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Abstract 
 

In the UK, dietary fibre intake is below the recommended level of 30 g/day. The 

manipulation of behavioural change is challenging, hence finding alternative ways to 

improve diet is important. The development of functional foods such as bread with added 

functional ingredients such as β-glucan and black tea may be more feasible and acceptable 

than changing to a new eating pattern. β-Glucan and black tea are often eaten separately, 

however there may be a food-matrix interaction between starch, protein (gluten), tea 

(poly)phenols and β-glucan when added together in a bread. We hypothesise that β-glucan 

and black tea will be digested slowly and display a blunted postprandial glycaemia. Some 

undigested residues will reach the colon, where it will be metabolised to short chain fatty 

acids (SCFA). SCFA, particularly propionate, have the potential to increase satiety by 

stimulating G protein receptors, however the effects on food intake need to be tested.  

This project described: i) development of a functional bread containing black tea, BT; β-

glucan, βG; β-Glucan and black tea, βGBT) and compare it to normal white bread (WB) 

(study 1); ii) determination of bread palatability, perceived satiety and subsequent energy 

intake following ingestion (study 2); iii) determination of postprandial glucose and insulin 

responses, and appetite hormones (CCK, PYY and GLP-1) among healthy volunteers 

(study 3 – in vivo study).  

In study 1, the breads were developed and tested for starch functionality, antioxidant 

potential and in vitro fermentability mimicking human colonic fermentation. βG and βGBT 

breads reduced early (10-min) in vitro starch hydrolysis and this could be due to action of 

β-glucan that ‘protected’ some of the starch granules (microscopic study) against 

amylolysis. Digestion with α-amylase increased antioxidant potential and total 

(poly)phenols content of BT and βGBT breads compared with WB. In vitro propionate 

concentration did not increase significantly when fermented with β-glucan. High inter-

individual variation was observed for individual SCFA production. The addition of black 

tea had no apparent effect on SCFA production.  

Study 2 is a randomised, crossover study design conducted in healthy volunteers. Breads 
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were given as breakfast and perceived satiety (perceived fullness, hunger, satiety, desire to 

eat and prospective food intake) was measured postprandially for 3 h. Ad libitum lunch was 

given after 3 h and energy intake estimated. BT bread was the most acceptable among all 

breads. βG and βGBT breads showed adverse taste, texture and palatability but showed 

similar overall acceptability as WB and BT breads. Female subjects showed lower 

preference for taste, texture and palatability of βG and βGBT compared with WB. βG and 

βGBT had positive effects on perceived satiety as follows: 1) decreased hunger; 2) 

increased fullness; and 3) decreased desire to eat. However, eating βG and βGBT at 

breakfast did not reduce energy intake at lunch compared with WB.  

Study 3 was similar to study 2. Only βG bread showed significantly lower glucose 

TAUC0-180 min compared with BT and βGBT but has no apparent effect on insulin response. 

No significant changes were observed for CCK and GLP-1 responses for all breads. 

However, βG and βGBT showed lower PYY TAUC0-180 min compared with BT. In vitro 

starch hydrolysis did not correlate with in vivo postprandial glycaemic responses.  

In conclusion, these studies suggest that breads with β-glucan and/or black tea have 

positive effects on perceived satiety in vivo and show good overall acceptability. However, 

there is no clear evidence that they affect appetite regulation. Breads containing 7 g β-

glucan per 50 g of available carbohydrate reduced in vivo glucose response without 

altering insulin responses. There was no additional effect of adding black tea together with 

β-glucan to bread on the in vivo postprandial glycaemic response. It is too early to 

generalise the results from in vitro batch fermentation and starch hydrolysis and this needs 

to be considered when planning future dietary interventions looking at both in vitro and in 

vivo studies. Overall this study concluded that adding soluble dietary fibre to bread is 

feasible in controlling glycaemic responses and may help increase daily dietary fibre 

intake.  



   

   

  3 

             

1 iChapter 1: Introduction 
 

Once considered a ‘disease’ of the affluent society, overweight and obesity are now on the 

rise in low and middle-income countries, particularly in urban settings. In developing 

countries with emerging economies, the rate of increase in childhood overweight and 

obesity has been more than 30% higher than that of developed countries (WHO, 2015a). 

Obesity is a global problem, with more than 1.9 billion adults over the age of 18 years old 

being overweight and 600 million of these obese in 2014 (WHO, 2015b). Obesity is a 

major risk factor for developing chronic diseases such as cardiovascular diseases (heart 

disease and stroke), diabetes, musculoskeletal disorders (eg. osteoarthritis) and certain 

cancers (endometrial, breast and colon) (WHO, 2015c). 

Obesity is preventable. Obesity prevention is largely dependent on a supportive 

environment and communities to shape individual choice, promoting healthier food choice 

and regular physical activity by making these easily accessible, available and affordable 

(WHO, 2016a). Behavioural changes are the single most important strategy for obesity 

prevention, i.e limiting high energy dense foods, increasing fruit and vegetable intake, 

including legumes, wholegrains and nuts in the diet and engaging in regular physical 

activity. In addition, policy makers and food industries could play a significant role in 

combating obesity through promoting healthy diets by ensuring that healthy and nutritious 

choices are available and affordable to all consumers.  

A recent recommendation by the World Health Organization (WHO) and Food and 

Agriculture Organization (FAO) delineated a minimum of 400 - 500 g of fruits and 

vegetables per day for the prevention of non-communicable diseases including heart 

disease, cancer, diabetes and obesity (Rimm et al., 1996; Liu et al., 2000; Joshipura et al., 

1999; WHO, 2016b). Fruits and vegetables are rich in vitamins, minerals, dietary fibres 

and also contain signficant amounts of (poly)phenols. Recent in vivo and in vitro 

investigations have shown that (poly)phenols improved blood pressure (Rodrigo et al., 

2012), improved cardiovascular risk factors (Nicholson et al., 2008, Perez-Jimenez and 

Saura-Calixto, 2008, Andriantsitohaina et al., 2012) and reduced diabetes risk (Williamson 
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et al., 2012). However, the presence of (poly)phenols in fruits and vegetables is mostly 

associated with the plant cell walls and may be bound within the food matrix limiting their 

bioavailability (Goñi et al., 2009). Hence, it is difficult to interpret the possible protective 

effects of fruits and vegetables from epidemiological studies. Studying the interactions of 

functional ingredients from dietary fibre isolates (e.g. β-glucan concentrate) and 

(poly)phenol-rich beverage (e.g. black tea) in a food matrix and their actions on human 

health could partly answer this question. Tea (Camellia sinensis) is one of the most popular 

drinks and a major source of (poly)phenols in the UK diet (Yahya et al., 2015). Black tea 

contains significant amounts of glycosylated flavonoids, typically 30-40% of the dry mass 

of black tea infusion (Kuhnert, 2010). Tea (poly)phenols are present freely in tea infusion 

and have been used in a variety of bakery products including bread, biscuit and cake 

(Pasrija et al., 2015; Lu et al., 2010; Sharma and Zhou, 2011). The combination of these 

two ingredients is the basis of the studies described in this thesis. 

In the UK, a minimum of 30 g of dietary fibre a day is recommended for adults (SACN, 

2015). Dietary fibre intake among Western countries is generally less than adequate for the 

prevention of major non-communicable diseases (Marlett et al., 2002). One feasible way to 

increase dietary fibre intake is by incorporating fibre into foods and ready meals. Dietary 

fibres can be used in a variety of food matrices such as bakery products, beverages, pasta 

and noodles, breakfast cereal and beverages. Hence, the development of palatable foods 

containing functional ingredients (eg. β-glucan concentrate) is one of the options to 

increase dietary fibre intake in the general population.   

The European Food Safety Authority (ESFA) approved a health claim in which 4 g of β-

glucan per 30 g available carbohydrate from either oats or barley is recommended to 

reduce the glycaemic response without disproportionally increasing postprandial 

insulinaemia (Agostoni et al., 2011). β-Glucan is a soluble viscous dietary fibre and has 

mixed β-(1 to 3) and β-(1 to 4) linkages. In vitro studies showed how bread with added 

functional viscous fibres (guar gum) reduced starch hydrolysis by forming a ‘physical 

barrier’ to starch-alpha-amylase interactions (Brennan et al., 1996). Ekstrom et al. showed 

a correlation between in vitro starch hydrolysis and glycaemic and insulinaemic responses 
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after guar gum supplementation in an acute human study (Ekstrom et al., 2013). The 

addition of β-glucan to muesli, cookies and breads reduced post-prandial glycaemic and 

insulinaemic responses in humans (Granfeldt et al., 2008; Casiraghi et al., 2006; Juntunen 

et al., 2002). Hence, β-glucan can be used as an active ingredient in formulating products 

aimed at reducing postprandial blood glucose. 

Bread is the most popular starchy food in Europe (Bakers, 2014). In addition, breads have 

been used as a model to study food matrix interactions (Juntunen et al., 2002; Juntunen et 

al., 2003). Food constituents can interact in several ways when cooked together in a 

product such as bread and these interactions may become more complex and influence 

other components during food processing. Gluten and starch in bread are directly 

influenced by different stages of bread making (mixing ingredients, proofing and baking) 

(Rosell, 2011). The preparation of bread with onion skin (polyphenols-rich) dose-

dependently (0.1 to 0.5%) increased in vitro antioxidant activity compared with control 

bread without onion skin (Gawlik-Dziki et al., 2013). Preparation of breads with whole-

kernel and endosperm rye bread showed reduced starch hydrolysis compared with white 

bread (Juntunen et al., 2002; Juntunen et al., 2003). 

The addition of dietary fibre and (poly)phenols may cause conformational changes in the 

gluten network in bread (Sivam et al., 2013). Gluten possessed hydrophilic characteristics 

when added with fruit (poly)phenols and dietary fibre (apple pectin) by forming hydrogen 

bonds with water, (poly)phenols and starch. Hence, the addition of apple pectin and 

(poly)phenol extracts in dough development and bread baking, directly influenced the 

cross-linking of gluten polymers, which could lead to greater water holding and softer 

bread (Sivam et al., 2011). These changes will affect the texture, visual appeal and 

palatability of the final products (Yuan et al., 2014). It is a challenge to develop a good 

product with the addition of functional ingredients, as there must be a balance between 

product acceptability and the amount required for any health benefits (Hall et al., 2010). 

Jenkins et al. measured the palatability of high fibre diets (β-glucan) in order to identify 

whether their dietary approaches were feasible for the general population (Jenkins et al., 

2002). Palatability of high fibre β-glucan diets was comparable to that of white bread, 
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measured on a 6-point scale (-3 being dislike extremely, 0 being neutral and +3 being like 

extremely). In bread, Ellis et al. demonstrated that the addition of guar gum at 5.0 g/100 g 

is the upper limit before the products become unacceptable (Ellis et al., 2001). Hence, it is 

important to investigate the product’s pleasantness to ensure any health benefits after 

consuming the products, as if they are not acceptable they will not be eaten.  

1.1 Food matrix interactions of dietary fibre, (poly)phenols and macronutrients 

β-Glucan and (poly)phenols have shown multiple health benefits in in vitro and in vivo 

studies.  However, there is a dearth of studies available on the effects of having these two 

functional ingredients together. There may be additive or synergistic effects on health 

benefits when these two ingredients are combined in functional foods such as bread.  

1.1.1 (Poly)phenols-dietary fibre interaction  

(Poly)phenols may be closely associated with dietary fibre within the same food matrix 

like in fruits, vegetables and cereals. (Poly)phenol generally accumlate in with in the intra-

cellular matrix (central vacuoles of guard cells and epidermal cells) within the plant cell. In 

beverages (coffee, cocoa, tea, beer and wine), (poly)phenols accounted for 3 to 63% of 

soluble dietary fibre and 1 to 51% in insoluble dietary fibre (Goñi et al., 2009). However, it 

must be noted that these beverages contain very little fibre when compared with fruits and 

vegetables. In wine, almost 30-60% of (poly)phenols are located within dietary fibre (Diaz-

Rubio and Saura-Calixto, 2011). These researchers were the first to coin the term ‘the wine 

(poly)phenols gap’ because a significant amount of (poly)phenols-linked to dietary fibre 

(soluble) may pass undigested in the small intestine and reach the colon. Dietary fibre-

(poly)phenols complex may have bigger impact on health benefits than having 

(poly)phenols or dietary fibre alone. In chapati (an Indian flat bread), treatment with 

amylase significantly increased the free phenolics, namely genistic, caffeic and syringic 

acids and also soluble dietary fibre suggesting the presence of phenolics bound to dietary 

fibre (Hemalatha et al., 2012). 

Specific (poly)phenol adsorption to β-glucan has been studied using in vitro systems 

(Simonsen et al., 2009). This study aimed to investigate the possible interactions between 
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vanillin-related (poly)phenols (as flavor) and β-glucan. This combination may have 

implications for flavour retention and release when added in a food system. Moreover, this 

matrix may also be metabolised differently in the gastrointestinal (GI) tract when 

consumed. Simonsen et al. showed β-glucan purified from two sources, namely Glucagel 

(barley) and PromOat (oat) had similar ability to form complexes with (poly)phenols 

(Simosen et al., 2009). In this system, an ultrafiltration technique was applied to 

investigate the adsorption capacities of (poly)phenols into β-glucan defined as moles of 

(poly)phenols adsorbed by 1 mol of β-glucan. After ultrafiltration, unbound (poly)phenols 

passed through the membrane as filtrate, whilst β-glucan-(poly)phenol complex was 

retained on the membrane (Wang et al., 2013). Epigallocatechin gallate (EGCG) showed 

higher adsorption capacities into β-glucan and the adsorption of epicatechin gallate (ECG) 

was higher than aglycone epicatechin (EC). This suggests that galloylation of catechins 

increased adsorption capacities of flavan-3-ols (Wang et al., 2013). The presence of strong 

hydrogen bonding governed the interactions between EGCG and β-glucan (Wu et al., 

2011). Although the method employed in this system mimics physiological condition 

(37°C, pH 7), it does not take into consideration the dynamics of pH and enzymic changes 

in the GI tract (from stomach to colon). The extent to how this adsorption affects human 

health is unknown and warrants further in vitro and in vivo study. 

The presence of three hydroxyl groups on the galloyl moiety is important for hydrogen 

bonding, and the presence of aromatic rings is important for hydrophobic interactions 

(Tang et al., 2003). By employing thin layer chromatography, Tang et al. suggested that 

these interactions are particularly important in gallotannin-cellulose interactions. Cellulose 

is built up with β-1,4 glucosidic bonds similar to the β-glucan bond configuration. The 

galloyl groups serve as a functional group and the strength of interaction is dependent on 

molecular size, the galloyl groups and hydrophobicity of (poly)phenols. Simonsen et al. 

demonstrated (poly)phenol aglycones (4′-hydroxy-3′-methoxyacetophenone, 3,5-

dimethoxy-4-hydroxybenzaldehyde, 3,5-dimethoxy-4-hydroxybenzoic acid, and ethyl 4-

hydroxy-3-methoxybenzoate) were adsorbed more to the β-glucan molecule than their 

glucoside molecules (Simonsen et al., 2009). These aglycones have a smaller molecular 

weight, and therefore showed higher water solubility, which would increase interactions 
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with β-glucan. Further enzymic treatment of (poly)phenol-β-glucan complex with β-

glucanase released some of the intact fibres which moved freely in solution. Another study 

showed in combination of β-glucan (300 mg) and 100 mg tea (poly)phenols interactions 

were governed by strong hydrogen bonds (Wu et al., 2011). The studies discussed above 

were based on an in vitro system and the conditions did not mimic the human GI tract.  

Further study is required to determine the impact of these interactions in vivo. 

1.1.2 Interaction of (poly)phenols, dietary fibre and macronutrients 

To date, there are few existing studies investigating the food matrix interactions of added 

(poly)phenols and dietary fibres in prepared foods such as bread and in food development 

processes (dough or pasting) (Barros et al., 2012; Sivam et al., 2013; Whistler et al., 1998). 

Studying these interactions requires sophisticated techniques such as fluorescence 

emission, UV-vis adsorption, circular dichroism, Fourier transform infrared and mass 

spectrometry, nuclear magnetic resonance, X-ray diffraction and light scattering techniques 

(Ulrih, 2015). Moreover, the health benefits of food matrix interactions are unknown and 

this is an area of interest. In wine, 1.5 – 2.3 g/L of dietary fibre is associated with total 

(poly)phenols (35 – 60%) after strong acid hydrolysis (Saura-Calixto and Diaz-Rubio, 

2007). This might indicate that (poly)phenols associated with dietary fibre are not 

bioavailable in the small intestine and may reach the colon for bacterial fermentation. 

Saura-Calixto et al. demonstrated that grape antioxidant dietary fibre (a functional product) 

was 50% fermentable (when compared with 100% fermentability of lactulose) in an in 

vitro batch fermentation (Saura-Calixto et al., 2010). The main phenolic acids produced 

during fermentation were hydroxyphenylacetic acid, hydroxyphenylvaleric acid and 3- or 

4- hydroxyphenylpropionic acid. The same metabolites were detected in human plasma 

after supplementation of grape antioxidant dietary fibre.  

Dietary fibre may also be associated with other macromolecules such as protein and starch 

(Saura-Calixto and Diaz-Rubio, 2007). Proteins are complex molecules because of their 

secondary and tertiary structures. There is an interaction between gluten (protein) and 

starch during food processing and this plays an important role when functional ingredients 

such as soluble dietary fibre are added (Jekle et al., 2016). Zhou et al. demonstrated that 
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the addition of konjac glucomannan (a polysaccharides from konjac tuber) in wheat flour 

caused conformation changes in gluten structure (Zhou and Zhao, 2014). Native gluten is 

in α-helix form and β-sheets become a secondary structure when mixed with konjac 

glucomannan. The presence of hydroxyl (OH) from konjac glucomannan formed strong 

intermolecular hydrogen bonding which led to flexible gluten conformation and therefore 

more elastic dough. 

Amino acids are the building blocks of protein conformed of a carboxylic acid group, 

hydrogen, functional side group (R) and an amino group. These unique chemical 

characteristics allow them to interact with (poly)phenols in the following ways: 1) 

hydrophobic bond: bond between ring structure of (poly)phenols and hydrophobic sites of 

proteins (eg. proline). Higher proline content in a protein favours (poly)phenols binding 

thorough hydrophobic interactions. The presence of intermolecular hydrogen bonds 

between H of one protein and OH of another protein strengthens the interactions between 

the (poly)phenols and protein complex 2) Hydrogen bonds: interaction between H-acceptor 

sites of protein and hydroxyl (OH) group of a (poly)phenols 3) Ionic bonds: interaction 

between positively charged protein and negatively charged OH of (poly)phenols 4) London 

bonds: a weak interaction between non-polar polarisable aromatic rings of flavonoids and 

non-polar polarisable protein side chains (Bordenave et al., 2014).   

1.1.2.1 (Poly)phenols and protein interactions in a food system 

The presence of both dietary fibre and (poly)phenols in breads could cause conformational 

changes in the protein network during breadmaking. Sivam et al. proposed the enhanced 

‘Loop and Train’ model to illustrate the conformational changes in dough with added fibre 

and (poly)phenols (Sivam et al., 2013). This model proposes that at low hydration levels, 

protein-protein interactions formed with H from glutamine residues of β-spiral structures 

(loops). The ‘Train’ region is related to β-sheets of protein moiety while the ‘Loop’ with 

extended hydrated β-turns. As hydration proceeds, β-turns in adjacent β-spirals form 

interchain β-sheets and get plasticised. Further hydration leads to the formation of loop 

regions by breaking some of the H bonds between glutamine and water (Shewry et al., 

2002). At this point, the addition of (poly)phenols and fibre reduces the mobility of 
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hydrated segments because of the competition among protein, (poly)phenols and fibre for 

water (Sivam et al., 2013).  

In a food system such as bread, the addition of (poly)phenols from apple and blackcurrant 

with pectin increased intermolecular contact and binding sites for H bonding which 

resulted in the formation of extended chains (Sivam et al., 2013). The addition of apple 

pectin and (poly)phenols extracts from kiwi, blackcurrant or apple in dough development 

and bread baking, directly influenced the cross-linking of gluten polymers which could 

lead to more water holding and softer bread (Sivam et al., 2011). The type of (poly)phenols 

used may have different mechanisms in forming complexes with bread protein (gluten). 

Highly polar phenolic acids (i.e. the caffeic acid present in kiwi) are more mobile in bread 

than low polarity (poly)phenols (i.e. anthocyanins and proanthocyanins in blackcurrant and 

apple). Caffeic acid is attracted to charged components in protein and/or directly 

incorporates into the protein meshwork with less steric hindrance ( Sivam et al., 2011; Sun-

Waterhouse et al., 2009).  

1.1.2.2 (Poly)phenols and starch interactions in a food system 

(Poly)phenol interactions with starch components have been studied during pasting and 

dough formation. Barros studied the addition of different sorghum phenolic extracts (high 

molecular proanthocyanidins (PAs) vs (poly)phenol monomers) on pasting properties and 

resistant starch (RS) (Barros et al., 2012). At the level of 10% (w/w) of starch basis, PAs 

increased RS level of normal starch two times compared with monomeric (poly)phenols. 

Mechanistically, smaller monomers are adsorbed into corn starch (from maize) granules 

due to large surface pores (approximately 1 µm diameter) while large PAs will be trapped 

within the pores and thus become resistant to enzymic attack compared with smaller 

monomers (Whistler et al., 1998). Debranching of the amylopectin regions further 

increases RS in normal starch and this suggests the involvement of linear starch helix in 

starch-PAs interactions (Chai et al., 2013). The addition of PAs in high amylose starch 

increased RS by 52% compared with corn starch (from maize). During heat treatment, 

amylose and PAs possessed strong hydrophobic regions, which are readily exposed and 

this could explain (poly)phenol-starch interactions. PAs form complexes with single 
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helical regions of amylose that is stabilised by hydrophobic and hydrogen bonding, hence 

resistant to enzymic action.  

Chai et al. demonstrated the formation of complexes between tea (poly)phenols and 

amylose (Chai et al., 2013). The presence of tea (poly)phenols in the complexes interrupted 

the normal process of amylose recrystallisation which leading to a low order of crystalline 

structure (more rigid structure and hence resistant to enzymic action) (Figure 1-1). Wu et 

al. showed the addition of 16% tea (poly)phenols (w/w basis) prevented starch 

retrogradation at the molecular level (Wu et al., 2011). Both the outer surface of amylose 

helices and tea (poly)phenols are rich in hydroxyl groups and hence, the hydrogen bonding 

might governed the interaction between starch and tea (poly)phenols during gelatinisation 

(Wu et al., 2011).  

 

Figure 1-1. Interaction between tea (poly)phenols (TPL) and amylose through hydrogen 
bonding (Chai et al., 2013). 

1.2 Functional foods 

The food-matrix effects of (poly)phenols with dietary fibre and other micronutrients were 

discussed in the previous section of this study. These interactions allow the development of 

specific foods that confer enhanced health benefits. In 1980, the concept of functional food 

was introduced in Japan (EUFIC, 2016a). Increasing life expectancy and expanding 

numbers of the elderly means that health costs need to be controlled, and hence promotes 

the development of specific food to improve health or reduce disease risks. In 1991, the 
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concept of Foods for Specified Health Use (FOSHU) was introduced in Japan. FOSHU 

approval is granted by the Ministry of Health, Labour and Welfare after reviewing 

comprehensive scientific data to support the food claims when they are taken as part of 

ordinary diet (EUFIC, 2016a; Japan Ministry of Health, 2016).  

In Europe, functional food is stated as “A food can be regarded as functional if it is 

satisfactorily demonstrated to affect beneficially one or more target functions in the body, 

beyond adequate nutritional effects in a way that is relevant to either an improved state of 

health and well-being and/or reduction of risk of disease” (Bellisle, 1998). Some functional 

foods are developed around particular functional ingredients such as dietary fibres, 

phytochemicals, antioxidants, prebiotics, probiotics, or plant stanols and sterols (EUFIC, 

2016a).  

The global functional food market was estimated to be £30 billion between 2004 and 2005 

(Euromonitor, 2006). Emerging and ongoing research focusing on the importance of fruits, 

vegetables and wholegrain cereals and recent research on dietary antioxidants and/or 

combinations of other ingredients have both provided the impetus for the development of 

the functional food market in Europe. According to EUFIC, socio-economic and 

demographic changes govern to the need of food with additional health benefits. There is 

concerted action between governments, researchers, health professionals and the food 

industry have to see how changes in life expectancy, improved quality of life and an 

increasing cost of health care can be managed more efficiently (EUFIC, 2016b).  

Bread is one of the most widely consumed food products in Europe with an average intake 

of 50 kg bread per person per year (Bakers, 2014). Bread is also a good target for the 

further development of functional food products and food-matrix interaction between its 

constituents during different stages of processing (Juntunen et al., 2002). The addition of 

dietary fibre to foods such as bread may be considered as a functional food when this 

imparts a function beyond the normal expected function, such as reducing cholesterol 

concentrations, reducing glucose and insulin responses (Prosky, 2000). 

In the UK, there is a traditional British malt loaf available on the market (Soreen, 2016). 
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This is called sticky malt loaf and is prepared by adding 150 mL of hot black tea and 175 g 

malt extract from barley per loaf (Figure 1-2) (BBC, 2016). However, the ingredients and 

method of preparation of this loaf is different from the preparation of normal white bread. 

This loaf appears as dark brown and is chewier when eaten than normal bread. This bread 

received an average of 5 stars from 50 online readers (BBC, 2016). Hence, this kind of 

bread offers a huge opportunity for the development of functional food with added health 

benefits. However, this loaf has a high sugar content of 22 g per portion. This would 

reduce their ability to be considered as a functional food due to current fears about sugar 

(SACN, 2015).  

                    

Figure 1-2. Traditional British sticky malt loaf from BBC Good Food (BBC, 2016).  

1.3 β-Glucan in functional foods  

The definition of dietary fibre varies between country and/or organisation. Current 

definitions of dietary from around the world are tabulated in Table 1-1 (Jones, 2014). In 

the UK, non-starch polysaccharides determined by the Englyst method was adopted for the 

dietary recommendations (Lunn and Buttriss, 2007). Non-starch polysaccharides (NSP) 

can be divided into those that beneficially regulate blood glucose (but not all NSP) and 

lipid absorption from the small intestine and the second are those becoming a substrate for 

an incomplete fermentation in the colon and have an effects in the bowel habit and referred 
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as insoluble NSP (Cummings and Stephen, 2007). Examples of soluble NSP are β-glucan, 

guar gum, gum Arabic, pectin, gum karaya and gum tragacanth while insoluble NSP as 

cellulose and chitin (Table 1-2).   

β-Glucan is a soluble dietary fibre with mixed linkage of (1→3), (1→4)-β-D-glucan 

(Nielsen et al., 2008). Oats and barley β-glucan have a dominant (1→3), (1→4)-β-D-

glucan while yeast β-glucan has a (1→3), (1→6)-β-D-glucan linkage (Table 1-3). β-

Glucan content varies between cultivar, demography and method of extraction.  Isolated β-

glucan can be produced from different extraction procedures, i.e. water extraction and 

alcohol-based enzymic extraction and different sources (barley, oats and yeast) (Cleary et 

al., 2007; Panahi et al., 2007). The quality of β-glucan is low when produced using water 

because of the high shear rate involved during processing. During this process, endogenous 

enzymes (i.e. cellulase and β-glucanase) hydrolyse β-glucan resulting in changes in the 

molecular weight and lower viscosity. In contrast, alcohol extraction does not solubilise β-

glucan, which remains intact within the cell wall. This technique preserves the molecular 

weight of β-glucan and has higher viscosity.  

The bread baking process decreased molecular weight and solubilised β-lucan while 

cooking oats as porridge increased solubilised β-glucan (Johansson et al., 2007; Åman et 

al., 2004). Brennan and Cleary demonstrated increased resistance to extension in bread 

with added 5% β-glucan concentrate when compared with control (Brennan and Cleary, 

2007). This bread showed reduced in vitro sugar release but no changes were observed in 

bread containing 2.5% β-glucan. β-Glucan has high water holding capacity and limits the 

water available for starch hydration due to competition of β-glucan for water and the 

formation of viscous β-glucan that inhibits enzyme accessibility to partially gelatinised 

starch granules.  
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 Table 1-1. Current dietary fibre definitions from around the world. Adapted from (Jones, 2014) 

 

Organisation Definition 

CODEX Alimentarius Commission 2009 (Sets International 
guidance standards for food and food imports) 

 

•Dietary fibre means carbohydrate (CHO) polymers with ten or more monomeric units1, 
which are not hydrolysed by the endogenous enzymes in the small intestine (SI) of 
humans and belong to the following categories:  
•Edible CHO polymers naturally occurring in the food as consumed  
•CHO polymers, obtained from food raw material by physical, enzymic, or chemical 
means2  
•Synthetic CHO polymers2  
1The footnote allows international authorities to decide whether those compounds with 
DP of 3–9 would be allowed.  
2 For the isolated or synthetic fibres in category ‘2’ or ‘3’, they must show a proven 
physiological benefit to health as demonstrated by generally accepted scientific 
evidence to competent authorities  
 
Includes resistant oligosaccharides, resistant starch and resistant maltodextrins when 
footnote 2 is included.  
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Health Canada (HC) 2010 (A department within the Canadian 
government responsible for national public health)  

•Dietary fibre consists of naturally occurring edible carbohydrates (DP > 2) of plant 
origin that are not digested and absorbed by the small intestine and includes accepted 
novel dietary fibres.  
•Novel dietary fibre is an ingredient manufactured to be a source of dietary fibre. It 
consists of carbohydrates (DP > 2) extracted from natural sources or synthetically 
produced that are not digested by the small intestine. It has demonstrated beneficial 
physiological effects in humans and it belongs to the following categories:  
•Has not traditionally been used for human consumption to any significant extent, or  
•Has been processed so as to modify the properties of the fibre, or has been highly 
concentrated from a plant source  
 
Includes resistant oligosaccharides, resistant starch and resistant maltodextrins.  

European Food Safety Authority (EFSA) 2009  

(The Panel on Dietetic Products, Nutrition and Allergies 
develops scientific opinions on reference values for the 
European Union) 

•Non-digestible carbohydrates plus lignin, including all carbohydrate components 
occurring in foods that are non-digestible in the human small intestine and pass into the 
large intestine  
Includes non-starch polysaccharides, resistant starch and resistant oligosaccharides.  
 

Food Standards Australia and New Zealand (FSANZ) 2001 
(Responsible for development and administration of the food 
standards code listing requirements for additives, safety, 
labeling, and genetically-modified foods) 

•Dietary fibre means that fraction of the edible part of plants or their extracts, or 
synthetic analogues that:  
•Are resistant to digestion and absorption in the, usually with complete or partial 
fermentation in the large intestine; and  
•Promotes one or more of the following beneficial physiological effects:  
i) laxation 
ii) reduction in blood cholesterol 
iii) modulation of blood glucose  
 
Includes resistant polysaccharides, oligosaccharides (DP >2) and lignins and resistant 
starches.  
 

American Association of Cereal Chemists (AACC) 2001 •The edible parts of plants or analogous CHOs’ that are resistant to digestion and 
absorption in the human small intestine, with complete or partial fermentation in the 
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(Gathers scientific and technical data for global use by grain-
industry professionals; currently known as AACCI) 

large intestine  
•Dietary fibre includes polysaccharides, oligosaccharides, lignin, and associated plant 
substances.  
•Dietary fibres promote beneficial physiological effects including laxation, and or blood 
cholesterol attenuation, and/or blood glucose attenuation.  
 
Includes resistant oligosaccharides, resistant starch and resistant maltodextrins.  

Institute of Medicine (IOM) 2001 (U.S. and Canadian advisory 
organization of the National Academy of Sciences; provides 
science- based research and evidence-based analysis to 
improve national health) 

•Dietary fibre consists of non-digestible CHOs’ and lignin that are intrinsic and intact in 
plants.  
•Functional fibre consists of isolated, non-digestible CHOs’ with beneficial 
physiological effects in humans.  
•Total fibre is the sum of dietary fibre and functional fibre.  
 
Includes resistant oligosaccharides, resistant starch and resistant maltodextrins.  

NSP Non-Starch Polysaccharides  •The skeletal remains of plant cells that are resistant to digestion by enzymes of man 
measured as non α-glucan polymers measured by the Englyst (Type 2 Method).  
•It includes NSP, which is comprised of cellulose, hemicelluloses, pectin, 
arabinoxylans, β-glucan, glucomannans, plant gums and mucilages and hydrocolloids, 
all of which are principally found in the plant cell wall.  
 
Does not include oligosaccharides, resistant starch and resistant maltodextrins.  
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Table 1-2. Different types and characteristics of soluble dietary fibres  

 
Type 

         
Origin 

 
Monomer unit  

 
Type of bond  

 
Characteristics 

 
Food application 

 
Reference 

 
Guar gum 
(Indian 
cluster bean) 

 
Leguminous 
Cyamopsis 
tetragonoloba 
plant 
 

 
Galactomannan 

 
Linear chain (1→4)-β-
D-mannopyranosyl 
backbone with (1→6)-α-
D-galactopyranosyl 
branch at O-6 
 

 
 Viscous 

 
Thickener and 
emulsion stabiliser 

 
 (Goldstein et al., 
1973) 

Pectin Orange, lemon, 
grapefruit, lime 

Homogalacturonnan  (1→4)-α-D-
galacturonic acid  

Viscous Gelling, thickening, 
emulsifier 

(Kaya et al., 2014) 

 
Gum Arabic 

 
Exudate of Acacia  
senegal and 
Acacia seyal trees 
 

 
Galactose, arabinose, 
rhamnose, glucuronic 
acid 

 
(1→3)-β-D-
galactopyranosyl 
backbone with 2 to 5 
(1→3)-β-D-
galactopyranosyl join to 
the main backbone by 
(1→6) linkage  

 
Non-viscous gum 

 
Stabiliser, emulsifier, 
thickening 

 
(Ali et al., 2009) 

Gum karaya Sterculia species Galacturonic acid, 
rhamnose 

(1→4)-β-D-galactose 
backbone with (1→2)-β-
D-galactose branch or 
by  (1→3)-β-D-
glucuronic 
acid to the galacturonic 
acid of the main chain 
 

Viscous  solution Stabilising low pH 
emulsion (sauces and 
dressings) 

(Verbeken et al., 2003) 

Gum 
tragacanth 

Astragalus 
species 

Galacturonic acid, 
galactose, arabinose, 
xylose, fucose, 

(1→4)-α-D-galactose 
backbone with (1→3)-β-
D-xylose sidechain with 

Viscous solution 
even at low 
concentration, 

Sauces and dressings, 
shiny and clear 
appearance on fruit-

(Verbeken et al., 2003) 
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rhamnose attached chains of 
(1→2)-α-L-fucose, 
(1→2)-β-D-galactose 
 

acid resistant based bakery products 

Pullulan Fermentation 
product of yeast 
Aerobasidium 
pullulans 

3 glucose units  (1→4)-α-D-glucose 
backbone and branch at 
(1→6)-α-D-glucose at 
terminal glucose 

Viscous, film 
forming 

Gelatine-free capsule, 
tablets for dietary 
supplements, film for 
breath freshers 

(Anton et al., 2014) 
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 Table 1-3. Different types and characteristics of β-glucan 

 
Type 

 
Origin 

 
MW (x 
106) (Da) 
 

 
Purity 

 
Bond 

 
Reference 

 
Barley β-
glucan 

 
Hull-less barley 
grain (Hordeum 
vulgare) 
 

 
0.191  

 
80% 

 
β-(1,3)- and  
β-(1,4)-
glucosidic  

 
(DKSH, 2016) 

Oat β-glucan 
 

Oat bran (Avena 
sativa) 

1.12  33% β-(1,3)- and  
β-(1,4)-
glucosidic 

(Tate and 
Lyle, 2016) 

Yeast β-
glucan 

Baker’s yeast  
(Saccharomyces 
cerevisiae) 

0.1 to 0.2   50-65% β-(1,3)- and  
β-(1,6)-
glucosidic 

(Borchani et 
al., 2016) 

Laminarin  Brown 
microalgae 
(Laminaria 
digitata) 

< 0.01 – 
0.06 

10 – 
98% 

β-(1,3)- and  
β-(1,6)-
glucosidic 

(Custodio et 
al., 2016) 
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1.4 Physiological effects of soluble viscous fibres in the upper gut  

Epidemiology studies have shown a protective effect of dietary fibre against obesity, 

diabetes, cancers and cardiovascular diseases (CVDs) (Table 1-4). In a large multicentre 

prospective study from eight European countries (Denmark, France, Germany, Italy, the 

Netherlands, Spain, Sweden and the UK), total dietary fibre intake (>26 g/day) was 

associated with lower T2DM risk than the lowest quartile of total dietary fibre intake (< 19 

g/day) (Kuijsten et al., 2015). In a large UK Women’s Cohort Study, greater NSP intake 

had no additional benefits on CVD mortality but may lower fatal risks associated with 

stroke among overweight women (Threapleton et al., 2013a). An intake of 7 g/d of total 

dietary fibre was associated with an overall decrease of 7% in stroke risk (Threapleton et 

al., 2013b).  

In the National Institute of Health (NIH)-AARP Diet and Health Study, whole grain and 

not total dietary fibre was associated with renal cell carcinoma and colorectal cancers 

(Daniel et al., 2013; Schatzskin et al., 2007). A systematic review showed 10 g of total 

dietary fibre reduced the risk for colorectal cancer in 16 studies (RR = 0.90, 95% CI 0.86 

to 0.94) (Aune et al., 2011). Another study found total dietary fibre reduced the risk of 

head and neck cancer but only in women (Lam et al., 2011). However, not all studies 

showed a favorable relationship between dietary fibre intake and cancer. A recent systemic 

review found a null relationship between whole grain and cancers (e.g. lymphoma and 

prostate) in 14 out of 20 studies (Makarem et al., 2016). Six studies showed negative 

associations between whole grain intake and colorectal cancer. The null association 

between whole grain and cancers might be attributed to factors such as differences in the 

whole grain definitions, variations in the method of dietary fibre intake measurement (24-

hour diet recall vs food frequency questionnaire) and lack of adjustment of cancer risks 

(e.g. body mass index, family history of cancer, physical activity and intake of red and 

processed meat).  

There have been many in vitro and in vivo studies exploring the mechanisms by which 

dietary fibres act physiologically. Insoluble fibre has different effects to soluble fibre. An 

in-vivo study (in pigs) demonstrated lower digestibility of insoluble dietary fibre (e.g. oat 
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bran) in the intestine and increased faecal bulk compared with oat flour (Knudsen et al., 

1993). In rats, supplementation with soluble fibre (70 g guar gum and xanthan gum) 

increased stomach and small intestinal content viscosity when compared with wheat bran 

(Cameron-Smith et al., 1994). These soluble fibres showed blunted postprandial glycaemic 

responses at 15 and 30 min when compared with wheat bran. Soluble fibres such as β-

glucan are highly fermented by colonic microbiota and lead to the production of short 

chain fatty acids (SCFA) such as acetate, propionate and butyrate, which may be another 

route for their effects on postprandial glucose, liver metabolism satiety and colonic health.  

As discussed in Section 1.4, there are different types of soluble dietary fibre, each of them 

possesses unique characteristics and some may also share similar characteristics (eg. 

viscous, soluble in water). There are several mechanisms by which soluble fibres may 

affect the rate of digestion and absorption of dietary carbohydrate (Englyst and Englyst, 

2005) (Figure 1-3). These include the chemical characteristics (e.g. viscous and non-

viscous), food-matrix (e.g. liquid, semi-solid and solid), and macronutrient composition 

(e.g. isocaloric or isovolumetric). In this context, viscosity plays an important role in 

delivering the health benefits of soluble β-glucan. The glucose and cholesterol-lowering 

properties of β-glucan are highly dependent on their amount and molecular weight being 

solubilised in the gastrointestinal tract (Wang and Ellis, 2014). 
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Table 1-4. Association between total dietary fibre (or whole grain) intakes and chronic diseases (T2DM, cancers and CVDs). 

 

 

 

 

 

 

 

 

 

 

HR, Hazard ratio; RR, relative risk; CI, Confidence interval; T2DM, type 2 diabetes mellitus; AARP, American Association of Retired Person.

 
Study 

         
Participants (n) 

 
Follow-up 
(mean years) 

 
Outcome 

 
Reference 

 
EPIC-InterAct 

 
26, 088 (men and 
women) 

 
10.8 

 
↓ diabetes risk  
(HR 0.82; 95% CI 0.69, 0.97)  

 
(Kuijsten et al., 2015) 

National Institute of Health (NIH)-
AARP Diet and Health Study 

1,867 (men and 
women) 

11 ↓ head and neck cancer (in 
women only) 
(HR 0.77; 95% 0.64-0.93) 
 

(Lam et al., 2011) 

National Institute of Health (NIH)-
AARP Diet and Health Study 

491, 841 (men and 
women) 

9 ↓ renal cell carcinoma (whole 
grain)  
(HR 0.84; 95% CI 0.73, 0.98) 

(Daniel et al., 2013) 

National Institute of Health (NIH)-
AARP Diet and Health Study 

197, 623 (men and 
women) 

5 ↓ colorectal cancer (whole grain) 
(RR 0.79; 95% CI 0.70, 0.89) 

(Schatzkin et al., 2007) 

Swedish Mammography Cohort 
and the Cohort of Swedish Men 

69,677 (men and 
women) 

10.3 ↓ total stroke risk  
(RR 0.90; 95% CI 0.81, 0.99)  

(Larsson et al., 2014) 

UK Women’s Cohort Study 
 

27, 373 women 14.4 ↓ total stroke risk  
(HR 0.89; 95% CI 0.81, 0.99)  

(Threapleton et al., 2013a) 
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Figure 1-3. Food and non-food related factors influencing digestibility of soluble β-glucan in the gastrointestinal tract (Englyst and Englyst, 2005). 

Physico-chemical characteristics 

Gastrointestinal handling 
(rate and extent of digestion and absorption) 

Subject factors 
(e.g. biological variations) 

Food matrix 
(e.g. liquid, semi solid, solid) 

Chemical identity 
(e.g. molecular weight, bond type) 

Meal factors 
(e.g. carbohydrate, protein fat, energy 

content, energy density) 

Physiology and utilisation of 
carbohydrate for other purposes 

(e.g. colonic fermentation) Physiology and utilisation of carbohydrate for 
energy (e.g. postprandial glucose) 

Absorbed in the small intestine Absorbed in the large intestine 
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1.4.1 Effects of viscous fibres on gastric emptying 

The digestion of food begins in the mouth and the process continues in the stomach and 

small intestine. In the mouth, digestion begins with the breakdown of starch to maltose, 

maltotriose and α-limit dextrins by salivary α-amylase. Oro-sensory stimulation of food 

plays an important role in regulating energy intake. Bypassing oral stimulation (by 

nasogastric feeding) decreased satiety and increased appetite hormones (Spetter et al., 

2014). Physiologically, higher amounts and different food texture in the mouth leads to 

increased chewing and higher oral processing time, as more time is needed for enough 

saliva to be added to form a cohesive bolus for swallowing (Zijlstra et al., 2010). Increased 

oral processing time from 1 to 8 min reduced ad libitum energy intake at lunch (Wijlens et 

al., 2012). Thus, oral exposure time is as important as gastric filling (intragastrically 

infused) (8 min/100 mL and 8 min/800 mL) in reducing energy intake. Another study 

found that participants consumed more test product (chocolate custard) when the eating 

rate (g/min) was increased from 15 to 45 g/min (Zijlstra et al., 2009). This study concluded 

that manipulating oral exposure time by reducing eating rate is an important factor in food 

intake regulation. Food form (solid vs. liquid) might also have an impact on oral processing 

time. One study showed that biscuits containing 4 g of β-glucan with orange juice 

increased eating time when compared with control biscuits (without β-glucan) (Pentikäinen 

et al., 2014). 

Oral processing time may control the rate of food (bolus) delivery to the stomach. Gastric 

volumetric signals and intestinal nutritive signals from the gastrointestinal tract work in 

concert in limiting food intake (Powley and Phillips, 2004). These two negative feedbacks 

synergise in the control of feeding and both were actioned through vagal afferents. Satiety 

signals are generated from stomach by two signals: distention at high volume and nutrient 

content via mechanoreceptors and chemoreceptors in the stomach linked to the brain via 

vagal afferents to stop food intake (Deutsch, 1985).  

Theoretically, most soluble dietary fibres will increase stomach viscosity, but this does not 

necessarily mean that it will reduce stomach emptying. Different methods used to measure 

both stomach viscosity and gastric emptying makes the data interpretation difficult. 
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Measurement of stomach viscosity in human is difficult and time consuming. 

Alternatively, pigs are commonly used as a model to study stomach viscosity and gastric 

emptying with a simple gastric cannulation technique (Low et al., 1985; Rainbird, 1986; 

Rainbird and Low, 1986). Rainbird showed that guar gum supplementation significantly 

reduced stomach emptying rate at 1, 2 and 4 h, when added to a high energy meal and 

when compared to a low energy meal (Rainbird, 1986). Supplementation of high molecular 

weight guar gum significantly increased stomach viscosity in pigs and dose-dependently 

reduced glucose absorption and apparent insulin secretion (Ellis et al., 1995). However, 

guar gum supplementation as semisolid or solid meal had little effect on gastric emptying 

(Rainbird and Low, 1986; Van Nieuwenhoven et al., 2001). In a liquid meal, maximum 

viscosity was more favourable than a solid meal because of earlier and more complete 

mixing in the stomach. In addition, small intestine motor activity differs greatly between 

solid and liquid meals (V Schonfeld et al., 2001). The small intestine contracted more 

frequently after solid than liquid meals. Solid meals induced slower gastric emptying as 

opposed to liquid meals and hence had prolonged postprandial pattern.  

Studying the physico-chemical properties of dietary fibre in relation to viscosity, i.e. 

hydration properties of dietary fibre, might partly answer this question. The action of 

dietary fibre on gastric emptying is related to its ability to hydrate in the stomach and the 

differences in rates of viscosity development are important to mimic its physiological 

effects (Holt et al., 1979). Guar gum had different hydration properties at different 

temperatures (32 and 22 °C) and pH (1 and 4) (O'connor et al, 1981). This study showed 

that powdered guar gum was the most viscous at the pH and temperature similar to 

stomach conditions. Feeding oat bran flour increased stomach viscosity at 1 h compared to 

wheat flour (Johansen et al., 1996). There was a strong and positive correlation between 

viscosity and β-glucan concentration in the liquid phase of digesta (r = 0.45). An increased 

in stomach viscosity might be due to the ability of soluble β-glucan to retain more water 

within the stomach. Pentikainen et al. demonstrated that β-glucan enriched biscuits and 

juice significantly increased viscosity when measured under simulated stomach digestion 

(Pentikäinen et al., 2014).  
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In humans, Edwards et al. showed that a combination of xanthan and locust bean gum (1% 

w/v, total volume of 250 mL) reduced gastric emptying when compared with control (drink 

without xanthan and locust bean gum) (Edwards et al., 1987). This fibre mixture showed 

higher in vitro viscosity when measured at different concentrations compared with control. 

However, this mixture did not show any favourable effects on blood glucose. A further test 

was performed to mimic gastric conditions (acidification with HCl and saline) and 

duodenal secretions (reneutralisation with sodium carbonate and saline). Acidification and 

reneutralisation reduced the viscosity of the mixture (dilutional effects) and this study 

concluded that gastric emptying is not necessarily related to their effects on plasma glucose 

and insulin levels.  

Non-invasive techniques such as gamma scintigraphy and stable radioisotope could 

provide useful information on the effects of dietary fibre on gastric emptying. This method 

is considered to be the most accurate method for the estimation of gastric emptying 

(Scarpellini et al., 2013). By using sodium acetate labelled with 1-13C, Clegg et al. 

demonstrated that 4 g of agar significantly delayed gastric emptying but lacked any 

physiological effects, particularly on blood glucose (Clegg et al., 2014). Meal viscosity or 

gastric viscosity alone does not necessarily decrease gastric emptying. Gastric viscosity 

and not meal viscosity changed intragastric distribution (move backward, retropulsion) 

which in turn reduced gastric emptying rate (Guerin et al., 2001). Meals enriched with 

fibre moved from distal to proximal stomach and were consistent with the slower stomach 

emptying time. This study concluded that delayed gastric emptying was related to changes 

in intragastric distribution in the stomach. Another study showed that guar gum (9 g in 

solution) significantly reduced peak glucose response and was due to a delay in small 

intestine transit time (Blackburn et al., 1984). No effect was observed on gastric emptying 

time.  

1.4.2 Effects of viscous soluble fibres on digestion and absorption 

After digestion, nutrients are passively or actively absorbed by the enterocytes after 

crossing two diffusion barriers: the unstirred water layer external to the cell and the protein 

lipid membrane of the microvilli (Cerda et al., 1987). Nutrients are made accessible to the 
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epithelium by two mechanisms as follows: 1) intestinal contractions creates turbulence and 

convection, followed by mixing of luminal content and finally bring the nutrients from the 

centre of the lumen close to the epithelium; and 2) diffusion of nutrients across unstirred 

layer of fluid adjacent to the epithelium (Eastwood, 2003). It has been suggested that 

viscous dietary fibres inhibit the access of nutrients to the epithelium. An in vitro model 

showed that the incorporation of guar gum blunted glucose uptake produced by increasing 

the rate of contraction (using dialysis tubing) (Edwards et al., 1987). This study suggests 

that viscous guar gum inhibited convection of the luminal content in relation to mixing 

contractions and hence reduced the absorption of glucose.  

Related to a reduction in the mixing in the small intestinal contents with soluble fibre, there 

have been several studies suggesting an increase in the hypothetical unstirred water layer. 

It is the structured water layer close to the mucosal surface in the small intestine. This is 

the rate-limiting step for the solutes to diffuse across the enterocytes from the luminal bulk. 

Hence, this action retards the rate of diffusion towards and away from the surface. The 

reduce peak plasma glucose observed after guar gum ingestion was not explained by 

changes in the distribution of radio-labelled glucose drink in the small intestine, suggesting 

that the effect was not related to a reduced contact area in the small intestine (Blackburn et 

al., 1984). In another experiment using intestinal perfusion, the intestinal absorption of 

glucose was impaired during acute pectin supplementation (Flourie et al., 1984). In situ 

glucose measurement in the human jejunum showed pectin did not enhance glucose 

dependent sodium transport but significantly increased the unstirred layer thickness. The 

pectin concentration was highly correlated with unstirred layer thickness. Additionally, an 

in vitro study using perfused rat jejunal sacs showed that guar gum (0.25 and 0.50 %, w/v) 

increased the thickness of the unstirred layer of about 48% when compared with sacs 

incubated without guar gum (Johnson and Gee, 1981). Using the same dose, Cerda et al. 

showed that 0.25% and 0.5% (w/v) guar gum increased thickness of unstirred water layer 

in rabbits’ jejunal sacs (Cerda et al., 1987). In another jejunal study in rats, inclusion of β-

glucan increased the unstirred water layer compared with control (Lund et al., 1989).  

Thus, the effects of viscous fibres may be related to their ability to decrease gastric 
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emptying and delay absorption of nutrients from the small intestine’s lumen (Jenkins et al., 

1978). This may also be related to slowed transit in the small intestine.  Supplementation 

of guar gum or pectin (14.5 g in water with 50 g glucose) increased mouth-to-cecum transit 

time by 0 to 2 h and this effect was significantly correlated with the viscosity of the tested 

fibres (Jenkins et al., 1978). When hydrolysed guar gum was used no effect was observed 

on mouth-to-caecum transit time. Lembcke et al. showed that the flattening effects of guar 

gum on blood glucose were due to a delay gastric emptying (Lembcke et al., 1984).  

1.4.3 Postprandial glucose and insulin 

The food-matrix and chemical composition of soluble fibres such as β-glucan play an 

important role in the gastrointestinal handling of glucose and insulin responses (Englyst 

and Englyst, 2005). Viscosity of β-glucan is directly related to molecular weight and also 

depends on food sources (Cleary et al., 2007; Panahi et al., 2007). There were negative 

correlations between in vitro viscosity of soluble guar gum and plasma glucose responses 

(Jenkins et al., 1978; Edwards et al., 1987). Under in vitro digestion conditions, 

Pentikainen et al. showed that β-glucan dose-dependently increased gastric and small 

intestinal viscosity regardless of food matrix (solid or liquid) (Pentikäinen et al., 2014). 

This was supported by Jenkins et al., who showed that less viscous guar gum (hydrolysed) 

was ineffective in reducing postprandial glucose (Jenkins et al., 1978). As discussed in 

Section 1.4.1, the effects of viscous fibres on postprandial glucose is more likely through 

the inhibition of convection (slowing intestinal mixing) rather than inhibits glucose 

transport across the epithelium. 

Drinks prepared with different viscosities of β-glucan have different effects on glucose and 

insulin responses (Table 1-5). High viscosity β-glucan decreased glucose and insulin 

responses compared to low viscosity (Juvonen et al., 2009; Panahi et al., 2007). However, 

Wood et al. demonstrated that 79-96% of changes in plasma glucose and insulin were due 

to the viscosity of the products (Wood et al., 1994). β-Glucan is in a form of a random-coil 

polymer and viscosity arises from coil entanglement above a critical concentration and 

molecular weight. The effective responses are obtained with higher doses of low molecular 

weight or lower doses of high molecular weight β-glucan.  
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Panahi et al. demonstrated that snack bars prepared with different levels of β-glucan (1.5, 3 

and 6 g) reduced individual glucose responses, but had no effects on total AUC. The 

solubility of β-glucan was inversely related to β-glucan content in a solid snack bar (Panahi 

et al., 2014). The author hypothesise that in solid food, solubility was lower with 

increasing β-glucan content  (6 g of β-glucan) due to ‘intra’ (between β-glucan molecules) 

and ‘inter’ (with other molecules present in bar matrix) interactions in the solid bar matrix.  

Regand et al. showed high molecular weight β-glucan in a bar (6.0 g β-glucan per 60 g 

carbohydrate) had no effect on individual glucose responses but reduced total AUC when 

compared with low and medium molecular weight β-glucan bar (Regand et al, 2001).  Ellis 

et al. demonstrated that molecular weights (low and high) and particle size of guar gum 

when prepared in breads had no effect on glucose responses but were equally effective in 

reducing total insulin responses (AUC) (Ellis et al., 1991).  

β-Glucan (3.0 g) in bread containing 55 g carbohydrate reduced total insulin AUC by 9% 

compared with control bread (Vitaglione et al., 2009). The preparation of β-glucan in 

biscuits (3.5 g β-glucan in 40 g carbohydrate) reduced total AUC glucose and insulin 

responses by 52% and 23%, respectively (Casiraghi et al., 2006). However, glucose and 

insulin responses were unchanged when the same amount of β-glucan was added to 

crackers. Different processing techniques used in making biscuits and crackers led to 

differences in moisture content between the two. Cookies had lower dough moisture of 5-

10% as opposed to crackers with 10-20% and this resulted in lower starch gelatinisation in 

cookies compared with crackers. Juntunen et al. suggested that the structural and 

compositional properties of cereal grains rather than total dietary fibre alone play an 

important role in the regulation of insulin response (Juntunen et al., 2003). This can be 

partly explained by the differences in starch structure and the continuous matrix between 

the starch granules. This study showed that in rye bread, the starch granules were closely 

packed and formed a continuous matrix, while in wheat bread the starch granules were 

dispersed.  
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Table 1-5. Effect of β-glucan containing foods on postprandial glycaemia and insulin levels in healthy subjects. 

 
Study design 
 

 
Subjects, n 
(M/F) 

 
Study duration 
(h) 
 

 
Dose 

 
        Main outcomes  
 

 
Reference 

Liquid food-matrix 
 
Randomised 

 
N = 20 (4/16) 

 
3 h 

 
Low viscosity β-glucan (10 g) (<250 
mPas)  
High viscosity β-glucan (10 g) (>3000 
mPas) (shear rate: 50 s-1) 
 
Food-matrix: Beverage, 300 mL 
(isocaloric) 
 

 
x Glucose not significant 
x Insulin AUC0-180min 

significantly lower (27%) 
in high vs low viscosity (p 
= 0.007) 

 

 
(Juvonen et al., 
2009) 

Randomised, 
double  

N = 11 (5/6) 2 h  Oat A: 6 g β-glucan (high viscosity) 
(enzymic extraction) 
Oat B: 6 g β-glucan (low viscosity) 
(aqueous extraction) 
 
Food matrix: 300 mL with 75 g glucose 
(isocaloric) 
 

x ↓ glucose response (AUC) 
in Oat A (20% vs Oat B, 
17% vs control) 

x Insulin not reported 

(Panahi et al., 
2007) 

Non-
randomised 
 

N = 9 (4/5) 
N = 11 (6/5) 

3 h Study 1 (dose-response) (1.8, 3.6 and 
7.2 g β-glucan) 
Study 2 (‘hydrolysed’ experiment) (7.2 
g β-glucan hydrolysed for 15 and 60 
min) 
 
Food matrix: 500 mL with 50 g glucose 
(isocaloric) 

x Study 1:  dose-
dependently reduced 
glucose but no effect on 
AUC. Insulin not changed 

x Study 2: no significant 
changes in glucose and 
insulin responses  

(Wood et al., 1994) 
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Semi-solid food-matrix 
 
Non-
randomised, 
non blind 
 

 
N =10 (4/6) 
 

 
3 h  

 
14.5 g oat gum (78% purity, β-glucan)  
14.5 g guar gum (82% purity, 
galactomannan) 
 
Food-matrix: Gel-like pudding (500 mL 
containing 50 g glucose (isocaloric) 
 

 
x ↓ glucose response vs 

control (p < 0.05) at 20 – 
60 min in both groups 

x ↓ insulin response vs 
control (p < 0.05) at 20 – 
60 min in both groups 

 

 
(Braaten et al., 
1991) 

Randomised N = 20 (15/5) 3 h Oat bran (10.3 g)  
Oat bran and wheat bran (10.1 g)  
 
Food-matrix: Pudding (300 g) with 
water (isolcaloric) 

x Glucose not significantly 
changed 

x Insulin significantly lower 
in oat bran vs 
combination at 30, 45 and 
60 min 

(Juvonen et al., 
2011) 

Solid food-matrix 
 
Randomised, 
crossover 

 
N = 12 (not 
specified) 

 
2 h 

 
Oat or barley β-glucan at 1.5, 3 and 6 g 
 
Food –matrix: Snack bar (90 g) 
(isocaloric) 

 
x Oat: all doses reduced 

glucose (p < 0.05) but no 
change in AUC 

x Barley: 1.5 g reduced 
glucose (p < 0.05) but no 
change in AUC 

 

 
(Panahi et al., 
2014) 
 

Randomised, 
crossover 

N = 14 (7/7)  

 
3 h β-Glucan (from barley) (3 g)  

 
Food-matrix: 100 g bread (isocaloric) 

x ↓ glucose response at 30 
min vs control bread (p < 
0.05) and ↓ AUC by 10% 

x Insulin not significant 
 

(Vitaglione et al., 
2009) 

Non 
randomised, 

N = 10 (5/5) 2 h  Crackers: 3.6 g β-glucan  
 

x ↓ glucose response in 
cookies (15 and 30 min, p 

(Casiraghi et al., 
2006) 
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AUC, area under the curve. 

crossover Cookies: 3.5 g β-glucan  
 
Food-matrix: cookies (85 g) and 
crackers (95 g) 

< 0.05), ↓ AUC 52% 
x ↓ insulin response in 

cookies (30 and 45 min, p 
< 0.05), ↓ AUC 23%     

 
Non-
randomised, 
single blind 

N = 20 (10/10) 2 h  5.4 g β-glucan  
 
Food-matrix: bread (169 g) (energy 
content slightly differ) 
 

x Glucose unchanged 
x ↓ insulin response by 22% 

vs white bread 
 

(Juntunen et al., 
2002) 
 

Randomised N = 12 (6/6) 2 h  Low, medium and high molecular 
weight β-glucan (6.2 g) 
 
Food-matrix: granola bar (60 g) 
(isocaloric) 
 
 

x ↓ glucose AUC0-120min by 
19% in high vs low, 
medium and control 
group 

x Insulin not reported 

(Regand et al., 
2011) 

Randomised, 
crossover 

N = 12 (12/0) 6 h Naturally high β-glucan (5.2 g) 
containing pasta (564 g) 
β-glucan (5.0 g) enriched pasta (563 g) 
 
Food-matrix: pasta as a mixed meal with 
chicken gravy, turkey ham and butter 
(isocaloric) 
 
 

x Glucose unchanged 
x ↓ total AUC0-60min insulin 

for enriched pasta 

(Bourdon et al., 
1999) 
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Bourdon et al. prepared two different types of pasta from naturally high β-glucan content 

and flour enriched with β-glucan on glucose and insulin responses (Bourdon et al., 1999). 

The pastas were consumed as a mixed meal with chicken gravy, turkey ham and butter. 

There were no effects of having these pastas on glucose response, but there was a 

decreased total insulin response (AUC0-60min) for enriched pasta. This study suggests that 

the addition of β-glucan in a mixed meal obscured the glycaemic response due to the 

stimulation of hormone cholecystokinin (CCK). Rushakoff et al. demonstrated that CCK 

infusion did not increased glucose response after a meal, suggesting the importance of 

CCK in regulating postprandial glycaemia (Rushakoff et al., 1993). Mixed meals evoked 

higher insulin secretion when compared with a single meal (Bornet et al., 1987). 

In semi-solid food, Braaten et al. was the first to investigate the effects of purified β-glucan 

on postprandial blood glucose and insulin responses (Table 1-5). In this study, 50 g of oat 

β-glucan was consumed together with 50 g of glucose in 500 mL of water and compared to 

control (50 g glucose in 500 mL water) (Braaten et al., 1991). The supplementation 

reduced peak (30 min) plasma glucose response when compared with control. The other 

mechanism whereby β-glucan could reduce postprandial glucose is through the production 

of propionic acid by the colonic bacteria, which has been shown to play a role in hepatic 

glucose metabolism in healthy volunteers (Venter et al., 1990). Berggren et al. showed that 

the supplementation of a physiologically relevant dose of 0.15 g sodium propionate per day 

reduced fasting glucose in rats (Berggren et al., 1996). Nilsson found an inverse correlation 

between GLP-1 and glucose response after intake of barley kernel bread in healthy 

volunteers (Nilsson et al., 2008). Colonic fermentation produced short chain fatty acids 

that in turn promote the secretion of GLP-1  (Reimer et al., 1996; Cani et al., 2005). A 

study showed how chronic supplementation of propionate decreased fasting glycaemia, but 

had no effect on hepatic glucose production nor whole body glucose utilisation in rats 

(Boillot et al., 1995). However, the effects of propionate on glucose metabolism in rats are 

not consistent. Battilana et al. suggested that the lowering effects of β-glucan was due to 

delayed and reduced glucose absorption from the gut and was not related to the 

fermentability of dietary β-glucan in the colon (Battilana et al., 2001). The outcome 

measures of this study were observed for up to 9 h and thus allowed at least some of the β-
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glucan to reach the colon for colonic fermentation.  

1.5 Physiological roles of β-glucan in lower gastrointestinal tract 

1.5.1 Colonic fermentation 

The gut microbiota is diverse, dynamic and affected by factors such as diet, ethnicity, 

ageing, drugs and disease (Nardone and Compare, 2015). The human intestine contains 

two hundred trillions of microbial cells and more than 1000 bacterial species (Herrera and 

Guarner, 2014). Bacteria in the human colon are dominated by bacteriodes, clostridia, 

fusobacteria, eubacteria, ruminococci, peptococci, peptostreptococci and bifidobacteria 

(Manson et al., 2008). These microbes play a pivotal role in normal physiology and 

susceptibility to disease through various metabolic activities and host interactions. For 

instance, the interaction between the pre-existing gastric microbiota and Helicobacter 

pylori infection might influence an individual's risk of gastric disease, including gastric 

cancer.  

Physiologically, the proximal colon is a saccharolytic environment and is the main site for 

fermentation (Figure 1-4). There is low substrate availability in the distal colon and 

proteolysis is the main activity. Starch and non-starch polysaccharides may have different 

effects on the gut microbiota (Leitch et al., 2007). Breads prepared with oat bran and 

barley fractions were given to ileostomist subjects for 2 consecutive days and the soluble 

β-glucan was detected in an ileostomy effluents collected after 24 h of last food intake 

(Sundberg et al., 1996). This indicated that β-glucan escaped undigested in the stomach 

and small intestine and might reach the large intestine for bacteria fermentation. Similar 

results were observed when β-glucan was added in bread (Lia et al., 1996). The dry weight 

of effluents showed the presence of residue and nutrient complexes that could be a 

substrate for colonic fermentation.  

Supplementation of bran with human faecal inocula increased Clostridium hathewayi, 

Eubacterium rectale and Roseburia species. Fermentation with starch increased the 

bacteria Ruminococcus bromii, Bifidobacterium adolescentis, Bifidobacterium breve and 

Eubacteria rectale while fermentation with mucin increased the bacterial species of 
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Bifidobacterium bifidum and Ruminococcus lactaris. These bacteria have the capability to 

ferment dietary fibre at different pH. Butyrate was produced four-fold higher at pH of 5.5 

(proximal colon) compared with pH 6.5 (distal colon) (Scott, 2008). 

 

 

 

 

 

 

 

 

Figure 1-4. Human proximal and distal colon. Adapted from Guarner (2014). 

In vitro digestion of both rye kernel bread (RKB) and boiled rye kernel (RK) significantly 

increased total SCFA production when compared with inoculum (Ibrugger et al., 2014). 

However, RK kernel showed a significantly higher total SCFA when compared with RKB, 

suggesting the importance of the food matrix for bacterial fermentation. RK might preserve 

its intact structure and contain a higher resistant starch, while RKB might have been milled 

and has lower resistant starch. The structural differences between RKB and RK may also 

affect on how the bacteria reach the resistant starch for the production of SCFA. The 

increment in total SCFA relatively increased the quantity of bifidobacteria and was 

Proximal colon 

x High substrate 
concentrations 

x pH 5-6 
x Saccharolysis 
x Rapid bacterial 

growth 
 

 

Distal colon 

x Low substrate 
concentrations 

x Neutral pH 
x Proteolysis 
x Slow bacterial growth 
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associated with reduced bacteriodes when compared with inoculum (control). The study 

also showed that the population of C. coccoides group was substantially reduced after 

RKB. In situ hybridisation techniques showed that chronic consumption of maize-derived 

whole grain cereal for 21 days increased the level of faecal bifidobacteria, when compared 

with control cereal in humans (Carvalho-Wells et al., 2010).  

1.5.2 Colonic fementation products  

Any carbohydrate which reaches the colon is subject to bacterial fermentation. This 

process begins with the metabolism of monomeric sugar into pyruvate, through the 

Embden-Meyerhoff pathway, and are immediately converted to end-products such as 

SCFA and gases. Colonic fermentation by saccharolytic bacteria produces major SCFA, 

namely acetate, butyrate and propionate along with trace amounts of other SCFA (Herrera 

and Guarner, 2014). The gases produced after fermentation are hydrogen (H2), methane 

(CH4) and carbon dioxide (CO2). In humans, an average of 500-600 mmol of SCFA are 

found in the colon after dietary fibre intake or because of malabsorbed carbohydrates 

(McBurney and Thompson, 1989). The presence of SCFA reduces the luminal pH and this 

suppresses harmful pathogens and helps the absorption of Ca, Mg and Fe in the caecum. 

SCFA are absorbed by Na/H exchange with the Na hydrogen exchanger-3 (NHE3) 

transporter in the colon (Roy et al., 2006). SCFA absorption is governed by active (apical 

carrier-mediated) and passive (non-ionic diffusion) transport. The pH in the colon ranges 

from 5.5 to 7.5 and the pKa of SCFA is 4.8 and hence most SCFA are present in the 

anionic form. However, this anion will be converted to undissociated (protonated) form 

before being transported through passive transport (non-ionic diffusion). Hence, non-ionic 

diffusion is more apparent than active transport (Charney et al., 1998). 

Generally, acetate is the main anion but the molar ratios of all the SCFA change 

substantially from colon to portal blood and hepatic vein indicating uptake of butyrate by 

the colonic epithelium and propionate by the liver (Cummings et al., 1987). Acetate has 

been shown to play a central role in appetite regulation, while propionate is a precursor for 

hepatic glucose production and also stimulation of hepatic vagal afferents to reduce food 
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intake (Chambers et al., 2014). Acetogenic bacteria produce acetate from CO2 and H2. 

Rectal acetate infusion significantly increased serum cholesterol and decreased serum free 

fatty acids suggesting that acetate is involved in cholesterol synthesis (Wolever et al., 

1991). In contrast, propionate infusion decreased cholesterol synthesis when added 

together with acetate, suggesting that propionate inhibits the utilisation of acetate for 

cholesterol synthesis. However, the physiological levels of these SCFA produces from the 

colonic fermentation might not be relevant for the observed effects. Butyrate is the main 

source of nutrient for epithelial cells lining the colon colonocytes (Roediger, 1982). 

Colonocytes have the capability to utilize ketone bodies (acetoacetate) and at the same time 

produced acetoacetate and β-hydroxybutyrate from SCFA. SCFA are rapidly absorbed in 

the colon and further metabolised as follows:  

1) Uptake of butyrate by the colonic mucosa and to lesser extent acetate and propionate for 

energy production. 

2) Hepatocytes (in the liver) metabolise propionate for gluconeogenesis (glucose 

production) and acetate for lipogenesis. 

3) Production of energy from the oxidation of residual acetate in muscle cells and other 

tissues (Cummings et al., 1987). 

Major SCFA produced from the fermentation of soluble dietary fibres from in vitro, animal 

and human studies are tabulated in Table 1-6. In vitro fermentation of different types of 

dietary fibre with human faecal produced different patterns of SCFA. More butyrate is 

produced from the fermentation of rapidly available starch, resistant starch and insoluble 

wheat bran, while soluble fibres such as guar gum and β-glucan produced large proportions 

of propionate (James et al., 1997; Weaver et al., 1992; Cummings and Macfarlane, 1991; 

Adiotomre et al., 1990). Production of acetate, propionate and butyrate from in vitro 

fermentation of β-glucan-rich fractions from barley and/or oats were in the range of 11–48 

mM, 5.5–18 mM and 7–14 mM, respectively. The molar proportions of 

acetate:propionate:butyrate production differ from one study to another, in the range of 39-

66, 13–45 and 11–35 mM, respectively.  
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These in vitro fermentation studies were carried out using samples from 2-6 donors (Table 
1-6). In a multicentre fermentation study, the greatest intra-laboratory variation was 

observed with those utilizing samples from only 4 donors (Edwards et al., 1996). In a 

recent study, et al. demonstrated 2-fold differences in acetate, propionate and butyrate 

productions from fermentation of partially hydrolysed guar gum between 6 donors 

(Carlson et al., 2016). This study showed 1 out of 6 donors showed unexceptionally high 

SCFA when compared to other subjects. Two studies measured SCFA in faecal samples, 

and this could underestimate the amount of SCFA being produced from fermentation, as 

only 5% of SCFA are recovered in faecal samples (Kien et al., 2006; Topping and Clifton, 

2001). 

β-Glucan is fermented by intestinal microbiota and significantly increases propionate 

resulting in an acetate:propionate:butyrate production ratio of 51:32:17 which was 

considered as propionate-rich (Hughes et al., 2008). In mice, supplementation of oat bran 

with different molecular weight β-glucans (2348, 1311, 241, 56, 21 or < 10 kDa) increased 

the production ratio of propionic acid and butyric acid/acetic acid with increasing 

molecular weight (Immerstrand et al., 2010). There were no significant differences 

between individuals and total SCFA production from the fermentation of β-glucan either 

from barley and oats (Hughes et al., 2008; Jozefiak et al., 2006). β-Glucan from barley has 

higher purity but lower in molecular weight compared with oats β-glucan and hence, this 

could explain why there was no significant difference in SCFA production.  
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Table 1-6. Production of major SCFA (acetate, propionate and butyrate) after the fermentation of soluble dietary fibres in in vitro, animal and 
human study. 

 
Type of soluble 
fibre 
 

 
Amount of 
fibre (mg) 

 
Fermentation 
medium  
(Number of 
faecal 
donors) 

 
Study 
duration 
(h) 
 

 
A, P and B‡ 

(mM) and/or 
molar 
proportion of 
A:P:B (at end 
point) 
 

 
Total, mM 
or total 
(%) 

 
Comments 

 
Reference 

In vitro study 
High and low 
molecular 
weight β-glucan  
(0.46 – 3.48 x 
105 g/mol) 

100 mg Brain-heart 
infusions 
medium  
 
(2 donors) 

24 h 13.5 - 17 mM  
5.5 - 6 mM  
10 - 12 mM  
 
Molar 
proportions 
(range): 
 
47 – 49: 17 – 
19: 34 - 35  

29-35 mM 
 

Low molecular weight 
had higher total SCFA 

(Kim and 
White, 2011) 

Purified oat β-
glucan 

100 mg Brain-heart 
infusions 
medium  
 
(2 donors) 
 

24 h 
 

39:27:34 81-89 % Exact SCFA not reported. 
Most β-glucan has been 
fermented at 8 h 

(Sayar et al., 
2007) 

High and low 
molecular 
weight β-glucan 
(from oats and 

10 mg  Peptone, yeast 
extract, 
vitamins and 
minerals  

48 h 
 

11 - 25 mM 
10 - 17 mM 
7 - 10 mM 
Molar 

28 - 52 mM 
 

 No prebiotic effects (no 
effect on bifidobacteria 
and lactobacilli) but 
modulated microbial 

(Hughes et al., 
2008) 
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barley) 150 and 
230 kDa 
 
 

 
(3 donors) 

proportion 
(range): 
39 – 48: 33- 36: 
19 - 25  
 

community (C. 
histolyticum). No 
difference between oat 
and barley in term of 
APB production. 
Considered as propionate 
rich 

Partially 
hydrolysed guar 
gum 

500 mg Peptone 
fermentation 
media 
(6 donors) 

24 h 13 - 26 mM 
20 - 45 mM 
9 - 23 mM 
 
Molar 
proportions 
(range): 
 
28 - 30: 48: 21 - 
24  

42 - 94 mM Reported high 
interindividual variation 
between donors. 2-fold 
difference among 
individual  
 

(Carlson et al., 
2016) 

Oat concentrate 200 mg (6 donors) 24 h 48 mM 
18 mM 
14 mM 
 
Molar 
proportions: 
60:22:18 

80 mM 
 
 

Samples were pre-
digested prior to 
fermentation 

Nordlund et al., 
2012 

Animal study 
β-Glucan 
concentrate 

9% in pig’s 
feed but food 
intake was 
not reported  

Digesta from 
pig’s stomach, 
caecum and 
colon (n = 32) 
 

Dissected 
after 14 
days 
 

69 - 72* 
24 - 29 
12  
 
Molar 
proportions 
(range): 

105 - 113 Enhanced bacterial 
growth in the stomach 
and colon 
 

(Metzler-Zebeli 
et al., 2011) 
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64 - 66:  23 – 
27: 11 

Barley and oat  49 g β-glucan 
in barley-
based and 66 
g β-glucan in 
oats-based 
chicken’s 
feed 

Digesta from  
broiler 
chicken (n = 
96) ileum and 
caeca 

35 days 63 – 88 * 
13 – 43 
21- 25 
 
Molar 
proportions: 
 
57 – 63: 
13 – 28: 
16 – 24 

98 – 156 * No difference between 
barley and oats in term of 
SCFA production 

(Jozefiak et al., 
2006) 

Different 
molecular 
weight β-glucan 
from oats (< 10, 
21, 56, 241 and 
1311 kDa) 

7.2 – 8.4 g β-
glucan from 
oats in mice’s 
feed 

Digesta from 
caecum 

28 days 6 – 8 § 
2.6 - 3 
0.9 – 3 
 
Molar 
proportions 
(range): 
 
57 – 63 
21 -27 
9 – 21 

9.5 -14 § Propionate was higher in 
all groups vs control. 
Increased production ratio 
of propionate and 
butyrate/ acetate in 
increasing molecular 
weight 

(Immerstrand et 
al., 2010) 

Human study 
Barley kernel 
and barley 
porridge 

13C-labelled 
barley. 
Barley kernel: 
86 g in 450 
mL 
Barley 

13C-breath 
content (n = 5) 

12 h Not reported Not 
reported 

Only 3 volunteers 
produced propionate 
(porridge). Kernel group 
never produce propionate. 
High intervariations 
between individuals  

(Verbeke et al., 
2010) 
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‡, A, acetate, P, propionate, B, butyrate; *micromol/g digesta; ** mmol/g faeces; § μmol/caecal content. 

porridge: 86 
in 320 mL 

PolyGlycoPlex 
®(glucomannan, 
sodium alginate 
and xanthan 
gum) 
 
 

5 g at week 1 
followed by 
10 g during 
week 2 and 3 
 

Direct 
measurement 
of SCFA from 
faecal sample 
(n = 27) 

Week 1, 
week 2 
and week 
3 

40 ** 
12 
12 
 
Molar 
proportions: 
 
62:19:19 

64** Direct measurement from 
faecal sample. Samples 
were stored in refrigerator 
for 10 h then frozen. 

(Reimer et al., 
2012) 
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1.6 Stimulation of gastrointestinal hormones  

Cholecystokinin (CCK), glucagon-like peptide 1 (GLP-1) and peptide YY (PYY) are 

considered gut hormones or neurotransmitters in a satiety signal because they increased 

food intake in knock-out animals or in response to receptor antagonism (Naslund and 

Hellstrom, 2007). These hormones also showed a temporal profile (time dependant) with 

satiety and meal termination. The release of these gut hormones depends on the quantity 

and quality of foods (macronutrients and/or dietary fibres) being ingested. The effects of 

these hormones are dependent of the interaction with specific receptors in the gut and the 

brain (gut-brain axis) (Mendieta Zeron et al., 2013). The site of hormone secretion, 

receptors involved and their major action is shown in Table 1-7.  

The primary function of the GI tract is for digestion and absorption. Within this system, 

there is a GI neuroendocrine system that forms an important relationship between the brain 

and gut that optimises digestion and absorption (Chaudhri et al., 2006). In the brain, the 

arcuate nucleus (ARC) is the centre for molecular signals due to its location near to the 

median eminence. Circulating factors such as gut hormones CCK, PYY and GLP-1 then 

modify the activity of two populations of neuron within the ARC (Chaudhri et al., 2006). 

The first population of neuron co-express cocaine- and amphetamine transcript and 

propiomelanocortin and inhibits food intake. The second population of neuron co-express 

neuropeptide Y (NPY) and agouti-related protein which increases food intake (Cone et al., 

2011). Both populations are directed to the paraventricular nucleus and other areas 

important in the regulation of food intake (Schwartz et al., 2000). These gut hormones also 

play an important role in glucose metabolisms as follow: altering food intake and body 

weight, thereby insulin sensitivity; affecting stomach emptying and motility, thereby 

fluctuation in glucose levels after a meal; affecting insulin secretion, thereby plasma 

glucose levels (Heijboer et al., 2006).  

Regulation of gut hormones is inter-related and dependent on the site of action. CCK 

appears in the bloodstream postprandially as soon as the nutrients enter the duodenum. The 

release of GLP-1 and PYY is delayed until the nutrients reach further down the distal small 

intestine and colon (Pilichiewicz et al., 2007a). Both I- and L-cells (lower intestine and the 
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colon) are stimulated when they come into contact with their luminal content along the 

intestinal axis (Gribble et al., 2012). Kokkinos et al. demonstrated that eating moderately 

slow (30 min) significantly increased PYY and GLP-1 compared to eating very fast (5 

min) (Kokkinos et al., 2010). A similar study by Li et al. found that chewing food by 40 

chews associated with lower energy intake and higher GLP-1 and PYY responses (Li et al., 

2011). The presence of dietary lipids, proteins and carbohydrates (eg. sugars) triggered the 

secretion of CCK, GLP-1 and PYY (Pilichiewicz et al., 2007a; Pilichiewicz et al., 2007b). 

Studies have demonstrated that soluble dietary fibres (eg. β-glucan) increase the release of 

intestinal peptides such as ghrelin, CCK, PYY and GLP-1 (Juvonen et al., 2009; Vitaglione 

et al., 2009). These peptides reduce the rate of gastric emptying, increase gastric distension 

and hence act as a pivotal role in controlling the appetite (Kissileff et al. 1981; Blundell et 

al., 2010). 

Table 1-7. Source, specific receptors and mode of action of hormones related to food 
intake. 

 
Hormones 
 

 
Source 

 
Major receptor 

 
Mode of action 
 

 
Cholecystokinin (CCK), 
CCK-55-CCK-33, CCK-
22, CCK-8 

 
Intestinal I cells, 
neurons 

 
CCK2 

 
Slows gastric emptying 
Release of pancreatic 
enzyme 
Causes gall bladder 
contraction 
Increases gut motility 
Increases satiety 
 

Glucagon Pancreatic α cells Glucagon Gluconeogenesis 
Glycogenolysis 
 

Glucagon-like peptide-1 
(GLP-1) 

Gastrointestinal L 
cells (lower 
intestine and 
colon) 

GPR41 and 
GPR43 

Slows gastric emptying 
Releases insulin (glucose 
dependent) 
Vagal and central nervous 
system effects 
Increases satiety 
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1.6.1 CCK 

Cholecystokinin (CCK) is present in different molecular forms, CCK-55, -33, -22 and -8 
(Rehfeld et al., 2001). CCK-33 is the predominant fasting plasma and postprandial CCK 

derived from gut I-cells with 51 and 57%, respectively. CCK-22 is second most abundance 

CCK found in plasma with approximately 34 and 32%, respectively, during fasting and 

postprandial state (Rehfeld et al., 2001). CCK-8 is a predominant form in the neuron 

(Rehfeld et al., 2003). CCK is stimulated by the presence of protein, amino acids and fat 

but glucose causes a smaller elevation in plasma CCK (Liddle et al., 1985). The interaction 

of dietary fat in the small intestine resulted in feedback inhibition of gastric emptying, 

which acts through prolonged gastric distention (Heddle et al., 1989, Read et al., 1994). 

Reynolds et al. demonstrated that carbohydrate quality (different dietary fibre types, but 

matched for macronutrients and fibre content) elicited different CCK responses. High 

‘quality’ (low glycaemic index) fibre type meal evoked higher CCK responses compared 

with low ‘quality’ (high glycaemic index) fibre meal (Reynolds et al., 2008). This study 

suggests the diet induced slower gastric emptying and hence reduced the access of 

carbohydrate and other macronutrients within the proximal small intestine. This slower 

 
Peptide tyrosine-tyrosine 
(PYY), PYY1-36, PYY3-36 

Gastrointestinal L 
cells (lower 
intestine and 
colon) 
 

Neuropeptide Y 
(NPY) Y2 
receptor (Y2R) 

x Suppression of 
gastric acid 
secretion  

x Slows gastric 
emptying  

x Inhibition of 
intestinal motility  

x Inhibition of 
gallbladder 
contraction  

x Vagal & central 
nervous effects 

x Increases satiety 
 

Glucose-dependent 
insulinotropic 
polypeptide (GIP) 
 

K cells in the 
duodenum, 
jejunum (upper 
small intestine) 
 

GIP-R Stimulates insulin synthesis 
and secretion 
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transit time allows prolong stimulation of I-cells, which in turn further decrease gastric 

emptying and maintains higher CCK levels.  

CCK stimulates secretion of pancreatic enzymes, causes contraction of gallbladder, slows 

gastric emptying and increases motility in the large intestine (Beyer et al., 2008). CCK has 

a profound effect when administered through jejunal feeding rather than gastric feeding, 

which lead to greater insulin sensitivity and delayed gastric emptying (Luttikhold et al., 

2016). There are two distinct types of G protein-coupled receptor CCK, namely CCK-1 

and CCK-2. CCK-1 receptors are primarily found in the pancreas, on vagal efferent and 

enteric neurons. CCK-2 receptors are found in the afferent vagus nerve and also within the 

stomach (pyloric area) (Dockray, 1987). CCK receptors are both present in the brain and 

the stomach and therefore play significant roles in the regulation of food intake (Rehfeld et 

al., 2003). 

In animal models, Moran suggested that low doses of CCK inhibit food intake by direct 

activation of vagal afferent CCK-1 receptors. High doses of CCK are secondary to the 

activation of pyloric CCK receptors and dependent on the ability of CCK to inhibit gastric 

emptying (Moran et al., 1988; Moran et al., 1997; Moran et al., 2000). In an early study by 

Gibbs et al., exogenous CCK dose-dependently reduced food intake in rats (Gibbs et al., 

1973). Another study showed that an intravenous infusion of CCK reduced meal size and 

duration in human (Kissileff et al., 1981). However, the effect of CCK is short-lived and 

repeated administration reduced food intake but increased meal frequency, and hence 

overall intake is unchanged (Gibbs et al., 1973; West et al., 1987a; West et al., 1987b).  

In healthy subjects, supplementation of isocaloric and isovolumetric low viscosity β-glucan 

(low molecular weight) beverage increased CCK level by 80% compared with high 

viscosity β-glucan (high molecular weight) (Juvonen et al., 2009) (Table 1-8). This study 

suggests the importance of molecular weight and viscosity in the release of CCK. Low 

viscosity beverage leads to lower chyme viscosity compared with high viscosity and hence 

increase the interaction between nutrients and gastrointestinal mucosa required for efficient 

stimulation of CCK. Acute supplementation of viscous insoluble cellulose (highly viscous) 

(extracted from corn stalks and husks) in beverage reduced CCK compared with control 
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beverage among hypercholesterolaemic men and women (Geleva et al., 2003). However, 

long-term supplementation (6 weeks) did not change the CCK levels. This study suggests 

higher interindividual variability may be primarily responsible for the inconsistent results. 

This was supported by another study that showed how sodium alginate supplementation 

with beverage for 10 days had no effect on CCK (Odunsi et al., 2010). 

1.6.2 Peptide YY (PYY) 

Peptide tyrosine-tyrosine (PYY) was first characterised in porcine upper intestinal tissue as 

long linear chain of 36 amino acids sequence (Tatemoto et al., 1982). PYY3-36 is an active 

form of PYY and is derived from the cleavage of PYY1-36 by enzyme dipeptidyl peptidase-

V enzyme (Unniappan et al., 2006). PYY has been expressed in both neurons and 

endocrine cells (Ekblad and Sundler, 2002). PYY involves in the secretion of gastric acid 

and pancreatic secretions and increased gastrointestinal motility (Naruse et al., 2002; Yang 

et al., 2002; Imamura et al., 2002). 

Batterham and co-workers were the first to identify the role of PYY in energy homeostasis 

in humans (Batterham et al., 2002). This study showed an infusion of physiological dose of 

PYY3-36 significantly reduced food intake by 33% over 24 h. A PYY3-36 level was lower in 

the fasting state and increased proportionately in response to caloric content (Chan et al., 

2006; le Roux et al., 2006). le Roux demonstrated how the physiological infusion of PYY3-

36 (0.2 to 0.8 pmol/kg/min) dose-dependently reduced energy intake in men (le Roux et al., 

2006). Essah et al. showed equicaloric low-carbohydrate, high-fat diet associated with 

higher PYY levels when compared with low-fat, high-carbohydrate diet (Essah et al., 

2007). The abdominal vagotomy diminished the anorectic effect of PYY and suggesting 

the PYY3-36 act through the arcuate nucleus neuropeptide Y (NPY) Y2 receptor (Y2R) to 

inhibit food intake in a gut-hypothalamus pathway (Abbott et al., 2005; Batterham et al., 

2002). NPY Y2 is a presynaptic receptor that is highly expressed on NPY neurons in the 

arcuate nucleus and is highly accessible by peripheral hormones (Broberger et al., 1997). 

NPY Y2R is also present in the vagal afferent fibres located on the vagal nerve. This forms 

an interconnection between gastrointestinal tract and the brain, which is important for gut 

hormones to sensitise the brain to inhibit food intake (Koda et al., 2005). 
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β-glucan, when prepared in bread, reduced PYY by 16% when compared with normal 

bread (Table 1-8) (Vitaglione et al., 2009). PYY increased by 418% when prepared in low 

viscosity β-glucan in beverage compared with high viscosity beverage (Juvonen et al., 

2009). In semi-solid food (pudding) the same level of β-glucan had no effect on PYY 

(Juvonen et al., 2011). Different products may have undergone different processing 

techniques and might have different effects on their solubility. Johansson et al. 

demonstrated that processing methods had significant impact on β-glucan content 

(Johansson et al., 2007). This study showed preparation of oat porridge by boiling in hot 

water for 10 min significantly increased soluble β-glucan, while preparation in bread using 

normal baking technique significantly reduced solubilised β-glucan. Ronda et al. showed 

degradation of β-glucan during bread making which may be due to the activity of β-

glucanase (Felicidad Ronda et al., 2015). Some studies determined in vitro viscosity of 

products using digestion model mimicking human gastrointestinal digestion (Juvonen et 

al., 2009; Panahi et al., 2007; Wood et al., 1994). However, it must be noted that the results 

derived from in vitro viscosity are not directly translated to human, due to interaction with 

other food components, dilutional effects of digestive fluids and enzymic degradation of β-

glucan (Wang and Ellis, 2014). In dietary fibre studies, it is common to observe the dietary 

fibre intake as a composite meal (Reimer et al., 2010; Kristensen and Jensen, 2011). 

Reimer et al. showed longer study duration of 2 weeks using composite meal (eaten with 

cereal) reduced PYY by 30% when compared with control (Reimer et al., 2010). 

Kristensen et al. showed no effects of adding flax mucilage in beverage and eaten with bun 

(Kristensen et al., 2013).   
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Table 1-8. Effects of viscous soluble fibres on postprandial CCK, PYY and GLP-1. 

 
Study design 
 

 
Subjects, N 
(M/F) 

 
Study 
duration (h) 

 
Dose 

 
Main outcomes  
 

 
Reference 

Liquid food-matrix 
Randomised N = 20 (4/16) 3 h Low viscosity β-glucan (10 g) (<250 

mPa.s)  
High viscosity β-glucan (10 g) (>3000 
mPa.s) (shear rate: 50 s-1) 
 
Food-matrix: Beverage, 300 mL 
(isocaloric) 

x n CCK by 79.6% 
x n PYY by 417.8%  
x n GLP-1 by 155.4% in low 

viscosity beverage vs high 
viscosity beverage (AUC0-

180 min) 

(Juvonen et al., 
2009) 

Solid food-matrix 
Randomised, 
crossover 

N = 14 (7/7)  

 
3 h β-Glucan (from barley) (3 g)  

Food-matrix: 100 g bread (isocaloric) 
 

n AUC PYY (16%) (Vitaglione et 
al., 2009) 

Semi-solid food-matrix 
Randomised N = 20 (15/5) 3 h Oat bran (10.3 g)  

Oat bran and wheat bran (10.1 g)  
 
Food-matrix: Pudding (300 g) with 
water (isolcaloric) 

Plasma PYY not affected 
 

(Juvonen et al., 
2011) 
 

Composite meal 
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mPa.s; milli pascal per second 

 

Randomised N = 54 (25/29) 1 week – 5 
g/day 
 
2 weeks – 10 
g/day 
 

PolyGlycoPlex (glucomannan, 
sodium alginate and xanthan gum).  
Visit 1 = 2.5 g, twice a day for 1 week 
visit 2 = and 5 g, twice a day for 2 
weeks 
Visit 3 = endpoint 
 
Food-matrix: with 10 g cereal with 
135 mL plain yoghurt 
 

↓ PYY at visit 3 vs control by 
33.31% (after adjusted for BMI, 
i.e. just BMI < 23 was included) 

(Reimer et al., 
2010) 

Randomised, double 
blind 

N = 18 (18/0) 7 h  Low-mucilage flaxseed (12 g) 
High-mucilage (17 g) 
 
Food-matrix: 
Two buns with cheese, butter, ham 
and 400 mL water  
 

No significant effects in GLP-1, 
PYY  

(Kristensen et 
al., 2013) 
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1.6.3 GLP-1 

Glucagon-like peptide-1 is a 31-amino acid gastrointestinal peptide released from L cells 

of the lower intestine and colon (Table 1-8). GLP-17-36 is an active form and the presence 

of proteolytic enzyme dipeptidyl peptidase-V cleaves it into inactive GLP-19-36 (Kieffer et 

al., 1995). GLP-1 slows gastric emptying, reduces gastric acid secretion and pancreatic 

enzymes and reduces food intake (Baggio and Drucker, 2007). The combination of these 

activities leads to increase insulin sensitivity and lower postprandial glycaemia (Schirra et 

al., 2005; Baggio et al., 2007). GLP-1 increases postprandially after a meal accompanied 

by a fall in glucose and glucagon levels (Kreymann et al., 1987). GLP-1 works through 

entero-insular axis and hence regulates postprandial glycaemia. GLP-1 also acts through 

blood-brain barrier that protects the brain from fluctuation in intracerebral glucose during 

postprandial period (Lerche et al., 2008). 

Carbohydrate (sugars) and protein stimulate the release of GLPI-1 (Layer et al., 1995). The 

peak plasma GPL-1 was obtained at 20 min after an oral glucose load (Schirra et al., 1996). 

Duodenal delivery at a rate exceeding more 1.4 kcal/min was required for sustained release 

of GLP-1. However, meals containing different amounts of energy from fat and 

carbohydrate may have different effects on GLP-1. Rijkelijkhuizen et al. found that 

carbohydrate-rich (energy bar and drink) (109 g, 66 % from total energy) and not fat-rich 

(butter, cheese, high-fat milk) (49 g fat, 52 % from total energy intake) meals increased 

GLP-1 in healthy subjects (Rijkelijkhuizen et al., 2010). Another study found that the 

equicaloric content of meals from fat (42 g, 45% from total energy) and glucose (100 g, 42 

% from total energy) increased GLP-1 secretion at 150 and 30 min, respectively. No 

significant result was observed for protein (352 g, 13 % from total energy) on GLP-1 

secretion (Elliott et al., 1993.) This suggests that carbohydrate meals stimulated the release 

of GLP-1 at low and high energy content.  

In humans, monoinfusion of PYY3-36 or GLP-1 alone did not reduce food intake, but the 

combination of both significantly reduced it (Schmidt et al., 2014). However, Flint et al. 

showed GLP-1 infusion alone beneficially reduced energy intake and enhanced perceived 
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satiety measures (Flint et al., 1998). Studies of GLP-1 have received much attention 

because of their multiple actions on gastrointestinal motility, reducing postprandial glucose 

responses and reduced energy intake. Apart from carbohydrate and fat, numerous studies 

have been reported on the effects of soluble dietary fibres on GLP-1 responses (Table 1-8).  

Juvonen et al. showed how low viscosity β-glucan in a beverage reduced the GLP-1 

response when compared to high viscosity (Juvonen et al., 2009). The trend was similar to 

those observed for PYY concentration. Non-viscous oligofructose (10 and 55 g) in a 

beverage had no effect on postprandial GLP-1 responses up to 8 h (Verhoef et al., 2011; 

Pedersen et al., 2013). GLP-1 did not change significantly after intake of soluble low 

viscosity mucilage prepared in buns. The study meal was eaten as a composite meal with 

cheese, butter and ham (composite meal) and might have different effects (Kristensen et 

al., 2013). Johansson demonstrated a longer observation for up to 16 h after consuming 

boiled barley kernel (97 g) at dinner (Johansson et al., 2007). Barley kernel was boiled for 

25 min in 125 mL of water and this study indicates that all water was absorbed into the 

barley kernel. Hence, it is speculative that this meal is highly viscous. This procedure is 

similar to the preparation of porridge and the hot-water extraction of β-glucan (Johansson 

et al., 2007; Panahi et al., 2007). GLP-1 significantly increased when compared with white 

bread, when measured the following day (10 – 16 h) after standardised breakfast and lunch. 

Breath hydrogen (H2) significantly increased when measured at 10.5 to 16 h. This study 

suggests the role of colonic fermentation as a key factor leading to the observed increased 

in GLP-1.  

GLP-1 is activated by short chain fatty acids (SCFA) through G protein-coupled receptor 

41 (GPR41, found in adipose tissue) and GPR43 (found in immune cells) (Brown et al., 

2003; Kimura et al., 2004). GPR41 and GPR43 were both activated by SCFA but with 

different specificity for carbon length. For GPR43, the relative affinity for SCFA are as 

follows: acetate (C2) = propionate (C3) = butyrate (C4) > pentanoate (C5) > hexanoate (C6) 

= formate (C1) (Brown et al., 2003). This study also showed that GPR41 was activated by 

the same SCFA but with different rank of potency being propionate = pentanoate = 

butyrate > acetate > formate. Le Paul et al. demonstrated that propionate is a potent agonist 
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for GPR41 and GPR43 while acetate was a more potent stimulator for GPR43 (Le Poul, et 

al., 2003). Butyrate and isobutyrate were more selective for GPR41. In humans, GPR43 is 

expressed on enteroendocrine L-cells containing PYY in the large intestine (Karaki et al., 

2008). 

In the previous section, we already discussed dietary fibres and their physiological effects 

in humans. β-Glucan is one of the potential candidates for the development of a functional 

bread. β-Glucan produces beneficial effects on plasma glucose and insulin, and is fully 

fermented in the colon for the production of SCFA. SCFA particularly propionate may 

have positive effects in increasing satiety. However, the development of bread with a 

viscous fibre such as β-glucan showed a lower palatability when compared with white 

bread. It is important to find an alternative way to improve palatability without losing 

functionality. (Poly)phenols occur naturally in foods (fruits and vegetables) and beverages 

such as wine, coffee, tea and chocolate are potential candidates for improving the 

palatability of this bread.       

1.7 Dietary (poly)phenols  

(Poly)phenols are a diverse group of bioactive compounds found in the plant kingdom. 

They are present abundantly in foodstuffs including whole grains (e.g. sorghum, barley in 

the range of 2.6 to 39.7 mg/100 g fresh weight), fruits (e.g. apples, blackberries, 

cranberries, grapes, peaches, pears, plums, raspberries, and strawberries in the range of 8.6 

to 496.0 mg/ 100 g fresh weight), vegetables (e.g. cabbage, celery, red onion, and parsley 

in the range of 0.1 to 139.5 mg/ 100 g fresh weight) and beverages (e.g. black tea, coffee, 

cocoa and red wine in the range of 0.89 to 477.5 mg/100 g fresh weight) (Bravo et al., 

1998; Chung et al., 1998; Duthie and Crozier, 2000; Neveu et al., 2010). Several lines of 

evidence have suggested that (poly)phenols exert protective effects against chronic 

diseases. Recent evidence showed that coffee (poly)phenols (chlorogenic acid) improved 

post-ischaemic flow-mediated dilation in healthy individuals (Ward et al., 2016). The 

Prevention with Mediterranean diet (PREDIMED) study demonstrated a negative 

correlation between total urinary (poly)phenols excretion with blood pressure and a 
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positive correlation with HDL-cholesterol suggesting the protective effect of 

(poly)phenols-rich diet against cardiovascular risk factors (Medina-Remon et al., 2016). In 

another PREDIMED sub-group study, the highest tertile of (poly)phenols intake was 

associated with a 28% reduction in new Type 2 diabetes compared with the lowest tertile 

of (poly)phenol intake (Tresserra-Rimbau et al., 2014). However, it must be noted that this 

health benefits may also be due to the presence of dietary fibre associated with the 

(poly)phenols.  

1.7.1 Basic (poly)phenol structures  

To date, there are at least 8,000 types of (poly)phenol reported in the literature. 

(Poly)phenolic compounds are derived from cinnamic acid and include the xanthones and 

flavonoids. (Poly)phenols are products of secondary metabolism of plants; they provide 

protection against pathogens and parasites, as well as giving the unique colour of plants 

(Liu, 2004). The basic generic structure consists of two aromatic rings (ring A and B) 

interconnected by 3 carbons in an oxygenated heterocycle C-ring (Figure 1-5). The 

structure of (poly)phenols varies from simple molecules, such as the phenolic acids, to 

highly polymerized compounds, such as condensed tannins (e.g. flavan-3-ol as base unit) 

(Harborne, 1980). The chemical structure of (poly)phenols influences their biological 

properties such as bioavailability, antioxidant activity, and specific interaction with cell 

receptors and enzymes (Scalbert and Williamson, 2000). In particular, the antioxidant 

activity of these compounds depends on the individual structure and number of hydroxyl 

groups. Figure 1-5 shows the basic structure of five common (poly)phenols in the plant 

kingdom and their derivatives. Major subclasses of flavonoids are shown in Figure 1-6. 
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1) Hydroxybenzoic acids             2. (a) Hydroxycinnamic acids  

           

2. (b) Hydroxycinnamic acids derivative  3) Flavonoids (basic structure) 

                  

4) Lignans      5) Stilbenes  

 

                 

 

Figure 1-5. Five major groups of (poly)phenols (Manach et al., 2004). 
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1) Flavonols      2) Flavones 

  

3) Isoflavones      4) Flavanones                                                                                                                                                                                                     

                

5) Anthocyanidins     6) Flavanols 

                 

Figure 1-6. Subclass of flavonoids (flavonols, flavones, isoflavones, flavanones, 

anthocyanidins, and flavanols) (Manach et al., 2004). 
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1.7.2 Tea (poly)phenols 

Tea (Camellia sinensis) is one of the major sources of (poly)phenols consumed in Europe 

along with coffee and fruits (Zamora-Ros et al., 2015). According to the different 

production procedures, they are further classified as black, green and oolong tea. Black tea 

is the most commonly consumed in European countries, with the highest intake category 

being 855 mL/day (Bami et al., 2016). It is produced from the young green shoots of the 

tea plant (UK Tea and Infusions Association, 2016). The harvested leaf is withered before 

being crushed to achieve efficient disruption of cellular compartmentation. This process is 

also known as fermentation and takes around 3-4 h to allow the exposure of (poly)phenols 

compounds to polyphenol oxidase until the leaves turn brown and oxidation is complete 

(UK Tea and Infusions Association, 2016). Tea Processing and Blending (Kuhnert, 2010). 

The leaf is then dried or ‘fired’ quickly (moisture content below 3%) to stop the oxidation 

process. Black tea produces a strong aroma and a brownish colour when brewed. Green tea 

is produced by steaming and rolling withered tea leaves before drying or firing. This 

process inhibits the release of polyphenol oxidase and thus prevents any oxidation of the 

leaf. The whole leaf is used for making tea and the colour is very pale when brewed. Both 

black and green teas are processed differently and hence have different (poly)phenol 

composition (Balentine et al., 1997). Oolong tea is a semi-green and semi-black tea, which 

follows a similar production process as black tea, but the oxidation time is half that of 

black tea production (1-2 h) before being fired or dried.  

Flavan-3-ols are the main flavonoids found in teas and they constitute about 30 % of the 

dry weight of green tea and 9% of the dry weight of black tea (Harbowy and Balentine, 

1997). The basic flavan-3-ol structure in tea is shown in Figure 1-7. Green tea contains 

more flavan-3-ols monomers compared to black tea. Lee et al. have shown that an infusion 

of green tea (1 L) contained 1 g catechins (Lee et al., 1995). High-performance liquid 

chromatography (HPLC) is widely used for the determination of flavan-3-ols, which is 

much easier than the determination of thearubigins (TR) and theaflavins (TF) that requires 

more sophisticated analysis, e.g. LC-MS-MS (Kuhnert, 2010).  

Black tea contains a significant amount of glycosylated flavonoids, typically 30-40% of the 
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dry mass of black tea infusion and 60-70% of uncharacterised (poly)phenols fermentation 

products (Kuhnert, 2010). Black tea contains TF and TR, which are complex structures 

formed by enzyme-catalyzed oxidation (Figure 1-8). TF and TR are made up from two 

units of flavan-3-ol. TF and TR are two major groups of pigments in black tea, which are 

derived by enzymic oxidation of green tea fermentation (Davies et al., 1999). During black 

tea production, the fermentation process by polyphenol oxidase utilises flavan-3-ols 

monomers as substrate and subsequently decreases their content while increasing TF and 

TR levels (Del Rio et al., 2004). The sum of theaflavins in black tea (theaflavin, theaflavin-

3-gallate, theaflavin-3ʹ-gallate and theaflavin-3,3ʹ-digallate) is 224 mg/L (Del Rio et al., 

2004). In addition, black tea contains substantial concentrations of the flavanols quercetin 

(10-25 mg/L), kaempferol (7 - 17 mg/L), and myricetin (2-5 mg/L) (Hertog et al., 1993). 

The antioxidant activity of tea flavan-3-ols catechin, catechin gallate (CG), epicatechin 

(EC) and epicatechingallate (ECG) depends on the presence of an ortho-3ʹ, 4ʹ-dihydroxy 

moiety in the B ring that is involved in electron delocalisation and stabilises the radical 

form (Sharma and Zhou, 2011). Gallocatechin has a third hydroxy group in the B ring 

instead of two. Gallate compounds (ECG and EGCG) possess a galloyl moiety attached to 

C ring and this adds three more hydroxy groups to the compounds. Chen and Chan 

demonstrated that EGC possessed a higher antioxidant activity when compared with EC 

due to the presence of OH group at position 5ʹ on ring B (Chen and Chan, 1996).  

Epimerisation of catechins happens by conversion to their respective isomers. Epimers of 

catechins, namely EGCG, EGC, ECG and EC can be converted to their non-epimers GCG, 

GC, CG and C (Wang et al., 2008; Chen and Chan, 1996). The levels of catechins could be 

easily reduced by means of epimerisation and degradation during processing (Wang et al., 

2008). In this study, two specific temperature points were identified as 44°C and 98°C in 

the reaction kinetics. Degradation was significant below temperature 44°C. Epimerization 

from GCG to EGCG occurred at temperature above 44°C and the epimerization from GCG 

to EGCG become more prominent at 98°C. During fermentation of black tea, the 

degradation of catechins was faster at 35°C when compared with 20°C (Samanta et al., 

2015). A lower temperature (20°C) increased the production ratio of TFs/TRs, which is 

desirable for the production of quality black tea. Black tea fermentation with endogenous 

polyphenol oxidase produced TFs from catechins and generated H2O2 under normal 
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manufacturing conditions (pH 5.5).  

  

           (–)-epicatechin                        (+)-catechin                           (+)-gallocatechin 

      

       (–)-epigallocatechin              (–)-epicatechin gallate          (–)-epigallocatechin gallate         

               

         (+)-gallocatechin gallate 

Figure 1-7. Chemical structure of the most common flavan-3-ols in tea (Roowi et al., 
2010)  
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                Theaflavin                    Theaflavin-3-gallate 

          

         Theaflavin-3ʹ-gallate            Theaflavin-3,3ʹ-digallate 

 

Figure 1-8. Theaflavins found in black tea (Del Rio et al., 2004) 
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1.7.3 Tea in food products 

Tea is rich in (poly)phenols, which are stable at a high temperature (Del Rio et al., 2004; 

Lun Su et al., 2003). Hence, tea is suitable for the development of various food products 

such as cakes, biscuits and bread (Table 1-10). Tea has been added to bread as green tea 

extract (GTE) at the level of 150 mg/ 100 g flour with one slice of bread (53 g) containing 

28 mg of tea flavan-3-ols. This is equivalent to 35% of those found in a 2 g of tea bag (250 

mL of tea) (Wang and Zhou, 2004). Tea flavan-3-ols were stable and 84% of total green 

tea catechins were retained during bread baking (Wang and Zhou, 2004). 

Sponge cake using green tea (poly)phenols (GTP) powder as a substitution (10 and 20%) 

for wheat flour was successfully developed and compared with non-substituted control (Lu 

et al., 2010). Specific flavan-3-ols were detected in the extract as gallocatechin (GC), 

epigallocatechin (EGC), epigallocatechin gallate (EGCG), gallocatechin gallate (GTG) and 

epicatechin gallate (ECG) in a dose dependent manner from 10 to 30 % green tea powder. 

This result suggests that tea catechins were stable at a high temperature and could be used 

as functional food ingredients. Crust and crumb colour, sweetness, flavor, texture and 

overall acceptability of cake prepared with 10 and 20 % GTP were similar to those of 

white bread (Lu et al., 2010). However, the addition of 30 % GTP in bread produced an 

unfavorable crust and crumb colour, sweetness, flavour, texture and overall acceptability 

when compared with white bread. 

Sharma and Zhou studied the effects of tea extract addition in biscuit making (Sharma and 

Zhou, 2011). Tea extracts were added at the levels of 150, 200 and 300 mg per 100 g flour. 

In this system, the percentage of ECG was higher than EGCG as the former is more stable 

(Zhu et al., 1997). EGCG and ECG were stable during dough development but decreased 

as the baking took place. Before baking, the levels of EGCG and ECG were 65% and 

significantly reduced to 20%. The presence of alkaline-inducing agents such as sodium 

bicarbonate and baking powder could increase the pH and this will cause a loss of EGCG. 

Hence, it could be concluded that heat treatment during baking and an increase in pH lead 

to the loss of EGCG. This study also showed that catechins were stable at acidic pH 
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(Sharma and Zhou, 2011). A recent product in which tea encapsulated with maltodextrin in 

bread and showed similar bread volume, crumb firmness, taste and colour when compared 

with GTE alone and control bread (Pasrija et al., 2015). This may protect tea (poly)phenols 

from being degraded during baking and may also prevent starch retrogradation (Wang et 

al., 2016).  

Table 1-9. Tea in food products. 

 

GTE: green tea extract; GT: Green tea. 

1.8 Physiological effects of tea (poly)phenols   

A systematic review showed that long-term (8 to 24 weeks) intake of tea and tea products 

in different forms (capsule, extract and beverage) is associated with a reduced BMI and 

waist circumference (Amiot et al., 2016). Central obesity (elevated waist circumference) is 

one of the established risk factors for metabolic syndrome (Alberti et al., 2009). Other 

metabolic syndrome factors are elevated blood triglycerides, reduced high-density 

lipoprotein, systemic hypertension and elevated fasting glucose. Three abnormal changes 

of these parameters give a diagnosis for the metabolic syndrome. One animal study showed 

black tea (3.13 and 62.6 mg/ kg body weight) dose-dependently reduced glucose levels at 

30, 60 and 90 min when compared with control (Satoh et al., 2015). 

 
Product 

 
Amount (mg or g per 100 
g flour) 

 
Formulation 

 
Reference 

 
Bread 

 
2.0 g/ 100 g flour 
 
 

 
Freeze-dried 
microencapsules 
 

 
(Pasrija et al., 
2015) 

Bread 50, 100 and 150 mg/ 100 g 
flour 

GTE powder (Wang and Zhou, 
2004) 

Cake 
 

10, 20, and 30 g/100 g flour 
 

GT powder (Lu et al., 2010) 

Biscuit 150, 200 and 300 mg/100 g 
flour 

GTE (Sharma and 
Zhou, 2011). 



   

   

  64 

             

1.8.1 Tea (poly)phenols metabolism and absorption  

The breakdown of flavan-3-ols begins in the mouth (Table 1-11). Drinking one cup (1.2 g 

tea extract in 200 mL) of green tea increased peak saliva levels of (–)-epigallocatechin 

(EGC), (–)-epigallocatechin-3-gallate (EGCG) and (–)-epicatechin (EC) (Yang et al., 

1999). The enzyme esterase (extracted from the oral cavity) converts EGCG to EGC 

(removal of gallate) and this lead to the compounds being absorbed through the oral 

mucosa. An in vitro study showed that the salivary mucosa contains 74.8 to 99.5% intact 

flavan-3-ols from total tea with EGCG and catechin being the dominant forms (Tenore et 

al., 2015).  

Table 1-10. Salivary, plasma and urine concentrations of tea (poly)phenols after green tea 
extract ingestion (200 mL). 

 

Acute consumption of green tea (3 g tea in 300 mL) led to the appearance of flavan-3-ols 

and their metabolites in plasma from 29 to 126 nM, and a peak time between 1.6 and 2.3 h, 

an indication of absorption in the small intestine (Stalmach et al., 2010). Flavan-3-ol 

aglycones are readily absorbed in the small intestine when compared with (poly)phenols 

containing esters, glycosides or polymers, which require catabolism by the intestinal 

enzymes or by the colonic microflora before they can be absorbed (Figure 1-9) (Manach et 

al., 2004; Henning et al., 2008). Stalmach et al. showed that flavan-3-ols were conjugated 

with sugars (Stalmach et al., 2010). The linked sugars can be glucose, rhamnose, galactose, 

  
Peak 
occurrence 
time (h) 

 
EGC 

 
EGCG 

 
EC 

 
Reference 

 
Saliva 
(μg/mL) 
 

 
0.2 - 0.3 

 
11.7 – 43.9 

 
4.8 - 22 

 
1.8 – 7.5 

 
(Yang et al., 
1999) 
 

Plasma 
(ng/mL) 
 

1  82 - 206 46 - 268 48 - 80 (Lee et al., 
1995) 

Urine  
(mg/24 h) 
 

3- 6 2.8 to 3.2 Not detected 1.6 – 2.3 (Lee et al., 
1995) 
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arabinose, xylose, and glucoronic acid (Harborne, 1994). Therefore, removal of sugars by 

glycosidases enzymes is important in order to make them bioavailable in the small 

intestine (Scalbert and Williamson, 2000).  

EC and (–)-epicatechin gallate (ECG) were absorbed more efficiently than EGCG and (+)-

gallocatechin gallate (GCG) (Auger et al., 2008). Henning et al. showed that non-gallated 

flavan-3-ols and theaflavins (TF) were more bioavailable than their gallated counterparts 

(Henning et al., 2008). In an in vitro system, EC was more bioavailable than ECG and TF 

were more bioavailable than theaflavin-3ʹ-gallate. A similar study showed that catechin 

recovery after gastric digestion was less than 20%, while EGC and EGCG recovery was 

less than 10% (Green et al., 2007). Lamothe et al. demonstrated that under simulated 

digestion, the antioxidant activity of tea (poly)phenols was reduced by 50% during 

transition from the stomach to small intestine. Rashidinejad et al. demonstrated that an 

interaction between tea (poly)phenols and proteins reduced the antioxidant activity 

(Rashidinejad et al., 2015). The presence of galloylated compound in flavan-3-ols as in 

ECG, EGC and EGCG possessed higher affinity for protein interactions compared with 

non-galloylated catechin and epicatechin (Le Bourvellec and Renard, 2012; Bordenave et 

al., 2014).  

Apart from proteins, tea (poly)phenols may also form interactions with starch when co-

ingested. In humans, co-ingestion of 452 µmol EGCG with glucose or white bread had 

little effect on (poly)phenols recovery in ileal fluid and urine (Auger et al., 2008). This 

suggests that the (poly)phenols did not form complexes in the stomach, being absorbed in 

the small intestine, metabolised in the liver and excreted in the urine. (Poly)phenols, when 

occurring at natural levels in flours or starches, may reduce starch digestibility by 

inhibiting enzyme activities of α-amylase or α-glucosidase.  
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Figure 1-9. Tea flavan-3-ol absorption metabolism in the human body (Henning et al., 
2008) 
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Figure 1-10. Structures of main (-)-epicatechin conjugates in plasma (Clifford et al., 2013) 

After absorption, tea (poly)phenols may undergo range of conjugations (Figure 1-9). 

Following conjugation, flavan-3-ols re-appear in plasma as glucuronidated, methylated and 

sulphated forms (Figure 1-10). Concentration of monomer flavan-3-ols (46 – 268 ng/mL) 

(1.2 g in 300 mL green tea) was higher in plasma when compared with large molecular 

weight theaflavins (700 mg theaflavins, ≈ 30 cups of black tea) (1 to 4.2 ng/mL) (Mulder et 

al., 2001; Lee et al., 1995). A lower concentration of theaflavins in the plasma suggests 

that it is not absorbed and may be further metabolised in the colon by the gut microbiota to 

phenolic acids (Chen et al, 2012; Manach et al., 2004) (this is discussed in the next section 

of this chapter).  

Glucuronidation is the first step of conjugation and the reaction is catalysed by the 

presence of glucuronosyltransferase in the intestinal mucosa of both the small intestine and 

the colon (Piskula and Terao, 1998). Specifically, the presence of uridine-5’-diphospho 

(UDP)-glucuronosyltransferases (UGT) in the endoplasmic reticulum catalyses the 

mobilisation of glucuronic acid from UDP-glucuronic acid to an acceptor compound 

(flavan-3-ol) with the formation of a β-D-glucoronide product (Manach et al., 2004; King 
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et al., 2000). Piskula and Terao demonstrated that 90% of flavan-3-ol was glucuronidated 

in the intestinal mucosa of rats and appeared in blood circulation as glucuronised form 

(Piskula and Terao, 1998). Sulphation occurs mainly in the liver by the action of 

phenolsulfotransferases that transfers sulfate from 3’-phosphoadenosine-5’-photosulfate to 

a hydroxyl group on (poly)phenols (Manach et al., 2004; Piskula and Terao, 1998). Within 

30 min, 50% of flavan-3-ols metabolites were detected in rats’ plasma as the sulphated 

form (Piskula and Terao, 1998). Methylation involves the transfer of methyl group from S-

adenosyl-L-methionine to (poly)phenols by the action of catechol-O-methyl transferase 

(Manach et al., 2004). The enzyme catechol-O-methyl transferase is present in various 

tissues but the highest amount was observed in the kidneys and the liver (Piskula and 

Terao, 1998). Forty percent of the plasma flavan-3-ols were present in the methylated 

form.  

Currently, there is limited study focus on the concentration of black tea (poly)phenols that 

reach the tissue. (Poly)phenols metabolism is complex (Figure 1-9) and it could not be 

ascertained whether conjugated or free (poly)phenols that will reach the target tissues. A 

study demonstrated that black tea catechins (EGC, EC, EGCG and ECG) accumulated in 

the kidney and lung of guinea pigs in the range of 13 – 45 ng/g tissue and 15 – 90 ng/g 

tissue, respectively after administration of black tea (5% w/v) (Ganguly et al., 2016). 

1.8.2 Colonic fermentation of tea (poly)phenols 

In humans, 50 to 70% of flavan-3-ols reached the colon after drinking a cup of green tea 

containing 634 µmol flavan-3-ols (Stalmach et al., 2010; Roowi et al., 2010). A similar 

study showed that 43 - 73% of flavan-3-ols passed from the small intestine to the large 

intestine after the ingestion of 452 µmol flavan-3-ols (green tea extract, Polyphenon E) 

(Auger et al., 2008). Free and conjugated tea (poly)phenols may be fermented in the colon. 

These (poly)phenols were metabolised by the colonic microbiota to phenolic acids and 

subsequently re-absorbed for further metabolism in the liver or excreted in the urine (8%) 

or faeces (Stalmach et al., 2009).  

In vitro incubation of (–)-epicatechin, (–)-epigallocatechin and (–)-epigallocatechin-3-Ο-
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gallate with faecal slurries produced ~ 40% of 4-hydroxyphenyl acetic acid, (–)-5-(3ʹ,4ʹ,5ʹ-

trihydroxyphenyl)-γ-valerolactone, urolithin A-3-O-glucuronide, and urolithin A-8-O-

glucuronide (Figure 1-11) (Roowi et al., 2010; Clifford et al., 2013). The human gut 

microflora metabolised tea (poly)phenols to 3-(3’-hydroxyphenyl)propionic and 3-(4’-

hydroxyphenyl)propionic acids (Goodwin et al., 1994; Phipps et al., 1998). Phenyl 

propionic acids might be further metabolised to hydroxyphenyl-γ-valerolactones and 

phenolic acids through ring fission at the central C-ring (Scheline, 1999; Hollman and 

Katan, 1997). These metabolites are reabsorbed from the colon and metabolised into 

benzoic acid by means of β-oxidation in the liver before being excreted as hippuric acid in 

urine (Meselhy et al., 1997; Curtius et al., 1976; Bennet et al., 1992). In general, hippuric 

acid production is expected to increase after the consumption of (poly)phenols-rich diets. 

However, hippuric acid could also derive from quinic acid, aromatic amino acids 

(tryptophan, tyrosine and phenylalanine) and also benzoic acid (naturally present or as in 

food preservatives) (Scheline, 1999). 
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Figure 1-11. Structures of phenolic acids from the catabolism of green tea flavan-3-ols 
(Clifford et al., 2013) 

In humans, black tea consumption resulted in hippuric acid (in urine) formation ranging 

from 334 to 1141 mg/day (Clifford et al., 2000). Another study showed that approximately 

45% of ingested flavan-3-ols (5.4 mmol/24 h) from tea consumption were converted to 

hippuric acid (2.3 mmol/ 24 h) (Mulder et al., 2005). Both black and green tea intake 

resulted in significant production of hippuric acid in urine with 3.8 mmol/24 h and 4.2 

mmol/24 h, respectively, when compared with control (Mulder et al., 2005). Therefore, 

both black tea and green tea intake had similar effects on urinary excretion of hippuric 

acid.  

1.8.3 Effects of tea intake on postprandial glucose and insulin levels 

Tea (poly)phenols are highly absorbable in the intestine, metabolised in the liver, reaching 
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the colon for colonic fermentation (43 – 73 % detected in the colon) and finally excreted in 

urine or faeces (Stalmach et al., 2009; Stalmach et al., 2010; Piskula and Terao, 1998).  In 

rats, the presence of black tea (poly)phenols in the small intestine inhibited α-amylase 

and/or α-glucosidase enzymic activity on the apical side of the enterocyte (Satoh et al., 

2015). Black tea extract at a dose of 62.5 and 250 mg/kg body weight (≈ nine cups of black 

tea) significantly reduced plasma glucose levels of experimental rats at 30 and 60 min after 

an OGTT (Satoh et al., 2015). This study demonstrated that black tea extract inhibited 

enzyme activity of α-glucosidase (inhibits conversion of disaccharides to 

monosaccharides) by 50% in the small intestine, resulting in reduced postprandial 

glycaemia (Satoh et al., 2015). Flavan-3-ols (ECG and EGCG) and theaflavin-3-3ʹ-di-Ο-

gallate are responsible for the inhibition of α-glucosidase activity. In rats, 5 mg/kg body 

weight of pu-erh tea (a type of black tea from the Yunnan province, China) reduced 

glucose levels by 7% at 30 min when compared with acarbose, a drug commonly used for 

glycemic control in type 2 diabetes (Deng et al., 2015). There was higher reduction (29%) 

when the tea dose was doubled to 10 mg/ kg body weight at the same time point.  

In vitro α-glucosidase activity is measured as a concentration that induces 50% enzyme 

inhibition (IC50). Lower IC50 value indicates higher inhibition towards enzyme activity. 

Koh et al. showed a higher inhibition of black teas on α-glucosidase activity when 

compared with green and oolong teas with IC50 of 0.56 mg/mL and 2.8 mg/mL, 

respectively (Koh et al., 2010). Moreover, theaflavin digallate showed a higher inhibition 

against α-glucosidase with IC50 = 165 μM when compared to theaflavin monogallate and 

teaflavins with IC50 = 310 and 400 μM, respectively. The authors postulated that the 

inhibition could be due to the presence of the galloyl (3,4,5-trihydroxybenzoyl) moiety. 

However, for flavan-3-ols, ECG showed a higher inhibition against α-glucosidase with 

IC50 = 330 μM when compared with EGCG with IC50 = 220 μM. The galloyl moiety is 

hydrophobic and this group can interact with a side chain of an amino acid of protein 

through non-covalent interaction (hydrogen bonding) and inhibit the enzyme activity (He 

et al., 2006). Oral administration of 10 mg/g body weight of theaflavin-3-Ο-gallate reduced 

plasma glucose levels in rats (Matsui et al., 2007). The observed effect was also related to 

the inhibition of α-glucosidase by theaflavin-3-Ο-gallate. The presence of a free hydroxyl 
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group at the 3ʹ- position of this flavan-3-ol was responsible for the inhibitory activity. 

These mechanisms might be further explained by the interaction of these flavan-3-ols with 

glucose transporters.  

The sodium-dependent glucose transporter (SGLT1) is involved in glucose uptake from the 

apical surface of the intestinal lumen (follows concentration gradient of facilitated 

diffusion), while GLUT2 (a protein glucose carrier system) is involved in the exit of 

glucose (and also other sugars, eg. fructose) to the basolateral surface (Roder et al., 2014). 

An in vitro study utilising rat intestine showed that ECG and EGCG at a dose of 1 mM 

reduced glucose uptake by 53 and 35%, respectively, when compared with control 

(Kobayashi et al., 2000). The presence of galloyl moiety on ECG and EGCG is important 

for blocking glucose uptake. Besides, flavan-3-ols lack a carbon-carbon double bond 

between C2 and C3 of C-ring, and hence have less electron density. An in vitro system 

showed that the weaker electron density at C-ring was associated with inhibitory activity of 

flavan-3-ol with salivary α-amylase (Bandyopadhyay et al., 2012). 

In vitro and animal studies showed positive effects of tea (poly)phenols on glucose 

homeostasis. However, the doses used in these studies are far higher than daily human 

consumption and this raises questions regarding their routine applications. Moreover, in 

human studies, there was heterogeneity in the methodology and hence the magnitude of 

effects differs from one study to the other. Human studies used different types of teas 

(green or black), dosages (e.g. 1 - 3 g in 250 - 300 mL hot water), with different 

formulations (eg. infusion, capsule, powder). One study used tea extract in powder form 

and participants were given a capsule that is equivalent to 3.5 cups.  

Of the eight intervention studies, three showed a reduction in postprandial glucose 

response (Table 1-12). Acute tea supplementation either in the form of powder, extract or 

beverage reduced postprandial glucose response in the range of 18 to 52% (absolute 

response versus control) (Bryans et al., 2007; Park et al., 2009; Tsuneki et al., 2004). 

However, the reduction in glucose response was associated with increased insulin 

responses (or hyperinsulinaemia). GTE supplementation containing 500 mg EGCG 

reduced glucose levels at 30 and 60 min but increased glucose at 120 min by 29 % when 
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compared with control. The author suggests that GTE reduces early glucose (30 and 60 

min) by decreasing glucose entering the intestine, while the presence of gallated catechin 

in blood circulation possesses a hyperglycaemic effect later at 120 min, by blocking 

glucose uptake into the tissues (Park et al., 2009). The author supported the results of an in 

vitro study, showing that cell lines treated with 1 and 10 µM EGCG (gallated catechin) 

decreased glucose (2-deoxy-[3H]) uptake into hepatocytes (HepG2), adipocytes (3T3-L1), 

and beta cells (INS-1) (Park et al., 2009). 

Three studies showed that tea supplementation did not reduce glucose response nor did it 

affect insulin release (Table 1-12). GTE at the levels of 0.4% or at high dose (3 capsules 

equivalent to 3.5 cups) was not associated with a reduced postprandial glucose response 

(Venables et al., 2008; Coe and Ryan 2016). Another one study showed how tea intake as a 

beverage had no effect on postprandial glucose response (Louie et al., 2008; Aldughpassi 

et al., 2008). These studies differed in brewing time (30 seconds to 3 min), and this time 

might be too short to efficiently extract the (poly)phenols (Sandip et al., 2013). Sandip et 

al. and Molan et al. showed that a minimum of 10 min is required to achieve maximum 

(poly)phenols content and antioxidant activity (Sandip et al., 2013; Molan and Meagher, 

2009). Other factors such as extraction temperature, ratio of tea to extracting water and 

stirring might also have an impact on (poly)phenol content (Molan and Meagher, 2009). 

Moreover, these studies were conducted among healthy volunteers who may have an 

optimum dietary status, in which supplementation with tea may have no further effects 

(Cooper et al., 2008). One study showed a high dose of green tea (9 g in 300 mL) as a hot 

beverage increased glucose response compared with control (Josic et al., 2010). Possible 

explanations could be: 1) There is an intra individual variations in the metabolism and 

bioavailability of catechins in humans (Higdon and Frei, 2003. 2) In vitro work showed the 

presence of gallated catechin in the circulation increases blood glucose by blocking normal 

glucose entry into the tissues and hence secondary hyperinsulinaemia. The presence of 

gallated catechin in the intestinal lumen decreased glucose entry into the circulation and 

produced a lower blood glucose response (Park et al., 2009). 
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1.9 Effects of drinking tea on perceived satiety   

A meta-analysis study showed that green tea has small positive effects on weight loss and 

weight management (Hursel et al., 2009). Tea catechin intake is associated with reduced 

body weight or maintained body weight, after a weight loss of ~1.3 kg (95% CI: -2.05, -

0.57 kg). A summary of acute studies investigating the effects of tea on perceived satiety 

and energy intake in healthy subjects is shown in Table 1-13. Tea drinking is generally 

associated with an increase in perceived satiety and reduced energy intake at lunch. 

However, not all studies showed a positive outcome regarding weight loss and 

management, due to the differences in study design, ethnicity, types of tea mixtures, and 

concentrations of catechins (Hursel et al., 2013). 

In a randomised controlled trial (n = 14), Josic et al. showed that green tea drinking (9 g in 

300 mL) increased perceived satiety and fullness (Josic et al., 2010). Reinbach et al. 

studied the effects of green tea drinking at breakfast, lunch and dinner (Reinbach et al., 

2009). They found that 350 mL of tea drinking was not associated with energy reduction at 

dinner (measured ad libitum). However, tea drinking reduced perceived hunger by 31% 

when compared with control. The difference in results between this study and the one by 

Josic et al. might be due to levels of catechin content (600 vs 200 mg, respectively). 

Studies among healthy older subjects showed that green tea supplementation for 12 weeks 

did not have significant effects on resting energy expenditure and body composition 

(Janssens et al., 2015).  

A green tea beverage with soluble fibre dextrin reduced energy intake by 10% at lunch, 

and reduced perceived hunger by 24% when compared with soluble fibre alone (Carter and 

Drewnowski, 2012). As described in Section 1.8.2, tea (poly)phenols are absorbable in the 

small intestine and may pass to the colon for colonic fermentation and produce phenolic 

acids. Soluble dextrin is highly fermentable in the colon and produces SCFA (particularly 

propionate) and may increase short-term satiety in humans (Guerin-Deremaux et al., 2011). 

In humans, the presence of flavan-3-ols inhibits catechol-O-methyl transferase (COMT), 

an enzyme responsible for cleaving norepinephrine in the synaptic cleft. It has been shown 
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that norepinephrine is a neurotransmitter responsible for the satiety signal in the brain and 

also plays a role in the control of thermogenesis and fat oxidation (Wellman, 2000; Dulloo 

et al., 2000). Using a respiratory chamber, Dulloo et al. demonstrated that a GTE capsule 

containing 90 mg EGCG intake significantly increased 24-h energy expenditure (EE) by 

3.5% when compared with a placebo (Dulloo et al., 1999). This study also showed that the 

group fed with the GTE capsule had lower carbohydrate oxidation and higher fat oxidation 

when compared to the placebo, suggesting that there is a shift in substrate utilisation in 

favour of fat. GTE supplementation increased 24-h norepinephrine when compared with 

the placebo group. However, it must be noted that this is a pharmacological approach and 

may not be relevant to satiety study. 

Using indirect calorimeter, Komatsu et al. demonstrated that oolong and green tea 

increased EE by 10% and 4% when compared with water (Komatsu et al., 2003). This 

percentage difference in EE may be due to the higher content of high molecular weight 

(poly)phenols TR and TF in oolong tea when compared with green tea. The cumulative 

increases of EE for 120 min significantly increased from 10% and 4% after the 

consumption of oolong tea and green tea, respectively. In a 12-week supplementation 

study, taking 9 capsules of GTE containing 1.36 g flavan-3-ols/day had no effects on 

resting energy expenditure (Janssens et al., 2015). Similar effects were obtained from a 

study regarding the consumption of tea capsules containing 1.21 g flavan-3-ols/day 

(Diepvens et al., 2006). Despite differences in dosage, tea may have positive short-term 

effects on energy expenditure.  
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Table 1-11. Acute human studies of teas on postprandial glucose and insulin levels in healthy subjects. 

 
Study design 

 
Subject 

 
Study duration 

 
Dose 

 
Parameters 

 
Major outcomes 

 
Reference 
 

 
Non 
randomised, 
non blind 

 
Healthy 
subjects, n = 22 
(age and gender 
not specified) 
 

 
2 h postprandial 

 
Green tea powder 
(1.5 g in 250 mL 
hot water) 
containing 108 mg 
total catechins 
 

 
Plasma glucose 
and insulin (OGTT 
challenge) 
 

 
↓ glucose at 30 min (17.8%) 
and 120 min (37.81%) 

 
(Tsuneki et al., 
2004) 

Randomised, 
crossover, non 
blind 

Healthy 
subjects, n = 14 
(7M/7F), age 27 
± 3 years  
 

2 h postprandial Green tea (9.0 g in 
300 mL hot water 
for 3 min) 
containing 202 mg 
catechin, taken with 
bread containing 50 
g available 
carbohydrate 
 

Plasma glucose 
and insulin (OGTT 
challenge) 

↑ glucose at 120 min (63.8%) 
Insulin unchanged 

(Josic et al., 2010) 

Non-
randomised, 
non blind 

Healthy, n = 6 
(all males), age 
20 - 29 years  

2 h postprandial GTE containing 500 
mg EGCG 

Plasma glucose 
and insulin 

↓ glucose at 30 min (23.0%) 
and 60 min (48.3%), but 
↑ increased glucose at 120 
min (29.1%) 
↑ insulin  

(Park et al., 2009) 

Non 
randomised, 
crossover 

Healthy 
subjects, n = 12 
(all males), age 
18 to 35 years 

2 h postprandial GTE (3 capsule), 
containing 340 mg 
total (poly)phenols 
and 136 mg 

Plasma glucose 
and insulin (OGTT 
challenge) 

Glucose unhanged 
↓ insulin (16%) 
↑ insulin sensitivity index* 
(13%) 

(Venables et al., 
2008) 
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EGCG), (equivalent 
to approximately 
3.5 cups green tea) 
 

Randomised, 
crossover 

Healthy 
subjects, n = 16 
(4M/12F), age 
36 ± 2 years 

2.5 h meal test 
(postprandial) 

Black tea, 1 g in 
250 mL hot water, 
containing 350 mg 
TP, 39 mg flavan-3-
ols and 21 mg 
theaflavins 
 

Plasma glucose 
and insulin (OGTT 
challenge) 

↓ glucose (52%) in OGTT at 
2 h  
↑ insulin at 90 min  

 

(Bryans et al., 
2007) 

Non 
randomised, 
crossover 

Healthy 
subjects, n = 10 
(6 F/4 M), age 
31 ± 10 years 

2 h postprandial Black tea, 1 tea bag 
in 250 mL hot water 
for 30s 
 
Taken with bread 
containing 50 h 
carbohydrate  
 

Plasma glucose 
response and 
OGTT challenge 

No effect on postprandial 
blood glucose but reduced 
variability in blood glucose 
reading compared to water 

(Aldughpassi et 
al., 2008) 

Non 
randomised, 
crossover 

Healthy 
subjects, n = 8 
(5 M/ 3 F), age 
ranging from 
26.3 ± 1.8 years 
 

2 h postprandial Black tea, 1 tea bag 
in 250 mL of hot 
water for 3 min 

Plasma glucose 
and insulin 
response 

No significant changes in 
glucose and insulin responses 

(Louie et al., 
2008) 

Randomised, 
crossover 

Healthy subject 
and slightly 
overweight, n = 
13 (9 F/4 M), 
age 20 - 46 
years 

3 h postprandial 0.4 % GTE in bread 
containing 50 g 
available 
carbohydrate  

Plasma glucose 
and insulin 
response 

No significant changes in 
glucose and insulin responses  

Coe and Ryan, 
2016 

OGTT challenge – oral glucose tolerance test with 75 glucose, AUC: area under the curve, TP: total (poly)phenols, EGCG: epigallocatechin gallate, GTE: 
green tea extract, Insulin sensitivity index: mathematical approach to estimate insulin sensitivity based on fasting plasma glucose and fasting serum insulin. 
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Table 1-12. Acute human studies of teas on perceived satiety and energy intake in healthy subjects. 

AUC – area under the curve (cm.min), * (asterisk) - comparisons were made with control drinks (without tea). 

 
Study design 
 

 
Subject 

 
Study duration 

 
Dose 

 
Parameters 

 
Major outcomes* 

 
Reference 
 

Randomised, 
crossover, non 
blind 

Healthy subjects, n 
= 14, 7 male and 7 
female, 27 ± 3 
years  
 

2 h postprandial Green tea (9.0 g in 300 
mL hot water for 3 
min) containing 202 
mg catechin, taken 
with bread containing 
50 g available 
carbohydrate 
 

Hunger, fullness, 
desire to eat 

↑ satiety 
↓ desire to eat 
↑ fullness 
↑ AUC fullness at 0-90 min 
and at 0 – 120 min 

(Josic et al., 
2010) 

Randomised, 
crossover, non 
blind 

Healthy subjects, n 
= 27 (10 male and 
17 female), age of 
26.9 ± 6.3 years  
 

3 times per day at 
breakfast, lunch and 
dinner 

Green tea (350 mL) 
(598.5 mg catechins, 
77 mg caffeine) 
 

Energy intake, 
perceived satiety 

No effects on energy (dinner) 
↑ fullness 
↓ hunger 

(Reinbach et al., 
2009) 

Non-
randomised, 
non blind 

Healthy subjects, n 
= 74 (30 males, 44 
females), 30.4 ± 7.8 
years  

3 times at 8:00 am, 
10:00 an and 12:00 
pm along with meal 

Green tea extract (355 
mL) containing 167 
mg catechins (10 g 
soluble dextrin fibre 
and 100 mg caffeine) 

Energy intake, 
perceived satiety 

↓ energy intake (lunch) 
↓ hunger 
↓ desire to snacking 
 

(Carter and 
Drewnowski, 
2012) 

Randomised, 
crossover 

Healthy and 
slightly overweight, 
n = 13 (9 female 
and 4 male), age 
range 20-46  
 

3 h postprandial 0.4 % GTE in bread 
containing 50 g 
available carbohydrate  

Plasma and 
insulin response 

No significant changes in 
satiety measures  

Coe and Ryan, 
2016 
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In this chapter, in vivo and in vitro studies utilising β-glucan or black tea showed promising 

health benefits (reducing postprandial glucose and insulin responses). Either β-glucan or 

black tea have been used for the development of functional foods (cake, bread and biscuit). 

However, there may be additional benefits when these two functional ingredients are added 

together in a product such as bread. β-Glucan is a viscous soluble fibre that might 'trap' 

some of the (poly)phenols during bread making. These breads might reduce postprandial 

glucose and insulin responses more than if only one functional ingredient was added. After 

digestion, some of the undigested (poly)phenol-linked β-glucan moved to the colon and 

then fermented to SCFA and particularly propionate which has the potential to increase 

satiety.  

1.10 Hypothesis and aim 

Previous studies showed the benefits of β-glucan and black tea on reducing postprandial 

glucose and insulin responses. However, it is not known whether there is a synergistic 

effect if these two ingredients are added together. On this basis, it was hypothesised that 

the bread can be developed using these two ingredients and has similar palatability 

compared with white wheat bread. 

The overall aim of this research project is to study the effects of combining β-glucan 

and/or black tea in bread on starch functionality (in vitro starch hydrolysis), antioxidant 

properties and fermentability (mimicking human colon). One human study will be carried 

out to determine the palatability, perceived satiety and the effects on second energy intake 

at lunch. A second human study will focus on the effects of having this bread at breakfast 

on postprandial glucose, insulin and gut hormones.  
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2 Chapter 2: General materials and methods 
 

This chapter describes the materials used for bread making and all individual analysis for 

the studies in Chapter 3, 4 and 5 (e.g. proximate analysis, in vitro antioxidant, in vitro 

batch fermentation, glucose and insulin assays, appetite hormone assays). Detail on study 

design, sample size calculation, inclusion and exclusion criteria, subjects’ recruitment, 

study protocol and statistical analysis have been described in Chapters 3, 4 and 5.  

OUTLINE: 

The studies in this thesis are described as follows (Figure 2-1): 

Study one: Development of functional breads with β-glucan and/or black tea, and 

determination of starch functionality, antioxidant activity and short-chain fatty acids 

production (Chapter 3). 

Study two: Effects of functional breads on palatability, perceived satiety and energy intake 

at lunch (Chapter 4). 

Study three: Effects of functional breads on blood glucose, insulin responses, and gut 

hormones (Chapter 5). 
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Figure 2-1. Flow chart of general methodology for studies 1, 2 and 3 
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2.1 Study one: Bread development, starch functionality, antioxidant activity and 
short-chain fatty acid production from in vitro fermentation 

2.1.1 Bread development 

2.1.2 Materials for bread making 

White wheat flour and easy bake yeast were purchased from Allinson (Peterborough, 

United Kingdom), unsalted butter from Morning Fresh (Caerphilly, United Kingdom), 

dried skimmed milk powder from WM Morrisons Supermarkets PLC (Bradford, United 

Kingdom), barley β-glucan concentrate (GlucagelTM) (containing ≥ 75% β-glucan, < 18% 

carbohydrate, < 10% moisture, 5% protein and other nitrogenous compounds, < 2% lipid 

and < 2% ash (according to manufacturer data) (DKSH, Quai du Rhône, France) and 

freeze-dried pure tea granules from Tata Global Beverages GB LTD (containing 452.17 ± 

18.93 mg gallic acid equivalents/100 mL) (Greenford, United Kingdom). Black tea (2.5g 

freeze-dried) was added to 500 g of flours and one portion of black tea (BT) and black tea 

plus β-glucan (βGBT) bread contained 30% of (poly)phenols which would be ingested 

from a cup (250 mL) of black tea (Wang et al., 2004; Rothwell et al., 2012). 

2.1.3 Bread preparation 

Breads were prepared using a standard baking recipe (Burton-Freeman, 2010). All 

ingredients (Table 2-1) were weighed (in triplicate) on a digital kitchen scale (Brabanita, 

UK) into a baking pan and mixed manually before being placed in a domestic bread maker 

(Morphy Richards Ltd, South Yorkshire, UK). Breads were prepared using the 

Chorleywood Bread Process (Chamberlain et al., 1966). The programme of the baking 

times are as follows: kneading for 10 min, 1st proofing for 20 min, kneading for 15 min, 2nd 

proofing for 40 min and baking for 65 min (total time = 2 h 30 min). The addition of β-

glucan competed with gluten for water; therefore, more water was needed to compensate 

for water uptake by β-glucan (Jacobs et al., 2008). Fully developed bread was allowed to 

cool for a total of 60 min, which included 30 min in the bread pan and 30 min at room 

temperature. The breads were individually weighed and sliced into 1.5 cm thickness. All 

breads were analysed in triplicate and used for each analysis. The structure of the breads 

was visualised using a digital still camera at 4x power (Sony Cybershot, Sony Corp, 

Japan). Fresh breads were used for each study. 
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Table 2-1. Ingredients for making the test breads 

 
Ingredient (g) 

 
White bread 
(WB) 

 
Black tea 
bread (BT) 

 
β-Glucan 
bread (βG) 

 
β-Glucan + 
black tea bread 
(βGBT) 
 

 
Strong white wheat 
flour 

 
500.0 

 
500.0 

 
500.0 

 
500.0 

 
Sodium chloride (NaCl) 

 
8.0 

 
8.0 

 
8.0 

 
8.0 

 
Sugar  

 
6.0 

 
6.0 

 
6.0 

 
6.0 
 

Dehydrated yeast 8.0 8.0 10.0 10.0 
 

Butter (unsalted) 6.0 6.0 6.0 6.0 
 

Skimmed milk powder 
 

7.0 7.0 7.0 7.0 

β-glucan 0.0 
 

0.0 35.0 35.0 

Black tea 
 

0.0 2.5 0.0 2.5 

Water (mL) 
 

300 300 540 540 

Total 835.0 837.5 1112.0 1114.5 
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2.2 Proximate analysis 

2.2.1 Protein content (Kjedahl method) 

The Kjedahl method was developed by a brewer called Johann Kjeldahl in 1883 

(McClements, 2003). The amount of protein is calculated from the amount of nitrogen 

concentration in the food. This method can be divided into three major steps, namely, 

digestion, neutralisation and titration.  

1) Digestion: Preweighed sample was added into digestion flask with the presence of 

sulphuric acid (oxidising agent) and catalyst (potassium sulphate, copper and selenium). 

The digestion was initiated by heating to 450°C which, converts any nitrogen in the food 

into ammonia.  

2) Neutralisation:  Sodium hydroxide is then added to ammonium sulphate, which 

converts the ammonium sulphate into ammonia gas. The ammonia gas is then liberated and 

moves out to the receiving flask containing boric acid. At low pH, ammonia gas will be 

converted into the ammonium ion and at the same time boric acid converts to borate ion. 

3) Titration: The nitrogen content is then estimated via the formation of ammonium 

borate with hydrochloric acid in the presence of an indicator (bromocresol green) to 

determine the end-point reaction. 

The concentration of hydrogen ions (in moles) required to reach the end-point is equivalent 

to the concentration of nitrogen in the original food. In this study, one gram of bread was 

weighed in a digestion flask for protein analysis. The sample was digested at 450°C for 1 h 

using Foss Tecator Digestor (Foss Tecator AB, Höganäs, Sweden), then distilled and 

titrated in an automated Kjeltec 2300 Analyzer (Foss Tecator AB, Höganäs, Sweden). A 

specific nitrogen conversion factor for bread (Jones factor) (N x 5.70, for high protein 

content food) was used for the calculation of protein content.  

2.2.2 Fat content (solvent extraction, Soxhlet method) 

Fat content was estimated using a semi-continuous solvent extraction method (Soxhlet) 

(McClements, 2003b). In this method, one gram of dried and ground sample was weighed 
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into a porous thimble and carefully loaded into a Soxtec 2050 Automatic System (Foss 

Analytical AB, Höganäs, Sweden). This system consists of an extraction chamber, a flask 

and a condenser. This extraction chamber is located above the flask containing 70 mL 

petroleum ether and below a condenser. The flask was heated to 55°C, which allowed the 

evaporation of the solvent which then moves to the chamber where it is converted into a 

liquid form that fills into the extraction chamber containing sample. The solvent extracts 

the fat as it passes through the sample and carries it into the flask. The fat remains in the 

flask because of its low volatility. This process continues for 6 h and the flask was 

removed and evaporated to dryness. All analyses were done in triplicate and nutrient 

contents are expressed as g/100 g fresh weight. 

2.2.3 Resistant starch (RS) and solubilised (digestible) starch 

Resistant starch (RS) is the starch and starch degradation products that are not absorbed in 

the small intestine (Asp and Bjorck, 1992). Resistant starch (RS) was determined using a 

Resistant Starch kit (Megazyme International Wicklow, Ireland, AOAC Method 2002.02 

and AACC Method 32-40, www.megazyme.com). This kit allows robust and reliable 

measurement and reflects in vivo conditions. 

Non-resistant starch (solubilised starch) quantification is based on the determination of 

glucose in a free liquid after enzymic digestion with pancreatic α-amylase and 

amyloglucosidase (AMG) (Figure 2-2). Resistant starch (RS) was measured in the pellet 

after hydrolysis with potassium hydroxide (KOH) (Figure 2-3). This solution was 

neutralised with acetic acid followed by starch hydrolysis to glucose by AMG. D-glucose 

content in both non resistant and resistant starch (RS) starch was measured with 

oxidase/peroxidase reagent (GOPOD).  
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Figure 2-2. Flow chart for hydrolysis and solubilisation of non-resistant starch. AMG, 
amyloglucosidase 

Two millilitres of 2 M KOH were added to each tube to re-suspend the pellets and stirred 

using a magnetic stirrer for 20 min in an ice water bath (Figure 2.3). Thereafter, 1.2 M 

sodium acetate buffer (8 mL; pH 3.8) was added to each tube and incubated with 0.1 mL of 

AMG (3300 U/mL) at 50°C for 30 min. An aliquot of the solution was transferred into 

glass test tubes and 3.0 mL of glucose oxidase/peroxidase (GOPOD) reagent added, 

incubated at 50°C for 20 min and absorbance measured at 510 nm against the reagent 

blank (BioMate 3, Thermo Electron Corporation, Madison, USA).  
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Figure 2-3. Flow chart for the measurement of resistant starch (RS).  

GOPOD, glucose oxidase/peroxidase reagent 

The supernatant obtained above (Figure 2-2) was pooled in a volumetric flask and 0.1 mL 

of this was incubated with 10 μL of dilute AMG (300 U/mL) solution in 100 mM sodium 

maleate buffer (pH 6.0) for 20 min at 50°C. Finally, 3.0 mL of GOPOD reagent was added, 

incubated at 50°C for 20 min and absorbance read at 510 nm against a reagent blank.  
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All analyses were done in triplicate and results are expressed as g/100 g fresh weight. 

Resistant starch and solubilised starch were calculated as follows: 

 = 𝛥 A x F x 10.3
0.1

𝑥 1
1000

𝑥 100
𝑊

𝑥 162
180

 

 =  𝛥 A x F
W

𝑥 90 

Where: 

 

2.2.4 β-Glucan content 

A mixed-linkage β-Glucan kit (McCleary method) from Megazyme International Ireland 

(Wicklow, Ireland) was used for determination of β-Glucan. This assay is based on the 

breakdown of β-(1→3) and β-(1→4) linkages of β-Glucan. In principle, samples are first 

suspended and hydrated in a buffer solution of pH 6.5 followed by incubation with purified 

lichenase enzyme (Figure 2-4). An aliquot of the filtrate is then hydrolysed to D-glucose 

with purified β-glucosidase. The D-glucose formed is measured using glucose-peroxidase 

(GOPOD) reagent. All analyses were done in triplicate and nutrient contents are expressed 

as g/100 g fresh weight. β-Glucan content was calculated as described above in Section 
2.2.3. The volume correction used was 9.4 mL instead of 100/0.1. 

Δ A   = absorbance (reaction) read against the reagent blank 
F  = conversion from absorbance to micrograms (100 μg of D-glucose divided by   

absorbance of this 100 μg of D-glucose) 
1/1000   = conversion from micrograms to milligrams 
W  = fresh weight   
100/W  = factor to present RS (or solubilised starch) as a percentage of sample weight 
162/180  = factor to convert from free D-glucose, as determined, to anhydro-D-glucose as 

occurs in starch  
10.3/0.1  = volume correction (0.1 mL taken from 10.3 mL) for samples containing 0 - 10% 

RS where the incubation solution is not diluted and the final volume is 10.3 mL) 
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Figure 2-4. Flow chart for the measurement of β-glucan.  
GOPOD, glucose oxidase/peroxidase reagent 

2.2.5 Starch hydrolysis of breads 

Bread samples were grounded using a kitchen blender (Kenwood BL335, Havant, United 

Kingdom). The homogenised samples were used for the determination of starch hydrolysis. 

Starch hydrolysis was determined using a commercially available assay (Megazyme 

International, Wicklow, Ireland). Breads containing 50 mg available carbohydrate 

(resistant starch plus solubilised starch) were added to 4 mL pancreatic α-amylase (3 

Ceralpha units/mg, 5 mg/mL). Tubes were incubated at 37°C and the reaction was stopped 

by adding 0.7 mL of ethanol (99% v/v) at different time points (0, 10, 30, 60, 90, 120, 150 

and 180 min). Sodium acetate buffer (100 mM, pH 4.5) was added and incubated with 10 

μl of dilute AMG solution for 20 min at 50°C. Finally, 3 mL of GOPOD reagent was 
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added, incubated for 20 min at 50°C and absorbance read at 510 nm against a reagent 

blank. The glucose content was calculated using Megazyme-Calc, a calculation sheet 

provided by the manufacturer. Glucose content was converted to starch using a 0.9 

multiplying factor. Results are expressed as percentage (%) of total hydrolysed starch at 

different times.  

2.2.6 Microscopic study of breads structures 

Breads were sampled from the centre of the bread as this is more uniform area compared 

with the outer edge. The bread samples were processed using a standard protocol of 70% 

alcohol (1 h), 90% alcohol (1 h), absolute alcohol (6 h 30 min), xylene (2 h 30 min) cycles 

and fixed in paraffin. The sections were cut into 2.5 µm thickness with a microtome 

(Shandon Finesse E, Thermo Scientific, Runcorn, United Kingdom) and dried in an oven 

for 1 h at 60°C. The bread sections were stained with Lugol’s iodine solution [(0.33% I2, 

w/v) and 0.67% KI (w/v)] (Sigma Aldrich, Steinheim, Germany) for 2 min followed by 

0.1% (w/v) Light Green (Gurr, BDH Ltd., Poole, United Kingdom) for another 2 min. The 

slides were visualised under light microscopy at a magnification power of 40x. Under light 

microscopy, amylopectin stains brown, amylose stains dark brown (appears in the centre of 

starch) and gluten stains light green. 

2.2.7 In vitro digestion model 

This in vitro digestion model was based on a pH controlled system (oral, gastric, small 

intestinal digestion). A collaborative study which reviewed the models available showed 

that there is no direct consensus on which digestion conditions will suit all underlying 

research questions but there is a set of conditions that are practical and close to the 

physiological environment (Minekus et al., 2014). The in vitro digestion method was used 

to remove starch and protein from breads prior to the determination of antioxidant activity 

and in vitro batch fermentation model (Aura et al., 1999). Dialysis tubing with a molecular 

cut-off point of 500-1000 (Spectrum Laboratories, California, USA) was used to remove 

digested products from the digestive mixtures. The resulting retentates were carefully 

transferred into a tube and freeze-dried prior to in vitro fermentation. The simulated in 

vitro digestion was divided into three phases: mouth, stomach, and small intestinal phase 
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(Figure 2-5).  These are described below along with a summary of the conditions they are 

mimicking. 

2.2.7.1 Mouth 

The digestion of starch begins in the mouth with the mechanical force of 300-1000 N via 

chewing (Guyton, 1996a). At an average pH of 6.3 to 7.0, salivary α-amylase hydrolyses 

starch into maltose, maltotriose and α-limit dextrins (Aframian et al., 2006). However, only 

5% of starch digestion occurs in the mouth and varies depending on the food structure. 

In this study, samples containing 50 mg of available carbohydrate (resistant starch plus 

solubilised starch) (sample preparation described above in Section 2.2.5) were weighed 

into 100 mL beaker. Ten millilitre of distilled water was added followed by the addition of 

7 mL sodium chloride (0.85%, w/v). α-Amylase (50 U/sample) (from Aspergillus oryzae, 

Sigma-Aldrich, Dorset, United Kingdom) in 0.02 M sodium phosphate buffer (pH 6.9) was 

added to the sample and incubated at 37°C for 5 min.  

 

Figure 2-4. In vitro digestion procedure mimicking human digestion (Aura et al., 1999) 
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2.2.7.2 Stomach 

The release of the hormone gastrin stimulates secretion of the enzyme pepsinogen. 

Pepsinogen is in non-active form and is activated to pepsin by hydrochloric acid and the 

pepsin then activates further pepsinogen. The optimum pH for pepsin is between 1.8 to 3.5. 

α-Amylase is inactive at low pH and hence limits carbohydrate digestion. Gastric 

movements disintegrate the stomach contents to produce semisolid chyme (Guyton, 

1996a). 

In this study, the pH of the stomach was simulated by hydrochloric acid (0.15 M, 3.0 mL, 

pH 2.5). Pepsin (0.7 mL, 2 mg/mL in 0.02 M HCl) (Sigma-Aldrich, Dorset, United 

Kingdom) was added and incubation was carried out at 37°C for 2 h in a shaking water 

bath (100 rev/ min). The residence time in the stomach varies from 30 min to 2 h 

depending on meals and particle size (Muir and O’dea, 1992; Lebet et al., 1998).   

2.2.7.3 Small intestine (duodenum and ileum)  

pH in the duodenum and distal ileum is between 6.2 to 7.9 (Gee et al., 1999). The release 

of bicarbonate ion and bile salts from the biliary gland of the liver and is stored in the gall 

bladder to be secreted during meal. The presence of bicarbonate ion (from pancreatic 

secretion) helps to neutralise the acid from the stomach and increases pH in the duodenum 

while bile salts play a major role in fat digestion (Guyton, 1996b). Available starch is 

digested rapidly once the chyme enters the duodenum and mixes with pancreatic juice and 

bile. Pancreatic juice contains multiple enzymes for protein (trypsin, chymotrypsin and 

carboxypeptidase) fat (lipase, co-lipase, cholesterol esterase and phospholipase) and 

carbohydrate digestion (amylase). Most starch is digested by pancreatic amylase and 

absorbed in the first 20% of the small intestine. The residence time of food in the 

duodenum and ileum is between 3 and 6 hours, during which most digestible nutrients are 

digested and absorbed. 

In the model, the pH was adjusted to 6.5 to 7 using 6 M sodium hydroxide (NaOH). Bile 

acid (2.7 mL, 150 mg/mL in 0.15 M sodium bicarbonate) and pancreatin (mixture of 

amylase, proteases and lipase) (2.7 mL, 75 mg/mL in 0.15 M sodium bicarbonate) (Sigma-
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Aldrich, Dorset, United Kingdom) were then added to the solution and incubated for 

another 3 h at 37°C (100 rev/ min).  

Absorption from the small intestine was simulated in the in vitro digestion model using a 

dialysis tube with a small molecular weight (MWCO 500-1000 dalton) cut-off, 35 cm long 

with flat width of 31 mm and diameter of 20 mm (Biotech Cellulose Ester membrane 

MWCO, Spectrum Laboratories, California, USA). This allows removal of digested 

components (e.g. monosaccharide, disaccharides, polyphenol monomers) and retains the 

non-digestible carbohydrates in the retentates. After 3 h of incubation, the samples were 

filled into a dialysis tube and sealed with a clasp. The tube was dialysed in 2 L of distilled 

water (pH 7) at 37°C for 6 h. The digestive products were freeze-dried for 48 h and used 

for in vitro fermentation and antioxidant activity.  

2.2.8 Determination of total (poly)phenols 

Total polyphenol content was determined using a Folin-Ciocalteu assay, which measures 

formation of blue-green complexes between phenolic compounds and Folin-Ciocalteu’s 

reagent (Singleton et al., 1999). Firstly, 20 μL of appropriately diluted samples (1:1) were 

added to 100 μL of diluted Folin-Ciocalteu reagent (Folin: water, 1:10) and 70 μL of 

distilled water. The mixture was then kept at room temperature for 5 min. Subsequently, 70 

µL of 6% (w/v) Na2CO3 was added to it. The solution was left to stand at room 

temperature for 90 min. Absorbance was read at 765 nm using a spectrophotometer 

(Multiskan® Spectrum, Thermo Labsystems, Vantaa, Finland). Gallic acid in the range of 

50-1000 μg/mL was used as the standard. Stock gallic acid solution (1000 µg/mL) was 

prepared in 10% (v/v) methanol. Total (poly)phenols are expressed as mg gallic acid 

equivalent per g retentate. 

2.2.9 Determination of ferric reducing ability of plasma (FRAP) assay 

Total antioxidant activity was measured using the ferric reducing ability of plasma (FRAP) 

assay (Benzie et al., 1996); modified for a measurement on a 96-well plate. This method is 

relatively inexpensive, highly reproducible and simple to prepare. 

In principle, the FRAP assay measures the change in absorbance at 593 due to the 
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formation of blue coloured complex formed between ferrous ion (Fe2+) and TPTZ. Prior to 

this, colourless ferric ion (Fe3+) was oxidised to ferrous ion (Fe2+) by the action of electron 

donating antioxidants. Freshly prepared FRAP reagent was warmed at 37 ºC in a water 

bath which gives the initial reading (Ainitial; t = 0 min). This reagent was prepared by 

mixing 10 mM TPTZ in 40 mM HCl, 20 mM FeCl3 and 0.3 M acetate buffer (pH 3.6) in 

the ratio of 1:1:10. For sample, 100 µL of each fraction were added to 100 µL of deionised 

water and 1.8 mL of FRAP reagent. The mixture was incubated at 37 ºC for 4 min. 

Absorbance was read at 593 nm using a spectrophotometer (Multiskan® Spectrum, 

Thermo Labsystems, Vantaa, Finland). FRAP value was calculated using the following 

equation:  

 

   Afinal     - Final absorbance at 532 nm (4 min)  

Ainitial - Initial absorbance at 532 nm (0 min) 

A reducing ability was calculated with reference to the reaction of FeSO4.7H2O (100 – 

1000 μmol) and expressed as mol Fe2+ equivalents per g retentate. 

2.2.10 In vitro batch fermentation  

The colon has three main functional regions: 

1) Caecum and proximal colon as the main site for carbohydrate fermentation 

2) Transverse colon as the main site for absorption 

3) Distal colon and rectum acts the reservoir of the residual waste material for 

excretion, water and SCFA absorption and protein fermentation (Edwards et al., 

1997). 

Fermentation and production of high amounts of SCFA takes place to a greater extent in 

the proximal ascending colon compared to the descending distal colon (Cummings et al., 

1987). The SCFA reduce the pH in the ascending colon to 5.6 and increases the pH of the 

descending colon to 6.6. This buffering is due the absorption of SCFA and secretion of 

HCO3
−. Nutrient content is depleted as the contents move from proximal to distal colon. 

FRAP value   =   Afinal -  Ainitial 
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Nitrogenous compounds account for 6% of dry matter in all regional colonic content. 

Carbohydrate content decreases by half from 20% in the caecum to 11% in the sigmoid 

colon (Cummings and Macfarlane, 1991). The gradual depletion of carbohydrate from 

proximal to distal colon affects the fermentation levels, thus resulting in lower production 

of SCFA in the descending distal colon site. There is a shift in total SCFA detected in the 

blood circulation, decreasing from portal > hepatic > peripheral with 375, 148 and 79 

µmol/L, respectively. There is a molar change in SCFA from the gut lumen to the portal 

blood (as determined in accidental death bodies). The proportion of acetate increases from 

57 to 71% while the proportion of butyrate falls from 21 to 8%. This decrease in butyrate 

could be due to greater uptake by the colonic epithelium than acetate and propionate. The 

proportion of propionate decreases from 22% in the portal vein to 5% in the peripheral 

vein suggesting greater uptake by the liver (Cummings et al., 1987). 

2.2.10.1 Sample and fermentation medium preparation 

Faecal inoculum was obtained from healthy volunteers who had not had antibiotics, 

laxatives or gastrointestinal infections for at least two months before the study. Volunteers 

were supplied with a plastic container (a plastic bag inside) and a supporting bedpan to 

place on the toilet seat. To induce an anaerobic conditions, the pot was tightly sealed in a 

bag with an anaerobic gas kit (Anaerocult® A Merck KgaA 62471, Darmstadt, Germany). 

The faecal sample was kept cool in an insulated bag containing ice packs to slow down 

bacteria metabolism and was used within 2 h of passage (Edwards et al., 1996). 

2.2.10.2 Fermentation medium preparation 

All chemicals and reagents (analytical grade) used in this fermentation were purchased 

from Fisher Scientific (Leicestershire, UK). Freeze-dried digesta were used for in vitro 

batch fermentation according to Edwards et al. (1996). Freeze-dried sample was pre diluted 

in 1 mL of 0.85% sodium chloride and used as a substrate for fermentation. Fermentation 

medium was prepared as the following: tryptone 4.50 g/L, 224.5 µL micromineral (13.2 g 

CaCl2.2H2O, 10.0 g MnCl2.4 H2O, 1.0 g CoCl2.6 H2O, 8 g FeCl2.6 H2O and made up with 

distilled water to 100 mL), 450 mL macromineral (2.85 g Na2HPO4, 3.1 g KH2PO4, 0.3 g 

MgSO4.7H2O and made up to 500 mL with distilled water), 450 mL buffer (2 g NH4CO3, 
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17.5 g NaHCO3 and made up to 500 mL with distilled water) and 2.25 mL resazurin (redox 

indicator 1%, w/v).  

The fermentation medium was covered with a cotton cap and boiled on a hot plate to degas 

the solution. The medium was then cooled to 37°C in oxygen free nitrogen (OFN) 

(approximately 30 min). The pH was adjusted to 7 using 6 M HCl. The medium (42 mL) 

was then transferred to 100 mL McCartney bottle and sealed with an aluminium lid and 

again purge with OFN for 1 min before the final addition of 2 mL of reducing solution 

(312.5 mg cysteine hydrochloride, 1 M NaOH, 312.5 mg sodium sulphide and made up 

with distilled water up to 50 mL).  

2.2.10.3 Fermentation preparation 

Faecal slurry was prepared by mixing 96 g of homogenised faeces in 300 mL phosphate 

buffer using a hand blender (Braun™), giving a total concentration of 32% (w/v). The 

slurry was strained using a nylon stocking and 5 mL was transferred to each sterilised 

McCartney bottle containing fermentation medium and reducing solution. Thus, the initial 

fermentation reaction consisted of 42 mL fermentation medium, 2 mL reducing solution, 5 

mL of faecal slurry and 1 mL of pre-diluted sample (final volume of 50 mL). The bottles 

were sealed using a crimper and purged using OFN. They were placed in a shaking water 

bath at 37°C with a speed of 60 strokes/min to mimic conditions in the colonic lumen. 

Aliquots of fermentation solution (3 mL) were taken at 0, 6 and 24 h for the measurement 

of pH and SCFA (acetate, propionate and butyrate). Sample (3 mL) was mixed with 1 mL 

of 1 M NaOH (1:3) to prevent the evaporation of SCFAs and stored at -20°C before further 

analysis. pH of the freshly fermented medium was measured using a portable digital pH 

meter (Hannah pH20 instruments, USA).  

2.2.10.4 Determination of short chain fatty acid (SCFA) 

The determination of SCFA in faecal slurry samples was done according to a previous 

method (Laurentin and Edwards, 2004). Internal standard (100 μL; 86.1 mM 3-methyl-n-

valeric acid) was added to the previously stabilised fermented faecal slurry (800 μL) and 

100 μL orthophosphoric acid. The mixture was mixed on a vortex mixer for 15 sec and 
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extracted  twice with 3 mL of diethyl ether with rigorous mixing for 1 min. The upper 

organic phase was pooled in a 15 mL tubes.  

Analysis of SCFA was performed using a TRACETM 2000 GC-FID gas chromatography 

(Thermo Quest Ltd, Manchester, UK). This GC-FID is equipped with a flame ionization 

detector (250°C) and a Zebron ZB-Wax capillary column (15 m x 0.53 mm id x 1 μm film 

thickness) (Phenomenex, Cheshire, UK).  Nitrogen was used as the carrier gas at   a flow 

rate of 30 mL/min. Samples (1 μL) were injected on to the column using an autosampler 

(230°C, splitless) onto the column. The temperature was gradually (15°C/min) increased 

form 80°C to 210°C. Both temperatures were held for 1 min. The resultant GC-FID 

chromatogram was analysed using Chrom-Card 32-bit software (version 1.07β5) (Thermo 

Quest, Milan, Italy). Individual SCFA identification was based on comparison with 

retention times of authentic standards. Concentrations of external standards were based on 

the expected values in healthy/normal faecal samples as follows: 166.5 mM acetic acid, 

135.0 mM propionic acid, 113.5 mM isobutyric acid, 113.5 mM n-butyric acid, 97.9 mM 

isovaleric acid, 97.9 mM n-valeric acid, 86.1 mM n-hexanoic acid, 76.8 mM heptanoic 

acid, 69.3 mM n-octanoic acid. 

Quantification was based on the averaged area ratio of each external standard. A set of five 

calibrated standards was extracted and analysed before and after the samples. Standards 

were extracted once and injected twice. Quantification was done batch-wise (in duplicate) 

with group analysis of each individual together to reduce inter-assay error. Samples were 

extracted twice and the results were averaged. Retention times of typical chromatograms 

found in faecal and standards are shown in Table 2-2.  
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Table 2-2. Retention times of individual SCFA in standard solution and faecal samples 

 
No. 

 
SCFA 

 
Retention time (tR) 

   
1 Acetic acid (C2) 2.6 
2 Propionic acid (C3) 3.2 
3 Isobutyric acid (IC4) 3.4 
4 Butyric acid (C4) 3.9 
5 Isovaleric acid (IC5) 4.1 
6 Valeric acid (C5) 4.6 
7 2-ethylbutyric (Internal Standard) 4.8 
8 Caproic acid (C6) 5.4 
9 Enanthic acid (C7) 6.1 
10 Caprylic acid (C8) 6.7 
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2.3 Study two: Effects of functional breads on palatability and satiety  

This section describes the methodology for assessing palatability and satiety of breads 

prepared with β-glucan and black tea as a breakfast meal. This study did not involve any 

blood collection and was conducted with untrained panelists. Details of the study design, 

sample size calculation, inclusion and exclusion criteria, and statistical analysis are 

described in Chapter 4. This study was approved by the College of Medical, Veterinary 

and Life Sicences Ethics Committee, University of Glasgow (Project Number 200140006). 

2.3.1 Breakfast meal preparation 

The test breads were given with cheese to provide a standardised breakfast meal providing 

400 - 450 kcal/meal (21% of total daily energy requirement). The breakfast meal and 

nutrient composition of breads are shown in Table 2-3. Breads were prepared according to 

the method detailed in Section 2.0. Participants were provided with one of the following 

breads in a randomised order at each experimental trial:  

i. White bread (WB) 

ii. Black tea bread (BT) 

iii. β-Glucan bread (βG) 

iv. β-Glucan plus black tea bread (βGBT) 

The bread was eaten during breakfast time (e.g. 8:00 am) with cheese and unsalted butter 

spread, and with 300 mL water. Participants were instructed to eat the bread within 15 min 

and self-reported eating time was recorded using a stopwatch. Volunteers were provided 

with 300 mL water during breakfast and ad libitum lunch session. Volunteers were 

instructed to drink all of the water before meal completion and no additional water was 

permitted. During the postprandial period (3 h), volunteers were provided with extra water 

(500 mL), and no additional water was permitted.  
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Table 2-3. Breakfast meal and nutrient composition  

 
Breads 
 

 
White bread 

(WB) 

 
Black tea 

bread (BT) 

 
β-Glucan 

bread (βG) 

 
β-Glucan + black 
tea bread (βGBT) 

 
 
Breakfast meal (g/meal) 
 
Bread  

 
111a 

 
111a 

 
148b 

 
153b 

 
β-glucan 
 

 
0.3a 

 
0.3a 

 
7.0b 

 
7.0b 

Butter  15 15 15 15 
 

Cheese 

 
25 25 25 25 

Total food serving 
(g) 
 

151 151 195 200 

Nutrient composition (g/serving) 
 
Total available 
carbohydrate  
 

50 50 50 50 

Fat  
 

8 7 8 8 

Protein  16 
 

16 17 17 
 

Moisture  41 40 71 73 
 

Energy, kJ (kcal)‡ 1740  (417) 1725  (413) 1740 (417) 1750 (419) 
 

‡Energy was calculated based on the formula (Atwater factor) [total available 
carbohydrate (50 g) x 17] + [protein (g) x 17] + [fat (g) x 37].  
*Energy density was calculated based on energy (kcal) / food amount (g). 
Different superscript letters indicate statistically significant (p < 0.05) values within 
the same row. 



   

  101 

 

2.3.2 Ad libitum lunch and energy intake estimation 

The ad libitum lunch consisted of multiple food items as follows: pasta and tomato pasta 

sauce, white bread, unsalted potato crisps, roasted chicken slices, turkey ham, sandwich, 

cheddar cheese and plain sponge cake. This meal was served with 300 mL water 

(Vitaglione et al., 2009; Wiessing et al., 2012). A choice of food items was offered to 

participants to avoid the feeling of boredom of taste, and was provided in excess as such 

the leftovers always remained on the plate (Reinbach et al., 2009). Lunch was provided 3 h 

after breakfast (e.g. 11:00 am). The time gap between breakfast and lunch (3 h) was chosen 

based on the amount of nutrients being emptied from the stomach to small intestine (Jones 

et al., 2005; Brener et al., 1983). Nutrients are emptied at the rate of 2-4 kcal/min, thus as 

the energy of the breads were 413 - 419 kcal (Section 2.2.1, Table 2.3), 103 – 210 min 

was required to empty the nutrients from the stomach. Participants were advised to eat the 

lunch until they were comfortably full according to their satiety within 30 min.  All food 

items were weighed before and after the meal to the nearest 1.0 g using an electronic 

kitchen scale (Salter ARC Electronic Kitchen scale, 1066 BKDR08, Kent, UK). The 

uneaten food was weighted, subtracted from the initial amount and the food consumed was 

used to calculate energy (kcal) intake. The WinDiets dietary programme (Robert Gordon 

University, Scotland, UK) was used to calculate energy and nutrient intake. Participants 

were allowed to read or use their own computer during the experiment except during lunch 

to avoid interfering with the eating session. 

2.3.3 Satiety and palatability scoring (adaptive visual analogue scale, AVAS) 

Satiety and palatability were measured using the Adaptive Visual Analogue Scale (AVAS) 

software (Marsh-Richard et al., 2009). This is free software available at www.nrlc-

group.net, which allowed automated calculation of visual analogue scale scoring. The 

interface of this software contains a question above a horizontal line anchored with a 

response on the left and right. Participants were instructed on how to do the scoring before 

the session. They were directed to the ‘training’ mode, which allowed participants to 

practice before starting the real test. In the training session, participants had to place a 

cursor on any points on the horizontal line of the scale and click on them. For example, to 

http://www.nrlc-group.net/
http://www.nrlc-group.net/
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the question ‘how hungry are you?’ the response on the left is ‘not at all’, and on the right 

is ‘as hungry as I ever felt’. By placing the cursor on the very left of the line indicated that 

they did not feel hungry at all whilst placing the cursor at the very right end of the anchor 

indicated they were extremely hungry. The software automatically stored and calculated 

the responses in millimeter (mm). 

After acclimatisation, participants completed an AVAS scoring, before receiving a test 

meal at breakfast (fasting state), and at different time points (30, 60, 90, 120 and 180 min) 

after breakfast. AVAS consists of five questions, as follows: 1) Hunger, how hungry are 

you? 2) Fullness, how full are you? 3) Satiety, how satiated are you? 4) Desire to eat, how 

strong is your desire to eat? 5) Prospective consumption (quantity), how much do you 

think you could eat right now. 

The palatability study was completed using the AVAS (10-mm scale) between 0 – 5 min 

post-breakfast meal assessing visual appeal, smell, taste, after taste, palatability (how 

palatable the bread is) and overall acceptance (the overall acceptability of the bread) 

(Vitaglione et al., 2010). A higher score indicates a higher degree of acceptability of the 

breads. The raw data for palatability was translated and presented as a star diagram (British 

Nutrition Foundation, 2016a; Aldughpassi et al., 2008; Finocchiaro et al., 2012). 
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2.4 Study three: Effects of functional breads on postprandial glucose, insulin and 
gut hormones 

This section describes the methodology for assessing the effects of breads prepared with β-

glucan and black tea as breakfast meal on postprandial glucose, insulin and gut hormones. 

This study involved blood collection and was conducted with healthy volunteers. Details of 

the study design, sample size calculation, inclusion and exclusion criteria, and statistical 

analysis are described in Chapter 5. This study was approved by the College of Medical, 

Veterinary and Life Sicences Ethics Committee, University of Glasgow (Project Number 

200140006). 

2.4.1 Blood collection 

Blood was taken by a trained phlebotomist. After resting for 10 min, fasting venous blood 

was obtained from an antecubital vein of a non-dominant arm while seated using 

intravenous cannula (size 20 GA, 1.0 x 32 mm) (BD Venflon™, Bectson-Dickinson™, 

Helsingborg, Sweden). A 3-way stopcock (10 cm and 360° rotation angle) (BD 

Connecta™, Bectson-Dickinson™, Helsingborg, Sweden) was immediately placed after 

venipuncture and 9 mL of resting venous blood was collected before the test (0 min) and at 

15, 30, 45, 60, 90, 120 and 180 min thereafter. The site of cannulation was covered with 

sterile plaster (Tegaderm™, Neuss, Germany). The cannula was flushed with 3 mL of 

normal saline (0.9% sodium chloride, w/v) infusion (B. Braun, Melsungen, Germany) after 

each blood collection. The saline was cleared from the catheter before each venous blood 

sample by withdrawing 1 mL of blood into a syringe and discarded.  

The blood (9 mL) was transferred in two different tubes as follows: 1) five millilitre in an 

ice-cooled tube containing dipeptidyl peptidase-IV inhibitor (250 KIU aprotinin) (BD 

Vacutainer®, Bectson-Dickinson™, Plymouth, UK) for measurement of gut hormones 

(GLP-1, PYY and CCK) and 2), four millilitre in a tube containing anti-clotting agent 

(lithium heparin) (Vacuette®, Greiner Bio-One, Monroe, USA). The blood samples were 

immediately centrifuged at 4°C at 3,000 rpm for 15 min. Plasma was carefully separated, 

aliquoted (100 µL in duplicates) into microfuge tubes and stored at -80°C until further use. 
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2.4.1.1 Glucose determination 

Glucose was measured using Reflotron Glucose kit (ROCHE Diagnostics GmbH, 

Mannheim, Germany). This assay is based on the calorimetric measurement of dye 

formation after an enzymic reaction of glucose as follow: 

First step: 

 

Second step: 

 

The dye formed from this reaction is measured at 642 nm at 37°C. The amount of dye 

formed is directly proportional to the glucose concentration in the sample.  

Fresh heparinised plasma sample (30 uL) was carefully applied on the glucose test strip 

and directly placed in the Reflotron® analyser within 15 sec (Reflotron, Mannheim 

Boehringer GmBH, East Sussex, United Kingdom). Glucose levels are expressed as 

mmol/L. Fasting glucose value was in the range of 3.3 to 6.05 mmol/L. Inter-assay 

variation was less than 6%. Incremental area under the curve (iAUC0-180 min, mmol/L x 

min) for glucose were estimated using a trapezoidal rule (Vitaglione et al., 2009). 

2.4.1.2 Insulin determination 

Insulin was measured using Mercodia Insulin ELISA kit (product code 10-1113-10) 

(Mercodia AB, Uppsala, Sweden). This kit is based on the colorimetric method from the 

dye developed after the reaction of two-site enzyme immunoassay. It is based on the direct 

sandwich technique from two monoclonal antibodies tagged against separate antigenic 

determinants on the insulin molecule. Insulin reacts with the peroxidase-conjugated anti-

insulin antibodies and anti-insulin antibodies bind to the microplate during incubation at 

room temperature. Unbound labelled antibody is removed after simple washing steps. The 

bound conjugate is then reacted with 3,3’,5,5’-tetramethylbenzidine (TMB) and the 

      Glucose + O2          glucose oxidase (GOD)              δ-D-gluconolactone + H2O2   

                      H2O2 + indicator          peroxidase (POD)              dye + H2O   
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reaction is stopped by adding sulphuric acid. Colorimetric endpoint is measured 

photometrically at 450 nm (Multiskan® Spectrum, Thermo Labsystems, Vantaa, Finland). 

The amount of TMB detected is directly proportional to the amount of insulin bound to 

them.  

Frozen samples were removed from -80°C freezer and transferred to a 4°C fridge and were 

allowed to thaw overnight before analysis. All reagents and samples were brought to room 

temperature before analysis according to manufacturer instruction. All analyses were done 

in duplicate. Twenty five microlitres of samples or standard (3.0, 9.74, 29.8, 104 and 207 

mU/ L) was pipetted into appropriately labelled wells. One hundred microlitres of enzyme 

conjugate was added followed by incubation on a plate shaker (800 rpm) for 1 h at room 

temperature (18 – 25°C). The reaction volume was discarded by inverting the plate over a 

sink. Wash buffer (350 μL) was added to each well, discarded and tapped against 

absorbent paper to remove excess liquid. This step was repeated five times and precaution 

was taken to avoid prolong soaking during washing step. Substrate TMB was added (200 

μL) followed by 15 min incubation at room temperature. Finally, the reaction was stopped 

by adding sulphuric acid (50 μL) and was mixed on a shaker for 5 sec. The plate was read 

within 30 min at 450 nm on a spectrophotometer (Multiskan® Spectrum, Thermo 

Labsystems, Vantaa, Finland). Results are expressed as mU/L. Inter-assay variations of 

this assay was less than 11%. Incremental area under the curve (iAUC0-180 min, mU/L x 

min) for insulin were estimated using a trapezoidal rule (Vitaglione et al., 2009). 

2.4.2 Total cholescystokinin (CCK) determination 

Total cholecystokinin was measured using Human Cholecystokinin-33 (CCK-33) EIA kit 

(EK-069-02) (Phoenix Pharmaceuticals Inc., California, USA). This assay is based on the 

competitive binding of the biotinylated peptide with the standard peptide or samples to the 

peptide antibody (primary antibody). This immunoplate kit was pre-coated with secondary 

antibody, blocking the nonspecific binding sites are blocked. The secondary antibody can 

bind to the Fc fragment of the primary antibody (peptide body) whose Fab fragment will 

be competitively bound by both biotinylated peptide and peptide standard or targeted 

peptides in the samples. The biotinylated peptide interacts with streptavidin-horseradish 

peroxidase (SA-HRP) which catalyzes the substrate solution. The yellow colour 
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development is directly proportional to the amount of biotinylated peptide-SA-HRP 

complex but inversely proportional to the amount of the peptide in the standards solution 

or the samples. A standard curve is then established from known concentrations. The 

unknown concentration in the samples can be determined by extrapolation of this standard 

curve. This kit measures total CCK33 and CCK1-21 in plasma.  

Frozen samples were removed from -80°C freezer and transferred to a 4°C fridge and were 

allowed to thaw overnight before analysis. All assay reagents, chemicals and samples were 

equilibrated to room temperature before beginning the assay. All analyses were conducted 

in duplicate. Initially, 50 µL of assay buffer was added into wells as total binding (TB). 

Peptide standards (50 µL) were added in to respective wells in reverse order of serial 

dilution (from lowest to highest concentrations). Rehydrated positive control (50 µL) was 

added into respective wells. Samples (50 µL) were added into respective wells followed by 

the addition of 25 µL rehydrated primary antibody to each well, except the blank well. 

Immediately after, 25 µL of rehydrated biotinylated primary antibody was added into each 

well except the blank well. The immunoplate was sealed and incubated for 2 h at room 

temperature (20-23°C) on a plate shaker (low speed, 300 rpm). 

The plate content was discarded and washed 4 times with 350 µL of assay buffer and 

blotted dry on absorbent paper. Diluted SA-HRP (1:1000) (100 µL) was added into each 

well. The plate was sealed and incubated at room temperature for 1 h on a plate shaker 

(low speed, 300 rpm). The plate was washed again 4 times with 350 µL of assay buffer and 

blot dry. TMB substrate (100 µL) was added into each well, covered with an aluminium 

foil and place on a plate shaker at low speed (300 rpm) for 1 h at room temperature. Stop 

solution (2N HCl, 100 µL) was added in to each well after 1 h of incubation. The 

colorimetric change from blue to yellow was read within 20 min at 450 nm on a 

spectrophotometer (Multiskan® Spectrum, Thermo Labsystems, Vantaa, Finland). Results 

are expressed as ng/mL. Inter-assay variation for this assay was less than 6%. The positive 

control of this assay was in the range of 0.5 to 0.6 ng/mL (manufacturer’s data is 0.4 to 0.7 

ng/mL). Incremental area under the curve (iAUC0-180 min, ng/ mL x min) for CCK were 

estimated using a trapezoidal rule (Vitaglione et al., 2009). 
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2.4.3 Active glucagon-like peptide (GLP-1) determination 

Active glucagon-like peptide 1 (GLP-1) was measured using the Glucagon-Like Peptide-1 

(Active) ELISA kit (EGLP-35K) (EMD Millipore, Missouri, USA). This assay is based, 

sequentially, on the capture of active GLP-1 from samples by an immobilised monoclonal 

antibody on a microwell plate that binds specifically to the N-terminal region of active 

GLP-1 molecules. The unbound materials are removed by washing with assay buffer. This 

reaction step is followed by the binding of an anti-GLP-1-alkaline phosphatase detection 

conjugate to the immobilised GLP-1. Unbound conjugate is again removed by washing 

with assay buffer. Finally, the presence of methyl umbelliferyl phosphate (MUP) forms the 

fluorescent product umbelliferone with the bound conjugate in the presence of alkaline 

phosphatase. The amount of fluorescence generated is directly proportional to the 

concentration of active GLP-1 in the unknown sample. The amount of fluorescence 

generated can be derived by interpretation from a reference curve generated in the same 

assay with reference standards of known concentrations of active GLP-1. This kit measures 

only active GLP-16-37 and GLP-17-37 in plasma. 

Frozen samples were removed from -80°C freezer, transferred to a 4°C fridge and allowed 

to thaw overnight for 24 h before analysis. All assay reagents, chemicals and samples were 

equilibrated to room temperature before beginning the assay. All analyses were done in 

duplicate. Wash buffer (300 uL) was carefully added using a multichannel pipette in each 

well. The plate was incubated at room temperature for 5 min before the content was 

discarded. The assay was initiated by adding 200 µL assay buffer to the non-specific 

binding wells (NSB) (in duplicate) and 100 µL to the wells designated to standards, 

positive control and samples. Standards, positive control and samples were carefully added 

and the plate was shaken for proper mixing. The plate was covered with a sealer and 

incubated at 4°C for 20 h. 

The plate content was decanted and the excess was tapped out on absorbent towels. The 

plate was washed 5 times using 300 µL wash buffer and again tapped out on absorbent 

paper. Detection conjugate (200 µL) was immediately added in each well followed by 

incubation at room temperature for 2 h. The plate content was again decanted and washed 

3 times with wash buffer (300 µL). Diluted substrate (200 µL) was then added, followed 
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by incubation at room temperature in the dark for 20 min. Immediately after, 50 µL of stop 

solution was added to each well in the same order as the substrate was added, followed by 

incubation for 5 min at room temperature to arrest phosphatase activity.  The bottom of the 

plate was wiped with a delicate tissue paper to remove any residue prior to reading the 

plate. The plate was read with an excitation/emission wavelength of 355 nm/460 nm on a 

fluorescence plate reader (Spectra Max M2e Molecular Devices, California, USA). Results 

are expressed as pM. Inter-assay variations was less than 3%. The concentration of positive 

control was in the range of 42 to 45 pM (manufacturer’s data are 30 to 63 pM). 

Incremental area under the curve (iAUC0-180 min, pM x min) for GLP-1 were estimated 

using a trapezoidal rule (Vitaglione et al., 2009). 

2.4.4 Total peptide YY (PYY) determination  

Total peptide YY (PYY) was determined using Human PYY (Total) ELISA kit 

(EZHPYYT66K) (EMD Millipore, Missouri, USA). PYY is one of the key GI hormones 

regulating appetite and energy balance. The blood PYY level is low after fasting and 

elevates significantly after meal. This assay is based on direct binding of human PYY 

molecules (both 1-36 and 3-36) in the sample by rabbit anti-human PYY IgG and 

immobilisation of the resulting complex to the wells of a microtiter plate coated by a pre-

tittered amount of anti-rabbit IgG antibodies. The second step involves the binding of a 

second biotinylated antibody to the PYY. The unbound materials are washed away 

followed by conjugation of horseradish peroxidase to the immobilised biotinylated 

antibodies. This second washing step removes any free enzyme. The quantification of 

immobilised antibody-enzyme conjugates is based on the formation of horseradish 

peroxidase (HRP) activities in the presence of the substrate 3,3’,5,5’-tetra-methylbenzidine 

(TMB). The enzyme activity is measured at 450 nm, corrected from the absorbency at 590 

nm, after acidification of formed products. Since the increase in absorbency is directly 

proportional to the amount of captured human PYY (both 1-36 and 3-36) in the unknown 

sample, the concentration of total PYY can be derived by interpolation from a reference 

curve generated in the same assay with reference standards of known concentrations of 

human PYY. This assay kit measures total PYY1-36 and PYY3-36 in plasma sample. 

Frozen samples were removed from -80°C freezer, transferred to a 4°C fridge and allowed 
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to thaw overnight before analysis. All reagents, chemicals and samples were equilibrated at 

room temperature before analysis. All analyses were done in duplicate. The plate was 

washed 3 times with diluted wash buffer (300 µL), decanted and blotted dry on absorbent 

paper. Matrix solution (20 µL) was added to the blank, standard and quality control wells. 

Assay buffer (20 µL) was then added to the blank and sample wells. Standards (20 µL) were 

carefully added into designated wells in reverse order of serial dilution (lowest to highest 

concentrations). Positive controls (20 µL) (low and high positive control PYY) were added 

into appropriate wells. Samples (20 µL) were added into the remaining wells. Twenty 

microlitres of blocking solution was added in each well, covered with a sealer and incubated 

for 30 min at room temperature (20-23°C) on a plate shaker (low speed, 300 rpm). A mixture 

of capture and detection antibody (50 µL, 1:1) was added using a multi-channel pipette, sealed 

and plate was again incubated at room temperature for 1.5 h on a plate shaker (low speed, 300 

rpm).  

The plate was washed 3 times with 300 µL HRP was buffer per wash. Enzyme solution 

(100 µL) was carefully added to each well with a multi-channel pipette, before covering 

and incubating for 30 min on a plate shaker (300 rpm). The plate content was decanted and 

blotted on absorbent paper to remove residual fluid. The plate was washed 6 times with 

HRP wash buffer (300 µL per wash), decanted and tapped firmly after each wash to 

remove residual buffer. Substrate solution (100 µL) was added to each well, which were 

then covered with a plate sealer and shaken on a plate shaker for 20 min in the dark. A blue 

colour was formed with the intensity proportional to increasing concentrations of PYY 

standards. Finally, stop solution (100 µL) was added and shaken by hand to ensure 

complete mixing of solution in all wells. The blue colour turned to yellow after 

acidification and these coloured compounds were measured at 450 nm and 590 nm in a 

plate reader within 5 min (Multiskan® Spectrum, Thermo Labsystems, Vantaa, Finland). 

Results are expressed as pg/mL. Inter-assay variation of this assay was less than 15%. The 

concentrations of positive control were in the range of 656 to 820 pg/mL (manufacturer’s 

data is 397 to 825 pg/mL). Incremental area under the curve (iAUC0-180 min, pg/mL x min) 

for PYY were estimated using a trapezoidal rule (Vitaglione et al., 2009). 
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3 Chapter 3: Combined Effects of β-Glucan and 
Black Tea on Starch Hydrolysis, Antioxidant 
Potentials and In vitro Batch Fermentation
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OUTLINE:  

This chapter describes the development of different breads with added β-glucan and/or 

black tea, and their effects on starch functionality and antioxidant capacity. The second 

section describes the fermentation characteristics of predigested (in vitro) breads in a 

simulated in vitro batch fermentation, using samples donated by healthy volunteers.  

The first section of this chapter has been published in International Journal of Food 

Science and Nutrition, 2015, 66 (2): 159-165, titled ‘Combined effects of added beta 

glucan and black tea in breads on starch functionality’.  

The results from the second and third sections of this chapter were presented at the 

Nutrition Society Summer Meeting, 14–17 July 2014, Carbohydrates in health: friends or 

foes? University of Glasgow, Scotland, UK, as follows: 

1. Antioxidant properties of breads prepared with β-glucan and black tea. Proceedings 

of the Nutrition Society (2015), 74 (OCE1), E31. 

 

2. Interaction of β-glucan and tea during bread baking increased SCFA production in 

vitro. Proceedings of the Nutrition Society (2015), 74 (OCE1), E73. 
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3.1 Introduction 

Ischaemic heart disease, stroke, diabetes mellitus, and hypertensive heart disease are 

among the top 10 causes of death in high-income countries (WHO, 2016c). These diseases 

are associated with modifiable behavioural risk factors including physical inactivity, 

tobacco use and unhealthy diet. These behaviours lead to four metabolic/physiological 

(intermediary risk factors) changes that increase the risk of non-communicable diseases 

including high blood pressure, overweight/obesity, hyperglycaemia and hyperlipidaemia. 

An important public health goal is to reduce these diseases by decreasing the risk factors 

associated with them via preventive actions. One low cost solution would be to reduce 

common modifiable behavioural risk factors. The World Health Organization (WHO) 

delineated preventive strategies aiming to improve eating behaviour, these include: 1) 

reducing sugar and salt intake 2) limiting total fat intake 3) increasing consumption of fibre 

through intake of fruit, vegetables, pulses, wholegrain and nuts (WHO, 2016d). However, 

achieving effective diet modification is challenging because of the many factors that 

influence eating behaviour. These include physical, social and environmental factors, such 

as cost, accessibility and affordability, alongside personal factors, such as taste, preference, 

level of education and knowledge, and these are associated with low fruit and vegetable 

(FV) consumption (EUFIC, 2016b). Low FV consumption contributes to low fibre intake; 

the current dietary fibre intake in the UK is 18 g/day, which is lower than the daily 

recommended intake of 30 g/day (Marlett et al., 2002; British Nutrition Foundation, 

2016b; SACN, 2015). 

Apart from dietary fibre, FV are also an important source of (poly)phenols in the diet 

(Rothwell et al., 2012; Zamora-Ros et al., 2015). In vitro and in vivo studies suggest a diet 

rich in (poly)phenols is associated with reduced risk of chronic diseases (Morand and Sies, 

2016). Among the UK’s ‘health-conscious’ group (predominantly vegetarians), coffee, tea 

and fruit were the main source of (poly)phenols (49 – 62 % flavonoids) in the diet. 

However, data for other sub-groups in the UK are not available.   

Besides FV consumption, including other sources of isolated dietary fibre such as guar 

gum, β-glucan or polydextrose in a meal could be a useful strategy for helping the 

population meet the daily dietary fibre recommendation. Furthermore, there are other 

health benefits associated with increasing dietary-fibre intake: food is digested slower, 
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promotes earlier satiety and the meal is usually less calorically dense, lower in sugar and 

fat (Marlett et al., 2002). In a product such as bread, there is food-matrix interaction 

between gluten, soluble fibre (e.g. pectin) and (poly)phenols during baking (Sivam et al., 

2011; Sun-Waterhouse et al., 2009). However, it is still unknown whether there is a 

synergistic effect on health when (poly)phenols is combined with dietary fibre in the same 

food matrix.  

β-Glucan is a major component of barley and oat and can be produced commercially 

(Cleary et al., 2007; Panahi et al., 2007). It is a soluble dietary fibre with mixed β-(1→3) 

and β-(1→4) linkages. The effects of β-glucan on post-prandial glycaemic and 

insulinaemic responses in humans have been well established (Ostman et al., 2006). The 

European Food Safety Authority (EFSA) approved a health claim in which 4 g of beta 

glucan from either oats or barley per 30 g available carbohydrate is recommended to 

reduce glycaemic response without disproportionally increasing postprandial insulinaemic 

response (Agostoni et al., 2011). Hence, β-glucan can be used as an active ingredient in 

formulating products aimed at increasing dietary fibre intake and also positively regulating 

the postprandial glucose response. 

Black tea is one of the most common beverages consumed around the world. Acute intake 

of tea reduces postprandial glycaemia in humans (Bryans et al., 2007). The health benefits 

of tea have been attributed to the presence of bioactive (poly)phenols (Rothwell et al., 

2012). Tea (poly)phenols remain stable during bread making and thus may confer further 

health benefits when incorporated into food products (Wang and Zhou, 2004). Due to their 

thermal stability, tea has been successfully added to food products such as bread, cake and 

biscuits (Pasrija et al., 2015; Lu et al., 2010). 

Bread is the most popular starchy food in Europe with an average intake of 50 kg bread per 

person per year (Bakers, 2014). Bread contains starch and gluten whose properties are 

directly influenced by different stages of bread making (mixing ingredients, proofing and 

baking) (Rosell, 2011). Breads are a good target for further development and improvement 

of functional properties (Hayta and Gamze, 2011). The addition of guar gum (guar 

galactomannan) to bread reduced in vitro starch hydrolysis by forming a physical ‘barrier’ 

to starch-alpha-amylase interactions (Brennan et al., 1996). The mechanism is due to the 

layer of galactomannan mucilage that coats the starch granules and bread matrix. Studies 
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have shown that starch hydrolysis was directly related to postprandial glycaemia and 

insulinaemic response in acute human feeding trials (Ekstrom et al., 2013). Hence, in this 

study we hypothesised that the addition of black tea and/or β-glucan will change the 

characteristics and functionality of wheat bread.  

Food constituents can interact in several ways when eaten separately, but if cooked 

together in a product such as bread, these interactions may be more complex and influence 

other components during food processing. The addition of (poly)phenols and/or isolated 

dietary fibres to foods may directly or indirectly modify the properties of the starch 

components, their digestibility, and antioxidant properties (Juntunen et al., 2002; Juntunen 

et al., 2003; Rosen et al., 2011; Gawlik-Dziki et al., 2013). Barros et al. demonstrated the 

monomeric and polymeric proanthocyanidins (PAs) may have different behavior in 

modifying starch components (Barros et al., 2012). PAs increased the levels of resistant 

starch (RS) two-fold compared with monomeric (poly)phenols. An in vitro study showed 

that β-glucan from different sources, namely Glucagel (barley) and PromOat (oat) showed 

similar ability to form complexes with (poly)phenols (Simonsen et al., 2009). Secondly, we 

hypothesised that the addition of β-glucan could ‘trap’ some of the black tea (poly)phenols 

in between the starch granules and  β-glucan and thus will remain intact during simulated 

in vitro digestion. This will later become a substrate for colonic bacterial fermentation and 

lead to increased production of short chain fatty acids. 
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3.2 Materials and methods 

The objectives of this chapter were described as follows (Figure 3-1): 

1. To develop the breads using home baking techniques and determine 

their in vitro starch hydrolysis and starch structure. 

2. To determine the antioxidant potential of breads after an in vitro 

digestion model mimicking human gastric and duodenal phase. 

3. To determine the fermentability of breads using in vitro fermentation 

model mimicking human colon using faecal samples collected from 

healthy volunteers 

 

Figure 3-1. Flow diagram of methodology for bread development, in vitro digestion and in 
vitro fermentation.  
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3.2.1 Materials and bread preparation 

Materials for bread making were purchased from a local supermarket. Barley β-glucan 

concentrate (GlucagelTM) was purchased form DKSH (Quai du Rhône, France) and 

commercial freeze-dried black tea from Tetley (Tata Global Beverages, Greenford, United 

Kingdom). The breads were prepared using a domestic bread maker (Morphy Richards 

Ltd, South Yorkshire, UK). Details regarding bread preparation were described in Chapter 
2, Section 2.1. 

3.2.2 Proximate analysis 

Protein content was determined according to the Kjedahl method. The analysis involved 

three major steps as follows: 1) digestion with sulphuric acid 2) neutralisation with sodium 

hydroxide 3) titration with hydrochloric acid to determine the nitrogen content. All 

analyses were done in triplicate and nutrient contents are expressed as g/100 g fresh 

weight. 

Fat content was determined using solvent extraction method (Soxhlet). Petroleum ether 

was used as solvent to extract the fat as it passes through the sample and carries them into a 

flask. All analyses were done in triplicate and nutrient contents are expressed as g/100 g 

fresh weight. 

Details of protein and fat content analyses are described in Section 2.2.1 and 2.2.2. 

3.2.3 Determination of resistant starch (RS) and digestible (solubilised) starch 

Resistant starch (RS) is a type of starch that resists digestion in the intestine and being 

fermented in the colon. RS was determined using a Resistant Starch assay kit (Megazyme 

International, Wicklow, Ireland). The assay procedures are based on: 1) Hydrolysis, 

solubilisation and analysis of digestible (solubilise) starch 2) Measurement of RS in the 

pellet (residue).  

1) Hydrolysis and analysis of digestible starch. Bread samples were incubated at 37°C for 

16 h with pancreatic α-amylase containing amyloglucosidase (AMG) followed by 

centrifugation. The supernatant was decanted and used for the analysis of digestible starch. 

GOPOD reagent was added to 3 mL of the supernatant, incubated for 20 min and 



117 

 

absorbance read at 510 nm against a reagent blank. 

2) Measurement of RS. Potassium hydroxide was added to re-suspend the pellet and 

incubated with AMG at 50°C for 30 min. GOPOD reagent was added to 3 mL of the 

supernatant, incubated for 20 min and absorbance read at 510 nm against a reagent blank. 

All analyses were done in triplicate and nutrient contents are expressed as g/100 g fresh 

weight. Details regarding each analysis were described in Section 2.2.3. 

3.2.4 β-Glucan content 

β-Glucan content was analysed using a Mixed-Linkage Beta-Glucan kit (Megazyme 

International, Wicklow, Ireland). All analyses were done in triplicate and nutrient contents 

are expressed as g/100 g fresh weight. Detail of this procedure was described in Section 
2.2.4. 

3.2.5 Starch hydrolysis of bread 

Starch hydrolysis of bread was measured using a commercially available assay (Megazyme 

International, Wicklow, Ireland). Pancreatic α-amylase was incubated with bread 

containing 50 mg available carbohydrate. Detail of this procedure was described in Section 
2.2.5. Results are expressed as percentage (%) of total hydrolysed starch at different time.  

3.2.6 Microscopic study of breads structures 

Breads were sampled from the centre of the loaf and processed using a standard protocol of 

alcohol and xylene cycles followed by fixation in paraffin. Bread sections were cut with a 

microtome followed by drying in an oven and stained with Lugol’s iodine and Light 

Green. Amylopectin stains brown, amylose stains dark brown (appears in the centre of 

starch) and gluten stains light green under light microscope. Details regarding this 

procedure were described in Section 2.2.6. 

3.2.7 In vitro digestion model 

This in vitro digestion system was performed to mimic conditions in the human GI tract, 

i.e. oral, stomach and small intestine (duodenum and ileum). The main objective of this 

analysis was to remove starch and protein. The retentates obtained from the digestion were 
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freeze-dried and used for the determination of antioxidant potential and in vitro batch 

fermentation. The in vitro digestion procedure was divided into three phases:  

1) Oral phase: Samples containing 50 mg of available carbohydrate were hydrated in 

sodium chloride and incubated with α-amylase at 37°C for 5 min.          

2) Gastric phase: pH of retentates were adjusted to 2.5 using HCL and incubated with 

pepsin at 37° C for 2 h on shaking water bath. 

3) Small intestine (duodenum and ileum): pH of retentates were adjusted to 7.0 using 

sodium hydroxide. Bile acid and pancreatin were added and incubated at 37° C for 3 h on a 

shaking water bath. Absorption in the small intestine was simulated using a dialysis tube 

and dialysed for 6 h in 2 L of distilled water.  

The digestive products (retentate) were freeze-dried and used for the determination of 

antioxidant potential and in vitro fermentation. Details of in vitro digestion procedure were 

described in Section 2.2.7. 

3.2.8 Determination of total (poly)phenols 

The main objective of this assay was to determine the total (poly)phenols content released 

from breads after in vitro digestion. Freeze-dried samples were diluted in NaCl and added 

to Folin-Ciocalteu reagent and was kept at room temperature for 5 min. Sodium carbonate 

was added and kept at room temperature for 90 min and absorbance read at 765 nm against 

reagent blank. Total (poly)phenols are expressed as mg gallic acid equivalent per g 

retentate. Details regarding this analysis were described in Section 2.2.8. 

3.2.9 Determination of ferric reducing ability of plasma (FRAP) assay 

This assay measured antioxidant potential of sample based on the oxidation of ferric ion 

(Fe3+) to ferrous ion (Fe2+). Samples were added with FRAP reagent containing mixture of 

2, 4, 6- Tris(2-pyridyl)-s-triazine, ferric chloride and acetate buffer, incubated at 37 ºC for 

4 min. The reaction end point was measured after 4 min and absorbance was read at 593 

nm against reagent blank. The values were expressed as mol Fe2+ equivalents per g 

retentate. Details regarding this analysis were described in Section 2.2.9. 
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3.2.10 In vitro batch fermentation 

The objective of this procedure was to determine the fermentability of starch from the 

bread that resists digestion and (poly)phenols-β-glucan complex in the colon. This method 

was followed according to standardised in vitro batch fermentation procedure (Edwards et 

al., 1996). Faecal samples were obtained from four healthy volunteers and were used for 

batch fermentation within 2 h of passage. Details regarding this analysis were described in 

Section 2.2.10. 

Samples (from in vitro digestion) were added to fermentation medium (42 mL) containing 

tryptone, micromineral, macromineral, buffer and resazurin in a sterilised glass 

fermentation bottle. Faecal slurry (5 mL) was added to each bottle, sealed and purged 

under oxygen-free nitrogen. The bottles were then placed in a shaking water bath. Aliquots 

of fermentation medium were taken at 0, 6, and 24 h and assayed for pH and short chain 

fatty acids (SCFA). Details regarding this analysis were described in Section 2.2.10.1 to 

2.2.10.3. 

SCFA in fermentation samples were extracted three times using diethyl ether and injected 

on GC-FID. Individual SCFA was identified based on comparison with retention times of 

authentic standards. The value of individual SCFA was expressed as mM. Details 

regarding this analysis were described in Section 2.2.10.4. 

3.3 Statistical analysis 

Data are expressed as the mean ± standard variation (SD). All data were analysed using 

SPSS software (SPSS version 22.0, SPSS Inc., Chicago, USA). The distribution of 

variables was evaluated using Shapiro-Wilk tests and the data considered to be normal if p 

> 0.05. Values with p < 0.05 were considered significant. 

One-way ANOVA with Bonferroni post hoc correction were used to determine the mean 

differences between groups. A General Linear Model (Repeated Measures) was used to 

determine the effect of time interactions. Total area under the curve (TAUC) for starch 

hydrolysis was calculated from baseline to 3 h using the linear trapezoidal method 

(Vitaglione et al., 2009). Values were considered significantly different at the level of p < 

0.05. Coefficient of variation (CV) was calculated as standard deviation/mean x 100.  
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3.4 Results 

3.4.1 Bread characteristics 

White bread (WB) and black tea bread (BT) had significantly (p < 0.05) lower bread 

volumes than β-glucan (βG) and β-glucan plus black tea (βGBT) breads (Table 3-1). βG 

and βGBT showed significantly (p < 0.05) higher weight compared with WB and BT. βG 

and βGBT showed significantly (p < 0.05) lower energy content compared with WB and 

BT. All breads showed similar length ranging from 12.1 to 13.4 cm. βG and βGBT breads 

had significantly lower height than WB and BT breads (8.1 - 8.7 cm and 13.0 - 13.6 cm, 

respectively; p < 0.05). A cross-section of the bread structure is shown in Figure 3-2. Both 

BT and βGBT appeared darker because of the black tea.  

3.4.2 Nutrient composition  

The total available carbohydrate of WB and BT (measured by total resistant and digestible 

starch) was significantly (p < 0.05) higher than that of βG and βGBT (Table 3-1). There 

was no significant difference in resistant starch content. Digestible starch was lower (p < 

0.05) in βG and βGBT than WB and BT (dilutional effects of water). The protein content 

ranged from 7.0 - 9.1 g/100 fresh weight and was similar between the different types of 

bread. Fat content was significantly (p < 0.05) higher in WB bread than the other breads 

(dilutional effects of water). Moisture content of bread with added β-glucan was 

significantly (p < 0.05) higher compared with WB and BT. The addition of β-glucan 

significantly (p < 0.05) reduced the total energy content of βG and βGBT.  
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Table 3-1. Nutrient composition of breads 

 

*L-length, H-height, W-width 

‡Energy was calculated based on the formula [total available carbohydrate (%) x 17] + 

[protein (%) x 17] + [fat (%) x 37]. Different superscript letters indicate statistically 

significant (p < 0.05) values within the same row. 

 
Nutrient (g/100 g 
fresh weight) 

 
White bread 
(WB) 

 
Black tea 
bread (BT) 

 
β-Glucan bread 
(βG) 

 
β-Glucan + 
black tea bread 
(βGBT) 
 

 
Total available 
carbohydrate 

 
45.4 ± 4.0a 

 
45.4 ± 4.6a 

 
34.8 ± 8.1b 

 
32.8 ± 1.6b 

 
Resistant starch  

 
1.00 ± 0.2 

 
0.9 ± 0.1 

 
1.0 ± 0.3 

 
0.8 ± 0.20 

 
Digestible starch  
 

 
44.4 ± 3.8a 

 
44.5 ± 4.5a 

 
33.8 ± 7.8b 

 
32.0 ± 1.5b 

β-glucan 
 

0.3 ± 0.0a 0.3 ± 0.0a 4.7 ± 0.1b 4.6 ± 0.2b 

Fat  0.8 ± 0.1a 0.6 ± 0. b 0.6 ± 0.1b 0.6 ± 0.1b 
 

Protein  9.1 ± 0.1 8.9 ± 0.2 7.1 ± 0.1 7.0 ± 0.7 
 

Moisture  37.0 ± 0.4a 36.0 ± 0.6a 49.7 ± 0.6b 47.8 ± 0.6b 
 

Ash  1.6 ± 0.0 1.7 ± 0.1 1.5 ± 0.1 1.4 ± 0.1 
 
Weight (g)  

 
722.3 ± 9.3a 

 
729.0 ± 9.6a 

 
866.7 ± 27.6b 

 
835.3 ± 22.6b 

 
Dimension (L x H x 
W)* 

 
13.4 x 13.0a x 
1.5 

 
12.7 x 13.6a x 
1.5 

 
12.7 x 8.1b x 1.5 
 

 
12.1 x 8.7b x 1.5 

Energy, kJ (kcal)‡ 957.3 (228.8)a  943.0 (225.4)a 735.1 (175.7)b 698.1 (166.8)b 
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Figure 3-2. Detail of bread structure. The structure of bread was visualised at 4x power. 
(a) WB, white bread; (b) BT, black tea bread; (c) βG, β-Glucan bread; (d) βGBT, β-Glucan 
plus tea bread. 

 

 

 

 

 

(a) WB (b) BT 

(d) βGBT (c) βG 
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3.4.3 Microscopic study of bread structure  

The bread microstructures, starch granules and protein (gluten) were studied under a light 

microscope (Figure 3-3). Amylopectin granules stained brown, amylose dark brown 

(leached in the middle of starch granule) and gluten light green. Starch granules in WB and 

BT were swollen and sheared into small circular structures. In contrast, starch granules in 

βG and βGBT were elliptical and closely packed to each other. The green-stained gluten 

area was embedded in between starch granules and the porous (irregular white structures) 

area of the breads. The gluten networks were more prominent and appeared as a more 

continuous matrix in βG and βGBT compared with WB and BT. 

3.4.4 Starch hydrolysis of breads  

Standard flour (SF) showed the lowest in vitro starch hydrolysis from 10 to 120 min 

(Figure 3-4). There was no significant difference in starch hydrolysis between WB and BT 

from 0 to 180 min. Both WB and BT showed significantly (p < 0.05) higher starch 

hydrolysis at 10 min compared with βG and βGBT. WB and BT showed significantly (p < 

0.05) higher TAUC0-180 min compared with βG and βGBT. Combination of β-glucan and 

black tea in βGBT significantly (p < 0.05) reduced early (10 min) starch hydrolysis by 25% 

compared with βG. However, TAUC0-180 min of βGBT did not change significantly when 

compared with βG (Figure 3-5). 

 

 

    



        124 

 

Figure 3-3. Microscopic figures of bread structures. (a) WB, white bread; (b) BT, black tea bread; (c) βG, β-Glucan bread; (d) βGBT, β-Glucan 
plus black tea bread. Amylopectin granule stains brown, amylose dark brown (appears in the middle of starch granule) and gluten light green. 
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Figure 3-4. Starch hydrolysis based on percentage (%) of total hydrolysed starch of different breads. WB, white bread; BT, black tea bread; βG, 
β-Glucan bread; βGBT, β-Glucan plus black tea bread; SF, Standard flour (unprocessed, provided by supplier). Values are expressed as mean ± 
standard deviation. Values with different letters are significantly different at the level of p < 0.05 within same time point. There were significant 
(p < 0.05) time interactions. Coefficient of variation (CV) is less than 32.0%. 
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Figure 3-5. Total area under the curve (TAUC0-180min) of percentage (%) hydrolysed starch x min. WB, white bread; BT, black tea bread; βG, β-
Glucan bread; βGBT, β-Glucan plus tea bread; SF, Standard flour (provided by supplier). Values with different letters are significantly different 
at the level of p < 0.05. Coefficient of variation (CV) is less than 6.5 %. 
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3.4.5 Total (poly)phenols released and antioxidant activity of breads 

3.4.5.1 Total (poly)phenols released after in vitro digestion 

The total (poly)phenol content of digested breads is shown in Figure 3-6. (Poly)phenols 

released from the breads after digestion with α-amylase at 0 h were in the range of 0.23 to 

0.361 mg GAE/ g retentate. BT bread showed significantly (p < 0.05) higher total 

(poly)phenol content after digestion with α-amylase compared with other breads. Black tea 

(positive control) showed significantly (p < 0.05) highest total (poly)phenols (0.47 mg 

GAE/ g retentate) compared with all breads and SF. The retentates were dialysed for 6 h 

after digestion with pepsin and pancreatin. (Poly)phenols content did not change 

significantly after dialysis in all breads (1.08 to 1.38 mg GAE/ g retentate) compared with 

WB. 

3.4.5.2 FRAP antioxidant activity 

BT breads showed significantly (p < 0.05) higher antioxidant activity (1.06 ± 0.07 mg Fe2+ 

equivalents/g retentate) when compared with other breads (0.24 to 0.61 mg Fe2+ 

equivalents/g retentate) after digestion with α-amylase (Figure 3-7). Black tea (positive 

control) showed the highest antioxidant potential when compared with other breads and SF 

(positive control). The retentates were dialysed for 6 h after digestion with pepsin and 

pancreatin. Antioxidant potential did not change significantly after dialysis in all breads in 

the range of 3.35 to 4.02 mg Fe2+ equivalents/g retentate.                                                                                                                                                             
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Figure 3-6. Total (poly)phenols released from breads after digestion with α-amylase (0 h) (predigested) and after digestion with pepsin (2 h), 
pancreatin (3 h) and followed by dialysis for 6 h (digested). Values are expressed mean ± SD. Different letters indicate significant (p < 0.05) 
differences between breads, SF and Black tea. There were significant (p < 0.05) differences between predigested and digested samples. WB, 
white bread; BT, black tea bread; βG, β-Glucan bread; βGBT, β-Glucan plus black tea bread; SF, standard wheat flour (positive control); Black 
tea (freeze-dried, positive control). 
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Figure 3-7. FRAP activity of breads after digestion with α-amylase (0 h) (predigested) and after digestion with pepsin (2 h), pancreatin (3 h) and 
followed by dialysis for 6 h (digested). Values are expressed mean ± SD. Different letters indicate significant (p < 0.05) differences between 
breads, SF and Black tea. There were significant (p < 0.05) differences between predigested and digested samples. WB, white bread; BT, black 
tea bread; βG, β-Glucan bread; βGBT, β-Glucan plus black tea bread; SF, standard wheat flour (positive control); Black tea (freeze-dried, 
positive control). 
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3.4.6 Short chain fatty acid production 

3.4.6.1 pH  

The fermentation fluid containing the breads showed similar baseline (0 h) pH in the range 

of 6.5 ± 0.1 to 6.6 ± 0.2 (Table 3-2). The pH was significantly (p < 0.05) reduced at 6 h for 

all breads compared with baseline in the range of 5.0 ± 0.4 to 5.5 ± 0.1. At 24 h after 

fermentation, the pH of fermentation culture remained significantly (p < 0.05) lower 

compared with baseline in the range of 5.2 ± 0.5 to 5.8 ± 0.2. The fermentation containing 

wheat flour (SF, unprocessed wheat flour as positive control) showed similar pH profiles 

as breads.  

Table 3-2. The pH in fermentation fluid containing breads at 0, 6 and 24 h 

 

3.4.6.2 Individual and total SCFA 

Acetate production was similar in fermentations containing the breads at 0, 6 and 24 h 
(Figure 3-8). Acetate production significantly (p < 0.05) increased from 0 to 6 h in all 

breads. There was no significant increase in acetate between 6 to 24 h. Breads showed 

similar propionate production at 0, 6 and 24 h (Figure 3-9).  Propionate levels significantly 

(p < 0.05) increased at 6 h in all breads when compared with 0 h. There was no significant 

increase in propionate between 6 to 24 h. Butyrate production was similar between breads 

 
Bread 
 

 
0 h 

 
6 h 

 
24 h 

 
WB 

 
6.6 ± 0.1 

 
5.5 ± 0.1 

 
5.8 ± 0.2 

 
BT  

 
6.6 ± 0.2 

 
5.4  ± 0.2 

 
5.7 ± 0.43 

 
βG  
 

 
6.6 ± 0.2 

 
5.1 ± 0.4 

 
5.3 ± 0.5 

βGBT 6.6 ± 0.2 5.0 ± 0.4 5.2 ± 0.5 
 

SF 6.5 ± 0.1 
 

5.2 ± 0.2 5.5 ± 0.2 
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at 0 h, 6 h and 24 h (Figure 3-10). There was significant (p < 0.05) production of butyrate 

from 0 to 6 and 24 h in all breads. Total SCFA as the sum of acetate, butyrate and 

propionate was similar in fermentations containing the breads (Figure 3-11). The ratio 

(acetate:propionate:butyrate) of each individual SCFA of WB, BT, βG and βGBT were 

similar in the ratio of 54:38:8, 55:37:8, 55:38:7, and 56:38:6, respectively. 
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Figure 3-8. Acetate concentrations (mM) in fermentation slurry at 0, 6 and 24 h. Values are mean (standard deviation). No significant difference 
between breads (one-way ANOVA test). There were significant (p < 0.05) time-interactions (0 and 6 h) (ANOVA repeated measures).  
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Figure 3-9. Propionate concentrations (mM) in fermentation slurry at 0, 6 and 24 h. Values are mean (standard deviation). No significant 
difference between breads (one-way ANOVA test). There were significant (p < 0.05) time-interactions (0 and 6 h) (ANOVA repeated measures). 
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Figure 3-10. Butyrate concentrations (mM) in fermentation slurry at 0, 6 and 24 h. Values are mean (standard deviation). No significant 
difference between breads (one-way ANOVA test). There were significant (p < 0.05) time-interactions (0 h, 6 h and 24 h) (ANOVA repeated 
measures).  
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Figure 3-11. Total SCFA (acetate, propionate and butyrate) concentration (mM) in fermentation slurry at 0, 6 and 24 h. Values are mean 
(standard deviation). No significant difference between breads (one-way ANOVA test). There were significant (p < 0.05) time-interactions (0 h, 
6 h and 24 h) (ANOVA repeated measures).  
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3.5 Discussion 

The aim of this study was to develop breads and determine the food matrix interactions of 

two food components with established health effects. The effects of adding β-glucan and/or 

black tea on starch structures and the impact of these interactions on starch characteristics, 

(poly)phenol content, and antioxidant potential were determined. The second aim of this 

study was to determine the fermentability of the test breads using an in vitro batch 

fermentation mimicking the human large intestine.  

The composition of protein (gluten), starch and water play an important role in making 

good quality bread (Flander et al., 2007). Gluten is responsible for dough formation while 

starch is important in textural properties and stability of the bread. Water hydrates and 

expands gluten forming a viscoelastic protein network. The added β-glucan competed with 

gluten for water and decreased the rising of the dough during proofing; therefore, more 

water was needed to compensate for water uptake by beta glucan; this was necessary to 

improve dough quality (Hager et al., 2010; Jacobs et al., 2008). In the present study, more 

water was added in β-glucan breads (βG and βGBT) and this led to diluted starch content 

(higher moisture content). This was similar when soluble fibre guar gum was incorporated 

in bread (Ellis et al., 1981). The presence of mixed linkage (1→3)(1→4)-β-D-glucans 

stabilises the air cells in bread dough and improves coalescence (Wang et al., 1998). 

Others have demonstrated that the addition of sorghum flour in flat bread lowers the 

proportion of rapidly digestible starch (RDS) and starch digestibility by 29% and 25% 

respectively (Yousif et al., 2012).  

In vitro studies demonstrated that black teas reduced starch hydrolysis (Guzar et al., 2012; 

Zhang and Kashket, 1998). Mechanistically, a structural relationship of flavonoids and α-

amylase activity has been described with hydrogen bonding as well as the formation of a 

conjugate that stabilised the interaction with the active site of α-amylase (Lo Piparo et al., 

2008). This effect may have been mediated through inhibition of amylase activity 

compared with white bread. In our study, the addition of black tea increased (poly)phenol 

content and antioxidant potential of breads after in vitro digestion with α-amylase. 

However, given an increase in (poly)phenol content and antioxidant potential, our study 
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showed the addition of black tea in bread (BT) did not reduce starch hydrolysis. This may 

be explained by differences in experimental design. In our study, tea was added to breads 

as an ingredient during baking. Therefore, we would anticipate that this would lead to a 

different effect than that observed in previous studies because of the complex food matrix-

interaction between gluten, black tea and starch in bread.  

In bread, the addition of apple pectin and (poly)phenols extracts, from kiwi, blackcurrant 

or apple during dough development and bread baking, directly influenced the cross-linking 

of gluten polymers which could lead to more water holding and softer bread (Sivam et al., 

2011). The type of (poly)phenols used are likely to have different mechanisms in forming 

complexes with bread protein (gluten). Highly polar phenolic acids (i.e. the caffeic acid 

present in kiwi) are more mobile in bread than low polarity (poly)phenols (i.e. 

anthocyanins and proanthocyanins in blackcurrant and apple). Caffeic acid is attracted to 

charged components in protein and/or directly incorporates into the protein network with 

less steric hindrance (Sun-Waterhouse et al., 2009; Sivam et al., 2011). This may disrupt 

the gluten network and hence lead to the softer bread. The present study showed that in 

vitro digestion of BT with α-amylase increased (poly)phenol content and antioxidant 

potential compared with WB and βGBT breads (Figure 3-6 and Figure 3-7).  

In guar gum wheat bread, the presence of galactomannan coated the starch granules and 

protein matrix during the bread making process and subsequently reduced starch 

hydrolysis (Brennan et al., 1996). Our study showed that black tea had an additional effect 

when added together with β-glucan. The incorporation of black tea and β-glucan 

significantly reduced short-term (10 min) starch digestibility in βGBT compared with βG 

bread. However, it must be noted that the change was only observed at one time point (10 

min) and may or may not have any beneficial effects in human. The microscopy suggested 

that both β-glucan and black tea preserved the starch granule structure, which resulted in 

lower short-term starch hydrolysis. Black tea contains higher levels of high molecular 

weight theaflavins and thearubigins compared to the other types of teas (Shao et al., 1995). 

Black tea also contains theaflavin trigallate and tetragallate (Chen et al., 2012). We 

propose that there is a food-matrix interaction between black tea (poly)phenols, β-glucan 



   

   

  138 

 

and starch granules in the bread. The presence of black tea (poly)phenols could form 

complexes with the gluten-network while β-glucan preserved the starch structure and/or 

decreased the surface area for starch digestion by α-amylase and hence reduced starch 

hydrolysis. In vitro digestion showed antioxidant potentials and total (poly)phenols of 

βGBT did not increased significantly after 10 min incubation with α-amylase compared 

with BT bread (Figure 3-6 and Figure 3-7). This suggests that (poly)phenols are being 

‘trapped’ in between starch granules and β-glucan and hence prevent them from being 

released during digestion with α-amylase. As discussed in Chapter 1, there is a strong 

hydrogen bond that governs the interaction between tea (poly)phenols and β-glucan (Wang 

et al., 2013). 

The translation potential of these findings is of interest to human health. It was observed 

that βGBT bread showed blunted early in vitro starch hydrolysis, higher (poly)phenol 

content and antioxidant potential after digestion with α-amylase. The possible mechanisms 

in humans are as follows: first, it could reduce post-prandial glucose and insulin response 

in vivo. It has been previously demonstrated that the supplementation of guar bread 

reduced post-prandial insulin response in healthy individual (Ellis et al., 1991). Secondly, 

the (poly)phenol-linked β-glucan will be passed undigested into the large intestine and 

metabolised by gut microbiota to SCFA and phenolic acids. Tea has been shown to be 

metabolised by microbiota in the large intestine into phenolic acids (Stalmach et al., 2009; 

Stalmach et al., 2010). In vitro fermentation of β-glucan by intestinal microbiota 

significantly increased propionate giving an acetate:propionate:butyrate production ratio of 

51:32:17, which was considered to be propionate-rich (Hughes et al., 2008).  

Breads with β-glucan preserved some of the starch granules. This has implications for gut 

microbiota actions. The preserved starch granules, along with (poly)phenols and β-glucan 

have the potential to change the amount of SCFA produced by the action of the gut 

microbiota. In vitro batch fermentations using human fecal samples demonstrated that βG 

and βGBT had increased production of acetate and propionate compared to WB, giving a 

production ratio of 55:38:6. Propionate production from β-glucan breads (βG and βGBT) 

was 17.53 and 18.63 mM respectively. This is similar to Nordlund et al. who showed how 
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predigestion of oat concentrate increased production of propionate (18 mM) (Nordlund et 

al., 2012). In vitro fermentation of β-glucan from different sources (oat concentrate, oat 

and barley) produced propionate in the range of 5.5 – 18 mM (Hughes et al., 2008; Kim 

and White, 2011; Nordlund et al., 2012). In addition, propionate levels were higher in βG 

and βGBT but were not statistically significantly different from white bread. Faecal 

samples were obtained from 4 individuals, which could be the source of intervariation due 

to differences in gut microbiota composition. The method used in this study was validated 

based on 40 donors from different laboratories and is considered as rapid and accurate for 

in vitro fermentation. However, this method showed the greatest intra-laboratory variation 

with those utilising samples from only four donors (Edwards et al., 1996). Apart from the 

in vitro fermentation method using faecal samples, there are also other methods to study 

colonic fermentation such as animals and human studies. Although these methods allow 

longer study duration, they are not easy to replicate, are time consuming, and relatively 

expensive compared with in vitro fermentation. The proximal colon is difficult to access in 

vivo so proxy measures of faeces in the fermentation chamber are often used which may 

not fully reflect colonic fermentation as most SCFA will have been absorbed. 

In pigs, the supplementation of β-glucan concentrate for 14 days enhanced growth of 

lactobacilli and bifidobacteria in the colon (Metzler-Zebeli et al., 2011). This study also 

showed a higher production of propionate in the range 24-29 mM. Feeding pigs with 

barley and oats for 35 days increased production of propionate in the range of 13 – 43 mM 

(Jozefiak et al., 2006). In humans, Verbeke et al. showed propionate (measured in breath 

samples) production in groups supplemented with barley porridge but not in those 

supplemented with barley kernel (Verbeke et al., 2010). This study showed how barley 

porridge is rich in non-starch polysaccharides (NSP), whereas barley kernel is also rich in 

RS and NSP demonstrating that meals containing dietary fibre (measured as NSP) in 

combination with RS (barley kernel) resulted in a different SCFA profile when compared 

to having dietary fibre alone (barley porridge). The results showed that barley porridge and 

barley kernel increased the concentration of propionate and butyrate, respectively. 

Short chain fatty acids, particularly propionate, play a role in hepatic glucose production 
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(acting as a precursor) and are involved in appetite regulation through the stimulation of 

hepatic vagal afferents (in ruminant studies) (Chambers et al., 2014). In humans, inulin-

propionate ester (propionate bound to inulin through ester bond) increased subjective 

appetite, released appetite hormones (GLP-1 and PYY) from human colonic cells, and 

reduced energy intake among obese subjects (Chambers et al., 2015). However, the dosage 

used was much higher than the amount produced in vitro and animal studies (Chapter 1, 

Table 1-10). Propionate may act through activation of G protein-coupled receptor 41, 

located on colonic enteroendocrine L-cells (Psichas et al., 2015; Karaki et al., 2008). These 

cells secrete gut hormones GLP-1 and PYY and may act to suppress food intake through 

gut-brain axis (Karaki et al., 2008; Murphy and Bloom, 2006; Batterham et al., 2002). 

3.6 Conclusions 

The results of this study suggest that bread prepared with β-glucan and black tea appeared 

to preserve some of the starch granules and lowered short-term (10-min) starch hydrolysis. 

BT bread was softer and showed higher antioxidant potential and (poly)phenol content 

compared with other breads. Propionate concentrations were higher in fermentations with 

β-glucan breads but did not change significantly compared with white bread. The addition 

of black tea had no apparent effect on SCFA production. Reduced early starch hydrolysis 

could positively regulate postprandial glucose response, but the palatability of the breads 

needs to be determined before conducting human feeding studies. Higher propionate 

production ratio might have a positive effect on satiety in humans and this warrants further 

investigation. 
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4 Chapter 4: Palatability, Perceived Satiety and Ad 
Libitum Energy Intakes at Lunch after Intake of 

Functional Bread Prepared with β-Glucan and Black 
Tea 



OUTLINE: 

The breads were successfully developed with β-glucan and/or black tea but showed lower 

palatability compared with white bread (Chapter 3). The bread palatability needs to be 

more thoroughly tested before it can be used in feeding study. This chapter assesses the 

palatability of the breads based on texture, smell and overall acceptability using adaptive 

visual analogue scale (AVAS) in healthy volunteers. Perceived satiety was measured 

before and at 30 min up to 180 min after breakfast meal using AVAS. Perceived satiety 

consists of measurements of hunger, fullness, desire to eat, and prospective food intake.  

The results of this study have been presented at the Nutrition Society Postgraduate 

Conference, Trinity Hall, University of Cambridge, 7-8 September 2015. The oral 

presentation was entitled ‘Palatability and satiety effects of breads prepared from β-glucan 

and black tea in healthy volunteers’. 
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4.1 Introduction 

In Chapter 3, breads prepared with β-glucan and black tea showed reduced in vitro starch 

hydrolysis. This may have potential in reducing postprandial glucose response but the 

palatability of the breads need to be tested first. These breads might have favourable effects 

on postprandial glucose, insulin and may also induce early satiety. Dietary fibre such as β-

glucan in breads, biscuits and muesli positively regulate postprandial glucose responses 

and increase satiety in humans (Casiraghi et al., 2006; Granfeldt et al., 2008; Juntunen et 

al., 2002; Vitaglione et al., 2009; Vitaglione et al., 2010). In a randomised controlled trial, 

bread and biscuits prepared with β-glucan reduced food intake at lunch by 19 to 22% and 

increased perceived satiety by 43 to 55% when compared to white bread (Vitaglione et al., 

2009, Vitaglione et al., 2010). A recent systematic review demonstrated that soluble β-

glucan was amongst the fibres that increased perceived satiety (39%) and reduced energy 

intake (or reduced food intake) compared with control (Clark and Slavin, 2013). 

As described in Chapter 1, an acute consumption of green tea beverage (9 g in 300 mL hot 

water, containing 151 mg catechins) together with white bread increased perceived fullness 

by 51 % when compared to control (Josic et al., 2010). The combination of green tea 

catechins and the soluble fibre dextrin (Nutriose) as a beverage consumed three times per 

day reduced perceived hunger (34%), increased fullness (57%), and reduced energy intake 

by 12% at lunch when compared with control (no beverage) (Carter and Drewnowski, 

2012). Reinbach et al. showed green tea beverage (350 mL, 3 times per day) ingestion 

increased perceived fullness but had no effect on energy intake when measured in the 

evening (Reinbach et al., 2009). These studies showed that either green tea alone, or when 

eaten with food, increased perceived satiety. However, there may be different effects when 

black tea is included in a solid food such as bread. Black tea is one of the most commonly 

consumed beverages in European countries (Clifford et al., 2013). Black tea contains 

additional large molecular weight (poly)phenols, theaflavins and thearubigins along with 

monomers epicatechin, catechin, gallocatechin, gallocatechin gallate (Del Rio et al., 2004; 

Roowi et al., 2010; Stalmach et al., 2010). This is the distinctive character of black tea 

compared with green tea and may have additional health benefits but needs further 

investigations. 



     

  144 

 

Solid food induces greater satiety as more time is needed for oral processing (eating time) 

and gastric emptying when compared with liquid foods (Cassady et al., 2012; de Graaf et 

al., 2012; Hennessy-Priest, 2014; Willis et al., 2011). Solid food induces higher oral-

sensory exposure time and leads to early meal termination and/or higher satiety response 

(de Graaf et al., 2012). Moreover, the addition of fibre (oats) to solid food might reduce the 

interaction with enzymes in the stomach, increasing stomach distention, reducing gastric 

emptying time, and leading to higher satiety response (Willis et al., 2011). The role of 

satiety on food intake is important in controlling overeating because highly satiating food 

augments fullness, as an interval between eating occasions, and reduces subsequent food 

intake (Gerstein et al., 2004). In addition, perceived satiety diminishes the desire to eat 

more and regulates energy intake and body weight. In Chapter 3, it was shown that the 

combining β-glucan and black tea in a bread food matrix reduces the rate of in vitro starch 

hydrolysis (Jalil et al., 2015). This has the potential to slow postprandial glucose responses 

in vivo, but the relative palatability and satiety needs to be tested before conducting further 

metabolic studies. This is also important if such food is expected to be consumed by the 

general population.  

Breads prepared with dietary fibres showed good nutritional quality (increased dietary 

fibre fractions and reduced starch hydrolysis), but lower sensory characteristics (Angioloni 

et al., 2011; Ellis et al., 1981; Ellis et al., 2001; Jenkins et al., 2002). Ellis et al. showed 

that guar gum inclusion (5 and 10%) in breads was acceptable but the dose of 15% was 

unacceptable among normal subjects (Ellis et al., 1981). By using fourier-transform 

infrared spectrometry, Sivam et al. demonstrated that the addition of soluble dietary fibre 

pectin and (poly)phenols together in a bread caused  conformational changes in the gluten 

network during bread making, resulting in softer bread (Sivam et al., 2011; Sivam et al., 

2013). These changes will affect the texture, visual appeal, and palatability of the final 

products (Yuan et al., 2014). It is challenging to develop a good product with functional 

ingredients because there must be a balance between product acceptability and the amount 

required for any health benefits (Hall et al., 2010). An early study by Ellis et al. 

demonstrated how bread added with guar gum had no apparent effects on satiety, but 

showed reduced palatability compared with control breads (Ellis et al., 1981). Jenkins et al. 

measured the palatability of a high fibre diet (β-glucan) to identify whether or not their 
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dietary approaches were feasible for the general population (Jenkins et al., 2002). In this 

context, it is important to investigate the product’s palatability to ensure that products will 

be consumed and accepted before testing possible health benefits. Hence, in this study, the 

β-glucan and/or black tea breads were compared with white bread for palatability and 

effect on perceived satiety and energy intake at lunch.     

4.2 Experimental design 

This study was a randomised, cross-over controlled experimental design and was divided 

into three sections as follows: 

1. Section 1 (palatability): This study used an adaptive visual analogue scale (VAS) to 

study the palatability of breads in healthy male and female volunteers.  

2. Section 2 (satiety): This study used an adaptive visual analogue scale (AVAS) to 

determine perceived satiety, hunger, fullness and desire to eat in healthy male and 

female volunteers.  

3. Section 3 (estimation of next meal effects on energy intake): The impacts of having 

breads as breakfast on energy intake was estimated based on ad libitum buffet 

lunch (3 h after breakfast). The food items were pre-weighed before being 

presented to the participants and the leftovers were weighed and estimated for 

energy intake.   

4.2.1 Study design 

Participants received one of 4 treatments, based on a single blind, randomised-controlled 

crossover design (Latin square design). Participants were randomly allocated using an 

online website (www.randomization.com) and coded into sequences of 4 treatments, with 

each of the treatments separated with a one week washout period (Figure 4-1).  

4.2.2 Sample Size 

The sample size was calculated with G*Power (version 3.1.9) statistical software (Faul et  

al., 2009). The parameter used for sample size calculation was based on a study 

investigating the effect of β-glucan bread on energy intake as primary outcome (Vitaglione 

http://www.randomization.com/
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et al., 2009). With an alpha error of 0.05 and power of 80% to detect a 19% reduction in 

energy intake, 12 participants were needed for each gender group. Hence, the total sample 

size was 24 participants. Each participant completed 4 trials; the total numbers of trials 

completed was 96. 

4.2.3 Inclusion and exclusion criteria 

The study involved healthy males and females, aged between 18-50 years old, with a body 

mass index (BMI) ≥ 18.5 to 29.9 kg/m2. Participants were excluded if they had any of the 

following conditions: Gastrointestinal disease (e.g. coeliac disease), smokers, vegetarian, 

regular use of dietary supplements, food intolerance, allergy to gluten, on dietary 

restrictions, significant changes in body weight for the past year (± 4 kg), known chronic 

illnesses, diabetes or impaired glucose tolerance, being prescribed with medication known 

to affect blood glucose and those with systolic/diastolic blood pressure more than 139/89 

mmHg. 

4.2.4 Subject recruitments 

Participants were recruited using flyers and posters advertised in public areas in Glasgow, 

such as department notice boards at the University of Glasgow, library, churches, sports 

complex, University of Glasgow Student Union (Student Voice), word of mouth and also 

through a social network (Facebook). Interested participants were contacted by phone or 

email for a face-to-face interview with the researcher at Human Nutrition, Glasgow Royal 

Infirmary or at any convenient place. This interview took place to check inclusion and 

exclusion criteria, to discuss the study and to ask for consent.  

4.2.5 Study protocol 

Participants were instructed to fast for 10-12 h before the experimental trial. They were 

allowed to drink plain water at night and in the morning before the experiment. 

Participants were asked to complete this protocol for each visit and to maintain their 

regular lifestyle activities throughout the study. They were asked to avoid alcohol and 

excessive physical activity one day before the experiment. Female participants visited the 

lab during the same follicular phase of their menstrual cycle, and hence each female 
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subject spent 2-3 months completing the trial. 

Participants came to the laboratory early in the morning after 10-12 h of fasting with light 

clothing and shoes were removed. Height and weight were measured using The Leicester 

Height Measure (maximum 210 cm) (SECA Ltd, Birmingham, UK) and SECA 2562 

weighing scale (maximum weight 200 kg, accuracy of 0.1 kg) (SECA Ltd, Germany), 

respectively. 

4.3 Materials and methods 

4.3.1 Breakfast meal preparation 

Breads were given as a standardised breakfast meal providing 400 - 450 kcal/meal (21% of 

total daily energy requirement). The breakfast meal and nutrient composition of breads are 

shown in Table 2-3 (Section 2.0). Breads were prepared according to the method detailed 

in Section 2.0. Participants were provided with one of the following breads in a 

randomised order at each experimental trial:  

i. White bread (WB) 

ii. Black tea bread (BT) 

iii. β-Glucan bread (βG) 

iv. β-Glucan plus black tea bread (βGBT) 

The bread was eaten during breakfast time (e.g. 8:00 am) and self-reported eating time was 

recorded using a stopwatch. The palatability study was completed using AVAS (100-mm 

scale) after breakf ast meal assessing visual appeal, smell, taste, after taste, palatability and 

overall acceptance. Details regarding this procedure were described in Section 2.3.1.  

4.3.2 Ad libitum lunch and energy intake estimation 

The ad libitum lunch consisted of multiple food items and was served with 300 mL water. 

Lunch was provided 3 h after breakfast (e.g. 11:00 am). Participants were advised to eat 

the lunch until they were comfortably full according to their satiety within 30 min. All food 

items were weighed before and after the meal. The remaining food was weighed, 

subtracted from the initial amount and the food consumed was used to calculate energy 
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(kcal). Details regarding this procedure were described in Section 2.3.2.  

4.3.3 Satiety and palatability scoring (adaptive visual analogue scale, AVAS) 

Satiety and palatability were measured using the Adaptive Visual Analogue Scale (AVAS) 

software. Participants were directed to the ‘training’ mode, which allowed participants to 

practice before starting the real test. After acclimatisation, participants completed an 

AVAS scoring, before receiving a test meal at breakfast (fasting state), and at different 

time points (30, 60, 90, 120 and 180 min) after breakfast. AVAS consists of five questions 

regarding perceived hunger, fullness, satiety, desire to eat and prospective food intake. 

Details regarding this procedure were described in Section 2.3.3.  

4.4 Statistical analysis 

All data were analysed using SPSS software (SPSS version 22.0, SPSS Inc., Chicago, 

USA). The distribution of variables was evaluated using Shapiro-Wilk tests and the data 

considered to be normal if p > 0.05. Values with p < 0.05 were considered significant. 

Data for the time (min) spent eating breakfast and energy intake (kcal) during ad libitum 

lunch were normally distributed and were analysed using a General Linear Model (GLM). 

Data regarding eating rate (kcal/min) were not normally distributed and became normally 

distributed after log-transformation. Values with p < 0.05 were considered significant. 

Gender was used as a between-subject factor and BMI as covariates. The data for GLM 

test met the following assumptions: 

i. The dependent variable is measured at a continuous level (e.g. energy 

intake measured as kcal, which is continuous data). 

ii. The independent variable should consist of at least two categorical 

“related groups” or “matched pairs” (This study is a cross-over study 

hence subjects are present in both groups). 

Data for bread palatability measures were not normally distributed after log transformation 

and were analysed using the Friedman non-parametric test  (Altman, 1999). Total area 

under the curve (TAUC) for perceived hunger, fullness, satiety, desire to eat and 
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prospective food intake ratings were calculated from baseline to 3 h using linear 

trapezoidal method (Vitaglione et al., 2009). Data for perceived hunger, fullness, satiety, 

desire to eat and prospective food intake and total area under the curve (TAUC0-180 min) for 

each of satiety measures were not normally distributed. Both data sets (palatability and 

perceived satiety) were log transformed to improve normality. However, these data were 

still not normally distributed after log transformation and hence were analysed using the 

Friedman non-parametric test (Altman, 1999). This test is equivalent to GLM repeated 

measures for normally distributed data. The data meet the following four assumptions for 

the Friedman test: 

i. One group that is measured on three or more different occasions 

ii. Group is a random sample from the population 

iii. The dependent variable is measured at the ordinal or continuous scale 

iv. Data do not normally distributed  

Values with p < 0.05 were considered significant. Any significant data were further tested 

using Wilcoxon matched pair signed-rank sum test. This test is equivalent to paired t-test 

for normally distributed data. Palatability ratings are presented as median in star diagram. 

Perceived satiety measures are presented as median and interquartile (IQR) (quartile 1 to 3, 

Q1 to Q3). Gender and BMI could not be added in the model analysis because the data 

were not normally distributed. Instead, the data were split into male and female to 

determine difference between gender.  

The relationships between energy intake at lunch and individual perceived satiety measures 

(total area under the curve 0 – 180 min, TAUC0-180min) were determined using Spearman 

rank-order correlation coefficient (Spearman’s correlation, rS). 
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Figure 4-1. Study protocol for palatability and satiety study. WB, white bread; BT, black tea bread; βG, β-Glucan bread, βGBT, β-Glucan plus black 
tea bread. 

x Healthy males (n = 12) and females (n = 12)  
x BMI from 18.5 to 29.9 kg/m2 
x Age from 18 to 50 years 

x Randomised to 4 different groups 
x Single blind (open label) 
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3rd visit (n = 24) 4th visit (n = 24) 
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4.5 Results 

Subject characteristics are shown in Table 4-1. Twelve healthy males and eleven females 

with an age range of 26.7 ± 6.8 years completed all four-arm trials. One female subject 

showed unreliable perceived satiety responses (outlier) and was subsequently excluded 

from statistical analysis. One male subject dropped-out from the study and was replaced by 

another male subject.  

Visual appeal, aroma, smell and aftertaste were similar between breads (Figure 4-2). 

Median taste rating for WB was significantly higher compared with βGBT (p = 0.018). 

Median texture ratings for WB and BT were significantly higher compared with βG and 

βGBT  (p = 0.002 and p = 0.023, respectively; p = 0.030 and p = 0.042, respectively). 

Palatability ratings for WB and BT were higher compared with βG and βGBT (p = 0.008 

and p = 0.011, respectively; p = 0.037 and p = 0.019, respectively).  

WB showed significantly higher overall acceptability of breads when compared with βG 

and βGBT (Figure 4-2). There were gender differences in median ratings for taste, texture 

and palatability of βG and βGBT compared with WB. Females scored lower ratings for 

taste of βG and βGBT compared with WB (p = 0.003 and p = 0.021, respectively). Females 

scored lower ratings for texture of βG and βGBT compared with WB (p = 0.006 and p = 

0.013, respectively). Palatability of βG and βGBT were lower compared with WB in 

female subjects (p = 0.004 and p = 0.026, respectively).  

Eating time for βG and βGBT were significantly higher when compared with WB and BT 

(Table 4-2). Eating rate for βG and βGBT were significantly slower when compared with 

WB and BT. There were no significant effects of gender (within-subject factor) and BMI 

(covariates) on eating time and rate.  
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Table 4-1. Baseline characteristics  

 

 

 

 

 

 

 

 

 
Characteristics 
 

 
Mean ± S.D 

 
Range  

 
Age (years) 

 
26.7 ± 6.8 

 
18 - 43 

Weight (kg) 65.2 ± 13.1 46.9 – 87.6  
Height (cm) 168.8 ± 8.3 154.9 – 184.4  
Body Mass Index (BMI, 
kg/m2) 

22.9 ± 3.4 17.8 – 29.8 

Systolic blood pressure 
(SBP, mmHg) 

112.4 ± 11.7 88 – 126 

Diastolic blood pressure 
(SBP, mmHg) 

68.2 ± 9.8 53 - 94 

 
BMI category (%) 
   <18.5 
   18.5 – 24.9                                                                    
   25.0 – 29.9                                                                   

 
 
4 (17.4) 
10 (43.5) 
9 (39.1) 

 
 

 
Gender (male/female) (%) 

 
12/11(52.2/47.8) 

 

 
Ethnicity (%) 
Asian  
Caucasian  

 
 
15 (65.2) 
8 (34.8) 
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Table 4-2. Bread eating time (mean ± S.E.M) at breakfast in healthy volunteers (n = 23) 

 

 

 

 
Breads 

 
Eating time 
(min) 

 
Range 

 
Eating rate 
(kcal/min) 
 

 
Range 
 

 
WB 

 
8.5 ± 0.7a 

 
4.5 – 15.1 

 
55.9 ± 4.2a 

 
27.6 – 92.1 

BT 8.4 ± 0.5a 4.2 – 12.0 53.5 ± 3.6a 34.4 – 97.4 
βG 10.7 ± 0.7b 5.4 – 17.0 43.5 ± 3.1b 24.5 – 77.8 
βGBT 11.0 ± 0.7b 5.1 – 18.0 41.5 ± 3.1b 23.3 – 83.0 

 

Different superscript letters indicate significant (p < 0.05) differences between breads.  
Eating time: βG vs WB, p = 0.026; βG vs BT, p = 0.003; βGBT vs WB, p = 0.002; βGBT vs BT, p 
= 0.001      
Eating rate: βG vs WB, p = 0.013; βG vs BT, p = 0.004; βGBT vs WB, p = 0.002, βGBT vs BT, p 
= 0.001 
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Figure 4-2. Star diagram of breads acceptability and palatability based on 100-mm visual analogue scale in healthy volunteers. Values are 
expressed as median. Asterisk (*) indicates significant (p < 0.05) differences between WB vs βGBT. Double asterisks (**) indicate significant (p 
< 0.05) difference between WB and BT vs βG and βGBT. Palatability (how palatable the bread is), overall acceptability (the overall acceptability 
of the bread) 
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Data for perceived satiety measures (hunger, fullness, satiety, desire to eat and prospective 

food intake) were not normally distributed and were analysed using the Friedman non-

parametric test. Any significant results were further analysed using Wilcoxon matched 

pairs signed-rank sum test to determine the difference between pairs. Total area under the 

curve (TAUC) for satiety measures was preferable because single satiety data (individual 

time points) are not physiologically or statistically independent (Blundell et al., 2010). 

Perceived hunger ratings were similar at baseline (0 min) and decreased postprandially (p 

< 0.05) at 15 min for all breads (Table 4-3). Perceived hunger gradually increased (p < 

0.05) for all breads from 15 min to 180 min. Total area under the curve (TAUC0-180min) 

were significantly different between breads, χ (3) = 14.2 (p = 0.003) (Table 4-3). Both WB 

and BT were significantly different compared with βG with Z = - 2.616 (p = 0.009) and Z = 

- 2.616 (p = 0.016), respectively. No significant difference was found between βGBT and 

other breads. 

Perceived fullness ratings were similar at baseline (0 min) and increased postprandially (p 

< 0.05) at 15 min for all breads (Table 4-4). Perceived fullness gradually decreased (p < 

0.05) for all breads from 15 min to 180 min. TAUC0-180min for fullness were significantly 

difference between breads, χ (3) = 11.5, p = 0.010 (Table 4-4). TAUC0-180min of perceived 

fullness significantly increased after eating βGBT bread compared with WB (Z = - 2.516, p 

= 0.012) and BT (Z = - 2.321, p = 0.020). No significant difference was found between βG 

and other breads. 

Perceived satiety ratings were similar at baseline (0 min) and increased postprandially (p < 

0.05) at 15 min for all breads (Table 4-5). Perceived satiety started to decrease (p < 0.05) 

at 15 min and reached the lowest point at 180 min for all breads. TAUC0-180min for 

perceived satiety were significantly difference between breads, χ (3) = 10.8, p = 0.013 

(Table 4-5). βGBT bread significantly increased TAUC0-180min perceived satiety compared 

with WB (Z = - 2.9, p = 0.004) and BT (Z = - 2.4, p = 0.016). βG bread significantly 

increased perceived TAUC0-180min satiety compared with WB (Z = - 2.1, p = 0.042).  

Perceived desire to eat was similar at baseline and decreased significantly (p < 0.05) at 15 

min after eating breads at breakfast (Table 4-6). Perceived desire to eat significantly (p < 
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0.05) increased starting from 15 to 180 min for all breads. TAUC0-180min of perceived desire 

to eat was lower for βG compared with WB (Z = - 2.0, p = 0.045). 

Breads showed similar perceived prospective food intake at baseline and significantly (p < 

0.05) reduced at 15 min after eating BT, βG and βGBT when compared with WB (Table 4-
6). Prospective food intake remained lower after eating βG and βGBT when compared with 

WB at 30 to 180 min. However, only βG showed overall (TAUC0-180min) reduction in 

prospective food intake when compared with WB and BT (Z = - 2.5, p = 0.014 and Z = - 

2.0, p = 0.045). 

Energy intake at lunch is shown in Figure 4-3. Total energy intake at lunch was 15.5% 

lower (p = 0.024) after consumption of BT bread at breakfast when compared with WB. 

Energy intake of βG did not change significantly when compared to WB due to higher 

inter-individual variation between subjects. Based on GLM analysis, gender (within-

subject factor) and BMI (covariates) were not associated with energy intake at lunch. 

Correlation between perceived satiety measures (TAUC0-180min) and energy intake at lunch 

(kcal) was determined using Spearman’s correlation for non-parametric data. TAUC0-180min 

satiety was negatively correlated with WB energy intake at lunch with rS = - 0.57 (p = 

0.004). No significant correlations were found between BT, βG and βGBT in relation with 

other perceived satiety measures. 
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Table 4-3. Baseline and postprandial perceived hunger (median (IQR)) after consuming breads at breakfast in healthy volunteers (n = 23) 

 
Time 

 
Fasting 

 
15 min 

 
30 min 

 
60 min 

 
90 min 

 
120 min 

 
150 min 

 
180 min 

 
TAUC0-180min 

(mm.min) 
 

 
Time average* 

 
Breads 

 
Median 
(IQR) 

 
Median 
(IQR) 

 
Median 
(IQR) 

 
Median 
(IQR) 

 
Median 
(IQR) 

 
Median 
(IQR) 

 
Median 
(IQR) 

 
Median 
(IQR) 

 

 
Median 
(IQR) 

 

 
Median 
(IQR) 

 
 
WB 

 
77.2 

(56 – 95) 
 

 
14.7 

(6 – 20) 

 
21.6 

(4 – 51) 

 
27.9 

(11 – 43)a 

 
33.4 

(14 – 52) 

 
38.9 

(18 – 56) 

 
52.4 

(26 – 73) 

 
58.6 

(49 – 75) 

 
6636.0 

(4788 – 10471)a 

 
36.9 

(26.6 – 58.2)a 

BT 89.5 
(69 – 93) 

 

7.5 
(5 – 19)a 

12.9 
(7 – 28) 

24.9 
(10 – 44)a 

25.5 
(12 – 44) 

32.6 
(21 – 55) 

48.2 
(28 – 66) 

57.0 
(44 – 74) 

6419.0 
(4309 – 8997)a 

35.7 
(23.9 – 50.0)a 

βG 76.7 
(67 – 92) 

 

3.0 
(1 – 9)b 

6.9 
(32 – 14) 

12.8 
(8 – 25)c 

16.0 
(10– 33) 

21.4 
(14 – 42) 

39.9 
(25 – 55) 

47.9 
(24 – 60) 

4784.0 
(3145 – 7283)b 

26.6 
(17.5 – 40.5)b 

βGBT 83.7 
(66 – 92) 

 

3.3 
(1 – 15) 

8.3 
(4 - 21) 

10.2 
(5 – 21)c 

15.9 
(8 – 33) 

19.1 
(15 – 47) 

41.0 
(27 – 66) 

15.9 
(8 – 33) 

4737.9 
(3572 – 7466)ab 

 

26.3 
(19.8 – 41.5)ab 

Data are presented as median (interquartile, IQR). Different superscripts indicate significant (p < 0.05) differences between breads at the same 
time point (Wilcoxon’s matched pairs signed-rank sum test). There were significant (p < 0.05) time interactions for all breads. Asterisk (*): Time 
average was calculated as TAUC0-180min/180 min. 
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Data are presented as median (interquartile, IQR). Different superscripts indicate significant (p < 0.05) differences between breads at the same time point 
(Wilcoxon’s matched pairs signed-rank sum test). There were significant (p < 0.05) time interactions for all breads. Asterisk (*): Time average was 
calculated as TAUC0-180min/180 min. 
 

 
Time 

 
Fasting 

 
15 min 

 
30 min 

 
60 min 

 
90 min 

 
120 min 

 
150 min 

 
180 min 

 
TAUC0-180min 

(mm.min) 
 

 
Time average* 

 
Breads 

 
Median 
(IQR) 

 
Median 
(IQR) 

 
Median 
(IQR) 

 
Median 
(IQR) 

 
Median 
(IQR) 

 
Median 
(IQR) 

 
Median 
(IQR) 

 
Median 
(IQR) 

 

 
Median 
(IQR) 

 

 
Median 
(IQR) 

 
 
WB 
 

 
4.6 

(2 – 26) 

 
84.3 

(72 – 94) 

 
77.9 

(64 – 91)a 

 
70.11 

(48 – 86)a 

 
60.9 

(45 – 84) 

 
58.4 

(42 – 80) 

 
49.0 

(29 – 70)a 

 
42.1 

(24 – 61) 

 
11140.5 

(8926 – 13954)a 

 

 
61.9 

(49.6 – 77.5)a 

BT 
 

5.5 
(2 – 19) 

85.5 
(74 – 94) 

79.3 
(64 – 89)ab 

70.9 
(50 – 84)a 

72.3 
(49 – 85) 

50.8 
(32 – 75) 

48.6 
(40 – 67) 

38.9 
(26 – 54)a 

10457.0 
(9042 – 13778)a 

 

58.1 
(50.2 – 76.5)a 

βG 
 

6.4 
(2 – 21) 

94.5 
(75 – 98) 

92.4 
(75 – 94)c 

81.4 
(65 – 88) 

82.8 
(63 – 86) 

68.3 
(49 – 82) 

63.5 
(45 – 76)b 

49.2 
(30 – 61) 

12468.0 
(11360 – 
13995)ab 

 

69.3 
(63.1 – 77.8)ab 

βGBT 
 

8.7 
(2 – 22) 

93.3 
(83 – 98) 

87.6 
(80 – 94) 

84.6 
(71 – 92)b 

81.7 
(57 – 89) 

74.5 
(53 – 81) 

61.1 
(40 – 71) 

53.3 
(34 – 69)b 

13119.5 
(11438 – 14588)b 

 

72.9 
(63.5 – 81.0)b 

Table 4-4. Fasting and postprandial perceived fullness (median (IQR)) after consuming breads at breakfast in healthy volunteers (n = 23) 
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Table 4-5. Fasting and postprandial perceived satiety (median (IQR)) after consuming breads at breakfast in healthy volunteers (n = 23) 

 
Time 

 
Fasting 

 
15 min 

 
30 min 

 
60 min 

 
90 min 

 
120 min 

 
150 min 

 
180 min 

 
TAUC0-180min 

(mm.min) 
 

 
Time 

average* 

 
Breads 

 
Median 
(IQR) 

 
Median 
(IQR) 

 
Median 
(IQR) 

 
Median 
(IQR) 

 
Median 
(IQR) 

 
Median 
(IQR) 

 
Median 
(IQR) 

 
Median 
(IQR) 

 

 
Median 
(IQR) 

 

 
Median 
(IQR) 

 
 
WB 
 

 
11.26 

(5 – 27) 

 
77.9 

(64 – 89)a 

 
74.3 

(54 – 88)a 

 
69.7 

(59 – 84) 

 
56.1 

(41 – 79)a 

 
53.6 

(40 – 72)a 

 
47.8 

(31– 60) 

 
37.5 

(27 – 56) 

 
10500.0 

(8803 - 13283)a 

 

 
58.3 

(48.9 – 73.8)a 

BT 
 

7.6 
(2 – 19) 

86.7 
(73 – 95) 

81.0 
(62 – 93)a 

74.3 
(51 – 82)a 

69.7 
(49 – 81)a 

53.1 
(36 – 78)a 

50.0 
(35 – 68)a 

38.4 
(38 – 50) 

10814.0 
(8463 - 13284)ab 

 

60.1 
(46.9 – 73.8)ab 

βG 
 

12.9 
(2 – 30) 

90.9 
(79 – 96) 

87.8 
(77 – 92)b 

81.8 
(64 – 89) 

77.9 
(63– 86)b 

65.3 
(46 – 77) 

63.6 
(45 – 69)b 

47.4 
(31 – 62) 

11995.0 
(10609 - 13872)bc 

 

66.6 
(58.9 – 77.1)bc 

βGBT 
 

12.9 
(2 – 24) 

90.2 
(82 – 95)b 

89.7 
(77 – 93)b 

84.8 
(70 – 89)b 

80.7 
(54 – 86)b 

71.0 
(54 – 80)b 

50.0 
(34 – 72) 

48.1 
(48 – 67) 

13226.0 
(11840 - 14641)cd 

 

73.5 
(65.8 – 81.3)cd 

Data are presented as median (interquartile, IQR). Different superscripts indicate significant (p < 0.05) differences between breads at the same 
time point (Wilcoxon’s matched pairs signed-rank sum test). There were significant (p < 0.05) time interactions for all breads. Asterisk (*): Time 
average was calculated as TAUC0-180min/180 min. 
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Table 4-6. Fasting and postprandial perceived desire to eat (median (IQR)) after consuming breads at breakfast in healthy volunteers (n = 23) 

 
Time 

 
Fasting 

 
15 min 

 
30 min 

 
60 min 

 
90 min 

 
120 min 

 
150 min 

 
180 min 

 
TAUC0-180min 

(mm.min) 
 

 
Time average* 

 
Breads 

 
Median 
(IQR) 

 
Median 
(IQR) 

 
Median 
(IQR) 

 
Median 
(IQR) 

 
Median 
(IQR) 

 
Median 
(IQR) 

 
Median 
(IQR) 

 
Median 
(IQR) 

 

 
Median 
(IQR) 

 

 
Median 
(IQR) 

 
 
WB 
 

 
90.11 

(67 – 96) 

 
23.8 

(8 – 62)a 

 
21.4 

(9 – 49)a 

 
30.0 

(14 – 51)a 

 
46.4 

(20 – 54)a 

 
48.5 

(28 - 60)a 

 
47.8 

(36 – 77)ad 

 
58.2 

(51 – 79) 

 
7636.0 

(5105 – 10097)a 

 

 
42.4 

(28.4 – 56.1)a 

BT 
 

85.3 
(75 – 97) 

12.4 
(7 – 26)b 

19.7 
(10 – 40)ab 

22.8 
(16 – 39) 

29.2 
(15 – 55)ab 

50.6 
(24 – 66)a 

50.7 
(31 – 65)ab 

61.8 
(50 – 76) 

7605.0 
(4988 - 9576)ab 

 

42.3 
(27.7 – 53.2)ab 

βG 
 

84.8 
(71 – 96) 

7.5 
(3 – 31)b 

7.5 
(3 – 17)bc 

16.7 
(9 – 32) 

22.5 
(11 – 31)bc 

28.5 
(18 – 49) 

33.7 
(21 – 55)c 

54.0 
(37 - 72) 

5548.0 
(3734 – 7202)b 

 

30.8 
(20.7 – 40.0)b 

βGBT 
 

90.6 
(69 – 96) 

6.3 
(4 – 36)b 

8.5 
(5 – 29)cd 

14.4 
(7 – 30)b 

19.0 
(9 – 37)bc 

28.3 
(18 – 45)b 

47.9 
(23 – 66)cd 

52.4 
(32 – 66) 

5369.0 
(3834 - 8464)ab 

 

29.8 
(21.3 – 47.0)ab 

Data are presented as median (interquartile, IQR). Different superscripts indicate significant (p < 0.05) differences between breads at the same 
time point (Wilcoxon’s matched pairs signed-rank sum test).  There were significant (p < 0.05) time interactions for all breads. Asterisk (*): 
Time average was calculated as TAUC0-180min/180 min. 
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Table 4-7. Fasting and postprandial perceived prospective food intake (median (IQR)) after consuming breads at breakfast in healthy volunteers 
(n = 23) 

 
Time 

 
Fasting 

 
15 min 

 
30 min 

 
60 min 

 
90 min 

 
120 min 

 
150 min 

 
180 min 

 
TAUC0-180min 

(mm.min) 
 

 
Time average* 

 
Breads 

 
Median 
(IQR) 

 
Median 
(IQR) 

 
Median 
(IQR) 

 
Median 
(IQR) 

 
Median 
(IQR) 

 
Median 
(IQR) 

 
Median 
(IQR) 

 
Median 
(IQR) 

 

 
Median 
(IQR) 

 

 
Median 
(IQR) 

 
 
WB 
 

 
75.2 

(69 – 96) 

 
21.2 

(11 – 47)a 

 
26.7 

(9 – 50)a 

 
28.5 

(11 – 57)a 

 
44.5 

(19 – 56)a 

 
49.4 

(28 – 57)a 

 
51.4 

(40 – 71)a 

 
65.2 

(50 – 78)a 

 
8691.0 

(5178 – 9809)a 
 

 
48.2 

(28.8 – 54.5)a 

BT 
 

84.1 
(76 – 96) 

13.7 
(7 – 30)b 

21.2 
(10 – 35)ab 

24.3 
(14 – 48) 

29.8 
(17 – 53) 

47.6 
(28 – 64)a 

56.7 
(41 – 70)a 

62.9 
(52 – 73)a 

7690.0 
(5059 - 9838)a 

 

42.7 
(28.1 – 54.7)a 

βG 
 

83.7 
(65 – 96) 

8.7 
(3 – 27)b 

8.3 
(5 – 15)c 

17.1 
(9 – 34)b 

25.6 
(11 – 38)b 

30.1 
(18 – 50) 

40.5 
(23 – 52)b 

56.7 
(33 – 69) 

5507.0 
(3778 - 7345)b 

 

30.6 
(21.0 – 40.8)b 

βGBT 
 

83.2 
(73 – 94) 

11.6 
(4 – 23)b 

9.9 
(6 – 32)bc 

15.9 
(9 – 42)b 

17.7 
(10 – 39)b 

31.5 
(20 – 47)b 

50.0 
(31 – 69) 

36.6 
(37 – 69)b 

5514.0 
(4429 – 7738)ab 

 

30.6 
(24.6 – 43.0)ab 

Data are presented as median (interquartile, IQR, Q1 – Q3). Different superscripts indicate significant (p < 0.05) differences between breads 
at the same time point (Wilcoxon’s matched pairs signed-rank sum test). There were significant (p < 0.05) time interactions for all breads. 
Asterisk (*): Time average was calculated as TAUC0-180min/180 min. 
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Figure 4-3. Energy intake (kcal) during an ad libitum lunch. Data are expressed as mean ± S.E.M. Asterisk (*) indicates significant (p < 0.05) 
differences between WB and BT. 
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4.6 Discussion 

Eating behaviour is determined by three main factors: 1) metabolic processes that drive 

hunger and satiety 2) sensory factors that drive food choice 3) the cognitive factors that 

shape eating habits (Blundell et al., 2010). These three domains are interrelated due to a 

learning process. Based on this concept, sensory factors determine what one eats while 

metabolic factors determine how much one eats. Macronutrient composition, energy 

density, physical structure and sensory qualities are the external cues that could modulate 

satiation and satiety (Mela, 2006). In Chapter 3, breads with β-glucan and/or black tea 

were developed and showed different characteristics. Breads with the addition of black tea 

(BT and βGBT) were darker and bread with β-glucan (βG) was more chewy when 

compared with to white bread; this might have implications for palatability. Hence, this 

chapter aimed to determine the palatability and perceived satiety after eating bread with β-

glucan and/or black tea and compared with white bread.  

A previous study showed the addition of β-glucan in bread at the level of 2.5 and 5% had 

negative effects on dough quality and reduced loaf height by 19 and 36%, respectively 

(Brennan and Cleary, 2007). Ellis et al. showed that guar gum inclusion at the dose of 15% 

was unacceptable among normal subjects (Ellis et al., 1981). Guar gum is viscous in nature 

and its addition in bread (semi-moist) might have negative effects on texture when 

compared with low-moist products such as biscuits (Ellis et al., 2001). β-glucan has similar 

characteristics as guar gum but is less viscous, therefore it is anticipated that this would 

have a negative effect on bread texture. In Chapter 3, the addition of β-glucan reduced 

loaf height by 35% when compared with white bread (WB) (Jalil et al., 2015). This might 

partially explain why both βG and βGBT showed significantly lower overall acceptability 

when compared with WB based on 100-mm scale (Median of 77.1 mm and 75.2 mm vs 

87.4 mm, respectively). Korczak et al. showed reduced overall acceptability of bars 

prepared with barley and oats (Korczak et al., 2014). Another study indicated that products 

with overall acceptability above 5 based on a scale of 10 were considered acceptable 

(neither like nor dislike) (Hennessy-Priest, 2014). In bread prepared with 10% (w/w) guar 

gum, Ellis et al. demonstrated the predictive hedonic value of 5.3 which is close to a 

neutral response of 5 (from a scale of 1 being like very much and 9 being dislike very 
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much) among untrained volunteers (Ellis et al., 1981). In our study, βG and βGBT had an 

overall acceptability of 75 to 77-mm compared with WB (87-mm) from a scale of 100-

mm. 

Texture and palatability ratings of βG and βGBT were significantly lower when compared 

with WB and BT breads. There were gender differences in bread palatability. Female 

participants showed a lower preference for taste, texture and palatability of βG and βGBT. 

Cho et al. demonstrated gender differences towards traditional Korean rice cake 

(seolgitteok) among consumers (Cho et al., 2016). Seolgitteok is chewy and has a plain 

flavour, both characteristics which are similar to β-glucan breads. In this study, females 

showed lower overall acceptability towards seolgitteok when compared with males. 

Females have higher chances of rejection and of aversion to unfamiliar foods than males. 

In addition, females have lesser preference than males towards unfamiliar and novel foods 

(Backstrom et al., 2003).  

The second objective of the study was to determine the satiety effects of bread prepared 

with β-glucan and/or black tea breads. Bread with β-glucan and/or black tea synergistically 

reduced hunger, increased fullness and satiety, and reduced desire to eat when compared 

with control breads. The ‘Satiety Cascade’ was coined 25 years ago by Blundell et al. and 

describes the conceptual framework for investigating the effects of foods on satiation (meal 

termination or intra-meal satiety) and satiety (inter-meal satiety) (Blundell et al., 2010). 

Sensory and cognitive factors are two major determinants of satiation and satiety. Meal 

termination (satiation) and inter-meal satiety (satiety) is highly dependent on nutrient 

composition, energy density and the physical structure of the food products (Mela, 2006). 

Modifying food energy density and physical structure with the addition of soluble fibre 

increased eating time when compared with control food (Pentikäinen et al. 2014). Our 

study showed that breads prepared with β-glucan had lower energy density when compared 

with control breads due to higher water content. Participants spent more time (11 min) 

eating β-glucan breads when compared with control bread (8.5 min). Eating rate (kcal/min) 

was slower (28.5 to 35%) for β-glucan breads when compared with control white bread. 

Zijlstra et al. found that participants consumed more test products (e.g. chocolate custard) 

when oral processing time was reduced from 9 s to 3 s (Zijlstra et al., 2009). A systematic 
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review from 22 studies demonstrated that slower eating rate associated with lower energy 

intake (Robinson et al., 2014). Oat bran addition in biscuits might result in longer oral 

processing time and thus stronger oro-sensory cues for perceived satiety (Wanders et al., 

2011). When energy content and eating rate was held constant, higher oro-sensory (small 

sip) (more time interval between the food entering the mouth and swallowing) exposure 

reduced intake of sweet drinks when compared with higher oro-sensory exposure (large 

sip) (Weijzen et al., 2009). Forde et al. demonstrated that oral-sensory time could 

contribute to higher satiation when subjects consumed isocaloric meals (Forde et al., 

2013).  

A recent meta-analysis showed that a slower eating rate reduced energy intake (Robinson 

et al., 2014). Physiologically, a higher amount of food present in the mouth leads to an 

increase in chewing and higher oral processing time, because more time is needed for 

enough saliva to be added to form a uniform bolus for swallowing (Engelen et al., 2005; 

Zijlstra et al., 2010). This also leads to early meal termination and higher satiety response. 

The sense of taste acts as a nutrient sensor and triggers the brain and the gut regarding the 

inflow of nutrients through cephalic phase response (de Graaf et al., 2012; Forde et al., 

2013). Li et al. demonstrated how increasing chewing frequency (40 chews vs 15 chews of 

10 g food) resulted in lower energy intake and evoked higher satiety hormones (GLP-1 and 

CCK) (Li et al., 2011). An increase in eating time from 5 to 30 min (physiologically 

moderate phase) leads to higher perceived fullness ratings and higher satiety hormone 

peptide YY (Kokkinos et al., 2010). However, Shah et al. showed no effects of slow eating 

time (30 min vs 10 min) during breakfast meal on appetite hormone responses (Shah et al., 

2005). Hence, in our study, we anticipated that having breads with β-glucan increased oral 

processing time and had a lower eating rate. This action could increase perceived satiety 

over the period of 3 h when compared with control breads. 

Previous studies have demonstrated that β-glucan increases satiety when ingested as a part 

of solid foods such as breads, biscuits or muffins. These studies showed increased 

perceived satiety in the range of 43 – 55%, perceived fullness by 19 – 25%, and reduced 

perceived hunger by 10 – 49% (Vitaglione et al., 2009; Vitaglione et al., 2010; Willis et 

al., 2009). However, these solid foods differed in physical structure, energy density, and 



     

  166 

 

amount of β-glucan used and this does not allow one-to-one comparison regarding 

perceived satiety. A study showed addition of β-glucan in replacement bars for two 

consecutive days had no effects on perceived satiety but the amount of β-glucan (0.9 g) 

may have been too low to have any significant effects (Peters et al., 2009). Adjusting 

energy density by increasing the volume (e.g. adding water) without changing 

macronutrient content could be a useful strategy to enhance satiety and reduce subsequent 

energy intake (next meal effects) (Rolls, 2009). In our study, an ad libitum lunch was given 

to determine whether bread intake at breakfast could reduce subsequent energy intake. BT 

intake at breakfast reduced energy intake at lunch when compared with WB. βG showed 

lower and similar energy intake to that of BT but did not change significantly, due to high 

inter-individual variations. Breakfast meals were standardised based on 50 g of available 

carbohydrate. βG and βGBT contained more water per g of available carbohydrate and 

hence showed lower energy density (2.1 kcal/g) when compared with WB and BT (2.8 and 

2.7 kcal/g respectively).  

Energy density, dose, and meal volume are important factors in reducing energy intake 

after consuming β-glucan products. β-Glucan (3 g) prepared in bread (100 g) with an 

energy density of 2.6 kcal/g reduced energy intake at lunch by 19% (Vitaglione et al., 

2009). Lower preload volume (60 g biscuit) of energy bar containing 0.9 g β-glucan had no 

effects on energy intake at lunch (Peters et al., 2009). Vitaglione et al. demonstrated small 

(38 g) and large (114 g) portions of biscuits with the same energy density of 17 kcal/g 

significantly reduced energy intake at lunch among women and not among men 

(Vitaglione et al., 2010). Another study demonstrated how males had more energy than 

females at lunch (Pedersen et al., 2013; Hess et al., 2011). In our study, gender had no 

effect on energy intake, i.e. males and females had eaten equally from an ad libitum lunch. 

The following steps were taken to prevent overeating during the lunch session: 1) foods 

were provided in small proportions specifically to prevent overconsumption of one 

individual food 2) they were advised to eat based on their satiety.  

A correlation analysis was performed to further evaluate the effectiveness of perceived 

satiety measures in reducing energy intake at lunch. Based on Spearman’s analysis, only 

WB negatively correlated with perceived satiety at lunch, i.e. less perceived satiety leads to 
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increased energy intake at lunch. No significant correlations were found between energy 

intakes and perceived satiety measures for other breads. Calame et al. demonstrated no 

correlation between perceived satiety ratings and energy intake at lunch when soluble 

dietary fibres (highly viscous) were given as beverage (Calame et al., 2011). Another study 

found a positive association between perceived satiety and energy intake at lunch in 

subjects supplemented with fibre-rich cereal (Freeland et al., 2009). However, it must be 

noted that these studies differ in the food matrix, fibre dose, and type of fibres; hence, they 

produced ambiguous results. The effectiveness of perceived satiety based on visual 

analogue scale (VAS) in predicting energy intake has received much attention in recent 

years. Some studies showed perceived satiety is a good proxy in assessing energy intake, 

but other studies failed to show any effects (Stubbs et al., 2000). Research on appetite is 

evolving and there is guidance on good practice in carrying out appetite research (Blundell 

et al., 2010). The use of VAS scoring under experimental condition is robust (but more 

artificial) than the real-life situation. This study has limitations related to the degree of 

accuracy in the measurement of perceived satiety and energy intake. Firstly, the assessment 

of satiety effect and palatability scorings of the breads were performed by untrained 

volunteers and there would be some extent of subjective inter-personal variability in rating 

the scorings (Solah et al., 2015). However, using a crossover study design reduced the 

inter-individual variations. Secondly, this a short-term intervention study and the dietary 

modifications may not be long enough to detect changes on subjective appetite and energy 

intake. A longer duration of treatment may be needed to detect changes in appetite as a 

result of dietary modification (Clark & Slavin, 2013). A post-hoc calculation using G 

Power software showed that the present study achieved a power of 90%. This value was 

10% higher than our early calculation of 80% (as described in Section 4.2.2). Hence, the 

lack of results on energy intake may be due to other factors related to an ad libitum lunch 

session. Firstly, the choice of foods for the ad libitum lunch is not individual-specific, i.e. 

subjects might not eat what they not normally eat and hence make the ad libitum lunch 

insensitive. Secondly, given the ad libitum lunch is free, subjects might eat as much as 

possible and this might lead to overconsumption at lunchtime. The time interval of the 

availability of the food for the next eating session would also determine how subjects eat 

during the lunch. For example, subjects might eat more if they know that the food is 
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available in the next 2 h, and might eat less if they have food available in the next 20 min 

(de Graaf et al., 1999; Blundell et al., 2010). However, these are well documented 

limitations of feeding trials under experimental conditions. Thirdly, this is acute study 

(measured 3 h postprandially) and is not long enough to be affected by the colonic 

fermentation of β-glucan and tea (poly)phenols. A longer study (6 – 9 h) is needed to 

determine the colonic effects of these two components. Moreover, measurement of actual 

energy intake later in the day (second meal effects) may be relevant to determine the 

satiety effects of this bread. 

4.7 Conclusions 

Breads prepared with β-glucan and/or with black tea were palatable compared with white 

bread. The addition of black tea did not improve the taste, texture and palatability of β-

glucan bread. This study suggests gender specific differences related to palatability of the 

experimental breads and these need to be considered in future intervention studies. Eating 

bread prepared with β-glucan and/or with black tea increased perceived satiety when 

compared with WB and BT. However, eating these breads did not have a significant effect 

on energy intake at lunch. There might be other mechanisms whereby these breads 

increased perceived satiety. Therefore, further investigations into mechanisms related to 

appetite hormones should be considered. 
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5 Chapter 5: Effects of Functional Breads Prepared 
with β-Glucan and Black Tea on Postprandial 

Glucose, Insulin and Appetite Hormones in 
Healthy Volunteers
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OUTLINE 

The studies in Chapter 3 showed that the functional breads developed with β-glucan 

and/or black tea reduced in vitro starch hydrolysis. In Chapter 4, the functional breads 

with β-glucan and/or black tea increased perceived satiety when compared with white 

bread. Hence, this chapter describes whether these breads have a real effect on postprandial 

glucose and appetite-related hormones in healthy volunteers.  

The results from this chapter were presented at the Nutrition Society Spring Conference, 

21–22 March 2016, titled: ‘Phytochemicals and health: new perspectives on plant based 

nutrition’, at the Royal College of Physicians, Edinburgh, United Kingdom. The poster 

presentation was entitled: ‘Acute effects of breads prepared with β-glucan and black tea on 

glucose and insulin responses in healthy volunteers’. 
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5.1 Introduction 

In Chapter 3, the addition of β-glucan and black tea appeared to preserve some of the 

starch granules in the bread and reduced early in vitro starch hydrolysis. This indicates the 

potential to reduce postprandial glucose and insulin responses in humans. As discussed in 

Section 1.5.3, Jenkins et al. showed that viscous guar gum (as a drink) was effective in 

reducing postprandial glucose among healthy volunteers (Jenkins et al., 1978). However, 

the glucose lowering ability disappeared when partially hydrolysed guar gum (non viscous) 

was used. Another study showed that viscous β-glucan in biscuit or juice dose-dependently 

reduced glucose response (Pentikäinen et al., 2014). A recent study showed that guar gum 

bread reduced glucose and insulin responses between 0 to 120 min when compared with 

white wheat bread (Ekstrom et al., 2016). 

Juvonen et al. demonstrated that adding β-glucan to a beverage had different effects on 

insulin response than when β-glucan was added to a semisolid food such as pudding 

(Juvonen et al., 2009; Juvonen et al., 2011). The incorporation of β-glucan in liquid 

reduced glucose responses without adversely increasing postprandial insulin responses. 

Wood et al. demonstrated 79-96% of changes in plasma glucose and insulin were due to 

the viscosity of the products (Wood et al., 1994). Reduction in plasma glucose and insulin 

concentrations was inversely related with the log [viscosity] of β-glucan. A possible 

explanation could be the complete solubilisation of β-glucan in liquid (Johansson et al., 

2007). In solid or semisolid foods, β-glucan may form an ‘intra’ (within glucans) or ‘inter’ 

(e.g. with gluten, starch) hence reducing their solubility (Panahi et al., 2014). However, 

other factors such as molecular weight (low vs. high), the amount added to the food and 

different sources (oat bran, barley, barley kernel) of β-glucan are likely to have an effect on 

glycaemic and insulinaemic responses (Juvonen et al., 2009; Juvonen et al., 2011; 

Johansson et al., 2013; Vitaglione et al., 2009). 

In Chapter 3, we postulated that (poly)phenol-linked β-glucans will pass to the colon and 

be metabolised by the gut microbiota to SCFA and phenolic acids. SCFA particularly 

propionate may have a beneficial effect in increasing satiety within humans (Chambers et 

al., 2015). However, there is still little information available on the effects of phenolic 

acids from black tea (poly)phenols fermentation on glucose response or satiety. However, 
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in Chapter 4, these functional breads increased perceived satiety among healthy subjects. 

There is a link between the gut and brain in regulating appetite and satiety (Chambers et 

al., 2013). The presence of macronutrients (protein, fat, and/or carbohydrates) or specific 

food components (e.g. dietary fibres) in the duodenum and ileum could modulate secretion 

of gut hormones such as cholecystokinin (CCK), glucagon-like peptide-1 (GLP-1) and 

peptide YY (PYY) (Chambers et al., 2013). These gut hormones may cross the blood-brain 

barrier, activating Y2 receptors (Y2R) expressed on neuropeptide Y (NPY) neurons in the 

hypothalamus, resulting in inhibition of food intake (Batterham et al., 2002). Hence, the 

second aim of this study was to determine whether these breads (β-glucan and/or black tea) 

have a real effect in increasing satiety by modulating the activity of appetite hormones 

(CCK, PYY and GLP-1).  

5.2 Experimental design 

5.2.1 Study design 

Participants received 1 of 4 treatments based on a single blind (open label), randomised-

controlled crossover design (Latin square design). Participants were randomly allocated 

using an online website (www.randomization.com) and coded into sequences of 4 

treatments, and each of the treatments was separated with one week washout period 

(Figure 5-1). Each participant completed 4 trials and hence the total numbers of trials 

completed were 64 (16 participants x 4 trials). 

5.2.2 Sample size  

The sample size was calculated with G*Power (version 3.1.9) statistical software (Faul et 

al., 2009). The evidence for sample size calculation was based on EFSA claims on the 

effect of β-glucan on reducing glucose response (4 g of β-glucan per 30 g available 

carbohydrate) (Agostoni et al., 2011; Vitaglione et al., 2009). With an alpha error of 0.05 

and the power of 80% in detecting 10% reduction in blood glucose, 14 participants were 

needed. Attrition rate was estimated to be 15% and therefore the total number of 

participants was 16.  

http://www.randomization.com/
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5.2.3 Inclusion and exclusion criteria 

This study involved healthy males and females, aged between 18-50 years old, body mass 

index (BMI) ≥ 18.5 to 29.9 kg/m2. Participants were excluded if they had the following 

conditions: antibiotic medication (for the past 3 months), gastrointestinal disease (e.g. 

coeliac disease), smokers, vegetarian, regular use of dietary supplements, food intolerance, 

allergy to gluten, on dietary restrictions, significant changes in body weight over the past 

year (± 4 kg), known chronic illnesses, diabetes or impaired glucose tolerance and being 

prescribed with medication known to affect blood glucose. Those with systolic/diastolic 

blood pressure more than 139/89 mmHg were excluded. 

5.2.4 Subject recruitment 

Participants were recruited through flyers and posters in public areas e.g. department notice 

boards (University of Glasgow), library, church, sports complex, University of Glasgow 

Student Union (Student Voice) and also through social networks (Facebook). Interested 

participants were contacted by phone or email for an in-person interview at the Human 

Nutrition Unit, Glasgow Royal Infirmary or any convenient place regarding inclusion and 

exclusion criteria, informed consent sheet and consent form. Female participants visited 

the lab during the same follicular phase of their menstrual cycle, and hence each female 

subject spent 2-3 months to complete the whole trial. 

5.2.5 Study protocol 

Participants were asked to refrain from eating (poly)phenol-rich foods two days (48 h) 

before the experimental trial, on the day of the experiment and 24 h after receiving the 

experimental meal (total: 4 days for each trial). This was done to eliminate any interfering 

effects of metabolites produced from (poly)phenols before the intervention. Participants 

came for another 3 trials on different occasions. Figure 5-2 shows details of the procedures 

on the day of each visit. This required participants to refrain from all (poly)phenol-rich 

foods including fruits, vegetables, tea, coffee, cocoa, red wine, beer, whole grains and 

cereals. Examples of foods to include during each study session were provided to the 

participants and they were instructed to contact the researchers using the contact details on 
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the information sheet if they had any further questions. 

Following 48-h of the low-(poly)phenol diet, participants were asked to fast 10-12 h before 

the experimental trial. Participants were allowed to drink plain water at night and in the 

morning before the experiment. Participants were asked to follow this protocol for each 

visit and to maintain their regular lifestyle activities throughout the study. They were asked 

to avoid alcohol and excessive physical activity 24h before the experiment.  
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Figure 5-1. Study design for the effects of breads containing β-glucan and black tea on blood glucose and insulin responses, and gut hormones. 

WB, white bread; BT, black tea bread; βG, β-Glucan bread; βGBT, β-Glucan plus black tea bread. 

 
 

 

x Healthy males and females (n = 16)  

x BMI from 18.5 to 29.9 kg/m2 

x Age from 18 to 50 years 

x Randomised to 4 different groups 

x Single blind (open label) 

Group 1: βG 
Group 2: βGBT 
Group 3: BT 
Group 4: WB 
 

Crossover with 
one-week 
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Figure 5-2. Details of procedures on the day of each visit. 

 

Participants refrained from 
eating fruits, vegetables and 
juices for 2 days before the 
experiment  
 

Participants were asked to fast 
for 10-12 h (dinner no later 
than 9.00 pm) 
 

Participants came to the 
laboratory between 7 am to 9 
am with a completed 2-day 
dietary record booklet 
 

Measurement of body weight 
and height followed by fasting 
blood collection 
 

Participants were provided 
with breakfast meal 
 

*Example: Monday 
(day 1)  
(low-polyphenol diet) 

Tuesday (day 2)  
(low-polyphenol diet) 

Wednesday (day 3)  
(low-polyphenol diet) 

Wednesday (cont.) 
(day 3) (low-
polyphenol diet) 

Wednesday (cont.) 
(day 3) (low-
polyphenol diet) 
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On each study day, participants came to the laboratory early in the morning (between 7 and 

9 am) after 10-12 h of fasting. Participants were advised to wear light clothing and shoes 

removed for height measurement using the Leicester Height Measure (maximum 210 cm) 

(SECA Ltd, Birmingham, UK) and body weight measurement using SECA 2562 weighing 

scale (maximum weight 200 kg, accuracy of 0.1 kg) (SECA Ltd, Germany).  

Participants were provided with one of the following breads in a randomised order at each 

experimental trial:  

i. White bread (WB) 

ii. Black tea bread (BT) 

iii. β-Glucan bread (βG) 

iv. β-Glucan plus black tea bread (βGBT) 

Breads were prepared according to the method described in Section 2.1 and were given as 

breakfast (Section 2.3.1). Test meals containing 50 g of available carbohydrate were 

served with 15 g of butter spread (low fat), 25 g cheese and plain water (300 mL). 

Participants were asked to consume the entire serving within 10-15 min. During the 

postprandial period, volunteers were provided with 500 mL of water and no additional 

water was permitted.  

Details on blood collection and biochemical analyses were described in Section 2.4.  

5.2.6 Statistical analysis 

Data was analysed using IBM Statistics SPSS (Version 22.0). Incremental area under curve 

(iAUC0-180 min) for glucose, insulin, CCK, PYY and GLP-1 were estimated using a 

trapezoidal rule (Vitaglione et al., 2009). Tests of normality for glucose, insulin, CCK, 

PYY and GLP-1 were performed using the Shapiro-Wilk test. Data distribution with p-

value more than 0.05 was considered as normal. All data were normally distributed except 

insulin and PYY. Data for insulin and PYY were log-transformed to improve normality. 

This was a crossover study design and each subject served as their own control, therefore a 

General Linear Model (GLM) was performed to determine differences between breads 

(WB, BT, βG and βGBT) and time points (0, 30, 60, 120 and 180 min). BMI and baseline 
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value (for each parameters) were used as covariates and gender as between-subject factor. 

Using baseline as a covariate will increase the efficacy of the analysis rather than 

subtraction from baseline alone. Furthermore, the use of baseline subtraction can introduce 

artefactual effects due to random differences at baseline (i.e. whether these differences are 

statistically significant or not) (Blundell et al., 2010). 

The data for GLM test meet the following assumptions: 

i. The dependent variable is measured at continuous level (eg. glucose levels 

measured as mmol/L, which is continuous data). 

ii. The independent variable should consist of at least two categorical, “related 

groups” or “matched pairs” (This study is a cross over study hence subjects are 

present in both groups). 

Values with p < 0.05 were considered significant. 

5.3 Results 

A total number of 16 (8 males and 8 females) subjects were recruited and 15 subjects (8 

males and 7 females) completed this four-arm crossover trial. One female subject did not 

complete the last two trials and was subsequently excluded from the analysis. Subjects’ 

characteristics are shown in Table 5-1. 

Table 5-1. Participant characteristics (n = 15) 

 

 

 

 

 

 

 
Characteristics 
 

 
Mean ± SD 

 
Age (years) 

 
24.0   ±  7.7 

Weight (kg) 70.8   ±  16.8 
Height (cm) 171.2  ±  11.2 
Body Mass Index (BMI, kg/m2) 23.8  ±  3.2 
Systolic blood pressure (SBP, mmHg) 118.3  ±  10.4 
Diastolic blood pressure (SBP, mmHg) 67.3  ±  6.4 

                                                       



   

  179 

 

Fasting plasma glucose levels were similar between treatments (Figure 5-3). Glucose 

levels gradually increased from 0 min to 15 min and reached peak levels at 30 min for all 

breads. Glucose levels gradually decreased from 30 min and returned to baseline at 180 

min. There were no significant differences between breads at any time point. However, 

there were significant (p < 0.05) time interactions between baseline and 30 min for all 

breads except βG. βG showed the flattest glucose peak, i.e. the increment from baseline to 

peak concentration at 30 min did not change significantly. βGBT showed significantly (p = 

0.005) higher (12.7%) incremental area under curve (iAUC0-180 min) when compared with 

βG (Figure 5-4). There were no significant differences in iAUC0-180 min of βG when 

compared with WB.          

Subjects showed similar baseline insulin levels (Figure 5-5). Insulin levels significantly (p 

< 0.05) increased after eating each bread at 30 min in the range of 42.8 ± 8.5 to 62.4 ± 17.9 

mU/L when compared to baseline. However, insulin levels did not change significantly 

between breads at 30 min. Insulin levels gradually decreased from 30 min to 60 min and 

significantly (p < 0.05) reduced at 120 min for all bread except for βG. The nadir insulin 

response was obtained at 180 min for all breads. There was a significant (p = 0.018) 

difference (3.2%) between BT and βGBT at 180 min (only at one time point). iAUC0-180 min 

were similar between breads (Figure 5-6).  
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Figure 5-3. Glucose responses (mmol/L) after eating four different breads. Values are expressed as mean ± S.E.M. WB, white bread; BT, black 
tea bread; βG, β-Glucan bread, βGBT, β-Glucan plus black tea bread. Values with different letters are significantly (p < 0.05) different between 
time points (General Linear Model, GLM).  
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Figure 5-4. Glucose incremental area under the curve (iAUC0-180 min) (mmol/L x min) of different breads. Values are expressed as mean ± 
S.E.M. WB, white bread; BT, black tea bread; βG, β-Glucan bread, βGBT, β-Glucan plus black tea bread. Values with different letters are 
significantly (p < 0.05) different between breads. βG vs BT (p = 0.014), βG vs βGBT (p = 0.001). 
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Figure 5-5. Insulin responses (mmol/L) after eating four different breads. Values are expressed as mean ± S.E.M. WB, white bread; BT, black 
tea bread; βG, β-Glucan bread, βGBT, β-Glucan plus black tea bread. Values with different letters are significantly (p < 0.05) different between 
time points (General Linear Model, GLM). Asterisk (*) indicates significant (p = 0.018) values between BT and βGBT.  
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Figure 5-6. Insulin incremental area under the curve (iAUC0-180 min) (mU/L x min) of different breads. Values are expressed as mean ± S.E.M. 
WB, white bread; BT, black tea bread; βG, β-Glucan bread, βGBT, β-Glucan plus black tea bread. There was no significant different between 
breads.
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Fasting cholecystokinin (CCK) was similar between breads (Figure 5-7). Postprandial 

CCK at 30 min did not increase significantly when compared to baseline. CCK responses 

remained unchanged over the period of 60, 120 and 180 when compared with baseline and 

30 min. Incremental AUC0-180 min were similar between breads (Figure 5-8). 

Fasting peptide YY (PYY) was similar between breads (Figure 5-9). Postprandial PYY 

increased from baseline to 30, 60, 120 and 180 min but did not change significantly 

between breads. There were no significant time interactions from baseline (0 min) to 30, 

60, 120 and 180 min for WB, BT and βG breads. However, there were significant time 

interactions for βGBT at 30 and 180 min (p = 0.008), and a trend towards significant 

between 60 and 180 min (p = 0.056) (Figure 5-9). βGBT showed -11.9% lower (p = 

0.045) incremental AUC0-180 min when compared with BT (Figure 5-10). There was a trend 

towards significant (p = 0.054) for total AUC between βG and BT.  

Fasting glucagon-like peptide 1 (GLP-1) was similar between breads (Figure 5-11). There 

were small increments in postprandial GLP-1 at 30 min but did not change significantly 

when compared with baseline. There was non-significant decreased in GLP-1 levels 

between breads from 30 min to 60, 120 and at 180 min when compared to baseline. There 

were no significant time interactions between baseline, 30, 60, 120 and 180 min among 

four breads. Incremental AUC0-180 min of GLP-1 were similar between breads (Figure 5-
12).  
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Figure 5-7. Cholecystokinin (CCK) responses (ng/mL) after eating four different breads. Values are expressed as mean ± S.E.M. WB, white 
bread; BT, black tea bread; βG, β-Glucan bread, βGBT, β-Glucan plus black tea bread. There was no significant difference between breads. 
Normal fasting range: 1 – 2 pM (French et al., 1993). 
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Figure 5-8. Cholecystokinin (CCK) incremental area under the curve (iAUC0-180 min) (ng/L x min) of different breads. Values are expressed as 
mean ± S.E.M. WB, white bread; BT, black tea bread; βG, β-Glucan bread, βGBT, β-Glucan plus black tea bread. There was no significant 
difference between breads. 
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Figure 5-9. Peptide YY (PYY) responses (pg/mL) after eating four different breads. Values are expressed as mean ± S.E.M. WB, white bread; 
BT, black tea bread; βG, β-Glucan bread, βGBT, β-Glucan plus black tea bread. There was a significant (p = 0.008) difference for βGBT at 60 vs 
180 min. Asterisk (*) indicates a trend towards significant (p = 0.056) for βGBT at 30 vs 180 min. Normal fasting range: 84 – 168 pg/ mL (Essah 
et al., 2007). 
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Figure 5-10. Peptide YY (PYY) incremental area under the curve (iAUC0-180 min) (pg/mL x min) of different breads. Values are expressed as 
mean ± S.E.M. WB, white bread; BT, black tea bread; βG, β-Glucan bread, βGBT, β-Glucan plus black tea bread. There was a significant (p = 
0.045) difference βGBT and BT. Asterisk (*) indicates a trend towards significant (p = 0.054) between βG and BT.  
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Figure 5-11. Glucagon-like peptide 1 (GLP-1) responses (pM) after eating four different breads. Values are expressed as mean ± S.E.M. WB, 
white bread; BT, black tea bread; βG, β-Glucan bread, βGBT, β-Glucan plus black tea bread. There was no significant difference between 
breads. Normal fasting range: a 10 pM (Flint et al., 1998) 
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Figure 5-12. GLP-1 incremental area under the curve (iAUC0-180 min) (pM x min) of different breads. Values are expressed as mean ± S.E.M. 
WB, white bread; BT, black tea bread; βG, β-Glucan bread, βGBT, β-Glucan plus black tea bread. There was no significant difference between 
breads. 
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5.4 Discussion 

The aim of this study was to determine whether the combination of two functional 

ingredients (β-glucan and black tea) in bread could reduce postprandial glucose and insulin 

responses. In the Chapter 4, we demonstrated that combining β-glucan and black tea in 

bread increased perceived satiety, fullness and reduced prospective food intake among 

healthy subjects. However, eating behavior is a complex process that involves metabolic 

processes that drive hunger, and satiety and sensory characteristics of food that drive food 

choice (Blundell et al., 2010). Fatima et al. showed that perceived satiety and fullness 

correlated with the appetite hormone (peptide YY) (Fatima et al., 2015). Hence, the second 

aim of this study was to determine the effects of these breads on appetite hormones.  

According to the European Food Safety Authority (EFSA), β-glucan intake of 4 g per 30 g 

available carbohydrate reduces postprandial glycaemic responses without disproportionally 

increased postprandial insulinaemic responses (Agostoni et al., 2011). Our study showed 

the addition of 7 g β-glucan in bread (βG) containing 50 g available carbohydrate 

attenuated postprandial glucose responses (10 – 13%) without significant changes in 

insulin when compared to white black tea (BT) and β-glucan plus black tea bread (βGBT). 

To explain the possible mechanisms, we proposed that that the presence of β-glucan could 

preserve the elliptical structure of starch granules and this could form a ‘barrier’ to α-

amylase-starch interactions, (Chapter 3) (Jalil et al., 2015). This action slows down the 

digestion of starch by α-amylase (amlylolysis) and hence may reduce postprandial glucose 

response. Similarly, Brennan et al. demonstrated that galactomannan from guar gum added 

during breadmaking became dispersed and mixed evenly with starch granules and protein 

matrix (Brennan et al., 1996). The overall appearance of the starch granules appeared to be 

‘glued’ together by the galacatomannan. Vitaglione et al. demonstrated that the addition of 

3 g of β-glucan per 55 g of available carbohydrate reduced (10%) postprandial glucose 

without altering the secretion of insulin levels when compared with white bread 

(Vitaglione et al., 2009). 

We have previously shown that βGBT reduced short-term (10 min) in vitro starch 

hydrolysis when compared to WB, BT and βG (Jalil et al., 2015). However, in the study 

described in this chapter, we found no significant effects of βGBT in reducing postprandial 



   

  192 

 

glucose when compared with other breads. This could be due to the following reasons: 

first, the size of starch molecules are different when being digested in the in vitro when 

compared with in vivo system (Hasjim et al., 2010). Preincubation of normal maize starch 

with artificial saliva and pepsin for 30 min formed large pores on the starch surface and 

also the formation of small starch segments. On the contrary, digesta recovered from pig 

small intestine showed similar morphology but more pores when compared with raw starch 

granule before digestion. Hence, this leads to the differences between in vitro starch 

hydrolysis and in vivo postprandial glucose responses. We employed simplistic in vitro 

digestion models to study starch digestion which may not totally reflect the dynamic 

digestion procedures in vivo (pigs or colectomized rats) (Hasjim et al., 2010; Marlett and 

Longacre, 1996). In vivo models are a better method in predicting postprandial glycaemic 

response. Brennan et al. found no correlation between in vitro glucose production and in 

vivo postprandial glycaemic responses and concluded the lack of correlation may be due to 

inherent subject-to-subject variation in postprandial glycaemic responses (Brennan et al., 

2012). However, this is not the case in our study because we employed a crossover study 

design. Each subject served as their own control and this reduced intervariation between 

measurements. As discussed in Chapter 3, another possible explanation could be the 

modifications of food matrix by black tea. Black tea contains high molecular weight 

thearubigins and theaflavins. These (poly)phenols may have modified the food matrix of 

the bread by forming a cross-link between gluten and starch, which led to softer bread.  

As discussed in Chapter 1, viscous guar gum inhibited convection of the luminal content 

in relation to mixing contractions and hence reduced glucose absorption through the 

epithelium. This may be a mechanism to explain how soluble β-glucan reduced 

postprandial glycaemic responses. Tosh et al. demonstrated reducing high MW β-glucan 

(from 2.2 to 0.410 x 106) significantly increased their solubility from 44 to 57% (Tosh et 

al., 2008). Different food processing techniques may also have impact on β-glucan 

solubility. The bread baking process decreased molecular weight and solubilised β-glucan 

in oat when compared when cooking oat as porridge (Johansson et al., 2007). Ellis et al. 

demonstrated that supplementation of high molecular weight guar gum in pigs significantly 

increased jejunal viscosity and dose-dependently reduced glucose absorption and insulin 

secretion (Ellis et al., 1995). This study suggests an important role was played by the 
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enteroinsular axis in attenuating the glycaemic response after a meal containing high 

molecular weight guar gum. Different viscous fibres may have different physico-chemical 

properties. Hence, the physiological effects of different types of viscous fibre are not 

comparable to each other. These soluble fibres have different chemical structures (eg. 

different types of sugar backbone, molecular weight and solubility) and may have different 

effects on viscosity when added in foods and also in the gastrointestinal tract. Edwards et 

al. showed that the ingestion of both xanthan and locust gum reduced gastric emptying but 

had no effects on blood glucose (Edwards et al., 1987). A further test indicated that 

acidification (mimic gastric condition) and re-neutralisation (mimic duodenal secretions) 

reduced the viscosity of the mixture (dilutional effects) (as discussed in Chapter 1). 

Gastric satiety is based on mechanical action in the stomach while intestinal-derived satiety 

is nutrient-dependent whereby the satiety signals are released when nutrients interacted 

with the intestinal wall (Kristensen and Jensen, 2011). There is interplay between gastric 

emptying and gut hormones. Cholecystokinin (CCK) is a major gut hormone released from 

duodenum, jejunum, the proximal small intestine, in response to the presence of nutrients 

(protein and fat) (Holt et al., 1992; Liddle et al., 1985). CCK stimulates secretion of 

pancreatic enzymes, causes contraction of gallbladder, slows gastric emptying and 

increases motility in the large intestine (Beyer et al., 2008). CCK receptors (CCK-A and 

CCK-B) are both present in the brain and stomach and play a pivotal role in the regulation 

of food intake. In this study, we hypothesised that the blunted effect of βG on postprandial 

glucose responses may be due to the effects of CCK. However, in this study, postprandial 

CCK responses were similar between breads. CCK increases in response to fat and protein 

in the small intestine (Liddle et al., 1985). All breads tested here had similar protein and fat 

content, and hence had a little effect on CCK response. 

In Chapter 4, we demonstrated βGBT and βG decreased perceived hunger, increased 

perceived satiety and reduced perceived prospective food intake up to 3 h after breakfast. 

Putting the results of these two studies together, it may be suggested that the effects may 

not be through stimulation of CCK. This is consistent with one study by French et al., 

which demonstrated CCK was not related to hunger and satiety and also with the rate of 

gastric emptying in humans (French et al., 1993). Gibbons et al. demonstrated that high-fat 
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diet stimulated postprandial CCK responses but was not related to suppression of hunger 

(Gibbons et al., 2015). These authors suggest that CCK measurement at the end of meal 

intake (postprandial) was not related to postprandial appetite control. Instead, CCK should 

be measured during a meal to see the action of CCK on satiation through neural 

mechanism activated through vagal nerve. Using a beverage as a food matrix, Juvonen et 

al. showed low viscosity (< 250 mPa.s measured at shear rate 50 s-1) β-glucan beverage 

significantly increased CCK (AUC0-180 min) by 80% compared with high viscosity (> 3000 

mPa.s measured at shear rate 50 s-1) β-glucan beverage (Juvonen et al., 2009). This may be 

related to the viscosity of the products. The high viscosity beverage decreased mixing in 

the small intestine and prevented close interaction between nutrient and GI mucosa for 

stimulation of enteroendocrine cells to release peptide CCK (Juvonen et al., 2009). 

Similar to CCK, another gastrointestinal hormone peptide tyrosine tyrosine (PYY) acts 

through colonic L-cells and the arcuate nucleus within the hypothalamus (Chambers et al., 

2014). This interconnection allows for the stimulation of appetite (orexigenic) and appetite 

suppression (anorexigenic), in response to SCFA through activation of G protein-coupled 

receptor 41 (GPR41) and GPR43. Both receptors presence on the colonic endocrine L-

cells, at which the same cells that secretes PYY and glucagon-like peptide 1 (GLP-1) 

(Murphy et al., 2006). Both GPR41 and GPR43 are physiologically regulated by acetate, 

propionate and butyrate with stronger preference of GPR41 for acetate and propionate and 

GPR43 for propionate and butyrate (Brown et al., 2003; Le Poul et al., 2003; Burger et al., 

2012; Nilsson et al., 2003). In Chapter 3, fermentations with β-glucan increased 

propionate production but did not change significantly when compared with white bread. 

The (poly)phenol-β-glucan could be a substrate for colonic fermentation by gut microbiota. 

However, the present study was continued for up 3 h postprandially and a longer period 

study (6-9 h) is needed to determine the colonic effects of (poly)phenols and β-glucan on 

satiety. 

Vitalione et al. demonstrated bread containing 5.5% β-glucan per available carbohydrate 

significantly increased AUC60-180 min PYY compared with control bread (Vitaglione et al., 

2009). In our study, bread containing 14% β-glucan per g available carbohydrate was used, 

and hence, it could be argued that that the dose difference could have a stronger effect in 
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stimulating PYY. We found that bread prepared with β-glucan resulted in a 12% reduction 

in the iAUC0-180min of PYY when compared with BT bread. In our study, GLP-1 did not 

change significantly between breads. Kristensen et al. showed supplementation of soluble 

low- and high-mucilage flaxseed (12 and 15 g) in buns did not change postprandial PYY 

and GLP-1 over 7 h (Kristensen et al., 2013). Comparisons for the effect of soluble fibre 

on appetite hormones are difficult as they have different physical and chemical properties 

and also depend on how they are prepared in food or a beverage.  

A liquid, low viscosity beverage prepared with β-glucan evoked higher PYY and GLP-1 

response (AUC0-180min) with 420% and 155%, respectively, when compared with high 

viscosity β-glucan beverage (Juvonen et al., 2009). This suggests that the presence of β-

glucan decreased mixing in the small intestine and prevented the interaction between 

nutrient and the stimulation of PYY release. However, the addition of oat bran in pudding 

(semisolid) containing 5 g of β-glucan had no effect on PYY (Juvonen et al., 2011). This 

may be due to reduced viscosity in the stomach and small intestine after a semisolid meal 

compared to liquid meal. However, these are acute (one day) and short (3 h postprandial) 

feeding trials. It should be noted that short-term effects may be different to ingesting fibre 

for longer periods of time.  

Supplementation of 16 g of soluble oligofructose in a beverage for 2 weeks increased 

AUC0-230 min GLP-1 by 94% when compared with control (Verhoef et al., 2011). A lower 

dose (10 g) increased AUC0-420 min GLP-1 by 9% compared with control. In a dose-

escalation study, Pederson et al. showed increasing oligofructose dose from 15 to 55 g as 

beverage in a time frame of 5 weeks dose-dependently increased PYY in the range of 2 to 

51% when compared with the control group (Pedersen et al., 2013). The authors suggested 

that the delay in gastrointestinal motility was due to increased osmotic pressure in the gut. 

Regardless of the food matrix, an intake of 8 g oligofructose twice a day (as powder form) 

for 2 weeks significantly increased PYY at 10 min compared with baseline (Cani et al., 

2009). Supplementation of highly viscous PolyGlycoPlex (containing soluble 

glucomannan, sodium alginate and xanthan gum) for 2 weeks (5 g in week one and 10 g in 

week two) with cereal and plain yogurt significantly reduced PYY response by 33% when 

compared with control (Reimer et al., 2010). It is possible that long-term fibre 
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supplementation might change gut microbiota composition and confer health benefits 

through the production of SCFA.  

We have discussed the physical and chemical characteristics of soluble fibres affecting 

postprandial glycaemia, insulinaemic and appetite hormones. The bread food matrix itself 

may also play an important role in affecting those responses. Choosing bread as a food 

matrix to deliver two functional ingredients is feasible as breadmaking is relatively 

inexpensive and easy. However, breadmaking involves the complex formation of an elastic 

gluten network (Belton, 1999). At a low hydration level, there is an increase in water-

protein hydrogen bonds, but the hydrogen inter-chain is strong and will not break easily. 

There is a balance between residues involved in the inter-chain hydrogen bonds and those 

that are hydrated. This leads to the formation of ‘trains’ and ‘loops’ regions. The ‘trains’ 

represent groups of polymer-surface interactions while ‘loops’ represent groups of 

polymer-solvent interactions. In this study, the addition of β-glucan competed with gluten 

for water; therefore, more water was needed to compensate for water uptake by β-glucan 

(Jacobs et al., 2008). As the hydration proceeds, the presence of (poly)phenols from tea 

may form an interaction between gluten network in the dough. Gluten subunits are rich in 

glutamine, glycine and proline (Tatham et al., 1990). Protein-(poly)phenols is formed 

through hydrophobic interactions between proline hydropohic sites with ring structure of 

(poly)phenols (Bordenave et al., 2014).The addition of soluble pectin and (poly)phenols 

during dough development and baking formed a cross-linking with gluten network which 

lead to more water holding and softer bread (Sivam et al., 2011). At this point, the addition 

of (poly)phenols and fibre reduces the mobility of hydrated segments because of the 

competition among protein, (poly)phenols and fibre for water (Sivam et al., 2013). 

Apart from gluten, there is also an interaction between tea (poly)phenols (TPL) and starch 

granules. There was evidence of interactions between TPL and high amylose corn starch 

(HACS) (Chai et al., 2013; Liu et al., 2011). HACS is naturally high in amylose and 

considered as low glycaemic response (Englyst et al., 1996). Surprisingly, the presence of 

10% (w/v) TPL in high amylose corn increased postprandial glycaemic responses. The 

presence of TPL disrupted the normal process of starch retrogradation and specifically 

altering the normal process of amylose forming an ordered crystalline structure (Chai et al., 
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2013). The addition of 10% (w/v) TPL with HACS significantly increased postprandial 

glucose response when compared with control without HACS (Liu et al., 2011). Increased 

postprandial glycaemia was achieved through accelerated digestion of HACS by α-amylase 

enzyme activity. 

We postulate that the interactions between black tea and/or in combination with β-glucan 

lead to the following outcomes: 1) (poly)phenols in black tea form an interactions with 

gluten network, increased in elasticity, soften the final bread, increased the surface area 

and increased starch digestibility 2) β-Glucan ‘coated’ the starch granule, preserving their 

elliptical structure; reduced gluten elasticity, leads to a more solid bread, reduced starch 

digestibility and hence reduced glycaemic response 3) the combination of black tea 

(poly)phenols and β-glucan leads to the formation of (poly)phenols-gluten-β-glucan-starch 

complex, increased elasticity and (poly)phenols interaction with gluten network. This 

however leads to increased starch digestibility due to high surface area, which 

subsequently leads to a higher glycaemic response. Moreover, the sample size of this study 

was based on the EFSA’s health claims on β-glucan in reducing glucose and insulin 

responses. Hence, this study was based on one outcome (glucose response) and may be 

underpowered for the effects on other parameters such appetite hormones. 

In conclusion, this study suggests that consuming 7 g of β-glucan in bread containing 50 g 

available carbohydrate reduced postprandial plasma glucose without adversely increased 

insulin response when compared with black tea and black tea plus β-glucan. There were no 

additional effects of adding black tea in bread with β-glucan on glucose and insulin 

responses. The addition of β-glucan attenuated the PYY response. Black tea and/or β-

glucan had no effects on CCK and GLP-1 responses.   

Further study is needed to determine acute (6-9 h) and long-term (eg. 2 weeks and more) 

effects of consuming these breads on postprandial glycaemic responses and appetite 

hormones. Long-term consumption of these breads may change the gut microbiota 

composition, produce more SCFA and increase satiety. 
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6 Chapter 6: General Discussion 
 

The major chronic diseases - cardiovascular diseases (CVD), cancer, chronic obstructive 

pulmonary disease and type 2 diabetes - are all associated with preventable biological and 

behavioural risk factors (WHO, 2010). Well-known biological factors associated with 

these diseases are: high blood pressure, high plasma cholesterol and being overweight, as 

discussed in Chapter 1 of this study. Behavioral risk factors are modifiable within 

individuals and include: an unhealthy diet, physical inactivity and tobacco use. For 

example, a recent prospective study investigating the effect of unhealthy diets found an 

association for increased body weight (≥ 3 kg) over a period of 3 years, in those eating out 

at fast-food shops and eating while watching TV (Leon-Munoz et al., 2016). However, 

curbing these diseases through reducing the risk factors associated with them is not an easy 

task. It involves a population-based multi-sectoral, multidisciplinary and culturally relevant 

approach (WHO, 2016a). The World Health Organization (WHO) has devised a plan to 

tackle these problems through eating a healthy diet, and these include: 1) limiting the 

intake of sugar and salt 2) limiting total fat intake and choose unsaturated fat instead of 

saturated fat 3) increasing the consumption of fibre through the intake of fruit, vegetables, 

pulses, wholegrain and nuts (WHO, 2016b).  

There are several barriers which have been associated with increasing fruit and vegetable 

intake, such as socio-demographic factors, individual food preferences, lack of 

awareness/knowledge and cultural issues (Mak et al., 2013; Dumbrell  and Mathai, 2008; 

Bryant et al., 2015; WHO, 2016d). Based on an age-stratified focus group discussion, 

young men (18 – 25 years) indicated that fruit and vegetables were not part of a young 

men’s culture and they did  not eat a lot of fruits and vegetables (Dumbrell and Mathai, 

2008). Higher frequency of eating out and eating takeaways is associated with lower 

consumption of both fruits and vegetables (Mak et al., 2013). 

A review of randomised trials found no consistent effect on dietary fibre intake and body 

weight or energy intake (SACN, 2015). However, there is enough evidence to suggest that 

dietary fibre intake is beneficial for reducing risk of cardiovascular disease and reduced 
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incidence of haemorraghic stroke (SACN, 2015). In Western countries, however, dietary 

fibre intake is generally less than adequate for the prevention of major non-communicable 

diseases (NCD) (Marlett et al., 2002). In the UK, a minimum of 30 g of dietary fibre a day 

is recommended for the adult population (British Nutrition Foundation, 2006a; SACN, 

2005). However, the current intake of dietary fibre in the UK is almost half of this 

recommendation with 14 g/day. In the US, the recommended fibre intake is about 25 g/day 

and 38 g/day for women and men, respectively (McRorie, 2015). However, research 

suggests that 90% of the US population do not meet this minimum recommendation.  

Apart from these community-based interventions, food scientists can also play a major role 

in helping to achieve the minimum dietary fibre intake recomendation in the population. 

This could be achieved through the development of functional foods. Functional foods are 

foods that have additional nutritional benefits beyond their basic nutritional value (British 

Nutrition Foundation, 2016c). However, it is unclear what type of dietary fibres should be 

used and how much needs to be added in order to achieve health benefits. The type of food 

(vehicle) that is the most suitable as a functional food development also needs to be 

explored.  

In this thesis, the selection of the most suitable dietary fibre was based on European Food 

Safety Authority (EFSA) recommendations. Based on scientific evidence, EFSA has 

approved a health claim for 4 g of β-glucan isolates per 30 g available carbohydrate to 

maintain desirable postprandial glucose and insulin reponses (Agostoni et al., 2011). There 

is also strong evidence from RCT that a higher intake of isolated β-glucans and oat bran 

leads to lower LDL-cholesterol, triacylglycerol and total cholesterol concentrations and 

lower blood pressure (SACN, 2015). 

Starchy foods such as bread, pasta  and chapatti  have been used for the development of 

functional foods with added fibre (Cleary et al., 2007; Wang and Zhou, 2004; Bourdon, 

1999). Bread is considered to be the most popular starchy food in the Western world 

(Pearn, 1998). Previous studies showed that bread prepared with soluble fibres were 

feasible and reduced postprandial glucose responses (Vitaglione et al., 2009; Juntunen et 

al., 2002). The traditional staple uses of bread has now changed to that of functional foods 
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that confer additional health benefits (Pearn, 1998). Moreover, the health benefits for β-

glucan based on EFSA recommendation could be met with one serving of bread. 

Developing a bread prepared with soluble fibre such as β-glucan showed promising health 

benefits. However, the major obstacle in developing bread with the addition of soluble 

fibre is their negative impact on product palatability and acceptability (Ellis et al., 1981; 

Ellis et al., 1991). There may be a food matrix interaction between gluten (protein), starch, 

and β-glucan in bread that could modify the final product’s texture becoming 

unfavourable. It is important to keep a balance between a product’s acceptability and the 

amount of fibre needed to have any additional health benefits (Hall et al., 2010).  

Black tea is rich in (poly)phenol monomers and polymers (Roowi et al., 2010; Del Rio et 

al., 2004). These (poly)phenols inhibited α-glucosidase activity in the small intestine and 

potentially reduced plasma glucose responses in humans (Bryans et al., 2007; Tsuneki et 

al., 2004; Park et al., 2009; Satoh et al., 2015). Tea (poly)phenols were stable in functional 

foods and the final products (i.e. bread and biscuit) had similar sensory characteristics to 

the control (Sharma and Zhou, 2011; Pasrija et al., 2015; Lu et al., 2010). The presence of 

(poly)phenols in these products may also contain strong antioxidant, anti-inflammatory and 

other beneficial properties. With this in mind, would the addition of black tea improve the 

palatability of β-glucan bread, and would these two ingredients act synergistically in 

reducing the postprandial plasma glucose response? The development of such a bread was 

explored in Chapter 3 and its effects on postprandial responses studied in Chapter 5. 

Previous studies have shown the importance of bread acceptability in nutrition studies to 

increase the feasibility for general consumption (Ellis et al., 1981; Jenkins et al., 2002). 

Based on these early developments, it is important to determine the relative palatabilty of 

high fibre breads when compared to white bread (control). In Chapter 4, the relative 

palatabality and acceptability in healthy volunteers were also compared. 

6.1 Summary of results 

The results of this thesis have been divided into three sections: 

The results of the first study (Chapter 3) showed bread prepared with β-glucan and black 
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tea (βGBT) did not significantly reduced overall but early (10-min) in vitro starch 

hydrolysis when compared with white and black tea breads (Figure 6-1). The predigestion 

of bread with α-amylase increased the total (poly)phenols released from black tea bread 

(BT). However, digestion with pepsin and pancreatin had no effect on the total 

(poly)phenols released from breads. Fermentations with β-glucan increased propionate 

production but did not change significantly. Black tea (positive control), or when added in 

bread alone or in combination with β-glucan, had no impact on total SCFA production. 

The second study (Chapter 4) showed β-glucan (βG) bread reduced perceived  hunger, 

and decreased the perceived desire to eat and prospective food intake (Figure 6-2). βGBT 

increased fullness, decreased perceived satiety and prospective food intake when compared 

with white bread (WB). Having βG and βGBT at breakfast had no effects on energy intake 

at lunch. However, BT bread intake reduced energy intake at lunch when compared with 

white bread. WB and BT breads showed similar palatability characteristics. βG and βGBT 

showed good overall acceptability. However, taste, texture and palatability of βG and 

βGBT were lower than with WB and BT. Female subjects showed a lower preferences for 

taste, texture and palatability of βG and βGBT when compared with white bread.  

Results from Chapter 5 showed that βG reduced glucose incremental AUC0-180 min when 

compared with BT and βGBT breads (Figure 6-3). There was no additional effect of 

adding black tea with β-glucan (βGBT) on blood glucose and insulin responses. βG 

attenuated peptide YY (PYY) responses when compared with other breads. There were no 

additional effects of adding black tea or black tea with β-glucan on PYY, cholescystokinin 

(CCK) and glucagon like peptide-1 (GLP-1). 
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Figure 6-1. Results summary for Study 1 (bread development, antioxidant activity and in vitro fermentation) 
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Figure 6-2. Results summary for Study 2 (breads palatability and satiety) 
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Figure 6-3. Results summary for Study 3 (effects of breads on glucose and insulin responses, and appetite hormones) 
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Figure 6-4.  Relationship between in vitro and in vivo study and possible mechanistic explanations. Each number in the blue arrows is used for 
in-text explanation in Section 6.3. Green oval, significant effect; Grey oval, no significant effect.  
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6.2 Relationship between in vitro and in vivo studies, and possible explanations  

The studies described in this thesis showed no relationship between in vitro starch 

hydrolysis and in vivo glucose response for βGBT bread in the human studies. Why is this?  

In study 1, two functional ingredients (β-glucan and black tea) were selected based on their 

established health benefits. Breads prepared with β-glucan and/or black tea preserved the 

elliptical structure of some starch granules (arrow 1) (Figure 6-4). Digestion with α-

amylase increased (poly)phenols released from black tea bread (arrow 2). These two 

factors might reduce in vitro starch hydrolysis and had the potential to have beneficial 

effects in vivo. 

However, there was no effect of adding these two functional ingredients regarding the 

postprandial glucose response in humans (arrow 5). This could be explained by the 

following factors: firstly, the presence of (poly)phenols in black tea forms cross-links 

between the gluten network, and this led to a softer bread (Sivam et al, 2011). This softer 

bread may be more susceptible to the enzymic activity of α-glucosidase in the small 

intestine and resulted in increased postprandial glycaemia (Satoh et al., 2015). As 

discussed in Section 1.8.3, Koh et al. (2010) showed that black tea reduced in vitro α-

glucosidase activity using a physiologically relevant dose of 0.56 mg/mL. Secondly, tea 

(poly)phenols reached their maximum plasma concentration between 0.8 to 2.3 h after 

intake of 300 - 500 mL green tea (Stalmach et al., 2009; Stalmach et al., 2010). This may 

have beneficial effects on plasma glucose, as the peak postprandial glucose response 

occurred at 30 min after an oral glucose tolerance test (Aldughpassi et al., 2008; Louie et 

al., 2008). However, as discussed in Section 1.8.3 (Table 1-12), only one out of four 

studies showed that black tea reduced postprandial glucose response. The amount of black 

tea used in the present study was relatively small, with 30% (78 mg total polyphenols per 

bread portion) of that consumed from a standard cup of black tea (261 mg total 

polyphenols/250 mL) (Rothwell et al., 2012). Thirdly, the in vitro starch hydrolysis model 

is simplistic and does not completely mimic the physiological environment of the small 

intestine. Thus, the in vitro starch hydrolysis may overestimate the amount of starch 

hydrolysed during the incubation period.  

As discussed above, the addition of black tea in bread led to a softer bread and may be 

more susceptible for enzymic activity in the small intestine. However, the addition of black 
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tea together with β-glucan in bread may have different physiological effects. Black tea 

contains a higher amount of high molecular weight theaflavins and thearubigins when 

compared with green tea. These (poly)phenols may not be absorbed in the small intestine 

and become a subject for colonic fermentation to phenolic acids. Although black tea is 

widely consumed in the UK, they are less extensively studied when compared with green 

tea. An intake of 700 mg of theaflavins (equivalents to 30 cups of black tea) showed a 

plasma concentration of 1 ng/mL (at 2 h) (Mulder et al., 2001). A low concentration of 

thearubigins in plasma may indicate that it may be a subject for fermentation in the colon, 

but this needs further investigation. Regarding humans, Roowi et al. showed that flavan-3-

ol (monomer) from green tea being absorbed from the small intestine to the colon and 

degraded into phenolic acids by colonic microbiota (Roowi et al., 2010). An intake of two 

cups of green tea (500 mL) showed higher plasma concentration of flavan-3-ols in the 

range of 46 – 268 ng/mL (Lee et al., 1995).  

Although little is known about the fate of black tea (poly)phenols, we hypothesised that the 

(poly)phenols-β-glucan complex may reach the colon, and would become a substrate for 

bacterial fermentation for the production of SCFA (arrow 4). A high propionate ratio is 

characteristic of β-glucan fermentation (Hughes et al., 2008). Propionate has been 

implicated as a signalling molecule for reduced food intake through stimulation of hepatic 

vagal afferents (as discussed in Chapter 1, Section 1.6.3), by activation of G protein-

coupled receptors located in the colonic epithelium. Physiological concentrations of SCFA 

activate these receptors, although different receptors have different preference for each 

SCFA (Brown et al., 29003; Le Poul et al., 2003). These receptors are located in the 

colonic endocrine L-cells, and secrete the anorexigenic hormones peptide tyrosine tyrosine 

(PYY) and glucagon-like peptide-1 (GLP-1). Hence, SCFA, particularly propionate may 

be involved in appetite regulation.  

Alhabeeb et al. showed that 10 g/day inulin propionate ester (which releases large amounts 

on propionate in the colon) increased perceived satiety (increased satiety and fullness, 

decreased desire to eat), when compared with an inulin control (Alhabeeb et al., 2014). 

However, no change was observed for gastric emptying when determined using 13C in 

expired breath, and this study suggests the effect of propionate on satiety might be 

centrally mediated by the action of PYY and GLP-1. Chambers et al.  showed the same 

novel propionate ester (400 mmol/L) increased PYY and GLP-1 in primary cultured 
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human colonic cells (Chambers et al., 2015). Further investigation regarding humans 

(acute study) showed that 10 g/day of inulin-propionate ester reduced energy intake (14%) 

when compared with control (inulin). It was demonstrated that propionate entered the 

colon at 240 min, as determined by 13C enrichment in expired breath air. PYY and GLP-1 

significantly increased at 240 – 420 min in the treatment group when compared with 

control.  

In our study, in vitro propionate production did not increase significantly after 

fermentation of βG and βGBT at 6 and 24 h for when compared with WB (arrow 4). A 

higher intervariation in the gut composition between donors could be one possible 

explanation. Carlson et al. showed 2-fold differences in SCFA production among 

individuals (Carlson et al., 2016). The addition of β-glucan decreased rather than 

increasing PYY levels (arrow 6). Comparisons between studies are difficult as each study 

used different types of dietary fibre, varying dosages and associated food matrix (as 

discussed in Chapter 1, Table 1-9). There were differences between food-matrix (solid vs 

liquid) on the observed outcomes. β-Glucan increased product viscosity when added in 

liquid food, but not when added to solid food such as bread and biscuits (Johansson et al., 

2007; Åman et al., 2004). Verbeke et al. showed more propionate was produced from 

barley porridge and not from barley kernel (Verbeke et al., 2010). This could be due to the 

higher water holding capacity of oat porridge when compared with barley kernel. Oat 

porridge decreased intestinal transit time and allowed more time for bacterial fermentation 

and propionate production.  

6.3 Reflections on methodology: strengths and limitations 

First study: Effects of functional breads on in vitro starch hydrolysis, antioxidant activity 

and in vitro fermentation (Chapter 3). 

Strengths:  

Two well-known functional ingredients (β-glucan and black tea) were used for the 

development of functional bread. The in vitro study (Chapter 3) provided useful evidence 

for planning studies in Chapter 4 and 5. The reduction in early starch hydrolysis and the 

microscopy study suggested a food-matrix interaction when β-glucan and black tea were 

added in bread.  
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Bread development using a home bread maker was rapid and feasible for this study. The 

home bread maker allowed for the preparation of fresh bread, which in turn avoided a 

freeze-thaw cycle to be used for in vivo study. The freeze-thaw cycle affects starch 

retrogradation and this could have an effect on the measured outcome, particularly blood 

glucose response (Lan-Pidhainy et al., 2007).  

The in vitro digestion model, mimicking human digestion (mouth, stomach and small 

intestine), allows for the removal of starch and protein. However, this procedure does not 

take into account the degree of absorption of metabolites in the intestine. The retentates 

produced after the dialysis (after removal of monosaccharides, disaccharides and low 

molecular weight polyphenols) were used for the determination of antioxidant activity and 

also substrate for the batch in vitro fermentation. The substrate used for this study mimics 

what would enter the colon in terms of β-glucan, (poly)phenols, undigested protein and 

resistant starch. Day-to-day variation of this in vitro digestion method was determined by 

measuring glucose released and total starch in the digestion residue (Aura et al., 1999). 

Studying bacterial fermentation in humans is difficult because the proximal human colon 

where most fermentation occurs is not easily accessible. Hence, the in vitro batch 

fermentation technique offers a fast, rapid and reliable method for estimating bacterial 

fermentation in the colon. This method was validated in 8 laboratories, using 40 healthy 

volunteers from different geographical regions and with similar experiment environments 

(Edwards et al., 1996). It mimics the physiological aspects of the human colon as follows: 

1) Fermentation bottle is placed in a shaking water bath at 50 strokes per minute to mimic 

peristalsis 2) Phosphate buffer is used to prepare faecal slurry and eliminating the 

requirement of the sample to be bubbled continuously with CO2 3) A higher concentration 

of faecal slurry (16% w/v) is used which reduces the need for excess fermentation medium. 

However, this method is not without its limitations, which shall be discussed next. There is 

high inter-personal variation in the gut microbiota composition.  

Limitations:  

The miscoscopy study of the bread structures (starch and gluten) was based on staining 

method and visualised under light microscope and hence could not ascertain the changes at 

supramolecular level. Other technique such as scanning electron microscope could 

possibly show changes at supramolecular level. The in vitro digestion might lead to the 
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loss of (poly)phenols at higher intestinal pH, but this loss could be prevented if the 

(poly)phenols are absorbed in the small intestine. There were high inter-individual 

variations in the in vitro batch fermentation that could reduce the power of the study. A 

post-hoc calculation was done using G*Power software. Based on sample size of 4 

volunteers (faecal donors) and propionate production from an in vitro fermentation as an 

outcome, the present study achieved a power of 54%. To achieve a power of 80%, 4 more 

volunteers are required to detect any differences. 

The enzymes used during the digestion procedures could give a false positive result to the 

total (poly)phenol content, as macromolecules (e.g. protein, fat) are known as interference 

factors for the Folin-Ciocalteu reaction during total (poly)phenol analysis (Saura-Calixto 

and Diaz-Rubio, 2007). The in vitro batch fermentation is a validated method mimicking 

most physiological conditions. However, this method does not mimic the rate of SCFA 

absorption in the colon and hence may overestimate the concentration of SCFA in the 

fermentation bottle. The freeze-drying technique used prior to in vitro fermentation may 

have increase or decrease the retrograded starch in the retentate and this should be 

considered in future study. 

Second study: Effects of functional breads on palatability and satiety (Chapter 4). 

Strengths:  

This chapter provided useful data on the bread specific characteristics (texture, aroma, 

palatability, smell), and these breads were relatively acceptable compared with white 

bread. The satiety study was conducted without venous cannulation and hence more 

similar to the actual eating environment. The ad libitum lunch administered allowed for 

freedom of food choice when compared to a monotonous lunch (single food item), and 

could also avoid the boredom of eating the same food for every study trial.  

Limitations:  

The breads used in this study differed in texture, colour and aroma. This was blinded 

during the trial, but subjects could still make a sensible guess of which bread is which and 

hence potentially reduce the power of this study. The types of foods presented during the 

ad libitum lunch were not appetising for some subjects and they might not eat well during 

the session. Some subjects might overeat during the lunch session due to the large amount 
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of food available on the table. However, the foods were cut into smaller portions in order 

to eliminate portion related cues (Fatima et al., 2015). The eating environment (in the food 

testing lab) was artificial and may not represent the normal eating environment for 

subjects; this may provide different cues for the eating behaviour of subjects. However, the 

lab was equipped with a dining table and chairs which were placed facing the window in 

order to avoid feelings of boredom. Subjects were allowed to use their laptop, read or do 

their own work, but were advised not to search online or read about anything relating to 

food. In addition, subjects were advised to avoid strenuous physical activity before the trial 

day, as this would deplete their glycogen (liver and muscle) content. Glycogen has a 

storage capacity of 12 – 48 h and this will switch to oxidative metabolism of fats and 

ketones (Lean, 2015).  

The adaptive visual analogue scale (AVAS) scale used in this study has a limitation. 

AVAS scoring does not always correlated with objective measure of energy intake later 

during a second meal. However, for pragmatic reason, AVAS has been recommended as a 

standard set of basic scales for self-assessment of perceived satiety measurement in healthy 

adults (Marsh-Richard et al., 2009). 

Third study: Effects of functional breads glucose and insulin responses, and appetite 

hormones (Chapter 5). 

Strengths:  

This study had a similar study design as that in Chapter 4 but was conducted on different 

subjects. It was a cross-over study trial and hence could be more powerful in reducing 

intervariation between individuals. This study was powered (n = 16 based on plasma 

glucose levels as the main outcome) and should be able to detect changes in blood glucose 

levels (Vitaglione et al., 2009). 

Previous studies investigated satiety and biochemical aspects together but in this study the 

two were separated for the following reasons: 

1) Eating while being cannulated is not a normal eating condition. 

2) Subjects might feel hungrier and eat less due to feeling uncomfortable with the 

cannulation. 
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Subjects were also advised to keep their diet low in (poly)phenols for two days before the 

study visit. This meant avoiding fruits and vegetables, tea or coffee which can be difficult 

for many to achieve, and may have affected their eating behaviour during the trial. This 

should eliminate any (poly)phenols metabolites in the circulation that would interfere with 

the studied outcomes. No side effects or abdominal discomforts were reported during the 

trial. This functional food is generally safe and feasible for general consumption.  

Limitations:  

Body mass index of the subjects were in the range of 17 to 30 kg/m2, which may be a 

contributing factor for higher intervariations between subjects. The postprandial was 

measured for up to 3 h, and this time was too short for any colonic effects (SCFA 

production). Measurements of plasma insulin and gut hormones (CCK, PYY and GLP-1) 

are based on ELISA principle and were sensitive to storage and analysis. However, the 

samples were stored in -80°C immediately after being separated from the plasma before 

analysis. The samples were analysed batch-wise within 3 months to reduce the variations. 

The method used for glucose analysis (Reflotron® analyser) is not the most reliable and 

accurate for the determination of glucose concentration. This could lead to false positive or 

false negative results. A post-hoc calculation was done using G*Power software. Based on 

the sample size of 15 volunteers and iAUC0-180 min glucose as an outcome, the present 

study achieved a power of 76%. To achieve a power of 80%, two more volunteers are 

required in order to detect any differences. 

6.4 Implications for food industry 

As there is growing consumer interest in the relationship between food and health, the 

commercialisation of these breads is an area of interest within and outside of academia. 

However, it is easy to take advantage of the broad definition of functional food and launch 

products that do not actually have any health benefits but are marketed based on 

insufficient scientific background or empty promises. There are different types of breads 

available in the market prepared with whole fibres such as flaxseed, cracked wheat, poppy 

seeds, linseed, kibbled buckwheat and buckwheat kernels. These products might have 

additional health benefits but none of them were approved by EFSA. Hence, this poses a 

huge challenge for both consumers and the food industries to promote healthy eating. An 

independent market survey by Euromonitor International showed that customers in the UK 
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are not ready yet for the healthy options. Consumers are more prepared for bread such as 

Hovis’ ‘best of both’ that is white bread with added wholemeal (Euromonitor, 2004). This 

bread is appealing to both children (it tastes like white bread) and parents (it contains more 

fibre).  

The breads were produced with a home bread maker, which is suitable for small-scale use. 

The cost of producing this bread is similar to that of other instant pre-mix bread flour 

available in the market, such as ASDA’s white bread and whole meal bread mix flour and 

Tesco’s white, multiseed and wholemeal bread mix flour. The price range of these 

products is from 0.80 to 1.50£ per packet (500 g flour mix for one bread). Based on the 

labels, these breads do not contain any preservatives and are suitable for traditional hand 

baking or using a bread maker. The use of fresh bread means the avoidance of 

preservatives, such as calcium propionate as antifungal agent (Belz et al., 2012). Scaling-

up the baking technique by the food industry means that they must add calcium propionate 

in order to increase the shelf life for storage and transportation before they reach 

customers. In a large-scale production, calcium propionate increases an average shelf-life 

between 10-12 days. However, the addition of preservative might increase the production 

cost of the bread. Moreover, it is still unknown whether the addition of calcium propionate 

might have an impact on the taste of these breads. However, these bread mix recipes might 

contain flour treatment agents such as α-amylase, amyloglucosidase, glucose oxidase and 

hemicellulase. α-Amylase breaks down amylose into smaller sugar unit maltose, 

maltotriose and α-limit dextrans and also debranching some of the amylopectin chains. 

This process allows additional sugars for yeast fermentation (Bakerpedia, 2016a). Glucose 

oxidase functions by oxidizing glucose to gluconic acid and hydrogen peroxide. Hydrogen 

peroxide strengthens the disulphide and non-disulphide cross-links in the gluten network 

and hence improving dough development (Bakerpedia, 2016b). In regards to large-scale 

production, the food industry needs to focus on preserving the functionality and at the 

same time maintaining the palatability of this bread. 

6.5 Implications for healthy eating at the population level 

Bread is the main source of starchy food in the UK (SACN, 2015). These breads contain 

419 – 423 kcal and correspond to 21% of the total daily energy requirement for adults. 

Hence, this bread could be considered as one of the options for healthy food choice. Acute 

intake of these breads might be useful in maintaining desirable blood glucose levels 
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without increasing insulin responses. This study confirms the positive health benefits of 4 g 

β-glucan per 30 g of available carbohydrate for maintaining desirable blood glucose, as 

claimed by EFSA. This was an acute effect, and long-term study (chronic consumption) is 

needed to determine whether there exist any developmental changes in the gut microbiota. 

Chronic consumption of this bread will change the gut microbiota composition and 

produce higher SCFA, particularly propionate. Moreover, consuming this bread along with 

the increased intake of fruits and vegetables could help consumers achieve the minimum 

dietary fibre intake of 30 g/day (British Nutrition Foundation, 2016b).   

Commercial food stores such as Tesco, ASDA and Sainsbury’s have a range of sandwiches 

prepared with white, multiseeds or whole meal bread, priced between £1.50 to £2.50. 

These sandwiches are supplied on a daily basis and are usually placed on the cold shelf 

along with other ‘food-on-the-go’ items (e.g. ready-to-eat instant rice, pasta and chicken). 

This might specifically target those who have a limited time in which to prepare their own 

meals (e.g. university students, working people). Substitution of these ‘traditional’ breads 

with β-glucan bread could also be an alternative for the preparation of healthy sandwiches. 

However, the price of these sandwiches may not be affordable in deprived communities. 

Another alternative could be the development of lower cost products, such cereal with 

black tea and β-glucan.   

6.6 Future research 

There are several areas that can be further developed, based on the evidence from the 

present study as follows: 

Food science: 

1) Studying the rheological properties of bread dough as this will provide useful 

information on the food-matrix interaction in bread dough and the final product. 

2) How to study (poly)phenol stability under simulated in vitro digestion. This could 

be achieved, for example, through microencapsulation of tea (poly)phenols with 

dextrin before being added in bread. 

3) Some consumers like the bread to be toasted and this process might have an impact 

of the starch retrogradation. Simplistically, starch retrogradation is the formation of 

ordered amylose and amylopectin chains structure after cooling of heated starch (in 

a presence of water) (Wang et al., 2016). Higher starch retrogradation was 
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associated with lower glucose response in healthy volunteers (Burton et al., 2008). 

Moreover, storage conditions such as freezing (between 2 to 7 days) and thawing 

(overnight at room temperature) might increase starch retrogradation.  

4) Breads can be developed using a combination of other soluble fibres, such as guar 

gum (highly viscous) and gum Arabic (non-viscous) with black or green tea. 

Determine the food-matrix interactions between β-glucan and black tea with starch 

and protein (gluten) in bread. 

 

Nutrition research: 

1) Study the physico-chemical properties after an in vitro digestion, such as solubility, 

degree/rate of fermentation and viscosity. This could provide an insight of how 

these breads behave in the gastrointestinal tract. 

2) Measuring the energy intake (satiety study) in the afternoon in a free-living setting 

for up to 8 h after breakfast, which will reflect more natural eating behaviour.  

3) Long-term study is needed to confirm whether there is an effect of consuming this 

bread on a daily basis on blood glucose, insulin, lipid profiles, and appetite 

hormones. 

4) Long-term study is needed to confirm that these breads are resistant in the upper 

gastrointestinal tract, being fermented in the colon and stimulate the growth and/or 

activity of beneficial bacteria (eg. lactobacillus and bifidobacteria) (prebiotic 

effects). 

5) Determine the effects of eating β-glucan bread with a cup of black tea on glucose, 

insulin, gut hormones and energy intake. 

6) Study the (poly)phenols released from the breads in plasma and urine, particularly 

thearubigins and theaflavins. 

7) Study the health benefits of interactions between (poly)phenols metabolites 

produced from black tea and SCFA produced from β-glucan. 

6.7 Conclusions 

There were structural differences in bread with and without β-glucan. Bread with β-glucan 

could preserve some of the ‘native’ starch granules, and formed more continuous gluten 

matrix when compared with white bread. Adding β-glucan alone beneficially reduced in 
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vitro starch hydrolysis and postprandial glucose response, without negatively affecting 

insulin response. These results provided further evidence for the health benefits of β-

glucan claimed by EFSA.  

However, adding black tea with β-glucan reduced early in vitro starch hydrolysis but this 

effect disappeared when tested in humans. The absence of ‘absorption’ capacity and also 

the simplicity of ‘complex nutrients-enzyme’ reaction in in vitro starch hydrolysis models 

may have affected this. Hence, further study is needed to consider the results obtained from 

in vitro study carefully before embarking on in vivo study.  

Predigestion with α-amylase released (poly)phenols from BT and βGBT breads. However, 

digestion with pepsin and α-pancreatic amylase had no effects on antioxidant activity. βG 

and βGBT showed higher acetate, propionate and total SCFA (acetate, propionate and 

butyrate) at 24 h, but did not change significantly when compared with WB. These results 

suggest there is no additional effect of black tea per se or in combination with β-glucan on 

antioxidant activity and SCFA production. 

βG and βGBT breads showed lower taste, texture and palatability when compared with 

WB and BT. However, the breads showed good overall palatability when compared with 

white bread. WB and BT were similar in terms of palatability characteristics. Eating BT 

and not βG or βGBT as a breakfast meal reduced energy intake at lunch when compared 

with white bread.  

Overall, each of the studied breads possess both strengths and weaknesses, as follows: 

1. White bread (WB) 

Strong point: Good overall palatability. 

Weak point: Increased in vitro starch hydrolysis, increased perceived satiety. 

2. Black tea bread (BT) 

Strong point: Good overall palatability, reduced energy intake at lunch. 

Weak point: Increased in vitro starch hydrolysis. 

3. β-Glucan bread (βG) 
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Strong point: Good overall palatability, reduced in vitro starch hydrolysis, reduced 

postprandial glucose response, reduced PYY. 

Weak point: Reduced taste, texture and palatability. 

4. β-Glucan plus black tea bread (βGBT) 

Strong point: Good overall palatability, reduced in vitro starch hydrolysis. 

Weak point: Reduced taste, texture and palatability. 
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