the experiment end point (Figure 6-3). (A) Female 
and (B) male mice in HAO challenged and PBS control WT and KO experimental 
groups. The dotted line (L) indicates average cell count for the WT unchallenged 
left paws. Data shown are mean with SEM of 2 independent experiments (2-5 
mice per group per experiment, total of 3-7 mice per group across all 
experiments). Differences between groups were assessed with 1-way ANOVA and 
Tukey correction for multiple comparisons (ns, p>0.05; *, p<0.05). 

The cell populations in the paws were analysed by flow cytometry using cell 

surface markers to identify different cell populations according to table (Table 

6-3).  
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Table 6-3: Cell surface markers for flow cytometry analysis of the paws cell 
populations 
 

Cell populations Cell markers 

Total lymphocytes CD45+ 

B cells CD45+ (CD4-CD8-) 

Activated B cells CD45+ (CD4-CD8-) CD25+ 

CD4 T cells CD45+ CD4+ (CD8-) 

Activated CD4 T cells CD45+ CD4+ (CD8-) CD25+ 

CD4 T central memory cells (TCM) CD45+ CD4+ (CD8-) CD44+ CCR7+ 

CD8 T cells CD45+ CD8+ (CD4-) 

DC-like cells CD11c+ (CD11b-) MHCII+ 

Activated DC-like cells CD11c+ (CD11b-) MHCII+ CD80+ CD86+ 

Neutrophils CD11b+ Ly6G+  

Neutrophils MHCII+ cells CD11b+ Ly6G+ MHCII+ 

Activated neutrophils CD11b+ Ly6G+ MHCII+ CD80+ CD86+ 

Monocyte-like cells CD11b+ Ly6C+ 

Monocyte-like MHCII+ cells CD11b+ Ly6C+ MHCII+ 

Activated monocyte-like cells CD11b+ Ly6C+ MHCII+ CD80+ CD86+ 

 

The cell populations in the paws were analysed by flow cytometry following the 

gate strategy described in Figure 6-6 and Figure 6-9. Data were analysed using 

total cell numbers, and each population cell count was normalized to the total 

cell numbers present in the foot for analysis. The control (PBS injected) paws 

showed similar cell counts in all groups for all cell types investigated.   

The cell populations in either PBS or HAO treated paws were evaluated in KO or 

WT mice, and subdivided by male or female (Figure 6-7, Figure 6-8, Figure 6-10, 

Figure 6-11 and Figure 6-12). CD8 T cells were present in extremely low numbers 

(Figure 6-6) and therefore no CD8+ analysis was pursued in the paws cell 

extracts. The statistical analysis of the results comparing HAO and PBS control 

groups are summarized in Table 6-4.  
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Table 6-4: Summary of the analysis of the cell populations in the paws  
Differences between HAO and PBS control groups were evaluated with 1-way 
ANOVA and Tukey correction for multiple comparisons (ns, p>0.05; ★, p<0.05; 
★★, p<0.01; ★★★, p<0.001; ★★★★, p<0.0001). 

 HAO vs. PBS control  

 Females Males 

Cell populations WT PADi4 KO WT PADi4 KO 

Total lymphocytes ns ns ns ★  

B cells ns ns ns ★  

Activated B cells ns ★★ ns ns 

CD4 T cells ns ns ns ★  

Activated CD4 T cells ★★ ★★ ns ns 

CD4 TCM cells ★  ns ns ns 

DC-like cells ns ns ns ★★ 

Activated DC-like cells ns ★★ ns ★★★ 

Neutrophils ns ns ns ★  

Neutrophils MHCII+ cells ns ★ ns ★★★★ 

Activated neutrophils ns ns ns ★★ 

Monocyte-like cells ns ns ns ns 

Monocyte-like MHCII+ cells ns ns ns ns 

Activated monocyte-like cells ns ns ns ★ 

 

In females, the HAO challenged groups showed no general increased numbers of 

the investigated cell populations compared with PBS challenged controls (total 

lymphocytes, B cells, CD4 T cells, DC-like cells, neutrophils and monocyte-like 

cells). By contrast, in the KO male mice there was general trend to increased 

cell numbers in HAO challenged paws, which reached statistical significance for 

total lymphocytes, B cells, CD4 T cells, DC-like cells and neutrophils. However, 

in WT male mice there was no general increase in cell numbers in response to 

HAO compared with PBS challenged controls for all populations evaluated. The 

increase in number of CD4 T cells expressing central memory markers only 

reached significance in WT female mice. 
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Regarding cells activation, KO female mice showed increased B cell activation, 

females but not males presented increased activation of CD4 T cells regardless 

PADi4 presence and KO mice showed increased activation of DC-like cells 

irrespective of gender. The number of neutrophils expressing MHCII was higher in 

KO mice regardless PADi4 and monocye-like cells appeared to be only 

differentially activated compared with PBS controls in KO male mice.  

Further description of significant differences between HAO groups is summarized 

in Table 6-5. 
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Figure 6-6: Assessment of B and T cells population in the inflamed paws by 
flow cytometry 
A DTH response to OVA was induced in male and female PADi4 KO and PADi4 
floxed (WT) mice, as shown in Figure 6-3. The hind paws injected with either HAO 
or PBS control, were collected at the experiment end point 3 days post-challenge. 
The whole paws were evaluated by flow cytometry to assess changes in 
lymphocytes populations. The total leukocytes population was identified as CD45+ 

cells of the total live cells population. T helper (Th) and cytotoxic T cells (Tc) were 
identified as CD4+ and CD8+ cells respectively of the CD45+ population. Activated 
Th cells were identified as CD25+ cells of the total CD4+ population. T central 
memory cells (TCM) were identified as CD44+ CCR7+ cells of the total CD4+ 
population. B cells were identified as CD19+ cells of the CD4-CD8- cell population. 
Activated B cells were identified as CD25+ cells of the total CD19+ population. 

CD4+/CD25+

Cells

CD4+/CD8+

C
D

4 A
PC

CD8 PE

FSC-A
SS

C
-A

FSC-A

Vi
ab

ili
ty

 d
ye

 e
50

6

Control HAO

FSC-A

Live cells

C
D

45
 e

45
0

CD45+

C
D

19
 A

PC
-e

78
0

CD25 Alexa 488

CD25 Alexa 488 CD25 Alexa 488

C
D

4 A
PC

C
D

4 A
PC

CD44+/CCR7+

Control HAO

CCR7 (CD197) PE-Cy7 CCR7 (CD197) PE-Cy7

C
D

44
 P

er
C

P-
C

y5
.5

C
D

44
 P

er
C

P-
C

y5
.5

CD19+/CD25+

cells

live cells

CD45+

CD4+CD25+ CD4+CD25+

CD44+CCR7+ CD44+CCR7+

CD4+ CD4+CD8+

CD8+CD4-CD8-

CD19+ CD19+CD25+

CD25+CD19-CD25-



Chapter 6 
 

 198 

 
Figure 6-7: CD45+ and CD19+ cell populations in the inflamed paws 
Cell populations assessed as described in Figure 6-6. Data shown are mean with 
SEM of 2-3 mice per group of a single experiment. The differences between 
groups were evaluated with 1-way ANOVA and Tukey correction for multiple 
comparisons (ns, p>0.05; *, p<0.05; **, p<0.01). 
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Figure 6-8: T cell populations in the inflamed paws 
Cell populations were assessed as described in Figure 6-7. Data shown are mean 
with SEM of 2-3 mice per group of a single experiment. The differences between 
groups were evaluated with 1-way ANOVA and Tukey correction for multiple 
comparisons (ns, p>0.05; *, p<0.05; **, p<0.01). 
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Figure 6-9: Assessment of monocytes, neutrophils and dendritic cell-like 
populations in the inflamed paws by flow cytometry 
A DTH response to OVA was induced in male and female PADi4 KO and PADi4 
floxed (WT) mice, as shown in Figure 6-3. The hind paws injected with either HAO 
or PBS control, were collected at the experiment end point 3 days post-challenge. 
The whole paws were evaluated by flow cytometry to assess changes in 
leukocytes populations. Dendritic cell-like population was identified as 
CD11c+MHCII+ cells of the total CD11b- live cells population. Neutrophils and 
monocytes cell-like populations were identified as Ly6G+ and Ly6C+ cells of the 
total CD11b+ live cells population respectively. The expression of MHCII was 
evaluated in CD11b+Ly6G+ and CD11b+Ly6C+ cell populations. The expression of 
the co-stimulatory molecules CD80 and CD86 was assessed in 
CD11b+Ly6G+MHCII+ and CD11b+Ly6C+MHCII+ cells, and CD11b-CD11c+MHCII+ 

cells.  
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Figure 6-10: Dendritic cell-like population in the inflamed paws 
Cell populations were assessed as described in Figure 6-9. Number of CD11c+ 
MHC II+ cells in (A) females and (B) males; number of CD11c+ MHC II+ cells co-
expressing the co-stimulatory molecules CD80 and CD86 in (C) females and (D) 
males. Data shown are mean with SEM of 2-3 mice per group of a single 
experiment. The differences between groups were evaluated with 1-way ANOVA 
and Tukey correction for multiple comparisons (ns, p>0.05; **, p<0.01; ***, 
p<0.001). 
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Figure 6-11: Neutrophils in the inflamed paws 
Cell populations were assessed as described in Figure 6-9. (A) Number of 
neutrophils identified as CD11b+ Ly6G (1A8)+ cells in females and (B) males; (C) 
number of neutrophils expressing MHC II in females and (D) males; and (E) 
expressing as well the co-stimulatory molecules CD80 and CD86 in females and 
(F) males. Data shown are mean with SEM of 2-3 mice per group of a single 
experiment.  The differences between groups were evaluated with 1-way ANOVA 
and Tukey correction for multiple comparisons (ns, p>0.05; *, p<0.05; **, p<0.01; 
****, p<0.0001).  
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Figure 6-12: Monocyte-like population in the inflamed paws 
Cell populations were assessed as described in Figure 6-9. Number of 
CD11b+Ly6C+ cells in (A) females and (B) males; number of CD11b+Ly6C+ cells 
expressing MHCII in (C) females and (D) males; number of CD11b+Ly6C+MHCII+ 
cells expressing the co-stimulatory molecules CD80 and CD86 in (E) females and 
(F) males. Data shown are mean with SEM of 2-3 mice per group of a single 
experiment. The differences between groups were evaluated with 1-way ANOVA 
and Tukey correction for multiple comparisons (ns, p>0.05; *, p<0.05). 
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6.3.2.2 Assessment of the T cell responses to OVA antigen 

To determine whether the differences observed in footpad swelling were related 

to alterations in the adaptive immune response to antigen mediated by T cells, 

the cellular response in the popliteal lymph nodes draining the paws was 

analysed.  

First, total cell counts were obtained from the dLN three days after HAO 

immunization as an indicator of cell expansion in the lymph node during the 

immune response (Figure 6-13). As expected, the HAO challenged groups 

demonstrated a significant increase in total cell numbers in the dLN compared 

with the PBS control groups. No differences in cell counts were observed 

between the HAO challenged female groups (Figure 6-13A), but when comparing 

the HAO groups in males (Figure 6-13B), a significant reduction in cell numbers 

were observed in WT compared with KO.  

 
Figure 6-13: DTH - Popliteal lymph nodes cell counts 
Total cell counts were obtained from the popliteal lymph nodes draining the paws 
(dLN) at the experiment end point (Figure 6-3). (A) Female and (B) male mice 
either HAO challenged or PBS control, WT and KO groups. The dotted line 
indicates average cell count of the WT control group. Data shown are mean with 
SEM of 4 independent experiments (2-5 mice per group per experiment, total of 
11-14 mice per group across all experiments). Differences between groups were 
assessed with 1-way ANOVA and Tukey correction for multiple comparisons (ns, 
p>0.05; *, p< 0.05; **, p<0.01; ****, p<0.0001). 
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The proliferation of T cells from the popliteal dLN in response to OVA was 

assessed in vitro to further elucidate the cell responses to antigen in this model 

system. Lymphocytes were stimulated with OVA protein and T cell proliferation 

assessed 72 h later (Chapter 2, section 2.5.2.1). Cells were cultured with media 

only as negative control and with αCD3-αCD28 antibodies as positive control. T 

helper and cytotoxic T cells were identified by flow cytometry as live cells 

expressing CD4 or CD8 molecules respectively, and cell proliferation was 

evaluated staining for CD69 and Ki67 as shown in Figure 6-14.  

There was an increase in the co-expression of the CD69 and Ki67 in CD4+ and 

CD8+ cells when stimulated with αCD3-αCD28 compared with media unstimulated 

samples (Figure 6-15A, Figure 6-16A), indicative of cell proliferation and the 

proper execution of the experiment. The percentage of CD4+ and CD8+ activated 

and proliferative cells was then assessed in OVA stimulated samples based on the 

expression alone of CD69+ and CD69+Ki67+ co-expression. Given the results 

obtained from the footpad swelling analysis, the study focused on the 

differences between HAO challenge WT and KO groups in males and females. As 

expected, the HAO challenged groups showed increased expression of CD69 and 

Ki67 relative to the PBS controls. Regarding CD69 and Ki67 co-expression in CD4+ 

and CD8+ cells, no differences were observed between WT and KO HAO 

challenged groups in females (Figure 6-15B, Figure 6-16B), but in males WT mice 

showed a reduced expression compared with KO (Figure 6-15C, Figure 6-16C). 

The percentage of CD4+ cells expressing CD69+ alone was also reduced in HAO WT 

compared with KO irrespective of gender, although differences were more 

evident in males (Figure 6-15E) than in females (Figure 6-15D). However, CD8+ 

cells showed same reduction in CD69+ expression in WT males (Figure 6-16E), but 

not in females (Figure 6-16D). Overall, there was a tendency for reduced in vitro 

activation, following antigen specific stimulation in PAD4 deficient cells 

compared with wild-type cells.  
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Figure 6-14: In vitro stimulation of dLN cells following DTH - Identification of 
proliferating T cells by flow cytometry 
A DTH response to OVA was induced in PAD4 deficient mice (PADi4 KO) or 
PADi4 floxed littermate controls (WT) Figure 6-3. The popliteal lymph nodes 
draining the paws (dLN) from HAO challenged and sham-control mice were 
collected at the end point 3 days post-challenge. Single cell suspensions of the 
dLN were prepared and cultured in vitro with OVA protein. A positive stimulation 
control with αCD3-αCD28 antibodies and an unstimulated (Media) control were 
included for each sample. From the live cell population, T helper (Th) and cytotoxic 
T cell (Tc) subsets were identified as CD4+ and CD8+ cells respectively. 
Proliferation of Th and Tc cells was assessed using expression of CD69 and Ki67, 
identifying proliferating cells as CD69+Ki67+ cells. 
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Figure 6-15: In vitro CD4+ T cell proliferation to OVA antigen 
Cell proliferation was assessed as in Figure 6-14 identifying proliferative cells as 
CD69+Ki67+ cells of CD4 T cell population. (A) Percentage of CD4+ T cells co-
expressing CD69 and Ki67, cultured either with media only (Media) or αCD3-
αCD28 as a positive control, in all experimental groups. The percentage of CD4+ 
CD69+ Ki67+ T cells stimulated with OVA was assessed in (B) females and (C) 
males; the percentage of CD4+ CD69+ T cells stimulated with OVA was assessed 
in (D) females and (E) males. Data shown are mean with SEM of 3 independent 
experiments (2-5 mice per group per experiment, 8-12 mice in per group across all 
experiments). The differences between groups were evaluated in (A) comparing 
each stimulation with its media control using with 2-way ANOVA and Tukey 
correction for multiple comparisons and in (B-E) with 1-way ANOVA and Tukey 
correction for multiple comparisons (ns, p>0.05; *, p<0.05; **, p<0.01; ***, p<0.001; 
****, p<0.0001). 
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Figure 6-16: In vitro CD8+ T cell proliferation to OVA antigen 
Cell proliferation was assessed as in Figure 6-14, identifying proliferative cells as 
CD69+Ki67+ cells of CD8 T cell population. (A) Percentage of CD4+ T cells co-
expressing CD69 and Ki67 markers, cultured either with media only (Media) or 
αCD3-αCD28 as a positive control, in all experimental groups. The percentage of 
CD8+ CD69+ Ki67+ T cells stimulated with OVA was assessed in (B) females and 
(C) males experimental groups; the percentage of CD8+ CD69+ T cells stimulated 
with OVA was assessed in (D) females and (E) males. Data shown are mean with 
SEM of 3 independent experiments (2-5 mice per group per experiment, 8-12 mice 
in per group across all experiments). The differences between groups were 
evaluated in (A) comparing each stimulation with its media control using with 2-
way ANOVA and Tukey correction for multiple comparisons and in (B-E) with 1-
way ANOVA and Tukey correction for multiple comparisons (ns, p>0.05; *, p<0.05; 
**, p<0.01; ***, p<0.001; ****, p<0.0001). 
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Cytokine release by lymphocytes following 72 h incubation with OVA antigen was 

analysed by ELISA. A positive control response was confirmed by analysis of 

supernatants from cells stimulated with αCD3-αCD28. There were no notable 

differences between KO/WT-male/female in the positive controls. The average 

IFN-γ secreted by media-unstimulated cells was 21.46 pg/ml, and by αCD3-

αCD28 stimulated cells was 29,208.5 pg/ml. The average secreted by media-

unstimulated cells was 145 pg/ml, and by αCD3-αCD28 stimulated cells was 

3791.9 pg/ml (data not shown). As expected, the secretion of both IFN-γ and IL-

10 was higher in the HAO challenged groups compared with PBS controls. No 

significant differences were observed in IFN-γ production in the HAO challenged 

groups between WT and KO mice irrespective of gender (Figure 6-17A,B). IL-10 

production was similar in female WT and KO HAO groups, (Figure 6-17C), but 

males exhibit significantly less IL-10 release in WT compared with KO (Figure 

6-17D).  

Serum IL-6 was evaluated by ELISA at the experiment end point (3 days after 

HAO challenge), as indicative of the general inflammatory state of the mice. IL-6 

could not be detected in the serum of any animals, with levels recorded lower 

than the assay sensitivity threshold in all experimental groups (Figure 6-18). 

In summary, the analysis of the T cell responses to OVA antigen based on total 

cell counts in the popliteal dLN, CD69 and Ki67 expression in the CD4+ and CD8+ 

lymphocyte populations and IL-10 production, show the same trend patterns 

previously observed in the analysis of the footpad swelling. Females T cell 

activation and proliferation doesn’t seem to be influenced by PAD4. Males tend 

to display a diminished T cell response to antigen when PAD4 is present. 
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Figure 6-17: IFN-γ and IL-10 cytokine levels in cell supernatants after in vitro 
stimulation with OVA  
Cytokine production was evaluated in cell culture supernatants from OVA-
stimulated cells cultured as in Figure 6-14. IFN-γ levels in cell supernatants from 
PADi4 floxed and PADi4 KO (A) female and (B) male mice; IL-10 levels in cell 
supernatants from PADi4 floxed and PADi4 KO (C) female and (D) male mice. 
Data shown are mean with SEM of 3 independent experiments (2-5 mice per 
group per experiment, 8-12 mice in per group across all experiments). The 
differences between groups were evaluated with 1-way ANOVA and Tukey 
correction for multiple comparisons (ns, p>0.05; **, p<0.01; ***, p<0.001; ****, 
p<0.0001). 
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Figure 6-18: IL-6 cytokine levels in serum 
A DTH response to OVA was induced in male and female PADi4 KO and PADi4 
floxed (WT) mice. IL-6 in serum at the experiment end point was evaluated by 
ELISA. Data shown are mean with SEM of 4 independent experiments (2-5 mice 
per group per experiment). The dotted line indicates the ELISA test sensitivity 
threshold. IL-6 levels in all samples were under the test threshold value. 

6.3.2.3 Assessment of antibody titres in serum 

To study the progression of the adaptive immune response to OVA antigen during 

the development of the DTH response, IgG levels were measured in serum of 

male and female WT and KO mice at different time points: before CFA 

immunization, before HAO challenge (18 days post-immunization) and at 

experiment end point (21 days post-immunization). Previously tested positive 

and negative controls were included in the assay. The IgG subclasses IgG1 and 

IgG2c were evaluated in addition to total IgG as indicative of a Th2 and Th1 

response respectively.  

For analysis purposes the positive control (C+) is only shown in Figure 6-19, 

although each ELISA assay included both positive and negative controls. The 

analysis of α-OVA antibody levels immediately before (pre-CFA) and after 

immunization (pre-HAO, End point) showed a notable increase in IgG antibody 

production in all groups only after OVA-CFA treatment (Figure 6-19). The results 

indicate a huge stimulation of the B cell responses to antigen as consequence of 

CFA immunization, increasing the antibody titres baseline and potentially 

masking possible changes in antibody production between the HAO challenged 

and the PBS control groups. No significant differences in IgG, IgG1 and IgG2c 

antibody titres were observed between experimental groups in male and female 

mice (Figure 6-19, Figure 6-20, Figure 6-21). 

Females Males
0

10

20

30

40

50

IL
-6

 (p
g/

m
l) WT control

WT HAO
KO control
KO HAO

sensitivity 
threshold



Chapter 6 
 

 212 

 
Figure 6-19: Anti-OVA IgG serum antibody response  
A DTH response to OVA was induced in PAD4 deficient mice (PADi4 KO) or 
PADi4 floxed littermate controls (WT) Figure 6-3. Anti-OVA (α-OVA) total IgG 
antibody titres were evaluated in mouse serum by ELISA. A no-sample control 
(Blank) and a positive sample previously tested (C+) were included as controls. 
Anti-OVA IgG antibody titres were assessed in WT and PADi4 KO mice before 
immunization with CFA in (A) females and (B) males; before challenge with HAO 
in (C) females and (D) males; and at the experiment end point 3 days post-
challenge in (E) females and (F) males. Data shown are mean with SEM of 4 
independent experiments (2-5 mice per group per experiment). The dotted line 
represents the average α-OVA IgG antibody titres in the WT control group. The 
differences between groups were evaluated with 1-way ANOVA and Tukey 
correction for multiple comparisons (ns, p>0.05; **, p<0.01; ****, p<0.0001). 
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Figure 6-20: Anti-OVA IgG1 antibody response  
A DTH response to OVA was induced in PAD4 deficient mice (PADi4 KO) or 
PADi4 floxed littermate controls (WT) (Figure 6-3), α-OVA IgG1 antibody titres 
were evaluated in mouse serum by ELISA. A no-sample control (Blank) and a 
positive sample previously tested (C+) were included as controls (not shown). 
Anti-OVA IgG1 antibody titres in WT and PADi4 KO mice before challenge with 
HAO in (A) females and (B) males; and at the experiment end point 3 days post-
challenge in (C) females and (D) males. The differences between groups were 
evaluated with 1-way ANOVA and Tukey correction for multiple comparisons. Data 
shown are mean with SEM of 4 independent experiments (2-5 mice per group per 
experiment). The dotted line represents the α-OVA IgG1 antibody titres in the WT 
control sample. No differences were observed between groups at any time point 
(ns, p>0.05). 
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Figure 6-21: Anti-OVA IgG2c antibody response  
A DTH response to OVA was induced in PAD4 deficient mice (PADi4 KO) or 
PADi4 floxed littermate controls (WT) (Figure 6-3). α-OVA total IgG2c antibody 
titres were evaluated in mouse serum by ELISA. A no-sample control (Blank) and 
a positive sample previously tested (C+) were included as controls (not shown). 
Anti-OVA IgG2c antibody titres were assessed in WT and PADi4 KO mice before 
challenge with HAO in (A) females and (B) males; and at the experiment end point 
3 days post-challenge in (C) females and (D) males. Data shown are mean with 
SEM of 4 independent experiments (2-5 mice per group per experiment). The 
dotted line represents the α-OVA IgG2c antibody titres in the WT control sample. 
The differences between groups were evaluated with 1-way ANOVA and Tukey 
correction for multiple comparisons. No differences were observed between 
groups at any time point (ns, p>0.05). 
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lymphocytes, CD4 T cells and neutrophils in the paws; and proliferation of CD4 

and CD8 T cells. The results suggest a differential DTH response between WT 

males and females with increased T cell infiltrates in the paws and CD4+ and 

CD8+ proliferative response to antigen in the dLN. Such differential behaviour in 

the inflammatory response has been reported in previous studies (Cook and 

Nickerson, 2005, Ma et al., 2007, Scotland et al., 2011, Kay et al., 2015,), but 

the underlying mechanism remains still unknown. However, our data suggest 

that in absence of PAD4, male’s response to antigen equals female’s in terms of 

swelling, cell infiltration and T cell proliferation. 

Table 6-5: Summary of the DTH results analysis  
Abbreviations: AUC, area under the curve; ñ, increased in; F, females; KO, PADi4 
KO. Differences between HAO groups were evaluated with 1-way ANOVA and 
Tukey correction for multiple comparisons (ns, p>0.05; ★, p<0.05; ★★, p<0.01; 
★★★★, p<0.0001). 

 HAO challenged experimental groups 

 WT-KO comparison Male-Female comparison 

Significant parameters Female Male WT PADi4 KO 

Footpad swelling (AUC) ns ★ (ñKO) ns ns 

No of total lymphocytes  ns ★ (ñKO) ★ (ñF) ns 

No of CD4 T cells ns ★ (ñKO) ★★ (ñF) ns 

No of neutrophils ns ★ (ñKO) ns ns 

Proliferation CD4 T cells 
(% CD4+CD69+Ki67+) ns ★★ (ñKO) ★ (ñF) ns 

Proliferation CD8 T cells 
(% CD8+CD69+Ki67+) ns ★★ (ñKO) ★★★★ (ñF) ns 
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6.3.3 The role of PAD4 in T cell response to differing activation 
stimuli 

The proliferation of T cells was assessed in vitro in response to various external 

stimuli to discard intrinsic differences in T cell activation related to PAD4 or 

animal gender that could be influencing the cellular response to antigen.  

First, PADi4 and PADi2 gene expression were assessed by quantitative PCR 

(Chapter2, section 2.10.3) in T cells from male and female WT and KO mice 

lymph nodes. PADi4 expression was readily detected in WT controls showing no 

significant differences between males and females, and was undetectable in KO 

mice (Figure 6-22A). PADi2 gene expression was evaluated to assess a possible 

compensation mechanism as consequence of PADi4 deletion, with no evident 

differences between groups (Figure 6-22B). 

 
Figure 6-22: PADi4 and PADi2 gene expression in T cells 
T cells were purified from lymph nodes of untreated male and female PADi4 floxed 
(WT) and PADi4 KO mice. The total RNA of 1x106 cells was extracted and 
reverse-transcribed to cDNA. The expression of PADi4 and PADi2 genes was 
assessed by real-time PCR assay using TaqMan® primer/probe sets. Data are 
expressed as 2-ΔΔCT relative to the housekeeping gene 18S. Data shown are mean 
with SEM of 3 mice per group (except PADi2 expression in PADi4 KO where only 
one data set available). No gene amplification is indicated as non-detectable (n.d) 
in the panels above. The differences between WT groups were evaluated with 
two-tailed unpaired Student’s t-test (ns, p>0.05). 

The proliferation of T helper cells in response to αCD3-αCD28 antibodies and 

PMA-Ionomycin stimulation was assessed in vitro for a better understanding of 

the cell responses to antigen in the development of inflammation. Both 

mechanisms are commonly used to induce T cell activation. αCD3-αCD28 is the 
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most physiological stimulus, activating the TCR/CD3 complex and the 

consequent cascade of events; whereas Ionomycin-PMA signals downstream the 

TCR/CD3 complex mimicking the effect of TCR-induced phospholipase C 

activation, directly increasing the cytoplasmatic Ca2+ concentration and 

activating protein kinase C respectively (Verhoef et al., 1999).    

CD4+ cells were isolated from male and female WT and KO mice lymph nodes and 

stimulated with αCD3-αCD28 or PMA-Ionomycin (Chapter 2, section 2.5.2.4). 

Cells were cultured with media only as negative control. T cell proliferation was 

assessed 72 h later by flow cytometry; viable T helper cells were identified as 

CD4+ live cells and cell proliferation was evaluated based on CD69 and Ki67 

expression (Figure 6-23). Both αCD3-αCD28 and PMA-Ionomycin stimulated cells 

shown evident increase in CD69 and Ki67 expression compared with media 

unstimulated controls, indicative of cell proliferation and the proper execution 

of the experiment. No relevant differences were observed between groups 

regarding CD69 and Ki67 expression in CD4+ cells after stimulation with αCD3-

αCD28 or PMA-Ionomycin (Figure 6-24).  
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Figure 6-23: Identification of proliferating CD4+ T cells by flow cytometry 
CD4+ T cells were purified from lymph nodes of untreated male and female PADi4 
floxed (WT) and PADi4 KO mice. Cells were cultured with αCD3-αCD28 
antibodies or PMA-Ionomycin to induce cell proliferation. An unstimulated (Media) 
control was tested for each sample. T cells were identified by flow cytometry as 
CD4+ of the total live cell population. Proliferation was assessed by expression of 
CD69 and Ki67, identifying proliferative cells as CD69+Ki67+ cells.  
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Figure 6-24: In vitro T helper cell proliferation in response to αCD3-αCD28 
and PMA-Ionomycin stimuli 
In vitro proliferation of CD4+ T cells following stimulation with αCD3-αCD28 or 
PMA-Ionomycin was assessed by flow cytometry as described in Figure 6-23. An 
unstimulated (Media) control was tested for each sample represented as a dotted 
line in the panels above. T helper cells were identified as CD4+ of the total live cell 
population. Proliferative cells were identified as CD69+Ki67+ cells in the CD4+ 
population. (A) Percentage of CD4+ stimulated T cells expressing CD69 or (B) co-
expressing CD69 and Ki67 after αCD3-αCD28 stimulation. (C) Percentage of 
CD4+ stimulated T cells expressing CD69 or (D) co-expressing CD69 and Ki67 
after PMA-Ionomycin stimulation. Data shown are mean with SEM of 3 
independent experiments with one or two mice per group in each experiment. The 
differences between groups were evaluated with 1-way ANOVA and Tukey 
correction for multiple comparisons (ns, p>0.05). 
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6.3.4 The role of PAD4 in antigen processing and presentation 

Antigen processing and presentation was assessed in vitro in bone marrow 

derived dendritic cells (BMDCs) from male and female WT and KO mice, to 

determine whether intrinsic differences in DCs function related to PAD4 or 

animal gender might influence the T cell response to antigen.  

First, PADi4 and PADi2 gene expression in DCs was assessed by quantitative PCR 

in BMDCs cells from male and female WT and KO mice. PADi4 expression was 

readily detected in WT controls showing no significant differences between 

males and females, and being undetectable in KO mice (Figure 6-25A). PADi2 

gene expression was evaluated to assess a possible compensation mechanism as 

consequence of PADi4 deletion, with no evident differences between groups 

(Figure 6-25B). 

 
Figure 6-25: PADi4 and PADi2 gene expression in bone marrow derived 
dendritic cells (BMDCs)  
The total RNA of 1x106 BMDC cells was extracted and reverse-transcribed to 
cDNA. The expression of PADi4 and PADi2 genes was assessed by real-time 
PCR assay using TaqMan® primer/probe sets. Data are expressed as 2-ΔΔCT 
relative to the housekeeping gene 18S. Data shown are mean with SEM of 2 mice 
per group. No gene amplification is indicated as non-detectable (n.d) in the panels 
above. The differences between groups in (A) were evaluated with two-tailed 
unpaired Student’s t-test (ns, p>0.05). Differences in (B) were evaluated with 1-
way ANOVA and Tukey correction for multiple comparisons (ns, p>0.05). 

The Eα-GFP model (Chapter 2, Figure 2-17) was used to evaluate antigen 

processing and presentation in vitro. BMDCs were cultured for 4 h or overnight 

with media only as unstimulated control, LPS, Eα-GFP protein or LPS+Eα-GFP 
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CD80+CD86+ and its ability to process (GFP+) and to present antigen (MHCII+YAe+) 

were evaluated by flow cytometry following the gate strategy described in 

Figure 6-26. As expected, after 4 h LPS stimulation the co-expression of CD80 

and CD86 significantly increased with the intensity of the stimulus 

(Media<Eα<LPS<Eα-LPS, p<0.001) (Figure 6-27A), as did the MHCII expression 

(Media<Eα<LPS, p<0.01), except between the LPS and Eα-LPS groups (ns, 

p>0.05)(Figure 6-27E). No increase was noted after overnight stimulation in 

MHCII expression (Figure 6-27F) and co-expression of CD80 and CD86 (Figure 

6-27B) compared with media control. The loss of responsiveness of BMDCs to LPS 

after long stimulation has been shown previously in (Abdi et al., 2012).  

As expected, no GFP signal was detected in cells treated with media only or LPS, 

but GFP was present in the Eα and Eα-LPS groups (p<0.0001). After 4 h 

stimulation the percentage of GFP+ cells diminished when cells were treated 

with Eα in combination with LPS (Eα>Eα-LPS, p<0.0001) (Figure 6-27C), but no 

further changes were noted following overnight culture (Figure 6-27D).  

The YAe antibody signal (which identifies the Eα peptide bound to MHCII) was 

detectable in media only and LPS treated cells, indicating a level of unspecific 

antibody binding to MHCII in absence of Eα peptide. Nevertheless, although the 

background signal was increased, the percentage of MHCII+YAe+ cells was 

significantly higher in the Eα and Eα-LPS groups compared with no-Eα groups 

(p<0.0001)(Figure 6-27G,H). 

The differences observed in BMDCs related to PAD4 or animal gender, under Eα 

and Eα-LPS stimulation conditions, are summarized in Table 6-6. The most 

relevant finding was the increase in antigen processing as % CD11c+GFP+ cells in 

WT compared with KO mice regardless of gender, and in females compared with 

males irrespective of PAD4 presence.  
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Figure 6-26: Evaluation of antigen processing and presentation in bone 
marrow derived dendritic cells (BMDCs) 
Dendritic cells were differentiated from bone marrow of untreated male and female 
PADi4 floxed (WT) and PADi4 KO mice. Cells were cultured for 4 h at 37°C and 
5% CO2: un-stimulated control with media only, 1 µg/ml LPS, 50 µg/ml Eα-GFP 
and LPS plus Eα-GFP. The BMDCs activation state and the ability to process and 
present antigen were evaluated by flow cytometry. BMDCs were identified as 
CD11c+ cells of the total single live cells population. Activated BMDCs were 
identified as CD80+CD86+ cells of the CD11c+ population. GFP detection in 
CD11c+ cells was evaluated as indicative of Eα-GFP antigen uptake/processing, 
and the ability to present antigen was evaluated with the expression of 
MHCII(IA/IE) in the CD11c+ population and the percentage of YAe antibody 
binding in CD11c+MHCII+ cell population. 
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Figure 6-27: In vitro antigen processing and presentation by bone marrow 
derived dendritic cells  
BMDCs capability to process and present antigen was evaluated by flow cytometry 
in male and female PADi4 floxed (WT) and PADi4 KO mice, as described in Figure 
6-26. BMDCs were incubated for 4 h or overnight with an un-stimulated control 
with media only (Media), or 1 µg/ml LPS, or 50 µg/ml Eα-GFP (Eα) or LPS plus 
Eα-GFP (Eα-LPS). (A) % CD80+CD86+ cells of the total CD11c+ single live cells 
population; (B) % of GFP+ cells of the total CD11c+ single live cells population was 
evaluated as indicative of Eα-GFP antigen uptaking/processing; (C) % of 
MHCII(IA/IE)+ cells of the total CD11c+ single live cells population; (D) % of YAe 
antibody binding in the CD11c+MHCII+ population was evaluated as indicative 
antigen presentation. Data shown are mean with SEM of one experiment (1 
mouse per group, 3 experimental replicates per experiment). The differences 
between groups were evaluated with 2-way ANOVA and Tukey correction for 
multiple comparisons. 
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Table 6-6: Statistical analysis of antigen processing and presentation by 
bone marrow derived dendritic cells 
For the data presented in Figure 6-27, (A) statistical analysis of differences 
between Eα-GFP stimulated experimental groups; (B) statistical analysis of 
differences between Eα-GFP/LPS stimulated experimental groups. Differences 
between groups were evaluated with 2-way ANOVA and Tukey correction for 
multiple comparisons (ns, p>0.05; ★, p<0.05; ★★, p<0.01; ★★★★, p<0.0001).  

 
Abbreviations: ñ, increased in; F, females; M, males; WT, wild-type; KO, PADi4 
KO. 
 

The capacity of BMDCs obtained from male and female WT and KO mice, to 

prime T cells and induce proliferation, was assessed in vitro. BMDCs were co-

cultured with purified CD4+ TEα cells for 72 h with media only as unstimulated 

control, LPS, Eα-GFP or LPS+Eα-GFP (Chapter 2, section 2.5.2.3). BMDCs 

activation (CD11c+CD40+), antigen processing (CD11c+GFP+) and TEα cell 

proliferation (CD69+Ki67+) were evaluated by flow cytometry following the gate 

strategy described in Figure 6-28. The results obtained for each stimulation 

condition are presented in (Figure 6-29). The differences between groups and 

	

 4h Eα-GFP stimulated experimental groups 

WT-KO comparison Male-Female comparison 

Female Male WT PADi4 KO 

% CD11c+CD80+ CD86+ cells ns ★★★★ (ñKO) ★★ (ñM) ★★★ (ñM) 

% CD11c+GFP+ cells ★★ (ñWT) ★★★★ (ñWT) ★★★★ (ñF) ★★★★ (ñF) 

% CD11c+MHCII+ cells ns ns ns ★★ (ñM) 

% CD11c+MHCII+YAe+ cells ns ns ns ns 

	

 4h LPS/Eα-GFP stimulated experimental groups 

WT-KO comparison Male-Female comparison 

Female Male WT PADi4 KO 

% CD11c+CD80+ CD86+ cells ns ns ns ★★ (ñM) 

% CD11c+GFP+ cells ★ (ñWT) ★★ (ñWT) ★ (ñF) ★★★★ (ñF) 

% CD11c+MHCII+ cells ns ns ns ns 

% CD11c+MHCII+YAe+ cells ns ns ns ns 

A

B
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stimulation conditions were evaluated with 2-way ANOVA and Tukey correction 

for multiple comparisons. No differences were found between groups in % of 

CD40+, % of GFP+ BMDCs and % of CD69+ and CD69+Ki67+ TEα cells under Eα and 

Eα-LPS stimulation, regarding PAD4 presence and gender. As expected, the 

expression of CD40 in BMDCs significantly increased with the intensity of the 

stimulus (Media<Eα<LPS<Eα-LPS, p<0.05)(Figure 6-29A); and no GFP was 

detected in cells treated with media only or LPS, being significantly higher in 

the Eα and Eα-LPS groups (p<0.0001)(Figure 6-29B). The TEα cells transgenic TCR 

recognise the Eα-MHCII complex and therefore TEα cells do get activated and 

proliferate in presence of the Eα peptide even in absence of external stimulus 

such as LPS. The co-stimulation with Eα-LPS predominantly induced an increase 

in CD69 expression compared with other culture conditions (p<0.01)(Figure 

6-29C), while the stimulation with Eα alone mostly induced co-expression of 

CD69 and Ki67 compared with the other stimuli (p<0.001)(Figure 6-29D).  
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Figure 6-28: Evaluation of T cell activation and proliferation following co-
culture with bone marrow derived dendritic cells  
Dendritic cells were differentiated from bone marrow of untreated male and female 
PADi4 floxed (WT) and PADi4 KO mice, and then incubated with TEa cells (which 
recognize Eα52–68-MHCII complex). BMDCs were pulsed for 4 h at 37°C and 5% 
CO2 with various stimuli: un-stimulated control with media only, 1 µg/ml LPS, 50 
µg/ml Eα-GFP and LPS plus Eα-GFP; then, co-cultured with TEa cells (1:1 ratio) 
for 72h at 37°C and 5% CO2. T cell proliferation, DCs activation state and DCs 
ability to process antigen were evaluated by flow cytometry. BMDCs were 
identified as CD11c+ cells and TEa cells as CD4+ cells of the total single live cells 
population. Activated BMDCs were identified as C40+ cells of the CD11c+ 
population, and GFP detection in CD11c+ cells was assessed as indicative of Eα-
GFP antigen processing. T cell proliferation was assessed by expression of CD69 

and Ki67, identifying proliferative cells as CD69+Ki67+ cells of the CD4+ cells 
population. 
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Figure 6-29: In vitro Tea T cell activation and proliferation following co-
culture with Eα-GFP pulsed bone marrow dendritic cells  
In vitro proliferation of TEa cells in response to Eα-GFP pulsed BMDCs from male 
and female PADi4 floxed (WT) and PADi4 KO mice, was assessed by flow 
cytometry as described in Figure 6-28. BMDCs were identified as CD11c+ cells 
and TEa cells as CD4+ cells of the total single live cells population. T cell 
proliferation was assessed by expression of CD69 and Ki67. (A) % of CD40+ cells 
of the CD11c+ population; (B) % of GFP+ cells of the CD11c+ population as 
indicative of Eα-GFP antigen processing; (C) % of CD69+ cells of the CD4+ 
population; (D) % of proliferative CD69+Ki67+ cells of the CD4+ cells population. 
Data shown are mean with SEM of 2 independent experiments (1 mouse and 3 
experimental replicates per experiment). The differences between groups were 
evaluated with 2-way ANOVA and Tukey correction for multiple comparisons. 
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6.4 Discussion 

The data presented in this chapter show a different delayed type 

hypersensitivity response in the absence of PAD4 that is expressed only in male 

mice.  

Previous studies have documented differential inflammatory responses between 

males and females (Cook and Nickerson, 2005, Ma et al., 2007, Scotland et al., 

2011, Kay et al., 2015), as well as increased female prevalence for most 

autoimmune disorders as recently reviewed in Ngo et al., 2014, but the 

underlying mechanisms remain still unknown. Based on the evidence provided by 

the experimental models in the preceding chapters, and its potential 

extrapolation to human diseases as ultimate end, the study of PAD4 role in 

inflammation was carried out in male and female animal models to avoid bias by 

gender. 

Both clinical and experimental data have demonstrated the presence of sexual 

dimorphism in the immune response (Ahmed et al., 1985, Schuurs and Verheul, 

1990, Ngo et al., 2014, Klein and Flanagan, 2016). The data presented in this 

chapter confirm a sexually dimorphic behaviour in PAD4 regulation of T-cell 

mediated inflammation. 

The absence of PAD4 did not alter the development and resolution of the acute 

inflammatory response in the carrageenan induced paw oedema. The results 

matched the model prediction of a biphasic response, with an initial phase 

lasting 24 h mainly driven by neutrophils infiltration (Posadas et al., 2004). 

Results suggest no influence of PAD4, and therefore of NETs formation, in the 

regulation of the innate aspects of inflammation. 

Previous studies suggest an increased immune reactivity with stronger 

inflammatory T-cell response in females after antigen stimulation (Ma et al., 

2007, Hewagama et al., 2009), as one possible explanation for greater 

prevalence of autoimmune diseases in women. Our study of the DTH responses in 

males and females experimental models endorse those findings, with significant 

increased percentage of CD45+ and CD4+ cells in the immune-challenged paws in 



Chapter 6 
 

 229 

females as well as augmented CD4+ and CD8+ T cell proliferation to antigen in 

the lymph nodes draining the paws.  

The differences observed between males and females were abrogated by the 

absence of PAD4, and thus, the KO males response was comparable to WT and 

KO females in terms of paw swelling, cell infiltration (CD11b+Ly6G+ and CD4+) 

and CD4+ and CD8+ T cell proliferation. The presence/absence of PAD4 did not 

influence inflammation in response to antigen in females but in males the results 

suggest an immunosuppressive role for PAD4.  

The complete deletion of a gene with such wide spectrum of action as PAD4, 

which also includes regulation of gene expression, can induce unpredictable 

aberrant cell behaviours. The intrinsic characteristics of the main cell types 

involved in the DTH response (APCs and T cells) were evaluated individually in 

KO mice. Thus, the activation of CD4+ T cells in response to external stimuli and 

the capacity of BMDCs of uptake-process and present antigen as well as inducing 

T cell proliferation, were assessed ex-vivo.  

PADi4 deletion was verified by normal and quantitative PCR in the cell types 

subject to evaluation (CD4+ T cells and BMDCs). The deletion of a gene can 

trigger compensation mechanisms that can partially restore the phenotype (Rossi 

et al., 2015, Kim et al., 2015), and therefore, the generation of a PADi4 KO mice 

could induce the gene expression of other highly related PAD isoforms such as 

PADi2. However, there were no marked differences in PADi2 gene expression 

between KO and WT in mice in either CD4+ T cells or BMDCs (similar to gene 

expression studies in neutrophils seen in Chapter 3), casting aside the 

compensation hypothesis. Still, a more detailed gene expression analysis 

including other PAD isoforms, tissues and disease states could be pursued. 

No differences were observed between males and females from WT and KO mice 

in the activation of T cells through the TCR/CD3 complex (αCD3-αCD28) or with 

stimulus acting downstream the TCR (PMA-Ionomycin), confirming that PAD4 

deletion did not alter TCR signalling and its consequent cascade of events. 
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The preliminary analysis of the BMDCs showed no alterations in its capacity to 

induce proliferation of TEα cells as consequence of PAD4 deletion or gender. The 

main changes were observed in antigen processing after short LPS stimulation, 

which was generally increased in females and diminished in absence of PAD4; 

however those differences did not have an impact in T cell proliferation 

therefore suggesting that PAD4 effect on T cell responses to antigen is not 

mediated by the alteration of DC-T cell interactions. However, the analysis was 

limited to BMDCs isolated from a single mouse per group (WT/KO-male/female) 

and thus no general conclusions can be withdrawn.  

During the development of a cell-mediated DTH reaction Th1 responses are 

usually predominant, while Th2 are frequently more related with humoral and 

allergic reactions as well as down regulation of inflammation by counteracting 

Th1 cytokines (as reviewed in Black, 1999, Kobayashi et al., 2001). To assess 

whether gender or PAD4 modulate the inflammatory response through 

modification of Th1/Th2 responses, IFN-γ and IL-10 cytokines mainly produced 

by Th1 and Th2 phenotypes respectively, were evaluated in the dLN cell 

supernatants after in vitro re-stimulation. No predominant T helper response 

could be interpreted from the cytokine analysis.  

To complete the study, the production of IgG1 and IgG2c antibody isotypes 

against OVA antigen indicative of a Th2 and Th1 response respectively, were 

assessed in serum at different stages of the experimental model. In that way, 

the effect of every procedure on antibody production and isotype switching 

could be assessed individually. Unfortunately, the use of CFA in immunization 

induced a massive B cell antibody production as shown before in Chapter 5, 

masking any possible difference between sample groups as consequence of a 

DTH response development in the OVA-challenged paws.  

The overall inflammatory state of the animals at the end of the experiment was 

evaluated measuring the amount of IL-6 cytokine in serum. As expected, 

cytokine secretion was low (below the assay sensitivity threshold) in all 

experimental group samples. 
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Besides the CFA interfering in the analysis of the B cell responses to antigen, the 

major limitation of the DTH model was the poor cell recovery from the paws and 

the popliteal lymph nodes. The low cell numbers limited the analysis by flow 

cytometry of small cell populations present, as well as limited the amount of 

cell markers that could be use to define such populations. More definitive results 

could be provided through an increased number of experiment replicates 

combining animal cell samples within experimental groups. Alternatively, KO 

mice could target PADi4 deletion only in a specific cell type (e.g. CD4), 

generated from parental with the Cre sequence only expressed in the target 

cell. 

The lack of influence of PAD4 in females inflammatory response to antigen but 

not in males, suggest a relation between the sexual hormones, PAD4 and 

inflammation. The sex steroid hormones such as estradiol, progesterone and 

androgens do affect the innate and adaptive immune responses (as reviewed in 

Klein and Flanagan, 2016). In particular, 17β-estradiol (E2) has been shown to 

influence inflammatory T cell responses during the development of a DTH 

reaction (Carlsten et al., 1996, Gregory et al., 2000, Erlandsson et al., 2000, Ma 

et al., 2007). Physiological levels of E2 are stimulatory enhancing the production 

of TNF, IL-6 and IL-1β, while higher levels as in pregnancy (commonly employed 

in animal models) exert an immunosuppressive role with enhanced production of 

IL-10 and IFN-γ in lower magnitude (Gilmore et al., 1997, Bouman et al., 2005). 

E2 levels in males are usually lower than in females; however, RA male patients 

have been shown to present increased E2 which correlates with the 

inflammatory indices, while the levels of testosterone, dehydroepiandrosterone 

(DHEA) and estrone (E1) are reduced compared with healthy controls 

(Tengstrand et al., 2003).  

Previous studies suggest PADi4 is involved in feedback regulation of estrogen-

responsive genes. PADi4 gene expression has been shown to be responsive to E2 

at the transcriptional level (Dong et al., 2007) and PAD4 has been shown to 

repress transcription of estrogen-regulated genes activated by modifying 

methylated arginine sites in histones 3 and 4 (Wang et al., 2004, Cuthbert et al., 

2004). TNF-α can also modify PAD4 expression by activating the NF-κB member 

p50, which has been shown to bind PADi4 promoter (Abbas, 2014), confirmed by 
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increase in protein citrullination as consequence of TNF-α overexpression (Shelef 

et al., 2014). TNF-α has also been shown to induce the translocation of PAD4 to 

the nucleus (Mastronardi et al., 2006). 

Based on the results obtained and the evidence shown in previous studies, the 

hypothesis that could be considered is a feedback regulatory loop between 

PAD4, E2-responsive genes and TNF (Figure 6-30). The regulation must work in 

balance since E2 can induce pro- and anti-inflammatory responses depending on 

concentration, particularly in males since females are less sensitive to small 

changes in E2 concentration. Recent studies have shown reduction of 

inflammation in absence (Shelef et al., 2014) or inhibition of PAD4 (Kawalkowska 

et al., 2016), although the experimental models shown do not adjust to our 

parameters of study. For example, in a model of TNF-α induced inflammatory 

arthritis, overexpression of TNF appears to override regulatory mechanisms 

through PAD4. However, the authors do not clarify whether this is in males or 

female animals (Shelef et al., 2014). Also, The PAD inhibitor tested in 

(Kawalkowska et al., 2016), BB-Cl-amidine, targets PAD2 besides PAD4. 

Future studies could measure of E2 levels in serum samples before and after 

induction of inflammation, and incorporate E2 inhibitors or ovariectomy and 

estrogen replacement techniques to the models of inflammation in the presence 

or absence of PAD4; and the analysis of gene expression of genes associated with 

estrogen and PADs. 
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Figure 6-30: Representative diagram of PAD4 regulation of T cell responses 
hypothesis 
Possible feedback regulatory loops amongst PADi4, ERα and TNF to modulate T 
cell driven inflammatory responses to antigen.  

 

6.5 Conclusions 

The work presented here shows no contribution of PAD4 or gender to neutrophil 

mediated inflammatory acute responses. However, differences were appreciated 

between males and females in T cell mediated inflammatory immune responses. 

Surprisingly, inflammation in males but not in females was exacerbated in 

absence of PAD4, thus demonstrating the implication of PAD4 in the modulation 

of the T cell responses to antigen. 
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The work discussed herein addresses whether PAD4 enzyme, which is a source of 

protein citrullination and of crucial importance in the formation of NETs, 

contributes to some extent to the initiation and/or progression of periodontal 

disease and arthritis pathologies both individually and combined. The successful 

generation of PADi4 KO mice (Friedel et al., 2011) settled the starting point for 

the studies presented in this work. 

PAD4 activity is involved in multiple processes in both health and disease, and in 

multiple cell types. Consequently, in our models, all mice cells were 

programmed to be PADi4 KO by using a ubiquitous Cre expression in the breeding 

parental. On occasions, albeit rarely, the deletion of a gene may be 

accompanied by secondary effects or genomic compensation mechanisms (Rossi 

et al., 2015, Kim et al., 2015). As expected, no aberrant phenotype or behaviour 

could be observed in the transgenic mice colony or littermate controls. Besides 

the confirmation by classical PCR of the deletion of PADi4 and eventually the 

deletion of Cre genes in the KO mice colony, the expression of PADi4 and the 

functionally related PADi2 gene were also evaluated in the cell types most 

relevant for the purpose of this work: neutrophils, T helper cells and bone 

marrow derived dendritic cells. As presented in chapters 3 and 6, no PADi4 

expression was observed in KO cells, and no compensation mechanism through 

PADi2 was observed either. Therefore any citrullination or derived phenomenon 

that could be observed in the studies was not caused by PAD4 or increased 

activity of PAD2. 

NETs are a defence mechanism of neutrophils described for first time in 2004 

(Brinkmann et al., 2004). These sorts of structures are thought to form upon 

pathogen stimulation, and causes unintentional damage to the surrounding 

tissues as consequence of toxic molecule release to the extracellular 

compartment. The importance of NETs for the purpose of this work resides in 

PAD4 citrullination of histones as a key step for NETs formation. PAD4 is usually 

located in the nucleus, and so its translocation to the extracellular media in 

NETosis could provide new protein targets for the enzyme, and the creation of 

new citrullinated epitopes. Such novel epitopes in an inflammatory environment 

are hypothesised to trigger the production of autoantibodies (e.g. ACPAs). ACPAs 

are a strong component of the autoimmune pathology in RA (Johansson et al., 
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2016) and have also been detected in PD (Lappin et al., 2013, de Pablo et al., 

2014). Besides, NETs also relate with RA and PD as formation of such structures 

has been observed in the periodontal pocket of PD patients (Vitkov et al., 2009) 

and NETosis found enhanced in circulating and synovial fluid neutrophils of RA 

patients correlating with ACPAs levels (Khandpur et al., 2013). Taking all 

evidence in consideration, PAD4 could be a key element connecting both 

pathologies.   

The lack of NETs formation from PADi4 KO neutrophils was corroborated as 

prerequisite for the study of PAD4 (and therefore NETs) involvement in 

experimental PD and RA disease onset and development. NETs were successfully 

visualized by immunofluorescence labelling the DNA, NE and PADi4 target 

histone 3 (cit-H3). However, NETs quantification proved a more arduous task.  

The current quantification methods (e.g. extracellular DNA quantification) are 

optimized for human neutrophils and the different characteristics of the murine 

bone marrow derived neutrophils (e.g. maturation, stimulus responsiveness, 

etc.) do not readily adapt to the analysis protocol. Alternatives such as the use 

of peritoneal exudate cells were considered but soon discarded, as viable cell 

recovery was not enough for the development of the assays. The NE released to 

the media during NETosis was shown to be independent of PAD4 dependent NETs 

formation, which agrees with previous studies describing NE role in NETs not 

limiting but converging with PAD4 induced chromatin decondensation (Rohrbach 

et al., 2012b).  

The potential role of PAD4 in PD was initially approached by the evaluation of 

NETs formation in vitro in response to oral biofilms representing different stages 

of PD associated biofilm development (health-intermediate-disease). Even 

though all biofilms induced a neutrophil response, none stimulated obvious NETs 

formation. However, the work was performed in vitro with no in vivo validation, 

and therefore, the neutrophil-biofilm model employed presents several 

limitations to be able to fully represent the interactions that might occur in vivo 

during the development of PD. Recent studies have shown bacterial stimulation 

of NETs in vitro (Hirschfeld et al., 2016); however, the work is not directly 

comparable since they used a pure bacteria culture (A. actinomycetemcomitans) 

to stimulate NETs formation in human neutrophils isolated from human 
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peripheral blood, which are known to be more responsive than murine 

neutrophils. 

The use of PAD4 inhibitors in the murine models of disease was considered as 

alternative to the PADi4 KO mice, as the background of the transgenic mice 

appeared to render these animals resistant to PD. The use of mice strains known 

to be susceptible such as BALB/c, could assure the successful recreation of the 

disease in the in vivo models. However, the option was dismissed since the 

available inhibitors (e.g. BB-Cl-amidine, GSK484) lack target specificity and 

efficacy (Lewis et al., 2015, Kawalkowska et al., 2016). Besides, to maintain the 

inhibitory effect, animals needed daily i.p. injections, which given the duration 

of the PD model would significantly compromise the animals wellbeing. 

Alternatively, minipumps could be surgically implanted to provide long-term 

controlled release of drugs; however, this procedure was not available on the 

current licence.  

The use of in vitro and in vivo models to study a disease always offer a biased 

approach, as no model is able to completely recreate human disease 

physiopathology. However, the models offer possibilities that otherwise would 

be completely out of reach, like the deletion of a gene. The major limitation of 

this study was the limited success obtained with the in vivo models of PD and 

experimental arthritis (EA), which failed to reproduce the full disease state in 

the mouse models. The same models demonstrated efficacy in previous studies 

of PD (Oliver-Bell et al., 2015, Malcolm et al., 2015, Malcolm et al., 2016) and 

EA (Maffia et al., 2004, Benson et al., 2010). This could be at least in part 

explained by differences in the genetic background of mice (C57BL/6 vs. 

BALB/c), although changes in the environment are also plausible cause of 

experimental variation. Even though bone loss and substantial tissue damage 

was not observed either PD or EA models, antigen exposure induced T and B cell 

responses were clearly apparent in both systems. Antibody production              

(α-P. gingivalis or α-OVA) was assessed in serum as indicative of B cell activity, 

which was not influenced by PAD4. Conversely, and somewhat surprisingly, the 

in vitro assessment of the T cell responses to OVA in the EA model, showed 

increased T cell activation and proliferation in absence of PAD4 in 

correspondence with inflammation. Further study of the mechanisms by which 
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PAD4 could be influencing the T cell responses to antigen showed a different 

delayed type hypersensitivity (DTH) response in the absence of PAD4 that is 

expressed only in male mice. Although the mechanism by which this occurs 

remains unsolved, the fact that the phenomenon presents a sexual dimorphism 

could indicate a possible relation with the sexual hormones, in particular 

estradiol (E2), as previous publications indicate a bi-directional relation between 

E2 and PAD4 at gene expression level (Cuthbert et al., 2004, Dong et al., 2007). 

Moreover, these data may perhaps explain some of the current discrepancies in 

the literature surrounding NETosis and the role of PAD4 – in many studies the sex 

of the donor of the cells used in the assays is not disclosed.  

7.1 Future perspectives 

The development of transgenic mice lines targeting specific cells for deletion of 

the PADi4 gene could facilitate the study of PAD4 contribution to particular 

processes (e.g. T cell activation and proliferation, generation of memory T cells, 

regulation of gene expression, etc.). For example, a inducible CD4+-PAD4 T cell 

deficient mice line could be generated by crossing PADi4 floxed mice with the 

Cre mouse strain ‘B6(129X1)-Tg(Cd4-cre/ERT2)11Gnri/J’, whose Cre expression 

is taximofen-inducible under the control of the mouse Cd4 (CD4 antigen) 

promoter. This would allow the individual study of PAD4 involvement in T cell 

mediated responses in particular phases of T cell responses. Likewise, the use of 

PADi4-PADi2 double KO mice would extend the study to the individual and 

combined effect of both enzymes in the processes of interest (e.g. 

inflammation, NETs formation, unique protein targets, citrullination patterns 

associated with disease, etc.). 

As the current in vitro and in vivo models used present some limitations that 

complicated the study of PAD4 role in PD and RA, the use of alternative or 

refined models would be a suitable option to carry on with the studies. 

For the in vitro model systems used to investigate the neutrophils response to 

oral biofilms, the substitution of the standard media culture (AS) with cell-free 

co-culture supernatants of murine gingival epithelial cells (GECs)/macrophages 

with oral biofilms, might represent in a better way the complexity of the 
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cellular signalling pathways triggered in the oral cavity when the innate immune 

system encounters a pathogens. The molecules normally secreted by the GECs 

and macrophages under pathogen stimulation (e.g. TNF-α, IL-1β, GM-CSF or IL-8) 

would prime the neutrophils and help overcome the differences in maturation 

between bone marrow and circulating neutrophils (as reviewed in Summers et 

al., 2010). Obtaining primary gingival mouse epithelial cells is extremely 

challenging and there are no readily available cells lines. Another improvement 

would be the use of an inverted system to avoid bacteria falling onto the 

neutrophils and the interference of bacterial DNA in the fluorescence 

visualization of NETs. Previous co-culture studies with biofilm and epithelial 

cultures using the inverted system (Millhouse, 2015), showed no influence from 

detached bacteria in the cytokine cell responses. Three dimensional culture 

systems with multiple cell types may be amenable to further development for 

application to studies including murine cells.  

Since NETs were initially described in Brinkmann et al., 2004 the field has gained 

complexity, inevitably leading to controversy as emphasized in recent 

publications (Konig and Andrade, 2016). Although, initially all neutrophil-related 

phenomena that included extracellular release of chromatin with imbedded 

proteins was termed NETosis, it is true that new advances in the field have 

shown different neutrophil behaviours under different stimulation conditions, all 

leading to chromatin release but differing in particular characteristics (e.g. 

mitochondrial/nuclear DNA or ROS dependence) and functions (e.g. 

antimicrobial activity). However, although there are still gaps to fill and most of 

the experimentation has been done in vitro not in vivo, it has been 

demonstrated in multiple occasions (including the present thesis) that classical 

neutrophils release of NETs is dependent on ROS production and PAD4 

citrullination of histones.  

The in vivo models offer superior replication of complex cell interactions. 

However, each model brings its own limitations. Alternative models that could 

have been considered include the ligature model of PD alone or in combination 

with P. gingvalis oral infection, which has been shown to be highly effective 

inducing rapid localised bone loss (Lin et al., 2014, de Molon et al., 2014). The 

ligature model induces a more acute inflammation with increased inflammatory 
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infiltrates (de Molon et al., 2016), in which any possible impact of NETs absence 

in the resolution of inflammation might become more obvious. However, the 

ligature model is less well suited to looking at systemic disease interactions. 

Moreover, the model is technically demanding and currently only reproducible in 

a small number of research groups. 

Although the results obtained with the OVA-TcR induced model of early arthritis 

were not ideal, is arguably the ideal model for investigating the early stages of 

disease development, breach of tolerance and the role of citrullinated antigens. 

Other T cell driven models of arthritis have been described as for example the 

Pristane-Induced Arthritis (PIA) or the Proteoglycan-Induced Arthritis (PGIA) 

models (Glant et al., 1987, Patten et al., 2004, Tuncel et al., 2016). However, 

the PIA model is limited to genetically susceptible mice strains (DBA/1) and the 

PGIA has been generally described in BALB/c mice. The majority of other 

induced arthritis models are either antibody dependent (e.g. Collagen-antibody-

Induced Arthritis (CAIA) (Nandakumar and Holmdahl, 2005) or not reliant on T 

cells and breach of T cell tolerance (e.g. Collagen-induced arthritis (CIA) 

(Courtenay et al., 1980). Previous studies with PAD4 KO mice have attempted to 

assess PAD4 contribution to RA using different models of experimental arthritis 

(EA). The K/BxN model has shown controversial results (Rohrbach et al., 2012a, 

Seri et al., 2015), while the model of TNF-induced inflammatory arthritis 

presented a reduced EA severity in absence of PAD4 (Shelef et al., 2014). 

However, these are spontaneous models of arthritis and not of direct relevance 

for the purpose of this thesis. To date, only two other studies have evaluated 

PAD4 role in the CIA model of EA, using PAD4 inhibitors as alternative approach 

to PAD4 KO mice (Kawalkowska et al., 2016, Willis et al., 2017). Results showed 

contribution of PAD4 to EA severity; still the PAD4 inhibitors used lack of PAD4 

specificity and efficacy and completely abrogated all PAD mediated 

citrullination.  

Based on the results obtained in analysis of the delayed type hypersensitivity 

(DTH) responses in the absence of PAD4, arguably all in vivo models should be 

performed in both male and female mice. Although reporting the animal sex is 

an ARRIVE requirement (NC3Rs) (Kilkenny et al., 2010), most of the research 

publications involving animal experimentation usually do not include that detail. 
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Further studies pursuing the investigation of the mechanisms behind the sexually 

dimorphic behaviour in PAD4 regulation of T-cell mediated inflammation would 

include the analysis of the E2 and TNF-α levels in serum during the development 

of the inflammatory response, the use of E2 inhibitors and the analysis of the 

expression profile of estrogen-regulated and PADs genes (e.g. PADi4 and PADi2) 

in the affected paws and draining lymph nodes. 

7.2 Conclusions 

The work presented here demonstrates: 

• PAD4 activity is essential for the generation of PMA induced neutrophil 

extracellular traps in bone marrow derived neutrophils. 

• In vitro, microbial biofilms induced a response in neutrophils, with an 

increased release of the pro-inflammatory cytokine TNF as the biofilm 

increased in virulence and complexity. 

• PAD4 does not influence the cellular or humoral immune response to 

mucosal infection with P. gingivalis.  

• PAD4 does not influence alveolar bone loss associated with aging.  

• There was no evidence of exacerbation of experimental arthritis by 

periodontitis, or vice versa, in the disease models employed.  

• There is evidence to suggest PAD4 regulation of T-cell mediated 

inflammation in response to antigen, only in male mice. The underlying 

mechanisms remain unknown.  
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