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Abstract 
 

Furans are important heteroaromatic units that occur as subunits in various complex 

natural products, biologically active compounds and pharmaceuticals. Due to their 

pharmacophoric properties they find widespread application e.g. in the drug discovery 

process. In contrast to the classical condensation based-methods and metal-mediated 

approaches, organocatalytic methods for construction of furan have been relatively 

unexplored.  

 

As a result of their importance the Clark group developed a new organocatalytic method 

for the construction of highly functionalized furans using an organosulfur catalyst. It was 

observed that treatment of the ynenedione with an acidic nucleophile delivered the 

highly functionalised furan using sub-stoichiometric amount of tetrahydrothiophene 

(THT). 

 

 
 

The opening chapter details investigation undertaken into furan formation methodology 

developed within the Clark group. It was determined that the choice of the acid species 

was vital for proton transfer to ensure clean and effective conversion of the substrates 

into the desired furans. Studies were carried out using a chiral acid in an attempt to 



IX 
 

deliver the furan product in an enantioselective manner. Since the formation of a new 

stereocentre is achieved in this process, we investigated the potential development of 

a diastereoselective reaction using substrates bearing an existing stereocentre. The 

original organocatalytic furan synthesis using THT and ynenedione with nucleophiles 

was successfully expanded by designing a substrate with a tethered nucleophile that 

initiates a second cyclization to form polycyclic systems.  

 

 

 

 

 

Cyclohepta[b]furans are an important class of organic compounds found in many 

natural products, pharmaceuticals, bioactive compounds and functional materials. The 

development of efficient routes for their formation is therefore of great interest to the 

synthetic chemist. 

 

The second chapter details research undertaken towards a new methodology for the 

construction of cyclohepta[b]furans. Starting from a simple linear ynenedione the 

cascade reaction affords furans containing a fused bicyclic system which rearrange to 

cycloheptadienes. Since it has been observed that the cyclisation and rearrangement 

occurred successfully it was hypothesised that it may be possible to carry out furan 

formation followed by Cope rearrangement in a one-pot fashion without isolation of the 

furan intermediate.  
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1 Introduction 

1.1 Organocatalysis 

For many years there were two classes of efficient catalysts: biocatalysts, such as 

enzymes, and metal complexes.[1] Recently, the catalysis of chemical reactions using 

a sub-stoichiometric amount of a purely organic, metal-free small molecule has 

emerged, termed organocatalysis.[2] Many transformations, even originally transition 

metal-mediated cross couplings, can now be carried out under metal-free conditions by 

employing organocatalysts.[2]  

Some of the most widely used organocatalysts are L-proline (1), quinine (2) and 

peptides such as oligo-L-leu (3) (Figure 1). L-Proline (1) is probably the most widely 

used organocatalyst for aldol reactions, Mannich reactions and Michael additions, 

through iminium or enamine pathways. Alkylation reactions[3], cyclopropanation 

reactions[4] and epoxidation of enones[5] are just a few of the various reactions which 

can be performed asymmetrically by the use of quinine (2) or its derivatives. The 

peptide oligo-L-leu (3) is used in the asymmetric epoxidation of enones.[6] 

 

Figure 1 

 

The operational simplicity of reactions catalysed by organocatalysis makes them 

attractive for organic synthesis. The catalysts are generally non-toxic compounds that 

are readily available and easy to synthesise. The non-toxicity of organocatalysts makes 

them attractive for the preparation of pharmaceutical compounds or drug intermediates, 

especially considering their ability to produce such products with high enantiomeric 

excess.[7] Their tolerance towards water and air make them an attractive alternative to 

enzymes or bioorganic catalysts.[8] For these reasons, the interest particularly in 

enantioselective organocatalysis has increased enormously in the last few years. 

In 2005, List introduced a system to classify organocatalysis into four main types based 

on their reactivity.[9] These four categories are Lewis Base, Lewis Acid, Brønsted Base 
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and Brønsted Acid catalysts (Scheme 1). The catalytic cycles are initiated by electron 

donation to or acceptance by the substrate for Lewis bases and acids, and by proton 

donation or proton acceptance for Brønsted acids and bases.[9a] 

 

Scheme 1[10] 

 

1.1.1 Asymmetric Organocatalysis 

Asymmetric organocatalysis describes the acceleration of an enantioselective 

transformation with a sub-stoichiometric amount of a chiral organic molecule, which 

does not contain a metal element.[11] The field has had a great impact on chemical 

synthesis through the development of new asymmetric catalytic methodology and is 

now routinely used in organic synthesis for the construction of chiral molecules. 

In the 1970s, Hajos[12] and Wiechert[13] made a seminal contribution to the field of 

asymmetric organocatalysis. Both research groups independently reported the first 

highly enantioselective intramolecular aldol reaction. Starting with achiral triketones 4 

using proline (1) as the catalyst, aldol adduct 5 was formed in good yield and with good 

enantioselectivity (Scheme 2)[12]. 
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Scheme 2 

 

1.1.2 Brønsted Acid Catalysis 

Brønsted acid catalysts have not, until recently, attracted much attention in organic 

synthesis, but they have been shown to be excellent catalysts for achieving asymmetric 

induction in many cases. These catalysts have found widespread application in other 

asymmetric procedures, such as Friedel-Crafts reactions, reductive aminations and 

cycloaddition reactions.[14] 

The first reports that strong Brønsted acids could be used as efficient catalysts were 

made by Akiyama[15] and Terada[8] in 2004, and their observations were a significant 

contribution to the field of organocatalysis (Scheme 3). The reaction between aldimines 

6 and silyl enolethers 7 is catalysed by chiral phosphate Brønsted acid 8 to provide the 

chiral -amino esters 9 in good yield and with both high diastereoselectivity for the syn 

product and high enantioselectivity.  

 

Scheme 3 
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These Brønsted acid catalysts have bifunctional properties as they can act as both as 

a Brønsted acid, or as a Lewis base, using the phosphoryl oxygen as the electron 

donor. 

 

1.1.3 Asymmetric Counteranion-Directed Catalysis 

Taking inspiration from the established concept using binol phosphates in asymmetric 

Brønsted acid catalysis, the List group hypothesised that any reaction that proceeds 

via a cationic intermediate could be rendered enantioselective (Scheme 4).[16] The term 

‘asymmetric counteranion-directed catalysis’ (ACDC) in general describes reactions 

proceeding via a charged intermediate in which the chiral information is induced by 

means of ion pairing with a chiral, enantiomerically pure anion provided by the 

catalyst.[16] According to this definition, Brønsted acid catalysis can be classified as a 

specific case. Since the introduction of ACDC by List, the concept has found 

widespread application in both organocatalysis and transition-metal catalysis.[16] 

 

Scheme 4 

 

In 2005, Jørgensen described an enantioselective epoxidation reaction of enals using 

a diarylproline silylether as organocatalyst.[17] However, high enatioselectivites (95:5) 

were limited to 1,2-disubstituted enals, while reactions of trisubstituted enals generally 

gave inferior results. The reaction proceeds via a cationic quaternary iminium ion and 

so List and co-workers proposed the use of their recently developed concept of ACDC 

to overcome these limitations (Scheme 5).[18] Use of the dibenzylamine salt of TRIP-H 
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11 and t-butyl hydroperoxide as the oxidant delivered the best results for converting the 

aldehyde 10 into the desired 2,3-epoxyaldehyde 12.  

The catalytic asymmetric epoxidation of -disubstituted enal 10 is postulated to 

proceed by condensation between the dibenzylamine salt 11 of the catalyst and the 

enal 10. The iminium ion 13 is generated as a transient intermediate and this then 

undergoes conjugate addition with t-butyl hydroperoxide thus delivering the achiral 

addition product 14. Finally, C-O bond formation leads to the iminium ion 15 and 

subsequent hydrolysis affords the epoxide 12. The intermediate 14 could lead to both 

enantiomers of 12, hence the researchers proposed that enantioselectivity results from 

a ‘TRIP-assisted cyclisation’. The ACDC concept could be applied to a broader scope 

of substrates to access synthetically valuable motifs in highly stereoselective manner. 

 

Scheme 5  
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1.2 Synthesis and Use of Sulfur Ylides 

Due to their reactivity and synthetic diversity, sulfur ylides have proven to be useful 

reagents in organic synthesis especially in the development of new cascade 

reactions[19], [20] that allow access to structurally complex molecules from relative simple 

starting materials.[21] Ylides are zwitterions and can be considered to be composed of 

a positively charged heteroatom directly tethered to a carbanion.[22] Phosphorus ylides 

that are utilised in Wittig olefination reactions are the most widely used ylides in 

synthesis. However, the use of sulfur ylides has led to great achievements ranging from 

dearomatisation[23] and ring expansion,[24] to rearrangement reactions to form 

substituted indoles[25]. This diversity of use means that sulfur ylides are important 

intermediates in synthesis. The most common known way to construct a sulfur ylide 

involves sulfonium salt formation by alkylation of a thioether with an organic halide and 

subsequent treatment of the sulfonium salt with a base. The ylide can be trapped by an 

aldehyde, enone or imine to yield the corresponding epoxide, cyclopropane or aziridine 

(Scheme 6).[22]  

 

Scheme 6 

 

A second method has been demonstrated by Aggarwal for the formation of sulfur ylides 

through reaction of a sulfide and a diazo compound with a metal catalyst (e.g. 

Rh2[OAc]4) (Scheme 7).[26] A significant improvement of this method was reported, in 

which the diazocompound is generated in situ from a tosylhydrazone. This 

methodology presents some advantages to the synthetic chemist as it is performed 

under neutral conditions allowing it to be used with base-sensitive compounds. 

Additionally, less reactive sulfides can be employed because the intermediate metal 

carbene should be more reactive than the alkyl halide.[27] 
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Scheme 7 

 

1.2.1 Sulfur Ylide Mediated Epoxidation 

Suflur ylide mediated epoxidation represents a convenient one-step method for the 

formation of epoxides. Furthermore the reaction is an alternative to the general 

approach to the formation of an epoxide by olefination of an aldehyde followed by 

alkene oxidation. The first sulfur ylide mediated epoxidation was carried out by Johnson 

and LaCount in 1958.[28] In 1987, Furukawa reported the first example of epoxide 

formation from an aldehyde mediated by a sub-stoichiometric amount of a sulfur 

ylide.[29] The first asymmetric example of the reaction was described in 1989 and in this 

case a chiral sulfur ylide, derived from (+)-camphorsulfonic acid in three steps, was 

employed (Scheme 8).[30] Reaction of benzaldehyde and benzyl bromide in the 

presence of a sub-stoichiometric amount of sulfide 26 led to the trans epoxide 27 in 

excellent yield and with 47% ee. 

 

Scheme 8 

 

Other examples of the use of chiral sulfur ylides were reported in 2002 by Ishizaki and 

Hoshino who used a C2-symmetric sulfide for the asymmetric epoxidation of aldehydes 

(Scheme 9).[31] The best results for the epoxidation reaction were obtained with bis-
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sulfide 28 derived from (R,R)-tartaric acid. Applying the optimised reaction conditions 

to a wide variety of aldehydes, trans cinnamaldehyde was shown to be the most 

effective substrate with the trans epoxide 27 being obtained in 75% isolated yield and 

with an enantiomeric excess of 75%. 

 

Scheme 9 

 

In 2003, Aggarwal and co-workers applied their previously described strategy to the 

enantioselective synthesis of epoxides using optimised chiral sulfur ylides 

(Scheme 10). These new semi-stabilised sulfides were found to be sufficiently stable 

to be recovered quantitatively in most cases. The asymmetric epoxidation reaction 

proceeds in good yield and high enantioselectivity and diastereoselectivity with an array 

of aldehydes ranging from aromatic and α,β-unsaturated to aliphatic. Aggarwal began 

evaluating different tosylhydrazone salts in order to determine their effectiveness for 

epoxidation reactions. It was found that electron-rich aromatic tosyl hydrazone salts 

delivered the epoxides with highest enantiomeric excesses (>93% ee) and with high 

diasteroselectivities.  

 

Scheme 10 
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1.2.2 Sulfur Ylide Mediated Cyclopropanation 

The cyclopropane ring is a common sub-unit in many natural products, bioactive 

compounds and synthetic drugs. One of the classical protocols employed for the 

preparation of cyclopropanes was reported in 1962 by Corey and Chaykovsky using 

reactive dimethylsulfoxonium methylide (Scheme 11).[32] The Corey-Chaykovsky 

reaction employs deprotonation of trimethylsulfoxonium halide to deliver the reactive 

ylide 33 required for the reaction. The reaction proceeds by conjugate addition of the 

sulfur ylide 33 to the α,β-unsaturated carbonyl compound 34 which affords the 

cyclopropane 35 after intramolecular cyclisation and loss of dimethyl sulfoxide.  

 

Scheme 11 

 

One notable drawback to this reaction is that it is not possible to synthesise other 

trialkylsulfonium salts and therefore the reaction is limited to the methylide. 

Nevertheless, substituted methylene units could be installed onto carbonyl compounds 

from various sulfur ylides derived from sulfoximines.[33] 

Aggarwal and co-workers demonstrated the versatility of their methodology by applying 

it to the enantioselective formation of cyclopropanes 39 from electron-deficient alkenes 

36 by means of a chiral sulfur ylide derived from the thioether 38 (Scheme 12).[34] The 

best results were obtained using a phenyl ketone (R3 = COPh) as the Michael acceptor; 

the desired cyclopropane product was obtained in good yield and with high 

enantioselectivity.  

 

Scheme 12 



Chapter 1: Introduction 

10 
 

 

The utility of this methodology was demonstrated in the synthesis of vinylcyclopropane 

42 (Scheme 13).[34] The diazo-compound was generated in situ from tosylhydrazone 

41 and subsequent reaction with the α-substituted amino acrylate 40 afforded the 

vinylcyclopropane 42 in 65% yield as 6:1 cis:trans mixture of diastereomers. The major 

isomer (cis) was obtained with 75% enantiomeric excess. With the vinylsilane group in 

place, further functionalisation is possible to give access to a range of conformationally-

locked amino acids.  

 

Scheme 13 
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1.2.3 Sulfur Ylide Mediated Aziridination 

Aziridines are useful intermediates for organic synthesis and can be transformed into 

α-amino alcohols[35] by ring opening, or can undergo ring expansion to either β- or -

lactams. In 2001, Aggarwal and co-workers adapted their epoxidation method to the 

asymmetric synthesis of the trans aziridine 44 using imine 43 and the tosyl hydrazone 

salt 37 in the presence of a catalytic amount of chiral sulfide 31 (Scheme 14).[34] 

Evaluating different N-activating groups revealed that best results were obtained using 

sulfonyl- or TcBoc-activated imines for the synthesis of aziridines. However, sulfonyl-

substituted imines are easier to prepare, more stable under the reaction conditions and 

the sulfonyl group is more readily removed. Subsequently, the reaction was studied 

with a wide range of different sulfonyl-activated imines prepared from aromatic, 

heteroaromatic, unsaturated and aliphatic aldehydes. The corresponding aziridines 

were obtained in good yields and with high enantioselectivties. Good levels of 

diasterocontrol could be achieved but were dependent on the imine substituent. 

Cinnamaldehyde and 3-furfural derived imines were shown to deliver the product with 

the best trans:cis diasteromeric ratio.  

 

Scheme 14 

 

Aggarwal and co-workers applied their promising methodology to the synthesis of syn-

α-amino alcohol 46, found in the side chain of taxol (Scheme 15).[35] The N-SES-

activated imine 45 was treated with tosylhydrazone salt 37 in the presence of a sub-

stoichiometric amount of chiral sulfide 31, a phase-transfer catalyst and [Rh2(OAc)4]. 

The reaction delivered aziridine 44 in good yield and high enantioselectivity for the trans 

isomer. The syn-α-amino alcohol 46 was obtained in 8 steps from aziridine 44. 
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Scheme 15 

 

1.3 Furans 

Furans are common sub-units in organic molecules such as pharmaceutical 

compounds (Figure 2) and complex natural products[36] (Figure 3). They also serve as 

important intermediates for the synthesis of various heterocyclic and acyclic 

compounds.[37] Ranitidine (47) is one of these furan-containing synthetic drugs, which 

is marketed by GSK under the name Zantac® and is one of the biggest selling drugs in 

history. It is used as a histamine H2-receptor antagonist for the treatment of stomach 

ulcers.[38]  

Lapatinib (48) is another example of a pharmaceutical drug possessing a furan ring. 

The drug is marked by GSK under the name Tyberb® and is used in the treatment of 

breast cancer and other solid tumours.[39] 

 

Figure 2 

 

The furan motif is commonly found in many natural products, ranging from acetogenins 

and terpenes, to complex alkaloids.[40] The cembranolides lophotoxin (49) and pukalide 

(50)[41] are among those bioactive natural products. Both of these macrocyclic marine 

products contain a highly-substituted furan as part of their macrocyclic core structures. 

Members of this natural product family have some interesting bioactive properties, 

ranging from neutrotoxic to anti-inflammatory and anti-feedant activities.[41] The 

neurotoxin lophotoxin (49) is known to be an irreversible inhibitor of the nicotinic 

acetylcholine receptors, which are ligand-gated ion channels in nerve and muscle 

cells.[42] A further example of a furan-containing bioactive compound is the bacterial 
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macrolide furano ephithilone B (51), which is highly potent against multiple-drug 

resistant (MDR) human carcinoma cell lines.[43] 

 

Figure 3 

 

Furan-containing compounds have attracted extensive synthetic interest. Considerable 

ingenuity has been displayed in the development of routes to these compounds in 

addition to the classical approaches involving condensation-based methods.[37] These 

new approaches range from Diels-Alder cycloaddition to alkene cross-metathesis, and 

metal-mediated furan syntheses are also becoming more common.[44] In contrast, the 

use of organocatalytic methodology for the construction of furans is rare. 
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1.3.1 Classic synthetic routes to form furans 

Furans can be synthesised by various routes, but many of the methods are based on 

the Paal-Knorr synthesis which was described independently by Carl Paal and Ludwig 

Knorr in 1884.[45] In this synthetically valuable method, substituted furans are formed 

by acid-catalysed cyclocondensation of 1,4-diketones (Scheme 16).  

 

Scheme 16 

 

However, the Paal-Knorr reaction has two major drawbacks. First the limited availability 

of 1,4-dicarbonyl compounds and second, the restrictive tolerance of many 

functionalities towards the harsh acidic conditions that are usually required. 

In 1902, the Feist-Benary synthesis for the formation of highly-substituted furans 58 

was reported. This method proceeds by the condensation of an -halo ketone 57 and 

a -ketoester 56 under basic conditions (Scheme 17).[46] 

 

Scheme 17 

 

The synthesis of functionalised furans has been an important research area since the 

1990s. Due to the importance of these heterocycles, research is nowadays focused on 

milder and more versatile approaches that allow the introduction of more functionality 

during formation of the furan ring. 
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1.3.2 Metal Mediated Methods of Forming Furans 

Developments in the area of transition metal-catalysed processes can lead to highly 

efficient and selective synthetic procedures. Thus, metal catalysis is an important tool 

for the synthesis of valuable organic compounds.[47] 

In recent years, metal-catalysed processes have been developed to produce 

substituted furans under mild conditions. The use of a large variety of metal complexes 

has been reported, especially those of palladium, copper, gold, silver and zinc, and 

some representative examples are presented in the following discussion. 

 

1.3.2.1 Palladium-Catalysed Synthesis of Furans 

Thus far, palladium complexes alongside gold complexes are some of the most 

commonly used catalysts for furan synthesis.[48] In 2007, Oh and co-workers reported 

a protocol for the stereocontrolled formation of 2-(2-methylenecycloalkyl)-furan 

derivatives 60.[49] The tandem cyclisation procedure is based on cycloreduction of 

conjugated enynals 59 using a palladium(0) complex as the catalyst (Scheme 18). 

Treatment of enynals 59 with Pd(PPh3)4 and formic acid was found to afford the 

complex furan 60 in high yield and as single isomer. Evaluation of the reaction using 

an array of substrates showed that product yields were highest when substrates 

bearing a gem-diester were employed and that the yield improved when the tether 

length was increased so that a cycloheptane was produced instead of cyclopentane. 

Furthermore, it was found that for a substrate bearing a benzyl protected alcohol the 

corresponding furan product was obtained in good yield and with a 3:1 cis:trans isomer 

ratio. However, the reaction was completely selective for the cis isomer when a more 

bulky protecting group was used. 

 

Scheme 18 

 

The cycloisomerisation reaction is proposed to proceed according to the mechanism 

shown in Scheme 19.[49] Firstly a Pd(II) species is generated in situ through oxidative 
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addition of the palladium into the formic acid. Subsequently, hydropalladation of alkyne 

61 occurs to form the vinylpalladium 62 species and then cyclisation through 

carbopalladation of the triple bond to produces the intermediate 63. Attack of the 

palladium centre by the carbonyl oxygen with the extrusion of CO2, followed by 

hydrogen transfer generates the intermediate 64 which evolves into 64’ by electron 

delocalisation. Finally, reductive elimination regenerates the catalyst and delivers the 

furan product 65.  

 

Scheme 19 

 

Wang and co-workers recently reported a novel method for the formation of 2-alkenyl 

substituted furans 67 with high (E)-selectivity, in which classical palladium cross 

coupling reaction was combined with carbene chemistry (Scheme 20).[50] The 

palladium-catalysed oxidative cross coupling of enynone 66 with p-tolylboronic acid 

proceeds in good yield and with high stereoselectivity. Studies revealed that many 
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arylboronic acids and alkenylboronic acids are suitable substrates for the 

transformation. 

 

Scheme 20 

 
The proposed mechanism proceeds by oxidation of Pd(0) with benzoquinone and 

subsequent oxidative addition of organoboronic acid 69 to generated palladium species 

70 (Scheme 21). Activation of the alkyne is followed by the key step: nucleophilic 

addition of the carbonyl oxygen onto alkyne. The resulting (2-furyl)carbene 73 

undergoes migratory insertion to afford intermediate 74 and β-hydride elimination then 

occurs to form the furyl-substituted olefin 75. Finally, reaction of the palladium hydride 

intermediate with base regenerates the reactive Pd species.  

 

Scheme 21 

1.3.2.2 Copper-Catalysed Synthesis of Furans 

Other metal complexes such as those of copper have also been employed for the 

synthesis of furans. Barluenga described a copper(I)-catalysed regioselective 
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synthesis of tri- and tetra-substituted furans 80 from bis-propargylic esters 78 (Scheme 

22).[51] The formation of 2-furyl copper(I) carbene complex 79 allows further 

functionalisation to create either a new carbon-carbon double bond or a carbon-

heteroatom double bond. By investigating the scope of the reaction, it was found that 

the terminal alkyne and the ester could be substituted with various groups to provide 

the furan 80 in good yield. 

 

Scheme 22 

 

In early 2016, Wang and co-workers reported a new approach to the synthesis of furan-

substituted allenes employing a copper-catalysed carbene migration insertion 

(Scheme 23).[52] It was observed that reaction between eneynedione 81 and an alkyne 

with catalytic amounts of CuI produced the corresponding furan 83 in good yields. The 

conditions accommodated a wide range of electron-rich, electron-deficient, polycyclic 

aryl and alkyl terminal alkynes. The highest yields were observed with alkyl-substituted 

eneynediones. 

 

Scheme 23 

 

1.3.2.3 Gold-Catalysed Synthesis of Furans 

Gold catalysts have proven to be particularly suitable for the construction of furans 

because of the bifunctional properties of the late transition metal. Cationic gold species 

possess strong  Lewis acid abilities and are also able to activate alkynes and allenes 

through complexation. Some recent examples of gold-catalysed furan formation are 

described below. 
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Arcadi demonstrated the coupling between the propargylic alcohol 84 and a 1,3-

diketone 85 in a tandem process to form tetrasubstituted furan 86 using a gold-based 

catalyst (Scheme 24).[53] 

 

Scheme 24 

 

In 2009, Pale described a procedure for the synthesis of highly substituted furans 88 

from alkynyl oxiranes 87 employing (triphenylphosphine)gold triflate as the catalyst 

(Scheme 25).[54] The presence of an alcohol that serves as an external nucleophile is 

required for the gold-catalysed isomerisation reaction to take place.  

 

Scheme 25 

 

Several furan-forming reactions, catalysed by either gold(I) or gold(III) complexes, have 

been reported in the past few years. A range of substrates can be employed, such as 

allenyl ketones, enynes, alkynes or alkynyl alcohols. In 2013, Pale reported the 

formation of functionalized furans 90 from various precursors such as -acyloxyalkynyl 

ketones 89 using a gold(I) complex as the catalyst (Scheme 26).[55] After identification 

of the optimal conditions, furan formation was successful for substrates containing 

various R3 substituents, such as methyl, propyl, 2-phenylethyl and 3-benzyloxypropyl. 

 

Scheme 26 

 

Pale proposed a viable mechanism for the rearrangement of -acyloxyalkynyl ketones 

89, which is based on the bifunctionality of gold cations to behave as either  or  Lewis 

acids (Scheme 27).[55] If the gold catalyst functions as a  Lewis acid, [Au]+ firstly 
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operates as an oxophilic activator by complexing to the oxygen of the carbonyl function 

of the ketone 92. Complexation is followed by [1,4]-addition of the nucleophilic acyloxy 

group to the carbon-carbon triple bond to form gold allenolate 95, which is in equilibrium 

with Z and E vinylgold intermediates 94 and 93. Intermediate 93 could also be formed 

by carbophilic activation of the triple bond by co-ordination of the metal, followed by 

nucleophilic attack of the carbonyl oxygen onto the electron-poor carbon-carbon bond. 

Formation of the carbenoid species 96 followed by intramolecular attack of the carbonyl 

function on to the alkene bond generates the oxygenated five-membered ring 97. The 

final furan product 90 is obtained by tautomerisation and regeneration of the catalyst. 

 

Scheme 27 

 

Oh and co-workers developed a procedure for the gold-catalysed construction of furans 

containing a fused bicyclic system that incorporates a cyclopropane (Scheme 28).[56] 

Exposure of the cycloalkenecarbaldehyde 98 to AuBr3 led to intramolecular 5-exo-dig 

cyclisation of the gold-complex through nucleophilic attack of the carbonyl oxygen onto 

the alkyne moiety, to afford the alkenyl gold intermediate 99. The intermediate 99 

evolves into the carbenoid 100 which cyclopropanates the pendant alkene to afford the 

cyclopropyl-substituted furan 101 as the sole product in 80% yield. 
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Scheme 28 

 

In 2012, Maulide and co-workers described an efficient approach for the intramolecular 

construction of bicyclofurans from doubly stabilised sulfur ylides employing gold 

catalysis (Scheme 29).[57] Treatment of the sulfonium ylide 102, which is easily 

accessible from the corresponding ketoester by ylide transfer, with PPh3AuCl and 

AgSbF6 yielded the 3-carboxyfuran 103 in excellent yield.  

 

Scheme 29 

 

Maulide proposed that the mechanism for this transformation proceeds firstly by 

activation of the alkyne 102 through coordination of the metal catalyst which acts as a 

 Lewis acid to form the gold complex 104 (Scheme 30).[57] Next, cyclisation by 

intramolecular nucleophilic attack of the ylide onto the activated alkyne produced the 

vinyl gold intermediate 105. Intramolecular attack of the vinylic gold by the carbonyl 

oxygen and subsequent loss of Ph2S afforded the complex 106. Finally, the bicyclic 

furan product is formed by regeneration of the gold catalyst to restart the catalytic cycle 

by forming the  complex 104. Computational studies completed by the group support 

the proposed mechanism and suggest that a gold carbene intermediate is not involved 

in the mechanistic pathway. 
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Scheme 30 

 

Zhu and co-workers reported a highly efficient method for the synthesis of cyclopropyl 

subsituted furans using N-heterocyclic carbene (NHC) suppported cationic [Au]+ 

complexes with Selectfluor® 110 (Scheme 31).[58] Initial studies revealed that IPrAuCl 

109 in combination with Selectfluor® 110 gave the best results for the cyclopropanation 

reaction. When the enynone 107 and styrene were reacted under optimised conditions, 

the furan 108 was obtained in good yield. The reaction proceeded best when the alkene 

substrate was electron-rich, but only low levels of diastereocontrol were observed. The 

best diastereomeric ratio was achieved when alkyl enynones were employed as 

substrates. In addition, the methodology proved to be highly versatile for different 

insertion reactions. By using imidazole, benzyl alcohol or Et3SiH instead of styrene 

derivatives, the corresponding X-H insertion product was obtained in high yield. 
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Scheme 31 

The mechanism for the transformation of enyonone 111 into the corresponding furan 

products is proposed to proceed by firstly the generation of [NHC-Au(III)ClF]+ through 

oxidation of IPr-AuCl 109 with Selectfluor® 110 (Scheme 32). This is followed by 

activation of the triple bond of the enynone 112 through coordination of the in situ 

generated gold species. Subsequent nucleophilic attack of the carbonyl oxygen onto 

the electron-poor triple bond, produces the gold furyl carbene 113. Either an alkene or 

HX-R’ is used to trap the carbenoid formed, leading to the formation of furan 114 or 

115. 

 

Scheme 32 
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1.3.2.4 Zinc-Catalysed Synthesis of Furans 

Vicente and Lopez have developed a procedure for the synthesis of highly substituted 

furans using zinc salts in sub-stoichiometric amounts.[59] The reaction proceeds by 

treatment of readily available ynenedione 116 with zinc chloride to form what is 

presumed to be a zinc carbenoid species. This cyclopropanating intermediate is 

trapped by an alkene 117 to deliver the cyclopropyl furan 118 in good yield 

(Scheme 33). 

 

Scheme 33 

 

Experiments involving alkenes bearing a variey of substituents (R4, R5 and R6) 

demonstrated that the reaction could be applied to a large variety of compounds, 

ranging from monosubstituted to disubstituted alkenes, to yield furans in respectable 

yield but with moderate levels of diastereocontrol. Furthermore, changing the enyne 

substituent R3 to aryl or alkyl, afforded the corresponding cyclopropane in good yields 

and with higher levels of diastereocontrol in the case of alkyl substituents. 

Vincente proposed a mechanism in which coordination of ZnCl2 to the carbonyl group 

and the alkyne of enyne 116 affords the zinc complex 119 (Scheme 34).[59] Nucleophilic 

attack of the carbonyl oxygen onto the alkyne results in 5-exo-dig cyclisation to yield 

the intermediate 120. The zinc furyl carbene 120 then reacts with the alkene 117 to 

afford the furan 118.  
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Scheme 34 

 

Using their knowledge of ZnCl2-catalysed Knoevenagel condensation reactions, these 

researchers explored the possibility of accessing the furan product 122 in a one-pot 

procedure and starting from acetylacetone, propynal 121 and styrene (Scheme 35).[59] 

 

Scheme 35 

 

In 2013, Vincente and co-workers published an extension to this work and applied the 

methodology to a wider range of substrates.[60] Under the previously established 

conditions, they performed a zinc-catalysed cyclisation followed by C-O or C-N bond 

formation when treating enynes with alcohols or azoles. Several simple primary 

alcohols were employed as reactants under optimised reaction conditions, leading to 

the formation of the expected furan derivatives in good to moderate yield (Scheme 36). 

Furan formation proceeded best when alkyne substrates bearing electron-rich arenes 

were used but alkynes bearing alkyl groups or electron-poor arenes were found to be 

unsuitable. Amines or amides were used to study a possible zinc-catalysed cyclisation 
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and C-N bond formation sequence.[60] Monocyclic azoles such as pyrazole, imidazole 

and triazole proved to be suitable reactants and products resulting from N-H bond 

insertion were obtained from these reactions.  

 

Scheme 36 

 

In 2015, Vicente and co-workers once again proved the versatility of their zinc 

methodology by creating the fused cycloheptafurans 126a and 126b (Scheme 37).[61] 

Treatment of silyl substituted enyne 125 with a catalytic amount of zinc chloride resulted 

in formation of a zinc silylcarbenoid intermediate which reacted with butadiene to 

deliver the fused bicyclic furans 126a and 126b. Partial desilylation occurred as a 

consequence of the reaction conditions employed. The furan products are most likely 

formed by a formal [4+3] cycloaddition reaction, but formation of cyclopropane and 

subsequent Cope rearrangement cannot be ruled out. 

 

Scheme 37 

 

1.3.3 Organocatalysed Furan Formation 

Due to the importance of furans, the development of new methodology for their 

construction has received considerable attention. Their construction via metal-

mediated procedures has been the subject of numerous investigations over the years. 

However, organocatalytic methods for the construction of furans have been relatively 

unexplored until recently.[62] A few recent protocols for furan formation focussing on 

organocatalysis are described in the following section.  
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1.3.3.1 Organocatalytic Approach to 2-Hydroxyalkyl Furans 

In 2010, Jørgensen reported an enantioselective method for the synthesis of electron-

poor 2-hydroxyalkyl and 2-aminoalkyl furans based on an improved Feist-Benary 

synthesis (Scheme 38).[62] The pyrrolidine 128 was employed to catalyse the 

enantioselective epoxidation of the -unsaturated trans alkenal 127. The resulting 

2,3-epoxy aldehyde 129 underwent a Feist-Benary reaction with 1,3-dicarbonyl 

compound 130 to furnish 2-hydroxyalkyl-2,3-dihydrofuran 131 as single product. 

Dehydration under acidic conditions yielded the 2-hydroxyalkyl furan 132. The reaction 

was carried out with trans 2-hexenal and methyl acetoacetate as model substrates. 

Further screening revealed that the use of MTBD as base to form the dihydrofuran and 

camphorsulfonic acid as acid to accomplish dehydration was optimal to deliver the 

product in good yield and with high enantiomeric excess.  

The reaction was viable with a wide range of γ-branched aliphatic and aromatic -

unsaturated aldehydes 127. Further studies revealed, that a large variety of 1,3-

diketones 130 could be used, leading to the formation of furans 132 in good yield and 

with high enantiomeric excess. An economic benefit of this organocatalytic approach is 

that a relatively low catalyst loading is required.  

 

Scheme 38 

 



Chapter 1: Introduction 

28 
 

Using the same methodology, Jørgensen succeeded in synthesising the corresponding 

furylamines 133 via 2,3-aziridinyl aldehydes (Scheme 39).  

 

Scheme 39 

 

In summary, Jørgensen reported an enantioselective method for the synthesis of the 

2-hydroxyalkyl furans 132 and the 2-aminoalkyl furans 133. The furan products are 

formed under mild conditions and with low catalyst loadings to give motifs found in 

many biologically active products. 

 

1.3.3.2 Organocatalytic Approach to 2-Hydroxyalkyl Furans 

Another strategy for the construction of substituted furans was reported by Krische.[63] 

In this protocol, a γ-acyloxy butynoate 134 is exposed to a stoichiometric quantity of a 

triarylphosphine, which induces an intramolecular reductive cyclisation reaction to yield 

a substituted furan 140 through the formation of the allenic ester 137 (Scheme 40). In 

the postulated reaction mechanism, exposure of butynoate species 134 to 

triphenylphosphine leads to tandem conjugate addition/acyl substitution to afford 

intermediate 136. Extrusion of triphenylphosphine oxide from the betaine 136 affords 

the allenic ester 137. The ester 137 is transformed into the corresponding furan 140 by 

nucleophilic attack of a second equivalent of triphenylphosphine.  
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Scheme 40 

 

Under optimised conditions (1.2 equiv. PPh3 at 110 °C in EtOAc), studies were carried 

out by the group to assess the feasibility of the proposed transformation. Screening of 

various γ-acyloxy butynoates led to the formation of substituted furans in 60–86% yield 

and revealed that furan formation was most efficient when the γ-acyloxy substituent 

(R2) of the butynoate is electron-deficient. 

 

1.3.3.3 Phosphine-Mediated Synthesis of Furans form Enynes 

In 1991, Kuroda reported a method for the preparation of furans by a phosphine-

initiated reaction of substituted enynes.[64] In 2004, he applied this method to the 

synthesis of more highly-substituted furans 142 from ynenones 141 (Scheme 41).[65]  

 

Scheme 41 
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The reaction was performed in the presence of stoichiometric amounts of 

triphenylphosphine or tributylphosphine and promising results were obtained. The use 

of a sub-stoichiometric amount of phosphine results in a reduction of the yield by half. 

In accord with these observations, the authors proposed that the reaction proceeds by 

1,6-addition of the nucleophilic phosphine to the alkyne 141 to form intermediate 143 

(Scheme 42). Subsequent internal cyclisation to give the intermediate phosphonium 

ylide 144 and a Wittig reaction with an aldehyde delivers the -vinyl furan 142 and 

triphenylphosphine oxide. Stoichiometric equivalents of nucleophilic phosphine are 

required in order to give good yields. Exploration of the versatility of the reaction by 

screening of substrates possessing various substituents, revealed that the yields are 

remarkably influenced by alkyne substituent (R1) rather than by the carbonyl substituent 

(R4). If an aromatic substituent is present on the alkyne, poor results are obtained. 

Additionally, unknown side reactions occur when R3 is an alkyl substituent. 

 

Scheme 42 

 

Lin and co-workers recently reported a novel phosphine-promoted C-

acylation/cyclisation reaction to furnish coumarin derivatives 147 and 148 in moderate 

to good yields using a similar approach as Kuroda (Scheme 43). The protocol involves 

reaction of a chromen-2-one 145 with an acyl chloride and Bu3P in the presence of 

Et3N to access the phosphorus ylide 146. The in situ generated ylide can either be 

quenched with aqueous NaHCO3 to generate the corresponding furo[3,2-c]coumarin 

derivative 147 or trapped with a carbonyl electrophile to afford the corresponding Wittig 

product 148.[66]  
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Scheme 43 

 

1.3.3.4 Organosulfur-catalysed Synthesis of Furans from Ynenones 

Drawing inspiration from the work of Kuroda, the Clark group proposed that a similar 

cascade reaction could be triggered by an organosulfur catalyst rather than a 

phosphine. The sulfur catalyst should initiate a similar reaction sequence via a 

sulfonium ylide intermediate and the group assumed that the resulting sulfur ylide could 

be adapted to allow introduction of a variety of substituents to the ring, leading to the 

synthesis of highly substituted furans. In 2012, Clark and co-workers reported a new 

approach to the formation of substituted furans using a simple thioether as the 

organocatalyst.[67]  

Starting from ynenone 149, treatment with a sub-stoichiometric amount of 

tetrahydrothiophene (THT) and an acidic nucleophile was observed to generate the 

furan products 150 in excellent yields (Scheme 44). 

 

Scheme 44 
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The optimised reaction conditions were employed to incorporate a diverse set of 

nucleophiles. Electron-rich and electron-poor aryl carboxylic acids were screened as 

well as a variety of alcohols, such as methanol and t-butyl alcohol, to yield the 

corresponding furans in excellent yields. However, yields were slightly lower for bulky 

alcohols. The conclusion was that highly acidic nucleophiles are not required in order 

to accomplish the reaction. It was also found that sulfonamides can function 

successfully as nucleophiles.  

The conditions were found to be compatible with a diverse set of alkyne substituents. 

Furan formation was successful when alkyl, aryl or trialkylsilyl substituted alkynes were 

employed. The reaction proceeds well, even in a case where a tetrasubstituted carbon 

was located adjacent to the site of nucleophilic attack.  

Additionally, the reaction was examined with substrates bearing an electron-

withdrawing substituent instead of one of the ketone carbonyl groups. In the case of 

ester, phosphonate, sulfone and nitrile groups, the cyclisation reaction was found to 

give furan products in good yield. 

The proposed reaction pathway proceeds by conjungate addition of the sulfur 

nucleophile onto the alkyne 149 (Scheme 45). The resulting enolate 151 undergoes 

intramolecular cyclisation to furnish the intermediate 152, in which the furan is tethered 

to a sulfur ylide. In the presence of an appropriate acidic nucleophile, the ylide 152 

undergoes protonation to afford the sulfonium salt 153. The reaction most likely 

proceeds to give the final product via an SN1 pathway rather than a concerted SN2 

process, thereby releasing the tetrahydrothiophene back into the catalytic cycle to 

generate the oxocarbenium ion 154. The final step involves attack of the nucleophile to 

yield the final furan 150.  
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Scheme 45 

 

 

Further investigations by the group concerning the furan formation methodology have 

shown that when the reaction is carried out with electrophilic ynenone 149 and t-butyl 

alcohol as nucleophile, three side products are formed along with the desired product 

155 (Scheme 46). These compounds have been isolated and characterised.[68]  

 

Scheme 46 

 

Formation of these side products is proposed to proceed by a mechanism in which the 

organosulfur catalyst undergoes conjugate addition onto the ynenone 149 to produce 

the 151 (Scheme 47). Cyclisation of the intermediate 151 affords sulfonium ylide 152. 

Protonation by t-butyl alcohol yields sulfonium salt 153 and subsequent nucleophilic 
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substitution affords the desired product 155 (R = t-Bu). The ‘water addition product’ 156 

(R = H) results from a competing reaction with water as nucleophile. Elimination of THT 

and proton abstraction leads to the formation of vinyl furan 157. On the other hand, 

conjugate addition of ynenone 149 to sulfur ylide 152 followed by cyclisation affords 

dimer 158.  

 

Scheme 47 

 

As a final test of the power of this methodology the Clark group was able to combine 

the condensation reaction and the furan-forming reaction in a one-pot procedure, as it 

was reasoned that these two reactions would be independent from each other.[67] One-

pot organic transformations have some advantages: they significantly reduce chemical 

waste and improve synthetic efficiency. Consequently, their design and application has 

increased in the last few decades.[20] The final compound 161 was constructed from 

acetylacetone, the aldehyde 160 and benzoic acid in the presence of THT and 

piperidine (Scheme 48). This one-pot procedure delivered yields that were comparable 

to those obtained when the reactions were performed separately.  
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Scheme 48 

 

In summary, this method allows organocatalytic formation of highly decorated furans 

under mild conditions and in good yield. The reaction operates with various substrates 

and nucleophiles and has the potential to be extended to more complex cascade 

systems.  

 

1.3.3.5 Brønsted Acid Promoted Cascade to form Cyclopropanated Furans 

Following the success of the thioether-catalysed furan formation, it was of interest to 

extend the methodology to afford complex polycyclic furans.  

The Clark group applied the previously established organosulfur methodology, using a 

stoichiometric amount of acid as the nucleophile, to a wider range of substrates bearing 

an unsaturated side chain, such as 162 (Scheme 49).[69] Surprisingly the reaction of the 

alkene 162 yielded the trisubstituted furan 163 bearing a fused bicyclic system that 

contains a cyclopropane, as a single diastereoisomer. Further studies demonstrated 

that THT is not needed for this transformation, instead cyclisation is promoted by the 

presence of a Brønsted acid. Optimisation studies revealed that chloroacetic acid 

delivered the best yields and that the use of weaker acids such as benzoic acid or 

acetic acid necessitated longer reaction times.  

A wide range of readily accessible ynenediones could be transformed into the 

corresponding cyclopropyl-substituted furans in excellent yield and with high 

diastereocontrol when optimised reaction conditions were employed. Spirocyclic 

products could be isolated in good yields when the ynenone was tethered to a 

methylenecyclopentane or methylenecyclohexane. The reaction was also performed 

on substrates with various lengths of carbon tether and relevant bicyclic systems with 

fused cyclopentane or cyclohexane rings were constructed in good yield. The 

incorporation of heteroatoms such as oxygen or nitrogen into the chain linking the 
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alkene to the ynenone was also successful and reactions of these substrates delivered 

the corresponding oxa- and aza-bicyclic products in reasonable yields.  

Additionally the reaction was examined with substrates bearing an electron-

withdrawing substituent instead of the carbonyl group. In the case of substrates 

containing an ester, phosphonate or sulfone group, cyclisation to give the furan 

products was observed. 

 

Scheme 49 

 

Additionally, the effect of the geometry ot the tethered alkene on the stereochemical 

outcome of the reaction was investigated (Scheme 50).[69] The E-alkene E-164 and the 

Z-alkene Z-164 were synthesised and their cyclisation reactions to give the furan-

containing tricyclic ketone products were explored. Carrying out the reactions under 

optimised conditions resulted in conversion of the substrate E-164 into the 

cyclopropane 165, with syn relationship between the two aryl substuents, as a single 

diastereoisomer and in good yield. When substrate Z-164 was employed, the rate was 

much slower and therefore the reaction was carried out in toluene at reflux. In this case, 

the Z configuration of the alkene Z-164 was translated into an anti relationship between 

the two aryl substuents in the cyclopropane 166. 

 

Scheme 50 

 

In the proposed mechanism, the cascade reaction is initiated by protonation of one of 

the carbonyl groups (Scheme 51).[69] The resulting protonated compound 168 can be 
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drawn in the resonance form 168’ which then undergoes internal cyclisation through 

nucleophilic attack of the oxygen onto the allenic carbon. Cyclopropanation of the 

pendant alkene by the resulting carbene 169 then leads to the final product 170.  

 

Scheme 51 

 

In summary, a simple, new and highly stereoselective synthesis of furans was 

developed, delivering furan products in excellent yields. The reaction proceeds under 

mild conditions and has the potential to be extended to more complex polycyclic 

systems. 

An approach to the construction of furan rings in which a three-component domino 

process is employed has been reported by Cao and co-workers (Scheme 52).[70] The 

reaction between propargylic aldehyde 121, cyclohexanedione 171 and pyrazine-2-

amine 172 in the presence of a catalytic amount of TFA delivered the corresponding 

furan 173 in good yield. It was found that the reaction could be applied to a wide variety 

of amine partners and that also open-chain 1,3-dicarbonyl compounds were suitable. 

 

Scheme 52 

 

It is proposed that aldehyde 121 and diketone 171 undergo Knoevenagel condensation 

to generate intermediate 171 in the presence of TFA (Scheme 53). The condensation 

reaction is followed by intramolecular cyclisation to generate the electrophilic 
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intermediate 175. Finally conjugate addition of the nucleophilic amine 172 furnishes the 

furan product 173.  

 

Scheme 53 
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1.4 Cycloheptane 

The cycloheptane system is present in various natural products, bioactive compounds 

and pharmaceuticals. Despite its recurrance as a structural unit in nature, the 

cycloheptane framework has been less extensively studied then the cyclohexane 

system. Traditional approaches to the construction of cycloheptanes range from 

transition metal-catalysed cycloadditions[71] and ring-closing methathesis[72], to one-

carbon ring expansion of cyclohexanones. The development of new, efficient and 

stereoselective reactions to form these frameworks remains an important goal. 

1.4.1 Cope Rearrangement of cis Divinylcyclopropane 

The Cope rearrangement of cis divinylcyclopropane has been recognised as an 

efficient procedure for the synthesis of cycloheptane-containing systems. The Cope 

rearrangement is a [3,3]-sigmatropic rearrangement which involves the thermal 

rearrangement of a 1,5-diene. The concerted transformation generally proceeds 

through the favoured chair-like transition state (Scheme 54). 

 

Scheme 54 

The cis divinylcyclopropane rearrangement (DVCPR) to give 1,4-cycloheptadiene was 

first reported by Vogel in 1960 in his studies on small carbocycles.[73] However, Vogel 

was not able to isolate the labile cis 1,2-divinylcyclopropane as it immediately 

rearranged to the more stable cyclohepta-1,4-diene under the reaction conditions that 

were employed. In 1973, Brown and co-workers were finally able to prove the structure 

using a low temperature Wittig reaction (Scheme 55).[74] On the basis of mechanistic 

studies concerning this thermolysis reaction, it has been concluded that rearrangement 

of cis divinylcyclopropane 178 proceeds via a concerted pathway involving the only 

possible boat-like transition state 179, in which both divinyl groups are in the endo 

position, to provide cycloheptadiene 180 with the favoured (Z)-geometry as a single 

isomer. 
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Scheme 55 

 

The trans isomer is also suitable for the reaction, because isomerisation to the 

corresponding cis divinylcyclopropane takes place beforehand. This process normally 

proceeds at temperatures above 190 °C but the reaction temperature can be reduced 

for more highly conjugated systems. The isomerisation reaction is followed by the 

concerted rearrangement of the cis isomer. It has been suggested that the 

isomerisation from trans to cis proceeds through either a one-centre epimerisation 

reaction or via a diradical intermediate.  

 

1.4.2 Synthetic Application of the Divinylcyclopropane Rearrangement 

The cis divinylcyclopropane rearrangement reaction is an important method for the 

formation of seven-membered rings and it has found widespread application in the 

synthesis of many natural products and other complex molecules. 

In 2002, Barluenga and co-workers utilised the DVCPR to prepare cycloheptane-fused 

-lactones 184 by thermolysis of arylvinylcyclopropanes 183 (Scheme 56).[75] 

Preparation of vinyl cyclopropane 183, in which the furan and vinyl group are syn, was 

accomplished with high diastereoselectivity by reaction of the chromium carbene 

complex 181 with butenoyl chloride 182. At temperatures above 85 °C, rearrangement 

results in dearomatisation of the furyl-substituted cyclopropane 183 and delivers the 

corresponding cycloheptadiene 184 as a single isomer.  

 

Scheme 56 
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Echavarren successfully applied the rearrangement of divinylcyclopropanes to deliver 

the key intermediate for the first enantioselective synthesis of (+)-schisanwilsonene A 

(188) (Scheme 57).[76] In this case, the cyclopropane 185 was subjected to oxidation, 

using DMP followed by Wittig reaction of the aldehyde to install the methylene group. 

The resulting highly reactive cis divinylcyclopropane then underwent rearrangement at 

room temperature to form the bicyclic hexahydroazulene 187. The intermediate bicyclic 

diene 187 was converted into the natural product (188) in eight additional steps. 

 

Scheme 57 
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The group of Davies used this specific type of Cope rearrangement reaction to prepare 

the sequiterpene-hydroquinone derivative frondosin B (192) (Scheme 58).[77] 

Enantioselective cyclopropanation of piperylene using diazocompound 189 in the 

presence of Rh2(R-DOSP)4 193 gave the cis divinylcyclopropane 190. Under the 

reaction conditions, the intermediate 190 underwent in situ DVCPR and subsequent 

rearomatisation to furnish the benzofuran 191 which can be converted into the desired 

natural product (192) in eight additional steps.  

 

Scheme 58 
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There are several possible heteroatom variations of the DVCPR in which the 

heteroatom is incorporated either in the three-membered ring or as part of the vinyl 

moiety. The heteroatom that is incorporated can either be oxygen, nitrogen, 

phosphorus or sulfur. For example, rearrangement of a divinyloxirane to the seven-

membered cyclic ether has been investigated extensively by White[78] and Smith[78b]. 

Rizzacasa and co-workers recently utilised the epoxy-Cope rearrangement for the 

synthesis of the dihydrooxepino[4,3-b]pyrrole 195 (Scheme 59).[79] Rearrangement of 

the readily accessible vinyl pyrrole epoxide 194 to the dihydrooxepine was carried out 

in carbon tetrachloride in a sealed tube at 150 °C. Studies revealed that the epoxide 

substituent (R1) plays an important role in the Cope rearrangement. If a substituent is 

not present on the epoxide (R1 = H) but an unsaturated ester is tethered to the alkene, 

the epoxide decomposes slowly. In contrast, if the epoxide is substituted with an 

carboxylate ester (R1 = CO2Et) but the vinyl group is unsubstituted, rearrangement 

takes place to furnish the fused heterocycle 195 in good yield.  

 

Scheme 59 
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2 Results and Discussion 

2.1 Role of Acid in THT-Mediated Furan Formation 

2.1.1 Previous Work 

Recently the Clark group has reported a novel organocatalytic route for the synthesis 

of functionalised furans.[67] In this reaction, an ynenone was treated with a nucleophile 

to give the furan. Many nucleophiles can participate in this transformation, and high 

acidity is not necessary. However, when bulky t-butyl alcohol was employed as the 

nucleophile, the furan 155 was obtained in reduced yield along with three side products. 

In previous work these were isolated and characterised (Scheme 60).[68] 

 

Scheme 60 

 

Efforts are now focussed on the optimisation of the reaction by alteration of the 

conditions in order to suppress the undesired side reactions and improve the yield of 

furan 155.  
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2.1.2 Influence of Acidic Additives 

The effects of acid additives on both the yield of the desired product and the selectivity 

of the furan forming reaction was studied (Table 1). When no acid was used the desired 

product was isolated in 60% yield but various side products were formed as well 

(Entry 1). The formation of the alcohol 156 could be suppressed in nearly all 

experiments by using dry solvents and reagents or by addition of MgSO4 (0.1 equiv.). 

Experiments with various acids showed that with lower pKa, the vinyl furan 157 could 

be obtained as a single product (Entries 2–4). The stronger acids chlorosulfonic acid 

and HBF4 delivered the vinyl furan 157 in only 47% and 33% yield respectively because 

the ynenone 149 is unstable under these conditions (Entries 2 and 3). When  

p-toluenesulfonic acid was used, 157 was obtained in 57% yield (Entry 4). The use of 

additives with slightly higher pKa resulted in isolation of the furan 155 but various side 

products were also formed (Entries 5 and 6). Interestingly, camphorsulfonic acid, which 

has a higher pKa than TFA and sulfamic acid, afforded the elimination product 157 as 

the sole isolable in 89% isolated yield (Entry 7). In contrast, phenylphosphonic acid, 

which has a similar pKa as camphorsulfonic acid, was optimal and the furan 155 was 

isolated in 71% yield (Entry 8). Molybdic acid, 4-nitrophenol and 2-bromo-4,5-

difluorophenol delivered similar results but with lower yields of the desired product 

(Entries 9–11). Acids with pKa ≥ 8 were shown to be inferior to phenylphosphonic acid 

due to the formation of various side products (Entries 12 and 13). 
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Table 1 

 

Entry Additive[a] 155 156 157 158 others pKa 

1 none 
67 

(60%)[b] 
6 7 13 7  

2 chlorosulfonic acid - - 
53 

(47%)[b] 
- - −6.0[80] 

3 HBF4 - - 
41 

(33%)[b] 
- - −4.9[81] 

4 
p-toluenesulfonic 

acid 
trace - 

63 
(57%)[b] 

- trace −2.8[80] 

5 TFA 
54 

(43%)[b] 
6 12 - 28 0.5[82] 

6 sulfamic acid 
23 

(17%)[b] 
- 25 trace 52 1.0[83] 

7 CSA - - 
95 

(89%)[b] 
- - 1.2[84] 

8 
phenylphosphonic 

acid 
76 

(71%)[b] 
- 15 - 9 1.3[85] 

9 molybdic acid 
64 

(58%)[b] 
6 6 12 12 ~3.8[86] 

10 4-nitrophenol 
66 

(64%)[b] 
6 6 trace 21 7.2[87] 

11 
2-bromo-4,5-
difluorophenol 

58 
(56%)[b] 

6 12 - 24 ~7.9[87] 

12 phenylboronic acid 
45 

(37%)[b] 
15 5 - 35 8.8[88] 

13 4-fluorophenol 
11 

(5%)[b] 
- - 23 66 9.9[87] 

149 (1.0 equiv.), t-butyl alcohol (3.0 equiv.), THT (0.1 equiv.), 1 M in CH2Cl2; ratios 
determined by 1H NMR; [a] additive (0.1 equiv.); [b] isolated yield after column 
chromatography. 
 

As described, beside the previously identified by-products 156, 157 and 158 various 

other furan products were formed. After careful NMR studies three of these could be 

identified (Figure 4). Furans 196, 197 and 198 were generated from a THT catalysed 

furan-formation between ynenone 149 and the phenol derived additive.  
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Figure 4 

 

In these optimisation studies it was shown that the furan formation was dependent on 

the type of acid additive employed. Phenylphosphonic acid delivered the best results 

as it was acidic enough to promote the desired reaction but not acidic enough to 

catalyse the side reaction leading to formation of the vinyl furan and not nucleophilic 

enough to be trapped by the cationic species and be incorporated into the final product. 

 

2.2 Stereoselective THT-Mediated Furan Formation: Introducing 

Enantioselectivity 

The previous findings suggested that furan formation is mediated by an acidic additive. 

It was hypothesised that the new stereocentre could be introduced in an 

enantioselective fashion using a chiral acid, through asymmetric counteranion-directed 

catalysis (ACDC). 

 

2.2.1 Study on Enantioselectivity Using Analysis by Chiral HPLC 

According to the mechanism for the furan transformation, the reaction proceeds 

through a cationic intermediate 154 (Scheme 61). Therefore, it was proposed to apply 

the concept of ACDC and to use a chiral counterion to influence the stereochemical 

outcome of the reaction.[16] The catalyst most often employed in ACDC consist of a 

chiral BINOL backbone which is substituted in 3,3’-positon. For these studies the chiral 

phosphoric acid (S)-(+)-TRIP-H was chosen, because several literature examples of 

reactions in which high levels of asymmetric induction have achieved using this 

catalyst.[18] The catalyst is readily available and can be synthesised from S-BINOL in 

five steps.[89] 
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Scheme 61 

 

A preliminary experiment with ynenone 149 and benzoic acid as nucleophile was 

carried out in the presence of (S)-(+)-TRIP-H 200 (Scheme 62). The applied conditions 

afforded the furfuryl benzoate 199 in 89% yield and 12% ee (HPLC analysis). 

 

Scheme 62 

 

It should be noted, that (S)-TRIP-H 200 was purified on silica gel chromatography 

therefore it is suggested that the actual catalyst was not the phosphoric acid, but the 

corresponding calcium salt formed as an impurity during the purification.  
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It was reasoned that by examining various nucleophiles their effect on enantioselectivity 

and yield could be investigated. Therefore, reactions involving various alcohols were 

investigated. However, conditions that would deliver enantiomer separation by chiral 

HPLC could not be found and so the study using the chiral catalyst was not performed 

(Scheme 63).  

 

Scheme 63 
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In order to facilitate analysis of the reaction outcome by HPLC, the phenyl substituted 

ynenone 207 was used (Scheme 64). A screen of various alcohols revealed that in the 

reaction with anisyl alcohol the racemic mixture of the furan 209 could be separated by 

chiral HPLC.  

 

Scheme 64 

 

However, the reaction catalysed by (S)-(+)-TRIP-H 200 gave only low levels of 

asymmetric induction (Tabel 2, Entry 1). Surprisingly, when no organosulfur catalyst 

was present, a trace amount of product 209 was formed with 16% ee (Entry 2). The 

formation of 209 in the absence of THT was unexpected and it was assumed that 

impurities in the solvent or reagent enabled the reaction. 

Table 2 

 

Entry Nucleophile[a] Catalyst Additive[c] ee[d] Yield[e] 

1 anisyl alcohol THT[b] (S)-TRIP-H 4% 70% 

2 anisyl alcohol - (S)-TRIP-H 16% 7% 

207 (1.0 equiv.), 1 M in CH2Cl2; [a] nucleophile (3.0 equiv.); [b] 
catalyst (0.1 equiv.); [c] additive (0.1 equiv.); [d] determined by 
chiral HPLC; [e] isolated yield after column chromatography. 
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2.2.2 Study on Enantioselectivity Using Analysis by 1H NMR 

In order to study the effect of the chiral phosphate based catalyst by 1H NMR, 

enantiomerically pure (+)-menthol was used as the nucleophile in the furan-forming 

reaction so that a mixture of diastereoisomers would be produced. However, even with 

prolonged reaction time (4 days) the starting material was not completely consumed 

and various side products were formed. NMR analysis of the crude mixture confirmed 

formation of 212 but the two diastereoisomers were not distinguishable by 1H NMR 

(Scheme 65). 

 

Scheme 65 

 

To facilitate the analysis of the enantiomeric excess of the product from the reaction 

using a chiral catalyst, a substrate was designed that could be coupled to a chiral 

compound after furan formation in order to generate a mixture of diastereoisomers 

whose ratio can be measured by 1H NMR. Thus, ynenone 215 was synthesised 

(Scheme 66). 

The synthesis started by formylation of alkyne 213, using DMF to afford the alkynyl-

aldehyde 214. The aldehyde was treated with acetylacetone under Knoevenagel 

condensation conditions to provide ynenone 215 in 69% yield over 2 steps. Ynenone 

215 was exposed to various reaction conditions using benzyl alcohol as the 

nucleophile; in all cases O-benzyl furfuryl alcohol 216 was obtained in good yield 

(Table 3). Deprotection using TBAF yielded alcohol 217 and finally acylation with 

menthyl chloroformate afforded a chromatographically inseparable mixture of 

diastereoisomers whose ratio could be measured by 1H NMR. 
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Scheme 66 

 

When the previously established reaction conditions were employed, the O-benzyl 

furfuryl alcohol 216 was obtained in 62% yield as a 1:1 mixture of diastereoisomers 

(Table 3, Entry 1). It is interesting to note that when the chiral thioether (1R,4R,5R)-

4,7,7-trimethyl-6-thiabicyclo[3.2.1]octane 219 was used as the catalyst , incomplete 

conversion of the starting material was observed even after prolonged reaction times 

and that no diastereocontrol was observed (Entry 2). When THT was used in 

combination with the BINOL derived phosphoric acid (S)-(+)-TRIP-H 200, a low level of 

diastereocontrol was obtained (Entry 3).   
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Table 3 

 

Entry Catalyst[a] Acid[b] Time de[c] Yield[d] 

1 THT 
phenylphosphonic 

acid 
2 d 0% 62% 

2 219 
phenylphosphonic 

acid 
2 weeks 0% 41% 

3 THT 200 1 d 9% 74% 

215 (1.0 equiv.), benzyl alcohol (3.0 equiv.), 0.5 M in CH2Cl2; [a] catalyst 
(0.5 equiv.); [b] acid (0.1 equiv.); [c] determined by 1H NMR of crude 
product; [d] isolated yield after column chromatography. 

 

The selectivity matches that which has been observed previously (Scheme 62). Even 

the level of asymmetric induction was low, this observation suggests that the reaction 

proceeds through an SN1 mechanism via an ion pair between furonium species and 

(S)-(+)-TRIP 200. 
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2.3 Setereoselective THT-Mediated Furan Formation: Introducing 

Diastereoselectivity 

It was hypothesised that using previously established conditions, the ynenone 

substrate 220, in which the nucleophile is tethered to the alkyne, would undergo a 

similar cascade to form a cyclic ether 225 (Scheme 67). The proposed mechanism 

involves formation of the allene 221 through nucleophilic attack of the catalyst to the 

ynenone 220. Cyclisation to give the furan affords ylide 222 and subsequent 

protonation enhanced by an acidic additive provides the sulfonium salt 223. According 

to the proposed mechanism it was assumed that the tethered carbon side chain of the 

oxocarbenium ion 224 would arrange in a chair or chair-like conformation with the bulky 

substituent in equatorial position. The aim of this study was to explore if the new 

stereocentre could be formed in a diastereoselective manner.  

 

Scheme 67 

 



Chapter 2: Results and Discussion 

55 
 

2.3.1 Preparation of Substrates 233 

A series of ynenone substrates bearing a tethered oxygen nucleophile were designed. 

The general synthetic route started with oxidation of alcohols 226 to give the aldehyde 

227 using standard Swern conditions (Scheme 68). Previous studies had shown that 

silyl protection of the alkyne is essential in order to suppress side reactions and to 

ensure high yields.[69] Grignard reactions with various reagents were performed to yield 

the corresponding alcohols 228. Silyl protection of the alcohols and deprotection of the 

alkynes provided the terminal alkynes 230. Alkyne formylation was accomplished by 

lithiation and treatment with DMF to deliver the alkynyl aldehydes 231. Treatment of 

the aldehydes with acetylacetone under Knoevenagel condensation conditions 

provided the dimethyl substituted ynenones 232 in good yield.  

 

Scheme 68 

 

The choice of the triethylsilyl protecting group and conditions for its removal were 

crucial because the ynenone systems are fragile and some deprotection conditions 

(e.g., 1 M HCl, HF•pyridine, TBAF or TFA) led to decomposition (Table 4, Entries 1–4). 

The use of weak acids such as PPTS did not deliver the desired deprotected alcohols 

(Entry 5) but the use of a sub-stoichiometric amount of CSA was found to be optimal 

and delivered the alcohols 233 in good yield (Entry 6). 
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Table 4 

 

Entry Reagent Solvent[c] Yield Result 

1 TBAF[a] THF - decomp. 

2 HF•pyr MeCN - decomp. 

3 1 M HCl THF - decomp. 

4 TFA[a] MeCN - decomp. 

5 PPTS[b] EtOH - SM 

6 CSA[b] MeOH 79−93%[d] product 

232 (1.0 equiv.); [a] reagent (1.0 equiv.); [b] reagent 
(0.1 equiv.); [c] 0.2–0.5 M solution; [d] isolated yield after 
column chromatography. 

 

The discovery of an efficient and robust route for the synthesis of the ynenone 

substrates, meant that various substrates could be prepared (Figure 5). 

 

Figure 5 
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2.3.2 Cyclisation of Substrates 233 

The successful preparation of the ynenone precursors meant that the cyclisation 

reactions could be investigated using the methodology previously developed to afford 

bicyclic furans 234 (Scheme 69). 

 

Scheme 69 

 

The reaction provided the furans 234 as an inseparable mixtures of diastereoisomers 

and their ratio was determined by 1H NMR analysis of the crude reaction mixture in 

each case (Table 5). Investigations showed that a catalytic amount of THT was 

necessary to promote the formation of furan. The yield could be improved by the 

addition of phenylphosphonic acid to enhance the proton transfer step. However, with 

all of the substrates that were tested, the products were obtained with modest 

diastereoselectivity. Interestingly, during the formation of the 5-membered ether a 

reversal of the selectivity was observed depending on the substituent. With the methyl 

and ethyl substituents the trans disubstituted ether was favoured (Entries 1 and 2). 

However, for i-propyl the cis ether was formed in slight excess (Entry 3). Formation of 

the 6-membered ether with a t-butyl substituent resulted in slight improvement in the 

level of diastereocontrol (Entry 4). 
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Table 5 

 

Entry Furan n R Yield[a] 234:234’[b] 

1 234a 1 Me 79%        1:1.2 

2 234b 1 Et 77%        1:1.1 

3 234c 1 i-Pr 71%     1.2:1 

4 234d 2 t-Bu 80%     2.7:1 

233 (1.0 equiv.), THT (0.5 equiv.), phenylphosphonic acid 
(0.1 equiv.), 1 M in CH2Cl2; [a] isolated yield after column 
chromatography; [b] determined by 1H NMR of crude 
product. 

 

It should be expected that formation of anti 234d’ is faster because no rotation of the 

substituent is necessary (kinetic product). However the formation of syn 234d is 

favoured because of the lower in energy equatorial orientation of the two substituents 

(thermodynamic prodcut, Scheme 70). 

 

Scheme 70 

 

In an effort to improve the stereochemical outcome of the reaction various reaction 

conditions for furan formation were investigated. First, a brief solvent screen was 

undertaken to test the effect of solvent polarity on the stereoselectivity of the reaction 

(Table 6). Protic polar solvents were not included because these would undergo 

reaction with the sulfur ylide 222 (Scheme 67) to afford substituted furan side products. 

In general, the reaction was robust and the desired furan 234c was formed in good 

yield with all the solvents tested. However, there was little variation in the 

diastereselectivity of the reactions and no real correlation with the solvent polarity was 

observed. For the least polar solvents – n-hexane and cyclohexane – the 
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diastereoselectivity was 1.3:1 and 1.4:1 respectively (Entries 1 and 2). Switching to 

slightly more polar solvents, the stereoselective ratio ranged from 1.2:1 to 1.3:1. 

(Entries 3–7 and 10). The use of THF, CHCl3 or 1,4-dioxane as solvent led to equal 

mixtures of products (Entries 8, 9 and 11). The level of diastereoselectivity rose when 

more polar solvents were used and the highest levels of diastereocontrol were obtained 

when acetone, DMF or DMSO was used as the solvent (Entries 12, 14 and 15). In 

contrast, a ratio of 1.2:1 was obtained from the reaction performed in MeCN (Entry 13). 

Table 6 

 

Entry Solvent[a] Yield[b] 234c:234c’[c] Increasing
Polarity[90] 

1 n-hexane 47% 1.3:1  

2 cyclohexane 65% 1.4:1 

3 PhMe 65% 1.2:1 

4 PhH 68% 1.3:1 

5 Et2O 73% 1.3:1 

6 CH2Cl2 71% 1.2:1 

7 1,2-dichloroethane 77% 1.3:1 

8 THF 61% 1.1:1 

9 CHCl3 66% 1.1:1 

10 EtOAc 70% 1.3:1 

11 1,4-dioxane 73% 1:1 

12 acetone 72% 1.7:1 

13 MeCN 75% 1.2:1 

14 DMF 65% 1.6:1 

15 DMSO 42% 1.5:1 

233c (1.0 equiv.), THT (0.5 equiv.), phenylphosphonic acid 
(0.1 equiv.); [a] 1 M solution; [b] isolated yield after column 
chromatography; [c] determined by 1H NMR of crude product. 

 

In an attempt to improve the diastereomeric ratio of the products, the effect of various 

acidic additives and Lewis acids was investigated. In general, all the additives tested, 
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with the exception of AlCl3 and FeCl3, were able to promote the formation of the desired 

furan 234c (Table 7, Entries 7 and 8). In the absence of an acidic additive, a ratio of 

1.5:1 was obtained (Entry 1). The use of p-tolylboronic acid (pKa = 9.3) delivered the 

same result (Entry 2). On the other hand, with camphorsulfonic acid (pKa = 1.2) the 

ratio dropped significantly to 1.1:1 (Entry 3). The Lewis acids tested were mostly 

ineffective and 1:1 mixtures of the diastereomeric products were obtained (Entry 4, 5) 

or decomposition occurred (Entries 6 and 7). However, better results were obtained 

with tributyltin chloride and AlMe3 (Entries 8 and 9). Previous experiments had shown 

that the rate of furan formation was dependent on the acid employed. This finding could 

not be applied to improve the diastereoselectivity because there was little correlation 

between the acid used and the level of diastereocontrol.  

Table 7 

 

Entry Additive[a] 234c:234c’[b] 

1 - 1.5:1 

2 p-tolylboronic acid 1.5:1 

3 CSA 1.1:1 

4 InCl3 1.1:1 

5 InBr3 1:1 

6 AlCl3 decomp 

7 FeCl3 decomp 

8 (n-Bu)3SnCl 1.5:1 

9 Al(Me)3 1.3:1 

233c (1.0 equiv.), THT (0.5 equiv.), 1 M in 
acetone; [a] additive (0.1 equiv.); [b] 
determined by 1H NMR of crude product. 

 

It was suggested that an increase in the diastereoselectivity could be achieved by 

decreasing the reaction temperature to prolong the reaction time. However, when 

alcohol 233c was stirred in acetone at rt until full consumption of the starting material 
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was achieved (3 d), the diastereoselectivity was consistent with that obtained when the 

reaction was performed at 40 °C (Scheme 71).  

 

Scheme 71 

 

Although nearly all reaction conditions allowed the furan 234c to be obtained in good 

yield, high levels of diastereoselective control proved to be difficult to achieve. The best 

result was obtained when the reaction was performed in acetone with 

phenylphosphonic acid as additive (1.7:1). 

 

When ynenone 233d was exposed to the established cyclisation conditions, a 

diastereomeric mixture of the furan 234d bearing a 6-membered ring ether was 

obtained as the sole product (Table 8). A study was carried out to investigate the 

correlation between solvent polarity and diastereomeric ratio. In all cases, the product 

was obtained with modest selectivity and no correlation with solvent polarity was 

observed. Diastereoselectivities of <2.0 were obtained when 1,2-dichloroethane, THF, 

1,4-dioxane, DMF or DMSO was used as the solvent (Entries 7, 8, 11, 14, and 15). For 

reactions performed in the other solvents tested, the product ratio ranged from 2.0:1 to 

2.8:1 (Entries 1–6, 9, 10 and 12). Among the various solvents investigated, the highest 

yield and diastereoselectivity (3.1:1 ratio) was obtained when MeCN was used as the 

solvent (Entry 13).  
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Table 8 

 

Entry Solvent[a] Yield[b] 234d:234d’[c] Increasing
Polarity [90] 

1 n-hexane 78% 2.5:1  

2 cyclohexane 71% 2.1:1 

3 PhMe 79% 2.6:1 

4 PhH 79% 2.8:1 

5 Et2O 87% 2.1:1 

6 CH2Cl2 80% 2.7:1 

7 1,2-dichloroethane 72% 1.7:1 

8 THF 73% 1.8:1 

9 CHCl3 73% 2.3:1 

10 EtOAc 51% 2.1:1 

11 1,4-dioxane 68% 1.8:1 

12 acetone 83% 2.2:1 

13 MeCN 89% 3.1:1 

14 DMF 75% 1.4:1 

15 DMSO 55% 1.4:1 

233d (1.0 equiv.), THT (0.5 equiv.), phenylphosphonic acid 
(0.1 equiv.); [a] 1 M solution; [b] isolated yield after column 
chromatography; [c] determined by 1H NMR of crude product. 

 

2.3.3 Preparation and Cyclisation of Substrate 238 

The influence of the substituent on the diastereoselectivity was explored further. The 

ynenone 238, which has the substituent at a different position on the carbon side chain, 

was synthesised (Scheme 72). The synthesis commenced with formylation of alkyne 

235 using DMF. The resulting aldehyde 236 was transformed into the dimethyl 

substituted ynenone 237 by Knoevenagel condensation with acetylacetone. 

Subsequent deprotection delivered alcohol 238 in 79% yield.  
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Scheme 72 

 

With ynenone 238 in hand, the stage was set for furan formation. In the absence of a 

catalyst, the desired product was not formed. The alcohol was transformed into the 

corresponding furan 239 by treatment with THT and phenylphosphonic acid because 

better results had been obtained when the reaction was perforrmed in the presence of 

an acidic additive (Scheme 73). The method delivered the furan product 239 as a 1:4.3 

mixture of diastereoisomers, as determined by 1H NMR analysis of the crude mixture. 

Although the position of the substituent influenced the isomer ratio further experiments 

were not carried out because previous results showed that changing the reaction 

conditions did not lead to a major improvement in the stereoselectivity. 

 

Scheme 73 

 

In conclusion, the viability of an organocatalytic tandem furan formation and ether 

synthesis was investigated. The overall process enabled the efficient synthesis of 

highly functionalised furans, by use of the readily available, inexpensive and non-toxic 

THT, as the organocatalyst. The products were obtained in high yield and with low to 

medium levels of diastereoselectivity. Unfortunately, the diastereoselectivity could not 

be improved in spite of extensive optimisation studies. 
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2.4 Expansion of Furan Formation Scope – Syntheses of Complex Polycyclic 

Systems 

Promising results were obtained during the formation of bicyclic systems containing 

both a furan and a cyclic ether from ynenone systems bearing an alcohol function 

tethered to the alkyne. It was reasoned that other nucleophiles, such as carboxylic 

acids or phenols, could be used to trigger the cascade reaction. This could open up a 

pathway for the construction of a wide variety of polycyclic furan products (Figure 6) 

whose synthesis will be described in the following section.  

 

Figure 6 

 

Some of these frameworks represent key ring systems found within a wide range of 

natural products, bioactive molecules, pharmaceuticals and can be used as building 

blocks for the syntheses of various heterocyclic compounds (Figure 7).[91] As a 

consequence, new methods for the construction of such motifs are constantly sought 

after.  

 

Figure 7 
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2.4.1 Syntheses of Ynenone Substrates 

2.4.1.1 Syntheses of Ynenone Substrates with Aliphatic Side Chain 

The approach used to prepare the furanolactones 240 was inspired by previous work 

in the group where it had been found that benzoic acid was a suitable nucleophile 

during furan formation promoted by a sub-stoichiometric amount of THT.[67] It was 

reasoned that an intramolecular cyclisation cascade reaction could be triggered by a 

carboxylic acid tethered to the alkyne. The syntheses of the ynenone precursors started 

with formylation of alkynes 248, which was followed by Knoevenagel condensation and 

subsequent deprotection to afford primary alcohols 251 in good yield (Scheme 74). 

Alcohols 251 were oxidised to the corresponding carboxylic acids by use of a two-step 

procedure. Thus, DMP oxidation of alcohols 251 to provide aldehydes 252 was followed 

by further oxidation to give the carboxylic acids 253 using oxone. Surprisingly, 

attempted oxidation of the aldehydes 252 under conventional Pinnick conditions was 

not successful. Both the aldehydes and the carboxylic acids were found to be unstable 

and therefore were used in the next step without further purification. 

 

 

Scheme 74 
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2.4.1.2 Syntheses of Ynenone Substrates with Aromatic Side Chain 

The reaction scope was expanded to include more complex systems such as furans 

bearing a 5-benzofuran or 5-benzopyran substituent at the position 5 (see Figure 6). 

The syntheses of the corresponding ynenone precursors started by protection of the 

free hydroxyl group[92] to deliver alkynes 255 in excellent yield (Table 9).  

Table 9 

 

Entry Alkyne n m Reagents Solvent Yield[f] 

1 255a 0 1 TESCl[a]
 DMAP[b] NEt3[a] CH2Cl2[d] 95% 

2 255b 0 2 TESCl[a] DMAP[b] NEt3[a] CH2Cl2[d] 98% 

3 255c 1 1 TBSCl[a]  imidazole[c] DMF[e] 95% 

254 (1.0 equiv.); [a] (1.2 equiv.); [b] (2 mol%); [c] (1.5 equiv.); [d] 0.2 M solution; [e] 
0.5 M solution; [f] isolated yield after column chromatography. 

 

Formylation of the alkynes 255[93] by lithiation and treatment with DMF was expected 

to furnish aldehydes 256 (Scheme 75). However, after full consumption of the starting 

alkyne (TLC analysis) and application of the previously established quenching 

conditions only decomposed material was obtained. Further experimentation showed 

that pouring the reaction into a mixture of 10% aqueous KH2PO4 solution and Et2O then 

vigorous stirring was successful. The aldehydes were found to be unstable and were 

used immediately in the next step without further purification. Subjecting aldehydes 256 

to Knoevenagel condensation with acetylacetone afforded ynenones 257. The desired 

ynenone precursors 258 were obtained thereafter by silylether cleavage using 

camphorsulfonic acid. The precursors were found to be unstable and therefore were 

used in the next step without further purification. 
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Scheme 75 

 

Having succeeded in developing an efficient route to complex ynenone systems the 

scope and limitation of the reaction was examined further and the syntheses of various 

substrates shown below were carried out (Figure 8). The successful preparation of 

these precursors meant that the organocatalytic furan formation using THT as the 

catalyst could now be explored.  

 

 

Figure 8 
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2.4.2 Cyclisation Cascade of Ynenone Substrates 

2.4.2.1 Cyclisation of Ynenone Substrates with Aliphatic Side Chain 

The successful synthesis of the carboxylic acids 253 meant that attention could be 

turned to exploration of furan and lactone formation by the cascade reaction (Table 10). 

Furan formation was not observed in the absence of the sulfur catalyst (Entries 1 and 

3). Investigations showed that a catalytic amount of THT was necessary to promote the 

reaction (Entries 2 and 4). The THT-promoted reactions delivered the furanolactones 

240 in yields of 38% and 47% respectively.  

Table 10 

 

Entry Furan n Catalyst Solvent[b] Yield 

1 240a 1 - CH2Cl2 - 

2 240a 1 THT[a] CH2Cl2 38%[c] 

3 240b 2 - CH2Cl2 - 

4 240b 2 THT[a] CH2Cl2 47%[c] 

253 (1.0 equiv.); [a] catalyst (0.5 equiv.); [b] 1 M solution; 
[c] isolated yield after column chromatography 
calculated over 3 steps. 
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2.4.2.2 Cyclisation of Ynenone Substrates with Phenol Side Chain 

Studies were performed concerning the transformation of phenol 258a into furan 241. 

Interestingly, when no THT catalyst was present a very small amount of the product 

was formed (Table 11, Entries 1 and 2). The reason for this is that small amounts of 

impurities in the solvent most likely catalysed the formation of 241. Due to the limited 

quantities produced, it was not possible to carry out further test reactions. 

Transformation of the alcohol into the corresponding furan 241 in the presence of THT 

delivered the product in 32% yield over two steps (Entry 3). Under the optimal 

conditions, using THT and phenylphosphonic acid, better results were obtained and 

furan 241 could be isolated in 60% yield over two steps (Entry 4). 

Table 11 

 

Entry Catalyst Additive Solvent[c] Yield[d] 

1 - - CH2Cl2 6% 

2 - 
phenylphosphonic 

acid[b] 
CH2Cl2 10% 

3 THT[a] - CH2Cl2 32% 

4 THT[a] 
phenylphosphonic 

acid[b] 
CH2Cl2 60% 

258a (1.0 equiv.); [a] catalyst (0.5 equiv.); [b] additive 
(0.1 equiv.); [c] 1 M solution; [d] isolated yield after column 
chromatography calculated over 2 steps. 

 

The successful preparation of phenol 241 meant that the furan transformation could be 

explored further (Table 12). When ynenone 258b was subjected to conditions in the 

absence of catalyst, formation of the desired product was not observed (Entries 1 and 

2). It is interesting to mention, that the product was not obtained in the absence of an 

acidic additive. Instead, an unidentified by-product was formed in this case (Entry 3). 

Transformation of the alcohol into the corresponding furan 242 with a catalytic amount 

of THT and phenylphosphonic acid was found to be optimal and under these conditions 

the polycyclic product was obtained in good yield (Entry 4).  
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Table 12 

 

Entry Catalyst Additive Solvent[c] Yield 

1 - - CH2Cl2 - 

2 - 
phenylphosphonic 

acid[b] 
CH2Cl2 - 

3 THT[a] - CH2Cl2 - 

4 THT[a] 
phenylphosphonic 

acid[b] 
CH2Cl2 57%[d] 

258b (1.0 equiv.); [a] catalyst (0.5 equiv.); [b] additive (0.1 
equiv.); [c] 1 M solution; [d] isolated yield after column 
chromatography calculated over 2 steps. 

 

2.4.2.3 Cyclisation of Ynenone Substrates with Alcohol Side Chain 

After successful synthesis of the the homologated substrate 258c, furan formation was 

investigated (Table 13). The cyclisation reaction was achieved by the use of sub-

stoichiometric amount of THT to give the targeted benzopyran 243 in 47% yield 

(Entry 2). Again, it was found, that the transformation did not take place in the absence 

of THT (Entry 1).  

Table 13 

 

Entry Catalyst Additive[b] Solvent[c] Yield 

1 - 
phenylphosphonic 

acid 
CH2Cl2 - 

2 THT[a] 
phenylphosphonic 

acid 
CH2Cl2 47%[d] 

258c (1.0 equiv.); [a] catalyst (0.5 equiv.); [b] additive 
(0.1 equiv.); [c] 1 M solution; [d] isolated yield after column 
chromatography calculated over 2 steps. 



Chapter 2: Results and Discussion 

71 
 

 

Based on the successful furan synthesis with phenol 258a, the isomeric alcohol 258d 

was also subjected to the reaction. When analytical grade CH2Cl2 was used for the 

transformation of alcohol 258d, a small amount of furan 244 was isolated (Table 14, 

Entries 1 and 2). However, when purified CH2Cl2 was used as the solvent formation of 

the desired product 244 was not observed in the absence of THT (Entries 2 and 3). 

This confirms that impurities within analytical grade CH2Cl2 were catalysing furan 

formation. When ynenone 258d was exposed to the established cyclisation conditions, 

the furan 244 was isolated in 60% yield (Entry 5). It was noted, that when a sub-

stoichiometric amount of phenylphosphonic acid was added, a slight increase in yield 

was observed (Entry 6). Thus, exposure of the substrate to THT and phenylphosphonic 

acid was found to be optimal for transformation of the alcohol into the corresponding 

furan 244.  

Table 14 

 

Entry Catalyst Additive Solvent[c] Yield 

1 - - 
analytical 
CH2Cl2 

8%[d] 

2 - 
phenylphosphonic 

acid[b] 
analytical 
CH2Cl2 

6%[d] 

3 - - CH2Cl2 - 

4 - 
phenylphosphonic 

acid[b] 
CH2Cl2 - 

5 THT[a] - CH2Cl2 60%[d] 

6 THT[a] 
phenylphosphonic 

acid[b] 
CH2Cl2 62%[d] 

258d (1.0 equiv.); [a] catalyst (0.5 equiv.); [b] additive 
(0.1 equiv.); [c] 1 M solution; [d] isolated yield after column 
chromatography. 
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In conclusion, the tandem cyclisation methodology was adapted to the synthesis of 

various polycyclic furan frameworks. Sub-stoichiometric amount of THT and an acidic 

additive were used to convert nucleophile-bearing ynenones into highly functionalised 

furans. 

 

2.5 Cascade Cyclohepta[b]furan Synthesis 

The aim of this work was to develop new synthetic methodology for the construction of 

cycloheptanes. This project would be a continuation of the work previously undertaken 

in the Clark group on furan formation employing a Brønsted acid catalyst 

(Scheme 76).[69] It had been shown that the highly functionalised furan 157 containing 

a fused bicyclic system which incorporates a cyclopropane could be accessed from 

ynenone 156 using this reaction. 

 

Scheme 76 

 

It was envisioned that exposure of diene 259 to the standard cyclisation conditions 

would lead to the formation of furan 260. The resulting vinyl-substituted cyclopropane 

would be able to undergo a Cope rearrangement to give the corresponding 

cycloheptadiene 262 (Scheme 77). It was proposed that this sequence could be 

adapted to give a cascade process in which furan formation would be followed by 

immediate ring expansion in a one-pot process.  

 

 

Scheme 77  
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Seven-membered-ring-fused furans are important building blocks that are found in a 

wide range of natural products (Figure 9).[77a, 94] The construction of the 

cyclohepta[b]furan ring system has become a topic of great importance because of the 

interesting biological activities of many compounds that possess this ring system. 

These activities range from anti-inflammatory properties to potential application in 

anticancer and diabetes therapy.[95] 

 

Figure 9 

 

2.5.1 Stepwise Approach 

2.5.1.1 Synthesis and Rearrangement of Vinylcyclopropane 272 

Studies concerning the new cascade reaction involved the separate investigation of the 

individual chemical steps. In this initial approach, the aldehyde 271 was envisioned as 

a common precursor for various vinyl-substituted cyclopropanes. The synthesis of this 

aldehyde began with cleavage of the TMS group from the compound 265 under basic 

conditions to afford the terminal alkyne 266 in high yield (Scheme 78). Formylation of 

the alkyne followed by Knoevenagel condensation with acetylacetone delivered 

ynenone 268 in 69% yield over two steps. Cyclopropyl substituted furan 269 was 

prepared using the previously established methodology,[69] subsequent deprotection of 

the alcohol using camphorsulfonic acid followed by oxidation with DMP gave the 

aldehyde 271 in high yield.  
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Scheme 78 

 

Wittig methylenation of 271 proved to be more challenging than expected. The product 

was found to be acid labile and prone to decomposition during column chromatography 

using silica gel. Therefore, purification of the product was carried out on aluminium 

oxide (activated, basic, Brockmann I). Various Wittig olefination conditions were 

screened in order to deliver the product in good yield (Table 15). Only starting material 

was recovered using potassium t-butoxide as the base and the reaction carried out at 

0 °C, possibly due to it being hygroscopic to be suitable for small scale reactions 

(Entry 1). Switching the base to LiHMDS (1 M in THF) and lowering the reaction 

temperature to −78 °C was not successful when aqueous NH4Cl was used to quench 

the reaction (Entry 2). However, when water was used to quench the reaction, the 

required vinyl cyclopropane 272 was obtained in 33% yield (Entry 3). A similar result 

was obtained when n-BuLi was employed as the base, the reaction was performed at 

−78 °C and the reaction was quenched with pH 7 buffer (Entry 4). Other screening 

experiments were performed and the best result was obtained when the reaction 

temperature was increased to −10 °C, n-BuLi was employed as the base and pH 7 

buffer was used to quench the reaction (Entry 5).  
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Table 15 

 

Entry Base[a] T Method of Quenching Yield[d] 

1 t-BuOK 0 °C filtered through SiO2 SM 

2 LiHMDS[b] −78 °C NH4Cl - 

3 LiHMDS[b] −78 °C H2O 33% 

4 n-BuLi[c] −78 °C pH 7 buffer 34% 

5 n-BuLi[c] −10 °C pH 7 buffer 69% 

271 (1.0 equiv.) in THF (0.1–0.03 M solution), CH3PPh3Br  
(1.3–2.0 equiv.) in THF (0.08–0.1 M solution); [a] (1.1 equiv.); [b] 1 M 
in THF; [c] 2.3–2.5 M in hexanes; [d] isolated yield after column 
chromatography. 

 

The successful synthesis of the vinylcyclopropane 272 meant that formation of 

cycloheptadiene 273 could be explored (Table 16). Optimisation studies of the 

cyclopropyl furan formation performed previously had revealed that CH2Cl2 and toluene 

were best solvents for this transformation.[69] Toluene was selected because it would 

allow the screening of higher temperatures for the Cope rearrangement reaction. When 

the substrate 272 was heated in toluene to 110 °C the fused tricyclic product 273 could 

be isolated in 36% yield (Entry 1). It was postulated that substrate 272 is thermally 

unstable and so underwent decomposition at a rate that is competitive with the 

rearrangement reaction to give the more stable cycloheptadiene 273. Lowering the 

temperature to 80 °C resulted in an increase in yield to 61% (Entry 2). However, to be 

suitable for a cascade sequence, a lower temperature was more desirable. At 40 °C, 

the rearranged product 273 could be isolated in 63% yield under the conditions used 

(Entry 3).  
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Table 16 

 

Entry T Time Yield[a] 

1 110 °C 1 h 36% 

2 80 °C 5 h 61% 

3 40 °C 16 h 63% 

0.05–0.08 M in toluene; [a] isolated yield 
after column chromatography. 

 

Excellent stereocontrol is possible because the rearrangement is stereospecific with 

respect to the configuration at the -systems invovled (Scheme 79).[96] The 

furanylvinylcyclopropane undergoes a 3,3-sigmatropic rearrangement via a boat-like 

transition state in which both -groups lie endo to the cyclopropane leading to formation 

of the corresponding cycloheptadiene.  

 

Scheme 79 

 

In an attempt to improve the yield of the Cope rearrangement reaction, various solvents 

were screened (Table 17). When THF was employed as the solvent, the yield dropped 

to 30% (Entry 1). Dichloromethane facilitated the reaction, but the yield was still 
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significantly lower than that obtained from the reaction performed in toluene (Entry 2). 

Finally, a screening experiment was conducted using chloroacetic acid to discover 

whether an acid can influence the Cope rearrangement. Although full consumption of 

the starting material was observed, the cycloheptadiene was isolated with a slight 

reduction in yield (Entry 3).  

Table 17 

 

Entry Solvent[a] Additive Yield[c] 

1 THF - 30% 

2 CH2Cl2 - 38% 

3 PhMe ClCH2CO2H[b] 57% 

[a] 0.05–0.08 M solution; [b] (0.1equiv.); [c] 
isolated yield after column chromatography. 

 

2.5.1.2 Synthesis and Rearrangement of Vinylcyclopropane 280 

Now that optimised conditions for the reaction had been established, the preparation 

and rearrangement of various substrates was investigated. Using the previously 

improved Wittig olefination conditions, gem-dimethyl substituted substrate 280 was 

prepared from aldehyde 271 in 65% yield (Scheme 80).  

 

Scheme 80 

 

However, when the Cope rearrangement of this substrate was attempted in toluene at 

40 °C no reaction was observed (Table 18, Entry 1). Heating the mixture to 110 °C 

resulted in 32% conversion and cycloheptadiene 281 could be isolated in 27% yield 

(68% brsm, Entry 2). After careful NMR study, it was found that at this temperature a 

trace amount of the epimerised cyclopropane 280’ was formed. It is important to note 
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that this compound would undergo Cope rearrangement at a different rate than 280. 

Prolonging the reaction time resulted in increased conversion, but the desired product 

was obtained in lower yield (Entry 3 and 4). The lower yield is attributed to the substrate 

280 being thermally unstable and decomposing rather than undergoing the desired 

rearrangement reaction. When p-xylene was employed, the reaction temperature could 

be increased but this resulted in a decrease in yield (Entry 5). 

Table 18 

 

Entry Solvent[a] T Time Conversion Yield[b] 

1 PhMe 40 °C 1 d 0% - 

2 PhMe 110 °C 1 d 32% 
27%  

(68% brsm) 

3 PhMe 110 °C 2 d 38% 20% 

4 PhMe 110 °C 3 d 43% 15% 

5 p-xylene 140 °C 1 d 33% 9% 

[a] 0.05–0.08 M solution; [b] isolated yield after column 
chromatography. 

 

The observed epimerisation of vinylcyclopropane at 110 °C was rather unexpected 

because isomerisation normally only occurs at much higher temperatures of around 

200 °C.[74] The mechanism for the formation of trans-divinylcyclopropane is proposed 

to proceed either through an intermediate diradical species or through a one-centre 

epimerisation pathway (Scheme 81). 

 

Scheme 81 
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It is proposed that the increased stability of the dimethyl substituted cyclopropane 

transition state due to delocalisation leads to epimerisation at lower temperatures 

(Scheme 81). 

 

Scheme 82 

 

2.5.1.3 Synthesis and Rearrangement of Vinylcyclopropane 282 

Optimisation studies showed that the rearrangement reaction is robust and so its scope 

was further expanded to explore the influence of the alkene geometry on the yield and 

stereochemical outcome of the reaction. Therefore, methyl substituted vinyl 282 was 

prepared by reaction of the aldehyde 271 with ethyltriphenylphosphonium bromide 

under Wittig conditions. The reaction afforded substrate 282 as an inseparable 1:2.7 

mixture of alkene diastereoisomers (Scheme 83). 

 

Scheme 83 

 

To promote the Cope rearrangement, the mixture was stirred at 40 °C. Consumption of 

the E-isomer was completed after 16 h, but Cope rearrangement of the Z-isomer was 

not observed during this period of time (Table 19, Entry 1). When the reaction was 

performed at 110 °C, the cycloheptadiene syn-283 was isolated in 17% yield and the 

Z-alkene Z-282 was recovered in 25% yield. 1H NMR studies suggested that only a 

trace amount of the cycloheptadiene anti-283 was formed (Entry 2). 
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Table 19 

 

Entry T Time syn-283[a] anti-283 Z-282[a] 

1 40 °C 18 h 23% - 40% 

2 110 °C 16 h 17% trace 25% 

0.05–0.08 M in toluene; [a] isolated yield after column 
chromatography. 

 

2.5.1.4 Synthesis and Rearrangement of Vinylcyclopropane 284 

A final set of experiments was performed using a styrene-containing substrate. The 

Wittig reaction of aldehyde 271 with benzyltriphenylphosphonium bromide resulted in 

an inseparable mixture of E and Z-alkenes, albeit in excellent yield (Scheme 84). The 

stage was now set to investigate the Cope rearrangement of the phenyl-substituted 

substrate 284. 

 

Scheme 84 

 

When the mixture of alkene isomers was heated at 40 °C in toluene, only the E-isomer 

rearranged to give the corresponding cycloheptadiene and some of the Z-isomer was 

recovered (Scheme 85).  

 

Scheme 85 
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The propensity of the Z-isomer to undergo the Cope rearrangement was then 

examined. The temperature was increased and other acids were tested as promoters. 

Besides chloroacetic acid, 1,1,1,3,3,3-hexafluoro-2-propanol and benzoic acid were 

investigated (Table 20). The initial experiment in the study involved reaction of the 

isomeric mixture with a sub-stoichiometric amount of chloroacetic acid in toluene at 

110 °C. Full consumption of the isomer E-284 was observed and 1H NMR analysis of 

the product suggested only traces of anti-285 was formed. However, under these 

conditions the yield of syn-285 was significantly lower because at high temperatures 

E-284 and Z-284 started to decompose (Entry 1). Addition of hexafluoro-2-propanol 

aided in decomposition of the starting material (Entry 2). The use of benzoic acid 

resulted in the formation of an unidentified by-product instead of the cycloheptadiene 

syn-285 or anti-285 (Entry 3).  

Table 20 

 

Entry Acid[a] pKa syn-285 anti-285  

1 ClCH2CO2H 2.9 21%[b] trace  

2 (CF3)2CHOH 9.3 - - decomp 

3 PhCO2H 4.2 - - other 

284 (1.0 equiv.), 0.05–0.08 M in toluene; [a] acid (0.1 equiv.); [b] 
isolated yield after column chromatography. 

 

In summary, the vinylcyclopropane rearrangements were successful and an 

investigation of substrate scope was carried out. Studies have shown that the 

configuration on the alkene has a dramatic influence on the rate of the reaction. No 

conditions were found to promote efficient and high-yielding rearrangement of the Z-

isomer.  
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2.5.2 Cascade Approach 

2.5.2.1 First Generation Synthesis of Substrate for Cascade Approach 

Following the independent study of the cyclopropanation and Cope rearrangement 

reactions, efforts were focused on developing a cascade process. Work was 

undertaken towards the synthesis of appropriate ynendione substrates for this 

transformation. The synthesis started with deprotection of ynenone starting material 

268 with camphorsulfonic acid (Scheme 86). It is important to note that the resulting 

alcohol 286 is acid sensitive and prone to rearrange if exposed to camphorsulfonic acid 

for an extended period of time. Oxidation of alcohol 286 using DMP afforded the 

corresponding aldehyde 287 in 86% yield. Unfortunately, reaction of the aldehyde 287 

with i-propyltriphenylphosphonium iodide using previously optimised Wittig reaction 

conditions did not afford the expected product 288 but an unknown by-product. Isolation 

of the by-product resulting from the Wittig reaction revealed that it appeared to be 

formed by Wittig olefination of the aldehyde and addition of the Wittig reagent to the 

alkene to form product 289. It was hypothesised that the by-product was formed due to 

excess Wittig reagent being used. Therefore, the reaction was repeated with less than 

one equivalent of reagent. 1H NMR analysis of the crude mixture showed, that 289 had 

been formed and unreacted aldehyde 287 was still present. However, formation of the 

desired diene 288 was not observed. 

 

Scheme 86 
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When aldehyde 287 was treated with other Wittig reagents, the desired product 290 

was not formed and only decomposition of the starting material occurred in all cases 

(Table 21, Entries 1–3).  

Table 21 

 

Entry Wittig reagent[a] R Result 

1 CH3PPh3Br H decomp. 

2 EtPPh3Br Me decomp. 

3 BnPPh3Br Ph decomp. 

287 (1.0 equiv.) in THF (0.1 M solution), n-BuLi 
(1.1 equiv.); [a] Wittig reagent (1.3 equiv.) in THF 
(0.1 M solution). 

 

Owing to the failure of this route, a different strategy was explored in which the olefin 

would be installed earlier in the synthesis. 

 

2.5.2.2 Second Generation Synthesis of Diene for Cascade Approach 

The desired ynenones were envisaged to derive from the dienes 291.[97] Treatment with 

n-BuLi, followed by DMF afforded aldehydes 292. However, 1H NMR analysis of the 

crude reaction mixture revealed that an undesired by-product 293 was produced along 

with the required aldehydes 292 (Scheme 87).  

 

Scheme 87 
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It was hypothesised that by-products such as 293 are generated from a Diels-Alder 

cycloaddition reaction between the electron-rich diene and the electron-deficient alkyne 

(Scheme 88). 

 

Scheme 88 

 

The aldehydes were unstable so the crude reaction mixtures were used immediately 

without further purification in each case. Although the aldehyde 292 was present, the 

expected Knoevenagel condensation product 294 could not be isolated from the 

reaction (Scheme 89). Instead only decomposition occurred. Several other reaction 

conditions were investigated but were not successful. 

 

Scheme 89 

 

The failure to obtain the required Knoevenagel condensation product prompted the 

synthesis of a different diene. The synthetic route started from aldehyde 295 which was 

then reacted with i-propyltriphenylphosphonium iodide under Wittig conditions to yield 

the corresponding diene 296 (Scheme 90). Deprotection of the alkyne moiety with 

potassium carbonate provided the terminal alkyne 297. Substrate 299 was then 

accessed through a standard formylation and Knoevenagel condensation sequence. 

Treatment of ynenone 299 with chloroacetic acid at 40 °C resulted in formation of the 

furan 280 bearing a fused bicyclic system. As expected, this compound did not undergo 

Cope rearrangement at this temperature to give the cycloheptadiene (Table 18).  
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Scheme 90 

 

However, with this promising result in hand, further investigation into the cascade 

process was undertaken. Alcohol 300 was protected as the TBS ether and the resulting 

intermediate 301 was subjected to formylation using n-BuLi and DMF (Scheme 91). It 

is interesting to note that formation of a Diels-Alder side product was not observed in 

this case. The aldehyde 302 was converted into the ynenone 303 by Knoevenagel 

condensation with acetylacetone. Unfortunately, treatment of the ynenone 303 with 

chloroacetic acid in toluene did not deliver cylcoheptane 304 and a rearranged product 

that did not correspond to the desired product was isolated instead. The structure of 

this unexpected by-product could not be elucidated. 
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Scheme 91 

 

In conclusion, new methodology for the formation of cycloheptadienes was 

investigated. The conditions for the Cope rearrangement of furylvinylcyclopropanes 

was successfully optimised. However, the synthesis of an appropriate substrate for a 

cascade process proved to be difficult.  
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3 Conclusions 

3.1 Furan Formation from Ynenones using THT 

Furan formation from ynenones is dependent on an acid additive. However, applying 

this finding to asymmetric furan formation by use of a chiral acid only resulted in very 

low levels of enantiocontrol (Scheme 92). In future work, the use of a very strong chiral 

“super Brønsted acids” could be explored to improve the level of asymmetric induction 

during the reaction. Additionally, new types of TRIP ligand are being developed 

continually, so in future these also could be explored. 

 

Scheme 92 

 

The original organocatalytic furan synthesis using THT and ynenone in the presence 

of an oxygen nucleophile was successfully expanded to allow for additional ring 

formation. A general reaction that can be applied to a large range of substrates to 

provide furans furnished with a fused ether system was developed successfully 

(Scheme 93).  

 

Scheme 93 

 

Although these furan systems were synthesised in high yields, only low to medium 

levels of diastereocontrol were observed (Figure 10). 
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Figure 10 

 

The substrate scope of the polycyclic furan formation reaction was investigated, with 

all furans being obtained in good yield, demonstrating the versatility of the reaction 

(Figure 11).  

 

Figure 11 
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3.2 Cope Rearrangement of Vinylcyclopropanes 

The second part of this thesis involved the investigation of a Cope rearrangement of 

furylvinylcyclopropane. The synthesis of substrate 260 allowed access to the complex 

tricyclic cycloheptadienes 262 (Scheme 94). Full optimisation studies were carried out 

and the rearrangement reaction was achieved in good yield. 

 

Scheme 94 

 

The substrate scope of the DVCPR was investigated with various 

furylvinylcyclopropanes. Heating the E-vinyl substrate in toluene at 40 °C resulted in its 

smooth conversion into the cycloheptadiene 306 (Scheme 95).  

 

Scheme 95 

 

On attempted rearrangement of the Z-isomer 307, difficulties were encountered and 

either rearrangement failed to occur or an unknown by-product was formed 

(Scheme 96). 

 

Scheme 96 

 

A cascade procedure for the direct formation of the tricyclic system containing a 

cycloheptadiene from an acyclic ynenone precursor was investigated. During the 

synthesis of the ynenone substrates, difficulties were encountered with competitive 

Diels-Alder cycloaddition of intermediate compounds. However, a promising 
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preliminary result was obtained with the formation of furan 280 derived from ynenone 

299 (Scheme 97). 

 

Scheme 97 
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4 Experimental Section 

 

General Reaction Conditions 

 

Air and/or moisture sensitive reactions were performed with the exclusion of air under 

an atmosphere of argon in flame dried glassware.  

 

Solvents and Reagents 

 

THF, PhMe, CH2Cl2 and Et2O were dried using a Pure-SolvTM solvent purification 

system. Other dry organic solvents and all reagents were purchased from commercial 

supplies and without further purification unless otherwise specified.  

 

Chromatography 

 

All reactions were monitored by thin-layer chromatography (TLC) on Merck silica gel 

60 covered alumina plates. The TLC plates were visualised under UV light and stained 

with acidic ethanolic anisaldehyde solution or potassium permanganate solution.  

 

Column chromatography was performed under pressure with silica gel (Fluorochem 

LC60A, 35-70 micron or Merck Geduran Si60, 40-63 micron) as solid. Petroleum ether 

used for column chromatography was the 40–60 °C fraction.  

 

Apparatus 

 

IR spectra were recorded on a Shimadzu FT IR-8400S ATR instrument. The IR 

spectrum of each compound was acquired directly on a thin film (liquid) or powder 

(solid) at room temperature.  

 

1H NMR spectra were recorded using a Bruker Avance III 400 MHz or Bruker Avance 

III UltraShield 500 MHz spectrometer at ambient temperature. Data are recorded as 
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follows: chemical shifts in ppm relative to CDCl3 (7.26) or C6D6 (7.16) on the  scale, 

integration, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, sept = septet, m 

= multiplet, br = broad, or a combination of these), coupling constant(s) J (Hz) and 

assignment. 13C NMR spectra were recorded using a Bruker Avance III 400 MHz or 

Bruker Avance III UltraShield 500 MHz spectrometer at 100 MHz or 126 MHz at 

ambient temperature. Data are reported as follows: chemical shift in ppm, relative to 

CDCl3 (77.16) or C6D6 (128.1) on the  scale and assignment.  

 

High resolution mass spectra (HRMS) were obtained by the analytical service of the 

University of Glasgow with an Jeol MStation JMS-700 instrument using positive 

chemical ionization (CI using isobutene) or a positive ion impact (EI) techniques, or on 

a Bruker micro TOFq High Resolution instrument using positive ion electrospray (ESI) 

techniques. 

 

Melting points were recorded using an Electrothermal IA 9100 instrument. 
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Furan 199 

 

 

 

To a mixture of ynenone 149 (57 mg, 0.30 mmol), benzoic acid (37 mg, 0.30 mmol) 

and TRIP (19 mg, 25 mol) was added a solution of tetrahydrothiophene (0.30 mL of a 

0.50 M solution in CH2Cl2, 0.15 mmol). The mixture was stirred at 40 °C for 48 h and 

then concentrated under reduced pressure. The residue was purified by flash column 

chromatography on silica gel (petroleum ether-EtOAc, 10:1) to afford furan 199 (83 mg, 

89%, 12% ee) as a pale yellow oil. 

 

Rf = 0.11 (petroleum ether- EtOAc, 10:1); HPLC t1R = 10.8 min, t2R = 12.6 min, (Chiralcel 

AD-H ø 4.6 mm × 250 mm, 0.5 mL × min−1, 90:10, detection: 189 nm, oven: 25.0 °C); 

1H NMR (400 MHz, CDCl3)  8.06 (2H, d, J = 8.3 Hz, CH-C15), 7.56 (1H, t, J = 7.4 Hz, 

CH-C17), 7.44 (2H, dd, J = 8.3, 7.4 Hz, CH-C16), 6.61 (1H, s, CH-C7), 6.00 (1H, dd, J 

= 7.2, 7.2 Hz, CH-C8), 2.58 (3H, s, CH3-C5), 2.39 (3H, s, CH3-C1), 2.12–2.01 (2H, m, 

CH2-C9), 1.43–1.28 (4H, m, CH2-C10, CH2-C11), 0.91 (3H, t, J = 6.9 Hz, CH3-C12). 

 

The analytical and spectroscopic data are in agreement with those reported in the 

literature.[67] 
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Furan 202 

 

 

 

To a mixture of ynenone 149 (98 mg, 0.51 mmol), benzyl alcohol (0.16 mL, 1.6 mmol) 

and phenylphosphonic acid (8.1 mg, 51 mol) was added a solution of 

tetrahydrothiophene (0.50 mL of a 0.50 M solution in CH2Cl2, 0.25 mmol). The mixture 

was stirred at 40 °C for 48 h and then concentrated under reduced pressure. The 

residue was purified by flash column chromatography on silica gel (petroleum ether-

EtOAc, 10:1) to afford furan 202 (0.12 g, 76%) as a pale yellow oil. 

 

Rf = 0.15 (petroleum ether-EtOAc, 10:1); 1H NMR (400 MHz, CDCl3)  7.36–7.27 (5H, 

m, Ph), 6.48 (1H, s, CH-C7), 4.54 (1H, d, J = 12.0 Hz, CHH-C13), 4.37 (1H, d, J = 12.0 

Hz, CHH-C13), 4.26 (1H, dd, J = 7.0, 7.0 Hz, CH-C8), 2.59 (3H, s, CH3-C5), 2.40 (3H, 

s, CH3-C1), 1.98–1.89 (1H, m, CHH-C9), 1.84–1.75 (1H, m, CHH-C9), 1.42–1.19 (2H, 

m, CH2-C10), 1.35–1.25 (2H, m, CH2-C11), 0.88 (3H, t, J = 7.0 Hz, CH3-12); 13C NMR 

(126 MHz, CDCl3)  194.3 (C-C2), 158.4 (C-C4), 152.8 (C-C6), 138.3 (C-C14), 128.5 

(2C, CH-C16), 127.9 (2C, CH-C15), 127.8 (CH-C17), 122.0 (C-C3), 108.6 (CH-C7), 

74.1 (CH-C8), 70.7 (CH2-C13), 34.0 (CH2-C9), 29.3 (CH3-C1), 27.9 (CH2-C10), 22.6 

(CH2-C11), 14.7 (CH3-C5), 14.1 (CH3-C12); vmax (film) 2957, 1678, 1564, 1454, 1370, 

1229, 1063, 1028 cm−1; HMRS (ESI) calcd for C19H24NaO3 [M+Na]+ 323.1618, found 

323.1604.  
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Furan 203 

 

 

 

To a mixture of ynenone 149 (0.13 g, 0.69 mmol), allyl alcohol (0.14 mL, 2.1 mmol) and 

phenylphosphonic acid (11 mg, 69 mol) was added a solution of tetrahydrothiophene 

(0.70 mL of a 0.50 M solution in CH2Cl2, 0.35 mmol). The mixture was stirred at 40 °C 

for 48 h and then concentrated under reduced pressure. The residue was purified by 

flash column chromatography on silica gel (petroleum ether-Et2O, 5:2) to afford furan 

203 (0.13 g, 73%) as a pale yellow oil. 

 

Rf = 0.22 (petroleum ether-Et2O, 5:2); 1H NMR (400 MHz, CDCl3)  6.46 (1H, s, CH-

C7), 5.88 (1H, dddd, J = 17.2, 10.4, 6.2, 5.2 Hz, CH-C14trans), 5.26 (1H, br ddd, J = 

17.2, 3.1, 1.5 Hz, CHH-C15trans), 5.17 (1H, br ddd, J = 10.4, 3.1, 1.3 Hz, CHH-C15cis), 

4.23 (1H, dd, J = 7.0, 7.0 Hz, CH-C8), 3.99 (1H, dddd, J = 12.7, 5.2, 1.5, 1.5 Hz, CHH-

C13), 3.85 (1H, dddd, J = 12.7, 6.2, 1.3, 1.3 Hz, CHH-C13), 2.58 (3H, s, CH3-C5), 2.40 

(3H, s, CH3-C1), 1.94–1.85 (1H, m, CHH-C9), 1.83–1.74 (1H, m, CHH-C9), 1.40–1.19 

(4H, m, CH2-C10, CH2-C11), 0.89 (3H, t, J = 7.1 Hz, CH3-C12); 13C NMR (126 MHz, 

CDCl3)  194. (C-C2), 158.3 (C-C4), 152.8 (C-C6), 134.8 (CH-C14), 122.0 (C-C3), 

117.3 (CH-C15), 108.4 (CH-C7), 74.2 (CH-C8), 69.8 (CH2-C13), 33.9 (CH2-C9), 29.3 

(CH3-C1), 27.9 (CH2-C10), 22.6 (CH2-C11), 14.7 (CH3-C5), 14.1 (CH3-C12); vmax (film) 

2932, 1678, 1564, 1406, 1229, 1121, 1080 cm−1; HMRS (ESI) calcd for C15H22NaO3 

[M+Na]+ 273.1461, found 273.1451.  
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Furan 204 

 

 

 

To a mixture of ynenone 149 (90 mg, 0.47 mmol), neopentyl alcohol (0.15 mL, 1.4 

mmol) and phenylphosphonic acid (7.4 mg, 47 mol) was added a solution of 

tetrahydrothiophene (0.45 mL of a 0.50 M solution in CH2Cl2 0.23 mmol). The mixture 

was stirred at 40 °C for 48 h and then concentrated under reduced pressure. The 

residue was purified by flash column chromatography on silica gel (petroleum ether-

Et2O, 5:2) to afford furan 204 (98 mg, 75%) as a pale yellow oil.  

 

Rf = 0.40 (petroleum ether-Et2O, 5:2); 1H NMR (400 MHz, CDCl3)  6.41 (1H, s, CH-

C7), 4.12 (1H, dd, J = 7.7, 6.0 Hz, CH-C8), 3.06 (1H, d, J = 8.7 Hz, CH-C13), 2.94 (1H, 

d, J = 8.7 Hz, CH-C13), 2.57 (3H, s, CH3-C5), 2.40 (3H, s, CH3-C1), 1.91–1.82 (1H, m, 

CHH-C9), 1.77–1.68 (1H, m, CHH-C9), 1.46–1.23 (2H, m, CH2-C10), 1.39–1.29 (2H, 

m, CH2-C11), 0.90 (3H, t, J = 6.9 Hz, CH3-C12), 0.88 (9H, s, CH3-t-Bu); 13C NMR (101 

MHz, CDCl3)  194.4 (C-C2), 157.9 (C-C4), 153.8 (C-C6), 121.9 (C-C3), 107.5 (CH-

C7), 79.6 (CH2-C13), 75.6 (CH-C8), 34.2 (CH2-C9), 32.3 (C-t-Bu), 29.3 (CH3-C1), 27.9 

(CH2-C10), 26.8 (3C, CH3-t-Bu), 22.6 (CH2-C11), 14.6 (CH3-C5), 14.2 (CH3-C12); vmax 

(film) 2957, 1680, 1566, 1362, 1229, 1092 cm−1; HMRS (CI, isobutane) calcd for 

C17H29O3 [M+H]+ 281.2117, found 281.2113.  
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Furan 205 

 

 

 

To a mixture of ynenone 149 (0.13 g, 0.69 mmol), p-methoxybenzyl alcohol (0.26 mL, 

2.1 mmol) and phenylphosphonic acid (11 mg, 68 mol) was added a solution of 

tetrahydrothiophene (0.70 mL of a 0.50 M solution in CH2Cl2, 0.35 mmol). The mixture 

was stirred at 40 °C for 48 h and then concentrated under reduced pressure. The 

residue was purified by flash column chromatography on silica gel (petroleum ether-

Et2O, 10:3) to afford furan 205 (0.20 mg, 87%) as a pale yellow oil. 

 

Rf = 0.12 (petroleum ether-Et2O, 10:3); 1H NMR (400 MHz, CDCl3)  7.23 (2H, d, J = 

8.6 Hz, CH-C16), 6.87 (2H, d, J = 8.6 Hz, CH-C15), 6.47 (1H, s, CH-C7), 4.47 (1H, d, 

J = 11.5 Hz, CHH-C13), 4.29 (1H, d, J = 11.5 Hz, CHH-C13), 4.23 (1H, dd, J = 7.2, 6.8 

Hz, CH-C8), 3.80 (3H, s, CH3-C18), 2.59 (3H, s, CH3-C5), 2.41 (3H, s, CH3-C1), 1.95–

1.86 (1H, m, CHH-C9), 1.82–1.73 (1H, m, CHH-C9), 1.40–1.17 (2H, m, CH2-C10), 

1.34–1.23 (2H, m, CH2-C11), 0.87 (3H, t, J = 7.1 Hz, CH3-C12); 13C NMR (101 MHz, 

CDCl3)  194.3 (C-C2), 159.3 (C-C17), 158.3 (C-C4), 152.9 (C-C6), 130.4 (C-C14), 

129.5 (2C, CH-C15), 122.0 (C-C3), 113.9 (2C, CH-C16), 108.4 (CH-C7), 73.7 (CH-C8), 

70.3 (CH2-C13), 55.4 (CH3-C18), 34.0 (CH2-C9), 29.3 (CH3-C1), 27.9 (CH2-C10), 22.6 

(CH2-C11), 14.7 (CH3-C5), 14.1 (CH3-C12); vmax (film) 2956, 1676, 1560, 1512, 1246, 

1172, 1080 cm−1; HMRS (ESI) calcd for C20H26NaO4 [M+Na]+ 353.1723, found 

353.1706.  
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Furan 206 

 

 

 

To a mixture of ynenone 149 (95 mg, 0.49 mmol), cyclohexanol (0.15 mL, 1.4 mmol) 

and phenylphosphonic acid (7.8 mg, 49 mol) was added a solution of 

tetrahydrothiophene (0.50 mL of a 0.50 M solution in CH2Cl2, 0.25 mmol). The mixture 

was stirred at 40 °C for 48 h and then concentrated under reduced pressure. The 

residue was purified by flash column chromatography on silica gel (petroleum ether-

Et2O, 5:2) to afford furan 206 (0.11 g, 77%) as a pale yellow oil. 

 

Rf = 0.33 (petroleum ether-Et2O, 5:2); 1H NMR (500 MHz, CDCl3)  6.42 (1H, s, CH-

C7), 4.30 (1H, dd, J = 7.7, 6.2 Hz, CH-C8), 3.25 (1H, dddd, J = 9.1, 9.1, 3.6, 3.6 Hz, 

CH-C13), 2.57 (3H, s, CH3-C5), 2.39 (3H, s, CH3-C1), 1.92–1.85 (1H, m, CHH-

C14/C18), 1.85–1.78 (1H, m, CHH-C9), 1.76–1.70 (4H, m, CHH-C9, CHH-C14/C18, 

CH2-C15/C17), 1.51–1.49 (1H, m, CHH-C16), 1.43–1.38 (1H, m, CHH-C10), 1.37–1.27 

(2H, m, CH2-C11), 1.28–1.19 (6H, m, CHH-C10, CHH-C14/C18, CHH-C14/C18, CH2-

C15/C17, CHH-C16), 0.89 (3H, t, J = 7.2 Hz, CH3-C12); 13C NMR (126 MHz, CDCl3)  

194.4 (C-C2), 157.9 (C-C4), 154.3 (C-C6), 122.0 (C-C3), 107.2 (CH-C7), 75.8 (CH-

C13), 72.1 (CH-C8), 34.8 (CH2-C9), 33.5 (CH2-C14/C18), 31.9 (CH2-C14/C18), 29.3 

(CH3-C1), 28.1 (CH2-C10), 25.9 (CH2-C16), 24.5 (CH2-C15/C17), 24.3 (CH2-C15/C17), 

22.6 (CH2-C11), 14.7 (CH3-C5), 14.2 (CH3-C12); vmax (film) 2932, 1678, 1566, 1451, 

1356, 1229, 1080 cm−1; HMRS (ESI) calcd for C18H28NaO3 [M+Na]+ 315.1931, found 

315.1931.  
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Furan 209 

 

 

 

To a mixture of ynenone 207 (0.11 mg, 0.50 mmol), p-methoxybenzyl alcohol (0.18 mL, 

1.5 mmol) and TRIP (38 mg, 50 mol) was added a solution of tetrahydrothiophene 

(0.50 mL of a 0.50 M solution in CH2Cl2, 0.25 mmol). The mixture was stirred at 40 °C 

for 48 h and then concentrated under reduced pressure. The residue was purified by 

flash column chromatography on silica gel (petroleum ether-Et2O, 10:3) to afford furan 

209 (0.12 g, 70%, 4% ee) as a pale yellow oil. 

 

Rf = 0.20 (petroleum ether-Et2O, 10:3); HPLC t1R = 50.1 min, t2R = 57.1 min, (Chiralcel 

AD-H ø 4.6 mm × 250 mm, 99:1, 0.5 mL × min−1 detection: 190 nm, oven 25.0 °C); 1H 

NMR (400 MHz, CDCl3)  7.45–7.34 (5H, m, Ph), 7.27 (2H, d, J = 8.7 Hz, CH-C16), 

6.89 (2H, d, J = 8.7 Hz, CH-C15), 6.31 (1H, s, CH-C7), 5.36 (1H, s, CH-C8), 4.52 (1H, 

d, J = 12.6 Hz, CHH-C13), 4.47 (1H, d, J = 12.6 Hz, CHH-C13), 3.81 (3H, s, CH3-C18), 

2.55 (3H, s, CH3-C5), 2.33 (3H, s, CH3-C1); 13C NMR (101 MHz, CDCl3)  194.2 (C-

C2), 159.5 (C-C17), 158.8 (C-C4), 152.6 (C-C6), 138.8 (CH-C9), 129.9 (C-C14), 129.7 

(2C, CH-C15), 128.7 (2C, CH-C11), 128.4 (CH-C12), 127.5 (2C, CH-C10), 122.1 (C-

C3), 114.0 (2C, CH-C16), 109.2 (CH-C7), 75.6 (CH-C8), 70.5 (CH2-C13), 55.5 (CH3-

C18), 29.3 (CH3-C1), 14.7 (CH3-C5); vmax (film) 2936, 1676, 1564, 1513, 1248, 1173, 

1034 cm−1; HMRS (ESI) calcd for C22H22NaO4 [M+Na]+ 373.1410, found 373.1395. 
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Furan 210 

 

 

 

To a mixture of ynenone 207 (0.11 g, 0.50 mmol), cyclohexanol (0.16 mL, 1.5 mmol), 

and phenylphosphonic acid (8.7 mg, 55 mol) was added a solution of 

tetrahydrothiophene (0.50 mL of a 0.50 M solution in CH2Cl2, 0.25 mmol). The mixture 

was stirred at 40 °C for 48 h and then concentrated under reduced pressure. The 

residue was purified by flash column chromatography on silica gel (petroleum ether-

Et2O, 10:3) to afford furan 210 (0.12 g, 77%) as a pale yellow oil. 

 

Rf = 0.08 (petroleum ether-Et2O, 10:3); 1H NMR (400 MHz, CDCl3)  7.42 (2H, d, J = 

7.0 Hz, CH-C10), 7.37 (2H, dd, J = 7.1, 7.0 Hz, CH-C11), 7.32 (1H, t, J = 7.1 Hz, CH-

C12), 6.25 (1H, s, CH-C7), 5.48 (1H, s, CH-C8), 3.37 (1H, dddd, J = 9.5, 9.5, 3.8, 3.8 

Hz, CH-C13), 2.55 (3H, s, CH3-C5), 2.33 (3H, s, CH3-C1), 1.99–1.96 (1H, m, CHH-

C14/C18), 1.88-1.84 (1H, m, CHH-C14/C18), 1.81–1.69 (2H, m, CH2-C15/C17), 1.53–

1.50 (1H, m, CHH-C16), 1.47–1.34 (2H, m, CHH-C14/C18, CHH-C14/C18), 1.27–1.17 

(3H, m, CHH-C16, CH2-C15/C17); 13C NMR (101 MHz, CDCl3)  194.3 (C-C2), 158.7 

(C-C4), 153.5 (C-C6), 139.8 (C-C9), 128.6 (2C, CH-C11), 128.1 (CH-C12), 127.2 (2C, 

CH-C10), 122.1 (C-C3), 108.6 (CH-C7), 76.1 (CH-C8), 73.9 (CH-C13), 32.8 (CH2-

C14/C18), 32.2 (CH2-C14/C18), 29.2 (CH3-C1), 25.9 (CH2-C16), 24.3 (CH2-C15/C17), 

24.3 (CH2-C15/C17), 14.7 (CH3-C5); vmax (film) 2930, 1676, 1564, 1451, 1229, 1069, 

1026 cm−1; HMRS (ESI) calcd for C20H24NaO3 [M+Na]+ 335.1618, found 335.1606. 
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Furan 211 

 

 

 

To a mixture of ynenone 207 (0.10 g, 0.49 mmol), t-butyl alcohol (0.14 mL, 1.5 mmol) 

and phenylphosphonic acid (8.2 mg, 52 mol) was added a solution of 

tetrahydrothiophene (0.50 mL of a 0.50 M solution in CH2Cl2, 0.25 mmol). The mixture 

was stirred at 40 °C for 48 h and then concentrated under reduced pressure. The 

residue was purified by flash column chromatography on silica gel (petroleum ether-

Et2O, 10:3) to afford furan 211 (0.10 g, 71%) as a pale yellow oil. 

 

Rf = 0.27 (petroleum ether-Et2O, 10:3); 1H NMR (400 MHz, CDCl3)  7.41 (2H, d, J = 

7.0 Hz, CH-C10), 7.35 (2H, dd, J = 7.3, 7.0 Hz, CH-C11), 7.29 (1H, t, J = 7.3 Hz, CH-

C12), 6.13 (1H, s, CH-C7), 5.55 (1H, s, CH-C8), 2.54 (3H, s, CH3-C5), 2.30 (3H, s, 

CH3-C1), 1.25 (9H, s, CH3-t-Bu); 13C NMR (126 MHz, CDCl3)  194.4 (C-C2), 158.4 (C-

C4), 154.8 (C-C6), 141.6 (C-C9), 128.4 (2C, CH-C11), 127.7 (CH-C12), 126.9 (2C, CH-

C10), 122.1 (C-C3), 108.2 (CH-C7), 75.6 (CH-C8), 69.6 (C-t-Bu), 29.2 (CH3-C1), 28.6 

(3C, CH3-t-Bu), 14.7 (CH3-C5); vmax (film) 2974, 1676, 1564, 1366, 1229, 1190, 1047, 

1020 cm−1; HMRS (EI) calcd for C18H22O3 [M]+ 286.1569, found 286.1568.  
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Ynenone 215 

 

 

 

To a stirred solution of alkyne 213 (5.8 g, 31 mmol) in THF (160 mL) at −78 °C was 

added n-BuLi (18 mL of a 2.1 M solution in hexanes, 37 mmol) over a period of 10 min. 

The mixture was stirred at −78 °C for 15 min and then anhydrous DMF (4.8 mL, 

62 mmol) was added. The mixture was stirred at −78 °C for a further 30 min and then 

the reaction was quenched by addition of 10% aqueous KH2PO4 solution (160 mL) and 

diluted with Et2O (60 mL). The mixture was stirred for 10 min and the phases were 

separated. The aqueous phase was extracted with Et2O (3 × 50 mL) and the combined 

organic extracts were dried over MgSO4, filtered and concentrated under reduced 

pressure to afford crude acetylenic aldehyde 214 as a yellow oil. The aldehyde was 

used directly in the next step without further purification.  

 

Rf = 0.50 (petroleum ether-EtOAc, 10:1); 1H NMR (400 MHz, CDCl3)  9.18 (1H, t, J = 

0.8 Hz, CH-C5), 3.80 (2H, t, J = 6.7 Hz, CH2-C1), 2.63 (2H, td, J = 6.7, 0.8 Hz,  

CH2-C2), 0.90 (9H, s, t-Bu-TBS), 0.08 (6H, s, CH3-TBS). 

 

To a stirred solution of crude acetylenic aldehyde 214 and acetylacetone (3.2 mL, 

32 mmol) in toluene (310 mL) at rt were added MgSO4 (0.75 g, 6.2 mmol), piperidine 

(0.15 mL, 1.5 mmol) and acetic acid (1.1 mL, 19 mmol). The mixture was stirred at 

35 °C for 1 h and then the reaction was quenched by addition of water (300 mL). The 

mixture was diluted with EtOAc (100 mL) and the phases were separated. The aqueous 

phase was extracted with EtOAc (3 × 50 mL) and the combined organic extracts were 

dried over MgSO4, filtered and concentrated under reduced pressure. The residue was 

purified by flash column chromatography on silica gel (petroleum ether-EtOAc, 10:3) to 

afford ynenone 215 (6.3 g, 69% over 2 steps) as a pale yellow oil. 
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Rf = 0.31 (petroleum ether/EtOAc 10:3); 1H NMR (400 MHz, CDCl3)  6.64 (1H, t, J = 

2.5 Hz, CH-C5), 3.71 (2H, t, J = 6.7 Hz, CH2-C1), 2.60 (2H, td, J = 6.7, 2.5 Hz,  

CH2-C2), 2.43 (3H, s, CH3-C8’), 2.26 (3H, s, CH3-C8), 0.84 (9H, s, CH3-t-Bu-TBS), 0.02 

(6H, s, CH3-TBS); 13C NMR (101 MHz, CDCl3)  201.2 (C-C7’), 195.7 (C-C7), 149.8 

(C-C6), 122.8 (CH-C5), 107.2 (C-C3), 77.7 (C-C4), 61.1 (CH2-C1), 31.0 (CH3-C8’), 27.3 

(CH3-C8), 25.9 (3C, CH3-t-Bu-TBS), 24.7 (CH2-C2), 18.3 (C-t-Bu-TBS), −5.3 (CH3-

TBS), −5.3 (CH3-TBS); vmax (film) 2930, 1667, 1578, 1360, 1250 cm−1; HMRS (ESI) 

calcd for C16H26NaO3Si [M+Na]+ 317.1543, found 317.1531.  
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Furan 216 

 

 

 

Method 1: 

To a mixture of ynenone 215 (42 mg, 0.14 mmol), benzyl alcohol (0.45 mL, 0.44 mmol) 

and TRIP-H (11 mg, 15 mol) was added a solution of tetrahydrothiophene (0.15 mL 

of a 0.50 M solution in CH2Cl2, 75 mol). The mixture was stirred at 40 °C for 48 h and 

then concentrated under reduced pressure. The residue was purified by flash column 

chromatography on silica gel (petroleum ether-EtOAc, 5:1) to afford furan 216 (43 mg, 

77%) as a pale yellow oil.  

 

Method 2: 

To a mixture of ynenone 215 (0.21 g, 0.71 mmol), benzyl alcohol (0.23 mL, 2.2 mmol) 

and phenylphosphonic acid (12 mg, 76 mol) was added a solution of (1R,4R,5R)-

4,7,7-trimethyl-6-thiabicyclo[3.2.1]octane (0.70 mL of a 0.50 M solution in CH2Cl2, 

0.35 mmol). The mixture was stirred at 40 °C for 2 weeks (conversion 1.0:1.2) and then 

concentrated under reduced pressure. The residue was purified by flash column 

chromatography on silica gel (petroleum ether-EtOAc, 5:1) to afford furan 216 (0.14 g, 

49%) as a pale yellow oil.  

 

Rf = 0.30 (petroleum ether-EtOAc, 5:1; 1H NMR (400 MHz, CDCl3)  7.35−7.25 (5H, 

Ph), 6.49 (1H, s, CH-C7), 4.54 (1H, dd, J = 8.0, 5.8 Hz, CH-C8), 4.53 (1H, d, J = 11.7 

Hz, CHH-C11), 4.39 (1H, d, J = 11.7 Hz, CHH-C11), 3.77 (1H, ddd, J = 10.3, 7.6, 5.1 

Hz, CHH-C10), 3.61 (1H, ddd, J = 10.3, 5.7, 5.7 Hz, CHH-C10), 2.59 (3H, s, CH3-C5), 

2.40 (3H, s, CH3-C1), 2.16 (1H, dddd, J = 13.7, 8.0, 5.7, 5.1 Hz, CHH-C9), 1.98 (1H, 

dddd, J = 13.7, 7.6, 5.8, 5.7 Hz, CHH-C9), 0.87 (9H, s, CH3-t-Bu-TBS), 0.03 (3H, s, 
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CH3-TBS), 0.02 (3H, s, CH3-TBS); 13C NMR (126 MHz, CDCl3)  194.4 (C-C2), 157.5 

(C-C4), 155.8 (C-C6), 138.3 (C-C12), 128.5 (2C, CH-C14), 127.9 (2C, CH-C13), 127.7 

(CH-C15), 122.0 (C-C3), 108.8 (CH-C7), 70.9 (CH2-C8), 70.9 (CH-C11), 59.3 (CH2-

C10), 37.4 (CH2-C9), 29.3 (CH3-C1), 26.0 (3C, CH3-t-Bu-TBS), 18.4 (C-t-Bu-TBS), 14.7 

(CH3-C5), −5.2 (CH3-TBS), −5.3 (CH3-TBS); vmax (film) 2928, 1680, 1564, 1252, 

1092 cm−1; HMRS (ESI) calcd for C23H34NaO4Si [M+Na]+ 425.2119, found 425.2120.  
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Alcohol 217 

 

 

 

To a stirred solution of protected alcohol 216 (43 mg, 0.11 mmol) in MeOH/CH2Cl2 (v/v 

5:2, 1.1 mL) at rt was added camphorsulfonic acid (4.9 mg, 21 mol) in one portion. 

The mixture was stirred for 1 h and then the reaction was quenched by addition of water 

(10 mL). The mixture was diluted with Et2O (10 mL) and the phases were separated. 

The organic phase was washed with saturated aqueous NaHCO3 (5 mL) and brine 

(5 mL). The organic extract was dried over MgSO4, filtered and concentrated under 

reduced pressure. The residue was purified by flash column chromatography on silica 

gel (petroleum ether-EtOAc, 3:2) to afford alcohol 217 (29 mg, 95%) as a colourless 

oil. 

 

Rf = 0.13 (petroleum ether-EtOAc, 3:2); 1H NMR (400M Hz, CDCl3)  7.37–7.27 (5H, 

m, Ph), 6.53 (1H, s, CH-C7), 4.58 (1H, d, J = 11.9 Hz, CHH-C11), 4.56 (1H, dd, J = 9.0, 

4.5 Hz, CH-C8), 4.39 (1H, d, J = 11.9 Hz, CHH-C11), 3.85–3.79 (1H, m, CHH-C10), 

3.75–3.69 (1H, m, CHH-C10), 2.60 (3H, s, CH3-C5), 2.41 (3H, s, CH3-C1), 2.23 (1H, 

dddd, J = 14.6, 9.0, 7.1, 4.5 Hz, CHH-C9), 2.03 (1H, br s, OH), 1.98 (1H, dddd, J = 

14.6, 7.1, 4.5, 4.5 Hz, CHH-C9), 13C NMR (101 MHz, CDCl3)  194.1 (C-C2), 158.7  

(C-C4), 151.8 (C-C6), 137.8 (C-C12), 128.7 (2C, CH-C14), 128.1 (3C, CH-C13, CH-

C15), 122.1 (C-C3), 108.9 (CH-C7), 72.6 (CH-C8), 71.0 (CH2-C11), 60.3 (CH2-C10), 

36.8 (CH2-C9), 29.3 (CH3-C1), 14.7 (CH-C5), vmax (film) 3428 (br), 2928, 1676, 1562, 

1231, 1055 cm−1; HMRS (ESI) calcd for C17H20NaO4 [M+Na]+ 311.1254, found 

311.1243.  
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Menthyl carbonate 218 

 

 

 

To a stirred solution of alcohol 217 (0.10 g, 0.39 mmol) in pyridine/CH2Cl2 (v/v 0.4:5, 

0.50 mL) was added a solution of (1R)-(−)-menthyl chloroformate (0.10 g, 0.46 mmol,) 

in CH2Cl2 (0.50 mL). The mixture was stirred at room temperature for 18 h and then the 

reaction was quenched by addition of CH2Cl2 (5 mL) and 1 M HCl (3 mL). The phases 

were separated and the aqueous phase was extracted with CH2Cl2 (3 × 3 mL). The 

combined organic extracts were washed with saturated aqueous NaHCO3 (3 mL) and 

brine (3 mL) before being dried over MgSO4, filtered and concentrated under reduced 

pressure. The residue was purified by flash column chromatography on silica gel 

(petroleum ether-EtOAc, 5:1) to afford an inseparable mixture of furan 218 (0.14 g, 

76%, 1:1 dr) as a colourless oil. 

 

Rf = 0.17 (petroleum ether-Et2O, 5:1); 1H NMR (400 MHz, CDCl3)  7.35–7.25 (5H, m, 

Ph), 7.35–7.25 (5H, m, Ph), 6.52 (1H, s, CH-C7), 6.51 (1H, s, CH-C7), 4.53 (1H, d, J = 

11.4 Hz, CHH-C11), 4.53 (1H, d, J = 11.4 Hz, CHH-C11), 4.53–4.45 (2H, m, CH-C8, 

CH-C17), 4.53–4.45 (2H, m, CH-C8, CH-C17), 4.38 (1H, d, J = 11.4 Hz, CHH-C11), 

4.38 (1H, d, J = 11.4 Hz, CHH-C11), 4.33–4.27 (1H, m, CHH-C10), 4.33–4.27 (1H, m, 

CHH-C10), 4.19 (1H, ddd, J = 11.0, 5.8, 5.8 Hz, CHH-C10), 4.16 (1H, ddd, J = 11.0, 

5.8, 5.8 Hz, CHH-C10), 2.59 (3H, s, CH3-C5), 2.59 (3H, s, CH3-C5), 2.40 (3H, s, CH3-

C1), 2.40 (3H, s, CH3-C1), 2.34 (1H, ddd, J = 9.6, 5.8, 5.8 Hz, CHH-C9), 2.30 (1H, ddd, 

J = 9.6, 5.8, 5.8 Hz, CHH-C9), 2.16 (1H, ddd, J = 7.9, 5.5, 5.5 Hz, CHH-C9), 2.12 (1H, 

ddd, J = 7.9, 5.5, 5.5 Hz, CHH-C9), 2.06 (1H, br d, J = 11.8 Hz, CHH-C18), 2.06 (1H, 

br d, J = 11.8 Hz, CHH-C18), 1.94 (1H, m, CH-C24), 1.94 (1H, m, CH-C24), 1.69–1.67 

(2H, m, CHH-C21, CHH-C22), 1.69–1.67 (2H, m, CHH-C21, CHH-C22), 1.52–1.47 (1H, 

m, CH-C19), 1.52–1.47 (1H, m, CH-C19), 1.43–1.36 (1H, m, CH-C23), 1.43–1.36 (1H, 
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m, CH-C23), 1.10–0.98 (2H, m, CHH-C18, CHH-C22), 1.10–0.98 (2H, m, CHH-C18, 

CHH-C22), 0.93 (3H, d, J = 4.1 Hz, CH3-C20), 0.91 (3H, d, J = 4.1 Hz, CH3-C20), 0.91 

(3H, d, J = 2.0 Hz, CH3-C25/C25’), 0.90–0.88 (1H, m, CHH-C21), 0.90–0.88 (1H, m, 

CHH-C21), 0.89 (3H, d, J = 2.0 Hz, CH3-C25/C25’), 0.80 (3H, d, J = 3.6 Hz, CH3-

C25/C25’), 0.78 (3H, d, J = 3.6 Hz, CH3-C25/C25’); 13C NMR (101 MHz, CDCl3)  194.1 

(C-C2), 194.1 (C-C2), 158.8 (C-C4), 158.8 (C-C4), 155.0 (C-C16), 154.9 (C-C16), 

151.4 (C-C6), 151.4 (C-C6), 137.9 (C-C12), 137.9 (C-C12), 128.6 (2C, CH-C14), 128.5 

(2C, CH-C14), 128.0 (2C, CH-C13), 127.9 (2C, CH-C13), 127.9 (CH-C15), 127.9 (CH-

C15), 122.0 (C-C3), 122.0 (C-C3), 109.2 (CH-C7), 109.2 (CH-C7), 78.6 (CH-C8), 78.5 

(CH-C8), 71.0 (CH2-C11), 70.9 (CH2-C11), 70.6 (CH-C17), 70.5 (CH-C17), 64.2 (CH2-

C10), 64.2 (CH2-C10), 47.2 (CH-C23), 47.2 (CH-C23), 41.0 (CH2-C18), 40.9 (CH2-

C18), 34.2 (CH2-C21), 34.2 (CH2-C21), 33.6 (CH2-C9), 33.6 (CH2-C9), 31.6 (CH-C19), 

31.6 (CH-C19), 29.3 (CH3-C1), 29.3 (CH3-C1), 26.3 (CH-C24), 26.26 (CH-C24), 23.5 

(CH2-C22), 23.5 (CH2-C22), 22.1 (CH3-C20), 22.1 (CH3-C20), 20.9 (CH3-C25/C25’), 

20.9 (CH3-C25/C25’), 16.5 (CH3-C25/C25’), 16.5 (CH3-C25/C25’), 14.7 (CH3-C5), 14.7 

(CH3-C5); vmax (film) 2955, 1740, 1680, 1260, 1233, 1094 cm−1HMRS (ESI) calcd for 

C28H38NaO6 [M+Na]+ 493.2561, found 493.2537.  
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Menthyl carbonate 218 

 

 

 

To a stirred solution of alcohol 217 (29 mg, 0.11 mmol) in pyridine/CH2Cl2 (v/v 0.8:10, 

0.15 mL) was added a solution of (1R)-(−)menthyl chloroformate (29 mg, 0.13 mmol,) 

in CH2Cl2 (0.15 mL). The mixture was stirred at room temperature for 18 h and then the 

reaction was quenched by addition of CH2Cl2 (5 mL) and 1 M HCl (3 mL). The phases 

were separated and the aqueous phase was extracted with CH2Cl2 (3 × 3 mL). The 

combined organic extracts were washed with saturated aqueous NaHCO3 (3 mL) and 

brine (3 mL) before being dried over MgSO4 and concentrated under reduced pressure. 

The residue was purified by flash column chromatography (petroleum ether-EtOAc, 

5:1) to afford an inseparable mixture of furan 218 (37 mg, 78%, 1:1.2 dr) as a colourless 

oil. 

 

The analytical and spectroscopic data are in agreement with those reported on pages 

107–108   
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Protected alcohol 229a 

 

 

 

To a stirred solution of alcohol 228a (0.99 g, 5.8 mmol) in THF (60 mL) at 0 °C was 

added 2,6-lutidine (1.3 mL, 12 mmol). The mixture was cooled to −78 °C and triethylsilyl 

trifluoromethanesulfonate (1.6 mL, 6.9 mmol) was added slowly. The mixture was 

stirred at −78 °C for 1 h and then allowed to reach rt. The reaction was quenched by 

the addition of MeOH (5 mL), the mixture was diluted with EtOAc (50 mL) and then 

washed with saturated aqueous NaHCO3 (40mL) and brine (40 mL). The organic 

extract was dried over MgSO4, filtered and concentrated under reduced pressure. The 

residue was purified by flash column chromatography on silica gel (petroleum ether-

EtOAc, 300:1) to afford protected alcohol 229a (1.5 g, 91%) as a colourless oil.  

 

Rf = 0.10 (petroleum ether); 1H NMR (500 MHz, CDCl3)  3.94 (1H, dqd, J = 7.5, 6.1, 

5.0 Hz, CH-C2), 2.30 (1H, dd, J = 7.7, 7.1 Hz, CHH-C4), 2.28 (1H, dd, J = 7.7, 7.1 Hz, 

CHH-C4), 1.66–1.56 (2H, m, CH2-C3), 1.16 (3H, d, J = 6.1 Hz, CH3-C1), 0.96 (9H, t, J 

= 8.0 Hz, CH3-TES), 0.61 (6H, q, J = 8.0 Hz, CH2-TES), 0.14 (9H, s, CH3-TMS); 

13C NMR (126 MHz, CDCl3)  107.5 (C-C6), 84.6 (C-C5), 67.01 (CH-C2), 38.4 (CH2-

C3), 23.9 (CH3-C1), 16.5 (CH2-C4), 7.1 (3C, CH3-TES), 5.1 (3C, CH2-TES), 0.3 (CH3-

TMS); vmax (film) 2955, 1248 cm−1; HMRS (ESI) calcd for C15H32NaOSi2 [M+Na]+ 

307.1884, found 307.1873.  
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Ynenone 232a 

 

 

 

To a stirred solution of alcohol 229a (1.5 g, 5.3 mmol) in MeOH (30 mL) at rt was added 

K2CO3 (0.77 g, 5.6 mmol) in one portion. The mixture was stirred for 16 h and then the 

reaction was quenched by addition of water (30 mL). The mixture was diluted with Et2O 

(20 mL) and the phases were separated. The aqueous phase was extracted with Et2O 

(3 × 10 mL) and the combined organic extracts were dried over MgSO4, filtered and 

concentrated under reduced pressure. The residue was filtered through a small pad of 

silica gel (petroleum ether-EtOAc, 300:1) to afford alkyne 230a as a colourless oil. The 

alkyne was used directly in the next step without further purification. 

 

Rf = 0.10 (petroleum ether); 1H NMR (400 MHz, CDCl3)  3.93 (1H, dqd, J = 7.3, 6.1, 

4.9 Hz, CH-C2), 2.25 (2H, ddd, J = 7.4, 7.3, 2.7 Hz, CH2-C4), 1.92 (1H, t, J = 2.7 Hz, 

CH-C6), 1.66–1.59 (2H, m, CH2-C3), 1.16 (3H, d, J = 6.1 Hz, CH3-C1), 0.96 (9H, t, J = 

7.9 Hz, CH3-TES), 0.60 (6H, q, J = 7.9 Hz, CH2-TES). 

 

To a stirred solution of alkyne 230a in THF (55 mL) at −78 °C was added n-BuLi (3.2 

mL of a 2.1 M solution in hexanes, 6.7 mmol) over a period of 10 min. The mixture was 

stirred at −78 °C for 15 min and then anhydrous DMF (0.86 mL, 11 mmol) was added. 

The mixture was stirred at −78 °C for a further 30 min and then the reaction was 

quenched by addition of 10% aqueous KH2PO4 (55 mL). The mixture was diluted with 

EtOAc (20 mL), stirred for 10 min and the phases were separated. The aqueous phase 

was extracted with EtOAc (3 × 10 mL) and the combined organic extracts were dried 

over MgSO4, filtered and concentrated under reduced pressure to afford crude 

acetylenic aldehyde 231a as a yellow oil. The aldehyde was used directly in the next 

step without further purification.  
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Rf = 0.33 (petroleum ether-EtOAc, 10:1); 1H NMR (400 MHz, CDCl3)  9.16 (1H, t, J = 

0.7 Hz, CH-C7), 3.92 (1H, dqd, J = 6.1, 6.1, 6.1 Hz, CH-C2), 2.48 (2H, ddd, J = 7.1, 

7.1, 0.7 Hz, CH2-C4), 1.69 (2H, td, J = 7.1, 6.1 Hz, CH2-C3), 1.17 (3H, d, J = 6.1 Hz, 

CH3-C1), 0.95 (9H, t, J = 8.0 Hz, CH3-TES), 0.60 (6H, q, J = 8.0 Hz, CH2-TES). 

 

To a stirred solution of crude acetylenic aldehyde 231a and acetylacetone (0.57 mL, 

5.6 mmol) in toluene (55 mL) at rt were added MgSO4 (0.14 g, 1.1 mmol), piperidine 

(55 L, 0.56 mmol) and acetic acid (0.19 mL, 3.3 mmol). The mixture was stirred at 

35 °C for 1 h and then the reaction was quenched by addition of water (60 mL). The 

mixture was diluted with Et2O (25 mL) and the phases were separated. The aqueous 

phase was extracted with Et2O (3 × 20 mL) and the combined organic extracts were 

dried over MgSO4, filtered and concentrated under reduced pressure. The residue was 

purified by flash column chromatography on silica gel (petroleum ether-EtOAc, 10:1) to 

afford ynenone 232a (1.2 g, 72% over 3 steps) as a pale yellow oil. 

 

Rf = 0.13 (petroleum ether-EtOAc, 10:1); 1H NMR (400 MHz, CDCl3)  6.69 (1H, dd, J 

= 2.6 Hz, CH-C7), 3.88 (1H, dqd, J = 5.2, 6.1, 6.9 Hz, CH-C2), 2.51 (1H, ddd, J = 7.5, 

7.5, 2.6 Hz, CHH-C4), 2.50 (1H, ddd, J = 7.3, 7.3, 2.6 Hz, CHH-C4), 2.47 (3H, s, CH3-

C10), 2.31 (3H, s, CH3-C10’), 1.69–1.63 (2H, m, CH2-C3), 1.16 (3H, d, J = 6.1 Hz, CH3-

C1), 0.96 (9H, t, J = 8.0 Hz, CH3-TES), 0.60 (6H, q, J = 8.0 Hz, CH2-TES); 13C NMR 

(101 MHz, CDCl3)  201.4 (C-C9), 195.9 (C-C9’), 149.6 (C-C8), 123.3 (CH-C7), 110.5 

(C-C5), 76.9 (C-C6) 67.1 (CH-C2), 37.9 (CH2-C3), 31.1 (CH3-C10), 27.4 (CH3-C10’), 

23.9 (CH3-C1), 16.8 (CH2-C4), 7.0 (3C, CH3-TES), 5.1 (3C, CH2-TES); vmax (film) 2955, 

1692 cm−1; HMRS (ESI) calcd for C18H29NaO3Si [M+Na]+ 344.1778, found 345.1858.  
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Alcohol 233a 

 

 

 

To a stirred solution of protected alcohol 232a (0.91 g, 2.8 mmol) in MeOH (28 mL) at 

rt was added camphorsulfonic acid (66 mg, 0.28 mmol) in one portion. The mixture was 

stirred for 1 h and then the reaction was quenched by addition of water (30 mL) and 

saturated aqueous NaHCO3 (10 mL). The mixture was diluted with Et2O (20 mL) and 

the phases were separated. The aqueous phase was extracted with Et2O (3 × 10 mL) 

and the combined organic extracts were washed with brine (20 mL), dried over MgSO4, 

filtered and concentrated under reduced pressure. The residue was purified by flash 

column chromatography on silica gel (petroleum ether-EtOAc, 1:1) to afford alcohol 

233a (0.47 g, 79%) as a pale yellow oil. 

 

Rf = 0.20 (petroleum ether-EtOAc, 1:1); 1H NMR (400 MHz, CDCl3)  6.64 (1H, t, J = 

2.5 Hz, CH-C7), 3.87 (1H, br dqd, J = 6.2, 6.2, 6.2 Hz, CH-C2), 2.54 (2H, ddd, J = 7.2, 

7.2, 2.5 Hz, CH2-C4), 2.42 (3H, s, CH3-C10), 2.28 (3H, s, CH3-C10’), 1.96 (1H, br s, 

OH), 1.69–1.63 (2H, m, CH2-C3), 1.20 (3H, d, J = 6.2 Hz, CH3-C1); 13C NMR (101 MHz, 

CDCl3)  201.5 (C-C9), 196.0 (C-C9’), 149.8 (C-C8), 123.2 (CH-C7), 109.9 (C-C5), 77.1 

(C-C6), 66.7 (CH-C2), 37.1 (CH2-C3), 31.0 (CH3-C10), 27.2 (CH3-C10’), 23.6 (CH3-C1), 

16.9 (CH2-C4); vmax (film) 3426 (br), 2967, 2210, 1662, 1588, 1578 cm−1; HMRS (ESI) 

calcd for C12H16NaO3 [M+Na]+ 231.0992, found 231.0986.  
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Furans 234a and 234a’ 

 

 

 

To a mixture of ynenone 233a (0.12 g, 0.56 mmol) and phenylphosphonic acid (8.9 mg, 

56 mol) was added a solution of tetrahydrothiophene (0.56 mL of a 0.50 M solution in 

CH2Cl2, 0.28 mmol). The mixture was stirred at 40 °C for 48 h and then concentrated 

under reduced pressure. The residue was purified by flash column chromatography on 

silica gel (petroleum ether-EtOAc, 10:3) to afford an inseparable mixture of furan 234a 

and 234a’ (92 mg, 79%, 1.0:1.2 dr) as a colourless oil. 

 

Rf = 0.22 (petroleum ether-EtOAc, 10:3); 1H NMR (400 MHz, CDCl3)  6.46 (1H, s, CH-

C7 234a’), 6.45 (1H, s, CH-C7 234a), 4.95 (1H, dd, J = 7.1, 6.9 CH-C8 234a), 4.80 (1H, 

dd, J = 7.1, 6.9 Hz, CH-C8 234a’), 4.25-4.17 (1H, tq, J = 8.0, 5.8 Hz, CH-C11 234a), 

4.13-4.05 (1H, tq, J = 8.0, 5.8 Hz, CH-C11 234a’), 2.55 (3H, s, CH3-C5 234a), 2.55 (3H, 

s, CH3-C5 234a’), 2.36 (6H, s, CH3-C1 234a), 2.36 (6H, s, CH3-C1 234a’), 2.28–2.04 

(6H, m, CH2-9 234a, CH2-C9 234a’, CH2-C10 234a/234a’), 1.68–1.54 (2H, m, CH2-10 

234a/234a’), 1.30 (3H, d, J = 6.1 Hz, CH3-C12 234a’), 1.26 (3H, d, J = 6.1 Hz, CH3-

C12 234a); 13C NMR (101 MHz, CDCl3)  194.2 (C-C2 234a’), 194.2 (C-C2 234a), 

158.4 (C-C4 234a), 158.4 (C-C4 234a’), 153.5 (C-C6 234a), 153.2 (C-C6 234a’), 122.0 

(C-C3 234a’), 122.0 (C-C3 234a), 107.3 (CH-C7 234a’), 107.2 (CH-C7 234a), 76.5 

(CH-C11 234a’), 75.6 (CH-C11 234a), 73.9 (CH-C8 234a’), 73.3 (CH-C8 234a), 33.9 

(CH2-C10 234a’), 33.1 (CH2-C10 234a), 30.9 (CH2-C9 234a’), 30.6 (CH2-C9 234a), 

29.2 (CH3-C1 234a’, 29.2 (CH3-C1 234a), 21.3 (CH3-C12 234a’), 21.1 (CH3-C12 234a), 

14.6 (CH3-C5 234a), 14.6 (CH3-C5 234a’); vmax (film) 2970, 1676, 1566, 1404 cm−1; 

HMRS (ESI) calcd for C12H16NaO3 [M+Na]+ 231.0992, found 231.0989.  
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Protected alcohol 229b 

 

 

 

To a stirred solution of alcohol 228b (0.85 g, 4.6 mmol) in THF (45 mL) at 0 °C was 

added 2,6-lutidine (1.1 mL, 9.2 mmol). The mixture was cooled to −78 °C and then 

triethylsilyl trifluoromethanesulfonate (1.3 mL, 5.5 mmol) was added slowly. The 

mixture was stirring at −78 °C for 1 h and then allowed to reach rt. The reaction was 

quenched by the addition of MeOH (2 mL), the mixture was diluted with EtOAc (40 mL) 

and then washed with saturated aqueous NaHCO3 (30 mL) and brine (30 mL). The 

organic extract was dried over MgSO4, filtered and concentrated under reduced 

pressure. The residue was purified by flash column chromatography on silica gel 

(petroleum ether-EtOAc, 300:1) to afford protected alcohol 229b (1.3 g, 91%).  

 

Rf = 0.29 (petroleum ether); 1H NMR (400 MHz, CDCl3)  3.73 (1H, dddd, J = 6.6, 6.6, 

5.6, 5.6 Hz, CH-C3), 2.28 (2H, t, J = 7.2 Hz, CH2-C5), 1.69–1.55 (2H, m, CH2-C4), 1.49 

(1H, qd, J = 7.4, 6.6 Hz, CHH-C2), 1.47 (1H, qd, J = 7.4, 5.6 Hz, CHH-C2), 0.96 (9H, t, 

J = 7.9 Hz, CH3-TES), 0.88 (3H, t, J = 7.4 Hz, CH3-C1), 0.61 (6H, q, J = 7.9 Hz, CH2-

TES), 0.14 (9H, s, CH3-TMS); 13C NMR (101 MHz, CDCl3)  107.7 (C-C7), 84.6 (C-C6), 

72.1 (CH-C3), 35.3 (CH2-C4), 30.0 (CH2-C2), 16.3 (CH2-C5), 9.6 (CH3-C1), 7.1 (3C, 

CH3-TES), 5.2 (3C, CH2-TES), 0.3 (3C, CH3-TMS); vmax (film) 2957, 1250, 1084, 1038, 

1007 cm−1; HMRS (ESI) calcd for C16H34NaOSi2 [M+Na]+ 321.2040, found 321.2032.  
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Ynenone 232b 

 

 

To a stirred solution of alcohol 229b (1.1 g, 3.6 mmol) in MeOH (18 mL) at rt was added 

K2CO3 (0.50 g, 3.6 mmol) in one portion. The mixture was stirred for 16 h and then the 

reaction was quenched by addition of water (20 mL). The mixture was diluted with Et2O 

(15 mL) and the phases were separated. The aqueous phase was extracted with Et2O 

(3 × 10 mL) and the combined organic extracts were dried over MgSO4, filtered and 

concentrated under reduced pressure. The residue was filtered through a small pad of 

silica gel (petroleum ether-EtOAc, 300:1) to afford alkyne 230b as a colourless oil. The 

alkyne was used directly in the next step without further purification. 

 

Rf = 0.50 (petroleum ether); 1H NMR (400 MHz, CDCl3)  3.72 (1H, dddd, J = 5.9, 5.9, 

5.1, 5.1 Hz, CH-C3), 2.23 (2H, td, J = 7.3, 2.7 Hz, CH2-C5), 1.91 (1H, t, J = 2.7 Hz, CH-

C7), 1.70–1.57 (2H, m, CH2-C4), 1.47 (2H, qd, J = 7.4, 5.9 Hz, CH2-C2), 0.96 (9H, t, J 

= 7.9 Hz, CH3-TES), 0.87 (3H, t, J = 7.4 Hz, CH3-C1), 0.60 (6H, q, J = 7.9 Hz, CH2-

TES). 

 

To a stirred solution of alkyne 230b in THF (35 mL) at −78 °C was added n-BuLi (1.9 

mL of a 2.3 M solution in hexanes, 4.4 mmol) over a period of 10 min. The mixture was 

stirred at −78 °C for 15 min and then anhydrous DMF (0.55 mL, 7.1 mmol) was added. 

The mixture was stirred at −78 °C for a further 30 min and then the reaction was 

quenched by addition of 10% aqueous KH2PO4 (35 mL). The mixture was diluted with 

EtOAc (10 mL), stirred for 10 min and the phases were separated. The aqueous phase 

was extracted with EtOAc (3 × 10 mL) and the combined organic extracts were dried 

over MgSO4, filtered and concentrated under reduced pressure to afford crude 

acetylenic aldehyde 231b as a yellow oil. The aldehyde was used directly in the next 

step without further purification.  
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Rf = 0.30 (petroleum ether-EtOAc, 10:1); 1H NMR (400 MHz, CDCl3)  9.18 (1H, t, J = 

0.7 Hz, CH-C8), 3.71 (1H, dddd, J = 6.2, 6.2, 5.5, 5.5 Hz, CH-C3), 2.48 (2H, td, J = 7.5, 

0.7 Hz, CH2-C5), 1.76–1.66 (2H, m, CH2-C4), 1.51–1.46 (2H, m, CH2-C2), 0.96 (9H, t, 

J = 7.9 Hz, CH3-TES), 0.88 (3H, t, J = 7.5 Hz, CH3-C1), 0.61 (6H, q, J = 7.9 Hz, CH2-

TES). 

 

To a stirred solution of of crude acetylenic aldehyde 231b and acetylacetone (0.57 mL, 

5.6 mmol) in toluene (55 mL) at rt were added MgSO4 (0.14 g, 1.1 mmol), piperidine 

(55 L, 0.56 mmol) and acetic acid (0.19 mL, 3.3 mmol). The mixture was stirred at 

35 °C for 1 h and then the reaction was quenched by addition of water (60 mL). The 

mixture was diluted with Et2O (25 mL) and the phases were separated. The aqueous 

phase was extracted with Et2O (3 × 20 mL) and the combined organic extracts were 

dried over MgSO4, filtered and concentrated under reduced pressure. The residue was 

purified by flash column chromatography on silica gel (petroleum ether-EtOAc, 10:1) to 

afford ynenone 232b (0.86 g, 46% over 3 steps) as a pale yellow oil. 

 

Rf = 0.15 (petroleum ether-EtOAc, 10:1); 1H NMR (400 MHz, CDCl3)  6.64 (1H, t, J = 

2.3 Hz, CH-C8), 3.63 (1H, dddd, J = 6.0, 6.0, 5.7, 5.7 Hz, CH-C3), 2.45 (2H, td, J = 7.2, 

2.3 Hz, CH2-C5), 2.41 (3H, s, CH3-C11), 2.25 (3H, s, CH3-C11’), 1.69–1.55 (2H, m, 

CH2-C4), 1.43 (2H, qd, J = 7.4, 5.7 Hz, CH2-C2), 0.90 (9H, t, J = 7.9 Hz, CH3-TES), 

0.82 (3H, t, J = 7.4 Hz, CH3-C1), 0.55 (6H, q, J = 7.9 Hz, CH2-TES); 13C NMR (101 

MHz, CDCl3)  201.1 (C-C10), 195.7 (C-C10’), 149.5 (C-C9), 123.1 (CH-C8), 110.4 (C-

C6), 76.8 (C-C7), 72.0 (CH-C3), 34.7 (CH2-C4), 30.9 (CH3-C11), 29.8 (CH2-C2), 27.2 

(CH3-C11’), 16.4 (CH2-C5), 9.4 (CH3-C1), 6.9 (3C, CH3-TES), 5.1 (3C, CH2-TES); vmax 

(film) 2956, 1692, 1667 cm−1; HMRS (ESI) calcd for C19H32NaO3Si [M+Na]+ 359.2013, 

found 359.1996.  
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Alcohol 233b 

 

 

 

To a stirred solution of protected alcohol 232b (0.79 g, 2.3 mmol) in MeOH (23 mL) at 

rt was added camphorsulfonic acid (54 mg, 0.23 mmol) in one portion. The mixture was 

stirred for 1 h and then the reaction was quenched by addition of water (30 mL) and 

saturated aqueous NaHCO3 (10 mL). The mixture was diluted with Et2O (20 mL) and 

the phases were separated. The aqueous phase was extracted with Et2O (3 × 10 mL) 

and the combined organic extracts were washed with brine (3 × 20 mL), dried over 

MgSO4, filtered and concentrated under reduced pressure. The residue was purified by 

flash column chromatography on silica gel (petroleum ether-EtOAc 1:1) to afford 

alcohol 233b (0.42 g, 81%) as a pale yellow oil. 

 

Rf = 0.21 (petroleum ether-EtOAc, 1:1); 1H NMR (400 MHz, CDCl3)  6.64 (1H, t, J = 

2.5 Hz, CH-C8), 3.57 (1H, m, CH-C3), 2.55 (2H, tdd, J = 7.0, 2.5, 1.0 Hz, CH2-C5), 2.41 

(3H, s, CH3-C11), 2.27 (3H, s, CH3-C11’), 2.05 (1H, br s, OH), 1.73–1.55 (2H, m, CH2-

C4), 1.51–1.39 (2H, m, CH2-C2), 0.91 (3H, t, J = 7.5 Hz, CH3-C1); 13C NMR (126 MHz, 

CDCl3) 201.5 (C-C10), 196.0 (C-C10’), 149.8 (C-C9), 123.3 (CH-C8), 110.1 (C-C6), 

77.0 (C-C7), 71.9 (CH-C3), 35.0 (CH2-C4), 31.0 (CH3-C11), 30.3 (CH2-C2), 27.2 (CH3-

C11’), 16.9 (CH2-C5), 10.0 (CH3-C1); vmax (film) 3444 (br), 2924, 2210, 1662, 1587, 

1422 cm−1; HMRS (ESI) calcd for C13H18NaO3 [M+Na]+ 245.1148, found 245.1142.  
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Furans 234b and 234b’ 

 

 

 

To a solution of ynenone 233b (0.39 mg, 1.8 mmol) and phenylphosphonic acid (28 

mg, 0.18 mmol) was added a solution of tetrahydrothiophene (1.7 mL of a 0.50 M 

solution in CH2Cl2, 0.85 mmol). The mixture was stirred at 40 °C for 48 h and then 

concentrated under reduced pressure. The residue was purified by flash column 

chromatography on silica gel (petroleum ether-EtOAc, 10:3) to afford an inseparable 

mixture of furan 234b and 234b’ (0.30 mg, 77% 1.0:1.1 dr) as a colourless oil. 

 

Rf = 0.23 (petroleum ether-EtOAc, 10:3); 1H NMR (400 MHz, CDCl3)  6.46 (1H, s, CH-

C7 234b), 6.46 (1H, s, CH-C7 234b’), 4.92 (1H, t, J = 7.0 Hz, CH-C8 234b), 4.81 (1H, 

t, J = 7.0 Hz, CH-C8 234b’), 4.02 (1H, tt, J = 7.8 ,6.2 Hz, CH-C11 234b), 3.89 (1H, tt, 

J = 7.7, 6.3 Hz, CH-C11 234b’), 2.57 (3H, s, CH3-C5 234b), 2.56 (3H, s, CH3-C5 234b’), 

2.37 (3H, s, CH3-C1 234b’), 2.37 (3H,s, CH3-C1 234b), 2.26–2.01 (6H, m, CH2-C9 

234b, CH2-C9 234b’, CH2-C10 234b/234b’), 1.77–1.42 (6H, m, CH2-10 234b/234b’, 

CH2-C12 234b, CH2-C12 234b’), 0.95 (3H, t, J = 7.5 Hz, CH3-C13 234b’), 0.94 (3H, t, 

J = 7.5 Hz, CH3-C13 234b), 13C NMR (101 MHz, CDCl3)  194.3 (C-C2 234b’), 194.3 

(C-C2 234b), 158.4 (C-C4 234b), 158.3 (C-C4 234b’), 153.5 (C-C6 234b), 153.4 (C-

C6 234b’), 122.0 (C-C3 234b’), 122.0 (C-C3 234b), 107.3 (CH-C7 234b’), 107.3 (CH-

C7 234b), 82.0 (CH-C11 234b’), 81.1 (CH-C11 234b), 73.7 (CH-C8 234b’), 73.3 (CH-

C8 234b), 31.6 (CH2-C9 234b/234b’), 30.8 (CH2-C10 234b/234b’), 30.8 (CH2-C9 

234b/234b’’), 30.5 (CH2 C10 234b/234b’), 29.2 (CH3-C1 234b), 29.2 (CH3-C1 234b’), 

28.7 (CH2-C12 234b’), 28.6 (CH2-C12 234b), 14.6 (CH3-C5 234b), 14.6 (CH3-C5 

234b’), 10.5 (CH3-C13 234b’), 10.3 (CH3-C13 234b); vmax (film) 2965, 1676, 1566, 1406 

cm−1; HMRS (ESI) calcd for C13H18NaO3 [M+Na]+ 245.1148, found 2245.1143.  
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Alcohol 228c 

 

 

 

To a stirred solution of oxalyl chloride (6.0 mL, 71 mmol) in CH2Cl2 (320 mL) at −78 °C 

was added DMSO (9.9 mL, 0.14 mol) dropwise. The mixture was stirred at −78 °C for 

15 min and then a solution of alcohol 226c (9.1 g, 58 mmol) in CH2Cl2 (15 mL) was 

added slowly. The mixture was stirred at −78 °C for a further 1 h. Et3N (43 mL, 0.31 

mmol) was added, the mixture was allowed to reach rt and then the reaction was 

quenched by addition of water (320 mL). The phases were separated and the organic 

phase was washed with 1 M HCl (3 × 80 mL), saturated aqueous NaHCO3 (80 mL) and 

brine (80 mL). The organic extract was dried over MgSO4, filtered and concentrated 

under reduced pressure to afford crude aldehyde 227c as a yellow oil. The aldehyde 

was used directly in the next step without further purification.  

 

Rf = 0.26 (petroleum ether-EtOAc, 5:1); 1H NMR (400 MHz, CDCl3)  9.79 (1H, t, J = 

1.2 Hz, CH-C1), 2.67 (2H, m, CH2-C2), 2.54 (2H, m, CH2-C3), 0.14 (9H, s, CH3-TMS). 

 

To a stirred solution of crude aldehyde 227c in THF (500 mL) at −78 °C was added  

i-propylmagnesium chloride (58 mL of a 2.0 M solution in Et2O, 0.12 mol). The mixture 

was allowed to reach rt, stirred for 16 h and then the reaction was quenched by addition 

of saturated aqueous NH4Cl (500 mL). The mixture was diluted with Et2O (200 mL) and 

the phases were separated. The aqueous phase was extracted with Et2O (3 × 100 mL) 

and the combined organic extracts were dried over MgSO4, filtered and concentrated 

under reduced pressure. The residue was purified by flash column chromatography on 

silica gel (petroleum ether-EtOAc, 5:1) to afford alcohol 228c (9.2 g, 80% over 2 steps) 

as a colourless oil. 

 

Rf = 0.16 (petroleum ether-EtOAc, 5:1); 1H NMR (400 MHz, CDCl3)  3.48 (1H, dddd, 

J = 9.0, 9.0, 5.1, 2.5 Hz, CH-C3), 2.39 (1H, ddd, J = 17.0, 6.9, 6.9 Hz, CHH-C5), 2.34 

(1H, ddd, J = 17.0, 7.2, 7.2 Hz, CHH-C5), 1.76 (1H, br s, OH), 1.73–1.66 (1H, m, CHH-
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C4), 1.70 (1H, septd, J = 6.9, 5.1 Hz, CH-C2), 1.57 (1H, dddd, J = 16.1, 9.0, 7.2, 6.9 

Hz, CHH-C4), 0.92 (3H, d, J = 6.9 Hz, CH3-C1), 0.92 (3H, d, J = 6.9 Hz, CH3-C1’), 0.14 

(9H, s, CH3-TMS); 13C NMR (101 MHz, CDCl3)  107.4 (C-C7), 85.3 (C-C6), 76.2 (CH-

C3), 33.7 (CH-C2), 32.9 (CH2-C4), 18.8 (CH3-C1/C1’), 17.5 (CH3-C1/C1’), 17.1 (CH2-

C5), 0.3 (3C, CH3-TMS); vmax (film) 2959, 1248, 1053 cm−1; HMRS (ESI) calcd for 

C11H22NaOSi [M+Na]+ 221.1332, found 221.1328.  
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Protected alcohol 229c 

 

 

 

To a stirred solution of alcohol 228c (4.9 g, 26 mmol) in THF (250 mL) at 0 °C was 

added 2,6-lutidine (5.7 mL, 49 mmol). The mixture was cooled to −78 °C and then 

triethylsilyl trifluoromethanesulfonate (6.7 mL, 30 mmol) was added slowly. The mixture 

was stirred at −78 °C for 1 h and then allowed to reach rt. The reaction was quenched 

by the addition of MeOH (10 mL), the mixture was diluted with EtOAc (200 mL) and 

then washed with saturated aqueous NaHCO3 (150 mL) and brine (150 mL). The 

organic extract was dried over MgSO4, filtered and concentrated under reduced 

pressure. The residue was purified by flash column chromatography on silica gel 

(petroleum ether-EtOAc, 300:1) to afford protected alcohol 229c (7.4 g, 92%) as a 

colourless oil.  

 

Rf = 0.35 (petroleum ether); 1H NMR (400 MHz, CDCl3)  3.62 (1H, ddd, J = 6.6, 5.1, 

4.4 Hz, CH-C3), 2.30 (1H, ddd, J = 17.1, 7.0, 7.0 Hz, CHH-C5), 2.24 (1H, ddd, J = 17.1, 

7.6, 7.6 Hz, CHH-C5), 1.74 (1H, septd, J = 6.9, 4.4 Hz, CH-C2), 1.59–1.54 (2H, m, 

CH2-C4), 0.96 (9H, t, J = 7.9 Hz, CH3-TES), 0.88 (3H, d, J = 6.9 Hz, CH3-C1/C1’), 0.86 

(3H, d, J = 6.9 Hz, CH3-C1/C1’), 0.61 (6H, q, J = 7.9 Hz, CH2-TES), 0.14 (9H, s, CH3-

TMS); 13C NMR (101 MHz, CDCl3)  107.8 (C-C7), 84.7 (C-C6), 75.6 (CH-C3), 33.3 

(CH-C2), 31.6 (CH2-C4), 18.1 (CH3-C1/C1’), 17.5 (CH3-C1/C1’), 16.5 (CH2-C5), 7.2 

(3C, CH3-TES), 5.4 (3C, CH2-TES), 0.3 (3C, CH3-TMS); vmax (film) 2957, 2176, 1250, 

1080, 1055 cm−1; HMRS (ESI) calcd for C17H36NaOSi2 [M+Na]+ 335.2197, found 

335.2184.  
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Ynenone 232c 

 

 

 

To a stirred solution of alcohol 229c (9.5 g, 31 mmol) in MeOH (150 mL) at rt was added 

K2CO3 (5.1 g, 37 mmol) in one portion. The mixture was stirred for 16 h and then the 

reaction was quenched by addition of water (150 mL). The mixture was diluted with 

Et2O (70 mL) and the phases were separated. The aqueous phase was extracted with 

Et2O (3 × 50 mL) and the combined organic extracts were dried over MgSO4, filtered 

and concentrated under reduced pressure. The residue was filtered through a small 

pad of silica gel (petroleum ether-EtOAc, 300:1) to afford alkyne 230c as a colourless 

oil. The alkyne was used directly in the next step without further purification. 

 

Rf = 0.52 (petroleum ether); 1H NMR (400 MHz, CDCl3)  3.59 (1H, ddd, J = 6.0, 6.0, 

4.5 Hz, CH-C3), 2.31–2.15 (2H, m, CH2-C5), 1.93 (1H, t, J = 2.7 Hz, CH-C7), 1.73 (1H, 

septd, J = 7.0, 4.5 Hz, CH-C2), 1.60 (2H, ddd, J = 7.0, 7.0, 6.0 Hz, CH2-C4), 0.96 (9H, 

t, J = 7.9 Hz, CH3-TES), 0.88 (3H, d, J = 7.0 Hz, CH3-C1/C1’), 0.86 (3H, d, J = 7.0 Hz, 

CH3-C1/C1’), 0.61 (6H, q, J = 7.9 Hz, CH2-TES). 

 

To a stirred solution of alkyne 230c in THF (300 mL) at −78 °C was added n-BuLi (15 

ml of a 2.4 M solution in hexanes, 36 mmol) over a period of 10 min. The mixture was 

stirred at −78 °C for 15 min and then anhydrous DMF (4.5 mL, 58 mmol) was added. 

The mixture was stirred at −78 °C for a further 30 min and then the reaction was 

quenched by addition of 10% aqueous KH2PO4 (300 mL). The mixture was diluted with 

EtOAc (150 mL), stirred for 10 min and the phases were separated. The aqueous phase 

was extracted with EtOAc (3 × 100 mL) and the combined organic extracts were dried 

over MgSO4, filtered and concentrated under reduced pressure to afford crude 

acetylenic aldehyde 231c as a yellow oil. The aldehyde was used directly in the next 

step without further purification.  
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Rf = 0.33 (petroleum ether-EtOAc, 10:1); 1H NMR (400 MHz, CDCl3)  9.17 (1H, t, J = 

0.9 Hz, CH-C8), 3.56 (1H, ddd, J = 6.8, 4.9, 4.9 Hz, CH-C3), 2.54–2.39 (2H, m, CH2-

C5), 1.73 (1H, septd, J = 6.8, 4.9 Hz, CH-C2), 1.69–1.64 (2H, m, CH2-C4), 0.96 (9H, t, 

J = 7.9 Hz, CH3-TES), 0.87 (3H, d, J = 6.8 Hz, CH3-C1/C1’), 0.86 (3H, d, J = 6.8 Hz, 

CH3-C1/C1’), 0.60 (6H, q, J = 7.9 Hz, CH2-TES). 

 

To a stirred solution of crude acetylenic aldehyde 231c and acetylacetone (2.7 mL, 26 

mmol) in toluene (250 mL) at rt were added MgSO4 (0.610 g, 5.07 mmol), piperidine 

(0.13 mL, 1.3 mmol) and acetic acid (880 L, 15.4 mmol). The mixture was stirred at 

35 °C for 1 h and then the reaction was quenched by addition of water (250 mL). The 

mixture was diluted with Et2O (100 mL) and the phases were separated. The aqueous 

phase was extracted with Et2O (3 × 80 mL) and the combined organic extracts were 

dried over MgSO4, filtered and concentrated under reduced pressure. The residue was 

purified by flash column chromatography on silica gel (petroleum ether-EtOAc, 10:1) to 

afford ynenone 232c (8.0 g, 75% over 3 steps) as a pale yellow oil. 

 

Rf = 0.16 (petroleum ether-EtOAc, 10:1); 1H NMR (400 MHz, CDCl3)  6.70 (1H, t, J = 

2.4 Hz, CH-C8), 3.54 (1H, ddd, J = 7.0, 7.0, 4.6 Hz, CH-C3), 2.57–2.41 (2H, m, CH2-

C5), 2.47 (3H, s, CH3-C11), 2.32 (3H, s, CH3-C11’), 1.73 (1H, septd, J = 6.9, 4.6 Hz, 

CH-C2), 1.66–1.60 (2H, m, CH2-C4), 0.96 (9H, t, J = 7.9 Hz, CH3-TES), 0.87 (3H, d, J 

= 6.9 Hz, CH3-C1/C1’), 0.86 (3H, d, J = 6.9 Hz, CH3-C1/C1’), 0.60 (6H, q, J = 7.9 Hz, 

CH2-TES); 13C NMR (101 MHz, CDCl3)  201.4 (C-C10), 196.0 (C-C10’), 149.6 (C-C9), 

123.4 (CH-C8), 110.8 (C-C6), 77.0 (C-C7), 75.7 (CH-C3), 33.4 (CH-C2), 31.1 (CH2-

C4), 31.1 (CH3-C11), 27.4 (CH3-C11’), 18.4 (CH3-C1/C1’), 17.3 (CH3-C1/C1’), 16.8 

(CH2-C5), 7.1 (3C, CH3-TES), 5.3 (3C, CH2-TES); vmax (film) 2958, 1666, 1424 cm−1; 

HMRS (ESI) calcd for C20H34NaO3Si [M+Na]+ 373.2169, found 373.2152.  
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Alcohol 233c 

 

 

 

To a stirred solution of protected alcohol 232c (8.0 g, 23 mmol) in MeOH (115 mL) at 

rt was added camphorsulfonic acid (0.27 g, 1.2 mmol) in one portion. The mixture was 

stirred 1 h and then the reaction was quenched by addition of water (120 mL) and 

saturated aqueous NaHCO3 (20 mL). The mixture was diluted with Et2O (100 mL) and 

the phases were separated. The aqueous phase was extracted with Et2O (3 × 80 mL) 

and the combined organic extracts were washed with brine (3 × 50 mL), dried over 

MgSO4, filtered and concentrated under reduced pressure. The residue was purified by 

flash column chromatography on silica gel (petroleum ether-EtOAc, 1:1) to afford 

alcohol 233c (4.4 g, 81%) as a pale yellow oil. 

 

Rf = 0.23 (petroleum ether-EtOAc, 1:1); 1H NMR (500 MHz, CDCl3)  6.68 (1H, t, J = 

2.5 Hz, CH-C8), 3.46 (1H, dddd, J = 8.3, 5.3, 2.9, 2.9 Hz, CH-C3), 2.62–2.58 (2H, m, 

CH2-C5), 2.46 (3H, s, CH3-C11), 2.32 (3H, s, CH3-C11’), 1.76–1.70 (1H, qd, J = 6.9, 

2.9 Hz, CH-C2), 1.69–1.59 (2H, m, CH2-C4), 1.55 (1H, br s, OH), 0.94 (3H, d, J = 6.9 

Hz, CH3-C1/C1’), 0.94 (3H, d, J = 6.9 Hz, CH3-C1/C1’); 13C NMR (126 MHz, CDCl3)  

201.5 (C-C10), 196.0 (C-C10’), 149.9 (C-C9), 123.3 (CH-C8), 110.1 (C-C6), 77.2 (C-

C7), 75.5 (CH-C3), 33.9 (CH-C2), 32.5 (CH2-C4), 31.1 (CH3-C11), 27.3 (CH3-C11’), 

18.8 (CH3-C1/C1’), 17.4 (CH3-C1/C1’), 17.3 (CH2-C5); vmax (film) 3600 (br), 2962, 1771, 

1677, 1606 cm−1; HMRS (ESI) calcd for C14H20NaO3 [M+Na]+ 259.1305, found 

259.1309.  
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Furans 234c and 234c’ 

 

 

 

To a solution of ynenone 233c (0.11 g, 0.46 mmol) and phenylphosphonic acid (8.2 

mg, 52 mol) was added a solution of tetrahydrothiophene (0.50 mL of a 0.50 M solution 

in CH2Cl2, 0.25 mmol). The mixture was stirred at 40 °C for 48 h and then concentrated 

under reduced pressure. The residue was purified by flash column chromatography on 

silica gel (petroleum ether-EtOAc, 5:2) to afford an inseparable mixture of furan 234c 

and 234c’ (78 mg, 71%, 1.2:1 dr) as a colourless oil. 

 

Rf = 0.45 (petroleum ether-EtOAc, 5:2); 1H NMR (500 MHz, CDCl3)  6.46 (1H, s, CH-

C7 234c), 6.46 (1H, s, CH-C7 234c’), 4.89 (1H, t, J = 6.9 Hz, CH-C8 234c), 4.82 (1H, 

t, J = 6.9 Hz, CH-C8 234c’), 3.81 (1H, ddd, J = 8.6, 6.8, 6.1 Hz, CH-C11 234c), 3.67 

(1H, ddd, J = 6.8, 6.8, 8.0 Hz, CH-C11 234c’), 2.57 (3H, s, CH3-C5 234c), 2.57 (3H, s, 

CH3-C5 234c’), 2.38 (3H, s, CH3-C1 234c), 2.38 (3H, s, CH3-C1 234c’), 2.24–2.07 (4H, 

m, CH2-C9 234c’, CH2-C9 234c), 2.07–1.95 (2H, m, CH2-C10 234c’/234c), 1.80–1.72 

(2H, m, CH-C12 234c’, CH-C12 234c), 1.72–1.64 (2H, m, CH2-C10 234c’/234c), 0.99 

(3H, d, J = 6.6 Hz, CH3-C13/C13’ 234c’), 0.98 (3H, d, J = 6.6 Hz, CH3-C13/C13’ 234c), 

0.90 (3H, d, J = 6.6 Hz, CH3-C13/C13’ 234c’), 0.89 (3H, d, J = 6.6 Hz, CH3-C13/C13’ 

234c). 13C NMR (126 MHz, CDCl3)  194.4 (C-C2 234c’), 194.3 (C-C2 234c), 158.4 (C-

C4 234c’), 158.3 (C-C4 234c), 153.5 (C-C6 234c’), 153.4 (C-C6 234c), 122.0 (C-C3 

234c’), 122.0 (C-C3 234c), 107.3 (CH-C7 234c’), 107.2 (CH-C7 234c), 86.0 (CH-C11 

234c), 85.1 (CH-C11 234c’), 73.7 (CH-C8 234c), 73.5 (CH-C8 234c’), 33.2 (CH-C12 

234c), 33.1 (CH-C12 234c’), 31.0 (CH2-C9 234c’), 30.7 (CH2-C9 234c), 29.3 (CH2-C10 

234c’), 29.3 (CH3-C1 234c’), 29.3 (CH3-C1 234c), 28.7 (CH2-C10 234c), 19.6 (CH3-

C13/C13’ 234c), 19.5 (CH3-C13/C13’ 234c’), 18.6 (CH3-C13/C13’ 234c), 18.3 (CH3-

C13/C13’ 234c’), 14.7 (CH3-C5 234c’), 14.7 (CH3-C5 234c);vmax (film) 2959, 1676, 
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1566, 1406 cm−1; HMRS (ESI) calcd for C14H20NaO3 [M+Na]+ 259.1305, found 

259.1296.  
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Alcohol 228d 

 

 

 

To a stirred solution of oxalyl chloride (2.3 mL, 27 mmol) in CH2Cl2 (200 mL) at −78 °C 

was added DMSO (3.8 mL, 33 mmol) dropwise. The mixture was stirred at −78 °C for 

15 min and then a solution of alcohol 226d (3.8 g, 23 mmol) in CH2Cl2 (7 mL) was 

added slowly. The mixture was stirred at −78 °C for a further 1 h. Et3N (17 mL, 0.12 

mol) was added, the mixture was allowed to reach rt and then the reaction was 

quenched by addition of water (200 mL). The phases were separated and the organic 

phase was washed with 1 M HCl (3 × 70 mL), saturated aqueous NaHCO3 (70 mL) and 

brine (70 mL). The organic extract was dried over MgSO4, filtered and concentrated 

under reduced pressure to afford crude aldehyde 227d as a yellow oil. The aldehyde 

was used directly in the next step without further purification.  

 

Rf = 0.40 (petroleum ether-EtOAc, 10:3); 1H NMR (400 MHz, CDCl3)  9.81 (1H, t, J = 

1.4 Hz, CH-C1), 2.59 (2H, td, J = 7.2, 1.4 Hz, CH2-C2), 2.30 (2H, t, J = 6.9 Hz, CH2-

C4), 1.84 (2H, tt, J = 7.2, 6.9 Hz, CH2-C3), 0.14 (9H, s, CH3-TMS). 

 

To a stirred solution of crude aldehyde 227d in THF (210 mL) at −78 °C was added  

t-butylmagnesium chloride (21 mL of a 2.0 M solution in Et2O, 42 mmol). The mixture 

was allowed to reach rt, stirred for 16 h and then the reaction was quenched by addition 

of saturated aqueous NH4Cl (200 mL). The mixture was diluted with Et2O (100 mL) and 

the phases were separated. The aqueous phase was extracted with Et2O (3 × 70 mL) 

and the combined organic extracts were dried over MgSO4, filtered and concentrated 

under reduced pressure. The residue was purified by flash column chromatography on 

silica gel (petroleum ether-EtOAc, 10:1) to afford alcohol 228d (3.2 g, 62% over 2 

steps) as a colourless oil. 
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Rf = 0.10 (petroleum ether-EtOAc, 10:1); 1H NMR (400 MHz, CDCl3)  3.23 (1H, br dd, 

J = 10.7, 1.8 Hz, CH-C1), 2.22 (2H, dd, J = 6.7, 6.4 Hz, CH2-C4), 1.84–1.65 (2H, m, 

CHH-C2, CHH-C3), 1.61–1.50 (1H, m, CHH-C3), 1.47 (1H, br s, OH), 1.41–1.28 (1H, 

m, CHH-C2), 0.90 (9H, s, CH3-t-Bu), 0.14 (9H, s, CH3-TMS); 13C NMR (126 MHz, 

CDCl3)  107.6 (C-C6), 85.0 (C-C5), 79.5 (CH-C1), 35.2 (C-t-Bu), 30.5 (CH2-C2), 26.0 

(CH2-C3), 25.8 (3C, CH3-t-Bu), 19.8 (CH2-C4), 0.3 (3C, CH3-TMS); vmax (film) 2957, 

2174, 1248, 1076 cm−1; HMRS (ESI) calcd for C13H26NaOSi [M+Na]+ 249.1645, found 

249.1635. 
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Protected alcohol 229d 

 

 

 

To a stirred solution of alcohol 228d (3.2 g, 14 mmol) in THF (140 mL) at 0 °C was 

added 2,6-lutidine (3.2 mL, 28 mmol). The mixture was cooled to −78 °C and then 

triethylsilyl trifluoromethanesulfonate (3.8 mL, 17 mmol) was added slowly. The mixture 

was stirred at −78 °C for 1 h and then allowed to reach rt. The reaction was quenched 

by addition of MeOH (5 mL), the mixture was diluted with EtOAc (150 mL) and then 

washed with saturated aqueous NaHCO3 (100 mL) and brine (100 mL). The organic 

extract was dried over MgSO4, filtered and concentrated under reduced pressure. The 

residue was purified by flash column chromatography on silica gel (petroleum ether-

EtOAc, 300:1) to afford protected alcohol 229d (4.4 g, 93%) as a colourless oil.  

 

Rf = 0.79 (petroleum ether); 1H NMR (500 MHz, CDCl3)  3.26 (1H, dd, J = 7.7, 2.7 Hz, 

CH-C1), 2.22 (2H, dd, J = 6.6, 6.6 Hz, CH2-C4), 1.74–1.61 (2H, m, CHH-C2, CHH-C3), 

1.49–1.33 (2H, m, CHH-C2, CHH-C3), 0.97 (9H, t, J = 7.9 Hz, CH3-TES), 0.86 (9H, s, 

CH3-t-Bu), 0.61 (6H, q, J = 7.9 Hz, CH2-TES), 0.14 (9H, s, CH3-TMS); 13C NMR (126 

MHz, CDCl3)  107.6 (C-C6), 84.8 (C-C5), 80.8 (CH-C1), 36.0 (C-t-Bu), 32.4 (CH2-C2), 

26.7 (CH2-C3), 26.4 (3C, CH3-t-Bu), 20.3 (CH2-C4), 7.3 (3C, CH3-TES), 5.8 (3C, CH2-

TES), 0.3 (3C, CH3-TMS); vmax (film) 2955, 2176, 1250, 1099, 1009 cm−1; HMRS (ESI) 

calcd for C19H40NaOSi2 [M+Na]+ 363.2510, found 363.2494.  
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Ynenone 232d 

 

 

 

To a stirred solution of alcohol 229d (4.4 g, 13 mmol) in MeOH (65 mL) at rt was added 

K2CO3 (1.9 g, 14 mmol) in one portion. The mixture was stirred for 16 h and then the 

reaction was quenched by addition of water (65 mL). The mixture was diluted with Et2O 

(40 mL) and the phases were separated. The aqueous phase was extracted with Et2O 

(3 × 20 mL) and the combined organic extracts were dried over MgSO4, filtered and 

concentrated under reduced pressure. The residue was filtered through a small pad of 

silica gel (petroleum ether-EtOAc, 300:1) to afford alkyne 230d as a colourless oil. The 

alkyne was used directly in the next step without further purification. 

 

Rf = 0.67 (petroleum ether); 1H NMR (400 MHz, CDCl3)  3.27 (1H, dd, J = 8.0, 2.7 Hz, 

CH-C1), 2.19 (2H, td, J = 6.7, 2.6 Hz, CH2-C4), 1.94 (1H, t, J = 2.6 Hz, CH-C6), 1.77–

1.59 (2H, m, CH2-C3), 1.51–1.34 (2H, m, CH2-C2), 0.97 (9H, t, J = 8.0 Hz, CH3-TES), 

0.85 (9H, s, CH3-t-Bu), 0.62 (6H, q, J = 8.0 Hz, CH2-TES). 

 

To a stirred solution of alkyne 230d in THF (100 mL) at −78 °C was added n-BuLi 

(5.3 mL of a 2.3 M solution in hexanes, 12 mmol) over a period of 10 min. The mixture 

was stirred at −78 °C for 15 min and then anhydrous DMF (1.6 mL, 20 mmol) was 

added. The mixture was stirred at −78 °C for a further 30 min and then the reaction was 

quenched by addition of 10% aqueous KH2PO4 (100 mL). The mixture was diluted with 

EtOAc (70 mL), stirred for 10 min and the phases were separated. The aqueous phase 

was extracted with EtOAc (3 × 50 mL) and the combined organic extracts were dried 

over MgSO4, filtered and concentrated under reduced pressure to afford crude 

acetylenic aldehyde 231d as a yellow oil. The aldehyde was used directly in the next 

step without further purification.  
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Rf = 0.36 (petroleum ether-EtOAc, 10:1); 1H NMR (400 MHz, CDCl3)  9.18 (1H, t, J = 

0.7 Hz, CH-C7), 3.27 (1H, dd, J = 8.1, 2.7 Hz, CH-C1), 2.41 (2H, td, J = 6.9, 0.7 Hz, 

CH2-C4), 1.65–1.50 (2H, m, CH2-C3) 1.45–1.37 (2H, m, CH2-C2), 0.97 (9H, t, J = 8.0 

Hz, CH3-TES), 0.86 (9H, s, CH3-t-Bu), 0.62 (6H, q, J = 8.0 Hz, CH2-TES). 

 

To a stirred solution of crude acetylenic aldehyde 231d and acetylacetone (0.97 mL, 

9.5 mmol) in toluene (95 mL) at rt were added MgSO4 (0.23 g, 1.9 mmol), piperidine 

(46 L, 0.47 mmol) and acetic acid (0.32 mL, 5.6 mmol). The mixture was stirred at 

35 °C for 1 h and then the reaction was quenched by addition of water (95 mL). The 

mixture was diluted with Et2O (60 mL) and the phases were separated. The aqueous 

phase was extracted with Et2O (3 × 40 mL) and the combined organic extracts were 

dried over MgSO4, filtered and concentrated under reduced pressure. The residue was 

purified by flash column chromatography on silica gel (petroleum ether-EtOAc, 10:1) to 

afford ynenone 232d (2.6 g, 54% over 3 steps) as a pale yellow oil. 

 

Rf = 0.15 (petroleum ether-EtOAc, 10:1); 1H NMR (400 MHz, CDCl3)  6.70 (1H, t, J = 

2.5 Hz), 3.26 (1H, dd, J = 8.4, 2.6 Hz), 2.47 (3H, s, CH3-C10), 2.44 (2H, td, J = 7.0, 2.5 

Hz, CH2-C4), 2.31 (3H, s, CH3-C10’), 1.79–1.71 (1H, m, CHH-C3), 1.61–1.55 (1H, m, 

CHH-C2), 1.54-1.45 (1H, m, CHH-C3), 1.42–1.34 (1H, m, CHH-C2), 0.97 (9H, t, J = 

8.0 Hz, CH3-TES), 0.85 (9H, s, CH3-t-Bu), 0.61 (6H, q, J = 8.0 Hz, CH2-TES); 13C NMR 

(126 MHz, CDCl3)  201.4 (C-C9), 196.0 (C-C9’), 149.6 (C-C8), 123.4 (CH-C7), 110.3 

(C-C5), 80.8 (CH-C1), 77.1 (C-C6), 35.9 (C-t-Bu), 32.6 (CH2-C2), 31.1 (CH3-C10), 27.5 

(CH3-C10’), 26.4 (3C, CH3-t-Bu), 26.3 (CH2-C3), 20.8 (CH2-C4), 7.3 (3C, CH3-TES), 

5.8 (3C, CH2-TES); vmax (film) 2955, 1692, 1667 cm−1; HMRS (ESI) calcd for 

C22H38NaO3Si [M+Na]+ 401.2482, found 401.2493.  
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Alcohol 233d 

 

 

 

To a stirred solution of protected alcohol 232d (2.6 g, 6.8 mmol) in MeOH (35 mL) at rt 

was added camphorsulfonic acid (80 mg, 0.34 mmol) in one portion. The mixture was 

stirred for 1 h and then the reaction was quenched by addition of water (40 mL) and 

saturated aqueous NaHCO3 (5 mL). The mixture was diluted with Et2O (30 mL) and the 

phases were separated. The aqueous phase was extracted with Et2O (3 × 20 mL) and 

the combined organic extracts were washed with brine (20 mL), dried over MgSO4, 

filtered and concentrated under reduced pressure. The residue was purified by flash 

column chromatography on silica gel (petroleum ether-EtOAc, 1:1) to afford ynenone 

233d (1.7 g, 93%) as a pale yellow oil. 

 

Rf = 0.29 (petroleum ether-EtOAc, 1:1); 1H NMR (400 MHz, CDCl3)  6.65 (1H, t, J = 

2.3 Hz, CH-C7), 3.16 (1H, br d, J = 10.4 Hz, CH-C1), 2.46 (2H, td, J = 6.6, 2.3 Hz, CH2-

C4), 2.43 (3H, s, CH3-C10), 2.28 (3H, s, CH3-C10’), 1.87–1.78 (1H, m, CHH-C2), 1.66 

(1H, br s, OH), 1.64–1.53 (2H, m, CH2-C3), 1.36–1.26 (1H, m, CHH-C2), 0.87 (9H, s, 

CH3-t-Bu); 13C NMR (101 MHz, CDCl3)  201.5 (C-C9), 195.9 (C-C9’), 149.8 (C-C8), 

123.3 (CH-C7), 110.4 (C-C5), 79.5 (CH-C1), 77.1 (C-C6), 35.1 (C-t-Bu), 31.0 (CH2-C2), 

30.7 (CH3-C10), 27.2 (CH3-C10’), 25.8 (3C, CH3-t-Bu), 25.7 (CH2-C3) , 20.4 (CH2-C4); 

vmax (film) 3600 (br), 2955, 2211, 1665, 1578 cm−1; HMRS (ESI) calcd for C16H24NaO3 

[M+Na]+ 287.1618, found 287.1608.  
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Furans 234d and 234d’ 

 

 

 

To a solution of ynenone 233d (88 mg, 0.33 mmol) and phenylphosphonic acid (5.2 

mg, 33 mol) was added a solution of tetrahydrothiophene (0.33 mL of a 0.50 M solution 

in CH2Cl2, 0.17 mmol). The mixture was stirred at 40 °C for 48 h and then concentrated 

under reduced pressure. The residue was purified by flash column chromatography on 

silica gel (petroleum ether-EtOAc, 5:1) to afford an inseparable mixture of furan 234d 

and 234d’ (70 mg, 80%, 2.7:1 dr) as a colourless oil. 

 

Rf = 0.35 (petroleum ether-EtOAc, 5:1); 1H NMR (400 MHz, CDCl3)  6.44 (1H, d, J = 

1.2 Hz, CH-C7 234d’), 6.41 (1H, s, CH-C7 234d), 4.98 (1H, d, J = 5.9 Hz, CH-C8 

234d’), 4.30 (1H, dd, J = 10.7, 2.0 Hz, CH-C8 234d), 3.05 (1H, dd, J = 11.2, 1.7 Hz, 

CH-C12 234d), 2.98 (1H, dd, J = 11.4, 1.9 Hz, CH-C12 234d’), 2.57 (3H, s, CH3-C5 

234d’), 2.55 (3H, s, CH3-C5 234d), 2.40 (3H, s, CH3-C1 234d’), 2.38 (3H, s, CH3-C1 

234d), 2.02–1.96 (1H, m, CHH-C9 234d), 2.02–1.90 (1H, m, CHH-C10 234d), 1.96–

1.75 (1H, m, CHH-C9 234d), 1.88–1.75 (1H, m, CHH-C9 234d’), 1.79–1.61 (2H, m, 

CH2-C10 234d’), 1.66–1.51 (2H, m, CH2-C11 234d’/234d), 1.61–1.51 (2H, m, CHH-C9 

234d’, CHH-C10 234d), 1.37–1.24 (2H, m, CH2-C11 234d/234d’), 0.90 (9H, s, CH3-t-

Bu 234d), 0.88 (9H, s, CH3-t-Bu 234d’); 13C NMR (101 MHz, CDCl3)  194.4 (C-C2 

234d), 194.3 (C-C2 234d’), 157.8 (C-C4 234d’), 157.5 (C-C4 234d), 154.3 (C-C6 

234d), 152.8 (C-C6 234d’), 122.2 (C-C3 234d’), 122.0 (C-C3 234d), 108.3 (C-C7 

234d’), 106.0 (C-C7 234d), 86.2 (CH-C8 234d), 78.8 (CH-C8 234d’), 73.5 (CH-C12 

234d), 69.38 (CH-C12 234d’), 34.4 (C-t-Bu 234d), 34.1 (C-t-Bu 234d’), 30.0 (CH2-C9 

234d’), 29.2 (CH3-C1 234d’), 29.2 (CH3-C1 234d), 26.2 (3C, CH3-t-Bu 234d’), 26.2 (3C 

CH3-t-Bu 234d), 26.0 (CH2-C9 234d), 25.4 (CH2-C11 234d’), 25.1 (CH2-C11 234d), 

23.9 (CH2-C10 234d), 20.3 (CH2-C10 234d’), 14.6 (CH3-C5 234d’), 14.6 (CH3-C5 
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234d); vmax (film) 2951, 1678, 1568 cm−1; HMRS (EI) calcd for C16H24O3 [M]+ 264.1725, 

found 264.1725.  
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Ynenone 237 

 

 

 

To a stirred solution of alkyne 235 (0.20 g, 0.92 mmol) in THF (9 mL) at −78 °C was 

added n-BuLi (0.60 mL of a 2.3 M solution in hexanes, 1.4 mmol) over a period of 

10 min. The mixture was stirred at −78 °C for 15 min and then anhydrous DMF 

(0.14 mL, 1.8 mmol) was added. The mixture was stirred at −78 °C for a further 30 min 

and then the reaction was quenched by addition of 10% aqueous KH2PO4 (20 mL). The 

mixture was diluted with EtOAc (10 mL), stirred for 30 min and the phases were 

separated. The aqueous phase was extracted with EtOAc (3 × 5 mL) and the combined 

organic extracts were dried over MgSO4, filtered and concentrated under reduced 

pressure to afford crude acetylenic aldehyde 236 as a yellow oil. The aldehyde was 

used directly in the next step without further purification.  

 

Rf = 0.32 (petroleum ether-EtOAc, 10:1); 1H NMR (400 MHz, CDCl3)  9.19 (1H, d, J = 

0.8 Hz, CH-C7), 3.73 (2H, t, J = 6.1 Hz, CH2-C1), 2.93-2.85 (1H, qtd, J = 7.2, 7.0, 0.8 

Hz, CH-C3), 1.72 (2H, dt, J = 7.2, 6.1 Hz, CH2-C2), 1.27 (3H, d, J = 7.0 Hz, CH3-C4), 

0.89 (9H, s, CH3-t-Bu-TBS), 0.06 (3H, s, CH3-TBS), 0.06 (3H, s, CH3-TBS). 

 

To a stirred solution of crude acetylenic aldehyde 236 and acetylacetone (80 L, 

0.78 mmol) in toluene (8 mL) at rt were added MgSO4 (22 mg, 0.18 mmol), piperidine 

(4.0 L, 41 mol) and acetic acid (30 L, 0.52 mmol). The mixture was stirred at 35 °C 

for 1 h and then the reaction was quenched by addition of water (10 mL). The mixture 

was diluted with Et2O (5 mL) and the phases were separated. The aqueous phase was 

extracted with Et2O (3 × 5 mL) and the combined organic extracts were dried over 

MgSO4, filtered and concentrated under reduced pressure. The residue was purified by 

flash column chromatography on silica gel (petroleum ether-EtOAc, 10:1) to afford 

ynenone 237 (0.16 g, 54%) as a pale yellow oil. 
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Rf = 0.08 (petroleum ether-EtOAc, 10:1); 1H NMR (500 MHz, CDCl3)  6.70 (1H, d, J = 

2.2 Hz, CH-C7), 3.73–3.65 (2H, m, CH2-C1), 2.89 (1H, qddd, J = 7.0, 6.8, 6.8, 2.2 Hz, 

CH-C3), 2.46 (3H, s, CH3-C10’), 2.30 (3H, s, CH3-C10), 1.73–1-62 (2H, m, CH2-C2), 

1.23 (3H, d, J = 7.0 Hz, CH3-C4), 0.88 (9H, s, CH3-t-Bu-TBS), 0.04 (6H, s, CH3-TBS); 

13C NMR (126 MHz, CDCl3)  201.2 (C-C9’), 195.8 (C-C9), 149.6 (C-C8), 123.2 (CH-

C7), 114.3 (C-C5), 77.3 (C-C6), 60.7 (CH2-C1), 39.4 (CH2-C2), 31.1 (CH3-C10’), 27.4 

(CH3-C10), 26.0 (3C, CH3-t-Bu-TBS), 24.0 (CH-C3), 20.4 (CH3-C4), 18.4 (C-t-Bu-TBS), 

−5.2 (CH3-TBS), −5.2 (CH3-TBS); vmax (film) 2955, 1692, 1578 cm−1; HMRS (ESI) calcd 

for C18H30NaO3Si [M+Na]+ 345.1856, found 345.1849. 
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Alcohol 238 

 

 

 

To a stirred solution of protected alcohol 237 (0.17 g, 0.51 mmol) in MeOH (5 mL) at rt 

was added camphorsulfonic acid (5.9 mg, 26 mol) in one portion. The mixture was 

stirred for 1 h and then filtered through a pad of silica and concentrated under reduced 

pressure. The residue was purified by flash column chromatography on silica gel 

(petroleum ether-EtOAc, 1:1) to afford alcohol 238 (84 mg, 79%) as a pale yellow oil. 

 

Rf = 0.18 (petroleum ether-EtOAc, 1:1); 1H NMR (500 MHz, CDCl3)  6.68 (1H, d, J = 

2.2 Hz, CH-C7), 3.78 (2H, dt, J = 6.5, 5.3 Hz, CH2-C1), 2.91 (1H, ddqd, J = 7.3, 7.3, 

7.0, 2.2 Hz, CH-C3), 2.46 (3H, s, CH3-C10’), 2.32 (3H, s, CH3-C10’), 1.81–1.73 (1H, m, 

CHH-C2), 1.75–1.67 (1H, m, CHH-C2), 1.54 (1H, t, J = 5.3 Hz, OH), 1.26 (3H, d, J = 

7.0 Hz, CH3-C4); 13C NMR (126 MHz, CDCl3)  201.3 (C-C9’), 195.9 (C-C9), 149.9 (C-

C8), 123.1 (CH-C7), 113.5 (C-C5), 77.5 (C-C6), 60.7 (CH2-C1), 39.1 (CH2-C2), 31.1 

(CH3-C10’), 27.3 (CH3-C10), 24.3 (CH-C3), 20.5 (CH3-C4); vmax (film) 3600 (br), 2932, 

1665, 1577 cm−1; HMRS (ESI) calcd for C12H16NaO3 [M+Na]+ 231.0992, found 

231.0996.  
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Furans 239 and 239’ 

 

 

 

To a mixture of ynenone 238 (49 mg, 0.24 mmol) and phenylphosphonic acid (3.6 mg, 

23 mol) was added a solution of tetrahydrothiophene (0.23 mL of a 0.50 M solution in 

CH2Cl2, 0.12 mmol). The mixture was stirred at 40 °C for 48 h and then concentrated 

under reduced pressure. The residue was purified by flash column chromatography on 

silica gel (petroleum ether-EtOAc, 1:1) to afford an inseparable mixture of furan 239 

and 239’ (36 mg, 73%, 1.0:4.3 dr) as pale yellow oil. 

 

Rf = 0.46 (petroleum ether-EtOAc, 1:1); 1H NMR (500 MHz, CDCl3)  6.44 (1H, s, CH-

C7 239’), 6.36 (1H, s, CH-C7 239), 4.80 (1H, d, J = 7.4 Hz, CH-C8 239), 4.22 (1H, d, J 

= 8.2 Hz, CH-C8 239’), 4.07 (1H, ddd, J = 8.2, 8.2, 3.7 Hz, CHH-C12 239), 3.95–3.88 

(2H, m, CH2-C12 239’), 3.79 (1H, ddd, J = 8.3, 8.3, 7.0 Hz, CHH-C12 239), 2.51 (3H, 

s, CH3-C5 239’), 2.50 (3H, s, CH3-C5 239), 2.47–2.43 (1H, m, CH-C9 239), 2.39–2.32 

(1H, m, CH-C9 239’), 2.32 (3H, s, CH3-C1 239), 2.32 (3H, s, CH3-C1 239’), 2.17 (1H, 

ddd, J = 7.0, 7.0, 4.4 Hz, CHH-C11 239’), 1.76–1.71 (1H, m, CHH-C11 239), 1.62 (1H, 

ddd, J = 12.0, 8.5, 8.5 Hz, CHH-C11 239’), 2.09–2.03 (1H, m, CHH-C11 239), 1.04 

(3H, d, J = 6.7 Hz, CH3-C10 239’), 0.78 (3H, d, J = 6.9 Hz, CH3-C10 239); 13C NMR 

(126 MHz, CDCl3)  194.1 (C-C2 239’), 158.5 (C-C4 239’), 152.0 (C-C6 239’), 121.9 

(C-C3 239’), 107.9 (CH-C7 239’), 80.5 (CH-C8 239’), 67.8 (CH2-C12 239’), 38.4 (CH-

C9 239’), 34.7 (CH-C11 239’), 29.1 (CH3-C1 239’), 16.9 (CH3-C10 239’), 14.5 (CH3-C5 

239’); vmax (film) 2928, 1678, 1567, 1407, 1359, 1230, 1034 cm−1; HMRS (ESI) calcd 

for C12H16NaO3 [M+Na]+ 231.0992, found 231.0995.  
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Ynenone 250a 

 

 

 

To a stirred solution of alkyne 248a (1.8 g, 9.1 mmol) in THF (90 mL) at −78 °C was 

added n-BuLi (4.5 mL of a 2.4 M solution in hexanes, 9.1 mmol) over a period of 10 min. 

The mixture was stirred at −78 °C for 15 min and then anhydrous DMF (1.4 mL, 

18 mmol) was added. The mixture was stirred at −78 °C for a further 30 min and then 

the reaction was quenched by addition of 10% aqueous KH2PO4 (90 mL). The mixture 

was diluted with EtOAc (45 mL), stirred for 10 min and the phases were separated. The 

aqueous phase was extracted with EtOAc (3 × 30 mL) and the combined organic 

extracts were dried over MgSO4, filtered and concentrated under reduced pressure to 

afford crude acetylenic aldehyde 249a as a yellow oil. The aldehyde was used directly 

in the next step without further purification.  

 

Rf = 0.32 (petroleum ether-EtOAc, 10:3); 1H NMR (500 MHz, CDCl3)  9.17 (1H, t, J = 

0.8 Hz, CH-C6), 3.70 (1H, t, J = 6.0 Hz, CH2-C1), 2.53 (2H, td, J = 7.0, 0.8 Hz, CH2-

C3), 1.80 (2H, tt, J = 7.0, 6.0 Hz, CH2-C2), 0.96 (9H, t, J = 7.9 Hz, CH3-TES), 0.60 (6H, 

q, J = 7.9 Hz, CH2-TES). 

 

To a stirred solution of crude acetylenic aldehyde 249a and acetylacetone (0.89 mL, 

8.7 mmol) in toluene (85 mL) at rt were added MgSO4 (0.20 g, 1.7 mmol), piperidine 

(40 L, 0.41 mmol) and acetic acid (0.29 mL, 5.1 mmol). The mixture was stirred at 

35 °C for 1 h and then the reaction was quenched by addition of water (90 mL). The 

mixture was diluted with Et2O (40 mL) and the phases were separated. The aqueous 

phase was extracted with Et2O (3 × 30 mL) and the combined organic extracts were 

dried over MgSO4, filtered and concentrated under reduced pressure. The residue was 

purified by flash column chromatography on silica gel (petroleum ether-EtOAc, 10:3) to 

afford ynenone 250a (2.1 g, 75% over 2 steps) as a pale yellow oil. 
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Rf = 0.45 (petroleum ether-EtOAc, 10:3); 1H NMR (400 MHz, CDCl3)  6.68 (1H, t, J = 

2.2 Hz, CH-C6), 3.66 (2H, t, J = 6.1 Hz, CH2-C1), 2.53 (2H, td, J = 6.8, 2.2 Hz, CH2-

C3), 2.45 (3H, s, CH3-C9’), 2.30 (3H, s, CH3-C9), 1.76 (2H, tt, J = 6.8, 6.1 Hz, CH2-C2), 

0.94 (9H, t, J = 7.9 Hz, CH3-TES), 0.58 (6H, q, J = 7.9 Hz, CH2-TES); 13C NMR (101 

MHz, CDCl3)  201.3 (C-C8’), 195.9 (C-C8), 149.7 (C-C7), 123.3 (CH-C6), 110.1 (C-

C4), 77.0 (C-C5), 61.1 (CH2-C1), 31.3 (CH2-C2), 31.0 (CH3-C9’), 27.4 (CH3-C9), 16.9 

(CH2-C3) 6.9 (CH3-TES), 4.5 (CH2-TES); vmax (film) 2954, 2360, 1691, 1577, 1374, 

1363, 1245 cm−1; HMRS (CI, isobutane) calcd for C17H29O3Si [M+H]+ 309.1886, found 

309.1888. 

 

 

Alcohol 251a 

 

 

 

To a stirred solution of protected alcohol 250a (0.21 mg, 0.69 mmol) in MeOH (7 mL) 

at rt was added camphorsulfonic acid (8.0 mg, 34 mol) in one portion. The mixture 

was stirred for 1 h and then filtered through a pad of silica and concentrated under 

reduced pressure. The residue was purified by flash column chromatography on silica 

gel (petroleum ether-EtOAc, 1:1) to afford alcohol 251a (95 mg, 71%) as a pale yellow 

oil. 

 

Rf = 0.08 (petroleum ether-EtOAc, 1:1); 1H NMR (400 MHz, CDCl3)  6.64 (1H, t, J = 

2.5 Hz, CH-C6), 3.70 (2H, br t, J = 6.1 Hz, CH2-C1), 2.6 (2H, td, J = 6.9, 2.5 Hz, CH2-

C3), 2.43 (3H, s, CH3-C9’), 2.29 (3H, s, CH3-C9), 2.06 (1H, br s, OH), 1.79 (2H, tt, J = 

6.9, 6.1 Hz, CH2-C2); 13C NMR (101 MHz, CDCl3)  201.5 (C-C8’), 195.9 (C-C8), 149.8 

(C-C7), 123.1 (CH-C6), 109.5 (C-C4), 77.1 (C-C5), 61.1 (CH2-C1), 30.9 (CH3-C9’), 30.7 

(CH2-C2), 27.1 (CH3-C9), 16.8 (CH2-C3); vmax (film) 3420 (br), 2955, 1740, 1362, 1252, 

1182 cm−1; HMRS (CI, isobutane) calcd for C11H15O3 [M+H]+ 195.1021, found 

195.1020.  
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Aldehyde 252a 

 

 

 

To a stirred solution of alcohol 251a (82 mg, 0.42 mmol) in CH2Cl2 (4 mL) at 0 °C was 

added DMP (0.32 g, 0.75 mmol) in small portions. The mixture was stirred at rt for 1 h 

and then the reaction was quenched by sequential addition of saturated aqueous 

Na2S2O3 (5 mL) and saturated aqueous NaHCO3 (5 mL). The mixture was diluted with 

Et2O (10 mL), stirred until two clear layers were obtained (ca. 30 min) and the phases 

were separated. The aqueous phase was extracted with Et2O (3 × 10 mL) and the 

combined organic extracts were dried over MgSO4, filtered and concentrated under 

reduced pressure. The residue was filtered through a small pad of silica gel (petroleum 

ether-EtOAc, 1:1) to afford aldehyde 252a as a yellow oil. The aldehyde was used 

directly in the next step without further purification. 

 

Rf = 0.27 (petroleum ether-EtOAc, 1:1); 1H NMR (400 MHz, CDCl3)  9.73 (1H, t, J = 

0.7 Hz, CH-C1), 6.58 (1H, t, J = 2.3 Hz, CH-C6), 2.70–2.69 (4H, m, CH2-C2, CH2-C3), 

2.37 (3H, s, CH3-C9’), 2.25 (3H, s, CH3-C9).  
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Lactone 240a 

 

 

 

To a stirred solution of crude aldehyde 252a in DMF (6 mL) at rt was added oxone 

(0.32 g, 0.52 mmol) in one portion. The mixture was stirred for 16 h and then the 

reaction was quenched by addition of 1 M HCl (10 mL). The mixture was diluted with 

EtOAc (10 mL) and the phases were separated. The organic phase was washed with 

brine (2 × 10 mL) and the organic extract was dried over MgSO4, filtered and 

concentrated under reduced pressure to afford crude carboxylic acid 253a as yellow 

oil. The carboxylic acid was used directly in the next step without further purification. 

Rf = 0.19 (EtOAc). 

 

To ynenone 253a was added a solution of tetrahydrothiophene (0.42 mL of a 0.50 M 

solution in CH2Cl2, 0.21 mmol). The mixture was stirred at 40 °C for 48 h and then 

concentrated under reduced pressure. The residue was purified by flash column 

chromatography on silica gel (petroleum ether-EtOAc, 1:1) to afford lactone 240a (17 

mg, 38% over 3 steps) as a colourless solid. 

 

Rf = 0.18 (petroleum ether-EtOAc, 1:1); m.p. = 63–65 °C; 1H NMR (400 MHz, CDCl3)  

6.63 (1H, s, CH-C7), 5.41 (1H, t, J = 7.2 Hz, CH-C8), 2.76–2.57 (2H, m, CH2-C9/C10), 

2.56 (3H, s, CH3-C5), 2.54–2.42 (2H, m, CH2-C9/C10), 2.37 (3H, s, CH3-C1); 13C NMR 

(101 MHz, CDCl3)  196.7 (C-C2), 176.2 (C-C11), 159.4 (C-C4), 148.8 (C-C6), 122.2 

(C-C3), 110.0 (CH-C7), 74.0 (CH-C8), 29.2 (CH3-C1), 28.5 (CH2-C9/C10), 26.5 (CH2-

C9/C10), 14.5 (CH3-C5); vmax (film) 1767, 1674, 1231, 1146 cm−1; HMRS (ESI) calcd 

for C11H12NaO4 [M+Na]+ 231.0628, found 231.0619.  
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Ynenone 250b 

 

 

 

To a stirred solution of alkyne 248b (2.7 g, 13 mmol) in THF (125 mL) at −78 °C was 

added n-BuLi (6.3 mL of a 2.4 M solution in hexanes, 15 mmol) over a period of 10 min. 

The mixture was stirred at −78 °C for 15 min and then anhydrous DMF (1.9 mL, 

25 mmol) was added. The mixture was stirred at −78 °C for a further 30 min and then 

the reaction was quenched by addition of 10% aqueous KH2PO4 (130 mL). The mixture 

was diluted with EtOAc (60 mL), stirred for 10 min and the phases were separated. The 

aqueous phase was extracted with EtOAc (3 × 40 mL) and the combined organic 

extracts were dried over MgSO4, filtered and concentrated under reduced pressure to 

afford crude acetylenic aldehyde 249b as a yellow oil. The aldehyde was used directly 

in the next step without further purification.  

 

Rf = 0.43 (petroleum ether-EtOAc, 10:3); 1H NMR (400 MHz, CDCl3)  9.17 (1H, t, J = 

1.1 Hz, CH-C7), 3.65–3.61 (2H, m, CH2-C1), 2.47–2.43 (2H, m, CH2-C4), 1.71–1.57 

(4H, m, CH2-C2, CH2-C3), 0.95 (9H, t, J = 7.9 Hz, CH3-TES), 0.59 (6H, q, J = 7.9 Hz, 

CH2-TES). 

 

To a stirred solution of crude acetylenic aldehyde 249b and acetylacetone (1.3 mL, 

13 mmol) in toluene (125 mL) at rt were added MgSO4 (0.30 g, 2.5 mmol), piperidine 

(60 L, 0.61 mmol) and acetic acid (0.44 mL, 7.7 mmol). The mixture was stirred at 

35 °C for 1 h and then the reaction was quenched by addition of water (130 mL). The 

mixture was diluted with Et2O (60 mL) and the phases were separated. The aqueous 

phase was extracted with Et2O (3 × 40 mL) and the combined organic extracts were 

dried over MgSO4, filtered and concentrated under reduced pressure. The residue was 

purified by flash column chromatography on silica gel (petroleum ether-EtOAc, 10:3) to 

afford ynenone 250b (2.9 g, 73% over 2 steps) as a pale yellow oil. 
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Rf = 0.40 (petroleum ether-EtOAc, 10:3); 1H NMR (400 MHz, CDCl3)  6.68 (1H, t, J = 

2.4 Hz, CH-C7), 3.61 (2H, t, J = 5.6 Hz, CH2-C1), 2.47–2.44 (2H, m, CH2-C4), 2.45 (3H, 

s, CH3-C10), 2.30 (3H, s, CH3-C10’), 1.65–1.58 (4H, m, CH2-C2, CH2-C3), 0.94 (9H, t, 

J = 7.9 Hz, CH3-TES), 0.58 (6H, q, J = 8.0 Hz, CH2-TES); 13C NMR (126 MHz, CDCl3) 

 201.4 (C-C9), 195.9 (C-C9’), 149.7 (C-C8), 123.3 (CH-C7), 110.3 (C-C5), 77.1 (C-

C6), 62.2 (CH2-C1), 32.0 (CH2-C2/C3), 31.0 (CH3-C10), 27.4 (CH3-C10’), 24.9 (CH2-

C2/C3), 20.2 (CH2-C4), 6.9 (3C, CH3-TES), 4.5 (3C, CH2-TES); vmax (film) 2954, 2360, 

1715, 1374, 1236, 1102 cm−1; HMRS (CI, isobutane) calcd for C18H31O3Si [M+H]+ 

323.2042, found 323.2043. 

 

 

Alcohol 251b 

 

 

 

To a stirred solution of protected alcohol 250b (1.3 g, 4.2 mmol) in MeOH (42 mL) at rt 

was added camphorsulfonic acid (48 mg, 0.21 mmol) in one portion. The mixture was 

stirred for 1 h and then filtered through a pad of silica and concentrated under reduced 

pressure. The residue was purified by flash column chromatography on silica gel 

(petroleum ether-EtOAc, 1:1) to afford alcohol 251b (0.68 mg, 79%) as a pale yellow 

oil. 

 

Rf = 0.15 (petroleum ether-EtOAc, 1:1); 1H NMR (400 MHz, CDCl3)  6.68 (1H, t, J = 

2.4 Hz, CH-C7), 3.70–3.66 (2H, m, CH2-C1), 2.51–2.47 (2H, m, CH2-C4), 2.46 (3H, s, 

CH3-C10), 2.32 (3H, s, CH3-C10’), 1.68 (4H, m, CH2-C2, CH2-C3); 13C NMR (126 MHz, 

CDCl3)  201.8 (C-C9), 196.0 (C-C9’), 149.6 (C-C8), 123.2 (CH-C7), 110.1 (C-C5), 76.9 

(C-C6), 61.8 (CH2-C1), 31.6 (CH2-C2/C3), 30.9 (CH3-C10), 27.0 (CH3-C10’), 24.4 (CH2-

C2/C3), 19.9 (CH2-C4); vmax (film) 3415 (br), 2941, 1695, 1355, 1247, 1183 cm−1; 

HMRS (CI, isobutane) calcd for C12H17O3 [M+H]+ 209.1178, found 209.1176.  
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Aldehyde 252b 

 

 

 

To a stirred solution of alcohol 251b (0.16 g, 0.76 mmol) in CH2Cl2 (8 mL) at 0 °C was 

added DMP (0.53 g, 1.3 mmol) in small portions. The mixture was stirred at rt for 1 h 

and then the reaction was quenched by sequential addition of saturated aqueous 

Na2S2O3 (10 mL) and saturated aqueous NaHCO3 (10 mL). The mixture was diluted 

with Et2O (20 mL), then stirred until two clear layers were obtained (ca. 30 min) and the 

phases were separated. The aqueous phase was extracted with Et2O (3 × 10 mL) and 

the combined organic extracts were dried over MgSO4, filtered and concentrated under 

reduced pressure. The residue was filtered through a small pad of silica gel (petroleum 

ether-EtOAc, 1:1) to afford aldehyde 252b as a yellow oil. The aldehyde was used 

directly in the next step without further purification. 

 

Rf = 0.30 (petroleum ether-EtOAc, 1:1); 1H NMR (400 MHz, CDCl3)  9.79 (1H, t, J = 

1.1 Hz, CH-C1), 6.64 (1H, t, J = 2.4 Hz, CH-C7), 2.60 (2H, td, J = 7.1, 1.1 Hz, CH2-C2), 

2.51 (2H, td, J = 6.9, 2.4 Hz, CH2-C4), 2.43 (3H, s, CH3-C10), 2.31 (3H, s, CH3-C10’), 

1.88 (2H, tt, J = 7.1, 6.9 Hz, CH2-C3).  
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Lactone 240b 

 

 

 

To a stirred solution of crude aldehyde 252b in DMF (8 mL) at rt was added oxone 

(0.47 g, 0.76 mmol) in one portion. The mixture was stirred for 16 h and then the 

reaction was quenched by addition of 1 M HCl (20 mL). The mixture was diluted with 

EtOAc (10 mL) and the phases were separated. The organic phase was washed with 

brine (2 × 10 mL) and the organic extract was dried over MgSO4, filtered and 

concentrated under reduced pressure to afford crude carboxylic acid 253b as yellow 

oil. The carboxylic acid was used directly in the next step without further purification. 

Rf = 0.19 (EtOAc). 

 

To ynenone 253b was added a solution of tetrahydrothiophene (0.80 mL of a 0.50 M 

solution in CH2Cl2, 0.40 mmol). The mixture was stirred at 40 °C for 48 h and then 

concentrated under reduced pressure. The residue was purified by flash column 

chromatography on silica gel (petroleum ether-EtOAc, 1:1) to afford lactone 240b (82 

mg, 47% over 3 steps) as a thick colourless gum. 

 

Rf = 0.27 (petroleum ether-EtOAc, 1:1); 1H NMR (400 MHz, CDCl3)  6.59 (1H, s, CH-

C7), 5.31 (1H, dd, J = 9.6, 4.2 Hz, CH-C8), 2.69–2.50 (2H, m, CH2-C11), 2.56 (3H, s, 

CH3-C5), 2.37 (3H, s, CH3-C1), 2.19–1.87 (4H, m, CH2-C9, CH2-C10); 13C NMR (126 

MHz, CDCl3)  194.0 (C-C2), 170.4 (C-C12), 158.9 (C-C4), 149.5 (C-C6), 122.1 (C-

C3), 108.9 (CH-C7), 74.6 (CH-C8), 29.6 (CH2-C11), 29.2 (CH3-C1), 26.2 (CH2-C9), 

18.4 (CH2-C10), 14.5 (CH3-C5); vmax (film) 1732, 1674, 1564 cm−1; HMRS (ESI) calcd 

for C12H14O4 [M+Na]+ 245.0784, found 245.0781.  
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Alkyne 255a 

 

 

 

To a stirred solution of phenol 254a (0.80 g, 6.1 mmol) in CH2Cl2 (25 mL) at rt were 

sequentially added DMAP (15 mg, 0.12 mmol), Et3N (1.0 ml, 7.3 mmol) and TESCl 

(1.2 mL, 7.3 mmol). The mixture was stirred for 16 h and then the reaction was 

quenched by addition of saturated aqueous NH4Cl (25 mL). The phases were 

separated and the aqueous phase was extracted with CH2Cl2 (3 × 10 mL) and the 

combined organic extracts were dried over MgSO4, filtered and concentrated under 

reduced pressure. The residue was purified by flash column chromatography on silica 

gel (petroleum ether-EtOAc, 300:1) to afford protected phenol 255a (1.56 g, 95%) as a 

pale yellow oil. 

 

Rf = 0.36 (petroleum ether); 1H NMR (400 MHz, CDCl3)  7.51 (1H, dd, J =7.6, 1.7 Hz, 

CH-C5), 7.14 (1H, ddd, J = 8.0, 7.5, 1.7 Hz, CH-C3), 6.96 (1H, ddd, J = 7.6, 7.5, 1.1 

Hz, CH-C4), 6.80 (1H, dd, J = 8.0, 1.1 Hz, CH-C2), 3.58 (2H, d, J = 2.7 Hz, CH2-C7), 

2.17 (1H, t, J = 2.7 Hz, CH-C9), 1.02 (9H, t, J = 8.1 Hz, CH3-TES), 0.80 (6H, q, J = 8.1 

Hz, CH2-TES); 13C NMR (101 MHz, CDCl3)  153.2 (C-C1), 129.2 (CH-C5), 127.9 (CH-

C3), 126.8 (C-C6), 121.3 (CH-C4), 118.1 (CH-C2), 82.2 (C-C8), 70.3 (CH-C9), 19.8 

(CH2-C7), 6.8 (3C, CH3-TES), 5.5 (3C, CH3-TES); vmax (film) 2957, 1489, 1454 cm−1; 

HRMS (ESI) calcd for C15H22NaOSi [M+Na]+ 269.1332, found 269.1328.  
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Ynenone 257a 

 

 

 

To a stirred solution of alkyne 255a (0.39 mg, 1.6 mmol) in THF (16 mL) at −78 °C was 

added n-BuLi (1.1 mL of a 2.1 M solution in hexanes, 2.3 mmol) over a period of 10 min. 

The mixture was stirred at −78 °C for 15 min and then anhydrous DMF (0.24 mL, 

3.1 mmol) was added. The mixture was stirred at −78 °C for a further 30 min and then 

the reaction was quenched by pouring the solution into a mixture of 10% aqueous 

KH2PO4 (40 mL) and EtOAc (15 mL). The mixture was stirred for 10 min and the phases 

were separated. The aqueous phase was extracted with EtOAc (3 × 15 mL) and the 

combined organic extracts were washed with brine (2 × 10 mL), dried over MgSO4, 

filtered and concentrated under reduced pressure to afford crude acetylenic aldehyde 

256a as a yellow oil. The aldehyde was used immediately in the next step without 

further purification. 

Rf = 0.30 (petroleum ether-EtOAc, 10:1). 

 

To a stirred solution of crude acetylenic aldehyde 256a and acetylacetone (0.16 mL, 

1.6 mmol) in toluene (16 mL) at rt were added MgSO4 (38 mg, 0.32 mmol), piperidine 

(15 L, 0.15 mmol) and acetic acid (53 L, 0.93 mmol). The mixture was stirred at 35 °C 

for 1 h and then the reaction was quenched by addition of water (30 mL). The mixture 

was diluted with Et2O (20 mL) and the phases were separated. The aqueous phase 

was extracted with Et2O (3 × 10 mL) and the combined organic extracts were dried over 

MgSO4, filtered and concentrated under reduced pressure. The residue was purified by 

flash column chromatography on silica gel (petroleum ether-EtOAc, 10:1) to afford 

ynenone 257a (0.18 g, 32% over 2 steps) as a pale yellow oil. 

 

Rf = 0.11 (petroleum ether-EtOAc 10:1); 1H NMR (400 MHz, CDCl3)  7.34 (1H, dd, J 

= 7.6, 1.7 Hz, CH-C5), 7.14 (1H, ddd, J = 7.9, 7.7, 1.7 Hz, CH-C3), 6.94 (1H, ddd, J = 
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7.7, 7.6, 1.1 Hz, CH- C4), 6.80 (1H, dd, J = 7.9, 1.1 Hz, CH-C2), 6.75 (1H, t, J = 2.5 

Hz, CH-C10), 3.80 (2H, d, J = 2.5 Hz, CH2-C7), 2.45 (3H, s, CH3-C13’), 2.32 (3H, s, 

CH3-C13), 1.02–0.98 (9H, m, CH3-TES), 0.81–0.75 (6H, m, CH2-TES); 13C NMR (101 

MHz, CDCl3)  201.4 (C-C12’), 195.9 (C-C12), 153.2 (C-C1), 149.9 (C-C11), 129.3 

(CH-C5), 128.3 (CH-C3), 125.7 (C-C6), 123.1 (CH-C10), 121.4 (CH-C4), 118.2 (CH-

C2), 107.8 (C-C8), 78.4 (C-C9), 31.1 (CH3-C13’), 27.5 (CH3-C13), 21.5 (CH2-C7), 6.8 

(3C, CH3-TES), 5.5 (3C, CH2-TES); vmax (film) 2957, 1717, 1692, 1667, 1584, 1489, 

1452, 1416 cm−1; HRMS (EI) calcd for C21H28O3Si [M]+ 356.1808 ,found 356.1810. 

 

 

Furan 241 

 

 

 

To a stirred solution of protected phenol 257a (98 mg, 0.28 mmol) in MeOH (5 mL) at 

rt was added camphorsulfonic acid (13 mg, 56 mol) in one portion. The mixture was 

stirred until consumption of the starting material was complete (TLC analysis). The 

reaction was quenched by pouring the solution into a mixture of water (20 mL), 

saturated aqueous NaHCO3 (5 mL) and CH2Cl2 (10 mL). The mixture was stirred for 

10 min and then the phases were separated. The aqueous phase was extracted with 

CH2Cl2 (2 × 10 mL). The combined organic extracts were washed with brine (2 × 10 mL) 

dried over MgSO4, filtered and concentrated under reduced pressure to afford crude 

ynenone 258a as a yellow oil. The ynenone was used immediately in the next step 

without further purification.  

Rf = 0.12 (petroleum ether-EtOAc, 5:1). 

 

To a mixture of ynenone 258a and phenylphosphonic acid (4.3 mg, 27 mol) was added 

a solution of tetrahydrothiophene (0.30 mL of a 0.50 M solution in CH2Cl2, 0.15 mmol). 

The mixture was stirred at 40 °C for 48 h and then concentrated under reduced 
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pressure. The residue was purified by flash column chromatography on silica gel 

(petroleum ether-EtOAc, 10:1) to afford furan 241 (39 mg, 59%). 

 

Rf = 0.07 (petroleum ether-EtOAc, 10:1); 1H NMR (500 MHz, CDCl3)  7.22 (1H, dd, J 

= 7.5, 0.8 Hz, CH-C11), 7.15 (1H, ddd, J = 7.9, 7.5, 0.8 Hz, CH-C13), 6.90 (1H, ddd, J 

= 7.5, 7.5, 0.8 Hz, CH-C12), 6.82 (1H, br d, J = 7.9 Hz, CH14), 6.64 (1H, s, CH-C7), 

5.68 (1H, dd, J = 9.2, 8.6 Hz, CH-C8), 3.51 (1H, dd, J = 15.6, 9.2 Hz, CHH-C9), 3.47 

(1H, dd, J = 15.6, 8.6 Hz, CHH-C9), 2.59 (3H, s, CH3-C5), 2.39 (3H, s, CH3-C1); 13C 

NMR (101 MHz, CDCl3)  194.0 (C-C2), 159.3 (C-C4), 158.9 (C-C6), 151.0 (C-C15), 

128.5 (CH-C13), 126.0 (C-C10), 124.9 (CH-C11), 122.2 (C-C3), 121.1 (CH-C12), 109.8 

(CH-C14), 109.0 (CH-C7), 76.7 (CH-C8) 34.3 (CH2-C9), 29.3 (CH3-C1), 14.7 (CH3-C5); 

vmax (film) 1676, 1599, 1564, 1479, 1460 cm−1; HRMS (ESI) calcd for C15H14NaO3 

[M+Na]+ 265.0835, found 265.0830.  
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Alkyne 255b 

 

 

 

To a stirred solution of phenol 254b (0.10 g, 0.71 mmol) in CH2Cl2 (3 mL) at rt were 

sequentially added DMAP (1.7 mg, 0.014 mmol), Et3N (0.12 ml, 0.86 mmol) and TESCl 

(0.14 mL, 0.83 mmol). The mixture was stirred for 16 h and then the reaction was 

quenched by addition of saturated aqueous NH4Cl (10 mL). The phases were 

separated and the aqueous phase was extracted with CH2Cl2 (3 × 5 mL). The combined 

organic extracts were dried over MgSO4, filtered and concentrated under reduced 

pressure. The residue was purified by flash column chromatography on silica gel 

(petroleum ether-EtOAc, 300:1) to afford the protected phenol 255b (0.18 mg, 98%) as 

a colourless oil. 

 

Rf = 0.17 (petroleum ether); 1H NMR (400 MHz, CDCl3)  7.17 (1H, dd, J = 7.4, 1.7 Hz, 

CH-C5), 7.09 (1H, ddd, J = 7.9, 7.6, 1.7 Hz, CH-C3), 6.88 (1H, ddd, J = 7.6, 7.4, 1.1 

Hz, CH-C4), 6.78 (1H, dd, J = 7.9, 1.1 Hz, CH-C2), 2.83 (2H, t, J = 7.8 Hz, CH2-C7), 

2.46 (2H, td, J = 7.8, 2.6 Hz, CH2-C8), 1.95 (1H, t, J = 2.6 Hz, CH-C10), 1.03–0.99 (9H, 

m, CH3-TES), 0.82–0.75 (6H, m, CH2-TES); 13C NMR (101 MHz, CDCl3)  153.9 (C-

C1), 130.9 (C-C6), 130.4 (CH-C5), 127.6 (CH-C3), 121.0 (CH-C4), 118.3 (CH-C2), 84.5 

(C-C9), 68.5 (CH-C10), 30.4 (CH2-C7), 19.0 (CH2-C8), 6.9 (3C, CH3-TES), 5.5 (3C, 

CH2-TES); vmax (film) 2956, 1490, 1454 cm−1; HMRS (EI) calcd for C16H24OSi [M]+ 

260.1596, found 260.1584. 
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Ynenone 257b 

 

 

 

To a stirred solution of alkyne 255b (0.45 mg, 1.7 mmol) in THF (17 mL) at −78 °C was 

added n-BuLi (1.4 mL of a 2.3 M solution in hexanes, 3.2 mmol) over a period of 10 min. 

The mixture was stirred at −78 °C for 15 min and then anhydrous DMF (0.29 mL, 

3.8 mmol) was added. The mixture was stirred at −78 °C for a further 30 min and then 

the reaction was quenched by pouring the solution into a mixture of 10% aqueous 

KH2PO4 (50 mL) and Et2O (20 mL). The mixture was stirred for 10 min and the phases 

were separated. The aqueous phase was extracted with Et2O (3 × 15 mL) and the 

combined organic extracts were washed with brine (2 × 10 mL), dried over MgSO4, 

filtered and concentrated under reduced pressure to afford crude acetylenic aldehyde 

256b as a yellow oil. The aldehyde was used immediately in the next step without 

further purification. 

Rf = 0.38 (petroleum ether-EtOAc, 10:1). 

 

To a stirred solution of crude acetylenic aldehyde 256b and acetylacetone (0.18 mL, 

1.8 mmol) in toluene (17 mL) at rt were added MgSO4 (42 mg, 0.35 mmol), piperidine 

(16 L, 0.16 mmol) and acetic acid (58 L, 1.0 mmol). The mixture was stirred at 35 °C 

for 1 h and then the reaction was quenched by addition of water (30 mL). The mixture 

was diluted with Et2O (20 mL) and the phases were separated. The aqueous phase 

was extracted with Et2O (3 × 20 mL) and the combined organic extracts were dried over 

MgSO4, filtered and concentrated under reduced pressure. The residue was purified by 

flash column chromatography on silica gel (petroleum ether-EtOAc, 5:1) to afford 

ynenone 257b (0.31 g, 48% over 2 steps) as a pale yellow oil. 

 

Rf = 0.33 (petroleum ether-EtOAc, 5:1); 1H NMR (400 MHz, CDCl3)  7.13 (2H, dd, J = 

7.6, 1.7 Hz, CH-C5), 7.10 (1H, ddd, J = 7.9, 7.8, 1.7 Hz, CH-C3), 6.88 (1H, ddd, J = 
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7.9, 7.6, 1.1 Hz, CH-C4), 6.78 (1H, dd, J = 7.8, 1.1 Hz, CH-C2), 6.69 (1H, t, J = 2.5 Hz, 

CH-C11), 2.85 (2H, t, J = 7.5 Hz, CH-C7), 2.73 (2H, td, J = 7.5, 2.5 Hz, CH-C8), 2.38 

(3H, s, CH3-C14’), 2.30 (3H, s, CH3-C14), 1.02–0.98 (9H, m, CH3-TES), 0.81–0.75 (6H, 

m, CH2-TES); 13C NMR (126 MHz, CDCl3)  201.4 (C-C13’), 195.9 (C-C13), 153.9 (C-

C1), 149.5 (C-C12), 130.4 (CH-C5), 130.2 (C-C6), 127.9 (CH-C3), 123.3 (CH-C11), 

121.2 (CH-C4), 118.3 (CH-C2), 110.1 (C-C9), 77.3 (C-C10), 31.0 (CH3-C14’), 30.0 

(CH2-C7), 27.5 (CH3-C14), 20.6 (CH2-C8), 6.8 (3C, CH3-TES), 5.5 (3C, CH2-TES); vmax 

(film) 2957, 1717, 1691, 1666, 1582, 1490, 1454, 1416, 1359, 1248, 1153, 1106 cm−1; 

HMRS (ESI) calcd for C22H30NaO3Si [M+Na]+ 393.1856, found 393.1839. 
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Furan 242 

 

 

 

To a stirred solution of protected phenol 257b (0.50 mg, 0.14 mmol) in MeOH (14 mL) 

at rt was added camphorsulfonic acid (6.5 mg, 28 mol) in one portion. The mixture 

was stirred until consumption of the starting material was complete (TLC analysis). The 

reaction was quenched by pouring the solution into a mixture of water (60 mL), 

saturated aqueous NaHCO3 (15 mL) and CH2Cl2 (20 mL). The mixture was stirred for 

10 min and the phases were separated. The aqueous phase was extracted with CH2Cl2 

(2 × 20 mL) and the combined organic extracts were washed with brine (3 × 20 mL) 

dried over MgSO4, filtered and concentrated under reduced pressure to afford crude 

ynenone 258b as a yellow oil. The ynenone was used immediately in the next step 

without further purification.  

Rf = 0.10 (petroleum ether-EtOAc, 10:1) 

 

To ynenone 258b and phenylphosphonic acid (2.0 mg, 13 mol) was added a solution 

of tetrahydrothiophene (0.14 mL of a 0.50 M solution in CH2Cl2, 0.070 mmol). The 

mixture was stirred at 40 °C for 48 h and then concentrated under reduced pressure. 

The residue was purified by flash column chromatography on silica gel (petroleum 

ether-EtOAc, 5:1) to afford furan 242 (20 mg, 54% over 2 steps) as a colourless oil. 

 

Rf = 0.28 (petroleum ether-EtOAc, 5:1); 1H NMR (400 MHz, CDCl3)  7.14–7.07 (2H, 

m, CH-C12, CH-C14), 6.90–6.86 (2H, m, CH-C13, CH-C15), 6.60 (1H, s, CH-C7), 5.05 

(1H, dd, J = 8.1, 4.3 Hz, CH-C8), 2.96 (1H, ddd, J = 16.6, 8.4, 8.4 Hz, CHH-C10), 2.85 

(1H, ddd, J = 16.6, 4.7, 4.7 Hz, CHH-C10), 2.60 (3H, s, CH3-C5), 2.40 (3H, s, CH3-C1), 

2.30–2.24 (2H, m, CH2-C9); 13C NMR (126 MHz, CDCl3)  194.2 (C-C2), 158.5 (C-C4), 

154.4 (C-C6), 151.7 (C-C16), 129.7 (CH-C12), 127.6 (CH-C14), 122.2 (C-C3), 121.5 

(C-C11), 120.9 (CH-C13), 117.1 (CH-C15), 108.1 (CH-C7), 71.0 (CH-C8), 29.3 (CH3-
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C1), 26.0 (CH2-C9), 24.6 (CH2-C10), 14.6 (CH3-C5); vmax (film) 2925, 1679, 1583, 1566, 

1488, 1457 cm−1; HMRS (ESI) calcd for C16H16NaO3 [M+Na]+ 279.0992, found 

279.0986.  
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Alkyne 255c 

 

 

 

To a stirred solution of alcohol 254c (0.40 g, 2.8 mmol) in DMF (5.5 mL) at rt were 

sequentially added imidazole (0.28 g, 4.1 mmol) and TBSCl (0.50 g, 3.3 mmol). The 

mixture was stirred for 2 h and then the reaction was quenched by addition of saturated 

aqueous NH4Cl (10 mL). The mixture was diluted with Et2O (5 mL) and the phases 

were separated. The aqueous phase was extracted with Et2O (3 × 5 mL) and the 

combined organic extracts were dried over MgSO4, filtered and concentrated under 

reduced pressure. The residue was purified by flash column chromatography on silica 

gel (petroleum ether-EtOAc, 300:1) to afford protected alcohol 255c (0.68 g, 95%) as 

a pale yellow oil. 

 

Rf = 0.05 (petroleum ether); 1H NMR (400 MHz, CDCl3)  7.53–7.51 (1H, m, CH-C6), 

7.46–7.44 (1H, m, CH-C3), 7.32–7.29 (2H, m, CH-C4, CH-C5), 4.81 (2H, s, CH2-C1), 

3.65 (2H, d, J = 2.7 Hz, CH2-C8), 2.21 (1H, t, J = 2.7 Hz, CH-C10), 0.99 (9H, s, CH3-t-

Bu-TBS), 0.14 (6H, s, CH3-TBS); 13C NMR (101 MHz, CDCl3)  138.7 (C-C2), 133.7 

(C-C7), 128.6 (CH-C6), 127.6 (CH-C3), 127.3 (CH-C5), 127.1 (CH-C4), 81.7 (C-C9), 

70.8 (CH-C10), 63.3 (CH2-C1), 26.1 (3C, CH3-t-Bu-TBS), 22.0 (CH2-C8), 18.5 (C-t-Bu-

TBS), −5.1 (CH3-TBS), −5.1 (CH3-TBS); vmax (film) 2928, 1253, 1117, 1047 cm−1; 

HMRS (ESI) calcd for C16H24NaOSi [M+Na]+ 283.1489, found 283.1482.  
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Ynenone 257c 

 

 

 

To a stirred solution of alkyne 255c (0.21 g, 0.81 mmol) in THF (8 mL) at −78 °C was 

added n-BuLi (0.54 mL of a 2.3 M solution in hexanes, 1.2 mmol) over a period of 

10 min. The mixture was stirred at −78 °C for 15 min and then anhydrous DMF 

(0.12 mL, 1.6 mmol) was added. The mixture was stirred at −78 °C for a further 30 min 

and then the reaction was quenched by pouring the solution into a mixture of 10% 

aqueous KH2PO4 (20 mL) and Et2O (10 mL). The mixture was stirred for 10 min and 

the phases were separated. The aqueous phase was extracted with Et2O (3 × 10 mL) 

and the combined organic extracts were washed with brine (2 × 20 mL), dried over 

MgSO4, filtered and concentrated under reduced pressure to afford crude acetylenic 

aldehyde 256c as a yellow oil. The aldehyde was used immediately in the next step 

without further purification. 

Rf = 0.44 (petroleum ether-EtOAc, 10:1). 

 

To a stirred solution of crude acetylenic aldehyde 256c and acetylacetone (42 L, 

0.41 mmol) in toluene (4 mL) at rt were added MgSO4 (10 mg, 83 mol), piperidine 

(4.0 L, 41 mol) and acetic acid (14 L, 0.25 mmol). The mixture was stirred at 35 °C 

for 1 h and then the reaction was quenched by addition of water (10 mL). The mixture 

was diluted with Et2O (10 mL) and the phases were separated. The aqueous phase 

was extracted with Et2O (3 × 5 mL) and the combined organic extracts were dried over 

MgSO4, filtered and concentrated under reduced pressure. The residue was purified by 

flash column chromatography on silica gel (petroleum ether-EtOAc, 10:1) to afford 

ynenone 257c (49 mg, 16%) as a pale yellow oil. 

 

Rf = 0.13 (petroleum ether-EtOAc, 10:1); 1H NMR (400 MHz, CDCl3)  7.39–7.36 (2H, 

m, CH-C3, CH-C6), 7.30–7.27 (2H, m, CH-C4, CH-C5), 6.72 (1H, t, J = 2.5 Hz, CH-
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C11), 4.74 (2H, s, CH2-C1), 3.88 (2H, d, J = 2.5 Hz, CH2-C8), 2.42 (3H, s, CH3-C14), 

2.32 (3H, s, CH3-C14’), 0.92 (9H, s, CH3-t-Bu-TBS), 0.09 (6H, s, CH3-TBS); 13C NMR 

(101 MHz, CDCl3)  201.3 (C-C13’), 195.8 (C-C13), 150.1 (C-C12), 138.6 (C-C2), 132.0 

(C-C7), 128.7 (CH-C5/C6), 127.9 (CH-C5/C6), 127.8 (CH-C3/C4), 127.4 (CH-C3/C4), 

122.8 (CH-C11), 106.9 (C-C9), 78.8 (C-C10), 63.5 (CH2-C1), 31.1 (CH3-C14’), 27.4 

(CH3-C14), 26.1 (3C, CH3-t-Bu-TBS), 23.6 (CH2-C8), 18.5 (C-t-Bu-TBS), −5.1 (CH3-

TBS), −5.1 (CH3-TBS); vmax (film) 2932, 1667, 1373, 1250 cm−1; HMRS (ESI) calcd for 

C22H30NaO3Si [M+Na]+ 393.1856, found 393.1838.  
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Furan 243 

 

 

 

To a stirred solution of protected alcohol 257c (43 mg, 0.12 mmol) in MeOH/CH2Cl2 

(v/v 5:2, 1.2 mL) at rt was added camphorsulfonic acid (5.4 mg, 23 mol) in one portion. 

The mixture was stirred until consumption of the starting material was complete (TLC 

analysis). The reaction was quenched by pouring the solution into a mixture of water 

(15 mL), saturated aqueous NaHCO3 (3 mL) and CH2Cl2 (5 mL). The mixture was 

stirred for 10 min. The phases were separated and the aqueous phase was extracted 

with CH2Cl2 (3 × 5 mL) and the combined organic extracts were washed with brine 

(3 × 5 mL) dried over MgSO4, filtered and concentrated under reduced pressure to 

afford crude ynenone 258c as a yellow oil. The ynenone was used immediately in the 

next step without further purification.  

Rf = 0.16 (petroleum ether-EtOAc, 3:2). 

 

To a mixture of ynenone 258c and phenylphosphonic acid (1.8 mg, 12 mmol) was 

added a solution of tetrahydrothiophene (0.12 mL of a 0.50 M solution in CH2Cl2, 60 

mol). The mixture was stirred at 40 °C for 48 h and then concentrated under reduced 

pressure. The residue was purified by flash column chromatography on silica gel 

(petroleum ether-EtOAc, 5:1) to afford furan 243 (14 mg, 47% over 2 steps) as a 

colourless oil. 

 

Rf = 0.20 (petroleum ether-EtOAc, 5:1); 1H NMR (400 MHz, CDCl3)  7.22–7.16 (3H, 

m, CH-C11, CH-C12, CH-C13), 7.05–7.03 (1H, m, CH-C14), 6.60 (1H, s, CH-C7), 4.98 

(1H, d, J = 15.2 Hz, CHH-C16), 4.92 (1H, d, J = 15.2 Hz, CHH-C16), 4.77 (1H, dd, J = 

10.7, 3.5 Hz, CH-C8), 3.30 (1H, dd, J = 16.2, 10.7 Hz, CHH-C9), 3.00 (1H, dd, J = 16.2, 

3.5 Hz, CHH-C9), 2.62 (3H, s, CH3-C5), 2.40 (3H, s, CH3-C1); 13C NMR (101 MHz, 

CDCl3)  194.2 (C-C2), 158.7 (C-C4), 152.0 (C-C6), 134.1 (C-C10), 132.3 (C-C15), 
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129.0 (CH-C11), 126.8 (CH-C12/C13), 126.6 (CH-C12/C13), 124.4 (CH-C14), 122.1 

(C-C3), 108.1 (CH-C7), 69.8 (CH-C8), 68.3 (CH2-C16), 31.7 (CH2-C9), 29.3 (CH3-C1), 

14.6 (CH3-C5); vmax (film) 2928, 1676, 1566, 1230, 1086 cm−1; HMRS (ESI) calcd for 

C16H16NaO3 [M+Na]+ 279.0992, found 279.0984.  
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Ynenone 257d 

 

 

 

To a stirred solution of alkyne 255d (2.0 g, 8.12 mmol) in THF (80 mL) at −78 °C was 

added n-BuLi (6.0 mL of a 2.0 M solution in hexanes, 12 mmol) over a period of 10 min. 

The mixture was stirred at −78 °C for 15 min and then anhydrous DMF (1.2 mL, 

16 mmol) was added. The mixture was stirred at −78 °C for a further 30 min and then 

the reaction was quenched by pouring the solution into a mixture of 10% aqueous 

KH2PO4 (160 mL) and Et2O (40 mL). The mixture was stirred for 10 min and the phases 

were separated. The aqueous phase was extracted with Et2O (3 × 30 mL) and the 

combined organic extracts were washed with brine (2 × 40 mL), dried over MgSO4, 

filtered and concentrated under reduced pressure to afford crude acetylenic aldehyde 

256d as a yellow oil. The aldehyde was used immediately in the next step without 

further purification. 

Rf = 0.43 (petroleum ether-EtOAc, 5:1). 

 

To a stirred solution of crude acetylenic aldehyde 256d and acetylacetone (0.84 mL, 

8.1 mmol) in toluene (80 mL) at rt were added MgSO4 (0.20 g, 1.6 mmol), piperidine 

(40 L, 0.41 mmol) and acetic acid (0.28 mL, 4.9 mmol). The mixture was stirred at 

35 °C for 1 h and then the reaction was quenched by addition of water (80 mL). The 

mixture was diluted with Et2O (40 mL) and the phases were separated. The aqueous 

phase was extracted with Et2O (3 × 20 mL) and the combined organic extracts were 

dried over MgSO4, filtered and concentrated under reduced pressure. The residue was 

purified by flash column chromatography on silica gel (petroleum ether-EtOAc, 5:1) to 

afford ynenone 257d (1.8 g, 62% over 2 steps) as a pale yellow oil. 

 

Rf = 0.22 (petroleum ether-EtOAc, 5:1); 1H NMR (500 MHz, CDCl3)  7.60 (1H, d, J = 

7.6 Hz, CH-C3), 7.43 (1H, dd, J = 7.6, 7.5 Hz, CH-C5), 7.43 (1H, d, J = 7.6 Hz, CH-
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C6), 7.24 (1H, dd, J = 7.6, 7.5 Hz, CH-C4), 6.93 (1H, s, CH-C10), 4.85 (2H, s, CH2-

C1), 2.53 (3H, s, CH3-C13’), 2.37 (3H, s, CH3-C13), 0.96 (9H, s, CH3-t-Bu-TBS), 0.14 

(6H, s, CH3-TBS); 13C NMR (126 MHz, CDCl3)  200.8 (C-C12’), 195.7 (C-C12), 149.5 

(C-C11), 144.5 (C-C2), 132.6 (CH-C6), 130.6 (CH-C5), 126.8 (CH-C4), 126.2 (CH-C3), 

122.2 (CH-C10), 118.4 (C-C7), 104.5 (C-C8), 89.7 (C-C9), 63.1 (CH-C1), 31.1 (CH3-

C13’), 27.3 (CH3-C13), 26.1 (3C, CH3-t-Bu-TBS), 18.5 (C-t-Bu-TBS), −5.2 (CH3-TBS), 

−5.2 (CH3-TBS); vmax (film) 2929, 1692, 1665, 1578 cm−1; HRMS (ESI) calcd for 

C21H28NaO3Si [M+Na]+ 379.1700, found 379.1682. 
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Alcohol 258d 

 

 

 

To a stirred solution of protected alcohol 257d (1.8 g, 5.0 mmol) in MeOH/CH2Cl2 (v/v 

5:2, 50 mL) at rt was added camphorsulfonic acid (23 mg, 1.0 mmol) in one portion. 

The mixture was stirred until consumption of the starting material was complete (TLC 

analysis). The mixture was filtered through a pad of silica and concentrated under 

reduced pressure. The residue was purified by flash column chromatography on silica 

gel (petroleum ether-EtOAc, 1:1) to afford alcohol 258d (0.94 g, 77%) as a pale yellow 

solid. 

 

Rf = 0.27 (petroleum ether-EtOAc, 1:1); m.p. = 120–122 °C; 1H NMR (500 MHz, CDCl3) 

 7.50–7.47 (2H, m, CH-C3, CH-C6), 7.43 (1H, ddd, J = 7.6, 7.5, 1.1 Hz, CH-C4/C5), 

7.30 (1H, ddd, J = 7.6, 7.5, 1.1 Hz, CH-C4/C5), 6.92 (1H, s, CH-C10), 4.79 (2H, d, J = 

6.4 Hz, CH2-C1), 2.76 (1H, t, J = 6.4 Hz, OH), 2.51 (3H, s, CH3-C13’), 2.40 (3H, s, CH3-

C13); vmax (film) 3439 (br), 2187, 1707, 1663, 1601, 1582 cm−1; HRMS (ESI) calcd for 

C15H14NaO3 [M+Na]+ 265.0835, found 265.0830. 

 

The 13C NMR could not be obtained.  
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Furan 244 

 

 

 

To a mixture of ynenone 258d (84 mg, 0.35 mmol) and phenylphosphonic acid (5.5 mg, 

35 mol) was added a solution of tetrahydrothiophene (0.35 mL of a 0.50 M solution in 

CH2Cl2, 0.18 mmol). The mixture was stirred at 40 °C for 48 h and then concentrated 

under reduced pressure. The residue was purified by flash column chromatography on 

silica gel (petroleum ether-EtOAc, 5:1) to afford furan 244 (52 mg, 61%) as a pale 

yellow oil. 

 

Rf = 0.17 (petroleum ether-EtOAc, 5:1); 1H NMR (400 MHz, CDCl3)  7.38–7.29 (3H, 

m, CH-C11, CH-C12, CH-C13/C10), 7.21 (1H, dd, J = 7.4, 0.8 Hz, CH-C13/C10), 6.44 

(1H, s, CH-C7), 6.17 (1H, dd, J = 2.4, 2.2 Hz, CH-C8), 5.26 (1H, dd, J = 12.1, 2.4 Hz, 

CHH-C15), 5.16 (1H, d, J = 12.1, 2.2 Hz, CHH-C15), 2.56 (3H, s, CH3-C5), 2.36 (3H, 

s, CH3-C1); 13C NMR (101 MHz, CDCl3)  194.1 (C-C2), 159.3 (C-C4), 152.2 (C-C6), 

139.8 (C-C9), 138.2 (C-C14), 128.4 (CH-C12/C11), 127.7 (CH-C12/C11), 122.4 (CH-

C13/C10), 122.1 (C-C3), 121.3 (CH-C13/C10), 108.7 (CH-C7), 78.9 (CH-C8), 73.1 

(CH2-15), 29.2 (CH3-C1), 14.7 (CH3-C5); vmax (film) 1675, 1561, 1229, 1020 cm−1; 

HMRS (ESI) calcd for C15H14NaO3 [M+Na]+ 265.0835, found 265.0822.  
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Alkyne 266 

 

 

 

To a stirred solution of alkene 265 (2.0 g, 6.5 mmol) in MeOH (65 mL) at rt was added 

K2CO3 (0.99 g, 7.2 mmol) in one portion. The mixture was stirred for 12 h and then the 

reaction was quenched by addition of water (70 mL). The mixture was diluted with Et2O 

(30 mL) and the phases were separated. The aqueous phase was extracted with Et2O 

(3 × 30 mL) and the combined organic extracts were dried over MgSO4, filtered and 

concentrated under reduced pressure. The residue was purified by flash column 

chromatography on silica gel (petroleum ether-EtOAc, 300:1) to afford alkyne 266 

(1.5 g, 96%) as a colourless oil. 

 

Rf = 0.04 (petroleum ether); 1H NMR (400 MHz, CDCl3)  5.66–5.54 (2H, m, CH-C2, 

CH-C3), 4.13–4.12 (2H, m, CH2-C1), 2.20 (2H, td, J = 7.2, 2.7 Hz, CH2-C6), 2.17–2.12 

(2H, m, CH2-C4), 1.95 (1H, t, J = 2.7 Hz, CH-C8), 1.61 (2H, tt, J = 7.2, 7.1 Hz, CH2-

C5), 0.90 (9H, s, CH3-t-Bu-TBS), 0.07 (6H, s, CH3-TBS); 13C NMR (101 MHz, CDCl3)  

130.3 (CH-C2/C3), 130.0 (CH-C2/C3), 84.4 (C-C7), 68.5 (CH-C8), 64.0 (CH2-C1), 31.2 

(CH2-C4), 28.1 (CH2-C5), 26.1 (3C, CH3-t-Bu-TBS), 18.6 (C-t-Bu-TBS), 18.0 (CH2-C6), 

−5.0 (CH3-TBS), −5.0 (CH3-TBS); vmax (film) 2930, 1472, 1250, 1096, 1059 cm−1. 

 

The mass could not be obtained. 
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Ynenone 268 

 

 

 

To a stirred solution of alkyne 266 (2.3 g, 9.7 mmol) in THF (96 mL) at −78 °C was 

added n-BuLi (6.6 mL of a 2.2 M solution in hexanes, 15 mmol) over a period of 10 min. 

The mixture was stirred at −78 °C for 15 min and then anhydrous DMF (1.5 mL, 

19 mmol) was added. The mixture was stirred at −78 °C for a further 30 min and then 

the reaction was quenched by addition of 10% aqueous KH2PO4 (100 mL). The mixture 

was diluted with EtOAc (50 mL), stirred for 10 min and the phases were separated. The 

aqueous phase was extracted with EtOAc (3 × 50 mL) and the combined organic 

extracts were washed with brine (80 mL), dried over MgSO4, filtered and concentrated 

under reduced pressure to afford crude acetylenic aldehyde 267 as a yellow oil. The 

aldehyde was used directly in the next step without further purification.  

 

Rf = 0.29 (petroleum ether-EtOAc, 10:1); 1H NMR (400 MHz, CDCl3)  9.18 (H, t, J = 

0.8 Hz, CH-C9), 5.63–5.56 (2H, m, CH-C2, CH-C3), 4.13–4.12 (2H, m, CH2-C1), 2.42 

(2H, td, J = 7.2, 0.8 Hz, CH2-C6), 2.18–2.09 (2H, m, CH2-C4), 1.69 (2H, tt, J = 7.2, 7.1 

Hz, CH2-C5), 0.90 (9H, s, CH3-t-Bu-TBS), 0.07 (6H, s, CH3-TBS). 

 

To a stirred solution of crude acetylenic aldehyde 267 and acetylacetone (0.99 mL, 

9.6 mmol) in toluene (10 mL) at rt were added MgSO4 (0.23 g, 1.9 mmol) and EDDA 

(0.17 g, 0.99 mmol). The mixture was stirred at 35 °C for 1 h and then the reaction was 

quenched by addition of saturated aqueous NH4Cl (30 mL). The mixture was diluted 

with Et2O (20 mL) and the phases were separated. The aqueous phase was extracted 

with Et2O (2 × 10 mL) and the combined organic extracts were washed with brine 

(20 mL), dried over MgSO4, filtered and concentrated under reduced pressure. The 

residue was purified by flash column chromatography on silica gel (petroleum ether-

EtOAc, 10:1) to afford ynenone 268 (2.3 g, 69%) as a pale yellow oil.  
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Rf = 0.09 (petroleum ether-EtOAc, 10:1); 1H NMR (500 MHz, CDCl3)  6.68 (1H, t, J = 

2.5 Hz, CH-C9), 5.62–5.53 (2H, m, CH-C2, CH-C3), 4.11 (2H, d, J = 3.7 Hz, CH2-C1), 

2.45 (3H, s, CH3-C12), 2.43 (2H, td, J = 7.2, 2.5 Hz, CH2-C6), 2.30 (3H, s, CH3-C12’), 

2.13 (2H, dt, J = 6.9, 7.1 Hz, CH2-C4), 1.64 (2H, tt, J = 7.2, 7.1 Hz, CH2-C5), 0.89 (9H, 

s, CH3-t-Bu-TBS), 0.05 (6H, s, CH3-TBS); 13C NMR (126 MHz, CDCl3)  201.4 (C-C11), 

195.9 (C-C11’), 149.7 (C-C10), 130.7 (CH-C2/C3), 129.4 (CH-C2/C3), 123.3 (CH-C9), 

110.1 (C-C7), 77.2 (C-C8), 63.9 (CH2-C1), 31.3 (CH2-C4), 31.1 (CH3-C12), 27.7 (CH2-

C5), 27.3 (CH3-C12’), 26.1 (3C, CH3-t-Bu-TBS), 19.7 (CH2-C6), 18.6 (C-t-Bu-TBS), 

−5.0 (CH3-TBS), −5.0 (CH3-TBS); vmax (film) 2957, 2362, 1677, 1572 cm−1; HMRS (ESI) 

calcd for C20H32NaO3Si [M+Na]+ 371.2013, found 371.1997. 
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Furan 269 

 

 

 

To a stirred solution of ynenone 268 (2.0 g, 5.8 mmol) in CH2Cl2 (23 mL) at rt was 

added chloroacetic acid (0.55 g, 5.8 mmol) in one portion. The mixture was stirred at 

40 °C for 4 d and then concentrated under reduced pressure. The residue was purified 

by flash column chromatography on silica gel (petroleum ether-EtOAc, 10:1) to afford 

furan 269 (1.8 g, 87%) as a pale yellow oil.  

 

Rf = 0.45 (petroleum ether-EtOAc, 10:1); 1H NMR (500 MHz, CDCl3)  6.27 (1H, s, CH-

C7), 3.60 (1H, dd, J = 11.0, 6.4 Hz, CHH-C14), 3.44 (1H, dd, J = 11.0, 7.8 Hz, CHH-

C14), 2.53 (3H, s, CH3-C5), 2.36 (3H, s, CH3-C1), 2.13 (1H, dd, J = 12.5, 8.0 Hz, CHH-

C9), 1.89–1.81 (3H, m, CH2-C11, CHH-C9), 1.71 (1H, ddd, J = 12.5, 8.0, 8.0 Hz, CHH-

C10), 1.53 (1H, dd, J = 4.0, 4.0 Hz, CH-C12), 1.38–1.30 (2H, m, CHH-C10, CH-C13); 

0.84 (9H, s, CH3-t-Bu-TBS), −0.03 (3H, s, CH3-TBS), −0.04 (3H, s, CH3-TBS); 13C NMR 

(126 MHz, CDCl3)  194.5 (C-C2), 157.0 (C-C4), 154.6 (C-C6), 122.0 (C-C3), 106.4 

(CH-C7), 62.8 (CH2-C14), 33.0 (CH2-C9), 30.7 (C-C8), 29.3 (CH3-C1), 29.0 (CH-C12), 

27.8 (CH-C13), 27.5 (CH2-C11), 26.0 (3C, CH3-t-Bu-TBS), 22.0 (CH2-C10), 18.4 (C-t-

Bu-TBS) 14.6 (CH3-C5), −5.1 (CH3-TBS), −5.2 (CH3-TBS); vmax (film) 2928, 1678, 

1570 cm−1; HRMS (EI) calcd for C20H32O3Si [M]+ 348.2121, found 348.2125.  
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Alcohol 270 

 

 

 

To a stirred solution of protected alcohol 269 in (0.25 g, 0.71 mmol) in MeOH/CH2Cl2 

(v/v 5:2, 7 mL) at rt was added camphorsulfonic acid (32 mg, 0.14 mmol) in one portion. 

The mixture was stirred for 1 h and then the reaction was quenched by addition of water 

(20 mL) and saturated aqueous NaHCO3 (5 mL). The mixture was diluted with Et2O 

(10 mL) and the phases were separated. The aqueous phase was extracted with Et2O 

(3 × 5 mL) and the combined organic extracts were washed with brine (2 × 5 mL), dried 

over MgSO4, filtered and concentrated under reduced pressure. The residue was 

purified by flash column chromatography on silica gel (petroleum ether-EtOAc, 2:1) to 

afford alcohol 270 (0.15 g, 91%) as a colourless oil.  

 

Rf = 0.08 (petroleum ether-EtOAc, 2:1); 1H NMR (500 MHz, CDCl3)  6.30 (1H, s, CH-

C7), 3.69 (1H, ddd, J = 12.0, 6.5, 6.5 Hz, CHH-C14), 3.36 (1H, ddd, J = 12.0, 8.8, 3.3 

Hz, CHH-C14), 2.55 (3H, s, CH3-C5), 2.37 (3H, s, CH3-C1), 2.16 (1H, dd, J = 12.4, 8.0 

Hz, CHH-C9), 1.90–1.82 (3H, m, CHH-C9, CH2-C11), 1.74 (1H, ddd, J = 13.2, 8.1, 8.0 

Hz, CHH-C10), 1.59 (1H, dd, J = 4.0, 4.0 Hz, CH-C12), 1.44–1.40 (1H, m, CH-C13), 

1.39–1.32 (2H, m, CHH-C10, OH); 13C NMR (126 MHz, CDCl3)  194.3 (C-C2), 157.2 

(C-C4), 154.5 (C-C6), 122.2 (C-C3), 106.9 (CH-C7), 62.8 (CH2-C14), 33.1 (CH2-C9), 

30.6 (C-C8), 29.3 (CH3-C1), 29.2 (CH-C12), 27.8 (CH-C13), 27.4 (CH2-C11), 22.1 

(CH2-C10), 14.6 (CH3-C5); vmax (film) 3410 (br), 2928, 1663, 1566 cm−1; HRMS (EI) 

calcd for C14H18O3 [M]+ 234.1256, found 234.1257.  
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Aldehyde 271 

 

 

 

To a stirred solution of alcohol 270 (0.15 g, 0.64 mmol) in CH2Cl2 (7 mL) at 0 °C was 

added DMP (0.45 g, 1.1 mmol) in small portions. The mixture was stirred at rt for 16 h 

and then the reaction was quenched by sequential addition of saturated aqueous 

Na2S2O3 (10 mL) and saturated aqueous NaHCO3 (10 mL). The mixture was diluted 

with Et2O (10 mL), stirred until two clear layers were obtained (ca. 30 min) and the 

phases were separated. The aqueous phase was extracted with Et2O (3 × 10 mL) and 

the combined organic extracts were dried over MgSO4, filtered and concentrated under 

reduced pressure. The residue was purified by flash column chromatography on silica 

gel (petroleum ether-EtOAc, 10:3) to afford aldehyde 271 (0.14 g, 92%) as a pale yellow 

oil.  

 

Rf = 0.16 (petroleum ether-EtOAc, 10:3); 1H NMR (400 MHz, CDCl3)  9.03 (1H, d, J = 

6.5 Hz, CH-C14), 6.37 (1H, s, CH-C7), 2.55 (1H, dd, J = 3.9, 3.9 Hz, CH-C12), 2.53 

(3H, s, CH3-C5), 2.36 (3H, s, CH3-C1), 2.26 (1H, dd, J = 13.2, 8.1 Hz, CHH-C9), 2.10–

1.97 (2H, m, CH2-C11), 2.05 (1H, dd, J = 6.5, 3.9 Hz, CH-C13), 1.96 (1H, dd, J = 13.2, 

7.9 Hz, CHH-C9), 1.81 (1H, ddd, J = 13.5, 7.9, 7.9 Hz, CHH-C10), 1.33 (1H, ddddd, J 

= 13.5, 8.1, 8.1, 3.1, 3.1 Hz, CHH-C10); 13C NMR (101 MHz, CDCl3)  199.7 (CH-C14), 

194.0 (C-C2), 157.6 (C-C4), 151.3 (C-C6), 122.2 (C-C3), 107.9 (CH-C7), 37.5 (CH-

C13), 36.6 (C-C8), 33.5 (CH2-C9), 32.4 (CH-C12), 29.3 (CH3-C1), 27.3 (CH2-C11), 20.9 

(CH2-C10), 14.6 (CH3-C5); vmax (film) 2959, 1701, 1674, 1568, 1414 cm−1; HRMS (ESI) 

calcd for C14H16NaO3 [M+Na]+ 255.0992, found 255.0991.  
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Vinylcyclopropane 272 

 

 

 

To a stirred solution of methyltriphenylphosphonium bromide (0.21 g, 0.59 mmol) in 

THF (8 mL) at −10 °C was added n-BuLi (0.16 mL of a 2.3 M solution in hexanes, 

0.37 mmol). The mixture was stirred at −10 °C for 1 h and then added to a stirred 

solution of aldehyde 271 (71 mg, 0.31 mmol) in THF (10 mL) at −10 °C. The mixture 

was stirred at rt for 2 h and then the reaction was quenched by pouring the solution into 

a mixture of pH 7 buffer (50 mL) and Et2O (20 mL). The mixture was stirred for 10 min 

and the phases were separated. The aqueous phase was extracted with Et2O 

(3 × 20 mL) and the combined organic extracts were dried over MgSO4, filtered and 

concentrated under reduced pressure. The residue was purified by flash column 

chromatography on aluminium oxide (activated, basic, Brockmann I, petroleum ether-

EtOAc, 10:1) to afford vinylcyclopropane 272 (57 mg, 81%) as a colourless oil. 

 

Rf = 0.13 (petroleum ether-EtOAc, 10:1); 1H NMR (400 MHz, CDCl3)  6.25 (1H, s, CH-

C7), 5.39 (1H, ddd, J = 17.1, 10.2, 9.3 Hz, CH-C14), 5.08 (1H, dd, J = 17.1, 1.8 Hz, 

CHH-C15trans), 4.88 (1H, dd, J = 10.2, 1.8 Hz, CHH-C15cis), 2.54 (3H, s, CH3-C5), 2.37 

(3H, s, CH3-C1), 2.16 (1H, dd, J = 12.7, 8.4 Hz, CHH-C9), 1.94 (1H, dd, J = 12.7, 8.4 

Hz, CHH-C9), 1.93–1.88 (2H, m, CH2-C11), 1.80–1.78 (1H, m, CH-C13), 1.77–1.71 

(1H, m, CHH-C10), 1.75 (1H, dd, J = 4.1, 9.1 Hz, CH-C12), 1.43–1.32 (1H, m, CHH-

C10); 13C NMR (126 MHz, CDCl3)  194.5 (C-C2), 157.1 (C-C4), 154.4 (C-C6), 137.1 

(CH-C14), 122.1 (C-C3), 113.9 (CH2-C15), 106.5 (CH-C7), 33.4 (C-C8), 32.7 (CH2-C9), 

32.4 (CH-C12), 30.2 (CH-C13), 29.3 (CH3-C1), 27.5 (CH2-C11), 21.7 (CH2-C10), 14.6 

(CH3-C5); vmax (film) 2926, 1678, 1570 cm−1; HMRS (ESI) calcd for C15H18NaO2 

[M+Na]+ 253.1199, found 253.1187.  
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Cycloheptadiene 273 

 

 

 

A solution of vinylcyclopropane 272 (70 mg, 0.30 mmol) in toluene (6 mL) was stirred 

at 40 °C for 16 h. The mixture was concentrated under reduced pressure and the 

residue was purified by flash column chromatography on silica gel (petroleum ether-

EtOAc, 10:1) to afford cycloheptadiene 273 (44 mg, 63%) as a pale yellow oil.  

 

Rf = 0.49 (petroleum ether-EtOAc, 10:3); 1H NMR (400 MHz, C6D6)  5.50–5.47 (2H, 

m, CH-C9, CH-C10), 4.18 (1H, br d, J = 11.5 Hz, CH-C7), 3.19 (1H, m, CH-C11), 2.76–

2.69 (1H, m, CHH-C8), 2.57–2.50 (1H, m, CHH-C14), 2.44–2.33 (1H, m, CHH-C14), 

2.08–1.98 (1H, m, CHH-C8), 1.89 (3H, d, J = 1.4 Hz, CH3-C5), 1.85 (3H, s, CH3-C1), 

1.84–1.79 (1H, m, CHH-C12), 1.59–1.53 (1H, m, CHH-C13), 1.32–1.23 (2H, m, CHH-

C12, CHH-C13); 13C NMR (126 MHz, C6D6)  192.0 (C-C2), 164.8 (C-C4), 150.4 (C-

C6), 131.2 (CH-C9/C10), 126.4 (CH-C9/C10), 118.6 (C-C3), 117.1 (C-C15), 44.2 (CH-

C7), 42.0 (CH-C11), 36.4 (CH2-C12), 32.0 (CH2-C8), 29.4 (CH2-C14), 29.2 (CH3-C1), 

25.0 (CH2-C13), 14.7 (CH3-C5); vmax (film) 2953, 1618, 1387, 1204, 1020 cm−1; HMRS 

(ESI) calcd for C15H18NaO2 [M+Na]+ 253.1199, found 253.1187.  
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Vinylcyclopropane 280 

 

 

 

To a stirred solution of i-propyltriphenylphosphonium iodide (0.72 mg, 1.7 mmol) in THF 

(30 mL) at −10 °C was added n-BuLi (0.55 mL of a 2.3 M solution in hexanes, 2.4 mmol). 

The mixture was stirred at −10 °C for 2 h and then added to a stirred solution of 

aldehyde 271 (0.19 mg, 0.83 mmol) in THF (60 mL) at −10 °C. The mixture was stirred 

for 16 h at −10 °C and then the reaction was quenched by pouring the solution into a 

mixture of pH 7 buffer (90 mL) and Et2O (40 mL). The mixture was stirred for 10 min 

and the phases were separated. The aqueous phase was extracted with Et2O (3 × 30 

mL). The combined organic extracts were dried over MgSO4, filtered and concentrated 

under reduced pressure. The residue was purified by flash column chromatography on 

aluminium oxide (activated, basic, Brockmann I, petroleum ether-EtOAc, 10:1) to afford 

vinylcyclopropane 280 (0.14 mg, 65%) as a colourless oil. 

 

Rf = 0.48 (petroleum ether-EtOAc, 10:1); 1H NMR (400 MHz, C6D6)  6.19 (1H, s, CH-

C7), 4.99 (1H, dsept, J = 8.7, 1.3 Hz, CH-C14), 2.38 (3H, s, CH3-C5), 2.13 (1H, dd, J = 

12.5, 8.4 Hz, CHH-C9), 2.01 (3H, s, CH3-C1), 1.91 (1H, ddd, J = 12.5, 11.4, 8.4 Hz, 

CHH-C9), 1.81 (1H, dd, J = 8.7, 4.1 Hz, CH-C13), 1.75–1.72 (2H, m, CH2-C11), 1.68–

1.66 (1H, m, CH-C12), 1.64 (3H, d, J = 1.3 Hz, CH3-C16/C16’), 1.59 (3H, d, J = 1.3 Hz, 

CH3-C16/C16’), 1.54–1.47 (1H, m, CHH-C10), 1.26–1.13 (1H, m, CHH-C10); 13C NMR 

(101 MHz, C6D6)  192.6 (C-C2), 156.6 (C-C4), 154.9 (C-C6), 132.1 (C-C15), 123.3 

(CH-C14), 122.6 (C-C3), 106.7 (CH-C7), 33.3 (C-C8), 33.1 (CH2-C9), 33.0 (CH-C12), 

28.8 (CH3-C1), 27.9 (CH2-C11), 25.8 (CH3-C16/C16’), 25.7 (CH-C13), 22.2 (CH2-C10), 

18.5 (CH3-C16/C16’), 14.3 (CH3-C5); vmax (film) 2926, 1677, 1570 cm−1; HMRS (ESI) 

calcd for C17H22NaO2 [M+Na]+ 281.1512, found 281.1499.  
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Cycloheptadiene 281 

 

 

 

A solution of vinylcyclopropane 280 (48 mg, 0.19 mmol) in toluene (4 mL) was stirred 

at 110 °C for 16 h. The mixture was concentrated under reduced pressure and the 

residue was purified by flash column chromatography on silica gel (petroleum ether-

EtOAc, 10:1) to afford cycloheptadiene 281 (13 mg, 27%, 68% brsm) as a colourless 

gum.  

 

Rf = 0.45 (petroleum ether-EtOAc, 10:1); 1H NMR (400 MHz, C6D6)  5.35 (1H, dd, J = 

12.3, 2.0 Hz, CH-C10/C11), 5.27 (1H, dd, J = 12.3, 2.5 Hz, CH-C10/C11), 4.20–4.19 

(1H, m, CH-C7), 3.12–3.07 (1H, m, CH-C12), 2.58–2.51 (1H, m, CHH-C15), 2.44–2.33 

(1H, m, CHH-C15), 2.05 (3H, d, J = 1.3 Hz, CH3-C5), 2.04 (3H, s, CH3-C1), 1.85–1.78 

(1H, m, CHH-C13), 1.71–1.64 (1H, m, CHH-C14), 1.43–1.26 (2H, m, CHH-C13, CHH-

C14), 1.11 (3H, s, CH3-C9/C9’), 1.05 (3H, s, CH3-C9/C9’); 13C NMR (101 MHz, C6D6) 

 193.6 (C-C2), 164.0 (C-C4), 149.3 (C-C6), 139.3 (CH-C10/11), 128.6 (CH-C10/C11), 

117.6 (C-C3), 117.1 (C-C16), 53.0 (CH-C7), 41.1 (CH-C12), 38.6 (C-C8), 36.2 (CH2-

C13), 30.2 (CH3-C9/C9’), 29.3 (CH3-C1), 29.2 (CH2-C15), 25.3 (CH2-C14), 24.2 (CH3-

C9/C9’), 14.1 (CH3-C5); vmax (film) 2955, 1607, 1377, 1360, 1204, 1022 cm−1; HMRS 

(ESI) calcd for C17H22NaO2 [M+Na]+ 281.1512, found 281.1501.  
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Vinylcyclopropanes E-282 and Z-282 

 

 

 

To a stirred solution of ethyltriphenylphosphonium bromide (0.14 mg, 0.38 mmol) in 

THF (5 mL) at −10 °C was added n-BuLi (0.13 mL of a 2.2 M solution in hexanes, 

0.29 mmol). The mixture was stirred at −10 °C for 1 h and then added to a stirred 

solution of aldehyde 271 (60 mg, 0.26 mmol) in THF (9 mL) at −10 °C. The mixture was 

stirred at rt for 2 h and then the reaction was quenched by pouring the solution into a 

mixture of pH 7 buffer (20 mL) and Et2O (10 mL). The mixture was stirred for 10 min 

and the phases were separated. The aqueous phase was extracted with Et2O 

(3 × 5 mL) and the combined organic extracts were dried over MgSO4, filtered and 

concentrated under reduced pressure. The residue was purified by flash column 

chromatography on aluminium oxide (activated, basic, Brockmann I, petroleum ether-

EtOAc, 10:1) to afford an inseparable mixture of E-vinylcyclopropane E-282 and Z-

vinylcyclopropane Z-282 (0.62 g, 86%, 1:2.7 E:Z) as a colourless oil. 

 

Rf = 0.16 (petroleum ether-EtOAc, 10:1); 1H NMR (400 MHz, C6D6)  6.18 (1H, s, CH-

C7 E-282), 6.18 (1H, s, CH-C7 Z-282), 5.50 (1H, dq, J = 15.2, 6.5 Hz, CH-C15trans E-

282), 5.44 (1H, dqd, J = 10.8, 6.8, 1.0 Hz, CH-C15cis Z-282), 5.25–5.21 (1H, m, CH-

C14trans E-282), 5.19 (1H, ddq, J = 10.8, 9.5, 1.7 Hz, CH-C14cis Z-282), 2.37 (3H, s, 

CH3-C5 Z-282), 2.37 (3H, s, CH3-C5 E-282), 2.11 (1H, ddd, J = 12.5, 8.2, 0.6 Hz, CHH-

C9 Z-282), 2.08 (1H, dd, J = 8.0, 4.5, 1.0 Hz, CHH-C9 E-282), 1.94–1.84 (4H, m, CHH-

C9 E-282, CHH-C9 Z-282, CH-C13 E-282, CH-C13 Z-282), 2.02 (3H, s, CH3-C1 Z-

282), 2.02 (3H, s, CH3-C1 E-282), 1.73–1.67 (6H, m, CH2-C11 E-282, CH2-C11 Z-282, 

CH-C12 E-282, CH-C12 Z-282), 1.64 (3H, dd, J = 6.8, 1.7 Hz, CH3-C16 Z-282), 1.54 

(3H, dd, J = 6.5, 1.6 Hz, CH3-C16 E-282), 1.51–1.43 (1H, m, CHH-C10 E-282), 1.51 – 

1.43 (1H, m, CHH-C10 Z-282), 1.22–1.07 (1H, m, CHH-C10 E-282), 1.22–1.07 (1H, m, 

CHH-C10 Z-282); 13C NMR (126 MHz, C6D6)  192.6 (C-C2 Z-282), 192.6 (C-C2 E-
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282), 156.7 (C-C4 Z-282), 156.6 (C-C4 E-282), 154.7 (C-C6 E-282), 154.6 (C-C6 Z-

282), 129.8 (CH-C14 E-282), 129.2 (CH-C14 Z-282), 125.0 (CH-C15 E-282), 123.9 

(CH-C15 Z-282), 122.6 (C-C3 E-282), 122.5 (C-C3 Z-282), 106.9 (CH-C7 Z-282), 106.8 

(CH-C7 E-282), 33.6 (C-C8 Z-282), 33.2 (C-C8 E-282), 33.2 (CH-C12 Z-282), 33.0 

(CH2-C9 Z-282), 33.0 (CH2-C9 E-282), 32.1 (CH-C12 E-282), 29.5 (CH3-C1 E-282), 

28.9 (CH3-C1 Z-282), 27.8 (CH2-C11 Z-282), 27.7 (CH2-C11 E-282), 24.7 (CH-C13 E-

282), 24.7 (CH-C13 Z-282), 22.1 (CH2-C10 Z-282), 22.0 (CH2-C10 E-282), 18.2 (CH3-

C16 E-282), 14.3 (CH3-C5 E-282), 14.3 (CH3-C5 Z-282), 13.5 (CH3-C16 E-282) 13.5 

(CH3-C16 Z-282); vmax (film) 1676, 1569, 1393, 1229 cm−1; HMRS (ESI) calcd for 

C16H20NaO2 [M+Na]+ 267.1356, found 267.1343.  
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Cycloheptadiene syn-283 

 

 

 

A mixture of E and Z-vinylcyclopropane 282 (35 mg, 0.14 mmol, 1:2.7 E:Z) in toluene 

(4 mL) was stirred at 40 °C for 18 h. The mixture was concentrated under reduced 

pressure and the residue was purified by flash column chromatography on silica gel 

(petroleum ether-EtOAc, 10:1) to afford cycloheptadiene syn-283 (7.9 mg, 23%) as a 

colourless gum and recovered Z-vinylcyclopropane Z-282 (14 mg, 40%).  

 

Rf = 0.45 (petroleum ether-EtOAc, 10:1); 1H NMR (400 MHz, C6D6)  5.45 (1H, ddd, J 

= 12.2, 2.5, 2.5 Hz, CH-C10/C11), 5.29 (1H, ddd, J = 12.2, 2.3, 2.3 Hz, CH-C10/C11), 

3.97 (1H, br d, J = 10.3 Hz, CH-C7), 3.17–3.11 (1H, m, CH-C12), 2.57–2.50 (1H, m, 

CHH-C15), 2.44–2.32 (2H, m, CH-C8, CHH-C15), 1.93 (3H, d, J = 1.3 Hz, CH3-C5), 

1.91 (3H, s, CH3-C1), 1.85–1.80 (1H, m, CHH-C13), 1.60–1.55 (1H, m, CHH-C14), 

1.31–1.25 (2H, m, CHH-C13, CHH-C14), 0.94 (3H, d, J = 7.4 Hz, CH3-C9); 13C NMR 

(101 MHz, C6D6)  193.3 (C-C2), 164.0 (C-C4), 150.7 (C-C6), 134.3 (C-C10/C11), 

130.6 (C-C10/C11), 118.7 (C-C3), 116.9 (C-C16), 49.8 (CH-C7), 41.5 (CH-C12), 39.3 

(CH-C8), 36.1 (CH2-C13), 29.4 (CH2-C15), 29.3 (CH3-C1), 25.2 (CH2-C14), 21.4 (CH3-

C9), 14.3 (CH3-C5); vmax (film) 2928, 1670, 1610 cm−1 ; HMRS (ESI) calcd for 

C16H20NaO2 [M+Na]+ 267.1356, found 267.1345.  
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Vinylcyclopropanes E-284 and Z-284 

 

 

 

To a stirred solution of benzyltriphenylphosphonium bromide (0.14 g, 0.32 mmol) in 

THF (4 mL) at −10 °C was added n-BuLi (0.12 mL of a 2.2 M solution in hexanes, 

0.26 mmol). The mixture was stirred at −10 °C for 1 h and then added to a stirred 

solution of aldehyde 271 (50 mg, 0.22 mmol) in THF (7 mL) at −10 °C. The mixture was 

stirred for 2 h at −10 °C and then the reaction was quenched by pouring the solution 

into a mixture of pH 7 buffer (50 mL) and Et2O (20 mL). The mixture was stirred for 

10 min and the phases were separated. The aqueous phase was extracted with Et2O 

(3 × 20 mL) and the combined organic extracts were dried over MgSO4, filtered and 

concentrated under reduced pressure. The residue was purified by flash column 

chromatography on aluminium oxide (activated, basic, Brockmann I, petroleum ether-

EtOAc, 5:1) to afford an inseparable mixture of E-vinylcyclopropane E-284 and Z-

vinylcyclopropane Z-284 (60 mg, 92%, 1.0:1.1 E:Z) as a colourless oil. 

 

Rf = 0.32 (petroleum ether-EtOAc); 1H NMR (400 MHz, C6D6)  7.43 (2H, d, J = 7.6 Hz, 

CH-C17 Z-284), 7.23 (2H, d, J = 7.9, CH-C17 E-284), 7.22 (2H, dd, J = 7.6, 7.9 Hz, 

CH-C18 Z-284), 7.10–7.07 (3H, m, CH-C18 E-284, CH-C19 Z-284), 6.98 (1H, t, J = 7.4 

Hz, CH-C19 E-284), 6.45 (1H, d, J = 15.8 Hz, CH-C15trans E-284), 6.44 (1H, d, J = 11.4 

Hz, CH-C15cis Z-284), 6.23 (1H, s, CH-C7 Z-284), 6.22 (1H, s, CH-C7 E-284), 6.00 (1H, 

dd, J = 15.8, 9.2 Hz, CH-C14trans E-284), 5.43 (1H, dd, J = 11.4, 9.3 Hz, CH-C14cis Z-

284), 2.28 (3H, s, CH3-C5 Z-284), 2.36 (3H, s, CH3-C5 E-284), 2.18 (1H, dd, J = 9.3, 

4.2 Hz, CH-C13 Z-284), 2.09 (1H, ddd, J= 12.6, 8.2, 5.6 Hz, CHH-C9 E-284), 2.08 (1H, 

ddd, J = 12.6, 8.2, 5.6 Hz, CHH-C9 Z-284), 2.03 (3H, s, CH3-C1 Z-284), 1.99 (3H, s, 

CH3-C1 E-284), 1.90 (1H, ddd, J = 12.6, 11.5, 8.6 Hz, CHH-C9 E-284), 1.88 (1H, ddd, 
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J = 12.6, 11.5, 8.6 Hz, CHH-C9 Z-284), 1.79–1.76 (2H, m, CH-C12 E-284, CH-C13 E-

284), 1.75–1.71 (3H, m, CH-C12 Z-284, CHH-C11 Z-284, CHH-C11 E-284), 1.69–1.64 

(2H, m, CHH-C11 Z-284, CHH-C11 E-284), 1.52–1.46 (1H, m, CHH-C10 E-284), 1.43–

1.37 (1H, m, CHH-C10 E-284), 1.21–1.12 (1H, m, CHH-C10 Z-284), 1.07–0.98 (1H, m, 

CHH-C10 Z-284); 13C NMR (101 MHz, C6D6)  192.6 (C-C2 Z-284), 192.5 (C-C2 E-

284), 156.8 (C-C4 Z-284), 156.7 (C-C4 E-284), 154.3 (C-C6 E-284), 154.2 (C-C6 Z-

284), 138.2 (C-C16 Z-284), 138.2 (C-C16 E-284), 130.9 (CH-C14 Z-284), 130.1 (CH-

C15 E-284), 129.6 (CH-C15 Z-284), 129.4 (CH-C14 E-284), 129.2 (2C, CH-C17 Z-

284), 128.9 (2C, CH-C18 E-284), 128.6 (2C, CH-C18 Z-284), 127.1 (CH-C19 E-284), 

127.0 (CH-C19 Z-284), 126.1 (2C, CH-C17 E-284), 122.6 (C-C3 Z-284), 122.6 (C-C3 

E-284), 107.2 (CH-C7 E-284), 107.0 (CH-C7 Z-284), 34.5 (C-C8 E-284/Z-284), 34.3 

(C-C8 E-284/Z-284), 34.1 (CH-C12 Z-284), 33.2 (CH2-C9 E-284), 33.1 (CH-C12 E-

284), 32.6 (CH2-C9 Z-284), 30.2 (CH-C13 E-284), 28.9 (CH3-C1 Z-284), 28.84 (CH3-

C1 E-284), 27.8 (CH2-C11 E-284), 27.6 (CH2-C11 Z-284), 26.7 (CH-C13 Z-284), 21.9 

(CH2-C10 Z-284), 21.9 (CH2-C10 E-284), 14.2 (CH3-C5 Z-284), 14.2 (CH3-C5 E-284); 

vmax (film) 2957, 1676, 1568 cm−1; HMRS (ESI) calcd for C21H22NaO2 [M+Na]+ 

329.1512, found 329.1502.  
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Cycloheptadiene syn-285 

 

 

 

A mixture of E and Z-vinylcyclopropane 284 (60 mg, 0.20 mmol, 1.0:1.1 E:Z) in toluene 

(6 mL) was stirred at 40 °C for 18 h. The mixture was concentrated under reduced 

pressure and the residue was purified by flash column chromatography on silica gel 

(petroleum ether-EtOAc, 10:1) to afford cycloheptadiene syn-285 (26 mg, 43%) as a 

colourless gum and recovered Z-vinylcyclopropane Z-284 (14 mg, 23 %).  

 

Rf = 0.45 (petroleum ether-EtOAc, 10:1); 1H NMR (400 MHz, C6D6)  7.27 (2H, dd, J = 

7.9, 1.3 Hz, CH10), 7.14 (2H, dd, J = 7.9, 7.5 Hz, CH-C11), 7.06 (1H, tt, J = 7.5, 1.3 

Hz, CH-C12), 5.66 (1H, ddd, J = 12.3, 6.0, 2.5 Hz, CH-C13), 5.61 (1H, dd, J = 12.3, 1.7 

Hz, CH-C14), 4.66 (1H, ddq, J = 5.2, 2.5, 1.4 CH-C7), 4.35 (1H, m, CH-C8), 3.24–3.21 

(1H, m, CH-C15), 2.56–2.51 (1H, m, CHH-C18), 2.45–2.36 (1H, m, CHH-C18), 1.93 

(3H, s, CH3-C1), 1.88–1.84 (1H, m, CHH-C16), 1.63–1.58 (1H, m, CHH-C17), 1.47 (3H, 

d, J = 1.4 Hz, CH3-C5), 1.35–1.25 (2H, m, CHH-C16, CHH-C17); 13C NMR (126 MHz, 

C6D6)  191.9 (C-C2), 164.6 (C-C4), 147.8 (C-C6), 140.9 (C-C9), 131.0 (C-C14), 130.0 

(2C, C-C10), 129.8 (C-C13), 127.9 (2C, C-C11), 126.9 (C-C12), 117.6 (C-C3), 117.3 

(C-C19), 49.4 (CH-C7), 44.3 (CH-C8), 41.8 (CH-C15), 36.5 (CH2-C16), 29.4 (CH2-

C18), 29.4 (CH3-C1), 25.2 (CH2-C17), 14.4 (CH3-C5); vmax (film) 2924, 1620, 1387, 

1202, 1049, 1022 cm−1; HMRS (EI) calcd for C21H22O2 [M]+ 306.1620, found 306.1623.  
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Alcohol 286 

 

 

 

To a stirred solution of protected alcohol 268 in (0.58 g, 1.7 mmol) in MeOH/CH2Cl2 

(v/v 5:2, 17 mL) at rt was added camphorsulfonic acid (77 mg, 0.33 mmol) in one 

portion. The mixture was stirred for 1 h and then the reaction was quenched by addition 

of water (20 mL) and saturated aqueous NaHCO3 (5 mL). The mixture was diluted with 

Et2O (10 mL) and the phases were separated. The aqueous phase was extracted with 

Et2O (3 × 10 mL) and the combined organic extracts were washed with brine (20 mL), 

dried over MgSO4, filtered and concentrated under reduced pressure. The residue was 

purified by flash column chromatography on silica gel (petroleum ether-EtOAc, 1:1) to 

afford alcohol 286 (0.38 g, 98%) as a pale yellow oil. 

 

Rf = 0.13 (petroleum ether-EtOAc, 1:1); 1H NMR (400 MHz, CDCl3)  6.66 (1H, t, J = 

2.4 Hz, CH-C9), 5.66–5.63 (2H, m, CH-C2, CH-C3), 4.08-4.07 (2H, d, J = 4.1 Hz, CH2-

C1), 2.44 (3H, s, CH3-C12), 2.43 (2H, td, J = 7.1, 2.4 Hz, CH2-C6), 2.29 (3H, s, CH3-

C12’), 2.16-2.11 (2H, m, CH2-C4), 1.69 (1H, br s, OH), 1.64 (2H, tt, J = 7.2, 7.1 Hz, 

CH2-C5); 13C NMR (101 MHz, CDCl3)  201.5 (C-C11), 195.9 (C-C11’), 149.8 (C-C10), 

131.1 (CH-C2/C3), 130.5 (CH-C2/C3), 123.2 (CH-C9), 109.9 (C-C7), 77.2 (C-C8), 63.5 

(CH2-C1), 31.3 (CH2-C4), 31.0 (CH3-C12), 27.5 (CH2-C5), 27.2 (CH3-C12’), 19.7 (CH2-

C6); vmax (film) 2211, 1663, 1587, 1422 cm−1; HMRS (ESI) calcd for C14H18NaO3 

[M+Na]+ 257.1148, found 257.1139.  
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Aldehyde 287 

 

 

 

To a stirred solution of alcohol 286 (0.36 g, 1.5 mmol) in CH2Cl2 (16 mL) at 0 °C was 

added DMP (1.0 g, 2.4 mmol) in small portions. The mixture was stirred at rt for 16 h 

and then the reaction was quenched by sequential addition of saturated aqueous 

Na2S2O3 (15 mL) and saturated aqueous NaHCO3 (15 mL). The mixture was diluted 

with Et2O (20 mL), stirred until two clear layers were obtained (ca. 30 min) and the 

phases were separated. The aqueous phase was extracted with CH2Cl2 (3 × 10 mL) 

and the combined organic extracts were dried over MgSO4, filtered and concentrated 

under reduced pressure. The residue was purified by flash column chromatography on 

silica gel (petroleum ether-EtOAc, 5:1) to afford aldehyde 287 (0.31 g, 86%) as a pale 

yellow oil.  

 

Rf = 0.24 (petroleum ether-EtOAc, 5:1); 1H NMR (500 MHz, CDCl3)  9.50 (1H, d, J = 

7.8 Hz, CH-C1), 6.81 (1H, dt, J = 15.7, 6.9 Hz, CH-C3), 6.63 (1H, t, J = 2.4 Hz, CH-

C9), 6.12 (1H, ddt, J = 15.7, 7.8, 1.5 Hz, CH-C2), 2.49 (2H, td, J = 7.0, 2.4 Hz, CH2-

C6), 2.44 (2H, tdd, J = 7.7, 6.9, 1.5 Hz, CH2-C4), 2.42 (3H, s, CH3-C12), 2.29 (3H, s, 

CH3-C12’), 1.77 (2H, tt, J = 7.7, 7.0 Hz, CH2-C5), 13C NMR (126 MHz, CDCl3)  201.3 

(C-C11), 195.8 (C-C11’), 193.8 (CH-C1), 156.6 (CH-C2), 150.2 (C-C10), 133.7 (CH-

C3), 122.6 (CH-C9), 108.2 (C-C7), 77.6 (C-C8), 31.6 (CH2-C4), 31.0 (CH3-C12), 27.1 

(CH2-C5), 26.3 (CH3-C12’), 19.7 (CH2-C6); vmax (film) 2211, 1684, 1375, 1248, 1165, 

1125 cm−1; HMRS (ESI) calcd for C14H16NaO3 [M+Na]+ 255.0992, found 255.0987.  
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Diene 289 

 

 

 

To a stirred solution of i-propyltriphenylphosphonium iodide (0.92 g, 2.1 mmol) in THF 

(26 mL) at −10 °C was added n-BuLi (0.69 mL of a 2.3 M solution in hexanes, 

1.59 mmol). The mixture was stirred at −10 °C for 1 h and then added to a stirred 

solution of aldehyde 287 (0.245 g, 1.06 mmol) in THF (35 mL) at −10 °C. The mixture 

was stirred for 16 h at rt and then the reaction was quenched by pouring the solution 

into a mixture of buffer pH 7 (90 mL) and Et2O (50 mL). The mixture was stirred for 10 

min and the phases were separated. The aqueous phase was extracted with Et2O (3 × 

30 mL) and the combined organic extracts were dried over MgSO4, filtered and 

concentrated under reduced pressure. The residue was purified by flash column 

chromatography on silica gel (petroleum ether-EtOAc, 10:1) to afford cyclopropane 289 

(0.19 g, 61%) as a colourless oil. 

 

Rf = 0.33 (petroleum ether-EtOAc, 10:1); 1H NMR (500 MHz, C6D6)  6.35 (1H, ddt, J 

= 15.0, 10.9, 1.3 Hz, CH-C4), 5.88 (1H, d, J = 10.9 Hz, CH-C3), 5.43 (1H, dt, J = 15.0, 

7.1 Hz, CH-C5), 2.63 (1H, t, J = 2.1 Hz, CH-C11), 2.12 (3H, s, CH3-C14’), 2.07 (2H, 

tdd, J = 7.2, 7.1, 1.3 Hz, CH2-C6), 1.98 (2H, td, J = 7.1, 2.1 Hz, CH2-C8), 1.85 (3H, s, 

CH3-C14), 1.66 (3H, s, CH3-C1/C1’), 1.64 (3H, s, CH3-C1/C1’), 1.42 (3H, s, CH3-C16’), 

1.41 (2H, tt, J = 7.2, 7.1 Hz, CH2-C7), 0.82 (3H, s, CH3-C16); 13C NMR (126 MHz, C6D6) 

 201.4 (C-C13’), 198.9 (C-C13), 132.7 (C-C2), 130.51 (CH-C5), 128.4 (CH-C4), 125.9 

(CH-C3), 84.1 (C-C9/C10), 76.8 (C-C9/C10), 59.3 (C-C12), 32.9 (C-C15), 32.2 (CH2-

C6), 30.6 (CH3-C14’), 29.5 (CH3-C14), 29.2 (CH2-C7), 26.0 (CH3-C1/C1’), 23.8 (CH-

C11), 20.5 (CH3-C16), 20.4 (CH3-C16’), 18.4 (CH2-C8), 18.2 (CH3-C1/C1’); vmax (film) 

1695, 1358, 1213, 1188 cm−1; HMRS (ESI) calcd for C20H28NaO2 [M+Na]+ 323.1982, 

found 323.1979.  
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Alkyne 296 

 

 

 

To a stirred solution of i-propyltriphenylphosphonium iodide (1.4 g, 3.3 mmol) in THF 

(20 mL) at −10 °C was added n-BuLi (1.1 mL of a 2.2 M solution in hexanes, 2.4 mmol). 

The mixture was stirred at −10 °C for 2 h and then added to a stirred solution of 

aldehyde 295 (0.33 g, 1.70 mmol) in THF (20 mL) at −10 °C. The mixture was stirred 

for 1 h and then the reaction was quenched by addition of brine (40 mL). The mixture 

was diluted with Et2O (30 mL) and the phases were separated. The aqueous phase 

was extracted with Et2O (3 × 20 mL). The combined organic extracts were dried over 

MgSO4, filtered and concentrated under reduced pressure. The residue was purified by 

flash column chromatography on silica gel (petroleum ether-EtOAc, 300:1) to afford 

diene 296 (0.62 g, 86%) as a pale yellow oil. 

 

Rf = 0.43 (petroleum ether); 1H NMR (500 MHz, CDCl3)  6.24 (1H, ddt, J = 15.0, 10.8, 

1.3 Hz, CH-C4), 5.78 (1H, d, J = 10.8 Hz, CH-C3), 5.50 (1H, dt, J = 15.0, 7.2 Hz, CH-

C5), 2.22 (2H, t, J = 7.2 Hz, CH2-C8), 2.18 (2H, br dt, J = 7.2, 7.1 Hz, CH2-C6), 1.75 

(3H, s, CH3-C1/C1’), 1.73 (3H, s, CH3-C1/C1’), 1.60 (2H, tt, J = 7.2, 7.1 Hz, CH2-C7) 

0.14 (9H, s, CH3-TMS); 13C NMR (126 MHz, CDCl3)  133.0 (C-C2), 130.5 (CH-C5), 

127.7 (CH-C4), 125.1 (CH-C3), 107.3 (C-C10), 84.7 (C-C9), 31.9 (CH2-C6), 28.5 (CH2-

C7), 26.0 (CH3-C1/C1’), 19.3 (CH2-C8), 18.2 (CH3-C1/C1’), 0.3 (3C, CH3-TMS); vmax 

(film) 2174, 1248 cm−1; HMRS (CI) calcd for C14H25Si [M+H]+ 221.1726, found 

221.1726.  
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Alkyne 297 

 

 

 

To a stirred solution of protected alkyne 296 (0.58 g, 2.6 mmol) in MeOH (13 mL) at rt 

was added K2CO3 (0.36 g, 2.6 mmol) in one portion. The mixture was stirred for 12 h 

and then the reaction was quenched by addition of water (20 mL). The mixture was 

diluted with Et2O (10 mL) and the phases were separated. The aqueous phase was 

extracted with Et2O (3 × 5 mL) and the combined organic extracts were dried over 

MgSO4, filtered and concentrated under reduced pressure. The residue was filtered 

through a small pad of silica gel (petroleum ether-EtOAc, 300:1) to afford alkyne 297 

as a colourless oil. The alkyne was used directly in the next step without further 

purification. 

 

Rf = 0.33 (petroleum ether); 1H NMR (400 MHz, CDCl3)  6.26 (1H, ddt, J = 15.0, 10.8, 

1.2 Hz, CH-C4), 5.79 (1H, d, J = 10.8 Hz, CH-C3), 5.51 (1H, dt, J = 15.0, 7.1 Hz, CH-

C5), 2.23–2.17 (2H, m, CH2-C6), 2.20 (2H, td, J = 7.1, 2.7 Hz, CH2-C8), 1.95 (1H, t, J 

= 2.7 Hz, CH-C10), 1.76 (3H, s, CH3-C1/C1’), 1.74 (3H, s, CH3-C1/C1’), 1.62 (2H, tt, J 

= 7.2, 7.1 Hz, CH2-C7).  
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Ynenone 299 

 

 

To a stirred solution of alkyne 297 in THF (24 mL) at −78 °C was added  

n-BuLi (2.6 mL of a 2.1 M solution in hexanes, 3.6 mmol) over a period of 10 min. The 

mixture was stirred at −78 °C for 15 min and then anhydrous DMF (0.37 mL, 4.8 mmol) 

was added. The mixture was stirred at −78 °C for a further 30 min and then the reaction 

was quenched by addition of 10% aqueous KH2PO4 solution (50 mL). The mixture was 

diluted with Et2O (20 mL), stirred for 10 min and the phases were separated. The 

aqueous phase was extracted with Et2O (3 × 20 mL) and the combined organic extracts 

were dried over MgSO4, filtered and concentrated under reduced pressure to afford 

crude acetylenic aldehyde 298 as a yellow oil. The aldehyde was used directly in the 

next step without further purification. 

 

Rf = 0.39 (petroleum ether-EtOAc, 10:1); 1H NMR (400 MHz, CDCl3)  9.08 (1H, t, J = 

0.8 Hz, CH-C11), 6.27 (1H, ddt, J = 15.1, 10.8, 1.2 Hz, CH-C4), 5.79 (1H, d, J = 10.8 

Hz, CH-C3), 5.48 (1H, dt, J = 15.1, 7.1 Hz, CH-C5), 2.42 (2H, td, J = 7.2, 0.8 Hz, CH2-

C8), 2.21 (2H, dt, J = 7.2, 7.1 Hz, CH2-C6), 1.76 (3H, s, CH3-C1/C1’), 1.74 (3H, s, CH3-

C1/C1’), 1.69 (2H, tt, J = 7.2, 7.2 Hz, CH2-C7). 

 

To a stirred solution of crude acetylenic aldehyde 298 and acetylacetone (0.23 mL, 

2.4 mmol) in toluene (24 mL) at rt were added MgSO4 (58 mg, 0.48 mmol), piperidine 

(21 L, 0.24 mmol), acetic acid (0.10 mL, 1.4 mmol). The mixture was stirred at 35 °C 

for 1 h and then the reaction was quenched by addition of water (50 mL). The mixture 

was diluted with EtOAc (25 mL) and the phases were separated. The aqueous phase 

was extracted with EtOAc (3 × 20 mL) and the combined organic extracts were dried 

over MgSO4, filtered and concentrated under reduced pressure. The residue was 

purified by flash column chromatography on silica gel (petroleum ether-EtOAc, 10:1) to 

afford ynenone 299 (0.47g, 76% over 3 steps) as a pale yellow oil. 
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Rf = 0.13 (petroleum ether-EtOAc, 10:1); 1H NMR (400 MHz, CDCl3)  6.69 (1H, t, J = 

2.4 Hz, CH-C11), 6.24 (1H, ddt, J = 15.0, 10.8, 1.2 Hz, CH-C4), 5.78 (1H, d, J = 10.8 

Hz, CH-C3), 5.48 (1H, dt, J = 15.0, 7.2 Hz, CH-C5), 2.46 (3H, s, CH3-C14), 2.44 (2H, 

td, J = 7.1, 2.4 Hz, CH2-C8), 2.31 (3H, s, CH3-C14’), 2.18 (2H, dtd, J = 7.2, 7.1, 1.2 Hz, 

CH2-C6), 1.75 (3H, s, CH3-C1/C1’), 1.73 (3H, s, CH3-C1/C1’), 1.65 (2H, tt, J = 7.1, 7.1 

Hz, CH2-C7); 13C NMR (101 MHz, CDCl3)  201.4 (C-C13), 195.9 (C-C13’), 149.7 (C-

C12), 133.8 (C-C2), 129.8 (C-C5), 128.2 (C-C4), 124.9 (C-C3), 123.3 (CH-C11), 110.2 

(C-C9), 77.2 (C-C10), 32.0 (CH2-C6), 31.1 (CH3-C14), 28.1 (CH2-C7), 27.4 (CH3-C14’), 

26.0 (CH3-C1/C1’), 19.8 (CH2-C8), 18.4 (CH3-C1/C1’); vmax (film) 2928, 2211, 1665, 

1576 m−1; HMRS (ESI) calcd for C17H22NaO2 [M+Na]+ 281.1512, found 281.1501. 

 

 

Vinylcyclopropane 280 

 

 

 

To a stirred solution of ynenone 299 (42 mg, 0.16 mmol) in CH2Cl2 (0.60 mL) at rt was 

added chloroacetic acid (15 mg, 0.16 mmol) in one portion. The mixture was stirred at 

40 °C for 24 h and then concentrated under reduced pressure. The residue was purified 

by flash column chromatography on silica gel (petroleum ether-EtOAc, 10:1) to afford 

vinylcyclopropane 280 (25 mg, 59%) as a colourless oil.  

 

The analytical and spectroscopic data are in agreement with those reported on page 

174. 
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Protected alcohol 301 

 

 

 

To a solution of alcohol 300 (0.24 g, 1.6 mmol) in DMF (2 mL) at rt were sequentially 

added imidazole (0.22 g, 3.2 mmol) and TBSCl (0.37 g, 2.5 mmol). The mixture was 

stirred for 2 h and then the reaction was quenched by addition of saturated aqueous 

NH4Cl (10 mL). The mixture was diluted with Et2O (5 mL) and the phases were 

separated. The aqueous phase was extracted with Et2O (3 × 5 mL) and the combined 

organic extracts were dried over MgSO4, filtered and concentrated under reduced 

pressure. The residue was purified by flash column chromatography on silica gel 

(petroleum ether-EtOAc, 200:1) to afford silane 301 (0.41 g, 95%) as a colourless oil. 

 

Rf = 0.10 (petroleum ether); 1H NMR (500 MHz, CDCl3)  6.18 (1H, ddt, J = 15.3, 10.5, 

1.3 Hz, CH-C3), 6.07 (1H, dd, J = 15.3, 10.5 Hz, CH-C4), 5.66 (1H, dt, J = 15.3, 5.2 

Hz, CH-C2), 5.62 (1H, dt, J = 15.3, 7.0 Hz, CH-C5), 4.19 (2H, d, J = 5.2, 1.3 Hz, CH2-

C1), 2.21–2.17 (4H, m, CH2-C6, CH2-C8), 1.94 (1H, t, J = 2.6 Hz, CH-C10), 1.62 (2H, 

tt, J = 7.3, 7.2 Hz, CH2-C7), 0.91 (9H, s, CH3-t-Bu-TBS), 0.07 (6H, s, CH3-TBS); 13C 

NMR (126 MHz, CDCl3)  133.0 (CH-C5), 130.8 (CH-C2), 130.7 (CH-C4), 130.1 (CH-

C3), 84.3 (C-C9), 68.6 (CH-C10), 63.7 (CH2-C1), 31.6 (CH2-C6), 28.1 (CH2-C7), 26.1 

(3C, CH3-t-Bu-TBS), 18.6 (C-t-Bu-TBS), 17.9 (CH2-C8), −5.1 (CH3-TBS), −5.1 (CH3-

TBS); vmax (film) 2930, 1254, 1109 cm−1; HMRS (ESI) calcd for C16H28NaOSi [M+Na]+ 

287.1802, found 287.1798.  
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Ynenone 303 

 

 

 

To a stirred solution of alkyne 301 (0.29 g, 1.1 mmol) in THF (11 mL) at −78 °C was 

added n-BuLi (0.71 mL of a 2.3 M solution in hexanes, 1.6 mmol) over a period of 

10 min. The mixture was stirred at −78 °C for 15 min and then anhydrous DMF 

(0.17 mL, 2.2 mmol) was added. The mixture was stirred at −78 °C for a further 30 min 

and then the reaction was quenched by addition of 10% aqueous KH2PO4 (20 mL). The 

mixture was diluted with EtOAc (10 mL), stirred for 10 min and the phases were 

separated. The aqueous phase was extracted with EtOAc (3 × 10 mL) and the 

combined organic extracts were dried over MgSO4, filtered and concentrated under 

reduced pressure to afford crude acetylenic aldehyde 302 as a yellow oil. The aldehyde 

was used directly in the next step without further purification.  

 

Rf = 0.23 (petroleum ether-EtOAc, 10:1); 1H NMR (400 MHz, CDCl3)  9.18 (1H, t, J = 

0.8 Hz, CH-C11), 6.19 (1H, ddt, J = 14.7, 10.7, 1.5 Hz, CH-C4), 6.07 (1H, dd, J = 15.0, 

10.7 Hz, CH-C3), 5.68 (1H, dt, J = 15.0, 5.2 Hz, CH-C2), 5.59 (1H, dt, J = 14.7, 7.1 Hz, 

CH-C5), 4.20 (2H, d, J = 5.2 Hz, CH2-C1), 2.42 (2H, td, J = 7.2, 0.8 Hz, CH2-C8), 1.70 

(2H, tt, J = 7.3, 7.2 Hz, CH2-C7), 2.23–2.18 (2H, m, CH2-C6), 0.91 (9H, s, CH3-t-Bu-

TBS), 0.07 (6H, s, CH3-TBS). 

 

To a stirred solution of crude acetylenic aldehyde 302 and acetylacetone (0.10 mL, 

0.97 mmol) in toluene (10 mL) at rt were added MgSO4 (26 mg, 0.22 mmol), piperidine 

(10 L, 0.10 mmol), acetic acid (45 L, 0.79 mmol). The mixture was stirred at 35 °C 

for 1 h and then the reaction was quenched by addition of water (300 mL). The mixture 

was diluted with EtOAc (100 mL) and the phases were separated. The aqueous phase 

was extracted with EtOAc (3 × 50 mL) and the combined organic extracts were dried 

over MgSO4, filtered and concentrated under reduced pressure. The residue was 
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purified by flash column chromatography on silica gel (petroleum ether-EtOAc 10:3) to 

afford ynenone 303 (0.31 g, 75% over 2 steps) as a pale yellow oil. 

 

Rf = 0.13 (petroleum ether-EtOAc, 10:1); 1H NMR (400 MHz, C6D6)  6.43 (1H, t, J = 

2.4 Hz, CH-C11), 6.41 (1H, dd J = 14.7, 10.5 Hz, CH-C4), 6.17 (1H, dd, J = 15.1, 10.5 

Hz, CH-C3), 5.77 (1H, dt, J = 15.1, 5.1 Hz, CH-C2), 5.51 (1H, dt, J = 14.7, 7.1 Hz, CH-

C5), 4.22 (2H, dd, J = 5.1 Hz, CH2-C1), 2.35 (3H, s, CH3-C14), 2.10 (2H, td, J = 7.1, 

2.4 Hz, CH2-C8), 2.05 (2H, dt, J = 7.1, 7.1 Hz, CH2-C6), 1.92 (3H, s, CH3-C14’), 1.41 

(2H, tt, J = 7.1, 7.1 Hz, CH2-C7), 1.08 (9H, s, CH3-t-Bu-TBS), 0.16 (6H, s, CH3-TBS); 

13C NMR (126 MHz, C6D6)  200.1 (C-C13), 194.9 (C-C13’), 150.7 (C-C12), 132.3 (CH-

C5), 131.6 (CH-C2/C3), 131.5 (CH-C2/C3), 130.0 (CH-C4), 122.0 (CH-C11), 108.7 (C-

C9), 77.7 (C-C10), 63.6 (CH2-C1), 31.8 (CH2-C6), 30.8 (CH3-C14), 27.9 (CH2-C7), 26.6 

(CH3-C14’), 26.2 (3C, CH3-t-Bu-TBS), 19.5 (CH2-C8), 18.6 (C-t-Bu-TBS), −5.0 (CH3-

TBS), −5.0 (CH3-TBS); vmax (film) 2955, 1674, 1560 cm−1; HMRS (ESI) calcd for 

C22H34NaO3Si [M+Na]+ 397.2169, found 397.2151. 
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18/11/2016 16:23:01 1 / 1  

HPLC Report 

Sample Name : VKII2-293_1; 1;  Injection Volume : 20 uL 

Data File Name : VKII2-293_01-chir01.lcd  

Method File Name : 2pcB-1mlMin.lcm  

Acquired : 23/08/2013 18:17:53; Data Processed : 23/08/2013 

18:33:02 

_____________________________________________________________________________________ 
0.5mL/min 
10% IPA in Hexane 
Colum AD-H 
Oven 25 C 
Chiralcel OD-H 
Oven 25 C 

 

 

<Chromatogram> 

mAU

 
1 PDA Multi 1/254nm 4nm 

<Results> 

PeakTable 

PDA Ch1 254nm 4nm 

Peak# Ret. Time Area Height Area % Height % 

 1   4.106   3793572   26646   2.823   1.041  

 2   5.077   210059   20547   0.156   0.803  

 3   5.985   2002624   65030   1.490   2.541  

 4   6.172   1795760   65537   1.336   2.561  
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 5   6.645   829507   50922   0.617   1.990  

 6   6.958   1160618   51205   0.864   2.001  

 7   7.525   1425644   39142   1.061   1.529  

 8   8.098   1747791   38364   1.301   1.499  

 9   8.839   247547   32932   0.184   1.287  

 10   8.964   790302   32927   0.588   1.287  

 11   10.272   69984876   1137450   52.077   44.444  

 12   12.086   45893966   969866   34.151   37.896  

 13   14.863   4464701   19350   3.322   0.756  

 14   14.965   40261   9372   0.030   0.366  

Total   134387228   2559289   100.000   100.000  

C:\LabSolutions\Data\Shimadzu\Verena\VKII2-293_01-chir01.lcd  

 


