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Summary 

Background 

Patients with rheumatoid arthritis (RA) carry an increased risk of cardiovascular 

disease and cardiovascular death compared to age- and sex-matched controls.   

This risk appears to be related to cumulative inflammatory burden, and can be 

at least partially ameliorated by successful treatment of the disease with 

conventional or biologic disease-modifying anti-rheumatic drugs (DMARDS).   

However, RA patients typically exhibit reduced serum levels of cholesterol, 

which can be increased following DMARD therapy; this is in contrast to the 

general population, where serum cholesterol is directly proportional to 

cardiovascular risk.   The magnitude and nature of this increase varies between 

therapeutic agents.   Blockade of interleukin-6 (IL-6) signalling with the drug 

tocilizumab conveys perhaps the most profound lipid changes, leading to average 

increases in LDL-cholesterol (LDL-c) of around 20% as well as changes in HDL-

cholesterol (HDL-c) and triglycerides.    

The mechanisms behind this so-called “lipid paradox”, and its impact on 

cardiovascular outcomes following RA therapy, are not fully understood.   Animal 

studies have shown that hypercatabolism of LDL can lead to reduced circulating 

LDL-c, possibly due to increased consumption by the reticulo-endothelial system.   

A deeper understanding of the lipid paradox, and its implications for 

cardiovascular risk, is vital to allow physicians to provide optimal management 

of both articular RA and its cardiovascular manifestations.   Using IL-6 blockade 

as a molecular tool, I attempted to unravel the physiological processes 

underlying the lipid changes observed in RA, and to understand what these 

changes might mean in term of cardiovascular risk for patients. 

Objectives 

1) To investigate lipid changes in patients treated with tocilizumab as 

assessed by nuclear magnetic resonance (NMR) spectroscopy 

2) To determine whether increased LDL-c  following IL-6 blockade is due to 

increased production or reduced catabolism of LDL 
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3) To explore the lipid-handling behaviour of macrophages in response to IL-

6 

Methods: The MEASURE study was a placebo-controlled, randomised controlled 

trial evaluating NMR lipid profiles in patients with severe active RA following 

treatment with tocilizumab or placebo, with the placebo group switching to 

open-label tocilizumab after 24 weeks.   Results to week 12 have been published 

previously.   Data on all patients to 52 weeks using an updated NMR platform 

were evaluated, and changes in lipid values were correlated with markers of 

disease activity, including the acute phase markers C-reactive protein (CRP) and 

erythrocyte sedimentation rate (ESR), and the composite clinical score DAS28.   

NMR analysis also yielded the novel marker GlycA, a composite NMR signal 

reflecting a measure of the acute phase response.   GlycA levels were compared 

to other markers of disease activity, and GlycA’s utility as a marker of future 

response to therapy and of persistent disease activity in those with normal ESR 

or CRP was assessed. 

The KALIBRA study analysed the kinetics of the apoB-containing lipoproteins 

before and after IL-6 blockade.   Patients with severe active RA (defined as 

DAS28 ≥5.1) and who were eligible for tocilizumab therapy underwent kinetic 

modelling of VLDL, IDL and LDL at baseline and again following at least three 

months’ treatment with tocilizumab.   The primary outcome measure was the 

fractional catabolic rate of LDL, though LDL production rate was also assessed as 

well as a variety of other lipid parameters.   Changes in LDL production and 

catabolic rates were correlated with serum LDL-cholesterol ester content and 

with measures of disease activity. 

To provide information on the cellular processes underlying kinetic changes, 

macrophages were generated in vitro from the THP-1 monocyte cell line or from 

healthy human donor monocytes.   These cells were then exposed to IL-6 and 

assessed for signs of response, including phosphorylation of STAT3 and 

production of TNF-α.   Macrophage lipid loading (and subsequent foam cell 

formation) following stimulation with 10ng/ml IL-6 for 24 hours was assessed by 

staining with oil red O and fluorimetry following culture with fluorescently-

labelled oxidised LDL.   Altered expression of genes involved in lipid metabolism, 

including surface receptors for both native and oxidised LDL, was assessed at the 
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RNA level using quantitiative polymerase chain reaction (qPCR) and Taqman 

Low-Density Array (TLDA) plates, with fold change of ≥2 considered significant.   

Outcomes from these experiments were then validated at the protein level by 

flow cytometry. 

Results 

The MEASURE study showed no change in small LDL particles with tocilizumab 

therapy.  Increases were seen in large LDL, small HDL and some VLDL particles in 

the tocilizumab group, with change seen by the earliest assessment timepoint of 

2 weeks.   At 52 weeks follow-up, the same changes were observed in placebo 

patients who had switched to open-label tocilizumab.   Greater increases in 

large LDL and small HDL tended to associate with falls in CRP, but less so with 

disease activity as measures by CDAI. 

GlycA levels correlated significantly at baseline with CRP (r=0.70, p<0.001) and 

ESR (r=0.44, p<0.001) but not with CDAI, and fell in a similarly precipitous 

manner following IL-6 blockade.   Neither baseline (area under curve =0.60) or 

week 2 (AUC=0.53) GlycA levels were effective at predicting response at week 

24 as measured by CDAI.   In treated patients, with CRP<5mg/l, GlycA did not 

associate with persistent clinical disease activity. 

In KALIBRA, 12 patients were recruited of whom complete data was available for 

11.   As expected, significant increases in mean serum LDL-c (2.90 v 

3.40mmol/L, p=0.014) and HDL-c (1.23 v 1.52 mmol/L, p=0.006) were observed 

after treatment.   IL-6 blockade led to a reduction in median LDL fractional 

catabolic rate (FCR) from 0.53 to 0.27 pools/day, (p=0.006) with median 

reduction of 30%, and the change in LDL FCR correlated tightly with that of 

serum LDL cholesterol ester content (r=-0.74, p=0.011).   LDL FCR correlated at 

baseline with CRP (r=0.74 p=0.012) but not CDAI (r=0.04, p=0.91).   The degree 

of change in CRP with treatment showed a trend to association with change in 

FCR (r=0.46, p=0.15) and LDL cholesterol ester (r=-0.43, p=0.18).   LDL 

production rate did not increase, and in fact fell (median 763.8 v 442 

mg/kg/day, p=0.002).   No changes were seen in the activity of lipoprotein 

lipase (LPL), hepatic lipase (HL), cholesterol-ester transfer protein (CETP) or 

PCSK9. 
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Human monocyte-derived macrophages (HMDM) displayed altered TNF-α 

production and increased STAT3 phosphorylation in response to IL-6; THP-1 

macrophages did not, and appeared to lose their IL-6 receptor in the process of 

differentiation from monocytes.   Neither cell type displayed increased uptake 

of oxidised LDL following culture with IL-6.   TLDA analysis showed altered 

expression of scavenger receptors with an increase in the “macrophage receptor 

with collagenous structure” (MARCO) and a reduction in LOX-1 in HMDM, though 

this was not observed at the protein level on flow cytometry. 

Conclusions 

 IL-6 blockade in RA elevates numbers of large LDL and small HDL particles, but 

not the most pro-atherogenic small LDL particles.   These changes are 

maintained up to 52 weeks follow-up, and seem to be more prominent in 

subjects with greater reductions in the acute phase response.   The KALIBRA 

study showed that the elevation in LDL is almost entirely due to a reduction in 

LDL fractional catabolic rate, from a baseline state of hypercatabolism in severe 

active disease to values approximating the population average after treatment.   

Greater changes in FCR were associated with greater reductions in acute phase 

reactants, regardless of RA activity as assessed clinically by CDAI.  Lipid changes 

did not appear to be explicable by changes in activity of lipolytic enzymes, CETP 

or PCSK9.   IL-6 does not appear to exert its lipidaemic effects via augmented 

macrophage lipid metabolism or increased foam cell formation.   These findings 

are consistent with a normalisation of a pathological, IL-6 driven state of 

hypercatabolism leading to LDL-c increases following IL-6 blockade, with 

hepatocytes as the possible main effector cell type.   This suggests that LDL-c 

elevations observed during treatment for RA may not be pro-atherogenic or 

contribute to increased CVD risk, though confirmation of this hypothesis is 

required with trials reporting clinical cardiovascular outcomes. 
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1.1 Rheumatoid arthritis 

Rheumatoid arthritis is a chronic autoimmune disease of unknown aetiology 

which manifests primarily as an inflammatory polyarthritis.  Over the course of 

the disease, the initial symptoms of joint pain, stiffness and swelling are 

succeeded by the accumulation of irreversible joint damage and deformity.   The 

resultant disability of this common disease imposes a considerable burden on 

both the individual and society as a whole.   This burden can, however, be 

reduced by effective use of medications such as corticosteroids and disease-

modifying anti-rheumatic drugs, and by attention to relevant co-morbidity. 

1.1.1 Epidemiology 

A 2002 primary care-based study in Norfolk using the 1987 American College of 

Rheumatology (ACR) criteria for RA reported prevalence of 0.81%, with around 

two thirds of patients female (1).   If this figure were extrapolated to the rest of 

the country, this would give a total RA population in the year 2000 of 386,600 

across the United Kingdom.   Prevalence seems to have fallen somewhat through 

the 20th century (2, 3).   Disease onset is most common in the 6th-7th decades (4), 

though can occur at any age over 16 (before this point, a seropositive 

inflammatory arthritis would by convention be diagnosed as juvenile idiopathic 

arthritis).   Similar figures have been found in the USA (5), again with a 

reduction in prevalence since the 1960s (2, 6), although one recent study from 

Minnesota reported an increase in prevalence (0.62% v 0.72%) from 1995 to 2005 

(7).   This last study reported incidence of 40.9 cases per 100,000 population 

annually.   Whilst these figures are derived from Caucasian populations, 

prevalence in other ethnic groups can be significantly higher (6.8% in Chippewa 

native Americans (8)) or lower (0.2% in Japan (9), 0.26% in China (10) and 0.3% in 

British Afro-Caribbeans (11)). 

1.1.2 Clinical Features 

Rheumatoid arthritis classically presents as a symmetrical, small joint 

polyarthritis, most commonly affecting the metacarpophalangeal (MCP) and 

proximal interphalangeal (PIP) joints.  Most other synovial joints can also be 

affected.   Inflammation in joints causes pain and stiffness, sometimes with 
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erythema, heat and swelling (this latter due to effusion or synovial hyperplasia), 

and ultimately loss of function.   Symptoms tend to be worst after inactivity or 

on waking, receding to some degree with activity.   RA can run a somewhat 

relapsing-remitting course, but symptoms are often persistent.   Over time, 

irreversible damage will result in the form of cartilage loss and bony erosions; 

accumulation of structural damage leads to deformities such as ulnar deviation 

of the fingers, MCP subluxation, and swan-neck or boutonniere deformities.     

Loss or limitation of employment is common in RA, and the total cost of RA in 

the UK (including work-related disability) is estimated at between £3.8 and £4.8 

billion per year in the UK (12). 

 Extra-articular manifestations may affect varied tissues including skin 

(rheumatoid nodules, vasculitis), lung (bronchiolitis obliterans, pleural effusion), 

nerve (peripheral and compression neuropathies, fatigue), bone (osteoporosis), 

eye (sicca symptoms, scleritis), kidney (AA amyloidosis), blood (anaemia, 

neutropenia and Felty’s syndrome), heart (pericarditis, myocarditis, and nodules 

causing conduction defects) and vasculature (atheromatous disease and deep 

vein thrombosis) (13).   RA is associated with increased rates of malignancy, 

including lymphoma (over three-fold compared to the non-RA population) as well 

as some solid tumours such as lung cancer (14).   Perhaps most profoundly for 

the physician, RA is associated with increased mortality, a concept which will be 

explored in later sections. 

1.1.3 Diagnosis 

There is no single diagnostic test for RA.   Plain radiographs can identify 

erosions, though these typically require years of inflammation to become 

apparent.   Ultrasound scanning (USS) and magnetic resonance imaging (MRI) are 

able to illustrate active synovitis long before erosive damage has accrued, and 

are especially helpful in detecting “subclinical” synovitis (15).   Importantly, 

they can also exclude inflammation as a cause of arthralgia, thus avoiding futile 

and potentially harmful drug therapy (16).   Blood may be tested for elevated 

acute phase reactants such as C-reactive protein (CRP) and erythrocyte 

sedimentation rate (ESR) but these are normal in up to half of patients at 

presentation.   Autoantibodies, particularly rheumatoid factor (RF) and anti-

citrullinated peptide antibodies (ACPA), are more useful.   Rheumatoid factor 
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refers to a variety of immunoglobulin molecules directed against the Fc 

component of human IgG; IgM rheumatoid factors are most common, but they 

may also exist in IgG and IgA forms.   These were first identified in RA in the 

1940s, and are present in around two-thirds of RA patients as well as other 

conditions such as Sjogren’s syndrome and cryoglobulinaemias, and about 5% of 

healthy over-70s.  RF is associated with the presence of extra-articular features 

and more severe arthritis.   ACPA are present in 70-90% of patients, and, like RF, 

confer a worse prognosis.   Modern assays, however, carry sensitivities of around 

95% (17).   ACPAs are raised against citrullinated proteins such as fibrinogen and 

vimentin, and are potentially pathogenic (17).  

The 2010 American College of Rheumatology (ACR) diagnostic criteria for RA are 

outlined in Table 1.   These can be used in day-to-day practice but are more 

commonly used for research purposes.   The target population for these criteria 

are patients who have at least one joint with definite clinical synovitis (swelling) 

without a better alternative explanation; the criteria for RA are met if the sum 

of the scores from categories A-D is ≥6. 
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 Score 

A.   Joint involvement*  

   1 large joint 0 

   2-10 large joints 1 

   1-3 small joints (with or without involvement of large joints) 2 

   4-10 small joints (with or without involvement of large joints) 3 

   >10 joints (at least 1 small joint) 5 

B.   Serology (at least 1 test result is needed for classification)  

   Negative RF and negative ACPA 0 

   Low-positive RF or low-positive ACPA 2 

   High-positive RF or high-positive ACPA 3 

C.   Acute phase reactants (at least 1 test result is needed for classification)  

   Normal CRP and normal ESR 0 

   Abnormal CRP or abnormal ESR 1 

D.   Duration of symptoms  

   <6 weeks 0 

   ≥6 weeks 1 

 

Table 1 - ACR/EULAR classification criteria for rheumatoid arthritis.      
‘Large joints’ refers to shoulders, elbows, knees, hips, and ankles.   ‘Small 
joints’ refers to MCP joints, PIP joints, 2nd-5th MTP joints, thumb 
interphalangeal joints and wrists. 

 

1.1.4 Aetiology  

The underlying cause of RA remains unknown, but is thought to be due to an 

environmental “trigger” in a genetically susceptible individual.   Twin studies 

demonstrate a genetic component to the disease, with concordance rates of 

around 10-15% in monozygotic twins and 3-7% in dizygotic twins (18, 19).   These 

studies conclude that genetic factors account for roughly 60% of disease risk 

(19).   Genome-wide association studies (GWAS) implicate numerous genes 
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involved in different branches of immune regulation, especially pathways 

related to T-cell activation and nuclear factor κB (NFκB) (20).   The best 

understood genetic association is with the HLA-DRB1 locus.   Possession of the 

DRB1 allele on its own increases disease risk, but susceptibility is particularly 

increased with certain haplotypes which share a common five amino-acid 

sequence termed the “shared epitope”.   HLA genes code for the major 

histocompatibility complex II (MHC-II) molecule which presents antigen to T-

cells, and the shared epitope can bind citrullinated peptides more strongly than 

native sequences (21).   This has led to the hypothesis that altered antigen 

binding, antigen presentation or T-cell selection may cause the initial “breach of 

tolerance” that leads to chronic inflammation.  Notably, whilst most shared 

epitope patients are ACPA positive, ACPA-negative RA seems to involve different 

HLA alleles, suggesting that ACPA positive and negative RA should perhaps be 

treated as separate disease entities (22).   Risk may also be modulated by 

epigenetic factors, including histone modification and DNA methylation (23). 

Environmental risk factors are also recognised.   The most prominent is tobacco 

smoking: this was first observed in the 1980s (24), and subsequently shown to 

increase the risk of seropositive RA in several observational studies (25).   This 

increased risk may persist for over 10 years after smoking cessation (26).   

Interestingly, smoking can act synergistically with the shared epitope to 

markedly increase ACPA production (27) and RA risk (28, 29), though smoking 

also seems to increase risk in seronegative patients with the shared epitope (30).   

It has been suggested that smoking may increase severity of RA, but this may 

simply be a result of confounding by ACPA status (31).    

Various infectious agents, including parvovirus, Epstein-Barr virus, 

cytomegalovirus, Escherichia coli and Porphyromonas gingivalis, have been 

posited as having a causative role in RA.   P. gingivalis is a common cause of 

chronic inflammatory periodontitis (32), and expresses peptidyl argenine 

deaminase IV (PAD4) enzymes which can promote protein citrullination (33).   

Molecular mimicry has been suggested as a possible mechanism of disease, but 

this is controversial (34).   Discrete infectious agents aside, it is also increasingly 

recognised that the microbiome as a whole can alter the host’s systemic 
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inflammatory response, and research is ongoing into the roles of microbiota in 

gut, mouth and lung (35).    

1.1.5 Pathophysiology 

Synovitis, the signature lesion of inflammatory arthritis, occurs when leukocytes 

migrate into the synovial membrane and fluid.   A variety of immune and 

inflammatory pathways have been identified in the joint which may contribute 

to the initiation or perpetuation of synovitis and joint destruction. 

1.1.5.1 Cell migration 

Infiltration of leukocytes into the joint depends on the activation of endothelial 

cells in synovial capillaries, where expression of adhesion molecules and 

chemokines is increased.   Actively inflamed synovium in both early and 

established disease demonstrates increased vascularity on ultrasound or 

magnetic resonance imaging.   This is reflected histologically by increased 

angiogenesis (36) and inadequate lymphangiogenesis (37) which may be induced 

by local cytokines or hypoxia. 

1.1.5.2 Adaptive immunity 

Evidence of a role for adaptive immunity in RA is seen in the contribution of 

autoantibodies and genes including HLA to disease risk, and the clinical efficacy 

of B-cell depletion and T-cell co-stimulatory blockade (discussed later).   T-cells, 

including autoreactive T-cells against citrullinated peptides, abound in the 

synovitic joint, as do B-cells and their plasma-cell descendents.   Indeed, 

synovial T-cell-B-cell aggregates are common, with lymphoid follicle and 

germinal centre development occasionally seen within the joint (38).   An array 

of factors that may drive this process are also detectable in the joint, including 

a proliferation-inducing ligand (APRIL), B-lymphocyte stimulator (BLyS)(38), IL-

12, IL-15, IL-23, and various chemokines (39).   The success of anti-CD20 

therapy, which depletes B cells but spares plasma cells, implies a pathogenic 

role for humoral immunity beyond autoantibody production alone, possibly 

involving cytokine production or antigen presentation. 
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Despite these factors, therapies aimed specifically at targeting T-cells (such as 

cyclosporine-A or monoclonal antibodies against CD4) have shown little or no 

clinical efficacy (40).   More recently, the role of Th-17 cells, which can produce 

IL-17 family members as well as cytokines such as TNF-α, has been explored.   

IL-17 can synergise with TNF-α to activate fibroblasts.   However, whilst IL-17 

blockade is efficacious in ankylosing spondylitis and psoriatic arthritis (41, 42), 

results in RA have been disappointing (43, 44).   An alternative target may be 

CD25 and Foxp3-expressing “regulatory” T cells (“T-regs”).   These cells are 

capable of suppressing inflammation and re-establishing homeostasis via 

cytokines including TGF-β and IL-10, and are functionally impaired in RA (45). 

1.1.5.3 Innate immunity 

Several innate immune cells are present in the inflamed joint.   Macrophages, 

the archetypal cell of chronic inflammation, are derived from circulating 

monocytes which rely on macrophage colony-stimulating factor (M-CSF) or 

macrophage-granulocyte colony-stimulating factor (GM-CSF) for migration into 

and maturation in the synovium.   They are primarily activated by receptors 

which recognise pathogen- and damage-associated molecular patterns (PAMPs 

and DAMPS, respectively) which are commonly present on bacteria and viruses, 

but can also be affected by cytokines, immune complexes, oxidised lipoproteins 

and direct interaction with T-cells.   Macrophages are highly capable of 

phagocytosis, ingesting and destroying pathogens, toxic particles or waste 

materials.   Other cells present include neutrophils (short-lived cells which 

produce prostaglandins and reactive oxygen species) and mast cells (which can 

synthesise vasoactive peptides as well as cytokines and chemokines).    These 

cells produce a variety of pro-inflammatory cytokines which drive leukocyte 

recruitment and survival, endothelial activation, angiogenesis and pain; the 

most significant of these are discussed later in the context of therapeutic 

targeting. 

1.1.5.4 Bone Erosion 

The influx of leukocytes and their behaviour described above has a profound 

impact on fibroblast-like synoviocytes (FLS), the endogenous stromal cell that 

constitutes the local tissue cellular phenotype.   The healthy synovial membrane 
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is composed of a thin layer of these cells on a basement membrane, secreting 

small amounts of viscous synovial fluid to lubricate the joint.   In RA, these cells 

demonstrate both proliferation and resistance to apoptosis, resulting in a 

massively enlarged membrane, often generating large quantities of fluid 

(detectable clinically as an effusion).   Pro-inflammatory cytokines, amongst 

other pathways, probably support this behaviour; the recruitment of new 

mesenchymal cells may also contribute (46). 

The resulting volume of tissue containing leukocyte-rich synovium is known as 

pannus, which manifests as an advancing tissue front which invades and erodes 

cartilage and bone.   FLS synthesise matrix metalloproteinases (MMPs) and other 

enzymes, which degrade collagen and alter its biomechanical properties.   IL-1, 

TNF and IL-17A drive chondrocytes to apoptosis, retarding the ability of cartilage 

to regenerate.   A variety of other cytokines, including receptor activator of Nf-

κB ligand (RANKL), TNF-α, IL-1 and IL-6, promote osteoclast differentiation and 

invasion into bone beside the articular cartilage (47); osteoclasts enzymatically 

destroy mineralised bone in discrete pits which are visible on plain radiography 

as erosions.   Bone marrow inflammation may also occur, forming a focus of 

tissue promoting immune dysfunction (48).   Unlike synovitis, these bone and 

cartilage changes are essentially irreversible, and lead to lifelong loss of joint 

function and disability. 

1.1.6 Drug treatments for rheumatoid arthritis 

Most current treatments in RA are aimed at suppressing the inflammatory 

response to reduce synovitis, improve symptoms and prevent erosions.   These 

can be broadly divided into steroid therapy, conventional disease-modifying 

anti-rheumatic drugs (DMARDS), biologic drugs and JAK inhibitors. 

1.1.6.1 Corticosteroids 

Corticosteroids were identified in the 1940s as agents which could profoundly 

and rapidly improve joint inflammation; a cine-film of a previously bedridden RA 

patient walking independently was hailed as a “modern miracle” and landed 

Kendall, Reichstein and Hench the 1950 Nobel Prize in Physiology or Medicine.   

More recently, the Utrecht (49) and CAMERA II (50) trials demonstrated the 
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ability of 10mg/day prednisolone to both reduce disease activity and reduce 

radiological disease progression.   This relatively low dose is important, as long-

term corticosteroid use carries a litany of potential side effects, including 

osteoporosis, infection, insulin resistance, weight gain, and cardiovascular 

disease.   These effects appear to be dose-dependent (51, 52), though the 

possibility of confounding by indication is hotly debated (53).    Some centres 

(including my own) attempt to minimise these risks by using intra-muscular (IM) 

depot or intra-articular (IA) delivery.    

1.1.6.2 DMARDS 

Conventional DMARDS also aim to reduce inflammation and disability, without 

corticosteroid-related harms.   Methotrexate (MTX), a dihydrofolate reductase 

inhibitor, is perhaps the most commonly used.   Its mode of action in RA is 

unclear but probably involves reduced availability of intracellular adenosine to 

leukocytes; folate supplementation improves adherence without reducing 

efficacy (54).   Oral administration of 10-20mg weekly is usual but IM or 

subcutaneous (SC) preparations can have increased efficacy and tolerance, and 

may avert unnecessary and expensive switch to biologic drugs in some patients 

(55).   Common side effects include nausea, headache, mouth ulcers and 

infection; neutropenia, marrow suppression, transaminitis and pneumonitis are 

rarer.    MTX is highly teratogenic and must be avoided during pregnancy or 

breastfeeding.   Monthly blood monitoring is recommended for the first year of 

treatment (56). 

Sulfasalazine (SSZ) was the first DMARD synthesised specifically for treatment of 

RA by the addition of a sulfapyridine group to 5-aminosalicylic acid, and was 

shown in controlled trials to be as effective as gold (57) and penicillamine (58).   

The side effect profile may be slightly better than MTX, with headache and GI 

disturbance the most common, and the drug may cause transient oligospermia 

and therefore reduced fertility in men.   Monthly monitoring of full blood count, 

renal and liver function is recommended initially, and quarterly thereafter (56).  

A third agent is the antimalarial hydroxychloroquine (HCQ).   HCQ tends to be 

well tolerated, though retinopathy is a rare but serious complication; annual 

review by an optician is recommended.  Both SSZ and HCQ have multiple anti-

inflammatory and possibly antimicrobial effects, though their exact mechanisms 
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of action in RA are unknown.   Other DMARDS used less frequently include 

leflunomide, penicillamine and gold salts.   A systematic review has shown these 

agents to have roughly equivalent efficacy (59) but methotrexate remains the 

most commonly used first-line agent in our centre.  

1.1.6.3 “Biologics” 

Biologic medications are so names as they mimic naturally-occurring substances 

in the human body.   Most biologics are monoclonal antibodies, and can be 

divided into several categories. 

Cytokine blockade:  Tumour necrosis factor alpha (TNFα) is a potent pro-

inflammatory cytokine produced by macrophages, dendritic cells and T-cells in 

response to an assortment of molecular patterns on microbes – for example, 

bacterial lipopolysaccharide (LPS) binding to toll-like receptor (TLR4) and 

signalling via the NFκB pathway.   TNFα can drive inflammation by activating 

endothelial cells and neutrophils, and has other systemic effects such as fever 

via the hypothalamus.    In vitro work in the 1980s implicated TNFα in cartilage 

destruction (60), and inhibition of TNFα in mouse models improved joint swelling 

and erosive progression (61).   These results were replicated in several large 

human studies with Infliximab, a chimeric monoclonal antibody (Mab) against 

TNFα (62).   Today, five TNF blockers are licensed for use in RA: infliximab; the 

fully human Mabs adalimumab and golimumab; certulizumab pegol, a humanised 

antigen-binding fragment of antibody conjugated to polyethylene glycol; and 

etanercept, a soluble TNF-receptor fusion protein.   These drugs are efficacious 

in many patients but must be given with methotrexate for full benefit.   Risks of 

therapy include infection (particularly tuberculosis), cardiac failure, allergic 

reactions and possibly melanoma (63), though other malignancies do not seem to 

be increased (64).   Other attempts at cytokine blockade, including IL-1 (65) and 

IL-17 (43), have been less successful and are not recommended for use in clinical 

practice (66); targeting of GM-CSF may hold more promise (67).   IL-6 blockade 

will be discussed in depth later in the manuscript. 

B-cell depletion: Rituximab is a chimeric antibody which binds to the CD20 

molecule on B cells.   This induces depletion of B cells in peripheral blood (68) 

but allows reconstitution as CD20 is not present on pro-B cells.   Administration 
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of two infusions two weeks apart improves disease activity, with results still 

apparent after 48 weeks in some patients (69).   Efficacy seems significantly 

better in rheumatoid factor-positive patients (70).  Infusion reactions are 

common, and hypogammaglobulinaemia with repeat infusions may lead to 

opportunistic infection(70).   An alternative method of depleting B-cells by 

targeting B-lymphocyte stimulator (BLyS, also known as BAFF) has failed to 

consistently demonstrate efficacy in RA (71). 

Co-stimulatory blockade: Abatacept is a fusion protein of recombinant cytotoxic 

T-lymphocyte associated protein 4 (CTLA-4) and the Fc portion of human IgG1.   

By binding to CD80/86 on antigen-presenting cells, and thus preventing ligation 

of CD28 on the T-cell membrane, this drug prevents the co-stimulatory signal 

required to activate T-cells.   Abatacept is superior to placebo (72) and non-

inferior to adalimumab (73) in RA. 

1.1.6.4 JAK inhibition 

Many cytokine receptors (including IL-6R) transduce their signal via janus kinases 

(JAKs), named after the Roman deity Janus for their two phosphate-binding 

domains.   Receptor ligation triggers phosphorylation of the intracellular part of 

the receptor by JAK; this then recruits signal transduction and activation of 

transcription (STAT) proteins which are themselves phosphorylated by JAK.   

Phosophorylated STAT (pSTAT) then migrates to the nucleus to act as a 

transcription factor for cytokine-dependent genes.   Three JAKs (numbered 1-3) 

have thus far been identified.   Inhibition of JAK activity as therapy for RA has 

two main conceivable advantages: use of a biological “bottleneck” to block 

signalling of multiple cytokines with one agent, overcoming cytokine redundancy 

and obtaining a greater chance of clinical efficacy; and the ability to deliver 

these small molecules orally, as opposed to the parenteral administration 

required for large proteins such as Mabs.   Tofacitinib is a JAK1/3 inhibitor which 

has shown efficacy greater than MTX (74) and similar to adalimumab (75) in RA; 

it is licensed for use in the United States of America but is not currently 

approved by the European Medicines Agency due to concerns over its side effect 

profile.   Baricitinib, a selective JAK1/2 inhibitor,  has demonstrated efficacy in 

a phase III trial (76), and other JAK inhibitors with different specificities are 

being developed (77). 
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1.1.7 Treatment strategies 

Modern treatment of RA typically follows a “treat-to-target” strategy aimed at 

achieving low disease activity or remission, especially in early RA (78).   Various 

regimens have been employed toward this goal, including step-up (78, 79), 

parallel (80) and step-down (81) combination DMARDs.  All these approaches 

seem superior to sequential DMARD monotherapy at reducing disease activity 

and preventing radiographic progression, but it is unclear which is the most 

effective (82-84), and about a third of patients can achieve good control with a 

single DMARD (84, 85).     Due to the side-effect profiles and costs of biologics 

(around £9,000 per year per patient), prescription in the UK is restricted to 

patients who have a 28-joint disease activity score (DAS28) greater than 5.1 

(reflecting severe active disease) and have failed two conventional DMARDS (12).   

Initial therapy with TNF blockers in a step-down approach achieves high rates of 

low disease activity, but many patients still either do not respond or remain 

reliant on their biologic drug (86).    In keeping with international guidelines (66) 

our unit prefers initial methotrexate therapy with bridging intramuscular or 

intra-articular corticosteroids, stepping up to combination DMARD therapy and 

then to biologic drugs if low disease activity is not reached. 

Early initiation of treatment has been shown to improve treatment response (87) 

and functional status (88), and improve long-term radiological outcomes (89).   

In one study, even a short delay in treatment (>4 months) was associated with 

worse disease activity 2 years later (80).   Current guidance (66) emphasises the 

importance of early intervention, as well as treating to target with regular, 

frequent clinical review, and use of the multi-disciplinary team including 

physiotherapists, occupational therapists and specialist nurses. 

1.1.8 IL-6 in rheumatoid arthritis 

A variety of cytokines have been implicated in RA pathogenesis, particularly 

TNF-α as outlined above.   In recent years considerable attention has been paid 

to another pro-inflammatory cytokine, interleukin 6 (IL-6), both in understanding 

its pathogenic role in RA and also its potential as a therapeutic target for various 

inflammatory or autoimmune disorders.   IL-6 is found at high concentrations in 

the serum (90), synovial tissue (91) and synovial fluid (92) of RA patients.   First 
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identified as a driver of B-lymphocyte proliferation, it was originally named B-

cell stimulatory factor 2.   In the intervening three decades, it has become 

apparent that IL-6 has a myriad of immunological and inflammatory functions, 

and its therapeutic blockade is now a valued treatment option in active RA. 

1.1.8.1 IL-6 molecular biology and signalling 

IL-6 is a 21 - 28kDa glycoprotein encoded by the IL6 gene on chromosome 7.   In 

human plasma, it is normally present at a concentration of 5-10pg/ml, though 

this can increase hugely in infection or inflammation; in severe sepsis, it may 

approach 1µg/ml (though this is in the context of illness which may not be 

survivable).   It exerts its influence by ligating the IL-6 receptor (IL-6R) protein, 

which can be found on the membranes of hepatocytes, vascular endothelial 

cells, and some leukocyte populations (including megakaryocytes, B cells, CD4+ 

T cells, neutrophils, monocytes and macrophages).   IL-6R lacks a 

transmembrane domain, but on ligation will recruit the gp130 protein, which 

does span the cell membrane and can bind janus kinases (JAKs) on its 

intracellular aspect.   Gp130 then dimerises, phosphorylating and activating JAKs 

and subsequently the transcription factor signal transduction and activator of 

transcription 3 (STAT3).   Phosphorylated STAT3 (pSTAT3) then continues an 

intracellular signalling cascade which leads to altered gene expression.   The 

above process, referred to as “cis-” or “classical” signalling, occurs in cells 

carrying membrane-bound IL-6R (mIL-6R).   However, IL-6R also exists in a 

soluble form (sIL-6R), generated either by alternative splicing or (more 

commonly) by shedding of mIL-6R by the membrane-bound protease ‘a 

disintegrin and metalloprotease 17’ (ADAM17).   The complex of IL-6 and sIL-6R 

can then bind gp130 (which is expressed ubiquitously), and thus transduce a 

signal.  This “alternative” form of IL-6 signalling, or “trans-” signalling, means 

that IL-6 can transduce a signal in virtually any cell in vivo (93)   Most 

intriguingly, evidence is emerging that cis- and trans-signalling may generate 

anti- and pro-inflammatory responses respectively (94).  SIL-6R may also have an 

inhibitory impact on IL-6 signalling, as the IL-6/sIL-6R complex can also be 

sequestered by circulating soluble gp130, preventing ligation of membrane-

bound gp130 or mIL-6R (93). 
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Figure 1 - IL-6 ligates (a) membrane-bound IL-6R or (b) sIL-6R, in this case 
generated via cleavage of IL-6R by ADAM17. The IL-6/IL-6R complex binds to 
gp130, with subsequent activaiton of the JAK/STAT pathway. From: 
Calabrese et al. Nat Rev Rheumatol 2014; 10(12):720-7 

 

1.1.8.2 Role of IL-6 in RA Pathophysiology 

In vitro experiments have shown that IL-6 can induce several features of 

inflammation, including production of chemokines and leukocyte adhesion 

molecules (95), demargination of neutrophils (96), angiogenesis (97) and 

proliferation of fibroblast-like synoviocytes (98).   Il-6 can also drive bone 

damage by stimulating production of RANKL (which induces osteoclastogenesis) 

(98), and matrix metalloproteinases (which degrade cartilage) (99).   Beyond the 

joint, IL-6 is responsible for the liver’s acute phase response – a term for the 

collective expression of various proteins in response to infectious or 

inflammatory insult, which can be quantified in clinical practice by serum C-

reactive protein (CRP), erythrocyte sedimentation rate (ESR) or plasma viscosity.   

IL-6 also drives the phenomenon of anaemia of chronic disease by inducing 

expression of hepcidin by the liver, which impairs release of iron from body 

stores and thus reduces the availability of iron for erythrocyte precursors in the 

bone marrow.   This leads to a characteristic normochromic, normocytic 

anaemia with normal (or elevated) serum ferritin but reduced serum iron and 

transferrin saturation.   IL-6 also plays a role in the generation of autoimmunity 
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in mouse models of arthritis, with co-stimulation of IL-6 and TGF-β required for 

generation of Th-17 cells in vitro (100).   

1.1.8.3 Tocilizumab and IL-6 blockade in RA 

The above data suggested that selective blockade of IL-6 could be a viable 

therapeutic strategy.   To this end, tocilizumab is a humanised monoclonal 

antibody directed against both soluble and membrane-bound forms of the IL-6R; 

its epitope is the cytokine binding site on the IL-6R, making it in effect a 

competitive antagonist of IL-6. 

An extensive phase III programme has demonstrated tocilizumab’s efficacy in RA 

in DMARD-naive patients (101), inadequate responders to DMARDS (102-106), and 

patients who have not responded to with anti-TNF drugs (107-109).   At a 

standard dose of 8mg/kg in combination with conventional DMARDS, tocilizumab 

led to ACR20 responses of approximately 60% by 24 weeks (102, 105).  Doses of 

4mg/kg typically gave more modest responses which were nevertheless superior 

to placebo (103, 108).   Onset of action was rapid, with falls in mean tender and 

swollen joint counts observed after 4 weeks (110), and drug efficacy was 

maintained in long-term follow-up studies of up to 5 years (111, 112).   

Improvements in functioning and independence, as assessed by the Health 

Assessment Questionnaire (HAQ) were also observed (102, 105, 106, 108).  

Efficacy in patients who had failed anti-TNF was less impressive than for anti-

TNF-naive patients, but remained superior to placebo (107, 108, 110).   Several 

studies also demonstrated the ability of tocilizumab to reduce radiographic 

progression (103, 104, 113); this reduction was observed even in the presence of 

persistent synovitis or high disease activity (114), a feature also described with 

anti-TNF agents and rituximab.    Whilst tocilizumab was initially licensed for 

intravenous (IV) delivery,  a subcutaneous  formulation has been approved on 

the basis of two RCTs which demonstrated non-inferiority of subcutaneous 

tocilizumab 162mg weekly compared to IV (115, 116). 

In contrast to the other biologic agents licensed for the treatment of RA, 

tocilizumab appears effective as monotherapy, with only small additional 

benefit attained from combination with methotrexate (109, 113, 117).   One 

trial did, however, suggest superiority of combination therapy for the higher 
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response targets of ACR70 (37% vs. 16%) and DAS28 remission (34% vs. 17%) (117) 

suggesting that concomitant DMARD use is probably best practice in order to 

obtain good disease control or remission in as many patients as possible.   In 

addition, several studies demonstrated significantly greater efficacy of 

tocilizumab monotherapy compared to conventional DMARD monotherapy (101, 

104, 111).   This stands in contrast to studies of anti-TNF agents which have 

consistently shown significant improvement in efficacy when these agents are 

used in combination with MTX, and which have struggled to demonstrate 

superiority of anti-TNF agents over DMARDS when used as monotherapy (118).   

This contrast is best exemplified by the ADACTA study, a head-to-head 

comparison of tocilizumab 8mg/kg monotherapy against adalimumab 

monotherapy which demonstrated superiority of tocilizumab for ACR50 (47% vs. 

28%), EULAR response (78% vs. 55%) and DAS28 remission rates (40% vs. 11%) 

(119).   These findings were not significantly altered by use of scoring systems 

which did not rely on the acute phase response.   Studies also demonstrated that 

the ability of tocilizumab monotherapy to reduce radiographic progression (104, 

113). These findings are highly relevant to clinical practice as up to 30% of RA 

patients on biologics are not prescribed MTX despite international guidelines 

(120). 

1.1.8.4 Toxicity of tocilizumab  

The most common adverse event attributed to tocilizumab is infection.   A 

serious infection rate of 47 per 1000 patient years was reported in a meta-

analysis of pooled clinical trial data (121), with similar rates reported in phase IV 

post-marketing studies (111, 122, 123).  These figures are comparable to those 

seen with TNF inhibitors. Bacterial pneumonia was the most commonly reported 

infection. The meta-analysis detected 7 cases of TB in 1,870 patients treated 

with 8mg/kg tocilizumab (121) with pre-treatment screening for TB 

recommended in treatment guidelines.  However, the biological role of IL-6 in 

tuberculosis is unclear, and all the large phase III studies screened for latent TB 

prior to enrolment.   Use of live or attenuated vaccinations is not recommended, 

though vaccination against influenza remains effective (124). 

In pooled clinical trial data, tocilizumab increased mean haemoglobin by around 

1g/dl within 6 weeks (in keeping with IL-6 driving anaemia of chronic disease), 



  42 
 

 
 

but was associated with dose-related falls in mean neutrophil and platelet 

counts (121), probably due to neutrophil margination and reduced platelet 

production respectively.   Liver transaminase level increases were similar levels 

in patients treated with MTX monotherapy and tocilizumab monotherapy. The 

percentage of patients with alanine transaminase (ALT) levels >3 times the 

upper limit of normal was 1.9% with tocilizumab monotherapy, 3.7% with MTX 

monotherapy and 5.7% with combination tocilizumab and DMARD (121).   A 

significant proportion of these patients were able to continue on a reduced dose 

of tocilizumab.  EULAR guidelines recommend blood tests every 4-8 weeks for 6 

months, and 3-monthly thereafter.  Treatment should be terminated if 

transaminases are elevated >5x the upper limit of normal (ULN) or persistently 

>3x ULN; elevations 1-3x ULN can be managed with dose reduction to 4mg/kg or 

treatment interruption (125).   Treatment should also be terminated if 

neutrophil count falls <500/mm3, and interrupted at counts of 500-1,000/mm3 

(125). 

Other reported adverse events include bowel perforation, predominantly in 

patients with previous diverticulitis or on concomitant corticosteroid or NSAID 

therapy (126), and one reported case of leukoencephalopathy (127).  Data are 

limited on pregnancy are limited; recent guidelines from the British Society of 

Rheumatology advise stopping treatment three months before conception, but 

note that “exposure early in the first trimester is unlikely to be harmful” (128).   

No increased risk of malignancy has yet been detected in clinical trials or long-

term follow-up studies (111, 121); however, large-scale observational studies 

addressing this issue are currently lacking. 

1.1.8.5 Tociluzmab efficacy in other inflammatory conditions  

Given IL-6’s role in Th-17 cell generation, tocilizumab has been used 

experimentally in seronegative spondyloarthritides.  The BUILDER studies (129) 

aimed to evaluate tocilizumab’s efficacy in ankylosing spondylitis.   

Unfortunately, analysis of preliminary results showed no indication of efficacy, 

and the studies were terminated.   Case reports have suggested efficacy of 

tocilizumab in some patients with psoriatic arthritis (130, 131).   More 

interestingly, a recent phase II study (132) reported promising results with 

tocilizumab being used to treat giant cell arteritis (GCA), a large vessel vasculitis 
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which commonly demonstrates significant elevations in ESR and CRP.   85% of 

patients treated with tocilizumab reached disease remission at 12 weeks 

(compared to 40% on placebo), with no disease relapses recorded after 52 weeks 

of follow-up; the tocilizumab group also required significantly smaller 

cumulative doses of corticosteroids.   Similarly impressive results have been 

obtained in the related condition of polymyalgia rheumatica (133) and in the 

rare lymphoproliferative disorder Castleman’s disease, where B-cell proliferation 

is driven by abnormal production and signalling of IL-6 (134). 

1.2 Cardiovascular disease 

Cardiovascular disease (CVD) describes a process of progressive blood vessel 

dysfunction and occlusion which results in tissue damage and subsequent patient 

disability or death.   Accumulation of lipid plaques (“atheroma”) in arterial 

walls, a state known as atherosclerosis, leads to restriction of blood flow and 

tissue ischaemia; depending on the vessels involved, this may manifest clinically 

as angina (coronary arteries supplying the myocardium, also known as coronary 

heart disease [CHD]), transient ischaemic attack (carotid or cerebral arteries 

supplying the brain) or intermittent claudication (femoral and more distal 

arteries supplying the legs).   Plaque rupture and subsequent thrombus 

formation can occlude the vessel entirely and cause tissue infarction, 

manifesting clinically as myocardial infarction, stroke or critical limb ischaemia.  

Prompt restoration of lumen patency by pharmacologic thrombolysis or 

percutaneous angioplasty may salvage ischaemic tissue and prevent disability or 

death.    

The scale of the global CVD burden is intimidating.   With 17.5 million deaths in 

2012 (equating to 31% of all deaths), it is the largest single cause of death 

worldwide (135).   In the UK, CHD is the single largest cause of death with 

around 73,000 people dying from this disease every year; this equates to roughly 

one victim every seven minutes.   Most of these deaths result from one of the 

175,000 myocardial infarctions that occur annually in the UK.   Stroke, 

meanwhile, causes 40,000 deaths per year.   When combined with related 

conditions including atrial fibrillation, cardiomyopathy and heart failure, CVD 

costs the UK economy an estimated £19 billion per year (136).   Of note, 
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however, the number of deaths from CHD has halved in the last fifty years, due 

to advances in both disease prevention and treatment (137). 

Scotland has an especially poor record of cardiovascular health with over 7,000 

deaths from CHD annually.   Whilst mortality rates have improved over the past 

fifty years, they remain 30-40% higher than in England (137), and treating and 

preventing CVD is a priority for the Scottish Government (138).   Scotland has 

high levels of smoking, obesity and social deprivation, all of which impact CVD 

prevalence and mortality (139) and which are taken into account by the Scottish 

ASSIGN CVD risk calculation algorithm.  

1.2.1 Pathophysiology of cardiovascular disease 

1.2.1.1 Blood vessel anatomy 

To understand the pathophysiology of atherosclerosis, it is necessary to outline 

the anatomy of a typical artery.   All but the smallest vessels are composed of 

three layers: the tunica intima; tunica media; and tunica adventitia.   The 

innermost tunica intima immediately surrounds the blood-containing lumen and 

consists of a single layer of endothelial cells on a thin membrane of type IV 

collagen, laminin and proteoglycans.    Vascular endothelial cells together form 

a highly functional tissue which interacts with blood and the rest of the vessel 

wall, regulating nutrient exchange, vascular tone and coagulation.   An internal 

elastic lamina lies between the intima and the tunica media.   The media is a 

layer of smooth muscle cells which can alter vessel tone to maintain local blood 

pressure and flow, resting on an external elastic lamina.  The outermost tunica 

adventitia is a loose arrangement of connective tissue, fibroblasts, nerves and 

capillaries which supply the vessel wall. 

1.2.1.2 Atheroma formation 

The pathogenesis of an atheromatous plaque is increasingly well understood, and 

may be described in four stages (Figure 2). 
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Figure 2 - Stages of atheroma formation. A: Endothelial activation (adhesion 
molecules denoted in blue).   B: Fatty streak formation with foam cells.   C: A 
mature lesion (fibrous cap denoted in gray).   D: Plaque rupture (thrombus 
denoted in black). (author’s own design) 

 

1 - Endothelial activation and the initial lesion: In most models of 

atherosclerosis, the disease process is initiated by activation of the vascular 

endothelium.   Activated endothelial cells upregulate adhesion molecules such as 

vascular cell adhesion molecule 1 (VCAM-1) and intracellular adhesion molecule 

1 (ICAM-1) and chemokines including monocyte chemotactic protein 1 (MCP-1), 

macrophage colony-stimulating factor (M-CSF) and IL-8, permitting recruitment 

of circulating leukocytes (particularly monocytes) into the tunica intima (140-

142).   Endothelial activation seems to be driven predominantly by complex, 

disturbed blood flow patterns and the resultant wall stresses; arterial segments 

with disturbed flow (eg. carotid bifurcation, aortic arch) are more prone to 

atheroma formation, whilst uniform shear stresses lead to endothelial expression 

of atheroprotective genes including endothelial nitric oxide synthase (eNOS) and 

cyclooxygenase 2 (COX-2)(143).   Suppression of these genes, particularly eNOS, 

can manifest as endothelial dysfunction, a phenotype characterised by 
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diminished production of nitric oxide (with reduced vasodilatory and anti-

oxidant capacity) and a pro-coagulant state.   Perhaps most importantly, 

dysfunctional endothelium becomes more permeable to apoB-containing 

lipoproteins, especially small dense low density lipoprotein (LDL) particles which 

are prone to oxidative modification; these particles can themselves activate 

endothelium and thus potentiate the disease process (144).   Of note, TNFα can 

also upregulate VCAM-1 (145) and pro-thrombotic factors (146) and reduce eNOS 

and COX-2 activity (147).   

2 - The fatty streak: Monocytes recruited to the tunica intima differentiate into 

tissue macrophages.   These macrophages ingest oxidised LDL (oxLDL) and other 

lipoproteins via scavenger receptors, a family of cell surface molecules used to 

clear pathogens or apoptotic cell debris (148).   Scavenger receptors play a key 

role in atherosclerosis as oxidative modification of the apoB molecule on LDL can 

prevent it from binding to the LDL receptor and being cleared in the 

conventional manner (148).   The resulting lipid-laden macrophages are known 

as foam cells, from the microscopic appearance of their lipid droplets; 

accumulation of these cells leads to the first visible form of atheroma, termed 

the “fatty streak”.   The importance of LDL-cholesterol (LDL-c) as a driver of this 

process will be explored later. 

3 - The mature stable lesion: Over time, the immature “fatty streak” lesion is 

modified by migration of smooth muscle cells (SMCs) from the media to the 

intima.   Driven by endothelial cells, macrophages and T-lymphocytes (149), 

SMCs proliferate and produce extracellular matrix molecules to form a fibrous 

cap over the lesion.   Underlying the cap is a lipid-rich core of LDL, free 

cholesterol and apoptotic and necrotic macrophages; a rich milieu of 

lymphocytes, dendritic cells and mast cells also accumulates, in a pattern 

remarkably similar to a synovitic joint.   In this environment, macrophages may 

secrete extracellular matrix-degrading enzymes, and the stability of the mature 

plaque is reliant on the balance between these and the viability and matrix 

products of SMCs (150). 

4 - Plaque rupture & thrombosis: Stable atheromatous plaques may be 

asymptomatic, and significant clinical manifestations of atherosclerosis are 
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usually due to plaque rupture and thrombus formation.   Macrophages again 

seem critical to this event: macrophages of a “pro-inflammatory” or M1 

phenotype, predominate at the rupture-prone shoulder region of the plaque, 

with both M1 and M2 macrophages observed around the fibrous cap (151).   

Exposure of subendothelial connective tissue or the necrotic core triggers 

platelet aggregation and activation of the coagulation cascade; this leads to 

lumen occlusion and downstream tissue ischaemia and infarction.   Circulation 

can be restored, tissue saved and mortality avoided by prompt administration of 

antiplatelet or anti-thrombolytic drugs (152), or by percutaneous angioplasty 

(153). 

1.3 Cholesterol and lipoprotein metabolism 

Several types of lipid, and the lipoprotein structures in which they are 

transported around the body, play roles in the development of atherosclerosis.   

Most prominent amongst these is cholesterol. 

Cholesterol is a lipid with numerous key roles in mammalian biology.   It is a key 

component of the cell membrane, and is also a precursor molecule for bile 

acids, steroid hormones and vitamin D.   Its structure is shown in Figure 3 – it is a 

planar molecule composed almost entirely of carbon and hydrogen, with a 

molecular weight of 386Da. 

 

Figure 3 - Structure of cholesterol, with carbon atoms numbered 1 – 27.   
Adapted from “Medical Biochemistry” 2nd Ed., Baynes & Dominiczak, 
Elsevier Mosby (Philadephia). 
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A typical Western daily diet contains around 500mg (1.2mmol) of cholesterol, 

predominantly in meat, eggs and dairy products.   Normally, approximately half 

of this is absorbed by the gut.   However, cholesterol may also be synthesised de 

novo by human cells.   The majority of cholesterol synthesis occurs in 

hepatocytes, though gut, adrenal glands and gonads also contribute.   Beginning 

with the molecule acetyl CoA (itself derived from fatty acids or amino acids), 

this process is lengthy with numerous intermediate molecules and crucial 

enzymes.   However, the rate-limiting step occurs early on with the conversion 

of HMG CoA to mevalonate by the enzyme HMG CoA reductase (Figure 4).   

Statins, inhibitors of HMG CoA reductase, typically reduce total serum 

cholesterol by around 20%, and this translates to a relative risk reduction in 

cardiovascular mortality of 25-30% (153). 

 

Figure 4 - Abridged schematic of cholesterol biosynthesis (author’s original 
design) 
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Free cholesterol accounts for around 30% of circulating cholesterol.   The 

remainder is bound to various long chain fatty acids to make cholesterol esters.   

Neither free nor esterified cholesterol are particularly soluble in water, and so 

cholesterol in serum is almost entirely transported within specialised molecular 

structures called lipoproteins.   

1.3.1 Lipoprotein structure 

Lipoproteins are roughly spherical particles measuring 5 to 1,200 microns in 

diameter.   They consist of a phospholipid monolayer membrane which holds 

proteins called apoproteins embedded within.   This allows the lipoprotein to be 

very soluble in water whilst bearing large quantities of poorly-soluble content 

internally, mainly triglyceride and cholesterol.   Lipoproteins exist on a spectrum 

of size and density.   The largest and least dense are chylomicrons, followed by: 

very low-density lipoprotein type 1 (VLDL1) or type 2 (VLDL2); remnant particles 

following VLDL metabolism, including intermediate-density lipoprotein (IDL); 

low-density lipoprotein (LDL); and high-density lipoprotein (HDL).    The largest 

and least-dense particles contain large amounts of triglyceride, with TG content 

reduced in smaller, denser particles.   LDL and HDL are triglyceride-poor and 

cholesterol-rich.  
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Figure 5 - Schematic structure of a lipoprotein particle.   The external coating 
consists of a phospholipid monolayer bearing at least one apoprotein.   
Triglycerides and cholesterol (largely cholesterol esters) are present in the 
core. Adapted from “Medical Biochemistry” 2nd Ed., Baynes & Dominiczak, 
Elsevier Mosby (Philadephia). 

 

Apoproteins, whilst making up only a small proportion of lipoprotein particle 

mass, are vitally important as they can bind with receptors on cell membranes 

and activate or inhibit enzymes which direct the metabolic fate of the particle.   

Apoproteins A (AI and AII) are present on HDL, and allow HDL to bind to 

hepatocytes for cholesterol transfer; multiple copies of apoAI or apoAII can be 

present on each HDL particle.   Apoprotein B, in the form of apoB100, is present 

on VLDL, IDL and LDL, and binds to the LDL receptor (LDLr).   Each particle 

contains only one apoB100 protein.   For the purposes of this thesis, “apoB” will 

refer to this apoB100 molecule; a shortened form of apoB, apoB48, is present on 

chylomicrons, but cannot bind to the LDLr.   ApoE is present on remnant 

particles and also binds to the LDL receptor, whilst apoCI, CII and CIII may be 

transferred between different lipoprotein subclasses and act as a regulator for 

enzymes such as lipoprotein lipase (LPL) and cholesterol ester transfer protein 

(CETP).   One unusual lipoprotein particle of import is known as lipoprotein (a), 

or Lp(a).   This is essentially an LDL particle (containing one apoB100 molecule) 

linked to a glycoprotein of between 200 and 800kDa called apo(a).   Lp(a) has 

been found to a strong independent predictor of cardiovascular disease (154). 
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1.3.2 Lipoprotein receptors 

In recent years it has become apparent that there exists a family of molecules 

derived from or related to the LDLr, and some of these play notable roles in lipid 

metabolism.   The VLDL receptor (VLDLr) is structurally similar to the LDLr but 

can bind to a broader repertoire of apoE allelic variants in concert with lipases; 

hence, VLDLr preferentially metabolises triglyceride-rich VLDL and remnants in 

tissues such as heart, skeletal muscle, liver, adipose tissue and macrophages 

(155).    Another functionally prominent molecule is the LDL receptor-related 

protein (LRP-1), a large protein which binds apoE (but not LDL), and binds 

remnant lipoproteins in conjunction with LDLr. 

Separate from the LDLr family, but of key importance in cholesterol-rich 

lipoprotein metabolism are a broad range of cell-surface molecules known as the 

scavenger receptors.   These receptors are present on leukocytes, especially 

macrophages, and can act to trigger the immune response by binding to a variety 

of pathogen-associated molecular patterns (PAMPS) or bacterial products such as 

lipopolysaccharide (LPS).   However, most scavenger receptors are also capable 

of binding and internalising LDL which has been modified by acetylation or 

oxidation (156).   This is of clinical relevance as oxidised LDL (oxLDL) may 

undergo conformational change in the apoB molecule rendering it unable to bind 

to the LDLr; it then instead becomes prone to removal by macrophages in, 

amongst other places, the subendothelial space, leading to foam cell formation.   

Peritoneal macrophages from ApoE -/- mice with multiple scavenger-receptor 

knockouts demonstrated reduced foam cell formation (156), although further 

studies using this animal model have not demonstrated reduction in 

atherosclerotic burden (157, 158).   Probable targets are outlined in Table 2, 

though it is likely that this represents incomplete knowledge as well as an 

element of redundancy in this broad family of molecules.   As oxidation can 

occur in virtually any inflammatory environment, it stands to reason that the 

immune system would have multiple mechanisms for clearing such epitopes 

effectively before they cause tissue damage or generate autoimmune responses.   

Scavenger receptor B-1 can also bind HDL, and has been proposed as a candidate 

for the putative hepatic HDL receptor. 
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Scavenger 

receptor 

Lipoprotein binding Pathogen recognition 

SR-AI/II AcLDL, oxLDL Listeria monocytogenes, Staphycoccus aureus, 

Neiserria meningitides, Streptococcus 

pyogenes, Group B Streptococcus 

MARCO AcLDL LPS, Streptococcus pneumonia, Neiserria 

meningitides 

CD36 AcLDL, oxLDL Microbial diacylglycerides, Mycoplasma 

pneumonia, Staphylococcus aureus 

SR-B1 AcLDL, oxLDL, native 

LDL, native HDL 

Hepatitis C receptor 

CD68 OxLDL Unknown 

LOX-1 OxLDL Unknown 

CD163 None Streptococcus mutans, Staphylococcus aureus, 

E. coli 

FEEL-1 AcLDL Staphylococcus aureus, E. coli 

Feel-2 AcLDL Staphylococcus aureus, E. coli 

SCARA5 none Staphylococcus aureus, E. coli 

 

Table 2 - Major known scavenger receptors and their lipid or pathogenic 
ligands. AcLDL = acetylated low-density lipoprotein.   oxLDL = oxidised low-
density lipoprotein.   LPS = lipopolysaccharide. From Greaves & Gordon J 
Lipid Res 2009; 50 Suppl:S282-6. 
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1.3.3 Lipoprotein function & cholesterol transport 

The major pathways of cholesterol (and triglyceride) are outlined in Figure 6. 

 

 

Figure 6 - Metabolism of the apoB-containing lipoproteins. VLDL = very low 
density lipoprotein. IDL = intermediate density lipoprotein. LDL= low density 
lipoprotein. LPL = lipoprotein lipase. HPL = hepatic lipase. LDLr = LDL 
receptor. SR = scavenger receptor.  (Author’s own design) 

 

Following a meal, chylomicrons are synthesised by enterocytes in the small 

bowel, and carry dietary triglyceride and cholesterol to peripheral tissues.   

Chylomicrons are hydrolysed by lipoprotein lipase (LPL), losing some triglyceride 

into recipient cells, and the resulting remnant particles are taken up by the liver 

via LDLr & LRP-1.   These are processed and provided with an apoB100 molecule, 

and released into the circulation as triglyceride-rich VLDL1.   VLDL1 itself 

relinquishes triglycerides through the hydrolytic action of LPL, and so is 

sequentially modified to VLDL2 and then IDL.   By this point, the particle has lost 

all apoproteins except apoB100.   IDL may then be taken up by the liver via LDLr, 

as the particle’s reduction in size leads to conformational change in apoB which 

permits effective binding to LDLr.   Alternatively, it may be further transformed 
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in LDL by hepatic lipase (HPL) bound to hepatic sinusoidal cells.   LDL particles 

hold little triglyceride but proportionally large quantities of cholesterol, and are 

the major carriers of cholesterol in blood.   LDL may be taken up by liver or 

peripheral tissues via LDLr (“receptor-dependent” uptake), though excess or 

modified LDL may preferentially be consumed by phagocytic cells in the reticulo-

endothelial system or vessel wall, probably via scavenger receptors. 

 

 

Figure 7 - Reverse cholesterol transport and the life cycle of HDL.  LCAT = 
lecithin cholesterol acetyltransferase.  CETP = cholesterol ester transfer 
protein.  SR-B1 = scavenger receptor B1.  ABCA1 = ATP-binding cassette 
A1.  (Author’s own design) 

 

HDL stands distinct from the other lipoproteins as it has its own metabolic cycle 

known as reverse cholesterol transport, outlined in Figure 7.   This is the 

mechanism whereby excess cholesterol is exported from cells; humans cannot 

metabolise the cholesterol ring, and instead must transport it to the liver for 

excretion in bile.   HDL in its nascent phase (“pre-β HDL”) exists as a discoidal, 

lipid-poor particle bearing apoAI synthesised by the liver.   It is able to accept 

free cholesterol exported from peripheral cells by ATP-binding cassette 

transporters, predominantly ABCA1.   Though other active members of this 

family exist, ABCA1 appears to be the rate limiting protein involved.   Genetic 

defects in ABCA1 cause the rare Tangier disease, characterised by accumulation 
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of cholesterol in peripheral tissues and extremely low levels of HDL-c.   Free 

cholesterol within HDL is esterified by the lecithin-cholesterol acetyltransferease 

(LCAT) enzyme which is bound to the particle; the particle then becomes 

spherical and is known as HDL3.   HDL3 then exchanges cholesterol esters with 

apoB-containing lipoproteins in return for triglycerides under the action of 

cholesterol ester transfer protein (CETP), increases in size and becomes HDL2.   

HDL2 can then bind to the class B scavenger receptor (SR-B1) on hepatocytes, 

transfer cholesterol into the cell, and shrink back into a pre-β HDL particle. 

1.3.4 Regulation of intracellular cholesterol levels 

Accumulation of excess intracellular cholesterol can be highly toxic to cells, and 

so intracellular cholesterol levels are tightly controlled.   The major regulatory 

proteins involved are the sterol regulatory element binding proteins (SREBP) and 

the liver X receptors (LXR).   SREBPs act to increase intracellular cholesterol 

levels, whilst LXRs perform the opposite function. 

SREBP exists in two isoforms; SREBP1 is mainly involved in fatty acid 

biosynthesis, whilst SREBP2 regulates cholesterol.   When a cell is cholesterol 

replete, SREBP is inactive, bound to the endoplasmic reticulum by a complex 

including oxysterols (intermediate molecules in cholesterol synthesis which are 

now recognised to have metabolic functions of their own) and the SREBP 

cleavage activation protein, or SCAP.   When cellular cholesterol stores run low, 

the lack of oxysterols liberate the SCAP/SREBP complex that then travels to the 

golgi apparatus.   Here, SREBP is cleaved by proteolytic enzymes, and can travel 

to the nucleus where it acts as a transcription factor to increase expression of 

the LDLr and HMGCoA reductase.   This increases cellular cholesterol levels both 

by uptake from the serum and by de novo synthesis. 

LXRs also exist in two forms.   LXRα is particularly involved in cholesterol 

regulation, and is expressed in gut, adipose tissue and liver.   LXRβ is expressed 

more broadly, and has roles in nervous system and immune system function.   In 

conditions of excess intracellular cholesterol, oxysterols bind to and activate 

LXRα or LXRβ.   This allows LXR to form a heterodimer with its partner retinoic 

acid receptor (RXR).   This heterodimer can then act as a transcription factor, 

binding to a genetic locus called the LXR response element.   Expression of 
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cholesterol export proteins such as ABCA1 and ABCG1 is upregulated (allowing 

for increased cholesterol efflux to HDL) whilst LDLr expression is repressed 

(reducing cholesterol intake from LDL).    

Three other protein families warrant mention in regards to cholesterol 

metabolism.   Firstly, the peroxisome proliferation activating receptors (PPARs) 

are nuclear receptors which, like LXR, form heterodimers with RXR, and can 

then act as transcription factors by binding to PPAR-response elements on gene 

promoters.   PPARα is present in liver, skeletal muscle, brown adipose tissue and 

macrophages.   On ligation, PPARα increases expression of LPL and other 

enzymes involved in fatty acid uptake and oxidation, and reduces expression of 

apoCIII.   This removal of triglyceride from the lipoprotein pool leads to 

increased clearance and reduced synthesis of VLDL, and an increase in average 

LDL particle size with reduction in overall LDL concentration [FRUCHART2009].   

Serum HDL also increases due to increased hepatic synthesis of apoAI and AII, 

and through increased cholesterol efflux to HDL from macrophages in an ABCA1-

dependent manner (159).   Fibrates, drugs which act as PPARα agonists, have 

been used for many years as a treatment for hypertriglycerideaemia.   PPARβ/δ 

and PPARγ are involved in adipocyte proliferation and glucose metabolism 

respectively; the latter is the target for the thiazoladinedione drugs, used to 

lower blood glucose levels in type 2 diabetes mellitus. 

Secondly, the forkhead transcription factors FoxO1, FoxO3a and FoxO4 are 

implicated in a wide range of cellular processes including the cell cycle, cell 

survival, adipocyte differentiation and insulin signalling (160); indeed, FoxO1 

knockout in mice leads to embryonic lethality.   Activation of FoxO1 stimulates 

gluconeogenesis and reduces pancreatic insulin production (161), and has been 

shown to inhibit expression of SREBPs (162).   Knockout of other FoxO molecules 

in ApoE-/- mice leads to increased liver triglyceride content, progressing to 

steatosis in the context of a high-fat diet, elevated serum levels of IL-6, and 

increased atherosclerosis (163). 

Finally, much attention has recently been paid to the proprotein convertase 

subtilisin/kexin (PCSK) family, particularly PCSK9.   In hepatocytes, PCSK9 binds 

to and degrades the LDLr, thus reducing hepatic uptake of LDL.   A phase III trial 
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of evolocumab, a monoclonal antibody directed against PCSK9, reduced 

circulating LDL-c by over 50% (164), and also appears to reduce serum Lp(a) by a 

similar mechanism (165). 

1.3.5 Lipoproteins and CVD risk 

In the general population, several strands of evidence have firmly established 

that high serum LDL-c and low serum HDL-c levels are associated with increased 

risk of cardiovascular disease (CVD). Cholesterol is abundant in the 

atherosclerotic plaque, and familial hypercholesterolaemia—a genetic condition 

that results in elevated serum levels of LDL—leads to a greatly increased CVD 

risk from the age of 30.   Furthermore, statins, drugs which block cholesterol 

synthesis, lower both LDL-c and CVD risk (166-168); a meta-analysis of five large 

RCTs demonstrated mean reductions in TC and LDL-c of 20% and 28% 

respectively, with subsequent reduction of relative risk of major coronary events 

of 34% in primary prevention and 30% in secondary prevention (169).   Regression 

analysis indicated that for every 1% reduction in LDL-c, we would expect a 1% 

reduction in mortality from CHD (170).   Consequently, statins are recommended 

for primary and secondary prevention of myocardial infarction (MI) and 

ischaemic stroke (171).   All instruments for calculation of CVD risk, such as 

SCORE (Systematic Coronary Risk Evaluation; Europe), ASSIGN (assessing 

cardiovascular risk using Scottish Intercollegiate Guidelines Network [SIGN] 

guidelines; Scotland), QRISK® (UK) and the Framingham Heart Study risk 

calculators (USA) make use of the total cholesterol to HDL-c ratio (termed the 

‘atherogenic index’) in some way. 

A comprehensive review of the literature was published by the Emerging Risk 

Factors Collaboration (ERFC), which gathered data relating to risk of CVD from 

68 long-term prospective studies involving over 350,000 patients (172).   ‘Non-

HDL’ cholesterol (as a surrogate for LDL-c) correlated strongly with coronary 

heart disease (CHD), and an inverse correlation was seen between HDL-c and 

CHD, both in a log–linear pattern (Figure 8); these relationships were 

independent of each other.   However, after adjusting for serum cholesterol 

levels, no association of serum triglycerides with CHD was observed, a finding 

which goes against conventional wisdom.   Similar, but much less pronounced, 

relationships were shown for ischaemic stroke.  
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Figure 8 - Hazard ratios for coronary heart disease across quantiles of TG, 
HDLc, and non–HDLc levels, based on 302,430 non-RA patients from 60 
studies.  Adapted from Emerging Risk Factors Collaboration JAMA 2009; 
302:1993-2000 
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Despite the strong associations described in the literature, some evidence has 

emerged that questions the causality within the relationship between HDL-c and 

atherogenesis. In 2012, Voight et al. reviewed case–control studies of single 

nucleotide polymorphisms (SNPs) known to affect serum lipoprotein levels. They 

found that, although SNPs that correlated with high LDL-c levels conferred an 

increased risk of MI, only 6 of 15 SNPs associated with higher serum HDL-c levels 

were associated with MI risk, and all 6 SNPs were also associated with other 

effects on either triglycerides or LDL-c (173).   Moreover, a Mendelian 

randomization was performed using the LIPG gene encoding endothelial lipase 

(an enzyme that hydrolyzes HDL) in which 2.6% of the population carry a SNP 

that elevates serum HDL-c without affecting any other risk factor for CVD (174).   

A meta-analysis of six prospective cohort studies revealed no association 

between MI risk and the increased HDL-c levels associated with this SNP (173).   

These data, together with the lack of beneficial effect on CVD risk of cholesterol 

ester transfer protein (CETP) inhibitors, which inhibit reverse cholesterol 

transport and thus increase HDL levels (175) suggest that whilst HDL-c is a 

valuable biomarker in atherosclerosis, it might not be a causative agent. These 

studies do not, however, negate the potential for HDL particles modified as a 

result of inflammatory processes to be causally related to atherogenesis. Further 

studies are needed to examine this potential.    

1.4 Cardiovascular disease in RA 

The risk of cardiovascular death in patients with RA is increased by around 50% 

compared to age- and sex-matched controls, with individual observational 

studies generating standardized mortality ratios (SMRs) from 1 to 3 (176, 177).   

One Dutch cross-sectional study found RA conferring a risk of cardiovascular 

disease similar to type 2 diabetes mellitus (178), a finding replicated in a much 

larger Danish database analysis (179).   This increased risk is only partially 

explained by conventional risk factors (180, 181)   Whilst cardiovascular 

mortality has declined significantly over recent decades in the general 

population (137), a meta-analysis of 17 studies conducted over a period of 50 

years showed no change in standardized mortality ratio (SMR) for CVD over time 

(182), though none of the studies included covered the “treat-to-target” era.  A 

prospective cohort study of 2,519 patients recruited into the Norfolk Arthritis 
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Register between 1990 and 2004, and followed for up to 7 years, found that CVD 

mortality did fall over time but only in line with changes also seen in the general 

population (183).   Relative risks of incident CVD (184) or CVD-mortality (177) 

seem to be slightly higher for myocardial infarction than for ischaemic stroke.   

One meta-analysis showed that inception cohorts, which tend to include patients 

with less than 2 years of symptoms, generated lower SMRs than cohorts including 

those with established disease (mean SMR 1.2 v 1.9) (185).   Some studies have 

found increased prevalence of surrogates for CVD in early RA, including 

endothelial dysfunction (186), increased carotid intima-media thickness and 

presence of carotid plaque (187).    

Supporting the paradigm of atherosclerosis as an inflammatory condition, 

increasing RA disease activity appears to associate with a worsening 

cardiovascular phenotype.   Inflammatory markers or clinical disease scores such 

as DAS28 can predict increasing carotid intima-media thickness (188), incident 

CVD (189-191), and CVD mortality (192, 193).   Whilst many of these studies use 

single timepoint measurements of disease activity, a Swedish case-control study 

found RA patients with CVD to have higher time-averaged ESR than RA controls 

without CVD (194).   Similar outcomes have been found for time-averaged DAS28 

in an early-RA inception cohorts (189, 195) and CDAI in a large US-based registry 

(191).   This latter analysis suggested that a 10 point reduction in time-averaged 

CDAI was associated with a 21% reduction in risk of MACE (a composite outcome 

of MI, stroke of CV death).   An analysis of the South Korean KARRA cohort (196) 

showed that cumulative inflammatory burden, as measured by “area under the 

curve” ESR, predicted the presence of carotid plaque in a manner which was 

synergistic with conventional risk factors.   This implies that reduction of CVD 

risk in these patients requires both adequate disease control and management of 

conventional risk factors, as is the case in the non-RA population. 
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Figure 9 - Percentage of RA patients with detectable atherosclerotic plaque 
on carotid artery ultrasound, as stratified by the number of conventional CV 
risk factors and tertile of ESR-AUC (ESR area-under-curve).   Adapted from 
Im et al. Rheumatology 2015; 54(5):808-15. 

 

Based on the above findings, current EULAR guidelines (197) recommend 

multiplying estimated CVD risk by 1.5 when the patient has two of the following 

three clinical features: seropositivity for RF or ACPA; disease duration of >10 

years; or severe disease with extra-articular manifestations.   Recent data using 

the SCORE algorithm suggest, however, that this practice may still 

underestimate CVD risk in many patients.   In one Spanish cohort (198) of RA 

patients who were calculated to be low risk for CVD (SCORE of zero), 24% had 

ultrasound evidence of carotid artery plaque.   Additionally, in a Dutch RA 

inception cohort, use of the adapted SCORE calculator (i.e. with the CV risk 

multiplied by 1.5) tended to underestimate the observed rate of incident 

cardiovascular disease, especially in those with the lowest SCORE result (199). 
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1.4.1 Effect of DMARDS on CVD risk 

 

In accord with the hypothesis of inflammation driving cardiovascular disease, 

therapeutic suppression of RA disease activity has been shown to ameliorate CVD 

risk.   Most data concerning conventional DMARDS in this regard is derived from 

studies of methotrexate, with relatively little on other agents such as 

Sulfasalazine or hydroxychloroquine.   The effect of methotrexate therapy on 

CVD risk was first studied in a cohort of 1,240 RA patients, followed up for an 

average of 6 years (200).   The 588 RA patients receiving methotrexate 

demonstrated a 70% reduction in CV mortality compared to those not receiving 

methotrexate; no similar effect was found with other DMARDS, though few 

events were seen with these agents, and confidence intervals were wide.   A 

meta-analysis (201) suggested a 21% reduction in risk for total CVD (n of 

studies=10) and 18% reduction in risk for MI (n=5). 

 

1.4.2 Effect of anti-TNF therapy on CVD risk 

 

The advent of biologic therapies has been accompanied by a large number of 

studies examining the effect of these drugs on cardiovascular disease, with 

reference to a number of clinical or surrogate endpoints.   As the first biologics 

to enter clinical practice, the TNF inhibitors have been subjected to the greatest 

scrutiny.   Roubille (202) conducted a systematic literature of observational 

studies and RCTs dating from 2005 onwards examining the effect of anti-TNF on 

different CVD outcomes.   A total of 28 studies were analysed, with over 230,000 

subjects included.   Reductions in relative risk were found for MI (RR 0.59, [95% 

C.I. 0.36-0.97] n=6), stroke (RR 0.57 [0.35-0.92] n=6) and MACE (RR 0.30 [0.15-

0.57] n=4), with a non-significant reduction in risk for congestive cardiac failure 

(RR 0.75 [0.49-1.15], n=7).   In contrast, corticosteroids and non-steroidal anti-

inflammatory drugs (NSAIDS) increased the risk of cardiovascular events.   Of 

note, results were not uniform, and not all studies demonstrated reductions in 

risk with therapy.   However, is likely to be because not all patients who 

received anti-TNF displayed a clinical response to it.   One study drawing data 

from the British Society for Rheumatology Biologics Registry (BSR-BR) stratified 
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7,515 patients receiving anti-TNF depending on clinical response (response was 

defined as a fall in DAS28 of >1.2 after 6 months, or a fall of >0.6 which resulted 

in a DAS28 of ≤5.1) (203).   Responders in the registry had a myocardial 

infarction incidence of 3.5/1,000 patient years, compared to 9.4/1,000 patient 

years in non-responders, leading to an incidence rate ratio of 0.38 for responders 

relative to non-responders.   This lends further weight to the concept of 

inflammatory burden being a driver behind atherogenesis. 

 

1.4.3 Effect of tocilizumab on CVD risk 

 

Relatively little data exists regarding CVD risk with other biologics.   This is 

partly because of the difficulty inherent in detecting significant changes in 

outcomes which are not especially common.   Whilst nationwide prevalence of 

cardiovascular disease is high, an individual’s absolute risk may be low, requiring 

very large numbers of study recruits followed for a long time to generate enough 

events to confidently pronounce a statistically significant difference between 

groups.   The process of atherogenesis is also kinetically modest, and so the 

effects of a therapeutic intervention on atheroma formation (and thus CV 

events) may take several years to become apparent.   A 6-months randomised 

controlled trial, such as may commonly be used for new RA drugs, may therefore 

be a poor tool for evaluating CVD risk, and so cohort studies using clinic 

databases or disease registries (with large patient numbers and long periods of 

follow-up) are often preferred.   Pooled data from extension phases of 

tocilizumab RCTs (121), with mean treatment duration of 2.4 years, failed to 

demonstrate excess CVD risk from treatment.   A more recent post-hoc analysis 

of 5 RCTs and their extension studies (204) identified 50 incidences of MACE in 

14,683 patient years of follow-up (median duration of follow-up 4.5 years).   A 

multivariate analysis indicated that baseline DAS28 and TC/HDL-c ratio were 

independently associated with MACE.   A greater reduction in DAS28 by 24 weeks 

was associated with a smaller incidence of MACE, though no association was seen 

for changes in serum lipids or ESR.   Unfortunately, the nature of the analysis 

meant no comparison of MACE risk in placebo-treated patients was possible.    
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There is, however, evidence in favour of IL-6 blockade from large-scale genetic 

studies.   Two consortia (205, 206) performed Mendelian randomizations, 

studying the effect of a single nucleotide polymorphism (SNP) (Asp358Ala) which 

increases proteolytic cleavage of mIL-6R and subsequent loss of IL-6R from the 

surface of leukocytes and hepatocytes.   This leads to reduced IL-6 signalling on 

these cells, and subsequently higher serum IL-6 and lower CRP and fibrinogen.   

Possession of this SNP led to per-allele reductions in CVD risk of 5% and 3.4% 

respectively.   Whilst these effects appear modest, this is likely to be a result of 

the much lower levels of IL-6 signalling in these populations compared to 

patients with RA, and the correspondingly greater reduction in IL-6 signalling 

following tocilizumab which one would see in RA.   Additionally, the very large 

numbers of patients and events in these analyses permit a strongly statistically 

significant result.   Extrapolation of these results to tocilizumab is not without 

risk, however, as the Asp358Ala SNP reduces only cis-signalling, whilst 

tocilizumab blocks both soluble and membrane-bound forms of the IL-6R and 

thus also blocks trans-signalling.   Trans-signalling blockade may therefore lead 

to clinical consequences not seen in the Asp358Ala population. 

 

1.4.4 Effects of other agents on CVD risk 

Relatively little data exists on the effects of other biologic therapeutics on CVD 

risk in RA.   The only source for information regarding CVD risk of other biologic 

agents appears to be a retrospective interrogation of the US Medicare database, 

which provides medical insurance cover for more than 90% of US residents over 

65 years of age (207).   With almost 75,000 patient years of follow-up, this study 

suggested that anti-TNF drugs were associated with an increased risk of MI 

compared to abatacept, and that tocilizumab had the lowest risk of a composite 

outcome of acute MI or coronary revascularization.   Tocilizumab was in fact 

associated with a high risk of MI in biologic naïve patients, though this had broad 

confidence intervals due to low numbers (only 11 instances of MI in the biologic-

naïve population).   Whilst the analysis adjusted for a variety of cardiovascular 

risk factors, confounding by “contraindication” (i.e. tocilizumab being avoided 

in patients at high risk of CVD due to its perceived worsening of lipid profiles) is 

a risk in this retrospective analysis.   One other prospective observational study 

(208) assessed markers of CVD risk (but not cardiovascular events) in 36 patients 
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commencing abatacept, rituximab and tocilizumab.   Arterial stiffness, as 

measured by pulse wave velocity, was reduced at 3 months by tocilizumab and 

12 months by rituximab. 

1.4.5 Potential mechanisms behind CVD in RA 

 

There are several proposed mechanisms for how high-grade inflammation, as 

seen in RA, may contribute to accelerated atherogenesis (209).   Inflammation 

can drive endothelial dysfunction and upregulation of adhesion molecules and 

platelet-activating agents in the vasculature, leading to a pro-thrombotic state 

and encouraging leukocyte migration into the intima.   Pro-inflammatory 

cytokines can also increase pro-oxidative stress, and thus oxidation of 

lipoproteins, and act on skeletal muscle or adipose tissue to increase insulin 

resistance.   As noted above, some of these parameters can be measured and 

used as surrogates for clinical CVD, and have been found to be prevalent in even 

early RA.   The extensive literature behind these mechanisms is beyond the 

scope of this thesis, but one crucial component to atherogenic effects of 

inflammation is its effects on lipid profiles, and how they may relate to the 

development of cardiovascular disease. 

1.5 Lipids and CVD in RA - the “lipid paradox”  

Several studies have attempted to compare lipid profiles in patients with RA to 

those of controls (210-216).   Although not all of these studies report consistent 

results, it is generally accepted that active RA leads to a fall in both LDL- and 

HDL-cholesterol levels (217, 218), This ‘lipid paradox’ phenomenon - the 

reduction in levels of serum lipids in a disease associated with increased CVD 

risks – is also seen in other autoimmune inflammatory diseases and sepsis, in 

which greater inflammatory burden is associated with lower levels of circulating 

lipids.   Consistent with these findings are reports from numerous studies of 

increases in serum lipid fractions with successful anti-inflammatory treatment, 

which will be discussed further in a subsequent section. Nevertheless, some 

studies have obtained conflicting results regarding total cholesterol, HDL-c, LDL-

c and triglyceride levels in RA; the inconsistencies might be explained by the 

small numbers included in the cohorts studied (usually less than 100 patients), as 
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well as the considerable demographic and disease-related heterogeneity 

between studies (for example, early versus advanced disease, active versus 

quiescent disease or male versus female). In addition, few placebo-controlled 

studies exist in this area, and on many occasions data was gathered 

retrospectively. 

1.5.1 Does dyslipidaemia in precede clinical RA?  

The findings described above raise the question of whether it is possible to 

discern a ’pre-rheumatoid’ serum lipid pattern, which might prove useful in 

early diagnosis of the disease and/or defining the risk of CVD in RA.   To address 

this question, van Halm et al. examined lipid profiles in samples from 79 blood 

donors who later developed clinical RA; on average, these patients had 4% higher 

total cholesterol, 9% lower HDL-c, AND 17% higher trigylceride levels compared 

with control samples matched for storage time, and donor age and gender (219).   

This lipid profile was apparent up to 10 years before the development of RA 

symptoms. More recently, the Rochester Epidemiology Project medical records 

linkage system was used to identify the lipid profiles of 577 patients with RA, 

from 5 years before until 5 years after diagnosis (220).   Despite having lower 

rates of statin use compared with the control population, the patients with RA 

displayed a mean reduction in total cholesterol (10%) and LDL-c (17%) in the 5 

years preceding diagnosis; no statistically significant change in HDL-c and 

triglyceride levels was observed, and thus the total cholesterol to HDL ratio 

progressively fell in patients with RA during the 5 years before diagnosis.  

1.5.2 Using lipid profiles to predict CVD in RA 

Given the seemingly paradoxical fall in LDL-c levels in a condition that associates 

with an increase in CVD mortality, the question arises: do levels of serum lipids 

predict CVD risk in RA, as they do in the normal population? Surprisingly, until 

very recently this question had not been widely studied.   In 2010 an analysis of 

the AMORIS cohort failed to demonstrate a significant relationship between TC 

and development of CVD (221).   The following year, however, a retrospective 

cohort study my Myasoedova et al. involving 651 patients investigated the 

associations between inflammatory markers, lipids and CVD risk.   This paper 

confirmed that the risk of developing CVD was increased in patients with a 
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higher inflammatory burden, with a lower total cholesterol to HDL-c ratio 

associated with risk (222).   Most interestingly, in contrast with the linear 

association seen in individuals without RA, the relationship between total 

cholesterol and CVD risk was represented by a U-shaped curve in patients with 

RA, with risk increasing at total cholesterol levels below 4 mmol/l. LDL-c 

displayed a similar but non-statistically significant relationship (Figure 10).    In 

both values the confidence intervals were wide, but exploratory analysis showed 

that in patients with ESR >25mm/hr, the risk of incident CVD was higher for 

patients with LDLc <1.5mmol/L compared to those with LDLc >2mmol/L (Figure 

11). 

 

 

 

Figure 10 - Hazard ratio for incident cardiovascular disease (shadow = 95% 
confidence interval) at different serum levels of total cholesterol and LDL-
cholesterol.   From Myasoedova et al . Ann Rheum Dis 2010; 70:482-487 
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Figure 11 - Hazard ratio for incident cardiovascular disease in patients with 
low LDL-c (thick line) or high LDL-c (thin line) at different levels of ESR.   
From Myasoedova et al. Ann Rheum Dis 2010; 70:482-487 

 

Subsequent, larger studies have replicated and refined these observations.   

Zhang el al also conducted a retrospective cohort study, though from a large US 

commercial healthcare plan, with complete data on over 20,000 patients with 

366 myocardial infarctions.   This showed a U-shaped relationship between LDL-c 

and MI, with a linear inverse relationship between HDL-c and MI (223).   Liao et 

al looked at data from another commercial database in the USA, enrolling 16,085 

RA patients and a total of 32,000 patient years of follow-up.   Here the end-

point was “major adverse cardiac event” (MACE), a composite of myocardial 

infarction, coronary artery bypass graft, coronary revascularization or stroke.   A 

U-shaped curve was demonstrated between MACE and LDL-c, though statistical 

analysis failed to yield a significantly increased odds ratio for all but the highest 

quintile of LDL-c (224).   Most recently, Navarro-Millan et al used data from the 

National Veteran’s Health Administration cohort to identify more than 37,000 RA 

patients (90% of whom were male, with mean age of 63 years), with 896 MIs and 

122 cardiovascular deaths.   In this study, a U-shaped curve was again 
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demonstrated for the association between LDL-c and MI (190).   Again, however, 

very broad confidence intervals were displayed, and no relationship was seen 

between LDL-c and cardiovascular death.   Reassuringly, and in keeping with 

previous results, there was an inverse relationship between HDL-c and MI, and a 

log-linear relationship between CRP and MI.   In these studies, statistical 

significance is rarely met, and confidence intervals tend to be broad.   

Nevertheless, the reproducibility of this data and its consistency with what is 

already known about lipidaemic changes in inflammation make it seem likely 

that there is at least a subset of RA patients who have significant inflammatory 

burden which leads to both elevated CVD risk and lower LDL-c levels.   

Intriguingly, these findings are mirrored in end-stage renal failure, which 

commonly manifests as a chronic inflammatory state. In a prospective study of 

800 patients starting dialysis, those displaying signs of inflammation or 

malnutrition (C-reactive protein [CRP] ≥ 10 mg/l, hypoalbuminaemia [serum 

albumin < 36 mg/l] or serum IL-6 ≥ 3.09 pg/ml) displayed higher CVD risk with 

reducing serum levels of total cholesterol (225).   Importantly, the opposite and 

anticipated relationship is seen in patients without these signs of inflammation, 

underlining the confounding effect of inflammation on CVD risk. 

 

1.5.3 The lipid paradox—potential mechanisms 

Many factors could influence lipid metabolism and increase cardiovascular risk in 

RA. These influences could include shared risk factors (such as smoking), genetic 

pathways, effects of therapeutics (corticosteroids, for example), or might 

reflect specific molecular interactions driven by the inflammatory process itself. 

The molecular factors that potentially drive the interaction between 

inflammatory disease and altered lipid metabolism are not entirely understood; 

however, several credible mechanistic pathways have come to the fore in recent 

years.  Logically, in evolutionary terms, immune defence, which requires high 

levels of both leukocyte cell division and death, protein synthesis, cell motility 

and host tissue responses to damage and repair, should be integrated with 

metabolic function, in order that appropriate energy and endocrine homeostasis 

is maintained at a time of ‘high demand’. Thus, cytokines might have direct 

effects on lipid metabolism, in the same way we know an acute inflammatory 

response alters carbohydrate metabolism and insulin resistance, and engenders a 
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hypercoagulable state.   It has been demonstrated in a cohort of post-operative 

patients that serum IL-6 levels correlated inversely with TC and LDL-c (226) 

whilst administration of exogenous IL-6 reduces serum TC and alters VLDL 

subclasses in humans (227, 228).   TNF-α and bacterial lipopolysaccharide (LPS) 

can achieve similar results (229).   Whilst this may confer survival advantage in 

the acute setting, such responses could become maladaptive in the context of 

chronic high-grade inflammation, such as seen in RA.    

Inflammation might also promote changes in the levels and composition of 

lipoprotein subfractions, which are not detectable using standard laboratory 

lipid profiling. Small, dense LDL particles - detectable on NMR spectroscopy - 

have been shown to cross the endothelium more easily and are more prone to 

oxidative damage than larger, less dense particles (230).   Elevated levels of 

these small LDL particles have been observed in severe active RA (216), although 

these findings remain controversial (217).   Conversely, small, dense HDL 

particles isolated from healthy individuals have been found to be effective at 

protecting LDL from atherogenic oxidation (and subsequent uptake by 

macrophages) .[KONTUSH2003] Furthermore, serum levels of these small 

particles are diminished in RA (216), a finding which has been associated with 

coronary calcification in one report (217). 

HDL from patients with RA has been observed to have impaired antioxidant and 

reverse cholesterol transport capacity, correlated with disease activity, 

compared with HDL-c from healthy individuals (231).   Interestingly, these 

functions of HDL were inversely correlated with serum myeloperoxidase activity, 

suggesting that the inflammation in RA might lead to oxidative modification of 

lipids that alters their properties and activities.   Moreover, a 2012 cross-

sectional study described low levels of the cardioprotective HDL-2 lipid 

subfraction in patients with RA (232).   The changes observed in HDL function 

can be so marked that a distinction is made between ’proinflammatory’ and 

‘anti-inflammatory’ HDL based on their antioxidative capacity.   A 

comprehensive proteomic analysis (233) demonstrated the proinflammatory HDL 

phenotype to be more prevalent with increasing RA disease activity and was 

associated with increased levels of molecules such as apolipoprotein J, 

fibrinogen, haptoglobin, serum amyloid A (SAA) and several complement factors, 
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and reduced levels of serum paraoxonase-1 (a hydrolytic enzyme which might 

protect LDL from oxidation (234), compared with patients with anti-

inflammatory HDL. As a consequence, in RA, the ability of HDL particles to 

protect LDL particles from oxidation might be impaired in the inflammatory 

state.    

Additionally, a variety of other lipoprotein-associated molecules might be 

altered in RA and, as a result, contribute to accelerated atherogenesis. 

Lipoprotein(a) (Lp(a)), has been shown to be elevated in the serum of patients 

with RA in comparison with control individuals (235).   Furthermore, in the 

PROCARDIS study (154), Lp(a) was strongly and independently associated with 

CVD, a finding supported by a meta-analysis.  Indeed, Lp(a) is probably a causal 

factor in CVD, as suggested by the observation that single nucleotide 

polymorphisms (SNPs) linked to higher Lp(a) lipoprotein concentrations are 

predictive of CVD (154).   In RA, group IIA phospholipase A2 (sPLA2-IIA) was 

positively and negatively correlated with plasma levels of small, dense LDL and 

small HDL particles, respectively, and has been linked to the increased uptake of 

small, dense LDL in tissues (216).   Furthermore, platelet-activating factor 

acetylhydrolase (PAF-AH), which circulates in complex with LDL and HDL, might 

have a variety of proatherogenic functions, including impairment of reverse 

cholesterol transport (236).   Thus, all these molecules are upregulated in 

inflammation or the acute-phase response and could contribute to CVD risk.    

1.5.4 Lipid modulatory effects of antirheumatic therapy 

Many data informing inflammation–lipid interactions have emerged since the 

advent of biologic therapies in the past decade. The increased research focusing 

on this association in part reflects increased interest and recognition of the 

clinical importance of this phenomenon, but is especially a consequence of the 

availability of these new therapeutic agents; biologic agents can be thought of 

as highly specific ‘molecular scalpels’, which offer unprecedented opportunity 

for molecular dissection of interactions between the immune system and 

metabolic processes in humans. Such studies thereby provide a window into the 

biological mechanisms underlying the lipid paradox and offer clues as how best 

to improve the clinical outlook for patients. 
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1.5.4.1 Conventional DMARDs and corticosteroids 

A number of studies have addressed the effects of conventional DMARDs on lipid 

profiles.   Park et al. (237) performed a 1-year prospective cohort study that 

enrolled 42 DMARD-naive patients with RA.   In the 27 individuals (64%) who met 

the American College of Rheumatology (ACR) criteria for 20% improvement 

(ACR20), mean serum HDL-c increased by 21%, a change not seen in ACR20 non-

responders. Furthermore, in ACR20 responders, LDL-c, triglycerides and Lp(a) 

remained unchanged, and the LDL-c:HDL-c ratio decreased by 13%.   The 12-

month change in serum CRP levels inversely correlated with change in serum 

HDL-c (r = -0.38). Interestingly, no difference in 12-month lipid levels was 

observed between corticosteroid users (prednisolone <10 mg/day) and non-

users, suggesting that these changes were brought about by DMARDs reducing 

rheumatoid disease activity.   Boers and co-workers (238) analysed data from the 

Dutch Combinatietherapie Bij Reumatoide Artritis (Combination Therapy in Early 

RA; COBRA) study, which randomized 134 patients newly diagnosed with RA to 

receive sulfasalazine (2 g/day) as a monotherapy or in combination with 

methotrexate (7.5 mg/week), together with a high but rapidly tapered dose of 

prednisolone (starting at 60 mg/day and decreasing to 7.5 mg/day over 7 

weeks). Serum HDL-c levels increased by a remarkable 50% in both treatment 

groups, but this elevation was achieved much quicker in steroid users compared 

to non-users (16 and 40 weeks, respectively).   Despite a parallel increase in 

total cholesterol, the total cholesterol:HDL-c ratio fell.  The same study 

assessed data from a separate cohort of patients with established RA, and found 

that serum HDL-c levels were 25% lower in those with active disease compared 

with those in remission. Georgiadis et al. (239) treated 58 DMARD-naive patients 

with a steady dose of methotrexate (mean 15 mg/week) together with 

prednisolone (initially 7.5 mg/day, then tapered according to response), and 

compared them to 63 healthy controls.   In keeping with the findings of Boers 

and colleagues, after 1 year of treatment, elevations in total cholesterol and 

HDL-c levels were seen, although the total cholesterol to HDL-c ratio fell. Again, 

no change was observed in serum LDL-c, and a strong inverse relationship 

between CRP and HDL-c was observed. These findings have been complimented 

by the suggestion that methotrexate could impair foam cell formation in THP-1 

macrophages by promoting cholesterol efflux (240).   In addition, Munro et al. 
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(241) showed hydroxychloroquine to be associated with a reduced total 

cholesterol to HDL-c ratio when compared with intramuscular gold, a finding 

which was later replicated in a larger patient sample (242).  

Recently, post-hoc analyses of two studies have looked at lipid changes in the 

context of a more aggressive, “treat-to-target” strategy.   This is an important 

step as it reflects current best practice in clinical rheumatology, and 

subsequently more profound changes in disease activity may produce 

correspondingly larger changes in lipid profile.   The largest dataset yet 

available is derived from the Treatment of Early Rheumatoid Arthritis (TEAR) 

study, which was set up to compare different treatment strategies in early RA.   

755 patients, 90% of whom had RA duration of less than one year and 75% of 

whom were DMARD-naïve, were randomized to: methotrexate (MTX) 

monotherapy, escalating to MTX + Sulfasalazine + hydroxychloroquine (“triple 

therapy” if low disease activity was not achieved after 6 months; MTX 

monotherapy escalating to MTX+ etanercept; triple therapy from baseline; and 

MTX + etanercept from baseline.   459 participants had bloods taken for lipid 

analysis at baseline and 24 weeks (providing, essentially, three treatment 

groups, as the two “step-up” arms were on MTX monotherapy for the duration of 

this part of the study).   Significant elevations from baseline in TC, HDL-c and 

LDL-c were seen in all three groups, with no clear differences between the 

treatment groups.   No differences in lipid effects were seen between patients 

who achieved DAS28 <3.2 and those who did not; change in DAS28 correlated 

with change in LDL-c, but this effect did not persist in a multivariate analysis.   

However, change in LDL-c was significantly associated with change in CRP in 

multivariate analysis (243).   A recent paper reported on these patients after 

two years of follow-up (244).   At 48 weeks, cholesterol levels remained 

significantly higher than at baseline, and decreases in CRP, ESR and DAS28 all 

significantly associated with increases in TC, LDL-c and HDL-c after adjusting for 

conventional risk factors.   Groups were generally similar in their lipid profiles, 

though the magnitude of increase in LDL-c was less in the triple-therapy group; 

indeed, patients who escalated from MTX to triple therapy displayed reductions 

in LDL-c, perhaps due to the inclusion of hydroxychloroquine as per the results 

of Munro (241) and Morris (242). 
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The Targeting Synovitis in Early RA (TASER) study was another RCT (16), where 

111 patients with newly diagnosed, DMARD-naïve RA followed a “treat-to-target” 

protocol for 18 months as follows: MTX monotherapy; triple therapy; MTX + 

etanercept.  Oral corticosteroids were discouraged but bridging IA or IM steroid 

was given liberally.   The patients were randomized to standard treatment (with 

disease activity assessed clinically) or additional assessment of synovitis with 

doppler ultrasound scanning (USS); in this second group, patients with a low 

DAS28 but active disease on USS had their treatment escalated as above.   

During the analysis of the study, I had the opportunity to perform a post-hoc 

analysis of lipid profiles in this cohort.   After exclusion of patients taking 

statins, etanercept or oral steroid, a total of 48 patients had lipid data at 

baseline and 18 months.   In contrast to TEAR, no change was seen in TC or LDL-

c.   However, HDL-c increased by an average of 22%, with a subsequent fall in 

mean TC/HDL-c ratio.   LDL-c levels at baseline correlated modestly with CRP 

(r=-0.36).   A preliminary version of this analysis was presented at the EULAR 

2013 congress in poster form, which can be found in Appendix B.    These studies 

allow us to conclude that conventional DMARD therapy is capable of increasing 

HDL-c, though the evidence for LDL-c being influenced by DMARDS is less 

consistent. 

1.5.4.2 TNF-α blockade 

A wealth of data is now available concerning the effects of TNF inhibition, 

particularly from national registries for biologic agents. Despite initial concern 

about potentially serious adverse effects of these potent anti-inflammatory 

agents, evidence now demonstrates a substantial mortality benefit for patients 

who respond clinically to them (203).   A number of studies have investigated 

lipid profiles after treatment of RA with biologic anti-TNF therapy. In 2011, van 

Sijl et al (245) published a meta-analysis of 15 studies, involving a total of over 

700 patients with RA, with disease duration ranging from 1 to 20 years, treated 

between 2004 and 2010.   Most patients received infliximab, and the majority of 

studies included patients on concurrent methotrexate and corticosteroids.   

Using multivariate linear mixed models, van Sijl and colleagues estimated lipid 

levels at various time points from baseline until 6 months after cessation of 

therapy, and found that 5 of the 15 studies observed considerable increases in 

serum levels of TC and, generally, serum triglyceride levels also increased.   
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Furthermore, 9 of 14 studies that included assessment of serum HDL-c levels 

showed marked increases in serum HDL-c.   Taken together, these data resulted 

in a summary estimate that a 10% increase in total cholesterol and a 7% increase 

in HDL-c occur within 6 months of TNF-blockade.   Interestingly, serum HDL-c 

levels seemed to rise rapidly and plateau by 6 weeks, whereas total serum 

cholesterol continued to rise steadily for up to 6 months in studies with this level 

of follow-up (Figure 12).   A more recent meta-analysis, (246) which included 

data from some different studies, also showed increases in total cholesterol and 

HDL-c levels, without change in serum LDL-c concentrations or the total 

cholesterol to HDL-c ratio. 

 

 

Figure 12 - Change in serum TC (left) and HDL-c (right) through 26 weeks of 
treatment with anti-TNF agents.   Data derived from a meta-analysis of 15 
studies.   Graphic adapted from Robertson et al. Nat Rev Rheumatol 
2013;9(9):513-23 

 

Although insufficient data was available to reliably assess changes in LDL-c or 

apolipoproteins in meta-analyses, several short-term studies have reported rapid 

increases in serum LDL-c or apoB levels after treatment with anti-TNF agents 

(247-249).   In addition, etanercept substantially reduced the amount of SAA 

within HDL particles over the course of a 3-month cohort study comprising 

patients with ankylosing spondylitis (250).   Moreover, infliximab therapy is 

capable of improving paraoxonase-1 activity, and thus the antioxidative capacity 

of HDL, regardless of serum HDL-c concentrations (251).   Evidence from a 

randomized trial suggests that TNF inhibition also leads to a dose-dependent 

reduction in serum Lp(a) concentrations in psoriatic arthritis (252).     
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1.5.4.3 IL-6 blockade 

Tocilizumab is currently the only licensed agent for IL-6 blockade in clinical 

practice.   I conducted a literature search which revealed eight clinical trials of 

tocilizumab which reported lipid changes (Table 1); elevations in serum total 

cholesterol, HDL-c, LDL-c and triglyceride levels (if measured) were universally 

reported (101, 102, 104-106, 110, 117, 123, 253).   Notably, effects on the 

atherogenic index were inconsistent, but increases in LDL-c levels by around 15–

20% were seen in multiple studies, which is consistent with IL-6-driven lipid 

changes observed in vivo and in vitro described earlier, although more detailed 

mechanistic studies would be of value.  

Tocilizumab therapy consistently had greater effects on lipid profiles than 

DMARDs such as methotrexate; however, in a head-to-head comparison, 

combination therapy of tocilizumab with methotrexate produced a numerically 

greater rise in total cholesterol levels than tocilizumab monotherapy (101).   

Furthermore, while the directional change in levels of lipids is consistent across 

therapies which block IL-6R or TNF pathways, the magnitude of LDL-c elevation 

seems greater with the former, as reported in the ADACTA head to head study 

(253).   ADACTA also identified reductions in HDL-associated serum amyloid A 

(SAA), secretory phosopholipase A2 (sPLA2), and Lp(a) which were significantly 

greater following tocilizumab compared with adalimumab. Of interest, two 

parallel genetic studies examined a SNP associated with IL-6R blockade, and thus 

lower IL-6R signalling in the general population (205, 206).   Although these 

studies did not show association of the SNP with lipid changes (probably as the 

study population had normal levels of inflammation, and so lipids were not 

altered by higher levels of systemic inflammation), both studies reported a lower 

risk of CHD in carriers of the IL-6R associated SNP.    
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Study 

name 

Study design Lipd changes observed in tocilizumab 

groups 

CHARISMA 

(2006)  

16 week, 359 patients 

Placebo and 7 

treatment arms 

TC, TG and HDL-c increased in all 

treatment groups.   TC:HDL-c ratio 

increased in 8 mg/kg tocilizumab. 

SAMURAI 

(2007)  

52 week, 366 patients 

Tocilizumab 

monotherapy or 

DMARDs  

TC, TG and LDL-c increased in 38%, 17% and 

26% of patients respectively.  

HDL-c increased to above ULN in 24% of 

patients; no change in TC:HDL-c ratio. 

OPTION 

(2008)  

24 week, 623 patients  

Tocilizumab   4mg/kg 

or 8mg/kg, or placebo 

8mg/kg: TC, HDL-c and LDL-c increased by 

0.9 mmol/l (18%), 0.1 mmol/l (7%) and 0.6 

mmol/l (20%), respectively 

TOWARD 

(2008)  

24 week, 1,220 

patients 

Tocilizumab 8mg/kg 

or placebo 

TC, HDL-c and LDL-c increased by 0.8 

mmol/l, 0.1 mmol/l and 0.5 mmol/l, 

respectively 

TC:HDL-c ratio increased by >30% in 12% 

tocilizumab group & 7% of placebo group 

AMBITION 

(2010)  

24 week, 673 patients 

Tocilizumab 8mg/kg 

monotherapy or MTX 

Increase TC to >240 mg/dl in 13.2% and 

0.4%, with no change in 24% and 46.8%, for 

tocilizumab and MTX groups 

LDL-c increased to >160 mg/dl in 3.1% and 

0%, with no change in 11% and 22%, for 

tocilizumab and MTX groups 

REACTION 

(2011)  

24 week, 229 patients 

study of tocilizumab  

± MTX 

As monotherapy, TC increased 12.9mg/dl 

(7%); with MTX, TC increased 17.7 mg/dl 

(9%) 

ADACTA 

(2016) 

8 week, 324 patients 

tocilizumab 8mg/kg 

or adalimumab  

TC, HDL-c and LDL-c increased by 0.8 

mmol/l, 0.1 mmol/l and 0.5 mmol/l 

respectively for tocilizumab; all changes 

significantly greater than adalimumab 

group. 

Table 3 - Overview of key phase III/IV tocilizumab studies reporting lipid 
outcomes 
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Whilst the above studies assessed changes in serum levels of cholesterol 

subfractions, novel methods of analysis have emerged which convey much more 

information about lipid profiles in vivo.   Nuclear magnetic resonance 

spectroscopy (NMR) is one such technique which uses variations in magnetic 

properties of different atomic nuclei to quantify molecules or particles, and has 

been widely used in analysis of lipoproteins.    The MEASURE study was a double-

blind RCT evaluating the effects of tocilizumab on serum lipids and associated 

molecules as measured by NMR.   132 patients were randomised to tocilizumab 

or placebo, with all participants converting to open-label tocilizumab after 16 or 

24 weeks.   The primary outcome data of MEASURE (254) showed that 12 weeks 

of treatment with tocilizumab did not lead to significant increases in either 

small, dense LDL particles or oxidized LDL (particles typically suspected of being 

pro-atherogenic); instead, elevated LDL-c was driven by increases in larger LDL 

particles.   In addition, tocilizumab led to reductions of greater than 30% in a 

variety of pro-atherogenic or pro-thrombotic factors including Lp(a), HDL-

associated SAA, sPLA2, fibrinogen and D-dimers; paraoxonase, an anti-oxidant 

thought to be atheroprotective, increased following tocilizumab.    Tocilizumab 

led to improvements in many surrogates for cardiovascular risk, and conferred a 

more anti-inflammatory phenotype to HDL, suggesting that it may be capable or 

reducing cardiovascular risk.   This hypothesis, however, remains to be tested in 

long-term cardiovascular outcome studies. 

1.5.4.4 Other biologic agents 

Limited data are available on the lipidaemic effects of the other biologic agents 

used in the treatment of RA. My literature search identified a small number of 

papers reporting the effects of treatment with rituximab.   A small pilot study 

(255) with 5 RA patients reported that after 16 weeks’ treatment, mean total 

cholesterol levels fell by 8.5% and HDL-c levels increased by an average of 35%, 

whereas LDL-c concentrations increased in 2 patients but fell in the other 3, 

with an overall mean reduction of 3%.   Interestingly, the results of a different 

small study (256) suggested HDL composition might also be favourably affected 

by rituximab therapy, with evidence for a reduction in HDL-associated SAA. A 

recent study from Russia treated 55 RA patients with rituximab and stratified 

them according to clinical response (257).   The patients who responded 
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clinically demonstrated increased of 23% in HDL-c, and reduction in the CVD 

surrogates of arterial stiffness and CIMT.       

1.5.4.5 JAK inhibition 

Phase III trials of tofacitinib in patients with RA, a dual JAK1–JAK3 inhibitor, 

have shown serum levels of LDL-c and HDL-c to be elevated by up to around 21% 

and 14% within 12 months, respectively (258).   These increases were 

substantially higher than the increases seen after treatment of patients with RA 

using the anti-TNF antibody adalimumab (Figure 13) in the ORAL Standard head–

to-head comparison trial, despite similar ACR20, ACR50 and ACR70 responses 

(75).    

 

 

 

Figure 13 - Effects on LDL-c and HDL-c following treatment of active RA with 
adalimumab, tofacitinib or placebo in a head-to-head RCT.   Adapted from 
Robertson et al. Nat Rev Rheumatol 2013;9(9):513-23 
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Similar results have been obtained from a phase II trial of tofacitinib in patients 

with active ulcerative colitis, with LDL-c and HDL-c levels both increasing dose-

dependently (259).   An earlier dose-ranging study of tofacitinib in RA supported 

the observations described above and demonstrated changes in levels of lipids 

within 2 weeks of commencing therapy, with levels reaching a plateau after 6-8 

weeks (103).   Preliminary results of phase II trials of other jakinibs, however, 

have been inconsistent; as such careful observation of cohorts will be 

mandatory, with addition data evaluated as they emerge.  Similarly as new 

kinase inhibitor studies (for example, regarding targeting of SYK) arise, 

examination of the potential effects of such agents on lipid biochemistry, and 

thereby the potential to modify ongoing vascular risk in patients with chronic 

inflammatory diseases, will be important.    

These findings suggest that, whereas suppression of inflammation partially 

underlies the increases in lipid levels, factors specific to different treatment 

modalities also operate and influence the degree to which lipid profiles change.   

Such therapy-specific factors could comprise as yet poorly defined pathways 

independent of those responsible for the primary disease modifying effects, 

which are thus implicated in driving lipid changes.(Figure 14) 
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Figure 14 - Schematic of lipid changes in RA over time, with a broad 
correlation between disease activity and lipids which is reversed to some 
degree by different disease-modifying therapeutics.   Adapted from 
Robertson et al. Nat Rev Rheumatol 2013;9(9):513-23 

  

1.5.5 Serum lipids and predicting CVD risk in RA – ongoing and 
future research 

Despite the advances in knowledge of the lipid–inflammation paradigm that we 

have described, substantial gaps in our understanding remain, which invite 

further study. Although the lipid changes seen after treatment of RA might 

reflect the variable ‘correction’ of an inflammatory dyslipidaemia, long-term 

mortality data are not yet available for many drugs, including biologic agents, 

and thus the cardiovascular effects of these agents cannot be confirmed. This 

point is particularly relevant for tocilizumab and the JAK inhibitors, which seem 

to have the most profound effects on LDL-c levels. The TRACE-RA study (Trial of 

Atorvastatin for the Primary Prevention of Cardiovascular Events in Rheumatoid 
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Arthritis), which aimed to investigate this issue, was terminated early for futility 

owing to the low numbers of cardiovascular events being recorded.   However, a 

specific CVD endpoint study is currently underway: ENTRACTE will compare 

tocilizumab with etanercept in RA patients with RA who have risk factors for CVD 

(ClinicalTrials.gov identifier NCT01331837).   The results of this study will 

usefully inform on several important issues pertinent to cardiovascular disease in 

RA. Nevertheless, such outcomes will be some time in coming and, in the 

interim, mechanistic studies in humans that integrate interventions in immune 

pathways with detailed metabolic examination of lipid biochemistry will be 

informative, especially as rodent models are poor surrogates for investigation of 

such interactions. This approach will benefit understanding not only in the 

context of inflammatory disease but potentially also in evaluating mechanisms of 

risk attribution in the ‘normal’ population.    Similarly the clinical use of lipid 

measurements in RA to predict CVD risk requires further development. At 

present, the most useful predictor of CVD seems to be the total cholesterol to 

HDL-c ratio; this value either does not change or only modestly ‘improves’ with 

successful anti-inflammatory therapy owing to concomitant rises in both total 

cholesterol and HDL-c levels in serum, with the latter sometimes being 

proportionally greater.  
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1.6 Objectives 

 
1. To analyse the long-term effects of IL-6 blockade on lipoproteins, and 

their relationship with disease activity, from analysis of data from the 

MEASURE study. 

2. To analyse the utility of a novel NMR-derived biomarker, GlycA, for 

assessing disease activity and changes in serum lipoproteins in RA 

following tocilizumab therapy. 

3. To provide mechanistic explanations of the findings of MEASURE by 

conducting KALIBRA - a basic science study in a cohort of human subjects 

with RA, examining the effects of tocilizumab on the kinetics of LDL. 

4. To provide mechanistic explanations of the findings of KALIBRA at the 

cellular & molecular level using in vitro techniques. 
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1.7 Hypotheses 

 

1. Changes in serum lipoproteins in IL-6 blockade are a result of reductions 

in RA disease activity, as quantified by clinical, biochemical and NMR-

derived measures. 

2. Elevations in serum LDL-c following IL-6 blockade are a result of reduced 

catabolism of LDL by macrophage foam cells. 
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2 The MEASURE study 
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2.1 Methods 

MEASURE was a randomised, multi-centre, placebo-controlled trial, comparing 

changes in lipid profiles following tocilizumab or placebo in patients with active 

RA despite methotrexate.   The study was performed in a double-blind manner 

for 24 weeks, with open-label tocilizumab therapy given to all participants 

thereafter.   The results of this trial after 12 weeks of therapy have already 

been published (254).   The data I had available to analyse for my thesis was 

different to that already published in three aspects.   Firstly, results were 

available up to 52 weeks, which allowed me to see if changes observed in the 

first 12 weeks were maintained over a longer follow-up period.   Secondly, 

results were generated from an updated NMR platform patented by LipoScience, 

who performed the original sample analysis.   This in theory would make the 

results more accurate and reliable.   Lastly, clinical and laboratory measures of 

disease activity were provided for each patient at each timepoint, including a 

novel NMR-based quantification of the acute phase response called GlycA.    

A description of the methods of the MEASURE study is available in the McInnes et 

al. 2013 manuscript.    For completeness, a summary of the methods is 

presented here, with particular emphasis on the analyses novel to my thesis. 

2.1.1 Patients  

132 patients with active RA (according to ACR criteria) of more than 6 months 

duration were enrolled.  Patients had active disease despite stable MTX therapy, 

requiring swollen joint count (SJC) and tender joint count (TJC) both ≥6, plus 

either CRP >10mg/L or ESR >28m/hr.   MTX was continued during the study, but 

initiation of lipid-lowering, glucose-lowering or antihypertensive drugs, or a 

change in dose of these drugs, were prohibited in-study and within 12 weeks of 

baseline measurements.   Glucocorticoids were permitted at doses ≤10mg/day; 

dose alterations were prohibited.   Patients who had failed a TNF-inhibitor 6 

months before baseline, or failed two TNF-inhibitors at any time, were 

excluded. 
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2.1.2 Procedures 

The study was conducted at 34 sites across the UK, USA and Canada.   Patients 

were randomly assigned by a voice response system, in a double-blind manner 

and in a 1:1 ratio, to TCZ 8mg/kg or placebo intravenously every 4 weeks with 

continuing stable doses of oral MTX.   Patients were then offered open label TCZ 

at 24 weeks, or at 16 weeks for those patients who had not reached 20% 

improvement in SJC or TJC by that point.    Blinded clinical assessments and 

blood sampling were performed at baseline and weeks 1, 2, 4, 8, 12, 16, 20 and 

24.   Open label assessments and sampling were performed every 12 weeks until 

week 104.    

2.1.3 Patient allocation 

Patient numbers through the study are illustrated in 

Figure 15.   Sixty-three patients were randomised to placebo+MTX and sixty-nine 

to TCZ+MTX.   One patient was misrandomised to placebo, and two in the 

TCZ+MTX group were excluded from my analysis (one with no baseline data and 

one with baseline data only).   Due to patients withdrawing consent, sixty and 

sixty-three patients in the two groups were included in the week 24 analysis; at 

week 52, the groups had fifty-three and fifty-five patients respectively. 
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Figure 15 - Patient allocation and flow through the MEASURE study to week 
52. 

 

2.1.4 Assays 

Commercial assays were used to measure high sensitivity C-reactive protein 

(CRP) and ESR (Covance Laboratories, Indiana, USA).   Serum lipid subclasses and 

the GlycA signal were quantified by nuclear magnetic resonance (LipoScience, 

North Carolina, USA).   Further biomarkers not discussed in this thesis were also 

measured and detailed in print (254). 
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2.1.5 GlycA 

GlycA is a signal observed with NMR analysis of serum that can be numericalised 

to yield a serum ’level’ that is amenable to reliable and reproducible 

quantification for clinical purposes.  It is generated by N-acetyl-methyl groups 

on enzymatically glycosylated proteins, mainly α1-acid glycoprotein, 

haptoglobin, α1-antitrypsin, α1-antichymotrypsin and transferrin, and has been 

shown to reflect systemic inflammation in two large healthy cohorts (260, 261) 

and one RA cohort (262).   As the GlycA signal is a composite score generated 

from the carbohydrate side-chains of several circulating acute phase proteins, it 

exhibits less biological variability than CRP and is not subject to the same 

confounding issues with pregnancy, anaemia, serum protein concentrations, and 

abnormal red blood cell shape or size as is ESR.  It thus may offer substantial 

advantages over existing measures that are established in clinical practice.   

2.1.6 Statistical analysis 

The primary outcome measure was the change in small LDL particle number 

following TCZ therapy compared to placebo at 12 weeks.   For this study I 

analysed the secondary endpoints of changes in lipoprotein particles at 24 and 

52 weeks.   Values were displayed as mean ± 95% confidence interval for 

normally-distributed data, or median ± IQR for non-parametric data.   Between-

group comparisons were performed using student’s t-test or Wilcoxon Rank Sum 

test.   Changes from baseline were assessed using paired t-test or Wilcoxon 

matched-pairs test.  Correlation coefficients were calculated by Spearman’s r 

value as many of the data were non-parametric.   Normality of data was 

assessed by comparing population mean and median values, and inspecting 

values plotted on a histogram.   As in the original manuscript, for data up to and 

including week 24, the analysis used last-observation-carried-forward only in 

samples taken before escape therapy (i.e. week 12 values carried forward to 

week 24 in those who received escape therapy).    No other data was imputed.   

This meant that patients with missing values were excluded, and so different 

timepoints had different sample sizes as described in “Patient Allocation” 

above; in effect, the majority of my analysis was conducted on a per-protocol 

basis. 
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The original power calculations estimated that a sample size of 120 patients (60 

per arm) would be able to detect a difference of 30% in small LDL particles at 

week 12 in patients treated with TCZ compared to placebo.  
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2.2 Results 

2.2.1 Lipid particle changes 

A series of figures demonstrate the changes observed in lipid parameters over 52 

weeks of the study.   In the TCZ+MTX group, levels of large VLDL/chylomicrons 

and small VLDL particles (the latter making up more than half of the total 

VLDL/chylomicron mass) both increased significantly from baseline by the week 

2 assessment (Figure 16).   The degree of change was significantly different from 

that in the placebo+MTX group (Figure 17).   By week 52, the placebo group 

“caught up” with change in large VLDL but a significant difference remained 

between the groups for small VLDL (Figure 17). 

Total LDL particles increased with treatment, driven by rises in IDL and large LDL 

particles (Figure 18).   Again, these changes were apparent at the week 2 

assessment.   Small LDL particles did not change.   The between-groups 

differences were significant for large LDL but not IDL (Figure 19).   Notably, 

whilst there seems to be no clear difference in total or large LDL in Figure 18 at 

week 24, this is because the placebo+MTX group had higher median levels at 

baseline; hence Figure 19 illustrates the difference in percentage change from 

baseline.   In all parameters, there was no difference in percentage change 

between the groups at 52 weeks. 

Total HDL particles increased in the TCZ+MTX group, again with the bulk of the 

change seen by week 2, driven solely by an increase in small HDL particles 

(Figure 20).   This represented a significant difference in percentage change 

from baseline compared to the placebo+MTX group.   Once again, the 

placebo+MTX group displayed a “catch-up” pattern after switching to open label 

treatment at week 24, and no significant difference was seen between the 

groups at week 52 (Figure 21). 
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Figure 16 - Absolute values of VLDL/chylomicron particles from baseline to 
week 52.   * p<0.05  ** p<0.01  *** p<0.001   **** p<0.0001 in TCZ+MTX group 
compared to baseline. 
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Figure 17 - Percentage change from baseline in VLDL/chylomicron particles 
to week 52.              * p<0.05  ** p<0.01  *** p<0.001  **** p<0.0001 between 
groups. 
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Figure 18 - Absolute values of LDL particles from baseline to week 52.   * 
p<0.05  ** p<0.01      *** p<0.001  **** p<0.0001 in TCZ+MTX group compared 
to baseline. 
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Figure 19 - Percentage change from baseline in LDL particles to week 52.   * 
p<0.05  ** p<0.01  *** p<0.001  **** p<0.0001 between groups. 
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Figure 20 - Absolute values of HDL particles from baseline to week 52.   * 
p<0.05  ** p<0.01  *** p<0.001  **** p<0.0001 in TCZ+MTX group compared to 
baseline. 
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Figure 21 - Percentage change from baseline in HDL particles to week 52.   * 
p<0.05  ** p<0.01  *** p<0.001  **** p<0.0001 between groups. 

 

Mean VLDL particle size increased with treatment, with changes evident by week 

2 (Figure 22).   However, this change was only just statistically significant, and 

the degree of change from baseline was numerically but not significantly greater 

in the TCZ+MTX group (Figure 23).   Mean LDL size increased numerically (in 

keeping with the observation that large LDL particle number increased - Figure 

22) but neither this increase nor the difference in change between the two 

groups reached statistical significance (Figure 23).   Mean HDL size fell 

significantly by week 24 in the TCZ+MTX group, again with an apparent change 

by the week 2 assessment (Figure 22).   HDL size in the TCZ+MTX group fell by 

more than the placebo+MTX group, but the difference in change from baseline 

between the groups was no longer significant at week 52 (Figure 23), again 
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indicating “catch up” by the placebo+MTX group switching to open-label 

treatment. 

 

Figure 22 - Absolute values of mean lipoprotein particle size from baseline to 
week 52.   * p<0.05  ** p<0.01  *** p<0.001  **** p<0.0001 in TCZ+MTX group 
compared to baseline. 
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Figure 23 - Percentage change from baseline in mean lipoprotein particle 
size to week 52.           * p<0.05  ** p<0.01  *** p<0.001  **** p<0.0001 between 
groups 

 
 

2.2.2 GlycA & clinical response 

I used access to GlycA values and clinical data from each timepoint in two ways.   

I first assessed the performance of GlycA as a measure of RA disease activity, 

and then moved on to exploring relationships between measures of disease 

activity and the lipid values I have described above.  

2.2.2.1 Baseline parameters 

Data on age, sex and measures of disease activity at baseline in the placebo and 

treatment groups are shown in  

Table 4.   There were no significant differences between the groups in any 

parameter.   The cohort generally had high levels of disease activity, particularly 

illustrated by the high mean DAS28 and CDAI scores.  However, inflammatory 
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markers at baseline were more varied.   34 patients in total had CRP <5mg/L at 

baseline, with 11 patients having ESR <18mm/hr at baseline (the “normal” cut-

off ranges used by laboratories in our centre).   No defined normal ranges yet 

exist for GlycA.   Akinkuole et al (260), described a large healthy cohort with a 

median (IQR) GlycA value of 369µmol/L (327 - 416).   Only one other RA cohort 

(n=166) has been analysed so far for GlycA (262).   In this group, median (IQR) 

GlycA was found to be 398µmol/L (348 – 473).   Compared to the MEASURE 

cohort, this group had lower disease activity, as reflected in a median (IQR) CRP 

of 4.0mg/L (1.2 – 11) and median (IQR) ESR 15mm/hr (7 – 36); median DAS28-CRP 

was 3.09, with median DAS28-ESR 3.86. 

 
Placebo  + MTX 
(n=62) 

TCZ + MTX 
(n=68) 

p for 
difference 

Age, years (mean (range)) 56 (25-72) 56 (35-76) 0.92 

Female, n (%) 46 (74) 57 (84) 0.176 

CRP, mg/L 8.7 (3.9-18.1) 9.3 (5.1-26.9) 0.25 

ESR, mm/hr 38 (26.3-58) 38 (28-58) 0.64 

GlycA, µmol/L (mean (SD)) 476 (117) 484 (107) 0.68 

SJC (28 joints) 10 (8-16) 11 (7-16) 0.93 

TJC (28 joints) 16 (10-23) 16 (12-23) 0.86 

Patient global VAS, mm  63 (49-74) 63 (47-81) 0.48 

DAS28-CRP (mean (SD))  5.80 (0.95) 5.91 (1.06) 0.53 

DAS28-ESR (mean (SD)) 6.54 (1.01) 6.62 (1.05) 0.66 

CDAI (mean (SD)) 41.0 (14.1) 41.4 (14.4) 0.86 

 

Table 4 - Patient demographics and parameters of disease activity at 
baseline visit.  Data presented as median (IQR) unless otherwise indicated. 
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To assess GlycA’s function as a biomarker of RA disease activity, I combined the 

baseline data of all 130 participants into one cohort and correlated GlycA levels 

at baseline with other measures of disease activity.  These are outlined in  

Table 5.   GlycA levels correlated strongly with CRP, modestly with ESR, and not 

at all with joint counts or CDAI.   Correlation with DAS28 scores was statistically 

significant but numerically very modest.    

 GlycA  

 r P 

CRP 0.70 <0.0001 

ESR 0.44 <0.0001 

SJC -0.04 0.69 

TJC -0.11 0.20 

VAS 0.35 <0.0001 

DAS28-CRP 0.28 0.002 

DAS28-ESR 0.20 0.025 

CDAI 0.01 0.88 

 

Table 5 - Correlation between GlycA and markers of disease severity in 
whole cohort at baseline assessment (n=130) using Spearman’s coefficient. 

 

It could be argued that GlycA’s poor correlation with joint counts reduces its 

utility as a marker of disease activity.   For context,  

Table 6 shows that CRP also correlated only moderately with ESR, and that 

neither acute phase marker correlated at all with joint counts, patient’s visual 

analogue scale or CDAI.   Patterns of correlation between GlycA and acute phase 

markers or composite disease activity scores are illustrated in Figure 24. 
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CRP versus  r  p   ESR versus r  p  

ESR 0.36 <0.0001    
 

  

SJC 0.07 0.42 SJC 0.14 0.12 

TJC -0.01 0.89 TJC 0.05 0.61 

VAS 0.29 <0.001  VAS  0.19 0.03 

CDAI 0.12 0.19 CDAI 0.13 0.14 

 

Table 6 - Correlation between CRP or ESR and markers of disease severity in 
whole cohort at baseline assessment (n=130) using Spearman’s coefficient. 
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Figure 24 - Spearman's correlation coefficients between GlycA and 
measures of disease activity at baseline (n=130). 

 
2.2.2.2 Longitudinal behaviour of GlycA 

One advantage of a placebo controlled study was that a subset of patients (the 

placebo+MTX group) was followed up for several weeks with no active change in 
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their treatment.   In effect, this allowed the above observations in active RA to 

be replicated by repeating correlations in this group using data taken at 2 and 12 

weeks after baseline.    

Table 7 shows that the strength of GlycA’s correlation with CRP and ESR 

remained approximately steady throughout 12 weeks of placebo treatment.   

The same was true for DAS28-CRP.   At week 12 GlycA’s association with swollen 

joint count became statistically significant but remained numerically modest; 

the same is true for DAS28-ESR at week 2, an association which fell and lost 

significance by week 12. 

  Week 0   Week 2   Week 12   

  r  p  r  p  r  p  

CRP 0.71 <0.0001  0.78 <0.0001  0.71 <0.0001  

ESR 0.40 0.002 0.58 <0.0001  0.47 <0.001 

SJC 0.03 0.81 0.23 0.074 0.31 0.016 

TJC -0.20 0.12 0.08 0.51 0.20 0.12 

VAS 0.22 0.081 0.16 0.21 0.09 0.51 

DAS28CRP 0.23 0.070 0.37 0.004 0.38 0.003 

DAS28ESR 0.11 0.38 0.34 0.007 0.12 0.37 

 

Table 7 - Spearman's correlation coefficient between GlycA and other 
measures of disease activity in the placebo group (n=62) at baseline, week 2 
and week 12. 

 
2.2.2.3 Baseline GlycA as a predictor of clinical response 

To test our hypothesis that GlycA would serve as a useful predictor of treatment 

response, receiver-operating characteristic (ROC) curves were generated.   Using 

data from the TCZ + MTX group (n62) I used CRP, ESR and GlycA measures at 

baseline and after two weeks of tocilizumab therapy as predictors of clinical 

response.   Since DAS28 scores (and therefore EULAR response rates) are 

frequently skewed by large changes in ESR or CRP with tocilizumab, for the 

purposes of this analysis I divided participants depending on whether or not they 
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reached a state of low disease activity, as measured by a CDAI of <10, at week 

24.   

Figure 25 shows that neither baseline (AUC = 0.60) or week 2 (AUC = 0.53) 

measures of GlycA functioned as a good predictor of CDAI status at week 24.   

CRP and ESR returned similar results.   A baseline GlycA of <430µmol/L predicted 

reaching CDAI low disease activity with sensitivity of 56% and specificity 70% 

(likelihood ratio 1.888).   This compares to a baseline CRP of <6.1mg/L 

predicting low CDAI with sensitivity of 63% and specificity 81% (likelihood ratio 

3.264) and baseline ESR of <24mm/hr predicting low CDAI with sensitivity of 25% 

and specificity 85% (likelihood ratio 1.679).   I concluded that GlycA was superior 

to ESR but less effective than CRP at predicting clinical response in tocilizumab-

treated RA patients.   However, none of these measures were particularly 

effective, and no baseline or week 2 measures returned sensitivity and 

specificity values strong enough to be considered useful in clinical practice. 
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Figure 25 - ROC curves for ability of CRP, ESR and GlycA levels at baseline 
(left) and week 2 (right) to predict attainment of CDAI low disease activity in 
the TCZ+MTX group (n=62). 
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Despite the strong association between GlycA and CRP, there remained several 

patients with discordant results for these two measures (i.e. one value high and 

one low).   I hypothesised that GlycA could provide extra information on disease 

burden in these patients.   To test this, I analysed baseline data from patients 

with CRP <5mg/L and stratified them into those with low or high GlycA.   For a 

cut-off GlycA point, I chose 416µmol/L as this was the upper quartile of values in 

a healthy, non-RA cohort.   This yielded 34 patients, 19 of whom had “low” 

GlycA (median 368µmol/L, IQR 317–398) and 15 with “high” GlycA (median 

447µmol/L, IQR 430-498).   There were no differences between the groups in 

baseline DAS28-CRP, DAS28-ESR or CDAI score, indicating that GlycA seemed to 

add little to CRP when ascertaining disease activity (Figure 26). 
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Figure 26 - Baseline values of (A) GlycA, (B) DAS28-CRP, (C) DAS28-ESR 
and (D) CDAI in patients with CRP<5md/L and low or high GlycA.   P value 
calculated by Mann-Whitney U test. 

 
2.2.2.4 Change in disease activity markers with treatment 

Changes in levels of GlycA, acute phase reactants, clinical measures of disease 

activity and composite disease activity scores are outlined below.   Figure 27 

shows absolute values from baseline to week 52.   Figure 28 shows the 

percentage change or value change from baseline to week 52, with asterisks 

denoting statistical significance for between-group differences at 24 and 52 

weeks.   Values are presented as mean ±95% C.I. or median ± IQR, depending on 

normality of data.  P values were generated using student’s t-test or Mann-

Whitney U test depending on normality of data.  
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Figure 27 - Measures of disease activity from baseline to week 52. 
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Figure 28 - Change in measures of disease activity from baseline to week 52. 
* p<0.05  ** p<0.01  *** p<0.001  **** p<0.0001 between groups. 
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As expected, CRP and ESR fell profoundly and rapidly in the TCZ+MTX group, 

reaching median values of 0.34mg/L and 7mm/hr by week 2, and staying at 

around this level for the duration of the study.   In a similar manner, median 

GlycA in the TCZ+MTX group fell from 464µmol/L to 315µmol/L at week 2, 

before plateauing at 290µmol/L by week 12.   As one would expect, joint counts, 

VAS and CDAI scores fell more gradually, with the lines of DAS28 scores sitting 

somewhere in the middle.   Significant differences between the groups in the 

degree of change from baseline were present in all parameters at week 24.    

2.2.3 Relationships between clinical and lipid measures 

I next set out to see if there were any discernible relationships between our 

observed changes in lipoproteins and those in disease activity, at baseline, and 

at week 24.   GraphPad Prism assists this process by allowing generation of 

correlation matrices: tables which lay out r values between different variables in 

a form which allows rapid presentation of quite a large amount of data.   The p 

values for each calculation are laid out in a separate, identically-formatted 

table.   This allows the user to scan for relationships, either individually or in 

patterns, which can then be interrogated further by e.g. scatter plot.   It is this 

technique which I will make use of in the following pages, as it allows the results 

of numerous correlation calculations to be summarised relatively cogently.   

Rather than simply duplicate every result in the form of a scatter plot, before 

correlations were calculated I decided that scatter plots would be generated at 

each timepoint for: small LDL particles (the primary outcome measure of the 

study); large LDL particles (as the LDL component that appeared to be most 

affected by tocilizumab therapy); and any other particles which appeared to 

have strong relationships in the correlation matrices. 

2.2.3.1 Relationships at baseline 

Spearman’s r values between acute phase markers (GlycA, CRP and ESR) and 

clinical disease scores (DAS28 and CDAI) in the whole cohort at baseline are 

outlined in Table 8 and Table 9.   Small LDL particle number did not associate 

with any clinical measures (Figure 29).   A significant but modest inverse 

correlation was seen between large LDL particle number and all clinical 

measures apart from ESR.   On reviewing the scatter plots, there did appear to 
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be generally lower lipoprotein levels in those with high CRP or GlycA (Figure 30).   

On the other hand, I did not think there was any clear visible pattern of 

relationship between large LDL and DAS28 or CDAI scores, despite the p values 

being below 0.05.   More impressive associations were observed with small HDL 

particle number, where the strongest correlation was seen with CRP (r=-0.47, 

p<0.0001)(Figure 31).   Again, the scatter plots of composite disease scores were 

much less convincing that those of CRP or GlycA.   Of note, r and p values for 

GlycA tended to be quite similar to those of CRP throughout the correlation 

matrix.   
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r values VLDL   LDL   HDL  

  Total Large Medium Small Total IDL Large Small Total Large Medium Small 

GlycA -0.01 0.00 -0.05 0.03 -0.08 -0.12 -0.28 0.14 -0.25 -0.15 0.19 -0.31 

CRP -0.14 -0.09 -0.18 -0.06 -0.14 -0.21 -0.27 0.12 -0.44 -0.17 0.14 -0.47 

ESR 0.04 -0.05 -0.10 0.13 0.00 0.04 -0.11 0.04 -0.22 -0.07 0.10 -0.23 

DAS28-CRP -0.03 0.09 -0.02 -0.04 -0.21 -0.11 -0.26 -0.02 -0.16 0.06 0.16 -0.35 

DAS28-ESR 0.01 0.08 -0.02 0.02 -0.16 -0.02 -0.19 -0.06 -0.06 0.13 0.16 -0.26 

CDAI 0.01 0.12 0.04 -0.04 -0.17 -0.06 -0.18 -0.05 -0.01 0.13 0.11 -0.19 

             

             
p values VLDL  LDL  HDL  

  Total Large Medium Small Total IDL Large Small Total Large Medium Small 

GlycA 0.93 0.97 0.59 0.76 0.36 0.16 0.001 0.11 0.004 0.078 0.027 <0.001 

CRP 0.11 0.28 0.037 0.50 0.11 0.017 0.002 0.17 <0.0001 0.058 0.11 <0.0001 

ESR 0.66 0.61 0.25 0.13 0.96 0.65 0.23 0.61 0.011 0.45 0.28 0.010 

DAS28-CRP 0.75 0.30 0.79 0.61 0.017 0.23 0.003 0.83 0.073 0.49 0.067 <0.0001 

DAS28-ESR 0.89 0.35 0.82 0.84 0.069 0.79 0.033 0.47 0.51 0.15 0.074 0.003 

CDAI 0.94 0.16 0.69 0.68 0.053 0.46 0.042 0.54 0.91 0.15 0.21 0.030 

Table 8 - Spearman's r value (top) and p value (bottom) for measures of disease activity and lipid NMR values at baseline in whole 
cohort (n=130).   Green = p<0.05.   Red = p<0.01 
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 values Particle size  

  VLDL LDL HDL 

GlycA 0 -0.15 0.08 

CRP -0.06 -0.17 0.06 

ESR -0.11 -0.07 0.08 

DAS28-CRP 0.11 -0.11 0.18 

DAS28-ESR 0.07 -0.06 0.21 

CDAI 0.13 -0.06 0.17 

    
    
p values Particle size  

  VLDL LDL HDL 

GlycA 0.97 0.084 0.35 

CRP 0.53 0.061 0.5 

ESR 0.22 0.42 0.34 

DAS28-CRP 0.23 0.19 0.035 

DAS28-ESR 0.41 0.49 0.017 

CDAI 0.13 0.48 0.05 

 

Table 9 - Spearman's r value (top) and p value (bottom) for measures of 
disease activity and mean lipid particle size at baseline in whole cohort 
(n=130).   Green = p<0.05.   Red = p<0.01 
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Figure 29 - Spearman's correlation coefficients between small LDL particles 
and measures of disease activity at baseline (n=130). 
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Figure 30 - - Spearman's correlation coefficients between large LDL particles 
and measures of disease activity at baseline (n=130). 
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Figure 31 - Spearman's correlation coefficients between small HDL particles 
and measures of disease activity at baseline (n=130). 
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2.2.3.2 Correlations at week 24 

Reflecting the analysis performed at baseline (above), the same correlation 

matrix-based approach was performed for the TCZ+MTX group (n=62) at week 

24.   R and p values are shown in  

Table 10 and Table 11.  In contrast to calculations at baseline, significant 

positive correlations were seen between small LDL particle number and GlycA 

(r=0.36, p=0.004) and ESR (r=0.32, p=0.012) though not CRP (r=0.12, p=0.36) or 

composite disease activity scores.   Scatter plots in Figure 32 for GlycA and ESR 

showed the majority of patients had low values for both particle number and 

inflammatory markers; I was not personally convinced of a strong relationship in 

either graph.   None of the relationships with large LDL particles appeared 

significant (Figure 33). 

In contrast to the baseline results, at week 24 small HDL particle number 

seemed to correlate more strongly with DAS28 and CDAI scores.   Review of the 

scatter plots in Figure 34 suggested a real relationship with composite scores but 

with significant variation around the regression line.   Whilst CRP showed a 

significant relationship (r=0.30, p=0.020), conclusions must be drawn cautiously 

as only a few participants had elevated CRP by this point.   Nevertheless, the 

few that did have elevated CRP tended to have lower small HDL particle 

numbers.  
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r values VLDL       LDL       HDL  

  Total Large Medium Small Total IDL Large Small Total Large Medium Small 

GlycA 0.18 0.14 0.30 0.07 0.22 0.09 -0.18 0.36 0.13 -0.10 0.16 0.10 

CRP -0.10 0.00 -0.02 -0.17 0.00 -0.05 0.01 0.12 -0.08 0.12 0.15 -0.30 

ESR 0.05 0.04 0.09 0.02 0.14 0.00 -0.15 0.32 -0.09 -0.03 0.02 -0.06 

DAS28-CRP -0.13 0.04 -0.07 -0.16 -0.12 -0.16 0.04 -0.08 -0.22 0.12 0.08 -0.50 

DAS28-ESR 0.01 0.07 0.04 -0.01 -0.04 -0.09 -0.08 0.06 -0.12 0.07 0.13 -0.38 

CDAI 0.03 0.19 0.05 -0.02 -0.10 -0.01 -0.01 -0.09 -0.11 0.09 0.06 -0.40 

             
p values VLDL       LDL       HDL  

  Total Large Medium Small Total IDL Large Small Total Large Medium Small 

GlycA 0.16 0.29 0.017 0.61 0.078 0.50 0.16 0.004 0.32 0.45 0.20 0.42 

CRP 0.45 0.99 0.89 0.20 0.97 0.70 0.94 0.36 0.56 0.35 0.25 0.020 

ESR 0.72 0.74 0.49 0.89 0.27 0.98 0.23 0.012 0.49 0.84 0.89 0.64 

DAS28-CRP 0.30 0.73 0.60 0.21 0.34 0.23 0.74 0.55 0.08 0.37 0.54 <0.0001 

DAS28-ESR 0.94 0.56 0.78 0.95 0.76 0.50 0.53 0.62 0.33 0.56 0.31 0.002 

CDAI 0.80 0.14 0.69 0.90 0.44 0.94 0.93 0.51 0.38 0.47 0.62 0.001 

 

Table 10 - Spearman's r value (top) and p value (bottom) for measures of disease activity and lipid NMR values at week 24 in 
TCZ+MTX group (n=62).   Green = p<0.05.   Red = p<0.01
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r values Particle size  

  VLDL LDL HDL 

GlycA 0.2 -0.31 -0.08 

CRP 0.08 -0.06 0.16 

ESR 0.08 -0.2 0.03 

DAS28-CRP 0.08 0.05 0.24 

DAS28-ESR 0.04 -0.04 0.2 

CDAI 0.1 0.04 0.2 

    

    
p values Particle size 

  VLDL LDL HDL 

GlycA 0.12 0.013 0.51 

CRP 0.56 0.67 0.22 

ESR 0.52 0.11 0.82 

DAS28-CRP 0.53 0.71 0.06 

DAS28-ESR 0.78 0.78 0.11 

CDAI 0.43 0.74 0.11 

 

Table 11 - Spearman's r value (top) and p value (bottom) for measures of 
disease activity and mean particle size at week 24 in TCZ+MTX group (n=62).   
Green = p<0.05.   Red = p<0.01   
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Figure 32 - Spearman's correlation coefficients between small LDL particles 
and measures of disease activity at week 24 (n=62). 
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Figure 33 - Spearman's correlation coefficients between large LDL particles 
and measures of disease activity at week 24 (n=62). 
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Figure 34 - Spearman's correlation coefficients between small HDL particles 
and measures of disease activity at week 24 (n=62). 
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2.2.3.3 Correlations in degree of change at week 24 

Table 12 and Table 13 show a correlation matrix between change from baseline 

in disease activity measures and change from baseline in lipid parameters at 

week 24 in the TCZ+MTX group.   Small LDL particles appeared to fall in 

participants with large falls in GlycA, though the statistical values were modest 

(r=0.29, p=0.019) and no such relationship was seen for CRP, ESR or composite 

scores (Figure 35).       

Large LDL particle change correlated inversely with GlycA and ESR; no significant 

pattern was reached with CRP but the scatter plots for all three parameters 

appear to show increases in large LDL particle number in participants with large 

falls in their inflammatory markers (Figure 36).   The scatter plot led me to 

suspect that a relationship did exist between CRP and large LDL; to investigate 

this further I plotted change in large LDL in the top and bottom quartiles of CRP 

change.    Figure 37 shows that the degree of change in large LDL was no 

different in subjects with large fall in CRP (lowest quartile) compared to 

subjects with a modest fall or rise in CRP (top quartile).   No relationships were 

apparent between large LDL particles and composite disease scores. 

Small HDL particle levels tended to increase in participants with greater falls in 

disease markers.   Correlations for small HDL particles were significant for CRP 

and both DAS28 scores; non-significant numerical trends existed in other 

parameters.   Review of the scatter plots (Figure 38) confirmed a general trend 

of particle increase in those patients with greatest falls in CRP and ESR, but no 

clear relationship with CDAI. 

Large HDL particle change also showed clear inverse correlation with CRP, ESR 

and GlycA; Figure 39 clearly shows falls in large HDL associating with increasing 

inflammatory markers, and elevations in those with the greatest fall in 

inflammatory markers.   Figure 39 also reflects the complete absence of 

relationship between CDAI or DAS28 and large HDL particle change.
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r values VLDL   LDL  HDL  

  Total Large Medium Small Total IDL Large Small Total Large Medium Small 

GlycA -0.12 0.01 -0.08 -0.08 -0.02 -0.13 -0.35 0.29 -0.28 -0.33 0.05 -0.22 

CRP -0.21 -0.24 -0.15 -0.11 0.05 -0.04 -0.18 0.19 -0.34 -0.33 0.08 -0.31 

ESR -0.02 0.27 -0.09 0.00 0.06 0.23 -0.26 0.14 -0.27 -0.37 0.07 -0.24 

DAS28-CRP -0.26 -0.19 -0.14 -0.23 0.06 -0.06 0.00 0.06 -0.25 -0.03 0.13 -0.28 

DAS28-ESR -0.28 -0.13 -0.16 -0.22 0.10 -0.07 -0.13 0.19 -0.14 -0.09 0.19 -0.28 

CDAI -0.17 -0.12 -0.10 -0.15 0.00 0.04 0.01 -0.04 -0.18 0.01 0.09 -0.17 

             
p values VLDL  LDL  HDL  

  Total Large Medium Small Total IDL Large Small Total Large Medium Small 

GlycA 0.34 0.91 0.51 0.51 0.90 0.30 0.005 0.019 0.025 0.008 0.72 0.082 

CRP 0.098 0.058 0.24 0.37 0.72 0.75 0.16 0.13 0.007 0.010 0.55 0.013 

ESR 0.89 0.032 0.48 0.98 0.64 0.069 0.037 0.28 0.031 0.003 0.58 0.060 

DAS28-CRP 0.044 0.13 0.29 0.0716 0.67 0.65 1.00 0.63 0.049 0.81 0.31 0.030 

DAS28-ESR 0.029 0.31 0.21 0.087 0.43 0.57 0.33 0.14 0.27 0.46 0.13 0.027 

CDAI 0.19 0.34 0.44 0.25 0.99 0.75 0.94 0.76 0.15 0.94 0.49 0.17 

Table 12 - Spearman's r value (top) and p value (bottom) for change from baseline in measures of disease activity and change in 
lipid NMR values at week 24 in TCZ+MTX group (n=62).   Green = p<0.05.   Red = p<0.01
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r values Particle size  

  VLDL LDL HDL 

GlycA 0.14 -0.41 -0.06 

CRP -0.03 -0.18 -0.09 

ESR 0.11 -0.15 -0.12 

DAS28-CRP 0.02 0.03 0.07 

DAS28-ESR 0.03 -0.05 0.04 

CDAI 0 0.04 0.08 

    

    
p values Particle size  

  VLDL LDL HDL 

GlycA 0.29 0.001 0.63 

CRP 0.84 0.16 0.5 

ESR 0.4 0.26 0.36 

DAS28-CRP 0.88 0.81 0.56 

DAS28-ESR 0.84 0.72 0.78 

CDAI 0.99 0.73 0.52 

 

Table 13 - Spearman's r value (top) and p value (bottom) for change from 
baseline in measures of disease activity and change in mean particle size at 
week 24 in TCZ+MTX group (n=62).   Green = p<0.05.   Red = p<0.01 
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Figure 35  -Spearman's correlation coefficients between changes in small 
LDL particles and measures of disease activity at week 24 (n=62). 
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Figure 36 - Spearman's correlation coefficients between changes in large 
LDL particles and measures of disease activity at week 24 (n=62). 
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Figure 37 - Change in large LDL particle number at week 24 in top and 
bottom quartiles of CRP change.   Analysis by Mann-Whitney U test. 
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Figure 38 - Spearman's correlation coefficients between changes in small 
HDL particles and measures of disease activity at week 24 (n=62). 
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Figure 39 - Spearman's correlation coefficients between changes in large 
HDL particles and measures of disease activity at week 24 (n=62). 
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2.3 Discussion 

2.3.1 Lipoprotein changes 

The changes in lipoproteins seen in the TCZ+MTX group were similar to those 

previously published, with some exceptions.  For the primary outcome measure, 

small LDL particle number, I found no difference between the groups at 24 

weeks.   This mirrors the findings of the original analysis, and is reassuring on 

clinical grounds given that small, dense LDL particles are believed to be the 

most pro-atherogenic.   I also found a significant increase in large LDL particles; 

the original analysis reported a median increase of 19%, but also found a 13% 

increase in the placebo+MTX group that led to no significant difference between 

the groups.   I believe that my own findings are more believable given the 

evidence of LDL-c increases in tocilizumab phase III trials.    

Whilst small LDL particle number is generally accepted to be a marker of CVD 

risk, the clinical relevance of an increase in large LDL is not as clear.  This is 

despite them carrying more cholesterol mass than small LDL particles, and thus 

contributing more to measured LDL-c.   The largest prospective study to look at 

this issue (263) performed NMR analysis on serum from 27,673 healthy women in 

the Women’s Health Study.   They were then followed up for 11 years for 

incident CVD (n=1,015).   After adjustment for known risk factors, large LDL 

particle number did not predict incident CVD (HR of top quintile compared to 

bottom quintile 0.86, 95% CI 0.72-1.03, p=0.21) whilst small LDL particle number 

did (HR of top quintile compared to bottom quintile 1.76, 95% CI 1.41−2.18, 

p<0.001).  Other, smaller studies have generated similar results (264-266), 

including one in RA patients (217).   However, one cross-sectional study of 5,538 

subjects from the MESA study (267) suggested a positive association between 

large LDL particles and carotid IMT after adjusting for small LDL particle 

number, given that the two measures tend to inversely correlate.   Another 

study of 656 Alaskan Inuit suggested a contribution of large LDL to carotid 

plaque score, but not carotid IMT (268).    

Despite the balance of the literature as detailed above, some caution is required 

before stating that tocilizumab’s LDL-c increase is not pro-atherogenic.   This is 

for two reasons.   Firstly, it is not at all clear that NMR subparticle quantification 
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is superior to traditional lipidaemic risk factors for CVD risk quantification.   

Indeed, in the Women’s Health Study, LDL particle number’s ability to predict 

incident CVD became non-significant when added to two models which adjusted 

for (1) LDL-c, HDL-c and triglyceride, or (2) the total/HDL-c ratio.   Secondly, 

the trials above were not performed in the context of a high-grade inflammatory 

state such as RA, which of course generates counter-intuitive relationships 

between serum cholesterol and CVD risk.   My personal view is that these 

findings are both mechanistically explanatory and clinically reassuring.   The 

ultimate solution to this conundrum would of course be a study on RA patients 

with NMR lipoprotein quantification before and after tocilizumab with long-term 

follow up for CVD outcomes.   Whilst it would be interesting to use MEASURE for 

this purpose, the relatively small patient numbers (and thus likely low numbers 

of CVD events) make it unlikely that the MEASURE cohort could be effectively 

used in this manner. 

 I found no change in medium-sized VLDL, whilst the original analysis found an 

increase of 58% from baseline at 12 weeks.   The magnitude of change was also 

different; for example, large VLDL increased by median 62% at week 12 in the 

TCZ+MTX group in my analysis, compared to 206% in the original.   This is likely 

related to the use of a newer NMR platform at LipoScience for generating 

lipoprotein values.   The clinical significance of these findings is uncertain.  

Large VLDL particle number correlated strongly to serum TG and all VLDL 

particle sizes predicted increasing CVD risk with increasing concentration in the 

Women’s Health Study (263).   This may simply reflect the TG-induced increase 

in small dense LDL, though triglycerides did also increase following treatment in 

MEASURE (254).   In the Women’s Health Study no further analysis was 

performed on VLDL to adjust for other lipid measures.    

The significant increase in small HDL particles replicates the original analysis, 

though I failed to find any decrease in medium HDL.   RA patients have lower 

levels of small HDL particles than controls (216, 217); our observed increase can 

be seen as a normalisation of abnormally low levels.   Some studies indicate a 

protective association between small HDL on NMR and CVD, including one in RA 

(217), though others do not(263, 266).   Perhaps more important than the 

quantity of HDL particles is their makeup and function, as detailed in the 
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original report.   Unfortunately however I did not have access to any other HDL-

related parameters, such as SAA or paraoxonase. 

In all lipoprotein parameters, there was no difference in change from baseline 

between the TCZ+MTX groups and placebo+MTX at 52 weeks, demonstrating that 

the placebo+MTX group underwent the same lipoprotein changes as the active 

treatment group following 24 weeks of open-label tocilizumab.   This can 

reassure investigators that the changes observed in the TCZ+MTX group were due 

to tocilizumab rather than an unknown confounder between the groups.   It also 

makes it unlikely that any additional lipoprotein changes occur beyond 24 weeks 

of treatment, although as previous graphs have demonstrated the majority of 

changes appeared to take place by the week 2 assessment.   These observations 

are a reassuring validation of the integrity of the study and the original 

publication.    The one exception to the above is small VLDL particles; although 

the numerical values were identical at week 52, the two groups had different 

baseline values.   I believe this is likely a non-significant finding, as with thirty 

different parameters being analysed there is a possibility that one will be 

different purely by chance given an alpha of 0.05. 

2.3.2 GlycA as a marker of inflammation / RA activity 

Our results from analysis of the cohort at baseline show GlycA to be a reliable 

indicator of the acute phase response.   It correlated well with CRP and more 

modestly with ESR, and maintained these associations in repeated measures over 

12 weeks in the placebo+MTX group.   Similarly, GlycA values in our cohort were 

higher than those seen in a healthy cohort, and an RA cohort with less severe 

disease and lower ESR and CRP.   However, there was no relationship found with 

CDAI score.   It could be argued that the weakness of these associations is 

evidence against GlycA’s utility as a biomarker for inflammation.   I believe this 

is unfair, as I have demonstrated that ESR and CRP also correlate very poorly 

with CDAI, and with each other.   Indeed, it is for this very reason that the 

clinician performs multiple measures and compares and contrasts them, or uses 

them together in a composite score such as DAS28.   GlycA was also unable to 

act as a marker for ongoing disease activity in those patients with low CRP.   It 

would be interesting to see how well GlycA and other markers reflected disease 

activity as measured by another objective, quantitative marker of inflammatory 
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burden such as MRI or USS, as this may provide evidence of further utility as a 

biomarker.   Further studies would be required to evaluate this possibility.  

There remains a strong appetite amongst rheumatology researchers for a 

biomarker which can predict response to a given therapy.   Unfortunately, GlycA 

was unable to convincingly do so, though ESR and CRP did not fare much better.   

The ability of GlycA to predict radiographic progression could not be evaluated 

in this study as no such data were available.   

The sharp fall in GlycA following the start of tocilizumab treatment was similar 

to that seen with ESR and CRP, with median levels below that of a non-RA 

cohort.   This potential “supra-normalisation” implies that, like CRP, the GlycA 

signal is exquisitely dependent on IL-6.   This is perhaps surprising as other IL-6 

related peptides such as fibrinogen and CRP can be glycosylated but make 

negligible contributions to the overall GlycA signal (261).   Moreover, glycan 

processing is currently understood to be influenced by various inflammatory 

signals, including TNFα (269) and endothelial dysfunction (270).   On the other 

hand, the proteins whose N-acetyl-methyl groups generate the GlycA signal are 

well recognised as acute-phase proteins, and will inevitably be upregulated by 

IL-6. GlycA, like CRP or ESR, should therefore be interpreted with caution in the 

context of IL-6 blockade.  It may, however, be useful in quantifying disease 

activity in other conditions associated with excessive IL-6 signalling, and 

research is ongoing into GlycA’s behaviour in treatment-naive RA and vasculitis 

(M. Klearman, personal communication).   Moreover, it has been reported that 

GlycA has clinical associations with cardiovascular disease outcomes, for 

example ischemic stroke, independent of CRP and traditional cardiovascular risk 

factors.  These observations suggest that the two inflammatory markers be 

differentially regulated and may provide overlapping but distinct clinical 

information for patient evaluation.  

2.3.3 Clinical response in the cohort 

Of note, some steady improvement in clinical parameters was seen even beyond 

24 weeks.   I have certainly had personal experience in my clinical career of 

meeting RA patients on biologic agents who describe prolonged, gradual 

improvements in their condition beyond 6 months of therapy.   Alternatively, the 
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phenomenon may have been in part due to the lack of imputed data in my 

analysis, as the seven patients who dropped out between weeks 24 and 52 had a 

mean week 24 CDAI of 23.4, compared to mean 19.2 in those that went on to 

complete 52 weeks; hence, their dropping out of the study probably contributed 

to lower week 36 and 52 median values.   Perhaps the simplest explanation is 

that from week 24, patients in the TCZ+MTX group moved from a blinded 

treatment regimen to open-label tocilizumab, and the knowledge of their 

current therapy generated a placebo effect.   

Reassuringly, the placebo + MTX group generally demonstrated little or no 

change in GlycA or other measures of disease activity until changing to open 

label tocilizumab at week 24.   From this point on, the curves tended to mirror 

the changes seen in the TCZ+MTX group, and there were no significant 

differences between the groups in the degree of change from baseline in any 

parameters at week 52.   One unexpected feature was the improvement in 

swollen joint count seen in the placebo+MTX group by week 2, and maintained 

until the week 24 crossover point.   This was responsible for the falls in DAS28-

CRP, DAS28-ESR and CDAI seen in this group during the placebo phase of the 

trial.   However, the change in SJC was much more pronounced in the TCZ+MTX 

group, leading to a statistically significant difference between the groups at 24 

weeks. 

2.3.4 Lipoprotein correlations  

High levels of CRP (typically greater than around 40mg/l) and GlycA seemed to 

drive down large LDL particle number at baseline, and strong responses to 

treatment (as measured by acute phase reactants) tended to lead to an increase 

in these particles.   The same seemed to be true of small HDL and CRP, ESR and 

GlycA, with low particle numbers in patients with high inflammatory markers.   

Large HDL particles also tended to increase in those with the largest falls in 

inflammatory markers after 24 weeks.   These observations support the 

hypothesis of IL-6 being a driver of lipid change in both the HDL and LDL 

compartments, rather than cholesterol elevations being an “off-target” effect of 

the drug. 
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Nevertheless, correlations between inflammatory and lipoprotein markers were 

generally modest, and were more commonly seen with acute phase reactants 

than CDAI or DAS28.  IL-6, as tocilizumab’s profound and rapid changes in 

inflammatory markers demonstrate, is the main driver of the acute phase 

response; this could lead us to conclude that IL-6 contributes more to 

dyslipidaemia in RA than other molecular or cellular components of the disease.    

This view is supported by the LDL changes seen with tocilizumab, which are of 

greater magnitude and consistency than seen in TNF-α blockade or conventional 

DMARDS.   Alternatively, part of the reason may simply be the greater 

reproducibility of biochemical tests compared to joint counts and visual 

analogue scale scores, which are subjective and prone to inter- and intra-

individual variation.    
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3 The KALIBRA study 
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3.1 Rationale 

The previous chapters have shown that there is abundant evidence of 

tocilizumab causing elevations in LDL-c, whilst the MEASURE study showed that 

this increase is predominantly in large LDL particles.   This increase appears to 

associate more with the acute phase response than joint counts or other clinical 

measures of disease activity. 

The mechanisms behind these observations, however, remain unclear.   One 

possibility is that tocilizumab increases production of LDL or one of the 

“upstream” apoB-containing lipoproteins by the liver.   This would potentially 

provide more substrate for atherogenesis, and so may increase cardiovascular 

risk in an already high-risk patient population.   Alternatively, the changes may 

be due to reduced catabolism of LDL, in the form of reduced consumption of LDL 

particles by peripheral tissues.   This hypothesis of increased LDL catabolism in 

certain patients has its origin in studies of hypertriglyceridemic patients in the 

1980s.   These studies showed a “bell-shaped curve” relationship between serum 

LDL-c and triglycerides.   As serum triglyceride levels rise to around 2mmol/L 

(i.e. towards the upper limit of the normal range), serum LDL levels steadily 

increase.   This appears to be because these LDL particles (which are derived 

from triglyceride-rich VLDL) themselves contain increased triglyceride.   This 

results in conformational changes in the apoB molecule, making it less able to 

bind to the LDL receptor (LDLr).   However, at triglyceride levels above 

4mmol/L, LDL levels begin to fall, because the LDL particles become abnormally 

small and more susceptible to removal by mechanisms independent of the LDLr.   

However, even more pertinently to our study, work in our centre with rabbits 

showed that suppressing reticuloendothelial lipoprotein uptake with IV ethyl 

oleate slowed catabolism of LDL which had been altered to resist LDLr-

dependent uptake (271).   Given the shared role of macrophages in the 

reticuloendothelial system, atherogenesis and inflammatory arthritis, it stands 

to reason that a similar scenario of altered LDL clearance may be at work in RA 

and, by extrapolation, following IL-6 blockade.   This is clinically important, as if 

tocilizumab reduces the fractional catabolic rate of LDL by the 

reticuloendothelial system, this would suggest a potential athero-protective role 

for IL-6 blockade in RA.   Such changes would be in keeping with the recognised 
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effects of systemic inflammation to suppress circulating levels of lipids, and the 

apparent ‘normalisation’ of several lipid parameters observed in MEASURE. 

We therefore hypothesised that IL-6 blockade with tocilizumab would reduce the 

removal rate of LDL-c, leading to qualitative and quantitative changes in LDL 

particles and in apoB levels. 
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3.2 Methods 

3.2.1 Patient recruitment  

KALIBRA was a multi-centre mechanistic study conducted in Glasgow.   Patients 

were recruited from three centres (Glasgow Royal Infirmary, Stobhill Hospital 

and Gartnavel General Hospital), whilst all study procedures took place in the 

Glasgow Clinical Research Facility (CRF) at the Western Infirmary, Glasgow.   

Patients were identified in RA clinics by consultant or trainee rheumatologists in 

or when attending for screening for biologic therapy by specialist nurses.   

Posters advertising the study were placed in RA clinic rooms and day wards 

(Appendix C).   In addition, I was able to look through details of patients who 

were scheduled to come for biologics screening, and so identify potential 

candidates, or exclude ineligible participants, in advance.  

Patients were required to meet the following inclusion criteria.   These ensured 

our cohort reflected the patients who would receive tocilizumab in routine 

clinical practice: 

 Diagnosed rheumatoid arthritis according to ACR 2010 criteria  

 Eligible for tocilizumab therapy according to NICE guidelines, i.e.  

 DAS28≥5.1 in keeping with severe active disease 

 Failure to tolerate or respond to two or more conventional DMARDs 

including methotrexate. 

 Age 25 to 75  

 Able to provide written informed consent  

 Absence of contraindication to biologic therapy 

 Suitable for tocilizumab therapy in the opinion of the consultant 

rheumatologist most directly responsible for their care 
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Exclusion criteria ensured that subjects did not have co-morbidities which might 

interfere with cholesterol metabolism and thus make interpretation of lipid 

parameters difficult: 

 Known familial dyslipidaemia 

 ApoE 2/2 homozygosity 

 Diabetes mellitus 

 Fasting total cholesterol >6.5mmol/L, or fasting triglycerides >3mmol/L 

 Treatment with any known lipid-lowering therapy, including statins, 

fibrates, bile-acid sequestrants or ezetimibe. 

 Pregnancy 

 Untreated hypothyroidism, or recent (6 weeks) change in thyroxine dose 

 Known hypersensitivity or contraindication to heparin 

 Concomitant use of oral glucocorticoids at a steady dose was permitted.   

Intramuscular steroid, a common method of steroid delivery in our area, 

was not permitted during the study.   Intra-articular steroids were 

permitted in exceptional circumstances (i.e. if refusal would cause 

unacceptable patient suffering or would result in withdrawal from the 

study) at a maximum cumulative dose of 40mg triamcinolone. 

 Concomitant use of DMARDS, NSAIDs or other analgesia at a steady dose 

was permitted. 

All patients were compensated for their time with £200 for participating in the 

study.   Travel expenses in the form of bus fares or taxi receipts were also 

reimbursed.   Patients were introduced to the study verbally by myself or a 

Rheumatology specialist nurse, and provided with an information leaflet 

(Appendix D).   After at least 48 hours, the subject would discuss the study with 
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me in person or over the telephone.   If the subject wished to participate, a 

screening visit was arranged where written informed consent was obtained.   

The consent form is shown in Appendix E.   At the screening visit, the patient 

was assessed for inclusion and exclusion criteria.   This included blood samples 

being drawn for inflammatory markers, lipids, fasting glucose and ApoE genetic 

testing. 

3.2.2 Procedures 

After screening, a four-week period was allowed if necessary for washout of 

previous biologic drugs such as anti-TNF agents.   The first 5-day kinetic study 

then took place, followed by a period of at least ten weeks to allow a minimum 

of three infusions of TCZ 8mg/kg.   The second kinetic study was carried out two 

weeks after the third TCZ infusion.   If the dosing schedule was interrupted, a 

further three consecutive infusions of TCZ were required before performing the 

second kinetic study.   

The labour-intensive nature of lipoprotein isolation, and the sample-processing 

capacity of our biochemistry lab, meant that one kinetic study could take place 

every two weeks.   Coupled with the timescale described above, this meant that 

recruitment was carefully staggered; patients were enrolled in “blocks” of no 

more than five at a time.   This was because by the time the fifth participant 

had completed their first kinetic study, ten weeks had passed since the 

enrolment of the first participant, who was then due their second kinetic study. 

3.2.3 Kinetic blood sampling rationale 

Kinetic studies are conducted using a stable deuterated isotope of the amino 

acid leucine (5,5,5-d3 leucine), a component of many proteins including apoB.    

When this is administered IV, d3-leucine is rapidly taken up by hepatocytes.  A 

substantial quantity is incorporated rapidly into newly-synthesised apoB 

molecules in a manner indistinguishable from native leucine.   The labelled apoB 

is used in the synthesis of VLDL-1 from chylomicron remnants, and remains with 

that particle as it is metabolised by lipoprotein lipase and hepatic lipase to 

VLDL-2, IDL and finally LDL.   At serial timepoints after administration, serum 

samples can be taken and mass spectrometry used to quantify the percentage of 
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apoB enrichment in d3-leucine.   Graphing the tracer/tracee ratio against time 

for different particles can yield a graph similar to Figure 40 below. 

 

Figure 40 - Example curves of labelled apoB in generation of VLDL-1 and 
transfer to VLDL-2. 

 
This example graph shows rapid incorporation of labelled apoB into VLDL-1, 

peaking at around two hours.   This peak then falls off as VLDL-1 is cleared and 

metabolised by LPL to VLDL-2, as reflected by the appearance of a VLDL-2 apoB 

peak at around 5 hours.   Levels of labelled VLDL-2 apoB will themselves fall in 

the same manner, and similar curves may be plotted for the downstream 

particles IDL and LDL, each with distinctive rates of rise (as new particles are 

formed incorporating the labelled apoB) and fall (as they are metabolised by 

lipolysis or cleared from the circulation).   Mathematical modelling can then be 

used to calculate the synthetic and catabolic rates of the apoB-containing 

lipoproteins; this process is outlines later. 
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3.2.4 D3-Leucine production 

Manufacture of the d3-leucine solution for the study was carried out by Tayside 

Pharmaceuticals (Dundee, UK) on behalf of NHS Greater Glasgow & Clyde.   

Leucine was suspended in glass vials of 45ml 0.9% sodium chloride at a 

concentration of 10mg/ml, and was stored in the dark at 0 – 5oC in the pharmacy 

unit of the Western Infirmary, Glasgow.    

3.2.5 Tocilizumab supply 

All tocilizumab used in the study was graciously provided without charge by 

Roche Products Ltd, under an agreement with NHS Greater Glasgow & Clyde.   

This was stored and reconstituted in the sterile products unit of Glasgow Royal 

Infirmary.   On completion of the study, patients who demonstrated a clinical 

response to the drug and who wished to continue were switched to NHS stock in 

either IV infusion or subcutaneous form, depending on the patient’s preference. 

3.2.6 Kinetic blood sampling timetable 

On day 1, the patient was admitted to the Clinical Research Facility (CRF) having 

fasted overnight.   At 08:00, an 18G or 20G cannula was inserted in the 

antecubital fossa and baseline blood samples were taken.   5mg/kg of d3-leucine 

was then administered as an IV bolus through a cannula in the other arm.   The 

patient remained in a semi-recumbent position throughout the day except for 

natural breaks.   Blood samples were taken in EDTA vacutainers through the 

cannula at the following timepoints: 2min, 5 min, 10min, 15min, 20min, 30min, 

45min, 1h, 1.5h, 2h, 3h, 3.5h, 4h, 5h, 6h, 8h, 10h, 11h, and 13h.   The patient 

was fasted throughout the day, and encouraged to drink plenty of water.   

Following the 10h sample, the patient was provided with a low-calorie 

(1,000kcal) meal.   The patient was allowed home after the 13h sample. 

Further fasting samples were taken on day 2 (24h, 36h), day 3 (48h), day 4 (72h) 

and day 5 (96h).   After the day 5 sample was taken, unfractionated heparin 

70IU/kg was administered as an IV bolus.  After 12 minutes, blood samples were 

taken through the cannula for hepatic lipase and lipoprotein lipase activity 

measurements, and stored on ice for transportation to the university 
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biochemistry laboratory.   It was calculated that for each kinetic study a total of 

266ml of blood would be drawn over the course of one week, with most of that 

volume coming in the first 12 hours. 

Three patients lived several miles away from the CRF, but in relatively close 

proximity to my own home.   These patients agreed to have blood samples on 

Tuesday – Thursday taken at their home address by me, with the samples being 

refrigerated and transferred the following day to our centre’s laboratory. 

3.2.7 Assessments 

Day 1 assessments for all patients included swollen and tender joint counts, 

patient’s global assessment by visual analogue scale (VAS) and physician’s global 

assessment by VAS, all of which I performed myself.   Blood samples were taken 

for FBC, CRP and ESR, which were processed in standard fashion at NHS GGC 

laboratories.   Samples were also taken for betaquant (direct measurement of 

TC, VLDL-c, LDL-c, HDL-c and TG), CETP activity, apolipoproteins, lipoprotein 

fraction composition, Lp(a) and insulin. 

3.2.8 Lipoprotein sample handling and processing 

Measurement of blood cholesterol, triglyceride and lipoprotein parameters were 

all performed by the University of Glasgow Centre for Vascular Biochemistry, in 

the Western Infirmary Glasgow, under supervision of Prof. Caslake.   Plasma 

from kinetic study blood samples was isolated by centrifugation.   Density-

gradient ultracentrifugation was then used to isolate the apoB-containing 

fractions – VLDL-1, VLDL-2, IDL and LDL.   ApoB from each fraction was 

precipitated, delipidated and measured by gas chromatography mass 

spectrometry (GCMS) to ascertain the proportion of tracer in apoB at each 

timepoint. 

3.2.9 Pooling of serum for subfraction analysis 

Serum samples were taken on day 1 of each kinetic study for Beta-quantification 

(Betaquant); this is the gold standard technique of directly measuring LDL-c by 

ultracentrifugation.   Values for total cholesterol, VLDL-c, HDL-c and 

triglycerides are also generated by this technique.    
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However, it is recognised that there can be significant intra-individual variation 

in serum lipid levels throughout the 96 hours that the kinetic studies span, 

despite the patients fasting for at least 8 hours before each sample.   It was 

therefore not appropriate to use day 1 serum samples (readings reflecting one 

timepoint) for the lipid subfraction values which were to be used in generating 

kinetic data (readings spanning numerous timepoints across five days).   Lipid 

subfraction and some apolipoprotein values were instead obtained by taking 

small volumes of leftover serum from kinetic timepoint samples and pooling 

them.   For each kinetic study in each patient, three serum pools were 

constructed:  pool A was composed of samples from the first day; pool B from 

the second and third days; and pool C from the final two days.   Subfractions 

were then isolated from each pool, and the mean of the three values was used in 

subsequent calculations.   Specific calculation methods are discussed where 

relevant in the results section. 

3.2.10 Data recording  

Demographic data, clinical data, routine haematology and biochemistry 

assessments, and kinetic study sampling times were recorded on a paper case 

report form, generated as a collaborative effort between myself and the 

Robertson Centre for Biostatistics, University of Glasgow (Appendix X).   The 

form also included data on concomitant medications, adverse events, and dates 

of tocilizumab infusions.   During the study the case report forms were stored in 

the CRF in a locked filing cabinet, in a room only accessible by electronic pass.   

As each participant completed the study, their case report form was redacted of 

patient-identifiable information and passed to the Robertson Centre for secure 

storage.   Photocopies of the sheets containing kinetic study sampling times 

were forwarded to Prof. Caslake for use in kinetic modelling. 

3.2.11 Statistical analysis and compartmental modelling 

The primary outcome measure was the change in fractional catabolic rate of 

LDL.   Secondary outcome measures included serum lipoprotein compositions and 

levels of other proteins and particles as detailed above.   As much of the data 

was non-parametrically distributed (as determined by visual inspection of 

histograms and comparing sample means to medians), differences between 
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baseline and treatment were usually assessed by the Wilcoxon matched-pairs 

test.   Correlations were all measured by Spearman’s correlation coefficient.   

Raw data was stored on MS Excel, with statistical analyses and graphs generated 

on GraphPad Prism 6.  

Tracer/tracee ratios for apoB, together with apoB pool sizes, in each fraction 

are used to derive kinetic parameters in SAAMII modelling software (SAAM 

Institute, Seattle).   Some years ago, [DEMANT 1996] our unit generated a multi-

compartmental model for apoB metabolism, illustrated by Figure 41 below. 

 

 

Figure 41 - Schematic of the compartmental model of apoB synthesis and 
transfer down the delipidation cascade. 

 

Compartment 1 represents plasma leucine which is in equilibrium with an 

intracellular compartment (2).   As leucine is also taken up by other protein-

synthesising cells / pathways, compartments 3 and 4 are used to denote the 

uptake and release of leucine by protein pools in the body that have slow 

turnover rates.   Intracellular compartment 2 feeds directly into compartment 5 

which represents apoB synthesis and incorporation into lipoproteins in 
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hepatocytes.   VLDL-1 is present in compartments 6-8; VLDL-2 in compartments 

9-11; IDL in compartments 12 and 13; and LDL in compartment 14.   Whilst the 

majority of newly formed apoB is used for production of VLDL-1 from 

chylomicron remnants, previous similar kinetic studies have demonstrated that 

small amounts of apoB may be incorporated into any of the four lipoprotein 

classes. [PACKARD2000]   There is a delipidation cascade, driven by lipoprotein 

lipase and hepatic lipase, from compartment 6 to 7 to 9 to 10 to 12 to 14.   

Compartments 8, 11 and 13 represent “remnant” populations generated 

enzymatically, which are slowly cleared from the system without progressing 

further down the delipidation cascade.   From compartment 14, LDL-associated 

apoB may transfer to compartment 15 (representing extravascular LDL) or be 

excreted.   Using this model, rates of transfer from one fraction to the next can 

be calculated, as well as rates of de novo synthesis (between compartment 5 

and 6, 9, 12 or 14) and catabolic rate of LDL. 

3.2.12 Determination of sample size 

The primary outcome measure for KALIBRA was the fractional catabolic rate 

(FCR) of LDL-related apoB.   In normal subjects, the FCR is around 0.3 pools per 

day.   In those with increased catabolism due to hypertriglyceridemia in a 

previous study, the FCR is around 0.5 pools per day; this corresponded to a large 

decrease in LDL-c of around 1.5mmol/l.[PACKARD2000]   In contrast, a study of 

lipid kinetics using ciprofibrate showed an increase in mean LDL catabolic rate 

from 0.32 to 0.38 pools per day, in the context of a 22% fall in LDL-c.   This is 

broadly similar to the rises of around 20% in LDL-c seen in the tocilizumab phase 

III programme, and reflects a biologically significant change in FCR. 

Using these figures, we used a conservative change in FCR of around 0.05 pools 

per day to determine power.   A sample size of 15 subjects allows us to detect a 

difference in fractional catabolic rate of 0.05 with SD 0.05 at 90% power and 

alpha error at 5%.   This sample size is typical for kinetic trials of this type, and 

was felt to be achievable given the RA population available between the three 

recruitment sites.   Nevertheless, we realised that this could be an ambitious 

target given the stringent inclusion and exclusion criteria, and a study protocol 

which was potentially very inconvenient for patients.   We were therefore aware 

that that a sample size of 15 may be unattainable in the time available to carry 
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out the study, and so set an informal target of at least 10, and ideally 12, 

recruits.   The consensus of the investigators was that a sample size smaller than 

10 was unlikely to generate statistically significant data, and any “positive” 

results would be treated with scepticism on peer review.     

3.2.13 Ethical approval 

Ethical approval for the study was sought from the West of Scotland Regional 

Ethics Service (WosRES) Research Ethics Committee (REC) 3, reference 

12/WS/0171.   A meeting of the REC was attended by me on 26th July 2012, and 

provided a provisional opinion on 3rd August.   Questions and concerns 

articulated in the provisional opinion included: Amending the patient 

information sheet to include details on tocilizumab and heparin, the number of 

blood tests being performed, and the fact that samples would be stored for 

future research; how samples and confidential information would be stored; how 

adverse events would be documented; and concern from lay members of the 

panel on the quantity of blood being taken during the kinetic studies.   These 

were responded to in writing on 23rd August 2012, and REC approval was 

obtained on 4th September 2012.   
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3.3 Results – Clinical and Kinetic Outcomes 

3.3.1 Demographics 

Patients were recruited from summer 2013 through to winter 2014.   The final 

kinetic study was performed in February 2015, as in Table 14. 

Study # Source Screening 1st Kinetic study 2nd Kinetic study 

KAL001 GRI 22/07/2013 29/07/2013 04/11/2013 

KAL002 GGH 25/07/2013 12/08/2013 24/02/2014 

KAL003 ST 27/08/2013 09/09/2013 18/11/2013 

KAL004 GGH 12/09/2013 23/09/2013 09/12/2013 

KAL005 GRI 29/01/2014 17/03/2014 09/06/2014 

KAL006 GRI 03/03/2014 31/03/2014 23/06/2014 

KAL007 GRI 18/03/2014 14/04/2014 18/08/2014 

KAL008 GGH 19/09/2014 22/09/2014 08/12/2014 

KAL009 GGH 01/10/2014 13/10/2014 12/01/2015 

KAL010 ST 09/10/2014 27/10/2014 19/01/2015 

KAL011 GRI 30/10/2014 10/11/2014 02/02/2015 

KAL012 GRI 30/10/2014 24/11/2014 23/02/2015 

 

Table 14 - Recruitment sites and dates for KALIBRA participants.  GRI = 
Glasgow Royal Infirmary.   GGH = Gartnavel General Hospital.   ST = Stobhill 
Hospital. 

 
Demographic details of the patient cohort are shown in  

Table 15.   In keeping with observed patterns in our RA clinics, the majority 

were female and seropositive for either RF or ACPA, with a mean age of 55.   

Only four patients took concomitant MTX.   This is probably because patients 

intolerant of MTX were prescribed TCZ instead of anti-TNF; some patients were 

instructed specifically for TCZ by their consultant, whilst others were referred 

simply for “biologics screening” with no drug specified, and TCZ was decided as 

the drug of choice when I reviewed their details in the biologics clinic.   Two 

patients were on “triple therapy” (MTX, SSZ & HCQ) and two were on no 



 153 
 

 
 

conventional DMARDS at all.   Three patients had previously failed or not 

tolerated at least one anti-TNF drug.  

Four adverse events were documented.   One patient developed grade 2 

neutropenia; neutrophil counts recovered spontaneously and re-challenge with 

full-dose TCZ was successful.   Three patients contracted infections.   One 

patient required hospitalisation for an abscess on her back following one dose of 

TCZ, but recommenced her drug after incision & drainage and successful 

treatment with antibiotics.   A severe adverse event (SAE) form was completed 

and the data shared with Roche as per their internal protocols.   One patient 

developed shingles; suspension of TCZ treatment was not required.    

KAL008 developed a paronychia after three doses of TCZ, requiring removal of 

her fingernail and suspension of TCZ.   As she was without treatment for several 

weeks, we were unable to re-treat her with TCZ and perform kinetic studies 

within the available time window, and she was withdrawn from the study.   

However, this was not classed as a SAE given that hospital admission was not 

required and no risk to life or long-term health resulted from the infection.   As 

no post-treatment data was collected for this patient, all analyses hereafter are 

carried out on a “per-protocol” basis using data from the remaining 11 patients. 
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Study   
# 

Age    
(y) 

Sex 
Weight 

(kg) BMI 

Systolic 
BP 

(mmHg) 
Prednisolone 

(mg/d) 
NSAID 
(Y/ N) 

MTX  
(mg/wk) 

SSZ 
(mg/d) 

HCQ 
(mg/d) 

LEF    
(mg/d) 

Previous 
Biologic? 

RF / ACPA 
+ (Y/N) 

KAL001 49 F 63 23.4 138 1 Y 7.5 

   

Y Y 

KAL002 58 F 78 29.0 137 

 

Y 

     

Y 

KAL003 46 M 88 26.3 161 

 

Y 

  

200 

 

Y Y 

KAL004 65 M 78 26.7 121 

  

10 4000 200 

 

Y 

 KAL005 61 F 60 24.3 129 7.5 

   

200 

  

Y 

KAL006 50 F 63 29.2 113 

       

Y 

KAL007 32 F 62 23.9 105 

 

Y 

 

2500 

   

Y 

KAL008 28 F 60 23.4 123 

  

20 

     KAL009 57 F 74 29.6 149 

 

Y 

  

400 10 

 

Y 

KAL010 51 F 48 17.2 146 

 

Y 

 

2000 300 

  

Y 

KAL011 60 F 69 26.3 156 

 

Y 12.5 2500 400 

  

Y 

KAL012 42 F 59 19.3 103 

 

Y 

 

3000 400 

  

Y 

Mean / 
% 

 

49.9 83% F 66.8 24.9 132 4.25 67% 12.5 2800 300 10 25% 83% 

 

Table 15 - Demographic data of KALIBRA cohort at baseline. 
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3.3.2 Clinical outcomes 

Changes in markers of disease activity after TCZ are shown in Figure 42.   At 

baseline, mean DAS28-CRP and DAS28-ESR were 5.16 and 5.61 respectively.   

Mean CDAI was 29.9.   As is typical for IL-6 blockade, CRP and ESR fell markedly; 

at the time of the second kinetic study, all patients had CRP of 2mg/l or less, 

and ESR of 10mm/hr or less.   Tender and swollen joint counts also improved, 

but to a lesser extent.   Mean DAS28-CRP and DAS28-ESR were 2.24 and 1.81 

respectively.   Mean CDAI was 8, with six patients reaching low disease activity 

(CDAI ≤10), and one reaching CDAI remission (CDAI ≤2.8). 

 

 

Figure 42 - Measures of disease activity pre- and post-treatment, presented 
as means ± SD.    * = p<0.05.  ** = p<0.01  *** = p<0.001   **** = p<0.0001 by 
paired t-test. 
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3.3.3 Serum cholesterol by betaquant 

Serum cholesterol levels were first analysed by betaquant.   This is the standard 

industry method of measuring serum LDL-c and uses a combination of 

ultracentrifugation and precipitation; the value given for LDL-c also includes 

cholesterol within IDL and Lp(a).   Betaquant values are shown in  

Table 16.   In accordance with previous studies, total cholesterol, HDL-c and 

LDL-c all increased.   A non-significant rise in TG was noted.  The TC / HDL-c 

ratio did not change. 

 Baseline Treatment  

 Mean 95% C.I. Mean 95% CI p 

TC 4.81 4.30 – 5.32 5.66 4.91 – 6.42 0.003 

VLDL-c 0.69 0.57 – 0.83 0.75 0.57 – 0.93 0.56 

LDL-c 2.90 2.46 – 3.34 3.40 2.72 – 4.09 0.014 

HDL-c 1.23 1.07 – 1.39 1.52 1.39 – 1.64 0.006 

TG 0.93 0.74 – 1.12 1.12 0.84 – 1.41 0.21 

TC/HDL-c 4.08 3.55 – 4.61 3.81 3.17 – 4.46 0.18 

 

Table 16 - Serum lipids as measured by betaquant at baseline and after 
treatment.  All values in mmol/L except TC/HDL-c ratio.   Analysis by paired 
t-test. 

 

3.3.4 Lipoprotein particle composition 

Before running mathematical models to generate kinetic data, it was first 

necessary to analyse the composition of VLDL-1, VLDL-2, IDL and LDL.   This is 

because particle composition is required to calculate apoB pool sizes for each 

subfraction; pool sizes are then required for the kinetic modelling stage.   Each 

particle contains phospholipid (mostly in the particle membrane); protein in the 

form of ApoB; free cholesterol; cholesterol ester; and triglyceride.    

Changes in the mass and composition of VLDL-1, VLDL-2 and IDL are summarised 

in Table 17.    VLDL-1 mass increased, driven by significant increases in all 
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particle constituents except protein, and especially triglyceride.   The 

proportions of the constituents did not change, though there was a non-

significant (p=0.076) fall in proportional protein content.   For VLDL-2 and IDL, 

no changes were observed in particle mass, individual constituent levels or 

constituent proportions.   Figure 43 shows the mean percentage composition of 

VLDL-1, VLDL-2 and IDL, demonstrating the progressive loss of triglyceride and 

proportional increase in cholesterol within the particles as they travel down the 

lipolytic pathway. 
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Mass  Protein  Free cholesterol  

  Baseline Treatment Baseline Treatment Baseline Treatment 

VLDL-1 24.8 44.9 2.6 3.6 1.5 2.5 

    p=0.009   p=0.13   p=0.056 

VLDL-2 24.4 31.2 3.7 4.9 2.1 3.4 

    p=0.28   p=0.24   p=0.24 

IDL 47.7 59.1 8.8 11.2 4.1 5.8 

    p=0.19   p=0.38   p=0.13 

 

 
 

       Cholesterol ester  Triglyceride  Phospholipid  

  Baseline Treatment Baseline Treatment Baseline Treatment 

VLDL-1 3.1 6.5 15.6 24.4 3.5 6.8 

    p=0.002   p=0.012   p=0.030 

VLDL-2 4.3 7.2 10.1 11.6 4.7 6.5 

    p=0.21   p=0.24   p=0.28 

IDL 14.9 20.4 6.1 6.2 8.3 11.2 

    p=0.15   p=0.95   p=0.090 

 

Table 17 - Median lipoprotein masses and constituents at baseline and after treatment.   N=11.   P values generated by Wilcoxon 
matched-pairs test. 
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Figure 43 - Particle compositions before and after TCZ in (A) VLDL-1, (B) 
VLDL-2 and (C) IDL. 

 
To my surprise, LDL mass did not increase significantly.   Free cholesterol 

increased modestly but no significant change was seen in cholesterol ester, 

which made up nearly 40% of the particle’s mass (Figure 44).   Similar results 

were seen when looking at the proportion of LDL that each constituent made up 

(Figure 45).   Figure 46 demonstrates constituent proportions in LDL. 
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Figure 44 - LDL mass and constituents at baseline and after treatment, as 
analysed by Wilcoxon matched-pairs test. 

 



161 
 

 
 

 

Figure 45 - Percentage composition of LDL particles, as analysed by 
Wilcoxon matched-pairs text. 
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Figure 46 - Particle composition before and after TCZ in LDL. 

 

The plots in Figure 44 show that, although median LDL-cholesterol ester (LDL-

CE) content did not change, individual responses varied significantly.   

Stratifying patients by their response showed four patients whose LDL-CE fell, 

and seven who accumulated LDL-CE.   On interrogating their clinical parameters, 

three of the four patients with falls in LDL-CE had low acute phase response at 

baseline, translating to very modest changes in CRP and ESR, despite having 

similar magnitudes of CDAI change (Table 18). 
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Change Baseline 

 
Change 

 
Change 

 
LDL-CE CRP ESR CRP ESR CDAI 

 
(mg/dl) (mg/L) (mm/Hr) (mg/L) (mm/Hr) 

 KAL012 -26.78 1 5 -0.5 6 -19.5 

KAL007  -15.99 55 102 -54.5 -101 -24 

KAL010 -12.58 2 20 -1.5 -18 -28.5 

KAL011 -8.15 1 5 -0.5 -3 -29 

KAL001 0.54 22 33 -20 -31 -21.4 

KAL002 10.73 2.8 17 -2.6 -15 -7.5 

KAL006 10.75 5 27 -3 -25 -13 

KAL004 14.07 29 55 -28.7 -45 -7 

KAL003 16.21 12 70 -11.8 -68 -16.9 

KAL005 23.83 21 31 -19 -26 -26 

KAL009 39.70 51 71 -50.5 -69 -17.5 

 

Table 18 - All participants sorted by change in LDL-cholesterol ester, with 
baseline and change clinical parameters. 

 

Plotting the change in LDL-CE with change in CRP or ESR showed a trend to 

inverse association.   Of note, KAL007 appeared to be acting as an outlier (Figure 

47, KAL007 circled in red).   With exclusion of KAL007, the associations with CRP 

and ESR become statistically significant (r=-0.7964, p=0.0075 and r=-0.8182, 

p=0.0058 respectively).   No association with CDAI change was seen with or 

without inclusion of KAL007. 
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Figure 47 - Scatterplots of relationship between change in LDL-associated 
cholesterol ester and: (A) change in CRP; (B) change in ESR; (C) change in 
CDAI.  Subject KAL007 is circled in red.   R and p values calculated by 
Spearman’s correlation coefficient. 

 

Stratifying the cohort according to their baseline CRP showed a trend towards 

greater increase in LDL-CE in those with CRP≥5mg/l compared to those with 

baseline CRP<5mg/l.   This difference became statistically significant on 

exclusion of KAL007 (Figure 48). 
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Figure 48 - Change in LDL cholesterol ester depending on baseline CRP.   
(A) All patients included.  (B) Excluding KAL007.   Analysis by student’s t-
test. 

 

To investigate the applicability of these observations to more conventional 

methods of serum cholesterol measurement, I repeated the above analyses with 

LDL-c as measured by Betaquant on day 1 of each kinetic study.   On exclusion of 

KAL007, trends towards associations were observed with CRP and ESR, though 

statistical significance was not reached (Figure 49).   Stratifying the cohort by 

baseline CRP showed a non-significant difference in change in LDL-c between the 

groups (mean increase 0.36 v 0.75mmol/L, p=0.14)(Figure 50). 
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Figure 49 - Scatterplots of relationship between change in LDL-cholesterol 
and: (A) change in CRP; (B) change in ESR.   Plots are shown with (left) and 
without (right) inclusion of patient KAL007.   R and p values calculated by 
Spearman's correlation coefficient. 
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Figure 50- Change in LDL cholesterol ester depending on baseline CRP.   (A) 
All patients included.  (B) Excluding KAL007.   Analysis by student's t-test 
with Welch’s correction. 

 

3.3.5 Lipoprotein Kinetics 

Appendix F contains a summary of kinetic modelling outcomes for all 

lipoproteins at baseline, after treatment, and in a normal population based on 

data held on file within out unit.   Parameters which changed significantly after 

tocilizumab are highlighted in red.      

Figure 51 illustrates changes in median total LDL production rate (PR – the sum 

of transfer of apoB from IDL and de novo LDL-associated apoB synthesis from the 

liver) and fractional catabolic rate (FCR).   Unexpectedly, and out of keeping 

with the general pattern of increase in LDL-c, PR fell significantly following 

tocilizumab treatment (763.8 v 442.0 mg/kg/day, p=0.002).   Median FCR, the 

primary outcome measure of the study, fell from 0.53 to 0.27 pools/day 

(p=0.006).   This equates to a median fall from baseline of 30%, as seen in Table 

19.   A graph showing pre-and post-treatment LDL kinetics, using subject KAL004 

as an example, can be found in Appendix G.   This clearly shows a slower 

increase in the tracer/tracee ratio following d3-leucine administration 
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(reflecting reduced production rate), followed by an elongated, shallow 

reduction in the ratio (reflecting reduced catabolic rate). 

 

Figure 51 - Production rate and fractional catabolic rate of LDL.   Analysis by 
Wilcoxon matched-pairs test. 

 
 

 
Production rate (mg/kg/day) 

 

 
Baseline Treatment Value change  % change 

     Mean 796.5 443.9 -352.6 -38.4 

SD 295.7 95.3 287.6 22.3 
Median 763.8 442.0 -348.8 -41.7 

p 
 

0.002 
  

 

 
 
Fractional catabolic rate (pools/day) 

 Baseline Treatment Value change % change 

     

Mean 0.54 0.32 -0.23 -33.08 

SD 0.29 0.17 0.28 30.05 

Median 0.53 0.27 -0.16 -30.19 

p  0.006   

 

Table 19 - Production rate and fractional catabolic rate of LDL.   P value 
generated by Wilcoxon matched-pairs test 

 

At baseline, LDL FCR correlated positively with CRP (r=0.74, p=0.012) though 

non-significantly with ESR (r=0.54, p=0.091).   No relationship was observed with 

CDAI (r=0.04, p=0.91) (Figure 52). 
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Figure 52 - Correlation of LDL FCR with measures of disease activity at 
baseline by Spearman's r. 

 

The degree of change in FCR did not correlate at all with the change in disease 

markers initially, but on removal of participant KAL007 there was a significant 

relationship with CRP (r=0.68, p=0.035) and a non-significant visual trend 

towards correlation with ESR (r=0.50, p=0.15).   Again, no relationship was 

observed with CDAI (Figure 53). 
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Figure 53 – Spearman’s correlation of change in LDL FCR with change in (A) 
CRP, (B) ESR and (C) CDAI.  Left: whole cohort; right: excluding KAL007 

 

LDL production rate did not correlate with LDL cholesterol as measured either by 

day 1 betaquant or LDL particle cholesterol ester content (LDL-CE).   This was 

the case at baseline, post-treatment and with degree of change (Table 20). 
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LDL-CE 

 
LDL Betaquant 

 
  Spearman's r p Spearman's r p 

LDL Baseline   
 

  
 production 

rate all inclusive -0.29 0.39 -0.23 0.50 

 
exc KAL007 -0.49 0.16 -0.44 0.120 

  
  

 
  

 

 

Degree of 

change         

 
all inclusive -0.37 0.26 -0.37 0.26 

 
exc KAL007 -0.32 0.37 -0.29 0.43 

  
  

 
  

 

 
Treatment         

 
all inclusive -0.08 0.82 -0.105 0.88 

 
exc KAL007 0.01 1.00 0.16 0.66 

 

Table 20- Correlations between LDL production rate and LDL cholesterol 
ester content or LDL-c betaquant 

 

However, LDL fractional catabolic rate correlated strongly with both measures of 

LDL cholesterol content at baseline (Figure 54).   The degree of change in FCR 

correlated strongly with LDL-CE, though less so with betaquant values (Figure 

55), and following treatment the FCR was a strong predictor of both LDL-CE and 

LDL-c by betaquant (Figure 56).   Excluding subject KAL007 made no difference 

to the pattern or magnitude of correlations. 

 

Figure 54 – Spearman’s correlation between LDL catabolic rate and serum 
LDL cholesterol levels at baseline 
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Figure 55 - Spearman’s correlation between change in LDL catabolic rate 
and serum LDL cholesterol levels. 

 

 

Figure 56 – Spearman’s correlation post-treatment between LDL fractional 
catabolic rate and serum LDL cholesterol levels. 
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3.4 Results – Secondary Outcome Measures 

3.4.1 LDL Subfractions 

LDL can be divided into subfractions (titled I, II and III) depending on their 

density; LDLI are the least dense, while LDLIII have the greatest density.   No 

significant changes were observed in any subfraction quantity (Figure 57).    

 

Figure 57 - LDL subfraction levels at baseline and after treatment, as 
analysed by Wilcoxon matched-pairs test. 

 

Stratification of the change in LDL subfraction mass by baseline CRP (CRP<5mg/l 

versus CRP≥5mg/l) showed no difference in any subfraction, with or without 

exclusion of KAL007’s data (Figure 58).   Similarly, Spearman’s correlation 

coefficient showed no association between change in LDL I, II or III and change in 

CRP (r=-0.15, p=0.65; r=0.07, p=0.84; r=-0.09, p=0.79 respectively) or ESR (r=-

0.14, p=0.69; r=-0.09, p=0.80; r=-0.10, p=0.78 respectively).   
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However, change in LDL III associated with change in CDAI (r=0.79, p=0.006), 

whilst LDL I and II did not (Figure 59).   In this case, patients with a fall in CDAI 

score of less than 20 points tended to increase their LDL III levels; those with 

greater falls in CDAI either lost LDL III or remained stable.   This observation was 

unexpected, given that a fall of 10 points in CDAI is still clinically significant, in 

contrast to the doubtful biological significance of a CRP fall of <5mg/dl.    

Stratifying the patients depending on their final CDAI score showed that those 

who reached CDAI low disease activity (CDAI <10 after treatment) had on 

average no change in LDL III mass; in the one patient who reached CDAI 

remission (CDAI <2.8 after treatment), LDL III fell by 12.1mg/dl.   In patients 

with CDAI ≥10 after treatment, LDL III mass increased by mean 38mg/dl.   

Comparing the groups with Welch’s corrected t-test did not reach significance 

(p=0.095 for LDL III), as shown in Figure 60.   Welch’s corrected t-test was used 

on this occasion as both parameters were normally distributed on this occasion, 

though the magnitudes of distribution were different. 
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Figure 58 - Change in serum LDL subfraction mass, stratified by baseline 
CRP, with data from KAL007 included (left) or excluded (right).   P value 
generated by Mann-Whitney test. 
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Figure 59 - Spearman's correlation coefficient between change in LDL 
subfraction mass and change in CDAI. 

 

 

Figure 60 - Change in LDL subfractions depending on post-treatment CDAI 
score.   Analysis by Welch's corrected t-test. 

 
 Determination of LDL I, II and III mass also permitted calculation of the 

proportion of total LDL mass made up of each of these subfractions.   Figure 61 

shows changes in the percentage of total LDL mass made up by the respective 

subfractions.   These broadly reflect the patterns of absolute value change 

shown in Figure 57 above, with no statistically significant differences seen after 
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treatment.   Given that patients who demonstrated value increase in a given 

subfraction invariably also demonstrated increase in the proportion of that 

subfraction, no further analysis was performed on this parameter. 

 

 

Figure 61 - Percentage of total LDL mass made up by each subfraction.   P 
value generated by Wilcoxon matched-pairs test. 

 

3.4.2 LDL Particle Diameter 

Peak LDL particle diameter and mean LDL particle diameter were ascertained.   

The average value of both measurements did not change, with individual peak 

and mean particle sizes rising or falling by less than 1% (Figure 62). 
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Figure 62 - Peak (left) and mean (right) LDL particle diameter.   P value 
generated by Wilcoxon matched-pairs test. 

 

3.4.3 Lipoprotein(a) 

Lipoprotein(a) (Lp(a)) serum levels varied markedly at baseline, but fell in all 

patients after treatment (Figure 63).   At baseline, Lp(a) levels associated 

positively but very modestly with CRP (r=0.62, p=0.045) and ESR (r=0.53, 

p=0.095).   A n inverse relationship was observed with CDAI (r=0.58, p=0.063) but 

on examining the scatterplot this did not seem as clear cut as the strong r value 

would suggest (Figure 64).   Similar, non-significant relationships were seen 

between change in Lp(a) and change in CRP (r=0.51, p=0.11), ESR (r=0.44, 

p=0.18) and CDAI (r=-0.54, p=0.094), as seen in Figure 65. 
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Figure 63 - Serum levels of Lipoprotein(a).   P value generated by Wilcoxon 
matched-pairs test. 

 

 

Figure 64 - Spearman's correlation coefficient between baseline Lp(a) and 
baseline CRP, ESR and CDAI. 
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Figure 65 - Spearman's correlation coefficient between change Lp(a) and 
change CRP, ESR and CDAI. 

 

3.4.4 Apolipoproteins 

Serum levels of apolipoproteins at day 1 of each kinetic study, as measured by 

immunoturbidimetry, are shown in Table 21 below.   Significant increases were 

seen in the HDL-associated ApoAI and ApoAII, in keeping with observed increases 

in HDL-c.    
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  Baseline  Treatment  Change (%)    

  Median IQR Median IQR Median p   

    
 

  
 

  
 

  

ApoAI 115.4 100.7 - 124.2 148.5 141.7 - 174.4 28.5 <0.001 *** 

ApoAII 25.0 20.3 - 28.1 35.3 32.0 -38.4 41.3 <0.001 *** 

ApoB 76.0 51.6 - 78.2 103.1 92.3 - 118.3 54.1 0.002 ** 

ApoCII 1.4 0.5 - 2.9 3.6 2.3 - 4.7 100.0 0.042 * 

ApoCIII 5.1 4.0 - 8.3 8.1 5.9 - 11.7 28.5 0.22 ns 

 

Table 21. Median serum levels of apolipoproteins at baseline and after 
treatment.   All values mg/dl unless specified. 

 
A correlation matrix of apolipoproteins with clinical response is shown in Table 

22 below.   Changes in ApoAI and AII, both of which are components of HDL, 

associated with change in acute phase reactants but not CDAI.   ApoB and Apo 

CII did not associate with clinical measures.  On exclusion of data for KAL007, 

their relationships with CRP and ESR strengthened but remained non-significant.  
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  ApoAI ApoAII ApoB ApoCII ApoCIII 

Whole cohort 
    

  

CRP -0.61 -0.77 -0.08 -0.16 -0.10 

ESR -0.70 -0.80 -0.20 -0.24 -0.22 

CDAI 0.35 0.27 0.40 0.58 0.45 

Excluding 
KAL007           
CRP -0.50 -0.84 -0.44 -0.45 -0.09 

ESR -0.64 -0.87 -0.60 -0.57 -0.22 

CDAI 0.44 0.31 0.38 0.56 0.50 

 

Table 22 - R values describing relationships between change in markers of 
disease activity and change in serum apolipoprotein levels.   R values are 
calculated by Spearman's correlation coefficient.   Green indicates p<0.05.   
Red indicates p<0.01. 

Scatterplots of ApoB (a component of the primary outcome measure) with 

clinical parameters are shown in Figure 66.   
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Figure 66 - Spearman's correlation coefficient between change in serum 
apoB and change CRP, ESR and CDAI, including (left) and excluding (right) 
participant KAL007. 

 

3.4.5 Enzyme activity 

CETP activity is displayed in Figure 67.   Activity rose in all participants apart 

from three; KAL007 reduced by 17.6pmol/µl/hr, equivalent to 32% of baseline 

value.   CETP activity fell by 2pmol/µl/hr and 3.6pmol/µl/hr in the other two 
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subjects.   Median change in CETP activity was an increase of 6.2pmol/µl/hr, or 

11% from baseline.   Excluding KAL007 gives p=0.019 for change from baseline. 

 

Figure 67 - CETP activity with (left) and without (right) participant KAL007.   
P value generated by Wilcoxon matched-pairs test. 

 
No significant changes were seen in average lipoprotein lipase or hepatic lipase 

activity (Figure 68), despite median increases of 19% and 9% respectively.   The 

visible outlier in the graphs below is KAL006, who had increases of 314% in LPL 

activity and 31% in HL activity.   Exclusion of this patient did not change the 

outcome of the test. 

 

Figure 68 - Lipoprotein lipase (left) and hepatic lipase (right) activity.   P 
value generated by Wilcoxon matched-pairs test. 

 
No significant associations were found between changes in any enzyme and 

changes in CRP, ESR or CDAI (Table 23).   Similarly, segregating patients by their 
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baseline CRP, as I have done with previous analyses, did not yield any significant 

differences in change in LPL or HL activity. 

 

Cholesterol ester 
transfer protein 

Lipoprotein 
lipase 

Hepatic 
lipase 

CRP -0.14 -0.15 0.07 

ESR -0.25 -0.22 0.15 

CDAI 0.28 0.26 0.07 

 

Table 23 - R values describing relationships between change in markers of 
disease activity and change in enzyme activity.   R values are calculated by 
Spearman's correlation coefficient. 

 

CETP is known to increase LDL cholesterol ester content by transferring 

cholesterol esters from VLDL-1 and HDL particles in exchange for triglycerides.    

This knowledge was reassuringly confirmed by the observation that changes in 

CETP activity associated positively (though not reaching statistical significance) 

with change in LDL-CE content and inversely with change in HDL-c.   These data 

are demonstrated in Figure 69.   

 

Figure 69 - Spearman's correlation coefficient between change in CETP 
activity and (left) change in LDL-cholesterol ester, and (right) change in HDL-
cholesterol as measured by betaquant. 

 

3.4.6 PCSK9 

PCSK9 activity analysis was performed in light of its role in regulating LDLr 

activity and recent interest in PCSK9 inhibitors in clinical practice, as outlined in 

the introduction.  Serum PCSK9 levels were elevated by mean of 23% and median 

7% after treatment, but this did not reach statistical significance (Figure 70).   
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Alterations in PCSK9 could potentially alter LDL catabolism by regulating the 

availability of the LDL receptor.   However, no correlations were found between 

PCSK9 levels and LCL FCR or serum LDL-c levels (Figure 71). 

 

 

Figure 70 - Serum PCSK9 levels.   P value generated by Wilxocon matched-
pairs test. 
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Figure 71 - Spearman's correlation coefficient of serum PCSK9 with LDL-
cholesterol and fractional catabolic rate. 

 
 

3.4.7 HDL particle analysis 

High density lipoproteins were analysed for particle size in the same manner as 

LDL, as described earlier in this chapter.   No significant changes were seen in 

mean or peak particle size (Figure 72).   Mean particle size analysis revealed one 

outlier who demonstrated a large increase of around 25%.  Removing this outlier 

from the analysis (KAL011) lowered the p value to 0.027, but I was unable to 

identify any clinical or other laboratory reason to exclude them; I believe it is 

safest to assume that no difference in these parameters can be demonstrated by 

KALIBRA’s data. 
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Figure 72 - Peak (left) and mean (right) HDL particle diameter.   P value 
generated by paired t-tests. 

 

Particle analysis was used to determine what proportion of serum HDL was made 

up of each of 5 subparticles, graded on basis of density.   A trend was seen of 

HD2a being replaced by HDL2b; however, all the changes seen were of low 

magnitude, and only the fall in HDL2a was statistically significant.   These 

results are summarised in Table 24. 
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  Baseline  Treatment  Change (% of mass)   

  Mean 95% C.I. Mean 95% C.I. Mean p   

HDL2b 31.1 28.1 – 34.0 31.7 28.4 – 35.9 1.1 0.37 

 HDL2a 27.4 26.1 – 28.7 25.7 24.7 – 26.6 -1.7 0.005  ** 

HDL3a 25.2 24.2 – 26.1 24.7 23.2 – 26.2 -0.5 0.53 

 HDL3b 10.4 9.5 – 11.3 10.9 10.1 – 11.6 0.5 0.14 

 HDL3c 6.0 4.7 – 7.2 6.5 5.4 – 7.7 0.6 0.083 

  

Table 24 - Changes in proportion of serum HDL subparticles.  P values 
generated by paired t-tests. 
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3.5 Discussion 

3.5.1 Conclusions from outcome data 

The primary outcome measure of the KALIBRA study was the fractional catabolic 

rate of LDL, which fell by a median of 30% (or 0.16 pools/day) following 

tocilizumab therapy.   Individual changes in FCR varied widely.   The largest 

decrease was a fall of 80% from baseline.   The median baseline (i.e. in severe 

active RA) FCR of 0.53 pools/day is close to that measured in 

hypertriglycerideaemic patients by our own centre [PACKARD 2000].   Similarly, 

the median post-treatment FCR of 0.27 pools/day compares well with an 

expected “normal population” value of 0.3 pools/day, as observed in Packard et 

al.’s study (272).   In contrast, LDL production rates did not increase, but rather 

fell significantly from baseline.   This change, however, was too small to offset 

the dominant kinetic effect of reduced catabolism.   FCR correlated with CRP 

and ESR at baseline, but not CDAI.   A similar pattern of association was 

displayed when analysing the degree of change in FCR and inflammatory 

parameters.    

Reassuringly, serum cholesterol levels changed in a manner consistent with 

existing tocilizumab literature, with increases observed in TC, LDL-c and HDL-c 

but no change in the atherogenic index (the TC/HDL-c ratio), lending external 

validity to our results.   LDL cholesterol ester content (LDL-CE), as measured by 

pooled samples throughout the course of the week-long kinetic studies, 

increased from baseline in those subjects who had elevated CRP and ESR at 

baseline (and thus large falls in these reactants with tocilizumab therapy).   

Despite apparent correlations between the changes in LDL-CE and acute phase 

reactants, no association was seen with disease activity as quantified clinically 

by CDAI.   LDL-c as measured by betaquant seemed to behave in a similar 

manner but often without reaching statistical significance.   The LDL FCR was a 

strong determinant of LDL-c both before and after tocilizumab treatment.   In 

contrast, LDL production rate did not correlate significantly with LDL-c at any 

stage. 

Taken together, these findings allow some conclusions to be drawn.   Firstly, 

they imply that elevations in serum LDL-c following tocilizumab therapy are a 
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direct result of changes in the LDL fractional catabolic rate, a confirmation of 

our original hypothesis.   The magnitude of these changes suggests that this fall 

in FCR is more likely a “normalisation”, rather than a clear pathological or off-

target drug effect; this further leads to the likelihood that the reductions in 

serum cholesterol observed in severe, active RA are a result of increased 

catabolism, not reduced production. 

Secondly, the changes in LDL FCR seen in RA, and thus changes in serum LDL-c, 

are a specific result of alterations in hepatic IL-6 signalling, rather than 

reductions in inflammatory “disease activity” (i.e. synovitis).   This conclusion is 

further supported by the different lipidaemic effects that have been observed in 

past years between IL-6 blockade and anti-TNF despite the two therapies 

delivering broadly similar reductions in clinical disease activity, although 

admittedly no kinetic studies exist for anti-TNF therapy.   This leads me to 

suspect that the target tissue ultimately responsible for LDL-c changes is the 

liver.   Given that the liver is the only organ capable of directly excreting 

unwanted cholesterol from the body (in the form of bile salts), it would seem to 

be a reasonable target for any system aiming to drastically alter the catabolic 

rate of LDL.   However, the ubiquity of the gp130 component of the IL-6 

receptor on cell membranes means IL-6 is capable of transducing a signal in 

other tissues such as vascular endothelium, macrophages or indeed any other 

peripheral cells capable of taking up LDL particles; the kinetic assays employed 

in KALIBRA cannot differentiate between different sites of LDL breakdown.  

Inflammation driving increased uptake by such other cells makes evolutionary 

sense; in times of insult or stress, increased IL-6 would stimulate increased LDL 

consumption (not excretion) as a way of directing fuel and synthetic substrates 

to cells that have greatest need of them.   Whilst this mechanism might provide 

a survival advantage in an acute scenario (such as infection), it could prove 

maladaptive in the pathological state of chronic, high-grade inflammation that is 

RA.   Potential cellular mechanisms for underlying my observed kinetic changes 

are the subject of a later chapter in this thesis. 

I had the opportunity analyse a wide variety of secondary outcomes from the 

KALIBRA data.   Fewer changes in the composition of the other apoB-containing 

lipoproteins were observed; coupled with the lack of change in lipase activity, 



192 
 

 
 

this implies that tocilizumab’s effects are predominantly confined to LDL.   No 

significant changes were observed in LDL particle size or subfraction proportion. 

The reduction in serum Lp(a) is clinically relevant as this particle is recognised 

as pro-atherogenic, and thus our findings imply at least one other potentially 

atheroprotective function for IL-6 blockade.   This replicates the findings of the 

MEASURE (254) and ADACTA (253) trials.   In contrast to LDL-c and kinetic 

changes, no clear association was observed with inflammatory markers; this 

might suggest that a distinct mechanism or target tissue lies behind 

inflammatory manipulation of Lp(a).   KALIBRA was not designed or powered to 

explore changes in Lp(a), however, and further studies are required to 

determine the precise mechanisms behind this change. 

The increases in apoAI, apoAII and apoB reflect increased levels of the 

lipoproteins which contain them.   Coupled with the absence of change in LDL 

particle size, this indicates that LDL-c increases due to increased numbers of LDL 

particles in the circulation; again, this fits consistently with the concept of 

reduced particle catabolism (as opposed to another mechanism such as altered 

cholesterol flux between particles).   The biochemical and clinical significance 

of the changes seen in other apoproteins (particularly CII and CIII) and HDL are 

outwith the remit of this thesis but would potentially be a fertile area for future 

study. 

What do these findings mean for these patients’ cardiovascular risk?   In the 

absence of clinical cardiovascular endpoints, conclusions must be drawn 

cautiously.   The fact that our patients return from a hypercatabolic state to a 

roughly normal LDL FCR fits with largely a normalisation of function, rather than 

novel pathology.   This view is supported by the correlation of LDL FCR and LDL-c 

with acute phase reactants; i.e. lipid changes are in proportion to reversal of 

(pathological) elevated IL-6 signalling, a key feature of the high-grade 

inflammatory state of RA.   The unchanged atherogenic index, increase in HDL-c 

and reduction in Lp(a) are also reassuring, suggesting neutral or even 

cardioprotective changes.   An alternative possibility could be that increased LDL 

catabolism is a protective evolutionary adaptation to inflammation (and its 

subsequent increase in cardiovascular risk conferred by endothelial dysfunction, 
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platelet aggregation and other physiological changes) which attempts to reduce 

cardiovascular disease by safely sequestering LDL-c or excreting it from the 

body, and thus reducing the amount of serum LDL-c available for uptake into 

atheroma.   This position may be supported by our observation that CETP 

activity increases post-tociliuzmab; this would drive cholesterol ester from HDL 

to LDL, which can then bind to LDLr on hepatocytes and then be excreted.    

Accepting this view would, however, require us to believe that the significant 

increased CV risk seen in RA occurs in spite of, rather than because of, the 

profound cholesterol changes which define the lipid paradox.   Given that TC 

and LDL-c have been shown to alter to some extent even with drugs such as 

methotrexate and anti-TNF (which reduce CVD risk), I find this view difficult to 

accept. 

3.5.2 Comparison with Tofacitinib kinetics 

Only one other study has been published analysing lipid kinetics in RA.   Charles-

Schoeman et al. (273) recently performed kinetic studies on a cohort of 33 RA 

patients and 31 controls.   RA patients were assessed at baseline and following 6 

weeks of treatment with tofacitinib, a JAK inhibitor recently approved for use in 

treating RA in the USA which has been shown to increase HDL-c and LDL-c 

following 4-6 weeks of treatment.   LDL-associated apoB and HDL apoAI 

production and catabolic rates were measured using stable isotope leucine, 

given here in a 20-hour continuous infusion with blood samples taken at baseline 

and 16, 18 and 20 hours.   Cholesterol production and catabolic rates were 

measured using a 22-hour continuous infusion of 3,4-13C2 –labelled free 

cholesterol.   A three-compartment mathematical model was used to calculate 

kinetic parameters.   The study showed an increase in mean LDL-c of 15% 

(p=0.0002) and in mean HDL-c of 14% (p=0.0001), both of which represent 

normalisation to levels seen in the control group.   Similar changes were seen in 

serum apoAI and apoB.   In contrast to the KALIBRA cohort, RA patients at 

baseline had an LDL-associated apoB FCR which was not significantly different 

from healthy controls (1.61%/hour v 1.50%/hour, equivalent to 0.38 pools/day v 

0.36 pools/day, p=0.27) and did not significantly change with tofacitinib.   No 

significant changes were seen in HDL-associated apoAI production or catabolic 

rates.   However, baseline cholesterol ester FCR was greater in RA than in 
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controls, and fell towards “normal” levels after treatment.   The change in 

cholesterol ester FCR correlated inversely with the change in HDL-c (r=0.42, 

p=0.018) and in large HDL particle numbers as assessed by NMR (r=0.54, 

p=0.002).   Given the change in cholesterol ester metabolism without any change 

in apoAI or apoB catabolism, the authors conclude that RA patients have 

increased selective cholesterol ester uptake by scavenger receptor B1 in the 

liver; the subsequent reduction in HDL-c then leads to lower levels of LDL-c as 

there is less cholesterol ester in HDL for CETP to transfer to LDL particles 

(although it should be noted that the group found no change in CETP mass or 

activity). 

Why did the Charles-Schoeman study come to such a different conclusion 

regarding apoB catabolism from KALIBRA?   I believe there are some features of 

this study which restrict direct comparisons to KALIBRA’s findings.   Firstly, 

tofacitinib blocks the JAK/STAT signalling pathway; as mentioned previously, IL-

6 signals via activation of STAT3, and so tofacitinib will affect similar 

intracellular changes to tocilizumab.   However, the large number of cytokines 

which transduce signals using JAKs means that some of tofacitinib’s effects will 

be due to blockade of other cytokines, not just IL-6.   Secondly, the 

mathematical model used differs from our own, using a more recent model 

which is simplified and is not able to provide detailed information on non-LDL 

lipoproteins in the apoB delipidation cascade.   Thirdly, the baseline patient 

demographics are not clearly delineated and so the cohort may not be 

comparable to my own.    Entry criteria for disease severity consist of >4 tender 

and swollen joints, and ESR > 28mm/hour or CRP >7mg/L; baseline TJC and SJC 

are given (thought not out of what total count), but no other clinical data are 

presented at baseline or post-treatment.   Composite scores such as DAS28 or 

CDAI are not mentioned at any point.   It is also not stated how many, if any, 

patients were DMARD- or biologic-naive, limiting our judgement of how 

treatment resistant this group’s disease might have been.   Finally, and most 

concerningly, the study does report significant increases in apoB and apoAI 

following tofacitinib (rising to the levels seen in the control group) despite no 

change in their production or catabolic rates.   This does not seem biologically 

possible.   Potential explanations include: (a) underpowering of the study so that 
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it was unable to detect a genuine change in LDL FCR; or (b) wide margins of 

error in the laboratory techniques used to calculate reported values.   

3.5.3 KALIBRA – strengths and weaknesses 

KALIBRA had some notable strengths which should be documented in defence of 

our findings.   Many of my initial results, whilst not novel, are in accordance 

with what is already known about tocilizumab’s behaviour.   For example, 

increases in TC, LDL-c and HDL-c are well documented as detailed in the 

introduction.   The rapid reduction in acute phase reactants, with clinically 

relevant but more modest reductions in joint counts and clinical composite 

scores such as CDAI, is in keeping with the phase III trial literature and our own 

clinical experience.   Whilst all patients responded clinically to the drug, 

residual disease was present in most, with only one patient reaching 

ACR/Boolean remission – a finding perhaps not surprising given that all patients 

started from a baseline DAS28 of >5.1, and that several had previously failed at 

least one previous biologic drug.   Moreover, the demographics of the cohort are 

I believe quite representative of a typical RA population in the UK (78, 82), with 

the possible exception that only three of our patients were prescribed 

methotrexate.   These observations are reassuring for three reasons.   Firstly, 

they replicate the earlier findings of other groups, and lend credence to the 

validity of our novel findings.   Secondly, had some patients not responded to 

tocilizumab therapy, our observed average changes in inflammatory and lipid 

parameters would likely have been smaller and less likely to reach statistical 

significance.   Lastly, the cohort’s demographics, disease severity, drug history 

and magnitude of clinical responses reflect “real life” practice in tocilizumab 

prescribing, increasing the likelihood that our observed lipid changes accurately 

reflect those which occur in the typical clinic population.   KALIBRA’s results also 

demonstrate a reassuringly strong degree of internal consistency, with changes 

in lipids, apoproteins and lipoprotein kinetics all contributing to a consistent 

picture of inflammation-driven hypercatabolism which is reversible by 

tocilizumab. 

The relatively small cohort size of this study also brought some advantages.   It 

allowed each patient to be analysed in depth, with adequate numbers of blood 
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samples over an appropriate timespan and a wide variety of secondary outcome 

measures obtained.   The volume of data generated has been such that much 

remains to be analysed, such as the kinetics of VLDL1, VLDL2 and IDL, and 

changes in HDL-related parameters.   Nevertheless, the use of three separate 

Rheumatology outpatient departments in the Greater Glasgow area allowed me 

to draw on a reasonably sized pool of patients as I attempted to recruit the 

required number of subjects.   Additionally, the single-centre nature of the 

kinetic studies allowed all key assessments to be performed by the same 

individual.   For example, all clinical assessments including DAS28 and CDAI 

scoring were performed by me; one named research nurse in the Glasgow CRF 

performed phlebotomy; all sample processing was performed by the same small 

team of biochemists; and data analysis for mathematical modelling was 

performed by Professors Caslake and Packard.   By allowing different staff 

members to repeatedly practice the same techniques, and by reducing the risk 

of inter-operator variability, I suspect this pattern of working promoted 

consistency and efficiency in all stages of data collection and preparation, and 

improved the overall reliability of our outputs.   What’s more, I can personally 

testify that the familiarity and confidence engendered in our own skills and 

those of the rest of the team by this method of working encouraged good 

working relationships and a strong sense of teamwork within the unit.   As an 

increasingly busy research fellow, this was hugely important to my enjoyment of 

and enthusiasm for the project! 

Some criticisms could be aimed at the way the study was conducted.   The most 

apparent one is the small size of the cohort, with only 11 patients (short of our 

stated target of 15) completing the study.   In the end, our observed changes in 

FCR were sufficiently strong and consistent that even this small number of 

subjects allowed us to reach statistical significance for our primary outcome 

measure, and some of our secondary measures.   Nevertheless, I firmly believe 

that many of my analyses reflect genuine changes in biology but do not meet 

statistical significance because of having so few numbers, and issue which I will 

reflect further on later.   From the outset, it was recognised that recruitment 

would be the largest barrier to successfully completing the study, as is the case 

in all clinical trials and studies.   For the participants, the study was intense, 

with a 13-hour stay in hospital; only one low-calorie meal in a 21-hour period; 
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repeated venopuncture; and recurrent early starts (difficult in those with an 

inflammatory arthritis, whose pain and stiffness is typically worst on waking).   

Despite drawing on three centres for recruitment, our patient pool was limited 

by several factors.   In Glasgow, most physicians typically use tocilizumab as a 

second- or third-line biologic behind anti-TNF and possibly Rituximab.   To 

counter this, I actively identified patients who were booked to see a biologics 

specialist nurse for screening before commencing a biologic, and gave 

information on the study to any who would be eligible regardless of which 

biologic they were being considered for; if they were due to start anti-TNF but 

were a good candidate for KALIBRA, I discussed tocilizumab therapy with them 

and sought permission from their consultant Rheumatologist to enrol them into 

the study.   Another limiting factor was our desire to exclude patients with 

diabetes mellitus or who were taking statins, both scenarios which are extremely 

common in the west of Scotland.   At one point, around half the biologics 

patients that I had identified as potentially suitable for inclusion in KALIBRA 

were excluded solely because of either diabetes or statin use. 

A second potential criticism of the study is the lack of blinding.   Typically any 

study comparing two sets of results in human subjects benefits from blinding of 

either the subjects (to minimise the placebo effect of a treatment) or the 

assessors (to minimise bias in analysis and interpretation of results).   This was 

not felt to be practical for several reasons.   The “crossover” nature of the 

study, where values in the same participants are compared before and after 

treatment, was not amenable to blinding as by definition all patients began from 

a position of being “pre-treatment”.   Blinding of laboratory staff was also not 

feasible as the intensive nature of sample processing meant only one sample at a 

time could be handled, and the study number and stage of treatment of each 

sample could easily be determined by the time of month or year the sample was 

received at.   A “crossover” style study did help in that each patient acted as 

their own comparator, allowing paired statistical tests and removing the need 

for a separate healthy control group.   It could be argued that a control group 

would have been desirable (this was the method used by Charles-Schoeman et 

al.) but our laboratory sample processing capacity limited the number of 

participants we could enrol.   A group may have helped us to determine whether 

changes in lipids or kinetic rates were pathological changes (going away from 
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healthy population averages) or normalisation (returning towards healthy 

population averages).   However, the values we obtained for FCR were similar to 

those seen in the normal population and hypertriglycerideaemic patients in 

previous studies, as documented above, and so addition of a control group would 

have added little to our knowledge. 

 

3.5.4 Dilemmas 

3.5.4.1 Subject KAL007 as a statistical outlier 

Some of the analyses, especially correlation calculations, were affected by the 

presence of KAL007 as a clear statistical “outlier”.   In contrast to the other 

subjects, this patient had a large change in their acute phase response but 

relatively small changes in LDL-c and FCR.   Even using the non-parametric 

Spearman’s r (which uses ranking to adjust for extreme values), correlations in 

several domains did not reach statistical significance despite scatterplots 

seeming (to my eyes) to show a strong relationship.   Some of these r values then 

became statistically significant on exclusion of KAL007.   This problem is 

particularly acute in a small study such as this, where one patient makes up 9% 

of the cohort; inclusion or exclusion of only one patient can thus have 

particularly profound effects on average values.   Exclusion of patients in this 

manner is fraught with ethical difficulties.   It is a potential route to 

confirmation bias, as I could be accused of deliberately and selectively choosing 

to omit a reading which did not agree with my pre-determined conclusion; 

following the data on its own terms could arguably only be done by including the 

whole cohort.   Additionally, despite my own extensive discussions with and 

assessment of KAL007, and interrogations of their past medical notes, there was 

nothing in their clinical history or examination which would set them apart from 

the rest of the cohort.   The only possible finding of relevance I could determine 

was that KAL007 fell pregnant shortly after the conclusion of her second kinetic 

study.   However, she claimed to have been using barrier (not hormonal) 

contraception during the trial, and confirmed that she had menstruated after 

completing the kinetic study, making pregnancy during the sampling period 

unlikely.   The most likely explanation appears to be the fact that KAL007 was 

the only participant completing the study who was a premenopausal female.   It 
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is well recognised that LDL metabolism is drastically different pre- and post- 

menopause, with oestrogen capable of influencing LDLr expression amongst 

other effects.   KAL008 was also premenopausal, and it would have been most 

interesting to compare and contrast her results with KAL007’s had she not been 

forced to withdraw from the study.    

I discussed KAL007’s inclusion at length with Profs. Mcinnes, Sattar, Caslake and 

Packard throughout the analysis period.   We recognised that such quandaries 

are the result of “real world” data, which rarely fits neatly with the 

preconceived ideas of the researcher.   Indeed, a trial with 11 subjects which 

reached statistical significance in all outcomes would be suspected of biased 

data manipulation at best and outright fraud at worst.   My own view is that 

many of the correlations are biologically relevant and genuine despite not having 

a p <0.05.   If the statistical outlier KAL007 had not been enrolled in the study, 

or if data from a larger cohort were available, I suspect that, for example, the 

association between change in betaquant LDL-c and FCR would be more clear-

cut.   One could also argue that, as a woman in her 30s, KAL007 is a “clinical” 

outlier in a disease population which has a peak incidence in the 6th decade of 

life; as such, excluding her from the analysis would not be unreasonable if she is 

not representative of the majority of RA patients one would encounter in a 

clinic.   Overall, I believe that in these circumstances it is not sufficient to 

dismiss a result or association as “non-significant” by simply quoting a p-value in 

a table, something major clinical journals also recognise.   Accordingly, if there 

is doubt over the relevance of an association, I have displayed the values 

graphically, with and without KAL007.   This suppresses allegations of bias, and 

allows the reader to draw their own conclusions. 

3.5.4.2 LDL-CE versus Betaquant 

Two different measures of LDL-cholesterol are used in this analysis.   LDL-c by 

Betaquant, a standard technique for measuring serum LDL-c, was taken on day 1 

of each kinetic study, in the same venepuncture as CRP and ESR and on the same 

morning of clinical assessment.   An alternative measure is the cholesterol ester 

content of LDL particles as calculated by using pooled samples throughout the 5-

day kinetic study (during which serum lipids were not in steady-state).   LDL-CE 

is a reliable, directly-measured quantification of LDL-c, which carries minimal 
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statistical link to FCR.   The use of LDL-CE carries two main advantages over 

Betaquant.   Firstly, it can be viewed as a more reliable “average” value for a 

naturally fluctuating LDL-c, and may be preferable to the Betaquant sample 

which only gives a value at one timepoint.   Secondly, the Betaquant technique 

also includes IDL-cholesterol and Lp(a).   These latter two substances are 

unchanged and reduced, respectively, by tocilizumab therapy, in contrast to the 

general trend of increase for LDL-CE.   This probably explains why the Betaquant 

LDL-c does not correlate as cleanly with kinetic and inflammatory parameters, 

and reduces its utility as a mechanistic tool. 

The major drawback of LDL-CE for quantifying LDL-c is that it is not a technique 

which is easy or widely available, and never will be given the repeated blood 

sampling and intensive laboratory resources required.   Therefore, whilst it may 

reflect cholesterol biology more accurately than betaquant sampling, it does not 

reflect clinical practice or the LDL-c values the physician or scientist is likely to 

encounter in RA patients, and will not equate cholesterol values generated in 

most other studies or cohorts.   It is thus hazardous to directly compare these 

values to the findings of other groups who measure LDL-c by other means, such 

as Betaquant or the Freidwald equation.   For clarity, I have generally provided 

results for both measures of LDL-c side by side.    

3.5.4.3 Measuring disease activity 

Most studies, even those involving tocilizumab, use DAS28 as the first-choice 

composite measure of RA disease activity.   In contrast, I chose the clinical 

disease activity index (CDAI) as a way of quantifying synovitis.   CDAI consists 

only of tender and swollen joint counts, and patient and physician global 

assessment scores, and is a validated (274) measure of disease activity.   I did 

this because most other disease activity scores include acute phase reactants in 

their calculations, and can report misleadingly low levels of disease activity 

following IL-6 blockade due to supra-normalisation of the acute phase response 

even when persistent synovitis is apparent on clinical examination.   DAS28 is 

particularly susceptible to this phenomenon, as it includes the natural log of CRP 

or ESR; thus, small falls at low acute phase reactant levels will have a 

disproportionately large effect on the change in DAS28.   By way of illustration, 

a fall in CRP from 60mg/l to 25mlg/l (ln 4.1 to 3.2) has less impact on DAS28 
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than a fall from 10mg/l to 3mg/l (ln2.3 to 1.1).   CDAI does not include any 

biochemical component and I felt it was more useful as a surrogate for synovitic 

burden in the context of tocilizumab therapy.     

 
 

 

  



202 
 

 
 

 

 

 

 

 

4 Interleukin-6 and Foam Cell Formation In Vitro 
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4.1 Rationale 

Having demonstrated the effects of IL-6 blockade on LDL kinetics, I aimed to 

investigate the cellular mechanisms which may underlie these observations.   As 

outlined in the introduction to this thesis, IL-6’s biological functions are legion; 

it may demonstrate a variety of pro-inflammatory, and sometimes anti-

inflammatory, properties in vivo and in vitro.   More pertinently, IL-6 has also 

been directly implicated in lipid metabolism beyond the observations of 

decreased cholesterol in RA patients.  Serum IL-6 levels correlated inversely with 

TC and LDL-c in a cohort of postoperative patients (226) whilst exogenous IL-6 

reduces serum TC and alters VLDL subclasses in humans (227, 228).   TNF-α and 

bacterial lipopolysaccharide (LPS) can achieve similar results (229). 

Prior studies have examined the effects of IL-6 in vitro using a variety of cellular 

systems in an attempt to explain observed in vivo effects.   IL-6 has been shown 

to upregulate the LDL receptor (LDLr) in human HepG2 cells, a hepatocyte cell 

line (275), and decrease apoB excretion from these same cells (276).   IL-6 

induced expression of the scavenger receptors SR-A, CD36 and CD68 (but not 

LOX-1) in human aortic endothelial cells (277).   The same group also looked at 

macrophages generated from the THP-1 monocyte cell line and found IL-6 was 

capable of inducing expression of SR-A, but not SR-B, LOX or CD36, and 

facilitated cholesterol uptake and macrophage transformation into foam cells 

(278).    Frisdal’s group, in contrast, found IL-6 retarded foam cell formation by 

upregulating ABCA1 expression in THP-1 macrophages and human monocyte-

derived macrophages (HMDM) (279), though this seems to be contradicted by 

more recent findings of impaired cholesterol efflux in RA (280).   IL-6 has also 

been shown to increase production of intracellular cholesterol-regulating 

molecules, including HMGCoA reductase and SREBP in THP-1 macrophages (281).   

These findings are in contrast to studies in rodents, which have significantly 

different lipid physiology to primates.   Compared to humans, rodents normally 

demonstrate high HDL-c, low LDL-c and very little atherosclerosis (229).   Mouse 

models of atherogenesis are used quite frequently in cardiovascular research, 

but require genetic manipulation by LDLr or APO-E in conjunction with a high fat 

diet.   Rodents also seem to respond differently to IL-6.   Administration of 

exogenous IL-6 increased serum TC and TG (282), and whilst IL-6-driven foam 
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cell production has been observed in mouse cells, this is in the context of 

upregulating VLDLR, SR-A and CD36, not LDLr (283, 284).  

Macrophages are key cells in both the pathogenesis of rheumatoid arthritis and 

atherogenesis, and are the effector cells of the reticuloendothelial system which 

previous animal data have implicated in LDL hypercatabolism (as noted in 

Chapter 3).   I hypothesised that tocilizumab’s reduction in LDL catabolism is a 

result of reduced IL-6 signalling in macrophages, and their subsequent reduced 

uptake of LDL via scavenger receptors.   To investigate this possibility, I 

performed a series of experiments on macrophages in vitro.   Firstly, I aimed to 

confirm that IL-6 was capable of transducing a signal in the macrophage and 

changing its biology as a positive control.   Secondly, I measured the effects of 

IL-6 on macrophage lipid uptake and their transformation into foam cells.   

Thirdly, I investigated the effects of IL-6 on the expression of a variety of 

membrane-bound and intracellular proteins involved in cholesterol uptake, 

export and metabolism.   Finally, I attempted to replicate my observations in 

patients with RA, using blood samples taken from the KALIBRA patient cohort 

before and after tocilizumab therapy. 
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4.2 Methods 

4.2.1 THP-1 Macrophage Generation 

THP-1 cells are a monocyte cell line originally derived from a patient with 

monocytic leukaemia (285).   They have for many years been used as models of 

macrophages following differentiation with Vitamin D3 or phorbol 12-myristate 

13-acetate (PMA).   In an attempt to mirror the phenotype of primary human 

macrophages as closely as possible, two different THP-1 maturation protocols 

were used.   The “original” technique is well-established and has been 

extensively studied.   The “alternative” technique, as described by Daigneualt et 

al (286), may lead to generation of cells which more closely resemble primary 

human monocyte-derived macrophages [HMDM] in appearance and behaviour. 

4.2.2 “Original” THP-1 macrophage generation 

Proliferating THP-1 monocytes were maintained in 250ml vented flasks at 37oC 

incubation.   Cells were split and re-seeded twice a week at 2x106 cells in 25ml 

complete medium (RPMI 1640 (Invitrogen) supplemented with 10% foetal calf 

serum, 1% Penicillin/Streptomycin and 1% L-glutamine).   On the day of 

differentiation, cells were counted, resuspended at 2.5x105 cells/ml in complete 

RPMI supplemented with 50ng/ml PMA, and plated in a 24-well tissue culture 

plate at 1ml/well.   Cells were incubated at 37oC for 72 hours before 

stimulation. 

4.2.3 “Alternative” THP-1 macrophage generation 

THP-1 monocytes which were maintained in culture as above were counted and 

suspended at 2.5x105 cells/ml in complete RPMI supplemented with 5ng/ml PMA.   

These were then seeded at 1ml/well in a 24-well tissue culture plate and 

incubated at 37oC for 24 hours.   At this point medium was aspirated and 

replaced with fresh complete RPMI, and the cells were incubated for a further 5 

days before stimulation. 



206 
 

 
 

4.2.4 CD14 isolation 

Healthy human donor blood samples were obtained in the form of “buffy coats” 

(the fraction of a whole blood donation following gradient centrifugation that 

contains leukocytes and platelets) graciously provided by the Scottish National 

Blood Transfusion Service via the Western Infirmary, Glasgow.   From each 

donor, under sterile conditions buffy coat (typically 10-20ml) was diluted 1:1 in 

wash medium (500ml sterile PBS with 5ml Penicillin/Streptomycin).   This was 

then carefully layered with a dropper onto 4ml Histopaque in a 15ml centrifuge 

tube, to a total volume of 14ml, and spun at 2100rpm for 20 minutes.   From 

each tube, a dropper was used to remove the visible interphase of peripheral 

blood mononuclear cells lying immediately above the histopaque layer into a 

50ml centrifuge tube, and this was washed in 50ml wash medium at 1800rpm for 

10 minutes.   Cells were resuspended in 50ml wash medium, filtered through a 

70µm cell strainer into a fresh tube, and counted.  They were then spun at 

1500rpm at 4oC for 10 minutes and resuspended at 107 cells / 80µl in MACS 

buffer (500ml sterile PBS with 10ml foetal calf serum and 5ml 

Penicillin/Streptomycin) in a 15ml centifuge tube on ice.   CD14+ monocytes 

were then isolated from PBMCs using positive cell selection on an AutoMACS Pro 

(Miltenyi Biotech) according to the manufacturer’s instructions.    

4.2.5 Primary HMDM generation 

CD14+ monocytes, isolated from donor blood as above, were suspended in 10ml 

RPMI and counted.   They were then spun at 1,500RPM for 10 minutes and then 

resuspended at 2.5x105 cells/ml in complete RPMI supplemented with 50ng/ml 

M-CSF (Peprotech).   Cells were then seeded in 24 well plates at a 1ml/well.    

The medium was replaced with fresh complete RPMI + 50ng/ml M-CSF after 

three days, and cells were used after a total of 6 days differentiation. 

4.2.6 TNF production by macrophages 

Differentiated THP-1 macrophages or HMDMs in 24-well plates were “primed” by 

providing them with fresh complete RPMI supplemented with recombinant 

human IL-6 (Peprotech) at 1, 10 or 20ng/ml, recombinant soluble human IL6-

Receptor (Peprotech) at 100ng/ml, or combinations thereof.   After 24 hours 
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culture at 37oC, medium was aspirated and replaced with fresh complete RPMI 

supplemented with lipopolysaccharide (LPS, Sigma-Aldrich) at varying doses for a 

further 24 hours.   Supernatants were aspirated into 1.5ml microcentrifuge 

tubes, spun at 1,500 RPM for 5 minutes to remove any cells in suspension, and 

decanted into clean tubes.   Samples were stored at -20oC.   Prior to use, the 

samples were thawed at room temperature and vortexed.   Supernatants of cells 

exposed to LPS were diluted 1:10 with RPMI due to the high concentrations of 

TNF-α induced by LPS. 

4.2.7 TNF-α ELISA 

Supernatant TNF-α levels were measured by Human TNF- α CytoSet ELISA 

(Invitrogen).   A 96-well ELISA plate was coated overnight with 100µl/well of 

capture antibody diluted in phosphate buffered saline (PBS, Sigma Aldrich) to a 

concentration of 2µg/ml.   The next morning the plate was washed with 

PBS/0.1% Tween (Sigma-Aldrich) then blocked for one hour at room temperature 

with 200µL PBS/0.5% BSA (Sigma-Aldrich) per well.   After washing, TNF-α 

standards were prepared in complete RPMI and added at 100µl/well using serial 

dilutions to generate a seven-point standard curve, with the top standard at a 

concentration of 2,000pg/ml.   Supernatant samples were added at 100µl/well, 

and 50µl of detection antibody diluted to 0.32µg/ml in PBS/0.5% BSA was added 

to all wells.   The Plate was left on a rocker at room temperature for 2 hours, 

and washed three times with PBS/0.1% Tween.   A working Streptavidin-HRP 

solution was prepared by diluting stock solution 1/625 in PBS/0.5% BSA, and 

100µl was added to each well for 30 minutes on a rocker at room temperature.   

The plate was washed five times, and 100µl TMB substrate solution (R&D 

Systems) was added to each well for 5-10 minutes in the dark.   Reactions were 

stopped by adding 100µl Stop Solution (2N H2SO4).   TNF-α concentrations were 

determined according to absorbance at 450nm measured on a Dynex MRX TCii 

plate reader (Dynex Technologies, Chantilly VA, USA) with reference to the 

standard curve. 

4.2.8 Foam cell formation and visualisation 

THP-1 macrophages or HMDM were incubated for 24 hours at 37o with fresh 

complete RPMI alone, 10ng/ml recombinant human TNFα (Peprotech), 10ng/ml 
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IL6 or IL6 + 10µg/ml tocilizumab.   Where relevant, tocilizumab was added to 

wells 30 minutes before application of IL6.   Cells were then gently washed in 

PBS and incubated with varying concentrations of oxLDL (BTI Inc, Ward Mill USA) 

for a variety of durations, depending on the requirements of the experiment.   

Specific parameters are detailed where relevant in the results section.   

Adherent cells were fixed in their wells and stained with oil red O (Sigma 

Aldrich) to demonstrate lipid uptake. Two different staining protocols were used 

to allow cross validation of observations. 

The first technique was based on recommendations from the manufacturer of 

oxLDL.   A stock solution of 0.4% oil red O in was made by adding 200µg oil red O 

powder to 50ml of 100% isopropanol and filtering through a 0.2µm syringe filter.   

A working solution was made by diluting 60:40 with distilled water, and filtering; 

this was suitable for use for 4 hours, and was discarded afterwards.   Cells in the 

wells of the culture plate were washed twice with PBS, fixed with 250µl 3% 

paraformaldehyde for 5 minutes at room temperature, and washed twice again 

with PBS.   Cells were covered briefly with oil red O working solution then rinsed 

quickly twice with distilled water.   Cells were then visualised under light 

microscopy. 

The second technique was derived from an optimised staining protocol derived 

by Xu et al (287).   Stock and working solutions of oil red O were prepared as 

above.   Cells in the wells of the culture plate were fixed in 10% phosphate 

buffered formalin for 10 minutes, rinsed for 1 minute in PBS and rinsed for 15 

seconds in 60% isopropanol to facilitate staining.   Cells were then stained with 

oil red O working solution for 1 minute in darkness at 37oC.   The cells were 

destained by adding 60% isopropanol for 15 seconds, then washing three times 

with PBS for 3 minutes each.   Cells were then visualised under light microscopy. 

4.2.9 DiI-oxLDL uptake assay 

HMDMs were primed for 24 hours at 37o with fresh complete RPMI alone, 10ng/ml 

recombinant human TNFα (Peprotech), 10ng/ml IL6 or IL6 + 10µg/ml 

tocilizumab.   Where relevant, tocilizumab was added to wells 30 minutes before 

application of IL6.   Cells were then incubated for 4 hours with 100µg/ml DiI-

labelled oxLDL (Intracel, Frederick, USA) then washed 5 times with PBS.   300µl 
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100% isopropanol was added to each well and plates were placed on a rocker for 

15 minutes at room temperature.   Isopropanol was then aspirated and analysed 

on a BMG Fluostar Optima with excitation/emission values of 540/590nm.   Each 

sample was read at 3 different gain levels, and the values which were highest 

without going over the machine’s upper limit of detection were used.   All 

conditions were generated in duplicate for each donor with the mean of the 

duplicate values used for analysis. 

4.2.10 STAT3 phosphorylation 

Macrophages were detached from culture wells by adding 1ml of non-enzymatic 

cell dissociation solution (Sigma), incubating at 37oC for 20 minutes, and gently 

agitatating with a pipette.  Cells were resuspended in PBS at 5x105 cells/ml.  

2.5x105 cells in 0.5ml were added to FACS tubes containing: no stimulant; 

10ng/ml IL6; 100ng/ml sIL6R; IL6 + sIL6R; or IL6 + 10µg/ml tocilizumab (kindly 

provided by Center for Rheumatic Diseases, Glasgow Royal Infirmary, UK).  The 

cells were incubated a water bath at 37oC for 15 minutes.   At this point cells 

were washed in ice-cold PBS, fixed, permeablised and stained with 2.5µl pSTAT3 

intracellular antibody (BD Biosciences) in the dark for 30 minutes.  Cells were 

washed with Cellwash or PBS between each step before resuspending in 250µl 

PBS with 0.5% bovine serum albumin (BSA, Sigma-Aldrich).   Fluorescence was 

immediately measured using an AutoMacs Pro (Miltenyi, Cologne, Germany) and 

analysed on FlowJo V10 software. 

4.2.11 Flow cytometry antibody conjugation 

In preparation for flow cytometry staining, anti-human MARCO antibodies 

(Thermo Scientific, Rockford, IL, USA) were conjugated using the Lightning-Link 

PE Tandem Conjugation Kit (Innovia Biosciences, Cambridge, UK) according to 

the manufacturer’s instructions.   Briefly, 3µl of LL-modifier was added to 30µl 

of antibody in a 200µl microcentrifuge tube and mixed gently.   11µl of this mix 

was pipetted directly onto a liophylised mixture provided in a glass vial 

containing the PE ligand, mixed gently by pipetting, and left overnight at room 

temperature in the dark.   1µl of LL-quencher was added to each vial and left at 

4oC for thirty minutes before use. 
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4.2.12 Flow cytometry analysis of cell surface molecules 

THP-1 macrophages and HMDMs were cultured as previously described.   

Following 24 hours stimulation with 10ng/ml IL-6 or complete RPMI alone, 

supernatant was removed and cells were incubated at 37oC with 1ml non-

enzymatic Cell Dissociation Solution (Sigma) in each well for 45 minutes.   Non-

adherence was confirmed visually by light microscopy; adherent cells were 

loosened by gentle agitation using the pipette, and the suspension was 

transferred to a centrifuge tube.   Cells were counted, spun at 1,500RPM for 10 

minutes and resuspended in FACS buffer (PBS + 0.5% bovine serum albumin) at 

5x106 cells/ml.   For each experimental condition, 5x105 cells (ie. 100µl) were 

decanted into a FACS tube.   Cells were then incubated with 5µl Trustain Fc 

block (BioLegend, San Diego, USA) for 10 minutes at room temperature.   

Fluorescent antibody or isotype was added at 2.5µl per tube, and cells were 

incubated on ice for 15-20 minutes in the dark.   After washing twice with FACS 

buffer at 350g for 5 minutes, cells were resuspended in 500µl buffer.   

Fluorescence was immediately measured using an AutoMacs Pro (Miltenyi, 

Cologne, Germany) and analysed on FlowJo V10 software. 

4.2.13 RNA isolation from in vitro macrophages 

Primary human CD14+ monocytes were isolated and differentiated into 

macrophages as previously described.   For transcript analysis, cells were 

exposed for 24 hours to 10ng/ml IL-6 or RPMI alone, with two wells of 2.5x105 

cells each per condition. 

After 24 hours stimulation the cell supernatant was aspirated and cells lysed 

with 350µl QIAzol Lysis Reagent in the well.  This was aspirated, incubated at 

room temperature for 5 minutes to allow complete cell lysis, and stored at -20oC 

in a 1.5ml eppendorf tube; as two wells were combined for each condition from 

each donor, this resulted in each condition having RNA from a total of 5x105 cells 

in 700µl QIAzol ready for processing in a miRNeasy kit (Qiagen).   After thawing 

at room temperature, 140µl chloroform was added to each tube and centrifuged 

at 12,000g for 15 minutes.   200µl of the upper aqueous phase was carefully 

transferred to a new tube and 525µl of 100% ethanol added.   The sample was 

spun in an RNeasy Mini column at 8,000g for 15 seconds; 200µl buffer RWT was 



211 
 

 
 

added to the column and spun again at the same settings.   A DNase digest was 

then performed by making a master mix of 10µl DNase stock I solution and 70µl 

Buffer RDD for each sample, placing 80µl of this mix directly onto the spin 

column membrane, and leaving the column on the benchtop at room 

temperature for 15 minutes.   The digest was halted by adding 300µl buffer RWT 

and the column spun at 8,000g for 15s.   500µl buffer RPE was added and spun at 

8,000g for 15s; this was repeated with a further 500µl buffer RPE for 2 minutes.   

The RNA now held within the spin column was eluted by adding 30µl directly to 

the membrane and centrifuging at 8,000g for 1 minute.   This 30µl eluate was 

pipetted back onto the membrane and spun again using the same collection 

tube. 

4.2.14 cDNA synthesis 

Purity and concentration of RNA were measured by NanoDrop spectrophotometry 

(Thermo Scientific), and reverse transcription performed using AffinityScript 

Multi-Temperature cDNA synthesis kit (Aligent, California, USA) and the Veriti 

96-well thermal cycler (Applied Biosystems)   RNA from each sample was 

transferred into a 200µl PCR tube.   The required quantity of RNA was calculated 

so that 12 µl of the sample with the lowest concentration of RNA was used; for 

other samples, a lower volume of sample was thus be required to obtain the 

same quantity of RNA, and the volume was made up to 12 µl with RNase-free 

water (Life Technologies).   3µl of random primers was added to each tube and 

the reaction was incubated for 65oC for 5 minutes to denature the RNA, then left 

at room temperature for 10 minutes to allow primers to anneal.   A master mix 

was prepared on ice of: 

 2µl AffinityScript RT Buffer 

 0.8µl dNTP mix 

 0.5µl RNase Block Ribonuclease Inhibitor 

for each sample; 3.3µl of mix was added to each tube followed by1µl of 

AffinityScript Multiple Temperature RT.   The tubes were briefly centrifuged to 

eliminate air bubbles and then incubated at 25oC for 10 minutes to extend the 
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primers, then 42-55oC for one hour.  The reaction was terminated by incubating 

at 70oC for 15 minutes.  Samples were then placed on ice for immediate use, or 

stored at -20oC. 

4.2.15 RT-qPCR by SYBR 

Before extended gene analysis, samples were first assessed for suitability by real 

time PCR using SYBR Green reagents.   A 96-well PCR plate was loaded in 

triplicate with 2µl cDNA from each sample.  To each well was added: 

 10µl SYBR Select Master Mix (Life Technologies) 

 1µl forward and reverse primers for GAPDH or SOCS3 (Integrated DNA 

Technologies, Coralville, USA) 

 7µl RNase-free water (Life Technologies) 

For convenience and pipetting accuracy, these were prepared in a master mix 

beforehand.   The plate was spun at 350g for at least 10 seconds to ensure each 

reaction mix was at the bottom of the well.   Amplification was then quantified 

on a 7900HT Fast Real-Time PCR System (Life Technologies) as detailed below. 

4.2.16 RT-qPCR by TLDA 

Gene expression was quantified using TaqMan Low Density Array cards (Applied 

Biosystems).   The array is a 384 well microfluidic card, fed by one of eight 

loading ports.   Each well is pre-loaded with primers for a specified gene, and 

cards can be custom-designed according to the needs of the researcher.   In my 

case, cards were set up to accommodate four samples, allowing 32 genes to be 

analysed in triplicate for each sample.  Appendix H lists the genes included in 

this study, and the corresponding protein products and their roles. 

The card was removed from storage at 4oC and allowed to settle at room 

temperature for 15 minutes in the dark.   After defrosting cDNA on ice and 

gently vortexing, a master mix was made in a 1.5ml microcentrifuge tube of: 

 70µl cDNA  
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 30µl RNase-free water 

 100µl TaqMan Universal Master Mix II (Applied Biosystems) 

This mix was gently vortexed, spun briefly to eliminate air bubbles, and 

carefully added to the card.   The mix was equally divided between two loading 

reservoirs (i.e. 100µl into each port) to allow analysis of four samples per card as 

above.   The card was twice centrifuged at 1,200RPM for 1 minute at room 

temperature.   The card was then sealed to prevent samples leaking between 

wells.   Amplification was then quantified on a 7900HT Fast Real-Time PCR 

System (Life Technologies) by thermal cycling as follows: 50oC for 2 minutes; 

95oC for 10 minutes; then forty cycles of 97oC for 30 seconds; and 59.7oC for one 

minute.    

4.2.17 RT-qPCR analysis 

The comparative threshold (CT) method was used to quantify gene expression 

with RQ Manager  (Applied Biosystems).   The CT value indicates the PCR cycle, 

from 0 to 40, at which the amplified gene is deemed as being detected by 

reaching a defined threshold of fluorescence.  Mean CT values for all 32 genes in 

every sample from the three replicate values were calculated, including GAPDH 

as a control gene.   The ΔCT value (i.e. the expression of target gene relative to 

that of GAPDH) was then calculated as: 

  ΔCT =CT (target gene) – CT (GAPDH).    

The change in gene expression between stimulated and unstimulated cells for 

each donor was calculated as: 

ΔΔCT = ΔCT (stimulated sample) - ΔCT (unstimulated sample) 

Gene expression could then be expressed as fold change relative to unstimulated 

cells using the formula: 

Fold change = 2-ΔΔCT 
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For down-regulated genes, the negative inverse of the result was used to 

demonstrate a negative value. 

4.2.18 RNA isolation from KALIBRA blood samples 

Whole blood samples provided for the KALIBRA study were processed in the 

Centre for Vascular Biochemistry at the University of Glasgow, removing serum 

for lipoprotein analysis.   This left small volumes (around 2ml each) of blood 

from each patient rich in erythrocytes and leukocytes, which were stored at -

20oC.   Some of these samples, pre- and post-tocilizumab, were used to obtain 

RNA for gene expression analysis. 

Blood samples were thawed at room temperature, and transferred to PAXgene 

tubes (Qiagen).   Tubes were left at room temperature for 2 hours, then spun at 

3,000g for 10 minutes.   Supernatant was decanted, 4ml RNAse-free water was 

added, and the tubes were vortexed and spun at 3,000g for 10 minutes.   

Supernatant was removed, 350µl BR1 buffer was added, and tubes were 

vortexed.   Samples were pipette into a 1.5ml microcentrifuge tube, to which 

300µl BR2 buffer and 40µl proteinase K were added.   The tubes were vortexed 

for 5 seconds and incubated at 55oC for 10 minutes in a shaker-incubator at 

500RPM.   Lysate was transferred to a PAXgene shredder spin column in a 2ml 

microcentrifuge tube, and spun for 3 minutes at 8,000g.   The supernatant was 

transferred to a fresh 1.5ml microcentrifuge tube and 350µl 100% ethanol was 

added.   The tubes were vortexed and spun briefly.   700µl of this sample was 

pipette into a PAXgene RNA spin column in a 2ml processing tube, and spun for 1 

minute at 8,000g.   This process was repeated in the same spin column with any 

remaining sample.   350µl BR3 buffer was added to the spin column, which was 

spun for 1 minute at 8,000g.   A DNAse digest was then performed by adding a 

pre-prepared mix of 10µl DNase I stock solution and 70µl RDD buffer directly to 

the spin column membrane, and leaving at room temperature for 15 minutes.   

350µl BR3 buffer was then added and the tubes spun for 1 minute at 8,000g.   

This process was repeated twice with 500µl BR4 buffer, spinning for 3 minutes at 

the final stage.   The spin column was spun again for 1 minute at 8,000g in a 

clean 2ml processing tube, then transferred to a 1.5ml microcentrifuge tube.   

40µl BR5 buffer was pipette directly onto the spin column membrane, and this 

was spun for 1 minute at 8,000g; this step was performed twice.   The resulting 
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eluate was incubated in a shaker-incubator for 5 minutes at 65oC, then 

immediately placed on ice.   The resulting RNA was analysed for quantity and 

purity by NanoDrop spectrophotometry as described above. 
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4.3 Results  

4.3.1 TNFα assay 

In THP-1 macrophages generated by the “original” method, a dose-ranging assay 

showed a strong TNFα response following 24 hours of culture with 50ng/ml LPS, 

and a discernible elevation from baseline with 5ng/ml LPS (Figure 73).   In these 

cells, IL-6 alone did not provoke any secretion of TNFα at any dose.   Priming of 

cells with IL-6 with or without exogenous sIL-6R failed to augment LPS-driven 

TNFα production (Figure 74).   This conflicts with previously published data 

which showed IL-6 potentiating the ability of LPS to provoke TNFα production by 

THP-1 macrophages (288).   I repeated the experiment in macrophages 

generated by the “alternative” method, using lower levels of PMA and LPS in 

case this had overwhelmed the cells’ TNFα production capability.   Again, no 

increase in TNF production was seen with IL6 or sIL6R supplementation, though a 

slight reduction of TNF production was seen when stimulated with 1ng/ml LPS 

(Figure 74).    

 

 

Figure 73 – TNF-α production in THP-1 macrophages following culture for 24 
hours with ascending concentrations of LPS (ng/ml).    Mean of 2 repetitions 
with different cell generations ± SD.    
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Figure 74 - TNF production in THP-1 macrophages on culture with LPS with 
or without IL-6, as percentage of response seen with cells exposed to LPS 
alone.   (A) “Original” method of differentiation.   (B) “Alternative” method of 
differentiation.   Values presented as mean ± SD.  N = number of repetitions 
using different cell generations.   Black bar: LPS alone.   White bars: IL-6 
alone at 1, 10 or 20ng/ml.  Light grey bars: IL-6 + LPS.  Dark grey bars:  IL-6 + 
LPS + sIL6R (100ng/ml). 

 

In HMDM, a dose-ranging assay gave a similar dose-response curve as in THP-1 

macrophages, albeit with greater magnitude of production at each dose of LPS 

(Figure 75).   Priming with IL6 at all doses attenuated TNFα production following 

culture with 5ng/ml LPS but did not abrogate it completely (Figure 76), in 

keeping with previously published data (289). 
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Figure 75 - TNFα production in HMDM on culture for 2 hours ascending 
concentrations of LPS (ng/ml).   Donor n = 1 

 

 

Figure 76 – TNF-α production in HMDM on culture for 24 hours with LPS with 
or without IL-6, as percentage of response seen with cells exposed to LPS 
alone.   Mean±SD; analysed by t-test, donor n=6.  Black bar = LPS alone.   
White bars (not visible due to TNF-α production being below limit of 
detection): IL-6 alone at 1, 10 or 20ng/ml.    Grey bars: IL-6 + LPS + sIL-6R 
(100ng/ml).  

 

4.3.2 Foam cell formation quantified by Oil Red O staining 

I first attempted to replicate the results described in Hashizume et al. (278), 

where incubation of THP-1 macrophages with IL-6 increased foam cell formation.   

Initially however I carried out my own dose-ranging experiment to find out how 

much oxLDL was required to generate positive staining; 100µg/ml was used in 
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the above paper, which I was keen to reduce if possible given that oxLDL is (a) 

toxic to macrophages, and (b) expensive.   THP-1 macrophages generated using 

the “original" protocol were therefore activated with 50ng/ml LPS for 24 hours, 

then incubated for 48 hours with oxLDL at 1, 10 or 50µg/ml.    The intensity of 

staining increased incrementally with increasing concentration of oxLDL (Figure 

77), leading me to conclude that 50µg/ml was an appropriate concentration of 

oxLDL for foam cell generation.  

 

 

 

Figure 77 - Oil red O staining of THP-1 macrophage foam cells cultured for 
48 hours with oxLDL at (A) 1mcg/ml, (B) 10mcg/ml and (C) 50mcg/ml.  10x 
magnification   Images representative of two experiments. 

 
However, I noted that even cells with minimal oxLDL loading showed significant 

lipid staining, in contrast to previous literature.   To counter this I attempted to 

culture cells for the final 24 hours in serum-free medium, in case oil-red O 

staining simply reflected uptake of lipid from the foetal calf serum present in 

complete RPMI.   Unfortunately this led to significant amounts of cell death and 

loss of adherence to the well, and thus uninterpretable results.  In future, use of 

specifically designed serum free media would obviate this problem. 
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These experiments were repeated using the “alternative” method of THP-1 

macrophage generation as discussed above (286).   Results from these 

experiments were conflicting.   On one attempt, there was a subjective increase 

in frequency and intensity of oil red O staining following IL-6 priming, and this 

was ameliorated by pre-culture with tocilizumab (Figure 78).   However, 

attempts to replicate this were unsuccessful, with no observable difference 

between stimulated and unstimulated cells (Figure 78).   Once again, even cells 

cultured only in RPMI without exogenous cytokine or oxLDL supplementation 

stained heavily (Figure 79).     
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Figure 78 - Oil red O staining of THP-1 macrophage foam cells cultured for 
48 hours with 50 mcg/ml oxLDL and (A) RPMI alone (B) 10ng/ml IL-6 (C) IL-6 
+ 100ng/ml tocilizumab.  20x magnification.   Images representative of one 
experiment. 
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Figure 79 - Oil red O staining of THP-1 macrophage foam cells cultured for 
48 hours with (A) RPMI alone (B) 50mcg/ml oxLDL, (C) oxLDL + 10ng/ml IL-6 
(D) oxLDL + IL-6 + 100ng/ml tocilizumab.   Images obtained from the same 
experiment. 

 

4.3.3 Foam cell formation quantified by DiI-oxLDL 

DiI-labelled oxLDL was sequentially diluted in RPMI and directly analysed via 

fluorimetry, creating a standard curve (Figure 80) demonstrating its ability to 

generate increasing levels of fluorescence at increasing concentrations. 

 

 

Figure 80 - Fluorescence of DiI-oxLDL at increasing concentrations in a 96-
well plate.  Bars represent mean±SD of three wells for each condition in one 
experiment. 

 
Given the difficulties I encountered in replicating the findings of previous groups 

with oxLDL culture, dose-ranging studies were then carried out to ascertain the 

optimum concentration and duration of culture of THP-1 macrophages with DiI-

oxLDL.   Figure 81 shows the results of this experiment, with detectable 

fluorescence at culture concentrations of 10µg/ml oxLDL and above.   

Fluorescence was detectable from the earliest timepoint of 30 minutes of 

culture; this increased with longer periods of culture before plateauing (or at 

least having a slower rate of increase) beyond two hours.    Figure 82 shows 

these results in bar chart form for concentrations of 10µg/ml or 50µg/ml oxLDL.   

After one hour of culture in these conditions, whilst a discernable increase of 
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fluorescence from baseline was detected, there was still capacity for further 

increase of oxLDL uptake following cell stimulation.   Given the significant 

expense of purchasing DiI-labelled oxLDL, I decided to conduct all further 

experiments by culturing cells in 10µg/ml DiI-oxLDL for one hour before 

analysing. 

 

 

Figure 81 - Fluoresence of THP-1 macrophages following culture with DiI-
labelled oxLDL at varying times and concentrations.   Points represent 
mean±SD of three wells for each condition in one experiment. 

 

 

 

Figure 82 - Fluorescence of THP-1 macrophages following culture for 
varying times with (A) 10mgc/ml or (B) 50mcg/ml DiI-labelled oxLDL.   Points 
represent mean±SD of three wells for each condition in one experiment. 

Using these culture conditions, no significant differences were seen in oxLDL 

uptake following cell stimulation with IL-6 in either THP-1 macrophages or 

HMDMs from 5 healthy donors (Figure 83).   In an attempt to demonstrate the 
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reliability of my results I also included cells primed instead with 100ng GM-CSF.   

This was prompted by previous (unpublished) data obtained in our lab which 

suggested GM-CSF was capable of retarding oxLDL uptake into macrophages.   

However, in my experiments this effect was not observed.   I also repeated foam 

cell quantification using these culture condition and staining with oil red O as 

per Xu’s technique, as detailed in the methods section.   Again, no clear 

difference in staining was seen following IL-6 or tocilizumab exposure in THP-1 

macrophages (Figure 84) or HMDM (Figure 85). 

 

Figure 83 - Fluorescence of macrophages following culture with DiI-oxLDL, 
expressed as % of fluorescence of cells cultured with DiI-oxLDL and RPMI 
alone.   Bars represent mean ± 95% C.I. of three wells for each condition in 
three or five experiments. 
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Figure 84 – Oil red O staining of THP-1 macrophage foam cells. (A) 
unstained (B) unstimulated (C) IL-6 10ng/ml (D) IL-6 + Tocilizumab 100µg/ml.   
Images obtained from one experiment. 

 

 

Figure 85 - Oil red O staining of HMDM foam cells. (A) unstained (B) 
unstimulated (C) IL-6 10ng/ml (D) IL-6 + Tocilizumab 100µg/ml.   Images 
obtained from one experiment.  
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4.3.4 STAT3 phosphorylation 

The difficulties I encountered in demonstrating responses to IL-6 in different 

cells, especially THP-1 macrophages, raised the possibility that no active IL-6 

signalling was taking place in these cells.   To address this possibility, I 

quantified the presence of membrane-bound IL-6 receptor (IL-6R) on monocytes 

and macrophages, and the presence of intracellular phosphorylated STAT3 

(pSTAT3) after exposure of the cells to recombinant IL-6. 

Cell surface staining of THP-1 cells demonstrated the presence of membrane-

bound IL-6R on monocytes, but not on macrophages generated by either the 

“original” or “alternative” differentiation methods (Figure 86).   In accordance 

with this observation, IL-6 generated detectable increases in pSTAT3 in THP-1 

monocytes, but not macrophages (Figure 87), and this effect was blocked 

completely by pre-incubation of cells with tocilizumab (Figure 87). 

Flow cytometry did, however, demonstrate the presence of IL-6R on CD14+ 

monocytes and HMDM.   This experiment was performed with 3 donors for each 

cell type; Figure 88 shows representative FACS plots from one donor for each 

cell type.   Unfortunately, time pressures in the laboratory during my fellowship 

meant I was unable to demonstrate pSTAT3 signalling in human CD14+ 

monocytes or HMDM.   I deprioritised this because I had demonstrated both the 

presence of membrane-bound IL-6R and the effect of IL-6 administration on 

TNFα production on these cells.  
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Figure 86 - Cell surface staining for membrane-bound IL-6R in (A) THP-1 
monocytes, (B) "original" THP-1 macrophages and (C) "alternative" THP-1 
macrophages.   Red: unstained.   Blue: IL-6R.   Orange - isotype. 
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Figure 87 - Intracellular staining for phosphorylated STAT3 in (A) THP-1 
monocytes, (B) "original" THP-1 macrophages and (C) "alternative" THP-1 
macrophages.   Green: unstained.   Orange: unstimulated.   Blue: IL-6 
10ng/ml.   Red:  IL-6 10ng/ml plus tocilzumab 10µg/ml. 
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Figure 88 - Cell surface staining for membrane-bound IL-6R in (A) human 
primary CD14+ monocytes and (B) human monocyte-derived macrophages 
(HMDM).   Red: unstained.   Blue: IL-6R.   Orange: isotype. 

 
4.3.5 QPCR analysis of lipid-processing molecules in HMDM 

HMDM were generated using monocytes from a total of 13 healthy donors.   RNA 

was then harvested from HMDM following exposed to either complete RPMI or IL-

6 10ng/ml for 24 hours as detailed in the methods section.   SOCS3 expression 

was measured by SYBR qPCR as shown in Table 25.   Using SOCS3 upregulation as 

a marker for successful IL-6 signalling, the eight donors with the greatest fold 

increase in SOCS3 RNA were chosen for TLDA analysis.   The exception to this 

was donor #1, where there was a significant discrepancy in GAPDH expression 
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between unstimulated and stimulated cells, and which was therefore excluded.   

Unfortunately due to equipment error, the TLDA card failed to generate data for 

donors 9 or 10, and so full TLDA data was available for 6 donors. 

Donor Fold change  Donor Fold change 

1 4.00  8 2.85 * 

2 1.70  9 2.19 * 

3 3.16 *  10 1.51 * 

4 0.27  11 0.78 

5 1.44  12 11.25 * 

6 4.63 *  13 5.40 * 

7 5.20 *    

 

Table 25 - Fold change in SOCS3 RNA expression in HMDM from different 
donors following stimulation with 10ng/ml IL-6 compared to unstimulated 
cells  Samples chosen for TLDA analysis are identified by asterisk (*). 

 
TLDA analysis confirmed the increased expression of SOCS3 following IL-6 

stimulation in these donors, with mean fold change 4.23.   Of the cell surface 

molecules analysed at mRNA level, only the class A scavenger receptor MARCO 

(also known as macrophage receptor with collagenous structure) increased, 

demonstrating a mean fold change of 3.53 (Figure 89).   The biological 

significance of this finding was unclear, however, as several of the donors 

demonstrated CT values >30 both pre- and post stimulation with IL-6 (Table 26).   

This implies that even after a several-fold increase, the quantity of mRNA (and 

thus quantity of functional protein resulting from gene expression) could still be 

very low and unable to drive any significant change in cell phenotype.   

Additionally, the nature of qPCR is such that at very high CT values (and thus 

very low levels of RNA) the technique becomes inherently less reliable.      In 

contrast, expression of the scavenger receptor LOX-1 appeared to fall slightly 

(mean fold change 0.61 - Figure 89). 
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Figure 89 - Fold change in gene expression for lipid receptors in IL-6-exposed HMDM compared to unstimulated cells from 
same donor.  N of donors=6 
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Donor # MARCO CT  GAPDH CT  

 Unstimulated Stimulated Unstimulated Stimulated 

3 35.35 34.71 24.93 25.92 

6 32.02 30.77 22.25 22.34 

7 33.89 33.12 22.70 22.89 

8 34.62 34.03 22.50 22.51 

12 35.57 34.24 21.35 21.45 

13 35.30 31.89 23.11 22.93 

 

Table 26 - CT values for MARCO and GAPDH gene expression in HMDM 
cultured with 10ng/ml IL-6 (“Stimulated”) or RPMI alone (“unstimulated”) for 
24 hours. 

 
No clear change was seen in expression of cholesterol export proteins (Figure 90) 

or intracellular molecules known to have roles in lipid metabolism (Figure 91).   

Most intracellular proteins demonstrate one “outlier” which had a large fold 

increase in RNA production.   On interrogation of the data, these outlying values 

were all obtained from one donor (#3). 

 

 

 

Figure 90 - Fold change in gene expression for cholesterol export proteins in 
IL-6-exposed HMDM compared to unstimulated cells from same donor.  N of 
donors=6 
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Figure 91 - Fold change in gene expression for intracellular mediators of 
lipid metabolism in IL-6-exposed HMDM compared to unstimulated cells 
from same donor.  N of donors=6 

 
4.3.6 MARCO and LOX-1 protein quantification in HMDM 

I next sought to validate the findings of TLDA analysis by quantifying MARCO and 

LOX-1 expression at the protein level following macrophage stimulation with IL-

6.   HMDM were generated from 5 healthy donors, exposed to 10ng/ml IL-6 or 

RPMI for 24 hours, and stained for MARCO or LOX-1 by flow cytometry.   No 

change was found in mean fluorescence intensity of staining antibody for MARCO 

(Figure 92).   Mean fluorescence intensity of staining for LOX fell non-

significantly (Figure 92).   Figure 93 and Figure 94 show representative flow 

cytometry graphs for MARCO and LOX-1 respectively. 
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Figure 92 - Change in expression of LOX-1 and MARCO as determined by (a) 
mean fluorescence intensity of primary antibody minus that of isotype; (b) 
ratio of mean fluorescence intensity of primary antibody / isotype.   Analysis 
by Wilcoxon matched-pairs test. 
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Figure 93 - Flow cytometric analysis of MARCO expression on HMDM from 
one donor. (A) FACS plot of selected cells. (B) MARCO present in detectable 
levels on cell surface. (C) MARCO expression increased on this donor 
following IL-6 stimulation. 
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Figure 94  - Flow cytometric analysis of LOX-1 expression on HMDM from 
one donor. (A) FACS plot of selected cells. (B) LOX-1 present in detectable 
levels on cell surface. (C) No change in LOX-1 expression on this donor 
following IL-6 stimulation. 

 
4.3.7 Gene expression in the KALIBRA cohort 

With the above data available, I was keen to try to replicate these findings in RA 

derived cells.   Monocytes present in RA blood have been shown to behave 

differently to those derived from healthy donors (Data from our centre currently 

being submitted for publication).   It is therefore possible that HMDM derived 

from RA monocytes could behave differently from non-RA cells in regards to lipid 

loading and gene expression, and indeed may show changes in phenotype 



`237 
 

 
 

between active and treated RA.  It would therefore have been interesting to 

obtain CD14+ monocytes from RA patients before and after tocilizumab therapy, 

differentiate them into HMDM, and analyse their gene expression using my 

remaining TLDA plates.   Unfortunately, samples from the KALIBRA cohort had 

been stored in a manner not conducive to cell survival.   Instead, I attempted to 

observe genetic changes in the overall leukocyte population; this was the closest 

analogous technique I could conceive of to my previous in-vitro experiments. 

On thawing, it became apparent the samples were overtly haemolysed.   I 

initially attempted to obtain RNA from two samples using a miRNeasy kit as 

above.   However, during processing the samples developed large globules of 

precipitate which partly disappeared on vortexing.   Analysis by nanodrop 

showed extremely low concentrations of quantity RNA, compared to 

concentrations consistently >30ng/µl from HMDM.   Additionally, the quality of 

RNA was poor, precluding further analysis; this was particularly the case at the 

260/230 ratio, possibly reflecting contamination with EDTA as a result of the 

sampling process. 

 Sample 1 Sample 2 

260/280 1.20 1.17 

260/230 0.40 0.19 

Concentration (ng/µl) 4.7 3.1 

 

Table 27 - NanoDrop analysis of quantity and quality of RNA isolated from 
KALIBRA samples by miRNeasy kit. 

 

Subsequently, samples were analysed using PAXgene tubes.   This appeared to 

yield RNA at reasonable quality at around 40ng/µl.   However, when performing 

SYBC qPCR for GAPDH expression, CT values for five separate samples were 

uniformly greater than 34, and thus unlikely to yield reliable results.   At this 

point, I chose to abandon further analysis of the KALIBRA samples. 
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4.4 Discussion 

4.4.1 THP-1 macrophage biology 

Despite numerous attempts with different differentiation and culture conditions, 

I was unable to demonstrate any effect of IL-6 on the behaviour of THP-1 

macrophages.   This conflicts with previous literature, where other groups have 

claimed that IL-6 can potentiate TNF-α production (288), reduce uptake of 

acetylated LDL (290), increase uptake of oxLDL (278), and stimulate cholesterol 

export (279).   One manuscript showed that the chemokine CCR-1 was capable of 

inducing pSTAT3 on THP-1 macrophages, an effect ameliorated by anti-IL-6 

antibody (291), thus providing indirect evidence of IL-6R ligation leading to 

STAT3 phosphorylation in these cells.   This conclusion was confirmed very 

recently (292) by direct observation of IL-6 inducible pSTAT3 by Western blot in 

both THP-1 monocytes and macrophages, albeit using different differentiation 

techniques and a higher concentration of IL-6 (100ng/ml).   In sharp contrast to 

these findings, I did not find the IL-6 receptor present on the membrane of 

differentiated THP-1 macrophages.   This would explain why, in my experiments, 

exogenous IL-6 had no effect on STAT3 phosphorylation, TNF-α production or 

foam cell formation.   A possible explanation may lie in the wide variety of 

protocols for the culture and differentiation of these cells which have evolved 

over the last two decades, though a lack of experimental reproducibility would 

be especially disappointing given that a cell line (rather than randomly selected 

human donors) is being used.   In hindsight, I may have been able to 

demonstrate effects by the addition of exogenous soluble IL6-R to the cell 

culture, thus permitting STAT3 phosphorylation via trans-signalling.   However, 

this would not resolve the above conflicts with previous literature.    

It must be recognised that the THP-1 cell line acts as a macrophage model, not a 

replacement, for HMDM.   These cells lack the variation in response inherent in 

using cells from different human donors; a THP-1 experiment thus provides only 

a very narrow window on what in reality would be a wide spectrum of biological 

responses.   THP-1 cells, being derived from a leukaemia cell origin, also appear 

to be very metabolically active, as seen by their high levels of oil red O staining 

even when differentiated with low levels of PMA and in the absence of 

exogenous cytokine or oxLDL; this again contrasts with the much more subtle 
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staining of HMDM, and makes me more suspicious of their applicability to in vivo 

human biology.   Because of these considerations, if I were to obtain conflicting 

data from THP-1 macrophages and HMDM, I would feel the latter are most likely 

to represent human biology.  

4.4.2 HMDM and foam cell formation 

Subsequent in vitro experiments using primary cells generated important 

positive results regarding the role of IL-6 in human macrophage behaviour.   I 

demonstrated that the IL-6 receptor is present on human CD14+ monocytes and 

HMDM, and that IL-6 signalling can be detected in these cells by staining for 

pSTAT3 and by observing inhibition of LPS-induced TNF-α production (as 

documented in existing literature (289, 293)).   These foundation findings are 

reassuring, and make me more confident that subsequent results with these cells 

are robust.   Despite this, IL-6 did not demonstrate an ability to increase oxLDL 

uptake by HMDM, as measured by two separate research methods.   This 

conflicts with both my original hypothesis and the findings of other researchers 

as detailed above.   Previous unpublished work in our lab by another doctoral 

student also showed no increase in oil red O staining in HMDM exposed to IL-6; 

however, this researcher did find a significant reduction in lipid uptake following 

addition of GM-CSF, which I again failed to replicate.   I believe my results to be 

reliable as they were achieved after demonstrating successful IL-6 signalling and 

persisted despite a variety of culture conditions, but this clearly prompts 

speculation as to why my results clash with those of others.   Like the THP-1 

experiments, previous groups have used different techniques for HMDM 

differentiation that may affect final HMDM phenotype.   Liao (290) seeded the 

entire buffy coat onto polystyrene culture dishes, retained those cells adherent 

after 1 hour of culture, and differentiated them with RPMI supplemented with 

10% pooled human serum.   Frisdal (279) obtained PBMCs through an unclear 

method and differentiated them with M-CSF for 10 days.   Hashizume (278), 

whose paper was one of the first I read on this topic and which encouraged me 

to generate the main hypothesis of this chapter, only studied THP-1 

macrophages.   The protocol I used for HMDM generation is one that is used 

routinely in our lab for a variety of experiments evaluating the activation and 

behaviour of macrophages under inflammatory stimuli, usually in the context of 

RA.  In these parallel experiments they behave in a consistent manner albeit 
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recognising that individual donors offer variable magnitude and occasional 

qualitative responses. 

4.4.3 The limits of oil red O 

Another simple (but powerful) explanation for conflicting results may lie in the 

subjectivity of oil red O staining.   I found that the images generated by staining 

were highly dependent on factors such as: the intensity of light used on the 

microscope; the number of seconds the stain was applied for; the intensity of 

cell washing; and even the area of the well photographed.   Most importantly, 

small images suitable for a thesis or publication only show a tiny fraction of all 

the cells in a well.   In an “unblinded” experiment it would be very easy for the 

researcher to choose to photograph cells from a well which had taken up a little 

more or less stain. Some authors claim to have “measured” or “quantified” oil 

red O staining, but do not give detail as to how this was performed.   I therefore 

suggest that results of oil red O experiments should be interpreted cautiously.   

This is also the reason I was keen to replicate my findings using an alternative, 

quantitative technique, namely using fluorescently-labelled oxLDL. 

4.4.4 Scavenger receptors 

No consistent, significant changes were observed in expression of lipoprotein 

receptors, scavenger receptors or cholesterol export proteins in HMDM after IL-6 

exposure – again, in contrast to earlier studies.   The increase in production of 

MARCO following IL-6 stimulation found at the mRNA level is unlikely to be a 

relevant finding: it was not confirmed at the protein level by flow cytometry in 

most donors; it was detected at very high CT values, where the reliability of 

qPCR diminishes; and in any case it was clearly insufficient to exert phenotypic 

change as determined by foam cell formation.    

The disconnect between changes in gene expression at the mRNA and protein 

levels may also be because donors chosen for TAQMAN analysis were those who 

had demonstrated the greatest increases in SOCS3 expression after IL-6 

stimulation, and thus had more profound IL-6 signalling.   However, no such 

selection was performed for donors undergoing flow cytometry.   This leads on 

to another potential criticism of my experimental setup.   SOCS3 can be 
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regarded as an anti-IL-6 protein, as it binds to cytokine receptors or Janus 

kinases and acts as a regulator in a negative feedback loop to inhibit the 

intracellular effects of IL-6 signalling.  One could argue then that the cells with 

greater SOCS3 expression were in fact those who would be least likely to show 

phenotypic changes typical of an inflammatory state, as these cells were those 

where continuing IL-6 signalling was most successfully inhibited.   If I had 

analysed cells from donors with no elevation in SOCS3 mRNA, would more 

relevant changes in expression of other genes have been observed?  

Nevertheless, SOCS3 is well recognised as a downstream marker of IL-6R ligation.   

Perhaps a more effective approach would have been for me to accompany all 

the above phenotypic experiments with concomitant pSTAT3 quantification by 

flow cytometry on cells from every donor, only continuing further 

experimentation on donors with demonstrable increases in pSTAT3 after IL-6 

exposure.   Whilst planning my experiments originally I thought this would be 

unnecessary and labour-intensive; however, in retrospect, and with appropriate 

experiment planning, it may have been both feasible and worthwhile.   If I were 

to revisit these experiments, I would also attempt alternative culture conditions 

including higher concentrations of IL-6 (20ng/ml as in Laio, 50ng/ml as in Frisdal 

et al, or 100ng/ml as in Kiedar et al) and explore the effects of supplementation 

with IL-6R to encourage trans-signalling.   Given the relatively high CT values 

seen in some of my results, qPCR experiments may also benefit from having 

increased numbers of cells, and so more available mRNA, for each condition. 

4.4.5 Extrapolation and replication in RA patients 

Frustratingly, no data could be gleaned from stored samples from the KALIBRA 

cohort, as such an experiment had not been planned at KALIBRA’s inception and 

so samples were not stored in such a way as to preserve viable leukocytes.   As 

my in vitro work was an attempt to mimic the behaviour of macrophages in the 

reticuloendothelial system, or arterial wall, reproducing my experimental 

methods in vivo is challenging.   One could assess gene expression in circulating 

CD14+ monocytes before and after tocilizumab therapy, though it would seem 

that tissue macrophages are more likely to take up oxLDL than undifferentiated 

monocytes.   It is theoretically possible that RA monocytes post-tocilizumab may 

be sufficiently altered in vivo as to persistently display altered phenotype even 
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after differentiation into macrophages, though I have no reason to believe this is 

the case.   Then again, in the RA patient, IL-6 would be present before, during 

and after differentiation of monocytes; this was one factor I did not control for 

in vitro, as I added IL-6 only after cells had fully matured into macrophages. 

In summary, in contrast to the findings of previous researchers, I found that 

culture with IL-6 has no effect on foam cell formation or expression of scavenger 

receptors in either THP-1 macrophages or HMDM.   Based on these findings, at 

least in my experimental systems I cannot support the notion that tocilizumab  

alters LDL catabolism as a result of reduced IL-6 signalling in macrophages in the 

atheromatous plaque or the reticuloendothelial system.  I recognise however the 

limitations in the analysis I have performed in vitro and in future experiments 

would wish to re-examine this hypothesis with refined methodologies. 
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5 Final Discussion and future study 
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5.1 Summary of conclusions 

Herein I draw together some final conclusions based on my observations 

described thus far. 

Patients with severe active RA display hypercatabolism of LDL, which can be 

reduced to a value approximating normal values following tocilizumab 

treatment.   This reduction in LDL fractional catabolic rate is largely responsible 

for the increase in LDL-cholesterol seen following tocilizumab.    

Changes in LDL catabolic rate, and LDL-cholesterol, associate tightly with 

changes in acute phase response, but not CDAI.   This raises the possibility that 

hepatic IL-6 signalling, rather than the burden of synovitis, is the prime driver of 

reduced LDL in RA.  These may be related, but there are complexities to the 

relationship that bear further observation, and that challenge overly simplistic 

interpretations of current inflammation – lipid level – clinical response 

paradigms. 

In the MEASURE study, changes in NMR lipid profile previously described after 12 

weeks of tocilizumab therapy – namely, increased large LDL particles, unchanged 

small LDL particles and increased small HDL particles – are maintained at 52 

weeks, and have been replicated in the placebo group of the study after they 

switched to open-label tocilizumab.   These changes are driven by inflammation 

(as measured by CRP and ESR). 

The “normalisation” of LDL catabolism and the pattern of lipoprotein changes 

observed in these studies suggest that IL-6 blockade may be cardioprotective in 

patients with RA despite elevations in serum LDL-c. 

The novel NMR-based biomarker GlycA is highly reliant on IL-6 signalling and, 

commensurate with this, behaves in a manner similar to CRP.   GlycA was unable 

to predict clinical response in those exposed to tocilizumab, and provided little 

extra information on clinical response over and above decisions built on the use 

of CRP or ESR. 
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Elevations in serum LDL-c do not appear to be due to abrogation of IL-6 

signalling on macrophages and reduction in subsequent lipid uptake and foam 

cell formation.   However, the absence of IL-6-related effects on foam cell 

formation or scavenger receptor expression on macrophages stand in contrast to 

previous studies, and require further attempts at replication.    

5.2 Application to clinical practice 

One of the driving factors behind investigating the role of IL-6 blockade in RA 

dyslipidaemia was the possibility that this treatment could increase the CVD risk 

of an already higher-risk population by increasing LDL-c levels. This has led to 

reluctance on the part of some clinicians to prescribe tocilizumab, especially in 

those with a history of hyperlipidaemia or pre-existing cardiovascular disease.   

The work in this thesis has generated several strands of evidence to ameliorate 

some of these concerns, particularly the following observations following IL-6 

blockade, namely: elevations of large, rather than small, LDL particles on NMR; 

reduced levels of the proatherogenic Lp(a); normalisation of LDL fractional 

catabolic rate; reduction, not elevation, in the production rate of LDL (though 

this is not reflected in serum cholesterol levels as it is overcome by the reduced 

catabolic rate that leads to a net increase in LDL-c); stability of the total 

cholesterol / HDL-c ratio; increased levels of HDL-c and small HDL particles – 

though the significance of these changes in predicting CVD risk is not as certain 

as once thought, and a matter of considerable debate. 

These findings can be added to existing evidence of IL-6 contributing to CVD risk 

from Mendelian randomisation based approaches, and epidemiological data 

showing high-sensitivity CRP as a predictor of cardiovascular disease in the non-

RA population.   Taken together, I propose that these results should support 

clinicians to be more accepting of use of IL-6 blockade as a therapeutic tool in 

RA patients who are at high risk of cardiovascular disease.   Additionally, if we 

as clinicians are able to reassure our patients that our medications are safe (or 

even reduce CVD risk) this may well increase patients’ compliance with their 

therapy and thus improve clinical outcomes.   Nevertheless, this is a conclusion 

which can be implied only indirectly from these mechanistic studies.   Trials 

using hard cardiovascular clinical outcomes are required, and such studies are 

relatively lacking at present but are ongoing.  Until their endpoints are achieved 
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(or not as the case may be), our mechanism based approaches provide 

temporary relief and information to drive prescribing.    

The profound changes in lipid metabolism outlined here should also act to 

remind clinicians of the increased CVD risk that RA patients carry, and prompt us 

to conduct CVD risk assessment before and after treatment.   In addition to tight 

disease control, control of conventional risk factors remains critical.   For 

example, both RCTs and cohort studies have demonstrated that RA patients 

derive similar reductions in serum LDL-c to non-RA subjects from commencing 

statin therapy (294, 295).   In a separate population-based longitudinal study, 

cessation of statin therapy in RA patients was associated with a 60% increase in 

cardiovascular death, also in a manner similar to that observed in the non-RA 

population (296).    

On a personal note, I believe that the clinical significance of the questions which 

prompted these studies, and the results gained from them, should also prompt 

clinicians to encourage enrolment of our patients into clinical trials or biologics 

registries as a way of improving the care we provide.   My experience of KALIBRA 

was that, at the end of the study, the feedback I received from participants 

about their experience was almost universally positive.   This was despite a fairly 

arduous protocol which demanded significant amounts of time and effort from 

participants.   Common themes of feedback included being able to “give 

something back” to the health service that has assisted them so far; the 

perception that they were receiving closer attention and more personalised and 

precise care as study participants (helped in part, no doubt, by being provided 

with the business card and mobile phone number of a rheumatology registrar); a 

sense of “getting some control back” over their disease, and taking an positive, 

pro-active role in their own treatment; and the knowledge that their effort 

would improve treatment for future patients with RA – which generally still 

included themselves, given the chronic nature of the disease . 

5.3 Avenues for future study 

Whilst the results in this thesis have progressed our understanding of the lipid 

paradox in RA, much of this complex area of biology remains unclear.   I suggest 
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there are a number of ways in which this research could be successfully taken 

forward in the future. 

NMR analysis, as performed in MEASURE, offers an opportunity for detailed 

analysis of lipid profiles.   NMR data, with some clinical data, is currently 

available for the OPTION study, a large phase III RCT of 623 RA patients 

randomised to tocilizumab 8mg/kg, tocilizumab 4mg/kg, or placebo for 24 

weeks.   This would offer the chance to replicate the findings of MEASURE in a 

larger cohort.   Similar analysis may also be available on other RA cohorts, 

including TaSER.   TaSER provides a change to compare and contrast lipid 

profiles with the tocilizumab cohorts, as its patients had lower average disease 

activity, much shorter duration of disease, were almost exclusively treatment 

naive at enrolment, and were treated largely with conventional DMARDS.   The 

nature of the “treat-to-target” strategy in TaSER also differentiates this from 

the less aggressive treatment protocols of OPTION and MEASURE, and reflects 

modern best practice in early RA.   NMR would therefore be useful both from a 

mechanistic perspective (helping us untangle which lipid changes are reflective 

of “disease control” generally rather than IL-6 blockade specifically) but also in 

terms of informing clinicians on the effects of the current gold-standard 

treatment for early RA.   Lipid changes in TaSER could also be examined for their 

relationships with the detailed clinical assessments available for all patients at 

each timepoint.   As TaSER contains ultrasound and radiographic changes as 

endpoints, we can also evaluate GlycA’s performance in predicting disease 

progression and radiological response, and compare its utility as a biomarker 

with that of CRP and ESR. 

As alluded to above, assessment of cardiovascular outcomes in patients receiving 

tocilizumab therapy remains a priority.   In Glasgow we have increasing numbers 

of patients using tocilizumab but at present no way of accessing data from them 

on a city-wide basis.   In any case, it is unlikely that we would be able to have 

enough patients on the drug to generate a cohort large enough to successfully 

examine CVD event rates, though using surrogates such as CIMT or presence of 

plaque or coronary artery calcification may be easier.   Even here, however, 

reliable outcomes are far from guaranteed; assessment of arterial stiffness by 

quantification of pulse wave velocity was a secondary outcome of MEASURE, but 

technical difficulties precluded a successful analysis.[MCINNES2013]   Two, 
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perhaps more profitable, avenues are currently available.   The first is the 

British Society for Rheumatology Biologic Registers (BSRBR), a series of 

prospective cohorts to which patients commencing biologic drugs are recruited 

from across the UK.   The RA register has been interrogated previously for 

cardiovascular outcomes following anti-TNF therapy (as discussed in chapter 1) 

and may provide a fertile source of investigation for patients receiving 

tocilizumab.   The second involves accessing national health databases for 

information on RA patients with cardiovascular outcomes.   The service for 

accessing secondary care patient data in Scotland is provided by the Farr 

Institute Scotland.   This allows access to anonymised clinical data through a 

secure system known as a “Safe Haven”, one of which is hosted by NHS GGC.   

Hosted data includes the Scottish Morbidity Record, a combination of national 

datasets derived from inpatient and outpatient hospital consultations since 1997.   

A similar system for general practice, known as SPIRE (Scottish Primary Care 

Information Resource) is currently under development.   Either of these routes 

may conceivably be used to assess CVD events associated with tocilizumab, with 

or without accessory data on lipid levels. 

Beyond KALIBRA, only one other published study has evaluated LDL kinetics in RA 

patients (273).   Performing a similar study on alternative therapies for RA (e.g. 

anti-TNF, or conventional DMARDS) may shed light on the different mechanisms 

underlying lipid changes in specific therapies.   However, as should be apparent 

from chapter 3 of this thesis, kinetic studies are difficult to perform, and a fresh 

kinetic study on other RA therapeutics seems less appealing because (a) LDL 

changes are much less pronounced, and so statistically significant data will be 

harder to obtain, and (b) both methotrexate and anti-TNF agents have proven 

CVD benefits, and so less clinical concern over potential elevations in LDL-c.   I 

do, however, have access to the remainder of the kinetic data from KALIBRA 

which has not been looked at in detail, specifically the kinetics of VLDL and IDL, 

and some data on the behaviour of HDL.   Analysis of this data may shed further 

light on the mechanisms underscoring altered LDL metabolism.   In addition, the 

presence of the only pre-menopausal female participant in KALIBRA as an 

apparent outlier in regards to the relationship between lipid changes and disease 

control raises the intriguing possibility that this subset of patients may exhibit 

significantly different lipidaemic responses to IL-6 inhibition.   This in turn may 
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have implications for cardiovascular risk, and indeed for prescribing decisions in 

these patients.   As we enter the era of “personalised medicine”, evaluating this 

phenomenon could be critical for ensuring the most appropriate treatment for 

each patient. 

As discussed extensively in chapter 4, I am uncertain of how robust my findings 

regarding macrophage lipid uptake are.   Further attempts at replication, 

perhaps using alternative methods of macrophage generation, would seem 

reasonable.   One technique that I was unable to properly perform was the 

examination of gene expression in monocytes or HMDM isolated from RA patients 

pre- and post-tocilizumab.   Given the possibility of the liver being a target 

organ in IL-6 induced dyslipidaemia, similar work on gene expression could also 

be performed on hepatocytes (for example the hep-G2 cell line) as has been 

done in one published manuscript previously.   The above techniques require cell 

culture with an accompanying number of variables; a less precise, but more 

straightforward, alternative would be to perform a whole-blood transcriptomic 

analysis using a technique such as the PAXGene tube.   This technique causes 

leukocyte lysis and RNA stabilisation at the point of phlebotomy, potentially 

allowing for more robust transcriptome data at the cost of reduced information 

on the specific cell lineages being affected.   PAXGene samples may be used in a 

“hypothesis-generating” manner through microarray analysis (e.g. Affimetrix), 

but also permit hypothesis testing by analysing pre-chosen genes of interest as in 

my experiments on TLDA plates. 

 Undertaking this PhD has been an enormous challenge, but a very rewarding 

one, and I consider it a privilege to have been a clinical research fellow in a time 

of such exciting discovery in our discipline.   I sincerely hope that my findings 

are not just of academic interest to researchers in the field, but become 

relevant to both patients and physicians as together we strive to improve all 

aspects of our patient care.   I firmly believe that the experience I have gained 

over these years in trial design, data analysis, and translational research are 

valuable ones which will shape me as I go forward in my career as a 

rheumatologist, and that my collaborations with other clinicians and scientists 

will equip me to perform such research more effectively in the future. 
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Appendix A – Abbreviations 

ACR  American College of Rheumatology 

ACPA  Anti-Citrullinated Protein Antibody 

AUC  Area under the curve  

CCP  Cyclic citrullinated peptide 

CDAI  Clinical Disease Activity Index 

CETP  Cholesterol Ester Transfer Protein 

CRP  C-reactive protein 

DAS28  28 joint Disease Activity Score 

DMARD Disease Modifying Anti-Rheumatic Drug 

ESR  Erythrocyte sedimentation rate 

EULAR  European League Against Rheumatism 

FBC  Full blood count 

GM-CSF Granulocyte-macrophage colony stimulating factor 

HCQ  Hydroxychloroquine 

HDL  High-density lipoprotein 

HDL-c  High-density lipoprotein cholesterol 

HMDM  Human monocyte-derived macrophages 

HPL  Hepatic lipase 

IL-6  Interleukin 6 

LCAT  Lecithin-cholesterol acetyltransferase 

LDL  Low-density lipoprotein 

LDL-c  Low-density lipoprotein cholesterol 

LDL-CE Low-density lipoprotein cholesterol ester 

LFT  Liver function tests 

LPL  Lipoprotein lipase 

MTX  Methotrexate 

NHSGGC NHS Greater Glasgow and Clyde 

OA  Osteoarthritis 

ORO  Oil-red O stain 

oxLDL  Oxidised low-density lipoprotein 

PBMC  Peripheral blood mononuclear cells 

PCSK9  Proprotein convertase subtilisin/kexin type 9 

RA  Rheumatoid arthritis 

RF  Rheumatoid factor 

ROC  Receiver-Operating Characteristics 

RPMI  Roswell Park Memorial Institute medium 

SSZ  Sulfasalazine 

SDAI  Simplified Disease Activity Index  

SNP  Single nucleotide polymorphism 

TNF-α  Tumour Necrosis Factor-α 

U&E  Urea and electrolytes 

ULN  Upper limit of normal 

VLDL  Very low-density lipoprotein
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Appendix B – Poster presentation of lipid changes in the TaSER study 
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Appendix C – KALIBRA recruitment poster 
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Appendix D – KALIBRA patient information leaflet 
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Appendix E – KALIBRA patient consent form 
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Appendix F – Kinetic overview of apoB-
containing lipoproteins 
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Appendix G – LDL kinetic graph of subject 
KAL004  
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Appendix H – Genes studied in TLDA analysis 

Gene Symbol Protein Symbol Protein name 

Lipoprotein and scavenger receptors 

LDLR LDLr Low-density lipoprotein receptor 

VLDLR VLDLr Very low-density lipoprotein receptor 

LRP1 LRP-1 LDL-receptor related protein 1 

LRP2 LRP-2 LDL-receptor related protein 2 

LRPAP1 LRPAP LRP-associated protein 

SCARA1 

 

SR-A1 (MSR1) 

 

Scavenger receptor A1  

(Macrophage scavenger receptor) 

SCARA2 

 

MARCO 

 

Macrophage receptor with collagenous 

structure 

SCARA3 SR-A3 Scavenger receptor A3 

COLEC12 SR-A4 Scavenger receptor A4 

SCARA5 SR-A5 Scavenger receptor A5 

SCARB1 SR-B1 Scavenger receptor B1 

SCARB2 SR-B2 Scavenger receptor B2 

SCARB3 CD36 Cluster of differentiation 36 

OLR1 LOX-1 Lectin-type oxidised LDL receptor 1 

CD68 CD68 Cluster of differentiation 68 

Cholesterol efflux proteins 

ABCA1 ABCA1 ATP-binding cassette A1 

ABCA2 ABCA2 ATP-binding cassette A2 

ABCA7 ABCA7 ATP-binding cassette A7 

ABCG1 ABCG1 ATP-binding cassette G1 

Intracellular proteins 

NR1H3 LXRα Liver X receptor α 

NR1H2 LXRβ Liver X receptor β 

FOXO1 FoxO1 Forkhead box O1 

FOXO3a FoxO3a Forkhead box 03a 

FOXO4 FoxO4 Forkhead box 04 

PPARA PPARα Peroxisome proliferation activating receptor α 

PPARD PPARδ Peroxisome proliferation activating receptor δ 

PPARG PPARγ Peroxisome proliferation activating receptor β 

SREBF1 SREBP1 Sterol regulatory element binding protein 1 

SREBF2 SREBP2 Sterol regulatory element binding protein 2 

SCAP SCAP SREBP cleavage activation protein 

HMGCR HMGCOaR HMG-coenzyme A reductase 

SOCS3 SOCS Suppressor of cytokine signalling 3 

GAPDH GAPDH Glyceraldehyde 3-phosphate dehydrogenase 

 


