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β-SID β subunit interacting domain 
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Abstract 

This thesis, entitled: ‘Role of AMP-protein kinase (AMPK) in regulation of perivascular 

adipose tissue (PVAT) function’, has been submitted by author Tarek Ali Mohamed 

Almabrouk for a degree of Doctor of Philosophy (PhD) in the College of Medical, 

Veterinary and Life Sciences at the University of Glasgow, October 2016. 

 

Apart from the cerebral circulation, all vasculature is surrounded by layers of adipose 

tissue known as perivascular adipose tissue (PVAT). In health, PVAT can function as an 

endocrine organ to produce a wide range of adipocytokines which can attenuate vascular 

contraction. The exact mechanism of this anti-contractile effect is still ill-defined, although 

much evidence suggests that PVAT-released adipocytokines may activate K
+
 channels on 

VSMCs or eNOS on endothelial layer possibly via AMP-activated protein kinase (AMPK).  

However, obesity results in oxidative stress and inflammation of the PVAT leading to 

abnormal adipocytokine release and PVAT dysfunction. AMPK is a serine/threonine 

kinase with many potential physiological functions, including regulation of energy 

heamostasis. AMPK is expressed in the three layers of the blood vessel: smooth muscle 

(VSM), the endothelium and PVAT and it is known that activation of AMPK leads to 

vascular dilatation via both endothelium- and non-endothelium-dependent mechanisms. 

Although it is known that AMPK can modulate VSM and endothelial function, it is 

unknown whether AMPK can influence the anti-contractile activity of PVAT. Therefore, 

this project aimed to investigate the mechanism of the anticontractile effect of PVAT by 

determining the functions of AMPK within adipocytes, as well as to assess the importance 

of vascular AMPK to the PVAT anti-contractile function. 

Experiments were conducted using wild type (WT) and global AMPKα1 knockout (KO) 

mice aortae. The phenotypic features of the PVAT were assessed by both histological, 

immunohistochemical and immunofluorescent methods.  Secretory function of the PVAT 

was tested using an immunoblotting array and ELISA, whereas the anti-contractile effect 

of PVAT was studied using wire myography. Immunoblotting methods were used to test 

AMPK activity in the PVAT and VSMCs.   

Aortic rings from WT and KO mice were denuded of endothelium and mounted on a wire 

myograph in the presence and absence of PVAT. The responses to an AMPK activator 

(AICAR) and the AMPK-independent vasodilator cromakalim were subsequently assessed. 

Relaxation responses to AICAR or cromakalim in the Sv129 (wild type) mouse were 
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significantly enhanced in the presence of endogenous attached or unattached PVAT, an 

effect that was absent in vessels from KO mice. Furthermore, enhanced relaxation was 

observed in vessels from KO mice incubated with PVAT from Sv129 mice, whereas 

PVAT from KO mice had no effect on relaxation of vessels from Sv129 mice. 

Furthermore, conditioned medium (CM) transfer experiments demonstrated the presence of 

an anticontractile factor released from PVAT that was absent in KO mice. Adiponectin 

secretion was reduced in PVAT from KO mice and PVAT-enhanced relaxation was 

attenuated in the presence of adiponectin blocking peptide. Adipokine array and ELISA 

demonstrated that adiponectin release is significantly reduced in the KO conditioned media 

in comparison with wild type CM. Globular adiponectin restores the relaxation response in 

both wild type aortae without PVAT and in KO aortae with and without PVAT.   

High fat diet (HFD) fed mice showed a reduction in the relaxation response to cromakalim 

in wild type vessels with intact PVAT in comparison with animals fed a normal chow diet 

(ND). HFD animals had increased inflammatory infiltrates in the PVAT which were 

associated with reduced AMPK activity and adiponectin release in comparison with ND 

fed WT mice. In KO mice, AMPK activity was also reduced and increased inflammatory 

infiltration was observed in both ND and HFD mice. 

In conclusion, the current project demonstrates that AMPKα1 has a critical role in 

maintaining PVAT’s anti-contractile effect; likely mediated through altered adiponectin 

secretion or sensitivity, and through protection of PVAT against inflammation.  Marked 

reduction in AMPK activity in WT PVAT, accompanied with the reduction in the release 

of adiponectin in HFD and KO animal may explain the impaired vascular function 

observed in obesity.  
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1.1 Obesity and Cardiovascular disease 

Obesity has been recognized as one of the major global health issues by the World Health 

Organization (WHO) and its incidence is rapidly rising in both industrialised and 

developing nations (Antipatis and Gill, 2001). The WHO has estimated that more than 1.9 

billion adults in the world are overweight (body mass index (BMI) > 25.0 kg/m²); of which 

at least 600 million are obese (BMI >30.0 kg/m²) (World Health Organisation, 2014). 

Obesity is associated with increased risk of insulin resistance, type 2 diabetes mellitus 

(T2DM), hypertension, coronary artery disease (CAD), myocardial infarction (MI) and 

sudden death, congestive heart failure and stroke (reviewed in Almabrouk et al., 2014).The 

extent of this epidemic stresses the need for developing an approach for obesity 

management and a better understanding of the mechanism which links obesity and 

cardiovascular disease. 

Many studies have demonstrated that the regional distribution of adipose tissue in the body 

determines both the obesity phenotype and its complications. For instance, intra-abdominal 

and visceral fat depots have been associated with a higher risk of development of 

cardiometabolic disease and mortality linked with obesity (Fox et al., 2007, Gesta et al., 

2007). One of these regional fat depots is perivascular adipose tissue (PVAT) which is now 

proposed to be a link between obesity and metabolic syndrome development and diabetes 

as a result of the adverse effect which PVAT exerts on the vasculature in disease states. In 

health PVAT releases a range of adipokines such as adiponectin which are capable of 

modulation of metabolism and local vascular tone. However, in disease states, there is an 

alteration in adipokine release which results in vascular malfunction and development of 

metabolic syndrome. Furthermore, the elevated levels of inflammatory cytokines such 

TNFα in obesity may disrupt the interaction between PVAT and the vascular wall (Yudkin 

et al., 2005). 

AMP activated protein kinase (AMPK) regulates adipocyte metabolism, adipose biology 

and vascular function and as such AMPK activation is an attractive therapeutic target for 

metabolic disorders such as T2DM and the vascular complications associated with obesity 

and T2DM. Recent studies have identified AMPK as a potential regulator of PVAT and 

also a target of PVAT action in the blood vessel (Almabrouk et al., 2014). The studies 

described in this thesis will focus on the vasoactive properties of perivascular adipose 

tissue as mediated by adipokines and also the role of AMPK in the regulation of vascular 

function and metabolism. 
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1.2 Anatomy of cardiovascular system 

The cardiovascular system is composed of the heart and its associated blood vessels. The 

role of the blood vessels is to transport blood containing oxygen and nutrients from the 

heart via systemic circulation to the rest of the body before returning the blood back to 

heart and delivering it to the lung via the pulmonary circulation. Based on their 

physiological function, blood vessels can be divided into five types: arteries, arterioles, 

capillaries, venules and veins. The arteries transport blood away from the heart and 

progressively branch from muscular arteries to smaller arterioles and eventually to 

capillaries (site of substance exchange). Capillaries then coalesce to form bigger venules 

which progressively increase in size to form the large veins which return the blood back to 

the heart. 

The wall of all blood vessels except capillaries is composed of three layers: tunica intima, a 

layer of endothelial cells; media, the middle smooth muscle layer and adventitia. The 

adventitia consists of two layers: adventitia compacta, a layer of mainly fibroblasts and 

perivascular adipose tissue (PVAT) which surrounds most blood vessels. The wall of the 

capillaries consists of a single layer of endothelial cells on a basement membrane, which 

facilitates substance exchange between blood and tissue. Figure 1-1 illustrates the basic 

strucure of the blood vessel wall including PVAT. 

Adventitia 

Intima

Media

Adventitial fat = PVAT 

(adipocytes)

Adventitial compacta = 

(fibroblasts)

VSMCs

Endothelial Cells 

 

Figure ‎1-1 Structure of the blood vessel.  

Representative H&E stained mouse aorta showing the structure of the wall of blood vessels. The 
blood vessel wall is composed of three layers: tunica intima (endothelium), tunica media (VSMCs 
layer) and adventitia which includes PVAT. PVAT contains adipocytes, vasa vasorum and other 
cells (macrophages, adipocyte stem/progenitor cells, lymphocytes, fibroblasts, etc respectively).  
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1.2.1 Endothelium 

The vascular endothelium is a monolayer of cells that line the lumen of all vascular beds 

and mechanically and metabolically separates the vascular wall from the circulating blood 

and its components (Lerman and Zeiher, 2005). The role of the endothelium in the 

regulation of vascular function gained prominence in 1980 when Furchgott & Zawadski 

discovered that the relaxant effect of acetylcholine was lost in denuded vessels (Furchgott 

and Zawadzki, 1980). Furthermore, the endothelium is now known to release many 

bioactive substances which are involved in control of vascular function including 

regulation of vascular tone, proliferation, inflammation, platelet function and angiogenesis 

(Deanfield et al., 2007). 

1.2.2 Vascular smooth muscle layer 

This layer is composed principally of smooth (involuntary) muscle cells and elastic fibres 

arranged in roughly spiral layers. Arteries in comparison with veins tend to have a thicker 

medial layer. Smaller arteries and arterioles are termed resistance vessels which are 

important in the regulation of blood flow through changes in peripheral vascular resistance. 

Several mechanisms are involved in the regulation of vascular tone such as myogenic 

mechanisms, endothelium-derived factors, sympathetic adrenergic stimulation and 

hormones. Vasoconstriction and vasodilation is a function of myocytes and occurs in 

response to transmural pressure or stretch. Based on the demand of the tissue, perfusion is 

controlled by constriction or dilation of arteries which controls the blood flow to the tissue 

(Schubert and Mulvany, 1999). 

1.2.3 Adventitia (Perivascular adipose tissue) 

PVAT is a regional adipose tissue surrounding most of vasculature. PVAT is present 

throughout the body and has been shown to have a local effect on blood vessels 

(Almabrouk et al., 2014). The structure and function of the perivascular adipose tissue will 

be discussed in detail in section 1.4. 

1.3 Adipose tissue (General Features) 

All adipose tissue is composed of mature adipocytes containing lipid droplets, T 

lymphocytes, macrophages, collagen fibres, fibroblasts, preadipocytes, blood vessels and 

nerves. According to the size of the lipid vacuoles and the number of mitochondria, 
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adipose tissue is divided into two categories: brown adipose tissue (BAT) and white 

adipose tissue (WAT). Morphologically, WAT is composed of adipocytes with more than 

90% of their volume occupied by a single spherical lipid droplet separated from the 

cytoplasm by a non-membranous barrier containing functionally active proteins such as 

perilipin (Greenberg et al., 1991). WAT is also characterised by adipocytes containing a 

variable number of thin elongated mitochondria with short, randomly arranged cristae 

(Cinti, 2011). BAT differs from WAT essentially in the characteristics of the adipocytes, 

vascularity and rich nor-adrenergic innervation. Adipocytes in BAT have multiple lipid 

vacuoles and a larger number of mitochondria. The mitochondria in brown adipocytes have 

a spherical or oval shape and are rich in laminar cristae with a characteristic marker protein 

called uncoupling protein 1 (UCP-1), responsible for their thermogenic activity (Cinti, 

2011). The presence of a large number of mitochondria and rich vascularity is responsible 

for the brown colour of BAT.  

The distribution of WAT and BAT are to a large extent different depending on genetic 

background, age, gender, and environmental status (temperature, diet, exercise) (Cinti, 

2011). In small mammals both types of adipose tissue are located in subcutaneous and 

trunk depots surrounded by connective tissue capsules (Cinti, 2005). In small rodent 

adipose tissue (mice and rats), most of the intrascapular area is considered the classical 

BAT depot, whereas the posterior subcutaneous depot is mostly WAT. Mediastinal adipose 

tissues are largely BAT, especially in mice, whereas omental and mesenteric adipose are 

predominantly white. Depots including perirenal, periovarian and perivesical adipose 

tissue contain equal amounts of brown and white adipocytes. In males, the epididymal 

adipose depot is composed only of white adipocytes (Cinti, 2011).  

In the human body, BAT can be found in the trunk fat depot and that is likely due to 

differences in the thermogenic needs in comparison with small mammals which are based 

on different surface/volume ratio. WAT in humans is confined to subcutaneous with 

increased accumulation in mammary and gluteofemoral areas in female (Cinti, 2011). 

Furthermore, adipose tissue in humans and rodents has the same cellular composition, 

including distinct blood and nerve supply density in both WAT and BAT (Zingaretti et al., 

2009).  
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1.4 Perivascular adipose tissue (PVAT) 

PVAT differs from other fat depots due to the following specific features: 

PVAT is situated outside of the blood vessels and adventitia. It surrounds the adventitia, 

although no clear barrier separates the two and PVAT surrounds most systemic blood 

vessels, with the exception of cerebral blood vessels (Gao, 2007). In relation to the type of 

adipose tissue, PVAT is composed of either white adipose tissue, brown adipose tissue or 

both, depending on the type of the blood vessel. PVAT may be composed of WAT such as 

rodent mesenteric PVAT or mixed in aortic PVAT (Gao, 2007). Mixed aortic PVAT 

displays the morphological and gene expression features of BAT (Fitzgibbons et al., 2011), 

with its characteristic multilocular adipocytes and expression of UCP-1 while mesenteric 

PVAT contains white adipocytes that are lacking UCP-1 and are less vascularised (Cinti, 

2011).   

PVAT also differs from other adipose tissue in its secretory profile. Mouse aortic PVAT 

releases less adiponectin, leptin and resistin compared with subcutaneous adipose tissue 

(SAT) and visceral adipose tissue (VAT). Furthermore, regions of PVAT display a similar 

pattern of adipose tissue markers as BAT which includes CIDEA, UCP-1, Dio2, and 

Prdm16 (Fitzgibbons et al., 2011). PVAT expresses lower levels of lipid oxidation genes 

such as PPARγ, C/EBP, and FABP4 and lipid synthesis genes such as fatty acid synthase, 

glycerol 3-phosphate dehydrogenase 1 (GPDH), lipoprotein lipase, hormone-sensitive 

lipoprotein lipase, adipose triglyceride lipase, and perilipin (associated with the lipid 

droplet) in comparison with SAT and VAT (Chatterjee et al., 2009). Moreover, PVAT is 

different from other depots in the expression of immune and inflammatory genes. PVAT 

produces higher levels of interleukins (IL)-6, IL-8 and monocyte chemoattractant protein 1 

(MCP-1) (Chatterjee et al., 2009). However, a study by Fitzgibbons et al reported that 

PVAT showed lower expression levels of chemokines, T-cell receptor and macrophage 

markers (CD68 and F4/80) (Fitzgibbons et al., 2011). 

Depending on the vascular bed, there are differences in the profile of secretion and gene 

expression of proteins in PVAT. For example, the expression of renin–angiotensin system 

components by mesenteric and aortic PVAT in Wistar Kyoto (WKY) rats is characterised 

by higher angiotensin AT1a- and AT2 - receptor, chymase, and angiotensin II expression, 

and lower prorenin-receptor expression in mesenteric compared with aortic PVAT 

(Galvez-Prieto et al., 2008). 
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Adipocytes are the most abundant cell type in PVAT. Along with adipocytes, PVAT 

contains a stromal vascular fraction (SVF) which includes fibroblasts, mesenchymal stem 

cells, lymphocytes, macrophages and endothelial cells that line the vasa vasorum. The SVF 

has been suggested to be involved in the vasocrine function of the PVAT and also in 

disease states by enhancing the infiltration of inflammatory cells such as macrophages 

(Szasz et al., 2013). The extracellular matrix (ECM) of PVAT consists of collagen, laminin 

and fibronectin fibres along with ECM-processing enzymes, such as the matrix 

metalloproteinases, tissue inhibitors of metalloproteinases, and proteins from the 

disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS) family 

(Mariman and Wang, 2010). PVAT consists also of nerve fibres which are predominantly 

sympathetic. There is apparently no parasympathetic innervation of WAT (Giordano et al., 

2004, Giordano et al., 2006). 

1.4.1 PVAT function 

Adipose tissue was once considered to be a connective tissue with a traditional supporting 

structure involved in lipid storage (WAT) and nonshivering thermogensis (BAT). PVAT 

was also considered to act as scaffolding of nearby blood vessels and was removed during 

vascular function assessment because it was thought to impair diffusion of exogenous 

substances. However, accumulating evidence has led to the wide acceptance that adipose 

tissue including PVAT is not only a supporting structure but an important endocrine organ. 

It can release many bioactive molecules with various metabolic and vascular functions. 

In addition to its contribution to metabolism via release of free fatty acids 

(FFAs)/nonesterified fatty acids by lipolysis, adipose tissue secretes bioactive proteins that 

are collectively termed adipocytokines and have endocrine, autocrine and paracrine 

actions. They are termed adipocytokines because of their adipocyte origin and cytokine-

like effects. PVAT-released adipocytokines participate in the control of vascular function 

under normal physiological conditions (reviewed in Almabrouk et al., 2014). 

An extensive range of adipocytokines have since been identified and shown to have a wide 

spectrum of haemodynamic, metabolic and immunological effects (Trayhurn and Wood, 

2004, Trayhurn, 2005). Adipocytokines can be classified according to their effect on 

cytokine levels as either pro-inflammatory, such as leptin, or anti-inflammatory, such as 

adiponectin and adrenomedullin. As emerging vascular modulators, adipocytokines 

including adiponectin, omentin, nesfatin, vaspin and chemerin have been proposed to play 
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a role in the regulation of cardiovascular function (Table 1-1). The classification of some 

adipokines, such as resistin, can be somewhat blurred since it can be expressed by other 

cell types such as macrophages and participate in inflammation throughout the body 

(Jamaluddin et al., 2012). Others such as visfatin, originally considered as adipocytokines, 

may actually be produced in greater quantities by the stromal vascular tissue within PVAT 

(Stastny et al., 2012). Nevertheless, studies seem to indicate that generation of visfatin is 

elevated in obesity and metabolic syndrome and so it is likely to be an important pro-

inflammatory mediator in cardiometabolic disease.  

In addition to release of adipocytokines, adipocytes in PVAT also produce classical 

cytokines and chemokines including IL-6, IL-8, CCL2 (MCP-1) and plasminogen-activator 

inhibitor-1 (Thalmann and Meier, 2007, Rajsheker et al., 2010). Furthermore, 

inflammatory cells such as macrophages and T lymphocytes, fibroblasts and capillary 

endothelial cells, which are normally found in PVAT or attracted in response to 

inflammatory chemokines released by adipocytes, have also been demonstrated to 

contribute to the secretory profile of adipose tissue (reviewed in Szasz and Webb, 2012).   

In addition to classical adipocytokines, PVAT can also produce angiotensin peptides, 

which, along with angiotensinogen, angiotensin-converting enzymes and receptors, are part 

of the renin–angiotensin–aldosterone system (Lu et al., 2010). PVAT also releases reactive 

oxygen species (ROS), including superoxide (O2
.-
) (Gao et al., 2006), H2O2 (Gao et al., 

2007) and gaseous molecules such as H2S (Schleifenbaum et al., 2010). In denuded 

vessels, generation of H2O2 induces relaxation via activation of soluble guanyle cyclase 

sGC (Gao et al., 2007), whereas an enzyme present in PVAT, cystathionine γ-lyase, can 

generate H2S. The H2S induces relaxation by opening voltage-gated potassium channels in 

the vascular smooth muscle cells (VSMCs) to cause hyperpolarization (Schleifenbaum et 

al., 2010). In contrast, superoxide and angiotensin can potentiate vasoconstriction to 

electrical field stimulation in vitro (Gao et al., 2006, Lu et al., 2010). Another 

adipocytokine, apelin, has been found to induce NO-dependent vasorelaxation of 

peripheral and splanchnic human arteries both in vitro and in vivo (Salcedo et al., 2007, 

Japp et al., 2008). Table 1-1 illustrates the adipocytokines with known vascular effects and 

the mechanism of dysregulation.  
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Table ‎1-1 List of Adipocytokines released by PVAT 

Adipokines/ 

Cytokines 

Physiological 

effect 

Effect on vasculature Associated disease PVAT 

dysfunction 

Leptin Proatherogenic          

Proinflammatory 

Direct vasodilator, ↑VSMC 

proliferation/migration, 

↑Vascular permeability ,    

↑TNF-α, IL-6, IL-12, ROS 

Indirect vasoconstrictor 

 

Obesity, 

Hypertension, 

Atherosclerosis, 

Insulin resistance 

↑in obesity         

↓hypertension           

  

↑atherosclerosis 

Adiponectin Antiinflammatory  

Anti-atherogenic 

Direct vasodilator , ↓ VSMC 

proliferation/migration 

↓ IFN-γ, IL-6, NF-κB, TNF-

α phagocytosis, endothelial 

adhesion molecules, ↑IL-10,   

IL-1RA  

 

Obesity 

Hypertension 

Atherosclerosis 

Insulin resistance 

T2DM 

↓obesity            

diabetes 

↓Atherosclerosis  

Resistin  Proatherogenic ↑VSMC proliferation 

/migration, ↑Endothelial 

adhesion molecule,↑TNF-α, 

IL-6,NF-kB  

 

Atherosclerosis 

Insulin resistance  

T2DM 

↑Endothelial 

injury  

Visfatin Proatherogenic 

Proinflammatory 

↑VSMC proliferation 

/migration, vasodilatation 

↑TNF- α, IL-6, IL-8, 

↓Apoptosis 

 

Atherosclerosis 

Insulin resistance  

T2DM 

↑atherosclerosis 

Omentin Antiatherogenic 

Antiinflammatory 

↑eNOS, ↓ NF-κB  Atherosclerosis 

Metabolic syndrome 

↓atherosclerosis, 

obesity and 

metabolic 

syndrome 

 

Chemerin Antiatherogenic 

Antiinflammatory 

↓TNF-α-induced VCAM-1 

expression and ↓Monocyte 

adhesion  

 

Atherosclerosis ↓ atherosclerosis 

Nefastin Contractile Impair NO donor and SNP 

vasodilatation 

 

Hypertension 

Obesity 

 ↑hypertension 

and obesity 

Vaspin Antiinflammatory 

Antiatherogenic 

↓SMC migration  Atherosclerosis 

T2DM, Obesity 

↑atherosclerosis, 

obesity and 

diabetes milletus 

 

Apelin  Anticontractile 

Angiogenic 

↑ Glucose utilization in 

skeletal muscle Antagonize 

the effect of Ang II,↑NO 

production 

 

Obesity,Insulin 

resistance 

↑obesity and 

insulin 

resistance and 

heart failure  

 

Interleukins 

IL-1, IL-6, 

IL-8, CCL2 

 

Proinflammatory ↑Endothelial proliferation Atherosclerosis ↑atherosclerosis 

HGF Proinflammatory ↑Endothelial proliferation,  

↑Cytokines release from 

SMCs 

 

Obesity ↑obesity 

TNF-α Pro-inflammatory  Vasodilator, ↑ROS, 

↑ Endothelial dysfunction  

Obesity, 

Hypertension, 

Atherosclerosis, 

T2DM 

↑ obesity, 

hypertension, 

atherosclerosis 

and T2DM 

PVAT-derived factors with influence on vascular function and related cardiometabolic disorders. 
HGF, hepatic growth factor; NF-κB,‎ nuclear‎ factor‎ kappa-light-chain enhancer of activated beta 
cells; PVAT, perivascular adipose tissue; ROS, reactive oxygen species. 
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1.4.1.1 Adiponectin 

Adiponectin is a small protein of 30 kDa made of 247 amino acids. It consists of four 

domains: an amino-terminal signal sequence, a variable region, a collagenous domain 

(cAd), and a carboxy-terminal globular domain (gAd) (Figure 1-2) (Scherer et al., 1995). 

The collagenous domain is responsible for formation of high order complexs. These 

complexes have been identified as the high-molecular-weight (HMW) form (12–36 mer), 

low molecular weight (LMW) form (hexamer), and trimeric form (trimer). The essential 

mediator for formation of higher order complexes is a cysteine residue in the collagenous 

domain (Schraw et al., 2008). Based on its amino acid sequence and subunit domain 

structure, adiponectin is similar to C1q, which is a member of complement-related 

proteins. Furthermore, the globular domain of adiponectin has been found to be similar to 

the TNF-α family of proteins. C1q and TNFα are prototypical members of a growing 

family of paralogues known as C1q/TNF-related proteins (‘CTRPs’) (Davis and Scherer, 

2008).  

In general, adiponectin exists in two isoforms: full length and/or a smaller globular 

fragment (Kadowaki and Yamauchi, 2005, Kadowaki et al., 2006). Their mechanisms and 

extent of action of are still elusive. Adiponectin acts via two receptors, Adipo-R1 and 

Adipo-R2 (Yamauchi et al., 2003). Both receptors are composed of seven transmembrane 

domains although structurally and functionally they are distinct from G-protein-coupled 

receptors (GPCR) because the amino (N)-terminus of Adipo-R1 and Adipo-R2 is 

intracellular, and the C terminus is extracellular. The full length form acts via the R2 

receptor and the globular form via R1 (Yamauchi et al., 2003). There is an additional cell 

surface molecule, referred to as T-cadherin which has been identified (Hug et al., 2004) 

and although it binds adiponectin, it is not considered to be a signalling receptor because it 

has no intracellular signalling domain (Denzel et al., 2010). 
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Collagen-like Domain
Variable  
Domain

Signalling  

Sequence
C1q-like Globular Domain

C1q-like Globular Domain

COOHNH2

Trimer Hexamer HMW

Globular

Globular Adiponectin 

Full Length 

Adiponectin 

 

Figure ‎1-2 Structure of Adiponectin.  

Full-length adiponectin is composed of 247 amino acids, including a collagen-like domain at the N-
terminus and a C1q-like globular domain at the C-terminus. Full-length adiponectin combines via 
the collagen domain and forms higher order complexs including trimers and hexamers, and a high-
molecular-weight (HMW) form. A smaller form of adiponectin composed of the globular domain 
also exists as globular adiponectin (adapted from Okamoto et al., 2006). 

 

Adiponectin is produced exclusively by adipose tissue. It forms 0.01–0.05% of plasma 

protein (usual range, 2–20 μg/ml). Adiponectin is a very stable protein in the circulation, 

with minimal degradation (36 hours) (Pischon et al., 2003). It has very short half-life (~45-

75 minutes) (Halberg et al., 2009) because it is cleared rapidly. The primary site of 

adiponectin clearance is the liver and although adiponectin is rapidly cleared, its plasma 

levels remain relatively constant (Halberg et al., 2009). The circulating adiponectin can 

bind pancreatic beta cells, vascular smooth muscle cells and some cell types in the heart 

and kidney where it elicits its effects (Turer and Scherer, 2012).  

Adiponectin concentration within plasma is affected by many factors including gender, 

pregnancy, and diseases (Combs et al., 2003). In general, females have more adiponectin 

than males and this level is increased during pregnancy (Combs et al., 2003). Decreased 

plasma adiponectin levels are observed in patients with diabetes, metabolic syndrome, 

coronary artery disease, and hypertension (Arita et al., 1999, Yamauchi et al., 2001, Chow 

et al., 2007, Kumada et al., 2003, Ouchi et al., 2003, Salmenniemi et al., 2004). High 

plasma levels of adiponectin have been reported to suppress development of 

atherosclerosis in apolipoprotein E-deficient mice by reducing vascular smooth muscle cell 

proliferation and migration. The mechanism involved has been suggested to be a direct 
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binding to platelet-derived growth factor (PDGF)-BB and inhibiting growth factor-

stimulated ERK signalling in vascular smooth muscle (Arita et al., 2002). In addition, 

adiponectin knockout mice are susceptible to development of diet-induced insulin 

resistance. This is likely through high TNFα expression decreasing muscle FATP-1 mRNA 

and IRS-1 mediated insulin signalling, predisposing to diet-induced insulin resistance 

(Maeda et al., 2002). High adiponectin concentration in the circulation is also associated 

with decreased risk of type 2 diabetes, and this is independent of abdominal fat deposition, 

suggesting a significant protective function of adiponectin against the development of type 

2 diabetes (Yamamoto et al., 2014). Furthermore, adiponectin has been reported to protect 

against cardiovascular diseases via inhibition of pro-inflammatory and hypertrophic 

responses, and stimulation of endothelial cell responses. These effects of adiponectin are 

mainly attributed to the modulation of signalling molecules, including AMP-activated 

protein kinase (AMPK) (reviewed in Shibata et al., 2009). Adiponectin also prevents 

development of atherosclerosis by regulating the main signalling pathways involved in the 

genesis of atherosclerosis. These involve PI3K-Akt, eNOS and AMPK (Shimada, et al. 

2004). Adiponectin appears to suppress monocyte adhesion to the vascular endothelium 

and promotes angiogenesis by stimulating crosstalk between Akt and AMPK in endothelial 

cells (Ouchi, et al. 1999).  

Adiponectin is also involved in regulation of vascular reactivity and thus is important in 

blood pressure regulation. It induces vascular dilatation via two distinct mechanisms 

(Figure 1-3): an endothelium-dependent mechanism via increased production of NO via 

increased AMPK and endothelial nitric oxide synthase (eNOS) activity (Chen et al., 2003, 

Cheng et al., 2007), and an endothelium-independent pathway by activation of potassium 

channels at the level of vascular smooth muscle cells (Lynch et al., 2013). Adiponectin 

stimulates production of NO in endothelial cells via a phosphatidylinositol-3-kinase (PI3K) 

pathway involving phosphorylation of eNOS at Ser1179 by AMPK (Chen et al., 2003). 

The importance of adiponectin in regulation of blood pressure was confirmed in 

adiponectin knockout mice which developed elevated blood pressure (Ouchi et al., 2003, 

Ouchi et al., 2006).  
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Figure ‎1-3 Mechanism of adiponectin-induced vascular relaxation. 

 

1.4.1.2 Nitric Oxide (NO) 

In 1980, Furchgott and Zawadzki proposed that vascular endothelium is essential to induce 

relaxation to acetylcholine in vitro using segments of rabbit aorta. Removal of the 

endothelial layer prevented relaxation to acetylcholine but the relaxation in response to 

glyceryl trinitrate was preserved (Furchgott and Zawadzki, 1980). This response was found 

to be due to an endogenous mediator termed endothelium-derived relaxing factor (EDRF) 

(Furchgott and Zawadzki, 1980) and which was later identified to be the gas nitric oxide 

(NO) (Ignarro et al., 1987, Palmer et al., 1987). NO is synthesized by conversion of the 

amino acid L-arginine to NO and L-citrulline via NO synthase enzyme (NOS) (Palmer et 

al., 1988). There are three NOS isoforms: neuronal isoform (nNOS) localized 

predominantly in the central and peripheral nerves but has also been detected in non-

neuronal cells, including myocytes, epithelial cells, mast cells, and neutrophils (Asano et 

al., 1994, Forstermann et al., 1998, Nakane et al., 1993, Wallerath et al., 1997) which 

produces NO to act as a neuronal messenger, inducible isoform (iNOS) initially identified 

in cytokine-induced macrophages, is now recognized as expressed in macrophages, 

neutrophils, platelets, and VSMCs, as well as in other nonvascular cells such as skeletal 

muscle and the hippocampus. Endothelial NOS (eNOS) isoform is largely expressed in 
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endothelial cells. However, it can be found in other cells including cardiac myocytes, 

platelets, certain brain neurons, and human placenta syncytio-trophoblasts and in LLC-PK1 

kidney tubular epithelium (Forstermann and Sessa, 2012).  

Activation of NOS requires binding to cofactors and dimerization. NOS binds to the 

cofactors flavin mononucleotide (FMN), flavin adenine dinucleotide (FAD), and 

tetrahydrobiopterin (BH4). BH4 along with L- arginine,,heme, nicotinamide adenine 

dinucleotide phosphate (NADPH) and molecular oxygen all act as cosubstrates which 

allows the NOS to dimerise and become activated. In the case of eNOS and nNOS, the 

dimer formed is in an inactive state in the absence of Ca
2+

 and is stimulated by elevated 

cytosolic Ca
2+

-calmodulin. In contrast to eNOS and nNOS, iNOS dimers are active at basal 

intracellular Ca
2+

 concentrations (reviewed in Liu and Huang, 2008). The enzyme function 

can also be regulated by phosphorylation which enables Ca
2+

 -independent activation of 

eNOS in endothelial cells by fluid shear stress. Shear stress stimulates a pathway involving 

PI3K and the serine/threonine kinase Akt, which phosphorylates eNOS. This 

phosphorylation directly increases eNOS activity at resting [Ca
2+

] (Fisslthaler et al., 2000). 

The synthesised NO diffuses through biological membranes into the underlying smooth 

muscle where it stimulates guanylyl cyclase to produce cGMP from guanosine 

triphosphate (GTP), stimulating vasorelaxation (Jin and Loscalzo, 2010). 

1.5 Mechanism of vascular myocyte contraction 

Vascular smooth muscle contraction is initiated by an increased concentration of 

intracellular Ca
2+

 mediated via opening of voltage-gated Ca
2+

 channels. Influx of Ca
2+

 

causes myocyte membrane depolarisation and initiation of contraction. The intracellular 

Ca
2+

 interact with calmodulin which activates myosin light chain kinase (MLCK) and 

phosphorylation of myosin light chain (MLC), leading to smooth muscle contraction 

(Webb, 2003). Elevation of cytosolic Ca
2+

 can also be mediated by activating 

phospholipase C, leading to formation of inositol 1,4,5-trisphosphate (IP3) to cause Ca
2+

 

release from the intracellular stores (sarcoplasmic reticulum) through IP3 receptors. 

Myocyte relaxation commences when cytosolic Ca
2+

 concentration is diminished. 

Reduction of intracellular Ca
2+

 leads to activation of MLC phosphatase, causing removal 

of the phosphate on the MLC kinase. Three subunits of MLC phosphatase has been 

identified; catalytic subunit, variable subunit, and a myosin-binding subunit. 

Phosphorylation of myosin-binding subunit abolishes the activity of MLC phosphatase, 

causing the light chain of myosin to remain phosphorylated, sustaining contraction. The 
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activity of MLC phosphatase is also regulated by small G protein RhoA and Rho kinase, 

the downstream target. MLC phosphatase is phosphorylated by Rho kinase, thereby 

inhibiting its activity and promoting the contraction via keeping MLC in the 

phosphorylated state (Webb, 2003). 

The increase of cytosolic Ca
2+

 concentration activates Ca
2+

 removal mechanisms to restore 

myocyte equilibrium. Ca
2+

 removal mechanisms involve Ca
2+

 uptake into the sarcoplasmic 

reticulum and through the plasma membrane via Ca, Mg-ATPase dependent mechanism. 

Ca
2+

 removal is also mediated via Na
+
/Ca

2+
 exchangers located on the plasma membrane 

which use the Na
+ 

electrochemical gradient to remove intracellular Ca
2+ 

ion (Webb, 2003). 

1.6 Mechanism of VSMCs relaxation and the role of K
+
 

channels.  

Vascular smooth muscle relaxation occurs in response to contractile stimuli removal or as 

a result of direct stimulation by a mediator or of a receptor or ion channel that triggers 

inhibition of the contractile response. The principle of VSMCs relaxation is alleviation of 

the contractile response by reducing the intracellular Ca
2+

 concentration. Reduction in 

cytosolic Ca
2+

 reverses the calcium-calmodulin-dependent contraction mechanisms. 

Induction of relaxation is mediated by stimulation of MLC dephosphorylation by MLC 

phosphatase and inhibition of MLC kinase.  

In general, contraction in VSMCs is connected to membrane potential. Depolarisation of 

the cell membrane is associated with opening of L-type voltage-dependent Ca
2+

 channels, 

influx of Ca
2+

 and cell contraction. However, hyperpolarisation reduces L-type Ca
2+

 

channel opening and the cell remains relaxed. Hyperpolarisation of the myocyte membrane 

is mediated by opening of K
+
 channels in the cell membrane allowing K

+
 efflux. 4 types of 

K
+
 channels have been identified: Ca

2+
-activated (KCa), voltage dependent (Kv), ATP-

sensitive (KATP) and inward rectifying (Kir) channels. This section will discuss some types 

of K
+
 channels. 

1.6.1 Ca2+-activated K+ channels (BKCa channels) 

This class of K
+
 channels are activated by an increase in intracellular Ca

2+
 concentration. 

This family include 3 subfamilies: large-conductance Kca (Big; BKCa), intermediate-

conductance (IKCa) and small-conductance (SKCa). SKCa and IKCa are voltage-independent 

channels activated by an increase in intracellular Ca
2+

. Their Ca
2+

 sensitivity is due to their 
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association with calmodulin (Xia et al., 1998, Fanger et al., 1999). Both SKCa and IKCa are  

thought to be essential for endothelium-dependent myocyte hyperpolarisation (Coleman et 

al., 2004). 

Large-conductance Ca
2+

-activated K
+ 

channels are the most common characterised type of 

KCa in VSMCs. It is activated in response to changes in intracellular Ca
2+

 and membrane 

depolarisation (Nelson and Quayle, 1995). It composed of a pore-forming α-subunit and a 

regulatory β-subunit (Tanaka et al., 1997). The α subunit comprises of seven 

transmembrane domains (S0-S6), including a voltage sensor (S4) and four hydrophobic 

domains located on the cytoplasmic surface. The S0 domain is a ubiquitous feature for the 

BKCa channels and facilitates the interaction with, and channel modulation by  subunits. 

The cytoplasmic tail (the C-terminus) has regulatory domains including regulator of 

conductance for K
+ 

1 (RCK1), RCK2 and a Ca
2+

 bowel (in RCK2) (Wei et al., 1994). 

There are four β subunit isoforms (β1-4). Each isoform consists of two transmembrane 

domains which may be linked to α-subunits. The β1 subunit is the most common isoform 

expressed in VSMCs (Ko et al., 2008). Overall, the function of the β subunit is to increase 

sensitivity of the channel to Ca
2+

, channel kinetics and pharmacological properties (Hanner 

et al., 1997, Meera et al., 1996). Activation of BKCa leads to K
+ 

efflux and 

hyperpolarisation of the cell membrane which reverses pressure- or chemical-induced 

depolarization and vasoconstriction (Ko et al., 2008). 

1.6.2 Voltage-gated K+ channels (Kv) 

Kv channels include 12 subfamilies (Kv1-12) (reviewed in Gutman et al., 2005). They are 

expressed in vascular smooth muscle cells (Caterson et al., 2004). Activation of Kv 

channels leads to opening of the channel and K
+ 

efflux in response to membrane 

depolarisation. This will result in repolarisation which causes the membrane potential to 

return to resting membrane potential. Membrane depolarisation in VSMCs has been 

reported to be associated with opening of L-type Ca
2+

 channels and Ca
2+

 influx resulted in 

contraction. Therefore, Kv channels act as a switch to maintain resting vascular tone by 

limiting membrane depolarisation (Nelson and Quayle, 1995, Sobey, 2001). They are 

composed from pore forming α-subunits and have cytoplasmic N- and C- termini formed 

from six transmembrane domains (S1–S6) with an S4 acting as the voltage-sensing 

transmembrane domain (Korovkina and England, 2002). The α subunit is linked with 

ancillary β subunits which define the properties of the channel (Bahring et al., 2001). It is 

worth noting that α subunits are characterised by heteromultimerization which mean that α 
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subunits from different subfamilies can form functional channels with varying properties 

(McKeown et al., 2008). Depending on their voltage-dependence and pharmacological 

data, Kv channels expressed in VSMCs have been classified into two basic groups 

including rapidly activating/inactivating such as Kv4.2 and 4.3 and slowly activating; the 

delayed rectifiers such as Kv7.  

Kv7 channels have five subtypes: Kv 7.1-7.5 and are encoded by KCNQ1-5 genes; thus 

they are sometimes termed KCNQ channels and have various tissue localisations. Kv 7.1, 

7.4 and 7.5 have been demonstrated in VSMCs of rat aortic and mesenteric artery 

(Brueggemann et al., 2007, Mackie et al., 2008). They conduct a current that is slowly 

activating with a threshold -60 mV and is non-inactivating. Their activation threshold 

maintains the opening state of the channel during resting membrane potential, allowing 

conduction of the resting K
+ 

current in vascular myocytes (Xiong et al., 2008).  

1.6.3 ATP-sensitive K+ channels (KATP) 

KATP channels were initially chracterised in cardiac muscle and since then have been 

reported in many cells types including vascular smooth muscle (Nelson and Quayle, 1995). 

The single-channel conductances demonstrated for KATP channels in VSMCs are varied. 

However, it can be classified into two main categories: small/medium conductances and 

large conductances (Quayle et al., 1997). They are hetero-octameric complexes composed 

from 4 pore-forming Kir6 subunits and 4 regulatory sulphonylurea receptors (SUR) 

(reviewed in Cole and ClÉMent-Chomienne, 2003). The pore-forming subunits include 

two subtypes, Kir6.1 and Kir6.2 (Teramoto et al., 2006) with two transmembrane domains 

connected by an ion selectivity loop (Nichols, 2006). The sulfonylurea receptors (SUR) are 

an atypical ABC protein that binds to Kir6 subunits to form functional KATP channels. 

They belong to the ATP-binding cassette protein family. There are three isoforms of SUR 

(SUR1, SUR2A, and SUR2B). SURs have no role in pore-forming, but are important for 

surface expression of KATP and nucleotide-dependent activation of the KATP channel  (Hill 

et al., 2003). 

The KATP channel is activated in response to a decrease in the intracellular ATP/ADP ratio, 

causing K
+
 efflux from the cell, cell membrane hyperpolarization, and electrical activity 

suppression. The KATP channel can be inhibited by ATP (in the absence of Mg
2+

) by 

binding directly to Kir6 in a binding pocket located at the internal surface of the NH2- and 

COOH- ends (Hund and Mohler, 2011). In VSMCs, the current induced as a result of KATP 
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opening is both time and voltage-independent and can be inhibited by sulphonylurea 

compounds such as glibenclamide. The channel conductance in vascular myocytes via 

KATP is relatively small (20-50 pS) (Ko et al., 2008). Native KATP channels in VSMCs most 

likely have Kir6.1/SUR2B or Kir6.2/SUR2B with the Kir6.1/SUR2B being the 

predominant molecular entity (Koh et al., 1998, Cinti, 2005). However, it is worth noting 

that two different KATP channels may exist in the same type vessel. For example, it has 

been reported that both a small conductance and activated by nucleotide diphosphate and a 

larger conductance (50 pS) and inhibited by ATP are expressed in rat portal vein (Bolton 

and Imaizumi, 1996). Therefore, it is plausible to think that more than one type of KATP 

channels exists in the blood vessels.  

1.7 Mechanism of anticontractile effect of the PVAT 

Previously, vascular reactivity experiments were usually conducted in vessels with no 

attached PVAT. This practice was based on the traditional belief that PVAT only acted as 

scaffolding of the adjacent blood vessels. Additionally, PVAT was also removed as its 

presence was thought to affect reactivity either by impairing diffusion of the agents or 

metabolising some pharmacological agents added to the organ bath (reviewed in Oriowo, 

2015). However, in early 90s, the first evidence emerged suggesting modulation of 

vascular smooth muscle tone by PVAT was provided by Soltis and Cassis (Soltis and 

Cassis, 1991). They demonstrated that the presence of PVAT significantly attenuated 

noradrenaline-induced contraction of the rat aorta in comparison with vessels in which 

PVAT was removed. This effect was explained by uptake of noradrenaline into adrenergic 

nerves in the fat tissue, since PVAT had no effect on phenylephrine and KCl contractions 

(Soltis and Cassis, 1991). Lohn and co-workers confirmed the anticontractile effect of the 

PVAT on 5-HT and angiotensin II (Lohn et al., 2002). This finding would suggest that the 

anticontractile effect is not due to uptake into noradrenaline containing nerve fibres since 

angiotensin II is not a substrate for the uptake mechanism. Lhon et al suggested that the 

anticontactile effect of the PVAT is due to a transferable factor which is adipocyte-derived 

and they were the first to coin the term (ADRF) (Lohn et al., 2002). These early findings 

have been supported in many subsequent studies in different vascular beds and with 

different agonists (Verlohren et al., 2004, Dubrovska et al., 2004, Fesus et al., 2007, Gao et 

al., 2006, Gao et al., 2007, Lu et al., 2011b). PVAT released factors induce the 

anticontractile effect via modulation of vascular function either at the level of the 

endothelium or vascular smooth muscle layer by targeting certain effectors or receptors. 
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Therefore, the function of ADRFs can be classified into two main categories which will be 

discussed in the following section.  

1.7.1 Endothelium-dependent mechanism of PVAT action 

PVAT was reported to attenuate the contraction of rat thoracic aorta induced by 

phenylephrine (Gao et al., 2007). In this study, conditioned medium from donor PVAT-

intact  rat aorta induced relaxation in endothelium-intact vessels. Removal of the PVAT 

from the donor or the endothelium from recipient aortic rings led to loss of the relaxant 

effect of the PVAT. In the same study, transfer of conditioned medium from intact PVAT 

vessels to segments with denuded endothelium did not enhance the relaxation response of 

the vessels. These findings indicated that the PVAT is a source of transferable factors and 

its effect is dependent on the endothelium. This effect was proposed to be mediated via 

PVAT generated NO and subsequent activation of calcium-dependent K
+
channel 

activation in VSMC (Gao, 2007). Adipokines in the conditioned medium have therefore 

been proposed to underlie these actions of PVAT. 

Leptin is an adipokine released by adipose tissues including PVAT and is involved in 

regulation of appetite and energy metabolism. It also has vasoactive properties (Figure 1-2) 

mediating both vasodilatation (Vecchione et al., 2002) and vasoconstriction (Cooke and 

Oka, 2002). The vasodilation is reported to be mediated by activation of the AMPK 

signalling pathway, resulting in eNOS activation via Ser1177 phosphorylation (Vecchione 

et al., 2002). 

Cell membrane
Leptin Receptor 

Leptin

 

Figure ‎1-4  Mechanism of leptin induced vasodilation and vasoconstriction. 

 

http://www.sciencedirect.com/science/article/pii/S1471489209002069#200010291
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Adiponectin is another important  cardioprotective adipokine (Antoniades et al., 2009) that 

can also induce vascular relaxation via endothelium dependent mechanisms. It enhances 

production of NO from endothelial cells by increasing phosphorylation of eNOS at ser1177 

with involvement of PI3K-Akt and AMPK (Chen et al., 2003). This effect is mediated 

through binding to adiponectin type 2 receptor (rather than type1) or T-cadherin 

(Greenstein et al., 2009), and also binding of heat shock protein HSP90 (Xi et al., 2005) in 

which APPL1 acts as an immediate downstream modulator of adiponectin receptors 1 and 

2 (Cheng et al., 2007). In human endothelial cells, adiponectin reduced TNF-α-induced 

production of asymmetric dimethylarginine (ADMA), an L-arginine analogue that inhibits 

NO formation and impairs vascular function (Eid et al., 2007).  

Other adipokines that have been reported to influence endothelium-mediated vascular tone 

include omentin, visfatin and hydrogen peroxide (H2O2), Omentin is reported to induce 

endothelium-dependent vascular relaxation via eNOS phosphorylation and stimulated NO 

synthesis (Yamawaki et al., 2010) while visfatin, has been reported to activate Akt and 

cGMP-dependent protein kinase (Yamawaki et al., 2009) and H2O2  induces endothelium-

dependent vasodilation through COX-1-mediated release of PGE2 (Thengchaisri and Kuo, 

2003). 

1.7.2 Endothelium-independent mechanism of PVAT action 

In addition to being produced by vascular smooth muscle and heart tissue (Zhao et al., 

2001, Zhao and Wang, 2002), H2S is also generated by PVAT  from cysteine by 

cystathionine-gamma-lyase enzyme (CSE) (Fang et al., 2009). H2S induces a dose-

dependent vascular relaxation in both rat aorta and mesenteric arterioles that is not 

dependent on nitric oxide but is calcium-dependent (Zhao and Wang, 2002, Zhao et al., 

2001). The mechanism of relaxation is thought to be due to opening of ATP-sensitive 

potassium channel (KATP channel) and enhancing K
+
efflux (Zhao et al., 2001) since  Fang 

and co-workers demonstrated that the anticontractile effect of endogenous H2S from PVAT 

was abolished by blocking the KATP channel (Fang et al., 2009).  

PVAT has also been found to significantly attenuate vascular responsiveness of mesenteric 

arteries to several agonists, including serotonin, phenylephrine, and endothelin I. The 

mechanism of this anticontractile effect is reported to be mediated by activation of voltage-

dependent, delayed-rectifier K (Kv) channels that hyperpolarize the vascular smooth 

muscle cell membrane (Verlohren et al., 2004). 
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In 2007, Gao et al suggested that perivascular adipose tissue releases transferable factor(s) 

that can induce vascular relaxation both via endothelium-dependent and endothelium-

independent mechanisms. The endothelium-independent mechanism was suggested to be 

due to release of H2O2 with subsequent activation of soluble guanylate cyclase (sGC) (Gao 

et al., 2007). Hydrogen peroxide was also demonstrated to induce NO-independent 

vascular relaxation via activation of KCa channels (Thengchaisri and Kuo, 2003, Hattori et 

al., 2003). Furthermore, H2O2 has been reported to induce relaxation through activating 

voltage-dependent K
+
 channels (Iida and Katusic, 2000, Gao et al., 2003) and independent 

of phospholipase A2, cyclooxygenase, lipoxygenase, cytochrome P450 monooxygenase, 

adenylate or guanylate cyclase (Gao et al., 2003) or ATP-dependent K
+
 channels (Gao et 

al., 2003). 

1.8 PVAT involvement in cell proliferation and migration  

In addition to its role in regulation of vascular reactivity, PVAT has been proposed to be 

involved in development of atherosclerosis via its effect on vascular smooth muscle 

proliferation and migration (Engeli, 2005). It has long been known that endothelium and 

VSMC layers are the major contributors to the development of atherosclerotic lesions 

(Rudijanto, 2007, Davignon and Ganz, 2004). Furthermore, adventitia with its fibroblasts 

is involved in vascular remodelling and constriction of the external lamina by the 

accumulation of α smooth muscle-containing myofibroblasts in the injured area of the 

blood vessels (Scott et al., 1996, Wilcox and Scott, 1996). Furthermore, macrophage 

infiltration associated with plaque neovascularisation (Maiellaro and Taylor, 2007) and the 

profound inflammation of adventitia following balloon angioplasty of porcine coronary 

arteries is further evidence supporting the involvement of other layers of vasculature rather 

than just the endothelium and VSMCs (Sartore et al., 2001, Okamoto et al., 2001). The 

inflammatory response to arterial angioplasty has been demonstrated in the PVAT 

surrounding the treated arterial segment (Okamoto et al., 2001). These results suggest a 

potential role for PVAT in vascular remodelling and proliferation. However, the current 

view regarding the role of PVAT in atherosclerosis is that PVAT may have opposing 

effects; proatherosclerotic and antiatherosclerotic (Almabrouk et al., 2014). 

1.8.1 Pro-Atherosclerotic Properties of PVAT 

The major mechanism that promotes development of atherosclerosis is the inflammatory 

response in which PVAT may play a role via the recruitment and proliferation of 
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adventitial myofibroblasts (Okamoto et al., 2001). There are also many changes in PVAT 

which have been observed in response to endothelial injury. Wire or balloon injury to the 

lumen of mouse and rat vessels significantly increased the expression of pro-inflammatory 

adipocytokines and reduced adiponectin, an effect that was absent in TNF-α knockout 

(KO) mice and which could be replicated by TNF-α application to the perivascular area of 

the vessel. Furthermore, TNF-α KO mice had reduced neointimal formation, reinforcing 

the potential importance of PVAT-derived inflammatory mediators in vascular remodelling 

(Takaoka et al., 2010). Another study showed that the adipokine C1q/TNF-related protein-

9 attenuates neointima formation in the wire-injured obese mouse femoral artery (Uemura 

et al., 2013).  

Inflammatory responses in PVAT have also been demonstrated to occur not only due to 

injury but also as a response to high fat feeding (Chatterjee et al., 2009). The 

proinflammatory phenotype found in murine PVAT in response to high fat feeding is 

characterised by the markedly reduced secretion of anti-inflammatory adiponectin with 

increased secretion of the proinflammatory cytokines IL-6, IL-8, and the chemokine MCP-

1 in coronary perivascular adipocytes (Chatterjee et al., 2009, Henrichot et al., 2005). 

These findings suggest that PVAT has strong chemotactic activity which is mainly 

mediated via the secretion of chemokines IL-8 and MCP-1. These factors are likely to 

contribute to the infiltration of macrophages and T cells at the interface between human 

PVAT and the adventitia of atherosclerotic plaques in the aorta (Henrichot et al., 2005). 

Another study investigated the relationship between development of atherosclerosis and 

pro-inflammatory PVAT by transplantation of visceral fat to the mid-perivascular area of 

the carotid artery in apolipoprotein-E-deficient mice (Ohman et al., 2011). Transplant of 

visceral WAT (inflammatory fat with a higher macrophage content) stimulated 

development of atherosclerotic lesions in the carotid artery accompanied by an increased 

level of serum MCP-1 (also called CCL2) and enhanced endothelial dysfunction. Such a 

detrimental effect was not seen with transplantation of subcutaneous fat and could be 

ameliorated by an antibody to P-selectin glycoprotein ligand (Ohman et al., 2011). This 

important study demonstrates that the pro-inflammatory and pro-atherogenic properties of 

adipose tissue in the hypercholersterolaemic state can have an adverse influence on 

vascular function and plaque formation. 

PVAT may mediate cell growth and proliferation via release of bioactive adipokines. In 

addition to its function as a vasodilator, leptin has been reported to induce VSMCs growth 

and proliferation (Oda et al., 2001, Huang et al., 2010, Shan et al., 2008). Leptin regulates 
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VSMCs proliferation and migration by stimulating phosphorylation and activation of 

mitogen-activated protein (MAP) kinases, and also increased phosphatidylinositol (PI) 3-

kinase activity (Oda et al., 2001). High levels of serum leptin are observed in obese and 

diabetic patients and have been found to be associated with enhanced neointimal formation 

following femoral artery injury in both wild type and leptin-deficient mice treated with 

exogenous leptin and this was due to activation of the key regulator of protein and amino 

acid metabolism, mammalian target for rapamycin (mTOR) (Shan et al., 2008). Leptin also 

can stimulate VSMCs proliferation via increased phosphorylation of extracellular signal-

regulated kinase 1/2 (ERK1/2), and nuclear factor (NF)-kappa Bp65 (Huang et al., 2010).  

Visfatin has been identified as nicotinamide phosphoribosyltransferase (NAMPT) and is 

involved in the synthesis of nicotinamide mononucleotide (NMN) from nicotinamide 

(Wang et al., 2009a, Wang et al., 2011a). In comparison with subcutaneous fat, visfatin is 

mainly expressed in and secreted from visceral fat. The circulating visfatin level is 

correlated with obesity and its associated abnormalities (Fukuhara et al., 2005, Wang et al., 

2010a, Stastny et al., 2012). Visfatin has been also reported to be expressed in and released 

from aortic PVAT (Wang et al., 2009a). The expression of visfatin in rat thoracic aorta 

PVAT is higher in comparison with subcutaneous and visceral adipose tissue. Similar 

findings have been reported in adipose tissue samples derived from monkeys (Wang et al., 

2009a). Furthermore, visfatin has also been identified in conditioned medium from PVAT, 

demonstrating that this protein can be secreted by PVAT (Wang et al., 2009a). Visfatin has 

no effect on VSMC contraction (Wang et al., 2009a), however, PVAT-derived visfatin has 

been found to be a VSMC growth factor. PVAT-conditioned medium induces VSMC 

growth and proliferation which is inhibited by visfatin-specific neutralising antibodies. 

Application of exogenous visfatin enhances VSMC proliferation and this effect was 

abolished after co-incubation with FK866, a selective inhibitor of NAMPT activity (Wang 

et al., 2009a). In the same study, visfatin stimulated VSMC proliferation in a dose- and 

time-dependent manner mediated via extracellular signal-regulated kinase (ERK) 1/2 

signalling pathways (Wang et al., 2009a) and also attenuated VSMC apoptosis induced by 

H2O2. The knockdown of insulin receptors abolished insulin-induced Akt phosphorylation 

and VSMC proliferation but had no effect on the response to visfatin while the visfatin 

product NMN also stimulated proliferative signalling pathways and cell proliferation 

(Wang et al., 2009a). Visfatin also exhibits pro-inflammatory effects, stimulating iNOS 

and activation of the key proinflammatory transcription factor, NF-κB (Romacho et al., 

2009). 
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Epicardial adipose tissue thickness was reported to be associated with elevated plasma 

visfatin levels and local visfatin expression in CAD patients (Cheng et al., 2008) while 

increased visfatin expression has been detected in the PVAT of aortic and coronary vessels 

with atherosclerosis (Spiroglou et al., 2010). 

1.8.2 Anti-atherosclerotic properties of PVAT 

As well as the important role inflammation in atherosclerosis development, impaired 

energy metabolism in the blood vessels is also linked with atherogensis (Mayr et al., 2005). 

Temperature has long been recognized to influence energy metabolism, and one of the 

main roles of BAT is to provide adaptive thermogenesis via uncoupling of respiratory 

chain by UCP1 (Brown et al., 2014). BAT is involved in the regulation of energy 

expenditure in humans, and since some adipocytes within PVAT possess the 

morphological features of BAT, it might be anticipated that the fat surrounding the blood 

vessels can control the local energy metabolism of the vessel wall. Studies have shown that 

PVAT can generate heat, which helps in maintaining intravascular temperature and 

correlates with increased activity of metabolic enzymes in mice housed at 16°C (Chang et 

al., 2012). In this study, development of atherosclerotic plaques in the mice was attenuated 

and serum triglyceride concentrations decreased markedly. Peroxisome proliferator-

activated receptor γ (PPAR-γ) is a key regulator of white and brown adipocyte 

differentiation (Siersbaek et al., 2010) and in mice lacking smooth muscle PPARγ, an 

absence of PVAT was found, which caused endothelial dysfunction and temperature loss 

(Chang et al., 2012).  

It is well known that obesity-induced inflammation in periadventitial adipose tissue is 

associated with upregulation of inflammatory adipocytokines and downregulation of the 

antiinflammatory adipocytokine adiponectin (Takaoka et al., 2009). These changes were 

associated with enhanced neointima formation after endovascular injury. Endothelial injury 

induces adhesion and migration of leukocytes, macrophages, and bone marrow–derived 

progenitor cells into the vessel wall (Sata et al., 2000). Furthermore, pro-inflammatory 

cytokines have a fundamental role in mediating the initiation and progression of vascular 

lesion formation (Serrano et al., 1997, Libby, 2002). Takaoka et al provide direct evidence 

that PVAT may protect against neointimal formation after angioplasty in lean mice and 

that inflammatory changes in the periadventitial fat may have a direct role in the 

pathogenesis of vascular disease accelerated by obesity. They also suggested that 

adiponectin released from PVAT may play a protective role in neointima formation of the 
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adjacent artery after vascular injury in lean mice (Takaoka et al., 2009). In this study, 

PVAT removal enhanced neointimal hyperplasia following endovascular injury in the 

femoral artery. Transplantation of subcutaneous fat from a normal mouse to surround the 

injured artery significantly reduced neointimal formation. In line with the previous 

findings, the protective effect of exogenous adipose tissue was lost when transplanted 

subcutaneous adipose tissue was derived from obese mice. This is likely related to 

phenotypic changes in adipose tissue associated with obesity. These changes include 

reduced production of anti-inflammatory adiponectin and increased pro-inflammatory 

adipokines; IL-6, MCP-1, tumour necrosis factor-α (TNF-α) and plasminogen activator 

inhibitor type-1 (PAI-1) in subcutaneous adipose tissue-conditioned medium from obese 

mice compared with that from normal mice (Takaoka et al., 2010). In the same study, the 

conditioned medium derived from the subcutaneous adipose tissue of normal mice 

attenuated VSMC proliferation stimulated by platelet-derived growth factor (PDGF)-BB 

(Takaoka et al., 2010). On the other hand, the conditioned medium from obese mice 

increased VSMC proliferation, which was attenuated by pretreatment with anti-TNF-α 

antibodies. Furthermore, the conditioned medium of adiponectin-deficient subcutaneous 

adipose tissue enhanced VSMC proliferation. These findings reveal that TNF-α secreted 

from adipose tissue increases VSMC growth, and that adiponectin secreted from adipose 

tissue inhibited VSMC growth in response to PDGF-BB stimulation (Takaoka et al., 2010).  

Further experiments revealed that adiponectin suppressed endothelial cell proliferation 

induced by a low dose of oxidized low density lipoprotein (Motoshima et al., 2004). 

Interestingly, exogenous adiponectin suppressed PDGF-BB-induced VSMC proliferation 

via AMPK activation (Igata et al., 2005). The AMPK pathway is central to many of the 

effects of adiponectin including: inhibiting the expression and activity of iNOS, secretion 

of adventitial infective factors, division, proliferation and translation of adventitial 

fibroblasts, change of adventitial fibroblasts to myofibroblasts, and oxidative/nitrative 

stress which reduces atherosclerotic plaque area and stabilizes the plaque (Cai et al., 2008). 

In the next part of the introduction, I will focus on AMPK and its role in the function of 

PVAT. 
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1.9 AMP-activated protein Kinase (AMPK)  

1.9.1 Background  

AMPK is a metabolic stress-sensing protein kinase that is involved in regulation of 

metabolism in response to energy requirements; phosphorylating key regulatory enzymes 

in different metabolic pathways as well as regulating gene expression (Kemp et al., 2003). 

AMPK was identified by ATP-dependent inhibitory activity observed during preparation 

of rat liver acetyl-CoA carboxylase (ACC) (Jeong et al., 2007) and purification of 3-

hydroxy-3-methylglutaryl coenzyme A from rat liver microsomes (Maenhaut and Van de 

Voorde, 2011). Later, both enzymes were found to be activated by AMP (Yeh et al., 1980, 

Ferrer et al., 1985). Carling et al found that ACC and the HMG-reductase kinases were 

identical and the name of AMPK was adopted (Greif et al., 2009). AMPK monitors 

cellular energy status by sensing increases in the ratios of AMP/ATP and ADP/ATP 

(Hardie, 2011). Therefore, a reduction in ATP/AMP ratio leads to activation of AMPK 

which acts to inhibit anabolic pathways such as fatty acid, triglyceride and cholesterol 

synthesis, protein synthesis and transcription and stimulate catabolic pathways including 

glycolysis and fatty acid oxidation (Kemp et al., 2003).  

In this section I will review the role of AMPK in physiological and pathophysiological 

function with particular emphasis on its role in the regulation of vascular function.  

1.9.2 AMPK structure 

AMPK is heterotrimeric serine-threonine protein kinase. The complex is composed of one 

catalytic α subunit, and two regulatory subunits (βand γ). There are multiple subunit 

isoforms in mammals (α1, α2, β1, β2, γ1, γ2 and γ3), which enables the formation of 12 

different heterotrimer combinations that are thought to possess distinct subcellular 

localization and signalling mechanisms (Hardie, 2007). Figure 1.2 illustrates the domain 

organizations of α, β and γ subunits of AMPK.  
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Figure ‎1-5 Structure of AMPK.  

The‎ figure‎ shows‎ the‎ components‎ of‎ the‎ AMPK‎ subunits.‎ The‎ catalytic‎ α-subunit can be 
phosphorylated at Thr

172
.‎ The‎ β-subunit contains a glycogen-binding‎ domain‎ (GBD).‎ The‎ γ-

subunits contain four nucleotide-binding modules (CBS domains) capable of co-operatively binding 
to AMP, ADP and ATP. AIS; autoinhibitory sequence,  β-SID; β‎ subunit‎ interacting‎ domain 
(adapted from Ewart and Kennedy, 2011). 

 

The α subunit (α1: 550 residues) is composed of an N-terminal kinase catalytic domain 

(KCD), followed by an autoinhibitory sequence (AIS) and complex-forming C-terminal 

domain (β-SID) which are separated by a region of predicted high flexibility. The β 

subunits act as targeting scaffolds that influence subcellular localization. Mammalian β1 

consists of an N-terminal (∼70 residue) sequence, followed by an internal carbohydrate-

binding module (CBM) related to the N-isoamylase domain subfamily and glycogen-

branching enzyme. The highly conserved C-terminal sequence (ASC) has been reported by 

genetic and structural studies to act as a tethering domain for both α and γ AMPK subunits. 

Each γ subunit comprises of four cystathionine-β-synthase (CBS) sequence repeats which 

are small motifs found in tandem pairs called Bateman domains. The CBS sequences act as 

structural elements which are required for binding the regulatory nucleotides AMP and 

ATP. In comparison with γ1, the γ2 and γ3 subunits have large extensions to the N-

terminus prior to their canonical pair of Bateman domains (reviewed in Oakhill et al., 

2009). 

1.9.3 Activation of AMPK 

1.9.3.1 Allosteric AMPK activation 

AMPK is a primary sensor of cellular energy change that responds to stresses that cause 

increases in the AMP:ATP ratio. Metabolic stresses including hypoxia, nutrient 
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deprivation, heat shock and metabolic poisoning, have been reported to activate AMPK 

(Salt et al., 1998, Hardie, 1999). Reduction in the cellular ATP sensed by a rise in AMP or 

ADP will increase AMPK activity by 10 fold. Binding of AMPK to AMP or ADP induces 

a conformational change that results in α-subunit Thr172 phosphorylation, as well as 

inhibition of Thr172 dephosphorylation by protein phosphatases (Hardie et al., 2011). 

AMP has been shown to support allosteric activation of AMPK that has already been 

phosphorylated on Thr172 of the α-subunit (Corton et al., 1995). 

1.9.3.2 Activation by upstream Kinases 

In addition to the allosteric activation due to changes in ATP/AMP ratio, AMPK can be 

activated at Thr127 on the catalytic α subunit by upstream kinases. Two major AMPK 

kinases have been identified and they are liver kinase B1 (LKB1) (Woods et al., 2003a) 

and Ca
2+

/calmodulin-dependent protein kinase kinase β (CaMKKβ) (Figure 1-3) (Hawley 

et al., 2005). 

LKB1 is the major Thr172 kinase that regulates mammalian AMPK and is the most 

thoroughly investigated (also referred to as serine/threonine kinase 11). LKB1 was 

originally identified as a tumour suppressor gene (Hemminki et al., 1998), which is 

mutated in Peutz Jeghers syndrome. This syndrome is characterised by the development of 

hamartomas (benign intestinal polyps) and development of high risk malignant cancers in 

other organs within the body (Hardie, 2005). Inactive LKB1 is located within the nucleus. 

However, when LKB1 is activated, it translocates to the cytoplasm forming a 

heterotrimeric complex with two supporting subunits, STE20-related adaptor protein 

(STRAD), and scaffolding mouse 25 protein (MO25) (van Veelen et al., 2011). STRAD 

functions as a blocker of the nuclear re-localization of LKB1 and Mo25 stabilizes LKB1-

STRAD-Mo25 complex. LKB1 is constitutively active and it has been suggested that the 

phosphorylation of AMPK by LKB1 is upregulated by physiological and pathological 

metabolic stress that affects the ATP/AMP ratio such as hypoxia, hypoglycaemia, 

ischaemia and exercise (Hawley et al., 2003). LKB1 phosphorylates AMPK on its α-

Thr172 residue, resulting in at least a 100-fold increase in AMPK activity (Hardie, 2011). 

Binding of AMP to AMPK stimulates LKB1-dependent phosphorylation of Thr-172 

through inhibition of dephosphorylation by causing a conformational change which makes 

the AMPK complex a less desirable substrate for protein phosphatases and produces a 

large effect on kinase activity by allosterically activating the phosphorylated form of 

AMPK (Viollet et al., 2010). In addition, LKB1 has also been identified as being essential 
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for the phosphorylation and activation of 13 other AMPK-related kinases (Lizcano et al., 

2004). However, their physiological functions have not yet been thoroughly defined and 

they do not appear to be regulated by metabolic stress (Lizcano et al., 2004). 

Although LKB1 was considered to be the major kinase responsible for activation of 

AMPK via an AMP-dependent mechanism, activation of AMPK via phosphorylation at 

Thr172 has been identified in cells lacking LKB1 (Woods et al., 2005, Hawley et al., 

2005). CaMKKs, as the name implies, were originally thought of  as acting upstream of 

Ca
2+

/calmodulin-dependent protein kinases, however they were also found to activate 

AMPK in vitro as early as 1995 (Hawley et al., 1995). Unlike LKB1, CaMKKs are tissue 

restricted and are mainly expressed in neurons, T cells and endothelial cells (Anderson et 

al., 2008, Tamas et al., 2006, Stahmann et al., 2006). CaMKKβ rather than CaMKKα 

phosphorylates and activates AMPK in response to increased levels of calcium influx into 

the cell (Hawley et al., 2005, Woods et al., 2005). In human endothelial cells, thrombin 

activates AMPK via an increase in Ca
2+

 and activation of CaMKKβ (Stahmann et al., 

2006). In the same type of cells, VEGF-B activates AMPK in a CaMKK-dependent 

manner and AMPK activitation is required for proliferation in response to either VEGF-A 

or VEGF-B and migration in response to VEGF-A (Reihill et al., 2011). 

TGF-β-activated kinase 1 (TAK1), was also proposed as an upstream kinase for AMPK 

based on a genetic screen for mammalian kinases. TAK1 was shown to activate the yeast 

orthologue of AMPK, Snf1 protein kinase, in vivo and in vitro and co-expression of TAK1 

and its binding partner TAB1 in HeLa cells stimulated phosphorylation of AMPK-Thr172 

(Momcilovic et al., 2006). Mice carrying a cardiac-specific dominant negative mutation for 

TAK1 had signs of the Wolff–Parkinson–White syndrome, which is similar to those 

associated with mutations in human AMPKγ2 (Xie et al., 2006). Moreover, TAK1-

deficient MEFs exhibit reduced AMPK activation by oligomycin, metformin and 5-

aminoimidazole-4-carboxamide 1-β-D-ribonucleoside (AICAR), leading the authors to 

propose that TAK1 has a pivotal role in the regulation of LKB1/AMPK signalling axis, an 

essential pathway in the regulation of cell metabolism (Xie et al., 2006). Despite this, no 

recent studies have further corroborated the action of TAK1 as an AMPK Thr172 kinase. 

1.9.3.3 Physiological modulators of AMPK 

AMPK is activated by metabolic stresses that inhibit catabolic generation of ATP such as 

glucose deprivation, hypoxia, ischaemia, and treatment with metabolic poisons or increases 
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ATP demand or consumption such as muscle contraction, thereby increasing cellular 

ADP:ATP (Oakhill et al., 2010, Oakhill et al., 2011) and AMP:ATP ratios (Hardie, 2007). 

1.9.3.4 Pharmacological modulators of AMPK 

In addition to physiological activation of AMPK by increases in the cellular AMP/ATP 

ratio (Ewart and Kennedy, 2011, Hardie, 2007), many pharmacological AMPK activators 

have been identified (Figure 1-4). 

Metformin is a commonly used medication in the treatment of type 2 diabetes that reduces 

hyperglycaemia (Kirpichnikov et al., 2002). Metformin is a biguanide that activates AMPK 

in intact cells and in vivo (Musi and Goodyear, 2002). Activation of AMPK by metformin 

is dependent on its uptake by organic cation transporter 1 (Shu et al., 2007), and recent 

studies have shown that metformin stimulates AMPK activity by increasing AMP levels 

(Hawley et al., 2010). Others have suggested that ROS and reactive nitrogen species are 

also involved in the activation of AMPK by metformin (Zou et al., 2004, Fujita et al., 

2010). However, many studies have revealed that metformin can induce anti-

gluconeogenic actions in an AMPK-independent manner via a decrease in hepatic energy 

state (Foretz et al., 2010), although it remains possible that AMPK activation underlies 

other effects of metformin.  

In the vasculature, metformin-induced AMPK activation has been reported to up-regulate 

eNOS phosphorylation to increase NO bioavailability (Calvert et al., 2008, Zhang et al., 

2011) and reduce SMC proliferation, migration and inflammatory responses (Kim and 

Choi, 2012). In cardiac tissue, metformin-induced AMPK activity sustains energy balance, 

cardiomyocyte function and myocardial viability (Cha et al., 2010, Fu et al., 2011). The 

reported cardioprotective effect is principally achieved by the reduction of hypertrophic 

cell growth and endoplasmic reticulum (ER) stress (Dong et al., 2010). 

Thiazolidinediones (TZDs) are another class of anti-diabetic drugs, including rosiglitazone, 

troglitazone and pioglitazone, which have been used to counteract insulin resistance in 

patients with T2DM by increasing the sensitivity of peripheral tissues to insulin (Krishan et 

al., 2015). They act by binding to PPARγ, which promotes the synthesis of glucose 

transporters and proteins regulating lipid metabolism, leading to storage of lipids in 

adipocytes rather than hepatocytes and muscle, protecting against lipotoxicity-driven 

insulin resistance (Semple et al., 2006, Burns and Vanden Heuvel, 2007). PPARγ receptors 

are nuclear hormone receptors that are expressed widely not only in adipose tissue but also 
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in skeletal muscle (Hevener et al., 2003), liver (Gavrilova et al., 2003) and macrophages 

(Hevener et al., 2003).  

TZDs exert pleiotropic effects in a manner similar to statins, and some of these effects are 

observed acutely and do not require gene transcription. The acute effects of TZDs have 

been proposed to be via activation of AMPK in adipose tissue, skeletal muscle and liver 

(LeBrasseur et al., 2006). The mechanism of AMPK activation is reported to be due to an 

increase in intracellular AMP/ATP ratio (Fryer et al., 2002). Similar to metformin and 

phenformin, TZDs have been demonstrated to act as inhibitors of complex 1 of the 

respiratory chain (Brunmair et al., 2004); thus, an increase in the AMP/ATP ratio may be 

the mechanism for AMPK activation in response to these drugs. Notably, this effect was 

reported to be independent of PPARγ (Guh et al., 2010). TZDs can also activate AMPK by 

stimulating adiponectin release from adipose tissue (Yamauchi et al., 2002) and this effect 

may be important in PVAT. Both rosiglitazone and pioglitazone have been reported to 

have beneficial anti-atherosclerotic and anti-inflammatory effects (Stocker et al., 2007), as 

well as an additional beneficial influence on endothelium via AMPK-dependent and 

PPAR-γ-independent mechanisms (Polikandriotis et al., 2005, Ceolotto et al., 2007). It has 

been also shown that rosiglitazone can stimulate NO synthesis in human endothelial cells 

via AMPK-mediated eNOS Ser1177 phosphorylation (Boyle et al., 2008). However, it 

should be noted that TZD use is associated with the risk of fluid retention which may 

exacerbate heart failure (Hannan et al., 2003). There is also a concern that rosiglitazone is 

associated with additional cardiovascular (MI and stroke) risk in patients with T2DM 

(Azimova et al., 2014). 

Statins are HMG-CoA reductase inhibitors used in the treatment of metabolic syndrome 

and hypercholesterolaemia. Besides their cholesterol-lowering effects, statins have also 

been reported to activate AMPK in human and bovine endothelial cells (Sun et al., 2006). 

Sun et al. also reported that while atorvastatin and lovastatin rapidly stimulate AMPK and 

eNOS in mouse myocardium and endothelial cells, they do not alter the cellular AMP/ATP 

ratio, suggesting a different pathway of AMPK activation (Sun et al., 2006, Goirand et al., 

2007). Two days of treatment with fluvastatin (at a concentration of 20 mM) has also been 

reported to stimulate eNOS and AMPK in human iliac endothelial cells. This effect was 

blocked by an eNOS inhibitor, implying that AMPK up-regulation was dependent on NO 

synthesis (Xenos et al., 2005). In another study conducted in rat aorta, simvastatin up-

regulated both AMPK and the upstream kinase LKB1. They also reported that this 

activation of AMPK was dependent on PKCζ-mediated phosphorylation of LKB1 (Choi et 
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al., 2008). However, another study using HeLa cells expressing mutant LKB1 reported that 

phosphorylation of Ser431 on LKB1 was not required for AMPK up-regulation (Fogarty 

and Hardie, 2009). In addition to the beneficial effects of statins on endothelial function, 

which are likely due to eNOS up-regulation (Laufs et al., 2002, Laufs et al., 2000), statins 

exert anti-inflammatory (Cahoon and Crouch, 2007) and anti-atherogenic effects (Nissen et 

al., 2005). These observations all indicate that AMPK activation might be important in the 

pleiotropic effects of statins on cardiovascular protection. 

6,7-Dihydro-4-hydroxy-3-(2′-hydroxy[1,1′-biphenyl]-4-yl)-6-oxo-thieno[2,3-b]pyridine-5-

carbonitrile (A769662) is a member of the thienopyridone family that activates AMPK 

both allosterically and by inhibiting dephosphorylation of the kinase at Thr172 (Cool et al., 

2006). A769662 is dependent on the β-subunit carbohydrate-binding module and γ subunit 

(Guh et al., 2010) of AMPK and, notably, exclusively activates trimers containing the β1 

subunit (Scott et al., 2008). In in vitro studies, A769662 has been shown to stimulate 

phosphorylation of acetyl-CoA carboxylase (ACC) independently of the upstream kinases 

LKB1 and CaMKK (Cool et al., 2006, Goransson et al., 2007). In cell-free assays, it has no 

direct effect on the ability of LKB1 or CaMKK to phosphorylate AMPK. The mechanism 

of AMPK activation by A769662 is thought to be distinct from that of AMP, as A769662 

can still activate an AMP-insensitive AMPK containing a mutation in the γ subunit. In 

addition, A769662 activation of AMPK was inhibited by a mutation in the β1 AMPK 

subunit (Ser108 to Ala), which is an auto-phosphorylation site within the glycogen-binding 

domain; however, the same mutation only partially reduced AMPK activation by AMP 

(Cool et al., 2006, Sanders et al., 2007). A769662 stimulates AMPK directly in partially 

purified rat liver and suppresses fatty acid synthesis in primary rat hepatocytes. Short-term 

treatment of normal Sprague-Dawley rats with A769662 has been shown to reduce liver 

malonyl-CoA levels and the respiratory exchange ratio of CO2 production to O2 

consumption, indicating an increased rate of whole-body fatty acid oxidation (Cool et al., 

2006). Treatment with A769662 reduced plasma glucose, weight gain, and both plasma 

and liver triacylglycerol (triglyceride) levels in leptin-deficient ob/ob mice (Cool et al., 

2006).  

Another potent activator that binds to the same binding site of A769662 which has been 

identified to be a cleft located between the N-lobe of the kinase domain on the α subunit 

and the carbohydrate-binding module on the β-subunit (Calabrese et al., 2014) is 991 (also 

known as ex229). Discovered via high-throughput screens, 991, like A769662, shows 
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some selectivity for β1 complexes although it will activate β2 complexes at higher 

concentrations (Grahame Hardie, 2016).  

Another widely used AMPK activator is AICAR, also known as acadesine. AICAR is a 

pro-drug and analogue of adenosine that enters cells and stimulates AMPK, following its 

phosphorylation to its active nucleotide ZMP (5-aminoimidazole-4-carboxamide-1-β-D-

furanosyl 5′-monophosphate), which mimics AMP (Merrill et al., 1997). AICAR has been 

tested in human studies of ischaemic heart disease due its ability to block adenosine 

reuptake by cardiac cells, promoting stimulation of adenosine membrane receptors. In 

1997, treatment with AICAR before and during surgery was shown to alleviate early 

cardiac death, MI and combined adverse cardiovascular consequences, although whether 

the effects were via AMPK was not investigated at that time (Mangano, 1997). AICAR has 

been demonstrated to reverse many aspects of the metabolic syndrome in animal models 

such as the ob/ob mouse, the fa/fa rat and high fat-fed rat (Buhl et al., 2002, Iglesias et al., 

2002), and also in human subjects (Cuthbertson et al., 2007). AICAR has also been 

reported to stimulate release of adiponectin and inhibit release of cytokines such as TNF-α 

and IL-6, which have been implicated in the development of obesity-induced insulin 

resistance (Kern et al., 2001, Lihn et al., 2004). AICAR is not suitable for clinical use 

because of its short half-life, requirement for i.v. infusion and variable effectiveness. 

AICAR has also been reported to cause bradycardia and hypoglycaemia when 

administered intravenously (Young et al., 2005). 

In addition to galegine, several natural products derived from plants have been reported to 

activate AMPK. These include resveratrol from red grapes, ginsenoside from Panax 

ginseng, berberine from Coptis chinensis, epigallocatechin gallate from green tea, 

theaflavin from black tea and hispidulin from snow lotus (Hwang et al., 2009, Lin et al., 

2010). The role of these compounds in the activation of the AMPK was reasoned with the 

results that berberine can inhibit the respiratory chain (Turner et al., 2008) and resveratrol 

can inhibit the F1 ATP synthase (Gledhill et al., 2007), and thus they activate AMPK 

indirectly. By inhibiting mitochondrial ATP production and thus increasing cellular AMP: 

ATP and/or ADP: ATP ratios, they activate AMPK in a similar manner to the biguanides. 

Supporting this, AMPK activation by resveratrol, berberine, and quercetin was abolished in 

cells expressing the AMP/ADP-insensitive AMPK mutant (Hawley et al., 2010).  

Dorsomorphin (compound C) is an inhibitor of AMPK activity. Compound C binds the 

ATP-binding site of the AMPK kinase domain although it is poorly selective, inhibiting 
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several other protein kinases more effectively that AMPK. Despite this, compound C has 

been used to inhibit AMPK activity in muscle cells, several tumor cell types, and in 

angiogenesis studies in vivo (Nagata et al., 2003, Baumann et al., 2007, Dowling et al., 

2007, Isakovic et al., 2007).  

 

 

Figure ‎1-6  Activation of AMPK.  

AMPK‎ is‎activated‎by‎phosphorylation‎of‎ the‎α‎catalytic‎subunit‎at‎Thr172‎by‎LKB1‎or‎CaMKKβ.‎
Increased AMP or ADP/ATP ratio bind‎ to‎ the‎ regulatory‎γ‎subunit,‎allosterically‎activating‎AMPK‎
and inhibiting dephosphorylation of Thr172 by protein phosphatase (P-ase). Neither LKB1 nor 
CaMKKβ‎ are‎ ‎ regulated‎ directly‎ by‎ adenine‎ ATP,‎ AMP‎ or‎ ADP.‎ Increased‎ intracellular‎ Ca

2+
 

stimulates‎CaMKKβ-mediated AMPK activation. The antidiabetic drugs metformin and rosiglitazone 
(a TZD) increase AMP/ATP or ADP/ATP concentrations, thereby activating AMPK. Resveratrol, 
galgeine and berberine also activate AMPK by this mechanism. AICAR is phosphorylated to the 
nucleotide ZMP, which mimics AMP. A769662, salicylate and compound 991 are reported to 
activate‎AMPK‎complexes‎containing‎the‎β1‎subunit 

 

1.10 Downstream targets of AMPK  

Once activated, AMPK directly activates a number of downstream effectors that control 

energy metabolism and growth, or induce changes in gene expression that will result in 

long-term effects on metabolic function (reviewed in Kahn et al., 2005). In general, AMPK 

up-regulates catabolic pathways (e.g., glucose uptake in muscle, glycolysis, fatty acid 

oxidation and mitochondrial biogenesis) and down-regulates anabolic pathways (e.g., fatty 

acid, triglyceride, cholesterol, glucose (via gluconeogenesis) and glycogen synthesis) to 

maintain energy balance within the cells (reviewed in Kahn et al., 2005). Figure 1-5 

summarises the most well know downstream protein targets of AMPK.   
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Figure ‎1-7 Demonstration of some downstream target proteins of AMPK involved in 
regulation of metabolism.  

Target proteins and processes activated by AMPK activation are shown in Blue arrow, and those 
inhibited by AMPK activation are shown in red arrow. Abbreviations:‎ ACC1,‎ 1‎ (α)‎ of‎ acetyl-CoA 
carboxylase; eEF2, elongation factor-2; FAS, fatty acid synthase; GLUT1/4, glucose transporters; 
GS, glycogen synthase; HMGR, 3-hydroxy-3-methyl-CoA reductase; HSL, hormone-sensitive 
lipase; mTOR, mammalian target of rapamycin; GPAT, glycerol-3-phosphate acyltransferase; PFK-
2, 6-phosphofructo-2-kinase. 

 

1.11 Role of AMPK in peripheral tissue 

AMPK has a well-defined regulatory role in lipid metabolism. Activation of AMPK 

phosphorylates and inactivates ACC and HMGR, as well as reducing expression of fatty 

acid synthase (FAS). The net effect is a reduction in fatty acid and cholesterol synthesis 

(Kahn et al., 2005). In the liver, inactivation of ACC1 results in increased fatty acid 

transport and subsequent oxidation. In skeletal muscle, activated AMPK stimulates fatty 

acid oxidation by decreasing malonyl-CoA levels through the inhibition of ACC. This 

leads to an increase in carnitine palmitoyltransferase 1 (CPT1) activity and the subsequent 

activation of fatty acid oxidation (Kahn et al., 2005). AMPK has been suggested to inhibit 

lipolysis in adipocytes (Daval et al., 2005, Corton et al., 1995), thereby reducing the 

plasma level of fatty acids. Furthermore, AMPK activation stimulates and upregulates the 
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peripheral muscle expression of PPAR-γ coactivator-1α (PGC1α), which enhances 

mitochondrial biogenesis (Terada et al., 2002).  

AMPK is also involved in the regulation of glucose homeostasis. Activation of AMPK in 

skeletal muscle up regulates hexokinase II expression (Holmes et al., 1999). It also 

increases glucose uptake via cell membrane translocation of the glucose transporter 

GLUT4 and the stimulation of GLUT4 gene expression (Derave et al., 2000, Wright et al., 

2005). AMPK inhibits hepatic gluconeogenesis by repressing the transcription of 

phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase) 

(Lochhead et al., 2000). Furthermore, AMPK activation decreases glycogen synthesis via 

phosphorylation and inhibition of glycogen synthase (Wojtaszewski et al., 2002). 

Hypothalamic AMPK is also involved in regulation of peripheral tissue metabolism, 

indicating that AMPK is a crucial enzyme in regulation of the interaction between 

peripheral and central energy production. In a study by Perrin et al, intraventricular 

AICAR administration increased both insulin-mediated and non-insulin-mediated glycogen 

synthesis (Perrin et al., 2004), which implies a role for hypothalamic AMPK in muscle 

glycogen synthesis. The same study showed that AMPK is also involved in increasing 

muscle glycogen synthesis and this effect was blocked by the co-administration of glucose 

(Perrin et al., 2004). Activation of hypothalamic AMPK by central adiponectin 

administration decreases energy expenditure, possibly by a reducing the expression of 

UCP-1 in BAT (Kubota et al., 2007). On the other hand, central α-lipoic acid inhibits 

hypothalamic AMPK activity, thus increasing UCP-1 expression and energy expenditure in 

BAT (Kim et al., 2004). Central ghrelin treatment has been shown to increase glucose 

utilisation rate of white and brown adipose tissues (Theander-Carrillo et al., 2006). Ghrelin 

has been shown to abolish, at least in part the effects of central leptin treatment on fat 

weight, plasma glucose and insulin, the effects in which AMPK involved (Minokoshi et 

al., 2004). 

1.12 Vascular effects of AMPK 

1.12.1 Role of AMPK in the vascular endothelium 

Both α subunit isoforms of AMPK are expressed in endothelium (Fisslthaler and Fleming, 

2009), yet the total cellular activity of AMPK complexes containing α1 is higher than those 

containing α2 (Morrow et al., 2003). Despite this, it has been shown that mice lacking the 

α2 AMPK subunit isoforms have endothelial dysfunction characterised by excessive ROS 
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generation (Wang et al., 2010b). The α2 subunit isoform of AMPK is critical in 

maintaining endothelial cells in a normal, non-atherogenic phenotype as it is considered to 

be a physiological suppressor of NAD(P)H oxidase; the marker of oxidative stress and 

generation of ROS (Wang et al., 2010b). However, the role of the α1 subunit in endothelial 

cells has also been examined (Liu et al., 2010) and it was found that AMPK-mediated 

suppression of NF-κB, glucose deprivation and hypoxia-stimulated endothelial cell 

apoptosis was lost in mice lacking AMPKα1, suggesting that AMPKα1 is essential for 

AMPK to promote cell survival by NF-κB-mediated expression of anti-apoptotic proteins 

(Liu et al., 2010). AMPK activation has also been shown to alleviate endoplasmic 

reticulum stress (Dong et al., 2010). 

AMPK enhances release of NO from vascular endothelium. Activated endothelial AMPK 

phosphorylates eNOS at Ser1177, thereby enhancing NO production in human aortic 

endothelial cells (HAECs) (Morrow et al., 2003). AMPK activation may also stimulate 

eNOS association with heat shock protein 90 (Hsp90), which stimulates NO synthesis 

(Wang et al., 2009c, Davis et al., 2006). NO release leads to vasodilation in both conduit 

(Wang et al., 2009c) and resistance vessels (Bradley et al., 2010). Shear stress, statins and 

adiponectin have been found to increase NO bioavailability in the endothelial cells by 

activation of AMPK which phosphorylates eNOS at Ser1177 and also Ser663/635 (Chen et 

al., 2009). In the absence of Ca
2+

/calmodulin, AMPK phosphorylates eNOS at the 

inhibitory Thr495 site, in vitro, reducing the activity of eNOS (Chen et al., 1999). In 

addition the phosphodiesterase inhibitor cilostazol which activates AMPK via altering 

[AMP:ATP] ratio has been demonstrated to enhance NO production and restore 

endothelial function in diabetic rats (Suzuki et al., 2008).  

The lesions of atherosclerosis usually start with endothelial dysfunction and inflammatory 

cell adhesion events (Ross, 1999) and AMPK has been implicated in both of these events. 

In HUVECs, activated AMPK has been found to abolish TNFα stimulated leukocyte 

adhesion and migration via an NO-dependent mechanism associated with reduced MCP-1 

secretion and an NO-independent mechanism by decreasing the expression of adhesion 

molecule E-selectin (Ewart et al., 2008). Similarly, activation of AMPK by berberine 

significantly reduces monocyte (THP-1) adhesion to HUVECs by reducing the expression 

of the adhesion molecules ICAM-1 and VCAM-1 (Wang et al., 2009b). AICAR has been 

found to reduce leukocyte rolling and adhesion by both eNOS-dependent and -independent 

mechanisms. In those experiments, administration of AICAR 30 min prior to induction of 

ischaemic perfusion in mesenteric artery injury reduced inflammatory cell adhesion 
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independent of eNOS, whereas administration of AICAR 24 hours before induction of 

ischaemic perfusion injury abolished leukocyte adhesion in an eNOS-dependent manner 

(Gaskin et al., 2007). In addition, the statin fluvastatin has been reported to upregulate 

eNOS and AMPK and reduce adhesion molecule expression in cultured human iliac artery 

endothelial cells (Xenos et al., 2005).  

AMPK has been shown to control vascular redox balance in endothelial cells. Increased 

oxidant stress and/or defective antioxidant function are involved in endothelial dysfunction 

in atherosclerosis and following vascular injury caused by balloon angioplasty or stenting 

(Siersbaek et al., 2010). Activating AMPK in endothelial cells increases the expression of 

manganese superoxide dismutase (Kukidome et al., 2006) and reduces NF-κB-mediated 

transcription (Hattori et al., 2008). AMPK activating agents such as rosiglitazone and 

AICAR inhibit ROS generation in endothelial cells exposed to oxidant stress via increased 

glucose concentration (Ceolotto et al., 2007). Moreover, activated AMPK enhances 

uncoupling of protein-2 expression which supresses ROS formation and nitration of 

prostacyclin synthase (Xie et al., 2008). 

AMPK is also implicated in angiogenesis. Vascular Endothelial Growth Factor (VEGF), 

the key regulator of angiogenesis, induces differentiation, survival, migration, proliferation 

and vascular permeability (Ferrara et al., 2003). It does so via increasing NO synthesis via 

an AMPK-dependent mechanism (Reihill et al., 2007). 

1.12.2 Role of AMPK in vascular smooth muscle cells  

Many studies have provided evidence that AMPK is important in regulation of vascular 

smooth muscle function and its dysfunction leads to development of vascular disease such 

as hypertension and atherosclerosis.  

Both catalytic α isoforms are expressed in VSMCs, although the ratio of α subunits differs 

according to the type of the vessel (Rubin et al., 2005). Activation of AMPK in vascular 

smooth muscle using AICAR induces vascular relaxation in an endothelial- and eNOS-

independent mechanism mediated by AMPKα1 rather than AMPKα2 (Goirand et al., 

2007). AMPK has been also found to attenuate vascular smooth muscle contraction 

induced by phenylephrine via phosphorylating and inactivating myosin light chain kinase 

(MLCK) (Horman et al., 2008). Moreover, acetylcholine induces endothelial independent 

vascular relaxation by stimulating AMPK-LKB1 dependent mechanism. Activation of 
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AMPK by LKB1 inhibits myosin light chain kinase and decreases phosphorylation of 

myosin light chain which might attenuate vasoconstriction (Lee and Choi, 2013). 

AMPK is also implicated in inhibition of VSMCs proliferation. This effect appears to be 

mediated by many different signalling mechanisms including regulation of the cell cycle 

and inhibition of protein synthesis, de novo fatty acid and cholesterol synthesis (reviewed 

in Motoshima et al., 2006). AMPK activation can induce G1 cell cycle arrest by 

upregulation of p53-p21 which inhibits VSMCs proliferation (Igata et al., 2005). Retinoic 

acid-related orphan receptor alpha (RORα) is implicated in reducing progression of 

atherosclerosis. RORα abolishes VSMCs proliferation through AMPK-induced mTOR 

suppression and ribosomal protein S6 kinase (S6K), thus alleviating VSMC proliferation 

(Kim et al., 2014). Vascular calcification is a complication associated with type 2 diabetes, 

peripheral and coronary artery disease and occurs due to disturbed osteoblastic 

differentiation (Snell-Bergeon et al., 2013). Activation of AMPK by adiponectin has been 

found to attenuate vascular calcification via AMPK-TSC2-mTOR-S6K1 signalling 

pathway. Furthermore, metformin activated AMPK supresses vascular calcification by 

AMPK-eNOS-NO pathway in rat aortic VSMCs (Zhan et al., 2014, Cao et al., 2013). 

Activation of AMPK abolishes VSMCs proliferation via direct inhibition of IGF-I (Ning 

and Clemmons, 2010). AMPK stimulates the phosphorylation of IRS-1 Ser794 which leads 

to reduced IRS-1 tyrosine phosphorylation and the association of the p85α subunit of PI3K 

with IRS-1 in response to IGF-I. The net effect will be diminished protein synthesis due to 

reduced phosphorylation of Akt at Ser473 (Ning and Clemmons, 2010).   

1.13  Cross talk between PVAT and vascular layers and 
role of AMPK 

PVAT, via its release of adipokines, may therefore affect vascular function via activation 

of AMPK in both endothelium and VSM layers. AMPK-stimulating adipokines, such as 

adiponectin, are potentially the principal mediators of the modulatory effect of PVAT on 

blood vessels. Adiponectin release is markedly reduced in obese PVAT and this has been 

reported to lead to inhibited vasorelaxation. Adiponectin receptor antagonism and the 

AMPK inhibitor compound C have been reported to attenuate vascular relaxation, whereas 

globular adiponectin failed to induce vascular relaxation in AMPKα2-deficient mice 

(Meijer et al., 2013). Furthermore, activation of adipocyte β3-adrenoceptors has been 

reported to stimulate release of a substance, assumed to be adiponectin that indirectly 

opens myocyte BKCa channels. This effect was reported to involve AMPK since it could be 
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mimicked by the AMPK activator, A-769662, and blocked by compound C (Weston et al., 

2013). The indirect activation BKCa by AMPK was demonstrated by blocking adipocyte-

dependent myocyte hyperpolarization induced by BKCa channel opener, NS1619 with 

glibenclamide and clotrimazole (Weston et al., 2013). PVAT has also been reported to 

induce vasodilatation in muscle resistance arteries by increasing secretion of adiponectin 

and activation of AMPK α2 in the blood vessels. Furthermore, this study reported that in 

obese db/db mice, PVAT mass increased dramatically in the muscle and was associated 

with loss of insulin-mediated vasodilation. Notably, the lack of insulin-induced vascular 

reactivity could be restored by JNK inhibition (Meijer et al., 2013). Figure 1-8 illustrates 

the mechanisms by which PVAT may induce vascular relaxation in both endothelium and 

VSMC layers.  

It has been suggested that adiponectin exerts beneficial effects via activation of AMPK and 

suppression of iNOS expression in the vascular adventitia (Cai et al., 2008). The same 

group tested the effects of adiponectin on adventitial fibroblast transition and migration. 

They reported that adiponectin induced AMPK phosphorylation and reduced the migration 

of fibroblasts, the expression of iNOS and the peroxynitrite marker nitrotyrosine in 

response to LPS treatment (Cai et al., 2010).  

Although this thesis focuses on the adiponectin as a potential PVAT derived 

adipocytokines, there are many others such as leptin, apelin and resitin and some gasiuos 

molecules such as H2O2, NO and H2S are ivolved in regulation of vascular function. Figure 

1-8 illustrates the mechanisms by which theses factors modulates vascular function.  
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Figure ‎1-8 schematic presentation of how PVAT modulates the function of AMPK in both 
endothelium and vascular smooth muscle and how these affect vascular function.  

PVAT is a highly active organ secreting various adipokines and cytokines implicating in the 
regulation of vascular contractility via modulation of AMPK activity. ADRF, adipose tissue-derived 
relaxation factor; Ang1-7, angiotensin 1–7; BKCa, calcium-dependent big potassium channel; 
CAMKK, calcium/calmodulin-dependent protein kinase kinase; eNOS, endothelial NOS; HMG-
COA, 3-hydroxy-3-methylglutaryl-coenzyme A; LKB, liver kinase B; MAPK, mitogen-activated 
protein kinases; MnSOD, manganese superoxide dismutase; mTOR, mammalian target of 
rapamycin; PGI2, prostacyclin; ROS, reactive‎oxygen‎species;‎TAK1,‎transforming‎growth‎factor‎β-
activated kinase (Almabrouk et al., 2014). 

 

Activation of AMP-activated protein kinase (AMPK) phosphorylates tuberous sclerosis 

complex 2 (TSC2) which in turn inhibits of mTOR activity and limits protein synthesis 

(Inoki et al., 2003). Ma et al discovered that PVAT can induce vascular dysfunction via 

dysregulation of the AMPK/mTOR pathway in diet-induced obese rats, with mesenteric 

arterial rings incubated with periaortic fat from HFD rats showing reduced endothelium-

dependent relaxation and down-regulation of AMPK and eNOS in the aorta with a 

concurrent up-regulation of mTOR. This effect was absent in periaortic fat from rats on a 

chow diet. In the same study, co-culture of vascular SMCs with periaortic adipocytes from 

HFD animals also reduced AMPK phosphorylation and increased mTOR phosphorylation 

(Ma et al., 2010).  
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Cytokines generated from the PVAT (Figure 1-7) may induce vascular dysfunction 

indirectly via up-regulation of iNOS. 3T3 L1 adipocytes incubated with TNF-α showed a 

200-fold increase in iNOS gene expression (Digby et al., 2010). Furthermore, FFAs 

released by adipocytes increase iNOS expression and vascular dysfunction, as human 

vascular SMCs stimulated with a combination of conditioned media from adipocytes and 

oleic acid induced not only iNOS up-regulation and NO formation but also a proliferative 

response (Lamers et al., 2011). Activation of AMPK in adipose tissue has been found to 

suppress iNOS expression and NO production in cytokine (TNF-α, IFN-γ) treated 

adipocytes (Pilon et al., 2004, Centeno-Baez et al., 2011). 

1.14 Role of AMPK in perivascular adipose tissue  

AMPK is expressed in the three layers of the blood vessel: the endothelium, smooth 

muscle and PVAT and is known to induce vasodilatation by both endothelium and non-

endothelium dependent mechanisms. Furthermore, it is well known that AMPK exerts an 

anti-proliferative effect at the level of the endothelium and VSM. Although it is known that 

AMPK can modulate VSM and endothelial function, it is unknown whether AMPK can 

modulate the anti-contractile and anti-proliferative effects of PVAT, despite the expression 

of AMPK in endothelium, VSM and in perivascular adipocyte. 

At the start of these studies, the role of AMPK in PVAT function had not been examined. 

The studies described in this thesis test the hypothesis that AMPK in PVAT modulates the 

activity of vascular smooth muscle cells, and that this may underlie PVAT-mediated 

changes in vascular function and vessel remodelling in CVD (s).   

1.15 Hypothesis and Aims  

Perivascular adipose tissue (PVAT) surrounds most blood vessels and secretes numerous 

active substances, including adiponectin which produce a net anticontractile effect in 

healthy PVAT. The anticontractile mechanism of PVAT is still unclear, although it is 

generally proposed that PVAT can induce vascular relaxation via both endothelium and 

non-endothelium dependent mechanism. Although it is known that AMPK can modulate 

VSM and endothelial function, it is unknown whether AMPK can modulate the anti-

contractile effects of PVAT. Obesity is an independent risk factor for cardiovascular 

disease and is associated with altered arterial contractility. It is known that AMPK activity 
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in PVAT is reduced with obesity; however it is unknown whether the effects of AMPK on 

arterial contractility are modulated by obesity.  

Therefore, the hypothesis of this thesis is that AMPK expressed in the PVAT is essential in 

regulation of anti-contractile effect of the PVAT and that AMPK acts as a protective 

mechanism in case of HFD-induced obesity. Therefore, this study aimed to: 

i. Investigate the morphological features of PVAT in wild type mice and mice lacking 

AMPKα1. 

ii. Investigate the mechanism responsible for the anticontractile effects of PVAT, 

specifically:  

 The involvement of AMPK in the anticontractile effect of PVAT. 

 To investigate the role of PVAT-derived adiponectin in mediating the 

anticontractile effects of PVAT. 

iii. To determine the role of AMPK in regulation of redox state of PVAT, specifically: 

 To characterise any differences in ROS and RNS expression between wild type and 

AMPKα1 KO PVAT. 

 To define the role of AMPK in the NO-dependent anticontractile effect of PVAT. 

iv. To determine the effect of high fat diet on the function of the PVAT and AMPK, 

specifically: 

 To characterise the effect of high fat diet on the anticontractile effect of PVAT.  

 To determine the role of AMPK in high fat diet-induceed inflammatory response of 

PVAT. 

 To determine the whether wire-induced injury could affect AMPK function in the 

PVAT and thus the antiprolefertive response in mice carotid artery. 
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Materials 

2.1 Animals  

Wild type (Sv129) mice were originally purchased from Harlan Laboratories (Oxon, UK). 

AMPKα1 knockout mice were kindly supplied by Benoit Viollet (Institut Cochin, Paris, 

France) the generation of which has been described previously (Jorgensen et al., 2004). 

Mice were housed at the Central Research Facility at the University of Glasgow and 

maintained on 12 hour cycles of light and dark and at ambient temperature. Mice were fed 

a standard chow diet unless otherwise stated and allowed free access to both food and 

water. All experiments were conducted in accordance with the United Kingdom Animals 

(Scientific Procedure) Act of 1986. Where appropriate all experimentation was performed 

under the project licences, 60/4114 and 70/8572, held by Dr Simon Kennedy (University 

of Glasgow, U.K.). 

2.2 Chemical and Reagents 

All chemicals were supplied by Sigma-Aldrich (Poole, UK) unless otherwise stated. All 

cell culture reagents were obtained from Gibco  (Paisley, U.K.) unless otherwise stated. All 

Western blot materials were supplied by Life Technologies (Paisley, U.K.) unless 

otherwise stated. High-fat diet (Western RD) was purchased from SDS (SDS diets, U.K). 

The composition of the diet is illustrated in Table 2-1. 

Table ‎2-1 Composition of the high-fat diet (HFD). 

Specification % (W/W) Kcal/g % kcl 

Crude fat 21.4 1.93 42 

Crude Protein 17.5 0.70 15 

Crude Fibre 3.5 / / 

Ash 4.1 / / 

Carbhydrate 50.0 2.00 43 

Total AFE  4.63 100 
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Methods 

2.3 Genotyping  

The genotype of all wild type (Sv129) and AMPKα1 knockout mice was confirmed prior 

to inclusion in all studies. Genotypes were confirmed by reverse transcription polymerase 

chain reaction (RT-PCR) using the Go Taq amplification system (Promega, Southampton, 

U.K.), following DNA extraction from ear clips and immunofluorescence staining of the 

targeted sequence. Details of the technique are outlined below.    

 

2.3.1 DNA Extraction 

Ear notches from mice were obtained by staff from the Central Research Facility at 8 

weeks of age when animals were numbered. Samples were stored at -20
o
C until DNA was 

ready to be extracted using DNAreleasy (Anachem, Luton, UK). 10 µl of DNAreleasy was 

added to each ear notch and PCR was performed as follows: 75°C for 5min, 96°C for 2min 

and then kept at 20°C (until needed). 90µl of nuclease free dH2O was then added to the 

samples. Genotyping was performed by RT-PCR using the Go Taq amplification system 

(Promega, Southampton, UK) as per the manufacturer’s instructions, with reaction mixture 

details given in Table 1-1. 

Table ‎2-2 RT-PCR reaction mixture for genotyping 

Reaction Mixture 

TAQ(GO) HOT START GREEN MASTERMIX (Promega, Southampton, UK) which 

contains dNTPs, MgCl and load dye. 

FORWARD primer for both wild type and knockout sequence 

REVERSE primer for both wild type and knockout sequence 

Prepared DNA samples 

 

2.3.2 Polymerase Chain Reaction for AMPKα1 Wild type (WT) and 
AMPKα1 Knockout (KO) 

Details of the primers and their sequences, annealing temperatures and electrophoresis 

bands are showed in Table 2-2. All PCR cycles were subject to a hot-start 95 °C for 5min 

(enzyme activation), followed by 40 cycles of 95°C for 30 seconds (DNA denaturation), 

58°C for 40 seconds and 72°C for 1min (primer binding). Samples were subjected to 72°C 

for 10 min (primer extension) and then 4°C where they were stored until visualised. 

Samples were electrophoresed on a 2% (w/v) agarose/TAE (242g TRIS, 18.6g EDTA, pH 

8) gel and visualized with ethidium bromide (final concentration 0.1% (v/v)) using the 
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Alpha Innotech digital imaging system (San Leandro, CA, USA). The wild type and 

knockout animals were identified by the presence or absence of a targeted sequence in 

comparison with a 100 bp ladder (Promega, UK) run at the same time as shown in Figure 

2-1.   

Table  2-3 list of DNA primers for genotyping 

Target Primer Type Sequence‎(50΄‎-30΄‎) Annealing 

temp. (°C) 

Molecular weight 

(bp) 

Reaction 

product 

AMPKα1 wild-type 

 

 

 

 

 

knockout 

Forward 

primer   

 

Reverse 

primer 

 

Forward 

primer   

 

Reverse 

primer 

AGCCGACTTTGGTAAAGGAT

G 

 

CCCACTTTCCATTTTCTCCA 

 

 

GGGCTGCAGGAATTCGATAT

CAAGC                                    

 

CCTTCCTGAAATGACTTCTG 

62.9 

 

63.7 

 

72.7 

 

58.9 

6200 

 

5917 

 

7731 

 

6043 

WT 

 

 

 

KO 

 

 

 

 

WT DNA 

Primer

KO DNA 

Primer

Wild Type

AMPKα1 KO

Heterozygote

 

Figure ‎2-1 AMPK colony genotyping.  

Gel electrophoresis of amplified PCR products from ear notches taken from mice. A 100 bp DNA 
ladder is shown on the left. The upper half of the agarose gel shows DNA products from PCR 
reactions using primers specific to WT alleles (normal gene). The lower half of the agarose gel 
shows DNA products from PCR reactions using primers specific to KO alleles (gene construct). 
Examples of WT, KO and heterozgote genotypes are indicated. 
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2.4 Histology 

2.4.1 Sample Preparation and Fixation  

Thoracic aortae were dissected from the both AMPKα1 knockout and S129 control mice 

and divided into four rings. Two aortic rings per mouse were freed of PVAT and any 

connective tissue and the remaining aortic rings had PVAT left intact. All were fixed in 

10% acetic zinc formalin (Cell Path Ltd, UK) overnight. Tissues were processed through a 

gradient of ethanol solutions prior to Histoclear (a xylene substitute, Thermo Scientific, 

Loughborough, U.K.) with the terminal step into paraffin wax. Aortic ring processing was 

performed using a Citadel 1000 tissue processor (Thermo Shandon, Runcorn, U.K.). The 

sequence and the time of incubation is summarised in table 2-3.  

Paraffin-embedded wire-injured carotid arteries produced by a previous study in our 

laboratory were utilised in the current research. Endothelial wire injury was performed by 

Marie-Ann Ewart. Briefly, mice were anesthetized and endothelial injury of the left 

common carotid artery was performed with flexible nylon wire introduced through the left 

external carotid artery. The endothelium was damaged by passing the wire through the 

lumen of the artery several times (Grassia et al., 2010). Right carotid artery was spared and 

used as a control for the experiment in both strains of mice. A week after wire injury, mice 

were sacrificed and carotid arteries with surrounding PVAT were dissected and processed 

as previously described.  

                     Table ‎2-4 Sequence for processing samples for histological analysis 

 

 

 

 

 

 

Solution Length of incubation of sample 

70 % (v/v) ethanol 15 minutes 

85% (v/v) ethanol 15 minutes 

90% (v/v) ethanol 25 minutes 

100% (v/v) ethanol 25 minutes 

100% (v/v) ethanol 15 minutes 

100% (v/v) ethanol 15 minutes 

100% (v/v) ethanol 15 minutes 

Histoclear 30 minutes 

Histoclear 30 minutes 

Paraffin wax 30 minutes 

Paraffin wax 30 minutes 
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2.4.2 Haematoxylin and Eosin staining  

Haematoxylin and eosin (H&E) stain the nucleus and cytoplasm of cells respectively and 

were used to compare the gross histology of the perivascular adipose tissue around the 

aorta between WT and KO. Paraffin was removed from the cut sections by immersion in 

xylene and slides were rehydrated through an ethanol gradient of 100 % (v/v), followed by 

90 % (v/v) and 70 % (v/v) ethanol for 5 minutes each and washed in running water for a 

further 5 minutes. Sections were then stained with Harris haematoxylin (Raymond A Lamb 

Ltd, Eastbourne, U.K.) for 4 minutes and washed in running water before being placed in 

acid alcohol (1 % v/v HCl in ethanol) for 30 seconds. Slides were washed in water for 1 

minute, placed in 1 % (v/v) eosin (Raymond A Lamb Ltd, Eastbourne, UK) for 2 minutes 

before a further 5 minute wash in deionised water. Sections were then dehydrated by 

successive immersion in 70 % (v/v), 90 % (v/v) and 100 % (v/v) ethanol followed by 10 

minutes in Histoclear (National diagnostic, Hessle Hull, UK). Finally, cover slips were 

fixed over the section using DPX mounting medium (BIOS Europe, Lancashire, U.K.). 

Nuclei appeared blue/purple whereas cytoplasm was stained pink/orange. Sections were 

photographed using AxioVision microscope software (Zeiss, Germany) and analysed with 

Image J computer software.  

2.4.3 Immunohistochemistry  

The following steps were adopted as a general protocol for immunohistochemical staining 

for each of the antibodies unless otherwise stated:  

2.4.3.1 Antigen Retrieval   

Paraffin was removed from the cut sections using xylene and rehydrated through an 

ethanol gradient of 100 % (v/v), followed by 90 % (v/v) and 70 % (v/v) ethanol for 5 

minutes each and washed in running water. Heat-induced antigen retrieval was then 

performed with the sections incubated in 10 mM sodium citrate buffer (Tri-sodium citrate 

2.94g, 0.05% Tween20, pH 6.0) and heated to 95-100 °C for 10 minutes in a microwave 

oven. Antigen retrieval was not required for MAC-2 immunostaining. Sections were then 

allowed to cool to room temperature over 20 minutes in order to minimise epitope 

refolding then placed under running tap water for 10 minutes. 
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2.4.3.2 Blocking of Endogenous Peroxidases 

Endogenous peroxidase activity was blocked by incubation in 3 % (v/v) H2O2 in methanol 

for 20 minutes. Following this, sections were washed in running water for 10 minutes. 

2.4.3.3 Blocking of nonspecific binding 

Tissue sections were encircled using a Dako pen (Dako, Glostrup, Denmark) and incubated 

with 2.5 % (v/v) normal horse blocking serum from ImmPRESS REAGENT KIT (Vector, 

USA) in a humidified chamber for 1 hour at room temperature. For staining using anti-Mac 

2 antibodies, blocking buffer was composed of phosphate buffered saline (PBS) 

supplemented with 0.05% (v/v) Tween20 and 20 % (v/v) normal rat serum since this was 

the species in which the secondary antibody was raised. 

2.4.3.4 Primary and Secondary Antibody Incubation 

The arterial sections were then incubated overnight with the primary antibody diluted in 1 

% (w/v) BSA in PBS (Sigma Aldrich, Poole, U.K.) in a humidified chamber. A summary 

of the primary antibodies used along with dilutions and lengths of incubation are found in 

Table 2-4. A blank and negative control was carried out for each experiment using 1 % 

(w/v) BSA in PBS and rabbit IgG diluted in 1 % (w/v) BSA in PBS respectively.  

Following this, sections were washed twice in Tris buffred saline with tween 20 (Tris base 

3.03g, NaCl 8g, Tween20, 0.1% (v/v)) (TBS-T) for 15 minutes and incubated with 

ImmPRESS™ anti-rabbit Ig antibodies (Vector Laboratories, Peterborough, U.K.) for 1 

hour in a humidified chamber at room temperature. The exception from this protocol was 

sections stained for phosphorylated and total AMPK. These sections were incubated with a 

biotinylated secondary antibody followed by treatment with streptavidin-peroxidase 

solution using the Histostain®-Plus Bulk kit (Life Technologies, Paisley, U.K.), both for 

10 minutes at room temperature to improve the signal.  
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Table ‎2-5 Primary and Secondary antibodies for Immunohistochemistry   
Primary 

Antibody  

Supplier Species  & 

clonality  

Dilution IgG control Secondary 

antibody  

Dilution Blocking 

serum 

AMPKα Abcam 

#ab131512 
Rabbit 

polyclonal 
IgG 

1:100 rabbit IgG 

Vector Labs 
(I-1000) 

Biotinylated 

anti-rabbit Ig 
antibody 

Histostain®-

Plus Bulk kit 

# Blocking 

Solution 
Ready-to-use 

Histostain®-

Plus Bulk kit 
 

Phospho 

AMPKα 

Cell Signalling 

Technology 
#2535 

 

Rabbit 

polyclonal 
IgG 

1:100 rabbit IgG 

Vector Labs         
(I-1000) 

Biotinylated 

anti-rabbit Ig 
antibody 

Histostain®-
Plus Bulk kit 

# Blocking 

Solution 
Ready-to-use 

Histostain®-
Plus Bulk kit 

 

UCP1 Abcam 
#ab10983 

Rabbit 
polyclonal 

IgG 

1:500 rabbit IgG 
Vector Labs        

(I-1000)  

ImmPRESS™ 
anti-rabbit Ig 

antibody 

# 2.5 % (v/v) 
normal horse 

serum 

 

Mac2 Cedarlane 

#CL8942AP 

Rat 

Monoclonal 

IgG 

1:5000 Rat IgG2a 

Pharmingen 

BD (559073) 

Rabbit anti-rat  

Vector Labs 

(BA-4000) 

1:200 Normal 

Rabbit Serum 

Vector Labs 
(S-5000) 

Abbreviation: UCP1, Uncoupled protein 1; DFFA-like effector; Mac2, Galectin-3. (# = Ready to 

use). 

2.4.3.5 Antibody Complex detection  

To remove excess unbound secondary antibody, all sections were next washed twice in 

PBS-T for 15 minutes each. Then, sections were incubated with DAB chromagen solution 

(3,3-diaminobenzidine and hydrogen peroxidase solution, Vector Laboratories, 

Peterborough, U.K.) for immunoperoxidase staining for 2 to 5 minutes. Positive staining is 

indicated with the appearance of a dark brown colour. The reaction was stopped by 

washing the sections in water. Sections were then counterstained with haematoxylin to 

visualise the nucleus of the cells by incubation for 4 minutes followed by washing in warm 

water for 5 minutes to “blue” the nuclei. Finally, the sections were dehydrated in an 

ethanol gradient: 70 %, 90 % and 100 % (v/v) ethanol followed by 10 minutes in 

Histoclear. The sections were then mounted with coverslips using DPX mounting medium. 

Staining was visualised using a light microscope and positive immunostaining was seen as 

a brown/dark brown colour with nuclei appearing blue/purple. Sections were photographed 

using AxioVision microscope software (Zeiss, Germany).  

 

2.5 Functional studies (wire myography) 

2.5.1 Preparation of the vessels 

Both AMPKα1 knockout and Sv129 control mice were sacrificed by cervical dislocation 

and the aortae were collected in oxygenated physiological Krebs-Henseleit buffer solution 

with the following composition (in mM): 118 mM NaCl, 4.7 mM KCl, 1.2 mM MgSO4, 25 

mM NaHCO3, 1.03 mM KH2PO4, 11 mM glucose and 2.5 mM CaCl2, PH 7.4. Paired 



 Chapter 2 – General Materials and Methods 
 

51 
 

aortic arterial rings (1-2 mm long), one with PVAT intact (PVAT+) and the other with 

PVAT removed (PVAT-) (Figure 2-3), were prepared from each artery and for both strains 

of mouse. The intimal layer of the artery was removed by gently rubbing the vessel with 

the back of forceps to remove and eliminate the action of the endothelium in the response. 

The vessels were then mounted on two stainless steel pins in a four-channel small vessel 

wire myograph (Danish Myo Technology, Aarhus, Denmark), with one of the wires 

connected to a force transducer and the other to an adjustable arm. Vessels were incubated 

at 37 °C in Krebs-Henseleit buffer and gassed continuously with 95% O2, 5 % CO2. The 

artery segments were equilibrated for at least 30 minutes at resting tension. A 

predetermined optimum tension of 1 g was then applied to the artery for a further 30 

minutes. Chart™ 5 Pro software (ADInstruments, Chalgrove, U.K.) was used to record and 

measure vessel responses to different reagents. At the beginning of each experiment, the 

arterial rings were challenged with two additions of 40 mM KCl (Ward et al., 2011) with 

washout in between at intervals of 30 minutes to establish the viability of the segments and 

also to sensitise the vessel before other pharmacological agents were added. 

 

 

A B

 

Figure ‎2-2 Representative pictures of mouse aortic artery mounted in the small vessel wire 
myograph.  

Segments (2 mm) of vessel were mounted on two pins with one connected to a force transducer 
and a computer to record the changes in vessels tone of the mounted arteries. The other wire was 
connected to an adjustable jaw for the application of the desired tension on the vessel. (A) Thoracic 
aorta with intact PVAT (B) Thoracic aorta with PVAT removed. 

 

2.5.2 Cumulative Dose response curve  

After the vessels had been sensitised, they were pre-constricted with the thromboxane A2 

mimetic, 9,11-dideoxy-11α,9α-epoxymethanoprostaglandin F2α (U46619, Sigma-Aldrich, 

Poole, U.K.) at a concentration of 3x10
-8

 M. The absence of endothelium was confirmed 

by the absence of a relaxation response to acetylcholine (10
-5 

M) in pre-contracted rings. 
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Cumulative concentration-response curves to the AMPK activator AICAR (Toronto 

research chemicals, Canada) were performed by addition of AICAR in increasing 

concentrations from 1x10
-4

 M to 2x10
-3

 M at 10 minute intervals. Cumulative 

concentration-response curves to the K
+
 channel opener cromakalim (Sigma-Aldrich, 

Poole, UK) were also constructed by addition of increasing concentrations from 1x10
-9

 to 

1x10
-6

 at 10 minute intervals and the nitric oxide donor sodium nitroprusside (Sigma-

Aldrich, Poole, UK) between 1x10
-9

 and 1x10
-6

 at 5 minute intervals, which acts directly 

on VSMCs (Schultz et al., 1977). Data were expressed as a percentage of loss in the 

vascular tone induced by U46619. 

 

 

Figure ‎2-3 Representative force myograph traces showing isometric tension (g) plotted 
against time in mouse thoracic aorta rings.  

(A)Represents a trace showing presence of intact endothelium demonstrated by a relaxation 
induced by 10

-5
 M acetylcholine.  (B) Represents a trace showing absence of endothelium 

demonstrated by a lack of relaxation to acetylcholine. 
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2.5.3 PVAT releases bioactive molecules 

To test the endocrine activity of the PVAT, PVAT was carefully dissected from both the 

thoracic aorta of wild type and AMPKα1 knockout mice. Once dissected, thoracic aortae 

devoid from PVAT were mounted in the wire myography and contracted to U46619. 

Dissected PVAT were then added to the myography chamber containing the vessels from 

which the PVAT had been dissected and then the dose response curve was constructed as 

previously described.    

 

2.5.4 PVAT transfer experiment 

To examine the ability of PVAT from mouse thoracic aorta to modify vascular tone, PVAT 

was carefully dissected and weighed. The isolated wild type PVAT was then transferred to 

the chamber containing AMPKα1 knockout thoracic aorta without PVAT and vice versa as 

shown in figure 2-4. After the equilibration and stabilization time both preparations were 

simultaneously contracted with U46619 and relaxed to cromakalim.  

 

Figure ‎2-4 PVAT transfer experiment.  

The figure illustrates a study protocol in which isolated wild type PVAT is transferred to AMPKα1 
knockout arteries devoid of PVAT and vice versa.   

 

2.5.5 Bioassay Experiment (Conditioned Media)   

To examine the paracrine function of the PVAT, bioassay experiments using conditioned 

media were carried out. In these experiments, PVAT from wild type mice was used to 
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produce conditioned media and this was added to PVAT− rings without endothelium. The 

same procedure was applied to the AMPKα1 knockout vessels. The conditioned media was 

prepared as following: PVAT from both mouse strains was carefully dissected and 

weighed. The dissected samples were then incubated in warm Krebs’ solution at 37 ˚C for 

one hour. The conditioned medium was transferred to the recipient chamber containing the 

vessels lacking PVAT. After equilibration and stabilization, aortic rings were successively 

contracted with U46619 and relaxed to cromakalim. At the end of every experiment, the 

conditioned media from both mouse strains was collected and stored at -80˚C to be used 

for further studies.   

2.5.6 Effect of adiponectin on vascular relaxation 

To test whether adiponectin is a potential PVAT-derived vasodilator, adiponectin blocking 

peptide against adiponectin receptor 1 (AdipoR1) (GeneTex, U.K.) (5µg/ml) was added to 

preconstricted vessels with and without PVAT. The response to exogenously applied 

globular adiponectin (1µg/ml) (Enzo Life Sciences Ltd, U.K.) was also assessed in arteries 

prior to contracting the arteries with U46619. Prior to application, globular adiponectin 

was diluted in sterile water containing 1% bovine serum albumin (BSA) which acts as 

carrier protein.  

2.6 Secretory function investigation 

Two methods were used to define the difference in secretory profile of PVAT from wild 

type and AMPKα1 knockout mice, described below: 

2.6.1 Mouse Adipokine Array (Proteome Profiler) 

The release of adipokines was assessed using a commercial adipokine array (ARY-013, 

R&D systems, Minneapolis, MN). The proteome profiler adipokine array is able to detect 

38 adipokines in duplicates that are captured on nitrocellulose membranes (Figure 2.5), 

with the manufacturer’s protocol summarised below.  

2.6.1.1 Preparation of tissue lysates 

Thoracic aorta PVAT from both wild type and AMPKα1 deficient mice was dissected, 

snap frozen and stored at -80˚C until use. PVAT was pulverised in liquid nitrogen using a 

mortar and pestle into a fine powder and re-suspended in ice-cold lysis buffer which 

consists of cell extraction buffer (Invitrogen, CA), supplemented with 1mM of protease 
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inhibitor cocktail ( Sigma Aldrich, U.K.), 1mM phenylmethylsulfonyl fluoride (PMSF) and 

1mM dithiothreitol (DTT) (Sigma Aldrich, U.K.). Lysate samples were transferred into 

ice-cold centrifuge tubes and stored at -80°C until use.  

2.6.1.2 Protein concentration estimation 

PVAT lysates, aortae were centrifuged at 8000 rpm for 10 minutes in a Pico 17 Thermo 

Scientific Heraeus bench-top centrifuge (Fisher Scientific, Loughborough, U.K.). 

Supernatants were transferred to fresh ice-cold microcentrifuge tubes. Standard dilutions of 

bovine serum albumin (BSA) ranging from 0.1 mg/ml to 1mg/ml were used to generate a 

standard protein curve with distilled water as a blank. Protein samples from VSMCs and 

aortic PVAT were diluted in distilled water at a ratio of 5:1. Each sample (10 μl) and 

standards were added in triplicate to a 96 well plate followed by 100 μl DC™ Protein 

Assay Reagent (Bio-Rad Laboratories Ltd, Herts, UK). Absorbance was read at 595 nm 

using a FLUOstar OPTIMA microplate reader (BMG Labtech, Germany). The mean 

absorbance from each sample was generated in triplicate and the protein concentration was 

determined by comparison with the BSA standard curve.  

2.6.1.3 Array procedure  

Adipokine expression profiling was performed using an Adipokine proteome profiler, 

following the protocol provided by the manufacturer. In summary, membranes were 

blocked with a blocking buffer, and then 1 ml of pooled samples from PVAT and 

conditioned medium were incubated with a cocktail of biotinylated detection antibodies 

and incubated at 4°C overnight with the membranes. Membranes were washed with 

washing buffer. The membranes were then incubated with 2 ml of horseradish peroxidase–

conjugated streptavidin at room temperature for 30 min and the presence of adipokines was 

detected by chemiluminescence. The resultant film images were scanned with a 

densitometer and converted to densitometric units using Quantity One software (Bio-Rad 

Laboratories, Hercules, CA, USA). Data were analysed according to recommendations 

from R&D Systems. Data were imported into an Excel spreadsheet and normalized against 

an internal control, and final values were calculated and analysed via Graphpad Prism. 

Two arrays for each group, making a total of 4 independent arrays were analysed. The data 

presented represents the average of the four arrays over the two groups. 
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Figure ‎2-5 Proteome Profiler
 
Array Assay Principle.  

Capture adipocytokines antibodies have been spotted in duplicate on nitrocellulose membranes.  
Tissue lysates and conditioned media are diluted and mixed with a cocktail of biotinylated detection 
antibodies. The sample/antibody mixture is then incubated with the array over night. Any 
cytokine/detection antibody complex present is bound by its cognate immobilized capture antibody 
on the membrane. Streptavidin-Horseradish Peroxidase and chemiluminescent detection reagents 
are added. The produced signal is in proportion to the amount of adipocytokine present in the 
samples. Chemiluminescence detected is treated as a Western blot (Finkel et al., 2014). 

 

2.6.2 Adiponectin ELISA 

Adiponectin concentration was determined using a mouse adiponectin/Acrp30 Quantikine 

ELISA Kit (MRP300, R&D systems, Minneapolis, MN), designed to measure full-length 

mouse adiponectin concentrations.  

Samples of PVAT and conditioned media were prepared and protein concentration in the 

samples was estimated using the method described in section 2.6.1.2. Following the 

protocol provided by the vendor, the adiponectin concentration in the sample was 

determined. Briefly, 50 µl of assay diluent was added to each well in the microplate. 

Standard, PVAT lysate or conditioned media (50 µl) was then added to each well. The 

plate was then sealed and incubated at room temperature for 3 hours. After incubation, 

each well was aspirated and washed. Adiponectin antibody conjugate (100μl) was added, 

covered, and then incubated for 1hour at room temperature. Substrate solution (100 µl) was 

added and incubated at room temperature for 30 minutes away from light. Addition of 100 

µl of stop solution to each well resulted in the development of a yellow colour which 

indicates presence of the target protein. The absorbance of the ELISA plate at 450 nm was 

determined within 30 minutes with a wavelength correction set to 540 nm or 570 nm using 
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a FLUOstar OPTIMA microplate reader (BMG Labtech, Germany). The mean absorbance 

from each sample was generated in duplicate and the protein concentration was determined 

by comparison with the standard curve.  

Substrate

Adiponectin-specific Antibody 

Antigen

HRP-Conjugated-Adiponectin-

specific Antibody 

Blue

Yellow

Stop

 

Figure ‎2-6 Principle of Adiponectin ELISA.  

Uses a capture antibody and enzyme-linked (HRP) detection antibody to measure adiponectin 
concentration in CM. 

 

2.7 AMPK activity determination 

2.7.1 Vascular smooth muscle cell (VSMC) culture  

As a general rule, tissue culture was performed in sterile conditions in a biological safety 

class II vertical laminar flow cabinet. Tissue explants from experimental animals (see 

details in 2.7.1) were used as the source of material and cells were cultured at 37°C in an 

atmosphere of 5 % (v/v) CO2 and 95 % (v/v) air. 

Wistar Kyoto rat-derived VSMCs were supplied by Dr Augusto Montezano (Institute of 

Cardiovascular & Medical Sciences, University of Glasgow). VSMCs were maintained in 

Dulbecco’s modified Eagle medium (DMEM) (Gibco®-Life technologies, U.K.) 

supplemented with 10% fetal bovine serum (FBS) (Invitrogen, U.K.) and pencillin/ 

streptomycin antibiotic combination (Sigma Aldrich, U.K.) and used for experiments at 

passage 4 to 5. Before each experiment, medium was discarded and cells were washed with 

PBS and incubated in serum-free medium for 2 hours.  
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2.7.1.1 Treatment of VSMCs 

Cells were incubated with AICAR (10
-2

-10
-3

M) or cromakalim (10
-8

-10
-6

M) for 45 

minutes. Medium was removed and 200µl of lysis buffer added into each well of a 6-well 

plate. Cell lysates were then scraped and transferred to microcentrifuge tubes. Lysates were 

incubated on ice for 30 minutes and then centrifuged at 8000 rpm for 10 minutes. 

Supernatants were collected and stored at -80 ̊C prior to use. 

2.7.2 3T3-L1 adipocytes cell culture 

Preadipocytes were maintained as fibroblasts (American Type Culture Collection, 

Manassas, USA) (passage 2-12) in DMEM supplemented with 10% (v/v) fetal bovine 

serum and 100 U/ml (v/v) penicillin and streptomycin. Cells were incubated at 37°C in a 

humidified atmosphere of 10% (v/v) CO2 and the media was replaced every 48 h. 

2.7.2.1  3T3-L1 differentiation protocol 

To differentiate 3T3-L1 fibroblasts into adipocytes, fibroblasts were grown to 70-80% 

confluent in DMEM containing 10% (v/v) FBS, 100 U/ml penicillin and 100 μg/ml 

streptomycin. At 48 hr post-confluence, cell medium was aspirated and replaced with 

differentiation medium consisting of DMEM containing 10% (v/v) FBS, 0.25 μM 

dexamethasone (Sigma-Aldrich Ltd, Gillingham, Dorset, UK), 0.5 mM 3-isobutyl-1-

methylxanthine (IBMX) (Sigma-Aldrich Ltd, Gillingham, Dorset, UK), 5 μM troglitazone 

(Tocris Bioscience, Bristol, UK) and 1 μg/ml insulin. After 72 hour, this medium was 

changed with DMEM containing 10% (v/v) FCS, 5 μM troglitazone and 1 μg/ml insulin. 

The cells were incubated in this medium for three days before the medium was aspirated 

and replaced with DMEM containing 10% (v/v) FBS, in which the cells were then 

maintained. At 8-12 days post-induction of differentiation, cells were used for 

experimentation. 

2.7.2.2 Treatment of differentiated 3T3-L1  

Over a time course of 10 min and 30 min, 3T3-L1 were incubated with AICAR (2mM) 

alone, AICAR (2mM) + cromakalim (200μM) and cromakalim (200µM) alone. Medium 

was removed and 200µl of lysis buffer added into each well of a 6-well plate. Cell lysates 

were then scraped and transferred to microcentrifuge tubes.  Lysates were incubated on ice 

for 30 minutes and then centrifuged at 8000 rpm for 10 minutes. Supernatants were 

collected and stored at -80 ̊C prior to use. 
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2.7.3 Western blotting 

Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS PAGE) and 

immunoblotting were conducted using a Novex® NuPAGE® gel electrophoresis system 

(Life Technologies, Paisley, U.K.), using the procedure described in the following 

sections.  

2.7.3.1 Preparation of the tissue lysates 

The full description of preparation of samples homogenate was discussed in detail in 

elsewhere (2.5.1.1).  

2.7.3.2 SDS PAGE 

Prior to protein loading, prepared protein samples were mixed with 7.5 μl of DTT and 12.5 

μl of NuPAGE® LDS sample buffer as a load dye, to a total volume of 50 μl and heated at 

70°C for 10 mins. Samples (10 μg) were then loaded on NuPAGE® Novex® 4-12 % Bis-

Tris mini gels (1.0 mm thick, 10 or 12 wells) with 10 μl Novex® sharp pre-stained protein 

standards in one lane. Gels were resolved for approximately 45 minutes in NuPAGE® 

MOPS SDS running buffer at 200V until the dye front reaches the bottom of the gel. At 

this stage, gel running was stopped and proteins were transferred onto a nitrocellulose 

membrane (Thermo scientific, Germany) at 30 V for 90 min in NuPAGE® transfer buffer 

containing 10 % (v/v) methanol. 

2.7.3.3 Immunoblotting 

Once the transfer of protein was complete, the nitrocellulose membranes were blocked for 

1 hour in 5 % (w/v) milk powder (Marvel) prepared in Tris-buffered saline (20mM Tris 

3.03g, 137mM NaCl 8g, PH 7.4) containing 0.1% (v/v) Tween-20 (TBST) at room 

temperature with continuous shaking. Membranes were then rinsed in TBST and incubated 

with primary antibody overnight at 4°C in 50% (v/v) TBS, 50% (v/v) Odyssey®-Block 

(LI-COR, USA). Membranes were then washed in TBST and incubated for 2 hours at 

room temperature with IRDye® 800CW Donkey anti-Rabbit IgG antibodies (Li-COR, 

USA) diluted in the same way as the primary antibody. Membranes were then washed in 

TBST prior to visualisation of immunolabelled bands using an Odyssey Sa Infrared 

Imaging System (LI-COR, USA) linked with Odyssey Sa Infrared Imaging System 

software (LI-COR, USA). A summary of the primary and secondary antibodies used along 

with dilutions are presented in Table 2-5. 
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Table ‎2-6 Summary of antibodies and dilutions used for immunoblotting 
Epitope Molecular 

weight 

Host Species Dilution Secondary 

antibody dilution 

Manufacturer and 

product number 

AMPKα 62kDa Rabbit 1:1000 1:5000 Cell Signalling 

Technology  
#2603  

 

Phospho-AMPKα‎

(Thr172) 

62kDa Rabbit 1:1000 1:5000 Cell Signalling 
Technology  

#2535  

 

ACC 280kDa Rabbit 1:1000 1:5000 Cell Signalling 

Technology  

#3676  
 

Phospho-ACC 

(Ser79)  

280kDa Rabbit 1:1000 1:5000 Cell Signalling 

Technology  
#3661  

 

AMPKα1 62kDa Human 1:1000 1:5000 Abcam         
Ab110036 

 

AMPKα2 62kDa Sheep 1:1000 1:5000 A generous gift from 
Prof. D.G. Hardie, 

University of 

Dundee, Dundee, 
UK. (Woods et al., 

1996)  

                        

eNOS (1177) 140kDa Mouse 1:1000 1:5000 BD Transduction 

Laboratories™ 

#612392 
 

Phospho-eNOS 

(1177) 

140kDa Rabbit 1:1000 1:5000 Cell Signalling 

Technology  
#9571 

 

UCP1 32kDa Rabbit 1:1000 1:5000 Abcam          
#ab10983 

 

GAPDH 37kDa Rabbit 1:2000 1:5000  Thermoscientific 
#PA1-988 

Primary and secondary antibodies were diluted in a mixture of 50% TBST  and  50 
% Odyssey® (TBS) (LI-COR, USA) incubated at 4 °C overnight and at room 
temperature for 2 hours respectively.  IRDye® 800CW Donkey anti-Rabbit and 
Donkey anti-sheep IgG (Li-COR, USA) was used secondary antibody. 
 

2.7.4 PathScan® Intracellular Signalling Array Kit (Fluorescent 
Readout) 

The effect of CM and adiponectin on AMPK activity on VSMCs, an Intracellular 

Signalling Array Kit (Cell Signalling Technology, U.K.) was used. The PathScan 

Intracellular Signalling Array is a slide based antibody which allows simultaneous 

detection of 18 important and well-characterized signaling molecules when 

phosphorylated. Following the protocol provided by the manufacturer. 

2.7.4.1 Preparation of the samples   

VSMCs were incubated with globular adiponectin (1µg/ml) and (100 ng/ml), WT CM 

(1ml) and KO CM (1ml). Untreated VSMCs were used as control for the current 

http://www.bdbiosciences.com/eu/reagents/research/antibodies-buffers/cell-biology-reagents/cell-biology-antibodies/purified-mouse-anti-enos-ps1177-19enoss1177/p/612392


 Chapter 2 – General Materials and Methods 
 

61 
 

experiment. Medium was removed and lysis buffer added into each well of a 6-well plate. 

Lysates were incubated on ice for 30 minutes and then centrifuged at maximum speed at 

4 ̊C for 15 minutes. Supernatants were collected and stored at -80 ̊C prior to use. 

2.7.4.2 Assay Procedure 

Following manufacturer’s protocol, the glass slides were blocked with a blocking buffer 

for 15 min and 75 µl diluted lysate (1mg/ml) added to each well and covered with sealing 

tape and incubated for 2 hours at room temperature over orbital shaker. Slides were then 

washed 4x5 min using washing buffer provided in the kit. Detection antibody cocktail was 

then added to each well and covered with sealing tape and incubated for 1 hour at room 

temperature on an orbital shaker. After that, slides were washed again using array wash 

buffer 4x5 min and incubated with DyLight 680™-linked streptavidin for 30 min away 

from the light. Following this, slides washed once for 10 second using deionised water and 

left to dry completely. Images of slides were captured using visualised using the LI-COR 

Odyssey® SA system. The intensity of each spot was calculated using ImageJ software. 

Data were imported into an Excel spreadsheet and normalized against an internal control, 

and final values were calculated and analysed via Graphpad Prism.  

Target 

Protein

Streptavidin-HRP

Detection Antibody Cocktail 

Capture Antibody

Glass Slide 
 

Figure ‎2-7 The PathScan Intracellular Signalling Array reaction.  

Capture antibodies have been spotted in duplicate on glass slide. Blocking buffer was added to the 
slide. The sample is then incubated with the array over for 2 hour. Any activated signalling 
molecule present is bound by its cognate immobilized capture antibody on the slide. Detection 
antibody cocktail will bound to target protein-antibody complex. Streptavidin-Horseradish 
Peroxidase was added. The produced signal is in proportion to the amount of activated signalling 
molecule present in the samples. 
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2.7.5 Quantification of expression of protein 

The relative expression of the protein of interest was determined using ImageJ software 

(version 1.47). The housekeeping protein, glyceraldehyde-3-phosphate dehydrogenase 

(GAPDH) was used as a protein loading control. Therefore, data were expressed as a ratio 

of protein of interest to the loading control or as a ratio of phosphorylated to the total 

amount of target protein present in the sample. 

2.8 Determination of superoxide and nitric oxide 
availability 

2.8.1 Preparation of the PVAT samples  

For the detection of nitric oxide and superoxide, segments of aortic PVAT samples were 

was stabilised in Krebs’ Henseleit buffer (118 mM NaCl, 4.7 mM KCl, 1.2 mM MgSO4, 

25 mM KH2PO4, 11 mM glucose and 2.5 mM CaCl2) (KH) at 37°C for 30 minutes and 

incubated with dyes designed to detect the species of interest as described in 2.9.2 and 

2.9.3.  

2.8.2 Detection of superoxide  

Dihydroethidium (DHE) was used to assess superoxide levels. DHE is oxidised by O2
-.
in 

the cytosol to form the fluorescent product oxyethidium (Zhao et al., 2003). Once 

prepared, segments were incubated with 10
-5

 M DHE for 30 minutes at 37°C in the dark 

and then washed (2 x 15 min) in KH at 37°C. Negative controls were incubated with 15 

U/mL of superoxide dismutase (SOD) during exposure to DHE. Segments were fixed by 

immersion in acetic zinc formalin for 1 hour at room temperature, mounted on slides and 

visualised by confocal fluorescence microscopy, using the 488 argon line for excitation 

and 570 nm long-pass filter for detection. Data from 5 Kalman-averaged scans were 

collected using LaserSharp 2000 software (BioRad, UK) using set, tissue specific values of 

laser intensity, brightness and contrast, and the 20 X oil objective without zoom. The mean 

fluorescence intensity of each image was quantified using ImageJ software.  

2.8.3 Detection of Nitric oxide 

To assess NO production by PVAT, 4,5-diaminofluorescein diacetate (DAF- 2DA) was 

used. DAF-2DA is hydrolysed by cellular esterases to form 4,5-diaminofluorescein (DAF-

2) which subsequently reacts with cellular NO to form fluorescent triazolofluorescein 
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(Broillet et al., 2001). The preparation of sample was described in the previous section. 

PVAT samples were incubated in 10 μM DAF-2DA for 30 minutes. 0.1 mM Nω-nitro-L-

Arginine (L-NNA) and 15 U/L SOD were used also as negative and positive controls 

respectively. After fixation, samples were incubated in 1 μM SYTO 61 fluorescent nucleic 

acid stain (Thermo Fisher Scientific, U.K.) for 1 hour prior to mounting and confocal 

microscopy examination. DAF-2DA fluorescence was detected using the 488 nm argon 

line for excitation and 530 +/-30 nm filter for detection. Fluorescence from SYTO 61, 

detected using the 637 nm laser diode and 660 nm long pass filter, was used to aid image 

collection. 

2.9 Statistical analysis  

All results are expressed as mean ± standard error of the mean (SEM) where n represents 

the number of experiments performed or number of mice used. Data were analysed with 

GraphPad Prism 5.0 software (California, U.S.A.). When comparing three or more data 

groups, One-way ANOVA (analysis of variance) tests followed by Bonferroni post-hoc 

tests were used. When comparing two or more data groups (contraction data), two-way 

ANOVA (analysis of variance) tests followed by Newman–Keuls post hoc test was used. 

In all cases, a p value of less than 0.05 was considered statistically significant.  
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Chapter 3  

Characterisation of the role of AMPKα1 in 
modulating PVAT function 
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3.1 Introduction  

Perivascular adipose tissue (PVAT) which surrounds most arteries is now recognized as a 

major regulator of vascular tone. PVAT acts as an active endocrine organ producing a 

range of adipokines, inflammatory cytokines and other factors which influence vascular 

tone (Dubrovska et al., 2004, Gao, 2007, Malinowski et al., 2008, Weston et al., 2013). 

PVAT can induce vasodilatation via release of vasodilatory molecules such as adipocyte-

derived relaxing factor (ADRF) (Lohn et al., 2002, Verlohren et al., 2004, Galvez et al., 

2006), leptin (Vecchione et al., 2002), adiponectin (Fesus et al., 2007, Chen et al., 2003), 

angiotensin 1–7 (Ang 1-7) (Lee et al., 2009a), hydrogen peroxide (Gao et al., 2007), nitric 

oxide (NO) (Gil-Ortega et al., 2010) and hydrogen sulphide (H2S) (Fang et al., 2009). In 

addition to vasodilatory factors, PVAT can release vasoconstrictor factors such as 

angiotensin II (Ang II) (Galvez-Prieto et al., 2008) and superoxide anion (Gao et al., 2006). 

PVAT is composed of brown adipocytes, white adipocytes or both depending on the 

vascular bed (Gao, 2007, Fitzgibbons et al., 2011, Cinti, 2011). While all PVAT types have 

anticontractile properties (Lohn et al., 2002, Greenstein et al., 2009), the mechanism(s) by 

which this occurs remains uncertain.   

The anti-contractile effect of PVAT is proposed to be due to the release of an as yet 

undefined PVAT-derived relaxing factor(s) that are proposed to act via different pathways. 

These pathways are reported to include gated potassium (K) channels including the 

adenosine triphosphate (ATP) activated potassium channels (KATP) (Dubrovska et al., 

2004), the voltage-gated (KV) (Verlohren et al., 2004) and large conductance calcium-

activated potassium channels (BKCa) (Lynch et al., 2013). Gao and co-workers 

demonstrated that PVAT exerts its anti-contractile effects in rat aortic vessels through two 

distinct mechanisms: (1) by releasing a transferable relaxing factor which induces 

endothelium-dependent relaxation through NO release and subsequent KCa channel 

activation, and (2) by an endothelium-independent mechanism involving H2O2 and 

subsequent activation of sGC in vascular smooth muscle (Gao et al., 2007).  

AMP-activated protein kinase (AMPK) is now considered as a potential modulator of 

vascular function. Although recognized primarily as a cellular energy gauge and modulator 

of cellular metabolism (Hardie et al., 2003), the identification of its expression in vascular 

tissue and of its ability to respond to cellular energy state (Chen et al., 1999, Fleming et al., 

2005, Evans et al., 2005), hormonal changes (Cheng et al., 2007, Chen et al., 2003, Nagata 

et al., 2004), and drugs (Thors et al., 2004, Levine et al., 2007, Bilodeau-Goeseels et al., 
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2011, Ford et al., 2012) demonstrates an important role for AMPK in the regulation of 

vascular tone. Many studies have shown that activated endothelial AMPK enhances 

phosphorylation and activation of endothelial nitric oxide (NO) synthase (eNOS) at Ser
1177

 

(Chen et al., 2003, Morrow et al., 2003, Davis et al., 2006) and Ser633 (Chen et al., 2009) 

to increase NO availability and vascular relaxation (Chen et al., 2003, Morrow et al., 2003, 

Davis et al., 2006). In addition, the role of AMPK in endothelium-independent relaxation 

has been demonstrated in many vascular beds including porcine, mouse, and rat conduit 

arteries in response to AMPK activators such as hypoxia (Rubin et al., 2005), 5-

aminoimidazole-4-carboxamide 1-β-D-ribofuranoside (AICAR) (Goirand et al., 2007), and 

metformin (Majithiya and Balaraman, 2006). Furthermore AMPK activation has been 

documented to directly regulate myosin light-chain kinase (MLCK) leading to reduced 

sensitivity to intracellular calcium and induction of vascular relaxation (Horman et al., 

2008). Collectively, these findings suggest that AMPK may modulate vascular tone via 

both endothelium-dependent and -independent mechanisms. 

AMPK is expressed in the three layers of the blood vessel: the endothelium, smooth 

muscle (VSM), and perivascular adipose tissue (PVAT) (Ewart and Kennedy, 2011) and is 

known to induce vasodilatation by both endothelium-dependent and -independent 

mechanisms. Although it is known that AMPK can modulate VSM and endothelial 

function, it is unknown whether AMPK can modulate the anti-contractile effect of PVAT. 

Therefore, the hypothesis of the current study is that AMPK can act as switch which 

modulates the releasing profile of the PVAT to control vascular contractility. 

3.2 Aims of the study 

 To investigate the morphological features of aortic and mesenteric PVAT in normal 

mice and mice with a global knockout of the AMPKα1 subunit.  

 To investigate whether there is any functional difference between PVAT of normal 

mice and AMPKα1 knockout mice. 

3.3 Methods and Results  

3.3.1 Morphology of the PVAT 

To test the effect of AMPKα1 subunit deletion on the morphological features of the PVAT, 

haematoxylin and eosin-stained sections of PVAT, BAT and WAT from wild type (WT) 
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and AMPKα1 Knockout (KO) mice were examined. Thoracic arteries with intact PVAT 

were excised immediately and placed in 10% zinc formalin overnight. Arteries were 

processed through a gradient of alcohols to Histoclear and embedded vertically in paraffin 

wax before being cut into 5 μm sections. To compare the morphology of aortic PVAT with 

other fat depots, mesenteric PVAT, subscapular brown adipose tissue (BAT) and 

epididymal white adipose tissue (WAT) were also fixed and sectioned. H&E staining and 

immunohistochemical staining with anti-UCP-1 antibody was performed and sections were 

visualised under a microscope. There was no obvious difference in adipose tissue 

composition (Figure 3-1), whereby thoracic PVAT (E&F) appeared very similar to BAT 

(A&B), with round nuclei, and small, multilocular lipid droplets, whereas mesenteric 

PVAT (I&J) was very similar to WAT (B&D), with large single lipid vacuoles and 

marginal nucleus. Abdominal PVAT (F&G) showed features of both BAT and WAT in 

WT and KO (Figure 3-1).  

Immunohistochemical staining of the BAT marker uncoupling protein-1 (UCP-1) (Figure 

3-2) confirmed the results of H&E staining. The Intensity of UCP-1 staining was similar in 

adipose tissue depots including PVAT from WT and KO animals. Thoracic PVAT (Figure 

3-2 E&F) from both strains of animal exhibited relatively the same distribution of UCP-1 

in the BAT (Figure 3-2 A&B). The intensity of UCP-1 staining in the mesenteric PVAT 

(Figure 3-2 I&J) was very low regardless of AMPKα1 subunit deletion, likely due to the 

predominance of WAT in this depot (Figure 3-2 C&D). Abdominal aortic PVAT in both 

mouse strains showed similar distribution of both BAT and WAT as assessed by UCP-1 

staining (Figure 3-2 G&H).   

Next, UCP-1 levels were studied in PVAT and compared to that found in BAT 

(intrascapular area) and WAT (epididymal) from both WT and KO mice by 

immunoblotting. Quantitative analysis showed that PVAT shares a similar protein 

expression pattern with BAT, which includes high levels of UCP-1 (Figure 3-2) relative to 

the glycolytic protein GAPDH, regardless of AMPK deletion. These data indicate that 

thoracic PVAT has a similar phenotype to BAT, but is clearly different from WAT, 

suggesting that PVAT might have a similar function to BAT. Abdominal aorta showed no 

marked difference compared to thoracic PVAT. In contrast to these virtually identical 

protein levels between thoracic PVAT and BAT, mesenteric PVAT exhibited a similar 

phenotype to WAT. 
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Figure ‎3-1 Effect of AMPKα1 deletion on the morphology of PVAT.  

Representative H&E stained sections harvested from subscapular brown adipose tissue (BAT) 
(A&B), epididymal white adipose tissue (WAT) (C&D), thoracic perivascular adipose tissue (PVAT) 
(E&F), abdominal PVAT (G&H), and mesenteric PVAT (I&J) in wild type and AMPKα1 knockout 
mice. Nuclei appear blue/purple whereas cytoplasm is stained pink. Abbreviation: BAT; brown 
adipose tissue, WAT; white adipose tissue, Ao; aorta, MA;‎mesenteric‎artery.‎Scale‎bar;‎20‎μm,‎ 
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Figure ‎3-2 Immunohistochemical analysis of UCP-1 levels in PVAT in comparison with BAT 
and WAT for both wild type and AMPKα1 knockout mice.  

Representative histological sections of brown adipose tissue (BAT) (A&B), white adipose tissue 
(WAT) (C&D), thoracic PVAT (E&F), Abdominal (G&H) and Mesenteric PVAT (I&J) stained with 
anti UCP-1 and counterstained with haematoxylin. Positive immunoreactivity for UCP-1 is indicated 
by brown‎colour.‎Scale‎bar‎20‎μm 
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Figure ‎3-3 UCP-1 levels in different PVAT depots.    

Tissue lysates (n= 3) were prepared from WT and KO BAT, WAT, thoracic PVAT (TA), abdominal 
PVAT (AA) and mesenteric PVAT (MES). UCP-1 level is presented as a ratio of the density of the 
GAPDH band to adjust for protein loading. Western blotting was performed in BAT (brown adipose 
tissue); WAT (white adipose tissue); TA (thoracic aorta PVAT); AA (abdominal aorta PVAT); MES 
(mesenteric artery PVAT) from WT and KO. Blot shown are representative ***p<0.001 vs WT BAT; 
*p<0.05 vs WT BAT; ***p<0.001 vs WT BAT; ***p<0.001 vs WT BAT.  

 

3.3.2 AMPK expression and activity 

As AMPKα1 is one of two AMPKα subunit isoforms, the effect of AMPKα1 deletion on 

the total AMPKα and phospho-AMPKα Thr172 levels in PVAT was examined by 

immunohistochemistry and immunoblotting. There was reduced intensity of both total 

AMPKα and phospho-AMPKα Thr172 staining in AMPKα1 knockout thoracic aorta in 

both the PVAT and the medial vascular smooth muscle region (Figures 3-4 and 3-5). 

Immunoblot analysis further demonstrated that AMPK activity, reflected by the levels of 

phospho-AMPKα Thr172 (pAMPKα) and the AMPK substrate phospho-ACC Ser79 
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(pACC), was significantly reduced in AMPK-α1 knockout mice in comparison with wild 

type (Figure 3-6). 

A
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Wild Type Thoracic Aorta PVAT AMPKα1 KO Thoracic Aorta PVAT

Total AMPKα

Negative control

Blank  

Figure ‎3-4 Total AMPKα levels in wild type and AMPKα1 knockout mouse thoracic aorta with 
intact PVAT.  

Representative histological sections of thoracic aorta with intact PVAT from WT and KO mice 
stained with anti-AMPKα‎antibodies and counterstained with haematoxylin. (A, D) Positive staining 
is indicated by brown colour. (B, E) Negative control represents aortic rings with anti-AMPKα 
primary antibodies only; (C, F) Blank (untreated) represents aortic rings without treatment.  Scale 
bar‎20μm. 
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Figure ‎3-5 Phospho-AMPKα Thr172 levels in wild type and AMPKα1 knockout mouse 
thoracic aorta with intact PVAT.  

Representative histological sections of thoracic aorta with intact PVAT from WT and KO mice 
stained with anti-Phospho‎AMPKα‎Thr172‎antibodies‎and‎counterstained‎with‎haematoxylin. (A, D) 
Positive staining is indicated by brown colour. (B, E)  Negative control represents aortic rings with 
anti-AMPKα‎ primary‎ antibodies‎ only;‎ (C, F) Blank (untreated) represents aortic rings without 
treatment‎Scale‎bar‎20μm. 
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Figure ‎3-6 AMPK levels and activity in PVAT.  

Lysates of thoracic PVAT from wild type and AMPKα1 knockout mice were immunoblotted with the 
indicated antibodies. A) Representative Immunoblots are shown. (B,C) Quantitative analysis of 
immunoblots,‎ expressed‎ as‎ the‎ ratio‎ of‎ the‎ phosphorylated‎ and‎ total‎ form‎of‎AMPKα‎divided‎by‎
GAPDH (C). (D) Quantitative analysis of immunoblots, expressed as the ratio of the 
phosphorylated form of‎ the‎ enzyme‎ divided‎ by‎ total‎ AMPKα.‎ (E)‎ Quantitative analysis of 
immunoblots, expressed as the ratio of the phosphorylated form of ACC divided by GAPDH. 
**p<0.01 vs KO PVAT, n = 3; *p<0.05 vs KO PVAT, n = 3; *p<0.05 vs KO PVAT.  

 

3.3.3 PVAT from AMPKα1 knockout mice enhances vascular 
contraction 

To determine whether lack of AMPKα1 altered the contractile response of aortic rings in 

the presence or absence of associated PVAT, contractile responses to the thromboxane A2 

receptor agonist U46619 (3x10
-8

M) was assessed (Figure 3-7). The presence and absence 
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of PVAT did not affect the maximal tension induced by U46619. These results showed that 

the presence of PVAT did not pose a constraint on the ability of the aorta to contract, and 

the procedure used to remove PVAT or endothelium neither damaged nor affected the 

contractility of the aorta in both WT and KO animals. 

The magnitude of the U46619-induced vessel contraction was similar in the absence of 

PVAT in both mice strains (Figure 3-7). Wild type PVAT-free vessels contracted 1.49  

0.11 g (n = 29) versus 1.46  0.11 g for AMPKα1 knockout vessels without PVAT (n = 

31). The contraction in KO aortae devoid from PVAT was not significantly different from 

that with intact PVAT. The contraction of wild type aorta with intact PVAT was 1.15  

.0.11 g (n = 28) which was significantly less than that reported in WT vessels without 

PVAT (1.49 ± 0.11 g = 26; p<0.05 vs WT intact PVAT arteries). In addition, the 

contraction of wild type aorta with intact PVAT was significantly less than that seen in 

PVAT-containing aorta from knockout mice; 1.62  0.11 g (n = 32; p<0.001 vs WT 

vessels with PVAT), suggesting that WT PVAT has an anticontractile effect which is lost 

in KO mice.  
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Figure ‎3-7 Effect of PVAT on thromboxane A2 receptor agonist U46619 (3x10
-8

 M) induced 
contraction.  

Endothelium denuded, thoracic aortae with and without PVAT from WT and KO were stimulated 
with U46619 for approximately 30 min and contraction measured on a myograph. *p<0.05 vs WT 
aortic rings without PVAT, n = 31;   ***p<0.001 vs WT vessels with intact PVAT, n =28-32.  
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3.3.4 PVAT enhances vascular relaxation to the AMPK activator 
AICAR 

To test whether the presence of PVAT can augment relaxation, dose-response curves to a 

known vasodilator agent, the AMPK activating agent AICAR were constructed in 

endothelium-denuded thoracic aorta rings with (PVAT+) and without (PVAT-) associated 

PVAT as described in section 2.5. In wild type animals (Figure 3-8A), addition of AICAR 

to U46619-precontracted PVAT intact thoracic aortic rings resulted in a concentration-

dependent, slowly developing relaxation, which reached a maximum (Emax) of 49.7 ± 2.6% 

(n = 6). This was significantly greater in comparison to vessels with PVAT removed (Emax 

30.7 ± 0.3%, n = 6; p<0.001). AICAR also stimulated relaxation of U46619-precontracted 

AMPKα1 knockout thoracic aorta (n = 6), yet the presence of PVAT had no effect on the 

AICAR-induced relaxation (Figure 3-8 B). Addition of AICAR to PVAT intact thoracic 

rings resulted in a maximum relaxation response (Emax) of 29.3 ± 3.4% (n = 6), which was 

not different from that reported in aortic rings without PVAT (27.9 ± 4.9% (n = 6)).  
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Figure ‎3-8 Effect of PVAT on AICAR induced relaxation in wild type and AMPKα1 knockout 
thoracic aorta.  

Dose-response curves to AICAR were produced by wire myography in thoracic aortic rings with (+) 
and without (-) PVAT. All vessels were without endothelium. In wild type (A), PVAT significantly 
enhanced the relaxation to AICAR (n = 6, ***p<0.001 vs PVAT(-)). In AMPKα1 knockout mice (B), 
the presence of PVAT had no effect on vascular relaxation (n = 6, p =ns). 

 

3.3.5 PVAT enhances vascular relaxation to cromakalim in wild 
type, but not AMPKα1 knockout aortic rings 

To ensure that the anticontractile effect was due to the presence of PVAT and to rule out 

the possibility that activation of AMPK in vascular smooth muscle cells was responsible 

for the augmented relaxation to AICAR, we repeated the experiments using another 

vasodilator which does not activate AMPK (cromakalim). Cromakalim is a K
+
 channel 

opener which induces vascular relaxation via hyperpolarisation of the vascular smooth 

muscle membrane. The results are summarised in Figure 3-9. The maximum response to 

10
-4

M cromakalim produced by aortic rings from WT with intact PVAT (59.0 ± 12.3%, 
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n=7; Figure 3-9 A) was significantly greater than that produced by aortic rings without 

PVAT (27.6 ± 2.8%, n=7; Figure 3-9 B). In KO, maximal responses to cromakalim were 

not significantly different between vessels with or without intact PVAT (21.6 ± 1.6% vs. 

18.7 ± 4.0%; n=7; p=ns). 
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Figure ‎3-9 Effect of PVAT on cromakalim-induced relaxation in wild type and knockout 
thoracic aorta.  

Dose-response curves induced by cromakalim in thoracic aortic rings with (+) and without (-) 
PVAT. In wild type (A), the presence of PVAT enhanced the response to cromakalim (n=7, 
***p<0.001 vs. PVAT-). In AMPKα1 knockout (B), PVAT had no effect on vascular relaxation to 
cromakalim (n = 7, p =ns). 
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3.3.6 Effects of PVAT on AICAR and cromakalim- induced 
vascular relaxation in abdominal aortic rings 

To confirm that the ability of PVAT to enhance vasorelaxation was not depot specific, the 

experiments with AICAR and cromakalim were repeated in abdominal thoracic aortic 

rings. As with the thoracic aorta, WT PVAT enhanced the relaxation caused by AICAR. 

(Emax 53.3 ± 5.2% in PVAT(+) vs. 24.5 ± 5.7% in PVAT(-), n = 6; p<0.05) (Figure 3-10A). 

In KO mouse abdominal aorta, PVAT had no effect on the AICAR-induced relaxation 

(Emax 33.3 ± 2.8% vs. 30.9 ± 5.1%, n = 5; p=ns) (Figure 3.10B). 

The functional experiment in the abdominal aorta was repeated using cromakalim and the 

result showed the same pattern as with AICAR. In WT vessels with intact PVAT, 

maximum relaxation (Emax) was 50.9 ± 12.42%, (n = 6), significantly greater than 

abdominal aorta without PVAT (26.1 ± 8.3%, n = 6; p<0.05 vs. PVAT+) (Figure 3.11A). 

In KO animals (Figure 3.11 B), presence of PVAT had no effect on vascular relaxation 

induced by cromakalim (22.8 ± 5.8% vs. 17.4 ± 4.1%, n = 6). 
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Figure ‎3-10 Effect of PVAT on AICAR-induced relaxation in wild type and knockout 
abdominal aorta.  

Dose- response curves induced by AICAR in abdominal aortic rings with (+) and without (-) PVAT. 
In wild type (A), the presence of PVAT enhanced the response to AICAR (n=6, ***p<0.001). In 
AMPKα1 knockout (B), PVAT had no effect on vascular relaxation (n = 5, p =ns). 



 Chapter 3 - Characterisation of AMPKα1 role in PVAT 
 

80 
 

A

-1 0 -9 -8 -7 -6 -5

0

2 0

4 0

6 0

8 0
P V A T (+ )

P V A T (- )

***

L o g  [C ro m a k a lim ][M ]

R
e

la
x

a
ti

o
n

(%
 l

o
s

s
 o

f 
U

4
6

6
1

9
-i

n
d

u
c

e
d

 t
o

n
e

)

B

-1 0 -9 -8 -7 -6 -5

0

2 0

4 0

6 0

8 0 P V A T (+ )

P V A T (- )

L o g  [C ro m a k a lim ][M ]

R
e

la
x

a
ti

o
n

(%
 l

o
s

s
 o

f 
U

4
6

6
1

9
-i

n
d

u
c

e
d

 t
o

n
e

)

 

Figure ‎3-11 Effect of PVAT on cromakalim-induced relaxation in wild type and knockout 
abdominal aorta.  

Dose- response curves induced by cromakalim in abdominal aortic rings with (+) and without (-) 
PVAT. In wild type (A), the presence of PVAT enhanced the response to cromakalim (n=6, 
***p<0.001). In AMPKα1 knockout (B), PVAT had no effect on vascular relaxation (n = 6, p =ns). 
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3.3.7 Transfer studies  

To study whether the PVAT had to be attached to the vessel in order to augment 

relaxation, thoracic arteries without PVAT were preconstricted with U46619 (3 × 10
−8

M) 

and, once a stable constriction had developed, PVAT (unattached) was added to the 

myography bath and a dose-response curve to cromakalim was constructed. In wild-type 

vessels without PVAT (n = 5), addition of PVAT into the myography bath caused a 

significant increase in the relaxation (Emax 54.5± 8.3% vs. 15.9 ± 4.7%, Figure 3-12A). 

Contemporaneous control experiments with PVAT-intact WT arteries (n = 5) were 

performed which demonstrated that intact PVAT and added PVAT had a similar effect on 

augmenting relaxation to cromakalim (Emax 49.9 ± 6.7% vs. 30.1 ± 3.4%, Figure 3-12B). 

When the transfer experiments were repeated in AMPKα1 knockout vessels it was found 

that KO PVAT, either attached or added to the myograph bath did not influence the 

relaxation induced by cromakalim (Figure 3-12 C&D). 
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Figure ‎3-12‎Effect of addition of PVAT on cromakalim-induced relaxation in wild type and 
AMPKα1 knockout thoracic aortae.  

Dose- response curves induced by cromakalim in endothelium-denuded thoracic aortic rings with 
(+) and without (-) PVAT. Data are expressed as percentage loss of vascular tone induced by 
U46619. (A) Addition of unattached PVAT enhanced the response to cromakalim in wild type 
vessels without (-) PVAT (n=5, ***p<0.001 vs WT PVAT(-) vessels). (B) A contemporaneous 
control experiment comparing vessels with intact PVAT (+) and without PVAT (-) in wild type mice 
(n=5, **p<0.01 vs WT PVAT(-) vessels). (C) Addition of unattached PVAT did not enhance the 
response to cromakalim in AMPKα1 knockout mice aortic rings (n=5, p = ns vs KO PVAT(-) 
vessels). (D) A contemporaneous control experiment comparing vessels with intact PVAT (+) with 
those without PVAT in AMPKα1 knockout mice (n=5, p = ns vs KO PVAT(-) vessels).    
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3.3.8 Wild type PVAT enhances relaxation in AMPKα1 knockout 
vessels 

To further investigate the function of the PVAT, and whether it is the PVAT or the medial 

smooth muscle cells which are compromised in KO mice, “cross over” studies were 

conducted. These experiments involved addition of unattached PVAT from WT mice to 

myography chambers containing aortic rings from AMPKα1 knockout and vice versa. 

After addition of the PVAT, thoracic arteries were preconstricted with U46619. Once a 

stable constriction had developed dose-response curves to AICAR and cromakalim were 

constructed.  

It was found that WT PVAT significantly enhanced the AICAR-induced vasodilatation in 

KO arteries without PVAT (p<0.001, Figure 3-13A), and increased the Emax of AICAR 

from 27.7 ± 4.9 % to 52.7 ± 12.4% (p<0.001). In contrast, KO PVAT had no significant 

effect on AICAR-induced vasodilatation in wild type arteries without PVAT (p = ns, 

Figure 3-13B). 

The same studies were repeated using cromakalim and the results were consistent with 

AICAR. Addition of WT PVAT (n = 6) significantly augmented relaxation in KO aortic 

rings to cromakalim. Wild type PVAT increased the Emax of cromakalim from 18.7 ± 4.0 % 

to 46.3 ± 12.4% (p<0.001, Figure 3-13C), whereas KO PVAT had no effect on the 

relaxation of WT thoracic aorta in which the PVAT was removed (Figure 3-13D). 
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Figure ‎3-13 Effect of PVAT transfer on AICAR and cromakalim induced vasorelaxation.   

Dose-response curves were constructed to AICAR and cromakalim in endothelium-denuded 
thoracic aortic rings. Data are expressed as percentage loss of U46619-induced contraction. (A) 
Addition of WT PVAT enhanced the response to AICAR in KO vessels without PVAT (n=5, 
***p<0.001 vs KO PVAT(-) vessels). (B) KO PVAT did not affect AICAR induced relaxation in WT 
vessels without PVAT (n=5, p = ns). (C) Addition of WT PVAT enhanced the response to 
cromakalim in KO vessels without PVAT (n=6, ***p<0.001 vs KO PVAT(-) vessels). (D) KO PVAT 
did not affect cromakalim-induced relaxation in WT vessels without PVAT (n=6, p = ns). 



 Chapter 3 - Characterisation of AMPKα1 role in PVAT 
 

85 
 

3.3.9 Conditioned media from WT aortic PVAT reduces 
contractility in vessels without PVAT 

To ascertain whether augmented relaxation caused by PVAT is due to release of a 

transmissible factor, solution transfer (conditioned media) studies were performed. Control 

experiments with intact PVAT from wild-type and knockout arteries were performed in 

parallel to determine whether the conditioned media is as effective as attached PVAT in 

augmenting aortic relaxation. Conditioned media was prepared by incubation of PVAT in 

Krebs’ solution at 37 ̊C for 1 hour. In all experiments, conditioned media was added to the 

vessels without PVAT before pre-constriction to U46619 to ensure that the transferred 

solution would have the same effect as the attached (intact) PVAT vessels and also to 

determine whether there was any effect on U46619 induced contraction.  

Conditioned media from WT PVAT significantly attenuated contraction induced by 

U46619 (Figure 3-14). Addition of WT conditioned media to WT aortic rings (n = 12) 

without PVAT reduced the maximum contraction from 1.19 ± 0.1 g to 0.86 ± 0.1 g 

(p<0.05). In contrast, conditioned media from KO PVAT had no effect on U46619-induced 

contraction of KO aortic rings (2.8 ± 1.4 vs 2.33 ± 1.3 PVAT (-), n =12, p = ns).  
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Figure ‎3-14 Effect of conditioned media on aortic ring contraction.  

Conditioned media from WT and KO PVAT was added to endothelium-denuded thoracic aortic 
rings from WT and KO mice respectively in the absence of PVAT.  Contraction to U46619 is 
expressed in g. *p<0.05 vs WT PVAT(-) vessels, n =12; p =ns vs KO PVAT(-) vessels, n =12. 
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3.3.10 Conditioned media from WT mice enhances AICAR 
and cromakalim induced relaxation 

To investigate the ability of PVAT-secreted substances to modulate vasorelaxation, 

conditioned media from KO and WT PVAT were prepared and incubated with 

corresponding PVAT (-) vessels. To test the ability of conditioned media to enhance the 

relaxation to AICAR or cromakalim and that the enhanced relaxation was due to the 

conditioned media rather than decreased viability of the vessels over time, control 

experiments with intact PVAT were conducted concurrently. Prior to induction of 

contraction, vessels without PVAT from WT and KO mice were incubated with the 

conditioned media and once a stable constriction had developed in response to U46619, 

dose response curves for both AICAR and cromakalim were constructed.  

Conditioned media from WT PVAT significantly increased the Emax of WT aortic rings 

without PVAT in response to AICAR (Figure 3-15A) and cromakalim (Figure 3-16A) 

from 38.9 ± 8.2% to 53.2 ± 8.2% (n=8) and 25.2 ± 2.2% to 52.4 ± 10.3% (n=6) 

respectively. Conditioned media derived from PVAT of AMPKα1 KO mice had no 

significant effect on the relaxation of WT aortic rings to either AICAR (Figure 3-17) or 

cromakalim (Figure 3-18), suggesting that dysfunction of the PVAT anticontractile 

response is related to AMPKα1 subunit deletion. 
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Figure ‎3-15  Effect of PVAT-derived conditioned media on AICAR induced vascular 
relaxation in WT aortic rings.  

Dose-response curves were constructed to AICAR in endothelium-denuded WT thoracic aortic 
rings incubated with conditioned media from WT PVAT. Data are expressed as percentage of loss 
of U46619-induced tone.  ***p<0.001 vs WT PVAT(-) vessels, n = 8 and  ***p<0.001 vs WT PVAT(-
) vessels.  
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Figure ‎3-16 Effect of PVAT-derived conditioned media on cromakalim-induced vascular 
relaxation in wild type aortic rings.  

Dose-response curves were constructed to AICAR in endothelium-denuded WT thoracic aortic 
rings incubated with conditioned media from WT PVAT. Data are expressed as percentage of loss 
of U46619-induced tone. ***p<0.001 vs WT PVAT(-) vessels and, n = 7 and ***p<0.001 vs WT 
PVAT(-) vessels, n =7.  
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Figure ‎3-17 Effect of KO PVAT-derived conditioned media on AICAR-induced vascular 
relaxation in AMPKα1 knockout aortic rings.  

Dose-response curves were constructed to AICAR in endothelium-denuded WT thoracic aorta 
incubated with conditioned media from PVAT of KO mice. Data are expressed as percentage loss 
of U46619-induced tone. p = ns vs KO PVAT(-) vessels and, n = 6 and p = ns vs KO PVAT(-) 
vessels, n =6.  
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Figure ‎3-18  Effect of KO PVAT-conditioned media on cromakalim-induced vascular 
relaxation in AMPKα1 knockout aortic rings.  

Dose-response curves were constructed to cromakalim in endothelium-denuded KO thoracic aorta 
incubated with conditioned media from PVAT of KO mice. Data are expressed as percentage loss 
of U46619-induced tone. Data shown are representative p = ns vs KO PVAT(-) vessels; n = 6 and  
p = 0.ns vs KO PVAT(-) vessels, n =6.  
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3.3.11 Cromakalim does not activate AMPK in vascular 
smooth muscle cells or 3T3-L1 adipocytes  

To rule out the possibility that vasodilation to cromakalim is compromised in KO mice 

because chromakalim has AMPK-dependent actions, cultured rat vascular smooth muscle 

cells and 3T3-L1 adipocytes were incubated with AICAR (AMPK activator used as a 

positive control) or cromakalim. Western blotting (Figure 3-19A) demonstrated that 

cromakalim did not increase phosphorylation of AMPK in the vascular smooth muscle 

cells (n = 3, p=ns, Figure 3-19B). In addition, cromakalim had no effect on the 

phosphorylation of the AMPK substrate ACC (Figure 3.19C), a kinase downstream of 

AMPK. AICAR stimulated an increase in AMPK activity (n = 3, p<0.05) at a 

concentration of 10
-3

 M, as assessed by ACC phosphorylation but this was not observed 

with 10
-2

M AICAR. 

To examine whether cromakalim influenced adipocyte AMPK activity, the 3T3-L1 

adipocyte cell line was utilised (Figure 3-20). Over a time course of 10 min and 30 min, 

adipocytes were incubated with AICAR (2mM) alone, AICAR (2mM) + cromakalim 

(200μM) and cromakalim (200µM) alone. In all experiments, neither AICAR nor 

cromakalim alone affected AMPK phosphorylation (n =3, p = ns) (Figure 3-20C&D). 

AICAR and cromakalim in combination also did not enhance the activity of AMPK in 

adipocytes as assessed by ACC phosphorylation (n =3, p = ns) (Figure3-20D&F). 

However, stimulation of 3T3-L1 adipocytes with AICAR alone did show a trend toward 

enhanced ACC phosphorylation, although this did not reach statistical significance.  
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Figure ‎3-19 Effect of cromakalim on AMPK phosphorylation and activity in VSMCs. 

Cultured rat VSMCs were stimulated with AICAR (A) or cromakalim (CK), lysates prepared and 
subjected to immunoblotting with the indicated antibodies. (A) representative immunoblots are 
shown). Quantification of (B) phospho-AMPKα Thr172 relative to total AMPKα‎ levels‎ or‎ (C)‎
phospho-ACC Ser79 relative to total ACC levels, normalised to control (vehicle-treated) cells. 
***p<0.001 vs control (untreated). This data was generated in collaboration with Azizh Ugusman. 
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Figure ‎3-20 Effect of AICAR and cromakalim on AMPK activity following different incubation 
times in 3T3 adipocytes.  

3T3 adipocytes were treated with AICAR, AICAR+ cromakalim and cromakalim alone over 10 min 
(Figs A, C, E) and 1 hour time interval (Figs B, D, F). Cells were then lysed and immunoblotting 
was performed. Graphs are expressed as the fold change of the phosphorylated form of each 
enzyme divided‎by‎the‎total‎AMPKα‎(C&D)‎and‎total‎ACC (E&F) to measure the activation of the 
enzyme. Blots shown are representative (A&B). p = ns vs control (untreated), n = 3. This data was 
generated in collaboration with PhD student Omer Katwan. 
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3.3.12 AMPKα1 knockout mouse PVAT has altered adipokine 
release 

To assess the tissue levels and secretion of adipokines by PVAT of wild type and 

AMPKα1 knockout mice, homogenised PVAT and conditioned medium was assayed using 

a Proteome Profiler Adipokine array from R&D systems as screening test which detects 38 

different adipocytokines. As shown in Figure 3.21 the comparative analysis of 

homogenised PVAT adipokine levels reveals that AMPKα1 knockout PVAT has reduced 

levels of adiponectin (Acrp30/AdipoQ), C-Reactive Protein (CRP), Dipeptidyl peptidase-4 

(CD26/DPP4), ICAM-1 (CD54), Insulin-Like Growth Factor Binding Protein 2 (IGFBP-

2), Insulin-Like Growth Factor Binding Protein 5 (IGFBP-5), Insulin-Like Growth Factor 

Binding Protein 6 (IGFBP-6), Lipocalin-2 (NGAL), Pentraxin 2 (PTX2/SAP), and Retinol 

binding protein 4 (RBP4), and higher levels of Fetuin A, Fibroblast Growth Factor 1 (FGF-

1), Insulin-Like Growth Factor Binding Protein 3 (IGFBP-3), Pentraxin 2 (PTX2/SAP) and 

Resistin. Factors including Angiopoietin-like 3 (ANGPT-L3), Endocan (ESM-1), Insulin-

like growth factor 2 (IGF-II), Insulin-Like Growth Factor Binding Protein 1 (IGFBP-1), 

and Receptor for Advanced Glycation Endproducts (RAGE) were below the detection limit 

of the Array in the AMPKα1 knockout in comparison with wild type PVAT. 

In addition, to levels within homogenised PVAT, the same Proteome Profiler Adipokine 

array was used to detect adipokines in the conditioned medium derived from both wild 

type and AMPKα1 knockout PVAT. As can be seen in Figure 3.22, conditioned media 

derived from AMPKα1 knockout PVAT releases lower quantities of some adipokines in 

comparison with wild type PVAT. The release of factors including adiponectin, CRP, 

CD26/DPP4, Fetuin A, FGF-1, IGFBP-3, IGFBP-5, IGFBP-6, Lipocalin-2, Pentraxin 2, 

RBP4 and Resistin were reduced while higher levels of PAI-1 and VEGF-A were found in 

the KO conditioned media compared to that from wild type PVAT. 
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Figure ‎3-21 Adipocytokine levels in PVAT lysates of wild type and AMPKα1 knockout mice.  

PVAT samples from both WT and KO were lysed and the array was performed. Chemiluminescent 
reaction spots on the adipokine profiler membranes represent various adipokines (A). The 
comparative expressions of adipokines corrected for protein content (in mean pixel density) 
obtained from densitometric analysis of the chemiluminescent reaction spots are presented in 
figure (B) (n=2). 
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Figure ‎3-22 Adipocytokine levels in PVAT conditioned media of wild type and AMPKα1 KO 
mice.  

PVAT‎ from‎ both‎ WT‎ and‎ KO‎ mice‎ was‎ incubated‎ in‎ Krebs’‎ solution‎ at‎ 37‎̊C‎ for‎ 1‎ hour‎ and‎
conditioned medium collected. Adipokine levels in conditioned medium were assessed by array. 
(A) Representative array showing chemiluminescent reaction spots on the adipokine profiler 
membranes. (B) Comparative levels of adipokines corrected for protein content (in mean pixel 
density) obtained from densitometric analysis of the chemiluminescent reaction spots (n=2). 
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3.3.13 AMPKα1 knockout PVAT releases less adiponectin 

Since the array data above indicated reduced adiponectin release by KO PVAT, an ELISA 

was used to quantify this. As can be seen in Figure 3-23, the concentration of adiponectin 

in KO conditioned media was significantly (p<0.05) lower than WT conditioned media 

(32.9 ± 3.3 ng/ml, n = 5 vs 47.5 ± 1.2 ng/ml, n = 5). These results are consistent with data 

from the adipokine array shown previously in Figure 3-22. 
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Figure ‎3-23 Content of adiponectin in conditioned media from PVAT.  

Conditioned media samples were collected from WT and KO PVAT and an adiponectin ELISA 
performed. **p<0.01 vs KO CM, n = 5. CM; conditioned media.  

 

3.3.14 Adiponectin is a potential PVAT derived vasodilator  

To further investigate the role of adiponectin in PVAT-induced relaxation, endothelium-

denuded thoracic aortic rings with and without PVAT from both wild type and AMPKα1 

knockout mice were preconstricted with U46619 and incubated with an AdipoR1 receptor 

blocker peptide. Dose response curves were then constructed using AICAR and 

cromakalim. Application of AdipoR1 receptor blocker attenuated the relaxation induced by 

AICAR and cromakalim in wild type PVAT intact aortic rings but not in AMPKα1 

knockout aortic rings with PVAT. In wild type aortic rings, adipoR1 blocking peptide 

reduced PVAT-induced relaxation to AICAR from 53.5 ± 2.8% to 30.1 ± 3.9% (n=6, 

p<0.05) (Figure 3-24A). The effect of PVAT on cromakalim-induced relaxation was also 

reduced by the adipoR1 blocking peptide (65.6 ± 14.2% to 39.9 ± 11.6%; n=6, p<0.05) 
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(Figure 3-24C). There was no obvious effect on aortic rings without PVAT when treated 

with AdipoR1 blocker prior to relaxation with AICAR or cromakalim (Figure 3-24B&D). 

In AMPKα1 KO aortic rings, addition of the AdipoR1 blocker to vessels without PVAT 

did not affect the relaxation induced by either AICAR or cromakalim (Figure 3-25 C&D). 

Additionally, Adiponectin receptor blocking peptide had no effect on the relaxation to 

AICAR or cromakalim in KO vessels with PVAT (37.8.2 ± 5.4% vs 32.5.8 ± 3.4%, n = 6, 

p = ns) and (29.6 ± 10.1% vs 19.2 ± 3.1%, n = 6, p = ns) respectively.  

Addition of globular adiponectin to wild type and AMPKα1 knockout vessels did not 

affect the baseline contraction to U46619 as shown in Figure 3-26. In the presence of 

globular adiponectin, an enhanced relaxation to cromakalim was observed in endothelium-

denuded wild type thoracic aortic rings without PVAT and in AMPKα1 knockout thoracic 

aortic rings in the presence and absence of PVAT (Figure 3-27). Aortic rings from wild 

type mice without PVAT (Figure 3-27A) (n = 5) dilated significantly from (33.6 ± 8.4%, n 

= 5) to (58.2 ± 9.9%) after addition of adiponectin in comparison with those with no added 

adiponectin (33.6 ± 8.4%, n = 5). Interestingly, addition of globular adiponectin caused 

relaxation in the presence and absence of PVAT in knockout aortic rings (Figure 3-27B). 

In thoracic aortic rings without PVAT, globular adiponectin increased the cromakalim-

induced relaxation from 30.2 ± 4.7% to 58.6 ± 12.5%, n = 6, p<0.05 vs PVAT (-). 

Additionally, globular adiponectin caused an enhanced relaxation response to cromakalim 

in knockout aortic rings with intact PVAT (47.1 ± 14.4%, n =5) in comparison with intact 

PVAT aortic rings with no added adiponectin (20.1 ± 1.8%, n = 5; Figure 3-27C).    
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Figure ‎3-24 Effect of adiponectin receptor 1 (AdipoR1) blocking peptide on PVAT-enhanced 
relaxation in wild type mouse aorta.  

Wild type aortic rings (A,C) with or (B,D) without PVAT were preconstricted with U46619, incubated 
with AdipoR1 blocking peptide and dose-response curves constructed to (A,B) AICAR or (C,D) 
cromakalim. Data are expressed as a percentage of loss of the U46619-induced tone. ***p<0.001 
relative to absence of AdipoR1 blocking peptide, n = 6. 
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Figure ‎3-25  Effect of adiponectin receptor 1 (AdipoR1) blocking peptide on PVAT-enhanced 
relaxation in AMPKα1 KO mouse aorta.  

KO aortic rings (A,C) with or (B,D) without PVAT were preconstricted with U46619, incubated with 
AdipoR1 blocking peptide and dose-response curves constructed to (A,B) AICAR or (C,D) 
cromakalim. Data are expressed as a percentage of loss of the U46619-induced tone. p = ns 
relative to absence of AdipoR1 blocking peptide, n = 6. 
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Figure ‎3-26 Effect of globular adiponectin (1μg/ml) on U46619-induced contraction.  

WT and KO thoracic aortic rings with and without PVAT were contracted with U46619, washed and 
then incubated with globular adiponectin for 10 min. Rings were then contracted a second time with 
U46619. Data are expressed in g tension to U46619 before and after addition of globular 
adiponectin. n = 5. 
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Figure ‎3-27 Effect of globular adiponectin on vascular relaxation induced by cromakalim.  

Dose-response curves to cromakalim before and after addition of gAd to thoracic aorta from WT 
and KO mice. Data expressed as percentage of loss of U46619 induced tone. (A) Dose-response 
curve to cromakalim in WT vessels without PVAT ***p<0.001 vs WT PVAT(-) vessels, n = 5. (B) 
Dose-response curve to cromakalim in KO vessels without PVAT ***p<0.001 vs KO PVAT(-) 
vessels, n = 5. (C) Dose-response curve to cromakalim in KO vessels with intact PVAT ***p<0.001 
vs KO PVAT(+) vessels, n = 5.  
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3.3.15 Effect of globular adiponectin and conditioned media 
on AMPK in VSMCs 

To investigate whether adiponectin modulates vascular smooth muscle function through 

activation of AMPK, a VSMC cell line was utilised (Figure 3-28). Over a time course of 

10 min and 1 hour, VSMCs were incubated with 1μg globular adiponectin, 100μg globular 

WT conditioned media and KO conditioned media. In all experiments, neither globular 

adiponectin nor conditioned media affected AMPK phosphorylation at 10 min (n =3, p = 

ns; Figure 3-12A) and 1 hour (n = 3, p = ns; Figure 3-28B).   
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Figure ‎3-28 Effect of globular adiponectin (gAd) and conditioned media on AMPK in VSMCs.  

Cultured rat VSMCs were incubated with globular adiponectin or conditioned media (CM) from WT 
and KO PVAT over 10 min and 30 min, lysates prepared and subjected to Western blotting with the 
anti phosphoAMPKα (thr172) antibody. Data are expressed as relative fluorescence units (RFU) to 
control (untreated). (A) Effect of globular adiponectin and CM on AMPKα phspohorylation at 10 min 
(n‎=3,‎p‎=‎ns).‎(B)‎Effect‎of‎globular‎adiponectin‎and‎CM‎on‎AMPKα‎phosphorylation at 1 hour (n 
=3, p = ns). 
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3.4 Discussion 

The key observations in this chapter are that PVAT releases a substance(s) that can 

enhance the relaxation of preconstricted arteries and which appears to be mediated by the 

activation of KATP channel when using K
+
 channel opener cromkalim. The effect was not 

dependent on the endothelium and may be mediated by stimulation of the AdipoR1 

receptor. The results also showed that adiponectin augemted the relaxation respose to 

vasodiling agents.. The impaired anticontractile effect in the AMPKα1 knockout mice may 

be due to reduced adiponectin release by PVAT since the blunted vasodilation with KO 

PVAT was restored by globular adiponectin. These findings suggest that in KO PVAT, 

dysfunctional secretion may be related to lack of AMPKα1 in the PVAT.     

3.4.1 Effect of AMPKα1 subunit deletion on PVAT phenotype 

The first aim of this chapter was to study the effect of AMPKα1 ablation on morphological 

features of the PVAT by looking at phenotypic characteristics and comparing them with 

corresponding wild type littermates. This was performed by directly comparing the 

histological appearance of thoracic, abdominal and mesenteric PVAT to mouse 

interscapular BAT and epididymal WAT using H&E and UCP-1 as a marker for BAT. 

Examination of the tissue with standard histological staining (Figure 3-1) indicated 

structural similarity between thoracic aorta PVAT and brown (BAT) depots and between 

abdominal aorta PVAT and mesenteric PVAT and white (WAT) depots in both WT and 

KO. UCP-1 expression results (Figure 3-2 &3-3) showed that thoracic PVAT and BAT are 

virtually identical. This appears different from abdominal aorta PVAT, which showed an 

intermediate phenotype between white and brown adipose in histological appearance and 

analysis of BAT marker expression. Mesenteric PVAT is composed mainly of WAT as 

confirmed from the histological analysis and reduced UCP-1 expression. The results 

suggest that AMPKα1 catalytic subunit deletion had no effect on phenotypic features of the 

PVAT regardless of the PVAT depot type. Results from WT and KO mice are consistent 

with previous findings from other studies in Sv129 mice strain (Frontini and Cinti, 2010, 

Cinti, 2011) and also from other mice and rat strains (Cannon and Nedergaard, 2004, 

Fitzgibbons et al., 2011, Padilla et al., 2013) which reported that thoracic PVAT is 

composed mainly of a BAT like phenotype and that surrounding the abdominal aorta 

consists mainly of WAT. However, it is worth noting that these previous studies 

demonstrate that PVAT can have characteristics of both BAT and WAT but this largely 

depends on the anatomical context, animal strain and disease state.  
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Understanding the factors responsible for the difference in the PVAT phenotype 

throughout the arterial tree is an area of intense investigation. This is because phenotypic 

differences in PVAT depots may contribute to differences in disease risk in blood vessels. 

Several studies have reported a relationship between PVAT volume and the severity of 

vascular disease (Greif et al., 2009, Jeong et al., 2007). Studies have also indicated that 

PVAT can have a detrimental effect on vascular function and this effect is markedly 

exacerbated in disease such as obesity (Payne et al., 2010) which was also reported in the 

aortae (Ma et al., 2010) and mesenteric vessels (Ketonen et al., 2010) of obese rodents. In 

general, an increase in adipose tissue mass occurs due to adipocyte hyperplasia and/or an 

increase in triglyceride deposition in the preexisting adipocytes. It has been reported that 

lack or deficiency of AMPK activity may lead to development of obesity (Ruderman et al., 

2003). Previous studies reported that lack of catalytic subunits of AMPK is associated with 

increased adipose tissue mass. For example, studies of AMPKα2-knockout mice fed a 

high-fat diet showed increased adipose tissue mass compared with wild-type mice, due to 

increased adipocyte size, with no change in cell number (Villena et al., 2004). The role of 

AMPK in the determination of PVAT phenotype was investigated in a study by Ma et al 

who demonstrated that high fat diet reduced activating Thr172 phosphorylation of AMPK 

in thoracic aortic PVAT, which was associated with not only increased intimal thickness 

but also increased adipocyte size (Ma et al., 2010). However, the adipocyte size changes 

reported in these previous studies may be due to reduced FA oxidation and a concomitant 

increase in lipogenesis resulting from ablation of AMPK in adipose tissue. In addition, the 

animal models utilized in these studies have a global knockout of  AMPKα2 isoform, such 

that the observed effects may not be a direct effect of reduced AMPK activity in adipose or 

adipocytes alone.  

Brown adipocytes contain high numbers of mitochondria and characteristically express 

UCP-1, which allows thermogenesis (Tam et al., 2012, Marzolla et al., 2012).  AMPKα1 

has been reported to be the dominant isoform of the catalytic α subunit of AMPK and is 

expressed in BAT more than other organs such as liver, suggesting a potential regulatory 

role for AMPK in BAT (Mulligan et al., 2007). AMPK activity in BAT is increased by 

cold exposure (Mulligan et al., 2007, Vucetic et al., 2011) and as a result of AICAR or β3 

adrenergic stimulation (Sakaue et al., 2003, Hutchinson et al., 2005, Pulinilkunnil et al., 

2011) and this results in increased glucose transport and fatty acid oxidation. Furthermore, 

it has been reported that AMPK is involved in the regulation of brown adipocyte 

differentiation. In differentiating brown pre-adipocytes in vitro, AMPK activity increases 
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during differentiation after induction of adipogensis, and siRNA targeted to AMPK 

inhibited differentiation into mature brown adipocytes, accompanied by a reduction in 

UCP-1 expression. Additionally, continuous intra peritoneal AICAR administration in 

mice increased browning of WAT (Vila-Bedmar et al., 2010). This study suggests that 

AMPK may play a role in differentiation into FA-oxidizing BAT, leading to greater energy 

expenditure. However, in the current study there was no difference in the expression of 

UCP-1 between AMPKα1 deficient mice and wild type littermates which might be 

explained by a compensatory effect of the AMPKα2 subunit isoform, although there was 

no obvious enhanced expression of the α2 subunit or reduced AMPKα and ACC 

phosphorylation in KO PVAT. Indeed this has been suggested in other studies which 

reported that AMPKα1 deficient mice showed no alteration in cold tolerance or acute non-

shivering thermogenesis, and that a compensatory increase in AMPKα2 expression may 

explain this lack of effect (Bauwens et al., 2011).   

The absence of any difference in BAT markers between WT and KO PVAT may be related 

to a reduction of mitochondrial biogenesis PGC1α expression as a result of AMPK 

dysfunction. β3-aderenoceptor stimulation in adipocytes results in increased 

phosphorylation of AMPK and ACC and induced expression of the transcriptional co-

activator and master regulator of mitochondrial biogenesis PGC1α (Wan et al., 2014), 

which regulates UCP-1 transcription (Xue et al., 2005). These effects were reduced in 

epididymal adipose tissue from AMPKβ1 KO mice which was also accompanied with a 

reduction in mitochondrial protein content, including a reduction of PGC1α (Wan et al., 

2014). Taking these findings together, the absence of a difference in UCP-1 expression 

between WT and α1 KO adipose tissue including PVAT and the findings from other studies 

suggest the possibility that AMPK’s role in determining adipose tissue phenotype might 

depend on AMPK subunit type, animal strain, age and/or disease state.  

3.4.2 Effect of AMPKα1 subunit ablation on AMPK activity 

Another important question that was addressed in the present study was whether deletion 

of AMPKα1 subunit affects the activity of the AMPK in the PVAT, perhaps through 

compensation by another isoform of AMPK. Results showed reduced phosphorylated and 

total AMPK in PVAT (Figure 3-5) which correlated with data from immunoblots showing 

reduced phosphorylation of the downstream kinase ACC (Figure 3-6). There was no 

obvious compensatory upregulation in the AMPKα2 isoform. These data suggest the 

reduced activity of AMPK is due to the α1 subunit deficiency and that the α1 subunit might 
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be essential for regulation of AMPK function in adipose tissue. These results are in 

agreement with other studies demonstrating that the catalytic α1 subunit is the major 

catalytic subunit isoform expressed in adipose tissue and is also responsible for the major 

part of AMPK activity (Lihn et al., 2004, Daval et al., 2005).  

3.4.3 Effect of AMPK AMPKα1 subunit ablation on anticontractile 
effect of PVAT 

The current study investigated the effect of AMPKα1 subunit deficiency on the 

anticontractile effect of the PVAT. The studies have been carried out in thoracic and 

abdominal aortae from both wild-type mice and mice with a global AMPKα1 subunit 

knockout and using two relaxing agonists acting via different mechanisms.  One of these 

agents is AICAR which known to activate AMPK. In the cytoplasm, AICAR is 

phosphorylated by adenosine kinase and converted to the active metabolite AICAribotide 

(ZMP), which mimics AMP and activates AMPK (Corton et al., 1995). AICAR is known 

to target both AMPKα1 and AMPKα2 and is able to induce aortic relaxation in mice in an 

endothelium and eNOS independent manner (Goirand et al., 2007). The other agonist used 

was cromakalim with has not previously been reported to have any effect on AMPK 

activity. Cromakalim acts via opening of ATP sensitive K
+
 channels modulator (K

+
ATP) 

(Glavind-Kristensen et al., 2004) and hyperpolarising the VSMC membrane. In the current 

study, presence of PVAT augmented the relaxation induced by both agonists (Figure 3-8A 

&Figure 3-9A). Furthermore, the lack of AMPKα1 caused the PVAT to lose its 

anticontractile effect and its augmentation of relaxation to cromakalim and AICAR. These 

findings suggest the AMPKα1 isoform is likely involved in the anticontractile effect of 

PVAT. The difference in relaxation response between WT and KO is unlikely to be due to 

AMPK activation at the medial layer by AICAR and cromakalim as cromakalim had no 

effect on AMPK expression or phosphorylation in VSMCs (Figure 3-19) or cultured 

adipocytes (Figure 3-20). Furthermore, conditioned medium from WT PVAT was able to 

enhance relaxation of aortic rings from WT mice or KO mice with similar efficacy, 

suggesting the defect is at the level of the PVAT.  

The present data support and add to the plethora of evidence that PVAT has an 

anticontractile effect in different vascular beds including human subcutaneous vessels, 

internal mammary artery, rat mesenteric, and rat aorta (Gao et al., 2005b, Greenstein et al., 

2009) and also attenuates contraction to many agents including phenylephrine, 5-HT, 

angiotensin II and U46619 (Lohn et al., 2002, Verlohren et al., 2004, Gao et al., 2005a). 
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The mechanism for the attenuation of contraction by PVAT has been proposed as release 

of transferable relaxation factor(s) with unknown identity, termed adventitia-derived 

relaxation factor (ADRF) (Lohn et al., 2002). Results from the current study agree with 

this in that transfer of CM from WT mice augmented relaxation of aortic rings with PVAT. 

In addition, it was not necessary for the PVAT to be in contact with the vessel to exert an 

anticontractile effect. In the protocol CM was added prior to contraction of the vessel ring 

with U46619 and it was found that WT but not KO CM attenuated aortic contraction. This 

strongly suggests a transmissible factor is responsible for attenuating contraction and 

augmenting relaxation which is produced by aortic PVAT and in the KO mice this factor is 

reduced or absent and these findings are in agreement with many other studies (Lohn et al., 

2002, Verlohren et al., 2004, Gao et al., 2005b, Malinowski et al., 2008, Greenstein et al., 

2009).  

3.4.4 AMPKα1 knockout PVAT is assochied with adipocytokines 
release dysfunction 

PVAT is known to release many adipokines which can act in a paracrine fashion toward 

the blood vessels (Maenhaut and Van de Voorde, 2011). In 2002, Lohn and coworkers 

showed that the anticontractile effect of the PVAT is due to release of a transferable factor, 

termed ADRF (Lohn et al., 2002). Since then, many studies have revealed numerous 

adipokines that are involved in regulation of vascular tone (reviewed in Almabrouk et al., 

2014). The adipokines with vasodilatory properties are adiponectin (Fesus et al., 2007), 

omentin (Yamawaki et al., 2010) and visfatin (Yamawaki et al., 2009). The contractile 

adipokines include Ang II (Soltis and Cassis, 1991) and resistin (Walcher et al., 2010). 

Adipokines with both contractile and anticontractile properties are reactive oxygen species 

(Fang et al., 2009, Gao et al., 2007), leptin (Nakagawa et al., 2002), TNF-α (Brian and 

Faraci, 1998) and apelin (Japp et al., 2008).  

The release of the vasorelaxing factors (ADRF) has been reported to be dependent on Ca
2+

 

and is regulated by intracellular signalling pathways involving tyrosine kinase and protein 

kinase A and independent of perivascular nerve endings (Dubrovska et al., 2004). This is 

in contrast to the study by Weston et al. which proposed that under basal, noncontracted 

conditions, β3- stimulation in rat mesenteric PVAT induces release of an adipocyte- 

derived hyperpolarizing factor that is probably adiponectin (Weston et al., 2013). There are 

very few studies where the role of AMPK in release of ADRFs has been investigated. A 

study by Lihn et al indicated that the AMPK activator AICAR stimulated adipose tissue 
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AMPKα1 activity and adiponectin gene expression and reduced the release of TNF-α and 

IL-6 (Lihn et al., 2004). These cytokines have been shown to have inhibitory effects on 

adiponectin gene expression and release (Fasshauer et al., 2002, Maeda et al., 2002, 

Greenberg et al., 1991), such that activity of AMPK in the PVAT could regulate 

adiponectin expression (Lihn et al., 2004). Similarly, the PPARγ agonist troglitazone 

which also activates AMPK has a positive effect on adiponectin expression in mature 

adipocytes (Phillips et al., 2003, Sell et al., 2006). However, other studies using cultured 

3T3-L1 adipocytes found that prolonged exposure to the AMPK activating agent 

metformin actually causes a significant reduction in adiponectin protein content of the 

adipocytes (Huypens et al., 2005). Another study reported that metformin had no effect on 

serum adiponectin concentration or adipocyte adiponectin content in type 2 diabetic 

patients (Phillips et al., 2003, Tiikkainen et al., 2004). In human adipose tissue, activation 

of AMPK by AICAR also reduces the expression and release of TNFα and interleukin-6 

(IL-6) (Lihn et al., 2004, Sell et al., 2006). Furthermore, as it has been demonstrated that 

TNFα inhibits adiponectin expression (Kappes and Loffler, 2000), reduced TNFα 

expression results in up-regulation of adiponectin expression, such that the effects of 

AICAR on adiponectin may be indirect (Daval et al., 2006). To clarify how AMPKα1 KO 

affects the secretion of adipocytokines by aortic PVAT, an adipokine array was performed. 

Results showed that KO PVAT exhibits secretory dysfunction and the most striking 

difference was a reduction in adiponectin in KO PVAT and CM (Figure 3-21 &3-22). 

Quantitative studies using ELISA further confirmed a significant reduction in adiponectin 

in KO CM (Figure 3-23). Since adiponectin is a vasodilator (Fesus et al., 2007), it could 

account for the lack of an anticontractile effect in KO PVAT. These findings support 

previous indications that AMPK might be involved in regulation of adiponectin secretion 

(Lihn et al., 2004, Phillips et al., 2003), yet the mechanism of regulation needs further 

investigation. 

3.4.5 Adiponectin is a candidate for ADRF 

In the present study, the anticontractile effect of thoracic PVAT in wild type mice was 

abolished using a peptide blocking the effect of adiponectin (Figure 3-24), thereby 

suggesting that adiponectin might be responsible. This has also been demonstrated 

previously in human gluteal arteries (Fesus et al., 2007) and mice mesenteric arteries 

(Lynch et al., 2013). Furthermore, contractility studies conducted on AMPKα1 knockout 

mice demonstrated that PVAT was unable to attenuate contractility to U46619 as was 

observed with WT PVAT. It can therefore be proposed that impaired PVAT action is due 
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to the reduction in the release of adiponectin from the PVAT. The current study also 

demonstrated the ability of vessels to respond to exogenous globular adiponectin (Figure 3-

27). The globular adiponectin used for this study is known to have a higher affinity for 

AdipoR1 and low affinity for AdipoR2 (Kadowaki et al., 2006, Ketonen et al., 2010, 

Lynch et al., 2013). Since all rings were denuded of endothelium, an effect of adiponectin 

on the endothelium or generation of endothelium-derived mediators can be ruled out and 

the action is likely mediated by the vessel media (Weston et al., 2013). Additionally, 

vascular relaxation was seen in both wild type and AMPKα1 knockout vessels suggesting 

that adiponectin can act directly on vascular smooth muscle cells through AdipoR1 and 

that the AMPK expressed in these vessels may not involved. In the array experiment, 

neither globular adiponectin nor conditioned media was able to phosphorylate AMPKα in 

cultured vascular smooth muscle cells which further suggests that adiponectin can induce 

effects in vascular smooth muscle cells directly (Figure 3-28). This is in contrast to the 

study by Lynch et al which demonstrated that adiponectin induces an anticontractile effect 

in an endothelium-independent manner which involves activation of AMPK in the vascular 

smooth muscle layer and subsequent BKCa channel activation (Lynch et al., 2013). 

Furthermore, adiponectin receptor antagonism and the AMPK inhibitor compound C have 

been reported to attenuate vascular relaxation, whereas globular adiponectin failed to 

induce vascular relaxation in AMPKα2-deficient mice (Meijer et al., 2013). Such results, 

together with the findings from the current study, indicate that adiponectin may be the 

potential vasodilator molecule released by PVAT and that AMPK may regulate its release.  

3.4.6 Role of KATP channels in anticontractile effect of PVAT 

Two different vasodilators have been used in this study; AICAR which is a known AMPK 

activator and the KATP channel opener cromakalim. Indeed, PVAT enhanced the relaxation 

response induced by both agents. However, it is difficult to draw the conclusion that the 

observed AICAR-enhanced relaxation is due to PVAT as stimulation of VSMCs and 3T3-

L1 adipocytes with AICAR increased AMPK activity. Therefore, the data with AICAR as 

a vasorelaxant should be treated with caution and need to be investigated further. As stated 

previously, PVAT also enhances the relaxation response to the KATP channel activator, 

cromakalim, which suggests the involvement of vascular smooth muscle KATP channels. 

The role of this channel in the endothelium-independent vascular relaxation induced by 

PVAT has been suggested in a previous study by Lohn et al. in which the PVAT 

transferable factor was not identified (Lohn et al., 2002). Vascular ATP-dependent K
+
 

channels are activated by a number of conditions such as ischaemia and hypoxia and the 
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mechanism may be mediated by a fall in the intracellular ATP concentration or by a rise in 

the intracellular ADP concentration. Opening of KATP channels results in cell membrane 

hyperpolarisation and subsequent inactivation of voltage gated Ca
2+

 channels. This will 

lead to a decrease in intracellular free Ca
2+

 of the smooth muscle cells and thus to a 

dilation of the artery. As these channels are accompanied by efflux of Ca
2+

 into VSMCs, it 

is logical to think that will result in activation of AMPK in the medial layer of the artery. 

To rule out this issue, studies conducted using VSMCs treated with cromakalim and 

AICAR showed that treatment with cromakalim was not associated with either increased 

phosphorylation or activity of AMPK in VSMCs. Hypoxic vasodilation in isolated, 

perfused guinea pig hearts can be prevented by glibenclamide, a blocker of adenosine 

triphosphate (ATP)-sensitive potassium channels, and can be mimicked by cromakalim, 

which opens ATP-sensitive potassium channels. (Daut et al., 1990). These channels have 

been found to be involved in regulation of basal vascular tone in a number of vascular bed 

including the coronary circulation (Samaha et al., 1992) and mesenteric vessels (Nelson 

and Quayle, 1995) and inhibition of this channel by glibenclamide has been found to 

attenuate coronary and cerebral autoregulation (Narishige et al., 1993, Hong et al., 1994). 

In the current study, PVAT enhanced the relaxation induced by cromakalim and that 

suggests PVAT can induce endothelium-independent relaxation which may involve the 

KATP channel or perhaps increasing the sensitivity of the channel. However, the role and 

the mechanism of activation needed to be further investigated.  

3.5 Conclusion 

This study has shown that PVAT has a profound anticontractile effect on mouse aortic 

rings. The effect may be due to release of adiponectin by the PVAT and this release is 

regulated by the activity of AMPKα1. In mouse aortic rings, adiponectin augments 

relaxation to cromakalim in an endothelium-independent manner although other effects of 

adiponectin on the endothelium cannot be ruled out. The study also demonstrated 

perivascular adventitial adipose tissue elaborates an adiponectin factor that acts at least in 

part by an effect on ATP-dependent K
+
 channels. Clinically, there is evidence that PVAT 

becomes dysfunctional in obese humans and plasma adiponectin is reduced 

(Aghamohammadzadeh et al., 2015). Alterations in AMPK activity in the PVAT may be 

behind this effect.  
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Chapter 4  

Role of AMPK in regulation of redox state of the 
PVAT and its effect on vascular function 
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4.1 Introduction 

Many studies have demonstrated that PVAT or conditioned media can attenuate vessel 

contraction to various agonists including phenylephrine, 5-HT, angiotensin II and U46619 

in the mouse aorta, rat mesenteric arteries and human internal thoracic arteries (Lohn et al., 

2002, Verlohren et al., 2004, Gao et al., 2005b, Gao et al., 2005a). The mechanisms for the 

attenuation of contraction by PVAT are not fully understood, but the release of transferable 

relaxation factor(s) with unknown identity, termed adventitium-derived relaxation factor 

(ADRF), has been proposed. Several candidates have been suggested including adiponectin 

(Fesus et al., 2007), angiotensin-(1-7) (Lu et al., 2010), H2O2 (Gao et al., 2006), leptin 

(Galvez-Prieto et al., 2012), H2S (Fang et al., 2009), methyl palmitate (Lee et al., 2011). 

Many of these transferable vasoactive factors induce an anti-contractile effect through 

increasing NO synthesis and release by the endothelium (Galvez-Prieto et al., 2012) and/or 

targeting K
+
channels in vascular smooth muscle (Gao et al., 2007). It was also recently 

shown that PVAT from the thoracic aorta expresses the endothelial isoform of NO 

synthase (eNOS) (Araujo et al., 2015, Xia et al., 2016) and releases NO itself. PVAT-

derived NO contributes to relaxation in both endothelium-intact and denuded thoracic 

aortic rings, indicating NO as a potential ADRF in this vessel (Xia et al., 2016).  

On the other hand, a few studies have identified a procontractile effect of PVAT. Soltis and 

Cassis showed data indicating a contraction of PVAT-intact rat aorta in response to 

electrical field stimulation which was absent in tissues without PVAT (Soltis and Cassis, 

1991). Similar findings were also reported in rat mesenteric arteries (Gao et al., 2006). This 

effect is thought to involve production of superoxide (O2
.-
) by stimulation of NADPH 

oxidase in PVAT adipocytes (Gao et al., 2006). PVAT is a potential source of reactive 

oxygen species (Gao et al., 2006), which are by products of many reactions including 

cyclooxygenase-mediated production of prostanoids and uncoupling of eNOS from making 

NO (Mayr et al., 2005). There are two common ROS species that have been reported to 

affect vascular contractility; O2
.-
 and H2O2. Apart from H2O2, which is a vasodilator (Gao 

et al., 2007), ROS can induce vasoconstriction via many mechanisms including: increasing 

the degradation of NO, formation of peroxynitrite, a strong cytosolic oxidant generated by 

the reaction of the O2
.-
 with NO which inactivates PGI synthase and shifts the production 

of prostacyclin to that of other vasoconstrictor prostanoids or directly targeting the vascular 

smooth muscle layer by either induction of depolarisation or inhibition of ATP-sensitive 

potassium channels (KATP), voltage-activated potassium channels (Kv) and large 

conductance calcium-activated potassium channels (BKCa) (Wong and Vanhoutte, 2010). 
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The physiological significance of PVAT-derived O2
-
 is still elusive, although there is some 

evidence suggesting that O2
.-
 may affect vascular tone. It has been reported that O2

.-
 

released from mesenteric PVAT can potentiate the contraction of blood vessels to electric 

field stimulation (Gao et al., 2006). In denuded vessels, scavenging of O2
-
 with exogenous 

superoxide dismutase (SOD) reduced contraction to phenylephrine in aortic arteries with 

intact PVAT but not those devoid of PVAT (Gao et al., 2007).  

AMPK is a key regulator of cellular energy homeostasis and is activated in response to 

changes in energy status (Rubin et al., 2005, Adams et al., 2004). Activation of AMPK 

subsequently modifies the balance between energy generating and consuming metabolic 

pathways, enabling conservation of cellular energy status (Hardie and Carling, 1997). One 

of the vasculoprotective roles of AMPK is the control of vascular redox status. Oxidative 

stress and disturbed antioxidant defence is associated with endothelial dysfunction in 

vascular injury and atherosclerosis (Siersbaek et al., 2010, Sata et al., 2002). Increased 

production of oxidant species in the diseased vascular wall is associated with reduced NO 

production and further formation of damaging species such as peroxynitrite (Sata et al., 

2000). The role of AMPK in alleviation of disturbed redox balance has been addressed in 

many studies. AMPK activation in HUVECs with AICAR was found to increase levels of 

superoxide dismutase (SOD), the enzyme responsible for removal of O2
-
 (Kukidome et al., 

2006). AICAR activation of AMPK in HUVECs also causes uncoupling of protein-2 

expression which diminishes O2
.-
 production and prostacyclin synthase nitration in diabetes 

(Serrano et al., 1997). In contrast, some studies have reported that AMPK is itself activated 

by ROS. Metformin has been proposed to activate AMPK via an increase in mitochondrial 

reactive nitrogen species (Zou et al., 2004). Additionally, Coi et al reported that statins 

induced ROS generation and that peroxynitrite was responsible for AMPK activation (Choi 

et al., 2008). Similarly, activation of AMPKα1 in HUVECs with low O2 concentrations 

occurred as a result of mitochondrial ROS and was responsible for increased expression of 

antioxidant genes such as catalase and SOD (Colombo and Moncada, 2009). Furthermore, 

silencing of AMPKα1 was associated with enhanced oxidative stress, reduced expression 

of antioxidant defence genes such as catalase and SOD and diminished expression of NO 

generating enzyme eNOS (Colombo and Moncada, 2009). 

Comparatively little is known about AMPK function in PVAT, although given its role in 

other tissues, AMPK signalling is likely to be integral to PVAT function (Almabrouk et al., 

2014, Ewart and Kennedy, 2011). Loss of AMPK may increase PVAT inflammation and 
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shift its redox status towards a pro-oxidative environment. Together this could lead to 

increased PVAT ROS production, reduced NO availability and an impaired ability of 

PVAT to enhance relaxation. In support of this is the relationship between PVAT oxidative 

stress and PVAT dysfunction which has been demonstrated previously (Ketonen et al., 

2010, Greenstein et al., 2009). Impaired anti-contractile properties of PVAT from obese 

mice was found to be restored by pre-incubation with free radical scavengers (Ketonen et 

al., 2010). In another study, PVAT obtained from obese humans had a compromised anti-

contractile function which could be improved by treatment with SOD (Greenstein et al., 

2009). Results from chapter 3 showed that PVAT from AMPKα1 KO mice exhibited 

reduced anti-contractile properties. The mechanisms underlying PVAT dysfunction in 

AMPKα1 KO mice are currently elusive. Therefore, the current hypothesis is that the 

anticontractile dysfunction may be related to the loss of protective AMPK in the  PVAT 

which shifts the redox balance from NO production by eNOS to ROS production causing 

an increases in oxidative stress in the PVAT. Taken together, this chapter will investigate 

the role of AMPK in regulation of redox state of PVAT and how this affects its 

anticontractile function.   

4.2 Aims of the study 

 To characterise any differences in ROS and RNS expression between wild type and 

AMPKα1 KO PVAT 

 To define the role of AMPK in the NO-dependent anticontractile effect of PVAT 

4.3 Methods & Results 

4.3.1 Expression of superoxide anion in wild type and AMPKα1 
KO PVAT  

To test whether AMPKα1 knockout resulted in enhanced production of O2
.-
, 

immunofluorescence confocal microscopy was used. Briefly, thoracic aortic PVAT from 

WT and KO was dissected and rapidly placed into Krebs-Henseleit solution previously 

gassed. Segments were incubated with 10
-5

 M DHE for 30 minutes at 37°C in the dark and 

then washed (2 x 15 min) in KH at 37°C. Negative controls were incubated with 15 U/mL 

of SOD during exposure to dihydroethidium (DHE). Segments were fixed by immersion in 

acetic zinc formalin for 1 hour at room temperature, mounted on slides and visualised by 

confocal fluorescence microscopy. Representative images are shown in Figure 4-1. The 
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production of intracellular O2
.- 

in adipocytes of PVAT was confirmed by the presence of 

dark red fluorescent staining. Upon visual appraisal (Figure 4-1), an enhanced fluorescence 

intensity seemed to be present in KO PVAT (B) in comparison with wild type (A). 

However, image analysis of the mean fluorescence intensity (MFI) showed only a non-

significant trend toward increased MFI in KO PVAT (Figure 4-1E). The MFI in KO was 

43.4 ± 12.6, n = 3 in comparison with 38.8 ± 5.6 n = 5 in WT, (p = ns). The production of 

O2
.-
 was reduced by the scavenger enzyme SOD (15 U/mL) in both WT and KO PVAT; 

the reduction in intensity was more apparent in WT PVAT compared to KO PVAT 

although analysis of MFI showed that these differences were non-significant (Figure 4-1 

C&D) with KO PVAT showing high variability in response to SOD (Figure 4-1E). 
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Figure ‎4-1 Representative Immunofluorescent images showing superoxide production by 
adipocytes in WT and KO thoracic PVAT, detected with dihydroethidium (DHE).  

PVAT was labelled with DHE (10
-5

M), which emits red fluorescence when oxidized by superoxide. 
Representative confocal images of WT and KO PVAT showing O2

.-
 level (A,B) and the effect of 

treatment with SOD (C,D). (E) Quantitative fluorescence measurement of DHE in the presence and 
absence of SOD. Scale‎bar‎20μm. 

 

The production of O2
.-
 by PVAT of each genotype was also evaluated by comparing the 

levels of nitrotyrosine using immunohistochemical staining with nitrotyrosine antibody. 

Aortic rings with attached PVAT were dissected from WT and KO and  processed as 

detailed in Section 2.3.3. Briefly, WT and KO thoracic aortae were were excised 
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immediately after death and placed in 10% acetic zinc formalin overnight. Arteries were 

processed through a gradient of alcohols to Histoclear and embedded vertically in paraffin 

wax before being cut into 5 μm sections. Peroxynitrite reacts with protein tyrosine residues 

to form stable nitrotyrosine moieties which can be detected with specific antibodies and is 

used as a marker for peroxynitrite activity (Libby, 2002). Polymer-based 

immunohistochemistry was used to evaluate nitrotyrosine expression in PVAT from WT 

and KO mice. Figure 4-2 shows representative images of WT and KO aortic PVAT stained 

with nitrotyrosine antibody. Upon visual assessment, diffuse nitrotyrosine expression was 

apparent in the aortic PVAT of both strains. The intensity of antibody staining appeared 

greater in PVAT from AMPKα1 KO mice (n=3). 

 

A B
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C
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Figure ‎4-2 Nitrotyrosine expression in aortic PVAT from wild type and AMPKα1 knockout 
mice.   

Representative histological sections of thoracic aorta with intact PVAT from WT and KO mice 
stained with anti-nitrotyrosine antibody and counterstained with haematoxylin. Positive staining is 
indicated by brown colour (B,C,E,F) and blank (untreated) is represented in A&D. Scale bar 20μm 
(A, B, D, E), 10μm (C,F). 

 

 

 

 

 

 

4.3.2 eNOS and NO levels in WT and KO PVAT 

To determine the effect of AMPKα1 deletion on NO production by PVAT, two approaches 

were used. Firstly, the effect of AMPKα1 ablation on the protein levels and 

phosphorylation state of eNOS in the PVAT was assessed. Expression of eNOS was 

measured by Western blot analysis as detailed in Section 2.7. Briefly, WT and KO PVAT 

samples were dissected free and lyastes were prepared. Protein content analysis from these 
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lysates was performed and protein was added at 10 μg per well. Immunoblotting was 

performed with antibodies against phospho-eNOS, total-eNOS and GAPDH which was 

used as a loading control. Membrane visualisation of immunolabelled bands was carried 

out using an Odyssey Sa Infrared Imaging System (LI-COR, USA) linked with Odyssey Sa 

Infrared Imaging System software (LI-COR, USA) (all antibody dilutions found in Table 

2.5). Densitometric analysis of the blots demonstrated that the ratio of phosphorylation (p-

eNOS)(ser1179) relative to total eNOS (t-eNOS), was significantly reduced in AMPK-α1 

knockout PVAT in comparison with wild type (p<0.05, n = 3) (Figure 4-3B). Similarly, 

total eNOS was also reduced in KO PVAT in comparison to WT PVAT (p<0.01, n = 3 vs 

KO PVAT) (Figure 4-3C)  
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Figure ‎4-3 eNOS expression and activity in PVAT.  

PVAT samples from wild type and AMPKα1 knockout were lysed and immunoblotting for total and 
phospho-eNOS (Ser1179) was performed. (A) Representative immunoblots are shown. (B) 
Densitometric analysis of immunoblots, presented as ratio of phosphorylated eNOS relative to total 
eNOS and ratio of total eNOS divided by by GAPDH (C). *p<0.05 vs KO PVAT, n = 3; **p<0.01 vs 
KO PVAT, n = 3.  

 

The difference in the production of NO in aortic PVAT between WT and KO was also 

evaluated with the fluorescent dye DAF-2DA using immunofluorescence confocal 

microscopy. Preparation of PVAT samples was described in section 2.8.1. PVAT samples 

were incubated in 10 μM DAF-2DA for 30 minutes. 0.1 mM Nω-nitro-L-Arginine (L-

NNA) and 15 U/L SOD were used as negative and positive controls respectively. After 
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fixation, samples were incubated in 1 μM SYTO 61 fluorescent nucleic acid stain (Thermo 

Fisher Scientific, UK) for 1 hour prior to mounting and confocal microscopy examination. 

Representative images of which are shown in Figure 4-4.  

There was no difference in basal DAF-2DA fluorescence intensity between WT and KO 

(Figure 4-4 A, D). Incubation with the NOS inhibitor L-NNA visually reduced the 

fluorescence intensity in both genotypes (Figure 4-4B, E), yet this was not significant 

(Figure 4-4 G). In the presence of SOD, the fluorescence intensity was increased as 

assessed visually in both WT and KO (C, F). Statistical evaluation of the mean 

fluorescence intensity showed a non-significant trend toward increased enhanced 

production of NO in the presence of SOD (Figure 4-4 G). 
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Figure ‎4-4  DAF-2 fluorescence in WT and KO thoracic PVAT.  

PVAT was labelled with DAF-2DA (10 μM), which is hydrolysed to the impermeable 4,5 - 
diaminofluorescein (DAF-2) by cellular esterases. DAF-2 subsequently reacts with cellular NO to 
form the fluorescent triazolofluorescein. PVAT samples were then treated with either L-NNA (0.1 
mM) or SOD (15 U/L). Representative confocal images of WT and KO PVAT showing NO 
production (A,D) and the effect of treatment with L-NNA (B,E) and SOD (C,F). (G) Quantification of 
DAF-2 mean fluorescence intensity in presence and absence of L-NNA or SOD. Scale bar 20μm. 
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4.3.3 Effect of PVAT on Sodium nitroprusside-induced relaxation  

To determine the influence of AMPK in the PVAT on mediating relaxation of aortic rings 

to exogenous NO, concentration-response curves to the NO donor sodium nitroprusside 

were constructed. Denuded aortic rings with and without PVAT were dissected from WT 

and KO mice and cut into 2 mm segments and mounted on two 40 μm diameter wires in a 

small artery wire myograph as detailed in Section 2.4. Arterial rings were maintained in 

Krebs’ solution at 37 °C and gassed continuously with 95 % O2 and 5 % CO2. Following a 

30 minute equilibration period, the vessels were set to 1g optimal tension of. Viability of 

arterial rings was evaluated with 40 mM KCl. Following this, the artries were washed and 

pre-constricted with U46619 for a further 30 minutes. Cumulative dose-response curves to 

increasing concentrations nitric oxide donor sodium nitroprusside were constructed. Data 

were expressed as a percentage of loss in the vascular tone induced by U46619. 

In rings from both WT and KO mice, the presence of thoracic PVAT had no effect on the 

relaxation induced by sodium nitroprusside (Figure 4-5 A&B). However, in wild type 

vessels without PVAT, sodium nitroprusside produced a maximum relaxation (Emax) of 

36.2 ± 6.6%, (n = 6) which was approximately double the Emax observed in the KO (20.7 ± 

5.5%, n = 9, p <0.05) suggesting a dysfunctional vascular smooth muscle layer in 

AMPKα1 knockout mice (Figure 4-5C).  
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Figure ‎4-5 Effect of PVAT on Na nitroprusside-induced relaxation in wild type and knockout 
thoracic aorta.  

Dose-response curves to Na nitroprusside (SNP) were produced by wire myography of thoracic 
aortic rings from (A) WT or (B) KO mice with (+) and without (-) PVAT. All vessels were without 
endothelium. (C) Comparison of effect of SNP in vessels from each genotype lacking PVAT. (n = 6, 
***p<0.001). 
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4.4 Discussion  

The aim of this chapter was to investigate the role of AMPK in regulation of the redox 

state in PVAT. The results presented show that (1) ROS production appears to be similar in 

both WT and KO PVAT, although the expression of nitrotyrosine, a marker for 

peroxynitrite appears higher in KO PVAT. (2) The level of NO appeared to be similar in 

both types of PVAT, although there was a significant reduction in the levels of phospho- 

eNOS and proportion of eNOS phosphorylated in KO PVAT when quantified by Western 

blotting. (3) There was a reduced relaxation to sodium nitroprusside in KO aortic rings, 

which indicates dysfunctional medial smooth muscle.  

4.4.1 Role of AMPK in regulation of ROS release from PVAT 

Many studies have now established that AMPK is a critical regulator of vascular redox 

balance. AMPK has been reported to abolish the formation of ROS by NADPH oxidase 

and induce NO production by eNOS (Fisslthaler and Fleming, 2009). Silencing of the 

AMPKα1 subunit isoform has also been reported to be associated with reduced expression 

of MnSOD, catalase, γ-glutamylcysteine synthase and thioredoxin, in endothelial cells 

(Colombo and Moncada, 2009). Conversely, activation of AMPK by AICAR or AMP can 

suppress the production of O2
.-
 stimulated by phorbol esters or fMLP (Formyl-Methionyl-

Leucyl-Phenylalanine) in neutrophils (Alba et al., 2004). Furthermore, activation of AMPK 

by rosiglitazone effectively attenuated the generation of ROS in HUVECs exposed to a 

high glucose concentration (Ceolotto et al., 2007). Not only this, AMPK can also influence 

the cellular redox balance via inhibition of prostacyclin synthase in endothelial cells by 

prevention of tyrosine nitration through upregulation of UCP-2 (Xie et al., 2008). As 

AMPK is expressed in all layers of the vascular wall including PVAT, it is plausible that 

AMPK is also involved in regulation of the redox state of the PVAT itself. 

PVAT is known to release ROS such as O2
.-
 (Ketonen et al., 2010). This chapter aimed 

firstly to investigate the role of AMPK in regulation of ROS production by looking at 

levels of O2
.-
 and peroxynitrite. Using confocal microscopy, experiments using DHE 

fluorescence as a measurement of O2
.-
 showed that there was no difference in the levels of 

O2
.- 

between WT and KO PVAT (Figure 4-1). The absence of a difference may be 

attributed to the DHE which is known to produce multiple fluorescent products with 

overlapping emission spectra, only one of which is specific to O2
.-
 (Fink et al., 2004, Zhao 

et al., 2003). DHE can be oxidized by oxidants other than O2
.-
, such as H2O2 and 
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cytochrome C which can produce excitation emissions that are relatively near the 

excitation emission of DHE. Therefore, the detection system used in this study will have 

captured the composite spectra of non-specific DHE products and therefore the intensity 

values reported may reflect not just O2
.-
 production by the PVAT but other radicals as well 

(Zhao et al., 2005). The issue of the DHE signal being nonspecific was investigated by 

incubating the PVAT with the superoxide scavenger SOD to enable O2
.-
 specific 

fluorescence to be estimated. There was a reduction in the intensity in both WT and KO 

PVAT which was inconsistent and variable and which suggests perhaps a low production 

of extracellular O2
.-
 that cannot be estimated by using unconjugated SOD. It has been 

reported that O2
.-
 has a restricted ability to diffuse through cell membranes and so 

endogenous SOD is largely confined to intracellular compartments (Szabo et al., 2007).  

Application of unconjugated SOD which has a limited permeability makes the 

interpretation of the current data difficult as it may have been unable to access the site of 

O2
.-
 generation. Alernatively, the current data suggest the need for more quantitative tools 

which are more specific for detecting O2
.-
 and also using a more permeable form of SOD 

such as polyethylene glycolated SOD (Laurindo et al., 2008, Beckman et al., 1988).  

Despite the findings that PVAT NO and O2
.-
 levels were similar in both WT and KO 

PVAT, the content of peroxynitrite (detected as nitrotyrosine) was greater in the KO PVAT 

(Figure 4-2), suggesting an imbalance in the NO pathway. Peroxynitrite is a strong oxidant 

and nitrating compound formed from the extremely rapid reaction between O2
.-
 and NO. 

The cellular source of NO is various NOS isoforms, whereas O2
.-
 sources include the 

mitochondrial electron transport chain, NADPH oxidase and xanthine oxidase. Moreover, 

a deficiency in NO substrate (L-arginine) or cofactors (tetrahydrobiopterin) can lead to 

uncoupling of NOS and a shift towards generation of O2
.-
 which will lead to oxidative 

stress (Liaudet et al., 2009). It is worth noting that the reaction of NO with O2
- 
depends on 

the ratio of superoxide to NO which means that peroxynitrite production does not depend 

on enhanced NO or O2
.- 

generation and that the generation of peroxynitrite under normal 

physiological conditions occurs when there are equal levels of both NO and O2
.- 

 (Pacher et 

al., 2007).  More importantly, the rate of the formation of peroxynitrite is greater than the 

rate of superoxide decomposition by SOD (Liaudet et al., 2009). Therefore, any minimal 

changes in the rate of NO and O2
.-
 generation can result in a substantially larger increase in 

the rate of peroxynitrite formation meaning that undetectable differences in NO and 

superoxide which were observed in this study, could manifest as significant differences in 

nitrotyrosine levels (Pacher et al., 2007). 
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In this study, nitrotyrosine levels were greater in aortic KO PVAT. A possible explanation 

of the difference is that mouse aortic PVAT has a similar morphology and gene expression 

profile to BAT, suggesting it performs similar functions (Frontini and Cinti, 2010, 

Fitzgibbons et al., 2011), which was also observed in chapter 3. In contrast to WAT, BAT 

is rich in mitochondria, reflected by the high metabolic activity and is a potent source of 

oxygen radicals (Cannon and Nedergaard, 2004, Lopez-Torres et al., 1991). Generation of 

oxygen radicals may contribute to an increased capacity to generate peroxynitrite (Radi et 

al., 2002). Deletion of AMPKα1 subunit in aortic PVAT was associated with increased 

nitrotyrosine expression, potentially due to augmented peroxynitrite production secondary 

to a disrupted metabolic and redox balance in the absence of AMPK.  

4.4.2 Effect AMPKα1 deletion on eNOS and NO levels 

Previous studies have demonstrated that eNOS is also expressed in white adipose tissue 

(Motoshima et al., 2004, Boyle et al., 2008). Another study using an immunohistochemical 

approach has reported eNOS staining within PVAT surrounding saphenous vein 

(Dashwood et al., 2007). The findings from the current study support previous data that 

PVAT (Figure 4-1A&B), and eNOS in the PVAT produce NO (Figure 4-4). The current 

study also showed that the levels of eNOS are downregulated in KO PVAT suggesting a 

potential link between AMPKα1 subunit and eNOS function in the PVAT. However, data 

from confocal analysis of DAF-2 fluorescence indicated no difference in the NO 

production between WT and KO PVAT. Furthermore, the production of NO by PVAT was 

supported using L-NNA which reduced NO-dependent fluorescence in both types of 

PVAT, albeit non-significantly and SOD, which caused a non-significant enhancement in 

NO-fluorescence (Figure 4-4). The absence of any difference in the NO fluorescence 

between WT and KO despite KO PVAT showing reduced levels of eNOS phosphorylation 

may be explained in two ways. Firstly, the NO fluorescence detected using DAF-2DA in 

the KO mouse may be a compensatory NO production from other NOS isoforms such as 

iNOS. Secondly, DAF-2DA is associated with high background fluorescence, believed to 

result from inherent fluorescent properties of the inactivated DAF-2 probe and its reaction 

products (Rodriguez et al., 2005). Low NO levels being produced in the PVAT may be 

obscured by background fluorescence and make the detection of any difference between 

KO and WT more difficult.  
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4.4.3 PVAT anticontractile effect in response to NO donor 

As the AMPKα1 KO exhibited reduced expression of eNOS and enhanced expression of 

peroxynitrite, which suggests a redox status imbalance, this study further aimed to examine 

the functional properties of the PVAT by looking at the PVAT anticontractile effect. Dose 

response curves to sodium nitroprusside which is known to act via endothelium-

independent generation of NO (Tesfamariam and Halpern, 1988) were constructed in WT 

and KO aortic rings with and without PVAT. In both WT and KO (Figure 4-5), the 

relaxation response to sodium nitroprusside was not altered by the presence of PVAT, as 

shown in another study (Gao et al., 2007). However, in vessels lacking PVAT, the 

maximum relaxation response to nitroprusside in WT aortic rings was significantly greater 

than that in KO aortic rings (Figure 4-5C). The explanation for this may be a dysfunctional 

vascular smooth muscle layer due to AMPKα1 subunit ablation and that AMPKα1 

expression in VSMCs is essential for NO-mediated relaxation. Although this study 

reported reduced eNOS expression in the PVAT, the regulatory role of AMPK on eNOS 

activity and the magnitude of contribution of NO produced by eNOS in the PVAT to the 

endothelium independent anticontractile mechanism of the PVAT needs to be characterised 

further. Therefore, application of SOD and or L-NAME in functional studies such as 

myography would be a suitable approach to investigate this mechanism. Furthermore, as 

the response to SNP is very low, it is possible to test the effect of PVAT NO using another 

nitric oxide donor such as MAHMA NONOate ( 6-(2-Hydroxy-1-methyl-2-

nitrosohydrazino)-N-methyl-1-hexanamine, NOC-9).  

4.5 Conclusion  

Comparison of PVAT from AMPKα1 KO and WT mice revealed no significant difference 

in O2
.-
 or NO availability, although nitrotyrosine expression was higher and there was 

reduced eNOS phosphorylation in KO aortic PVAT. Although functional studies did not 

show any significant effect of PVAT on sodium nitroprusside induced relaxation, the 

contribution of PVAT-derived NO on vascular relaxation and the anticontractile effect of 

PVAT cannot be ruled out and needs further investigation.  
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Chapter 5  

Effect of a high fat diet on perivascular adipose 
tissue function and the role of AMPK 
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5.1 Introduction  

There is abundant evidence in the literature reported that obesity is a leading cause of 

insulin resistance, type 2 diabetes mellitus and increased blood pressure; all are major risk 

factors for cardiovascular disease (Gledhill et al., 2007). Generally, high-fat diet leads to 

adipocyte hypertrophy and the development of a low grade pro-inflammatory state 

(Jorgensen et al., 2004). As a result, there is increasing accumulation of macrophages and 

other leukocytes, particularly in obese adipose tissue (Weisberg et al., 2003). The function 

of adipocytes in storage of TAGs is also impaired, resulting in ectopic fat deposition in 

liver and skeletal muscle (Jorgensen et al., 2004). Furthermore, circulating adipose-derived 

pro-inflammatory cytokines, FAs and metabolites of this ectopic lipid are increased 

(Jorgensen et al., 2004). Excessive caloric intake is associated with increased secretion of 

proinflammatory adipokines such as TNF-α, leptin, IL-6, resistin, RBP4, lipocalin 2, IL-

18, ANGPTL2 and reduced antinflammatory adipokines such as adiponectin and omentin 

(Nakamura et al., 2014). These changes reported in HFD may extend to PVAT and trigger 

both structural and functional changes which result in dysfunctional vasculature (Maenhaut 

and Van de Voorde, 2011). 

Many studies have reported that the vasorelaxant function of PVAT is impaired in the 

presence of many pathophysiological conditions. Gao et al showed that the anticontractile 

effect of PVAT was reduced in spontaneously hypertensive rats (Lu et al., 2011a) and 

increased in streptozotocin-induced diabetic rats (Lee et al., 2009b). As obesity is 

associated with increased PVAT mass, it would be conceivable to expect an increased 

anticontractile effect of the PVAT due to enhanced PVAT-derived relaxing factors being 

released. However, it is now believed that obesity triggers structural and functional 

changes in PVAT which contribute to a loss or attenuation of the anticontractile effect. The 

loss of anticontractile effect has been reported in many studies. Chatterjee and co-workers 

reported that human coronary perivascular adipocytes exhibit a reduced state of adipocytic 

differentiation as compared with adipocytes derived from subcutaneous and visceral 

(perirenal) adipose depots. Secretion of adiponectin was significantly reduced, whereas 

that of proinflammatory cytokines interleukin-6, interleukin-8, and monocyte 

chemoattractant protein-1, was markedly increased in perivascular adipocytes (Chatterjee 

et al., 2009). It has been reported that the anticontractile effect of PVAT can be restored 6 

months following bariatric surgery to encourage weight loss and that this corresponded to a 

significant reduction in TNF-α and macrophage infiltration in the PVAT.  
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It should be emphasized that not only obesity, but other pathological insults such as 

hypertension and balloon inflation during percutaneous intervention may trigger changes 

within the PVAT. It has been reported that PVAT generates complement 3 (C3) which 

stimulates fibroblast migration and differentiation via JNK activation (Ruan et al., 2010). 

This effect was thought to contribute to adventitial remodelling and increased vascular 

stiffness reported in the deoxycorticosterone acetate–salt hypertensive rat (Ruan et al., 

2010). Furthermore, PVAT-released adipocytokines may enhance neointimal formation 

after vascular wire injury. In another study, transplantation of thoracic PVAT from donor 

mice fed a high-fat diet to the carotid arteries of recipient low-density lipoprotein receptor 

knockout mice also fed a high-fat diet was undertaken, followed by induction of 

intravascular wire injury after 2 weeks. The transplanted thoracic PVAT accelerated 

neointimal formation, adventitial angiogenesis, and macrophage infiltration (Manka et al., 

2014). Furthermore, the same study reported that transplanted PVAT from MCP-1-

deficient mice significantly reduced adventitial angiogenesis and neointimal hyperplasia 

with effects on macrophage infiltration (Manka et al., 2014). Indeed, PVAT inflammation 

induced by either HFD and/or intravascular wire injury contributes to vascular dysfunction 

including affecting the anticontractile activity of PVAT.   

Although it is known that the anti-contractile properties of PVAT are lost in obese patients 

and animal models (Greenstein et al., 2009), the underlying mechanism of PVAT 

dysfunction remains elusive. AMPK maintains energy homoeostasis (Carling et al., 2011) 

and is involved in regulation of glucose, lipid and protein metabolism (Hardie, 2008). 

These basic functions are known to be dysregulated in obesity and metabolic syndrome in 

which the activity of AMPK is diminished (Ruderman et al., 2013). An impaired AMPK 

function associated with obesity has been reported with reduced eNOS activity and 

upregulation of mTOR which contributes to vascular remodelling and endothelial 

dysfunction (Ma et al., 2010). Furthermore, endothelial dysfunction in obesity can be 

reversed by AMPK activation, which increases phosphorylation of eNOS and enhances 

NO bioavailability; an effect which involved adiponectin (Deng et al., 2010). Another 

study demonstrated that PVAT-derived adiponectin can induce PVAT-dependent 

hyperpolarisation of vascular smooth muscle cells via AMPK (Weston et al., 2013), and 

thus reduced AMPK activation could also modify the PVAT effect on vascular 

contractility.  
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In spite of the fundamental role AMPK plays in regulation of cellular and whole-body 

energy demands, the effect of a HFD, a major cause of obesity and its complications 

(Hariri and Thibault, 2010, Woods et al., 2003b), on AMPK in the PVAT has not been 

comprehensively investigated. The effect of diet-induced obesity on AMPK has most 

frequently been studied in endothelium and VSMCs (Ma et al., 2010, Weston et al., 2013, 

Rubin et al., 2005, Nagata et al., 2004, Igata et al., 2005). These types of studies have 

yielded consistent results, showing that AMPK acts as a protective mechanism against 

diet-induced obesity and vascular injury. To date, no study has investigated the role of 

PVAT AMPK in the response to HFD and vascular injury. Therefore, we hypothesised that 

AMPK expressed in PVAT would act as a protective mechanism against diet-induced loss 

of anticontractile effect and wire-induced injury. 

Aim of the study  

 To determine whether high HFD could affect AMPK function and thus the anti-

contractile properties of PVAT in mice aortae, and if so, to investigate the potential 

mechanisms involved. 

 To determine the whether wire-induced injury could affect AMPK function in the 

PVAT and thus the antiprolefertive response in mice carotid artery. 

5.2 Method and results 

5.2.1 High fat diet increased the weight of both wild type and 
AMPKα1 knockout  

Wild type (WT) (n =20) and AMPKα1 knockout (KO) (22) were divided into two groups 

and fed either a normal diet (ND) or a high fat diet (HFD) for 12 weeks starting at age 8 

weeks. Body weight was measured at the start of the study and at the time of culling. At 

the start of the experiment, there was no difference in the weight between WT and KO 

mice for each group (Figure 5-1). After 12 weeks, there was a significant increase in the 

weight of WT mice on ND (16.9 ±2.9 g (n=10) compared to 33.2 ± 3.1 g (n=11)) in HFD 

group. Similarly, HFD increased the weight of KO mice to 33.4 ± 5.5 g (n=11) compared 

to 13.6 ± 2.3 g (n=10) in KO mice fed ND. Overall, both WT and KO HFD groups gained 

more than 50% weight in comparison with the respective ND groups. Figure 5-2 represents 
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the percentage of weight gain in the HFD group in comparison with normal diet (ND) 

group. 
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Figure ‎5-1 The average baseline weight of WT and KO mice before starting the HFD. 

Wild type (WT) (n =20) and AMPKα1 knockout (KO) (n =22) were allocated randomly to ND and 
HFD groups and the weight of mice in each  group was measured prior to starting ND or HFD. 
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Figure ‎5-2 Weight gain in response to high-fat diet in wild type and AMPKα1 knockout mice.  

Body weights were recorded at the beginning and at the end of the 12 wks of the study. 
Percentage weight gain was calculated for normal diet group and HFD group in both WT and KO. 
**p<0.01 vs WT HFD, n = 10-11, **p<0.01 vs KO HFD, n = 10-12. 
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5.2.2 Effect of high-fat diet on vascular contraction 

The contractile response of thoracic aortic segments with or without attached PVAT from 

WT and KO mice on ND or HFD was measured in response to 3x10
-8

M of U46619 (Figure 

5-3). Aortic segments with and without PVAT were dissected from WT and KO mice in 

ND and HFD groups, cut into 2 mm segments and mounted on two 40 μm diameter wires 

in a small artery wire myograph as described in Section 2.5. Arterial rings were maintained 

in Krebs’ solution at 37 °C and gassed continuously with 95 % O2 and 5 % CO2. Following 

a 30 minute equilibration period, the arterial rings were exposed to 1 g tension for 30 min. 

Viability of arterial segments was measured with 40 mM KCl. Following this, the vessels 

were washed and then pre-constricted with U46619 for a further 30 minutes. Maximum 

contraction to U46619 was then recorded in grams and comapred between groups. The 

contraction of WT aorta without PVAT in ND group was 1.2 ± 0.3 g (n = 7) and was not 

significantly different from that reported in PVAT-free vessels from the HFD group (1.2 ± 

0.2 g; n = 7). The contraction in WT aorta with intact PVAT from HFD group was (1.4 ± 

0.3 g; n = 6) which was higher than that reported in the ND group (1.1 ± 0.1 g; n = 7) but 

did not reach statistical significance. There was no significant difference in contraction to 

U46619 in PVAT-free vessels from AMPKα1 KO mice in either the ND and HFD group 

(1.3 ± 0.2 g; n = 8 vs 1.4 ± 0.2 g; n = 6). Similarly, there was no statistical significance 

between vessels with intact PVAT in either the ND and HFD KO mice groups. The 

contraction in the ND group of KO mice with intact PVAT was 1.6 ± 0.2 g (n = 8) which 

was slightly higher than that in the KO HFD group (1.4 ± 0.2 g; n = 7; p = ns vs HFD 

intact PVAT arteries). Although the results did not show a significant difference between 

ND and HFD groups, the trend toward an enhanced contractile response in WT PVAT-

intact vessels from mice fed a HFD was observed. 
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Figure ‎5-3 Effect of high-fat diet on thromboxane A2 receptor agonist U46619 (3x10
-8

 M) 
induced contraction. 

Endothelium denuded, thoracic aortae with and without PVAT from WT and KO were dissected 
from ND and HFD groups and stimulated with U46619 for approximately 30 min and contraction 
measured on a myograph.  

 

5.2.3 Effect of high-fat diet on the anticontractile effect of PVAT 

At the end of the diet period, the anticontractile responses of the thoracic aorta to 

cromakalim were determined in WT and KO as described in section 2.5. Briefly, WT and 

KO thoracic aortae with and without PVAT from ND and HFD mice were preconstricted 

to U46619 and cumulative dose-response curves to increasing concentrations of 

cromakalim were constructed. In the ND group, the maximum relaxation to 10
-4

M 

cromakalim produced by aortic rings from WT mice with intact PVAT (83.3 ± 3.6%, n=7; 

Figure 5-2A) was significantly greater than that produced by aortic rings without PVAT 

(27.6 ± 2.8%, n=7). At the end of 12 week of HFD, the maximal responses to cromakalim 

in intact PVAT aortic rings was 54.3 ± 3.5%; n = 7 in comparison with rings lacking 

PVAT from the same group (25.9 ± 4.6%; n = 7; Figure 5-2 B). Overall, in comparison 

with ND, HFD reduced the maximum response in aortic rings with intact PVAT by 

approximately 30%, while there was no effect in vessels without PVAT (Figure 5-2C), 

suggesting partial dysfunction of the PVAT caused by HFD which attenuates the 

anticontractile effect.  
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In the AMPKα1 KO mice, maximal responses to cromakalim were not significantly 

different between vessels with or without intact PVAT in both ND and HFD diet groups. 

The maximum responses were: 32.01 ± 4.02% vs. 21.7 ± 5.3%; n=7; p=ns with ND 

(Figure 5-3A) and 35.3 ± 4.4% vs. 33.5 ± 8.6%; n=7; p=ns with HFD (Figure 5-3B) 

respectively. Comparison between ND and HFD groups showed no significant difference 

(Figure 5-3C).  
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Figure ‎5-4 Effect of HFD on cromakalim-induced relaxation in WT thoracic aorta.  

Dose-response curves to cromakalim were produced by wire myography in thoracic aortic rings 
with (+) and without (-) PVAT from WT mice fed ND or HFD. All vessels were without endothelium. 
(A) Dose-response curves to cromakalim in WT ND. (B) Dose-response curves to cromakalim in 
WT HFD. (C) Effect of HFD on cromakalim induced relaxation. ***p<0.001 vs ND PVAT(-), n = 6; 
***p<0.01 vs HFD PVAT(-), n = 6; ***p<0.001 vs ND PVAT(+). 
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Figure ‎5-5 Effect of HFD on the cromakalim-induced relaxation in AMPKα1 KO thoracic 
aorta.  

Dose-response curves to cromakalim were produced by wire myography in thoracic aortic rings 
with (+) and without (-) PVAT from KO mice fed ND (n = 6) or HFD (n = 6). All vessels were without 
endothelium. (A) Dose-response curves to cromakalim in KO ND. (B) Dose-response curves to 
cromakalim in KO HFD. (C) Effect of HFD on cromakalim induced relaxation.   
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5.2.4 Effect of high-fat diet on the morphology of PVAT 

To determine the effect of HFD on PVAT phenotype, WT and KO thoracic aortic rings 

from ND and HFD were processed, cut and stained as detailed in Section 2.4. thoracic 

arteries with intact PVAT were excised immediately after death and placed in 10% zinc 

formalin overnight. Arteries were processed through a gradient of alcohols to Histoclear 

and embedded vertically in paraffin wax before being sectioned on a microtome at  5 μm. 

H&E staining was performed and sections visualised by light microscopy. The results 

shown in Figure 5-6 indicated that 12 weeks of HFD had obvious effects on adipocyte 

phenotypic features in both WT and KO PVAT. In both groups, aortic PVAT was 

composed of adipocytes with the morphological features of brown adipocytes with 

multiple lipid vacuoles and central nucleus. The WT and KO adipocytes from the HFD 

group were hypertrophied with some scattered WAT adipocytes present in the PVAT 

dissected from KO mice (Figure 5-6D). 

Wild type 

AMPKα1 KO

Normal diet (Chow) High-fat diet 

C

A B

D

 

Figure ‎5-6 Effect of high-fat diet on thoracic PVAT phenotype from both WT and KO mice.  

Sections of WT and KO thoracic aortic rings were harvested from mice fed normal diet (chow) or 
high fat diet and stained with H&E. Nuclei appear blue/purple whereas cytoplasm is stained pink. 
Scale‎bar;‎20‎μm. Representative micrographs are shown. 
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To further test the effect of HFD on the phenotype of the PVAT, quantitative analysis of 

levels of the brown adipose tissue marker UCP-1 was performed. Expression of UCP-1 

was measured by Western blot analysis as detailed in Section 2.7. Briefly, WT and KO 

PVAT samples harvested from mice fed ND or HFD were dissected free and lyastes 

prepared. Protein estimation analysis from these lysates was performed and protein was 

added at 10 μg per well. Immunoblotting was performed with antibodies against UCP-1 

and GAPDH which was used as a loading control. Membrane visualisation of 

immunolabelled bands was carried out using an Odyssey Sa Infrared Imaging System (LI-

COR, USA) linked with Odyssey Sa Infrared Imaging System software (LI-COR, USA) 

(all antibody dilutions found in Table 2.5). The results showed that HFD increased the 

level of UCP-1 in both WT and KO PVAT in comparison with ND derived PVAT relative 

to GAPDH levels. In WT, HFD exhibited increased levels of UCP-1 (1.2 ± 0.03 vs 0.7 ± 

0.1 in ND). Similarly, the level of UCP-1 was significantly elevated by HFD in KO PVAT 

(1.3 ± 0.1 vs 0.83 ± 0.1 in ND).  
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Figure ‎5-7 Effect of HFD on UCP-1 levels in PVAT.  

Tissue lysates were prepared from thoracic aortic PVAT dissected from WT and KO mice fed ND 
or HFD and Western blotting was performed. UCP-1 level is presented as a ratio relative to the 
density of the GAPDH band to adjust for protein loading. The immunoblot shown is representative 
of (n= 4).  *p<0.05 vs WT PVAT (ND); *p<0.05 vs KO PVAT (ND).  
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5.2.5 Effect of high-fat diet on AMPK level and activity 

To examine the effect of HFD on AMPK level and activity, WT and KO thoracic aortic 

rings from both ND and HFD groups were analysed by immunohistochemistry for total 

and phospho-AMPKα (Thr172). Aortic rings dissected from WT and KO fed on ND or 

HFD were processed, cut and stained as detailed in Section 2.3.3. In brief, WT and KO 

thoracic aortae were excised immediately after death and placed in 10% acetic zinc 

formalin overnight. Arteries were processed through a gradient of alcohols to Histoclear 

and embedded vertically in paraffin wax before being cut into 5 μm sections. Polymer-

based immunohistochemistry was used to evaluate expression of total and phospho-

AMPKα in PVAT from WT and KO mice fed on ND or HFD. Figure 5-8 shows 

photomicrographs of total AMPKα in ND and HFD groups. Although there was an 

obvious reduction in staining intensity of total AMPKα and phospho-AMPKα in KO 

PVAT in comparsion with WT PVAT, there was no significant difference caused by HFD 

in either strain.  Immunohistochemical staining of total AMPKα in both WT and KO aortic 

PVAT showed no difference in the staining intensity in WT (Figure 5-8A&D) and KO 

(Figure 5-8 G&J). Similarly, staining for phospho-AMPKα showed almost similar staining 

intensity in WT of the HFD group in comparison with WT of the ND group (Figure 5-

9A&D). Thoracic aortic rings of KO mice of both ND and HFD group did not show any 

obvious difference in phospho-AMPKα level (Figure 5-9G&J).   
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Figure ‎5-8 Effect of HFD on AMPKα levels in WT and KO PVAT.  

Representative histological sections of WT and KO thoracic aorta with intact PVAT from normal 
diet (ND) and high fat diet (HFD) mice stained with anti-AMPKα‎antibodies‎and‎counterstained‎with‎
haematoxylin. (A,D,G,J) Positive staining is indicated by brown colour. (B,E,H,K) Negative control 
represents aortic rings with anti-AMPKα‎ primary antibodies only; (C,F,I,L) Blank (untreated) 
represents‎aortic‎section‎without‎treatment.‎Scale‎bar‎20μm. 
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Figure ‎5-9 Effect of HFD on phospho-AMPKα levels in WT and KO PVAT.  

Representative histological sections of WT and KO thoracic aorta with intact PVAT from normal 
diet (ND) and high fat diet (HFD) mice stained with anti-phospho-AMPKα‎(Thr172) antibodies and 
counterstained with haematoxylin. (A,D,G,J) Positive staining is indicated by brown colour. 
(B,E,H,K) Negative control represents aortic rings with anti-AMPKα‎ primary‎ antibodies‎ only;‎
(C,F,I,L)‎Blank‎(untreated)‎represents‎aortic‎section‎without‎treatment.‎Scale‎bar‎20μm. 

 

 

To further clarify the effect of HFD on AMPK level and activity, quantitative analysis of 

levels of total and phosphorylated form of AMPK was performed. Briefly, WT and KO 

PVAT samples harvested from mice fed ND or HFD were dissected free and lyastes was 

prepared. Protein estimation analysis from these lysates was performed and protein was 

added at 10 μg per well. Immunoblotting was performed with antibodies against total and 

phospho-AMPK, and total and phospho-ACC and GAPDH which was used as a loading 

control. Membrane visualisation of immunolabelled bands was carried out using an 

Odyssey Sa Infrared Imaging System (LI-COR, USA) linked with Odyssey Sa Infrared 

Imaging System software (LI-COR, USA). The results are illustrated in Figure 5-10. HFD 

significantly reduced the level of total AMPKα of WT PVAT (1.1 ± 0.24 vs 1.6 ± 0.2 in 

ND). Similar findings were observed in the level of phospho-AMPKα which was reduced 

significantly in HFD from 1.13 ± 01 down to to 0.9 ± 0.2. However, HFD had no effect on 

either total or phospho-AMPKα in KO mice (Figure 5-10 B&C). When measured as a ratio 

of phospho- to total-AMPKα and phospho-AMPK to total ACC, there were also significant 

reductions in response to HFD in WT but not KO mice (Figure 5-10 D&E). 
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Figure ‎5-10 Effect of high-fat diet on phosphorylation and activity of the AMPK in the PVAT.  

Lysates of PVAT from WT and KO mice fed ND and HFD were immunoblotted with the indicated 
antibodies. (A) Representative immunoblots are shown. (B,C) Quantitative analysis of 
immunoblots, expressed as the ratio of the phosphorylated‎(B)‎and‎total‎form‎of‎AMPKα‎divided‎by‎
GAPDH (C). (D) Quantitative analysis of immunoblots, expressed as the ratio of the 
phosphorylated‎ form‎ of‎ the‎ enzyme‎ divided‎ by‎ total‎ AMPKα.‎ (E)‎ Quantitative‎ analysis‎ of‎
immunoblots, expressed as the ratio of the phosphorylated form of ACC divided by total ACC. 
*p<0.05 vs WT PVAT (HFD), n = 3; **p<0.01 vs WT PVAT (HFD), n = 3; **p<0.01 vs KO PVAT 
(ND).  
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5.2.6 Effect of HFD on the inflammatory phenotype of PVAT 

To test the effect of HFD on the inflammatory phenotype of the PVAT in both WT and KO 

mice, immunohistochemical staining with anti-MAC2 antibodies was performed. In brief, 

aortic rings from WT and KO mice fed ND or HFD and spleen were dissected and placed 

in 10% acetic zinc formalin overnight. Arteries were processed through a gradient of 

alcohols to Histoclear and embedded vertically in paraffin wax and cut into 5 μm sections. 

Sections of spleen were also prepared. Immunohistochemistry was used to evaluate the 

level MAC2 in PVAT from WT and KO mice fed on ND or HFD and spleen was used as a 

positive control. Histological analyses revealed considerable macrophage infiltrates in 

PVAT of KO mice compared to WT fed on ND (Figure 5-11 D&F). 12 weeks of HFD was 

accompanied by increased macrophage infiltration in WT PVAT compared to ND fed mice 

(p = 6, p<0.05; Figure 5-11 H). There was no significant difference in the intensity of 

MAC2 the staining in KO PVAT between the ND and HFD group (Figure 5-11 F&G). 
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Figure ‎5-11 Effect of high-fat diet on inflammatory phenotype of WT and KO PVAT.  

Representative histological sections of WT and KO thoracic aorta with intact PVAT from normal 
diet (ND) and high fat diet (HFD) mice stained with anti-MAC2 antibodies and counterstained with 
haematoxylin. Images shown are representative (A). (A,B,C) WT spleen anti-MAC2 antibody. (D) 
WT PVAT of ND mice; (E) WT PVAT of HFD; (F) KO PVAT from ND mice; (G) KO PVAT from HFD 
mice. Data were expressed as percentage of stained cells to total nuclear area in the section. **p 
<0.01 vs WT PVAT (ND); *p<0.05 vs WT PVAT (ND). 
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5.2.7 Effect of High-fat diet on adiponectin release 

To examine the effect of HFD on adiponectin release from PVAT, adiponectin in 

conditioned media samples from WT and KO PVAT from ND and HFD groups were 

analysed by ELISA. PVAT samples were collected from WT and KO mice fed ND or HFD 

and incubated in Krebs solution for 1 hour at 37 ̊C and ELISA was performed as described 

in section 2.5. There was a significant reduction (approximately 70%) in the adiponectin in 

CM collected from WT PVAT of HFD mice compared to ND mice (n = 6, p<0.01; Figure 

5-12). Similarly, there was a significant decrease in CM collected from KO mice fed ND in 

comparison with WT mice fed ND (n = 6, p<0.01; Figure 5-12). However, HFD had no 

effect on adiponectin secretion by PVAT of KO mice compared with ND (n = 6, p =ns). 
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Figure ‎5-12 Effect of HFD on adiponectin release.  

CM samples were collected from WT and KO PVAT from mice fed ND or HFD (n = 6) and 
adiponectin ELISA was performed. **p<0.01 vs WT ND CM, *p<0.05 vs WT CM. 

 

5.2.8 Effect of vascular injury on the PVAT phenotype 

To test the hypothesis that PVAT contributes to the vascular response to wire injury and 

investigate the role of AMPK in this response, right and left carotid arteries from WT and 

KO mice were utilised. The vessels utilised in this study were used in a previous study 

performed in our lab. This study involved induction of vascular injury using a wire inserted 

into the left carotid artery (LCA) in both WT and KO mice. Right carotid artery was not 
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injured and used as a control . After a week of wire injury, mice were sacrificed and 

carotid arteries with surrounding PVAT were dissected. 

Firstly, the morphology of PVAT was evaluated using H&E which showed that in both 

WT and KO carotid arteries, the vessel was surrounded by BAT like adipocytes with the 

characteristic multiple lipid vacuoles and central nuclei (Figure 5-13). Although there was 

marked intimal thickening in both WT and KO LCAs and although the thickening was 

more pronounced in the KO derived LCAs, there was no phenotypic change in the 

surrounding adipocytes. The difference in the intimal thickening was not evaluated as it 

was not part of the current study. 
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Figure ‎5-13 Effect of wire injury on carotid PVAT phenotype from both WT and KO mice.  

Representative H&E stained sections harvested from WT and KO right carotid arteries (RCA) and 
left carotid arteries (LCA). Representative images are shown. Nuclei appear blue/purple whereas 
cytoplasm‎is‎stained‎pink.‎Scale‎bar;‎20‎μm. 
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5.2.9 Inflammatory response of WT and KO PVAT to vascular 
injury 

To test the hypothesis that PVAT contributes to the vascular response to wire injury and to 

investigate the involvement of AMPK in regulation of this response, WT and KO carotid 

arteries with intact PVAT were utilised. As stated previously, wire injury was performed in 

LCA from both WT and KO and RCA was used as a control of the experiment in both 

types of mice. After a week of wire injury, mice were sacrificed and carotid arteries with 

surrounding PVAT were dissected. Immunohistochemistry using anti-MAC2 antibodies 

was performed to quantify PVAT macrophage infiltration.  

LCAs from both WT and KO mice exhibited an obvious intimal thickening. In WT, 

vascular injury was associated with significant macrophage infiltration in LCA in 

comparison with control RCA (n = 4-5, **p<0.01; Figure 5-14 E). Although there was no 

significant difference in MAC2 between RCA and LCA of KO mice, there was a trend 

towards increased inflammatory infiltration (Figure 5-14 E; n = 3-4, p = ns).  
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Figure ‎5-14 Inflammatory response of WT and KO PVAT to vascular injury.  

Representative histological sections of WT and KO right and left carotid arteries with intact PVAT 
stained with anti- MAC2 antibody and counterstained with haematoxylin. Figures shown are 
representative (A). (A) Control WT RCA stained anti-MAC2 antibody. (B) 1 week post wire induced 
injury WT LCA. (C) Control KO RCA stained anti-MAC2 antibody. (D) 1 week post wire induced 
injury KO LCA .WT PVAT of HFD (F) KO PVAT from ND mice (G) KO PVAT from HFD mice. Data 
were expressed as percentage of stained cells to total nuclear area in the section. **p <0.001 vs 
WT RCA. 
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5.3  Discussion  

This study investigated the effect of HFD on PVAT regulation of conduit artery tone in 

WT and AMPKα1 KO mice. The novel finding of the current research was that the anti-

contractile effect of PVAT was significantly diminished in WT mice fed a HFD compared 

to those maintained on chow diet. The loss of anti-contractile function could be due in part 

to a reduction in PVAT-derived adiponectin release, due to AMPK dysfunction and/or 

inflammation of the PVAT.  

5.3.1 Effect of HFD on anticontractile effect of PVAT 

In the present study, thoracic aortae with intact PVAT and endothelium removed showed 

the greatest contractile response to U46619 in WT HFD group fed HFD in comparison 

with the ND group, although the difference was not statistically significant. The contractile 

response in vessels with intact PVAT in KO was similar in both control and HFD mice. 

Additionally, there was no difference in contraction in vessels with the PVAT removed 

across all groups. The endothelium-independent relaxation response to cromakalim was 

significantly reduced in HFD WT compared to ND arteries. The response of PVAT-free 

vessels was similar in both ND and HFD group. However, in KO mice there was no 

difference in relaxation between PVAT intact and removed vessels or in animals fed ND or 

HFD KO. Combination of both the U46619 and cromakalim experiments suggest that 

vascular dysfunction is at the level of the PVAT rather than medial layer and that AMPK 

might act as a protective mechanism as the anticontractile response was not completely lost 

in obese WT mice fed HFD.  

The current results are consistent with previous studies reporting that PVAT-mediated 

anticontractile effect is impaired in HFD models (Fesus et al., 2007, Ma et al., 2010, 

Greenstein et al., 2009, Gao et al., 2005a, Owen et al., 2013, Nakagawa et al., 2002, Payne 

et al., 2010, Marchesi et al., 2009). Gao and co-workers reported that the anticontractile 

effect is lost in obese rats due to reduced release of relaxing factor despite the increased 

amount of PVAT around rat aorta (Gao et al., 2005a). A loss of the anticontractile effect of 

PVAT was also reported in obese New Zealand mice (NZO) model which was 

characterised by metabolic syndrome and larger amounts of PVAT. The lost function was 

suggested to be due to changes in the expression of PVAT-derived factors other than 

adiponectin (Fesus et al., 2007). In the Ossabaw swine model and using a proteomic 

profiler, there was an up-regulation of 186 PVAT-derived proteins which was associated 
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with increased coronary contractility and these included transforming protein RhoA and 

calpastatin (Owen et al., 2013).  

5.3.2 Eeffect of HFD on PVAT phenotype 

The mechanisms underlying the effect of AMPK in regulating adipose tissue mass are 

poorly characterised. Adipose tissue mass expansion occurs as a consequence of either an 

increase in adipocyte number as a result of enhanced adipogensis, an increase in cell size 

due to fat deposition in pre-existing cells, or a combination of both. It has been reported 

that the increase in adipose tissue mass in AMPKα2 knockout mice was due to an 

increased triglyceride accumulation in the preexisting adipocytes rather than an increase in 

cell number or differentiation as no changes in the expression of adipocyte transcription 

factors, PPARγ, C/EBPα, or the mature adipocyte markers, including aFABP/aP2, were 

reported (Villena et al., 2004). The model used in the current study is a global AMPKα1 

knockout mouse and the findings indicate that adiponectin was reduced by HFD although 

no attempt was made to examine the transcription factor involved in regulation of cell 

differentiation such as PPARγ.  

The study also looked at the effect of HFD on the brown adipose tissue marker UCP-1. As 

a general rule, prevention of the development of obesity is dependent on energy 

expenditure. The uncoupling of oxidative phosphorylation in BAT by UCP-1 plays a 

critical role in protecting the body from hypothermia or a hyperlipidaemic diet (Glavind-

Kristensen et al., 2004, Cannon and Nedergaard, 2004). It was reported that increased 

expression of UCP-1 was associated with a decrease in the ATP/ADP and ATP/AMP 

ratios in the subcutaneous white fat of transgenic mice, increased activity of AMPK and 

enhanced oxidation of FA (Rossmeisl et al., 2004). Furthermore, it is well known that HFD 

increase UCP-1 mRNA and protein expression in BAT (Garcia-Ruiz et al., 2015). 

Therefore, it is plausible to think that HFD will result in an increased expression of UCP-1 

in PVAT as a mechanism of dissipating energy and that this will be associated with 

increased AMPK activity in WT but not in AMPKα1 KO. Indeed, the results from the 

current study revealed an enhanced level of UCP-1 not only in WT but also KO in 

response to HFD (Figure 5-7) and was associated with reduced AMPK activity (Figure 5-

10). The enhanced UCP-1 level in PVAT in both WT and KO in response to HFD can be 

explained by UCP-1 expression being regulated by many other mechanisms. It has been 

reported that the expression of UCP-1 can be increased in response to fatty acids (Cannon 

and Nedergaard, 2004). Another mechanism which can be proposed is involvement of 
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thyroid hormones (Guerra et al., 1996). Thyroid hormones (THs) are well known 

regulators of body energy expenditure (Klieverik et al., 2009). Treatment with THs has 

been reported to increase UCP-1 expression in BAT in rats as a result of binding to TH-

responsive elements in the UCP1 promoter (Guerra et al., 1996). As thoracic PVAT 

exhibits BAT like features, it would be logical to think that the increased UCP-1 in both 

WT and KO occurs in response to circulating THs. Therefore, investigation of THs levels 

would be beneficial to assess the mechanism on UCP-1 elevation.  

5.3.3 Effect of HFD on inflammatory phenotype of PVAT 

Another question addressed in the current study was whether AMPK could affect the 

inflammatory phenotype of PVAT in response to HFD. The results showed increased 

macrophage infiltration indicated by increased MAC2 expression in HFD exposed WT 

mice. The increased MAC2 level in WT PVAT in the HFD group was associated with 

reduced AMPK activity in the PVAT (Figure 5-11). Therefore, it can be speculated that 

AMPK acts as a protective mechanism against inflammation and this effect is lost due to 

HFD-induced obesity. However, KO PVAT exhibit increased MAC2 expression under 

both ND and HFD conditions. These results further support the protective anti-

inflammatory role of AMPK in the PVAT and that the absence of any difference between 

ND and HFD groups in the KO mice may be due to that fact the PVAT of ND KO mice is 

already maximally inflitrated or as a result of a compensation mechanism by AMPKα2 

complexes preventing further inflammatory cell infiltration which needs further 

investigation. Indeed, these results support previous studies that demonstrated the loss of 

the anicontractile effect of PVAT in obesity (Marchesi et al., 2009, Rebolledo et al., 2010, 

Bailey-Downs et al., 2013, Chatterjee et al., 2009, Wang et al., 2012). HFD-induced 

obesity as discussed previously can impair PVAT anticontractile effect via promoting a 

marked proinflammatory shift in cytokines and chemokines which is associated with 

oxidative stress in the PVAT (Bailey-Downs et al., 2013). PVAT inflammation and 

oxidative stress can lead to endothelial dysfunction and decreased NO bioavailability and 

increased superoxide generation by uncoupled endothelial NO synthase in PVAT 

(Marchesi et al., 2009). Moreover, HFD induced PVAT dysfunction via increased 

macrophage accumulation in the PVAT and vascular oxidative stress (Wang et al., 2012). 

It has been reported that human coronary PVAT collected from organ donor candidates 

exhibits an enhanced release of IL-6, IL-8 and MCP-1 and reduced adipocyte 

differentiation (Chatterjee et al., 2009). These results indicate that inflammatory cytokines 

released by PVAT act as chemoattractants for macrophages and aggravating inflammation. 
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In contrast to the previous studies, Fitzgibbons and coworkers have shown that thoracic 

PVAT exhibits a very low grade of inflammation after 13 weeks of HFD. They proposed 

that the lack of effect was due to its similarities with BAT and because BAT-like adipose 

tissue is resistant to HFD-induced inflammatory changes (Fitzgibbons et al., 2011). When 

contrasting the Fitzgibbons findings to the current study, althought it used similar HFD 

period, it can be argued that Fitzgibbons et al study is conducted in a completely different 

mouse strain (C57BL6/J) and the low level of inflammation detected in this study may be 

related to the type of HFD used in the study. 

Another important leading cause of PVAT anticontractile dysfunction is that HFD causes a 

rise in the inflammatory adipocytokine leptin and chemokine MIP1α concomitant with a 

decrease in the expression of adiponectin, PPARγ and FABP4 (Chatterjee et al., 2009). 

Although, the current study did not address adipokine leptin and inflammatory cytokines, 

the results showed reduced release of adiponectin from PVAT in WT and KO exposed to 

HFD. The findings from the current study support the previous evidence that 2 weeks HFD 

is associated with significant reduction of adiponectin expression (Chatterjee et al., 2009). 

In contrast to the Chatterjee study and the findings from the current study, Ketonen et al 

reported completely different results. They reported that 8 months of HFD in C57BL6/J 

mice had no effect on the adiponectin expression in the thoracic PVAT (Ketonen et al., 

2010). Although both studies utilised the same mouse strain, the completely different 

results can be attributed to type of diet used and that the period of feeding used in 

Ketonen’s study may lead to adiponectin being upregulated to overcome HFD induced 

PVAT dysfunction.  

Several lines of evidence reported that AMPK activation is associated with increased 

secretion or expression of adiponectin by suppression of inflammatory cytokines such as 

TNF-α and IL-6 (Lihn et al., 2004, Sell et al., 2006, Tsuchida et al., 2005). Activation of 

AMPK with AICAR in human adipose tissue was associated with degradation of TNF-α 

and increase adiponectin gene expression (Lihn et al., 2004). TNF-α and IL-6 are known 

shown to have inhibitory effects on adiponectin gene expression and release (Fasshauer et 

al., 2002, Fasshauer et al., 2003). Moreover, TNF-α has been suggested to play a central 

role in regulating adiponectin levels (Greenberg et al., 1991). It can be speculated that the 

decrease in TNF-α protein may be involved in the up-regulation of adiponectin mRNA 

levels (Lihn et al., 2004). Sell et al reported activation of AMPK by AICAR and 

troglitazone was associated with reduction of IL-6, IL-8, MIP-1α/β, and MCP-1 and 
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upregulation of adiponectin expression (Sell et al., 2006). Similar findings demonstrate that 

the expression of inflammatory genes inculding TNF-α, MCP-1, and macrophage antigen-

1 in WAT was reduced in response to PPARα agonist rosiglitazone (Tsuchida et al., 2005). 

The increase in the expression of macrophage markers reported in HFD and KO animals 

may be due to loss of AMPK antifilammatory activity leading to upregulation of 

inflammatory cytokines such as TNFα and IL-6 and downregulation of adiponectin. 

Therefore, investigation of cytokine expression in PVAT would be beneficial to further 

characterise the role of AMPK.  

5.3.4 AMPK protects PVAT againest endovascular injury 

Obesity-induced inflammation in periadventitial adipose tissue is associated with 

upregulation of inflammatory adipocytokines and downregulation of the antiinflammatory 

adipocytokine adiponectin (Takaoka et al., 2009). These changes were associated with 

enhanced neointima formation after endovascular injury. Endothelial injury induces 

adhesion and migration of leukocytes, macrophages, and bone marrow–derived progenitor 

cells into the vessel wall (Beckman et al., 1990, Sata et al., 2000). Furthermore, pro-

inflammatory cytokines have a fundamental role in mediating the initiation and 

progression of vascular lesion formation (Serrano et al., 1997, Libby, 2002, Beckmann et 

al., 1994, Xie et al., 2008).  

Takaoka et al provide direct evidence that PVAT may protect against neointimal formation 

after angioplasty in lean status and that inflammatory changes in the periadventitial fat may 

have a direct role in the pathogenesis of vascular disease accelerated by obesity. They also 

suggested that adiponectin released from PVAT may play a protective role in neointima 

formation of the adjacent artery after vascular injury in lean mice (Takaoka et al., 2009). In 

this study, PVAT removal enhanced neointimal hyperplasia following endovascular injury 

in the femoral artery. Transplantation of subcutaneous fat from a normal mouse to 

surround the injured artery significantly reduced neointimal formation. These results 

demonstrate that PVAT may possess a protective role in neointimal hyperplasia (Takaoka 

et al., 2009).  

In line with the previous findings, the protective effect of exogenous adipose tissue was 

lost when transplanted subcutaneous adipose tissue was derived from obese mice. This is 

likely related to phenotypic changes in adipose tissue associated with obesity. These 

changes include reduced production of anti-inflammatory adiponectin and increased pro-
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inflammatory adipokines; IL-6, MCP-1, TNF-α and PAI-1 in subcutaneous adipose tissue-

conditioned medium from obese mice compared with that from normal mice (Takaoka et 

al., 2010). In the same study, the conditioned medium derived from the subcutaneous 

adipose tissue of normal mice attenuated VSMC proliferation stimulated by platelet-

derived growth factor (PDGF)-BB (Takaoka et al., 2010). On the other hand, the 

conditioned medium from obese mice increased VSMC proliferation, which was 

attenuated by pretreatment with anti-TNF-α antibodies. Furthermore, the conditioned 

medium of adiponectin-deficient subcutaneous adipose tissue enhanced VSMC 

proliferation. These findings reveal that TNF-α secreted from adipose tissue increased 

VSMC growth, and that adiponectin secreted from adipose tissue inhibited VSMC growth 

in response to PDGF-BB stimulation (Takaoka et al., 2010).  

In the current study, the role of AMPK in regulation of PVAT inflammatory phenotype in 

response to intravascular wire injury was investigated. PVAT in both WT and KO carotid 

arteries composed of brown adipocytes with its multiple lipid vacuoles and central nuclus 

(Figure 5-13). These data support the findings reported by Cinti et al who reported that 

PVAT surrounding carotid artery possess the characteristic of BAT (Cinti, 2011). It also 

supported our view in chapter 3 that AMPK has no effect on the morphological feature of 

the PVAT. One week after wire injury induced in both WT and KO LCAs, there was an 

obvious intimal thickening in both strains and it was associated with increased macrophage 

infiltration in both intima and PVAT (Figure 5-14). It is worth noting that the thickening of 

the intima was visually more in the KO LCA in comparison with WT LCA, although no 

measurement was done. However, these data need further investigation. The results of 

current analysis show increased MAC2 expression in both WT and KO. The expression of 

MAC2 was more pounced in WT LCA in comparison with its control RCA. Additionally, 

there was a trend toward increased expression in KO LCA in contrast to RCA. The lack of 

statistical difference in KO derived vessels suggests that loss of AMPK is associated with 

increased inflammation of PVAT in KO of control and injured vessels and also that AMPK 

might act as protective mechanism against vascular intimal thickening associated with 

vascular injury. It is known that activation of AMPK in VSMCs reduced intimal 

hyperplasia by either inducing cell cycle arrest by upregulation of p53-p21 which inhibits 

VSMCs proliferation (Igata et al., 2005) or reducing protein synthesis mediated via 

inhibition of mTOR (Kim et al., 2014, Inoki et al., 2003). Furthermore, the implication of 

PVAT AMPK came from study by Ma et al who reported that PVAT can induce vascular 

dysfunction via dysregulation of the AMPK/mTOR signalling pathway in diet-induced 
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obese rat. They demonstarted that incubation of mesenteric arterial rings with periaortic fat 

from HFD rats caused attenuated endothelium-dependent relaxation and down-regulation 

of AMPK and eNOS in the aorta with a concurrent up-regulation of mTOR. This effect 

was absent in periaortic fat from rats on a chow diet. In the same study, co-culture of 

vascular SMCs with periaortic adipocytes from HFD animals also reduced AMPK 

phosphorylation and increased mTOR phosphorylation (Ma et al., 2010). 

The findings from the current study revealed that adiponectin release was reduced in KO 

mice and this was associated with reduced expression of AMPK in PVAT (Figure 5-12). 

Therefore, it can be speculated that AMPKα1 deletion in PVAT leads to a reduction in the 

adiponectin release and loss of the protective function of the PVAT. The results in WT 

wire-injured LCA can be explained due to inflammation of the PVAT causedby vascular 

injury with increased macrophage infiltration and associated expression of inflammatory 

cytokines and reduction of antiinflammatory factors such as adiponectin. Current results 

support the evidence from other experiments that adiponectin suppresses cell proliferation 

induced by a low dose of oxidized low density lipoprotein (Motoshima et al., 2004). 

Exogenous adiponectin suppressed PDGF-BB-induced VSMC proliferation via AMPK 

activation (Igata et al., 2005). The AMPK pathway is also involved in the effect of 

adiponectin to inhibit the expression and activity of iNOS, secretion of adventitial 

antiinflammatory factors, division, proliferation and translation of adventitial fibroblasts, 

change of adventitial fibroblasts to myofibroblasts, and oxidative/nitrative stress which 

reduce atherosclerotic plaque area and stabilize atherosclerotic plaque (Cai et al., 2008). 

Thus, changes in adiponectin secretion by inflamed PVAT could also influence the reponse 

to vascular injury. 

5.4 Conclusion 

Taken together, HFD and wire injury are associated with increased macrophage infiltration 

and reduced AMPK activity in thoracic and carotid PVAT. Marked reduction in AMPK 

activity in WT PVAT, accompanied with the reduction in the release of adiponectin in 

HFD and KO animals may explain the impaired vascular function including loss of an 

anticontractile effect antiathergenic function. Further studies are needed to investigate the 

expression of different adipokines and cytokines released by PVAT exposed to HFD and 

intravascular injury.   
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6.1 The hypothesis 

The concept that adipose tissue is a functional endocrine organ involved in energy 

haemostasis was a huge step toward a greater understanding of the molecular basis of 

obesity and its co-morbidities. The link between obesity and CVD is further supported by 

Yudkin et al who speculated that PVAT might be the element that links obesity, insulin 

resistance and vascular disease due to its detrimental effects on blood vessels in obese 

people (Yudkin et al., 2005). PVAT is now considered a highly active endocrine organ that 

releases a variety of adipocytokines, and other factors which influence vascular tone in a 

paracrine manner. Under normal physiological conditions, PVAT can release 

adipocytokines which can attenuate contractility of the underlying vessel. The precise 

mechanism is still undefined, although some evidence suggests that PDRF may induce the 

anti-contractile effect via both endothelium-dependent and -independent mechanisms (Gao 

et al., 2007). Both mechanisms have been reported to involve AMPK, the cellular energy 

regulator. AMPK activation can induce vasodilation via phosphorylation and activation of 

endothelial NO synthase (eNOS) at Ser1179 (Morrow et al., 2003, Davis et al., 2006) and 

Ser663 (Chen et al., 2009) to increase NO production and vascular relaxation (Morrow et 

al., 2003, Davis et al., 2006). AMPK can also induce endothelium-independent relaxation 

via reduced sensitivity of myosin light-chain kinase (MLCK) to intracellular calcium 

(Horman et al., 2008). Although AMPK is expressed throughout the vessel wall, its role in 

the regulation of PVAT had not been investigated prior to this study. Therefore, the 

primary hypothesis was that AMPK is required for PVAT to function normally and that the 

α1 isoform is the most important isoform in mediating PVAT function. Therefore, the aim 

of this thesis was to investigate the role of AMPKα in the regulation of PVAT anti-

contractile function using a mouse with a global AMPKα1 isoform knockout. 

The data reported in this study demonstrate that PVAT has a profound anti-contractile 

effect on mouse thoracic aorta. The effect may be due to release of a transferable factor 

and that factor is likely to be adiponectin, release of which is regulated by the activity of 

AMPKα1. Furthermore, AMPK activity may regulate adiponectin secretion by either 

directly targeting its release from adipocytes and/or indirectly by its anti-inflammatory 

function which would limit the suppression of adiponectin expression. The studies in this 

thesis demonstrate that in mouse aortic rings, adiponectin augments relaxation to 

cromakalim in an endothelium-independent manner although other effects of adiponectin 

on the endothelium cannot be ruled out. Indeed, although aortic rings in this study were 

mechanically denuded, endothelial cells in vessels within the vasa vasorum will not be 
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affected and adiponectin could affect endothelial functiojn in these microvessels. The 

current research also reported that HFD-induced obesity is associated with a profound 

reduction in PVAT-mediated anti-contractile effects. Furthermore, HFD- induced obesity 

was associated with reduced AMPK activity, increased macrophage infiltration and a 

marked decrease in adiponectin release, all of which may contribute to dysfunctional 

PVAT.  

6.2 The anticontractile effect of PVAT under basal 
conditions 

Most blood vessels are surrounded by PVAT which may be predominantly WAT or a 

combination of BAT and WAT. The majority of the experiments in the thesis used conduit 

vessels, (thoracic aorta) which are surrounded by a mixture of WAT and BAT. The overall 

results suggest that brown PVAT can release adiponectin under the basal (unstimulated) 

state and that this may act as a PVAT-derived anticontractile factor (PDRF). Furthermore, 

AMPK regulates the secretion and/or function of this PVAT-derived adiponectin 

(Almabrouk et al., 2016).  

6.3 U46619 as contractile agent  

Like white PVAT, brown PVAT can also release factors and has anti-contractile effects on 

the surrounding vessels as reported in both rat (Lohn et al., 2002, Gao et al., 2007) and 

human internal thoracic aortas (Gao et al., 2005b). The anticontractile effect of the PVAT 

has been reported to different contractile agents including angiotensin II, 5-HT, 

phenylephrine (Lohn et al., 2002) and U46619 (Verlohren et al., 2004). These spasmogens 

are known to induce different types of contraction. Phenyephrine induces tonic 

contractions or initial vasoconstrictions followed by diameter oscillations (Inoki et al., 

2003). Angiotensin II causes a biphasic contraction which rises rapidly and transiently and 

peaks in a few minutes, before declining to a lower steady level (Hardie, 2016). 5-HT 

induces a strong contraction which lasts for a long time in rat thoracic aorta (Ratz and 

Flaim, 1984). However, U46619 causes a tonic vascular contraction which is associated 

with a reduction in the diameter of the artery. In the case of U46619, the contraction 

induced is stable and the PVAT anticontractile effect is sub-maximal. Therefore, U46619 

was utilised as contractile agent in this project to allow the effects of PVAT on relaxation 

to several vasodilators to be studied. Indeed, the use of U46619 only in the current thesis is 

a potential limitation as the effects of AMPK ablation may be specific to mechanisms after 
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U46619 -mediated contraction. Therefore, it would be beneficial to further test the 

hypothesis using different physiological constrictor agents to establish if PVAT from WT 

and KO animals had similar effects. 

6.4 Endothelium-independent relaxation to AICAR and 
PVAT  

The endothelium-independent relaxation to the AMPK activator AICAR has been 

documented in many animal models and vessels types, including mice aorta (Goirand et 

al., 2007), swine carotid artery (Rubin et al., 2005) and rat aorta (Majithiya and Balaraman, 

2006). In these models, in addition to removal of endothelium, PVAT was also dissected 

during preparation of the vessels for functional studies. Removal of endothelium did not 

affect the relaxation response induced by AICAR. Indeed these observations indicate a 

direct effect of AMPK activation in VSMCs. While the findings in the current study 

confirm these previous observations, they also provide evidence that the presence of PVAT 

enhances the relaxation induced by AICAR in an endothelium-independent manner. 

Furthermore, the enhanced response is mediated by transferable factor(s) the action of 

which may involve AMPK as the effects were lost in KO mice (Figure 3-8) . As reported 

previously, AMPK is expressed in all layers of blood vessel including PVAT. Therefore, it 

is plausible that AICAR will also activate AMPK in the PVAT which makes delineating 

the contribution of AMPK in the PVAT more difficult as the markers of AMPK activation 

(phosphorylation at both AMPK activation site Thr172 and AMPK downstream target 

Ser79 on acetyl-CoA carboxylase) responded in the same dose-dependent manner to 

AICAR. Indeed, treatment of PVAT alone with AICAR can be a solution; however, the 

decision about the basal activity of AMPK becomes more difficult.  

6.5 Relaxation to cromakalim and the role of KATP 
channels 

The role of KATP channels in the anti-contractile effect of PVAT was first proposed by 

Lohn et al (Lohn et al., 2002). They proposed that PVAT releases a transferable factor that 

acts via tyrosine kinase-dependent activation of KATP channels in the medial layer and was 

blocked by glibenclamide (Lohn et al., 2002). In the current research, the primary aim was 

to investigate the role of AMPK in the PVAT. Therefore, cromakalim was used to examine 

the relaxing ability of PVAT. Cromakalim is known to induce vascular relaxation by 

activation of KATP and hyperpolarisation of vascular myocytes (Cook et al., 1988). In the 
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current experiments, PVAT enhanced the relaxation response to cromakalim in an 

endothelium-independent manner in WT mice (Figure 3-9A). These effects were lost in the 

KO mouse-derived arteries (Figure 3-9B). Indeed, the findings from this study indicated 

the involvement of KATP in the anticontractile effect of PVAT (Lohn et al., 2002), and 

further suggest a possible regulatory role of AMPK. In general, the contraction of vascular 

smooth muscle is closely related to the status of myocyte membrane potential. 

Depolarisation of the myocyte cell membrane leads to opening of L-type voltage-

dependent Ca
2+

 channels causing Ca
2+

 influx into the cell and myocyte contraction. On the 

other hand, hyperpolarisation induced by opening of K
+
 channels decreases L-type Ca

2+
 

channel opening time and keeps the myocytes relaxed (Nelson and Quayle, 1995). 

Furthermore, KATP channels are activated in response to a reduction in intracellular 

ATP/ADP ratio, which help the myocytes to regulate the efflux of K
+ 

depending on their 

metabolic state (Nelson and Quayle, 1995). Indeed, these findings have made defining the 

role of AMPK in the PVAT more difficult as AMPK activation can occur in response to 

Ca
2+

 and a change in the ATP/ADP ratio as previously reported (reviewed in Hardie, 

2008). Although, the role of KATP has been tested by examination of AMPK activity in 

cultured VSMCs treated with increasing concentrations of cromakalim, the role of AMPK 

activation in VSMCs cannot be completely excluded as there was a reduction in the 

relaxation response in KO vessels without PVAT in comparison with WT PVAT-free 

vessels. Additionally, it is known that tonic vascular myocytes have negative membrane 

potentials (Nelson and Quayle, 1995) that are close to the activation threshold of Kv 

channels. Opening of cell membrane K
+
 channels allows K

+
 efflux, keeping the myocyte 

hyperpolarised and preventing further influx of Ca
2+

 into the cells and that may control the 

activation of AMPK in VSMCs.  

Taken together, these studies indicate that the activation of KATP in vascular myocytes, in 

addition to cromakalim, may be mediated by a transferable factor released from PVAT 

(adiponectin) and that AMPK is involved in this process by either controlling release of 

adiponectin and/or activation of KATP in vascular myocytes.  

6.6 Adiponectin as ADRF? 

In an attempt to determine the chemical nature of ADRF, the effects of adiponectin on 

whole vessels and cultured VSMCs were investigated. A previous study by Greenstein et 

al speculated that adiponectin was the PVAT-derived anticontractile factor in human 

vessels, since an adiponectin blocking peptide abolished the anticontractile effects of 
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PVAT. However, the mechanism proposed in their study involves activation of eNOS in 

the endothelium and subsequent release of NO (Greenstein et al., 2009). The role of 

adiponectin in endothelium-independent relaxation has been investigated in other studies 

which reported the involvement of both AMPK and BKCa (Weston et al., 2013, Lynch et 

al., 2013). In the current study, the importance of adiponectin to the anti-contractile effect 

of PVAT was illustrated as PVAT from AMPKα1 knockout mice had an impaired anti-

contractile effect in functional studies and this corresponded with reduced adiponectin 

content and release. Application of globular adiponectin enhanced the vasorelaxant effect 

of both WT and KO thoracic aortae (Figure 3-27). Furthermore, by using a KATP channel 

opener in vessel tension experiments, the current study suggests that the attenuated 

relaxation in KO arteries may be attributed to the adiponectin deficiency in KO PVAT and 

that adiponectin-induced hyperpolarisation in WT occurs as a result of opening of KATP 

channels in the medial layer. The role of KATP channels could be confirmed using a 

selective blocker such as glibenclamide and/or measuring membrane potential in VSMCs 

treated with adiponectin. The role of KATP channels could also be studied using specific 

KATP channel knockout model animals. It is worth noting that a specific KATP channel KO 

has been reported by targeting Sur2 or Kir6.1 subunit (Nichols et al., 2013). 

As application of globular adiponectin enhanced the cromakalim-induced relaxation in 

both wild type and AMPKα1-deficient vessels, four conclusions can be drawn. Firstly, the 

attenuated relaxation response in the KO occurred as result of dysfunctional adiponectin 

release from PVAT and that the downstream effectors in vascular smooth muscle are intact 

and still able to respond to adiponectin. Secondly, the expression of adiponectin receptors 

in the medial layer might be not affected by AMPKα1 deletion, although the expression of 

these receptors has not been investigated in the current study. Thirdly, adiponectin can 

activate KATP in the myocytes directly and induce hyperpolarisation and relaxation. The 

direct KATP activation by adiponectin has been reported previously in nerve cells (Hoyda 

and Ferguson, 2010). However, there are many different types of KATP channels with 

variable expression and tissue localisation (Ko et al., 2008). Furthermore, the role of KATP 

in the PVAT anti-contractile effect has been previously proposed by Lohn et al without 

defining the ADRF released by PVAT (Lohn et al., 2002). Finally, the enhanced relaxation 

in both WT and KO arteries in response to globular adiponectin suggests a possible direct 

action of adiponectin on vascular myocytes mediated by activation of MLCK which needs 

to be further clarified.  
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Together, these data indicate that non-stimulated PVAT releases adiponectin and that 

adiponectin (and perhaps other PVAT-derived factors) can activate KATP channels on the 

myocytes. It is likely in the mouse aorta that adiponectin is the ADRF. Hence, the anti-

contractile effect of adiponectin is apparently via two different mechanisms: firstly, by 

activating the KATP channels on the myocytes to cause hyperpolarisation; secondly, it may 

also trigger inhibition of MLCK and/or activation of MLCP in VSMCs. 

6.7 Proposed mechanism of relaxation 

The release of ADRF has been reported to be dependent on Ca
2+

 and is regulated by 

intracellular signalling pathways involving tyrosine kinase and protein kinase A, 

independent of perivascular nerve endings (Dubrovska et al., 2004). There are very few 

studies where the role of AMPK in the release of ADRFs has been investigated. A study by 

Lihn et al indicated that the AMPK activator AICAR stimulated adipose tissue AMPKα1 

activity and adiponectin gene expression and reduced the release of TNF-α and IL-6 (Lihn 

et al., 2004). These cytokines have been shown to have inhibitory effects on adiponectin 

gene expression and release (Fasshauer et al., 2002, Maeda et al., 2002, Greenberg et al., 

1991), meaning that activity of AMPK in the PVAT could regulate adiponectin expression 

(Lihn et al., 2004). Similarly, the PPARγ agonist troglitazone which also activates AMPK 

has a positive effect on adiponectin expression in mature adipocytes (Phillips et al., 2003). 

The current study supports previous evidence as the KO PVAT exhibited a profound 

reduction in adiponectin release as confirmed by both array and ELISA (Figures 3-22 and 

3-23). However, other studies using cultured 3T3-L1 adipocytes found that prolonged 

exposure to AMPK activating agents actually causes a significant reduction in adiponectin 

protein content of the adipocytes (Huypens et al., 2005). Therefore, it can be proposed that 

AMPK modulates adiponectin release by directly affecting its secretion by PVAT or 

indirectly via alleviating PVAT inflammation. Figure 6-1 illustrates the proposed 

mechanism by which PVAT AMPK modulates vascular function.   
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Figure ‎6-1 The proposed anticontractile mechanism of perivascular adipocytes on vascular 
myocytes.  

AMPK: AMP-activated protein kinase; AdipoR1: Adiponectin receptor 1; KATP: ATP-sensitive 
potassium channel; MLCK: Myosin light chain Kinase; MLCP: Myosin light chain phosphatase.  

 

 

6.8 Mechanism of PVAT dysfunction in obesity 

In chapter 5, an investigation of the effects of obesity on PVAT function was examined, 

assessing the contribution of AMPK in more detail. The current investigation using ELISA 

showed that the levels of adiponectin were significantly lower in PVAT and CM from 

HFD-fed mice as compared with ND group (Figure 5-12). It has been reported previously 

that adiponectin released from PVAT has a profound vasorelaxant effect on nearby arteries 

(Greenstein et al., 2009), and that data presented in this thesis confirms that the PVAT anti-

contractile effect is impaired in obese mice compared to healthy controls (Figure 5-4). The 

macrophage infiltration in the obese PVAT as reported in the current study (Figure 5-11) 

and previous reports (Aghamohammadzadeh et al., 2015) and the reduced activity of 

AMPK in obese and AMPKα1 knockout PVAT (Figure 5-10) suggests that higher levels of 

inflammatory mediators such as cytokines and superoxide in the PVAT may have adverse 

vasoactive effects on adjacent vasculature.  

Obesity is associated with chronic low-grade inflammation in adipose tissue that can be 

extended to PVAT. HFD leads to an increase in adipose tissue mass that initially occurrs as 
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a result of cell hyperplasia mediated by the recruitment and proliferation of adipogenic 

progenitors such as IGF-I, IGF binding proteins, TNFα, angiotensin II, and 

MCSF(Hausman et al., 2001). Later, increased fatty acid deposition in adipocytes is 

associated with cell death. Cell death with the release of inflammatory cytokines leads to 

rerecruitment of inflammatory cells and to adipose tissue dysfunction (Cinti et al., 2005). 

Obesity causes major changes in cellular phenotype of adipose tissue that can be detected 

systemically or within local adipose tissue. HFD-induced obesity induces a shift in the 

PVAT secretory function profile from anti-inflammatory profile to pro-inflammatory 

profile by releasing cytokines and chemokines which are linked with oxidative stress in 

PVAT (Bailey-Downs et al., 2013). HFD-induced obesity is associated with enhanced 

production of proinflammatory adipokines, such as TNF-α, leptin, resistin and decreased 

production of anti-inflammatory adipokines, such as adiponectin (Chatterjee et al., 2009, 

Arita et al., 1999, Serne et al., 2007). In another study, HFD increased mesenteric PVAT 

macrophage content and vascular oxidative stress in mice (Wang et al., 2012). Human 

adipocytes show an increase in proinflammatory cytokines expression in obese states (IL-

6, IL-8, and MCP-1) and reduced adipocytic differentiation (Chatterjee et al., 2009). These 

data suggest that inflammatory cytokine release by PVAT could attract macrophages to the 

depot further aggravating inflammation and PVAT dysfunction. 

Several signalling pathways have been suggested in pro-inflammatory adipocytokine-

induced adipose tissue inflammation. Cytokines such as TNF-α and IL-1β signalling 

pathway involves activation of pro-inflammatory transcription factors ERK, p38 and JNK 

MAP kinases and the NF-kB (Salt and Palmer, 2012). Factors such as leptin and IL-6 

signalling involves JAK/STAT pathway (Richard and Stephens, 2014). In obesity, These 

signalling pathways result in upregulation of chemokines, including MCP-1 which 

stimulates  macrophages infiltration to the site of inflammation (Gesta et al., 2007). 

Obesity-associated inflammation may also involve other chemokine receptors and ligands, 

including MIP-1, RANTES and MCP-2 (Kitade et al., 2012). Macrophage infiltration into 

adipose tissue also occures in response to adipocyte death as demonstrated by Cinti et al 

(Cinti et al., 2005) or in response to increased caloric intake (increased FA) (Nguyen et al., 

2007). The recruitment of macrophages in response to FA occurs as a result of activation 

of TLR (Toll-like receptor) family which in turn trigger proinflammatory pathways and 

induces cytokine expression (Shi et al., 2006). 
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Adipose tissue macrophages in healthy mice have the genetic features of M2 macrophages 

with anti-inflammatory properties, which may protect adipocytes from inflammation. 

HFD-induced obesity causes a shift in the macrophage polarity to an M1 pro-inflammatory 

state that contributes to insulin resistance (Lumeng et al., 2007). It is worth noting that 

adiponectin induces anti-inflammatory function by polarisin adipose tissue macrophages 

into M2 macrophages with characteristic anti-inflammatory markers (Ohashi et al., 2010). 

Recruited macrophages can induce an inflammatory reaction via activation of NLRP3 

inflammosome which results in maturation and release of cytokines IL-1β and IL-18 

(Vandanmagsar et al., 2011). 

There is much evidence demonstrating AMPK is anti-inflammatory and acts as a protective 

mechanism against inflammation (Salt and Palmer, 2012). Several mechanisms have been 

proposed. Activation of AMPK can abolish the production of pro-inflammatory cytokines 

such as TNF-α, IL-1β and IL-6 in macrophages (Galic et al., 2011, Yang et al., 2010, Jeong 

et al., 2009, Sag et al., 2008) and IL-6 and IL-8 in adipocytes (Lihn et al., 2008). AMPK 

activation was also shown to increase expression of anti-inflammatory cytokine IL-10 in 

macrophages (Galic et al., 2011, Sag et al., 2008). Activation of AMPK by AICAR in 

cultured adipocytes has been shown to promote adiponectin gene expression, while 

attenuating the release of TNF-α and IL-6 (Lihn et al., 2004). Similarly, activation of 

AMPK by berberine attenuates the expression of proinflammatory genes such as TNF-α, 

IL-1β, IL-6, MCP-1, iNOS, and COX-2 in adipose tissue (Jeong et al., 2009). Activation of 

NLRP3 inflammasome in myeloid cells by metformin has been reported to reduce release 

of IL-1β and IL-18 in monocyte-derived macrophages, an effect which may involve 

AMPK (Lee et al., 2013).  

In addition, in healthy WT animals, there was preservation of PVAT anticontractile 

function after removal of the endothelium, thus supporting the data reported by Gao et al 

(Gao et al., 2007) that PVAT effect is not dependent on the presence of endothelium. In the 

HFD model, there was partial preservation of the anti-contractile capacity in WT but not 

KO mice in the absence of endothelium. These observations could be attributed to the 

protective mechanism of AMPK against inflammatory insults and/or contribution of other 

vasodilators released from PVAT such as H2S.  

Taken together, in obesity, increases in the amount of PVAT and in the expression pattern 

of adipokines and other PVAT-derived factors may shift the normal paracrine influence of 

PVAT from a net vasorelaxant role to an oxidative, pro-inflammatory, and contractile 
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status. This shift towards the dominance of vasoconstrictor and inflammatory factors, 

together with the lack of normal functioning AMPK in obesity could provide the link 

between obesity and the functional and structural changes observed in CVD.   
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Figure ‎6-2 Hypothesis of the mechanism of PVAT dysfunction in obesity and the role of 
AMPK. 

 

6.9 Potential physiological relevance and clinical 
implications 

Findings generated in this thesis have physiological, pathophysiological and therapeutic 

implications. The results of the current thesis provide evidence that supports a potential 

role for PVAT in regulation of vascular contraction mediated via AMPK in situ, a 

vasoprotective function for AMPK in maintaining normal PVAT function in regulating 
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vasomotor responsiveness in healthy vasculature, and a potential therapeutic target for 

AMPK in treatment of vascular dysfunction associated with obesity and CVD.  

6.9.1 Basal AMPK activity may act as vasculoprotective 
mechanism  

The findings in this thesis indicate that basal AMPK activation is depressed in PVAT of 

both obese and KO mice relative to lean and WT animals, respectively (Figure 5-10). Since 

the reduction of AMPK in PVAT is associated with dysfunctional vasomotor function in 

obese and KO animals, it can be assumed that activation of AMPK at basal conditions will 

act as a protective mechanism against vascular insult, maintaining a healthy vascular 

function or perhaps help in alleviating the consequence of any pathological conditions that 

trigger vascular dysfunction.  

The protective function of the AMPK has been reported before in endothelium and 

VSMCs. It has been reported that deletion of AMPKα2 subunit is associated with 

endothelial dysfunction (Wang et al., 2010b) and increased vascular smooth muscle 

contraction (Wang et al., 2011b). The study by Meijer et al investigated the effect of 

PVAT on the insulin-induced vasodilatation in muscular resistance arteries and showed 

that insulin causes dilation in AMPKα2 intact vessels while deletion of AMPKα2 caused 

insulin to induce vasoconstriction. Furthermore, the vasoralxant effect of PVAT was 

diminished in obese mice and that inhibition of JNK restored insulin-induced vasodilation 

in an adiponectin-dependent manner (Meijer et al., 2013). The current research reported 

different subunit contribution to the anti-contractile effect of PVAT. The difference in the 

findings may be related to the mice strain or to the type of vessels they utilise. 

Additionally, it might be related to the insulin signalling pathway which might be 

dependent of AMPKα2.    

Another study reported that endothelial dysfunction was more pronounced in AMPK α1 

deficient mice chronically treated with angiotensin II compared to WT mice and that the 

AMPK α1 in WT retain certain degree of endothelial function in mice treated with 

angiotensin II (Schuhmacher et al., 2011). Data from the current thesis suggest that 

AMPKα1 may partially preserve PVAT anticontractile effects in case of endothelial injury 

via modulation of adipocytokine production and release. These findings suggest that 

AMPK plays a vascular protective role under normal physiological conditions and protects 

against vascular tone dysfunction induced by cardiovascular pathologies.  
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However, the results using a global AMPK knockout model are not conclusive, as this 

model is also associated with other metabolic and physiological dysfunction that might 

lead to altered vasomotor impairment independently of the AMPK catalytic subunit 

ablation in the vessel or PVAT itself (Viollet et al., 2003, Jorgensen et al., 2004, Andreelli 

et al., 2006). Furthermore, it is difficult to determine the extent of α2 subunit compensation 

in the absence of the other alpha subunit.  Indeed, the findings of the current research do 

appear to add to the previous evidence regarding the protective role for AMPK in 

maintaining normal vasomotor function, although continued investigation is mandatory to 

confirm the current data. If AMPK does play a role in regulating physiological responses 

to different stimuli in health, it is plausible to think that the depression of AMPK activity 

in blood vessels including PVAT in obesity contributes to the dysfunctional vascular 

phenotype in these animals. 

6.9.2 Activation of AMPK in PVAT is a Potential therapeutic target 

Currently, the only therapeutic strategy that has been reported to improve survival in obese 

patients is weight-reducing surgery. However, its higher cost makes it less efficient. Based 

on the current findings and evidence in literature, PVAT function is essential to maintain 

normal vascular haemostasis. If this is the case, any therapeutic strategy that can prevent 

inflammation and beneficially manipulate secretory function at the adipocyte level would 

be attractive.  

Many studies have investigated the therapeutic benefit of AMPK-targeted compounds on 

the vascular tone in animal disease models. α-lipoic acid, a potent antioxidant used in 

treatment of diabetic neuropathy, has been found to alleviate endothelial dysfunction in 

obese rats (Lee et al., 2005). Another natural compound known as berberine was found to 

protect endothelial cells from hyperglycaemia and enhance vasodilation via AMPK 

activation (Wang et al., 2009c). Furthermore, in vivo administration of metformin has been 

found to enhance acetylcholine-induced relaxation and decrease endothelium-derived 

contracting factor (EDCF)-mediated contraction in OLEFT rat mesenteric rings 

(Matsumoto et al., 2008). Similarly, cultured SCAT derived from obese women and 

stimulated with AICAR showed enhanced adiponectin and GLUT4 expression and reduced 

TNF-α, IL-8 and IL-6 secretion (Lihn et al., 2004, Lihn et al., 2008).  

Interestingly, a synthetic small-molecule adiponectin receptor agonist (adipoRon) has been 

synthesised and was found to have similar effects to adiponectin on muscle and liver. 
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AdipoRon alleviates obesity-associated insulin resistance and glucose intolerance in obese 

rodent model db/db mice, and prolonged the lifespan of db/db mice on a high-fat diet. This 

effect involves activation of AMPK and PPAR-α pathway (Okada-Iwabu et al., 2013). 

Perhaps most exciting is a recent report on adipoRon where it was found to induce 

vasodilation in rat cerebral and coronary arteries. However, the effect was endothelium-

independent and also independent from AMPK, K
+
 efflux and any decrease in intracellular 

Ca
2+

 (Hong et al., 2016). AdipoRon is a promising therapeutic approach for the treatment 

of obesity-related diseases such as type 2 diabetes. 

The current evidence supports that PVAT have the capacity to act in a paracrine manner, 

on the circulation, the function of which it modulates via complex mechanisms which 

involves AMPK. The alterations in the anticontractile function of PVAT associated with 

obesity, metabolic syndrome, hypertension, or atherosclerosis are correlated with an 

imbalance in the secretion of adipokines such as adiponectin, inflammation and oxidative 

stress, resulted in vascular dysfunction. The sequence and the trigger of this 

phathophysiology are unclear, and the main events reported in this thesis, appear to be the 

PVAT infiltration by macrophage and reduced AMPK expression. A better understanding 

of PVAT physiology may allow for the design of therapies for vascular dysfunction and of 

strategies for directing these therapies to PVAT. Furthermore, the current findings provide 

meaningful data to justify follow-up in vivo studies to evaluate the role of AMPK 

activation in both physiological and pathophysiological state. Furthermore, more human 

studies are certainly needed in order to definitively define the role of PVAT AMPK in 

cardiovascular disease. 

6.10 Limitations 

Despite the research advances, AMPK remains a challenging system to study due to its 

multiple interactions with other molecules at both cellular and whole body level and its 

ubiquitous distribution. Furthermore, the lack of specific tools currently available to study 

this enzyme in adipose tissue including PVAT is one limitation that exists with this field of 

research. Although models of global AMPKα1 and α2 knockout have been generated, their 

application in identifying a specific role for PVAT AMPK in regulating vascular function 

is limited as these models are usually associated with metabolic and physiological 

dysfunction. Recently, adipose tissue-specific AMPKα1 and α2 knockout mouse models 

have been generated and used to investigate the role of AMPK in lipolysis and FA 

metabolism in adipose tissue under physiological conditions (Giordano et al., 2005).  This 
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model may be more useful for providing insight regarding the vascular effects of PVAT 

AMPK, as these animals should exhibit major reductions in PVAT AMPK activity (AMPK 

α1 is the predominant isoform expressed in PVAT). 

6.11 Concluding remarks   

The results presented in this thesis have increased our understanding of signalling 

pathways involved in regulation of vascular contractility by providing insight on a novel 

mechanism and regulator of vascular tone in both health and disease state. Furthermore, 

the data presented in this thesis provides not only supporting evidence about the function 

of adiponectin as a potential physiological modulator of vascular tone but also helps the 

understanding of the molecular mechanisms behind the vasculoprotective effects of this 

adipokine and its interaction with AMPK.  

It is, however, important to consider that the mechanisms proposed in this thesis and other 

research are ex vivo/in vitro studies and, thus, the physiological and clinical relevance of 

these results remains to be further investigated. Therefore, it is essential to continue to 

investigate the basic signalling mechanisms by which PVAT controls vascular 

haemostasis, as understanding the fundamental mechanism of AMPK vasomotor signalling 

pathways and their functional outcomes will broaden the understanding of regulation of 

vascular haemodynamic control. Furthermore, it will facilitate the development of potential 

novel therapeutic approaches that can be used to tackle vascular dysfunction associated 

with obesity and its complications. 
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