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ABSTRACT 

 

Development and Assessment of In Vitro Simulation  

Approaches to Intracerebral Haemorrhage 

 

PhD Thesis in Neuropathology by 

Apostolos Zarros 

University of Glasgow, Glasgow, 2017 
 

This current PhD Thesis in Neuropathology focuses on the development and assessment of in 

vitro simulation approaches to intracerebral haemorrhage. The PhD Thesis provides a clinical 

and experimental neuropathological overview of intracerebral haemorrhage as well as an ac-

count of the in vitro simulation approaches to the disease, before proceeding to the presenta-

tion of the experimental work designed and performed by the author. The development of the 

herein presented in vitro simulation approaches to intracerebral haemorrhage was based on 

the use of an immortalized embryonic murine hippocampal cell-line (mHippoE-14) and its 

response to oligomycin-A and ferrum or haemin under appropriately selected conditions 

(aiming to simulate the natural history of the disease in a more reliable manner). The PhD 

Thesis provides a characterization of the mHippoE-14 cell-line (through a real-time cellular 

response analysis and a cytomorphological characterization), before proceeding to the actual 

experimental justification of the conditions chosen for the development of the herein pre-

sented in vitro simulation approaches to intracerebral haemorrhage, and their assessment. 

The latter was performed through the undertaking of: (a) real-time cellular response analy-

sis, (b) cytomorphological assessment, (c) profiling of neuronal markers’ expression, (d) neu-

rochemical assessment, and (e) proteomic profiling. All experiments were performed at the 

University of Glasgow. The current PhD Thesis also provides a critical appraisal of: (a) the 

utility, novelty and limitations of the developed in vitro simulation approaches, and (b) the 

positioning of the developed in vitro simulation approaches within the neuropathopoietic 

context.  
 

Keywords: Neuropathology; intracerebral haemorrhage; stroke; intracerebral haematoma; 

perihaematomal penumbra; in vitro simulation approaches; mHippoE-14; embryonic murine 

hippocampal cell-line; oligomycin-A; ferrum; haemin; characterization; foetal bovine serum-



Zarros A | PhD Thesis in Neuropathology  7 

deprivation; FBS-deprivation; real-time cellular response analysis; xCELLigence technology; 

high-throughput; parametropoiesis; metaptosis; metaptotic phase; pathopoietic phase; cellu-

lar response; CR; normalized cellular response; nCR; metaptotic index; mi; index of metaptot-

ic adaptability; μi; cytomorphology; phase-contrast microscopy; mHippoE-14 classification; 

mHippoE-14 atlas; development; assessment; neuroprotective drugs; deferoxamine; DFO; 

cytidine-5’-diphosphocholine; CDP-Ch; neuronal markers’ expression; alpha 1 subunit of so-

dium / potassium adenosine triphosphatase; α1 Na+,K+-ATPase; choline acetyltransferase; 

ChAT; synapsin I; haeme oxygenase 1; HO-1; neurochemical assessment; acetylcholinester-

ase; AChE; proteomic profiling; cytokine arrays; neuropathopoiesis; drug-screening tools.  

 



 
PREFACE 

 

Development and Assessment of In Vitro Simulation  

Approaches to Intracerebral Haemorrhage 

 

The research work of Dr Alexios Bimpis (Consultant Neurosurgeon at the Panarcadic General 

Hospital, Tripoli, Greece) on intracerebral haemorrhage (Bimpis et al., 2012; 2013; 2015) has 

been an inspiration for the conception and realization of this current PhD Thesis. The count-

less time we have spent discussing the neuropathology of this complex clinical entity (and its 

more reliable experimental simulation) has played a major role in the conceptual shaping of 

the developed and herein presented in vitro simulation approaches.  

Intracerebral haemorrhage (or cerebral haemorrhage) is classified as an intra-axial in-

tracranial haemorrhage that can occur traumatically or non-traumatically (spontaneously). 

Its prognosis is defined by a number of factors, including (but not limited to): (a) its cause 

and potential comorbidities, (b) the anatomical localization of the occurring haematoma and 

its size, (c) the undertaken medical and / or surgical treatment as well as (d) genetic factors. 

Despite the recent significant advancements in the field of stroke prevention and treatment 

(Silver, 2014), a deep controversy over the available options for the treatment of intracere-

bral haemorrhage is still in place as a result of the disease’s complex nature and the variabil-

ity of its clinical manifestation (Bimpis and Zarros, 2014). Consequently, intracerebral haem-

orrhage still maintains high incidence (estimated to account for 10-15% of all strokes) and 

mortality (estimated to be approximately 50%) rates (Broderick et al., 1994; Morgenstern et 

al., 2015; Rodríguez-Yáñez et al., 2013). 

During the last decade, one of the most influential researchers in the field, Professor A. 

David Mendelow (Professor of Neurosurgery at Newcastle University, Newcastle-upon-Tyne, 

England, UK), has led a series of studies within the Surgical Trial of IntraCerebral Haemor-

rhage (STICH; I and II) framework (Mendelow et al., 2005; 2013). These STICH trials have 

shown that “patients with spontaneous supratentorial intracerebral haemorrhage in neurosur-

gical units show no overall benefit from early surgery when compared with initial conservative 

treatment” (Mendelow et al., 2005), as well as that “early surgery does not increase the rate of 

death or disability at 6 months and might have a small but clinically relevant survival ad-

vantage for patients with spontaneous superficial intracerebral haemorrhage without intra-
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ventricular haemorrhage” (Mendelow et al., 2013). These findings: (a) are indicative of the 

complicated nature of decision-making at the clinical management of intracerebral haemor-

rhage, (b) underline the need for a more thorough parametropoiesis of the clinical character-

ization of intracerebral haemorrhage cases, and (c) suggest that the experimental and clinical 

quest for novel, combinatorial and effective conservative approaches to this disease should 

by no means be abandoned.  

Considering that, to date, no effective non-surgical / pharmacological treatments have 

been established (Katsuki, 2010), this PhD Thesis provides a small contribution to the devel-

opment and assessment of novel experimental approaches to intracerebral haemorrhage at 

the preclinical (in vitro) level that would: (a) allow for a more reliable simulation of the dis-

ease (or, more realistically, of important aspects of the disease’s neuropathology), (b) serve 

the 3R principles1, and (c) provide the substrate for high-throughput drug-screening applica-

tions. Within this context, this current PhD Thesis provides a clinical and experimental neu-

ropathological overview of intracerebral haemorrhage as well as an account of the so far de-

veloped in vitro simulation approaches to the disease, before proceeding to the presentation 

of the experimental work designed and performed by myself.  

The development of the herein presented in vitro simulation approaches to intracere-

bral haemorrhage was based on the use of a commercially-available immortalized embryonic 

murine hippocampal cell-line (mHippoE-14, available from CELLutions Biosystems Inc.) and 

its response to oligomycin-A and ferrum or haemin under appropriately-selected conditions 

(aiming to simulate the natural history of the disease in a more reliable manner). Due to the 

limited data available for the mHippoE-14 cell-line (Gingerich et al., 2010), characterizations 

of the latter through real-time cellular response analysis (through the xCELLigence Real Time 

Cell Analysis system, developed by Roche Applied Science in partnership with ACEA Biosci-

ences Inc.) as well as through cytomorphology (through phase-contrast microscopy) have 

been considered as necessary and have been undertaken prior to the actual experimental jus-

tification of the conditions chosen for the development of the herein presented in vitro simu-

lation approaches to intracerebral haemorrhage and their assessment. To my belief, the work 

performed for the purpose of the mHippoE-14 cell-line characterization has the potential of 

introducing significant technical parameters in the field of “neuropathopoiesis” (Zarros, 

2014), and is equally (if not more) important to the task of the actual development and as-

sessment of the in vitro simulation approaches that this PhD Thesis presents. 

The task of the assessment of the developed in vitro simulation approaches to intrac-

erebral haemorrhage was performed through the undertaking of: (a) real-time cellular re-

sponse analysis, (b) cytomorphological assessment, (c) profiling of selected neuronal mark-

                                                 
1 the 3R principles refer to the more ethical use of animals in scientific testing and are summarized by 
the words “Replacement”, “Reduction” and “Refinement” (Bulger, 1987; Richmond, 2002).  
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ers’ expression, (d) neurochemical assessment, and (e) proteomic profiling. Although this as-

sessment is nowhere near of being exhaustive, it is really informative and useful towards a 

critical appraisal of: (a) the utility, novelty and limitations of the developed in vitro simulation 

approaches, and (b) the positioning of the developed in vitro simulation approaches within 

the neuropathopoietic context. 

At this point it is important to note that a major role in the execution of the undertaken 

and herein presented experiments on the profiling of neuronal markers’ expression and the 

proteomic profiling of the developed in vitro simulation approaches to intracerebral haemor-

rhage (in fact, of a large part of the assessment of these approaches) should be credited to Dr 

Christina Elliott (Postdoctoral Research Worker at King’s College London, London, England, 

UK; formerly Research Associate at the University of Glasgow); her (theoretical and technical) 

expertise in basic neuroscientific research has been invaluable. 

I am grateful to both my supervisors, Professors George S. Baillie (Professor of Molecu-

lar Pharmacology) and William (Bill) Cushley (Professor of Molecular Immunology), for their 

trust, mentorship and support towards the completion of the work described in this PhD 

Thesis. All described experiments were performed in the Gardiner Lab located on the fifth 

floor of the Wolfson Link Building at the Gilmorehill Campus of the University of Glasgow. 

Finally, I feel that I should make clear to all readers that I am fully aware that this PhD 

Thesis contains grammatical and syntactical errors. I am sure that the readers will excuse me 

for the existence of such errors, since I am not a native speaker of English. I also feel that I 

should apologize for the fact that the output of the work presented in the current PhD Thesis 

will include only a selection of the herein presented findings as well as a different approach to 

their presentation and interpretation. Although this is an expected and unavoidable “trans-

formation” required for the availability of these data to a wider scientific audience (through 

peer-reviewed journal articles, book chapters and proceeding abstracts), readers should still 

consider this PhD Thesis as a reference source for a number of useful technical details, find-

ings and comments. 
 

Glasgow, April 2017 
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CHAPTER I 

 

Intracerebral haemorrhage: a clinical and experimental  

neuropathological overview 

 

One of the finest summaries of the way the pre-Galenic world identified stroke is written by 

Anonymi Medici in the manuscript “De Morbis Acutis et Chroniis”. The manuscript provides 

an overview of the cause of each disease (as suggested by earlier authors), before proceeding 

to the description of their symptomatology and suggestive treatment (Nutton, 1998), and in-

cludes an interesting excerpt on “apoplexy” (“Περὶ ἀποπληξίας”): 

“… Πραξαγόρας καὶ Διοκλῆς περὶ τὴν παχεῖαν ἀρτηρίαν γίνεσθαί φασι τὸ πάθος 

ὑπὸ φλέγματος [δὲ] ψυχροῦ καὶ παχέος ὡς μηδ’ ἐν αὐτῇ οὐχ ὅτι πνεῦμα 

παραπνεῖσθαι δύνασθαι· καὶ οὕτω κινδυνεύειν τὸ πᾶν ἐγκαταπνιγῆναι. 

Ἱπποκράτης δὲ καὶ Ἐρασίστρατός φασι περὶ τὸν ἐγκέφαλον φλέγματος ψυχροῦ 

καὶ παγετώδους γίνεσθαι σύστασιν, ὑφ’ οὗ καὶ τὰ ἀπὸ τούτου πεφυκότα νεῦρα 

πληρούμενα μὴ παραδέχεσθαι τὸ ψυχικὸν πνεῦμα, ἀλλ’ ἐγκαταπνιγόμενον 

τοῦτο κινδυνεύειν ἀποσβησθῆναι”,  

which has been translated as follows (Garofalo, 1997): 

“… Praxagoras and Diocles say that the affection arises in the thick artery from 

cold and thick phlegm, in such a way that pneuma in it cannot transpire at all 

and thus risks being choked off. Hippocrates and Erasistratus say that cold, fro-

zen phlegm forms in the brain: the nerves that arise from the brain, filled by this 

phlegm, do not receive the psychic pneuma, and this, being choked off, risks be-

ing extinguished”. 

Furthermore, the same manuscript provides an account of the signs of apoplexy:  

 “… τοῖς δὲ ἀποπληκτικοῖς παρέπεται ἀφωνί(αν καὶ) ἀναισθησίαν γίνεσθαι μετὰ 

ἀτενισμοῦ, ὥσπερ ἀκινησίας τῶν ὀμμάτων, ὥστε δοκεῖν λελιθῶσθαι, καὶ οἷον 

ἀποπεπηγῆναι· ὅθεν δὴ καὶ τοὔνομα κέκτηται τὸ πάθος. καὶ οἱ μέν περὶ τὴν 

πρώτην ἢ δευτέραν ἢ τρίτην ἡμέραν ἢ ἔτι μακροτέραν ἀπαυδῶσιν, ἢ ἐσώθησαν 

μέν, παρελύθησαν δέ τι τοῦ σώματος· οἱ δὲ κοιλίας αὐτομάτου ὑπελθούσης 

ἀπηλλάγησαν τοῦ πάθους”,  

which has been translated as follows (Garofalo, 1997): 
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“… symptoms of apoplexy are: sudden loss of voice (and) insensibility with fixed 

gaze, such as immobility of the eyes, so that they look rigid like stones, frozen: 

from this the affection has acquired its name. Some give in about the first, sec-

ond or third day; others escape, but with a part of the body paralyzed; others 

are freed from the affection by a spontaneous evacuation of the bowels”, 

before proceeding to a prognostic account of the disease:  

 “… ἡ δὲ ἀποπληξία σπανίως μὲν λυομένη, ταχέως δ’ἀναιροῦσα, ἔχουσα δὲ καὶ 

τὴν λύσιν χαλεπωτέραν τῶν ἄλλων παθῶν. τὰ πολλὰ γὰρ μετὰ τὸ παραλῦσαί τι 

μέρος ἀπαλλάττεται”,  

which has been translated as follows (Garofalo, 1997): 

“… apoplexy seldom clears up and it kills rapidly, and is more difficult to resolve 

than the older affections. In fact it often goes way after paralysing some part”. 

This very interesting account of “apoplexy” (literally meaning “being struck down”)1 (Gerber, 

2003) does not identify its cause into any vascular aetiology, but is representative of what be-

came a “remarkable longevity” for the term (Storey and Pols, 2010). The introduction of the 

term “stroke” is placed in 1599 (Schiller, 1970), while the identification of a cerebrovascular 

pathology behind “apoplexy” is a result of the work of William Harvey (1578-1657), Johann 

Jakob Wepfer (1620-1695) and Thomas Willis (1621-1675) (Gerber, 2003; Storey and Pols, 

2010). A few decades later, Giovanni Battista Morgagni (1682-1771) provides the first classi-

fication of “apoplexy” into “sanguineous apoplexy”, “serous apoplexy” and “neither serous nor 

sanguineous apoplexy” (Gerber, 2003; Heros and Morcos, 2000); a development that opens 

the way to a more accurate nosological characterization of the disease.    

 

I.1. Defining intracerebral haemorrhage 
 

Intracerebral haemorrhage (or cerebral haemorrhage) is an intra-axial2 intracranial haemor-

rhage that can occur traumatically or non-traumatically (spontaneously). The term describes 

a number of conditions with different underlying causes (Al-Shahi Salman et al., 2009; Steiner 

et al., 2011) that will be analytically presented further below, and its classification is primari-

ly aetiological and anatomical. Spontaneous3 intracerebral haemorrhage is the type of haem-

orrhagic stroke that occurs within the brain parenchyma due to a cause that cannot be de-

                                                 
1 it should be noted that, in more recent years, the word “apoplexy” lost its initial meaning of stroke 
and has been (primarily) used for the description of any sudden death that began with a sudden loss of 
consciousness; nowadays, the word “apoplexy” is sometimes used for the description of acute haemor-
rhagic incidents in specified organs (e.g. ovarian apoplexy, pituitary apoplexy). 
2 the term “intra-axial” denotes lesions that develop / exist within the brain parenchyma, in contrast to 
the term “extra-axial” which describes lesions that develop / exist outside the brain. 
3 it is important to clarify that all spontaneous intracerebral haemorrhage cases fall within the non-
traumatic aetiological category of the disease, but not all non-traumatic cases of intracerebral haemor-
rhage can be characterized as “spontaneous”, although occurring spontaneously. 
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tected with the available diagnostic approaches (cryptogenic) or due to a cause that is un-

known (idiopathic) (Steiner et al., 2011). Intracerebral haemorrhage should not be confused 

with intraventricular haemorrhage (which is a different type of intra-axial intracranial haem-

orrhage) or with the clinical entities that fall under the extra-axial intracranial haemorrhages’ 

category (such as the subarachnoid, subdural or epidural haemorrhage). 

 

I.2. Epidemiological and aetiological overview of intracerebral haemorrhage 
 

Intracerebral haemorrhage is the second most commonly occurring type of stroke (account-

ing for approximately 10% to 15% of new cases of stroke on an annual basis) (Manno, 2012; 

Rincon and Mayer, 2013; Roger et al., 2012; Thrift et al., 1995), and is characterized by an 

early (21-day to 30-day) case fatality of 25% to 35% in high-income countries (Feigin et al., 

2009) and of 30% to 48% in low- to middle-income countries (Feigin et al., 2009). Despite the 

fact that the age-adjusted stroke incidence in high-income countries has decreased by 42% in 

the last 40 years (Feigin et al., 2009; van Asch et al., 2010), this reduction primarily reflects 

the lowering in the incidence of ischaemic stroke rather than that of intracerebral haemor-

rhage. The latter demonstrates relatively stable morbidity and mortality rates over the past 

decades (Manno, 2012; van Asch et al., 2010), with only 20% of patients with intracerebral 

haemorrhage being able to regain functional independence at 6 months (Counsell et al., 1995; 

Manno, 2012). The estimated mortality rate of intracerebral haemorrhage is approximately 

50% (Broderick et al., 1994; Morgenstern et al., 2015; Rodríguez-Yáñez et al., 2013), although 

this rate largely depends on the nature of the intracerebral haemorrhage as well as on the 

treatment it receives. Moreover, the incidence rate of intracerebral haemorrhage in Europe is 

estimated to account for approximately 15 cases for every 100,000 inhabitants (Giroud et al., 

1991), and it varies by country, age, race and sex (Appelros et al., 2009; Feigin et al., 2009; 

James and Gokhale, 2014; Rodríguez-Yáñez et al., 2013; van Asch et al., 2010).  

The aetiology of intracerebral haemorrhage can be attributed to a number of factors 

that are synopsized in Table A.1. The two major causes of primary intracerebral haemorrhage 

are considered to be hypertension (Hassan et al., 2010; Sessa, 2008; Thrift et al., 1999b) and 

cerebral amyloid angiopathy (Bornebroek et al., 1996; Chaudhary et al., 2014; Greenberg, 

2010; Maat-Schieman et al., 1996; Pezzini and Padovani, 2008; Samarasekera et al., 2012), 

although other unknown causes should be considered as well (Ferro, 2006). More than a dec-

ade ago, Mead et al. (2002) have also suggested the consideration of some cases of haemor-

rhagic transformation of cerebral infarcts as a potential cause of primary intracerebral haem-

orrhage; a suggestion that remains to be clarified. 

On the other hand, secondary intracerebral haemorrhage could occur due to a large 

variety of causes (Table A.1), including: (a) prior traumatic brain injury (in which intracere-
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bral haemorrhage develops either immediately or at a later time-point) (Kurland et al., 2012; 

Ozgun and Castillo, 1995; Squier, 2011; Zahari et al., 1996), (b) rupture of aneurysms or other 

vascular malformations (Abbed and Ogilvy, 2003; Detwiler et al., 1997; Jensen et al., 2009; 

Sandin et al., 1999; Stapf and Mohr, 2010), (c) bleeding due to neoplasms and / or their 

treatment (de San Pedro et al., 2010; Feldman et al., 1991; Hottinger and DeAngelis, 2010; 

Kondziolka et al., 1987; McDonald et al., 1997; Nutt and Patchell, 1992; Park et al., 2007; Ra-

panà et al., 1998; Salmaggi et al., 2008), (d) coagulopathies (Huttner and Steiner, 2010; 

Lilleyman, 1997; Quinones-Hinojosa et al., 2003), (e) cerebral venous thrombosis (Crassard 

and Bousser, 2010; Kalita et al., 2008), (f) vasculitides (Chiaretti et al., 2002; Mencacci et al., 

2011), (g) vasculopathies (including the moyamoya syndrome)4 (Kobayashi et al., 2000; Ku-

roda and Houkin, 2008), (h) iatrogenic causes (particularly due to surgical procedures or 

other therapeutic interventions) (Asgari et al., 2003; Brisman et al., 1996; Cheng et al., 2001; 

Friedman et al., 2002; Gibbons et al., 1992; Halliday et al., 2014; Hassler and Hejazi, 1998; 

Mansoor et al., 1996; Missori et al., 2002; Russell and Gough, 2004; Seifman et al., 2011), (i) 

anticoagulant and thrombolytic medication (Babikian et al., 1989; Cavallini et al., 2008; Cer-

vera et al., 2012; Da Silva and Bormanis, 1992; Derex and Nighoghossian, 2008; Flaherty, 

2010; Lovelock et al., 2010; Steiner et al., 2006), (j) antiplatelet medication (Govaert et al., 

1995; Thoonsen et al., 2010), (k) heavy ethanol consumption (Ariesen et al., 2003; Thrift et 

al., 1999a), (l) use of sympathomimetic and illicit drugs (Aggarwal et al., 1996; Chaudhuri and 

Salahudeen, 1999; Forman et al., 1989; McGee et al., 2004; Pozzi et al., 2008), (m) honeybee 

stings (Remes-Troche et al., 2003), (n) snake bites (Mosquera et al., 2003; Pinho and 

Burdmann, 2001), and (o) other causes (Argyriou et al., 2006; Gironell et al., 1995; Kumar et 

al., 2009; Senanayake and Román, 1992; Viola et al., 2011). 

In a systematic review undertaken by Ariesen et al. (2003), the authors concluded that 

age, male sex, hypertension, as well as a high intake of alcohol, are risk factors for intracere-

bral haemorrhage. On the other hand, the same study suggested that smoking, diabetes melli-

tus and hypercholesterolaemia should not be considered as risk factors for the development 

of intracerebral haemorrhage (Ariesen et al., 2003). In fact, hypercholesterolaemia seems to 

lower the risk of intracerebral haemorrhage (Ariesen et al., 2003), despite it being a proven 

risk factor for ischaemic stroke (Goldstein et al., 2001)5. A medical history of cerebral infarc-

tion seems to also be associated with an increased chances of developing intracerebral haem-

                                                 
4 the most common medical conditions that associate with the moyamoya angiographic pattern are 
neurofibromatosis, sickle cell disease, and previous cranial irradiation; however, there is a significant 
number of other disorders linked to this pattern, namely pyogenic meningitis, tuberculosis, leptospiro-
sis, Fanconi anaemia, Marfan syndrome, pseudoxanthoma elasticum (Grönblad-Strandberg syndrome), 
Apert syndrome, glycogen storage disease and connective tissue defects (Riela and Roach, 1993). 
5 thankfully, low serum cholesterol levels (due to intensive statin treatment) are not associated with an 
increased risk of intracerebral haemorrhage, with the exception of cases with a medical history of in-
tracerebral haemorrhage (Athyros et al., 2010). 
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orrhage (Flaherty et al., 2010; Woo et al., 2002), while the use of medication such as antico-

agulants, thrombolytics and antiplatelet drugs, also seems to bear a small (but debatable) risk 

of developing intracerebral haemorrhage (Brass et al., 2000; Flaherty et al., 2010; Gebel et al., 

1998; Gorelick and Weisman, 2005; Gurwitz et al., 1998; Hart et al., 1995; Själander et al., 

2003; Thrift et al., 1999c). Finally, there seems to be a small heritability component to the 

risk of developing intracerebral haemorrhage, which is, so far, mainly highlighted on the role 

of specific apolipoprotein E genotypes and their particular association with lobar6 intracere-

bral haemorrhage (Flaherty et al., 2010; O’Donnell et al., 2000; Woo et al., 2002; 2005). 

 

I.3. Clinical presentation of intracerebral haemorrhage 
 

More than half of the patients with intracerebral haemorrhage will report a progressive onset 

of clinical symptoms over minutes to hours (Hänggi and Steiger, 2008); these symptoms de-

pend largely on the location and the size of the occurring haematoma. A non-exhaustive over-

view of clinical symptoms accompanying different types of intracerebral haematomas, based 

on the neuroanatomical localization (and size) of the latter, is provided in Table A.2. 

Lobar intracerebral haemorrhage appears in most cases with headache (Arboix et al., 

2006; Massaro et al., 1991; Ohtani et al., 2003; Ropper and Davis, 1980); an onset symptom 

accompanied some times by vomiting (Caplan, 1993; Kase, 2010) or, more rarely, by seizures 

(Cervoni et al., 1994; De Reuck et al., 2007; Passero et al., 2002). Depending on the location of 

the haematoma, symptomatology varies significantly amongst the frontal, parietal, temporal 

and occipital haemorrhages: impaired consciousness, hemiparesis, sensory loss, hemianopia, 

aphasia and constructional apraxia are amongst the main symptoms associated with lobar in-

tracerebral haemorrhage (Caplan, 1993; Kase, 2010; Lunardi, 2012; Thrift et al., 1995).  

The symptomatology of the deep-seated intracerebral haemorrhage is systematically 

distinguished into that of the putaminal (small or large, depending on the haematoma’s size), 

caudate and thalamic haemorrhages. Large putaminal haemorrhages could even lead to coma 

(Hier et al., 1977), and are likely to expand intraventricularly (Stein et al., 1983). On the other 

hand, small putaminal haemorrhages can still produce motor and sensory deficits (Table A.2), 

but not to the severity or with the certainty of the large putaminal ones (Caplan, 1993). Pu-

taminal haemorrhages are mainly associated with hypertension (Weisberg et al., 1990), have 

a mortality rate of approximately 20% (Thrift et al., 1995), and present with a variety of clini-

cal syndromes, depending on the exact neuroanatomical location and size of the haematoma 

(Ghetti, 2012; Kase, 2010).  

                                                 
6 a number of studies tends to classify intracerebral haemorrhage according to the anatomical position 
of the haematoma, as “lobar”, “deep-seated”, “cerebellar” or “pontine”; this classification could, to an 
extent, considered to be suggestive of the aetiology of intracerebral haemorrhage (e.g. white matter 
and cortical haematomas are more likely to occur due to cerebral amyloid angiopathy, compared to 
anatomically deeper-seated haematomas) (Sutherland and Auer, 2006). 
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The caudate haemorrhages are rare, small haematomas that could present with head-

ache, vomiting or decreased alertness (Caplan, 1993; Stein et al., 1984), and that could easily 

discharge intraventricularly (Liliang et al., 2001); in fact, an haemorrhage at the caudate nu-

cleus could clinically resemble a subarachnoid one (Kase, 2010; Pellizzaro Venti et al., 2012). 

States of confusion and disorientation could also occur in patients with caudate haematomas, 

but sensory deficits are, in most cases, absent (Caplan, 1993).  

A different case are the thalamic haemorrhages, that are presented with contralateral 

hemiparesis, hemisensory syndrome, and severe ophthalmological signs (Chung et al., 1996; 

Fisher, 1959). Their prognosis is worse than that of putaminal or caudate haematomas of 

equal volumes (Caplan, 1993; Thrift et al., 1995), and, in some cases, thalamic haemorrhages 

can trigger memory disturbances and behavioural abnormalities (Caplan, 1993; Kase, 2010). 

Cerebellar intracerebral haemorrhage is rarely characterized by hemiplegia (a major 

exclusion criterion for its diagnosis), but it is most commonly presented as a sudden onset of 

lack of balance, along with vomiting, dizziness and headache (Caplan, 1993; Heros, 1982; Ott 

et al., 1974). Ataxia and facial palsy are common clinical signs of cerebellar haemorrhage, and 

so is the development of dysarthria (Kase, 2010) and oculomotor deficits (Bosch et al., 1975). 

The last major type of intracerebral haemorrhage to be mentioned within this short 

summarization of the clinical presentation of the disease, the pontine haemorrhage, is charac-

terized by a wide clinical spectrum and poor prognosis (Wessels et al., 2004); large pontine 

haematomas will cause quadriplegia, oculomotor deficits, hyperventilation, or even coma 

(Caplan, 1993), while smaller haematomas are more likely to be non-life-threatening, and to 

produce mild neurological deficits (Kase, 2010; Moncayo, 2012b; Wessels et al., 2004). 

A thorough clinical evaluation of the patient with intracerebral haemorrhage is a major 

part of the diagnostic investigation, and a monitor of the disease’s progression. Over recent 

years, a number of clinical grading scales has been developed (Hwang et al., 2010) in order to 

address the need for more accurate management protocols and less varied approaches to the 

design / execution of clinical trials, as well as in order to serve as prediction tools (a side of 

which will be briefly discussed in subchapter I.7). Table A.3 provides a synopsis of the first 

clinical grading scale for intracerebral haemorrhage as developed by Hemphill et al. (2001): 

the parameters considered for its determination, and its score’s prognostic interpretation ac-

cording to the “outcome measure” chosen (30-day mortality). 

 

I.4. Diagnostic investigation of intracerebral haemorrhage 
 

Upon admission, a patient suspected to suffer from an intracerebral haemorrhage should un-

dergo a diagnostic investigation that consists of three elements: (a) the acquisition of his his-

tory (e.g. age, hypertension, cognitive decline, trauma, use of anticoagulants, co-morbidities, 
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use of drugs), (b) the undertaking of a clinical examination (e.g. blood pressure measurement, 

scoring according to the available clinical grading scales, identification of signs of trauma, 

bleeding and / or drug abuse), and (c) the immediate performance of a neuroradiological ex-

amination of the patient’s head and neck region, through either a computed tomography (CT) 

or a magnetic resonance imaging (MRI) scan (as an approach to the identification of the loca-

tion, size and nature of the haematoma and its associated lesions) (Allen, 1984; Anzalone et 

al., 2004; Chen and Caplan, 2010; Linn and Brückmann, 2009). These three elements are usu-

ally sufficient in order to lead to the diagnosis of a primary hypertensive intracerebral haem-

orrhage, but might not be enough in order to define the cause of a secondary intracerebral 

haemorrhage or even set a diagnostic label for a primary intracerebral haemorrhage due to 

cerebral amyloid angiopathy (Chen and Caplan, 2010); diagnostic tests that might be needed 

in order to secure a diagnosis (and be able to effectively manage) such cases of intracerebral 

haemorrhages, are routine laboratory tests7, coagulation studies, blood cultures, toxicological 

or more specific biochemical8 studies, cerebrospinal fluid (CSF) analyses, and the undertaking 

of further neuroradiological tests (e.g. MRI, CT angiography, cerebral catheter angiography) 

(Butcher and Davis, 2010; Chen and Caplan, 2010; Chewning and Murphy, 2010a; 2010b; 

Kernagis and Laskowitz, 2012; Parizel et al., 2001; Schellinger and Fiebach, 2004; Wong et al., 

2012; Xavier et al., 2003). In some difficult cases (e.g. suspicion of vasculitis or of a tumour as 

a cause of the haematoma), the pathognomonic acquisition of brain biopsies might also be 

necessary (Chen and Caplan, 2010).  

At this point, it might be worth mentioning that according to a recent systematic re-

view by Hasan et al. (2012) on a total of 136 molecular variables measured and analysed with 

regards to their association with stroke, only 4 were found to be of able to reliably serve as 

diagnostic biomarkers for stroke; of these, it is only the glial fibrillary acidic protein (GFAP)9 

that has been shown to be a reliable indicator of a haemorrhagic stroke (as opposed to an is-

chaemic one) (Foerch et al., 2006; Zhang et al., 2013). 

 

I.5. Surgical management of intracerebral haemorrhage 
 

The controversy over the surgical or conservative management of an intracerebral haemor-

rhage patient has already been briefly highlighted in the Preface of the current PhD Thesis, 

with a particular mention on the STICH trials’ results (Mendelow et al., 2005; 2013); this con-

                                                 
7 such as an electrocardiogram (ECG), a chest X-ray, a full blood count, liver function tests, the assess-
ment of markers of inflammation, as well as the measurement of electrolytes, urea and creatinine (Jo-
sephson et al., 2010). 
8 such as the measurement of human chorionic gonadotrophin in the case of pregnant women. 
9 the release of GFAP into the bloodstream is believed to be solely brain-derived, pathognomonic with-
in specific timeframes following the onset of clinical symptomatology, and associated with blood-brain 
barrier (BBB) injury (Schiff et al., 2012). 
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troversy lies at the heart of the problem with regards to the urgent need of novel treatment 

approaches for this devastating disease (Josephson et al., 2010; Wang and Talkad, 2009). One 

must recognise that the removal of the haematoma is expected to reduce the mechanical 

compression caused by it over the perihaematomal region, and to prevent the subsequent 

haematoma-induced neurotoxic effects (Mendelow, 2010; Minematsu, 2003). However, such 

an intervention might evolve risks that might outweigh the potential benefits from it 

(Hankey, 2003; Rodríguez-Yáñez et al., 2013), and should be considered on a case-by-case 

level, based on the patient’s clinical grading (Rodríguez-Yáñez et al., 2013), the specifics of 

the clinical presentation of the disease (Chen et al., 2014; Mendelow and Unterberg, 2007) as 

well as the most recent clinical guidelines (Steiner et al., 2014). 

The most commonly-employed surgical treatment approaches to intracerebral haem-

orrhage (Fiorella et al., 2015; Mendelow, 2010; Wang and Talkad, 2009) are synoptically pre-

sented in Table A.4 and include: (a) decompressive craniotomy or craniectomy followed by 

open surgery, (b) stereotactic aspiration10, and (c) endoscopic aspiration. Further supple-

mentary to the decompressive craniotomy or craniectomy techniques, such as the ventricular 

external drainage for cases of intracerebral haemorrhage with hydrocephalus and intra-

ventricular bleeding, can also been undertaken (Dey et al., 2012; Ferro, 2006). 

Donnan and Davis (2003) have attributed the ineffectiveness of the surgical treatment 

of intracerebral haemorrhage to the lack of evidence with regards to the disease’s neuropa-

thology, as well as to the very small number of patients included in the - by the time - pub-

lished clinical trials. The STICH trials’ results11 that followed, underlined the need for a more 

thorough parametropoiesis of the clinical characterization of intracerebral haemorrhage cas-

es; a dimension of the problem that is now recognised (Bimpis and Zarros, 2014; Kirkman et 

al., 2011b). 

 

I.6. Non-surgical management of intracerebral haemorrhage 
 

The non-surgical (conservative; medical) management of intracerebral haemorrhage is more 

dependent on the early identification of the triggering cause of the disease than the surgical 

approach. A brief overview of what such a management could involve is provided herein (Ta-

ble A.5), but one should bear in mind that aspects of the non-surgical management could still 

be essential parts of the surgical management, if such was to take place within the treatment 

approach to intracerebral haemorrhage.  

                                                 
10 usually combined with local thrombolysis (Thiex, 2011), the technique is considered as a minimally-
invasive surgical approach to the treatment of intracerebral haemorrhage (Nyquist et al., 2010); a very 
informative review article on the history of the development of stereotactic fibrinolytic evacuation as a 
treatment option for intracerebral haemorrhage is that of Samadani and Rohde (2009). 
11 in particular, STICH II is claimed to be the 15th randomized trial aiming to assess the surgical man-
agement of intracerebral haemorrhage as compared to a non-surgical one (Starke et al., 2014). 
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Intracerebral haemorrhage is a medical emergency and, as such, any delay in its treat-

ment is unfavourable in terms of outcome (Elliott and Smith, 2010; Marietta et al., 2007). Up-

on admission, an intracerebral haemorrhage patient should be stabilized in terms of adequa-

cy of airway, breathing and circulation12, particularly in cases where a rapid neurological de-

cline and low levels of consciousness are evident (Elliott and Smith, 2010; Mayer and Rincon, 

2005; Naval et al., 2010; Sacco et al., 2004). Immediate endotracheal intubation, mechanical 

ventilation and correction of hypertension should be undertaken in order to: (a) secure an 

adequate cerebral perfusion pressure13 and (b) eliminate the potential for a further haema-

toma expansion14, the development of cerebral oedema15 and / or hydrocephalus (Anderson, 

2009; Elliott and Smith, 2010; Mayer and Rincon, 2005). The management of hypertension (a 

common feature of patients with intracerebral haemorrhage at the time of admission) should 

be addressed preferably with labetalol (a mixed alpha/beta adrenergic receptor antagonist), 

esmolol (a beta-1 adrenergic receptor antagonist) or nicardipine (an L-type calcium channel 

blocker) (Asdaghi et al., 2007; Elliott and Smith, 2010; Mocco et al., 2006; Naval et al., 2010). 

Moreover, the non-surgical management of an increased ICP should also be considered; head 

elevation (Rincon and Mayer, 2008), short-term hyperventilation (Badjatia and Rosand, 

2005; Rincon and Mayer, 2008), osmotherapy (primarily through mannitol administration) 

(Asdaghi et al., 2007; Kalita et al., 2003; Rincon and Mayer, 2008; Sacco et al., 2004), pento-

barbital-induced cerebral hypometabolism (Rincon and Mayer, 2008) and hypothermia in-

duction (Rincon and Mayer, 2008), are some of the options for the achievement of control on 

ICP within an intensive care unit. 

One of the first steps that a non-surgical approach should also include is the immediate 

stop and, if possible, reversal of any oral anticoagulant treatment (Flower and Smith, 2011; 

Goldstein et al., 2008); the immediate administration of vitamin K and the clotting factor re-

placement with fresh-frozen plasma or prothrombin complex concentrate, are recommended 

options for the immediate reversal of the effects of warfarin16 (Masotti et al., 2011). On the 

other hand, heparin can be inactivated by protamine sulphate administration (Badjatia and 

Rosand, 2005), while the transfusion of platelets and the administration of desmopressin ace-

tate could offer some coverage for patients previously on antiplatelet medication (Badjatia 

and Rosand, 2005). 

                                                 
12 also known as the ABCs. 
13 the cerebral perfusion pressure is defined as the difference between the mean arterial pressure and 
the intracranial pressure (ICP). 
14 there have been reports challenging the belief that the early intensive (aggressive) lowering of blood 
pressure can beneficially affect the outcome of intracerebral haemorrhage (Worster et al., 2009). 
15 interestingly, again, McCourt et al. (2014) have recently provided evidence that cerebral perfusion 
and blood pressure do not affect perihaematomal oedema growth in acute intracerebral haemorrhage. 
16 the administration of recombinant factor VIIIa is not recommended for the reversal of warfarin in in-
tracerebral haemorrhage (Aiyagari and Testai, 2009; Anderson, 2009; Flower and Smith, 2011). 
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It is also worth noting that efficient glycaemic control, venous thrombosis prophylaxis, 

nutrition and temperature control, are vital aspects of the acute management of intracerebral 

haemorrhage patients (Aguilar and Freeman, 2010; Balami and Buchan, 2012; Flower and 

Smith, 2011; Mayer and Rincon, 2005; Nyquist, 2010; Rincon and Mayer, 2008; Rincon et al., 

2014; Rodríguez-Yáñez et al., 2013). For the management of intracerebral haemorrhage-

induced seizures, acute administration of lorazepam (followed by phenytoin, fosphenytoin, 

valproic acid or phenobarbital) is required (Mayer and Rincon, 2005), and an 8 to 12-week 

prophylactic anticonvulsant therapy has also been considered, particularly in the case of lo-

bar haematomas (Asdaghi et al., 2007); the latter is not a universally encouraged option 

(Flower and Smith, 2011). Finally, the role for corticosteroids in the treatment of intracere-

bral haemorrhage has been a matter of debate (Elliott and Smith, 2010; Sacco et al., 2004). 

In recent decades, the identification of the limited efficacy of both the surgical and the 

non-surgical treatment approaches to intracerebral haemorrhage has led to the undertaking 

of a number of experimental and clinical trials on the identification of compounds that could 

exert neuroprotection on the perihaematomal regions. Some of these (promising) treatment 

options have been tightly linked to the contemporary understanding of the neuropathology of 

the disease and, thus, will be appropriately discussed further below. 

 

I.7. Prognosis of intracerebral haemorrhage 

 

Intracerebral haemorrhage is characterized by high rates of morbidity and mortality (Hanel 

et al., 2002). Although the 30-day mortality rates in a population study conducted by Broder-

ick et al. (1994) appear to be different between the surgically- (25%) and the conservatively-

managed patients (46%), the overall morbidity and mortality for these two management ap-

proaches were not statistically, significantly different. Amongst the most frequently assessed 

clinical and radiologic predictors of survival and functional outcome in intracerebral haemor-

rhage, one should consider: (a) the patient’s age, (b) the patient’s gender, (c) the patient’s ini-

tial level of consciousness, (d) the anatomical location of the haematoma, (e) the existence of 

intraventricular haemorrhagic spread, (f) the development of hydrocephalus, (g) the devel-

opment of a midline shift or mass effect, (h) the progression of the bleeding, and (i) the pa-

tient’s blood pressure (Diamond et al., 2003). Diabetes has not been associated with a wors-

ening of the outcome prognosis for spontaneous intracerebral haemorrhage (Wang et al., 

2015), but the use of antiplatelet therapy at the time of incident has been suggested to in-

crease mortality (Thompson et al., 2010). 

A number of mathematical models of outcomes in intracerebral haemorrhage has been 

developed over the years (Tuhrim, 2010); these approaches have: (a) fostered the develop-

ment of predictive algorithms that can inform prognosis (with an emphasis on the likelihood 
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of survival and recovery), and (b) identified a number of clinical and laboratory parameters 

that have contributed immensely to the improvement of the design of clinical trials in the 

field. Apart from the prognostic interpretation of the first clinical grading scale for intracere-

bral haemorrhage developed by Hemphill et al. (2001) that has already been presented in 

this Thesis (Table A.3) and that has provided the basis for the development of a number of 

further clinical grading scores (Hwang et al., 2010), the recently developed prediction score 

for haematoma expansion in patients with primary intracerebral haemorrhage (Brouwers et 

al., 2014) is also worth mentioning. 

 

I.8. Neuropathological overview of intracerebral haemorrhage 
 

The development of intracerebral haemorrhage could be considered to be taking place in at 

least five phases (Figure A.1; phases I-V): a very brief phase in which the vascular rupture oc-

curs (1-10 sec; phase I), a second phase in which the haematoma is formed (<1 h; phase II), a 

third phase in which the haematoma is expanding (1-6 h; phase III), a fourth phase in which 

the perihaematomal oedema is established (24-72 h; phase IV), and a final phase of undefined 

duration, in which late injury is exerted (phase V). This ideographic perception of the devel-

opment of intracerebral haemorrhage is, of course, simplistic; reality is far more complicated 

and largely-dependent on the neuroanatomical and aetiological aspects of the bleeding. It is, 

however, very helpful in understanding the sequence of events that take place in the devel-

opment of this disease, particularly in view of its dynamic nature.   

Once the vascular rupture occurs (phase I) - irrespectively of its aetiology - the speed 

of the haematoma formation (phase II) as well as the volume it will reach (phase III) will be 

dictated by the patient’s blood pressure, the existence of any coagulation abnormalities, the 

local neuroanatomical environment and the extent of the simultaneously developing peri-

haematomal injury (Figure A.1). Within these crucial first hours, the haematoma leads to the 

establishment of perihaematomal oedema (phase IV); the end-stage of what is known as 

“primary” injury. The “secondary” injury is introduced sometime between phases III and IV, 

and is attributed to certain products of coagulation, the breakdown of the entrapped (in the 

haematoma’s clot) erythrocytes, and the microglial activation; this secondary injury could be 

taking place for many days after the haemorrhagic incident (phase V; Figure A.1). Oedema 

plays a crucial part within this secondary injury.   

In more detail, phases I, II and III seem to provoke a mechanical disruption and defor-

mation of the local brain parenchyma (Qureshi et al., 2001b; 2009); a direct injurious process 

for the local neuronal and glial cell populations, and a basis for the establishment of oligae-
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mia, metabolic suppression or even ischaemia17 (Qureshi et al., 2009). During these patho-

physiological events, the perihaematomal tissue’s cells seem to be releasing excitotoxic levels 

of glutamate (due to the mechanical stretch they endure), and to suffer severe mitochondrial 

dysfunction, membrane depolarization and calcium influx; as a result, the development of ox-

idative stress, sodium accumulation, cellular swelling (cytotoxic oedema)18 and necrosis, fol-

low (Lo et al., 2005; Qureshi et al., 2003a; 2009). Glial activation occurs (Karwacki et al., 

2006), and a cascade of cellular interactions seems to be triggered via the activation of nucle-

ar factor kappa B (NF-κB)19 and the secretion of pro-inflammatory cytokines such as tumour 

necrosis factor alpha (TNF-α), interleukin 1 beta (IL-1β) and interleukin 6 (IL-6) (Karwacki et 

al., 2006; Wagner, 2007; Wang, 2014; Zarros et al., 2014). The glial activation aims to form a 

glial scar (gliosis) in order to make up for the generated space due to the neuronal loss (Fig-

ure A.2); meanwhile, the secreted TNF-α and IL-1β exacerbate this loss (Katsuki, 2010; Wang 

and Doré, 2007; Zarros et al., 2014). This situation is soon becoming more complicated, as the 

blood degradation and the induction of cellular and humoral toxicity enhance the develop-

ment of vasogenic oedema in the perihaematomal region (Figure A.2).  

The degradation of the erythrocytes that are entrapped in the haematoma is facilitated 

by the complement cascade (Ducruet et al., 2009) and leads to the release of haemoglobin 

(Figure A.2). Haemoglobin causes inflammation, oxidative stress and activates matrix metal-

loproteinase-9 (MMP-9) (Katsu et al., 2010); a major member of the matrix metalloproteinase 

(MMP) family20 that is associated to microglial activation, can enhance the release thrombin 

from the haematoma as well as cause a further disruption of the BBB21 (Keep et al., 2008; 

Rodríguez-Yáñez et al., 2010; Rosell et al., 2008). Haemoglobin is metabolized by microglia 

and macrophages and produces haeme (Aronowski and Zhao, 2011), which then is either re-

                                                 
17 the “ischaemic” brain injury associated with intracerebral haemorrhage has been a matter of exten-
sive but inconclusive debate, particularly with regards to its nature and causes (Gass, 2007; Herweh et 
al., 2007; Josephson et al., 2010; Kirkman, 2011; Mackenzie and Clayton, 1999; Mitchell and Gregson, 
2011; Prabhakaran and Naidech, 2012; Thanvi et al., 2012; Vespa, 2009); it is neither clear whether 
this persisting “ischaemia” is also a result of a perihaematomal hypoperfusion due to the haematoma 
products’ toxicity-induced hypometabolism, or even a result of the aggressive antihypertensive thera-
py that is usually adopted (Prabhakaran and Naidech, 2012; Qureshi et al., 2009; Thiex and Tsirka, 
2007). The issue of whether we are talking about an “ischaemic” or a “metabolic” penumbra compli-
cated by the presence of oedema in intracerebral haemorrhage, is elegantly discussed by Thiex and 
Tsirka (2007).  
18 the development of cytotoxic oedema is due to insufficient adenosine triphosphate (ATP) availabil-
ity, leading to a failure of the sodium / potassium adenosine triphosphatase (Na+,K+-ATPase) function, 
and causing cellular swelling (Rodríguez-Yáñez et al., 2010); it should not be confused with the oede-
ma characterizing phase IV of the development of intracerebral haemorrhage (Figure A.1), which is far 
more extensive and vasogenic (due to the breakdown of the BBB) (Thiex and Tsirka, 2007).     
19 oxidative stress is also an activator of NF-κB (Aronowski and Zhao, 2011; Zarros et al., 2014), while 
NF-κB is also responsible for the upregulation of the expression of the inducible nitric oxide synthase 
(iNOS) (Zhao et al., 2007b); a potential contributor to the oedema formation observed in intracerebral 
haemorrhage (Kim et al., 2009).  
20 a very informative review article on the role of MMPs in the neuropathology of intracerebral haem-
orrhage, has been written by Xue and Yong (2008). 
21 the BBB disruption facilitates the local neutrophil infiltration (Wang, 2014). 



Zarros A | PhD Thesis in Neuropathology  38 

leased as toxic haemin22 (Babu et al., 2012) or further metabolized by haeme oxygenases 

(HOs)23 into biliverdin, ferrous iron24 and carbon monoxide (CO) (Aronowski and Zhao, 2011; 

Wagner et al., 2003) (Figure A.2). Biliverdin will be further converted by biliverdin reductase 

into bilirubin; the latter being an oxidant on its own right (Karwacki et al., 2006; Lakovic et 

al., 2014). The released iron will play a major role in enhancing oxidative reactions, promot-

ing oedema formation and being neurotoxic (Hua et al., 2007; Huang et al., 2002; Karwacki et 

al., 2006; Lou et al., 2009; Wagner et al., 2003) (Figure A.2). At the same time, as already men-

tioned, thrombin is also released from the haematoma (Figure A.2) and, like haemoglobin, 

triggers microglial activation by stimulating them to release TNF-α and IL-1β (Wu et al., 

2008). Thrombin is also known to activate the complement cascade, promote neuroinflam-

mation and exacerbate the iron-induced neurotoxicity (Babu et al., 2012; Hua et al., 2007; Liu 

et al., 2014; Xi et al., 2006; 2010). 

It is without doubt that neuronal loss is the major determinant of the clinical outcome 

in patients suffering from intracerebral haemorrhage. Figure A.3 summarizes the three path-

ways through which neuronal loss is believed to take place in intracerebral haemorrhage. Ne-

crosis, as a consequence of cytotoxic oedema, is the result of the primary injury (Qureshi et 

al., 2001b; Xi et al., 2006). A prominent mode of neuronal loss is apoptosis (Qureshi et al., 

2003b; Xi et al., 2006); this is mainly the result of caspase activation (Wu et al., 2006; Xi et al., 

2006) due to the toxic effects of the erythrocyte lysis products (particularly of haeme and 

iron) and the neuroinflammation25 generated within the secondary injury (Figure A.3). Neu-

ronal loss due to autophagy remains elusive26, and its involvement in the intracerebral haem-

orrhage-induced neuronal loss is suggested only by experimental findings (Hu et al., 2011; 

Shen et al., 2016). 

On the other hand, the key players in this complex cascade of pathophysiological inter-

actions are the activated (reactive) astrocytes and the microglia / macrophages (Figure A.4). 

The role of the reactive astrocytes in the intracerebral haemorrhage-induced secondary inju-

ry has been more or less already highlighted, and it mainly involves the secretion of cytokines 

(particularly of TNF-α and IL-1β) (Karwacki et al., 2006). Microglia and macrophages are a 

                                                 
22 haemin is the oxidative form of haeme (Babu et al., 2012); it exerts its neurotoxicity be releasing ex-
cessive iron, depleting glutathione and inducing oxidative stress (Wagner et al., 2003; Wang, 2014). 
23 there are two HO isoforms implicated in the neuropathology of intracerebral haemorrhage: haeme 
oxygenase 1 (HO-1) and 2 (HO-2) (Maines, 1997); the latter is thought to be the major HO expressed in 
neurons and in the brain under normal conditions (Maines, 1997; Wang and Doré, 2008; Wang et al., 
2006), while HO-1 is predominantly induced in non-neural cells (microglia / macrophages and endo-
thelial cells) (Wang, 2014). 
24 “ferrous” indicates a divalent iron compound (+2 oxidation state; Fe2+), as opposed to “ferric” which 
indicates a trivalent iron compound (+3 oxidation state; Fe3+). 
25 a very recent and well-written review article on neuroinflammation in intracerebral haemorrhage is 
written by Askenase and Sansing (2016). 
26 autophagy has been associated with the neurotoxic effects of iron (He et al., 2008b). 
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more complex case; their ability to phagocytose haeme27 / haemin, haemoglobin28 or even 

whole erythrocytes29, designates them as key regulators of extracellular iron concentrations 

(Aronowski and Zhao, 2011). On the other hand, their inability to cope with excessive concen-

trations of iron promotes oxidative stress30 (through the iron-induced generation of ROS; re-

active oxygen species) (Aronowski and Zhao, 2011; Duan et al., 2016). The latter further ex-

acerbates the BBB disruption and facilitates the subsequent formation and exacerbation of 

the perihaematomal oedema (Duan et al., 2016; Rodríguez-Yáñez et al., 2010) (Figure A.4). 

With regards to the genetic background of intracerebral haemorrhage, little is known 

(Xi et al., 2006). A number of studies has suggested that the ε4 and ε2 alleles of the apolipo-

protein E (ApoE) gene (APOE) are linked to a predisposition to intracerebral haemorrhage 

(Greenberg et al., 1995; Martínez-González and Sudlow, 2006; Maxwell et al., 2011; McCarron 

et al., 1999), while other studies have revealed an association of this disease with polymor-

phisms in the genes encoding the angiotensin-converting enzyme (ACE) (Slowik et al., 2004), 

the methylenetetrahydrofolate reductase (Fang et al., 2005), the alpha-1 antichymotrypsin 

(Obach et al., 2001), and others (Jensson et al., 1989; Liu et al., 2012; Lu et al., 2006).  

 

I.9. Clinical neuropathology of intracerebral haemorrhage 
 

In clinical practice, the neuropathologist will aim, primarily, at identifying the site, the size 

and the aetiology of intracerebral haemorrhage (Dye et al., 2014; Sutherland and Auer, 2006); 

the first two within an autopsy procedure, and the third either through a biopsy, a haemato-

ma evacuation sampling or an autopsy. Macroscopically, intracerebral haemorrhage causes a 

destruction of the local parenchyma and provokes oedema of the surrounding (perihaema-

tomal) parenchyma; the necrotic brain tissue is replaced by gliosis and sometimes contains 

cystic elements that appear to be yellow-brown (Chandrasoma and Taylor, 1995; Govan et al., 

1995). The immediately-attached to the haematoma perihaematomal tissue will also have a 

brown appearance; a characteristic of the thereby attracted haemosiderin-laden macrophag-

es (Chandrasoma and Taylor, 1995). The existence of multiple microaneurysms (particularly 

                                                 
27 toxic free haeme is neutralized by haemopexin (Figure A.4), and they both form a complex that can 
be subject to phagocytosis via CD91 (Aronowski and Zhao, 2011; Wang, 2014). 
28 haemoglobin binds to haptoglobin (a blood- and oligodendrocyte-deriving protein), forming a com-
plex that is then endocytosed by microglia / macrophages via CD163; the expression of haptoglobin is 
regulated by the nuclear factor (erythroid-derived 2)-like 2 (Nrf2) (Aronowski and Zhao, 2011; Wang, 
2014; Zhao et al., 2009) (Figure A.4). Interestingly, Nrf2 also induces the expression of HO-1 (Aro-
nowski and Zhao, 2011; Kensler et al., 2007) (Figure A.4). 
29 the peroxisome proliferator-activated receptor gamma (PPAR-γ) regulates the transcription of CD36 
(Figure A.4); the latter facilitates the phagocytosis of erythrocytes (Aronowski and Zhao, 2011; Wang, 
2014; Zarros et al., 2014; Zhao et al., 2007a). 
30 oxidative stress is partially managed by the local antioxidant defences, the expression of major en-
zymes in which are known to be also regulated by PPAR-γ and Nrf2 (Aronowski and Zhao, 2011; Kens-
ler et al., 2007; Zhao et al., 2006; 2007a) (Figure A.4). 
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in the very small cerebral arteries31) could be a finding suggesting that the rupture of one of 

these could have led to the examined haemorrhage (Govan et al., 1995). Apart from aneu-

rysms32 and vascular malformations, other findings sought after by the neuropathologist are 

the presence of characteristics of cerebral amyloid angiopathy33, neuropathological findings 

suggesting chronic hypertension, primary or secondary tumours, haemorrhagic infarcts, and 

other factors of aetiological significance (Crassard and Bousser, 2010; Dye et al., 2014; Esiri, 

1996; Greenberg, 2010; Hamann et al., 1999; Hassan et al., 2010; Hottinger and DeAngelis, 

2010; Huttner and Steiner, 2010; Stapf and Mohr, 2010; Sutherland and Auer, 2006). 

 

I.10. Experimental neuropathology of intracerebral haemorrhage 
 

Throughout the last 60 years, a number of experimental simulation approaches to intracere-

bral haemorrhage have been developed (Andaluz et al., 2002; James et al., 2008; Krafft et al., 

2012a; Ma et al., 2011; Manaenko et al., 2011; Strbian et al., 2008; Wagner and Zuccarello, 

2010). The most characteristic in vivo simulation approaches to intracerebral haemorrhage 

are synopsized in Table A.6 (along with representative references), while the in vitro ones 

will be discussed in Chapter II. One must admit that these experimental tools have allowed us 

to gain more knowledge about the neuropathology of intracerebral haemorrhage than clinical 

studies have, but - as with all experimental approaches aiming to simulate clinical reality - 

these tools also suffer from a number of limitations.  

The setting up and execution of an in vivo experimental procedure aiming to simulate 

an aspect of intracerebral haemorrhage is undoubtedly time-consuming, expensive, subject to 

regulation by strict legislation, requiring the sacrifice of a significant number of animals and, 

unfortunately, is bearing a number of potential pitfalls with regards to its translational inter-

pretation (Barratt et al., 2014; Kirkman et al., 2011a; Leonardo et al., 2012; MacLellan et al., 

2010; Nabika et al., 2004). However, it is to these same experimental procedures that we owe 

the majority of our current understanding of intracerebral haemorrhage’s neuropathology 

(Aronowski and Hall, 2005; Yan et al., 2015; Wang, 2010). And it is these same experimental 

procedures that we employ every time we aim to test the efficacy and safety of potential new 

drugs for the non-surgical management of this devastating disease (Aronowski and Hall, 

2005; Kathirvelu and Carmichael, 2015; Kellner and Connolly, 2010; Xi et al., 2014). This sub-
                                                 
31 small penetrating arteries or arterioles, with a diameter of 50 to 200 μm (Hänggi and Steiger, 2008). 
32 it might be worth noting that the most common site of spontaneous intracerebral haemorrhage is 
the lentiform nucleus; an area where the branching of the lateral striate group of arteries (that supply 
the putamen) is considered very vulnerable to intravascular stress (Esiri, 1996). 
33 with regards to cerebral amyloid angiopathy, the undertaking of immunohistochemistry for amyloid 
beta (Αβ) has been suggested as being a more sensitive marker than Congo red staining (Dye et al., 
2014); cerebral amyloid angiopathy is a result of the deposition of insoluble Αβ in the tunica media and 
tunica adventitia of cortical, subcortical and leptomeningeal blood vessels, leading the latter to become 
more vulnerable to intravascular pressure or trauma (Chaudhary et al., 2014; Greenberg, 2010; Suth-
erland and Auer, 2006).  
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chapter does not focus on providing an analytical presentation of these procedures, as such 

does not fall within the scope of this PhD Thesis. Instead, readers might find useful to go 

through a few examples of important and recent experimental findings with regards to the 

neuropathology and potential treatment of intracerebral haemorrhage; a “potpourri” of ex-

perimental findings and their translational interpretation. 

A very first example can be a study that is now considered of paramount importance 

for our understanding of the role of thrombin in intracerebral haemorrhage in which Lee et 

al. (1997) have undertaken in vivo and in vitro experiments that have suggested that the cell 

toxicity and the BBB disruption induced by thrombin are triggering mechanisms for the oe-

dema formation that follows intracerebral hemorrhage. Their in vivo experiments involved 

the stereotactic infusion of solutions of thrombin into the right basal ganglia of rats and the 

measurement of their cerebral blood flow and BBB permeability, while in some of their in 

vitro experiments, thrombin was superfused on cortical brain slices and a monitoring of the 

slices’ microvessels’ diameter via videomicroscopy was performed (Lee et al., 1997). 

On a more recent example, Chen-Roetling et al. (2015) have shown that in a murine 

simulation approach to intracerebral haemorrhage through striatal injections of autologous 

blood, the selective (GFAP-driven) HO-1 overexpression in astrocytes reduces the mortality 

and the neurological deficits in the mice, as well as the extent of the occurring BBB disrup-

tion34 and perihaematomal cell injury; a finding of great importance both in terms of neuro-

pathological significance as well as in terms of revealing a new pharmacological target. 

Of course, one should admit that in some cases, results from in vitro and in vivo exper-

iments are not always in agreement. For example, recent in vitro studies have shown that bili-

rubin, through its toxicity-exerting products (bilirubin oxidative products; BOXes), can cause 

both structural and functional damage on myelinated neuraxons in murine brain slices, but 

not on unmyelinated neuraxons (Lakovic et al., 2014); interestingly, in vivo studies are not in 

agreement with this finding, as unmyelinated neuraxons have been reported to be more sus-

ceptible to an intracerebral bilirubin-injection (Lakovic et al., 2014). 

Finally, in view of the major role of neuronal loss in determining the clinical outcome 

of intracerebral haemorrhage, and with regards to the pathophysiological mechanisms un-

derlying neuronal apoptosis in this context, recent in vivo experiments (Ni et al., 2016) have 

suggested, for example, that an upregulation of the haematoma-adjacent rat neuronal prosta-

glandin E2 receptor subtype 3 (EP3) is accompanied by an increased expression of the active 

caspase-3, and of the pro-apoptotic B cell lymphoma-2 (Bcl-2)-associated X protein (Bax), as 

well as by a decreased expression of the anti-apoptotic Bcl-2. These findings provide us with 

confidence on the belief that apoptosis plays a prominent role in the intracerebral haemor-

                                                 
34 assessed through a BBB permeability assay with the use of Evans blue dye (Uyama et al., 1988). 
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rhage-induced neuronal loss, and confirm the validity of a number of previous experimental 

studies. Another recent example of how experimentation can shed more light on the neuropa-

thology of intracerebral haemorrhage is the recent study of Shen et al. (2016). This study has 

used an in vivo experimental approach to intracerebral haemorrhage by infusing collagenase 

type IV into the brain of mice (Shen et al., 2016); a popular and well-established approach to 

this disease (Clark et al., 1998; James et al., 2008; Kirkman et al., 2011a; Ma et al., 2011; 

MacLellan et al., 2010; Manaenko et al., 2011). Their data suggest that enhanced autophagy 

may exacerbate the perihaematomal oedema and promote neuronal death, as well as that au-

tophagy in intracerebral haemorrhage could be regulated by the NF-κB pathway, and thus be 

tightly related to the induction of inflammation and apoptosis (Shen et al., 2016); a sugges-

tion that is novel and of paramount importance, but certainly requires further research. This 

suggestion adds to the data acquired by experiments on Sprague-Dawley rats that included 

the infusion of autologous whole blood or ferrous iron into their basal ganglia, and that have 

suggested an increase in the microtubule-associated protein light chain-3 (LC3) conversion 

(from LC3-I to LC3-II; a biomarker of autophagosome), and in cathepsin D (a known mediator 

of autophagy and a lysosomal marker) levels, as well as high levels of vacuole formation in 

the hemisphere ipsilateral to the infusion parenchymal area (He et al., 2008b). These same 

experiments have suggested a major role of iron in triggering this type of cell death (He et al., 

2008b). 

 

I.11. Potential neuropharmacological approaches to intracerebral haemorrhage 
 

A selection of important agents that have been tested with regards to their suitability within a 

neuroprotective approach to intracerebral haemorrhage is presented in Table A.7 and Figure 

A.5; these include the iron-chelator deferoxamine (DFO)35 (Cui et al., 2015; Nakamura et al., 

2004a; Ni et al., 2015; Okauchi et al., 2009; Selim, 2009; Staykov et al., 2010), minocycline36 

(Wasserman and Schlichter, 2007a; 2007b; Wu et al., 2010; Yenari et al., 2006), atorvastatin 

(Jung et al., 2004; Karki et al., 2009; Seyfried et al., 2004), simvastatin (Karki et al., 2009), 

celecoxib (Park et al., 2009; Sinn et al., 2007), rosiglitazone (Wu et al., 2015), citicoline (cyti-

dine-5’-diphosphocholine; CDP-Ch) (Clark et al., 1998; Iranmanesh and Vakilian, 2008), MK-

80137 (Kane et al., 1994; Thiex et al., 2007) and U-74389G (Bimpis et al., 2012; 2013; 2015). 

Notable tested compounds have also been: the thrombin inhibitor argatroban, the MMP in-

                                                 
35 DFO has been shown to reduce the extent of the intracerebral haemorrhage-induced autophagy in 
Sprague-Dawley rats infused with autologous whole blood or ferrous iron into their basal ganglia (He 
et al., 2008b). 
36 minocycline has been reported to suppress monocytoid cell activation, downregulate matrix metal-
loproteinase 12 (MMP-12) expression, reduce marked glial activation and apoptosis, as well as to im-
prove neurobehavioral outcomes in in vivo and in vitro experiments conducted by Power et al. (2003). 
37 also known as dizocilpine. 
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hibitors BB-1101 and GM6001, clioquinol, erythropoietin, dexamethasone, the brain-derived 

neurotrophic factor (BDNF), cystamine, telmisartan, tin‐mesoporphyrin (SnMP)38, valproic 

acid and other agents (Guan et al., 2015; Hwang et al., 2011; Katsuki, 2010; Kwon et al., 2013; 

Zhou et al., 2014). The majority of these compounds are characterized by non-specific anti-

inflammatory and / or antioxidant properties, and are experimentally shown to be neuropro-

tective in intracerebral haemorrhage by targeting iron, MMP-9, COX-2, TNF-α (Hwang et al., 

2011; Katsuki, 2010). Other recently highlighted potential targets are the sphingosine-1-

phosphate receptor 2 (S1PR2) (Kim et al., 2015)39 and EP3 (Ni et al., 2016). Moreover, as al-

ready mentioned above, the experimental data of Chen-Roetling et al. (2015) have suggested 

that the genetic or pharmacological therapies that could enhance HO-1 expression in astro-

cytes could also be of benefit. 

One also needs to mention that through a less conventional mode, Lee et al. (2007) 

have reported that the transplantation of F3 human neural stem cells over-expressing vascu-

lar endothelial growth factor (VEGF) near the (intrastriatal) collagenase-induced lesion sites 

of mice, not only has provided differentiation and survival of the grafted human neural stem 

cells, but also managed to renew angiogenesis of the host murine brain and trigger significant 

functional recovery in these mice. More recently, Lee et al. (2015) have reported that when 

Wharton’s jelly-derived mesenchymal stromal / stem cells primed with fasudil (10 mM, ex-

posure for 6 h) were transplanted into Sprague-Dawley rats with a collagenase type IV-

induced intracerebral haemorrhage - 1 week after injury, when hypoxia inducible factor 1 al-

pha (HIF-1α) upregulation occurs - the animals’ functional outcome was significantly im-

proved. Stem cell-based therapies hold high potential in providing solutions to the treatment 

puzzle of intracerebral haemorrhage, but a significant number of issues must be addressed 

prior to their translation into clinical practice (Andres et al., 2008; Ma et al., 2015). 

 

I.12. Momentum of the experimental research on intracerebral haemorrhage 
 

Until the introduction of CT in clinical practice (around 1973), very little was known about in-

tracerebral haemorrhage, and very little could be done for it at the clinical level (Fiorella et 

al., 2015). Today, 43 years later, both clinical and preclinical research have delivered an im-

pressive and constantly increasing amount of outputs that, however, have neither addressed 

major questions with regards to the exact neuropathology of intracerebral haemorrhage, nor 

have indicated an effective therapeutic treatment for it. Eminent researchers in the field (Le-

                                                 
38 SnMP is a considered to be a competitive inhibitor of the HOs (Reddy et al., 2003); it has been sug-
gested to exert a neuroprotective role by reducing both the haematoma and the perihaematomal oe-
dema volumes in an experimental approach to intracerebral haemorrhage using pigs injected with au-
tologous blood into their frontal white matter (Wagner et al., 2000). 
39 inhibition of S1PR2 results in decreased MMP-9 activity, as suggested by in vivo experiments (Kim et 
al., 2015). 
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onardo et al., 2012; NINDS ICH Workshop Participants, 2005; Steiner et al., 2011; Xi et al., 

2014) have indicated that certain priorities should be adopted in order to overcome this 

stagnation; an interpretation of these priorities is summarized in Table A.8. 

This current PhD project has aimed in serving the development of more sophisticated 

in vitro simulation approaches to intracerebral haemorrhage (priority 6; Table A.8). 
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Table A.1: Aetiological overview of intracerebral haemorrhage: common clinical conditions, 

incidents and lifestyle options related to the development of primary and secondary intracer-

ebral haemorrhage. 
 

 

Main causes of intracerebral haemorrhage  
 

 

PRIMARY intracerebral haemorrhage 
 hypertension 
 cerebral amyloid angiopathy 
 other unknown causes 
 (haemorrhagic transformation of infarct) 
 

SECONDARY intracerebral haemorrhage 
 prior traumatic brain injury (immediate or delayed) 
 aneurysms and vascular malformations 
 neoplasms and / or their treatment 
 coagulopathies  
 cerebral venous thrombosis  
 vasculitides  
 vasculopathies (including the Moya-Moya syndrome)  
 iatrogenic; due to surgical procedures or other therapeutic interventions  
 anticoagulant and thrombolytic medication 
 antiplatelet medication 
 heavy ethanol consumption 
 use of sympathomimetic and illicit drugs  
 honeybee stings 
 snake bites 
 other causes 
 

 

Note: the current overview is in no case exhaustive, nor considers in depth the aetiological basis of intracerebral 
haemorrhage in paediatric populations; for the latter, the readers are referred to the work of Riela and Roach 
(1993). The structure of the current overview is based on the work of Ferro (2006), with additions and significant 
modifications. 
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Table A.2: Overview of clinical symptoms accompanying intracerebral haemorrhage, based 

on the neuroanatomical localization (and size) of the haematoma. 
 

  

Clinical sign Expression in lobar intracerebral haemorrhage 
  

  

motor weakness hemiparesis (frontal; parietal), mild hemiparesis (occipital) 
sensory loss yes (parietal), no / transient (occipital), no (frontal; temporal) 
hemianopia yes (occipital; parietal; temporal), no (frontal) 
pupils normal 
eye movement unaffected 
other abulia (frontal, rarely), aphasia (parietal; temporal), apraxia (parietal) 
  

  

Clinical sign Expression in deep-seated intracerebral haemorrhage 
  

  

motor weakness hemiparesis (putaminal; caudate; thalamic) 
sensory loss yes (large putaminal; thalamic), some (small putaminal), no (caudate) 
hemianopia yes (large putaminal), no (small putaminal; caudate) 
pupils small and nonreactive (thalamic), dilated (large putaminal, lesion’s side) 
eye movement affected (with the exception of small putaminal cases) 
other confusion (caudate; thalamic), aphasia (left large putaminal; left thalamic) 
  

  

Clinical sign Expression in cerebellar intracerebral haemorrhage 
  

  

motor weakness none 
sensory loss no 
hemianopia no 
pupils slightly constricted on side of lesion 
eye movement affected 
other ipsilateral limb ataxia, dizziness, dysarthria 
  

  

Clinical sign Expression in pontine intracerebral haemorrhage 
  

  

motor weakness quadriplegia 
sensory loss contralateral hemisensory (lateral tegmental) 
hemianopia no 
pupils constricted and reactive 
eye movement affected 
other hyperventilation, limb ataxia, facial numbness and weakness 
  

 

Note: the current overview does not include symptoms such as headaches, vomiting, seizures or coma, as these are 
appropriately discussed in the text; for the latter as well as for more details on the expression patterns and neuro-
anatomical correlations of the herein presented symptoms, the readers are advised to consult the excellent works 
of Caplan (1993) and Kase (2010). It should also be noted that in this overview, the clinical symptoms of midbrain 
(Moncayo, 2012a) and medullary (Balucani and Barlinn, 2012) haemorrhages are not presented due to their rari-
ty. Moreover, variations in the herein presented symptomatology patterns do exist.  
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Table A.3: Clinical grading scale for intracerebral haemorrhage: determination and prognos-

tic interpretation according to Hemphill et al. (2001). 
 

   

Component of the clinical grading scale Component’s specifics  Points 
   

   

Glasgow Coma Scale (GCS) score (on initial presentation) 3-4 2 
 5-12 1 
 13-15 

 

0 

volume of the haematoma (on initial CT scan) ≥ 30 cm3 1 
 < 30 cm3 

 

0 

presence of intraventricular haemorrhage yes 1 
 no 

 

0 

infratentorial origin of intracerebral haemorrhage yes 1 
 no 

 

0 

patient’s age  ≥ 80 years 1 
 < 80 years 0 

   

   

Prognostic parameter Mortality (30-day) Score 
   

   

30-day mortality as assessed by Hemphill et al. (2001) 0% 0 
 13% 1 
 26% 2 
 72% 3 
 97% 4 
 100% 5 
 not determined (100%) 6 

   

 

Note: the review article by Hwang et al. (2010) provides a critical overview of the clinical grading scales developed 
based on the “ICH score” of Hemphill et al. (2001), and those developed independently of it since then. In some of 
these scales, the presence of intraventricular haemorrhage is determined according to the Graeb scale (Godoy et 
al., 2006), while in others the GCS score is replaced by the ischaemic stroke-relevant National Institute of Health 
Stroke Scale (NIHSS), with or without a consideration of the NIHSS level of consciousness (Cheung and Zou, 2003; 
Weimar et al., 2006). Although a thorough description of these clinical grading scales is not within the scope of this 
PhD Thesis, it might be useful to note that, amongst the components of some scales, one can spot parameters such 
as “temperature”, “glucose levels”, “dialysis dependency”, and others (Cheung and Zou, 2003; Chuang et al., 2009), 
as well as the adoption of a variation of the Hemphill et al. (2001) component specifics (Cho et al., 2008; Godoy et 
al., 2006; Rost et al., 2008; Ruiz-Sandoval et al., 2007). This plethora of clinical grading scales has arisen from the 
understanding that the different types of intracerebral haemorrhage require distinct methods of assessment, 
could be subject to type-specific management approaches, and bear different prognosis.  
 

CT: computed tomography; ICH: intracerebral haemorrhage (abbreviation not in use throughout the Thesis) 

 



Zarros A | PhD Thesis in Neuropathology  48 

 

Table A.4: Overview of the indications, advantages and limitations of the surgical approaches 

to the treatment of intracerebral haemorrhage. 
 

 

Surgical approaches and their main characteristics (indication; advantage; limitation) 
 

 

MAIN approaches 
 decompressive craniotomy or craniectomy followed by open surgery 

 indication: approach of choice for emergent decompression and non-deep-seated 
haematomas 

 advantage: better access to the haematoma; allows for intraoperative (and post-
operative, when craniectomy is applied) cerebral decompression from the oede-
ma; well-documented procedure 

 limitation: demands large craniotomy and corticectomy in order to gain access to 
the haematoma; could end with removed craniotomy bone flap (craniectomy); 
extensive surgical trauma; not beneficial for patients who do not require emer-
gent life-saving decompression 

 stereotactic aspiration combined with local thrombolysis 
 indication: suitable for the evacuation of large deep-seated haematomas 
 advantage: minimally-invasive approach; promising results from its application 
 limitation: demands small craniotomy  

 endoscopic aspiration 
 indication: suitable for the evacuation of large deep-seated haematomas 
 advantage: minimally-invasive approach 
 limitation: limited data on the technique; not as widely-employed as the stereo-

tactic aspiration; demands small craniotomy 
 

OTHER approaches 
 ventricular drainage 

 indication: ventricular external drainage for cases of intracerebral haemorrhage 
with hydrocephalus and intraventricular bleeding 

 advantage: efficient management of high ICP 
 limitation: still an invasive procedure with potential complications 

 

 

Note: the current overview is based on data from Dey et al. (2012), Ferro (2006), Fiorella et al. (2015), Mendelow 
(2010), and Wang and Talkad (2009).  
 

ICP: intracranial pressure 
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Table A.5: Overview of the most frequently-employed medical (non-surgical; pharmacologi-

cal; conservative) approaches to the treatment of intracerebral haemorrhage. 
 

 

Non-surgical approaches 
 

 

 patient’s stabilization in terms of adequacy of airway, breathing and circulation 
 management of hypertension 
 non-surgical management of increased ICP 
 stop / reversal of any oral anticoagulant therapy (if patient was receiving such) 
 inactivation of heparin (if patient was receiving such) 
 coverage against previous antiplatelet medication (if patient was receiving such) 
 efficient glycaemic control 
 venous thrombosis prophylaxis 
 nutrition 
 temperature control 
 management of seizures and / or prophylactic anticonvulsant therapy 
 corticosteroids’ administration (under debate) 
 administration of other neuroprotective agents 
 management of complications 
 

 

Note: for more details, see subchapter I.6. 
 

ICP: intracranial pressure 
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Table A.6: Major experimental techniques employed toward the in vivo simulation of intrac-

erebral haemorrhage. 
 

 

Experimental techniques and representative references 
 

 

 autologous blood injection 
 Belayev et al., 2003; Bimpis et al., 2012; Bullock et al., 1984; 1988; Deinsberger et 

al., 1996; Kaufman et al., 1985; Koeppen et al., 1995; Krafft et al., 2012b; Küker et 
al., 2000; Lee et al., 1999; Liu et al., 2015; Marinkovic et al., 2014; Nakamura et 
al., 2004b; Qureshi et al., 1999; 2001a; Ropper and Zervas, 1982; Rynkowski et 
al., 2008; Wagner et al., 1996; Yang et al., 1994; Zhou et al., 2014 

 bacterial collagenase injection 
 Choudhri et al., 1997; Clark et al., 1998; Krafft et al., 2012b; Mun-Bryce et al., 

2001; Rosenberg et al., 1990 
 microballoon insertion technique 

 Lopez Valdes et al., 2000; Shi et al., 2010; Sinar et al., 1987; Takasugi et al., 1985 
 cerebral blood vessel avulsion 

 Funnell et al., 1990; Xue and Del Bigio, 2003 
 hypertensive background / stroke-prone animals 

 Iida et al., 2005; Okamoto et al., 1975; Randell and Daneshtalab, 2016; Wu et al., 
2011 

 other techniques and backgrounds 
 Christie et al., 2001; Fryer et al., 2003; Herzig et al., 2004; Hook et al., 1962; John-

son and Narayan, 1974; Jung et al., 2016 
 

 

Note: the herein presented references are representative of the most frequently employed experimental tech-
niques toward the in vivo simulation of intracerebral haemorrhage; an effort has been made in order to cite modi-
fied methods and / or techniques on different animal species. The Takasugi et al. (1985) technique is a modified 
version of the microballoon insertion technique that could also fall under the “autologous blood injection” tech-
nique category.  
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Table A.7: Selection of compounds suggested to exert neuroprotection against intracerebral 

haemorrhage, based on experimental data. 
 

  

Compound Characteristics  
  

  

DFO iron chelator; restricts oedema formation; antioxidant; increases HIF-1α 
minocycline microglia deactivator; iron chelator; reduces TNF-α and MMP-12 
atorvastatin statin; enhances cell-survival; blocks neuronal apoptosis; decreases MMP-9 
simvastatin statin; enhances cell-survival; protects BBB integrity 
celecoxib COX-2 inhibitor; anti-inflammatory; restricts oedema formation 
rosiglitazone PPAR-γ agonist; downregulates MMP-9 expression 
CDP-Ch cell membrane stabilizer; antioxidant; improves neuronal survival 
MK-801 NMDA receptor antagonist 
U-74389G lazaroid; antioxidant 
  

 

Note: for more details, see subchapter I.11 and Figure A.5. 
 

BBB: blood-brain barrier; CDP-Ch: cytidine-5’-diphosphocholine; COX-2: cyclooxygenase 2; DFO: deferoxamine; 
HIF-1α: hypoxia inducible factor 1 alpha; MMP-9: matrix metalloproteinase 9; MMP-12: matrix metalloproteinase 
12; NMDA: N-methyl-D-aspartate; PPAR-γ: peroxisome proliferator-activated receptor gamma; TNF-α: tumour ne-
crosis factor alpha 
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Table A.8: Research priorities toward an effective treatment of intracerebral haemorrhage. 
 

 

1. Adoption of rigorous methodological practices in in vitro and in vivo preclinical research 
2. Better representation of comorbidities and of clinical variability within the experimental 

simulation approaches employed 
3. Effectiveness of potential treatment approaches should be studied under a number of inju-

ry-related levels, over a number of in vitro and in vivo approaches 
4. Adoption of more behavioural batteries / endpoints within the assessment protocols of in 

vivo experimental approaches to intracerebral haemorrhage 
5. Adoption of the benefits of enhanced image technologies for live (in vivo) brain imaging 
6. Development of more sophisticated in vitro simulation approaches 
7. More transparent reporting of experimental failures; need for the encouragement of nega-

tive data to be published 
8. Establishment of academic networks with a focus on the improvement of translational in-

tracerebral haemorrhage research 
 

 

Note: these priorities refer to the experimental research on intracerebral haemorrhage.  
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Figure A.1: Basic presentation of the phases of intracerebral haemorrhage development. 
 

 

PHASE I - vascular rupture 

PHASE II - haematoma formation 

PHASE III - haematoma expansion 

PHASE IV - oedema formation 

MECHANISM
- hypertension
- chronic vascular changes
- lipohyalinosis
- cerebral amyloid angiopathy
- hypocholesterolaemia
- other causes

MECHANISM
- blood pressure
- coagulation abnormalities
- local anatomical environment 

1-10 sec

<1 h

MECHANISM
- blood pressure
- local anatomical environment
- perihaematomal injury

1-6 h

MECHANISM
- cellular and humoral toxicity
- blood degradation

24-72 h

PHASE V - late injury 
 

 

 

Note: this is a modified and enriched version of the pathophysiological phases of intracerebral haemorrhage de-
velopment proposed by Rincon and Mayer (2004); phase V was not originally suggested, and neither were some of 
the presented pathophysiological mechanisms. For more details, see subchapter I.8. 
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Figure A.2: Neuropathological processes associated with the lysis of the haematoma’s eryth-

rocytes in intracerebral haemorrhage: a simplified schematic overview. 
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Note: for more details, see subchapter I.8.  
 

BBB: blood-brain barrier; CO: carbon monoxide; HO-1: haeme oxygenase 1; HO-2: haeme oxygenase 2; IL-1β: in-
terleukin 1 beta; MMP-9: matrix metalloproteinase 9; TNF-α: tumour necrosis factor alpha 
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Figure A.3: Schematic summary of the mechanistic pathways leading to neuronal loss in in-

tracerebral haemorrhage. 
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Note: apoptosis is a prominent mode of neuronal loss in intracerebral haemorrhage (Qureshi et al., 2003b). The 
role of autophagy in intracerebral haemorrhage remains elusive; the majority of the findings with regards to its 
implication in neuronal loss are a result of very recent in vivo and in vitro experimental studies (He et al., 2008a; 
2008b; Hu et al., 2011; Shen et al., 2016).  
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Figure A.4: Simplified schematic overview of the role of microglia / macrophages and acti-

vated astrocytes in the neuropathology of intracerebral haemorrhage. 
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Note: the expression of elements / proteins highlighted in green font is regulated by PPAR-γ, while the expression 
of elements / proteins highlighted in blue font / boxes is regulated by Nrf2. For more details, see subchapter I.8.  
 

BBB: blood-brain barrier; HO-1: haeme oxygenase 1; IL-1β: interleukin 1 beta; IL-6: interleukin 6; MMPs: matrix 
metalloproteinases; NF-κB: nuclear factor kappa B (kappa-light-chain-enhancer of activated B cells); Nrf2: nuclear 
factor (erythroid-derived 2)-like 2; PPAR-γ: peroxisome proliferator-activated receptor gamma; TNF-α: tumour 
necrosis factor alpha 
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Figure A.5: Chemical structures of selected compounds that have been suggested to exert 

neuroprotection against intracerebral haemorrhage, based on experimental data. 
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Note: for more details, see subchapter I.11 and Table A.7. 
 

CDP-Ch: cytidine-5’-diphosphocholine; DFO: deferoxamine 



 

 
CHAPTER II 

 

Overview of in vitro simulation approaches  

to intracerebral haemorrhage 

 

The in vitro simulation of intracerebral haemorrhage has not been as popular as the in vitro 

simulation of ischaemic stroke; a main reason for this should be attributed to the compara-

tively more complex neuropathology of the first. This chapter provides an overview of the in 

vitro simulation approaches to intracerebral haemorrhage reported in the literature, with a 

focus on: (a) the “cellular substrates” commonly used for the development of such1, (b) the 

specific pathology-simulating in vitro conditions chosen, and (c) common assessment param-

eters (markers) of in vitro injury and / or responsiveness to treatment. This overview is not 

exhaustive, but is certainly representative of the current practice / options in the field.  

 

II.1. Simulation of intracerebral haemorrhage under in vitro conditions 
 

The choice of a suitable “cellular substrate” for the in vitro simulation of intracerebral haem-

orrhage is not a specific feature of this neuropathological entity, as - in most cases - it mimics 

the choices offered for a wide variety of other entities, primarily for ischaemic stroke. The use 

of brain slices (Khama‐Murad et al., 2008) for such in vitro simulation approaches seems a 

reasonable option, and such slices could be of murine origin (Lakovic et al., 2014) or could 

refer to rat cortical brain (Ciuffi et al., 1996; Lee et al., 1997) or olfactory cortex slices (Kha-

ma‐Murad et al., 2009). In fact, in a series of rarely-encountered experiments that do feature 

an intracerebral haemorrhage-specific logic in their choice of “cellular substrates”, brain slic-

es (Khama‐Murad, 2011b) and olfactory cortex slices of spontaneously hypertensive rats 

(Khama‐Murad, 2009; 2011a; 2011c; Khama‐Murad et al., 2011; Mokrushin and Pavlinova, 

2012; 2013; Mokrushin et al., 2008) were used. It is without doubt that brain slices introduce 

the highest possible neuroanatomical simulation of the complexity of an in vivo situation (Cho 

et al., 2007; Humpel, 2015); an advantage that is, however, overshadowed by: (a) the need for 

                                                 
1 in vitro approaches aiming to simulate only the ischaemic element of stroke (Woodruff et al., 2011) 
are not included in this chapter, and neither are in vitro approaches using clots (see, for example, Wag-
ner et al., 2000) or brain microvascular endothelial cells (see a thorough review by Camós and Mal-
lolas, 2010) as “substrates”; as an exception to his, the study of Neuhaus et al. (2014) will be discussed 
due to its relevance to the haemorrhagic transformation aspect of ischaemic stroke. 
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a significant number of experimental animals to be sacrificed for their obtaining, (b) their 

demanding technical handling, and (c) their genetic background variation (that, in some cas-

es, could introduce reproducibility issues). A similar, technically-demanding option is the use 

of primary cortical neurons of embryonic murine (Chang et al., 2011; Shen et al., 2016) or rat 

(Bao et al., 2015; Kwon et al., 2013) origin or of mixed cortical cell cultures from, say, embry-

onic day 14 to 16 (E14-E16) mice (Chen-Roetling et al., 2008; 2011; Regan and Panter, 1993); 

these cell populations could be handled in a more flexible manner than brain slices, but their 

systematic use is still demanding in terms of animal sacrifices, and the cells themselves are 

characterized by neurodevelopmental (dynamic) features and frequently give rise to repro-

ducibility issues. An example of the flexible handling of such primary cell cultures is show-

cased by Schlichter et al. (2010), who in order to study an aspect of microglia-induced neuro-

toxicity within the context of intracerebral haemorrhage-simulation, have isolated microglia 

from 1 or 2-day-old rats as well as mixed cortical cell cultures from embryonic day 18 (E18) 

rat embryos, have grew them separately, and then have co-cultured them in a TranswellTM 

system that allowed chemical communication between the two cell populations. 

Particular mention should be made to the project report of Patel (2015) of the Syra-

cuse University: the project aimed at examining the roles of microglia in the context of an in 

vitro simulation approach to the use of intracerebral haemorrhage. Patel (2015) has used co-

cultures of microglia, astrocytes, and granule neurons, prepared from neonatal rat cerebellar 

cortex, and grown in standard medium containing foetal bovine serum (FBS) or a serum-free 

chemically defined medium. Patel (2015) used the aforementioned co-cultures (grown for 7 

to 8 days in vitro) that were challenged with two different concentrations of haemin (20 and 

100 μM), supposedly “corresponding to a mild versus a severe brain bleed”.  

The use of the rat pheochromocytoma PC12 cells (Levy et al., 2002; Ni et al., 2016; Sun 

et al., 2013) has recently been an option for the development of an in vitro simulation ap-

proach to neuropathological aspects of intracerebral haemorrhage2; the adoption of such 

“immortal” cell-lines as “cellular substrates” restricts the cellular representation of the nerv-

ous system in the developed in vitro simulation approaches, but also restricts the possibility 

of the occurrence of reproducibility issues. Such lines are easy to maintain, and can provide 

ideal bases for high-throughput applications. Other cell-lines of this nature that have been 

used as “cellular substrates” towards the in vitro simulation of intracerebral haemorrhage 

include the C6 glioma cells (Lee et al., 1997; Morita et al., 2009), the widely-used SH-SY5Y 

cells (Hahl et al., 2013; Levy et al., 2002), the human neuroblastoma cell-line SK-N-MC (Chang 

                                                 
2 of particular interest is the “prognostic” experimental set-up suggested by Ballesteros et al. (2007), 
where PC12 cells (differentiated into neurons) are incubated with 10% of heat-inactivated patient’s 
sera, and their apoptotic rate is determined by flow cytometry. 
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et al., 2011) as well as the U937 human monocytoid cells3 (Power et al., 2003). Very recently, 

a BBB-mimicking cellular transwell arrangement using the murine cell-line cerebEND4 as 

well as the rat glioma cell-line C6 has also been used (Neuhaus et al., 2014). 

 

II.2. Selection of the in vitro conditions simulating intracerebral haemorrhage 
 

The conditions applied on the “cellular substrates” toward the in vitro simulation of intracer-

ebral haemorrhage, have been primarily aiming to simulate the so-called “late” injury5 (Fig-

ure A.1; phase V). These conditions primarily involve the exposure of the more complex “cel-

lular substrates” (such as brain slices) to autologous blood (Khama‐Murad, 2009; 2011a; 

2011b; 2011c; Khama‐Murad et al., 2008; 2009; 2011; Mokrushin and Pavlinova, 2012; 2013; 

Mokrushin et al., 2008), and the exposure of the less complex ones (such as primary cultures 

and other of the aforementioned cell-lines) to erythrocyte-degradation elements such as 

haemoglobin (usually 3 or 10 μM in serum-free media; rarely higher concentrations)6 (Chen-

Roetling et al., 2008; 2011; Levy et al., 2002; Regan and Panter, 1993), haemin (in various 

concentrations ranging from 5 to 100 μM) (Chang et al., 2011; Kwon et al., 2013; Levy et al., 

2002; Morita et al., 2009; Ni et al., 2016; Patel, 2015; Shen et al., 2016; Sun et al., 2013) and 

bilirubin (100 or 500 μM) (Lakovic et al., 2014). In some cases, the exposure to the haemor-

rhage-deriving thrombin (Bao et al., 2015; Lee et al., 1997; Power et al., 2003) has been em-

ployed, while Hahl et al. (2013) have exposed their SH-SY5Y cells to haeme-haemopexin 

complexes (15 and 25 μΜ). Rare but notable are the cases of Schlichter et al. (2010) that 

stimulated their microglia with lipopolysaccharide (LPS; for 24 h)7 prior to exerting their 

neurotoxic effects on mixed cortical cultures in their TranswellTM system, and of Neuhaus et 

al. (2014) that have employed the standard oxygen / glucose deprivation (OGD)8 conditions 

in their aforementioned BBB-mimicking approach; both groups have chosen to develop in 

vitro approaches that aim at simulating earlier phases of the intracerebral haemorrhage neu-

ropathology. 

 
                                                 
3 the U937 cell-line is a neoplastic, histiocytic cell-line (Sundström and Nilsson, 1976), that upon stimu-
lation, can adopt the morphology and characteristics of mature macrophages (Sharp, 2013). 
4 the cerebEND cell-line is produced from isolated brain endothelial cells of the cerebellum of neonatal 
129Sv mice (Silwedel and Förster, 2006). 
5 the in vitro simulation approaches to intracerebral haemorrhage through the employment of condi-
tions based solely on the exposure to ferrous iron are few (Cui et al., 2016; He et al., 2008a; Levy et al., 
2002), and are not discussed herein. 
6 haemoglobin (10-9 to 10-5 M) has also been used on rat cortical brain slices (Ciuffi et al., 1996). 
7 a similar approach has been adopted by Cai et al. (2011) on microglia, prior to exposure to haemin. 
8 the OGD technique is widely used as an in vitro simulation approach to ischaemic cerebral stroke; in 
this technique, cells or tissue cultures are incubated in a glucose-free medium under a deoxygenated 
atmosphere (e.g. in a hypoxic chamber) (Singh et al., 2009; Tasca et al., 2015). A variation of this tech-
nique is the OGD-reoxygenation technique (see, for example, Alluri et al., 2015). Alternatively, hypoxia 
can also be induced chemically, by treatment with cyanide (either as sodium cyanide or potassium cy-
anide; NaCN or KCN) (Woodruff et al., 2011). 
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II.3. Markers of in vitro injury associated with intracerebral haemorrhage 
 

Similarly to the conditions chosen for the in vitro simulation of intracerebral haemorrhage, 

their assessment parameters (markers of injury) are also chosen based, largely, on their “cel-

lular substrates”; brain slices exposed to intracerebral haemorrhage-simulating conditions 

are ideal for the undertaking of electrophysiological studies (Khama‐Murad, 2009; 2011a; 

2011b; 2011c; Khama‐Murad et al., 2008; 2011; Lakovic et al., 2014; Mokrushin and Pavlino-

va, 2012; 2013; Mokrushin et al., 2008), the assessment of swelling (oedema) via weighting 

the slices on a torsion balance (Khama‐Murad, 2011a; 2011c) and the assessment of vaso-

reactivity (by monitoring microvessel diameter with videomicroscopy) (Lee et al., 1997). In 

terms of morphometry, the employment of basic phase-contract microscopy (Chen-Roetling 

et al., 2011; Regan and Panter, 1993) as well as the assessment of the neuraxonal density and 

mitochondrial appearance through transmission electron microscopy (Lakovic et al., 2014) 

can offer critical information on cell type-specific cellular responses within these systems. 

Equally useful has been the performance of iron staining (Chen-Roetling et al., 2011; Patel, 

2015). 

Two major and frequently-encountered assays used for the assessment of in vitro sim-

ulation approaches to intracerebral haemorrhage are, as in the case of most in vitro simula-

tion approaches to any entity of neuropathological interest, the lactate dehydrogenase (LDH) 

release assay (Bao et al., 2015; Chen-Roetling et al., 2008; 2011; Lee et al., 1997; Ni et al., 

2016; Patel, 2015; Regan and Panter, 1993)9 and the 3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide (MTT) reduction assay (Chang et al., 2011; Kwon et al., 2013)10. 

Other “cell viability” assays have also been employed (Levy et al., 2002; Schlichter et al., 

2010), and so have been the neutral red uptake assay (Morita et al., 2009)11, the fluorescent 

staining of live / dead cells (Patel, 2015; Shen et al., 2016), the measurement of the intracellu-

lar levels of ROS (Kwon et al., 2013) as well as assays for the assessment of phagocytosis 

(Chen-Roetling et al., 2011; Patel, 2015) and the activity of caspase (Schlichter et al., 2010) or 

HO (Chen-Roetling et al., 2008; Kwon et al., 2013). 

                                                 
9 the LDH release assay is often presented as a “cell death” assay (see, for example, Patel, 2015); this 
misinterpretation can be a basis of drawing unjustified conclusions by both authors and readers. The 
LDH release assays are colorimetric assays that quantitatively measure the activity of the LDH released 
into the cell culture media, through a coupled enzymatic reaction. Moreover, LDH is a cytosolic enzyme 
that can act as an indicator of cellular toxicity or cell membrane lysis or membrane injury, under a 
number of conditions, such as the assumption that the different contents of the media do not affect the 
cytosolic LDH levels, the LDH to formazan conversion reactions (either by binding to the substrates or 
the enzymes involved) or the actual colorimetric measurement. To my opinion, on its own, the in vitro 
LDH release assay should only be considered as an indicator of membrane injury. 
10 the MTT reduction assay is widely-known as the “cell viability” assay that, actually, is a tetrazolium 
reduction assay; the MTT tetrazolium dye is reduced by NAD(P)H-dependent cellular oxidoreductases 
to insoluble formazan; a reaction presumably considered to be proportional to the number of viable 
cells. 
11 for more details, see Repetto et al. (2008). 
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Of particular interest are the molecular targets aimed within such in vitro simulation 

approaches, either through immunocytochemistry, Western blotting, reverse transcriptase 

polymerase chain reaction (RT-PCR) or other techniques: HO-1, HO-2, ferritin, TfR1, neuronal 

nuclei antigen (NeuN), microtubule-associated protein 2 (MAP2), caspase-3, caspase-9, Bcl-2, 

LC3, beclin-1, p62, TNF-α, NF-κB, COX-2, iNOS, MMPs and others (Bao et al., 2015; Chang et 

al., 2011; Chen-Roetling et al., 2011; Ciuffi et al., 1996; Hahl et al., 2013; Kwon et al., 2013; 

Levy et al., 2002; Morita et al., 2009; Neuhaus et al., 2014; Patel, 2015; Power et al., 2003; 

Schlichter et al., 2010; Shen et al., 2016; Sun et al., 2013). Table A.9 provides a synopsis of the 

above. 

 

II.4. Challenges of the in vitro simulation of intracerebral haemorrhage 
 

The challenges presented in the development of an in vitro simulation approach to intracere-

bral haemorrhage have primarily to do with the complexity that the disease represents; it is, 

thus, impossible to reliably and holistically simulate a disease, the pathophysiology of which 

we can only partially understand. One must consider that the development of such an in vitro 

approach should: (a) identify and attempt to simulate critical aspects of the disease’s patho-

physiology (preferably, aspects that appear to be promising for the development of potential 

therapeutic interventions), (b) be suitable for use in high-throughput contexts, and (c) serve 

the 3R principles. In the case of intracerebral haemorrhage, one can clearly realize that an 

unmet challenge of the aforementioned approaches has been the development of an in vitro 

experimental protocol that would simulate the natural history of the disease: e.g. that of the 

continuity between the mechanic / ischaemic phenomena occurring in the perihaematomal 

region (Figure A.1; phases III and IV) and the blood degradation (Figure A.1; phase V).  

A less obvious, but equally critical challenge is the adoption of appropriate assessment 

criteria: what are the “markers” that will assess the success of the developed in vitro simula-

tion approach to intracerebral haemorrhage? How relevant are they be to the simulated neu-

ropathology or the “cellular substrate” itself? Will one be able to develop the assessment of 

these “markers” into a high-throughput assay?  

 

II.5. Aims of the current PhD Thesis 
 

The aim of this PhD Thesis was to provide a small contribution to the development and as-

sessment of novel experimental approaches to intracerebral haemorrhage at the preclinical 

(in vitro) level that would: (a) allow for a more reliable simulation of the disease (or, more 

realistically, of important aspects of the disease’s neuropathology), (b) serve the 3R princi-

ples, and (c) provide the substrate for high-throughput drug-screening applications. In order 

to achieve this, we hypothesized that the use of immortalized cell-lines that maintains func-
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tional properties and phenotypes of crucial central nervous system cell populations could 

provide a more consistent, realistic and low-cost way to simulate a complex disease such as 

intracerebral haemorrhage, in vitro. We have also considered that the set-up of such in vitro 

approaches should particularly aim in simulating aspects of the secondary injury associated 

with the cytotoxicity produced by haematoma degradation, not as a stand-alone context, but 

as a continuity to a hypoxic preconditioning, and - if possible - in parallel to the latter.  

As expected, the implementation of novel immortalized cell-lines requires a systematic 

study of their neuropathological and neurochemical responses to such in vitro conditions. 

Whilst designing this project, our anticipation was that: (a) these responses would bear neu-

ropathological similarities to the ones observed in clinical practice or following in vivo exper-

iments, and (b) the development of reliable and consistent in vitro approaches to intracere-

bral haemorrhage would be a significant contribution to the field and might be able to act as 

“models” for pre-clinical drug screening as well as for the undertaking of further pathophys-

iological research.  

Parts B and C of this PhD Thesis describe the procedure followed toward the materiali-

zation of these aims; they provide the details of our hypotheses, our experimental efforts and 

our findings. Part D of this PhD Thesis provides a critical appraisal of this contribution. 
 

>> Table A.9: page 65 
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Table A.9: Assessment parameters (markers) used within the in vitro context of intracere-

bral haemorrhage simulation, in order to study the induced cellular injury and / or the poten-

tial neuroprotective effects of drugs. 
 

 

In vitro assessment parameters (markers) of injury and / or neuroprotection 
 

 

CYTOMORPHOLOGICAL markers 
 undertaking of phase-contrast microscopy 

 assessment of neuraxonal density (transmission electron microscopy) 
 assessment of mitochondrial appearance (transmission electron microscopy) 
 assessment of vasoreactivity (videomicroscopy; applied for studies on brain tissue slices) 
 

NON-SPECIFIC CELL VIABILITY, INJURY AND METABOLISM markers 
 performance of the LDH release assay 
 performance of the MTT reduction assay 
 performance of the neutral red uptake assay 
 undertaking of fluorescent staining of live / dead cells 
 measurement of the intracellular levels of ROS 

 performance of other “cell viability” assays 
 

NEUROBIOLOGICAL markers 

 assessment of HO activity and of haemotoxicity-induced markers’ expression 
 assessment of the expression of neuronal markers 
 assessment of caspase activity and of cell death-related markers’ expression 
 assessment of the expression of inflammation-related markers  
 assessment of the expression of other markers  
 

OTHER parameters / markers 
 undertaking of electrophysiological studies 
 assessment of swelling (oedema) via weighting (applied for studies on brain tissue slices) 
 assessment of phagocytosis 
 

 

Note: this overview is not an indirect suggestion of other parameters that could have been assessed; it just organ-
izes the markers discussed within the text of Chapter II, and is neither exhaustive nor useful for any further inter-
pretation, other than to provide the reader with the general framework in which the in vitro simulation attempts 
to intracerebral haemorrhage have been undertaken so far.  
 

HO: haeme oxygenase; LDH: lactate dehydrogenase; MTT: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 
bromide; ROS: reactive oxygen species 
  

 



 

 

 

 

 

 

 

 

 

 

 

 

PART B 

 

Characterization of the embryonic murine  

hippocampal cell line mHippoE-14 

 

 

 

 

 



 

 
CHAPTER III 

 

The commercially-available embryonic hippocampal  

cell-line mHippoE-14 

 

In order to address the need for the development of novel in vitro simulation approaches to 

intracerebral haemorrhage, we decided to use the commercially-available immortalized em-

bryonic murine hippocampal cell-line mHippoE-14 (catalogue number: CLU198; CELLutions 

Biosystems Inc., Ontario, Canada) on the promise that they are “easy to culture, have efficient 

transfection rates and have robust gene and protein expression”, as well as that they “enable 

accurate in vitro assays for use in the discovery, development and validation of new therapeutics 

targeted to central nervous system diseases and disorders, including obesity, stress, reproduc-

tion and metabolic disorders, amongst others”. The mHippoE-14 cell-line is part of a group of 4 

commercially-available embryonic murine hippocampal cell-lines developed by the same re-

search group (Gingerich et al., 2010), each of which seems to bear a distinct phenotype and 

gene expression profile. However, all 4 cell-lines are reported to exhibit neuronal cytomor-

phologies and neuronal markers’ expression (Gingerich et al., 2010); a major advantage of the 

specific cell-lines over other commercially-available ones (see Chapter II). A brief account of 

the methodology followed for the generation of the mHippoE-14 and the other 3 associated 

immortalized cell-lines will be provided in the next few pages, along with an overview of the 

data referring to their characterization attempts. This account is also necessary for the justifi-

cation of the selection of the specific cell-line over the others. 

 

III.1. Development of the mHippoE-14 and associated cell-lines 

 

The development of the mHippoE series of cell-lines served both the need for distinct immor-

talized neuronal cell-lines as in vitro “models”1 for the simulation and study of hippocampal 

cell function (Gingerich et al., 2010), as well as the fact that non-transformed primary hippo-

campal cell-lines are heterogeneous, difficult to maintain and, by nature, cytologically- and 

genetically-inconsistent. There have been reports of a few immortalized hippocampal (and 

                                                 
1 with very few exceptions, I tend not to adopt the use of the word “model” in this PhD Thesis, as its 
careless use in the literature over the last decades has rendered it meaningless; Part D of this current 
Thesis provides a number of further reasons for this choice. 
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hippocampal-like) cell-lines in the literature (Davis and Maher, 1994; Eves et al., 1992; Ho-

shimaru et al., 1996; Lee et al., 1990; Morimoto and Koshland, 1990a; 1990b; Renfranz et al., 

1991; Whittemore et al., 1991), all prior to the development of those of the mHippoE series 

(Table B.1). Most of these cell-lines have not been well-characterized over the last 20 years, 

and those who have been more widely used / studied (H19-7, HiB5, HT-22) are barely repre-

sentative of the hippocampal neuronal heterogeneity. 

Gingerich et al. (2010) generated the cell-lines of the mHippoE series by following the 

same methodology to that used for the generation of immortalized embryonic murine hypo-

thalamic cell-lines (Belsham et al., 2004). The methodology is synopsized in Figure B.1 and 

consists of the following 6 steps: (a) the use of pregnant Swiss Webster mice (anaesthetized 

on E18)2 as a source of foetal hippocampi, (b) the appropriate handling / processing of the 

foetal hippocampi and their plating (as cell suspensions) in culture dishes coated with poly-L-

lysine and incubated for 7 days (37oC, 5% carbon dioxide; CO2) with primary culture medium 

consisting of Dulbecco’s modified Eagle’s medium (DMEM) containing 10% heat-inactivated 

FBS, 10% heat-inactivated horse serum, 1% penicillin - streptomycin and 20 mM D-glucose, 

(c) the transfection3 (48 h) of the cell cultures with a recombinant murine retrovirus har-

bouring simian virus (SV40) T-antigen and the neomycin resistance gene from the pZIPNeo 

SV(X) 1 vector, (d) the treatment of the cells with geneticin4 (G418; 400 μg/mL every 3 days 

for 2 weeks, followed by 250 μg/mL for further 2-3 weeks), (e) the selective expansion5 of the 

resistant cell colonies (through the use of cloning cylinders), and (f) the subcloning of the 

mixed populations of the embryonic hippocampal cells through successive dilutions into 96-

well plates (coated with poly-L-lysine) where optimal dilution allowed for 1-2 cells per well 

(ratio 1:1 of conditioned medium and fresh DMEM with 15% FBS), prior to their growth and 

cryopreservation. As a result of this approach, Gingerich et al. (2010) isolated and character-

ized 4 clonal cell-lines: mHippoE-2, mHippoE-5, mHippoE-146 and mHippoE-18. 

                                                 
2 neurogenesis is peaking in the murine hippocampal CA1 and CA2 regions on E15 (Finlay and Darling-
ton, 1995), a phenomenon that extends into early postnatal life. 
3 it is worth noticing that the immortalization process is believed to arrest the transfected cells at the 
respective specific developmental stage, and to prevent them from differentiating any further (Ryder 
et al., 1990); the immortalizing of embryonic hippocampal cells should, at least to an extent, arrest sev-
eral functional properties expected to accompany the dynamic processes characterizing hippocampal 
neurogenesis.   
4 geneticin is a neomycin analogue that, once added to the medium, allows only for the successfully-
transfected (immortalized) cells to survive (Lendahl and McKay, 1990). 
5 this is a step of great importance, as Gingerich et al. (2010) have undertaken this selective expansion 
based on whether the cells demonstrated a “predominant neuronal morphology”; although the authors 
do not provide more details on how exactly this morphology is assessed, their previous study (Belsham 
et al., 2004) claims this selection step to be based on whether the cells demonstrate “small, rounded, or 
ovoid perikarya and long neuritic processes”. 
6 optimal (growth) cell-culture conditions for the mHippoE-14 cells are: DMEM (with 4500 mg/L glu-
cose, L-glutamine and sodium bicarbonate, without sodium pyruvate, liquid, sterile-filtered, suitable 
for cell culture; Sigma product code: D5796) supplemented with 10% FBS and 1% penicillin - strepto-
mycin; cells must be cultured in a humidified, 5% CO2, 37°C incubator. 



Zarros A | PhD Thesis in Neuropathology  69 

Upon development, Gingerich et al. (2010) have submitted the mHippoE cell-lines into 

a characterization through a well-selected RT-PCR screening (Table B.2), as well as through a 

number of experiments aiming to assess their responsiveness to glutamate-induced neuro-

toxicity and oestrogen-induced neuroprotection. However, Gingerich et al. (2010) have made 

no attempts in order to provide a cytomorphological characterization of theses cell-lines un-

der either optimal (normal) or neurotoxic in vitro conditions. Figure B.2 provides some rep-

resentative phase-contrast microscopy captions of the mHippoE-14 cells, as cultured in the 

Gardiner lab. 

 

III.2. Characterization of the mHippoE-14 and associated cell-lines 
 

Gingerich et al. (2010) have provided us with a semi-quantitative RT-PCR profiling of the 4 

mHippoE cell-lines over a total of 19 markers (Table B.2). Of these, notable are GFAP (the ab-

sence of the expression of which indicates that none of the cell-lines are of astrocytic or ep-

endymal nature), and the neuronal markers MAP2 and neuron specific enolase (NSE; whose 

levels of gene expression suggest a neuronal profile for the cell-lines in question). All mHip-

poE cell-lines seem to share a common profile with regards to a total of 10 of the studied 

markers, while the authors attribute the fact that the mHippoE-14 cells are negative for the 

spermiogenesis specific transcript on the Y 1 (SSTY1) mRNA to the belief that they originate 

from female embryos (Gingerich et al., 2010).   

Although far from being exhaustive, the RT-PCR profiling (Table B.2) as well as the ex-

perimental assessment of the mHippoE cell-lines performed by Gingerich et al. (2010) have 

provided us with a number of reasons on why the mHippoE-14 cell-line is the best choice for 

the development of novel in vitro simulation approaches to intracerebral haemorrhage. Apart 

from the fact that the mHippoE-14 cell-line seems to be an equivalently (to the rest of the 

mHippoE series cell-lines) potent expresser of major neuronal markers (MAP2 and NSE), the 

mHippoE-14 cells express the tropomyosin receptor kinase A (TrkA) mRNA stronger than the 

other cell-lines (Table B.2); TrkA is the high-affinity nerve growth factor (NGF) receptor and 

as such, a major regulator of neuronal differentiation and a major blocker of programmed cell 

death (Culmsee et al., 2002; Marlin and Li, 2015). Moreover, mHippoE-14 seems to be the on-

ly cell-line of the mHippoE series expressing the tropomyosin receptor kinase B (TrkB)7 

mRNA; an important finding if one considers the importance of the TrkB / BDNF pathway as 

a regulator of neuronal growth (Gonzalez et al., 2016) and the memory processes (Yamada 

and Nabeshima, 2003). The moderate expression of the glutamate receptor subtype 4 

(GluR4) mRNA is another unique feature of the mHippoE-14 cell-line, that along with the 

                                                 
7 TrkB is activated primarily by BDNF and neurotrophin-4, and to a lesser extent by neurotrophin-3 
(Barbacid, 1994; Squinto et al., 1991). 
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strongest expression of the growth hormone secretagogue receptor (GHSR) mRNA (the 

mRNA of the only molecularly identified receptor for ghrelin), classify this cell-line as an ideal 

representative of the hippocampal neuronal population. The latter is due to the fact that 

GluR4 is known to be highly-expressed in the hippocampus during neurodevelopment 

(Gomes et al., 2007), while GHSR is recently reported to be enriched in the neurogenic niche 

of the hippocampal dentate gyrus (Hornsby et al., 2016), as well as a mediator of a dopamin-

ergic initiation of hippocampal synaptic plasticity through the dopamine receptor 1 (Kern et 

al., 2015). 

The conducted experiments on the responsiveness of the mHippoE cell-lines to gluta-

mate-induced neurotoxicity and oestrogen-induced neuroprotection have also revealed that 

the mHippoE-14 did not differ from the mHippoE-18 in terms of susceptibility to glutamate-

induced neurotoxicity (expressed as % viability and assessed via MTT assays), but required 

much higher levels of the tested oestrogen (17β-οestradiol) in order to exhibit a significant 

level of neuroprotection; a finding attributed to the fact that the mHippoE-14 express lower 

mRNA levels of the oestrogen receptor alpha (ERα) compared to that of the mHippoE-18 ones 

(Gingerich et al., 2010). Finally, the mHippoE-14 cells were also shown to possess a unique 

neuron-like property: as a response to acute treatment with 20% FBS, they express c-Fos 

mRNA (Gingerich et al., 2010), which is a response suggestive of neuronal activation (Bullitt, 

1990). 

To date, interestingly, it is only the mHippoE-18 cell-line that has been cited in the lit-

erature as a cellular substrate for the undertaking of in vitro nanoneurotoxicity assessments 

(Janaszewska et al., 2013; 2015; Lazniewska et al., 2013a; 2013b; Milowska et al., 2014; 2015; 

Nawrotek et al., 2016a; 2016b; Zarros et al., 2015), and more recently as a cell-line of choice 

for the characterization of the endogenous G protein-coupled receptor 30 (GPR30) signalling 

(Evans et al., 2016). 
 

>> Table B.1: page 71 

>> Table B.2: page 72 

>> Figure B.1: page 73 

>> Figure B.2: page 74 
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Table B.1: Immortalized hippocampal (and hippocampal-like) cell-lines developed and stud-

ied prior to the development of the mHippoE series of cell-lines: a summarized view of their 

origin and their main limitation. 
 

   

Cell-line Origin Main limitation 
   

   

H19-5 E17 Holtzman rat hippocampi glial lineage 
H19-7 E17 Holtzman rat hippocampi neuronal markers expressed only after 

induction 
H583-5 E17 Holtzman rat hippocampi bipotential in lineage 
HC2S2 adult rat hippocampi immortalized neuronal progenitor cells 
HiB5 E16 Sprague-Dawley rat hippocampi morphology subject to conditions 
HN9e C57BL/6 E18 mouse hippocampi immortalized via fusion with N18TG2 
HT-4 murine neuronal cell-line origin is not clearly defined 
HT-22 sub-line of HT-4 particularly sensitive to glutamate 
   

 

Note: the herein presented list of cell-lines is not exhaustive. Eves et al. (1992) provide more details on the H19-5, 
H19-7 and H583-5 cell-lines, as well as on another 10 immortalized embryonic cell-lines of hippocampal origin. 
Hoshimaru et al. (1996) describe the use of the immortalized adult rat hippocampal cell-line HC2S2 as a valuable 
tool for the study of neuronal differentiation, while Lee et al. (1990) have characterized a total of 5 hybrid cell-
lines by fusing E18 and P21 hippocampal cells to N18TG2 neuroblastoma cells; of these, HN9e is the most notable 
as it has been reported to possess neuritic processes and excitable membrane. The HiB5 cells are considered to be 
hippocampal progenitor cells, whose morphological characteristics are dependent upon their in vitro culturing or 
in vivo implanting conditions (for more details, see Renfranz et al., 1991). Finally, the HT-4 cell-line is considered 
by several authors to be a neuronal cell-line of murine origin (Morimoto and Koshland, 1990a; 1990b), for which 
very little is known, apart from the fact that HT-4 cells can take on properties of differentiated neurons when cul-
tured at nonpermissive temperatures (39oC); in fact, Whittemore et al. (1991) report HT-4 to be an immortalized 
mouse neuroblastoma cell-line (without any mention of its hippocampal origin). The HT-22 cell-line is a popular 
subclone of the aforementioned HT-4 cells (Davis and Maher, 1994); its hippocampal origin is highly-cited in the 
literature, but should be received with reservation. Bearing hippocampal-like cellular properties and being of hip-
pocampal origin are two distinct qualities for a given immortalized cell-line; qualities that might have been mixed 
up by several researchers / authors over the last decades.  
 

Ex: embryonic day x (x: day number); P21: postnatal day 21 
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Table B.2: Overview of a RT-PCR screening of the mHippoE-type cell-lines available by CEL-

Lutions Biosystems Inc. 
 

     

Marker for which gene expression was tested m
H

ip
p

o
E

-2
 

m
H

ip
p

o
E

-5
 

m
H

ip
p

o
E

-1
4

 

m
H

ip
p

o
E

-1
8

 

     

     

androgen receptor; AR - - ++ - 
brain-derived neurotrophic factor; BDNF +++ +++ +++ +++ 
glial fibrillary acidic protein; GFAP - - - - 
glutamate receptor subtype 3; GluR3 +++ +++ +++ +++ 
glutamate receptor subtype 4; GluR4 - - ++ - 
G protein-coupled receptor 30; GPR30 ++ - +++ +++ 
growth hormone secretagogue receptor; GHSR + ++ +++ + 
insulin receptor; IR +++ +++ +++ +++ 
leptin receptor; OB-R + + + + 
N-methyl-D-aspartate receptor 1; NMDA-R1 ++ ++ ++ ++ 
microtubule-associated protein 2; MAP2 ++ ++ ++ ++ 
neuron specific enolase; NSE +++ +++ +++ +++ 
neuropeptide Y; NPY ++ +++ +++ ++ 
oestrogen receptor alpha; ERα ++ ++ ++ ++ 
oestrogen receptor beta; ERβ ++ ++ ++ ++ 
proglucagon; PG +++ +++ - +++ 
spermiogenesis specific transcript on the Y 1; SSTY1 ++ ++ - ++ 
tropomyosin receptor kinase A; TrkA ++ ++ +++ ++ 
tropomyosin receptor kinase B; TrkB - - + - 
     

 

Note: data acquired from Gingerich et al. (2010) and presented with aesthetic modifications; gene expression lev-
els were analyzed by semi-quantitative RT-PCR and were classified as strong (+++), moderate (++), weak (+) or 
negative (-) when compared to the strong expression of each gene in murine hypothalamus-derived positive con-
trols. 
 

RT-PCR: reverse transcriptase polymerase chain reaction 
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Figure B.1: Schematic representation of the procedure followed for the generation of the 

immortalized hippocampal mHippoE-14 cells, as described by Gingerich et al. (2010). 
 

 

pregnant Swiss Webster mice were deeply anaesthetised 
with isoflurane on E18

foetal hippocampi were dissected, pooled together, 
triturated and plated on a 60 mm2 culture dish (coated 
with poly-L-lysine) and left to be incubated (37oC, 5% 
CO2) for 7 days in DMEM containing 10% heat-
inactivated defined FBS, 10% heat-inactivated horse 
serum, 1% penicillin/streptomycin and 20 mM D-glucose

cultures were immortalized by transfection with 
recombinant murine retrovirus harbouring simian virus 
(SV40) T-antigen and neomycin-resistance gene from the 
pZIPNeo SV(X) 1 vector and left for 48 h

cultures were treated with G418 (400 μg/mL) every 3 
days over a period of 2 weeks, prior to a further 2-3 week 
(maintenance) treatment with a lower concentration of 
G418 (250 μg/mL)

resistant cell colonies were selected using cloning 
cylinders and allowed to expand; of these, further 
selection allowed only for those clones demonstrating 
predominant neuronal morphology to expand 

mixed cell populations were further subcloned through 
successive dilutions into 96-well plates (coated with 
poly-L-lysine; optimal dilution allowed for 1-2 cells per 
well; ratio 1:1 of conditioned medium and fresh DMEM 
with 15% FBS), and were then grown and cryopreserved

 
 

 

Note: the procedure is very similar to the one followed by Belsham et al. (2004) for the generation of immortalized 
hypothalamic neuronal cell-lines (N-1, N-2, N-3, N-4, N-6, N-7, N-8, N-11, N-19, N-20, N-22, N-25, N-29, N-36, N-37 
and N-38) from mice. It should be noted that some of the latter cell-lines are also commercially-available by the 
same company as mHippoE-14, CELLutions Biosystems Inc.  
 

DMEM: Dulbecco’s modified Eagle’s medium; E18: embryonic day 18; FBS: foetal bovine serum; G418: geneticin 



Zarros A | PhD Thesis in Neuropathology  74 

 

Figure B.2: Representative phase-contrast microscopy captions of the mHippoE-14 cells. 
 

 

a

b

e

c

f

d

g

 
 

 

Note: all panels (a-g) accommodate phase-contrast microscopy captions of mHippoE-14 cells in the presence of an 
optimal (FBS-supplemented) medium (scale bar: 50 μm). White arrows (panels b, e, f and g) demonstrate unmet 
(expanding and / or free-standing) cellular protrusions suggestive of a neuronal phenotype.  
 

FBS: foetal bovine serum 

 



 

 
CHAPTER IV 

 

Real-time cellular response analysis  

of the mHippoE-14 cell-line 

 

A major tool employed for the development and assessment of the herein presented in vitro 

simulation approaches to intracerebral haemorrhage has been the undertaking of real-time 

cellular response analysis through the xCELLigence1 Real Time Cell Analysis system (xCELLi-

gence RTCA system; developed by Roche Applied Science in partnership with ACEA Biosci-

ences Inc., and being available at the Gardiner Laboratory of the University of Glasgow). The 

xCELLigence technology is not by definition a “high-throughput” platform, but has the poten-

tial to act as one if appropriate apparatuses are used2 or if multiple of the currently available 

apparatuses are simultaneously employed under appropriate conditions, towards the same 

drug-screening purpose. This chapter provides an overview of the xCELLigence technology 

and its applications, a summary of the work performed in order to characterize the cellular 

response patterns of the mHippoE-14 cells under optimal (growth-stimulating) and FBS-

deprivation (growth-altering) conditions, and a presentation of novel concepts related to the 

necessary parametropoiesis of the outputs of this technology toward the optimization of its 

applicability in the development and assessment of in vitro simulation approaches with the 

use of the mHippoE-14 cell-line. 

 

IV.1. The xCELLigence system and its applications 
 

The xCELLigence technology monitors dynamic cellular events / cellular phenotypic changes 

under in vitro conditions, in real-time, without the incorporation of labels (label-free technol-

ogy), by measuring electrical impedance across interdigitated micro-electrodes integrated on 

the bottom of the wells of tissue culture plates (E-Plates3) (Guan et al., 2013; Ke et al., 2011; 

Roshan Moniri et al., 2015; Scrace et al., 2013). The dimensions of an E-Plate 96 are 12.77 x 

8.55 x 1.75 cm (width x depth x height); it accommodates 96 wells, with a well volume capaci-

                                                 
1 xCELLigence®. 
2 the xCELLigence RTCA HT device can perform label-free, real-time cell analysis in a 384-well format. 
3 E-Plate®. 
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ty of 243 ± 5 μL and a well bottom diameter of 5.00 ± 0.05 mm each4. The E-Plate 96 is made 

of biocompatible materials, is sterile, and its electrical interface is compatible with the RTCA 

SP station5. The E-Plate-hosting unit of the apparatus is placed in a standard cell culture incu-

bator and interfaces via a cable with the analysis and control unit of the apparatus; the latter 

is housed outside the incubator. 

The readings of the xCELLigence system are a complex mathematical algorithm inter-

pretation of the electrical impedance across the aforementioned interdigitated micro-

electrodes, that are expressed and plotted over time as cell index (CI) values. Representative 

screen captions of how these readings are presented by the xCELLigence RTCA SP analysis 

software, are provided in Figure B.3. This technology can have multiple applications in the 

performance of growth / proliferation assays (Roshan Moniri et al., 2015; Witzel et al., 2015), 

the assessment of cell viability (Ke et al., 2011; Limame et al., 2012; Roshan Moniri et al., 

2015), the monitoring of cellular differentiation (Kramer et al., 2014), the monitoring of cell 

migration / invasion (Limame et al., 2012; Roshan Moniri et al., 2015), the molecular profiling 

of cell-lines (Ke et al., 2015), the undertaking of pathophysiological mechanisms’ exploring 

experiments (Marinova et al., 2013; Moodley et al., 2011; van Kralingen et al., 2013), the de-

tection of neuronal death (Diemert et al., 2012), the undertaking and optimization of cytotox-

icity assays (Meindl et al., 2013; Pan et al., 2013a; 2013b; Ramis et al., 2013), and the perfor-

mance of drug-screening and drug-safety tests (Cruceru et al., 2013; Hou et al., 2014; Kho et 

al., 2015; Kustermann et al., 2013). 

 

IV.2. Technical restrictions, archiving, analysis and statistical evaluation 
 

A major technical restriction of the xCELLigence system (at least of the xCELLigence RTCA SP 

apparatus used) is that it is not fully automated: it does require human interference in chang-

ing the media, adding compounds or modifying in vitro conditions. This means that the sys-

tem’s inter-assay repeatability is largely dependent upon the user being consistent in these 

interferences. Moreover, the system is not capable of accommodating conditions that require 

exposure of some treatment groups to different temperature and / or different atmospheric 

composition, on the same E-Plate; a restriction that implies that in vitro simulating attempts 

incorporating oxygen-deprivation (e.g. in vitro OGD set-ups) cannot be simultaneously hosted 

along with appropriate controls on the same E-Plate. A third worth-mentioning restriction of 

the xCELLigence technology is that its application as an analytical and / or high-throughput 

screening tool should be preceded by an evaluation of its suitability to reliably represent the 

                                                 
4 this means that the well bottom surface area of the wells of an E-Plate 96 are smaller (approximately 
-39%) than that of the wells of a standard 96-well microplate. 
5 the RTCA SP apparatus (that has been used for all the herein presented work) can only host one E-
Plate 96 at a time (SP: single plate). 
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cellular events / cellular phenotypic changes in question; a comparative evaluation of the sys-

tem’s output against traditional assays (Limame et al., 2012; Vistejnova et al., 2009) and ana-

lytical cytomorphology (Vistejnova et al., 2009).  

The xCELLigence output is provided as “.plt” files with an automatically-generated ID 

for each experiment; these files are operational through the (in our case) xCELLigence RTCA 

SP analysis software (Figure B.3). Data can be easily extracted from these .plt files, and can be 

archived and further analysed through Microsoft Excel and / or other software. The analysis 

of these data can be subject to extensive customization, depending on the experiment’s spe-

cifics and the assessment endpoints chosen. Statistical evaluation of these data can be per-

formed through appropriate tests; in general, data of well-performed experiments tend to 

have low inter- and intra-assay variations, and values tend to be provided within normal dis-

tribution patterns. 

 

IV.3. Characterization of the mHippoE-14 cell-line response patterns 

 

In order to characterize the mHippoE-14 cell-line response patterns in a real-time manner, 

we decided to undertake a basic experiment: to map the growth of mHippoE-14 cells under 

optimal (FBS-supplemented) cell-culture conditions (as described in Chapter III) as well as to 

characterize the cellular response of these cells to FBS-deprivation (an interference expected 

to exert a cytostatic or cellular response-modifying effect). For this purpose, mHippoE-14 

cells were seeded (at a density of 7,500 cells/well) into E-Plates, and were monitored while 

left to grow in FBS-supplemented medium (growth medium) for 24 h, prior to them being 

washed twice and having their medium replaced by a non-FBS-containing one; treatment 

group “FBS(+/-)” (Figure B.4). The monitoring of the mHippoE-14 cellular response was per-

formed for further 36 h (to a total of 60 h) (Figure B.4). As a control, mHippoE-14 cells that 

were not subject to any change of their medium were used; treatment group “FBS(+)”. Both 

treatment groups were subject to the same time (and subsequent cellular stress) outside the 

incubator (37oC, 5% CO2), but the FBS(+/-) cells were also subject to the washing and medi-

um-renewing procedure.  

The average cellular response profiling obtained from this experiment (performed in 

triplicate) has revealed a cellular response-modifying effect of FBS-deprivation, that after a 

few hours seems to be holding the affected mHippoE-14 FBS(+/-) cells in a “cytostatic” / non-

proliferating / cytokinetically-stable status (Figure B.4). A closer look on this status (as com-

pared to the profiling of the FBS(+) treatment group) has allowed us to distinguish the mHip-

poE-14 cellular response patterns into phases (Table B.3; Figures B.5.a and B.5.b). Of these 

phases, of particular interest are the “metaptotic” and the “pathopoietic” phases (Table B.3).  
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Moreover, based on these findings, the adoption of novel symbolography for the map-

ping of real-time cellular responses (Table B.4) has been considered and set into effect for the 

purpose of the herein presented studies. This adoption facilitates a more thorough analysis of 

the observed cellular response profiles, and enables a wider, specialized and more accurate 

analysis of the obtained data through established and novel (proposed) parameters (Table 

B.5). An example of this analysis is provided in Table B.6 and in Figures B.5.c, B.5.d, B.5.e and 

in Figure B.6. 

 

IV.4. Pathopoietic transformation of the mHippoE-14 cell-line 
 

The deprivation of FBS from the medium in which mHippoE-14 cells grow, leads, eventually, 

to the establishment of a “pathopoietic phase” (Table B.3; Figures B.4, B.5.a and B.5.b). The 

normalized cellular response (nCR) of the FBS-deprived mHippoE-14 cells within this phase 

is statistically significantly lower than those continuing on the dynamic phase (Table B.6; Fig-

ure B.5.e). In fact, the mean nCR values of the mHippoE-14 cells within the metaptosis’ recov-

ery point (Rm) and the evaluation endpoints at 36, 48 or 60 h (E36, E48 or E60, respectively) are 

not statistically significantly different from 0 (the FBS(+/-) mean nCR values ± standard devi-

ations are presented in Table B.6; significance analysis towards 0 is not presented). 

The pathopoietic transformation of the mHippoE-14 cells through FBS-deprivation is a 

great property of the specific cell-line, and allows for a more reliable simulation of neuronal 

entities in vivo, where neurons are expected to be cytostatic / non-proliferating. This patho-

poietic transformation ought to be, of course, further characterized and adopted, as it has the 

potential to provide an ideal cellular substrate basis for the development of in vitro human 

brain disease-simulating conditions. 

 

IV.5. Metaptosis of the mHippoE-14 cell-line and its parametropoiesis 
 

Apart from the pathopoietic transformation of the mHippoE-14 cells, the xCELLigence tech-

nology has also revealed a phase of rapid cellular response transitions (metaptotic phase; Ta-

ble B.3; Figures B.5.a, B.5.b and B.6). This phase is of particular interest for a very specific 

reason: it reveals a grey zone of cellular instability due to FBS-deprivation and / or handling 

of the cells in a non-regulated (in terms of temperature and atmosphere composition) envi-

ronment. The cells need time to recover from this phase, which is significantly lower in the 

FBS(+)- than in the FBS(+/-)-treated cells (approximately 2 versus 6 h, respectively, p<0.01; 

Figure B.6.b)6. The cells also undertake metaptosis with patterns (Figure B.6.a) and nCR val-

                                                 
6 the majority of the published in vitro studies ignore this phase and present toxicity or drug efficiency 
assessments within a few hours or even minutes after the FBS-deprivation; this practice is wrong. The 
addition of a toxic compound or a drug under FBS-deprived conditions - in fact, any further interven-
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ues (Table B.6) that are in all cases statistically significantly different amongst the studied 

treatment groups. The adoption of the proposed symbolography with regards to major map-

ping points within metaptosis (Im, metaptosis’ initiation point; Zm, metaptosis’ zenith point; 

Nm, metaptosis’ nadir point; Rm; Table B.4) is, in my opinion, a major prerequisite for a more 

accurate study of this phase (Table B.6; Figures B.6.c, B.6.d and B.6.e), as well as for its further 

parametropoiesis towards the establishment of intra- and inter-assay standards; see, in par-

ticular, the proposed metaptotic index (mi) and the index of metaptotic adaptability (μi) in 

Table B.5. 
 

>> Table B.3: page 80 

>> Table B.4: page 81 

>> Table B.5: page 82 

>> Table B.6: page 83 

>> Figure B.3: page 84 

>> Figure B.4: page 86 

>> Figure B.5: page 87 

>> Figure B.6: page 89 

                                                                                                                                                    
tion after FBS-deprivation - should be done at a time point where evidence suggests that for the specif-
ic cellular substrate, under the specific in vitro conditions, a recovery from metaptosis has occurred.  
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Table B.3: Proposed nomenclature for the description of standardized real-time cellular re-

sponse profiles through the use of the xCELLigence technology. 
 

  

Phase Description and potential 
  

  

initial phase describing the “S”-shaped short-lasting cellular profile recorded from 
the moment of cell-seeding until their entry into the next phase; represents 
the recordings matching to the attachment of the cells to the bottom of the 
wells 
 

dynamic  phase describing the cellular profile in which the growth / multiplying of the 
recently-seeded / attached cells occurs (under appropriate conditions); it is 
characterized by a cell growth rate (cellular response) that tends to be stable 
 

metaptotic phase describing the cellular profile recorded right after a media-renewing 
(>10% of the volume of the well’s medium) or long-lasting stressful (due to a 
change in the environmental conditions; e.g. temperature, levels of CO2, etc.) 
interruption of a recording, until the re-establishment of a cellular response 
that tends to be stable (recovery); this phase’s duration, nature and intensity 
depend on the duration, nature and intensity of the inducing interruption 
 

pathopoietic phase describing the cellular profile in which the cellular status of the stud-
ied cell-line is constant; this phase is particularly relevant to cases where the 
studied “cellular substrate” is not supposed to be mimicking a dynamic cell 
population or a condition where cell proliferation should not occur 

  

 

Note: the herein presented phase definitions are subject to improvement prior and / or after publication, and have 
been defined with the perspective of being applicable in the case of the studied mHippoE-14 cell-line. For a visual-
ized presentation of these phases, see Figure B.5. 
 

CO2: carbon dioxide 
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Table B.4: Proposed symbolography for the mapping of real-time cellular responses through 

the use of the xCELLigence technology. 
 

  

Symbol Meaning(s) 
  

  

Io recording’s initiation point 
Ie experiment’s initiation point 
Im metaptosis’ initiation point 
It treatment’s initiation point 
Se stabilization point (point of transition from initial to dynamic phase) 
Rm metaptosis’ recovery point 
Rt recovery point after a treatment intervention 
Zm metaptosis’ zenith point 
Zt zenith point after treatment 
Nm metaptosis’ nadir point 
Nt nadir point after treatment 
E endpoint, any; see for subtypes below 
  

  

Ed endpoint within the dynamic phase 
Ep endpoint within the pathopoietic phase 
Et endpoint after a treatment intervention 
Ex evaluation endpoint at a time point of choice; ‘x’ can be replaced by number / letter 
Ee end of the experiment (endpoint) 
  

 

Note: all hereby presented symbols might be subject to revision prior to further publication. The Rm is manually 
defined within a dataset of the xCELLigence technology as the earliest point after Zm in which the cellular response 
profiling curve adopts a stable response over time. Obviously, the recording time-intervals are a major parameter 
defining the accuracy with which one can identify this point. For further details on the calculation of “cellular re-
sponse” and the uses of Rm, see Table B.5.   
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Table B.5: Established and proposed parameters for a more thorough analysis of real-time 

cellular responses through the use of the xCELLigence technology.  
 

   

Parameter Symbol Meaning and calculation 
   

   

cell index CI major unit of measurement for the xCELLigence 
technology; it reflects the cell number, adhesion 
and/or morphology 
 

cellular response CR measured in CI/h; the response of a given cellu-
lar group over a given time; for two given time 
points (α and β, where α < β), the CR would be 
presented as CR(α,β) and would be calculated as: 
 

CR(α,β) = ΔCI(α,β) / Δt(α,β) 
 

normalized cell index nCI a CI normalized to that of a control time point; 
in the case of the experiments described in this 
Thesis, normalization is usually performed to-
ward the CI values of the last endpoint within 
the dynamic phase (Ed) recording  
 

normalized cellular response nCR measured in nCI/h; for the same given time 
points as above (α and β, where α < β), the nCR 
would be presented as nCR(α,β) and would be 
calculated as: 
 

nCR(α,β) = ΔnCI(α,β) / Δt(α,β) 
 

metaptotic index mi a number; for a given cell-line, the mi is the re-
sult of the ratio between the nCI at the recovery 
point of metaptosis (Rm) for the group of cells 
undergoing FBS-deprivation and the nCI at the 
respective Rm point for the group of cells that is 
not subject to any media change or addition: 
 

mi = nCI(Rm;FBS-deprived) / nCI(Rm;control) 
 

provided that normalization occurs towards the 
CI value of the same group at the Im time point 
 

index of metaptotic adaptability μi measured in h-2; for a given group of cells, the μi 
reflects the intensity with which the specific 
group undergoes metaptosis; would be calcu-
lated as: 
 

μi = nCR(Zm,Nm) / (ΔnCΙ(Ιm,Rm)*Δt(Im,Rm)) 
 

provided that normalization occurs towards the 
CI value of the same group at the Im time point 

   

 

Note: all hereby presented parameters might be subject to revision prior to further publication, with the exception 
of cell index (CI) and normalized cell index (nCI) that are established parameters. For more details on the symbols 
used within the third column, see Table B.4.  
 

Δ: difference (operator); FBS: foetal bovine serum; t: time 
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Table B.6: Effects of FBS-deprivation on selected proposed cellular response parameters of 

the mHippoE-14 cell-line. 
 

    

Parameter (unit) FBS(+) FBS(+/-) Significance 
    

    

nCR(Se,E24) (nCI/h) 0.037 ± 0.003 0.037 ± 0.003 --- 
nCR(E24,Zm) (nCI/h) 0.511 ± 0.113 -0.319 ± 0.294 p<0.05 
nCR(E24,Nm) (nCI/h) 0.063 ± 0.011 -0.507 ± 0.076 p<0.001 
nCR(E24,Rm) (nCI/h) 0.045 ± 0.002 -0.025 ± 0.027 p<0.05 
nCR(Zm,Nm) (nCI/h) -0.204 ± 0.059 -0.558 ± 0.100 p<0.01 
nCR(Nm,Rm) (nCI/h) 0.023 ± 0.016 0.067 ± 0.021 p<0.05 
nCR(Rm,E36) (nCI/h) 0.078 ± 0.008 0.016 ± 0.030 p<0.05 
nCR(Rm,E48) (nCI/h) 0.085 ± 0.007 0.014 ± 0.020 p<0.01 
nCR(Rm,E60) (nCI/h) 0.085 ± 0.008 0.006 ± 0.014 p<0.01 
    

    

μi (h-2) -1.206 ± 0.455 1.154 ± 0.822 p<0.05 
    

    

mi (-) 0.786 ± 0.134 n/a 
    

 

Note: data are presented as mean ± standard deviation of three independent experiments (n=3; IDs: 1407101722, 
1407130859, 1408040936), and statistical analysis has been performed through the use of Student’s t-test. Only 
statistically significant differences (p<0.05) are annotated. For all experiments, normalization has been performed 
at the Im time point. For more details on the symbols used within the first column, see Table B.4. For more details 
on the experimental protocol followed for the performance of these experiments as well as for a visualization of 
the average real-time cellular response profiling of the mHippoE-14 cells under these conditions, see Figure B.4. 
 

n/a: not applicable; FBS: foetal bovine serum 
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Figure B.3: Representative screen captions from the xCELLigence RTCA SP analysis software. 
 

 

setting A: CI per well
54 wells included

setting B: average CI per group
18 well groups included

 
 

 

(continues on next page) 
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(continues from previous page) 
 

 

setting C: average nCI per group
normalization at 23:15:55
18 well groups included

setting D: average nCI per group
standard deviation presented
normalization at 35:48:33
4 well groups included

 
 

 

Note: the screen captions presented are indicative of the potential of the xCELLigence RTCA SP analysis software: 
setting A presents the real-time cellular responses (as “cell index”, CI) of a selection of 54 individual wells within a 
given E-Plate 96, with each well being annotated with a different colour; setting B provides a more tidy version of 
setting A, in which the averages (mean values) of the CI of the wells that belong to the same treatment group are 
presented with different colours; setting C provides the same information as setting A, with the difference that this 
time a normalization upon the CI values has occurred towards those of a specific time point (e.g. 23:15:55; “nor-
malized cell index”; nCI); setting D presents the average nCI values of 4 well groups, with the additional presenta-
tion of their standard deviations. For all performed experiments, recordings were set to be obtained an a 1 per 10 
min frequency, while for the analysis of the experiments presented in this PhD Thesis, the xCELLigence RTCA SP 
analysis software (version 2.0) was used. 
 

CI: cell index; nCI: normalized cell index 
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Figure B.4: Changes in the mHippoE-14 cellular response profiling due to FBS-deprivation. 
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Note: data are presented as mean ± standard deviation (top diagram) or mean (bottom diagram) of three inde-
pendent experiments (n=3; IDs: 1407101722, 1407130859, 1408040936). For all experiments, normalization has 
been performed at the Im time point (approximately 24 h post-seeding of the mHippoE-14 cells into the wells of an 
E-Plate 96; seeding density: 7,500 cells/well). In brief, mHippoE-14 cells were seeded and left to grow in FBS-
supplemented medium (growth medium) for 24 h, prior to them being washed twice and having their medium 
replaced by a non-FBS-containing one; treatment group “FBS(+/-)”. As a control, mHippoE-14 cells that were not 
subject to any change of their medium were used; treatment group “FBS(+)”. Both treatment groups were subject 
to the same time (and subsequent cellular stress) outside the incubator, but the FBS(+/-) cells were also subject to 
the washing and medium-renewing procedure. Arrows indicate the medium renewal (FBS-deprivation) time point 
(approximately 24 h post-seeding) and a later time point where a 10% medium renewal took place (approximate-
ly 36 h post-seeding); the latter was a simulation of a drug- or toxic compound-adding interference. 
 

FBS: foetal bovine serum; Im: metaptosis’ initiation point; nCI: normalized cell index 
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Figure B.5: Mapping the real-time cellular response of mHippoE-14 cells to FBS-deprivation. 
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Note: Figure B.5.a is an ideographic representation of the effects of FBS-deprivation on the phase succession oc-
curring in terms of the real-time cellular response of mHippoE-14 cells under conditions similar to the ones pre-
sented in Figure B.4. Figure B.5.b provides a visualization of the aforementioned phases in the case of the FBS(+/-) 
treatment group (see note of Figure B.4 for protocol’s details); of interest are the Se time point (see Table B.4) as 
well as the circled area that represents an non-metaptotic interruption within the pathopoietic phase (in which a 
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10% volume renewal of the media has taken place; simulation of a drug- or toxic compound-adding interference). 
Finally, the data on Figures B.5.c, B.5.d and B.5.e are presented as mean ± standard deviation of three independent 
experiments (n=3; IDs: 1407101722, 1407130859, 1408040936). Statistical analysis has been performed through 
the use of Student’s t-test, and only statistically significant differences (p<0.05) are annotated. For all experiments, 
normalization has been performed at the Im time point (approximately 24 h post-seeding of the mHippoE-14 cells 
into the wells of an E-Plate 96; seeding density: 7,500 cells/well). For more details on these experiments, consult 
note of Figure B.4. For more details on the time points and the parameters presented, consult Tables B.4 and B.5, 
respectively. 
 

**: p<0.01; E24: evaluation endpoint at 24 h; E60: evaluation endpoint at 60 h; FBS: foetal bovine serum; Ie: experi-
ment’s initiation point; Im: metaptosis’ initiation point; nCI: normalized cell index; nCR: normalized cellular re-
sponse; Rm: metaptosis’ recovery point; Se: stabilization point 
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Figure B.6: Mapping the metaptosis of the mHippoE-14 cells. 
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Note: Figure B.6.a provides a visualization of the metaptotic phase for both the FBS(+) and the FBS(+/-) treatment 
groups (see note of Figure B.4 for protocol’s details); of interest are the Zm, Nm and Rm time points of metaptosis 
(see Table B.4) as well as the time it takes for each group to recover (Figure B.6.b). Finally, the data on Figures 
B.6.b, B.6.c, B.6.d and B.6.e are presented as mean ± standard deviation of three independent experiments (n=3; 
IDs: 1407101722, 1407130859, 1408040936), and statistical analysis has been performed through the use of Stu-
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dent’s t-test. For all experiments, normalization has been performed at the Im time point (approximately 24 h post-
seeding of the mHippoE-14 cells into the wells of an E-Plate 96; seeding density: 7,500 cells/well). For more de-
tails on these experiments, consult note of Figure B.4. For more details on the time points presented, consult Table 
B.4. 
 

*: p<0.05; **: p<0.01; ***: p<0.001; Δ: difference (operator); E24: evaluation endpoint at 24 h; FBS: foetal bovine 
serum; Im: metaptosis’ initiation point; nCI: normalized cell index; Nm: metaptosis’ nadir point; Rm: metaptosis’ 
recovery point; t: time; Zm: metaptosis zenith point 



 

 
CHAPTER V 

 

Cytomorphological characterization of the  

mHippoE-14 cell-line 

 

As with the real-time cellular response analysis characterization of the mHippoE-14 cell-line 

presented in Chapter IV, the cytomorphological characterization of this novel, commercially-

available, immortalized cell-line has been considered and undertaken for two reasons: (a) out 

of genuine interest in the cell-line’s cytomorphology and the desire to explore its phenotypic 

transformations under the experimental conditions we were aiming to employ, and (b) as a 

prerequisite for the validation of the phenomena observed through the xCELLigence technol-

ogy - particularly those occurring following an FBS-deprivation of these cells. 

 

V.1. Established cytomorphological characterization of hippocampal neurons 
 

The cytomorphological characteristics of hippocampal cells that grow / survive under in vitro 

conditions, have been the subject of extensive neuroscientific interest and thorough study 

throughout the recent decades (Barnes and Polleux, 2009; Beaudoin et al., 2012; Bradke and 

Dotti, 2000; Del Turco and Deller 2007; Kaech and Banker, 2006; Majd et al., 2008; Peacock et 

al., 1979; Tseng et al., 2006; Xie et al., 2000). Of this wealth of information, the study of Dotti 

et al. (1988) on the establishment of polarity by hippocampal neurons in vitro, has been of 

great importance for the development and introduction of a multi-stage scale for the classifi-

cation of these neurons, based on phase-contrast microscopy of live cells (Table B.7). Dotti et 

al. (1988) have studied the development of neurons obtained from the embryonic hippocam-

pi of rats, and have suggested that these neurons: (a) should “reproducibly display a charac-

teristic shape”1, (b) should develop a distinguishable major process within the first 24 h post-

seeding, and (c) should become polarized within the first 48 h. They also suggested that in 

order to achieve polarity, hippocampal neurons will go through 3 stages: the formation of 

lamelipodia (stage 1), the outgrowth of processes that are more than 10 μm in length (stage 

2), and the development of an axon (stage 3; development of polarization) (Dotti et al., 1988). 

These stages were suggested to be followed by dendritic growth (stage 4) and the establish-

                                                 
1 which they then clarified as “a single long axon of relatively uniform diameter, and several shorter, ta-
pering dendrites (Bartlett and Banker, 1984)” (Dotti et al., 1988). 
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ment of neuronal “maturity” (stage 5) (Dotti et al., 1988) (Table B.7), and their use has been 

even extended to the study of cortical neurons, after minor modifications (Davis et al., 2013). 

 

V.2. Preliminary assessment of the cytomorphology of the mHippoE-14 cell-line 
 

In order to assess the suitability of the Dotti et al. (1988) stage scale for the cytomorphologi-

cal classification of the mHippoE-14 cells, we designed and undertook four independent ex-

periments (n=4) in which the cells were cultured in 35 mm Corning2 Dishes and their growth 

was followed via live cell phase-contrast microscopy at 6, 12, 18, 24, 30, 36 and 48 h post-

seeding (at a seeding density of 211,000 cells/dish)3. The protocol also included the induction 

of FBS-deprivation (see FBS(+/-) from Chapter IV) at 24 h, and its parallel assessment to the 

FBS(+) (control) condition (see Chapter IV) at 30, 36 and 48 h; in other words, the protocol 

aimed to simulate the experiments summarized in Figure B.4 and discussed in Chapter IV, but 

on a 35 mm dish. As a result, 880 captions4 were generated through a Carl Zeiss Axiovert 40 C 

inverted phase-contrast microscope (Ph1 condenser annulus; x10 and x20 magnification ob-

jective; blue filter) and an attached photo camera (Canon PowerShot A650 IS digital camera). 

Image analysis was performed through the ImageJ (1.48v) software. A preliminary assess-

ment of these captions have made us realize that the Dotti et al. (1988) could not be practical-

ly applicable in the case of the mHippoE-14 cells, at least under the attempted experimental 

conditions, as after 12 h in culture the cells tend to form aggregates, and as time passes, these 

aggregates make it hard to identify cytomorphological features of individual cells. As a result, 

two new challenges arose: (a) the classification of mHippoE-14 cell-line, and (b) the identifi-

cation of cytomorphological assessment parameters that could provide a basic but compara-

ble means to validate the data acquired from the xCELLigence technology. 

 

V.3. Atlas of the mHippoE-14 cellular morphology 
 

The first challenge was addressed with the attempt to generate an algorithm (Table B.7; Fig-

ure B.7) and an atlas of the mHippoE-14 cell-line (Figure B.8). The proposed cytomorphologi-

cal classification is based on whether the cells maintain shape regularity5, protoplasmic pro-

                                                 
2 Corning®. 
3 this seeding density was adopted in order to simulate the cell density achieved when seeding 7,500 
cells in a 96-well plate well, and to make results from different methods “comparable”. 
4 for each experiment (out of 4), 10 different “states” (unique time point / treatment conditions) were 
captioned; for every state, 7 captions of x10 and 15 captions of x20 magnification were produced. 
5 shape regularity is associated with the minimum prerequisites set by Dotti et al. (1988) for the classi-
fication of a hippocampal neuron as “polarized” (stage 3; see Table B.7), and one must not forget that 
the monolayer monoculture of the mHippoE-14 cells cannot possibly be expected to adopt a 3-
dimentional shape regularity observed in vivo or in organotypic cultures; within this PhD Thesis, an 
mHippoE-14 cell is considered to be characterized by shape regularity if it appears polarized, and has 
at least one process longer than 10 μm. 
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trusions6 longer than 10 μm, met protrusional outreach and episomatic7 attachment (to other 

cells), and it can classify the mHippoE-14 cells into ten types: type Ia, Ib, IIa, IIb, IIIa, IIIb, IVa, 

IVb, Va and Vb (Table B.7; Figures B.7 and B.8). Those cells belonging to a Va type at any giv-

en assessment endpoint are ideal candidates for the cytomorphological assessment of these 

cells; unfortunately, Va mHippoE-14 cells were rarely observed under the attempted in vitro 

conditions. However, the value of the proposed classification lies in its potential utilization 

within integrated (Migliore and Shepherd, 2005), multi-parametric (Chen et al., 2012; Santa-

na et al., 2013) and / or automated (Chan et al., 2015; Leach et al., 2011) cytomorphology as-

says, and the identification of patterns for a cytopathological assessment based on parame-

ters currently employed by clinical cytopathologists (see Tables APP.1 and APP.2; Buckner et 

al., 1992). 

 

V.4. Parametropoiesis of the mHippoE-14 cellular morphology assessment 
 

The second challenge was addressed with the adjustment and adoption of the following 4 cel-

lular morphology assessment parameters: (a) the confluency score (Table B.8), (b) the aggre-

gation score8 (Table B.8), (c) the background score9 (Table B.8), and (d) the measurement of 

floating debris particles (per optical field)10. The first three of these parameters are semi-

quantitative (see Table B.8), and require a non-automated, “blind” assessment by a user who 

has been familiar with the cellular response of these cells to various insults. This has been 

feasible due to a number of preliminary data (on neurotoxic settings) acquired in parallel to 

this PhD project.  

 

V.5. Cytomorphological assessment of the mHippoE-14 cell-line 
 

The representative phase-contrast microscopy captions of live mHippoE-14 cells under opti-

mal (growth) and FBS-deprived conditions presented in Figure B.9, demonstrate the gradual 

increase in confluency that the FBS(+) cultures go through as time passes (captions B.9.a to 

B9.g), as opposed to the FBS(+/-) treatment group (captions B.9.h to B.9.j) that seems to be 

facing a halt of its cells’ proliferation and a time-dependent increase in the number of floating 

debris particles. When quantifying these captions, one is relieved to realize that the pattern 

with which confluency develops over time (Figure B.10.a) is resembling the pattern with 

                                                 
6 the words “neuraxons”, “dendrites”, “neurites” are avoided; to prove the existence of those, neuronal 
cytoskeletal protein immunocytochemistry must be applied. 
7 soma-to-soma cytoplasmic attachment. 
8 the aggregation score could be refined based on the data presented in Tables APP.1 and APP.2. 
9 the background score is very similar to what the cytopathologists assess as “diathesis” in tumour bi-
opsy samples. 
10 in this particular case, image analysis and image element counting tools available through the ImageJ 
(1.48v) software were also employed as appropriate. 
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which the cellular statuses of the respective treatment groups has been recorded to develop 

through real-time cellular response analysis (Chapter IV). Moreover, as time passes the ag-

gregation score increases in the FBS(+) treatment group, but this is not the case for the FBS-

deprived cell cultures in which it actually becomes statistically significantly (p<0.001) lower 

than that of the FBS(+) cell cultures only at 48 h (see Figure B.10.b). Interestingly, the number 

of floating debris particles per caption in the FBS(+) treatment group is maintained constant 

throughout the 48 h of the experiment, while the induction of FBS-deprivation causes a rapid 

and statistically significant increase of this number as compared to that of the FBS(+) equiva-

lent (at 48 h, this is +373%, p<0.001; Figure B.10.e). The latter increase is also accompanied 

by a statistically significant increase in the background score (at 36 h and 48 h: p<0.05 and 

p<0.001, respectively; results not shown)11.  

These findings suggest that the pathopoietic phase is not genuinely cytostatic, but an 

actively injurious process for the mHippoE-14 cells; a suggestion that requires further study. 
 

>> Table B.7: page 95 

>> Table B.8: page 96 

>> Figure B.7: page 97 

>> Figure B.8: page 98 

>> Figure B.9: page 99 

>> Figure B.10: page 100 

                                                 
11 note that the method is semi-quantitative and that despite the statistically significant increase, the 
background score was still very low by the end of this set of experiments (at 48 h, the FBS-deprived 
treatment group has a median background score of 1). 
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Table B.7: Algorithm for the proposed cytomorphological classification of mHippoE-14 cells: 

a software-friendly presentation, as compared to the stage classification of Dotti et al. (1988). 
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Notes 
      

      

Type Ia 0 0 0 0 see Figure B.8.a 
Type Ib 0 0 0 1 see Figure B.8.b 
Type IIa 0 1 0 0 see Figure B.8.c 
Type IIb 0 1 0 1 see Figure B.8.d 
Type IIIa 0 1 1 0 see Figure B.8.e 
Type IIIb 0 1 1 1 see Figure B.8.f 
Type IVa 1 1 0 0 see Figure B.8.g 
Type IVb 1 1 0 1 see Figure B.8.h 
Type Va 1 1 1 0 see Figure B.8.i; ideal type 
Type Vb 1 1 1 1 see Figure B.8.j 
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Notes 
      

      

Stage 0 0 0 0 0 not originally suggested 
Stage 1 1 0 0 0 expected by 0.25 days in culture 
Stage 2 1 1 0 0 expected by 0.5 days in culture 
Stage 3 1 1 1 0 expected by 1.5 days in culture 
Stage 4 1 1 0 or 1 1 expected by 4 days in culture 
Stage 5 maturity stage expected >7 days in culture 
      

 

Note: “0” stand for “no” and “1” stand for “yes”. The proposed mHippoE-14 cells’ cytomorphological classification 
is based on the assumption that: (a) a hippocampal cell that does not have protoplasmic protrusions, cannot have 
any sort of protrusional outreach to be met, and (b) a hippocampal cell that is characterized by shape regularity, 
has, de facto, protoplasmic protrusions. The herein presented cytomorphological classification of the mHippoE-14 
cells (types Ia and Ib to Va and Vb) resulted for a series of four independent experiments (n=4) in which the cells 
were cultured in 35 mm Corning Dishes and their growth was followed via live cell phase-contrast microscopy at 
6, 12, 18, 24, 30, 36 and 48 h post-seeding (at a density of 211,000 cells/dish). The protocol also included the in-
duction of FBS-deprivation (see FBS(+/-) from Chapter IV) at 24 h, and its parallel assessment to the FBS(+) (con-
trol) condition (see Chapter IV) at 30, 36 and 48 h. In total, 600 captions were generated through a Carl Zeiss Axi-
overt 40 C inverted phase-contrast microscope (Ph1 condenser annulus; x20 magnification objective; blue filter) 
and an attached digital photo camera. These captions were studied toward the generation of this algorithm (Fig-
ure B.7) as well as of an atlas of the mHippoE-14 cells (Figure B.8). The stage classification of hippocampal neu-
rons growing in vitro, developed by Dotti et al. (1988), did not originally have a stage 0, and its algorithmic inter-
pretation is performed for the purpose of this chapter. What I perceive as “shape regularity” is the equivalent of 
what Dotti et al. (1988) defined as a “stage 3” phenotype.  
 

FBS: foetal bovine serum 
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Table B.8: Cytomorphological parameters employed in the mHippoE-14 cell cultures’ phase-

contrast microscopy imaging assessment. 
 

   

Parameter Scale Meaning 
   

   

Confluency score 0 exactly 0% confluency; no live cells 
 1 0-10% confluency 
 2 10-20% confluency 
 3 20-30% confluency 
 4 30-40% confluency 
 5 40-50% confluency 
 6 50-60% confluency 
 7 60-70% confluency 
 8 70-80% confluency 
 9 80-90% confluency 
 10 90-100% confluency 
   

   

Aggregation score 0; - no aggregation exists 
 1; -/+ episomatic attachments; not aggregation 
 2; + aggregates exist, but is mild 
 3; ++ aggregates exist 
 4; +++ extensive presence of aggregates 
 5; ++++ aggregates are the dominant form of cell arrangement 
   

   

Background score 0; - no sign of debris 
 1; -/+ some small defined debris on dish’s bottom 
 2; + debris evident, but limited in number 
 3; ++ debris evident, including undefined debris 
 4; +++ extensive presence of debris 
 5; ++++ debris are dominant background feature 
   

 

Note: the use of the herein presented semi-quantitative parameters in the assessment of mHippoE-14 cell-line’s 
cytomorphology has been performed on low magnification (x10) phase-contrast microscopy captions. The as-
sessment of these parameters was not done automatically, but manually, in a “blind” to the sample identity man-
ner. Moreover, for the assessment of these three parameters, the user’s estimation of the scoring was primarily 
employed (exercised through previous experience on mHippoE-14 cytomorphology evaluation under different 
experimental conditions), while statistical analysis treated these scores as non-continuous (discrete) parameters. 
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Figure B.7: Algorithm for the proposed cytomorphological classification of mHippoE-14 cells. 
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Note: for more details, see Table B.7. 
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Figure B.8: Atlas of the mHippoE-14 cell-line. 
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Note: the current mHippoE-14 cell-line atlas was generated as described in the note of Table B.7, and reflects the 
proposed cytomorphological classification types (see white arrows): type Ia (Figure B.8.a), type Ib (B.8.b), type IIa 
(B.8.c), type IIb (B.8.d), type IIIa (B.8.e), type IIIb (B.8.f), type IVa (B.8.g), type IVb (B.8.h), type Va (B.8.i) and type 
Vb (B.8.j). Figure B.8.k depicts an aggregation of mHippoE-14 cells, which is, unfortunately, an unavoidable effect 
of the attempted seeding cell-density. White bar equals to 50 μm. 



Zarros A | PhD Thesis in Neuropathology  99 

 

Figure B.9: Representative phase-contrast microscopy captions of live mHippoE-14 cells un-

der optimal (growth) and FBS-deprived conditions. 
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Note: the presented phase-contrast microscopy captions of the mHippoE-14 cell-line are representative captions 
from a series of four independent experiments (n=4) in which the cells were cultured in 35 mm Corning Dishes 
and their growth was followed at 6, 12, 18, 24, 30, 36 and 48 h post-seeding (at a density of 211,000 cells/dish). 
The protocol also included the induction of FBS-deprivation (see FBS(+/-) from Chapter IV) at 24 h, and its paral-
lel assessment to the FBS(+) (control) condition (see Chapter IV) at 30, 36 and 48 h. In total, 280 captions were 
generated through a Carl Zeiss Axiovert 40 C inverted phase-contrast microscope (Ph1 condenser annulus; x10 
magnification objective; blue filter) and an attached digital photo camera. Captions B.9.a to B.9.g represent the 
FBS(+) treatment group and demonstrate the gradual increase in confluency that these cultures go through as 
time passes. Captions B.9.h to B.9.j represent the FBS(+/-) treatment group and demonstrate a halt of their prolif-
eration and a time-dependent increase in the number of floating debris particles. For more details, see Figure B.10. 
 

FBS: foetal bovine serum 
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Figure B.10: Cytomorphological analysis of the mHippoE-14 response to FBS-deprivation. 
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Note: the floating debris are assessed as number of particles per x10 magnification caption. Data on Figures B.10.a 
and B.10.b are presented as median and interquartile range (IQR) in a box-and-whisker plot (pooled caption scor-
ing of four independent experiments; n=28), and statistical analysis has been performed through the use of a 
Mann-Whitney U test. Table APP.3 provides more details on the variability of the confluency scoring data within 
and between the experiments conducted. The data on Figure B.10.e are presented as mean ± standard deviation of 
four independent experiments (n=4), and statistical analysis has been performed through the use of one-way 
ANOVA followed by post hoc Tukey’s range test. Only statistically significant differences (p<0.05) are annotated. 
For more details on the parameters assessed and the experimental protocol followed, consult Table B.8 and the 
note of Figure B.9, respectively.  
 

*: p<0.05; **: p<0.01; ***: p<0.001; ANOVA: analysis of variance; FBS: foetal bovine serum; IQR: interquartile range 



 

 

 

 

 

 

 

 

 

 

 

 

PART C 

 

mHippoE-14-utilizing in vitro simulation approaches  

to intracerebral haemorrhage 

 

 

 

 

 



 

 
CHAPTER VI 

 

Development of in vitro simulation approaches  

to intracerebral haemorrhage 

 

The real-time cellular response analysis of the mHippoE-14 cell-line presented in Chapter IV 

and the cytomorphological characterization of this cell-line presented in Chapter V, have al-

lowed us to gain valuable insight with regards to the potential and the (technical) limitations 

of FBS-deprivation within the development of in vitro simulation approaches to intracerebral 

haemorrhage. The next step was to conduct a number of preliminary experiments in order to 

define the specific conditions that would allow for the simulation of one or more aspects of 

the disease’s neuropathology on the mHippoE-14 cells; a task that would allow us to develop 

our simulation approaches upon evidence. 

 

VI.1. Preliminary attempts 
 

Our first attempt was to examine the effect of various concentrations of iron1 and of haemin2 

on the mHippoE-14 cells through the “popular” MTT reduction assay (see Chapter II). For this 

purpose, mHippoE-14 cells were seeded into 96-well plates at densities of 7,500 and 15,000 

cells/well, and were grown in DMEM supplemented with 10% FBS and 1% penicillin - strep-

tomycin (as described in Chapter III). After 24 h, the cells were exposed to the following con-

centrations of ferrum or haemin: 0, 5, 10, 25, 50, 75, 100, 150, 200 and 500 μM3. The assess-

ment of their MTT reduction activity4, 24 h later (Figure C.1), has revealed no evidence of tox-

icity by the aforementioned compounds at the chosen concentrations. As a result, a new ex-

periment was performed in the absence of FBS (Figure C.2): at 24 h the FBS was removed and 

the mHippoE-14 cells were immediately exposed to either ferrum or haemin, resulting into 

                                                 
1 exposure to iron, in all the experiments of this PhD Thesis, was performed as FeCl2; iron will be here-
after referred to as “ferrum”. The choice of Fe2+ over Fe3+ is based on the ability of the first to act as an 
electron donor (and thus, as a contributor to oxidative stress), as well as on previous practice evident 
in the literature (see, for example, Levy et al., 2002). 
2 haemin was dissolved into sodium hydroxide (NaOH, 0.1 M; final concentration 0.05%) prior to its 
addition to the medium; this NaOH addition was appropriately simulated at control treatments, and 
had no effect whatsoever on the parameters examined in this phase. Haemin is a ferric protoporphyrin. 
3 higher concentrations of haemin were attempted, but not tested due to solubility problems. 
4 the herein described MTT reduction assays were performed in accordance to the Promega CellTiter 
96® non-radioactive cell proliferation assay (product number: G4000) instructions. For a more details, 
see also Riss and Moravec (2006). 
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some positive results (24 h later) by the treatment groups exposed to 500 μM of ferrum and 

to concentrations of haemin higher than 50 μΜ; both belonging to the low (7,500 cells/well) 

seeding density treatment groups. Further experiments of similar nature were performed, 

but this time on a prolonged exposure timeframe: the mHippoE-14 cells were exposed to fer-

rum or haemin in the presence or in the absence of FBS, and the MTT activity assessment 

took place 48 h later (Figures C.3 and C.4, respectively). These experiments confirmed the 

necessity for the adoption of FBS-deprivation as a facilitating factor for the exertion of fer-

rum- and haemin-induced toxicity, and suggested the suitability of the low (7,500 cells/well) 

seeding density in the undertaking of further experiments. However, they have also indicated 

that haemin is far more toxic than ferrum under the examined FBS-deprivation conditions 

(particularly at the highest tested concentration; 500 μM), and that exposure to ferrum could 

even be advantageous to the mHippoE-14 MTT reduction activity at low concentrations (5 

μΜ; Figure C.4.d). 

 

VI.2. Determination of appropriately-toxic concentrations of haemin and ferrum 
 

A major concern has been the relatively high toxicity-exerting concentrations of haemin re-

quired within these settings; most in vitro simulation approaches to intracerebral haemor-

rhage have used lower concentrations of haemin (5 to 100 μM; see Chapter II). Both these 

concentrations and ours (500 μM) are still within acceptable ranges, as the blood is known to 

contain approximately 2.5 mM of haemoglobin that can subsequently give rise (through hae-

molysis) to up to 10 mM of haemin (Robinson et al., 2009). In other words, the 500 μΜ con-

centration of haemin is still one twentieth of what can be found to interact with the brain pa-

renchyma cells in reality. 

A second interesting finding has been the role of FBS-deprivation in enhancing the ex-

ertion of haemin-induced neurotoxicity on the mHippoE-14 cells. While elucidating this find-

ing, it might be a fine opportunity to discuss a bit about the role, the properties and the origin 

of FBS; the widely used cell culture growth supplement cocktail that is believed to contain - 

similarly to the human serum - around 1,800 proteins and more than 4,000 metabolites (An-

derson et al., 2004; Gstraunthaler et al., 2013; Psychogios et al., 2011). This by-product of the 

food industry is a poorly-defined cocktail that happens to contain necessary factors for the 

attachment and growth (including the stimulation of the “mitogenic effect”; proliferation)5 of 

the majority of mammalian cells in vitro, but also happens to be characterized by significant 

batch-to-batch variation and major ethical concerns with regards to its sourcing (Gstraun-

                                                 
5 including hormones, growth factors, various binding and transport proteins, protease inhibitors, fatty 
acids, lipids, amino acids, vitamins and trace elements (Gstraunthaler, 2003; van der Valk et al., 2010).  
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thaler et al., 2013). As an alternative to the use of FBS, the use of serum-free6 (Brunner et al., 

2010; Gstraunthaler, 2003), chemically-defined (Brunner et al., 2010; van der Valk et al., 

2010), and animal-derived component-free7 (Brunner et al., 2010) media have been pro-

posed and studied, revealing a number of additional properties and advantages towards the 

adoption of techniques / experimental approaches that would contribute to the restriction of 

the need for FBS in contemporary cell culture practice. We now know, for example, that the 

use of serum-free media can facilitate the longer maintenance of aggregating brain cell cul-

tures (Honegger and Schilter, 1995) as well as that defined (serum-free) media cause changes 

in the appearance of glial-derived cells (as compared to serum-supplemented conditions)8 

(Michler-Stuke and Bottenstein, 1982). We also know that the adaptation of the C6 glioma 

cell-line to FBS-free conditions has been reported to significantly alter their morphological 

phenotype, and to enhance their neurite-promoting capacity (Coyle, 1995). Moreover, FBS-

deprivation has been shown to trigger neuronal apoptosis in rat primary cortical cultures 

(Terro et al., 2000) and hippocampal organotypic cultures (Rivera et al., 1998), and to modify 

the proliferation rates (Fan and Uzman, 1977) and the neurochemical sensitivity (Dibner and 

Insel, 1981a; 1981b) of C6 glioma cells.  

A very interesting study has been conducted by Brenner et al. (2010) and has revealed 

that the preceding culture conditions (e.g. the presence of FBS or not) can define the perox-

ide-induced oxidative damage on C6 glioma cells; a property attributed to the supply (or not) 

of the cells with FBS-deriving antioxidants (Brenner et al., 2010). Moreover, the binding of 

FBS proteins (such as albumin) to neurotoxic compounds has been recently reported as a ma-

jor implication for the reliable undertaking of MTT reduction assays on the C6 glioma cell-line 

(Bilmin et al., 2013). These findings could justify the fact that FBS-deprivation was a prereq-

uisite for the enhanced exertion of haemin-induced neurotoxicity on the mHippoE-14 cells 

(Figures C.2.c, C.2.e, C.4.c, C.4.e as opposed to C.1.c, C.1.e, C.3.c, C.3.e, respectively), and are in 

agreement with the comparative study of Chow et al. (2008) on the cytotoxic effect of haemin 

on glioblastoma cell-lines in the presence and absence of FBS. 

Finally, with regards to the observation that low concentrations of ferrum can even be 

beneficial for the mHippoE-14 cells’ MTT reduction activity (Figure C.4.d), one must consider 

the possibility of these cells being inducible by iron under FBS-deprivation in ways similar to 

those suggested by Basset et al. (1985) in the case of C6 glioma cells and L1210 leukaemic cells. 

                                                 
6 for a very interesting resource on the development and optimization of serum-free media, see Jayme 
and Gruber (2006). 
7 types of cell culture media that do not contain any components of animal or human origin; this defini-
tion doesn’t necessarily make them “chemically-defined” ones. 
8 in fact, cells were reported to adopt a less flattened and more spherical cytoplasmic phenotype in de-
fined media (Michler-Stuke and Bottenstein, 1982). 
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On the other hand, the comparatively lower toxicity of ferrum as compared to equimolar con-

centrations of haemin is supported by findings on PC12 and SH-SY5Y cells (Levy et al., 2002). 

 

VI.3. Use of oligomycin-A as an approach to ischaemia-related phenomena 
 

Our second attempt was to introduce the use of oligomycin-A9 into our in vitro simulation ap-

proaches to intracerebral haemorrhage. Oligomycin is a macrolide and an inhibitor of the mi-

tochondrial FOF1 ATP synthase; an enzyme necessary for the conduction of oxidative phos-

phorylation toward the production of ATP (Brand and Nicholls, 2011). Along with OGD, glu-

cose-deprivation and excitotoxicity-triggering NMDA administration, the use of mitochondri-

al inhibitors (such as oligomycin or NaCN) are thought to be useful techniques for the in vitro 

simulation of neuronal death within an ischaemic penumbra (Taoufic and Probert, 2008). In 

view of this property of oligomycin, and being aware of a recent study in which oligomycin 

has been employed as an inducer of autophagy within the context of an “in vitro mimic of the 

ischaemic penumbra” (Pamenter et al., 2012), we decided to consider oligomycin as a condi-

tion suitable for the (additional) in vitro simulation of the primary injury induced by intracer-

ebral haemorrhage (see subchapter I.8). This decision was also justified by the ongoing con-

troversy over the nature of the perihaematomal penumbra (briefly mentioned in subchapter 

I.8; Thiex and Tsirka, 2007) and the suggestion of the latter being primarily “metabolic”10 ra-

ther than “ischaemic” (Vespa, 2009); a dilemma that would ideally be represented by the use 

of oligomycin in this context (Figure C.5). 

As a consequence of this decision, we undertook a preliminary assessment of the neu-

rotoxicity of oligomycin (tested at a final concentration of 1 μg/mL; Dayan et al., 2009) and / 

or of ferrum or haemin (at various concentrations: 0, 5, 50, 100 and 500 μM) on mHippoE-14 

cells, through MTT reduction and released LDH11 activity assays after a 24 h exposure in the 

absence of FBS (Figure C.6). The results obtained were not consistent with regards to statisti-

cal significance of the oligomycin-induced effects amongst the conducted experiments, but 

suggested an oligomycin-induced decreased MTT reduction activity (Figures C.6.b and C.6.c) 

and an oligomycin-induced increased released LDH activity (Figures C.6.d and C.6.e). Moreo-

ver, the same experiments have suggested that the co-exposure of the mHippoE-14 cells to 

haemin and oligomycin could exacerbate the oligomycin-induced neurotoxicity, particularly 

when the first is administered at a concentration of 500 μM (Figures C.6.c and C.6.e). 

                                                 
9 hereafter simply referred to as “oligomycin”, in most cases. 
10 it has been reported, for example, that the immediately-attached to the intracerebral haematoma 
perihaematomal brain region displays a reduction of its oxidative metabolism with very low rates of 
oxygen use, due to hypoperfusion rather than ischaemia (Zazulia et al., 2001). 
11 the herein described released LDH assays were performed in accordance to the In Vitro Toxicology 
Assay Kit, Lactic Dehydrogenase based (catalog number: TOX7; Sigma-Aldrich) instructions.  
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In order to shed more light on these findings, we subsequently undertook a real-time 

cellular response analysis of the mHippoE-14 cell-line under the same in vitro conditions (see 

Figure APP.1), and realized that: (a) oligomycin is the leading cause for the reduction of nCI in 

mHippoE-14 cells, (b) ferrum or haemin exert their highest toxicity at 500 μΜ (irrespectively 

of the presence of oligomycin), and (c) the addition of these compounds within the metaptot-

ic phase modifies the mHippoE-14 metaptotic response and, thus, should be avoided. These 

findings have prompted us to undertake a final experiment within this set of preliminary ex-

perimental attempts, in which the exposure of the mHippoE-14 cells to oligomycin was simul-

taneous to the FBS-deprivation, but both the additions of ferrum and haemin to the media (at 

various concentrations) were performed significantly later (12 h after the induction of met-

aptosis) (Figure C.7); an experimental design closer to the neuropathological reality of intrac-

erebral haemorrhage, where the primary injury precedes the secondary one. This final exper-

iment has produced encouraging results with regards to the adoption of oligomycin as a suit-

able option for the exertion of a slowly-progressing metabolic penumbra-mimicking “injury” 

on the mHippoE-14 cells, and to its further complication with the addition of either haemin or 

ferrum at the highest tested concentration (500 μM) (Table C.1). 

 

VI.4. Development of two distinct and dynamic in vitro experimental settings 
 

The aforementioned preliminary experiments have indicated that the use of FBS-deprivation 

along with the exposure of the mHippoE-14 cells to oligomycin (1 μg/mL) and, later on, to 

haemin or ferrum (500 μM), could define two12 novel in vitro experimental settings that could 

be of considerable value for the simulation of intracerebral haemorrhage. If these conditions 

were combined in a protocol that would allow for an undisturbed metaptosis, the two novel 

in vitro simulation approaches to intracerebral haemorrhage would have the potential to 

form reliable, distinct and dynamic experimental settings that would: (a) be 3R-friendly (due 

to the use of the chosen cell-line), (b) be relatively easy to set up and perform experiments 

on, (c) be employing acceptable (and stoichiometrically-matching) haemin and ferrum con-

centrations, (d) be introducing the simulation of multiple aspects of the disease’s pathophysi-

ology, (e) be limiting the use of FBS, (f) be providing detectable toxicity / injury by both con-

ventional and novel (e.g. the xCELLigence technology) approaches, and (g) be promising of 

high-throughput applicability (Table C.2).  
 

>> Table C.1: page 109 

>> Table C.2: page 110 

>> Figure C.1: page 111 

                                                 
12 one considering the toxicity of haemin as a final simulation endpoint of the “secondary injury”, and 
the other one considering that of ferrum; both after an oligomycin-induced simulation of the “primary 
injury” of intracerebral haemorrhage. 
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>> Figure C.2: page 112 

>> Figure C.3: page 113 

>> Figure C.4: page 114 

>> Figure C.5: page 115 

>> Figure C.6: page 116 

>> Figure C.7: page 117 
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Table C.1: Preliminary assessment of the cellular response of mHippoE-14 to various concen-

trations of haemin or ferrum, in the presence or absence of oligomycin. 
 

    

Treatment  nCR(Rt,Ee) (nCI/h) nCI(E48) (nCI) nCI(Ee) (nCI) 
    

    

control -0.005 0.811 ± 0.030 0.763 ± 0.031 
haemin (5 μΜ) -0.005 0.847 ± 0.017 0.802 ± 0.010 
haemin (50 μΜ) -0.006 0.822 ± 0.024 0.774 ± 0.027 
haemin (100 μΜ) -0.010 0.782 ± 0.066 0.682 ± 0.070 
haemin (500 μΜ) -0.014 0.672 ± 0.048 0.544 ± 0.069 
oligomycin  -0.019 0.494 ± 0.020 0.307 ± 0.020 
oligomycin + haemin (5 μΜ) -0.018 0.502 ± 0.036 0.310 ± 0.037 
oligomycin + haemin (50 μΜ) -0.018 0.495 ± 0.014 0.310 ± 0.009 
oligomycin + haemin (100 μΜ) -0.020 0.494 ± 0.038 0.290 ± 0.031 
oligomycin + haemin (500 μΜ) -0.023 0.425 ± 0.029 0.196 ± 0.024 
    

    

control -0.005 0.840 ± 0.026 0.812 ± 0.030 
ferrum (5 μΜ) -0.006 0.802 ± 0.037 0.742 ± 0.022 
ferrum (50 μΜ) -0.009 0.768 ± 0.041 0.675 ± 0.060 
ferrum (100 μΜ) -0.010 0.716 ± 0.032 0.604 ± 0.031 
ferrum (500 μΜ) -0.018 0.659 ± 0.052 0.484 ± 0.046 
oligomycin  -0.017 0.527 ± 0.027 0.358 ± 0.054 
oligomycin + ferrum (5 μΜ) -0.018 0.495 ± 0.053 0.307 ± 0.049 
oligomycin + ferrum (50 μΜ) -0.018 0.487 ± 0.022 0.292 ± 0.018 
oligomycin + ferrum (100 μΜ) -0.019 0.481 ± 0.010 0.285 ± 0.010 
oligomycin + ferrum (500 μΜ) -0.024 0.425 ± 0.010 0.208 ± 0.010 
    

 

Note: results based on a single experiment (ID: 1210132003), where the addition of oligomycin (1 μg/mL) into the 
E-Plate 96 wells was performed along with FBS-deprivation (metaptosis), and the addition of ferrum or haemin 
followed after approximately 12 h. The nCR(Rt,Ee) values are expressed as mean, and the nCI(E48) and nCI(Ee) values 
are expressed as mean ± standard deviation of intra-assay triplicates; normalization occurs at 24:36:46, Rt is con-
sidered at 37:04:50 and Ee is at 60:55:00. For a visualization of this experiment, see Figure C.7. 
 

E48: evaluation endpoint at 48 h; Ee: end of the experiment; FBS: foetal bovine serum; nCI: normalized cell index; 
nCR: normalized cellular response; Rt: recovery point after a treatment intervention 
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Table C.2: Practical advantages of the conditions chosen to be included in the developed in 

vitro simulation approaches to intracerebral haemorrhage. 
 

 

Practical advantages of the developed in vitro simulation approaches’ conditions 
 

 

 are 3R-friendly (due to the use of an immortalized cell-line) 
 are easy to perform 
 use acceptable (and matching) haemin and ferrum concentrations 
 introduce the simulation of multiple aspects of the disease’s pathophysiology  
 are limiting the use of FBS 
 provide detectable toxicity / injury by both conventional and novel approaches 
 are promising of high-throughput applicability 
 

 

Note: this basic account of practical advantages is based on the data obtained through the preliminary assessment 
of the conditions chosen for the development of the in vitro simulation approaches to intracerebral haemorrhage; 
not on data deriving for their assessment (Chapter VII). 
 

FBS: foetal bovine serum 
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Figure C.1: Preliminary assessment of the toxicity of ferrum or haemin on mHippoE-14 cells: 

MTT reduction activity after a 24 h exposure in the presence of FBS. 
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Note: the presented data refer to a single preliminary experiment in which every treatment group was assessed in 
triplicate (intra-assay’s n=3); all data of Figures C.1.b to C.1.e are presented as normalized mean ± standard error. 
For more details on the experiment’s protocol, see subchapter VI.1. 
 

FBS: foetal bovine serum; MTT: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide 
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Figure C.2: Preliminary assessment of the toxicity of ferrum or haemin on mHippoE-14 cells: 

MTT reduction activity after a 24 h exposure in the absence of FBS. 
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Note: the presented data refer to a single preliminary experiment in which every treatment group was assessed in 
triplicate (intra-assay’s n=3); all data of Figures C.2.b to C.2.e are presented as normalized mean ± standard error. 
Arrows indicate normalized mean differences higher than 15% as compared to control (black columns). For more 
details on the experiment’s protocol, see subchapter VI.1. 
 

FBS: foetal bovine serum; MTT: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide 
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Figure C.3: Preliminary assessment of the toxicity of ferrum or haemin on mHippoE-14 cells: 

MTT reduction activity after a 48 h exposure in the presence of FBS. 
 

 

a

b

d

c

e

growth media 
(24 h)

growth media 
+ ferrum or haemin

(48 h)

0.0

0.5

1.0

0 5 10 25 50 75 100 150 200 500

0.0

0.5

1.0

0 5 10 25 50 75 100 150 200 500

ferrum (μM) haemin (μM)

Μ
Τ

Τ
re

d
u

ct
io

n
 a

ct
iv

it
y

(a
b

s.
 n

o
rm

al
iz

ed
 t

o
 c

o
n

tr
o

l)

high-density cultures high-density cultures

0.0

0.5

1.0

0 5 10 25 50 75 100 150 200 500

0.0

0.5

1.0

0 5 10 25 50 75 100 150 200 500

ferrum (μM) haemin (μM)

Μ
Τ

Τ
re

d
u

ct
io

n
 a

ct
iv

it
y

(a
b

s.
 n

o
rm

al
iz

ed
 t

o
 c

o
n

tr
o

l)

low-density cultures low-density cultures

 
 

 

Note: the presented data refer to a single preliminary experiment in which every treatment group was assessed in 
triplicate (intra-assay’s n=3); all data of Figures C.3.b to C.3.e are presented as normalized mean ± standard error. 
Arrows indicate normalized mean differences higher than 15% as compared to control (black columns). For more 
details on the experiment’s protocol, see subchapter VI.1. 
 

FBS: foetal bovine serum; MTT: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide 
 



Zarros A | PhD Thesis in Neuropathology  114 

 

Figure C.4: Preliminary assessment of the toxicity of ferrum or haemin on mHippoE-14 cells: 

MTT reduction activity after a 48 h exposure in the absence of FBS. 
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Note: the presented data refer to a single preliminary experiment in which every treatment group was assessed in 
triplicate (intra-assay’s n=3); all data of Figures C.4.b to C.4.e are presented as normalized mean ± standard error. 
Arrows indicate normalized mean differences higher than 15% as compared to control (black columns). For more 
details on the experiment’s protocol, see subchapter VI.1. 
 

FBS: foetal bovine serum; MTT: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide 
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Figure C.5: Oligomycin-A as an in vitro tool for the simulation of aspects of ischaemic or met-

abolic penumbra. 
 

 

oligomycin-A inhibition of FOF1 ATP synthase

inhibition of mitochondrial respiration

means for the in vitro simulation of hypoxia

mimics NaCN

mimics ischaemic penumbra

increases [Ca2+]i similarly to glutamate 
 

 

 

Note: oligomycin blocks the FO subunit of the FOF1 ATP synthase and, as a result, inhibits ATP synthesis. The pre-
sented functions of oligomycin are based on data from Dubinsky and Rothman (1991) and Pamenter et al. (2012). 
 

[Ca2+]i: intracellular calcium concentration; ATP: adenosine triphosphate; NaCN: sodium cyanide 
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Figure C.6: Preliminary assessment of the toxicity of oligomycin and / or ferrum or haemin 

on mHippoE-14 cells: MTT reduction and released LDH activity after a 24 h exposure in the 

absence of FBS. 
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Note: the presented data refer to only two independent preliminary experiments (n=2) in which every treatment 
group was assessed in triplicate; all data of Figures C.6.b to C.6.e are presented as normalized mean ± standard 
error, and statistical analysis has been performed through the use of one-way ANOVA followed by post hoc Tukey’s 
range test. Only statistically significant differences (p<0.05) are annotated. For more details on the experiments’ 
protocol, see subchapter VI.3. 
 

***: p<0.001 (as compared to control; white column); **: p<0.01 (as compared to control; white column); *: p<0.05 
(as compared to control; white column); ##: p<0.01 (as compared to oligomycin; black column); #: p<0.05 (as com-
pared to oligomycin; black column); ANOVA: analysis of variance; FBS: foetal bovine serum; LDH: lactate dehydro-
genase; MTT: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide 
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Figure C.7: Preliminary assessment of the cellular response of mHippoE-14 to various con-

centrations of haemin or ferrum, in the presence or absence of oligomycin. 
 

 

setting A: average nCI per group
normalization at 36:51:17
haemin at 0, 5, 50, 100, 500 μM
*: addition of haemin

setting B: average nCI per group
haemin at 0 and 500 μM, as above
oligomycin at 1 μg/mL + haemin at 0, 50, 100, 500 μM
#: addition of oligomycin
*: addition of haemin

*

*

#

 
 

 

(continues on next page) 
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(continues from previous page) 

 

 

setting D: average nCI per group
normalization at 24:36:46
control
oligomycin
oligomycin + ferrum at 500 μM
oligomycin + haemin at 500 μM
#: addition of oligomycin
*: addition of haemin or ferrum

setting C: average nCI per group
normalization at 36:51:17
ferrum at 0, 5, 50, 100, 500 μM
*: addition of ferrum

*

#

*

 
 

 

Note: representative and annotated screen captions from the xCELLigence RTCA SP analysis software (plots and 
well selection maps) from a single experiment (ID: 1210132003); the addition of oligomycin (1 μg/mL) into the E-
Plate 96 wells was performed along with FBS-deprivation (metaptosis), and the addition of ferrum or haemin fol-
lowed after approximately 12 h. For all settings (A-D), the following key applies: control (B2, C2, D2), ferrum [5 
μM] (B3, C3, D3), ferrum [50 μΜ] (B4, C4, D4), ferrum [100 μΜ] (B5, C5, D5), ferrum [500 μΜ] (B6, C6, D6), oligo-
mycin (B7, C7, D7), oligomycin + ferrum [5 μΜ] (B8, C8, D8), oligomycin + ferrum [50 μΜ] (B9, C9, D9), oligomycin 
+ ferrum [100 μΜ] (B10, C10, D10), oligomycin + ferrum [500 μΜ] (B11, C11, D11), control (E2, F2, G2), haemin [5 
μΜ] (E3, F3, G3), haemin [50 μΜ] (E4, F4, G4), haemin [100 μΜ] (E5, F5, G5), haemin [500 μΜ] (E6, F6, G6), oligo-
mycin (E7, F7, G7), oligomycin + haemin [5 μΜ] (E8, F8, G8), oligomycin + haemin [50 μΜ] (E9, F9, G9), oligomycin 
+ haemin [100 μΜ] (E10, F10, G10), oligomycin + haemin [500 μΜ] (E11, F11, G11). Data from this experiment are 
presented in Table C.1. 
 

FBS: foetal bovine serum; nCI: normalized cell index 
 
 



 

 
CHAPTER VII 

 

Assessment of in vitro simulation approaches  

to intracerebral haemorrhage 

 

In a 96-well plate, the seeding of mHippoE-14 cells at a density of 7,500 cells/well and their 

growth in optimal (growth, FBS-supplemented) medium for 24 h, has been considered as a 

necessary and adequate step towards the acquisition of a sufficient cell number for the execu-

tion of the neuropathopoietic steps to follow, in a manner that: (a) would allow for enough 

time in order to study (and / or attempt to rescue) the neurotoxic responses of these cells to 

oligomycin and haemin or ferrum (Chapter VI), and, at the same time, (b) provide a reasona-

bly good confluency of the optical fields1, that would allow for enough cells to survive metap-

tosis (Chapter V) and to be subject to some basic cytomorphological assessment of their un-

dergoing cellular responses to the aforementioned insults. At this cell density, our experi-

ments have shown that the subsequent FBS-deprivation of these cells would require approx-

imately 6 h in order to allow for a recovery from metaptosis (Chapter IV); a period of time 

that we decided to adopt in our in vitro simulation approaches to intracerebral haemorrhage, 

prior to the mHippoE-14 exposure to oligomycin and a subsequent (6 h later) exposure to the 

chosen products of haemolysis (Figure C.8). For the assessment of the developed in vitro sim-

ulation approaches to intracerebral haemorrhage that is presented in the current chapter, we 

undertook: (a) real-time cellular response analysis, (b) phase-contrast microscopy-assisted 

live-cell cytomorphological assessment, (c) a profiling of selected neuronal markers’ expres-

sion, (d) some basic neurochemical assessment, and (e) a (cytokine-focused) proteomic pro-

filing of representative treatment states of the mHippoE-14 cells.  

 

VII.1. Real-time cellular response analysis 
 

The undertaking of the assessment of the real-time cellular response of the mHippoE-14 cells 

under the aforementioned protocol was performed in quadruplicate (n=4), by employing the 

xCELLigence technology as previously described (Chapter IV). Figure C.9.a summarizes the 

timeline of interventions monitored, where particular emphasis should be given on the fact 

that apart from the profiling of the real-time cellular response of the mHippoE-14 cells under 

                                                 
1 when the protocol would be simulated in 35 mm Corning Dishes (see Chapter V). 
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the developed in vitro simulating conditions, and in parallel or simultaneously to the addition 

of oligomycin, two drugs were also added and monitored: CDP-Ch and DFO, both at a concen-

tration of 100 μM. Figure C.9.b provides what probably is the most important illustration of 

this PhD Thesis: the mHippoE-14 cellular response profiling under the four major of the de-

veloped in vitro conditions (control, oligomycin, oligomycin + haemin, oligomycin + ferrum). 

The profiling is normalized at the Rm time point and presents a clear but mild decline of the 

oligomycin-treated mHippoE-14 cells’ nCI over time, and a more pronounced decrease of the 

nCI in the mHippoE-14 treatment groups that were additionally exposed (at 36 h) to haemin 

or ferrum. A statistically-analysed snapshot of the cellular status of the mHippoE-14 cells at 

48, 60 and 72 h is provided in Figures C.9.c, C.9.d and C.9.e, respectively. The latter demon-

strates that 36 h after the addition of haemin or ferrum in the oligomycin-containing media 

(OH72 or OF72), the nCI values of the mHippoE-14 cells are -73% (p<0.001) or -71% (p<0.001) 

as compared to the control (C72), and -44% (p<0.01) or -38% (p<0.01) as compared to oligo-

mycin treatment group (O72), respectively.  

An estimation of the statistical effect size through the Z-factor2, where the mHippoE-14 

O, OH and OF cellular status values (as nCI) were considered as samples and the respective C 

values as the control, was attempted for the means and standard deviations of each of the 

conducted four aforementioned experiments, at 48, 60 and 72 h (Table APP.4). In the majori-

ty of the cases, the Z-factors were higher than 0.5 and lower than 1, indicating that the real-

time cellular response profiling of the mHippoE-14 cells at the given time points, under the 

examined conditions, can be classified an “excellent assay” for the high-throughput screening 

of potential neuroprotective drugs, but could also be subject to further optimization (Zhang et 

al., 1999). 

As a sample of how such potentially-neuroprotective drugs could modify the cellular 

status of the chosen conditions, the membrane stabilizer CDP-Ch (Hurtado et al., 2005; Matyja 

et al., 2008) and the iron-chelator DFO (Braughler et al., 1988; Hua et al., 2008) were tested. 

The first was found, in most cases, to exert no statistically significant effects on the in vitro 

simulating approaches to intracerebral haemorrhage (Figure C.10), while DFO (at the tested 

concentration; 100 μM) was found to be extremely toxic for the control and oligomycin-

treated mHippoE-14 cells and (statistically significantly) beneficial for the haemin- and the 

ferrum-treated ones that have previously been exposed to oligomycin (Figure C.11). The lat-

ter could imply an iron-dependent mechanism of survival for the mHippoE-14 cells, while it is 

likely that the DFO concentration tested in our experiments was very high (Chen-Roetling et 

al., 2001). 

                                                 
2 the Z-factor is used for the categorization of the quality of a screening assay as well as its optimiza-
tion; for Z-factor values higher than 0.5, one can characterize an assay as “excellent”, while for values 
lower than 0, one must interpret that the screening is “impossible” (Zhang et al., 1999). 



Zarros A | PhD Thesis in Neuropathology  121 

Finally, the nCR values of the mHippoE-14 within the developed in vitro simulation ap-

proaches to intracerebral haemorrhage, focused on the time between 48 and 60 h, are pro-

vided in Table C.3. These data confirm a particularly neuroprotective effect of DFO in the case 

of the OH (oligomycin + haemin) treatment group, where the mHippoE-14 cells tend to main-

tain their nCR values close to 0 / control levels (Table C.3). 

 

VII.2. Cytomorphological assessment 
 

Representative captions and the findings of the phase-contrast microscopy-assisted live-cell 

cytomorphological assessment performed on the developed in vitro simulation approaches to 

intracerebral haemorrhage, are presented in Figures C.12 and C.13, respectively. The addition 

of oligomycin to the media exerts no statistically significant effects on the mHippoE-14 con-

fluency at 36 h (at least as assessed; see Table B.8 and Figure C.13.a), but does cause a statis-

tically significant decrease at 48 and 72 h (p<0.05 and p<0.01, respectively). The addition of 

oligomycin also causes a significant decrease of the mHippoE-14 aggregation at 72 h (p<0.01; 

Figure C.13.b), but causes no significant change on the cell cultures’ background score (re-

sults not shown). Moreover, the oligomycin-treated cellular groups that get exposed to hae-

min or ferrum present with a statistically significantly decreased confluency scores (Figure 

C.13.a), as well as with statistically significantly decreased aggregation scores (p<0.001 in all 

cases; Figure C.13.b), and increased background scores (p<0.001 at both 48 and 72 h when 

compared to respective control cultures; results not shown); the latter are even reaching as 

high as level 4 (in the 0 to 5 scale; see Table B.8) in the case of the OF48 and OF72 treatment 

groups, indicating the extensive presence of debris in these conditions (Figure C.12).    

It is the author’s estimation (through observation) that a small shrinkage of the cyto-

plasm of the mHippoE-14 cells occurs due to oligomycin3, and that this shrinkage is further 

exacerbated by haemin or ferrum, along with the induction of cell death; all compatible with 

the findings of the real-time cellular response profiling of these conditions. However, the de-

bris accumulating due to the addition of ferrum (and to a lesser extent of haemin) into the 

media, make the cytomorphological assessment a hard task for one to perform, as floating 

debris (as number per caption) is a parameter impossible to assess, and the washing of cells 

with phosphate-buffered saline (PBS) prior to captioning could not resolve the problem (Fig-

ure APP.2).  

 

VII.3. Profiling of neuronal markers’ expression 
 

The third step in the assessment of the developed in vitro simulation approaches to intracer-

ebral haemorrhage has been the profiling of the expression of a number of neuronal markers 
                                                 
3 ischaemic neuronal injury is a well-known cause of cytoplasmic shrinkage (Mena et al., 2004). 
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at cell lysates obtained at 30, 36 and 48 h (Figure C.8). In brief, cell lysates were generated by 

scraping cells into ice-cold lysis buffer4 and incubating on ice for 30 min, with vortexing at 10 

min intervals. Lysates were then cleared by centrifugation at 14,000 rpm, for 10 min, at 4oC, 

and their protein concentrations were determined according to the method of Lowry et al. 

(1951). Prior to loading for sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-

PAGE), the mHippoE-14 lysates were boiled for 2 min in 2x Laemmli sample buffer5 at 95oC. 

Subsequently, Western blotting was performed using the Novex6 NuPAGE7 SDS-PAGE Gel Sys-

tem (Thermo Fisher Scientific Inc.) following manufacturer’s guidelines. The produced mem-

branes were then blocked in 5% skimmed milk in Tris-buffered saline - Tween 20 (TBS-T)8 

for 1 h, at room temperature, prior to being exposed (overnight, at 4oC) to the primary anti-

bodies (Table C.4) that were diluted in 1% milk in TBS-T. The blots were then washed 3 times 

in TBS-T, and were incubated with fluorophore-conjugated secondary antibodies9 (LI-COR 

Inc.; diluted in 1% milk in TBS-T; 1:10,000) for 1 h, at room temperature, followed by 3 TBS-T 

washes. Finally, the blots were visualized and their signal densitometry values were obtained 

using the Odyssey Classic imaging system and software (LI-COR Inc.).   

Of the 9 neuronal markers sought after, 5 could not be detected at the attempted pri-

mary antibody dilutions (Table C.4): the calcium-binding proteins calbindin (CB), calretinin 

(CAL2) and parvalbumin (PV), the immature neurons’ marker doublecortin (DCX), and the 

popular 200 kDa + 160 kDa neurofilament (SMI-310). Of the neuronal markers that were de-

tected, FBS-deprivation was found to particularly decrease the expression of synapsin I in 

mHippoE-14 cells at the Rm time point (p<0.001, as compared to non-FBS-deprived control at 

30 h; Figure C.14), while treatment with oligomycin (as assessed at 36 h; O36) was found to 

cause a statistically-significantly decrease of the alpha 1 subunit of Na+,K+-ATPase (α1 Na+,K+-

ATPase; p<0.01), the choline acetyltransferase (ChAT; p<0.01) and the synapsin I (p<0.001) 

expression levels (as compared to C36; Figure C.15). When assessed at 48 h, the only treat-

ment group that produced statistically-significant changes in its neuronal markers’ expres-

sion (as compared to C48) has been the OH48 treatment group, with a 7-fold increase in the 

mHippoE-14 expression of HO-1 (p<0.05; Figure C.16) and a decrease in the expression of the 

α1 Na+,K+-ATPase (p<0.01; Figure C.16). 

                                                 
4 purchased by Sigma-Aldrich (product number: R0278). 
5 purchased by Sigma-Aldrich (product number: S3401). 
6 Novex®. 
7 NuPAGE®. 
8 TBS-T consists of 50 mM tris(hydroxymethyl)aminomethane (Tris), 150 mM sodium chloride (NaCl), 
and 0.05% Tween 20; all adjusted to pH 7.6. 
9 the following secondary antibodies were used: IRDye 800CW donkey anti-rabbit IgG (H+L), (product 
number: 925-32213), IRDye 800CW donkey anti-goat IgG (H+L) (product number: 925-32214), IRDye 
800CW donkey anti-mouse IgG (H+L) (product number: 925-32212), IRDye 680RD donkey anti-mouse 
IgG (H+L), (product number: 925-68072), IRDye 680RD donkey anti-rabbit IgG (H+L) (product num-
ber: 925-68073); all purchased from LI-COR Inc. 
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Synapsin I is a synaptic vesicle protein that ties the vehicle to the neuronal cytoskele-

ton (Jovanovic et al., 2000), characterizes functional neurons (Guan et al., 2016) and is a key-

modulator of neuroplasticity (Okabe et al., 1998; Ploughman et al., 2005). Its decreased ex-

pression due to both FBS-deprivation (p<0.001; Figure C.14) and oligomycin (p<0.001; Figure 

C.15) could indicate synaptic loss due to injury and / or loss of the mHippoE-14 functionality. 

Na+,K+-ATPase is a major consumer of ATP in neurons (Erecińska and Silver, 1994) and 

(amongst others) the enzyme responsible for the maintenance of neuronal excitability (Sastry 

and Phillis, 1977). The decrease in the expression of its α1 subunit in O36 cells (p<0.01, as 

compared to C36 cells; Figure C.15) comes as no surprise, as oligomycin should restrict ATP 

availability and thus, cause a downregulation of the Na+,K+-ATPase subunits’ synthesis. More-

over, the blocking or the decline in Na+,K+-ATPase functionality has also been considered as 

an apoptotic mechanism (Wang et al., 2003), while one must not exclude the possibility of a 

direct role10 of oligomycin in the observed phenomena (Arato-Oshima et al., 1996). It should 

be noted, however, that although hippocampal neurons express the α1 subunit of Na+,K+-

ATPase in the membranes of both axons and dendrites (Pietrini et al., 1992), the same subu-

nit isoform is not a hippocampal neuron-specific marker as it can also be found expressed in 

glial cells (Cameron et al., 1994; Kwon et al., 2003). Moreover, in a recent in vivo study of ours 

(Bimpis et al., 2013), Na+,K+-ATPase activity was found unaltered when compared amongst 

the perihaematomal and the neuroanatomically-matching (control) region of swines, 4 and 

24 h following autologous blood infusion. 

The cholinergic marker ChAT was found to be expressed by O36 mHippoE-14 cells, but 

at statistically significantly lower levels than the respective control ones (p<0.01 as compared 

to C36; Figure C.15); a trend that was confirmed 12 h later at a non-statistically significant lev-

el (p>0.05; Figure C.16). Knowing that ChAT is the enzyme responsible for the synthesis of 

acetylcholine (ACh) and a marker of cholinergic neurons (Shi et al., 2012), the finding might 

imply a downregulation of the cholinergic function / ACh-synthesizing capacity of the oligo-

mycin-treated cells due to the metabolic stress implemented by oligomycin; a suggestion that 

would have been in agreement with previous studies on other cytotoxic conditions (Barald, 

1989; Osborne et al., 1995), but wouldn’t have managed to explain the reason the OF48 or the 

OH48
11 cells do not follow this pattern (Figure C.16). 

Finally, the induction of HO-1 expression due to haemin (p<0.05, in OH48 as compared 

to C48 levels; Figure C.16) is a particularly welcome finding, in view of its role in degrading 

haemin and acting as a marker of oxidative stress related to cellular injury (Chow et al., 2008; 

Sharp, 1995; Wagner et al., 2003). Although the induction of HO-1 in the context of intracere-

                                                 
10 oligomycin is known to interact with the sodium ion (Na+) occlusion site on the extracellular side of 
Na+,K+-ATPase and, as a result, delay the release of Na+ (Arato-Oshima et al., 1996). 
11 in fact, the OH48 cells are characterized by an increased expression of ChAT (p>0.05, as compared to 
C48; Figure C.16) under the experimental conditions studied. 
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bral haemorrhage is induced primarily by non-neural cells in vivo (Wang, 2014), neurons are 

also known to express HO-1 in ischaemic brain regions (Geddes et al., 1996; Nimura et al., 

1996; Wagner et al., 2003), sometimes in a transient way (Matsuoka et al., 1998; Takeda et 

al., 1996; Wagner et al., 2003), and more likely as a neuroprotective response (Hua et al., 

2007; Wagner et al., 2003). However, Suttner and Dennery (1999) have suggested that a 

marked overexpression of HO-1 could also result to cell death due to iron accumulation; a 

claim that might explain the fate of the mHippoE-14 cells in the OH48 treatment group, and be 

considered to be confirmed by the recent study of Kwon et al. (2013) where valproic acid was 

suggested to exert neuroprotection in intracerebral haemorrhage-related experimental con-

texts through the decrease of HO-1 expression, both in vivo and in vitro. 

 

VII.4. Neurochemical assessment 
 

The neurochemical assessment of the mHippoE-14 cells under the developed intracerebral 

haemorrhage-simulating in vitro conditions has been limited to the undertaking of acetylcho-

linesterase (AChE) activity assays. Two sets of experiments were conducted: (a) the assess-

ment of the AChE activity of mHippoE-14 cells at 48 h under the developed intracerebral 

haemorrhage-simulating in vitro conditions (conditions C48, O48, OH48 and OF48), and (b) the 

assessment of the effects of media deriving from these same in vitro conditions on Electroph-

orus electricus (electric eel) pure AChE activity, following an 1 h incubation. A third set of ex-

periments assessing the effects of media deriving from earlier in vitro conditions on Elec-

trophorus electricus (electric eel) pure AChE activity was unsuccessful, due to the very high 

values recorded in the presence of FBS-supplemented media12.  

For the first set of experiments, mHippoE-14 cells at 48 h (that have been grown in 6-

well plates; conditions C48, O48, OH48 and OF48) were washed twice with ice cold (0-4oC) PBS 

prior to being treated with an ice-cold (0-4oC) buffer containing 50 mM Tris-hydrochloride 

(Tris-HCl), pH 7.4, and 300 mM sucrose, and being mechanically scrapped from their wells. 

Subsequently, the lysates were centrifuged at 1,000 × g for 10 min in order to remove nuclei 

and debris, and in the resulting supernatants, the protein content was determined according 

to the method of Lowry et al. (1951), and the activity of AChE was determined by recording 

the hydrolysis rate of acetylthiocholine (at 37oC) according to the method of Ellman et al. 

(1961), following the exact procedure described in detail by Tsakiris (2001). The AChE assay 

incubation mixture (1 mL) contained 50 mM Tris-HCl, pH 8, 240 mM sucrose, and 120 mM 

NaCl. The protein concentration of the incubation mixture was 1-3 μg/mL. The reaction was 

initiated after addition of 0.03 mL of 5,5’-dithionitrobenzoic acid (DTNB), and 0.05 mL of 

acetylthiocholine iodide, which was used as a substrate. The final concentration of DTNB and 

                                                 
12 it is known that FBS contains AChE in it (Chatonnet and Lockridge, 1989; Ralston et al., 1985). 
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substrate were 0.125 and 0.5 mM, respectively. The reaction was followed spectrophotomet-

rically13 over a period of 120 sec, by the increase of absorbance (ΔOD) at 412 nm, where ΔOD 

accounts for the mean of the difference in the optical density measured. 

For the second set of experiments, media from the mHippoE-14 cell cultures at 48 h (in 

vitro conditions same as for the first set) were obtained and centrifuged at 1,000 x g for 10 

min in order to remove nuclei and debris. The commercially-available pure enzyme (product 

C3389, Sigma-Aldrich; electric eel AChE) was incubated for 1 h (37oC) at a concentration of 

0.120 μg/mL in a reaction mixture (1 mL) that contained 50 mM Tris-HCl, pH 8, 240 mM su-

crose, 120 mM NaCl and 50 μL of media, prior to the addition of DTNB and acetylthiocholine 

iodide, and the determination of AChE activity as described above. 

Figure C.17 presents our findings with regards to the activity of the mHippoE-14 cells’ 

AChE under the developed intracerebral haemorrhage-simulating in vitro conditions (Figure 

C.17.a), and of Electrophorus electricus pure AChE following incubation with media deriving 

from mHippoE-14 cell cultures under the same in vitro conditions (Figure C.17.b). Unfortu-

nately, none of the conducted experiments produced any statistically significant findings, ei-

ther due to the very low AChE activity levels detected or the very low expression of this en-

zyme by the mHippoE-14 cells under FBS-deprivation. This was a rather disappointing out-

come in view of our interest in studying the mHippoE-14 cellular response to the developed 

in vitro simulation approaches to intracerebral haemorrhage through the assessment of the 

activity of this crucial cholinergic marker14, but, on the other side, the findings did fit well (if 

to be considered as sufficiently reliable15) to our recent in vivo work on swines (Bimpis et al., 

2012) that has found no differences between the affected and the non-affected (but neuroan-

atomically-matching) brain regions’ AChE activity, 4 and 24 h following autologous blood in-

fusion.  

 

VII.5. Proteomic profiling 
 

Detection of the expression of 111 soluble cytokines, chemokines, and growth factors (Table 

C.5) in the media of mHippoE-14 cell cultures of the developed in vitro simulation approaches 

to intracerebral haemorrhage, was performed with the commercially-available Proteome 

Profiler Mouse XL Cytokine Array Kit (R&D Systems, product number: ARY028), which is a 

membrane-based sandwich immunoassay. Experiments were conducted on the 4 basic de-

veloped in vitro conditions, at 48 h (C48, O48, OH48 and OF48), following the manufacturer’s in-

structions (Figure C.18), while analysis of the array captions was performed through the Im-

                                                 
13 a Cole-Parmer S2100 Spectrophotometer (Cole-Parmer Instrument Co. Ltd) was used. 
14 one must note that Lee et al. (2010) have suggested the existence of a cholinergic anti-inflammatory 
pathway that regulates inflammation within the context of intracerebral haemorrhage, based on exper-
imental data. 
15 technically speaking; see subchapter VIII.3. 
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ageJ (1.48v) software. The findings of these arrays are visualized in Figures C.19, C.20 and 

C.21, and their most notable “hits” are presented in Table C.6. 

Although the proteomic profiling performed is extensive (in terms of analyte content), 

it is still a collection of arrays whose hits need to be further validated (through Western blot-

ting), on a case-by-case basis. Of the statistically-significant analyte changes presented in Ta-

ble C.6, one should consider, in future experimental attempts, the elucidation of the following 

analytes: 

 angiopoietin 1 and angiopoietin 2 (ANGPT1 and ANGPT2): ANGPT1 levels were found to 

be very high in the O48 and OH48 treatment groups (17.5x and 27.7x, respectively, as 

compared to C48), while ANGPT2 was found increased in the OF48 treatment group; 

both vascular growth factors must be considered as oligomycin-triggered cytokines, 

and should be further studied in view of their association to BBB permeability 

(de)regulation within brain injury related contexts (Chittiboina et al., 2013), 

 haemolytic complement (C5): C5 levels were found to be very high in both the OH48 and 

OF48 treatment groups (5.0x and 11.2x, respectively, as compared to C48); a positive 

cellular response for these particular conditions, 

 chemokine (C-X-C motif) ligand 11 (CXCL11): as with C5, CXCL11 levels were found to 

be very high in both the OH48 and OF48 treatment groups (20.9x and 31.8x, respective-

ly, as compared to C48); a cellular response that could not be correlated with interferon 

gamma (IFN-γ; the usual inducer of CXCL11) changes under the examined conditions, 

 fibroblast growth factor 21 (FGF-21): FGF-21 levels were found to be very high in the 

O48 and OH48 treatment groups (as compared to C48, where these were non-existent); 

interestingly, FGF-21 is an endogenous regulator of glucose and lipid metabolism, that 

once expressed by neurons, might exert neuroprotection (Leng et al., 2015),    

 FMS-like tyrosine kinase 3 ligand (Flt3l): the levels of Flt3l were found to be high in the 

OF48 treatment group only (6.0x, as compared to C48); Flt3l is a blood cell progenitor-

stimulating cytokine, and its role in the current context is unknown, 

 interleukin 1 alpha (IL-1α) and IL-1β: IL-1α levels have been found increased in all ex-

amined oligomycin-treated mHippoE-14 groups (2.4x, 3.9x and 4.2x, in O48, OH48 and 

OF48, respectively, as compared to C48), while IL-1β levels were found to be extremely 

high only in the OF48 treatment group (12.0x, as compared to C48); although the upreg-

ulation of IL-1β in perihaematomal neurons due to an in vivo simulation of intracere-

bral haemorrhage is a recently confirmed process (Bimpis et al., 2015; Zarros et al., 

2014), the potential role of IL-1α as a (neuronal-specific) response to the intracerebral 

haemorrhage-induced injury could be an interesting matter for further study, 

 interleukin 1 receptor antagonist (IL-1ra): IL-1ra levels were found to be high in both 

the OH48 and OF48 treatment groups (2.8x and 2.4x, respectively, as compared to C48); a 
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cellular response that could be an attempt of the mHippoE-14 cells to block the IL-1-

driven cell death (Greenhalgh et al., 2012), 

 leptin (OB): like in the case of FGF-21, OB levels were found to be very high in the O48 

and OH48 treatment groups (as compared to C48, where these were non-existent); OB is 

a well-characterized mediator of inflammation within the secondary injury of intracer-

ebral haemorrhage (Kim et al., 2013), and its receptor (OB-R) is known to be (weakly) 

expressed by mHippoE-14 cells (see Table B.2), 

 matrix metallopeptidase 2 (MMP-2): MMP-2 levels were found to be high in both the 

OH48 and OF48 treatment groups (5.7x and 3.0x, respectively, as compared to C48); a 

finding probably related to the occurring neuronal apoptosis (Koutroulis et al., 2008),  

 serine (or cysteine) peptidase inhibitor, clade F, member 1 (SERPINF1)16: SERPINF1 lev-

els were found to be extremely high in the OH48 and high in the OF48 treatment groups 

(109.6x and 4.7x, respectively, as compared to C48); SERPINF1 might be (in this partic-

ular contexts) acting as an activator of the NF-κB pathway (Tombran-Tink and Barn-

stable, 2003) and / or of PPAR-γ expression (Ho et al., 2007), 

 TNF-α: finally, TNF-α expression was found increased in the O48 treatment group (as 

compared to C48, where its expression was non-existent); interestingly, TNF-α was not 

detected at statistically significant levels in either of the other two conditions (OH48 or 

OF48).  

Such an elucidation should not only focus on the comparative analysis of the herein present-

ed developed in vitro simulation approaches to intracerebral haemorrhage, but might also be 

worth attempting on neuronal populations of the perihaematomal brain regions in in vivo ex-

perimental settings. 
 

>> Table C.3: page 129 

>> Table C.4: page 130 

>> Table C.5: page 131 

>> Table C.6: page 134 

>> Figure C.8: page 135 

>> Figure C.9: page 136 

>> Figure C.10: page 138 

>> Figure C.11: page 140 

>> Figure C.12: page 142 

>> Figure C.13: page 143 

>> Figure C.14: page 144 

>> Figure C.15: page 145 

>> Figure C.16: page 146 

>> Figure C.17: page 147 

                                                 
16 also known as pigment epithelium-derived factor (PEDF). 
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>> Figure C.18: page 148 

>> Figure C.19: page 149 

>> Figure C.20: page 150 

>> Figure C.21: page 151 
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Table C.3: Assessment of the nCR values of mHippoE-14 within the developed in vitro simu-

lation approaches to intracerebral haemorrhage: a sample. 
 

   

Treatment (abbreviation) nCR(E48,E60) (nCI/h) Significance vs 0 
   

   

control (C) 0.001 ± 0.003 --- 
CDP-Ch (CDP-Ch) 0.000 ± 0.003 --- 
DFO (DFO) -0.058 ± 0.004 p<0.001 
haemin (H) 0.006 ± 0.004 p<0.05 
ferrum (F) -0.008 ± 0.001 p<0.001 
CDP-Ch + haemin (CDP-Ch+H) 0.002 ± 0.003 --- 
CDP-Ch + ferrum (CDP-Ch+F) -0.011 ± 0.001 p<0.001 
DFO + haemin (DFO+H) 0.007 ± 0.009 --- 
DFO + ferrum (DFO+F) -0.016 ± 0.007 p<0.01 
   

   

oligomycin (O) -0.014 ± 0.002 p<0.001 
CDP-Ch + oligomycin (CDP-Ch+O) -0.015 ± 0.003 p<0.001 
DFO + oligomycin (DFO+O) -0.059 ± 0.006 p<0.001 
oligomycin + haemin (OH) -0.005 ± 0.001 p<0.001 
oligomycin + ferrum (OF) -0.011 ± 0.002 p<0.001 
CDP-Ch + oligomycin + haemin (CDP-Ch+OH) -0.005 ± 0.001 p<0.001 
CDP-Ch + oligomycin + ferrum (CDP-Ch+OF) -0.013 ± 0.002 p<0.001 
DFO + oligomycin + haemin (DFO+OH) -0.003 ± 0.003 --- 
DFO + oligomycin + ferrum (DFO+OF) -0.011 ± 0.002 p<0.001 
   

 

Note: data are presented as mean ± standard deviation of four independent experiments (n=4; IDs: 1410161436, 
1410202228, 1410251044, 1410251218); normalization occurs at the Rm time point of each experiment (approx-
imately 6 h after FBS-deprivation and 30 h after cells’ seeding). Statistical analysis has been performed through 
the use of Student’s t-test. Only statistically significant differences (p<0.05) are annotated. For more details and 
further findings of these experiments, see Figures C.9, C.10 and C.11. 
 

CDP-Ch: cytidine-5’-diphosphocholine; DFO: deferoxamine; E48: evaluation endpoint at 48 h; E60: evaluation end-
point at 60 h; FBS: foetal bovine serum; nCI: normalized cell index; nCR: normalized cellular response; Rm: recov-
ery point after metaptosis 
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Table C.4: List of antibodies used for the performance of Western blotting toward the profil-

ing of neuronal markers’ expression in mHippoE-14 cells under the developed intracerebral 

haemorrhage-simulating in vitro conditions. 
 

      

Antibody Host Clonality Dilution Provider Product 
      

      

Anti-α-tubulin mouse mono (IgG1) 1:10,000 Abcam PLC ab7291 
Anti-α1 Na+,K+-ATPase mouse mono (IgG1) 1:1,000 Abcam PLC ab7671 
Anti-CAL2 rabbit mono (IgG) 1:1,000 Abcam PLC ab133316 
Anti-CB rabbit poly (IgG) 1:10,000 Abcam PLC ab11426 
Anti-ChAT rabbit poly (IgG) 1:100 Abcam PLC ab68779 
Anti-DCX rabbit poly (IgG) 1:1,000 Abcam PLC ab18723 
Anti-GAPDH mouse mono (IgG1) 1:10,000 Abcam PLC ab8245 
Anti-HO-1 goat poly (IgG) 1:100 R&D Systems Inc. 967381 
Anti-PV rabbit poly (IgG) 1:10,000 Abcam PLC ab11427 
Anti-SMI-310 mouse mono (IgG1) 1:1,000 Abcam PLC ab24570 
Anti-synapsin I rabbit poly (IgG) 1:1,000 Abcam PLC ab64581 
      

 

Note: antibodies presented in alphabetical order. With the exception of the anti-HO-1 antibody that was part of a 
solid phase sandwich ELISA kit (human / mouse total HO-1 / HMOX1 cell-based ELISA kit; product KCB3776; R&D 
Systems Inc.), the rest of the antibodies used were purchased from Abcam PLC. 
 
a-tubulin: alpha-tubulin; α1 Na+,K+-ATPase: alpha 1 subunit of sodium / potassium adenosine triphosphatase; 
CAL2: calretinin; CB: calbindin; ChAT: choline acetyltransferase; DCX: doublecortin; ELISA: enzyme-linked im-
munosorbent assay; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; HMOX-1: human haeme oxygenase 1; 
HO-1: haeme oxygenase 1; IgG: immunoglobulin G; IgG1: immunoglobulin G1; mono: monoclonal; poly: polyclonal; 
PV: parvalbumin; SMI-310: 200 kDa + 160 kDa neurofilament 
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Table C.5: Designation of analytes upon each cytokine array slide used for the proteomic pro-

filing of the cell-culture medium, as provided in the Proteome Profiler Array - Mouse XL Cyto-

kine Array Kit (product ARY028; R&D Systems Inc.). 
 

  

Coordinates Analyte; abbreviation; NCBI Gene ID(s) 
  

  

A1, A2 reference; N/A; N/A 
A3, A4 adiponectin, C1Q and collagen domain containing; AdipoQ; 11450 
A5, A6 amphiregulin; AR; 11839 
A7, A8 angiopoietin 1; ANGPT1; 11600 
A9, A10 angiopoietin 2; ANGPT2; 11601 
A11, A12 angiopoietin-like 3; ANGPT-L3; 30924 
A13, A14 tumour necrosis factor (ligand) superfamily, member 13b; BAFF; 24099 
A15, A16 CD93 antigen; CD93; 17064 
A17, A18 chemokine (C-C motif) ligand 2; CCL2; 20296 
A19, A20 chemokine (C-C motif) ligand 3/4; CCL3/CCL4; 20302; 20303 
A21, A22 chemokine (C-C motif) ligand 5; CCL5; 20304 
A23, A24 reference; N/A; N/A 
B3, B4 chemokine (C-C motif) ligand 6; CCL6; 20305 
B5, B6 chemokine (C-C motif) ligand 11; CCL11; 20292 
B7, B8 chemokine (C-C motif) ligand 12; CCL12; 20293 
B9, B10 chemokine (C-C motif) ligand 17; CCL17; 20295 
B11, B12 chemokine (C-C motif) ligand 19; CCL19; 24047 
B13, B14 chemokine (C-C motif) ligand 20; CCL20; 20297 
B15, B16 chemokine (C-C motif) ligand 21A (serine); CCL21; 18829 
B17, B18 chemokine (C-C motif) ligand 22; CCL22; 20299 
B19, B20 CD14 antigen; CD14; 12475 
B21, B22 CD40 antigen; CD40; 21939 
C3, C4 CD160 antigen; CD160; 54215 
C5, C6 retinoic acid receptor responder (tazarotene-induced) 2; RARRES2; 71660 
C7, C8 chitinase 3-like 1; CHI3L1; 12654 
C9, C10 coagulation factor III; TF; 14066 
C11, C12 haemolytic complement; C5; 15139 
C13, C14 complement factor D (adipsin); CFD; 11537 
C15, C16 C-reactive protein, pentraxin-related; CRP; 12944 
C17, C18 chemokine (C-X3-C motif) ligand 1; CX3CL1; 20312 
C19, C20 chemokine (C-X-C motif) ligand 1; CXCL1; 14825 
C21, C22 chemokine (C-X-C motif) ligand 2; CXCL2; 20310 
D1, D2 chemokine (C-X-C motif) ligand 9; CXCL9; 17329 
D3, D4 chemokine (C-X-C motif) ligand 10; CXCL10; 15945 
D5, D6 chemokine (C-X-C motif) ligand 11; CXCL11; 56066 
D7, D8 chemokine (C-X-C motif) ligand 13; CXCL13; 55985 
D9, D10 chemokine (C-X-C motif) ligand 16; CXCL16; 66102 
D11, D12 cystatin C; CST3; 13010 
D13, D14 dickkopf homolog 1 (Xenopus laevis); DKK-1; 13380 
D15, D16 dipeptidylpeptidase 4; DPP4; 13482 
D17, D18 epidermal growth factor; EGF; 13645 
D19, D20 endoglin; ENG; 13805 
D21, D22 collagen, type XVIII, alpha 1; Col18α1; 12822 
D23, D24 alpha-2-HS-glycoprotein; AHSG; 11625 
  

 

(continues on next page) 
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Coordinates Analyte; abbreviation; NCBI Gene ID(s) 
  

  

E1, E2 fibroblast growth factor 1; FGF-1; 14164 
E3, E4 fibroblast growth factor 21; FGF-21; 56636 
E5, E6 FMS-like tyrosine kinase 3 ligand; Flt3l; 14256 
E7, E8 growth arrest specific 6; Gas6; 14456 
E9, E10 colony stimulating factor 3 (granulocyte); G-CSF; 12985 
E11, E12 growth differentiation factor 15; GDF-15; 23886 
E13, E14 colony stimulating factor 2 (granulocyte-macrophage); GM-CSF; 12981 
E15, E16 hepatocyte growth factor; HGF; 15234 
E17, E18 intercellular adhesion molecule 1; ICAM-1; 15894 
E19, E20 interferon-gamma; IFN-γ; 15978 
E21, E22 insulin-like growth factor binding protein 1; IGFBP-1; 16006 
E23, E24 insulin-like growth factor binding protein 2; IGFBP-2; 16008 
F1, F2 insulin-like growth factor binding protein 3; IGFBP-3; 16009 
F3, F4 insulin-like growth factor binding protein 5; IGFBP-5; 16011 
F5, F6 insulin-like growth factor binding protein 6; IGFBP-6; 16012 
F7, F8 interleukin 1 alpha; IL-1α; 16175 
F9, F10 interleukin 1 beta; IL-1β; 16176 
F11, F12 interleukin 1 receptor antagonist; IL-1ra; 16181 
F13, F14 interleukin 2; IL-2; 16183 
F15, F16 interleukin 3; IL-3; 16187 
F17, F18 interleukin 4; IL-4; 16189 
F19, F20 interleukin 5; IL-5; 16191 
F21, F22 interleukin 6; IL-6; 16193 
F23, F24 interleukin 7; IL-7; 16196 
G1, G2 interleukin 10; IL-10; 16153 
G3, G4 interleukin 11; IL-11; 16156 
G5, G6 interleukin 12 beta subunit p40; IL-12 p40; 16160 
G7, G8 interleukin 13; IL-13; 16163 
G9, G10 interleukin 15; IL-15; 16168 
G11, G12 interleukin 17A; IL-17A; 16171 
G13, G14 interleukin 22; IL-22; 50929 
G15, G16 interleukin 23, alpha subunit p19; IL-23 p19; 83430 
G17, G18 interleukin 27, alpha subunit p28; IL-27 p28; 246779 
G19, G20 interferon lambda 2/3; IL-28A/B; 330496, 338374 
G21, G22 interleukin 33; IL-33; 77125 
G23, G24 low-density lipoprotein receptor; LDL-R; 16835 
H1, H2 leptin; OB; 16846 
H3, H4 leukemia inhibitory factor; LIF; 16878 
H5, H6 lipocalin 2; NGAL; 16819 
H7, H8 chemokine (C-X-C motif) ligand 5; CXCL5; 20311 
H9, H10 colony stimulating factor 1 (macrophage); M-CSF; 12977 
H11, H12 matrix metallopeptidase 2; MMP-2; 17390 
H13, H14 matrix metallopeptidase 3; MMP-3; 17392 
H15, H16 matrix metallopeptidase 9; MMP-9; 17395 
H17, H18 myeloperoxidase; MPO; 17523 
H19, H20 secreted phosphoprotein 1; SPP1; 20750 
H21, H22 osteoprotegerin; OPG; 18383 
H23, H24 thymidine phosphorylase; TP; 72962 
I1, I2 platelet derived growth factor, B polypeptide; PDGF-BB; 18591 
  

 

(continues on next page) 
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Coordinates Analyte; abbreviation; NCBI Gene ID(s) 
  

  

I3, I4 serum amyloid P-component; SAP; 20219 
I5, I6 pentraxin-related protein 3; PTX3; 19288 
I7, I8 periostin, osteoblast specific factor; POSTN; 50706 
I9, I10 delta-like 1 homolog (Drosophila); DLK-1; 13386 
I11, I12 prolactin family 2, subfamily c, member 2 (proliferin); PLF; 18811 
I13, I14 proprotein convertase subtilisin/kexin type 9; PCSK9; 100102 
I15, I16 advanced glycosylation end product-specific receptor; RAGE; 11596 
I17, I18 retinol binding protein 4, plasma; RBP4; 19662 
I19, I20 regenerating islet-derived 3 gamma; REG-3γ; 19695 
I21, I22 resistin (adipose tissue-specific secretory factor); ADSF; 57264 
J1, J2 reference; N/A; N/A 
J3, J4 selectin, endothelial cell; CD62E; 20339 
J5, J6 selectin, platelet; CD62P; 20344 
J7, J8 serine (or cysteine) peptidase inhibitor, clade E, member 1; SERPINE1; 18787 
J9, J10 serine (or cysteine) peptidase inhibitor, clade F, member 1; SERPINF1; 20317 
J11, J12 thrombopoietin; THPO; 21832 
J13, J14 hepatitis A virus cellular receptor 1; HAVcR-1; 171283 
J15, J16 tumour necrosis factor alpha; TNF-α; 21926 
J17, J18 vascular cell adhesion molecule 1; VCAM-1; 22329 
J19, J20 vascular endothelial growth factor A; VEGF-A; 22339 
J21, J22 WNT1 inducible signalling pathway protein 1; WISP-1; 22402 
J23, J24 negative control; N/A; N/A 
  

 

Note: the herein presented analyte abbreviations are not included in Appendix A, unless they happen to be men-
tioned or discussed elsewhere in this PhD Thesis. For more details on the proteomic profiling performed, see pro-
tocol’s description in Figure C.18.   
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Table C.6: Synopsis of the statistically significant analyte changes detected by the proteomic 

profiling of the developed in vitro simulation approaches to intracerebral haemorrhage. 
 

  

Treatment Analyte changes of p<0.05 significance detected (versus C48) 
  

  

O48 ANGPT1; p=0.023; 17.5x 
CCL19; p=0.009; 2.1x 

CXCL16; p=0.004; 2.4x 
CST3; p=0.000; 1.2x 

FGF-21; p=0.013; -18.5x (↑) 

G-CSF; p=0.004; 1.7x 
IL-1α; p=0.050; 2.4x 

IL-22; p=0.040; -0.2x (↓) 
OB; p=0.005; -13.3x (↑) 

NGAL; p=0.013; 1.3x 
 

PTX3; p=0.004; 1.3x 
RAGE; p=0.017; -0.7x (↑) 
TNF-α; p=0.049; -0.5x (↑) 

VEGF-A; p=0.008; 2.5x 
 

OH48 ANGPT1; p=0.046; 27.7x 
CCL6; p=0.011; 5.7x 

CCL19; p=0.008; 3.9x 
CCL22; p=0.026; 2.0x 
CD14; p=0.021; 5.6x 

CHI3L1; p=0.023; 0.8x 
TF; p=0.001; 7.1x 
C5; p=0.036; 5.0x 

CFD; p=0.044; -14.1x (↑) 
CRP; p=0.040; -14.9x (↓) 
CX3CL1; p=0.050; 4.1x 

 

CXCL10; p=0.012; 0.6x 
CXCL11; p=0.038; 20.9x 
CXCL16; p=0.006; 3.5x 
Col18α1; p=0.050; 2.0x 

FGF-21; p=0.001; -56.7x (↑) 
Flt3l; p=0.027; 3.7x 

IGFBP-5; p=0.040; 28.9x 
IL-1α; p=0.009; 3.9x 
IL-1ra; p=0.041; 2.8x 

IL-2; p=0.032; -2.2x (↓) 
IL-11; p=0.037; 14.7x 

IL-12 p40; p=0.006; 4.2x 
LDL-R; p=0.017; 2.6x 

OB; p=0.039; -29.3x (↑) 
LIF; p=0.025; 5.7x 

MMP-2; p=0.015; 5.7x 
PDGF-BB; p=0.039; 2.3x 

SAP; p=0.046; 4.1x 
DLK-1; p=0.007; 5.8x 
PCSK9; p=0.030; 3.6x 

SERPINF1; p=0.001; 109.6x 
VCAM-1; p=0.003; 2.5x 

OF48 ANGPT2; p=0.010; -8.8x (↑) 
CD93; p=0.021; -22.2x (↑) 

CCL11; p=0.037; 4.7x 
CCL21; p=0.023; -11.8x (↑) 

CD14; p=0.035; 8.7x 
CD160; p=0.026; 3.5x 
CHI3L1; p=0.005; 0.6x 

C5; p=0.009; 11.2x 
CXCL9; p=0.003; -7.1x (↑) 

CXCL10; p=0.003; 0.3x 
CXCL11; p=0.020; 31.8x 
CXCL13; p=0.003; 18.9x 
CXCL16; p=0.002; 6.1x 

CST3; p=0.034; 1.0x 

DPP4; p=0.024; -3.4x (↑) 
AHSG; p=0.026; 2.2x 

FGF-1; p=0.006; -9.8x (↑) 
Flt3l; p=0.021; 6.0x 
Gas6; p=0.010; 6.5x 

G-CSF; p=0.008; 1.7x 
GDF-15; p=0.050; 7.1x 
GM-CSF; p=0.029; 7.1x 
HGF; p=0.014; -4.6x (↑) 
IGFBP-6; p=0.037; 2.0x 

IL-1α; p=0.017; 4.2x 
IL-1β; p=0.020; 12.0x 
IL-1ra; p=0.020; 2.4x 

IL-2; p=0.013; 9.3x 

IL-3; p=0.002; -27.0x (↑) 
IL-15; p=0.010; 5.4x 

IL-23; p=0.031; -16.6x (↑) 
MMP-2; p=0.022; 3.0x 
POSTN; p=0.002; 4.0x 
DLK-1; p=0.038; 3.1x 

RAGE; p=0.047; -2.0x (↑) 
ADSF; p=0.013; 3.1x 

CD62P; p=0.041; 9.9x 
SERPINE1; p=0.005; 0.8x 
SERPINF1; p=0.022; 4.7x 

WISP-1; p=0.003; 0.7x 

  

 

Note: the table presents the analyte abbreviations followed by the p values of their difference compared to C48 and 
the untreated fold values; the latter are corrected (where necessary) by arrows in parenthesis (↑ or ↓), in order to 
indicate whether they reflect an increase or a decrease towards the C48 levels. Negative fold values derive from the 
fact that one of the compared treatment groups bears analyte levels below the negative control values; in other 
words, it is a methodological limitation that is better to be exposed rather than to be hidden under logarithmic 
transformations. Statistical analysis was performed with ANOVA, as specified for microarray data according to Cui 
and Churchill (2003).  
 

analyte abbreviations are defined in Table C.5; ANOVA: analysis of variance; C48: control (at 48 h); O48: oligomycin 
(at 48 h); OF48: oligomycin, ferrum (at 48 h); OH48: oligomycin, haemin (at 48 h) 
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Figure C.8: Graphic summary of the assessed in vitro simulation approaches to intracerebral 

haemorrhage, based on the exposure of mHippoE-14 cells to FBS-deprivation and followed by 

exposure to oligomycin-A and, finally, to ferrum or haemin (at a concentration of 500 μM). 
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Note: the seeding density presented refers to a 96-well plate setting which is only relevant to the real-time cellular 
response analysis performed through the xCELLigence technology; a simulated density of 211,000 cells/dish was 
employed for the undertaking of all other assessments (phase-contrast microscopy, cell-lysate acquiring for the 
performance of Western blotting and neurochemical assessments, as well as media aspiration for the performance 
of proteomic profiling). The 4 indicated assessment time points have not been used for all assessment approaches, 
and the exposure to drugs (such as CDP-Ch or DFO) has only been performed in the case of the real-time cellular 
response analysis. 
 

CDP-Ch: cytidine-5’-diphosphocholine; DFO: deferoxamine; FBS: foetal bovine serum 
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Figure C.9: Real-time cellular response profile of the developed in vitro simulation approach-

es to intracerebral haemorrhage. 
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Note: arrows in Figure C.9.b indicate the induction of metaptosis, the addition of oligomycin and the addition of 
haemin or ferrum, at 24, 30 and 36 h, respectively. Data in Figures C.9.b to C.9.e are presented as mean (± standard 
deviation) of four independent experiments (n=4; IDs: 1410161436, 1410202228, 1410251044, 1410251218); 
normalization occurs at the Rm time point of each experiment (approximately 6 h after FBS-deprivation and 30 h 
after cells’ seeding). Statistical analysis has been performed through the use of one-way ANOVA followed by post 
hoc Tukey’s range test. Only statistically-significant differences (p<0.05) are annotated. For more details and fur-
ther findings of these experiments, see Figures C.10 and C.11 as well as Table C.3. 
 

***: p<0.001 (as compared to respective C values); ##: p<0.01 (as compared to respective O values); ###: p<0.001 
(as compared to respective O values); ANOVA: analysis of variance; C: control; nCI: normalized cell index; O: oli-
gomycin, OF: oligomycin, ferrum; OH: oligomycin, haemin; Rm: recovery point after metaptosis 

 



Zarros A | PhD Thesis in Neuropathology  138 

 

Figure C.10: Real-time cellular response analysis of the effect of CDP-Ch (100 μM) on the de-

veloped in vitro simulation approaches to intracerebral haemorrhage. 
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Note: data are presented as mean ± standard deviation of four independent experiments (n=4; IDs: 1410161436, 
1410202228, 1410251044, 1410251218); normalization occurs at the Rm time point of each experiment (approx-
imately 6 h after FBS-deprivation and 30 h after cells’ seeding). Statistical analysis has been performed through 
the use of one-way ANOVA followed by post hoc Tukey’s range test. Only statistically significant differences 
(p<0.05) are annotated. For more details and further findings of these experiments, see Figure C.9 and Table C.3. 
 

*: p<0.05 (as compared to respective C or O values); **: p<0.01 (as compared to respective C or O values); ***: 
p<0.001 (as compared to respective C or O values); #: p<0.05 (as compared to F60 value); ANOVA: analysis of vari-
ance; C: control; CDP-Ch: cytidine-5’-diphosphocholine; nCI: normalized cell index; O: oligomycin, OF: oligomycin, 
ferrum; OH: oligomycin, haemin; Rm: recovery point after metaptosis 
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Figure C.11: Real-time cellular response analysis of the effect of DFO (100 μM) on the devel-

oped in vitro simulation approaches to intracerebral haemorrhage. 
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Note: data are presented as mean ± standard deviation of four independent experiments (n=4; IDs: 1410161436, 
1410202228, 1410251044, 1410251218); normalization occurs at the Rm time point of each experiment (approx-
imately 6 h after FBS-deprivation and 30 h after cells’ seeding). Statistical analysis has been performed through 
the use of one-way ANOVA followed by post hoc Tukey’s range test. Only statistically significant differences 
(p<0.05) are annotated. For more details and further findings of these experiments, see Figure C.9 and Table C.3. 
 

*: p<0.05 (as compared to respective C or O values); **: p<0.01 (as compared to respective C or O values); ***: 
p<0.001 (as compared to respective C or O values); #: p<0.05 (as compared to respective H, OH or F values); ##: 
p<0.01 (as compared to respective OF values); ###: p<0.001 (as compared to OF72 value); ANOVA: analysis of vari-
ance; C: control; DFO: deferoxamine; nCI: normalized cell index; O: oligomycin, OF: oligomycin, ferrum; OH: oligo-
mycin, haemin; Rm: recovery point after metaptosis 
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Figure C.12: Representative phase-contrast microscopy captions of live mHippoE-14 cells 

under the developed intracerebral haemorrhage-simulating conditions. 
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Note: the presented phase-contrast microscopy captions of the mHippoE-14 cell-line are representative captions 
from a series of three independent experiments (n=4) in which the cells were cultured in 35 mm Corning Dishes 
(at a density of 211,000 cells/dish) and their treatment followed the protocol of Figure C.8. In total, 210 captions 
were generated through a Carl Zeiss Axiovert 40 C inverted phase-contrast microscope (Ph1 condenser annulus; 
x10 magnification objective; blue filter) and an attached digital photo camera. For more details, see Figure C.13. 
 

C36: control (at 36 h); C48: control (at 48 h); C72: control (at 72 h); O36: oligomycin (at 36 h); O48: oligomycin (at 48 
h); O72: oligomycin (at 72 h); OF48: oligomycin, ferrum (at 48 h); OF72: oligomycin, ferrum (at 72 h); OH48: oligomy-
cin, haemin (at 48 h); OH72: oligomycin, haemin (at 72 h) 
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Figure C.13: Cytomorphological analysis of the mHippoE-14 response to developed intracer-

ebral haemorrhage-simulating conditions. 
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Note: data are presented as median and interquartile range (IQR) in a box-and-whisker plot (pooled caption scor-
ing of three independent experiments; n=21), and statistical analysis has been performed through the use of a 
Mann-Whitney U test. Only statistically significant differences (p<0.05) are annotated. For more details on the 
parameters assessed and the experimental protocol followed, consult Table B.8 and the note of Figure C.12, re-
spectively.  
 

*: p<0.05 (as compared to the respective C score); **: p<0.01 (as compared to the respective C score); ***: p<0.001 
(as compared to the respective C score); ##: p<0.01 (as compared to the O72 score); ###: p<0.001 (as compared to 
the respective O score); C36: control (at 36 h); C48: control (at 48 h); C72: control (at 72 h); IQR: interquartile range; 
O36: oligomycin (at 36 h); O48: oligomycin (at 48 h); O72: oligomycin (at 72 h); OF48: oligomycin, ferrum (at 48 h); 
OF72: oligomycin, ferrum (at 72 h); OH48: oligomycin, haemin (at 48 h); OH72: oligomycin, haemin (at 72 h) 
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Figure C.14: Profiling of neuronal markers’ expression in mHippoE-14 cells: comparing the 

expression in the presence and absence of FBS. 
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Note: data are presented as normalized mean ± standard error (n=3), and statistical analysis has been performed 
through the use of Student’s t-test. Only statistically significant differences (p<0.05) are annotated. For more de-
tails on the hereby presented experimental conditions, see Figure C.8. 
 

***: p<0.001 (as compared to C30+FBS levels); α1 Na+,K+-ATPase: alpha 1 subunit of sodium / potassium adenosine 
triphosphatase; C30+FBS: control in growing media (at 30 h); C30-FBS: control in FBS-deprived media (at 30 h); ChAT: 
choline acetyltransferase; FBS: foetal bovine serum; GAPDH: glyceraldehyde-3-phosphate dehydrogenase 
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Figure C.15: Profiling of neuronal markers’ expression in mHippoE-14 cells: early effects of 

oligomycin’s addition to FBS-deprived cultures. 
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Note: data are presented as normalized mean ± standard error (n=3), and statistical analysis has been performed 
through the use of Student’s t-test. Only statistically significant differences (p<0.05) are annotated. For more de-
tails on the hereby presented experimental conditions, see Figure C.8. 
 

**: p<0.01 (as compared to C36 levels); ***: p<0.001 (as compared to C36 levels); α1 Na+,K+-ATPase: alpha 1 subunit 
of sodium / potassium adenosine triphosphatase; C36: control (at 36 h); ChAT: choline acetyltransferase; FBS: foe-
tal bovine serum; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; O36: oligomycin (at 36 h) 
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Figure C.16: Profiling of neuronal markers’ expression in mHippoE-14 cells under the devel-

oped intracerebral haemorrhage-simulating in vitro conditions. 
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Note: data are presented as normalized mean ± standard error (n=3), and statistical analysis has been performed 
through the use of one-way ANOVA followed by post hoc Tukey’s range test. Only statistically significant differ-
ences (p<0.05) are annotated. For more details on the hereby presented experimental conditions, see Figure C.8. 
The molecular weights of the a1 Na+,K+-ATPase, ChAT, synapsin I, α-tubulin and HO-1 bands are ~112, ~82, ~74, 
~50 and ~32 kDa, respectively.  
 

**: p<0.01 (as compared to C48 levels); #: p<0.05 (as compared to O48 levels); a-tubulin: alpha-tubulin; α1 Na+,K+-
ATPase: alpha 1 subunit of sodium / potassium adenosine triphosphatase; ANOVA: analysis of variance; C48: con-
trol (at 48 h); ChAT: choline acetyltransferase; HO-1: haeme oxygenase 1; O48: oligomycin (at 48 h); OF48: oligomy-
cin, ferrum (at 48 h); OH48: oligomycin, haemin (at 48 h) 
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Figure C.17: Activity of mHippoE-14 cells’ AChE under the developed intracerebral haemor-

rhage-simulating in vitro conditions (a), and of Electrophorus electricus pure AChE following 

incubation with media deriving from mHippoE-14 cell cultures under the same intracerebral 

haemorrhage-simulating in vitro conditions (b). 
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Note: data are presented as mean ± standard deviation (n=3), and statistical analysis has been performed through 
the use of one-way ANOVA followed by post hoc Tukey’s range test. No statistically significant differences (p<0.05) 
were observed. For more details on the hereby presented experimental conditions, see Figure C.8. 
 

AChE: acetylcholinesterase; ANOVA: analysis of variance; C48: control (at 48 h); O48: oligomycin (at 48 h); OF48: 
oligomycin, ferrum (at 48 h); OH48: oligomycin, haemin (at 48 h) 
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Figure C.18: Overview of the proteomic profiling methodology and the arrays produced. 
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Note: in brief (Figure C.18.a), the array membranes are firstly activated, and then the sample (medium from cell-
cultures, in our case) is incubated overnight on a rocking platform shaker, at 2 to 8oC. The following day, the sam-
ple is removed and the membranes are washed, and then exposed to a detection antibody cocktail and incubated 
for 1 h on a rocking platform shaker, at room temperature. The membranes are then washed, and exposed to 
streptavidin-HRP and incubated for 30 min on a rocking platform shaker, at room temperature. Finally, the mem-
branes are washed and exposed to a mixture of stabilized hydrogen peroxide with preservative and stabilized 
luminol with preservative, that allows their visualization on an X-ray film (Figure C.18.b). For more details on the 
procedure and the particular reagents provided by the manufacturer, see the technical datasheet of the Proteome 
Profiler Mouse XL Cytokine Array Kit (R&D Systems, product number: ARY028) and consult Table C.5. 
 

C48: control (at 48 h); HRP: horseradish-peroxidase; O48: oligomycin (at 48 h); OF48: oligomycin, ferrum (at 48 h); 
OH48: oligomycin, haemin (at 48 h) 
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Figure C.19: Volcano plot of the proteomic profiling of the O48 treatment group as compared 

to that of the control (C48). 
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Note: for a synopsis of the protocol followed and the analytes measured, see Figure C.18 and Table C.5, respective-
ly. For more details on the significant “hits” of this plot, see Table C.6. 
 

analyte abbreviations are defined in Table C.5; C48: control (at 48 h); O48: oligomycin (at 48 h) 
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Figure C.20: Volcano plot of the proteomic profiling of the OH48 treatment group as com-

pared to that of the control (C48). 
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Note: for a synopsis of the protocol followed and the analytes measured, see Figure C.18 and Table C.5, respective-
ly. For more details on the significant “hits” of this plot, see Table C.6. 
 

analyte abbreviations are defined in Table C.5; C48: control (at 48 h); OH48: oligomycin, haemin (at 48 h); serpin-F1 
/ PEDF: serine (or cysteine) peptidase inhibitor, clade F, member 1 / pigment epithelium-derived factor 
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Figure C.21: Volcano plot of the proteomic profiling of the OF48 treatment group as compared 

to that of the control (C48). 
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Note: for a synopsis of the protocol followed and the analytes measured, see Figure C.18 and Table C.5, respective-
ly. For more details on the significant “hits” of this plot, see Table C.6. 
 

analyte abbreviations are defined in Table C.5; C48: control (at 48 h); OF48: oligomycin, ferrum (at 48 h) 
 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

PART D 

 

Critical appraisal  

 

 

 

 

 

 



 

 
CHAPTER VIII 

 

Utility, novelty and limitations of the developed  

in vitro simulation approaches  

 

The term “model” is not adopted for the description of the developed or other in vitro simula-

tion approaches to intracerebral haemorrhage in this PhD Thesis; at the heart of the choice to 

not do so, is my belief that this term should be reserved for refined simulation approaches or 

approaches that can be as close as possible to the in vivo reality, as justified by high standards 

and carefully-parametrised technical scrutiny1. The herein presented in vitro simulation ap-

proaches to intracerebral haemorrhage are far from being in place to be considered as “mod-

els” for this devastating disease of high pathophysiological complexity. They can, however, be 

extremely useful in ways that are discussed in this chapter, along with the novelty that their 

development has introduced. A selected overview of the limitations of the developed simula-

tion approaches as well as of their assessment, is also provided. 

 

VIII.1. Utility of the developed in vitro simulation approaches 
 

We developed two novel in vitro simulation approaches to intracerebral haemorrhage, based 

on the use of a commercially-available immortalized embryonic murine hippocampal cell-line 

(mHippoE-14, available from CELLutions Biosystems Inc.) and its response to oligomycin-A 

and ferrum (as FeCl2) or haemin under appropriately-selected conditions (Figure D.1). These 

two approaches: (a) are simulating aspects of both the primary and the secondary injury tak-

ing place in intracerebral haemorrhage, in an acceptable natural history-simulating manner 

(see Chapter I), (b) are utilizing acceptable (realistic) toxic compound concentrations (partic-

ularly with regards to ferrum and haemin; see Chapter VI), (c) are providing assessment (as-

say) windows of several hours in which injury is exerted in a constant manner (see Chapter 

VII), (d) are 3R-friendly (see Chapter III), and (e) can provide a good basis for the develop-

ment of high-throughput in vitro drug-screening platforms toward the exploration of the neu-

roprotective potential of “candidate” compounds (see Chapter VII). A third in vitro simulation 

approach to intracerebral haemorrhage might also be claimed for the treatment group that is 

                                                 
1 some ideas on how this technical scrutiny can come into reality within an universally-accepted (erga 
omnes) framework, are discussed in Chapter IX. 
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solely exposed to oligomycin; an approach that could be adopted in order to simulate parts of 

the brain that form the “metabolic” penumbra, but do not get to be exposed to the products of 

the lysis of the haematoma’s erythrocytes (see Chapter VII). 

To my opinion, the utility of the aforementioned in vitro simulation approaches to in-

tracerebral haemorrhage is primarily condensed to the fact that they provide a well-designed 

basis for the development of more complex and sophisticated in vitro simulation approaches 

to this disease, based on the use of an immortalized cell-line that maintains a neuronal phe-

notype and can be well employed into a high-throughput assessment approach. In that re-

spect, the possibility of developing a number of more complex experimental set-ups in which 

the FBS-deprived mHippoE-14 cell-line could: (a) be exposed to more / other intracerebral 

haemorrhage-related compounds / elements (such as thrombin, haemoglobin, TNF-α, IL-1β, 

etc.), (b) be subject to a modification of their gene expression, and / or (c) be co-cultured, ei-

ther directly or indirectly (e.g. through well-inserts), along with glial or microglial cell-lines, 

is definitely worth exploring. 

 

VIII.2. Novelty of the developed in vitro simulation approaches 
 

Table D.1 summarizes the novelty of the developed in vitro simulation approaches to intrac-

erebral haemorrhage, which arose both directly, from the simulation approaches’ develop-

ment (see Chapters VI and VII), as well as indirectly, from the work performed toward the 

characterization of the mHippoE-14 cell-line (see Chapters IV and V). The direct novelty ele-

ments are mainly highlighted by the fact that the developed in vitro simulation approaches 

are the first to combine the use of a commercially-available immortalized hippocampal cell-

line (bearing neuronal characteristics) with a multi-level, synchronized simulation set-up that 

employs not 1, but 3 injurious factors related to the neuropathological cascade of intracere-

bral haemorrhage. Moreover, the careful employment of the xCELLigence real-time cellular 

response profiling technology in the development and assessment of these approaches, has 

not only transfused them with high-throughput applicability, but has generated important 

information with regards to their further improvement / exploitation. The credibility of the 

xCELLigence data has been confirmed by the performed cytomorphological assessment (see 

Chapters V and VII), while some aspects of the performed neuronal markers’ expression pro-

filing and proteomic profiling are highly-encouraging toward the consideration of these con-

ditions as suitable and relevant to the neuropathological responses known to take place in 

intracerebral haemorrhage, in vivo. 

The indirect novelty elements arose from the work performed for the purpose of the 

mHippoE-14 cell-line characterization (see Chapters IV and V); as already mentioned in the 

Preface, the latter is equally (if not more) important to the task of the actual development and 
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assessment of the in vitro simulation approaches that this PhD Thesis presents. This work 

had to be undertaken due to the limited data available for the mHippoE-14 cell-line (Gin-

gerich et al., 2010; Chapter III), and has provided us with valuable technical information with 

regards to: (a) their cellular responses to FBS-deprivation, (b) their interesting (but, concen-

tration-dependent) dependency on iron, as well as (c) their own cytomorphology. Of particu-

lar and wider value is the proposed parametropoiesis of the real-time cellular response anal-

ysis that has been developed within the characterization of the mHippoE-14 cellular response 

profiling in response to FBS-deprivation (see Chapter IV); the latter can be very useful for the 

optimization of any in vitro assay reported in the literature that employs FBS-deprivation. 

Finally, the herein presented mHippoE-14 atlas and the cytomorphological parametropoiesis 

of the live (through phase-contrast microscopy) cell captioning of these cells, will be of para-

mount importance for the further characterization of these cell-lines2, the optimization of the 

employed high-throughput approaches (Vistejnova et al., 2009), and the undertaking of more 

accurate and detailed cytomorphological assessment of their response to toxic and / or neu-

roprotective conditions.  

 

VIII.3. Limitations of the developed in vitro simulation approaches 
 

Any in vitro simulation approach to a human disease - no matter how well-designed it is - is 

destined to bear serious limitations; the current project is no difference to this rule. One can 

easily recognise three types of limitations: (a) those that arise from the conceptual context of 

the development of these approaches, (b) those that arise from the technical limitations that 

they impose on the simulation of the disease, and (c) those that are related to the undertaken 

assessment. Table D.2 provides a synopsis of these limitations, which are also presented be-

low: 

 characterization of the mHippoE-14 and associated cell-lines: the available data with re-

gards to the neurodynamic properties3 of the mHippoE-14 cell-line are limited, 

 pathopoietic transformation of the mHippoE-14 cell-line: unfortunately, the manual ap-

proach to FBS-deprivation introduces an additional variation factor to the consistency 

of the development and assessment of these in vitro simulation approaches to intrac-

erebral haemorrhage, 

 atlas of the mHippoE-14 cellular morphology: a study of the time-dependent patterns of 

the mHippoE-14 typology within the developed cytomorphological classification (as 

proposed in Chapter V) must be conducted in the future, along with a thorough im-

                                                 
2 I believe that the mHippoE-14 atlas and the cytomorphological parametropoiesis presented in Chap-
ter V, could be applicable on all mHippoE cell-lines (-2, -5, -14 and -18; see Chapter III). 
3 particularly of the neurochemical and neurophysiological properties of these cells. 
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munocytochemical profiling of these cells; the latter must be comparatively assessed 

with the classification developed by Dotti et al. (1988), 

 parametropoiesis of the mHippoE-14 cellular morphology assessment: the parametro-

poiesis developed was - to an extent - practically appropriate for the assessment of the 

developed in vitro simulation approaches to intracerebral haemorrhage, but could 

have been further upgraded through the adoption of assessment patterns present in 

the cytopathological assessment of cellular responses presented in Tables APP.1 and 

APP.2, and the use of more automated approaches toward its analysis (Kim et al., 

2011), 

 intra- and inter-rater reproducibility assessment of the introduced cytomorphological 

parameters: the assessment of the reproducibility of the cytomorphological parame-

ters presented in Table B.8 (not performed) might have provided useful information 

on the utility of the scoring system, 

 use of oligomycin-A as an approach to ischaemia-related phenomena: although oligomy-

cin was considered as a condition suitable for the in vitro simulation of the primary in-

jury induced by intracerebral haemorrhage, one must not ignore data supporting the 

ability of this antibiotic to suppress TNF-α-induced apoptosis (Shchepina et al., 2002) 

or prevent HIF-1α expression (Gong and Agani, 2005), in other experimental settings, 

 profiling of neuronal markers’ expression: further markers, aiming to characterize the 

mode(s) of neuronal death (see subchapter I.8) occurring, must be employed in order 

to fully-characterize the mechanisms through which oligomycin and haemin or ferrum 

exert their neurotoxicity on mHippoE-14 cells, 

 neurochemical assessment: with regards to AChE activity in the mHippoE-14 cells un-

der the developed intracerebral haemorrhage-simulating in vitro conditions, a reason 

for not obtaining statistically significant results might have been the fact that the buff-

er contained 50 mM Tris-HCl, pH 7.4, and 300 mM sucrose; the use of a high ionic 

strength buffer4 was not adopted, and this might have had an effect on the effective 

solubilisation of the cells and the extraction of AChE, 

 proteomic profiling: finally, as already underlined in subchapter VII.5, the proteomic 

profiling performed could further benefit from a validation of its hits via Western blot-

ting. 
 

>> Table D.1: page 157 

>> Table D.2: page 158 

>> Figure D.1: page 159

                                                 
4 consisting of 10 mM sodium phosphate (NaHPO4), pH 7.0-8.0, 1 M NaCl, 10% Triton X-100 and 1 mM 
ethylenediaminetetraacetic acid (EDTA). 
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Table D.1: Synopsis of the novelty of the developed in vitro simulation approaches to intrac-

erebral haemorrhage. 
 

 

Novelty introduced by the developed in vitro simulation approaches 
 

 

 the combination of the use of the mHippoE-14 cell-line in a multi-level, synchronized set-
up that employs 3 injurious factors related to the neuropathology of intracerebral haem-
orrhage, with particular emphasis on the use of oligomycin as one of these factors 

 the employment of the xCELLigence real-time cellular response profiling technology in the 
development and assessment of these approaches, generating important information with 
regards to their further improvement / exploitation 

 the introduction of novel parametropoiesis of the real-time cellular response analysis that 
has been developed within the characterization of the mHippoE-14 cellular response pro-
filing in response to FBS-deprivation 

 the development of the mHippoE-14 atlas and the cytomorphological parametropoiesis of 
the live (through phase-contrast microscopy) cell captioning of these cells  

 

 

FBS: foetal bovine serum 

 



Zarros A | PhD Thesis in Neuropathology  158 

 

Table D.2: Synopsis of the limitations of the developed in vitro simulation approaches to in-

tracerebral haemorrhage. 
 

 

Limitations of the developed in vitro simulation approaches 
 

 

 limited data exist with regards to the neurodynamic properties of the mHippoE-14 cells 
 the manually-performed pathopoietic transformation of the mHippoE-14 cells (through 

FBS-deprivation), introduces concerns with regards to the approaches’ repeatability 
 the atlas of the mHippoE-14 cellular morphology requires further study and the undertak-

ing of a thorough immunocytochemical profiling 
 the developed parametropoiesis of the mHippoE-14 cytomorphological assessment could 

be further enriched, and benefit from the use of automated approaches toward its analysis 
 the use of oligomycin-A as an approach to ischaemia-related phenomena produces biolog-

ical phenomena that might prevent aspects of the in vivo intracerebral haemorrhage path-
ophysiology to be successfully simulated in vitro 

 the profiling of neuronal markers’ expression must be enriched with markers aiming to 
characterize the mode(s) of the occurring neuronal death under the developed conditions 

 the performed neurochemical assessment might have failed due to technical reasons 
 the performed proteomic profiling could benefit from a validation of its hits 
 

 

FBS: foetal bovine serum 
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Figure D.1: Synopsis of the developed in vitro simulation approaches to intracerebral haem-

orrhage. 
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Note: the developed in vitro simulation approaches to intracerebral haemorrhage are based on the pathopoietic 
transformation of the mHippoE-14 cells through FBS-deprivation (induction of metaptosis), followed by exposure 
to oligomycin-A and, finally, to ferrum or haemin (at a concentration of 500 μM). For more details, see Chapters VI 
and VII. 
 

FBS: foetal bovine serum 



 

 
CHAPTER IX 

 

The developed in vitro simulation approaches  

within the neuropathopoietic context  

 

The work linked to the development and the characterization of the herein presented in vitro 

simulation approaches to intracerebral haemorrhage, is defined by a close association to the 

ideas presented along with the introduction of “neuropathopoiesis” (Zarros, 2014) and a re-

cent evaluation of the nanoneurotoxicologic use of mHippoE-18 cells (Zarros et al., 2015). 

This final chapter is an attempt to place these in vitro simulation approaches within the neu-

ropathopoietic context; a task that requires a small introduction to what really is “neuropath-

opoiesis” (or, at least, what I perceive it to mean), and the ways I currently envisage its theo-

retical and technical parametropoiesis. 

 

IX.1. Neuropathopoiesis 
 

The term “neuropathopoiesis” was proposed by myself (Zarros, 2014) in reply to an insight-

ful commentary written by Remco H.S. Westerink of the Utrecht University (Westerink, 2013) 

on the use of in vitro simulation approaches toward the development of high-throughput 

screening neurotoxicity tests; the commentary was actually focusing on how these tests could 

meet the screening requirement of the REACH (Registration, Evaluation and Authorization of 

CHemicals) framework and other similar legislative frameworks. The term “neuropathopoie-

sis” summarized - on that occasion - the need for the enforcement of a number of “prerequi-

sites as a means for a systematic and reliable introduction of neurotoxicity testing within the 

REACH legislative framework” (Zarros, 2014), and has been ambitiously proposed as “a new 

experimental subfield aiming to construct and establish theoretical principles and technical pa-

rameters which could be used as a basis for the development and assessment of in vitro simula-

tion approaches to brain-representing entities and their diseases towards the delivery of more 

efficient and reliable drug-screening tools” (Zarros, 2014). 

Amongst these prerequisites, apart from the advancement of the 3R principles and the 

amendment of the REACH regulations, I underlined (Zarros, 2014) the need for: (a) a system-

atic designation of the usefulness of in vitro experimentation within an integrative approach 

to neurotoxicological assessment (Harry et al., 1998), (b) the implementation and further de-
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velopment of morphological1 parametropoiesis of the in vitro testing endpoints (Bolon et al., 

1993; Marmiroli et al., 2012), (c) the identification and abolishment of the technical misappli-

cations and misinterpretations of currently employed in vitro approaches and their assess-

ment endpoints (Westerink, 2013), and (d) the introduction and establishment of an erga 

omnes systematization / framework for the characterization of the reliability of each and eve-

ry in vitro simulation approach to physiological processes or pathological nervous system-

related entities (Zarros, 2014).  

A few months later, the need for such an erga omnes framework was highlighted again 

(Zarros et al., 2015). In the latter case, the reason was an experimental study by Janaszewska 

et al. (2013), in which mHippoE-18 cells were not deprived of FBS prior to their exposure to a 

novel nanoparticle; a modified polyamidoamine (PAMAM) dendrimer2 of the fourth genera-

tion, with 4-carbomethoxypyrrolidone surface groups (PAMAM-pyrrolidone dendrimer).  

 

IX.2. Suggested theoretical and technical parametropoiesis 

 

My current understanding / vision on how such an erga omnes framework, a “Neuropatho-

poiesis Assessment Framework” (NAF), could be realized, is summarized in Figure D.2. I un-

derstand NAF to be a framework for the assessment of “simulation approach applications” 

(SAAs) prior to their designation as “drug-screening tools” (DSTs). At the core of this frame-

work lies the “Neuropathopoiesis Assessment Scale” (NAS), the values of which are to be pro-

vided by the employment of two types of proposed assessment procedures3: the “technical 

pro-evaluation” (TPE) and the “technical meta-evaluation” (TME). The first procedure could 

provide a TPE index (TPEi; see Table D.3) as a NAS metric of the assessment of an individual 

SAA, leading (hopefully) to its subsequent revision / improvement (function [1] of the NAF; 

Figure D.2). The second procedure could provide a TME score (TMES; see Table D.4) as a NAS 

metric of the assessment of an individual SAA as compared to multiple relevant (to each oth-

er) SAAs (function [2] of the NAF; Figure D.2). It is these NAS metrics that can potentially al-

low us to have a clear perspective on the reliability of each and every in vitro simulation ap-

proach (SAA) to in vivo physiological processes or pathological nervous system-related enti-

ties, and of their potential to eventually become DSTs (function [3] of the NAF; Figure D.2). 

 

IX.3. Assessment and perspective of the developed in vitro simulation approaches 
 

In view of the above parametropoiesis, the herein presented in vitro simulation approaches to 

intracerebral haemorrhage can only be assessed through the TPEi (Table D.3) of function [1] 

                                                 
1 neuropathological / cytopathological. 
2 dendrimers are repetitively-branched macromolecules with nanometer-scale dimensions. 
3 these two types of assessment procedures need to be to subject to editorial definition; they could be-
come novel types of manuscripts for a number of academic journals. 
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of the NAF (Figure D.2). Considering that our SAAs (as summarized in Chapter VIII) employ a 

3R-friendly monoculture that is relevant to the context of intracerebral haemorrhage, require 

a partial use of FBS, implement a partially-appropriate morphological and functional end-

points’ assessment, and qualify for a neuropathopoietic conditions’ grading of BAB4, they are 

eligible for a TPEi of 20 (out of 120; see Table D.3). The interpretation of this TPEi can only be 

meaningful within a TME, where it can be subject to a comparative assessment with other 

related SAAs that aim to simulate intracerebral haemorrhage. Until then, this TPEi should be 

considered as a reference number that further experimental work should be designed to im-

prove. 
 

>> Table D.3: page 163 

>> Table D.4: page 164 

>> Figure D.2: page 165 

                                                 
4 the conditions within our SAAs partially relate to reality (B), are highly timely-relevant (A), and can 
partially induce injury in a realistic manner (B); grade BAB (Table D.3). 



Zarros A | PhD Thesis in Neuropathology  163 

 

Table D.3: The proposed NAS: an overview of the TPEi and its calculation as part of the TPE 

assessment procedure. 
 

   

Component of the TPEi Component’s specifics Points 
   

   

nature of the SAA’s cellular substrate relevant polyculture; 3R-friendly 4 
 relevant polyculture; non-3R-friendly 3 
 relevant monoculture; 3R-friendly 2 
 relevant monoculture; non-3R-friendly 1 
 irrelevant polyculture or monoculture 0 
use of FBS or other sera no 2 
 partial 1 
 yes 0 
morphological endpoints’ assessment yes 2 
 partial 1 
 no 0 
functional endpoints’ assessment yes 2 
 partial 1 
 no 0 
   

   

neuropathopoietic conditions’ grading grade AAA x12 
 grades AAB or ABA x10 
 grades AAC, ABB or ACA x8 
 grades ABC or ACB x6 
 grade BAA x5 
 grades ACC, BAB or BBA x4 
 grades BAC, BBB or BCA x3 
 grades BBC or BCB x2 
 grade BCC x1 
 grades CAA, CAB or CAC x0 
 grades CBA, CBB or CBC x0 
 grades CCA, CCB or CCC x0 
   

 

Note: the current method of calculating the TPEi might not be final; further revisions of it might apply prior and / 
or after publication. The TPEi is calculated as the sum of the points gathered from the first four components, mul-
tiplied by the point factor suggested from the fifth component (the neuropathopoietic conditions’ grading); it can, 
thus, provide a final index between 0 and 120. The neuropathopoietic conditions’ grading distinguishes whether 
the conditions mimicking the simulated neuropathopoietic context (normal or pathological nervous system entity; 
natural history of the disease, etc.) are relevant to (clinical) reality (first letter component; A: highly; B: partially; 
C: not at all), and whether they are applied in a timely-relevant to (clinical) reality manner (second letter compo-
nent; A: highly; B: partially; C: not at all), and a realistic (function- or) injury-inducing manner (third letter compo-
nent; A: highly; B: partially; C: not at all). The method should not be applied on cases of irrelevant polycultures or 
monocultures. 
 

FBS: foetal bovine serum; NAS: Neuropathopoiesis Assessment Scale; TPE: technical pro-evaluation; TPEi: TPE 
index; SAA: simulation approach application 
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Table D.4: The proposed NAS: an overview of the TMES and its calculation as part of the TME 

assessment procedure. 
 

   

Component of the TMES Component’s specifics Points 
   

   

morphological endpoints’ characterization complete 2 
 partially-complete 1 
 inadequate  0 
functional endpoints’ characterization complete 2 
 partially-complete 1 
 inadequate 0 
   

   

classification of SAA’s optimized TPEi top 10% of relevant SAAs x5 
 top 30% of relevant SAAs x4 
 top 50% of relevant SAAs x3 
 bottom 50% of relevant SAAs x2 
 bottom 30% of relevant SAAs x1 
 bottom 10% of relevant SAAs x0 
   

   

high-throughput applicability yes + 
 no - 
   

 

Note: the current method of calculating the TMES might not be final; further revisions of it might apply prior and / 
or after publication. The TMES is calculated as the sum of the points gathered from the first two components, mul-
tiplied by the point factor suggested from the third component (the neuropathopoietic conditions’ grading), and 
being given a “+” or “-” superscript depending on the fourth component; it can, thus, provide a final score between 
0- and 20+. It is obvious that the TMES for a given SAA is highly dependent on the number of other relevant SAAs 
co-evaluated within the same TME; the power of the TME itself. 
 

NAS: Neuropathopoiesis Assessment Scale; TME: technical meta-evaluation; TMES: TME score; TPEi: technical 
pro-evaluation index; SAA: simulation approach application 
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Figure D.2: Temporary simplified schematic outline of the proposed NAF for in vitro simula-

tion approaches to diseases, and its functions. 
 

 

TPE TMENAS

SAA

DST

[1] [2]

[3]

 
 

 

Note: the NAF should serve three functions ([1]-[3]): (a) the assessment of individual SAAs through TPEs, leading 
(hopefully) to a revision of future SAAs (function [1]), (b) the assessment of multiple SAAs through TMEs, leading 
to a critical appraisal of their neuropathopoietic capacity (function [2]), and (c) the comparative assessment of the 
suitability of certain SAAs to be adopted as DST (function [3]).  
 

DST: drug-screening tool; NAF: Neuropathopoiesis Assessment Framework; NAS: Neuropathopoiesis Assessment 
Scale; TME: technical meta-evaluation; TPE: technical pro-evaluation; SAA: simulation approach application 
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APPENDIX A 

 

List of biomedical abbreviations and  

symbolography used 

 

The following list of abbreviations and symbolography includes the majority of the abbrevia-

tions and symbols defined and used within the main corpus of the current PhD Thesis (Parts 

A, B, C and D). This list does not include (a) the abbreviations / symbols of many of the stand-

ard scientific units, (b) most abbreviations of the herein presented in vitro treatment groups, 

or (c) some of the well-established abbreviations of everyday use and brand names that are 

found within the current PhD Thesis (as this was considered unnecessary). The abbreviations 

of the analytes of the proteomic profiling described in subchapter VII.5 are provided in Table 

C.5. Moreover, none of the abbreviations that are defined and used for the first time (in this 

PhD Thesis) in Appendix B are included in this list. However, every effort has been made in 

order to make sure that the readers will not find it difficult to cope with the use of abbrevia-

tions and symbols at certain crucial points of this PhD Thesis (such as at the Tables and the 

Figures used).  
 

* p<0.05; # 

** p<0.01; ## 

*** p<0.001; ### 

Δ difference (operator) 

ΔOD difference (change / increase) of absorbance 

μi index of metaptotic adaptability 

[Ca2+]i intracellular calcium concentration 

α1 Na+,K+-ATPase alpha 1 subunit of sodium / potassium adenosine triphosphatase 

Aβ amyloid beta 

ACE angiotensin-converting enzyme 

ACh acetylcholine 

AChE acetylcholinesterase 

ANGPT1 angiopoietin 1 

ANGPT2 angiopoietin 2 

ApoE apolipoprotein E 
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APOE apolipoprotein E gene 

AR androgen receptor 

ATP adenosine triphosphate 

Bax B cell lymphoma-2-associated X (protein) 

BBB blood-brain barrier 

Bcl-2 B cell lymphoma-2 (protein) 

BDNF brain-derived neurotrophic factor 

BOXes bilirubin oxidative products 

C5 haemolytic complement 

CAL2 calretinin 

CB calbindin 

CDP-Ch cytidine-5’-diphosphocholine 

ChAT choline acetyltransferase 

CI cell index 

CO carbon monoxide 

CO2 carbon dioxide 

COX-2 cyclooxygenase 2 

CR cellular response 

CSF cerebrospinal fluid 

CT computed tomography 

CV coefficient of variation 

CXCL11 chemokine (C-X-C motif) ligand 11 

DCX doublecortin 

DFO deferoxamine 

DMEM Dulbecco’s modified Eagle’s medium 

DST drug-screening tool; plural: DSTs 

DTNB 5,5’-dithionitrobenzoic acid 

E24 evaluation endpoint at 24 h 

E36 evaluation endpoint at 36 h 

E48 evaluation endpoint at 48 h 

E60 evaluation endpoint at 60 h 

E14 embryonic day 14 

E16 embryonic day 16 

E18 embryonic day 18 

Ed endpoint within the dynamic phase 

EDTA ethylenediaminetetraacetic acid 
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Ee end of the experiment (endpoint) 

ECG electrocardiogram 

Ep endpoint within the pathopoietic phase 

EP3 prostaglandin E2 receptor subtype 3 

ERα oestrogen receptor alpha 

ERβ oestrogen receptor beta 

Et endpoint after a treatment intervention 

Ex evaluation endpoint at a time point of choice (x: number / letter) 

Ex embryonic day x (x: day number) 

FBS foetal bovine serum 

Fe2+ ferrous iron 

Fe3+ ferric iron 

FGF-21 fibroblast growth factor 21 

Flt3l FMS-like tyrosine kinase 3 ligand 

G418 geneticin 

GCS Glasgow Coma Scale 

GFAP glial fibrillary acidic protein 

GHSR growth hormone secretagogue receptor 

GluR3 glutamate receptor subtype 3 

GluR4 glutamate receptor subtype 4 

GPR30 G protein-coupled receptor 30 

HIF-1α hypoxia inducible factor 1 alpha 

HO haeme oxygenase; plural: HOs  

HO-1 haeme oxygenase 1 

HO-2 haeme oxygenase 2 

HRP horseradish-peroxidase 

ICH intracerebral haemorrhage (note: not in use throughout this PhD Thesis) 

ICP intracranial pressure 

Ie experiment’s initiation point 

IFN-γ interferon gamma 

IL-1α interleukin 1 alpha 

IL-1β interleukin 1 beta 

IL-1ra interleukin 1 receptor antagonist 

IL-6 interleukin 6 

Im metaptosis’ initiation point 

iNOS inducible nitric oxide synthase 
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Io recording’s initiation point 

IQR interquartile range 

IR insulin receptor 

It treatment’s initiation point 

KCN potassium cyanide 

LC3 microtubule-associated protein light chain-3 

LDH lactate dehydrogenase 

LPS lipopolysaccharide 

MAP2 microtubule-associated protein 2 

mi metaptotic index 

MMP matrix metalloproteinase; plural: MMPs 

MMP-2 matrix metallopeptidase 2 

MMP-9 matrix metalloproteinase 9 

MMP-12 matrix metalloproteinase 12 

MRI magnetic resonance imaging 

MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide 

n/a not applicable 

Na+ sodium ion 

Na+,K+-ATPase sodium / potassium adenosine triphosphatase 

NaCl sodium chloride 

NaCN sodium cyanide 

NAF Neuropathopoiesis Assessment Framework 

NaHPO4 sodium phosphate 

NaOH sodium hydroxide 

NAS Neuropathopoiesis Assessment Scale 

nCI normalized cell index 

nCR normalized cellular response 

NeuN neuronal nuclei antigen 

NF-κB nuclear factor kappa B (kappa-light-chain-enhancer of activated B cells) 

NGF nerve growth factor 

NIHSS National Institute of Health Stroke Scale 

Nm metaptosis’ nadir point 

Nt nadir point after treatment 

NMDA N-methyl-D-aspartate 

NMDA-R1 N-methyl-D-aspartate receptor 1 

NPY neuropeptide Y 



Zarros A | PhD Thesis in Neuropathology  213 

 

 

Nrf2 nuclear factor (erythroid-derived 2)-like 2 

NSE neuron specific enolase 

OB leptin 

OB-R leptin receptor 

OGD oxygen / glucose deprivation 

P21 postnatal day 21 

PAMAM polyamidoamine 

PBS phosphate-buffered saline 

PEDF pigment epithelium-derived factor; SERPINF1 

PG proglucagon 

PhD Doctor of Philosophy 

PPAR-γ peroxisome proliferator-activated receptor gamma 

PV parvalbumin 

REACH Registration, Evaluation and Authorization of CHemicals (framework) 

Rm  metaptosis’ recovery point 

Rt recovery point after a treatment intervention 

ROS reactive oxygen species 

RT-PCR reverse transcriptase polymerase chain reaction 

S1PR2 sphingosine-1-phosphate receptor 2 

SAA simulation approach application; plural: SAAs 

SDS-PAGE sodium dodecyl sulfate polyacrylamide gel electrophoresis 

Se stabilization point (point of transition from initial to dynamic phase) 

SERPINF1 serine (or cysteine) peptidase inhibitor, clade F, member 1; PEDF 

SMI-310 200 kDa + 160 kDa neurofilament 

SnMP tin‐mesoporphyrin 

SSTY1 spermiogenesis specific transcript on the Y 1 

STICH Surgical Trial of IntraCerebral Haemorrhage 

t time 

TBS-T Tris-buffered saline - Tween 20 

TME technical meta-evaluation 

TMES technical meta-evaluation score; TME score 

TNF-α tumour necrosis factor alpha 

TPE technical pro-evaluation 

TPEi technical pro-evaluation index; TPE index 

Tris tris(hydroxymethyl)aminomethane 

Tris-HCl tris(hydroxymethyl)aminomethane-hydrochloride; Tris-hydrochloride 
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TrkA tropomyosin receptor kinase A 

TrkB tropomyosin receptor kinase B 

UCL University College London 

VEGF vascular endothelial growth factor 

Z-factor measure of statistical effect size; screening assays’ quality indicator 

Zm metaptosis’ zenith point 

Zt zenith point after treatment 

 



 
APPENDIX B 

 

Notes related to the current 

PhD Thesis 

 

The readers of the current PhD Thesis should consider the following notes concerning certain 

points within the text: 
 

• Note 1: within this PhD Thesis, the reaction for the estimation of AChE activity was fol-

lowed spectrophotometrically by the ΔOD at 412 nm, where ΔOD accounts for the mean 

of the difference in the optical density measured. 

• Note 2: all chemicals used for the experiments described in this PhD Thesis were of the 

highest analytical grade available and were purchased from Sigma-Aldrich, unless differ-

ently stated. 
 

>> Table APP.1: page 216 

>> Table APP.2: page 217 

>> Table APP.3: page 218 

>> Table APP.4: page 219 

>> Figure APP.1: page 220 

>> Figure APP.2: page 221 
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Table APP.1: Cellular responses to inflammation, cell injury and malignant transformation: 

an interpretation of the cytopathological perspective (based on Buckner et al., 1992). 
 

     

Cellular feature in
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ce
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sf
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NUCLEUS (N)     
 location ND ND ND ND or EL 

 shape ND ND ND ND or irregular 

 size ND or    varied 

 number ND ND ND ND 

 membrane ND or wavy ND ND or wrinkled ND or irregular 

 nucleoli (n) ND hazy, indistinct NWD varied 

 n/N ratio ND  [---] varied 

 other anisonucleosis karyolysis karyorrhexis anisonucleosis 
CYTOPLASM (C)     
 shape ND ND or round ND ND or irregular 

 borders ND NWD NWD ND or NWD 

 size varied  or   varied 

 N/C ratio ND or  ND or   or  varied or  
 other vacuolization vacuolization [---] [---] 
ARRANGEMENTS     
 single cells ND ND ND ND 

 aggregates  ND ND ND 

 sheets  NWD borders NWD borders ND 

 pseudosyncytia ND ND ND  
 background inflammatory ND ND diathesis 
     

 

Note: all herein presented cellular features are compared to the benign cell equivalents considered by cyto-
pathologists, where the nuclear location is “central”, the nuclear shape is “round to oval”, the nuclear size is “vari-
able by cell-type”, the nuclear number is “single or multiple”, the nuclear membrane is “smooth”, the nucleoli are 
“present or absent, single or multiple, small in size”, the cytoplasmic shape is “retained or rounded (in a fluid envi-
ronment)”, the cytoplasmic borders are “well-defined”, the N/C ratio is “low in mature and high in immature cells”, 
single cells are “present”, aggregates are “present with maintained cell borders”, sheets of cells might be “present 
with defined cell borders and maintained polarity”, pseudosyncytia of cells are “absent or rare, with loss of cell 
borders and of polarity”, and the background is “clean and clear”. Data summarizing those provided by Buckner et 
al. (1992), with extensive modifications considering the utility of the observations for the assessment of cellular 
responses in a cell-line growing as a monolayer in an in vitro environment. 
 

: increased; : decreased; [---]: no data; EL: eccentrically-located; ND: no difference; NWD: not well-defined; PG: 
polygonal;  

 



Zarros A | PhD Thesis in Neuropathology  217 

 

 

 

Table APP.2: Cellular responses to therapy and typical or atypical repair: an interpretation of 

the cytopathological perspective (based on Buckner et al., 1992). 
 

    

Cellular feature ce
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th
e
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u
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ce
ll

u
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NUCLEUS (N)    
 location ND ND ND 

 shape ND ND ND 

 size  varied  
 number ND ND ND 

 membrane ND ND ND or undulating 

 nucleoli (n) ND varied ND 

 n/N ratio [---] [---] [---] 

 other [---] anisonucleosis [---] 
CYTOPLASM (C)    
 shape round to PG round to PG ND 

 borders ND NWD ND or NWD 

 size ND or  ND or  ND or  
 N/C ratio   ND or  
 other [---] [---] [---] 
ARRANGEMENTS    
 single cells absent  ND ND 

 aggregates absent ND ND 

 sheets ND NWD borders ND 

 pseudosyncytia ND  ND 

 background inflammatory inflammatory inflammatory 
    

 

Note: all herein presented cellular features are compared to the benign cell equivalents considered by cyto-
pathologists, where the nuclear location is “central”, the nuclear shape is “round to oval”, the nuclear size is “vari-
able by cell-type”, the nuclear number is “single or multiple”, the nuclear membrane is “smooth”, the nucleoli are 
“present or absent, single or multiple, small in size”, the cytoplasmic shape is “retained or rounded (in a fluid envi-
ronment)”, the cytoplasmic borders are “well-defined”, the N/C ratio is “low in mature and high in immature cells”, 
single cells are “present”, aggregates are “present with maintained cell borders”, sheets of cells might be “present 
with defined cell borders and maintained polarity”, pseudosyncytia of cells are “absent or rare, with loss of cell 
borders and of polarity”, and the background is “clean and clear”. Data summarizing those provided by Buckner et 
al. (1992), with extensive modifications considering the utility of the observations for the assessment of cellular 
responses in a cell-line growing as a monolayer in an in vitro environment. 
 

: increased; : decreased; [---]: no data; ND: no difference; NWD: not well-defined; PG: polygonal 
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Table APP.3: Inter- and intra-variance of independent experiments conducted for the cyto-

morphological analysis of the mHippoE-14 cells’ confluency in response to FBS-deprivation. 
 

       

  Conducted experiments (number)  
       

       

Treatment group Parameter 1 2 3 4 CV 
       

       

FBS(+) at 6 h median 2 2 2 2 0.000 
 IQR 1 1.5 1 0.5 0.408 
 IQR/median 0.500 0.750 0.500 0.250 --- 
       

FBS(+) at 12 h median 2 2 3 2 0.222 
 IQR 1 2 2 1 0.385 
 IQR/median 0.500 1.000 0.667 0.500 --- 
       

FBS(+) at 18 h median 3 2 4 4 0.295 
 IQR 1 2 0.5 2 0.545 
 IQR/median 0.333 1.000 0.125 0.500 --- 
       

FBS(+) at 24 h median 4 4 6 6 0.231 
 IQR 1 3 0 2.5 0.847 
 IQR/median 0.250 0.750 0.000 0.417 --- 
       

FBS(+) at 30 h median 6 5 7 6 0.136 
 IQR 2 3.5 1 3.5 0.490 
 IQR/median 0.333 0.700 0.143 0.583 --- 
       

FBS(+) at 36 h median 6 6 8 7 0.142 
 IQR 0 2.5 1.5 1.5 0.750 
 IQR/median 0.000 0.417 0.188 0.214 --- 
       

FBS(+) at 48 h median 8 9 9 7 0.116 
 IQR 1 1 0.5 2 0.559 
 IQR/median 0.125 0.111 0.056 0.286 --- 
       

       

FBS(+/-) at 30 h median 4 4 6 5 0.202 
 IQR 1 3.5 1.5 1.5 0.591 
 IQR/median 0.250 0.875 0.250 0.300 --- 
       

FBS(+/-) at 36 h median 5 5 6 5 0.095 
 IQR 1.5 2 1 1.5 0.272 
 IQR/median 0.300 0.400 0.167 0.300 --- 
       

FBS(+/-) at 48 h median 3 5 5 5 0.222 
 IQR 1 1.5 2 2 0.295 
 IQR/median 0.333 0.300 0.400 0.400 --- 
       

 

Note: data refer to median and IQR values of confluency assessments (scale 0-10; n=7 captions assessed per condi-
tion, see Table B.8) of each of the four independent experiments conducted. For more details and the findings of 
these experiments, see Figure B.10.a. The IQR/median ratio is an indicator of the variance within each experiment, 
while the coefficient of variation (CV) is herein used as an indicator of the variance of the median across the exper-
iments for any given condition. Values of CV that are lower than 1, are considered as indicators of low variance.  
 

CV: coefficient of variation; FBS: foetal bovine serum; IQR: interquartile range 
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Table APP.4: Z-factors for the mHippoE-14 cellular status under the major conditions chosen 

for the developed in vitro simulation approaches to intracerebral haemorrhage. 
 

      

 Z-factor in each of the conducted experiments (number) 
      

      

Treatment group 1 2 3 4 mean 
      

      

O48 0.370 0.475 0.345 0.563 0.438 
OH48 0.791 0.724 0.763 0.678 0.739 
OF48 0.121 0.838 0.516 0.673 0.537 
      

      

O60 0.627 0.696 0.572 0.751 0.662 
OH60 0.722 0.836 0.780 0.800 0.784 
OF60 0.250 0.903 0.716 0.733 0.650 
      

      

O72 0.692 0.761 0.715 0.735 0.726 
OH72 0.698 0.886 0.771 0.758 0.778 
OF72 0.405 0.914 0.791 0.702 0.703 
      

 

Note: data refer to Z-factors of triplicate assessments from each of the four independent experiments conducted 
(n=4; IDs: 1410161436, 1410202228, 1410251044, 1410251218) and their mean. For more details and further 
findings of these experiments, see Figures C.9, C.10 and C.11 as well as Table C.3. The Z-factor is calculated by the 
following equation:  
 

Z-factor = 1 - (3*(standard deviation(positive) + standard deviation(negative)) / (mean(positive) - mean(negative))) 
 

where “positive” and “negative” refer to the respective “controls” of the assay. For more details on the calculation 
and meaning of the Z-factor, see Zhang et al. (1999).  
 

C48: control (at 48 h); C60: control (at 60 h); C72: control (at 72 h); O48: oligomycin (at 48 h); O60: oligomycin (at 60 
h); O72: oligomycin (at 72 h); OF48: oligomycin, ferrum (at 48 h); OF60: oligomycin, ferrum (at 60 h); OF72: oligomy-
cin, ferrum (at 72 h); OH48: oligomycin, haemin (at 48 h); OH60: oligomycin, haemin (at 60 h); OH72: oligomycin, 
haemin (at 72 h) 
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Figure APP.1: Real-time cellular response of the mHippoE-14 cells after exposure to oligo-

mycin and / or haemin or ferrum (at various concentrations), within metaptosis. 
 

 

setting A: average nCI per group
(normalization at 24:08:06)
(10 well groups included)

setting B: average nCI per group
(normalization at 24:08:06)
(10 well groups included)

 
 

 

Note: representative screen captions from the xCELLigence RTCA SP analysis software (plots and well selection 
maps); experiment’s ID: 1210071923. All compounds were added to the wells right after FBS-deprivation (induc-
tion of metaptosis). Setting A demonstrates the average nCI values of the following treatment groups: control (E2, 
F2, G2), haemin [5 μΜ] (E3, F3, G3), haemin [50 μΜ] (E4, F4, G4), haemin [100 μΜ] (E5, F5, G5), haemin [500 μΜ] 
(E6, F6, G6), oligomycin (E7, F7, G7), oligomycin + haemin [5 μΜ] (E8, F8, G8), oligomycin + haemin [50 μΜ] (E9, 
F9, G9), oligomycin + haemin [100 μΜ] (E10, F10, G10), oligomycin + haemin [500 μΜ] (E11, F11, G11). Setting B 
demonstrates the average nCI values of the following treatment groups: control (B2, C2, D2), ferrum [5 μΜ] (B3, 
C3, D3), ferrum [50 μΜ] (B4, C4, D4), ferrum [100 μΜ] (B5, C5, D5), ferrum [500 μΜ] (B6, C6, D6), oligomycin (B7, 
C7, D7), oligomycin + ferrum [5 μΜ] (B8, C8, D8), oligomycin + ferrum [50 μΜ] (B9, C9, D9), oligomycin + ferrum 
[100 μΜ] (B10, C10, D10), oligomycin + ferrum [500 μΜ] (B11, C11, D11). Oligomycin was used at a concentration 
of 1 μg/mL. The experiment has been conducted in triplicate (IDs: 1210011536, 1210041518, 1210071923; n=3) 
and has consistently shown that: (a) oligomycin is the leading cause for the reduction of nCI in mHippoE-14 cells, 
(b) ferrum or haemin exert their highest toxicity at 500 μΜ (irrespectively of oligomycin’s presence), and (c) the 
addition of these compounds within the phase of metaptosis modifies the mHippoE-14 metaptotic response and, 
thus, should be avoided.  
 

FBS: foetal bovine serum; nCI: normalized cell index 
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Figure APP.2: Representative captions of mHippoE-14 cells after attempts to remove hae-

min- or ferrum-induced debris through washing with PBS. 
 

 

OH72

OF72

 
 

 

Note: in the OH treatment groups, optical field can be shadowed by unsolved haemin crystals, while in the case of 
the OF treatment groups, the assessment of the floating debris and the undertaking of analytical cytomorphology 
is practically impossible; neither of these problems could be solved by removing the media and undertaking 3 gen-
tle washes with pre-warmed PBS. 
 

OF72: oligomycin, ferrum (at 72 h); OH72: oligomycin, haemin (at 72 h); PBS: phosphate-buffered saline 
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