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Summary 

Pulmonary arterial hypertension (PAH) is a rare but devastating disorder of the 

pulmonary vasculature characterised pathologically by progressive intimal 

obliteration and vascular remodelling leading to increased pulmonary vascular 

resistance (PVR) and elevation in pulmonary arterial pressure (PAP), and clinically 

by functional impairment from breathlessness and ultimately death from right 

ventricular failure. Whilst the initial insult occurs in the pulmonary circulation, it 

is increasing recognised that survival relates to the ability of the right ventricle 

(RV) to adapt to this increased afterload. Despite a number of therapeutic 

advances in recent years, long-term survival remains poor, quality of life impaired 

by functional limitation and progression to RV failure often inevitable.  

In contrast, pulmonary hypertension (PH) related to chronic lung disease is 

relatively common, but is usually mild in severity with largely preserved RV 

function. The development of PH is however associated with greater functional 

impairment and worse survival and at present other than referral for lung 

transplantation there are no therapeutic options. Severe PH associated with lung 

disease is relatively rare, but shares many of the characteristics with PAH with 

more severe RV dysfunction and significant morbidity and mortality. It is also 

increasingly recognised in data from large PH registries, that increasing overlap 

exists between the two conditions, and what represents PAH with co-morbid lung 

disease (and therefore should receive specific PAH therapies) and what is PH 

secondary to lung disease (and therefore should not) increasingly muddied. 

What is clear is the critical role the RV plays in determining outcome in PH, but 

despite this studies on the impact of current therapies on RV function are few, 

and improvement or preservation of RV function is not an accepted clinical 

endpoint in pharmaceutical trials. Current methods of monitoring patient 

response to therapies are suboptimal, such as the established and commonly 

employed six minute walk distance (6MWD). The complex anatomy of the RV 

makes assessment of its function by modalities such as echocardiogram difficult. 

The development of simple, reproducible measures of RV function will both 

improve monitoring of PH patients but also facilitate acceptance of routine 

assessment of RV function in both clinical practice and pharmaceutical trials, and 

hopefully establish the optimal approach to RV dysfunction in PAH. Cardiac 
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magnetic resonance imaging (CMR) is particularly suited to interrogating RV 

function, and has recently been established in the literature to provide prognostic 

significance in a number of disease states including PAH. At present, however, it 

is unclear what the optimal method of assessing RV function is, with a number of 

indices assessed by varying modalities associated with prognosis and therapeutic 

response in PAH. Recently research interest has developed in the potential utility 

of RV-arterial coupling in PH. From physiological principles, this metric of RV 

function has potential superiority over commonly employed indices such as RVEF 

or right atrial pressure (RAP) as it is less preload dependent. Its clinical use 

however is limited due to the need for instantaneous pressure-volume loops at 

varying levels of load in its derivation. It is however possible to estimate non-

invasively by CMR. The aim of the work described by this thesis was to provide 

clarity on the optimal method of determining and monitoring RV dysfunction in 

PAH patients, and contrast this to patients with severe PH associated with lung 

disease treated with PAH therapies, where the aetiology of PH differs and utility 

of CMR to characterise RV function has not been explored. 

In chapter 3 PAH therapies given to severe PH/lung disease patients resulted in 

improvements in 6MWD (average ∆6MWD 24m, p=0.032), and NTproBNP (average 

∆NTproBNP -396pg/mL, p=0.008), but to a lesser extent than IPAH patients. CMR 

imaging demonstrated that RV dysfunction (assessed by RV ejection fraction 

(RVEF), stroke volume (SV) and increased RV volumes) was prevalent, predicted 

prognosis in both conditions, and could be used to detect PH in lung disease by 

either measures of pulmonary vascular stiffness (relative area change of main 

pulmonary artery – RAC MPA) or RV mass (RVM).  

In Chapter 4, invasive pressure (Ees/Ea-P) and non-invasive volume (SV/ESV) 

estimates of RV-arterial coupling (determined by right heart catheterisation and 

CMR) were compared to other metrics of RV function in normal subjects, PAH and 

PH associated with lung disease patients as prognostic variables. Severe PH/lung 

disease patients displayed impaired RV adaptation in comparison to IPAH subjects, 

Ees/Ea-P 1.07 versus 1.37mmHg/mL, p=0.020. RV-arterial coupling estimated by 

the pressure method did not predict survival, but when estimated by the volume 

method (SV/ESV) did. Both RVEF and SV/ESV were independent predictors of 

outcome (HR 0.958, p=0.006 and HR 0.329, p=0.002 respectively). Invasive 
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measures of RV function therefore provided no prognostic advantage over the 

more patient acceptable CMR. 

Finally in chapter 5, improvement in RV-arterial coupling assessed by CMR 

(SV/ESV) was seen after commencing PAH therapy (0.461 to 0.616, p=0.036). 

Survival was poorer in those with a fall in either RVEF or SV/ESV during therapy, 

with no superiority of either method of determining prognosis (Logrank p=0.002 

for both). Change in RV function poorly related to change in 6MWD but closely 

related to change in NTproBNP. ∆NTproBNP but not ∆6MWD was an independent 

predictor of survival (HR 1.622 p=0.024 and HR 0.995 p=0.129 respectively) and 

therefore a useful monitoring tool of RV function and therapy response for the 

clinic.  

The results described in this thesis therefore suggest that RV function to predict 

outcome in patients with PH during treatment follow up is best determined by 

CMR imaging of RVEF or SV/ESV, with no clear benefit of re-evaluating invasive 

haemodynamics or pressure estimates of RV-arterial coupling. 



Chapter 1 – Introduction 
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The term Pulmonary Hypertension describes a group of diseases characterised by 

an elevation in Pulmonary artery pressure (PAP) and Pulmonary vascular resistance 

(PVR). Clinically, patients develop symptoms of breathlessness, peripheral 

oedema and exertional syncope with evidence of right ventricular (RV) dysfunction 

and ultimately die as a result of RV failure. In recent years development of a 

number of disease specific therapies has led to improvements in morbidity and 

survival. Despite this, PAH remains a devastating disease with progressive 

functional limitation, high symptom burden and mortality. Until relatively 

recently the RV had been less studied than other aspects of PAH, and relatively 

poorer understanding of the mechanisms of RV failure, prognostic implications of 

specific changes in RV structure and function or the effects of PAH specific therapy 

on the RV exists. Furthermore, how best to assess or monitor RV function is unclear 

with a number of invasive parameters, such as RAP, imaging modalities such as 

echocardiography or cardiac MRI or biomarkers currently linked to prognosis. 

1.1 Structure and function of the normal right heart and 
pulmonary vasculature 

 

1.1.1 Pulmonary Circulation 

The pulmonary circulation is a highly compliant, high flow low pressure system 

which favours pulmonary gas exchange (1). The low pressures prevent fluid moving 

out in to the interstitial space and allow the right ventricle to perform at low 

energy cost. The pulmonary circulation is characterised by an inflow pressure, the 

pulmonary artery pressure, an outflow pressure, left atrial pressure and 

pulmonary blood flow which is approximately equal to systemic cardiac output 

(CO). Mean pulmonary artery pressure (mPAP) is flow dependent and in normal 

subjects increases by 1mmHg for every 1mmHg increase in Left atrial pressure 

(LAP). LAP is approximated by wedged pulmonary artery pressure (PAWP) to allow 

estimation of pulmonary vascular resistance. The normal distribution of  vascular 

resistances is 60% arterial and 40% capillary plus venous resistance (2). In health, 

the pulmonary arteries exhibit low basal smooth muscle tone and the PVR is only 

around 1/20 of systemic vascular resistance (3). 
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The pulsatility of the pulmonary circulation is more significant than that of the 

systemic circulation, which effects the energy transmission from the right 

ventricle to pulmonary arteries. Pulmonary arterial pulse pressure, the difference 

between systolic and diastolic pressures, is in the order of mPAP (in comparison 

to the systemic circulation where it is less than half the mean), and flow varies 

across the cardiac cycle from a maximum at mid systole to virtually zero in 

diastole (1). The distensibility of pulmonary resistive vessels has been shown to 

approximate to 2% of diameter change per mmHg of distending pressure over a 

range of species (4). This distensibility coefficient has been shown to decrease 

with ageing, chronic hypoxic and probably displays gender differences (5-7). The 

distal arteries and arterioles hold most of the capacitance properties of the 

pulmonary circulation, with the proximal lung vessels accounting for as little as 

20% of total vascular compliance (8). At lower mean pressures the compliance and 

pulsatile components of the pulmonary circulation constitute a larger fraction of 

the total afterload of the right ventricle, with some suggesting the pulsatile load 

may account for between one third and up to 50% of the total (9, 10). The study 

of the pulmonary arterial circulation as a steady flow system is therefore an 

oversimplification.  

Tight correlation exists between systolic, diastolic and mean pulmonary artery 

pressure which persists in diseases of the pulmonary vasculature (11). Clinically 

this is of relevance as it allows the estimation of mPAP from systolic PAP (sPAP) 

using the formula mPAP = 0.6 x sPAP + 2 (12). sPAP may be calculated using the 

Bernouilli equation from the tricuspid regurgitant pressure gradient (TRPG) which 

can be determined non-invasively by echocardiogram (13). The product of PVR by 

pulmonary artery compliance (SV/PP) remains constant at 0.7 in both health and 

disease of the pulmonary vasculature which explains this tight relationship (14, 

15). The exception to this is proximal pulmonary artery obstruction which may 

occur in diseases such as proximal chronic thromboembolic pulmonary 

hypertension (16) or experimentally with pulmonary banding models of pulmonary 

hypertension (17). This hyperbolic relationship explains why right ventricular 

afterload may already be markedly increased despite minimal rise in calculated 

PVR in early pulmonary vascular disease.  

The normal value for mPAP derived from a study of 55 healthy young adults is 

around 13mmHg (range 6-16 mmHg) (18-21). Ageing is associated with an increase 
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in PVR which is more marked on exercise than at rest and probably relates to an 

increase in arterial stiffness. The exact limits of normal pulmonary pressure as 

they relate to age is unknown due to the small number of measurements in older 

healthy individuals. The slight increase in mPAP but more significant decrease in 

CO has been shown to lead to a doubling of PVR over five decades of age (22, 23). 

A more recent review showed a small change in mPAP with age, from 12.8± 3.1 

mmHg in healthy subjects <30 years compared to 14.7 ± 4.0 mmHg in those ≥50 

(24). Sex has been shown not to influence pulmonary haemodynamics after 

correction for body dimension.(1, 24) 

Pulmonary blood flow increases in an approximate linear fashion from non-

dependent to dependent areas of the lung. The vertical height of an average 

human lung is approximately 30 cm, the difference in pressure of a corresponding 

vertical column of blood is 23 mmHg which is considerable in the context of the 

mean pressure of the pulmonary circulation (i.e. 6-16 mmHg quoted earlier) (25). 

Gravity dependent influences on arterial, venous and alveolar pressures result in 

the inequality of perfusion distributed from top to bottom of the upright lung 

reported by West to describe three zones of blood flow in the human lung (25). In 

zone 1 at the top of the lung, alveolar pressure (PA) exceeds both venous (PVP) 

and arterial pressures (PAP). In this zone pulmonary blood flow may occur only in 

systole or perhaps not at all with resultant poor gas exchange. The extent of zone 

1 may extend in conditions of low flow or increased alveolar pressure, such as 

occurs with mechanical ventilation with positive end expiratory pressures. In zone 

2, the midzone of the lung, arterial pressure exceeds alveolar pressure, which in 

turn is greater than venous pressure (PAP> PA>PVP). Under these conditions driving 

pressure for flow is the gradient between PAP and PA. In zone 3 at the bottom of 

the lung, PVP exceeds PA so the driving pressure for pulmonary blood flow is the 

PAP-PVP gradient. In the supine lung, the lung is almost completely in zone 3, 

although there is still measurable increase in blood flow from non-dependent to 

dependent areas. 

Active regulatory mechanisms are able to some extent to influence the passive 

gravity dependent distribution of pulmonary blood flow. Hypoxic pulmonary 

vasoconstriction (HPV) was first reported by von Euler and Liljestrand (26). The 

response is found in mammals and birds but with significant inter species and 

individual variability. The systemic and pulmonary circulations are polar opposites 
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in their response to hypoxia. In the systemic circulation vasodilation occurs in an 

attempt to improve tissue oxygenation. In the pulmonary circulation, a decrease 

in PA02 causes an increase in vascular tone, resulting in vasoconstriction and 

diversion of pulmonary blood flow away from underventilated alveoli, to 

preferentially perfuse well ventilated areas of the lung in an attempt to maintain 

ventilation-perfusion (VQ) matching and therefore oxygenation of arterial blood. 

HPV increase in PVR is mainly effected by pre-capillary arterioles although small 

pulmonary veins also undergo vasoconstriction and contribute to approximately 

20-30% of the increase in PVR (27, 28). HPV is enhanced by factors including 

acidosis, reduced mixed venous Pa02, repeated hypoxic exposure and decreased 

lung segment size, and inhibited by alkalosis, hypercapnia, pulmonary vascular 

and alveolar pressures, nitric oxide and vasodilating prostaglandins and drugs 

including calcium channel blockers (29). The response is biphasic with 

vasoconstriction followed by vasodilation in more profound hypoxia. The 

mechanism of sensing the low PA02 is not yet identified. It is thought that a 

decrease in PA02 inhibits smooth muscle cell voltage gated potassium channels 

leading to membrane depolarisation, calcium influx and resultant cell shortening 

(30). In the presence of continued alveolar hypoxia or widespread VQ mismatch, 

HPV may lead to group 3 PH (secondary to chronic lung disease) or high altitude 

PH. 

In addition to HPV regulation, pulmonary vascular tone is attenuated by mediators 

including endothelium derived vasodilators nitric oxide and prostacyclin and the 

vasoconstrictor endothelin. These mediators have been the focus of development 

of potential therapies for PH. Several other circulating mediators including 

serotonin, histamine and angiotensin II have been shown to affect vascular tone. 

Finally, the pulmonary circulation is highly innervated by adrenergic, cholinergic 

and non-adrenergic non-cholinergic (NANC) nerve endings. However the role 

played in the regulation of pulmonary circulation appears minor. The innervation 

is mainly proximal which may suggest a role in proximal vascular compliance (31). 

  



29 
 

1.1.2 The right ventricle 

Until relatively recently the importance of right ventricular function was poorly 

appreciated. Galen described the right ventricle (RV) as a passive conduit through 

which part of the circulating volume of blood passes to the lungs for nourishment 

with the remainder thought to seep through invisible pores in the interventricular 

septum for the formation of vital spirit (32). In the 13th century Ibn Nafis disputed 

the existence of these septal pores, instead for the first time suggesting that blood 

must pass through the lungs from the RV to the LV. 300 years later Michael 

Severtus came to the same conclusion in his theological treatise Christianismi 

Restitutio. William Harvey in 1628 has often been accredited with the origins of 

the role that the RV plays in the pulmonary circulation (33-35). Harvey was the 

first to develop an experimentally based model of the circulation based on 

detailed measurements and calculations that allowed him to conclude that the 

blood recirculated rather than previous speculations of Galen that blood was 

produced in the liver and consumed by the tissues and organs (3). Even in the 

1940s the idea that a functioning RV was not essential to maintain pulmonary 

circulation was accepted after several studies in dogs showed that cauterisation 

of the RV did not lead to changes in systemic venous or pulmonary arterial 

pressures (36, 37). These studies were in open pericardial models and therefore 

did not explore the influence of ventricular interaction. Studies using RV models 

between 1950-1980 demonstrated that the RV was necessary for maintenance of 

pulmonary blood flow (38, 39). However these studies did not achieve widespread 

acceptance as the models used were met with criticism (35). In 1982 in an animal 

model with intact pericardium it was demonstrated that RV infarction lead to drop 

in cardiac output suggesting the importance of RV function (40). Since then the 

importance of the role the RV plays in both exercising healthy individuals and in 

many disease states has become well recognised (41-43). 

The RV and outflow tracts develop embryologically from the anterior heart field 

while the remaining chambers of the heart arise from the primary heart field with 

resultant differences in genetic makeup and cellular physiology (44). The RV is the 

dominant chamber in the foetus, with equable wall thickness and force generated 

by RV and the LV in early life. During the first year of life the RV involutes and 

increases its compliance. The muscle mass of the RV is approximately 1/6 of the 

LV and under normal loading conditions a 5 mmHg pressure gradient across the 



30 
 

pulmonary circulation is sufficient to maintain cardiac output and therefore 

minimal RV contractile function is normally required with 1/4th the stroke work of 

the LV (34). The RV is a thin walled crescent shaped chamber, normally less than 

1-3 mm in thickness whose volume is slightly greater than that of the LV. The RV 

may be divided into an inflow tract, the sinus (body) region with a trabeculated 

muscular apex and a smooth walled conus or outflow tract. The RV free wall 

constitutes the anterior border of the RV, lying anterior to the LV and 

interventricular septum (IVS). Under normal loading conditions, the IVS is concave 

towards the RV in both systole and diastole. Short axis cross sections through the 

RV from apex to base vary from a triangular contour at the apex to a crescentric 

appearance at the base which explains the difficulty with using 2D imaging 

techniques to interrogate RV size and function in this complex geometric shape. 

The sinus contains in excess of 80% of total RV volume with different fibre 

orientation compared to the conus. In addition, timing of contraction differs 

between the compartments. Contraction occurs sequentially from the apex 

towards the conus in a peristaltic fashion using predominantly longitudinal fibres 

in a bellows type movement suited to the low impedence pulmonary circulation 

(45, 46). In contrast, the longitudinal and circumferential muscle fibres of the LV 

allow for a more cylindrical contraction. As a result of the larger RV chamber size, 

under normal conditions, RVEF is lower than LVEF, quoted between 40-76% 

dependent on imaging modality used (47-49). 

The RV largely receives its blood supply from the right coronary artery in 

approximately 80% of the population. The lateral wall is supplied by the marginal 

branches with the posterior wall and inferoseptal region supplied by the posterior 

descending artery. The anterior wall and anteroseptal region are supplied by 

branches of the left anterior descending artery. Unlike the LV, where myocardial 

perfusion is largely limited to diastole, the RV intramyocardial pressure remains 

below aortic root pressure throughout the cardiac cycle and therefore continuous 

coronary flow occurs (50). The RV displays relative resistance to irreversible 

ischaemia in comparison to the LV, probably as a consequence of its lower oxygen 

consumption, more extensive collateral blood supply and ability to increase 

oxygen extraction. 

Both ventricles are encircled by spiralling muscle bundles in a complex interlacing 

fashion forming a functionally single unit. Ventricular interaction occurs not only 
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as a series indirect interaction but also directly as a result of the shared IVS, 

continuity between the muscle fibres and shared pericardium (51). During systole, 

LV contraction influences pressure development in the RV. Pericardial constraint 

means that the compliance of each ventricle is influenced by the volume and 

pressure of the other. Animal models have demonstrated that 20-40% of RV systolic 

pressure and volume ejected is a result of LV contraction. Models of impaired RV 

function with scarring of the RV have demonstrated that the septum is able to 

maintain pulmonary circulation provided that RV dilatation does not occur. 

Ventricular interaction becomes of significance in disease states such as 

pulmonary hypertension where LV diastolic filling is impaired by both series effect 

and the direct effect of leftward septal bowing as a result of RV pressure and 

volume overload (52).  

Right ventricular function is determined by preload, a measure of RV filling, 

afterload and contractility. Under normal filling conditions, an increase in preload 

results in increased contractility and cardiac output (53). In addition to chamber 

compliance, heart rate and the afore mentioned LV filling and pericardial factors, 

RV filling is influenced by negative pressure of respiration to a greater degree than 

the LV because of its thin free wall and connection to systemic veins (21). The RV 

has a limited ability to compensate for increased afterload, acutely the normal 

RV is unable to generate pressures that exceed 40-60 mmHg (54). Right ventricular 

response to an increase in filling is the Frank-Starling mechanism. Increasing 

ventricular end diastolic volumes with greater sarcomere length at the beginning 

of contraction, results in a greater force of contraction due to alteration in 

myofilamental sensitivity to calcium as a result of stretch (55). Consequently 

stroke volume increases in response to increased venous return. Similarly an acute 

increase in RV afterload in pathology such as pulmonary embolism which results 

in an increase in RVEDV in an attempt to compensate and maintain stroke volume 

through the same mechanism, sometimes called heterometric adaptation. In 

addition, other compensatory mechanisms exist to maintain SV to a certain extent 

in the face of an increase in afterload. An increase in myocardial contractility 

(inotropy) occurs in the acute setting by activation of the sympathetic nervous 

system. B-adrenergic receptor stimulation, located on the cardiac myocytes leads 

to increased contractility through an increase in intracellular free calcium. 

Additionally, sympathetic activation enhances rate of lusitropy (relaxation) as a 
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result of faster re-uptake of calcium ions by the sarcoplasmic reticulum and a 

resultant quicker release of calcium from the myofilaments (35). The RV also 

adapts through a continued progressive increase in cardiomyocyte contractile 

force over the 10-15 minutes following the acute rise in contractility as a result 

of the Frank-Starling mechanism, known as the Anrep phenomenon. This 

mechanism involves stretch related release of angiotensin II and endothelin (56) 

and results in a progressive decline of RVEDV and pressure after the initial increase 

in response to afterload, so called homeometric autoregulation.  

1.1.3 Cardiac MRI in the normal right ventricle 

The role of Cardiac magnetic resonance (CMR) imaging is well established in the 

evaluation of wide range of cardiovascular diseases, both acquired and congenital. 

It is non-invasive, does not involve the use of ionizing radiation and assessment of 

ventricular volumes and function can be obtained without the need for contrast 

administration. Over the last two decades it has become recognised as the gold 

standard for assessing left and right ventricular structure and function with 

accuracy demonstrated in broad range of diseases (57-62). It is particularly suited 

to the morphology of the right ventricle (RV) the complex structure and 

contractile pattern of which makes accurate assessment by 2D methods such as 

echocardiogram more difficult. The high resolution, 3 dimensional images 

obtainable by CMR avoid the need for any geometrical assumptions and have been 

shown to have superior interstudy reproducibility for right ventricular volume and 

mass in comparison to echocardiography, making CMR an attractive modality for 

monitoring ventricular function (63-65). CMR is not without limitation. It is less 

suitable for haemodynamic measurements than echocardiography due to more 

limited temporal resolution. It is expensive and less widely available in clinical 

practice. Incompatibilities with some ferrous implants such as cardiac pacemakers 

or aneurysm clips exist (66). Claustrophobia, body habitus, long scan times and 

need for repetitive breath-holds for acquisition of images to reduce respiratory 

motion artefact may limit tolerance in some patients. However with advancing 

technology it is now possible to perform single breath-hold and real-time 

acquisitions with adequate resolution (67, 68).  
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1.1.3.1 MRI theory 

Magnetic resonance imaging relies on the physical properties of hydrogen nuclei 

(protons). Protons have an intrinsic spin which when the human body is brought 

into a high strength magnetic field align with the direction of this field. 

Application of a radiofrequency (RF) pulse can excite these spins and perturb their 

alignment, with vector components in line with the magnetic field (longitudinal 

magnetisation) and perpendicular to the field (transverse magnetisation). These 

spins gradually return to their resting state (relaxation) and in the process create 

RF signals that are used to create an image. 

1.1.3.1.1 MR system components 

An MRI system consists of a main magnet, three gradients coils and an integral RF 

transmitter. These components each generate a different type of magnetic field 

which when applied to a patient in combination produce spatially encoded MR 

signals that are used to firm images. The scanner itself is composed of a 

superconducting resistive electromagnet (made of niobium, low resistance wire) 

bathed within supercooled (around -2500) liquid helium. The main magnet 

generates a strong constant magnetic field. The patient is positioned within the 

bore of the magnet where the strength of the field, Bo, defines the normal 

operating field strength of this particular MRI system. Bo is measured in units of 

Tesla (T) with 1T equal to approximately 20,000 times the earth’s magnetic field. 

Typically a field strength of 1.5T is employed in CMR. A reference co-ordinate 

system of three orthogonal axes, x, y and z are used to define the magnetic field 

direction, with the z axis parallel to the direction of Bo (69).  

Smaller gradient coils are housed in the inner circumference of the main magnet. 

A gradient magnetic field that can be rapidly switched on and off is generated by 

each of the three coils. Each coil generates a magnetic field in the same direction 

as Bo but with a strength that changes with position along the x, y or z direction 

according to which coil is applied. This gradient field is super-imposed onto Bo so 

that its strength increases (or decreases) along the direction of the gradient field.  

A RF magnetic field is generated by the RF transmitter coil mounted inside the 

gradient coil closest to the patient. It has a smaller amplitude than the other 
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magnetic fields but oscillates at a characteristic frequency in the megahertz range 

which is determined by the field strength of the main magnet.  

The static magnetic field and the RF field combine to generate MR signals that are 

spatially localised and encoded by the gradient magnetic fields to create an MR 

image. 

The machine is housed within a copper lined room to deflect external radiowaves 

that would interfere with process and external RF sources which create artefact 

in the image. 

For cardiac imaging, the MR signal is received by the phased array chest coil. This 

separate RF receiver coil is placed on top of the patient’s chest. Several 

component coils within are arranged to maximise MR signal strength whilst 

minimising interference i.e. aimed to optimise signal to noise ratio. 

1.1.3.1.2 Origin of MR signal 

The origin of the MR signal used to generate images is from water or fat within 

patients’ tissues, or more specifically hydrogen nuclei (consisting of a single 

proton) within free water or lipid molecules. Protons possess an intrinsic property 

known as nuclear spin that gives rise to a small magnetic field for each proton. 

Under normal circumstances the spins are randomly orientated. When the 

externally applied Bo field is applied, protons align either towards or against the 

direction of the field. The majority of proton spins align in the same direction as 

Bo as this is more energetically favourable direction of alignment. This excess 

combines to form a net magnetisation which is a key determinant of maximal 

signal intensity that can be generated and used to create images. The greater the 

applied field strength Bo the greater the size of net magnetisation. 

Generation of a MR signal from the net magnetisation is achieved by the 

application of the RF transmitter coil described earlier to create RF magnetic field 

and delivery energy to the population of protons. This field is applied at a specific 

frequency, known as the Larmor frequency (wo ) determined by the equation wo = 

γ x Bo . The constant γ is the gyromagnetic ratio which has a value of 

42.6MHz/Tesla for the proton. At 1.5T, the Larmor frequency is approximately 

64MHz. This is also known as the resonant frequency as protons only absorb energy 
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(or resonate) at this characteristic frequency, or precession frequency. The RF 

field is normally applied as short pulses, known as a RF pulse. 

1.1.3.1.3 Radiofrequency pulses 

By applying a RF pulse at the precession frequency protons are made to absorb 

energy and alter net tissue magnetisation, a process known as excitation. When 

the RF pulse is switched off protons will relax back to a low energy state (and 

orientate with Bo ), emitting detectable RF energy which can be used to construct 

MR images. However, as net magnetisation is in the longitudinal plane (aligned 

with the main magnetic field), changes is proton alignment cannot be detected. 

MR systems overcome this by producing magnetisation in tissue protons in the 

transverse plane. 

Before the RF pulse is applied, net magnetisation is aligned along the z axis in 

direction of Bo. When RF pulse is switched on, net magnetisation moves away from 

alignment with Bo field and rotates around it. This oscillating field is applied as a 

rotating field at right angles to Bo in x and y vectors, rotates at same frequency as 

Larmor frequency and therefore appears as additional static field. As a result net 

magnetisation follows a spiral path from alignment with Bo (z axis) towards 

rotational motion in x and Y axes. The greater the amount of energy applied by 

the RF pulse, the greater the angle net magnetisation makes with Bo field (z axis). 

This angle of precession is known as the flip angle and is dependent on both 

amplitude and duration of the RF pulse. A 90⁰ pulse will convert all longitudinal 

magnetisation into detectable transverse magnetisation and is therefore referred 

to as the saturation pulse. This pulse is used to initiate spin echo-based pulse 

sequences described in section 1.1.3.1.8. Low flip angle RF pulses are those <90⁰, 

with a proportion of net magnetisation transferred from z axis to xy plane. This 

produces a lower MR signal, but can be repeated more rapidly as some of the 

magnetisation remains along the x axis immediately after the pulse. This is the 

pulse used to generate signal in gradient echo pulse sequences. A 180⁰ pulse is 

known as an inversion pulse and are used to prepare net magnetisation before 

application of excitation pulse and in black blood pulse sequences. They are 

applied when magnetisation is at close to equilibrium and converts excess 

population of proton spins from aligned to ant-aligned with the Bo field. Because 
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the net magnetisation remains in longitudinal phase this pulse does not result in 

detectable signal. 

1.1.3.1.4 Relaxation 

Once the RF pulse is turned off the tissue magnetisation vector drifts back from 

transverse plane into longitudinal under the influence of the main magnetic field. 

This process is relaxation. During relaxation RF energy is released and detected as 

a MR signal in the transverse receiver coil. There are two distinct relaxation 

processes that relate to the two components of net magnetisation described 

above, longitudinal (z) and transverse (xy) components. T1 relaxation describes 

recovery of the z component along its longitudinal axis to original equilibrium 

state. Transverse relaxation (T2) is responsible for the decay of the xy component 

as it rotates about the z axis, causing a corresponding decay of the observed MR 

signal. Both occur at the same time but in human tissues T2 relaxation is typically 

a faster process. 

The rate of relaxation is an important determinant of tissue contrast. Relaxation 

is rapid in tissues containing large amounts of bound water. These water molecules 

are in close proximity to macromolecules such as proteins which restrict 

movement of the smaller water molecules where their association makes energy 

transfer more efficient. 

Relaxation is slower in free water solutions containing randomly orientated and 

rapidly tumbling water molecules where energy transfer is less efficient due to 

the less structured environment. The molecular environment of the water protons 

undergoing excitation therefore has significant influence on rate of RF energy 

release and therefore the MR signal receive from different tissues.  

T1 relaxation (sometimes referred to as T1 recovery) describes the recovery of 

longitudinal magnetisation after RF pulse. T1 relaxation time is a constant for a 

given tissue within a given MR field strength. The time taken for T1 relaxation is 

dependent on the efficiency with which RF energy can be dissipated from the 

excited protons to the surrounding tissues, and the strength of the main magnetic 

field. The rate at which energy is released to surrounding molecular structure is 

related to the size of the molecule that contains the hydrogen nuclei and rate of 
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molecular motion known as the tumbling rate. As molecules tumble or rotate they 

give rise to a fluctuating magnetic field which is experienced by the protons of 

adjacent molecules. When this fluctuating field is close to Larmor frequency, 

energy exchange is more favourable. Lipid molecules are of a size that have a 

favourable tumbling rate close to this frequency and therefore adipose tissue has 

one of the fastest relaxation rates and shortest T1 relaxation time of body tissues 

(~260msec in 1.5T field). Larger molecules have slower tumbling rates 

unfavourable for energy exchange leading to longer relaxation times. Free water 

smaller molecular size has a fast tumbling rate which is also unfavourable and has 

a longer T1 relaxation time (around 3 seconds). It therefore takes a relatively long 

time to receive adequate MR signal back from pure water solution. Most MR 

sequences aim to detect signals in under 1 second and therefore free water 

solutions (such as CSF) appear dark and adipose tissues appear bright on images 

that rely on T1 contrast. 

Muscle, liver, brain and viscous fluids such as pus contain variable proportions of 

free water and larger macromolecules. The tumbling rates of water molecules 

adjacent to large macromolecules are slowed down towards Larmor frequency 

shortening the T1 time. Therefore characteristic T1 relaxation times of these 

tissue lie in the spectrum between free water and adipose tissue. Conversely when 

free water content of these tissues increases for example by inflammation, T1 

time increases.  

T2 relaxation describes the decay (or dephasing) of transverse magnetisation 

produced by the RF pulse. Net magnetisation is a result of sum of whole population 

proton spins. Immediately following an RF pulse, spins rotate together in a 

coherent fashion so as they rotate they continuously point in the same direction 

in the xy plane. The angle they point is known as the phase angle and at this stage 

are described as being ‘in phase’. Over time, the phase angles spread out, there 

is loss of coherence and spins no longer rotate together and are said to move out 

of phase. The net magnetisation is therefore reduced and the signal the receiver 

coil detects gradually decays. There are two causes of loss of coherence. 

Interactions between neighbouring protons cause a loss of coherence described by 

T2 relaxation. While the applied magnetic field Bo is constant, the magnetic 

moment of one proton is able to slightly modify the magnetic field experienced 

by its neighbour. As protons are moving rapidly and randomly the effects are 
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transient and random. The Larmor frequency of individual protons therefore 

fluctuates in a random fashion leading to loss of coherence of the proton 

population which is known as de-phasing. T2 relaxation therefore relates to the 

amount of spin-spin interaction that takes place. 

If T2 decay was automatically translated in to T1 recovery the use of individual 

terms would be unnecessary. However, rate at which transverse magnetisation is 

lost (T2 relaxation) is greater than rate at which longitudinal magnetisation 

returns (T1 relaxation) in most tissues. T1 and T2 relaxation times for pure water 

are similar. Free water contains small molecules relatively far apart and moving 

rapidly and therefore spin-spin interactions are infrequent leading to long T2 

relaxation times. Water molecules bound to large macromolecules are slowed 

down and more likely to interact so water based tissues with high macromolecular 

content such as muscle tend to have shorter T2 times. Lipid molecules are of an 

intermediate size but interactions between hydrogen nuclei on long carbon chains 

(J-coupling) causes a reduction of T2 relaxation to an intermediate value. Rapidly 

repeated RF pulses used in turbo or fast spin echo sequences can reduce J-coupling 

resulting in increased signal intensity from fat as a consequence of the increase 

in T2 relaxation time. 

Additional decay (or loss of coherence) occurs if there is inhomogeneity in the 

magnetic field which are constant in time, due to either inconsistences in the 

structure of the electromagnet or paramagnetic material in the imaged tissues 

such as ferrous joint replacements or foreign bodies. If the field varies between 

locations then so does the Larmor frequency. Protons at different spatial locations 

will rotate at different rates causing further dephasing so that the MR signal 

decays more rapidly. T2* relaxation describes the total decay of transverse 

relaxation as result of T2 relaxation and these inhomogeneities. 

1.1.3.1.5 MR echoes 

Most MR imaging measures the MR signal in the form of an echo as the gradient 

fields employed to localise and spatially encode the MR signals causes additional 

de-phasing that disrupts free induction decay. Gradient echoes are generated by 

application of magnetic field gradients to produce a change in field strength along 

a particular axis. This causes rapid dephasing of proton spins along the direction 
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of the gradient and transverse magnetisation rapidly drops to zero. A second 

gradient with a slop of equal magnitude but applied in the opposite direction 

reverses the amount of de-phasing resulting in recovery of FID signal to generate 

the gradient echo at the echo time TE. If the second gradient continues to be 

applied the FID signal de-phases and disappears. 

Spin echos are generated by application of 180⁰ refocusing pulse after the 90⁰ 

excitation pulse. This has the effect of causing proton spins that have de-phased 

as a result of magnetic field inhomogeneities to come back in to phase causing FID 

to increase and therefore increased signal intensity reaching a maximum at TE. 

Imaging based on spin echo is therefore less effected by field inhomogeneities 

caused by metallic artefacts. 
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Figure 1.1 Black Blood contrast images 
A Sagittal and B Axial images commonly employed for cardiac morphology using fast spin echo 
sequences with black blood double inversion preparation pulses. Images have intrinsic black blood 
contrast due to blood flow through the image slice and bright appearance from tissues (when T1 
weighted). Adipose tissue as shown above particularly bright due to very short T1 relaxation time.   
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1.1.3.1.6 Magnetic field gradients and spatial localisation 

The MR signal produced by the tissues as described can then be localised and 

encoded by applying three magnetic field gradients to produce an image. The 

applied magnetic field gradient causes the strength of the magnetic field and 

therefore the Larmor frequency to depend on position along that gradient field 

direction. Protons at the stronger end of the magnetic field gradient will therefore 

spin faster than those at the weaker end.  

Slice selection gradients (GS) are first used to identify the slice of tissue to undergo 

excitation by the RF pulse. A magnetic field gradient is applied at the same time 

as the RF pulse to alter the procession frequency along a section of tissue protons. 

The frequency of the RF pulse corresponds to a Larmor frequency at a chosen 

point along the direction of the applied gradient. This causes resonance only in 

protons that cuts through that point effectively defining a slice of tissue. The 

orientation of the slice is determined by the direction of the applied gradient. The 

transmitted RF pulse compromises a small range of frequencies rather than just a 

single frequency which determines slice thickness. 

Following slice selection a phase encoding gradient (GP) is applied which induces 

protons to rotate at different frequencies according to their relative position along 

the gradient. Where the gradient increases magnetic field strength the protons 

acquire a higher frequency of procession and where the gradient decrease the 

magnetic field a lower frequency. The protons also change their relative phase 

according to position along this gradient. When the gradient is switched off the 

protons will have changed their relative phase by an amount determined by their 

position along the gradient and can therefore determine their location within the 

tissue slice. This is known as phase encoding and direction of the gradient as phase 

encoding direction.  

Following GP the frequency encoding gradient (GF) is applied in a direction at right 

angles to it and similarly causes protons to rotate at different frequencies 

depending on their position along the direction gradient. GF is applied for a longer 

period and at the same time the signal is measured. The signal is comprised of a 

range of frequencies corresponding to Larmor frequencies of proton spins at 

different locations along the gradient.  
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These separate magnetic field gradients are therefore applied in a three step 

process to localise the MR signal in three dimensions. Slice orientations are 

determined by re-assigning each of the gradients to a different axis, for example 

images obtained in a trans-axial plane occur when GS is applied along the z axis, 

GP along the y axis and GF along the x axis as shown in figure 1.1B. Angled slices 

can be obtained by combining gradients along two or more axis to perform each 

of the localisation tasks. This ability of MRI to define slice orientation along any 

axis is a key strength in obtaining functional imaging of cardiac structures.  

1.1.3.1.7 Image reconstruction 

This frequency encoded signal must then be reconstructed to produce images. The 

Fourier transform is a mathematical tool that analyses the time dependent MR 

signal and transforms it into its different frequency components. The amplitude 

of each frequency component can be mapped onto a location along the frequency 

encoding gradient to determine the relative amount of signal at each location. 

The field of view (FOV) in the frequency encoding direction is defined by the 

operator.  

The phase changes cannot be decoded by this process. The Fourier transform can 

only analyse a signal that changes over time. To enable this multiple signal echos 

are generated by repeating the three step gradient field process, each time 

applying the same slice selection and frequency encoding gradient, but a different 

amount of phase encoding by increasing the slope (or strength) of GP for each 

repetition by equal increments or steps. For each step the signal echo is measured, 

digitised and stored in a raw data matrix. The time interval between each 

repetition is called the repetition time TR. Once all the signals for a defined 

number of phase encoding steps are complete they can be analysed together by 

Fourier transform to decode both frequency and phase information. 

TR is set by the operator and determines how fast MR images are acquired but 

also affects image contrast. The spatial resolution and number of pixels in the 

reconstructed image is determined by the number of phase encoding steps used. 

The greater the number of repetitions however the longer the image acquisition 

time. 
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The MR signals derived from each phase encoding step are stored in a raw data 

matrix known as K space. Just as each pixel occupies a unique location in an 

image, each point of an MR signal belongs to a particular location in k space which 

is represented by a 2D grid of points of which x axis represents frequency encoding 

direction and y axis phase encoding direction. There is an inverse relationship 

between image space and K space whereby if coordinates of the image represent 

spatial position x and y, the c-ordinates of K space represent 1/x and 1/y. Data 

points at the centre of K space (low spatial frequency) contribute mostly to signal 

intensity and image contrast while those arising from points near the edge of K 

space (high spatial frequency) to fine detail or edges and define spatial resolution 

of the image. To reconstruct an image that is accurate representation of the 

imaged subject it is important that the whole range of spatial frequencies is 

acquired and whole of K space filled. For standard CMR protocols this is done by 

filling k space with equally spaced parallel lines of signal data, line by line known 

as Cartesian acquisition. Each line represents a separately sampled MR signal 

during a phase encoding step. Once K space has been filled the Fourier transform 

analyses the digitised information and reconstructs this into a MR image. 

1.1.3.1.8 Pulse sequences and image contrast 

Pulse sequence is a timed series of RF pulses and magnetic field gradients which 

provides raw data to fill k-space – the “echo”. The two broad families of pulse 

sequences are spin-echo and gradient echo. 

In Spin echo sequences, a 90⁰ RF pulse is applied to the selected slice so that 

resting longitudinal (z) magnetisation is entirely flipped to the transverse (XY) 

plane. The transverse magnetisation begins to de-phase when a 180⁰ RF pulse is 

applied. This causes transverse magnetisation to partially rephrase and produces 

a spin echo, filling one line of K-space. This rephrasing 180⁰ pulse can be repeated 

multiple times to acquire multiple lines of K-space, known as fast or turbo-spin 

echo. Image quality for this sequence is high at the expense of long acquisition 

time to fill K-space. The excitation angle is fixed at 90⁰ and therefore TR and TE 

control the influence of tissue’s T1 and T2 relaxation times. T1 weighted spin echo 

sequences have a short TR and short TE and characterised by bright fat signal and 

low fluid signal. They are useful for anatomical imaging where contrast is high 

between fat, muscle and fluid. In cardiac imaging, TR is determined by subject 
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heart rate and set to one RR interval and TE is short to minimise T2 weighting. T2 

weighted spin echo sequences are characterised by long TR and TE. Long TR allows 

z magnetisation to recover to equilibrium for most tissues reduce influence of 

differences in T1 relaxation. Longer TE however allows more decay of xy 

component leads to differential signal between short T2 tissues such as muscle 

and those with long T2 such as fluid. These images are characterised by bright 

fluid and useful for characterisation of fluid collections or oedema.  

The two main types of gradient echo pulse sequence used in cardiac imaging are 

spoiled gradient echo and balanced steady state free precession (SSFP).  

Gradient echo pulse sequences use a smaller initial RF pulse typically between 10-

90⁰ and then apply magnetic field gradients to rephrase net magnetisation. TR, 

TE and flip angle control the influence of T1 and T2* relaxation times on the signal. 

The main advantage is that gradient echoes can be produced very quickly with 

short scan times but at the disadvantage of increased susceptibility to artefacts. 

Gradient echo sequences have very short TR values which is attractive for cardiac 

imaging as gives rise to short acquisition times. The TR values are much shorter 

however than T2 relaxation times of blood and myocardium. Transverse 

magnetisation therefore would still exist when the next RF pulse is applied and 

contribute to the signal during the subsequent TR unless destroyed. 

Spoiled gradient echo sequences (Siemens FLASH  - Fast Low Angle Shot) 

incorporate an additional “spoiler” gradient at the end of each TR period to 

destroy any residual transverse magnetisation prior to the next RF pulse (70, 71). 

These are used in both T1 weighted and T2* sequences. 

SSFP gradient echo sequences rather than spoiling transverse magnetisation 

instead ensure it is brought back in to phase at the end of each TR period when 

the next RF pulse is applied. This is then superimposed onto transverse 

magnetisation generated by that RF pulse. After a number of repetitions this 

combines to give a greater signal and results in images with both T1 and T2 

contrast with tissues appearing bright and contrast depending on T2/T1 ratio (72). 

Fluid and fat have highest signal on T2/T1 weighted images with all other tissues 

showing intermediate signal. The increased signal allows for shorter TR and TE 

compared to spoiled sequences but is prone to dark banding artefacts due to field 
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inhomogeneities. The Siemens “unspoiled” gradient echo sequence used in this 

thesis is known as TrueFISP (Fast Imaging with Steady state Procession). 

 



 

 

 

 

Figure 1.2 'Bright blood ' cine steady-state free procession images 
Examples of b-SSFP sequences images used in assessment of cardiac function. A. Sagital view B. Axial from single-phase scout localiser images. In contrast to figure 
1.1 blood pool (and CSF) appears bright. Images are not T1 or T2 weighted, but signal depends on ratio of T2/T1 in addition to flow. Blood, water and fat therefore all 
appear bright. In this thesis sequence is known as TrueFISP. 
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1.1.3.2 Cardiac MRI sequences 

To acquire an image of the heart unaffected by motion requires an image 

acquisition period of just a few tens of milliseconds. This means limiting both the 

number of phase encoding steps (and therefore spatial resolution) and a short TR 

time. This is achieved at the cost of reduced image quality, but in order to achieve 

acceptable images the acquisition time becomes too long to ‘freeze’ cardiac 

motion. For CMR therefore the MR signals are acquired over multiple heart beats 

synchronising the pulse sequence and therefore signal acquisition to a particular 

time point in the cardiac cycle. 

1.1.3.2.1 Fast imaging techniques 

As described in section 1.1.3.1.8 the attributes of spin echo and gradient echo 

sequences are employed in CMR dependent on the goal of imaging. Spin echo 

technique is ideally suited when goal is to achieve images with a high signal to 

noise ratio and reduce sensitivity to artefacts caused by magnetic field 

inhomogeniety. Fast gradient echo pulse sequences are used where imaging speed 

is of more importance than imaging quality. Flowing blood appears differently 

between the two sequences with spin echo giving intrinsic black blood appearance 

employed in anatomical imaging (see figure 1.1) (73) and gradient echo pulses 

intrinsic bright blood appearance employed in fast cine imaging (see figure 1.2). 

Balanced steady state free procession (b-SSFP) sequences are commonly employed 

for functional assessment (74, 75). Conventional imaging techniques acquire only 

one phase encoding step and therefore one line of k space per heartbeat. TR is 

defined by patients’ heart rate and equal to the R-R interval. It would therefore 

take several minutes to acquire an anatomical dataset. Fast imaging techniques 

acquire more than one line of k space per heart beat leading to shorter acquisition 

times and are known as turbo or fast pulse sequences (76). These sequences 

generate multiple echoes by applying multiple 180⁰ pulses after the initial 90⁰ 

pulse. Turbofactor describes the number of lines of k space filled per heart beat. 

Sequences with very high turbofactor such as that employed in real time or single 

shot acquisitions shortens acquisition time but at the expense of reducing the 

number of cardiac phases within the cardiac cycle and therefore the cine frame 

rate. Imaging therefore suffers from poor temporal and spatial resolution.  
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CMR data acquisition is synchronised to cardiac motion using the electrical activity 

of the heart (77). The magnetic field exerts a significant effect on the ECG, 

resulting in voltage artefact in the ST segment on the ECG. Reliable r wave 

detection is possible using a vector cardiogram (VCG), but reliable ST/T wave 

monitoring is not possible. The VCG can be used for either prospective or 

retrospective gating. 

Prospective triggering is typically used for single phase acquisitions such as static 

image of the heart at a single point in cardiac cycle. Information is acquired at a 

specific interval after the r wave, usually to coincide with diastole when heart 

relatively still. This still imaging approach is typically used in combination with 

turbo or fast spin echo pulse sequence to acquire black blood anatomical images 

shown in figure 1.1.  

Multiphase acquisitions are used to acquire dynamic information such as cine MRI. 

Data is acquired throughout the cardiac cycle and reconstructed with 

retrospective reference to the VCG (78). Typically the cardiac cycle is divided in 

to 20-30 phases with one image reconstructed for each phase and displayed as a 

cine loop. Retrospective gating in combination with a turbo or fast gradient echo 

method is most common approach to bright blood functional cine imaging shown 

in figure 1.2. Most CMR images are obtained during breath holds, typically of 10-

15s duration to minimise image degradation caused by respiratory motion. End-

inspiratory breath hold is more comfortable and tolerate for longer periods. 

However breath hold at end of gentle expiration is usually more consistent 

(minimising slice misregistration) and less likely to provoke ectopic beats. 

Real-time cine MRI can also be acquired by increasing the parallel imaging factor 

and reducing spatial resolution. When applied it is possible to obtain diagnostic 

images in those with very irregular heart rhythms or in patients who are unable to 

breath hold (79, 80). 

In this thesis pulse sequence is known as TrueFISP (Siemens). Resultant images are 

not T1 or T2 weighted, but signal intensity depends on ratio of T2/T1 in addition 

to flow. Blood, water and fat therefore all appear bright. 
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Ventricular volume is determined using a “stack” of contiguous short axis slices 5-

10 mm thick acquired during breath-hold (typically in region of 5-18 seconds), 

ECG-gated cine “bright” blood sequences. This sequence gives good blood-

myocardial contrast to allow tracing of endocardial and epicardial contours on 

end-diastolic and end-systolic frames. Ventricular volume is calculated as sum of 

individual slice volumes (Simpson’s rule). Ventricular mass is determined by 

multiplying myocardial volume by the muscle-specific density for myocardial 

tissue (1.05g/cm3). Inclusion or exclusion of the RV trabeculations as either mass 

or volume is source of interstudy variability (81). 

1.1.3.2.2 Velocity encoding and phase contrast MRI 

Velocity encoded CMR, also known as phase contrast, is a fast and simple method 

of measuring blood flow (82-84). As proton spins flow along a magnetic field 

gradient they acquire a shift in transverse (xy) magnetisation which is proportional 

to the strength of the magnetic field gradient and to flow velocity, which can then 

be determined. Phase maps are generated to enable quantification of flow where 

pixel intensity depends on phase of transverse magnetisation rather than its 

magnitude. First the image is prescribed perpendicular to flow direction through 

the vessel. More than 15⁰ of variation from the true perpendicular will significantly 

underestimate the flow. Secondly an appropriate encoding velocity (VENC) is 

selected. This must be greater than the highest velocity in the flow otherwise 

aliasing artefact (see section 1.1.3.3) will make data unreliable. Typical VENC in 

normal systemic flow ~150cm/s and in right sided flow ~100cm/s but may need 

adjusted in pathological situations, for example severe valve stenosis may require 

VENC set in region of 400cm/s by the operator (85) . Selection of too high a value 

results in underestimation of velocity. Adequate temporal resolution typically 

requires 30 phases in free breathing acquisitions or 20-25 in breath hold. Velocity 

maps are generally displayed using a gray scale (example is shown in figure 1.4) 

with stationary tissue appearing gray, velocities in forward (positive) and reverse 

(negative) directions represented as higher (white) and lower (towards black) 

pixel intensities. Volumetric flow (ml/s) is determined in each time frame by 

multiplying spatial mean velocity (cm/s) of blood flow with the cross sectional 

area of the vessel (cm2) delineated by a region of interest (ROI) drawn by the 

operator at time of post acquisition analysis. 
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By multiplying blood velocity by the cross sectional area of chosen vessel, such as 

the main pulmonary artery, SV can be calculated (86). In addition this can be used 

to quantify intracardiac shunt by comparing aortic and pulmonary arterial flow 

(87). Flow assessment by CMR has the advantage over echocardiography as it can 

be conducted in any orientation or plane whilst accurate echocardiographic 

assessment requires the flow to be parallel to the echocardiographic plane. Phase 

contrast flow is less accurate in the presence of cardiac arrhythmia or turbulent 

blood flow. 

1.1.3.3 MRI artefacts 

Artefacts can degrade image quality and may cause measurements in functional 

imaging to be unreliable (88). Most can only be corrected during image acquisition 

and therefore artefact recognition and adaptation of acquisition protocol where 

possible to resolve. 

Aliasing occurs when the FOV does not enclose all of the region of interest being 

imaged. The region outside the FOV wraps around and is projected at the opposite 

side of the image as shown in figure 1.3. This projected image may cover the 

region of interest. Increasing the FOV or number of phase encoding steps 

(oversampling) often resolves this. Alternatively frequency and phase encoding 

directions can be swapped. In velocity encoded sequences any velocity greater or 

smaller than the defined VENC causes aliasing. Here aliasing appears as black holes 

in the flow sequence and will lead to over or underestimation of the true velocity. 

Correction of the VENC until the velocity encoded slightly exceeds that of the flow 

will eliminate the artefact. 

RF artefact is caused by distortion of the magnetic field by an external RF source 

and characterised by regular striped pattern (sometimes known as zipper artefact) 

across all images irrespective of the MR sequence. This may arise when the door 

to the MRI room is not closed or the isolation of the room damaged. 

Chemical shift artefacts appear at the interface between fat and water based 

tissues. Misregistration of signal as result of difference in frequency resonance 

between fat and water protons in same voxel along the frequency encoding 

direction causes a separation (pixel shift) in the reconstructed image. Dephasing 
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of fat and water protons can cause signal cancellation and also cause chemical 

shift artefact. Increasing the bandwidth reduces the difference between the 

frequency of fat and water protons in one voxel and can diminish this artefact. 

Fat suppression sequences can also be used.  

Dark rim artefacts can be seen in any CMR image at the interface of bright blood 

pool and darker (myocardial) signal. In CMR perfusion imaging this may be difficult 

to differentiate from subendocardial perfusion defects. This can be reduced by 

increasing spatial resolution. 

Inhomogeneity artefacts may arise from presence of implanted metallic foreign 

bodies such as coronary stents, sternal wires or devices. Due to different magnetic 

properties of most tissues the applied field is slightly inhomogenous. This causes 

regional dephasing of protons at boundaries between different tissues. Metallic 

susceptibility artefacts tend to worsen at higher field strengths and limited field 

strengths 1.5T advisable. Intermittent use of a 180⁰ refocusing pulse may rephrase 

the protons and therefore spin echo sequences are less sensitive to susceptibility 

artefact than gradient echo sequences. A saturation band may also be employed 

to suppress signal from the implant. 
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Figure 1.3. 2 chamber view demonstrating aliasing artefact 
Sagittal imaging of 2 chamber view with left atrium (LA) and ventricle (LV) shown, vertebrae indicated 
by V. Region outside the field of view (FOV) shown by arrows in panel A wraps around and is 
projected at the other side of the image, causing interference with the image of the LV. In panel B 
FOV is increased (white arrow) so less wrap occurs and LV can now be seen clearly.  
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1.1.3.3.1 Motion artefacts. 

Ghosting refers to appearance of parallel lines or double contours in the image 

usually as a result of respiratory motion during acquisition. An example is shown 

in Figure 1.4. Coaching of the subject to control breathing will eliminate ghosting, 

if patients struggle with breath-holds in expiration, inspiratory breath-hold can be 

employed or shortened acquisition times to decrease breath-hold duration at 

expense of reduced spatial resolution. 

Trigger artefact causes myocardial borders to become less defined or blurry. An 

example is shown in figure 1.5. Cardiac data acquisition is synchronised to the R 

wave and data collected throughout the cardiac cycle and retrospectively assigned 

to specific phases. As a result the presence of a poor ECG signal or arrhythmia 

impairs data acquisition. The image quality may decline and render the image non 

diagnostic due to difficulty delineating endo and epicardial borders and hence 

calculations of volume or mass unreliable. Arrhythmia rejection software can be 

applied so images obtained during irregular R-R intervals are rejected. Prospective 

triggering can also be used to acquire data during a predefined period of the 

cardiac cycle but as this does not cover the complete R-R interval SV may be 

underestimated. In severe arrhythmia real time imaging can be used with 

limitations as described above. 

Blood flow artefact occurs as a result of protons moving at high velocity near or 

in the selected imaging slice, usually close to outflow tracts or large arteries, 

which can disturb the homogenous steady state magnetisation. This can be 

overcome by improvement (shimming) locally of the homogeneity of the main 

magnetic field. Reducing TR or TE results in a sequence less susceptible for 

turbulent flow artefacts. Alternatively slice selection can be adjusted or the signal 

from passing protons inverted by application of a saturation band across the 

outflow tract. 
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Figure 1.4 Ghosting Artefact 
Example of ghosting artefact caused by respiratory motion during acquisition. Panel A shows the 
axial view with parallel lines caused by multiple contours indicated by arrow. And B corresponding 
phase velocity map which would have been used to determine flow in pulmonary artery (arrow) 
which will be inaccurate due to motion artefact.  

 

A 
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Figure 1.5. Trigger artefact caused by arrhythmia. 
Short access views of right and left ventricle used to delineate endocardial and epicardial borders in the analysis of ventricular mass, volume and function. Panel A 
shows clear delineation between myocardium and blood pool. In Panel B, myocardial borders are poorly defined and image blurry as the result of arrhythmia and 
trigger artefact. This can be overcome by use of arrhythmia rejection software or real-time image acquisition. 
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1.1.3.4 Normal Variants in right ventricular structure and function 

LV mass and volumes are known to vary by age, sex and race and are typically 

adjusted for body surface area (BSA) (89-91). Echocardiography and autopsy 

studies have demonstrated significant age and gender related differences in both 

cardiac function and mass in healthy subjects (92-94). Autopsy study has also 

shown subject weight, height and BSA to relate to cardiac mass (94, 95). Over the 

last decade a number of studies have reported normal values for right ventricular 

structure and function but have been limited by small sample size over a narrow 

age range with varying acquisition techniques (47, 64, 96, 97). More recently, the 

multi-ethnic study of atherosclerosis (MESA)-right ventricle study, a multicentre 

prospective cohort study of over 4000 participants without evidence of clinical 

cardiovascular disease at baseline (98), have evaluated a number of patient 

demographics that influence CMR value interpretation.  

Conventional cardiovascular scaling approach uses ratiometric method of dividing 

indices such as RV mass by a measure of body size such as height or BSA. Body 

composition has significant effects on relationship between body mass, surface 

area and cardiac structure as large volumes of adipose tissue in the obese or 

extravascular fluid in heart failure patients are not adjusted for, which have little 

metabolic demand and therefore are unlikely to influence cardiac adaptation 

whose function is to provide efficient circulatory supply of metabolic substrates. 

Fat free mass or lean body mass has been proposed as more appropriate method 

of scaling to body size, however clinical use is limited as accurate measurement 

requires  assessment of body composition using dual-energy x-ray absorptiometry 

(DEXA) or hydrodensitometry (99). Superiority of height indexed over BSA indexed 

LV mass has been demonstrated (100). Height may be preferable to index RV 

parameters to over BSA as it is not affected by volume of adipose tissue.  However 

autopsy study has shown weight or BSA to be superior to height in predicting 

cardiac mass (94) and CMR study has shown worse correlation coefficients in 

healthy subjects between RV mass, volumes and height than weight or BSA, 

although this appears population dependent (47). Fat free mass may also vary 

considerably for subjects of identical height. It is therefore current clinical 

practice to adjust RV parameters for BSA. 
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1.1.3.4.1 Ageing and the right ventricle 

Increasing age in autopsy studies is associated with myocyte loss and decreases in 

LV mass and volume in males but not females (95). Remodelling may occur due to 

age-related hormonal change such as reduced testosterone levels in males, or as 

a result of decreasing levels of physical activity. Absolute and indexed CMR 

derived RV mass and volumes have also been shown to be lower with increasing 

age (101-104). Larger effects are observed in males than females, but significant 

changes have been reported in both albeit not consistently. An approximate 5% 

lower RV mass per decade of increasing age has been reported. Age related 

increase in right ventricular ejection fraction is also seen (about 1% per decade) 

and changes in RV diastolic function defined by decreased early peak filling rate 

(PFRE)  and increased active peak filling rate (PFRA) are also reported, reflecting 

a degree of ventricular stiffening with age (104).  

1.1.3.4.2 Sex differences in right ventricular morphology 

Absolute right ventricular volumes are greater in men than women (101, 105). 

Differences in RV mass have been reported variably (47, 96, 101, 102, 104, 106) 

but in larger cohort studies seems to be higher in males. RV mass has been 

reported as up to 8-15 % lower in females and RV volumes 10-25% lower (101, 102). 

These differences have been shown to persist despite adjustment for BSA (104). 

As previously mentioned, greater age related decline in RV mass and volume is 

seen in men and one study has reported restriction of this decline to the male sex 

(102). In general no gender differences have been reported in RVEF, with the 

exception of the larger MESA-RV study where males had 4% lower RVEF after 

adjustment for age and ethnicity (101). These gender differences are potentially 

hormone related (107, 108). Higher levels of estradiol are associated with better 

RV systolic function in healthy postmenopausal woman taking hormone 

replacement and higher levels of androgens in both males and postmenopausal 

women are associated with greater RV mass, higher stroke volume and larger RV 

volumes (109). 
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1.1.3.4.3 Ethnicity and RV structure 

The influence of ethnicity has been less well studied. Lower RV mass in African 

Americans and higher RV mass in Hispanics in comparison to Caucasians has been 

reported (101). After adjustment for LV mass, lower RV mass in African Americans 

remained significant suggesting a RV specific effect. In the same study, Hispanics 

had larger RVEDV and RVSV, and African-American men had lower RVEDV despite 

adjustment for age and sex. Chinese ethnicity has also been shown to have lower 

RV volumes after adjusting for BSA than Caucasians, although mass was not 

reported in this study (105). 

1.1.3.4.4 Influence of physical activity on RV structure  

Long term high intensity exercise in elite athletes is well documented to cause 

adaptive changes in cardiac structure characterised by increases in LV mass, 

volume and wall thickness with a small number of CMR studies showing increases 

in RV mass and volume, the so called “athlete’s heart”(110-113). Levels of 

physical activity in non-athletes however have also been shown to influence RV 

mass and volumes. The MESA-RV cohort has been used to interrogate levels and 

intensity of activity from household chores to sports and leisure activities (114). 

Higher levels of moderate and vigorous physical activity were associated with 

greater RV mass and volumes after age, body size and gender adjustment, 

although the absolute value was low (1g of RV mass from lowest to highest quintile 

of activity, and 7% increase in RVEDV) which remained significant after adjusting 

for LV size. 

1.1.3.4.5 Obesity 

Obesity is independently associated with increased cardiovascular morbidity and 

mortality and is a growing health problem in the western world. Obesity is 

associated with increases in blood volume, cardiac output and direct infiltration 

of fat in the myocardium, termed the cardiomyopathy of obesity (115, 116). RV 

mass and volumes determined by CMR are higher in obese individuals even after 

adjustment for LV parameters and demographic variables. Chahal et al 

demonstrated a 14 % absolute and 8 % LV adjusted higher RV mass, 16 % higher 
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RVSV, larger RVEDV and slightly lower RVEF in healthy obese individuals without 

reported symptoms suggestive of a sleep disorder (117). Adjustment for LV 

parameters and height suggests these increases could not be attributed to 

increased body size alone. Again, these effects were relatively small, a 5kg/m2 

increase in BMI was associated with 1.3g higher RVM, 8.65ml greater RVEDV and 

0.5% lower RVEF. The BMI related increase in RVM was out of proportion to RVEDV 

suggesting remodelling rather than simply increase in cardiac size. Earlier CMR 

studies in the obese have also shown higher RV mass and volumes but preserved 

RVEF (97). These studies potentially could be limited as subclinical sleep disorder 

was not excluded where nocturnal hypoxic vasoconstriction could result in 

increased RV afterload or directly affect the RV (118). It is however thought 

obesity-related increase in blood volume impacts on cardiac output and ultimately 

adaptive change in RV morphology (119). Additionally obesity results in changes 

in adipokine levels which have effects on RV morphology along with fatty 

infiltration of myocardium and increased mass (120, 121). 

Several large cohort studies have now published age and gender specific CMR right 

ventricular reference ranges for mass, volume and function (101, 102, 104).  

 

1.1.4 Right Ventricular - arterial coupling 

Isolated RV failure can arise as a consequence of intrinsic RV pathology such as 

infarction, but typically occurs as a consequence of pathology of its adjoining 

circuit, either impedence of the pulmonary circulation or disease of the left heart. 

It is therefore intuitive when considering RV dysfunction in PAH, where the 

primary disease is in the pulmonary circulation but the capacity of the right heart 

to adapt to this increased afterload that ultimately dictates outcome and 

functional capacity, to consider the RV-pulmonary artery circuit as a unit. RV-

arterial coupling considers the extent of RV adaptation in context of its afterload, 

represented as a ratio of elastances, contractility (or end systolic elastance - Ees) 

with effective arterial elastance (Ea).  
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1.1.4.1 Right ventricular contractility 

RVEF is the most commonly used measure of RV function and by inference RV 

contractility. Ideally however indices of RV contractility should be independent of 

preload and afterload in addition to being sensitive to change in inotropy and 

independent of cardiac mass. SV is the net result of RV contraction, however it 

too is determined by RV filling (preload) and in addition to myocardial function by 

the afterload that the ventricle contracts against i.e. arterial resistance. 

Ventricular pressure-volume loops allow derivation of load independent measures 

of RV contractility, known as maximum ventricular elastance (Emax), which is 

regarded by many as the gold standard measurement of RV function (122). A single 

pressure volume loop describes the changes in ventricular pressure and volume 

through a cardiac cycle. Unlike the rectangular shape observed in the LV, the RV 

pressure-volume loop is more triangular in a normal RV-pulmonary circulation. The 

cycle can be divided in to four phases; (1) the filling phase, which in the RV is 

described by significant increase in volume with only slight increase in pressure as 

a result of high RV distensibility, (2) isovolumetric contraction which is short due 

to low PA pressures, (3) RV ejection with an early peak in pressure and subsequent 

rapid decline, (4) isovolumetric relaxation from pulmonary valve closure until 

pressure falls to baseline. Multiple pressure-volume loops under different loading 

conditions, such as preload reduction generated in models of isolated RV by IVC 

occlusion, allow identification of end-systolic pressure-volume points of each 

pressure-volume loop. The end-systolic pressure-volume points can be connected 

by a linear line, the end-systolic pressure-volume relation (ESPVR). The gradient 

of this line is the end-systolic elastance (Ees) (123) which approximates Emax. Figure 

1.6 describes derivation of Ees from PV-loop analysis. 
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Figure 1.6. Derivation of Ees from multiple pressure-volume loop 
 

Pressure volume loops at decreasing levels of venous return are obtained by instantaneous pressure 
and volume measurement, usually by IVC occlusion. End systolic pressure points are then 
determined as shown, and Ees is the slope of the gradient line connecting these points, the end 
systolic pressure volume relation. 
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Ees is therefore a load independent measure of ventricular contractility and has 

been shown to increase in response to inotropic agents. A shift in the ESPVR may 

occur with changes in ventricular mass and configuration. 

The generation of multiple pressure-volume loops requires the use of conductance 

catheters which are expensive, is time consuming requiring simultaneous measure 

of pressure and volume, and alteration of loading conditions (i.e. venous return 

to the heart) which may not be safe in unwell patients. It is therefore not an 

attractive modality for clinical use. Single beat methods have been developed, 

initially in the LV but more recently translated to the RV (124, 125). The single 

beat method relies on the derivation of the maximal pressure that the RV could 

generate if isovolumetric contraction occurred, known as Pmax. This point is 

derived by the nonlinear extrapolation of the early and late portions of the RV 

pressure time curve for a single ventricular contraction obtained by standard right 

heart catheterisation. Pmax is then plotted on the pressure-volume plot at end 

diastolic volume. Ees can then be determined as the slope of the line from Pmax to 

ESP. Figure 1.7 describes the derivation of Ees, Ea and Pmax using single beat 

method. 
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Figure 1.7. Derivation of Ees using single beat method. 
 

Panel A shows a RV pressure/time trace over a single cardiac cycle obtained at right heart 
cathetersation. Pmax is calculated from the non linear extrapolation of the early systolic and diastolic 
portions of the pressure curve. Panel b shows a RV pressure/volume trace for a cardiac cycle. Ees 
can be determined by the slope of the ESPVR between Pmax plotted at end-diastolic volume and 
ESP at end-systolic volume.  
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1.1.4.2 Right Ventricular afterload 

The afterload faced by the RV is determined by several components; the steady 

state mean resistance to blood flow, compliance of the system, arterial wave 

reflections that arise as a result of the pulsatile nature of flow, and inertance of 

blood during ejection (126). Clinical measures commonly derived from right heart 

catheterisation such as PVR are therefore not ideal measures of RV afterload. 

Afterload can be defined by RV wall stress that arises during RV ejection. This can 

be approximated by the maximum product of volume and pressure divided by wall 

thickness, by Laplace’s law. This is however problematic in the RV as there is 

considerable variation in RV internal radius due to its complex shape and it is not 

in essence the true sphere to which this law applies (127). Pulmonary artery 

impedence (PVZ) is the ratio of pressure to flow oscillations which can be 

calculated by spectral analysis of pressure and flow waves. Whilst this method 

does provide a comprehensive description of all aspects of RV vascular load, it is 

both difficult to measure and interpret (128). Effective arterial elastance (Ea) is a 

simpler approach to describing the load faced by the RV and incorporates both 

resistive and pulsatile components (129). It is graphically determined on a 

pressure volume loop by dividing the pressure at ESP by stroke volume. This 

method allows matching of afterload to RV contractility (Ees). As contractility 

should be homeometrically adjusted to match its afterload, the adequacy of this 

adaptation can be assessed by the ratio of Ees/Ea, which defines ventricular-

arterial coupling. 

1.1.4.3 Simplified methods for the assessment of right ventricular-arterial 
coupling. 

RV-arterial coupling as a ratio of elastances represents optimal transfer of energy 

from the RV to pulmonary circulation at ratios of 1.5-2 (130). It is, however, also 

possible to determine coupling by a ratio of volumes. Ees can be approximated by 

the formula; 

Ees= ESP/ (ESV-V0) 

Where ESP is the end systolic pressure, ESV the end systolic volume and V0 is the 

volume intercept of the ESPVR line, and approximates to the theoretical volume 

of the unloaded ventricle. 
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And Ea can be approximated by 

Ea = ESP/SV. 

RV-arterial coupling (Ees/Ea) therefore can be determined by ratio of volumes, 

SV/ESV, if V0 is regarded as negligible. 

There are several limitations to using SV/ESV. The first is that ESP-ESV relationship 

is linear and crosses the origin. This is incorrect as the ventricular volume at zero 

filling (ie V0) has to be positive and therefore this method leads to an 

underestimation of Ees. In addition, we assume that Ees coincides with Emax which 

may not be correct (131). SV/ESV however offers a measure of RV function in a 

similar manner to RVEF (SV/EDV) however in a less preload dependent manner. 

Additionally, RV-A coupling can be approximated by pressure measurement 

obtained at RHC and RV volume measurement by CMR (132). Pmax is derived as 

previously mentioned from extrapolation of the RV pressure curve, however ESP 

is approximated by mPAP. Ees is therefore calculated as; 

Ees = (Pmax – mPAP)/SV  

or by further simplification if V0 = 0, Ees = mPAP/ESV.  

Trip et al demonstrated that V0 may vary from-8 to 171 ml, and correlated with 

ventricular volume and therefore could not be regarded as negligible, nor could 

the calculated Ees be preload independent. However, this method has a number 

of limitations raised by the use of surrogate pressures and volumes in addition to 

reliance on a linear extrapolation from the slightly curvilinear ESPVR which may 

result in markedly different pressure or volume intercepts (122). 
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1.2 The right heart and pulmonary vasculature in 
pulmonary hypertension 

1.2.1 Aetiology 

Pulmonary arterial “sclerosis” was first described by Ernst von Romberg in 1891 

but it wasn’t until 1951 that a larger study reported the characteristics of 39 

patients with PAH of unknown aetiology and the term ‘primary pulmonary 

hypertension’ was coined (133, 134). The WHO presented the first definition of 

the disease in 1973 in Geneva, classifying the disease by primary, secondary and 

associated PH (135). Since then, four further world symposia have developed a 

more comprehensive clinical classification system based on 5 main groups of 

pulmonary hypertensive disease initially proposed in Evian France in 1998 (136-

138). The most recent clinical classification from the fifth WSPH held in Nice, 

France in 2013 is shown in table 1-1 
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Table 1-1 Clinical classification of Pulmonary Hypertension (Nice 2013) 

1. Pulmonary arterial hypertension (PAH)  

1.1 Idiopathic (IPAH) 

1.2 Heritable PAH 

1.2.1 BMPR2 

1.2.2 ALK1, ENG, SMAD9, CAV1, KCN K3 

1.2.3 Unknown 

1.3 Drug and toxin induced 

1.4 Associated with: 

1.4.1 Connective tissue disease 

1.4.2 HIV Infection 

1.4.3 Portal hypertension 

1.4.4 Congenital heart disease 

1.4.5 Schistosomiasis 

1′ Pulmonary veno-occlusive disease and/or pulmonary capillary 
hemangiomatosis 

1″ Persistent pulmonary hypertension of the newborn (PPHN) 

 

2. Pulmonary hypertension due to left heart disease 

2.1 Left ventricular systolic dysfunction 

2.2 Left ventricular diastolic dysfunction 

2.3 Valvular disease 

2.4 Congenital/acquired left heart inflow/outflow tract obstruction and 
congenital cardiomyopathies 

 

3. Pulmonary hypertension due to lung diseases and/or hypoxia 

3.1 Chronic obstructive pulmonary disease 

3.2 Interstitial lung disease 

3.3 Other pulmonary diseases with mixed restrictive and obstructive pattern 

3.4 Sleep disordered breathing 

3.5 Alveolar hypoventilation disorders 

3.6 Chronic exposure to high altitude 

3.7 Developmental lung diseases 

 

4. Chronic thromboembolic pulmonary hypertension (CTEPH) 

 

5. Pulmonary hypertension with unclear multifactorial mechanisms 

5.1 Haematological disorders: chronic haemolytic anaemia, myeloproliferative 
disorders, splenectomy 

5.2 Systemic disorders: Sarcoidosis, pulmonary histiocytosis, 
lymphangioleiomyomatosis 

5.3 Others: tumour obstruction, fibrosing mediastinitis, chronic renal failure, 
segmental PH 
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1.2.2 WHO group I pulmonary arterial hypertension 

The global burden of PAH is difficult to estimate as accurate diagnosis requires 

access to healthcare and specialist diagnostic tools including RHC which is limited 

in many developing countries. The incidence and prevalence from France is 

estimated at 2.4 cases/million annually and 15 cases per million respectively 

(139). In the UK, national audit data from 2013 reports prevalence rates of 

49.2/million and 51.8/million in England and Scotland respectively (140). 

Historical data from Scotland suggests annual incidence of 7.6/million population 

(141). Information regarding the prognosis of idiopathic and familial PAH were 

derived from the National Institute of health (NIH) supported US registry in the 

1980s, based on both prevalent and incident cases, in an era which predated PAH 

therapies. Based on this registry, very poor median survival of 2.8 years from 

diagnosis has been quoted (142, 143). Since that time a number of PAH therapies 

have been developed, and several large national registries have been established 

and reported improved survival in PAH. In the US REVEAL registry 1, 3 and 5 year 

survival rates of 85%, 68% and 57% respectively were observed, with a median 

survival of 7 years (144, 145). This registry is however in a cohort of predominantly 

prevalent patients, which may create survival bias. Data from France and the UK 

of incident PAH cases report similar 1 year survival rates of 88%.  

Prognosis varies depending on the aetiology of PAH and comorbid conditions. 

Prognosis in PAH associated with CHD tends to be better than IPAH, while 

historically CTD associated PAH carried a significantly worse prognosis than IPAH 

prior to availability of therapeutic options. In the 2013 national audit data from 

the UK similar 1 year survival rates of incident cases of CTDPH vs IPAH of 89 vs 

88% were observed. In Ssc associated CTDPH, 1 and 3 year survival rates 78% and 

47% have been reported in comparison to 1 and 3 year survival rates of 92.7% and 

73.3% in IPAH, familial and anorexigen associated disease, both from incident 

cohorts albeit different UK registries (146, 147). In SLE associated disease 1 and 3 

year survival rates were 78 and 74% respectively, and 83% and 66% for rheumatoid 

arthritis, suggesting the aetiology of the CTD also has some influence on outcome. 

PAH is therefore a rare disease but one of significant mortality.  
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1.2.2.1 Pathophysiology 

PAH is a syndrome characterised by progressive pulmonary arterial obstruction 

and remodelling as a consequence of excessive cell proliferation and impaired 

apoptosis, leading to an increase PVR and RV afterload. Remodelling mostly occurs 

in small to medium sized pulmonary arterioles <500µm and involves all three layers 

of the vessel wall. Endothelial dysfunction leads to an imbalance that favours 

vasoconstriction, in situ thrombosis and mitogenesis. Histological appearances are 

of muscularisation of distal and medial pre-capillary arteries, neointimal 

formation, infiltration of inflammatory and progenitor cells, thrombosis in situ and 

formation of complex lesions called plexiform lesions (148). Endothelial cells and 

PASMCs from patients with PAH display a pro-proliferative anti-apoptotic 

phenotype and a glycolytic shift in metabolism which has led to some analogies 

with cancer cells (149). 

A number of growth factors act as mitogens and chemoattractants for SMCs, 

fibroblasts and endothelial cells including FGF-2 and PDGF (150). Levels of 

cytokines and chemokines such as IL-6, TNF and IL-1β are raised in PAH and may 

correlate with severity of disease (151). Monocytes, macrophages, T and B 

lymphocytes are found in plexiform lesions and autoantibodies to endothelial cells 

and fibroblasts have been isolated from the lungs of PAH patients. Inflammation 

therefore is thought to be an important contributor to progression of vascular 

remodelling and may be implicated as a triggering factor in PAH (152). 

Perturbed angiogenesis is suggested by the development of plexiform lesions and 

altered levels of circulating pro-angiogenic progenitor cells in patients with IPAH. 

The precise role that disordered angiogenesis plays however is uncertain (153, 

154). Alterations in the function of K+ and Ca2+ channels have been linked to 

dysregulation of cellular homeostasis, promotion of SMC proliferation and 

alterations in pulmonary vascular tone. In PAH, reduced expression of voltage 

gated K+ channels, specifically Kv1.5 is linked to induction of muscle contraction 

and vascular remodelling due to an imbalance in apoptosis and proliferation (155). 

Finally, roles for insulin resistance, obesity and sex hormones have been linked to 

development of PAH (156, 157). Both idiopathic and familial disease is more 

common in females, however animal studies suggest a protective effect of 
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oestrogens. Further study is required to better understand potential links with 

development of PAH. 

1.2.2.1.1 Endothelial dysfunction 

Endothelial dysfunction is reflected by reduced production of the 

vasodilators/growth inhibitors nitric oxide (NO) and prostacyclin (PGI2), and 

increased production of vasoconstrictor/co-mitogens, such as endothelin-1 and 

thromboxane A2 (158).  

NO is produced in the endothelium by the action of endothelial NO synthase 

(eNOS). In PASMC NO stimulates soluable guanylate cyclase (sGC) to produce cyclic 

GMP (cGMP) which has antiproliferative properties in addition to causing 

vasodilatation. In the pulmonary circulation, the eNOS/NO/sGC/cGMP pathway is 

the principle driver of endothelium mediated vasodilation and focus of 

therapeutic targeting in PAH (159). In PAH, reduced NO bioavailability arises as a 

result of reduced NOS expression, consumption of NO by overproduction of free 

radicals by oxidative stress, and inhibition of NO synthesis (160-162). Additionally 

elevated levels of asymmetric dimethylarginine (ADMA) which is a competitive 

inhibitor of NOS have been found in patients with IPAH. Increased expression of 

phosphodiesterase type 5 (PDE-5) has been shown in both PASMC and the right 

ventricle, which is the enzyme responsible for cGMP degradation (163). PDE5 

inhibition has also been exploited as a therapeutic target in PAH. 

ET-1 regulates vascular tone causing vasoconstriction and inducing cell 

proliferation via ETA and ETB receptors located on PASMCs. ET-1 levels have been 

shown to be elevated in PAH as well as patients with heart failure and COPD (164, 

165). Endothelial cells also express ETB receptor which is involved in release of 

NO and prostacyclin. ET-1 also interacts with matrix metalloproteinases (MMPs) 

causing fibrogenesis. Both selective (against ETA) and nonselective ETRAs have 

been developed as treatments in PAH. 

Overproduction of serotonin by pulmonary artery endothelial cells has also been 

shown in PAH which acts on SMC and fibroblasts to cause vasoconstriction and 

remodelling (166). Abnormal cross-talk between endothelial cells and SMC in IPAH 
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has been linked to enhanced paracrine overproduction of serotonin and other pro-

migratory pro-proliferative mediators (167). 

1.2.2.1.2 Genetic mechanisms 

PAH has a genetic component. Mutations in bone morphogenetic protein type II 

receptor (BMPR2) have been reported in >70% patients with one or more affected 

relatives (heritable PAH) but also 11-40% of those with sporadic IPAH (168-

170).Penetrance is low with only ~25% of carriers developing PAH (171). Most cases 

of familial PAH have loss of function mutations in BMPR2 that promote cell 

proliferation. Modifier genes such as SERT may in part explain the variable 

penetrance, however it seems likely that aberrant BMPR2 function alone is 

insufficient to explain the subsequent development of PAH and lead to second hit 

hypothesis from environmental or comorbid conditions. Mutations in several other 

genes have been discovered, including ALK1 (172), the endoglin gene (173), SMAD9 

(174), Caveolin-1 (175) and K+ channel subfamily K KCNK3 (176). Patients with 

BMPR2 and ALK1 mutations present with higher PVR, and present and die at 

younger age than those without (177, 178). 

1.2.2.2 Diagnosis 

Echocardiography is employed to detect suspected PH in symptomatic individuals 

with breathlessness or signs of RV dysfunction, or as a screening tool in at risk 

populations such as scleroderma. Doppler derived measurements of the peak 

velocity of blood crossing tricuspid or pulmonic valves allow estimation of the 

pressure gradient using a simplified Bernoulli’s equation 

PG= 4x (peak velocity)2 

Tricuspid valve regurgitant jets are more readily acquired and used for this 

purpose. Systolic PAP can then be estimated, as the sum of tricuspid valve 

regurgitant pressure gradient (TRPG) + estimated RAP. The presence of tricuspid 

regurgitation increases as sPAP increases and regurgitant jets are visualised by 

echocardiogram in the majority of PH patients. One study demonstrated TR in 74% 

of patients with PH (179), whilst another has reported appreciable TR jets in 80% 

patients with a sPAP above 35mmHg rising to 96% of those with sPAP >50mmHg 
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(180). RAP can be estimated from inferior vena cava collapsibility index by 

echocardiogram or clinically from assessing the extent of jugular venous pressure 

elevation. Impressive correlation with invasively measured sPAP has been 

demonstrated, with r = 0.89-0.97. There are however a number of limitations, 

reliance on the presence of tricuspid regurgitant jet, operator dependence and 

relatively high standard errors of estimation. Therefore, whilst echocardiography 

has been established as the imaging modality of choice in screening for PH it is 

not sufficient to diagnose PH. 

Right heart catheterisation (RHC) is the gold standard for both diagnosis and 

haemodynamic assessment of patients with suspected PH. For standardisation of 

measurements the pressure transducer is zero levelled at the midthoracic line in 

the supine patient, halfway between the anterior sternum and table surface, 

which represents the level of the left atrium. PH is defined by the presence of 

mPAP ≥25mmHg at rest, however for a diagnosis of PAH, additional haemodynamic 

measurements are required; 

1. Cardiac output (CO) must be normal or low. This is commonly measured 

using the thermodilution method which has been shown to provide reliable 

measurements in patients with very low CO or with severe tricuspid 

regurgitation. 

2. Pulmonary artery wedge pressure (PAWP) < 15mmHg. PAWP provides an 

approximation of left atrial pressure by recording pressure measurements 

with a balloon-tipped pulmonary artery catheter wedged, with the balloon 

inflated, within a branch pulmonary artery. Measurement at end of normal 

expiration minimises the effect of swings in intrathoracic pressure with 

respiration. A PAWP >15mmHg suggests PH secondary to left heart disease 

(group 2 disease). 

3. Raised pulmonary vascular resistance (PVR) ≥ 3 wood units. PVR is 

calculated by (mPAP – PAWP) / CO. 

Additional haemodynamics measurements that are assessed include RAP, 

pulmonary artery or mixed venous oxygen saturations (SVO2) which have been 

shown to have prognostic significance in PH.  
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A resting mPAP ≥25mmHg is required for a diagnosis of PH. As discussed in section 

1.1.1 mPAP increases with ageing, with the upper limit of normal of 20mmHg (24). 

It is unclear how to classify and manage patients with mPAP 21-24mmHg as most 

epidemiological and therapeutic studies have used mPAP ≥25mmHg as threshold 

for inclusion. These modest elevations in mPAP could represent early pulmonary 

vascular disease particularly if the TPG or PVR is high. Whether these patients go 

on to develop more significant pulmonary vascular remodelling and meet current 

diagnostic criteria for PAH is unknown as the natural history of such a group has 

not been widely studied. The exception to this is in scleroderma where screening 

for PH is widely carried out due to the lifetime risk of development of PAH. The 

presence of borderline mPAP is associated with higher risk of developing clinically 

significant PAH (181)  and associated with poorer prognosis when raised TPG is 

also present. The consequence of delaying therapeutic intervention until PAH 

manifests is unknown. Current guidelines recommend close monitoring of patients 

with mPAP 21-24mmHg, particularly if they have an additional risk factor 

associated with PAH. 

Before the 4th WSPH, PH was also defined by the presence of mPAP which rose to 

>30mmHg on exercise in the absence of resting PH. This has subsequently been 

removed from the updated diagnostic criteria. Exercise related mPAP rises with 

age as part of normal age related increase in vascular stiffness. Previous studies 

have not standardised the level, type and posture of exercise and it is therefore 

uncertain what represents a normal valve of exercise mPAP. Additionally, the 

prognostic and therapeutic significance of exercise induced PH with normal resting 

haemodynamics is unknown and further study in this area is required. 

Despite increased awareness of the disease there is often considerable delay 

between the onset of symptoms and the diagnosis. The majority of patients are 

diagnosed with NYHA FC III-IV disease which has been shown to predict poorer 

survival. Data from the REVEAL registry found that 21% of patients had symptoms 

for more than 2 years before diagnosis, and so interest has focussed on striving to 

identify patients with PAH at an earlier stage and commence treatment before 

the development of RV failure. Due to the variable penetrance of mutations 

associated with FPAH, the benefit of genetic screening of asymptomatic relatives 

is uncertain. Furthermore, a monitoring strategy for mutation carriers has not 

been agreed, with some suggesting annual echocardiogram, and others advocating 
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investigating symptomatic relatives only due to lack of evidence for treating 

asymptomatic individuals. In scleroderma, annual screening of asymptomatic 

patients using modalities such as DLCO, biomarkers, echocardiography and RHC in 

those with positive findings or clinical signs is already underway. Focussed 

screening of at risk groups is suggested, but the majority of cases arise in sporadic 

patients in wider populations. Earlier diagnosis therefore relies on increasing 

awareness and education of clinicians who patients are likely to present to, such 

as cardiorespiratory physicians and rheumatologists.  

 

1.2.2.3 Treatment 

Over the past two decades the three major pathways underlying the development 

of PAH, the prostacyclin, nitric oxide and endothelin pathways, have been 

targeted for the development of PAH specific therapies. At the time of the 2nd 

WSPH in 1998, only epoprostenol, an intravenous prostacyclin analogue in addition 

to calcium channel blockers were known therapies. 15 years later at the time of 

the 5th WSPH, the therapeutic options have expanded considerably with 7 

compounds approved, different modalities of administration available and a 

number of drugs under development. These pharmacological discoveries have led 

to considerable reduction in mortality and morbidity (182). Additionally, therapies 

from all three drug classes, prostacyclin analogues, phosphodiesterase-5 inhibitors 

(PDE-5i) and endothelial receptor antagonists (ETRA) have been shown to improve 

exercise capacity, functional status, symptoms and haemodynamics. Whilst some 

have been shown to delay time to clinical worsening, only Epoprostenol is proven 

to improve survival. Newer therapies Macitentan and Selexipag which have 

completed phase III studies in the last 3 years have also shown improvement in 

composite endpoint of morbidity and mortality. Table 1-2 displays current drug 

therapies licensed for use in PAH. 

In addition to vasodilatory effects, ETRAs have been shown to improve pulmonary 

vascular endothelial function and beneficial remodelling in pre-clinical studies 

(183). PDE-5 inhibition has antiproliferative effects and in PAH models enhances 

myocardial contractility as a result of the pressure overloaded RV myocytes 

expression of PDE5 (184). As discussed above, the pathogenesis of PAH is complex 

and in addition to focusing drug development on overcoming vasoconstrictive 
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components, recent interest has arisen in targeting other components of 

pulmonary vascular remodelling, including inflammatory mediators, growth 

factors, BMPR2 mutations, metabolic dysfunction and calcium signalling. 

Preclinical studies into utility of Tocilizumab (an anti-IL-6 monoclonal antibody), 

Rapamycin (HDAC1 inhibitor), Apelin, PPARγ agonists and Rho kinase inhibitors 

such as Fasudil respectively targeting these pathways may provide novel 

therapeutic agents in the future (185). 

Combination therapy because of the 3 signalling pathways involved is an attractive 

prospect for management of PAH. Recent meta-analysis has suggested 

combination therapy reduces time to clinical worsening, and improves 

haemodynamics and exercise tolerance (186). It is unknown if combination 

therapy upfront is of benefit. Current guidance recommends sequential 

combination therapy in those with unsatisfactory clinical response. The suggested 

initial therapy is based on NYHA functional class, with those in FC II treated with 

an oral agent and Epoprostenol reserved for those in FC IV (187). 



 

Table 1-2. Drugs approved or completing phase III studies for treatment of PAH in UK. 
 

Drug route Study Outcome Measure Reference 

   6MWD FC Haemodynamics TTCW Survival  

Endothelin Pathway 
Endothelin receptor antagonists (ETRA) 

     

Bosentan Oral BREATHE 1 and 2 + (44) + + + NT (188) 

Ambrisentan Oral ARIES 1 and 2 + (51.4) + + + NT (189) 

Macitentan Oral SERAPHIN + + + NT +* (190) 

NO Pathway 
PDE-5 inhibitors 

      

Sildenafil Oral SUPER-1 + (45) + + - NT (191) 

Tadalafil Oral PHIRST + - + + NT (192) 

Soluable guanylate cyclase stimulator       

Riociguat Oral PATENT 1 and 2 + (35.8,51) + + + NT (193, 194) 

Prostacyclin Pathway 
Prostacyclin analogues 

      

Epoprostenol IV  + + + NT + (195, 196) 

Iloprost Inhaled AIR + + + + NT (197) 

Prostaglandin Receptor Agonist       

Selexipag Oral GRIPHON     +* (198) 
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1.2.3 WHO group 3 PH associated with hypoxic lung disease 

Pulmonary hypertension associated with chronic lung disease is one of the most 

common forms of PH. The true prevalence is unknown as echocardiography is 

known to be unreliable in lung disease patients making accurate noninvasive 

diagnosis difficult in large population based studies (199). It is known, however, 

that the prevalence of PH varies with both the underlying aetiology and severity 

of lung disease, and its development is associated with both exercise limitation 

and worse prognosis. Unlike group I PAH, where development of pharmacological 

therapies has substantially progressed in the last decade, with the exception of 

provision of oxygen therapy there are no proven therapeutic options. 

1.2.3.1 Epidemiology 

1.2.3.1.1 Chronic obstructive pulmonary disease 

Studies in patients with advanced COPD have shown a high prevalence of PH with 

up to 90% having a mPAP >20mmHg. The reported prevalence however varies 

widely, dependent on the definition of PH, methods used to determine pulmonary 

pressures and the population studied. The absence of large epidemiological 

studies means the true prevalence of PH in mild to moderate COPD is unknown. 

Relative to other forms of PH, COPD largely causes modest haemodynamic changes 

at rest with mPAP typically in range 20-35mmHg. However, even moderate levels 

of exercise have been shown to cause further rapid rise in mPAP likely as result of 

impaired vascular distensibility and recruitment (200). The presence of mild PH, 

with mPAP >18mmHg is associated with increased risk of hospitalisation with 

exacerbations (201). During episodes of acute respiratory failure mPAP may rise 

by as much as 20mmHg but return to baseline following recovery of the 

exacerbation (202). The rate of PH progression is normally slow, typically in the 

range of 1-3mmHg/year in small studies with serial RHC in COPD patients (203).  

There have been a number of RHC studies in patients with severe COPD undergoing 

evaluation for lung volume reduction surgery (LVRS) or lung transplantation. 

Scharf et al reported the RHC results of 120 patients with severe emphysema 

screened for participation in the National emphysema treatment trial (NETT) 

(204). 91% had an mPAP >20mmHg with a mean mPAP 26.3 ± 5.2mmHg. Vizza et 
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al observed similar results in 168 patients listed for lung transplantation with mean 

mPAP 25.6mmHg (205). Thabut et al reported a retrospective review of 215 

patients with severe COPD (mean FEV1 23.9% predicted) whom underwent RHC as 

part of evaluation for LVRS or transplantation and found PH was present (using 

traditional definition of mPAP >25mmHg) in 50.2% with mean mPAP of 26.9mmHg 

(206). Cuttica et al found remarkably similar prevalence with a retrospective 

review of 4930 COPD patients listed for transplantation (207). Whilst 48% had 

mPAP ≥25mmHg, 30% had both mPAP ≥25mmHg and PAWP ≤15mmHg highlighting 

prevalence of coexistent pulmonary venous hypertension. Finally, in a large study 

of 998 COPD patients with less severe airflow limitation (mean FEV1 33%) and 

hypoxaemia, mPAP was 20.3mmHg, with a prevalence of PH (defined as mPAP 

>20mmHg) in approximately 50% of patients hospitalised for COPD (208). 

The development of PH in COPD has been shown to have significant prognostic 

relevance, with inverse correlation between mPAP or PVR with survival (209, 210). 

It is suspected that the improved survival of hypoxaemic COPD patients with LTOT 

relates to improvement of pulmonary haemodynamics, although mPAP remains a 

prognostic variable in LTOT treated patients. In recent study, the 5 year survival 

of COPD patients with mPAP >25mmHg was 36.3% in comparison to 62.2% without 

PH. Pulmonary haemodynamics were stronger prognostic variable than either FEV1 

or gas exchange variables (210). 

1.2.3.1.2 Interstitial lung disease 

Idiopathic pulmonary fibrosis (IPF) is a progressive fibrosing interstitial lung 

disease of unknown aetiology with a median survival of 2.5 to 5 years (211, 212). 

PH has been reported in 8.1% and 14.9% of patients at time of diagnosis (213, 214), 

rising to 20-50% in advanced disease at time of evaluation for transplant and >60% 

with end stage IPF (215-217). Serial RHC has shown progressive PH from a 

prevalence of 38.6% at time of transplant evaluation to 86.4% at time of 

transplantation. Rapid progression of PH has also been reported. Like COPD, the 

PH is usually mild, in a retrospective study of 135 patients, mean mPAP was 

31±6mmHg (218). Shorr et al reported on 2,525 IPF patients listed for 

transplantation (219). Of the 46.1% whom had PH, mean mPAP was 

34.2±9.9mmHg, although 18% had a PAWP >15mmHg suggesting co-existent 
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pulmonary venous hypertension. Poor or even no correlation between lung 

function (219, 220) or HRCT fibrosis score (221) and severity of PH has been 

reported. The development of PH has been associated with more pronounced 

exercise capacity limitation due to circulatory impairment in comparison to IPF 

patients without PH but similar lung function (216, 222). The presence of PH is 

associated with an almost 3 fold increase in the risk of death (220, 223). Both 

echocardiography defined PH (sPAP >50mmHg) and RHC (with even trivial increase 

to an mPAP of >17mmHg) has been associated with poorer survival (213, 220). In 

one study, the 1 year mortality in those with PH IPF was 28% compared to 5.5% in 

those without (220). 

1.2.3.1.3 Combined pulmonary fibrosis and emphysema syndrome 

PH is particularly prevalent in combined pulmonary fibrosis and emphysema 

(CPFE) syndrome with estimates approaching 30-50% of patients. CPFE is 

characterised by predominantly upper lobe emphysema with lower lobe fibrosis in 

association with marked impairment of gas exchange demonstrated by low DLCO 

(224). The incidence is unknown but case series suggest it may compromise up to 

35% of patients with IPF (225). Prognosis is poor, with a 5 year survival of 55% 

(226). Unlike COPD and IPF, often severe PH is seen with markedly reduced DLCO 

but largely preserved lung volumes. At RHC, mPAP >35mmHg occur in 68% and 

>40mmHg in 48% of patients (227). The development of PH is associated with poor 

survival (228) with reduced CI being a strong prognostic determinant. 1 year 

survival of only 60% has been reported (227). 

1.2.3.2 Pathophysiology 

The pathophysiology of PH in patients with lung disease is complex and likely 

arises due to a combination of HPV, vascular inflammation and remodelling, and 

loss of the vascular bed as a result of parenchymal destruction. Chronic effects of 

hypoxia on the pulmonary circulation is the basis of many animal models used in 

the study of pulmonary hypertension therapies. Chronic alveolar hypoxia results 

in a sustained elevation in pulmonary vascular resistance due to vasoconstriction 

and induces vascular remodelling. Whilst undoubtedly one of the initiating factors 

in development of PH in lung disease, the failure of oxygen therapy to 
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subsequently reverse PH suggests the resultant structural changes in the 

pulmonary circulation are the major factor.  

In COPD, autopsy specimens from patients with severe disease have demonstrated 

muscularisation of pulmonary arterioles which can extend to the periphery of the 

lung in precapillary vessels as little as 20µm in diameter (229, 230). 

Muscularisation can also be seen in post capillary veins and venules. Intimal 

hyperplasia has been observed in both mild and endstage COPD. Complex 

plexiform lesions of PAH have not been demonstrated, but reduction in total 

number of pulmonary vessels has been shown in both angiographic and autopsy 

studies (231, 232). The changes in vessel structure are accompanied by endothelial 

dysfunction and alteration in expression of growth factors and antiproliferative 

mediators that favour cell proliferation and vascular contraction. Whilst the 

severity of hypoxaemia has been related to the increase in both PAP and PVR, 

pulmonary vascular remodelling also occurs in non-hypoxaemic mild COPD patients 

(233, 234). Regional hypoxia in under ventilated areas of the lung in absence of 

systemic hypoxaemia may be present in COPD and therefore regional remodelling 

related to HPV may still occur. Tobacco smoke exposure is thought to play an 

important role in development of pulmonary vasculopathy (235). “Healthy” 

smokers without demonstrable airflow obstruction have been shown to have 

intimal hyperplasia, reduced eNOS expression, increased VEGF and inflammatory 

cell infiltrate in pulmonary arteries at a similar level to COPD patients (234, 236-

238). In experimental models, cigarette smoke is known to cause endothelial 

dysfunction, and when exposed to both cigarette smoke and hypoxia, animal 

models are seen to develop more severe pulmonary hypertension and remodelling, 

suggesting a possible synergistic effect (239, 240). This has led to some to 

postulate that smokers are perhaps more susceptible to effects of hypoxia on the 

pulmonary vasculature as a result of pulmonary vascular dysfunction initiated by 

cigarette smoke. The role inflammation plays in the development of PH is poorly 

understood. It is known that systemic inflammation appears to be a risk factor for 

development of PH, with some studies showing a correlation between pro-

inflammatory cytokines such as IL6 and c-reactive protein and PAP (241, 242). 

Additionally hyperviscosity from polycythaemia, compression of the alveolar 

vessels from hyperinflated emphysematous lungs, hypercapnic acidosis related 
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vasoconstriction and increase in PAWP as result of dynamic hyperinflation may 

play a role (243). 

In IPF, vascular remodelling with intimal proliferation and medial thickening in 

both muscularised pulmonary arterioles and veins have been demonstrated in 

pathological specimens consistent with those seen in other hypoxic lung diseases 

(244). In addition to vessel ablation in dense areas of fibrosis, occlusive venopathy 

and vascular remodelling is present in non-fibrotic areas suggesting a potential 

role for other mechanisms (245). Overexpression of inflammatory cytokines and 

growth factors including PDGF and fibroblast growth factor are implicated in the 

pathogenesis of IPF (246, 247). Decreased levels of prostaglandin E2 (PGE2) which 

opposes fibrotic response and may increase expression of TGF-β, has been found 

in bronchoalveolar lavage in IPF patients (247). Additionally ET1, a potent 

vasoconstrictor and smooth muscle mitogen found in increased levels in IPAH, has 

been found in elevated concentrations of IPF patients both with and without PH 

(248, 249). Arterial levels of ET-1 have been shown to correlate inversely with 

Pa02 and directly with PAP in IPF patients (250). PDGF, TGF-β, and fibroblast 

growth factor have been implicated in the pathogenesis of both IPAH and hypoxia 

induced PH suggesting the possibility of common inflammatory pathways in 

parenchymal and vascular remodelling seen in IPF PH and potentially a shared 

therapeutic target (246).  

1.2.3.3 Severe pulmonary hypertension in hypoxic lung disease 

Whilst mild PH in chronic lung disease may be prevalent, severe PH, defined as 

mPAP ≥35mmHg is rare occurring in only 3-5% of COPD patients. These patients 

typically display less severe respiratory function compromise and the PH is 

therefore regarded as disproportionate. Haemodynamic or CMR evidence of RV 

dysfunction more commonly seen in PAH patients is often seen. Severe PH is 

postulated to occur in individuals with excessive HPV response, including those 

with genetic polymorphisms of the serotonin (5HT) transporter gene (251). 

Whether these patients should be managed as Group 3 disease or possibly regarded 

as having co-existent Group I disease is uncertain. Recent data from large national 

PH registries has reported on increasing prevalence of comorbid disease in PAH 

diagnoses with up to 17% having COPD (252). Previous literature on “out of 

proportion” PH in lung disease has been clouded by use of differing levels of mPAP 
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between 35-40mmHg, and varying degrees of lung function impairment in its 

definition. The most recent world congress has suggested classification system in 

efforts to standardise therapeutic trials and also to address the issue of what 

represents comorbid lung disease or group 3 disease (253). A level of mPAP 

≥35mmHg is suggested to define severe PH in lung disease.   

Cuttica et al reported <1% of COPD patients listed for transplant had a mPAP 

>35mmHg at RHC (207). Severe PH was found in 5% of emphysema patients from 

the NETT trial (254), although this is probably an underestimate as severe PH was 

one of the exclusion criteria for the study.  In the studies from France, Thabut et 

al found 13.5% of patients with advanced COPD had severe PH (206), whilst Chaout 

et al reported a prevalence of 5.8% with mPAP >35mmHg and 2.7% mPAP >40mmHg 

(208). The majority however had an alternate cause for PH. In the remaining 1.1%, 

clinically these patients displayed less severe airflow obstruction but more severe 

hypoxaemia, hypocapnia and grossly impaired DLCO. Those with a mPAP >40mmHg 

had worse survival than both those with no PH (mPAP <20mmHg) and those with 

mild-moderate PH (mPAP 20-40mmHg). 

Data on the prevalence of severe PH in IPF studies is limited. Shorr et al reported 

9% of IPF patients had an mPAP>40mmHg (219). Letteri et al whilst not specifically 

reporting on frequency of severe PH, found mPAP ranging up to 46mmHg in the 

cohort with a linear correlation between mPAP and outcome, suggesting greater 

risk of mortality in those with severe PH similar to COPD patients (220). Severe 

PH associated with CPFE is thought to be relatively more common, reported in 68% 

at RHC and 72% by echocardiogram in two small case series (227, 228). 

Severe PH associated with lung disease whilst rare, is therefore a disease with 

severe morbidity and mortality, with some features, such as relative preservation 

of lung function, greater degree of RV dysfunction and haemodynamic 

compromise, that have generated interest in the potential for use of pulmonary 

vasodilator therapies. 

1.2.3.4 Treatment 

Unlike PAH, there are no studies to support the use of pulmonary vasodilator 

therapy in patients with hypoxic lung disease PH. Clinical studies examining the 
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effect of PAH therapies in group 3 disease have however been in small population 

sizes, with poorly defined levels of PH often using echocardiography alone to 

diagnose PH or using mixed populations of lung disease patients with and without 

PH. Management therefore focuses on treating the underlying lung disease, 

excluding an additional aetiology for the PH such as thromboembolic disease and 

consideration of lung transplantation. In COPD, in addition to improving mortality 

LTOT has been demonstrated to stabilise or even slightly improve mPAP. In the 

MRC trial, at 5 years mPAP increased by 2.7mmHg/year in the no oxygen group 

whilst remained unchanged in the oxygen therapy group (255). In the NOTT study, 

mortality was 11.9% in the continuous oxygen group versus 20.6% in the nocturnal 

oxygen group at 1 year (256). In the 117 patients whom underwent haemodynamic 

evaluation at 6 months, mPAP showed a slight rise in the nocturnal oxygen group 

whereas an average decrease of 3 mmHg/year was seen in the continuous therapy 

group. PVR also fell by 11.1% in the continuous oxygen group and rose by 6.5% in 

the nocturnal oxygen patients. Smaller studies have also shown fall in mPAP of 

2.1mmHg per year after initiation of oxygen therapy and long term stabilisation 

of PH in COPD patients receiving LTOT (257, 258). In severe PH with lung disease 

however results are less encouraging. In the NOTT study, those patients with high 

PVR did not demonstrate a survival benefit with continuous oxygen therapy 

whereas low PVR patients did. Additionally autopsy studies show no significant 

difference in structural pulmonary vascular remodelling in those receiving LTOT 

and those not (259). Therefore it would seem that LTOT has the potential to 

stabilise pulmonary haemodynamics, but does not lead to a normalisation of 

haemodynamics or reversal of vascular remodelling. In ILD, there is limited data 

on the use of LTOT and similar benefit has therefore not been demonstrated. The 

use of LTOT is recommended to maintain arterial saturations above 90% as HPV is 

known to play a role in the pathogenesis. 
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1.2.4 The right ventricle in pulmonary hypertension 

Right ventricular failure is the major cause of death in patients with PAH, and it 

is increasingly recognised that both survival and functional status relate to the 

ability of the RV to adapt to the increasing levels of afterload that occur as the 

disease progresses. As a result of sustained elevation in PVR and reduction in 

compliance of the pulmonary circulation that slowly develops in PAH, the RV 

initially undergoes homeometric adaptation characterised by concentric 

remodelling and preservation of systolic and diastolic function. Eventually as the 

disease progresses, the RV cannot maintain adaptive hypertrophy to match its 

afterload, and RV dilates in an effort to maintain SV and maladaptive remodelling 

associated with eccentric hypertrophy and impaired function occurs (260). At this 

point there is no further increase in contractility, or even a decrease may occur 

despite continued elevation in load, and “uncoupling” of the RV from the 

pulmonary circulation. RV dilatation increases wall tension which in turn increases 

myocardial oxygen demand whilst decreasing RV perfusion leading to ongoing 

cycle of further compromised RV contractility and dilatation. Additionally, due to 

ventricular interaction, RV enlargement decreases LV filling due to pericardial 

constraint, which further decreases SV and therefore systemic blood pressure, 

which may add to RV ischaemia from reduced coronary perfusion pressure. 

Prolongation of RV contraction occurs as RV function declines, with resultant 

ventricular asynchrony. The RV free wall continues to contract whilst the LV has 

already relaxed in its early diastolic phase, leading to left ward septal bowing 

which further impairs LV filling (261). This, together with systolic and diastolic RV 

dysfunction and fall in RV SV culminate in the marked fall in CO seen in severe 

PAH. Chronic neurohormonal activation (adrenergic and angiotensin pathways), 

oxidative stress, immune activation and cardiomyocyte apoptosis have also been 

implicated in the progression of RV failure and deterioration in contractility in 

PAH (262-264). Increases in RV volumes leads to functional tricuspid regurgitation 

as a result of annular dilatation which in turn causes RV volume overload, and 

further RV remodelling and annular dilatation. Therefore, once the onset of RV 

functional decline is initiated, a cycle of events is triggered which spirals towards 

RV failure. In comparison to the LV, ventricular enlargement occurs earlier in PAH 

then in the pressure overloaded LV as a result of greater wall stress experienced 

by the thin walled RV. However, significantly less fibrosis occurs often limited to 

the RV septal insertion points and constitutes <10% of the ventricular volume (265, 
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266). This explains why patients whom undergo lung transplantation restore RV 

function despite severe RV impairment prior to transplantation (267, 268).  

 

1.2.5 Monitoring and prognosis in pulmonary hypertension 

Although remodelling of the pulmonary circulation is the cause of PAH, symptom 

severity and survival have been shown to relate to RV function. A number of 

prognostic indices have been identified from both large cohorts from National 

registries and smaller imaging modality studies. Most reflect right ventricular 

function, such as right atrial pressure and cardiac index from haemodynamic 

studies (142, 269), or Tei index and tricuspid annular plane systolic excursion 

(TAPSE) from echocardiographic studies (270-272). Traditional prognostic 

measures for evaluating both severity of disease and treatment response however 

have a number of limitations reflecting the complexity of the geometry of the RV 

with the use of non-invasive tools.  

1.2.5.1 Echocardiography 

Echocardiography, being cheap, portable and widely available is readily employed 

to assess RV function and its use as a prognostic tool in PH has been extensively 

studied. There are however a number of important limitations. The complex 

anatomy of the RV means that accurate measurement of size and volume using 2D 

imaging modality is difficult, and measurements that rely on geometric 

assumptions can be complicated to adopt for RV evaluation by echo. The 

technique is highly operator dependent and hampered by poor acoustic windows 

due to body habitus or in some clinical conditions such as emphysema. 

Inaccuracies and variability may arise from other factors such as patient or probe 

position, image quality or phase of respiration. There is a lack of standardised 

models for calculation of RV volumes and function. Additional, when using echo 

as a monitoring tool, as progressive RV dilatation occurs changes in heart position 

and orientation can be seen that could influence serial measurements (273). 

The most reported prognostic echo parameter of RV function associated with 

mortality is the presence of pericardial effusion. Increased right atrial pressure 

impairs venous and lymphatic drainage of the myocardial and presence of 

pericardial effusion is therefore a reflection of RV dysfunction. Pericardial 
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effusion has been reported in 54% of severe IPAH cases, with larger effusion 

associated with RHF, impaired exercise tolerance and poor 1 year survival (274). 

In prospective study, presence of pericardial effusion was the strongest predictor 

of mortality (270) which has been confirmed by recent data from the REVEAL 

registry (144). However, the studies give no diagnostic criteria and therefore what 

size of pericardial effusion should be considered significant needs further study. 

TAPSE is a measure of the longitudinal movement of the lateral tricuspid annulus 

towards the RV apex and is used to reflect RV systolic function. In the normal RV, 

longitudinal shortening accounts for the greater proportion of RV volume change 

during ejection. TAPSE has been shown to correlate with RVEF (275). In PAH TAPSE 

<1.8cm shown to be associated with RV dysfunction and reduced survival (272). 

TAPSE is influenced by coexistent LV dysfunction (276) and its relationship to RV 

function is less accurate in those with significant tricuspid regurgitation (277). 

The myocardial performance or Tei index is an echocardiography derived measure 

of global RV function (271). It has been shown to have prognostic significance in 

PAH (278), however is influenced by volume loading of the patient, is less reliable 

during tachycardia and interpretation is highly operator dependent. Other echo 

parameters known to have prognostic significance in PH include greater RV 

diameter (279), eccentricity index (270) and right ventricular dysynchrony (280). 

Some RCTs of PH targeted therapies have reported changes in echocardiography 

derived indices in small subsets of patients. Chronic epoprostenol therapy 

improved RV end diastolic area, left ventricular eccentricity index and maximum 

tricuspid regurgitant velocity (281). Bosentan improved ratio of RV to LV end-

diastolic area, left ventricular eccentricity index, Tei index, RV ejection time, SV 

and severity of pericardial effusion in 56 PAH patients after 16 weeks of therapy 

(282). 

1.2.5.2 Right heart Catheterisation 

As previously discussed in section 1.2.2.2 RHC is the gold standard for diagnosis of 

PH. Haemodynamic studies have identified RAP, SVO2, CO and CI, all indices 

reflecting RV function, to be significant predictors of survival (142, 144, 269, 283). 

In addition, mPAP at diagnosis was predictive of survival in the IPAH cohort from 
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the NIH registry in patients before the availability of PAH specific therapies. 

However, as mPAP is a product of both PVR and RV function, rise in mPAP is 

subsequently followed by fall in late disease as the RV fails, and therefore 

relationship between mPAP and survival is lost. It has been demonstrated that RV 

power is distributed approximately 77% for steady state resistance (PVR) and 23% 

pulsatile component (compliance SV/PP) (284). It is known that resistance and 

compliance are inversely related to each other in the pulmonary circulation, and 

therefore in early disease large decreases in compliance are seen for small 

increases in PVR. It is not therefore surprising that measurements of compliance 

at RHC, SV/PP, in patients with IPAH is an independent predictor of mortality 

(285). 

Current management guidelines recommend repeat haemodynamic measurements 

at 3-4 months following addition of new PAH therapy, or at times of clinical 

worsening. Improved survival has been reported in patients with fall in total 

pulmonary vascular resistance of at least 30% (286), or improved CI and mPAP 

(287). However, recent study has shown continued progression in RV failure and 

worse survival in this subset despite improvement in PVR at RHC (288). 

Additionally, RHC is invasive and needs to be performed in centres with 

appropriate expertise. RHC is associated with small risk of morbidity such as 

pneumothorax or cardiac arrhythmia and mortality. A multicentre review of over 

7000 RHC procedures carried out in experienced PH centres reported serious 

adverse events in 1.1%, and mortality rate of 0.055% (289). It is therefore not 

practical or acceptable to patients as a methodology for regular monitoring of 

disease progression and therapeutic response. Research therefore is driven by the 

need for simple, reproducible noninvasive measures of RV function to improve 

management of patients with PAH and explore optimal therapeutic approach to 

treat both the pulmonary circulation and RV as a unit. 

1.2.5.3 Six minute walk test 

Exercise testing in the form of either a walking test or cardiopulmonary exercise 

test in addition to assessing the patient’s functional capacity can provide a 

measure of RV function due to the relationship between cardiac output, oxygen 

delivery and consumption. The 6MWT is commonly employed as it is easy to 

perform, is the commonly accepted end point for studies evaluating treatment 
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effect in PAH, and has been shown to correlate to peak oxygen pulse (which in 

itself correlates to SV), CO, total pulmonary resistance and to fall in proportion 

to worsening FC (290). Absolute 6MWD has been demonstrated to be a strong 

prognostic variable both at diagnosis and whilst on therapy. At baseline, 6MWD 

less than 332m, or <250m with associated drop in oxygen saturations of >10% have 

been shown to predict poor survival (286, 290). Improvement in absolute 6MWD to 

>380m after 3 months of therapy has been shown to confer improved survival. 

However, change in 6MWD does not seem to predict survival benefit, and what 

constitutes a relevant change in order to confer survival advantage is unknown. A 

pooled analysis of 10 placebo controlled drug trials in PAH found that ∆6MWD 

accounted for only 22.1% of the treatment effect and may therefore not be a 

sufficient surrogate end point (291). An average ∆6MWD of 22.4m favouring active 

treatment over placebo was seen across the studies, with a calculated minimum 

of 41.8m corresponding to a significant reduction in clinical events. These studies 

however are confounded by select population for trial entry including a threshold 

minimum distance walked. 

Additionally, 6MWD is influenced by a number of confounders including patient 

motivation, age, weight and comorbidity such as musculoskeletal disease. Recent 

study looking at utility of exercise variables including 6MWT to predict outcome 

in IPAH versus associated PAH found no variable independently predicted survival 

or time to worsening in the associated PAH group, whilst distance walked was of 

significance in those with IPAH (292). Expressing 6MWD as a percent of predicted 

which would take into account confounders such as age and sex confers no 

advantage over absolute distance walked in relation to outcome and therefore 

raises concerns over the reliability of the test as an outcome measure (293). In 

those with IPAH, exercise and respiratory training resulted in mean increase of 

111m in 6MWD compared with controls without any measurable effect on RV 

function (294). Additionally, a ceiling effect may occur whereby in those with 

increasing baseline walk distance treatments that improve haemodynamics and 

symptoms may not translate into further additional significant increment in 

distance walked. This has been demonstrated suggesting reduced sensitivity of the 

6MWD in those PAH patients walking >450m (295). Current guidelines recommend 

treatment goal of achieving 6MWD above 500m, however in practice few patients 
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will achieve this and better indirect measures of RV function for monitoring 

therapeutic response are needed. 

1.2.5.4 NTproBNP 

BNP is secreted by ventricular cardiomyocytes in response to increased stretch as 

a result of an increase in cardiac wall stress and play important roles in regulation 

of blood pressure, volume and sodium homeostasis. The BNP precursor is split into 

biologically active peptide and the more stable N terminal fragment NTproBNP 

(296). Levels of NTproBNP (and BNP) have been shown to reflect severity of RV 

dysfunction with inverse correlations demonstrated with RVEF and cardiac output, 

and correlates with haemodynamics measurements of mPAP, RAP and total 

pulmonary vascular resistance in PAH (297, 298). Changes in levels have been 

shown to parallel haemodynamics and functional status of PAH patients during 

treatment, and relative change in NTproBNP reflects changes in CMR indices of RV 

structure and systolic function. High NTproBNP levels or in particular increasing 

levels during follow up have been shown to be independent predictors of mortality 

(299-301). There are however no validated cut off levels of NTproBNP and its value 

lies in a change in level on an individual patient basis as an indication of a decline 

in RV function but not the extent of deterioration. 

1.3 Cardiac MRI in pulmonary Hypertension 

CMR offers the opportunity of a more comprehensive approach to the non invasive 

assessment of patents with PH, simultaneously evaluating RV status, vascular 

stiffness, pulmonary blood flow and potentially coupling of the RV-PA circuit. 

Quantification of RV volumes or ejection fraction reflects cardiovascular 

adaptation to chronic pressure overload, however investigation of the RV-PA 

circuit as a whole and coupling of RV contractility to arterial load may provide 

insights into the discrepancy seen in progression of RV dysfunction despite 

improvements in PVR with PH therapies. The high accuracy and interstudy 

reproducibility of CMR derived indices of ventricular structure and function have 

demonstrated superiority over 2D echo, although the interstudy reproducibility of 

RV parameters is lower than that of the LV due to the heavy trabeculation seen 

(64). CMR is therefore ideally suited to non invasive serial monitoring of PAH 

patients in assessing treatment response.  
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1.3.1 Ventricular mass, volume and function 

A number of studies in PAH have demonstrated significantly raised RV end diastolic 

(RVEDV) and end systolic (RVESV) volumes, with impaired systolic function 

determined by reduced RVEF, CO and SV in comparison to normal subjects (58, 

302, 303). Figure 1.1 shows transverse and sagittal MRI images of the RV in a 

normal subject in comparison to a patient with IPAH.  

Increasing RVM has been shown to correlate with mPAP (r=0.75) in IPAH (57). RV 

hypertrophy as previously discussed is an adaptive response to the increased 

afterload in PH. It is perhaps not surprisingly that RVM is not a strong predictor of 

mortality however, as RV failure in late disease is more characterised by 

progressive RV dilatation with reduced contractility. Reduced LVEDV and LV peak 

filling rate but similar LVM have been demonstrated by CMR in patients with PH in 

comparison to healthy controls (304). Using tagged MRI, a non invasive technique 

for interrogating 3D motion and deformation of myocardium, demonstrated 

interventricular asynchrony with prolonged RV contraction in comparison to LV 

(261). This asynchrony led to decreased LV diastolic filling, septal bowing and 

reduced LVEDV. A low baseline SV, RV dilatation (increased RVEDVI) and impaired 

LV filling (reduced LVEDVI) measured by CMR independently predicted mortality 

in 64 patients followed up for 32 months (41). RVM did not have a significant 

relationship to mortality. Mauritz et al demonstrated that progressive RV 

functional decline is characterised by both reduction in longitudinal and 

transverse shortening until a plateau is seen in longitudinal shortening (305). 

Further progressive decline in RV function characterised by reduced transverse 

shortening related to increased LVSB was seen in subsequent nonsurvivors at 4 

years. Transverse shortening is therefore a CMR index that can be used to monitor 

RV functional decline in end stage PAH, which is not assessed by TAPSE at 

echocardiogram.  
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Figure 1.8 Cardiac MRI images of a normal subject in comparison to patient with pulmonary 
arterial hypertension.  
 

Panels A and C display transverse and short axis views in a normal subject whilst panels B and D 
show IPAH patient. In Panel B, gross enlargement of right atrium (RA) and ventricle (RV) is seen, 
with compression of left sided chambers (LA, LV). In Panel D, note enlarged RV (a), small underfilled 
D shaped LV (b), septal bowing (c) and pericardial effusion (d). 
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1.3.2 Pulmonary blood flow and vascular stiffness 

As previously discussed in section 1.1.3, phase contrast velocity mapping is a MRI 

sequence that allows measurement of velocity and flow, or interrogation of flow 

profiles, across valves or within blood vessels. It has advantages over 

thermodilution measures of SV or CO as it is both noninvasive, and, as it is 

averaged over a number of cardiac cycles, also less influenced by changes in SV 

between cardiac cycles and when measured at level of aorta or pulmonary artery, 

not affected by TR. Volumetric RVSV tends to overestimate actual SV in presence 

of considerable TR which can occur in PH patients with RV failure as it is impossible 

to determine what proportion of flow moves back through the tricuspid valve in 

preference to ventricular ejection. In PH however, aortic blood flow or LVSV has 

been shown to more accurately reflect actual SV measured at RHC (306). Phase 

contrast MR flow is known to be less accurate in presence of turbulent blood flow 

which occurs in pulmonary artery in PH patients. Figure 1.2 shows cross section 

view through the main pulmonary artery in a patient with IPAH with demonstrable 

turbulent PA flow. For SV determined by PA flow versus invasive SV determined 

by Fick principle, correlation co-efficients were r=0.71 (mean difference -4.2ml, 

limits of agreement 26.8 and -18.3ml) and for RVSV r=0.73, in comparison to SV 

by LV volumes vs Fick, r=0.95 (mean -0.8ml, limits of agreement 8.7 and -10.4ml). 

In the absence of intracardiac shunt, aortic flow or LV volumes is therefore the 

preferred method for assessing stroke volume in PAH. 
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Figure 1.9 Cross sectional image of dilated pulmonary artery in patient with IPAH.  
 

Turbulent blood flow clearly seen in enlarged main pulmonary artery (MPA) in comparison to aorta 
(Ao). 
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CMR has shown reduced peak systolic velocity and greater retrograde flow in 

pulmonary arteries of PAH patients. Retrograde flow was proportional to 

resistance and inversely to flow volume (307). PA flow, peak velocity and 

distensibility were significantly lower in 25 PAH patients in comparison to matched 

controls (308). Strong correlations between average velocity of pulmonary blood 

flow and mPAP and PVRI have been demonstrated (r= -0.86), suggesting a possible 

role in non invasive diagnosis of PAH (309).  

As previously discussed, it has been shown that an inverse curvilinear relationship 

exists between compliance and mPAP, so large changes in compliance occur at 

small increases of mPAP in early PAH. At a level of a mPAP of 40mmHg little 

further decrease in compliance occurs, i.e. vessels become stiff and indistensible 

(310). Increased stiffness (reduced compliance) causes higher RV pulsatile 

workload, decreased contractile performance and enhanced energy transmission 

to smaller vessels increasing vascular damage. Invasive haemodynamic studies in 

patients with PAH have shown that those with lower SV/PP of <0.81 ml/mmHg, 

had a less than 40% 4 year survival compared with 100% 4 year survival in those 

with value above 2 (285). CMR derived relative area change (RAC) of the proximal 

pulmonary artery can be used to approximate compliance of the proximal 

pulmonary circulation. Vessel wall stiffness can be approximated by  

                            Ln (sPAP/dPAP)/(Δ 2A/A)  

where sPAP/dPAP is the pulmonary artery pulse pressure, and A is the area of the 

vessel (311).  

It has been shown that in pulmonary hypertension, sPAP/dPAP is a linear 

relationship through a wide range of PA pressures, implying ratio is constant (11). 

Therefore, ΔA/A (RAC) is inversely proportional to stiffness (and a measure of 

compliance of PA circulation).  

RAC (by CMR) = (max PA area – min PA area)/min PA area *100% (312, 313) 

Gan et al reported a decrease in RAC (20% vs. 58% in controls) in 70 patients with 

PAH, and the same inverse curvilinear relationship between RAC and mPAP was 

demonstrated (314). Both reduced RAC and SV/PP were predictive of increased 
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mortality. RAC has also been demonstrated to correlate with 6MWD (r2 = 0.61) and 

RAC <20% predicted poor functional status (defined as 6MWT <400m) with 

sensitivity and specificity of 82% and 94% respectively (315). Reduction in RAC has 

been proposed as a marker for early pulmonary vascular disease in a recent study 

by Sanz et al (310). 75 patients with PH were compared to 13 patients without 

resting PH but exercise induced rise in PA pressure (EIPH), and 13 normals. In EIPH, 

despite normal PA size, reduced compliance and capacitance was observed. A RAC 

of <40% had a sensitivity of 93% and specificity of 63% for presence of PH.  

Whilst there is evidence that treatment causes a reduction in PVR, it is unknown 

how disease targeted therapies affect compliance and whether this is a useful 

measure of treatment efficacy. Furthermore, in hypoxic lung disease associated 

with pulmonary hypertension, whilst evidence is growing on cardiovascular risk 

and increased peripheral arterial stiffness in COPD (316), whether the use of RAC 

and measures of compliance in this population is of clinical benefit. 

1.3.3 Diagnosing pulmonary hypertension 

At present the utility of CMR in the diagnosis of PH is lacking, with somewhat 

contradictory studies. Correlations between mPAP or sPAP and CMR derived RVM, 

pulmonary blood flow average velocity and septal curvature have been reported 

(317). One study in 26 PAH patients found superiority of calculated ventricular 

mass index, (VMI - ratio of RVM to LVM), over echocardiography estimated mPAP 

(318). Correlations between VMI and mPAP were stronger with narrower CI than 

for echo. Sensitivity and specificity of VMI using >0.6 as a diagnostic threshold 

were 84% and 71% in comparison to 89% and 57% for echo. Laffon et al applied a 

computerised algorithm to estimate mPAP in 31 patients based on MRI indices 

including blood flow velocity and PA cross-sectional area with patient 

characteristic such as height and found strong correlation with RHC values (r=0.92) 

(319). In contrast, poor correlation between mPAP and 5 MRI indices including 

pulmonary artery acceleration time and the Laffon algorithm was shown in a study 

of 44 PAH patients (320). Significant, if weaker, correlation was still seen for VMI 

(r=0.56) but using the previous threshold of VMI >0.6 resulted in missed diagnosis 

in 9 of the 44, and false negative rate of 20%. 
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1.3.4 Monitoring treatment response 

There are few completed studies of PAH therapies that have used CMR indices as 

endpoints despite clear evidence that RV function rather than degree of PAP 

strongly predicts survival. Reverse remodelling and improvements in RV function 

and pulmonary flow has been demonstrated in CMR studies following lung 

transplantation (321, 322) and endarterectomy for treatment of CTEPH (323). 

Substudies of pharmacological RCTs or small, single centre studies in PAH have 

reported on associated changes in CMR indices. In a small study of 5 patients, 3 

months of Sildenafil decreased RVM, improved RVSV and reversed IVS shift (324). 

In another blinded RCT, sildenafil but not Bosentan lead to a reduction in RVM 

despite similar decreases in PAP, suggestion the possibility of a direct effect on 

the RV by Sildenafil (325). Two studies using the ETRAs Bosentan and Ambrisentan 

in PAH found no improvement in RV ejection fraction, or volumes at 12 months 

(326, 327). CMR was used to assess response to Epoprostenol in 11 IPAH patients 

treated for 1 year. RVSV increased from 34±11 ml to 41±11 ml, p<0.05 with no 

change in RV mass or volumes (302). Change in RVSV related to improvement in 

6MWT suggesting this resulted in functional improvement, a correlation which has 

not been demonstrated with invasive haemodynamic parameters. In 18 systemic 

sclerosis patients treated with Bosentan, CMR has been utilised to demonstrate 

improvement in myocardial perfusion, although these patients did not have PH 

(328). Finally, Van Wolferen et al demonstrated the addition of Sildenafil to 

Bosentan therapy resulted in significant increase in RVEF and CI in comparison to 

baseline in 15 PAH patients (329). 

Increasing RVEDVI or a further decrease in SV or LVEDV at 1 year of follow-up were 

the strongest predictors of mortality and treatment failure in longitudinal CMR 

study in 54 patients with IPAH (41). Significant increases in RVEF, SVI, CI and 

LVEDVI and improvement in RVEDVI were demonstrated at 1 year. Change in RVM 

has not been shown to have prognostic significance, presumably as a result of the 

ambiguous nature of an increase in mass, which could arise as both a consequence 

of concentric hypertrophy representing successful adaptation to afterload or 

eccentric hypertrophy that occurs with RV failure and dilatation. In comparison 

with follow up haemodynamic data at right heart catheterisation, recent study 

has shown that despite haemodynamic improvements with treatment in PVR and 

CI, and stability of 6MWD at 1 year, progressive right ventricular dysfunction was 
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demonstrated by CMR, and the deterioration of RV function was associated with 

poorer outcome regardless of the change in PVR (288). Change in RVEF was 

associated with survival, but change in PVR was not. Therefore it would seem 

reasonable to propose that CMR is a better tool for follow up and monitoring of 

patients with PAH. 

Van wolferen et al have determined by correlation of SV with 6MWD during therapy 

that a > 10ml change in stroke volume is of clinical relevance in PAH (330). This 

could be potential endpoint for future studies in PAH. 

1.4 Thesis outline 

It is apparent that although PAH specific therapy improves PVR, this does not 

necessarily translate into improvements in functional status and mortality unless 

accompanied by a parallel improvement in RV function. In a recent meta analysis 

of studies undertaken to evaluate PAH therapies, treatment was associated with 

a reduction in PVR mediated by reduction in mPAP and increase in SV, but without 

improved contractility, suggesting current therapies have vasodilating effects with 

limited cardiac specific effect (331). Studies have demonstrated that despite a 

reduction in PVR with therapy, progressive RV dysfunction continues. Reduction 

in PVR as a result of PAH therapy in severe PH leads to an increase in CO without 

appreciable change in mPAP and therefore unchanged RV power output which 

perhaps explains this continued spiral of deterioration. This highlights the need to 

evaluate the RV-PA circuit as a whole and CMR offers the unique opportunity to 

study this. RV systolic function traditionally has been evaluated by RVEF, however 

this is preload dependent and gold standard evaluation of RV contractility from 

derived PV loops is invasive, time consuming and not suitable to serial monitoring 

of patients. SV/ESV is a volumetric measure of RV coupling that can be easily 

determined by CMR and is a less preload dependent measure of RV systolic 

function. It is unknown whether this has superior prognostic significance in PAH 

over traditional methods of assessing RV function, and how PH specific therapies 

alter it.  

Whilst response to PH specific therapy in PAH and relationship to prognosis has 

been extensively studied by both functional and biomarker outcomes in addition 

to CMR indices of RV function, there is limited data on treatment of severe PH 
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associated with lung disease where the pathophysiology, whilst sharing some 

common mechanisms described earlier in this chapter, is different. The prognostic 

significance of CMR indices of pulmonary vascular stiffness, RV function and 

coupling to the pulmonary circulation in the latter and its comparison to those 

with PH “in proportion” to lung disease may provide mechanistic insights as to 

why a small subgroup develop severe PH and whether they would benefit from PH 

therapies. 

The aim of this thesis was the explore the utility of CMR to interrogate RV function, 

vascular stiffness and RV-arterial coupling by SV/ESV in patients with PAH and 

contrast this to patients with PH associated with lung disease in whom the 

pathophysiology is different. The thesis is therefore divided into three separate 

but complementary studies described in chapters 3, 4 and 5. 

In chapter 3, I aim to describe the right ventricular characteristics of patients with 

severe PH associated with lung disease in comparison to IPAH (where utility of 

common metrics of RV dysfunction is already established) and PH “in proportion” 

to lung disease, and how CMR may be employed to detect PH, determine prognosis 

and response to PH therapies. 

In chapter 4 I aim to compare invasive and CMR estimates of RV-arterial coupling 

in PAH in comparison to normal subjects and PH associated with lung disease. In 

addition, to determine if CMR estimates of RV-arterial coupling is a superior 

prognostic variable in comparison to commonly implemented metrics of RV 

function in PAH such as RV ejection fraction. 

Finally, in chapter 5 I aim to assess the impact of PAH therapies on RV-arterial 

coupling assessed by CMR, in comparison to other indices of RV function and 

clinical endpoints (such as 6MWD or NTproBNP) and relate this change to survival, 

to determine the optimal method for monitoring the right ventricle in patients 

undergoing PAH therapy. 



99 
 

Chapter 2 - Materials and Methods 
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2.1 Patient recruitment 

The patients involved in the studies for this thesis were retrospectively identified 

and included following inpatient diagnostic assessment for the evaluation of 

clinically suspected PH between January 2000 and March 2014 at the Scottish 

Pulmonary Vascular Unit, Glasgow. In total, 325 patients were included across the 

3 studies, 206 underwent CMR and RV pressures traces were available for analysis 

in 125. A flow chart describing patients included in the studies is shown in figure 

2.1. Inclusion criteria thus compromised a diagnosis of PH of either group 1 or 3 

disease after diagnostic assessment according to ESC guidelines. All were incident 

cases and treatment naive. A control group without PH (defined as mPAP 

<25mmHg) whom had undergone diagnostic assessment due to the suspicion of PH 

were also included. Additional specific exclusion criteria were applied for each 

study. These will be discussed in the relevant chapter and a demographic 

description of each study population will be shown. For all studies identical CMR 

exclusion criteria applied. These include ferrous implant such as cardiac 

pacemaker, pregnancy, claustrophobia or tolerability relating to breathlessness. 
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Figure 2.1 Flow chart describing study population for each chapter. 
 

Patients included in Chapter 3 indicated by blue, Chapter 4 in green and Chapter 5 in red. Specific 
inclusion and exclusion criteria will be discussed in methods of each chapter. 

In Chapter 3 clinical characteristics, survival and treatment outcomes of 81 IPAH patients will be 
compared to 124 severe PH/lung disease patients. RV characteristics of 30 mild/mod PH and 12 no 
PH lung disease patients included for comparison. 

In Chapter 4, RV-arterial coupling values will be estimated by invasive pressure and non invasive 
volume methods for 30 IPAH patients, 31 APAH, 42 hypoxic lung disease PH (30 with severe PH) 
and 22 subjects without PH (8 with lung disease).  

In Chapter 5, 52 PAH patients with serial CMR included to examine change in RV function and RV-
arterial coupling with PH therapy. 
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2.1.1 Diagnostic assessment 

During 4 day admission all patients underwent a series of investigations following 

standard diagnostic algorithm for PH (332). These included blood investigations, 

including HIV serology, thyroid function, connective tissue serology and NTproBNP, 

lung function and 6MWT, transthoracic echocardiogram, arterial blood gases and 

CT imaging of thorax. CMR and right heart catheterisation were carried out within 

72 hours. 

Right heart catheterisation was performed using a 7F triple-channel 

thermodilution Swan Ganz catheter (Baxter Healthcare, Irvine, California, USA). 

All measurements were recorded with the patient in a supine position, at rest, 

breathing room air or with supplementary oxygen to obtain peripheral saturations 

above 90%. Measurements carried out included mean right atrial pressure (RAP), 

right ventricular pressure and systolic, mean and diastolic pulmonary artery 

pressures (PAP) and pulmonary artery wedge pressure. Cardiac output (CO) was 

determined by thermodilution, allowing the determination of pulmonary vascular 

resistance (PVR) by the following: (mPAP – PAWP)/CO. Cardiac index was 

determined as CO/body surface area and compliance as SV/ (sPAP-dPAP). Mixed 

venous oxygen saturations were determined from a sample drawn from the 

pulmonary outflow tract. 

2.2 Cardiovascular Magnetic Resonance imaging 

CMR was performed as part of patient’s routine diagnostic assessment. Follow up 

scans were performed as part of two longitudinal studies approved by the West 

Glasgow Hospitals University NHS Trust (as part of EURO-MR project) and West of 

Scotland REC 4 ethics committee, to which patients gave written consent. All 

scans were performed on a 1.5 T MRI scanner (Sonata Magnetum, Siemens, 

Germany) using a previously described protocol (304). Fast cine imaging with SSFP 

sequences (TrueFISP Siemens) was used for functional imaging. Initial scout 

images (shown in Figure 2.2) were obtained to localise the heart within the thorax 

and plan subsequent cine images. All cines were acquired during a breath hold 

typically lasting 5-8s. Total scan time was approximately 40-50 minutes. 



 

 

Figure 2.2. Initial localiser images in the planning of stack of short axis cines. 
 

The white lines indicate the projection lines to plan the next step in localising. [a] Sagittal view of RV outflow tract. Planning for cross section of PA shown. [b] Coronal 
view, [c] transverse view, [d] vertical long axis view, and [e] short axis view. The line on the coronal view defines the transverse view, and similarly progression to next 
views are displayed. 
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Horizontal long axis (HLA) cines were then planned and acquired using these scout 

images. A series of short axis “stack” of images was then obtained from the HLA 

view from the base of the atrioventricular valve to the cardiac apex covering both 

ventricles with 8-mm SA imaging slices, separated by a 2-mm inter-slice gap as 

shown in Figure 2.3. Imaging parameters were standardised for all subjects, 

TR/TE/flip angle/voxel size/FOV = 3.14ms/1.6ms/60⁰/2.2 x 1.3 x 8.0 mm/340mm. 

 

 

 

 

 

Figure 2.3. Horizontal long axis view (HLA) acquired in a patient with PH 
 

Note the dilated RA and RV with regurgitant flow visible in the RA. The solid white line denotes the 
planned first short axis image intersecting base of the atrioventricular valve. Subsequent dashed 
white lines indicate the propagation of the SA imaging plane towards the apex at 2mm intervals to 
create a stack of images through both ventricles. 
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2.2.1 Volumes and mass 

All CMR images were analysed using Argus analysis software (Siemens, Germany). 

Right and left ventricular volumes and mass were determined by manual 

delineation of endocardial and epicardial borders of end diastolic and end systolic 

images at each slice position on the short axis cines. This method of manual 

planimetry has been well described previously and is regarded as standard method 

for analysis of ventricular volumes and mass. An example of an analysed series of 

images is shown in figure 2.4. By multiplying the individual slice areas by slice 

thickness (8 mm) plus the inter-slice gap (2mm) and applying Simpson’s rule, the 

software calculates ventricular end diastolic and end systolic volumes (RVEDV, 

RVESV, LVEDV and LVESV). Stroke volumes (RVSV & LVSV) are also calculated by 

EDV-ESV. Right and left ventricular mass (RVM and LVM) were determined as the 

product of myocardial volume for each ventricle and the quoted density of cardiac 

muscle (1.05 g/cm3). RV mass was determined as RV free wall mass, while the 

Interventricular Septum (IVS) considered part of the LV in accordance with 

accepted practice (47). For the purpose of this analysis, trabeculations were 

considered part of ventricular volume. All indices of mass and volume were 

indexed to the patients’ body surface area (BSA) and when considered for survival 

analysis adjusted for patient age. 

Imaging was reviewed during acquisition for artefacts described in Section 1.1.3.3 

and adjustments made where possible to rectify, such as patient coaching for 

breath-holding or end inspiratory breath-holds in presence of motion artefact, 

arrhythmia rejection software in presence of image blurring due to arrhythmia, 

alteration of FOV if wrap artefact interfered with region of interest or alteration 

of VENC settings in phase velocity map sequences if aliasing noted. Scans were 

abandoned if patients were unable to breath-hold or in presence of significant 

arrhythmia, or converted to real-time acquisition if CMR imaging was of clinical 

benefit. At time of functional analysis, scans were excluded if real-time sequences 

were used, or if image quality was poor with blurring of myocardial borders.  
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Figure 2.4. An example of planimetry analysis of right and left ventricular volumes and mass 
in a PH patient. 
 

Note the dilated thin walled RV in comparison to the LV. Each row of short axis images represents a 
loop of cine images acquired during one cardiac cycle at consecutive slice positions, beginning at 
the base of the heart, moving apically to cover both ventricles. The first images within each row (or 
slice position) are the end-diastolic images (indicated by the yellow ED at the top of the left-hand 
column) [A] shows one enlarged end diastolic image with endocardial borders delineated in red and 
epicardial in green. [B] indicates the end systolic image at the same slice position with endocardial 
borders shown.  
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2.2.2 Function 

Ejection fraction (RVEF and LVEF) was determined as a percentage (%) using this 

planimetry derived stroke volume measurement. RVEF = RVSV/RVEDV x100 and 

LVEF as LVSV/LVEDV x100. 

2.2.3 Flow mapping 

As described in section 1.1.3.2.2, two Image acquisitions was prescribed 

perpendicular to flow direction through the great vessels (MPA and aorta) with 

image plane just distal to valve leaflet tips. Direction of flow was set (R-L, F-H) 

to determine forward velocity from ejecting heart. Appropriate VENC was set, 

typically 100 - 120 cm/s for MPA and ~150cm/s Aorta with adjustment for 

aliasing/valvular pathology. Image acquisition performed during free breathing. A 

region of interest (ROI) was drawn around the interior surface of the target vessel, 

either cross section of aorta or pulmonary artery, on the first anatomical image. 

This ROI was propagated throughout the anatomical images using a semi-

automatic function within the Argus software. These were then checked visually 

and modified within Argus to approximate the interior surface of the target vessel 

throughout the cardiac cycle. These modifications were then copied onto the 

corresponding velocity images. A second, reference, ROI was then drawn within 

the soft tissue of the chest wall as close as possible to the target vessel and 

propagated throughout the cycle. This was applied for phase correction, to correct 

for background movement of the thoracic contents through the imaging plane 

during respiration. An example of flow map analysis is shown in figure 2.5. 
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Figure 2.5. Magnetic resonance phase contrast flow quantification. 
 

[A] Anatomy image of main pulmonary artery with ROI drawn around the interior surface of the 
vessel. [B] corresponding velocity encoded image. Pulmonary flow images denoted in red and 
aortic in green. 
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 Six SV results were therefore obtained by CMR for each patient, RVSV and LVSV 

from planimetry, and Aortic SV (AoSV) and pulmonary artery SV (PaSV) both with 

and without phase correction. It has previously been shown that in PH, LVSV and 

AoSV (the latter with phase correction) is a more accurate reflection of invasively 

determined SV at RHC than right sided SV (306). This relates to difficulties in 

delineation of endocardial contours in the heavily trabeculated RV, and turbulent 

flow observed in the PA of PAH patients with reverse flow occurring during RV 

ejection. An initial analysis was performed correlating the 6 SV determined by 

CMR with invasive thermodilution determined SV in 134 patients. In our centre 

thermodilution CO is employed whereas most regard Fick method as the gold 

standard invasive measure of CO. This however requires simultaneous arterial 

sampling of Pa02 with an arterial line. The correlations shown here are therefore 

with thermodilution CO, whilst previous published data by Mauritz et al employed 

Fick CO. The use of phase correction resulted in poorer correlations, presumably 

as this is not a true phantom (i.e. motionless) as used in CMR theory where 

stationary objects were used for phase correction. AoSV and LVSV demonstrated 

superiority over RVSV and PaSV. Correlations are shown in figures 2.6 – 2.8. AoSVI 

therefore will be quoted throughout (without phase correction) for SVI. RVEF 

however is generated by the use of RVSV and in order to directly compare the 

superiority of SV/ESV as a measure of systolic function in PH, RVSV will be applied 

in this calculation. 

CMR derived measures of vascular stiffness was determined by the relative area 

change (RAC) of the cross sectional area of both the PA and proximal Aorta. RAC 

was calculated as the difference between maximum and minimum vessel area / 

minimum area and multiplied by 100% (312, 313). 
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Figure 2.6 Correlation of invasive measured stroke volume with cardiac MRI values 
determined by ventricular planimetry. 
 

Stroke volumes determine by left and right ventricular planimetry (LVSVI and RVSVI). Panels a & c 
display correlations between CMR measured and invasive stroke volume index and Panels b & d 
Bland-Altman analysis of difference versus mean (limits of agreement indicated by dashed line and 
mean difference by solid line). Correlation of LVSVI with invasive SVI was superior to RVSVI, r2 = 
0.51, p<0.0001 and r2 = 0.15, p = 0.004 respectively. 
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Figure 2.7 Correlation on invasive Stroke volume with CMR stroke volume determined by 
Aortic flow mapping 
 

Stroke volume determined by flow mapping of the proximal aorta (AoSVI) without (panel a) and with 
(panel c) phase correction shown. Panels b & d Bland-Altman analysis of difference versus mean 
(limits of agreement indicated by dashed line and mean difference by solid line). 

Correlation with invasive SVI for AoSVI without and with phase correction was r2 = 0.71 and r2 = 0.61 
respectively, both p<0.0001. Closest agreement between AoSVI without phase correction and 
invasive SVI was determined. 
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Figure 2.8 Correlation of invasive stroke volume with CMR stroke volume determined by 
Pulmonary artery flow mapping. 
 

Stroke volume determined by flow mapping of the main pulmonary artery (PaSVI) without (panel a) 
and with (panel c) phase correction shown. Panels b & d Bland-Altman analysis of difference 
versus mean (limits of agreement indicated by dashed line and mean difference by solid line). 

Correlation of both methods with invasive SVI similar, r2 = 0.57 and r2= 0.54 without and with phase 
correction respectively, both p<0.0001.
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2.3 Statistical Analysis 

Statistical analysis was performed using SPSS 21 (SPSS Inc, Chicago, IL) and 

Graphpad Prism Version 5.00 (Graphpad Software, California, USA). Continuous 

variables were tested for normality using D’Agostino and Pearson omnibus 

normality test. Normally distributed variables are shown as mean ± standard 

deviation and non-normally distributed variables as median (IQR). Categorical 

variables are described by percentages (number) unless otherwise stated. 

Comparison of characteristics was made using unpaired t-test or Mann-Whitney U 

test depending on data distribution. Comparison of several groups was performed 

using ANOVA or Kruskal-Wallis test with post hoc analysis using Tukey’s or Dunn’s 

multiple comparison test. Comparison between baseline and follow up 

investigations was made by paired t-test or Wilcoxon signed rank test. Comparison 

between categorical variables was made using X2. 

Survival was from date of diagnostic right heart catheter and endpoint as either 

date of death, lung transplantation or censoring. Patients were censored if they 

were lost to follow up or alive at last day of study (05/08/2014). All cause 

mortality was used for survival analysis. Survival predictors were determined using 

Cox proportional hazards regression analysis. Variables with a p-value ≤0.2 were 

considered for multivariate analysis. Indicator variable coding for missing data was 

used for multivariate analysis. A P value <0.05 was considered statistically 

significant throughout.
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Chapter 3 - Right ventricular dysfunction and 

response to PH specific therapy in severe 

pulmonary hypertension associated with lung 

disease 
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3.1 Introduction 

As discussed in chapter one mild to moderate PH is relatively common in patients 

with hypoxic lung disease although the prevalence varies depending on the 

aetiology and severity of the underlying lung disease (204, 207, 219, 220). 

Hypoxaemia has been shown in clinical studies to be the major determinant in the 

development of PH, with patients with relatively normal Pa02 rarely displaying 

pulmonary hypertension at rest even in the presence of severe ventilatory 

impairment (333, 334). Severe PH, defined by a mPAP ≥ 35mmHg, in contrast is 

rare, occurring in 5 -13% of patients and is characterised by relatively preserved 

lung function, gross hypoxaemia and impaired DLCO, and greater RV dysfunction 

(206, 208). The level of PH has therefore often been described in the literature as 

“disproportionate”. Regardless, the development of PH is associated with poor 

prognosis (208, 223, 335), greater functional limitation with little or no 

therapeutic options. 

In contrast to patients with group I PAH where large increases in PVR and right 

ventricular dysfunction is observed, PH associated with COPD is usually mild to 

moderate and right ventricular function and cardiac output are usually in the 

normal range (243). COPD patients with moderate to severe disease but without 

hypoxaemia have been shown to have preserved RV systolic function at rest. In a 

small study of 25 COPD patients with FEV1 41±15%  but a Pa02 10.9 ±1.3KPa, RVEF 

was 53±12% in comparison to 53±7% in normal controls (336). During acute 

exacerbations with evidence of peripheral oedema, decreased RV contractility has 

been demonstrated but only in these circumstances (337). In contrast, in 158 

patients undergoing lung transplantation evaluation, RV dysfunction was present 

in 59%, and in 120 patients with severe emphysema, mean RVEF was reduced at 

34±8% (204, 205) suggesting a greater degree of RV dysfunction in those with end 

stage disease. In the latter study, mPAP and Pa02 were shown to predict RVEF, but 

only explained 13% of the variance, which is perhaps not surprising as RVEF is 

product of complex interaction between preload, afterload and contractility 

which were not evaluated.  
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3.1.1 Prognosis 

The prognostic implications of the presence of PH highlights the clinical 

importance of detection. However, echocardiography, the accepted screening 

tool for PH in the general population has been shown to be less accurate in those 

with lung disease. The accuracy of echocardiography estimated PAP was compared 

to RHC measurement in 374 patients undergoing evaluation for lung 

transplantation, the majority of whom had COPD (199). PH was present in 25% of 

the population, 18% of those with obstructive lung disease and 59% of those with 

ILD. It was not possible to estimate sPAP by echo in 56% of subjects. In 52% of 

cases estimated sPAP was inaccurate (varied by >10mmHg), 48% were misclassified 

as having PH by echo and 13% were missed. The sensitivity and specificity of 

echocardiography for the presence of PH in this population was therefore 85% and 

55% respectively, demonstrating the need for better non invasive screening tools 

in lung disease patients. 

3.1.2 Therapy 

Long term oxygen therapy (LTOT) has been demonstrated to stabilise or decrease 

mPAP in COPD with mild to moderate PH (256-258). However, in those with severe 

PH results are less encouraging (257, 338). The role of PH specific medication in 

those with severe PH is uncertain. Features such as greater haemodynamic 

compromise and RV dysfunction in this subgroup may suggest a role for PH specific 

therapy. Studies to date have been of small sample size, used echocardiography 

to diagnose PH and included those with both mild and severe or even no PH (339-

342). Acute vasodilator studies in COPD patients have raised the possibility of 

worsening hypoxaemia. Blanco et al administered Sildenafil, a PDE-5i to 20 

patients with severe or very severe COPD, 17 of whom had PH at rest with an 

average mPAP of 27 mmHg (range 21 -61 mmHg) at RHC (343). Whilst a fall in 

mPAP was demonstrated, CO was unchanged and increased hypoxaemia occurred 

from increase in VQ mismatch. Acute inhalation of nebulised iloprost in 16 PH-

COPD patients also demonstrated worsening hypoxaemia, although 6 of the 16 had 

PCWP >15mmHg at rest indicating pulmonary venous disease and potential of 

pulmonary oedema as an explanation for increased hypoxaemia (344). Alp et al 

demonstrated a 42% fall in PVR at 1 hour after IV Sildenafil administrated in 6 

patients with severe COPD and PH, and fall in mPAP from 30mmHg to 22mmHg 
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(p<0.001) (345). These studies suggest that PH even when mild in COPD is 

vasoresponsive, however how these haemodynamic effects translate into 

functional or symptomatic benefit is less clear, particularly given concerns 

regarding possible worsening of VQ mismatch in those already compromised by 

chronic lung disease.  

Several studies in COPD with either only a mild elevation in PAP or without PH 

suggest no role for vasodilator therapy with no change in quality of life scores or 

6MWD and varying effects on haemodynamics and oxygenation. Patients with 

COPD have been shown to have impaired resting stroke volume and blunted SV 

response to exercise, with evidence of RV dysfunction and disproportionate rise 

in PAP on exercise (346, 347). In a small study of 18 patients with COPD, 5 with 

PH at rest and 6 with exercise induced PH, Sildenafil administration resulted in 

attenuation of exercise related increase in PAP (348). Rietema et al showed no 

improvement in SV response after sildenafil administration in 15 COPD patients 

(9/15 had PH, average mPAP 22 mmHg) (340). Bosentan therapy for 3 months led 

to no improvement in 6MWD or sPAP but demonstrated a drop in arterial oxygen 

pressure when given to 20 patients with severe and moderate PH (echocardiogram 

estimated sPAP 32 mmHg) (342). In a larger study of 63 patients with severe COPD 

and modest PH on echocardiogram (sPAP 42 ± 10 mmHg) Sildenafil therapy 

resulted in no additional benefit over pulmonary rehabilitation in incremental 

exercise but no deterioration in oxygenation was seen (349). In contrast, Iloprost 

(an inhaled prostacyclin analogue) therapy given to 10 COPD patients with 

echocardiogram evidence of mild PAP elevation increased 6MWD by an average 

49.8m with no deterioration in VQ mismatch (341). In the study described earlier 

by Alp et al, after 3 months of Sildenafil 6MWD increased (from an average of 351 

to 433m) and mPAP fell (from 30 to 25mmHg) but observations were based on only 

5 patients (345). 

Similar lack of clarity exists in the literature on the role of pulmonary vasodilators 

in interstitial lung disease associated PH. As discussed in section 1.2.3.2 similar 

cytokines are implicated in both the pathogenesis of IPF and pulmonary arterial 

disease and the use of ETRAs in particular would seem intuitive. The BUILD1 

(Bosentan Use In Interstitial Lung Disease) study demonstrated no change in 6MWD 

in comparison to placebo in the 49/74 IPF patients completing 12 months of 

Bosentan, but a trend towards prolongation of time to disease progression or death 
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was perhaps suggested (350).There was no controlling for PH between the placebo 

or therapy groups, and patients with sPAP > 50 mmHg on echocardiogram were 

excluded so it is not possible to apply the findings to an ILD PH population. A 

randomised placebo controlled trial of the ETRA Ambrisentan in nearly 500 IPF 

patients (of which 10% had associated PH) was terminated early as interim analysis 

not only suggested a lack of efficacy, but the possibility of increased risk of disease 

progression and hospitalisation related to respiratory exacerbation in the 

Ambrisentan arm (351).  

In 2014 Corte et al reported on 40 IPF patients with associated PH (352). After 16 

weeks of Bosentan no change occurred in 6MWD, mPAP or QOL scores in 

comparison to the placebo group. Although the deterioration in 6MWD in the 

active therapy group was less, -25.9 m vs -53.1 m respectively, this was not 

statistically significant. Whilst the average mPAP of 37 mmHg in the overall cohort 

suggests this population had severe PH, only 25/40 completed the study and 

characteristics of these patients were not reported. Other, smaller studies have 

reported more positive effects. Collard et al reported an increase in 6MWD by a 

mean 49 m after 3 months of sildenafil in 11 IPF patients with PH (353), whilst 

Hoeper et al demonstrated an increase in 6MWD and CO, and a decrease in PVR 

following therapy with Riociguat in 22 ILD patients with an average mPAP 

>30mmHg (although 4 had an alternate aetiology for PH) (354). 

Therapy studies solely focussing on severe PH associated with lung disease are few 

but perhaps more encouraging. Valerio et al treated 16 COPD patients with an 

average mPAP 37 ± 5 mmHg at RHC with 18 months of Bosentan (355). 6MWD 

improved from 256 ±118 m to 321±122 m and mPAP fell (31±6 mmHg) whilst a 

trend towards deterioration in 6MWD occurred in the best standard care group. 

The ASPIRE (Assessing the Spectrum of Pulmonary Hypertension Identified at a 

Referral centre) registry reported no survival advantage in 43 COPD patients with 

severe PH treated with pulmonary vasodilators. However this group did 

demonstrate a fall in PVR  of more than 20% in 4 of 7 patients with repeat 

haemodynamic data, but did not evaluate clinical response by commonly used 

outcome measures  such as six minute walk distance or NTproBNP (356).  
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3.1.3 The right ventricle in chronic lung disease. 

Post mortem study has demonstrated links between the degree of RV hypertrophy 

and hypoxaemia in COPD patients (357) and demonstrated that cardiac failure is 

leading cause of death in COPD patients during hospitalisation with acute 

exacerbations (358). Small cardiac MRI studies in COPD with normoxia or only mild 

hypoxaemia and the absence of PH (determined indirectly by preserved PA 

distensibility) have demonstrated increased RV mass, smaller RV volumes, and in 

one fifth, impaired RV function (defined as a RVEF <45%) (336). Marcus et al 

imaged the RV using cardiac MRI in 8 COPD patients with early PH suggested by a 

decreased pulmonary artery acceleration time, and also demonstrated increases 

in RV mass and SV but preserved RVEF (359). Correlations between increasing 

severity of COPD determined by FEV1 and increasing RVM or falling RVEF have 

been shown (360), with only severe COPD patients demonstrating impaired RV 

function and fall in SV. However, no PH screening or control for hypoxaemia was 

performed so it is difficult to attribute the changes in RV to severity of COPD 

alone. In a larger echocardiography study, Hilde et al demonstrated a reduction 

in 9 measures of RV systolic function, including RV fractional area change and 

myocardial performance index, in 72 COPD patients without PH at RHC and an 

average Pa02 9.8KPa (361). In agreement with the former studies, an increase in 

RV wall thickness by 57% in comparison to controls was seen. Whilst RV wall 

thickness correlated with FEV1, this explained only 8% of the variance suggesting 

severity of airflow obstruction is a less significant driver of RV structural changes 

and other mechanisms such as systemic inflammation, increased afterload from 

hyperinflation, endothelial dysfunction or hypoxaemia have a greater detrimental 

impact. As discussed in section 1.2.3.2, it is known that pulmonary vascular 

remodelling occurs not only in advanced COPD, but also in patients with mild 

disease or even to some degree in smokers with normal lung function. RV 

adaptation and hypertrophy in the absence of significant resting hypoxaemia may 

be postulated to occur as a consequence of intermittent increase in PAP on 

exercise or during sleep that has been shown to occur in COPD patients (346, 362). 

Whilst the COPD patients in the study by Hilde et al are regarding as not having 

PH by the accepted diagnostic threshold (mPAP ≥25mmHg), mPAP was mildly 

increased with reduced PA compliance (mPAP 18±3mmHg in comparison to 

accepted normal 14.7 ±4mmHg (24)) indicating early changes in RV structure at 

subclinical levels of PH. 
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In populations of patients with end stage pulmonary disease undergoing 

assessment for lung transplantation, prevalence of RV dysfunction is higher, 

reported at 66% in one case series, with the prevalence higher still (94%) in those 

that also had pulmonary hypertension (205). In end stage IPF patients, 

echocardiographic indices of RV dysfunction have been shown to be independent 

predictors of mortality, whilst mPAP was not in a population with a PH prevalence 

of 29%, but moderate-severe RV dysfunction in only 11% (218). Biernacki reported 

largely preserved RV function (average RVEF 39% and normal CI) and pressure 

volume relationship in 100 hypoxaemic COPD patients with mPAP 26mmHg (range 

10-60 mmHg, 72% with PH) in comparison to controls (363). On exercise, RVSP 

increased significantly, but no detriment in RV contractility occurred. RVEF 

correlated with PVR, but no relationship to Pa02 or FEV1, and surprisingly mPAP 

which may reflect use of less accurate radionucleotide ventriculography to 

determine RV function (363). Turnbull, using MRI derived RV free wall volume as 

surrogate for RVM, in COPD patients with average mPAP of 30mmHg demonstrated 

good correlation with mPAP and PVR (r=0.72 and 0.67 respectively) (364). CMR 

indices of RV structure or function may therefore have a potential role in 

detection of raised PAP in patients with chronic lung disease. 

3.1.3.1 Biomarkers: 

BNP or its precursor NTproBNP have been shown to predict survival in COPD 

patients both during acute exacerbations (365, 366) and in stable disease (367, 

368), predict risk of hospitalisation or need for intensive care (369) and been 

postulated as a screening tool to identify those with co-existent PH (370). Levels 

of NTproBNP during exacerbations of COPD have shown to relate to both left and 

right ventricular dysfunction but not sPAP or severity of lung disease (371). Chang 

et al reported on 244 COPD patients with an average FEV1 of 35% of predicted 

hospitalised with an acute exacerbation, and demonstrated NTproBNP predicted 

30 day but not 1 year mortality (365). Raised troponin was also associated with 

mortality, and elevation of both markers of cardiac dysfunction was associated 

with a 15 fold increased 30 day mortality. Levels of NTproBNP showed no 

relationship to Pa02 but were not compared to indices of either right or left 

ventricular function. Hosieth et al found that levels of troponin were a stronger 

predictor of long term mortality than NTproBNP in those hospitalised with a COPD 

exacerbation (366), although neither echocardiography nor screening for 
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pulmonary embolism (PE) was performed in the population to determine nature 

of elevation in cardiac markers.  

BNP has also been shown to relate to mortality when measured in a stable 

outpatient population. In COPD patients, Inoue et al demonstrated that BNP levels 

were higher than control subjects, correlated with LVEF, sPAP and shorter time 

to exacerbation, and rose during the acute exacerbation (368). Leutche et al 

demonstrated a raised normalised BNP ratio predicted mortality in a large cohort 

of chronic lung disease patients, and made efforts to exclude those with either PE 

or raised PAWP (367). RHC was performed with severe PH present in over one 

quarter, however the study included patients with connective tissue disease and 

sarcoidosis with therefore a potential alternate aetiology for PH.  

Biomarkers offer an attractive screening tool for detection of PH. The afore 

mentioned limitations of echocardiography in the lung disease population and 

invasive nature of RHC make this ethically unjustifiable as a screening tool when 

treatment option for PH associated with lung disease is not available. 

Prognostically, and also potentially for recruitment to studies, the prevalence and 

detection of PH in lung disease population is desirable. NTproBNP has been proven 

as a marker of RV dysfunction in PAH and as a PH screening tool in connective 

tissue disease (372). As discussed above, levels of NTproBNP have been shown to 

relate to ventricular function and sPAP in chronic lung disease, although not 

consistently depending on population studied and method of determination of 

sPAP. Andersen et al reported on the use of BNP to detect echocardiography 

derived pulmonary hypertension in 117 COPD patients, and reported a NPV 22% 

and PPV 100% using a surprisingly low cut-off level of BNP of <95pg/ml (370). 

However, only 14/117 had PH determined by echo, of which only 6 underwent 

confirmatory RHC (with 3/6 confirmed as having PH). The literature on utility of 

NTproBNP as a screening tool for precapillary PH in chronic lung disease, 

relationship to pure RV dysfunction and survival in PH due to lung disease rather 

than coexistent LV dysfunction is therefore lacking. 
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3.2 Aims. 

As demonstrated by the studies above, the role of pulmonary vasodilator therapy 

in severe PH associated with lung disease is uncertain, clouded by small studies 

with less vigorous criteria for diagnosing PH and utilising mixed populations of 

patients both with and without PH or with co-existent pulmonary venous disease 

and with resultant mix of both positive and negative outcomes. We sought to 

1. Explore diagnostic utility and accuracy of CMR for determining presence 

of PH in comparison to echocardiography and NTproBNP in chronic lung 

disease 

2. Characterise and compare RV structure and function determined by CMR 

and relationship to prognosis in chronic lung disease patients without PH 

(mPAP <25mmHg), with mild-moderate (mPAP 25-34mmHg) and severe PH 

(mPAP ≥ 35mmHg).  

3. Assess response to PH specific therapy in a large cohort of chronic lung 

disease patients with associated severe PH determined by change in 6MWD 

and NTproBNP and further explore impact of lung disease severity and 

phenotype on survival and therapeutic response. 
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3.3 Materials and methods 

3.3.1 Patients in the study 

We retrospectively studied 255 treatment naïve incident cases diagnosed between 

January 2000 and March 2014 at the Scottish Pulmonary Vascular Unit, Glasgow. 

Patients were referred for investigation of unexplained PH, or PH felt 

disproportionate to the degree of lung disease and included after conventional 

multidisciplinary evaluation as described in Methods section 2.1.1. Patients were 

excluded if there was incomplete RHC data, missing CT or lung function data, or 

an alternative aetiology for PH.  Figure 3.1 describes the study population. 

3.3.1.1 IPAH patients 

81 IPAH patients who had no evidence of parenchymal disease of any severity on 

CT of thorax, and no other explanation for PH were included. PH was defined in 

the IPAH group as mPAP ≥25 mmHg with a PAWP ≤15 mmHg and a normal or 

impaired CO (defined as CI ≤4 l/min/m2). 7 patients were excluded whom were 

smokers with airflow obstruction (defined as post bronchodilator FEV1 <80% with 

FEV1/FVC <0.7). The remaining 74 patients were included in the study as a “pure” 

IPAH cohort for comparison. 

 

 



 

 
 

 

Figure 3.1 Study population
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3.3.1.2 Severe PH in lung disease 

There were 167 patients with pulmonary hypertension and associated lung 

disease. 124 patients met the criteria for severe PH, defined as a mPAP ≥35mmHg 

with a PAWP ≤15mmHg and normal or reduced CO, or a mPAP ≥30 mmHg with 

PAWP ≤15 mmHg and a CI <2 l/min/m2 (n=3).  

Patients were categorised by underlying lung disease into 1 of 4 phenotypes  

(i) emphysema with preserved FEV1, defined as FEV1 >80% predicted 

with evidence of emphysema on CT thorax 

(ii) combined pulmonary fibrosis and emphysema syndrome (CPFE), 

defined by coexistent predominantly apical emphysema and basal 

fibrosis on CT thorax with reduced DLCO. 

(iii) Interstitial lung disease (ILD)  

(iv) COPD, characterized by either post bronchodilator FEV1 <60% 

predicted, or emphysema on CT with FEV1 <80%, in conjunction with 

an FEV1/FVC ratio <0.7 

In addition to the phenotypes described, the effect the severity of associated 

lung disease had on treatment outcome was evaluated. Patients were classified 

into one of two groups using criteria suggested at the Nice world PH symposium 

(253); 

(i) severe PH/mild lung disease – defined as modest parenchymal abnormality 

on CT thorax, COPD with FEV1 ≥60% of predicted or ILD with FVC ≥70% of 

predicted 

(ii)  severe PH/severe lung disease - severe PH-CPFE, severe PH-COPD (defined 

by FEV1<60% of predicted), or severe PH-IPF (defined by FVC <70% of 

predicted). 
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3.3.1.3 PH “in proportion” to lung disease 

Of the remaining patients with lung disease evaluated, 30 had mild-moderate PH 

“in proportion” to lung disease, defined as a mPAP 25-34 mmHg with the same 

PAWP and CO criteria as described above, and 13 had no PH defined as a mPAP 

<25 mmHg in accordance with guidelines.  

3.3.2 Echocardiography 

32 lung disease patients with mPAP <35 mmHg had both demonstrable tricuspid 

regurgitation to allow estimation of sPAP by echocardiogram and had undergone 

CMR. These were included for comparison with 53 severe PH/lung disease patients 

described in section 3.2.1.2 whom also had both echocardiography estimated sPAP 

and a CMR study to evaluate non invasive screening tools for detection of PH in 

lung disease. mPAP estimation by echo was derived from the formula mPAP = 0.61 

sPAP + 2. Thresholds for detection of PH (i.e. mPAP ≥25 mmHg) and severe PH 

(i.e. mPAP ≥35mmHg) by echocardiogram derived sPAP were therefore 38 mmHg 

and 54 mmHg respectively. Unless otherwise stated, RAP was estimated at 5 

mmHg. RV function was assessed by TAPSE (normal function defined by TAPSE 

>1.8cm) and RV dilatation by RVEDD (defined by >4.2cm). 

3.3.3 Cardiac MRI 

35 patients with IPAH and 93 with PH/lung disease underwent cardiac MRI. Of the 

later, 58 had severe PH/lung disease, 23 mild-moderate PH/lung disease and 12 

lung disease patients without PH. Cardiac MRI image acquisition and data analysis 

was carried out as described in section 2.2. Inter-observer variability data has 

previously been published for our centre (373). CMR variables were indexed for 

BSA and adjusted for age.  

3.3.4 Treatment and follow up 

All patients with IPAH were treated with PH targeted therapy in accordance with 

guidelines (332). Patients with lung disease were treated with inhaled 

bronchodilators and LTOT in accordance with UK guidelines (374). Those with 

severe PH/lung disease received a minimum of 3 months compassionate use of PH 

targeted therapy. NYHA FC, 6MWD and NTproBNP were measured at diagnosis, and 
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reassessed at a time point greater than 3 months in those whom received PH 

therapy. As described in section 2.3 survival data was collected until last day of 

the study, 4th August 2014. 

3.3.5 Statistical methods 

Statistical analysis was carried out as described in methods section 2.3. In 

addition, ROC curves were derived to obtain thresholds for detection of both PH 

and severe PH in those with lung disease by level of NTproBNP and CMR indices of 

RVMI, RAC MPA and VMI. Agreement of RV parameters assessed by echocardiogram 

and CMR, and pulmonary artery pressure by echo and RHC was assessed by Pearson 

or Spearman correlation dependent on data distribution, and Bland-Altman 

analysis. Kaplan Meier survival curves were plotted by severity of pulmonary 

hypertension and by lung disease phenotype, and survival compared by logrank 

test.  
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3.4 Results 

3.4.1 Population Characteristics 

Patient characteristics are shown in tables 3-1 and 3-2 for those with lung disease 

and mild – moderate PH or no PH, and severe PH respectively. Whilst the 13 

patients classified by current PH diagnostic guidelines as having “no PH” by mPAP 

<25 mmHg, the average mPAP in this group was mildly elevated in comparison to 

normal (14.7 mmHg ±4) at 21 mmHg (range 13-23). 6MWD was lower in those with 

mild-moderate PH compared to patients without PH (234±108 m vs 364±79 m 

p=0.001) indicating a greater degree of functional impairment associated with the 

development of PH. 

There were 124 patients with severe PH/lung disease of which 84 died during 

follow up, and 74 IPAH patients of whom 25 died. 1 patient with severe PH/lung 

disease and 2 with IPAH underwent lung transplantation. Table 3-2 shows the 

patient characteristics of those with IPAH in comparison to severe PH with lung 

disease. IPAH patients were younger, more often female with less functional 

impairment and lower levels of NTproBNP despite similar haemodynamics.  

In the severe PH/lung disease group, there were 31 patients with 

emphysema/preserved FEV1, 25 patients with CPFE, 23 patients with ILD and 45 

with COPD phenotype. Of these 45 patients, 30 had emphysema, 4 respiratory 

bronchiolitis and 4 bronchiectasis on imaging. 6 had isolated spirometric 

abnormalities. Table 3-3 shows the characteristics of the lung phenotype groups. 

There were 88 patients meeting criteria suggested by Seeger et al. 30 patients 

had marked emphysema on CT but preserved FEV1 and were excluded as this group 

was not considered by this classification. 32 patients met criteria for severe 

PH/mild lung disease, and 58 patients with severe PH/severe lung disease; (22 

CPFE, 26 COPD, 10 ILD). 

In comparison to those with severe PH, those with mild to moderate PH in the 

setting of coexistent lung disease demonstrated preserved RV mass, volumes and 

function, were less hypoxaemic but had similar levels of functional impairment 

(mean 6MWD 234±108 m vs 206±105 m, p= 0.221). 
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3.4.1.1 Lung function 

DLCO was worse in those with severe PH/lung disease in comparison to IPAH 

patients (24 (19-34) v 62 (39-76), p<0.0001) and both in those with lung disease 

with mild-moderate (30 (22-36) p=0.05) or no PH (45 (35-56) p=0.001). Pa02 was 

lower in those with severe PH/lung disease (7.4 ± 1.6 kPa) in comparison to IPAH 

(9.6 ± 2.0 kPa, p<0.0001) and lung disease without PH (10.0 ± 1.9 kPa, p<0.0001), 

but not lung disease mild-moderate PH (8.0 ± 1.7kPa, p=0.08). 

In those with COPD, there was no relationship between FEV1 and mPAP or RVEF 

(r=0.04, P = 0.79 and r = 0.00, p = 1.0 respectively). FEV1:FVC ratio weakly 

correlated with mPAP (r = 0.29, p = 0.05) but not RVEF (r =-0.05, p = 0.79).  

In those with ILD, there was no relationship between FVC and either mPAP or RVEF 

(r =-0.08, p = 0.67 and r = 0.19 p = 0.49 respectively), nor TLC with mPAP or RVEF 

(r = 0.08, p = 0.72 and r = 0.15, p = 0.60 respectively). 

3.4.1.2 Functional Status 

Patients with severe PH lung disease demonstrated greater degree of functional 

impairment than those with IPAH or lung disease without PH. NYHA FC was worse 

with 12% FC II, 71% FC III and 17% FC IV in comparison to 24%, 69% & 7% (p = 0.021) 

in IPAH and 46%, 54% & 0% in lung disease without PH (p = 0.005) respectively. 

There was a trend towards worsening function class in comparison to patients with 

mild-moderate PH with lung disease (21% FCII, 76% FCIII & 3% FCIV, p = 0.099). 

6MWD was lower in severe PH/lung disease patients compared to IPAH patients 

(206±106m v 344±118m, p<0.0001) despite greater degree of PH in the latter 

(mPAP 46 v 54mmHg, p<0.0001). In a multivariate regression model with age, 

mPAP, CO and FEV1, RAP (r = -0.273 p = 0.004), compliance (SV/PP r = 0.282 p = 

0.036) and DLCO (r = 0.281 p = 0.001) were independent determinants of 6MWD. 

Table 3-4 shows univariate regression analysis of determinants of 6MWD in lung 

disease patients. Table 3-5 shows the final multivariate regression model for 

6MWD. In the subgroup with CMR variables, in a multivariate model with age, RAP, 

mPAP, CO & FEV1, neither RVEF nor LVEDVI were independent predictors of 6MWD 

(r = -0.07 p = 0.567 & r =.0.195 p = 0.06 respectively). 
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3.4.1.3 Right ventricular dysfunction in severe PH associated with lung 
disease 

CMR data was available for 58 patients with severe PH/lung disease (17 COPD, 8 

ILD, 15 CPFE, 18 emphysema) and 35 IPAH patients. Table 3-6 displays the 

characteristics of the two groups. There were no significant differences between 

right and left ventricular function. RVMI was lower in severe PH/lung disease group 

(50g/m2 versus 56g/m2 p=0.014). Lung disease patients were older (66 vs 48 

years, p<0.0001) with a more significant smoking history (51/55 previous smokers 

vs 11/35). 

In both IPAH and severe PH/lung disease patients, RVEF was reduced (32 ± 12% 

and 33 ± 13% respectively) with increased RV mass and volumes (RVEDVI 95 ± 28 

ml/m2 and 91 ± 30 ml/m2 respectively). 
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Table 3-1 Characteristics of patients with mild - moderate pulmonary hypertension 
associated with lung disease 

 

n 

All 

(43) 

mPAP 25-34mmHg  

(30) 

mPAP <25mmHg  

(13) 

p value 

Age years 68±10 69±10 66±9 0.395 
Sex % 38♀62♂ 37♀63♂ 46♀54♂  
Smoking history %  
Pack Years 

 
39±18 

86 (25) 
38±21 

100 (12) 

41±13 
 
0.711 

Aetiology % (n) 
COPD 
ILD 
CPFE 
Emphysema 

 

 
40 (12) 
23 (7) 
20 (6) 
17 (5) 

 
23 (3) 
23 (3) 
15 (2) 
39 (5) 

 

Baseline Haemodynamics 
  

  mPAP mmHg 27 ± 5 29 ± 3 21 ± 3 <0.0001*** 
  RAP mmHg 3 ±3 3±3 3±2 0.706 
  CI L/min/m2 2.6 ± 0.6 2.6±0.5 2.6±0.6 0.909 
  PVR Wood units. 4.1 (2.9-5.4) 4.6 (3.8-6.0) 2.6 (2.3-3.0) <0.0001*** 
  PAWP mmHg 8±4 7±4 9±3 0.229 
  SV02 % 68 (65-75) 68 (65-75) (28) 71.8 (65.8-74.4) (11) 0.701 

  SV/PP mL/mmHg 2.28±0.9 1.9 ± 0.6 (28) 3.2 ±0.7 <0.0001*** 

Cardiac MRI N=23 N=12  

  RVEF % 50 ± 11 48 ± 10 54 ± 13 0.139 

  RVEDVI mL/m2 63.0 (56.2-79.9) 62 (52-77) 68 (59-83) 0.260 

  RVMI g/m2 32.9 (27.3-39.5) 35 (30-40) 29 (24-42) 0.172 

  LVEF % 66.2±8 65 ±14 68 ± 11 0.487 

  LVEDVI mL/m2 54.5 (41.5-66.5) 49 (35-60) 67 (54-80) 0.006** 

  LVMI g/m2 50.7 (44.6-58.0) 50 (43-57) 56 (50-61) 0.280 

  SVI mL/m2 38 ± 9 37 ± 10 41 ± 9 0.244 

  RAC MPA % 30.4 (17-42) 23 (17-33) (23) 42 (34-51) (11) 0.006** 

  AoRAC % 18.9 (14-31) (35) 17 (11-31) (22) 22 (16-35)  0.729 

Lung Function 

  FEV1 % 79 (59-96) 72 (52-94) 91 (64-104) 0.212 
  FVC % 100±30 97 ± 32 109 ± 27 0.318 
  DLCO % (n) 33 (23-45) (39) 30 (22-36) (28) 45 (35-56) (11) 0.008** 
  Pa02 kPa (n) 8.6 ± 1.9 (31) 7.8±1.4 (20) 10.0±1.9 (11) 0.001** 

Functional Class % (n) 
   

  I/II 29 (12) 21 (6) 46 (6) 0.140 
  III 69 (29) 76 (22) 54 (7)  
  IV 2 (1) 3 (1) 0 (0)  

6MWD (m)   (n) 275 ± 116 234±108 (26) 364±79 (12) 0.001** 

NTproBNP (pg/ml) 
  (n) 

209 (110 – 426) 218 (112– 412) 
(28) 

200 (91 – 403) 
(12) 

0.750 
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Table 3-2. Population characteristics of severe PH associated with lung disease patients in 
comparison to IPAH. 

 IPAH                
(74) 

  Severe PH/ lung 
disease (124) 

 p value 

Age years 49±18   67±10  <0.0001*** 
Sex % 72♀28♂   45♀55♂  <0.0001*** 
Smoking history % (n) 
Pack years 

32 (22) 
30±15 

  89 (107) 

42±24 
  

0.048* 

Baseline Haemodynamics 
     

  mPAP mmHg 54 (46-62)   46 (40-51)  <0.0001*** 
  RAP mmHg (n) 8±6   8±5   (123) 0.935 
  CI L/min/m2 (n) 2.0±0.5  (73)  2.0±0.5   (119) 0.557 
  PVR w.u. 12.5 (9.2-17.9)   10.6 (8.2-14.2)  0.011* 
  PAWP mmHg 7±4   8±3  0.047* 
  SV02 % (n) 63 (56-69)   (66)  61 (53-67) (112) 0.185 

  SV/PP mL/mmHg 0.94 ± 0.5 (53)  0.98 ± 0.4 (110) 0.582 

Initial PH therapy % (n) 
     

  CCB 9.5 (7)   2 (3)  0.003** 
  PDE-5i 44.6 (33)   68 (84)   
  ETRA 25.7 (19)   23 (28)   
  Prostanoid 14.9 (11)   4 (5)   
  Combination 5.4 (4)   3 (4)   

Lung Function 
     

  FEV1 % 91 (83-97)   75 (58-93)  <0.0001*** 
  FVC % 101 ± 13   96 ± 25  0.076 
  FEV1/FVC % 76 (70-79)   63 (55-71)  <0.0001*** 
  TLC % (n) 93 ± 10  (68)  92 ± 18   (102) 0.602 
  DLCO % (n) 62 (39-76)  (71)  24 (19-34)  (104) <0.0001*** 
  Pa02 kPa (n) 9.6±2  (43)  7.4±1.6  (84) <0.0001*** 
       

Functional Class % (n) 
      

  I/II 24 (17)   12 (14)  0.021* 
  III 69 (49)   71 (85)   
  IV 7 (5)   18 (21)   

6MWD m   (n) 334±118  (62)  206±105  (102) <0.0001*** 

NTproBNP pg/ml  (n)        1128 (508 - 2890) 
 

(46)     2273 (943 – 4506) 
 

(94) 0.019* 
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Table 3-3. Population characteristics of severe PH associated with chronic lung disease 
according to lung disease phenotype 
 

 Emphysema 
(31) 

CPFE 
(25) 

COPD 
(45) 

ILD 
(23) 

p value 

Age years 70±10 68±7 63±11 69±10 0.015 

Sex %    52♀48♂     36♀64 ♂    47♀53♂ 46♀54♂  

Smoking history % 

Pack years 

100 

51±29 

100 

47±23 

89 

36±17 

50 

25±16 

  

0.020* 

LTOT usage %         87           91 60       73 

Baseline Haemodynamics 
  

  mPAP mmHg 46±7 48±8 48±11 46±9 0.678 
  RAP mmHg 7±4 9±5 8±5 10±6 (22) 0.109 
  CI L/min/m2 (n) 1.9±0.4 1.8±0.4 (24) 2.1±0.6 (44) 1.9±0.5 (20)  0.162 
  PVR w.u. 12.2±4 12.9±4 11.1±5 10.0±3 0.119 
  PAWP mmHg 8±3 8±3 9±3 9±3 0.357 
  SV02 %  (n) 61±11  (29) 59±11 (24) 59±10 (39) 62±9 (20) 0.683 
  SV/PP ml/mmHg  0.9 ± 0.3 0.9 ± 0.4 1.1 ± 0.6 (37) 1.0 ± 0.3 0.037* 

Initial PH therapy % (n) 
  

  CCB 0 0 4.4 (2) 4 (1)  
  PDE-5 71.0 (22) 60 (15) 66.7 (30) 74 (17)  
  ETRA 19.4 (6) 24 (6) 24.4 (11) 22  (5)  
  Prostanoid 6.5 (2) 4 (1) 4.4 (2) 0  
  Combination 3.2 (1) 12 (3) 0 0  

Lung Function 
   

  FEV1 % 99±17 81±22 55±16 79±20 <0.0001*** 
  FVC % 117 (105-

139) 
101 (86-124) 84 (75-98) 74 (65-98) <0.0001*** 

  FEV1/FVC % 65±10 62±9 55±11 79±11 <0.0001*** 
  TLC %  (n) 102 ± 14 (27) 89 ± 15 (23) 95 ± 17 (35) 74 ± 16 (17) <0.0001*** 
  DLCO % (n) 26±9  (28) 21±7 (22) 31±14 (35) 28±11 (19) 0.017* 
  Pa02 kPa (n) 7.0±2.1 (22) 7.0±0.8 (15) 7.7±1.4 (32) 7.5±1.7 (15) 0.401 

Function Class % (n) 
    

  I/II 3 (1) 0 21 (9) 18 (4) ns 
  III 81 (25) 79 (19) 65 (28) 59 (13)  
  IV 16 (5) 21 (5) 14 (6) 23 (5)  

6MWD m (n) 224±99 (23) 174±78 (20) 215±110 (39) 199±121 
(20) 

0.409 

NTproBNP pg/ml 
 (n)  

1447 (753–
3881) (22) 

2272 (1203-
6384) 
 (22) 

2335 (650–
4359)  

(32) 

2703 
(1259-

4143) (18) 

0.572 
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Table 3-4. Determinants of functional capacity (defined by 6MWD) in severe PH associated 
with lung disease 
 

Variable Correlation 
coefficient 

95% CI p value 

Age -0.154 -3.50 – 0.138 0.07 

mPAP -0.175 -3.09 - -0.08 0.039 

RAP -0.323 -11.2 - -3.78 <0.0001 

PVR -0.284 -10.5 - -2.88 0.001 

CO 0.377 21.61 – 52.0 <0.0001 

SV/PP 0.428 36.6 – 81.0 <0.0001 

   

FEV1 0.188 0.09 – 1.49 0.027 

DLCO 0.425 2.10 – 4.67 <0.0001 

Pa02 0.442 16.79 – 39.62 <0.0001 

    

RVEF 0.241 0.20 – 3.23 0.027 

LVEF 0.199 -1.22 – 3.10 0.070 

RVEDVI 0.016 -0.75 – 0.87 0.885 

LVEDVI 0.314 0.65 – 3.23 0.004 

SVI 0.308 1.05 – 5.40 0.004 

RVMI -0.096 -1.75 – 0.68 0.385 

RAC MPA 0.343 1.12 – 4.69 0.002 

 

Table 3-5. Multivariate regression model for 6MWD in lung disease patients 
 

R = 0.629, adj r2 = 0.395, p<0.0001 for the model. 

Variable Regression 
coefficient 

95% CI P value 

Age - 0.144 -3.55 – 0.40 0.118 

mPAP 0.261 0.07 – 4.75 0.043 

RAP -0.273 -11.65 - -2.26 0.004 

CO 0.179 -1.74 – 37.50 0.074 

SV/PP 0.282 2.59 – 74.90 0.036 

FEV1 0.154 -0.64 – 1.44 0.073 

DLCO 0.281 0.93 – 3.69 0.001 
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Table 3-6. Characteristics of IPAH and severe PH/lung disease patients with CMR studies. 
 

 
 
n 

IPAH 
 

35 

Severe PH/lung 
disease 

58 

p value 

Age (years) 48 ± 17 65 ± 11 <0.0001*** 

PVR (Wood Units) 14.5 (10 - 18) 10.5 (8 - 15) 0.012* 

mPAP (mmHg) 57 ± 14 48 ± 9 <0.0001*** 

PAWP (mmHg) 8 ± 4 8 ± 4 0.604 

SV/PP 0.89 ± 0.4 (31) 1.05 ± 0.5 (57) 0.105 

    

RVEF (%) 32 ± 12 33 ± 13 0.644 

LVEF (%) 66 (60 -71) 62 (54 -71) 0.470 

RVMI (g/m2) 56 (49-75) 50 (38 - 61) 0.014* 

LVMI (g/m2) 46 (41 -57) 48 (41 - 56) 0.916 

RVEDVI (ml/m2) 95 ± 28 91 ± 30 0.537 

RVESVI (ml/m2) 65 ± 26 62 ± 28 0.609 

LVEDVI (ml/m2) 40 (34 - 53) 44 (37 - 53) 0.414 

SVI (ml/m2) 25 ± 10 28 ± 8 0.182 

RAC MPA (%) 21 (17 - 28) (28) 18 (16 – 22) (53) 0.096 

RAC Ao (%) 24 (14 - 28) (22) 18 (14 - 24) (48) 0.241 
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3.4.2 Screening for pulmonary hypertension in lung disease 

91 of the 167 lung disease patients had both CMR and echocardiography studies, 

12 with no PH, 23 with mild-moderate and 56 with severe PH. It was not possible 

to estimate sPAP by echocardiogram in 10 of 164 patients. 3 patients had a CMR 

performed but had poor quality studies due to respiratory motion artefact and 

were excluded. Only 3 patients were classed as having severe PH phenotype by an 

mPAP 30 -34 (range 32-34mmHg) and CI <2 l/min/m2 (1.5-1.9). None of these had 

a CMR study and were excluded from this analysis. 

Tables 3-7 and 3-8 summarise the sensitivity and specificity for each screening 

tool for the detection of PH and severe PH respectively in patients with lung 

disease. 

3.4.2.1 Echocardiography 

Overall, echocardiography estimated sPAP was available for 154 patients with lung 

disease and 50 IPAH patients. Correlations between echocardiography estimated 

sPAP and invasively measured sPAP were similar in both, Pearson r = 0.53 p<0.0001 

and r= 0.51 p=0.0002 respectively. These values are similar to those published in 

literature in patients with severe lung disease (r=0.69, Arcasoy 2003 (199)) Linear 

regression shown in figure 3.2. 

In those with lung disease, for sPAP estimated by echocardiography versus 

invasive, mean difference was 0.84 mmHg with limits of agreement -36 and 38 

mmHg. In IPAH patients, for sPAP by echo versus invasive, mean difference was -

9 mmHg with limits of agreement -52 and 34 mmHg. Figure 3.3 shows the Bland-

Altman plots of the difference between echo estimated sPAP and invasive sPAP 

against the mean of both values demonstrating poor accuracy of echocardiography 

estimated sPAP. 
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Figure 3.2 Correlation between echocardiogram estimated sPAP and invasive sPAP for [a] 
IPAH [b] lung disease patients.  
Similar correlations were observed in both groups. p<0.0001, with poor R2 values. Whilst statistically 
significant, degree of accuracy between echocardiography estimated and measured sPAP was poor, 
as shown in figure 3.4  

 

 

 

Figure 3.3 Bland Altman plots of the difference between echocardiogram estimated and 
invasive sPAP against mean of both values for [a] IPAH [b] lung disease patients. 
 

Limits of agreement (dashed line) and mean difference (solid line) shown. Plots show large variation, 
up to 50mmHg between echo estimated and invasive measured sPAP in those with lung disease. 
This is in agreement with previous published study showing inaccuracy of echo in chronic lung 
disease were inaccuracies in 52% of echocardiograpy estimated sPAP has been shown (199). 
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Figure 3.4 ROC curves of sensitivity and specificity of echocardiography estimated sPAP 
for [a] mPAP ≥ 25mmHg [b] ≥ 35mmHg 
 

 

A level of sPAP of 38mm Hg was 97% sensitive & 41.7% specific for detection of 

PH, resulting in 7 out of 12 misclassified as having PH, and 1 out of 74 missed (91% 

(83%-96%) PPV and 83% (36%-100%) NPV). A level of sPAP of 54mmHg resulted in 

15/33 false positives and 8/53 false negatives for detection of severe PH 

associated with lung disease (sensitivity 85% specificity 61%). ROC curves are 

shown in figure 3.4. 

Right ventricular end diastolic diameter (RVEDD) was estimated in 8, 20 and 44 

patients with no, mild – moderate and severe PH associated with lung disease 

respectively. RVEDD was increased in those with severe PH/lung disease only (4.6 

± 0.9, P= 0.006, ULN 4.2cm (49) ) and correlated with RVEDVI measured by CMR, 

r= 0.572, p <0.0001.  Figure 3.5 shows mean RVEDD by PH severity, and correlation 

with RVEDVI for the whole group. A RVEDD >3.2cm was 91% sensitive and 38% 

specific for detection of PH, LR 1.45, AUC 0.740 P=0.028, resulting in 5/8 false 

positives and 6/64 false negatives. RVEDD >3.5cm 89% sensitive 46% specific (AUC 

0.787 P<0.0001) for detecting mPAP ≥ 35mmHg. 15/28 patients were misclassified 

as having severe PH and 5/44 cases were missed using this threshold. 



139 
 

 

Figure 3.5 RV end diastolic diameter in patients with lung disease according to severity of 
pulmonary hypertension 
 

[a] RVEDD was similar in patients with mild-moderate PH in comparison to those without PH but 
increased significantly in those with severe PH indicating RV dilatation in this group. [b]. RVEDD 
correlated well with RV end-diastolic volume index determined by gold standard cardiac MRI. 

 

 

 

Figure 3.6 TAPSE in patients with lung disease with mild - moderate and severe PH in 
comparison to those without PH 
 

TAPSE was preserved in those with mild-moderate PH but fell in those with severe PH/lung disease, 
mean value 1.6cm indicative of impaired RV function in this group. [b]. TAPSE showed good 
correlation with cardiac MRI measured RVEF (p<0.0001). 
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TAPSE was estimated in 4, 10 and 53 patients without PH, with mild-moderate and 

severe PH respectively. TAPSE was preserved in those with mild-moderate PH but 

reduced in those with severe PH (2.2 cm vs 1.6 cm, P=0.002, see figure 3.6a). 

Figure 3.6b shows the correlation between TAPSE and CMR derived RVEF (r= 0.548, 

p <0.0001).  

3.4.2.2 NTproBNP 

NTproBNP levels were available for 12, 24 and 46 patients with no, mild to 

moderate and severe PH respectively. Figure 3.7 shows the median NTproBNP by 

severity of PH. Levels of NTproBNP did not differ between those with mild-

moderate and those without PH, 200 vs 218 pg/ml respectively, p= 0.47. NTproBNP 

was elevated in those with severe PH, 2258 pg/ml (416 - 4295) p<0.0001, and 

correlated with RV dilatation and inversely with RVEF (r = 0.484 & r = -0.678 

respectively, both p<0.0001. see figure 3.8) 

A level of NTproBNP of 106 pg/ml was 91% sensitive but only 33% specific (LR 1.37) 

for mPAP ≥25mmHg, resulting in 8/12 false positives and 6/67 false negatives. A 

level of NTproBNP >230 pg/ml was 91% sensitive 58% specific (LR 2.15) for 

detecting severe PH, missing 4/46 cases and misclassifying 14/33 (75% PPV 83% 

NPV). Receiver operator curves are shown in figure 3.9. 

 

 

 

Figure 3.7 NTproBNP levels for patients with chronic lung disease without PH in 
comparison to those with mild-moderate and severe PH. 
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Figure 3.8 Correlation between NTproBNP and [a] RVEF [b] RVEDVI in patients with chronic 
lung disease. 
 

Logarithmic transformation of NTproBNP shown due to data distribution. Increasing levels of 
NTproBNP showed good relationship to falling RVEF and increasing RVEDVI indicative of RV 
dysfunction. p<0.0001 for both. 

 

 

 

 

Figure 3.9 ROC curves for sensitivity and specificity of NTproBNP for detecting [a] mPAP ≥ 
25mmHg [b] ≥ 35mmHg in patients with lung disease  
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3.4.2.3 Cardiac MRI 

Lung disease patients with no PH or mild-moderate PH displayed preserved RV 

function (RVEF 54 ± 13 % and 48 ± 10 %, LLN 45%), with no RV dilatation (RVEDVI 

62 ml/m2 and 66 ml/m2 respectively). In contrast, those with severe PH had 

impaired RVEF (34 ± 13 %) and increased RVEDVI (85 ml/m2). Figure 3.10 shows 

the RVEF and RVEDVI for the groups. Pa02 and FEV1 correlated with RVEF (r=0.328 

p= 0.006, r = 0.237 p = 0.024 respectively) but were not independent determinants 

of RVEF in a model with age and PVR (p = 0.063 and 0.227 respectively). 

RVMI was increased in those with severe PH (50 g/m2) in comparison to both mild-

moderate (36 g/m2 p = 0.003) and no PH patients (29g/m2 p = 0.006). There was a 

trend towards an increase in RVMI between mild-moderate PH and no PH patients, 

but this did not meet statistical significance (p = 0.135). Figure 3.11 shows the 

median RVMI by severity of PH. 

Receiver operator curves for RVMI are shown in figure 3.12. RVMI >26.45 g/m2 was 

89% sensitive and 42% specific for a mPAP ≥25mmHg (7/12 false positives, 8/73 

false negatives. RVMI ≥32.8 g/m2 was 87% sensitive and 57% specific for a mPAP ≥ 

35mmHg (15/35 false positives, 7/53 false negatives). 

 

 

 

Figure 3.10 Right ventricular function and volume in lung disease patients by severity of 
pulmonary hypertension. 
Patients with severe PH displayed reduced RV ejection fraction and RV dilatation in comparison to 
those with mild-moderate or without PH. 
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Figure 3.11 Right ventricular mass in patients with no, mild-moderate and severe PH in 
patients with associated lung disease 
 

Patients with severe PH displayed increased RVM in comparison to those with mild-moderate and 
no PH. Patients with mild-moderate PH did not have statistically significant increase in RVM 
(p=0.135) 

 

 

 

Figure 3.12. Receiver operator curves for sensitivity and specificity of RV mass to detect [a] 
mPAP ≥ 25mmHg and [b] mPAP ≥ 35mmHg.  
 

Optimal thresholds of >26.5 g/m2 and > 32.8g/m2 respectively. 
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VMI (ventricular mass index, ratio of RVM:LVM) showed an increase from 0.53 (0.44 

- 0.84) in those with no PH, to 0.76 (0.64 – 0.89) in patients with mild-moderate 

PH and to 1.01 (0.72 – 1.20) in patients with severe PH. Figure 3.13 shows the 

median VMI for each group. 

A VMI of >0.525 was 97% sensitive and 50% specific for a mPAP ≥ 25mmHg (6/12 

false positives 4/73 false negatives). A VMI >0.6 was 91% sensitive and 44% specific 

for a mPAP ≥35mmHg (18/32 false positives and 5/53 false negatives). Receiver 

operator curves are shown in figure 3.14. 
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Figure 3.13. Ventricular mass index in patients with no, mild-moderate and severe PH and 
chronic lung disease. 
 

VMI, the ratio of RV/LV mass, increased with increasing severity of pulmonary hypertension. Mean 
(SD) shown. 

 

 

 

Figure 3.14 Receiver operator curves displaying sensitivity and specificity of ventricular 
mass index for detecting [a] mPAP ≥ 25mmHg and [b] mPAP ≥35mmHg. 
 

Optimal thresholds of > 0.525 and > 0.60 respectively were identified. 
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3.4.2.4 Vascular stiffness 

Vascular stiffness increased with PH of increasing severity. Compliance (SV/PP = 

1/ vascular stiffness) fell from 3.2 ± 0.7 in those without PH, to 1.9 ± 0.7 in 

patients with mild-moderate PH and 0.98 ± 0.4 in patients with severe PH 

(p<0.0001 for both). RAC MPA fell from 42 (34-51) % to 23 (17-33) % and to 18 (16-

22) respectively. Figure 3.15 shows measures of vascular compliance for each 

group. Pa02 but not FEV1 correlated with RAC MPA (r = 0.265 p = 0.030) and SV/PP 

(r = 0.353 p<0.0001). SV/PP correlated with RAC MPA for the whole cohort, 

p<0.0001 (see figure 3.16) 

Receiver operator curves for RAC MPA for mPAP ≥25mmHg and ≥35mmHg are 

shown in figure 3.17. A RAC of <41.15% was 96% sensitive and 58% specific for a 

mPAP ≥ 25mmHg (5/12 false positives and 3/73 false negatives). A RAC of <32.5% 

was 94% sensitive and 47% specific for a mPAP ≥ 35mmHg (17/32 false positives 

and 3/53 false negatives). 

 

 

 

Figure 3.15 Invasive (SV/PP) and non-invasive (RAC MPA) determined pulmonary vascular 
compliance in patients with no, mild-moderate and severe PH associated with lung disease. 
 

Falling vascular compliance (i.e. increasing stiffness) was demonstrated with increasing severity of 
PH by either method. Median (IQR) shown. 
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Figure 3.16 Correlation of invasive (SV/PP) and noninvasive (RAC MPA) estimates of 
pulmonary artery compliance for lung disease patients 

 

 

 

 

Figure 3.17 Receiver operator curves displaying sensitivity and specificity of RAC MPA for 
detecting [a] mPAP ≥ 25mmHg and [b] ≥ 35mmHg. 
 

Optimal threshold of RAC MPA < 41.15 % and < 32.5% respectively were determined. 
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The combination of echocardiogram estimated sPAP and RAC MPA performed 

superiorly for the detection of a mPAP ≥25 mmHg (100% sensitivity, 83% specificity 

98%PPV 100%NPV). Table 3-7 summarises the sensitivity, specificity, PPV and NPV 

for each screening method. 

 

Table 3-7. Sensitivity and specificity of imaging and biomarker modalities for detection of 
PH in chronic lung disease patients 
 

Variable 

threshold 

Sensitivity 

(95% CI) 

Specificity 

(95% CI) 

PPV 

(95% CI) 

NPV 

(95% CI) 

Echo estimated 
sPAP >38mmHg 

97 (91-99) 42 (15-72) 91 (83-96) 83 (36-100) 

RVEDD >3.2cm 91 (81-97) 38 (9-76) 92 (82-97) 33 (8-50) 

NTproBNP 
>106pg/ml 

91 (82-97) 33 (10-65) 88 (78-95) 40 (12-74) 

RVMI > 26.45g/m2 89 (80-95) 42 (15-72) 90 (81-96) 39 (14-68) 

VMI >0.525 97 (91-100) 50 (21-79) 92 (84-97) 75 (35-97) 

RAC MPA <41.15% 96 (89-99) 58 (28-85) 93 (85-98) 70 (35-93) 

Echo estimated 
sPAP + RAC 

100 (95-100) 83 (52-98) 98 (91-100) 100 (69-100) 

Echo estimated 
sPAP + VMI 

100 (95-100) 67 (35-90) 95 (87-99) 100 (63-100) 

Echo estimated 
sPAP + NTproBNP 

100 (95-100) 50 (21-79) 93 (84-97) 100 (54-100) 

Combination of imaging modalities, echocardiogram to estimate pressure and CMR to assess 
vascular stiffness (RAC MPA) optimal screening method for presence of pulmonary hypertension. 
And/or analysis used for combined modalities e.g. sPAP >38mmHg AND RAC <41%, or RAC 
<41% /unable to estimate sPAP. 
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The combination of echo estimated sPAP >54 mmHg and RVMI of > 32.8 g/m2 had 

the highest accuracy for the detection of mPAP ≥ 35mmHg (98% sensitivity, 79% 

specificity 88% PPV and 96% NPV). Table 3-8 summarises performance 

characteristics for each screening method for detection of severe PH in lung 

disease patients. 

 

Table 3-8 Sensitivity and specificity of imaging modalities and NTproBNP for detection of 
severe PH in chronic lung disease patients 
 

Variable 

threshold 

Sensitivity 

(95% CI) 

Specificity 

(95% CI) 

PPV 

(95% CI) 

NPV 

(95% CI) 

Echo estimated 
sPAP >54mmHg 

85 (72-93) 61 (42-77) 78 (65-88) 71 (51-87) 

RVEDD >3.5cm 89 (75-96) 46 (28-66) 72 (58-84) 72 (47-90) 

NTproBNP 
>230pg/ml 

91 (79-98) 58 (39-75) 75 (62-86) 83 (61-95) 

RVMI > 32.8g/m2 87 (76-95) 57 (39-74) 76 (64-86) 74 (54-89) 

VMI >0.6 91 (79-97) 44 (26-62) 73 (60-83) 74 (49-91) 

RAC MPA <32.5% 94 (84-99) 47 (29-65) 75 (63-85) 83 (59-96) 

Echo estimated 
sPAP + RAC 

98 (90-100) 73 (54-87) 85 (74-93) 96 (80-100) 

Echo estimated 
sPAP + RVMI 

98 (90-100) 79 (61-91) 88 (77-95) 96 (81-100) 

Echo estimated 
sPAP + VMI 

96 (87-100) 73 (54-87) 85 (73-93) 92 (75-99) 

Echo estimated 
sPAP + NTproBNP 

96 (87-100) 85 (68-95) 91 (80-97) 93 (78-99) 

Combination of echocardiogram to assess pressure and CMR to measure RV mass optimal 
screening for severe PH in lung disease. And/or analysis used for combined modalities e.g. sPAP 
>54mmHg AND RVMI >32.8g/m2, or RVMI >32.8 g/m2 /unable to estimate sPAP 
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3.4.3 Survival and prognostic factors 

Mean length of follow up for the entire population was 801 ± 722 days (range 17 – 

3582 days). 22 (of 30) patients with mild-moderate PH and 3 (of 13) patients with 

lung disease but no PH died during the follow up period. Survival in those with 

mild-moderate PH in comparison to those with severe PH/lung disease, the latter 

of which were treated with pulmonary vasodilators was no different (1 and 3 year 

estimated survival 67.5% vs 76.6% and 32.1% vs 40.1% respectively, p=0.441). Both 

demonstrated poorer survival in comparison to those without PH (1 and 3 year 

estimated survival 92.3% and 80.8%, p= 0.006 & 0.023 with those with mild-

moderate and severe PH respectively). KM survival curves according to PH severity 

are shown in figure 3.18. 

 

Figure 3.18. Kaplan Meier curves describing survival by severity of pulmonary hypertension 
in lung disease patients. 
 

Survival was comparable in those with mild-moderate PH and severe PH who were treated with 
pulmonary vasodilators (logrank p = 0.441). Both groups displayed reduced survival in comparison 
to lung disease patients without PH (logrank p = 0.006 and p = 0.023 respectively). 

All patients in severe PH group received pulmonary vasodilator therapy until date of death or 
censored due to loss of follow up (n=1). 
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Observed survival was worse in those with severe PH/lung disease, 1 & 3 year 

estimated survival rates compared to IPAH were 75% versus 90% and 40% versus 

72% respectively (p <0.0001). However those with lung disease were significantly 

older, mean age 67 versus 49 years in IPAH (p <0.0001). When the older age of the 

population was considered on multivariate cox, the presence of lung disease 

remained associated with worse survival (HR 0.489 95%CI 0.299-0.798, p=0.004). 

Kaplan Meier curve describing the survival of severe PH/lung disease patients in 

comparison to IPAH patients is shown in figure 3.19. 

 

Figure 3.19. Kaplan Meier survival plot comparing outcome of patients with severe PH and 
lung disease in comparison to IPAH patients. 
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Survival in those with emphysema was reduced in comparison to IPAH (1-year 

survival 74% and 3-year 32% p=0.002). CPFE patients had a comparable 1 year 

survival rate, although the overall survival at 3 years was significantly lower than 

IPAH (1-year survival 88%, 34% at 3 years, p=0.001). ILD patients had the poorest 

survival, 1-year survival 60%, 3-year 19%, worse than IPAH (p <0.0001) and COPD 

patients (p=0.014). Survival between other lung phenotypes did not differ. KM 

curve describing survival of the population according to lung disease phenotype is 

shown in figure 3.20. 

There was no difference in survival observed between those with severe PH/mild 

lung disease and severe PH/severe lung disease (1 and 3 year estimated survival 

rates 87 % versus 76 % and 47 % v 44 % respectively, p = 0.411). KM survival curve 

according to lung disease severity is shown in Figure 3.21 

 

Figure 3.20. Survival according to lung disease phenotype associated with severe PH. 
 

Survival between lung disease phenotypes did not differ, with the exception of poorer survival in 
those with ILD in comparison to COPD diagnoses (logrank p = 0.014). 
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Figure 3.21. Kaplan Meier survival curve for patients with severe PH/severe lung disease in 
comparison to those with mild-moderate lung disease and severe PH. 
 

No significant difference in survival was observed according to severity of associated lung disease 
(logrank p = 0.411) 
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In a multivariate model with age, male sex, higher mPAP and lower LVEDVI were 

independently associated with reduced survival in lung disease patients with mPAP 

<35mmHg (HR 1.153 95% CI 1.003-1.326, p=0.045 and HR 0.944 95% CI 0.907-0.984 

p=0.006 respectively). Table 3-9 shows the univariate and multivariate survival 

analysis. 

Table 3-10 displays prognostic relevance of mPAP and sPAP in comparison to 

indices of RV dysfunction measured by RHC, Echocardiography and CMR on 

univariate survival analysis for all 167 lung disease patients. Only 62 patients had 

all variables available for multivariate analysis. In a model with age, mPAP, and 

RAP, RVEF but not RVEDD on echo remained an independent prognostic factor (HR 

0.965 95%CI 0.934-0.997, p=0.032).  
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Table 3-9. Prognostic variables in mild - moderate pulmonary hypertension associated with 
lung disease. 

 

Variable Univariate model Multivariate model 

 HR (95%CI) P value HR (95%CI) P value 

Age 1.044 (0.997 - 1.092) 0.06 1.038 (0.989 - 1.090) 0.132 

Sex (♂=0) 0.698 (0.308 - 1.583) 0.390 0.201 (0.069 - 0.583) 0.003 

Echo sPAP 1.061 (1.029 – 1.094) <0.001   

mPAP 1.137 (1.033 - 1.252) 0.009 1.153 (1.003 - 1.326) 0.045 

RAP 0.846 (0.703 - 1.017) 0.075   

PVR 1.288 (1.034 - 1.606) 0.024   

SV/PP 0.420 (0.228 – 0.777) 0.006   

DLCO 0.975 (0.954 - 0.997) 0.024   

6MWD 0.997 (0.993 - 1.001) 0.162   

NTproBNP 1.421 (0.935 - 2.162) 0.100   

RVEF 0.964 (0.918 - 1.011) 0.131   

RVEDVI 0.998 (0.974 - 1.024) 0.901   

LVEF 0.973 (0.702 - 1.349) 0.871   

LVEDVI 0.962 (0.930 - 0.994) 0.019 0.944 (0.907 - 0.984) 0.006 

RAC MPA 0.964 (0.931 - 0.999) 0.046   

 

Higher mPAP, male sex and lower LV end diastolic volume were independent predictors of survival 
on multivariate cox proportional regression analysis.  
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Table 3-10. Indices of RV function assessed by 4 modalities (RHC, Echocardiography, CMR 
and NTproBNP) as predictors of survival in all patients with chronic lung disease. 

 

Variable n HR (95%CI) p value 

Right heart catheterisation   

mPAP 167 1.001 (0.987 - 1.015) 0.914 

RAP 167 1.064 (1.026 – 1.104) 0.001** 

CI 167 0.466 (0.313 – 0.694) <0.001*** 

Echocardiography   

PASP 154 1.007 (0.998 – 1.016) 0.144 

TAPSE 70 0.882 (0.457 – 1.702) 0.708 

RVEDD 130 1.297 (1.031 – 1.631) 0.026* 

Cardiac MRI   

RVEF 92 0.971 (0.952 – 0.990) 0.003** 

RVESVI 92 1.013 (1.003 – 1.023) 0.009** 

SVI 92 0.968 (0.940 – 0.996) 0.023* 

    

NTproBNP 126 1.332 (1.139 – 1.559) <0.001*** 

 

Univariate cox proportional regression analysis shown. Echocardiography derived parameters 
performed less well than other modalities in assessing prognosis related to RV dysfunction. The 
severity of PH, assessed by either echocardiography (PASP) or RHC (mPAP) did not relate to 
outcome in comparison. 
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3.4.3.1 Prognostic factors in severe PH associated with lung disease 

A comparative analysis of severe PH/lung disease survivors at 3 years was carried 

out. Table 3-11 shows the characteristics of non survivors and survivors. Survivors 

were characterised by less RV dysfunction (lower RAP and NTproBNP, higher CI 

and RVEF) and lower vascular stiffness (greater SV/PP). 

In a model with age, sex, PVR and NTproBNP, RAP and CI independently predicted 

survival in patients with severe PH/lung disease (HR 1.08195% CI 1.026 – 1.139, HR 

0.350 95% CI 0.167 – 0.696 respectively, both p = 0.003). Table 3-12 shows the 

univariate and multivariate cox survival analysis for IPAH and severe PH/lung 

disease patients. 

Univariate cox survival analysis for severe PH/lung disease patients according to 

phenotype is shown in table 3-13. Haemodynamics but not lung function related 

to outcome.  

In patients with severe PH and ILD, lower CI and higher PAWP were associated 

with death (HR 0.098 95% CI 0.130 – 0.733 p=0.024 and HR 1.254 95% CI 1.006 – 

1.562 p = 0.044 respectively). 

In patients with severe PH and CPFE, increased RAP (HR 1.113 95% CI 1.029 – 1.204 

p = 0.007), PVRI (HR 1.078 95% CI 1.005 – 1.157 p = 0.036) and NTproBNP (HR 1.857 

95% CI 1.149 – 3.00 p = 0.011) and lower CI (HR 0.276 95% CI 0.083 – 0.912 p = 

0.035) or SVO2 (HR 0.936 95% CI 0.898 – 0.977 p = 0.002) were associated with 

worse survival. 

In patients with emphysema/preserved FEV1, lower 6MWD (HR 0.994 95% CI 0.990 

– 0.998 p = 0.003), CI (HR 0.141 95% CI 0.039 – 0.512 p = 0.003) and SV/PP (HR 

0.037 95% CI 0.005 – 0.235 p = 0.001) and increased RAP (HR 1.374 95% CI 1.182 – 

1.597 p <0.0001) and PVRi (HR 1.138 95% CI 1.053 – 1.229 p = 0.001) were 

predictive of worse survival. 

In those severe PH/lung disease patients whom had undergone CMR, in a 

multivariate model with age, sex, PVR and SVI, RVEF was an independent predictor 

of survival (HR 0.946 95% CI 0.907 – 0.986 p = 0.009). Table 3-14 shows the 

univariate and multivariate survival analysis. 
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Table 3-11. Characteristics of survivors and non-survivors at 3 years follow up with severe 
PH/lung disease. 

 Survivors (32) Non-survivors (65) P value 

Age years 64 ± 11 68 ± 9 0.028* 
Sex % 52♀ 48♂ 36♀ 64♂ ns 

Haemodynamics 
  

  mPAP mmHg 48 ± 12 47 ± 8 0.524 
  RAP mmHg 6 ± 4 10 ± 5 <0.0001*** 
  CI  L/min/m2 2.2 ± 0.5 1.7 ± 0.4 <0.0001*** 
  PVR w.u. 10.6 ± 5 12.3 ± 4 0.084 
  PAWP mmHg 9 ± 3 8 ± 3 0.800 
  SV02 % 63 ± 10 58 ±10 0.010* 

  SV/PP 1.2 ± 0.5 0.9 ± 0.4 0.009** 

Ventricular structure & function                n=18                                                                                           n = 29 
 

  RVEF % 40 ± 14 29 ± 12 0.003** 
  LVEF % 64 ± 16 59 ± 14 0.347 
  SVI  L/min/m2 32 ± 10 25 ±7 0.010* 
  RVMI g/m2 53 ± 14 57 ± 20 0.446 
  RVEDVI ml/m2 77 ± 21 95 ± 32 0.036* 
  RVESVI ml/m2 48 ± 22 68 ± 28 0.010* 
  MPA RAC (%) 19.7 (17 - 22) 16.4 (15 - 20) 0.112 

Lung Function 
  

  FEV1 % 75 (59 - 102) 77 (60 - 90) 0.759 
  FVC % 101 (80-123) 98 (77 - 114) 0.402 
  TLC % 101 (94-108) 88 (80-103) 0.019* 
  DLCO %  25 (19-42) 24 (18-31) 0.360 
  Pa02 kPa (n) 7.6 ± 1.4 (23) 7.1 ± 1.6 (40) 0.198 
      

Functional Class % (n) 
   

  I/II 16.1 (5) 8.8 (5) ns 
  III 74.2 (23) 63.2 (36)  
  IV 9.7 (3) 28.0 (16)  

6MWD m 
     (n) 

226 ± 114 
(30) 

188 ± 93 
(46) 

0.117 

NTproBNP pg/ml 
     (n) 

1051 (239 – 2741) 
(19) 

2474 (1357 – 6883) 
(49) 

0.002** 

∆ NTproBNP pg/ml 0.0 (-609 - +325) (19) -179 (-1378 - +637) (37) 0.809 
∆ 6MWD m 27 (-29 - +80) (29) 31 (-32 - +73) (30) 0.958 
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Table 3-12. Univariate and multivariate cox proportional hazard analysis of prognostic factors in severe PH/lung disease in comparison to IPAH. 

Variable Univariate model Multivariate model 

 IPAH Severe PH/Lung disease IPAH Severe PH/Lung disease 

 HR(95%CI) p-value HR (95%CI) p-value HR (95%CI) p-value HR (95%CI) p-value 

Age 1.047 (1.002-1.074) 0.001 1.033 (1.009-1.058) 0.007 1.012 (0.981-1.043) 0.460 1.017 (0.992-1.042) 0.184 

Sex 0.911 (0.383-2.165) 0.833 0.630 (0.430-0.986) 0.043 0.339 (0.120-0.952) 0.040 0.649 (0.402-1.048) 0.077 

6MWD 0.994 (0.990-0.998) 0.003 0.998 (0.995-1.000) 0.056 0.994 (0.998-0.999) 0.020   

NTproBNP 1.066 (0.756 -1.503) 0.717 1.445 (1.152-1.813) 0.001   1.277 (0.990-1.139) 0.059 

Haemodynamic Variables      

mPAP 1.005 (0.976 –1.034) 0.744 0.986 (0.965-1.008) 0.222     

RAP 1.006 (0.942-1.075) 0.855 1.087 (1.044-1.133) <0.0001   1.081 (1.026-1.139) 0.003 

PVR 1.009  (0.950-1.072) 0.767 1.030 (0.986-1.076) 0.185 1.036 (0.964-1.113) 0.335 0.930 (0.864-1.001) 0.052 

PVRI 1.004 (0.970-1.039) 0.813 1.039 (1.011-1.068) 0.006     

CI 0.912 (0.436-1.905) 0.805 0.324 (0.194-0.540) <0.0001   0.350 (0.167-0.696) 0.003 

PAWP 0.964 (0.872-1.066) 0.477 1.000 (0.934-1.071) 0.998     

SV02 0.989 (0.948-1.032) 0.605 0.974 (0.953-0.996) 0.021     

SV/PP 0.537 (0.174-1.650) 0.278 0.517 (0.288-0.929) 0.027     

Lung Function        

DLCO 0.954 (0.934-0.975) <0.0001 0.977 (0.956-0.998) 0.030 0.966 (0.941-0.992) 0.011   

Pa02 0.808 (0.597-1.094) 0.168 0.798 (0.642-0.991) 0.041     

         
CMR data is not included as only 58/124 patients had CMR data. The analysis of this subset can be seen in table 3-14 
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Table 3-13.Univariate cox proportional hazards analysis of prognostic factors according to lung disease phenotype associated with severe PH. 

Variable ILD CPFE Emphysema COPD 

 HR(95%CI) P value HR(95%CI) P value HR(95%CI) P value HR(95%CI) P value 

Age 1.011 (0.964 – 1.061) 0.641 1.015 (0.950 – 1.086) 0.655 1.036 (0.985 - 1.089) 0.173 1.051 (1.003-1.101) 0.037 

Sex  ♂ = 0 0.900 (0.289 – 2.800) 0.856 1.149 (0.458 – 2.881) 0.767 1.022 (0.432 – 2.418) 0.961 0.303 (0.126-0.730) 0.008 

6MWD 0.955 (0.989 - 1.00) 0.061 0.999 (0.991 – 1.008) 0.897 0.994 (0.990-0.998) 0.003 0.999 (0.996-1.003) 0.722 

NTproBNP 1.424 (0.750 – 2.702) 0.280 1.857 (1.149 - 3.000) 0.011 1.514 (0.941 – 2.436) 0.088 1.385(0.898-2.137) 0.140 

Haemodynamics        

mPAP 0.975 (0.916 – 1.038) 0.430 1.024 (0.973 – 1.078) 0.359 1.026 (0.975 – 1.079) 0.323 0.972 (0.939-1.006) 0.107 

RAP 1.094 (0.997 - 1.200) 0.058 1.113 (1.029 - 1.204) 0.007 1.374 (1.182 - 1.597) <0.0001 1.018 (0.941-1.101) 0.654 

PVRi 1.063 (0.959 – 1.177) 0.245 1.078 (1.005 - 1.157) 0.036 1.138 (1.053 - 1.229) 0.001 1.004 (0.960-1.050) 0.853 

CI 0.098 (0.130 - 0.733) 0.024 0.276 (0.083 - 0.912) 0.035 0.141 (0.039 - 0.512) 0.003 0.471 (0.213-1.039) 0.062 

PAWP 1.254 (1.006 - 1.562) 0.044 1.018 (0.879 – 1.179) 0.815 0.909 (0.788 – 1.049) 0.192 0.927 (0.814-1.056) 0.255 

SVO2 0.937 (0.873 - 1.005) 0.068 0.936 (0.898 - 0.977) 0.002 0.972 (0.929 – 1.017) 0.215 0.988 (0.949-1.028) 0.548 

SV/PP 1.853 (0.126 – 26.859) 0.659 0.252 (0.061 - 1.048) 0.058 0.037 (0.005 - 0.235) 0.001 1.174 (0.553-2.493) 0.677 

Lung Function        

FEV1   1.001 (0.982 – 1.021) 0.891 0.995 (0.971 – 1.012) 0.688 1.019 (0.989-1.051) 0.219 

FVC 0.974 (0.938-1.012) 0.177       

DLCO 0.955(0.898-1.046) 0.146 1.022 (0.953 – 1.096) 0.539 0.951 (0.900 - 1.005) 0.077 0.976 (0.945-1.009) 0.152 

CMR data is not included as only 58/124 patients had CMR data. The analysis of this subset can be seen in table 3-14 
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Table 3-14. Indices of right and left ventricular structure & function as prognostic factors in 
severe PH associated with chronic lung disease. 

 

Variable Univariate model Multivariate model 

HR (95%CI) P value HR (95%CI) P value 

RVEF 0.939(0.907-0.972) <0.0001 0.946 (0.907-0.986) 0.009 

RVEDVI 1.014(1.003-1.026) 0.017   

RVESVI 1.019(1.006-1.031) 0.003   

RVMI 1.030(1.009-1.051) 0.004   

LVEF 0.975(0.951-0.999) 0.040   

LVEDVI 0.993(0.972-1.015) 0.525   

LVMI 1.005(0.981-1.030) 0.682   

SVI 0.939(0.897-0.983) 0.007 0.943 (0.888-1.001) 0.053 

In multivariate analysis with age, sex, PVRI and SVI, lower RVEF was an independent predictor of 
poorer prognosis. 

  



162 
 

 

3.4.4 Response to PH therapies 

In those treated with pulmonary vasodilators due to a diagnosis of either IPAH or 

severe PH/lung disease, 29 patients (9 IPAH, 4 COPD, 5 CPFE, 2 ILD and 9 

emphysema/preserved FEV1) were unable to perform a 6MWT at diagnosis. 18 

patients died prior to their first follow up (4 IPAH, 4 emphysema/preserved FEV1, 

1 CPFE, 6 ILD, 3 COPD). Of these, 9 were unable to carry out a 6MWT at diagnosis. 

Median time to follow up did not differ between IPAH and lung disease groups (111 

(97-150) vs 111(96-148) days p=0.888). Exercise oxygen saturation data was 

available for 47 patients with severe PH/lung disease. No increase in desaturation 

on exercise following PH therapy was observed (-8% (-30 - -6) to -9 %(-15- -6) 

p=0.834). 

Baseline and follow up 6MWD, NTproBNP and NYHA FC for all the groups are shown 

in table 3-15. Figures 3.22 and 3.23 show the median ∆6MWD and ∆NTproBNP 

following PH treatment for each group.  
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Table 3-15. Baseline and follow up 6MWD, NTproBNP and NYHA FC after a minimum of 3 
months of therapy for severe PH/lung disease patients in comparison to IPAH. 
 

Group Baseline Follow up P value 

IPAH 

6MWD (m) n=58 
NTproBNP n=42 
NYHA FC n=63 

 
337±114 
1085 (449-2545) 
17/41/4 

 
376±97 
788 (289-1655) 
30/29/3 

 
<0.0001*** 
0.001** 
0.055 

Lung Disease (all) 

6MWD (m) n=80 
NTproBNP pg/ml n=82 
NYHA FC n=98 

 
224±102 
2245 (850-4295) 
12/75/13 

 
243 ±102 
1667 (614-3590) 
18/74/8 

 
0.032* 
0.008** 
0.302 

COPD 

6MWD (m) n=34 
NTproBNP pg/ml n=28 
NYHA FC n=32 

 
220±112 
2501 (514-4213) 
7/23/4 

 
245±107 
1938 (399-3817) 
11/21/2 

 
0.033* 
0.063 
0.439 

CPFE 

6MWD (m) n=16 
NTproBNP pg/ml n=21 
NYHA FC n=23 

 
191±70 
2258 (1153-5992) 
0/19/4 

 
230±94 
2471 (461-3325)+ 

1/20/2 

 
0.103 
0.015* 
0.429 

Emphysema 

6MWD (m) n=19 
NTproBNP pg/ml n=19 
NYHA FC n=27 

 
237±102 
1378 (440-3881) 
1/23/3 

 
224±88 
1449 (663-3082) 
1/24/2 

 
0.574 
0.365 
0.895 

ILD    

6MWD (m) n=11 261±100 287±119 0.180 
NTproBNP pg/ml n=13 2474 (1085-5540) 1204 (750-3308) 0.011* 
NYHA FC 4/10/2 5/9/2 0.921 
    

    

Severe PH/mild lung disease (n=32)   

6MWD (m) n=22 255±109 259±118 0.788 

NTproBNP pg/ml n=21 1852 (645-5594) 2073(599-3308) 0.110 

NYHA FC 6/19/4 6/19/4 ns 

Severe PH/severe lung disease (n=58)   

6MWD (m) n=36 191±85 224±100 0.009* 

NTproBNP pg/ml n=44 3360 (1233-6831) 2536 (484-4309) 0.0009** 

NYHA FC 2/36/8 7/36/3 0.08 

    

Subgroup analysis according to phenotype of lung disease and severity of lung disease shown. 
Data displayed as mean ± SD or median (IQR) according to data distribution. Paired statistical 
analysis performed. 
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3.4.4.1 Six minute walk test 

58 patients with IPAH and 80 patients with severe PH/lung disease had paired 

6MWT observations for analysis. 6MWD improved in the IPAH cohort, from 337 ± 

114 m at baseline to 376 ± 97 m (p <0.0001) and in those with severe PH/lung 

disease from 224 ± 102 m to 243 ± 102m, p = 0.032). 6MWD improved by 31m after 

3 months of PH targeted therapies in those with IPAH compared with 24m in those 

with severe PH/lung disease. Figure 3.22 shows the median ∆6MWD for IPAH and 

lung disease phenotype groups. There was no significant difference in ∆6MWD 

between the groups with the exception of fall in 6MWD in emphysema group 

(median -17m) in comparison to IPAH (+31m), p = 0.033.  

Significant improvement in 6MWD according to lung disease phenotype was only 

seen in those with COPD, (220 + 112 m to 245 ± 107 m p = 0.033). 6MWD improved 

from 185 ± 85m to 216 ± 100m, p=0.021, in those with severe PH/severe lung 

disease in comparison to those with severe PH/mild lung disease where 6MWD was 

unchanged (255 ± 109 m to 259 ± 118 m). 

6MWD increased in 49/80 severe PH/lung disease patients by average 59m (range 

8 – 200m) and was unchanged or decreased in 31/80 patients, average -33m (range 

-195 to 0m). No baseline characteristic predicted likelihood of an improvement in 

6MWD with therapy, with the exception of a lower baseline 6MWD (203m vs 257m, 

p=0.018). Table 3-16 displays the clinical characteristics of patients according to 

change in 6MWD.
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Figure 3.22 ∆6MWD with PH therapy in IPAH and severe PH/lung disease patients. 
 

Median values shown. No significant difference across groups demonstrated, ANOVA p = 0.170, 
post hoc analysis, no difference in ∆6MWD between IPAH and lung disease patients (p = 0.236). 
only Emphysema group displayed fall in ∆6MWD in comparison to IPAH, p = 0.033. No significant 
difference between lung disease phenotypes demonstrated.
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3.4.4.2 NTproBNP 

42 IPAH patients and 78 patients with severe PH/lung disease had paired NTproBNP 

levels for analysis. NTproBNP fell following introduction of PH therapy in both 

groups, from 1085 (449 - 2545) pg/ml to 788 (289 - 1655) pg/ml (p<0.0001) in 

those with IPAH and from 2245 (850 – 4295) to 1667 (614 – 3590) pg/ml in those 

with severe PH/lung disease (p = 0.008). NTproBNP improved by an average -396 

(-1133 - 97) pg/ml in IPAH and by -211 (-1311 - 205) pg/ml in severe PH/lung 

disease. 

On subgroup analysis by lung disease phenotype, significant improvement in level 

of NTproBNP were seen in those with CPFE (median -596 pg/ml) and ILD (median 

-390 pg/ml) only. Figure 3.23 shows the median ∆NTproBNP following PH therapy 

for each phenotype. There was no significant difference in levels of ∆NTproBNP 

across groups (p = 0.194). Emphysema phenotype showed no improvement in 

NTproBNP (∆NTproBNP +38pg/mL), significant difference in comparison to IPAH 

(p=0.022), ILD (p=0.024) and CPFE (p=0.037) where median ∆NTproBNP were -396, 

-412 and -596 pg/mL respectively.  

NTproBNP levels fell in those classed as having severe PH/severe lung disease from 

3360 (1233-6831) to 2536 (484 – 4309) pg/ml, p = 0.0009 but not those with severe 

PH/mild lung disease. 

NTproBNP fell in 48/82 severe PH/lung disease patients, average -1034 (range -

18101 to -4) pg/ml, and increased or remained static but elevated in 34/82, 

average 333 (range 0 to -17913) pg/ml. No baseline clinical characteristics 

predicted reduction in NTproBNP with PH therapy (data shown in table 3-16).  
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Figure 3.23 ∆NTproBNP with PH therapy for IPAH patients in comparison to severe PH/lung 
disease phenotypes 
 

No significant difference was demonstrated across groups (Kruskall Wallace p=0.194). Similar levels 
of ∆NTproBNP observed between IPAH and lung disease patients (-211 and -396pg/mL respectively, 
p=0.526). On post hoc analysis, Emphysema phenotype demonstrated significant increase in 
NTproBNP (median +38pg/mL) in comparison to IPAH (p=0.022), CPFE (p=0.037), ILD (p=0.024) 
with trend in comparison to COPD (p=0.065). There was no difference between other phenotypes. 

 



 

Table 3-16 Comparative analysis of baseline characteristics of severe PH/lung disease patients with improvement in 6MWD or NTproBNP after PH therapy 
against nonresponders. 

Variable 6MWD  NTproBNP 

 increase decrease p-value  decrease increase p-value 

n 49 31   48 34  

Age (years) 65 ± 11 65 ± 10 0.707  66 ± 12 68 ± 8 0.499 

Phenotype % (n) 
Emphysema 
COPD 
CPFE 
ILD 

 
16.3 (8) 
50 (24) 

20.4 (10) 
14.3 (7) 

 
35.5 (11) 
32.3 (10) 
19.3 (6) 
12.9 (4) 

 
0.239 

  
16.7 (8) 
33.3 (16) 
29.2 (14) 
20.8 (10) 

 
32.4 (11) 
38.2 (13) 
20.6 (7) 
8.8 (3) 

 
0.200 

mPAP (mmHg) 45 (39-54) 44 (42-51) 0.812  46 (41-51) 43 (39-50) 0.437 

RAP (mmHg) 7 ± 4 8 ± 4 0.187  8 ± 5 8 ± 5 0.749 

PVR (Wood Units) 10 (8-13) 10 (8-13) 0.924  11.3 (9 -15) 9.3 (8-16) 0.451 

CI (l/min/m2) 2.1 ± 0.5 2.1 ± 0.6 0.915  1.9 ± 0.5 2.0 ± 0.7 0.613 

SV/PP 1.0 ± 0.4 1.0 ± 0.4 0.874  1.0 ± 0.5 1.0 ± 0.5 0.947 

FEV1 (%) 69 (54-85) 80 (59-98) 0.168  74 (50 -95) 81 (66-93) 0.220 

FEV1/FVC (%) 58 (49-67) 63 (56-69) 0.171  63 (56-71) 59 (53-68) 0.548 

DLCO (%) 25 (21-36) 29 (21-37) 0.762  26 (18-36) (41) 24 (21-33) (32) 0.938 

Pa02 (KPa) 7.6 ± 1.4 7.7 ± 1.9 0.841  7.6 ± 1.2 7.4 ± 2.2 0.659 

6MWD (m) 203 ± 101 257 ± 94 0.018*  189 ± 86 (40) 231 ± 126 (30) 0.108 

NTproBNP (pg/ml) 1715 (506-3967) (34) 1559 (485-2674) (24) 0.528  2867 (1213 – 6041) 1415 (361-2915) 0.011* 

RVEF(%) 36 ± 14 (26) 33 ± 11 (20) 0.408  30 ± 12 (26) 36 ± 13 (14) 0.126 

RVEDVI (ml/m2) 86 ± 30 93 ± 25 0.397  89 ± 26 99 ± 36 0.288 

SVI (ml/min/m2) 29 ± 9 28 ± 9 0.863  26 ± 6 29 ± 9 0.163 
No variable differed between responders and non responders, defined by improvement in 6MWD or NTproBNP. It was not therefore possible to identify those patients 
likely to benefit from PH specific therapy using baseline characteristics.
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3.4.4.3 NYHA FC 

Paired functional class status was available for 93 patients with severe PH/lung 

disease and 62 IPAH patients. After a minimum of 3 months of PH treatment, 77% 

(n=72) remained in FC III and 9% (n=8) in FC IV in those with severe PH/lung disease 

with no improvement in comparison to baseline (p=0.421). In IPAH, 47% (n=29) 

remained in FC III and 5% (n=3) in Fc IV at follow up. Although trend toward 

improvement was demonstrated this did not reach statistical significance 

(p=0.055). No improvement in FC was demonstrated on subgroup analysis by either 

lung disease phenotype or severity of the lung disease. 

3.4.4.4 Right ventricular function 

11 patients with PH associated with lung disease underwent CMR at diagnosis and 

after minimum 3 months of PH therapy. Patient demographics are shown in table 

3-17. RVEF remained unchanged, 39 ± 15 % to 40 ± 15 % p=0.72. There was a trend 

towards improvement in LV filling, LVEDVI increased from 48 ± 12 to 53 ± 12 

ml/m2, p = 0.054. SV increased from 53 ± 17 ml to 62 ± 14 ml, p = 0.004. There 

was no relationship between change in SV and change in 6MWD (p = 0.39). Figure 

3.24 displays the paired analysis. 
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Figure 3.24 Change in stroke volume and RV function after PH therapy in patients with severe 
PH and lung disease. 
 

Significant improvement in stroke volume [a] but not RV function (p=0.720) [b] and trend towards 
improved LV filling (LVEDVI [c]) demonstrated in paired analysis. 

  



171 
 

Table 3-17 Characteristics of severe PH/lung disease patients with follow up cardiac MRI 
after PH therapy. 
 

Patient 
ID 

Diagnosis Age Sex mPAP 
mmHg 

PVR 
w.u 

CI 
l/min 

FEV1 
% 

DLCO 
% 

Therapy ∆SV 
mL 

1 COPD 35 M 73 24 1.3 58 61 ERA 16 

2 COPD 61 M 35 5.9 2.9 35 25 ERA -2 

3 COPD 61 F 53 10.2 1.9 59 31 PDE5i 13 

4 Emphysema 80 F 42 10.6 1.8 126 21 PDE5i 11 

5 Emphysema 61 M 50 11 1.9 78 20 PDE5i 8 

6 Emphysema 71 M 42 8.1 2.5 101 40 ERA -7 

7 CPFE 66 M 29 4.9 2.3 97 27 PDE5i 15 

8 CPFE 54 M 65 19.5 1.8 30 15 PDE5i 20 

9 CPFE 70 M 38 6.2 2.2 75 14 PDE5i 15 

10 ILD 74 F 34 4.4 3.1 106 33 PDE5i 4 

11 ILD 42 M 55 10.1 2.3 98 26 PDE5i 10 
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There was no difference in survival between severe PH/lung disease patients with 

an increase in 6MWD on PH therapy at follow up and those without (1 and 3 yr 

survival 87% V 77% and 42% v 46% respectively, p = 0.630). ROC analysis, shown in 

figure 3.26, determined an optimal threshold of 193m walked at follow up (youden 

index 0.45). Distance walked greater than this was not associated with improved 

survival (shown in figure 3.25, p = 0.08), but inability to perform a 6MWT despite 

therapy was significantly predictive of worse survival (p < 0.0001). KM curve for 

survival according to 6MWD at follow up is shown in figure 3.25.  

∆6MWD did not predict survival in those with lung disease on either univariate (p 

= 0.820) or multivariate analysis in a model with age, sex and mPAP (p = 0.427).  
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Figure 3.25. Kaplan Meier survival curves described survival in severe PH/lung disease 
according to 6MWD at follow up in comparison to those unable to perform 6MWT 
 

Patients unable to perform a 6MWT had reduced survival in comparison to both those 6MWD 
≤193m and >193m, logrank p = <0.0001 for both), but similar survival observed in walkers (p = 
0.08). 

 

 

Figure 3.26 Receiver operator curve for sensitivity and specificity of 6MWD whilst 
undergoing PH therapy to determine risk of death at 1 year. 
 

Optimal threshold < 193m walked determined by Youden analysis. 
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Survival did not differ in severe PH/lung disease patients whose NTproBNP fell (by 

any amount) with PH therapy compared to those who did not (1 yr survival 76 % v 

67 % and 3 yr 38 % v 25 % respectively p = 0.430).  

In a model with age, sex, PVR and RAP, ∆NTproBNP independently predicted 

survival in those with severe PH/ lung disease (HR 1.479 95%CI 1.045-2.093, 

p=0.027). 

Receiver operator curve for survival at 1 year (shown in figure 3.28) identified an 

optimal threshold of <1222 pg/ml whilst on therapy (youden index 0.53). 

NTproBNP > 1222 pg/ml 91% sensitive and 62% specific for risk of death. 

A level of NTproBNP < 1222 pg/ml was associated with improved survival (1 and 3 

year survival 95 % versus 54 % and 52 % versus 21% respectively, p < 0.0001). Figure 

3.27 shows KM survival curves. 
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Figure 3.27. Kaplan Meier survival curves describing outcome in severe PH/lung disease 
according to level of NTproBNP at follow up. 

 

 

Figure 3.28. Receiver operator curve to identify optimal threshold level of NTproBNP at 
follow up for increased risk of death at 1 year. 
 

Threshold value of >1222 pg/mL determined by Youden analysis. 
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3.5 Discussion 

The clinical characteristics described in this chapter demonstrate that mild to 

moderate pulmonary hypertension in chronic lung disease is characterised by early 

increases in vascular stiffness with adaptive RVH but preserved RV function in 

agreement with previous small studies (359). The development of elevation in 

pulmonary artery pressure is associated with worse survival, and deterioration in 

functional status defined by a drop in 6MWD. Consequently, survival in mild to 

moderate PH associated with lung disease is predicted by mPAP and pulmonary 

artery compliance (SV/PP). Severe PH associated with lung disease however, 

shares many characteristics with IPAH, with evidence of right ventricular failure. 

In the latter, it is indices of RV function, such as RAP, CI or RVEF rather than 

pulmonary artery pressure that relates to survival. This has implications for 

screening for PH in these populations. As described in results section 3.4.2, non 

invasive screening for PH is best approached by a combination of echo and index 

of vascular stiffness (such as relative area change of the main pulmonary artery 

by CMR) and severe PH by combination of echo and parameters of RV dysfunction, 

such as RV mass or NTproBNP. 

3.5.1 Characteristics and right ventricular dysfunction 

Severe PH in lung disease patients described in this chapter demonstrated severe 

hypoxaemia, grossly impaired DLCO, relatively mild impairment in lung function 

and more severe functional impairment measured by NYHA FC and 6MWD than 

IPAH patients despite similar haemodynamics. Similar characteristics have 

previously been reported in patients with COPD and severe PH (208, 356) and in 

small case series of smokers with emphysema but preserved lung volumes (375). 

The severity of lung function impairment (FEV1 in COPD or FVC in ILD) did not 

correlate with mPAP nor have prognostic value in our study. FEV1 did correlate 

with RVEF, and Pa02 with vascular compliance and RVEF, and inversely with mPAP. 

Correlations between Pa02 or lung function impairment and PAP have been 

described variably in the literature (204, 206, 334). In one study, Pa02 explained 

only 25% of the variance in PAP suggesting impairment of gas exchange is not the 

main determinant in development of PH in chronic lung disease (376). Scharf et al 

showed no relationship between right ventricular EF or volumes with measures of 

airflow obstruction (204) and minimally with Pa02 (r2=0.041). In IPF, poor or no 
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correlation between severity of PH and lung function impairment or CT fibrosis 

score have also been described (219, 377). The limited dispersion of FEV1 and Pa02 

values and use of LTOT in our cohort could have affected correlation. However, 

previous studies suggest only a weak or even no relationship between impaired 

lung function and PAP or RV function. It has been postulated that loss of >80% of 

normal lung function is required to cause a rise in PAP >25mmHg. The severe PH 

seen in or cohort therefore is unlikely to be predominantly driven by lung function 

impairment and alternate explanations for progressive vascular remodelling and 

characteristic similarities with IPAH.  

3.5.1.1 Imaging right ventricular function in chronic lung disease 

Good correlation occurred between echocardiography and CMR imaging of right 

ventricle dilatation, (RVEDD with RVEDVI) and to a lesser extent TAPSE with RVEF, 

in chronic lung disease patients. The latter is not surprising, as TAPSE only assesses 

longitudinal shortening and ventricular ejection, particularly in PH, has significant 

impairment from transverse contraction and TR. The strong relationship between 

RV dysfunction and survival in this chapter demonstrates importance of employing 

imaging modalities to assess RV function when monitoring these patients. 

3.5.1.2 Vascular stiffness 

Good correlation between cardiac MRI index of vascular stiffness (RAC MPA) and 

invasive SV/PP was seen. Both measures were found to have prognostic 

significance and additionally RAC was shown to reliably detect the presence of 

PH. Cardiac MRI therefore cannot only be applied to assess RV function in chronic 

lung disease, but also vascular stiffness in a single sitting. 

3.5.1.3 Functional status 

mPAP, RAP, SV/PP and DLCO independently predicted distance walked on 6MWT 

in all lung disease patients. This suggests that in addition to predicting survival, 

haemodynamics are a better predictor of functional status. This is in agreement 

with previous literature in severe PH/lung disease demonstrating more severe 

exertional dyspnoea than COPD patients with more marked airflow obstruction but 

lower PAP (208), and exhausted circulatory but residual breathing reserve at end 
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exercise (378). mPAP has also been shown to independently predict 6MWD in large 

cohort COPD patients some of whom had PH (207). 

3.5.1.4 NTproBNP 

Levels of NTproBNP were comparable in chronic lung disease patients without PH 

and those with mild-moderate PH, but were markedly elevated in the severe PH 

group. Good correlations with CMR determined RV dilatation and dysfunction 

(RVEDVI and RVEF respectively) in chronic lung disease patients without left 

ventricular dysfunction were demonstrated. Previous studies have shown levels of 

NTproBNP (or BNP) to be elevated in chronic lung disease and relate to left 

ventricular function, or left of right ventricular function during acute 

exacerbations (368, 371).  

NTproBNP was higher in severe PH/lung disease patients than IPAH patients 

despite similar haemodynamics. Furthermore, RVMI was higher in those with IPAH. 

This could suggest a greater degree of right ventricular dysfunction and impaired 

adaptation to afterload in lung disease patients. There was no significant 

difference in renal function to account for the higher NTproBNP (MDRD eGFR 63 

(51-82) vs 71 (53-82) ml/min/1.73m2 p=0.340). Lung disease patients were 

significantly older (67 vs 49 years) and NTproBNP has been shown to increase with 

age, +36% in men and +15% in females per 8.4 years in one study (379). PVR was 

higher (and therefore RV afterload) in the IPAH patients whom underwent MRI, 

and therefore we would expect a greater degree of RV adaptation. Additionally, 

RVMI has been shown to fall with age, a 5% reduction per decade of age has been 

shown (101). Differences in the demographics of the populations may therefore 

account for the apparent difference in NTproBNP and RVMI.   

3.5.2 Imaging the right ventricle to detect PH in chronic lung 
disease 

Echocardiography estimated sPAP has been shown previously to have low 

sensitivity, specificity and predictive values in patients with chronic lung disease, 

with success rates of 24-77% in estimating PAP in the literature (199, 380-383). 

When estimation of sPAP is possible, in COPD and pulmonary fibrosis, positive 

predictive values of 32% and 68% and negative predictive vales 93% and 67% 

respectively have been reported in the literature (199, 384). In our hands, 
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echocardiography estimated sPAP had a 91% PPV and 83% NPV for PH, and 

correlations between echocardiography sPAP and sPAP at right heart 

catheterisation were similar in both IPAH and chronic lung disease patients. It is 

however worth noting that the population described by this chapter is subject to 

selection bias, as all patients were assessed at a tertiary pulmonary hypertension 

centre due to a suspicion of pulmonary hypertension which largely would be as a 

result of echocardiography raised sPAP. There were therefore fewer patients with 

normal pulmonary artery pressures, and fewer still in whom sPAP could not be 

estimated. For severe PH, we found 78% PPV and 71% NPV with echocardiography 

estimated sPAP, reflecting poorer accuracy at higher levels of PH. This can be 

explained by greater degree of functional tricuspid regurgitation as right 

ventricular dilatation and dysfunction develops in severe PH. Regardless of the 

severity of PH, the non invasive detection of either PH or severe PH in chronic 

lung disease patients was improved by the addition of a second imaging method, 

RAC MPA in mild PH, and RVM or addition of biomarker NTproBNP, in severe PH. 

Additionally, cardiac MRI could be used to detect PH in those chronic lung disease 

patients where echocardiography is unable to estimate sPAP as RAC MPA and 

ventricular mass index (VMI) had comparable PPV. In severe PH, NTproBNP >230 

pg/ml or RAC MPA <32.5 % could be useful detection tools as they performed 

superiorly to echocardiography in this population. 

3.5.3 Survival and prognostic variables 

The development of pulmonary hypertension in patients with chronic lung disease 

was associated with significant impairment in prognosis. Interestingly, survival in 

those with mild-moderate PH and those with severe PH treated with pulmonary 

vasodilator therapy did not differ. Chaouat et al previously demonstrated worse 

survival in COPD patients with severe PH (208), which could suggest that 

pulmonary vasodilator therapy improved outcome in those with severe PH. 

Without a control arm it is impossible to conclude this, but suggests need for such 

study to be performed. Survival in patients with severe PH/lung disease in 

comparison to IPAH was reduced, despite age adjustment with ILD patients 

displayed poorer survival in comparison to other lung phenotypes.  

Our results show that pulmonary haemodynamics and right ventricular dysfunction 

are stronger predictors of survival than indices of lung function in chronic lung 
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disease. This is in agreement with previous studies of COPD patients receiving 

LTOT which reported no influence of FEV1 or Pa02 on survival (210, 385, 386). A 

PAP above 25 mmHg in LTOT treated chronic lung disease patients was associated 

with lower survival at 5 years, 33 % vs 66 % p<0.0001 (210) and prognostic 

significance of a raised mPAP in COPD both with and without LTOT has been 

recurrently reported (335, 376, 385) with threshold values of 30 mmHg or 40 

mmHg to define those at significantly increased risk (208, 387). In IPF, even a 

marginally elevated mPAP above 17 mmHg associated with reduced survival (213) 

and mPAP shown to be an independent predictor of survival (214). In the entire 

cohort of chronic lung disease patients included in this chapter, RV dysfunction 

whether assessed by invasive haemodynamics (RAP, CI), echocardiography 

(RVEDD), cardiac MRI (RVEF, RVESVI and SVI) or NTproBNP all related to prognosis. 

In patients with mild-moderate PH, mPAP was an independent predictor of survival 

in agreement with the studies above. In those with severe PH raised right atrial 

pressure and reduced cardiac index and ejection fraction were associated with 

poorer outcome, which is similar to studies of prognostic variables in pulmonary 

arterial hypertension.  

Reduced LVEF as a prognostic variable in severe PH with lung disease occurred 

without clinical left ventricular dysfunction and normal PAWP. Evidence of 

subclinical LV dysfunction on echocardiogram has been reported in COPD (388) 

alongside increased risk of cardiovascular abnormalities including increased 

arterial stiffness, (316, 389, 390) ischaemic heart disease and heart failure. LV 

dysfunction has been shown to relate to fat free mass and IL-6 linking to the 

catabolic-inflammatory COPD phenotype, and increased arterial stiffness (388). 

51/55 patients whom underwent CMR were smokers with an average 40 pack year 

history. Smoking has been shown to have acute effects on aortic pulse wave 

velocity (a measure of vascular stiffness) (391) and LV function (392).  

The ASPIRE registry reported similar 1 year but worse 3 year survival rates of 70% 

and 33% compared to 79% and 47% in our cohort (ILD patients excluded for 

comparison) respectively. 43 of 59 patients received PH therapy, were of similar 

age to our cohort however had a greater degree of pulmonary function impairment 

and included patients with elevated PAWP indicating left ventricular dysfunction. 

In addition severe PH was defined by an mPAP ≥40mmHg. ASPIRE reported SV02, 

age, FC IV and DLCO as independent predictors of survival however included 
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patients with mild and moderate PH in the survival analysis (356). Cottin et al 

reported a 1 year survival rate of 60% in patients with PH and CPFE syndrome, of 

whom 24/40 (60%) received PH therapy (227). Patients with mild to moderate PH 

(mPAP 24-56 mmHg) were also included, higher PVR, lower CI and DLCO were 

shown to predicted worse survival. Direct comparison with this cohort is therefore 

not possible, but both studies agree haemodynamics are more important 

determinants of prognosis. 

3.5.4 Response to PH therapy 

There is no evidence in the literature to support the use of pulmonary vasodilators 

in severe PH with lung disease. As discussed in section 3.1.3 previous studies have 

been of small sample size, did not always include RHC derived mPAP, and included 

patients with mild or even no PH with resultant contradictory conclusions (340, 

342). Concern of inducing worse hypoxaemia has been raised by previous 

vasodilator studies in COPD patients demonstrating a fall in Pa02 due to increased 

VQ mismatch (343). We did not demonstrate a deterioration in oxygen 

desaturation on 6MWT, although this should be interpreted with caution given the 

retrospective analysis of this data.  

Functional capacity defined by 6MWD (but not NYHA FC) improved, but to a lesser 

extent than IPAH patients despite similar haemodynamic characteristics at 

baseline. We did not demonstrate a survival benefit in those with an improved 

6MWD on treatment. This should be interpreted with caution as it possible that 

chronic lung disease patients are more ventilatory limited so an alternate endpoint 

should be considered to determine efficacy. It is also possible that treatment led 

to a stabilisation of the clinical condition as 6MWD did not fall at follow up which 

previous smaller studies in PH associated with lung disease have suggested (355). 

A prospective trial with an untreated control arm could investigate this possibility 

further.   

Improvement in NTproBNP, a marker of RV dysfunction is encouraging. Previous 

studies have not used this biomarker as outcome measure in PH associated with 

lung disease. NTproBNP correlated with RVEF and RVEDVI so we can speculate that 

disease targeted therapy may lead to improved outcome in those with improved 

RV function. Furthermore, in the small subgroup with follow up CMR study, 
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improvement in stroke volume (an indices of RV function) was demonstrated. 

Interestingly in a small study of COPD patients with mild or no associated PH no 

change in SV was seen after sildenafil administration (340), possibly suggesting 

severe PH associated with lung disease does respond differently to PH therapy. In 

IPAH, NTproBNP has been shown to correlate with RV function (297) and changes 

in serial NTproBNP with treatment have been shown to predict survival (301). As 

discussed in section 3.1.4.1 NTproBNP has been shown to predict outcome 

following acute exacerbations of airways disease, (365, 366, 393) identify those 

with concurrent LV dysfunction (393, 394) and as a screening tool for PH in COPD 

(370) and we have shown that RV function predicts survival in the patients 

described in this chapter. ∆NTproBNP but not ∆6MWD predicted survival, and a 

level of NTproBNP below 1222pg/ml whilst on PH therapy was associated with 

improved survival. This could suggest NTproBNP may be a better outcome measure 

than 6MWD in therapeutic trials involving patients with PH associated with lung 

disease where exercise capacity will be ventilatory limited in addition to 

cardiovascular limitation. The negative correlation observed here between FEV1 

and 6MWD in those with COPD could support this ventilatory limitation (378).  

The patients described in this chapter represent the largest treated population of 

severe PH in lung disease and further explores the impact of lung disease 

phenotype and severity on response to vasodilator therapy. The 

Emphysema/preserved FEV1 phenotype responded poorly to PH therapy, with non 

significant fall in 6MWD and increase in NTproBNP. Suggested mechanisms leading 

to the development of PH include vascular ablation, excessive hypoxic pulmonary 

vasoconstriction, pulmonary artery remodelling and endothelial dysfunction from 

inflammation and exposure to cigarette smoke (235). One hypothesis may be that 

the emphysema phenotype demonstrated poorer response to therapy because the 

pathophysiology may relate more to vascular loss than potentially treatment 

responsive vascular dysfunction.  

Surprisingly using the classification suggested by Seeger et al at the 5th world PH 

symposium demonstrated no difference in survival between severe PH/mild lung 

disease and severe PH/severe lung disease groups. In addition, those with severe-

PH/severe lung disease demonstrated improvements in both 6MWD and NTproBNP 

with therapy whereas those who was classified as having co-existent mild lung 

disease did not. Characteristics of patients improving either 6MWD or NTproBNP 



183 
 

did not differ. The severity of lung disease in severe PH therefore cannot reliably 

be used to determine therapeutic response to pulmonary vasodilators. 

Pulmonary haemodynamic data of COPD patients exhibiting PH in the literature 

demonstrates moderate elevations in PVR, but RV preload pressures and CO are 

usually in the normal range. In contrast, large increase in PVR and haemodynamic 

signs of RV dysfunction are commonly reported in PAH patients (142, 208, 335, 

395). The severe PH/lung disease patients described in this chapter however, 

share more characteristics with the latter, and improvement in 6MWD and 

NTproBNP with PAH therapies is perhaps therefore not unexpected. Current 

guidelines have suggested differentiating severe PH/lung disease on basis of 

pressure at RHC (mPAP ≥35mmHg) or degree of associated lung disease, but the 

RV characteristics described in this chapter could suggest it may be better to 

define this by the presence of RV dysfunction rather than a level of pressure.  

3.5.5 Limitations 

This study has several limitations. This was a single centre retrospective 

observational study which allowed for variation in therapy used for each cohort, 

and the numbers of patients in each lung disease phenotype were small. There 

was also no control arm with severe PH and lung disease whom did not receive 

therapy to contrast outcomes. It is possibility that changes in outcome measures 

with treatment may represent regression towards the mean as the only predictor 

of improvement in either NTproBNP or 6MWD was a poorer baseline value (see 

table 3-16). CT evidence of lung disease was based on the multidisciplinary report 

as it was not possible to score the severity of emphysema on CT due to the long 

recruitment period scans were performed at multiple sites with varying acquisition 

protocols. Finally, the lung disease cohort was recruited at a PH tertiary referral 

centre and therefore few patients with normal PA pressure were included.  

3.5.6 Clinical implications 

During the 14 year study period, more patients with coexistent lung disease than 

“pure” IPAH were seen. This could possibly be explained by the large proportion 

of smokers (68%) and older age of the study population (mean age 60). The 

demographics of incident IPAH cases has shown a trend towards increasing age at 
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diagnosis, and increasing presence of comorbid diseases in PH registries (147). In 

the REVEAL registry up to 17% of PAH diagnoses had coexistent COPD (252). This 

highlights the importance of assessing impact of coexistent lung disease on PH 

therapy in efforts to develop management strategies for “real life” patients, many 

of which are excluded in drug trials. 

Clinical guidelines recommend consideration of right heart catheterisation in 

chronic lung disease patients for PH diagnosis with disproportionate functional 

limitation to ventilatory impairment, need for accurate prognostic assessment or 

lung transplantation and when severe PH is suspected by noninvasive measures 

and consideration is being made for recruitment into clinical trial of PH therapies 

(253). The non-invasive screening methods described in this chapter potentially 

could improve identification and recruitment of such patients. 

3.5.7 Conclusions 

The studies described in this chapter demonstrate the importance of imaging right 

ventricular function in patients with pulmonary hypertension and chronic lung 

disease to determine prognosis, as a potential screening tool and to assess 

treatment effect in future therapeutic trials of pulmonary vasodilators. Mild to 

moderate PH in lung disease is characterised by increases in vascular stiffness but 

preserved RV function, whereas severe PH associated with lung disease shares 

many of the phenotypic characteristics of significant RV dysfunction associated 

with pulmonary arterial hypertension. NTproBNP reflects RV dysfunction in severe 

PH lung disease patients, can be used to as a screening tool for severe PH, predict 

survival and change in NTproBNP after PH therapy also predicts survival. This may 

reflect improvement in RV function, and be a useful marker of therapy response 

in future studies. 

In comparison to IPAH patients, patients with severe PH associated with lung 

disease have poorer survival which is not abolished by adjusting for age. PH 

therapy lead to improvements in 6MWD and NTproBNP. Survival and response to 

therapy may vary according to lung phenotype. Further studies with an untreated 

control group may establish if PH therapy has a role in delaying the progression of 

the pulmonary hypertension and improving survival. 
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Chapter 4 - Right Ventricular (RV) – arterial 

coupling in pulmonary hypertension
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4.1 Introduction 

It has been consistently demonstrated that right ventricular function is a major 

determinant of functional state, exercise capacity and survival in patients with 

pulmonary arterial hypertension (260). As discussed in chapter 1, imaging of RV 

function and structure either by CMR or echocardiogram to determine metrics such 

as ejection fraction or SV (41), invasive measures of RV function RAP or CI and 

biomarkers which reflect RV dysfunction such as NTproBNP have all been 

demonstrated in the literature to predict prognosis in PAH. We have also shown in 

chapter 3 that RV function is additionally a major determinant of outcome in 

patients with severe PH and lung disease. However, uncertainty persists about the 

optimal method to evaluate RV function and what variables might be most 

clinically relevant in these patients (396).  

The gold standard measure of RV systolic functional adaptation to increased 

loading conditions is end-systolic elastance (Ees), (or end-systolic pressure (ESP) 

divided by end-systolic volume (ESV)), corrected for arterial elastance (Ea), (or 

stroke volume (SV) divided by ESP). The Ees/Ea ratio defines RV-arterial coupling, 

or the matching of contractility to afterload. Ees is a measure of RV contractility 

and unlike other measures of RV function is load independent. Ees is chamber 

volume dependent and in animal studies shown to relate to myocardial mass (397)  

Emax is the maximal ventricular elastance described by the maximal ratio of 

ventricular pressure to volume during the cardiac cycle (130) and is regarded as 

the gold standard measure of contractility (396). In the LV (characterised by a 

square PV loop) Emax coincides with ESP and therefore equals ESP/ESV. Ees is 

measured at the upper left corner of a square PV loop and therefore Ees 

approximates Emax (398) . In the normal RV where pulmonary vascular impedence 

is low, the PV loop is triangular in shape, and Emax occurs before the end of 

ejection or end systole. Emax is determined by family of PV loops at decreasing 

venous return. RV-arterial coupling can be determined as a measure of volumes 

provided ESV is measured at Emax and not end ejection. The appearance of the 

PV loop in PAH or the systemic RV resembles the normal LV however (399) and 
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therefore contractility can be approximated by ESP/ESV. Increasing discrepancy 

between Ees and Emax may therefore occur at lower levels of RV afterload. 

Ea is a measure of the total afterload faced by the RV and incorporates resistance, 

compliance and impedance of the pulmonary circulation. The optimal balance 

between RV work and oxygen consumption occurs at an Ees/Ea ratio of 1.5-2 (123, 

260). 

4.1.1 Methods of evaluating RV-arterial coupling 

The reference method for the determination of Ees requires instantaneous and 

simultaneous measurements of RV pressure and volume and generation of a family 

of pressure-volume loops at decreasing venous return (123), as shown in figure 

4.1. Experimentally this is achieved by IVC occlusion, which is associated with 

unacceptable risks for widespread clinical application, and is not practical at the 

bedside.  

 

Figure 4.1 RV pressure-volume loops. 
 

[a] shows PV loops at decreasing levels of venous return (usually created by IVC occlusion). Ees is 
then determined from ESP as shown. [b]. Ea determined as slope connecting ESP with EDV. 
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However Ees can also be estimated from a single P-V loop, often referred to as the 

single beat method (125). This method relies on the calculation of a maximum RV 

pressure (Pmax) from the extrapolation of early and late systolic portions of a RV 

pressure curve and the continuous recording of RV pressure and relative change 

in volume to define ESP and ESV. From Pmax, Ees and Ea are easily calculated as 

shown in figure 4.2. Excellent correlation between Pmax estimated by this method 

and values measured directly by clamping the main pulmonary artery in animals 

models has been demonstrated (125). 

 

Figure 4.2 Single beat method.  
 

[a]. Pmax is generated by sine wave extrapolation of RV pressure time curve and plotted on RV 
pressure volume plot as shown in [b] at RV end diastolic volume (EDV) with mPAP at end systolic 
volume (ESV). End systolic elastance (Ees) calculated as slope of pressure/volume relationship, 
V0 as the x axis intercept of this relationship and effective arterial elastance (Ea) as mPAP/(EDV-
ESV) as shown. 

 

As discussed in chapter 1, the estimation of RV-arterial coupling by an Ees/Ea ratio 

can further be simplified for pressure and expressed as SV/ESV (400), i.e. the 

volume method. Alternatively the ratio can be simplified for volumes and 

expressed as Pmax divided by mean pulmonary artery pressure (mPAP), taken as a 

surrogate for ESP, minus 1 (132), i.e. the pressure method. A RV pressure curve is 

easily obtained during a right heart catheterisation. RV volumes are ideally 

determined by cardiac magnetic resonance imaging (CMR) which has been shown 

to have good inter and intra-observer reproducibility in PAH (64). As shown in 

figure 4.3, the volume method (which assumes RV volume is negligible at zero 

pressure, V0=0) results in lower values for RV-arterial coupling. 
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Figure 4.3 Comparison of pressure and volume methods to estimate RV-arterial coupling.  
 

Method (i) volume method where V0 = 0. Ees equates to mPAP/ESV and RV coupling estimated by 
ratio of SV/ESV. Method (ii) pressure method. Ees equates to (Pmax-mPAP)/(EDV-ESV) and RV 
coupling by Pmax/mPAP-1. As shown, method (i) results in lower values for Ees than method (ii). 

 

4.1.2 Estimates of RV-arterial coupling in experimental and 
clinical pulmonary hypertension 

RV-arterial coupling has been investigated in various animal models of acute and 

chronic pulmonary hypertension both with and without evidence of RV failure. In 

acute hypoxia induced models of PH where an acute rise in Ea was demonstrated, 

preserved RV coupling occurred by adaptive increase in RV contractility (125, 401-

403). Preserved RV-arterial coupling has also been reported in acute PH models 

induced by microembolism or PA banding (401), and initially during endotoxic 

shock induced increased PVR, although in the latter deterioration was then 

observed due to unsustained adaptive increase in contractility (404). In a rat 

monocrotaline induced PH model, a decrease in RV-arterial coupling occurred due 

to failure of increase in contractility to match the increased afterload (405). 

Monocrotaline is known to have systemic toxic effects and causes inflammatory 

type pulmonary vascular disease (406). Correlation between some markers of 

inflammation and apoptosis with RV-arterial coupling in both acute and chronic 

models of RV failure have been reported (407-409). 

In experimental models of chronic PH, initial preservation of RV arterial coupling 

was demonstrated at 3 months in a chronic aortopulmonary shunting model (410) 

with subsequent uncoupling at 6 months in association with the development of 
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RV systolic failure (408). In a tachycardiomyopathy model with mild PH induced 

by chronic overpacing, RV arterial uncoupling was also observed due to absence 

of an increase in contractility (411). These experimental studies suggest at least 

initial preservation of RV systolic functional adaptation to an increase in afterload 

in PH, with uncoupling in context of inflammation (i.e. endotoxin or 

monocrotaline), chronic sustained elevation of afterload or in left heart failure. 

Several small studies have reported values of Ees, Ea and RV-arterial coupling 

estimated by varying methods in patients with PH. Using MRI compatible 

conductance catheters Kuehne et al derived P-V loops from instantaneous pressure 

and volume measurements during MRI acquisition in 6 PAH subjects in comparison 

to 6 controls (412). PAH subjects demonstrated significantly higher Ea and Ees in 

comparison to controls. RV-arterial coupling was 1.9 ± 0.4 in controls in 

comparison to 1.1 ± 0.3 in PAH patients. 

Tedford et al reported impaired RV contractility using PV loop analysis in 7 

patients with PAH secondary to systemic sclerosis (SScPAH) in comparison to 5 

IPAH patients (413). Despite similar net afterload (Ea) SScPAH exhibited almost 

70% lower Ees (normalised for RV volume) and lower Ees/Ea ratio (1.0±0.5 vs 2.1±1.0 

mmHg/mL) suggesting differential ability of the RV to adapt to afterload in SScPAH 

in comparison to IPAH. However, other indices of RV function, RVEF, CI and RAP 

or indices of diastolic function did not differ between the groups. Additionally, 

IPAH patients were on chronic PH medications, such as PDE-5i or epoprostenol in 

comparison to only 1/7 SScPAH patients, which may alter RV contractility and 

potentially lead to preservation of RV-arterial coupling demonstrated in the IPAH 

group. 

Trip et al reported a simplified measurement of RV contractility utilising Pmax 

generated by the single beat method from a RV pressure curve obtained at 

standard RHC, and ventricular volumes measured by CMR in 28 IPAH patients (132). 

mPAP was used as a surrogate for ESP. Contractility was then estimated by either 

mPAP/ESV (assuming V0 = 0) or (Pmax - mPAP)/(EDV/ESV). V0 was also estimated by 

the linear extrapolation of the pressure-volume relationship. mPAP/ESV was lower 

by approximately half the value of (Pmax - mPAP)/SV (0.61 vs 1.34 mmHg/mL 

respectively) with increased difference at higher values of Ees. V0 ranged from -8 

to 171mL which correlated with increasing RV volumes. They concluded that V0 is 
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not negligible in PAH patients, and as V0 is dependent on RV dilatation, Ees may be 

more preload dependent than previously regarded. However, the methods 

implemented to estimate V0 relied on a number of surrogate pressures and 

volumes (such as mPAP for ESP) and extrapolation from a linear fit of the PV 

relationship which has been shown in the literature to be curvilinear (414). 

Sanz demonstrated an initial increase in RV contractility (using the simplified ratio 

of mPAP/RVESV) with increasing severity of PH in a large cohort of subjects with 

PH of varied aetiologies (400). With more severe disease, this increase however 

plateaued with a trend towards even a decrease in the most severe group (defined 

by PVRI >14.4 Wood units). RV-arterial coupling (as determined by either 

simplified equations or non-invasive metric SV/ESV) therefore whilst relatively 

maintained in early disease declined with more severe PH. This suggests that the 

ratio of SV/ESV may provide prognostic and functional relevance in patients with 

PH. 

Cardiac CMR studies have shown that decreased SV and RVEF are predictive of 

poor outcome (41), and that a deterioration in RVEF during therapy predicts a 

poor survival irrespective of improvements in PVR (288). However, EF is preload-

dependent while Ees/Ea is theoretically not. Therefore, estimates of RV arterial 

coupling should be superior to other measures of RV function in determining 

outcome. Accordingly, a recent study on a limited number of patients referred for 

investigation of PH of all aetiologies (27/41 with PAH diagnoses), many of whom 

did not receive PH specific therapy, showed RV arterial coupling estimated by 

SV/ESV to be an independent predictor of outcome while RVEF was not (415). RV 

volumes were determined by the inferior gated CT imaging rather than CMR in the 

majority (44/50 patients) which may have influenced this observation.  

Overall, these studies suggest increased RV contractility (Ees) in response to 

increased PVR, with or without preservation of RV-arterial coupling. Additionally, 

the aetiology of the increase in afterload may be important, with potentially 

earlier RV failure and uncoupling in the presence of systemic disease and 

inflammation, such as systemic sclerosis. The extent of RV-arterial uncoupling in 

PH associated with hypoxic lung disease is unknown. Smoking and hypoxia related 

inflammation are known to have roles in both pulmonary and systemic vascular 

stiffness, and LV dysfunction has been linked to catabolic COPD phenotype and IL6 
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(389, 390, 392). Patient characteristics described in chapter 3 suggest possibility 

of greater RV dysfunction (higher NTproBNP) and impaired adaptation (lower RVM) 

in comparison to IPAH patients, although this may relate to demographics of the 

populations. RV-arterial coupling could potentially examine more closely 

differences in RV adaptation to afterload in PH/lung disease. 

4.2 Aims 

As demonstrated by these studies, whilst it is clear that RV functional adaptation 

is the major determinant of outcome in PAH the optimal method for evaluation is 

uncertain. Gold standard measures of RV-arterial coupling may potentially be 

superior to more commonly measured indices of RV function, but are cumbersome 

to perform and invasive, and therefore unlikely to be acceptable for routine 

monitoring of patients. Additionally there is suggestion from small clinical and 

experimental models that RV functional adaptation may differ between PH 

aetiologies. The aims of this chapter are to: 

1. Investigate the prognostic utility of RV-arterial coupling determined by 

both the volume and pressure methods, compared to more usual 

determinations of RV function, CMR RVEF, NTproBNP, and right heart 

catheterisation-derived RAP and SV in a large cohort of patients with PAH. 

2. Explore the potential deterioration in RV-arterial coupling in patients with 

chronic lung disease and PH in comparison to IPAH and connective tissue 

disease PAH.  
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4.3 Materials and methods 

4.3.1 Patient recruitment 

140 treatment naïve incident PAH cases diagnosed between January 2004 and April 

2014 whom had undergone cardiac MRI at diagnosis were identified. 81 patients 

with Group 3 PH secondary to lung disease described in chapter 3 with baseline 

CMR were included for comparison. Patients with lung disease were classified by 

severity of PH as described in section 3.3.1. Patients underwent multidisciplinary 

investigation as described in methods section 2.1.1. CMR image acquisition and 

data analysis was carried out as described in section 2.2. All patients underwent 

cardiac MRI and RV pressure measurement within 72 hours. All PAH patients were 

treated with pulmonary vasodilators in accordance with guidelines. Patients were 

excluded if the RV pressure trace was not available for analysis. 

4.3.2 Right ventricular pressure trace analysis 

Right ventricular pressure traces were available for 61/140 PAH patients and 

32/81 with PH secondary to lung disease. 22 control patients without pulmonary 

hypertension (defined as a mPAP <25mmHg) who had right heart catheterisation 

and CMR to investigate breathlessness were included to provide reference values 

for RV-arterial coupling by the two methods. Of these, 8 had lung disease. 

Analogue traces were manually redigitised using GetData Graph Digitizer 2.26. An 

example is shown in Figure 4.4. 

In those patients for whom an RV pressure trace was available for analysis, Ees was 

calculated using the single beat method (125). Pmax, the maximum theoretical 

pressure the ventricle could generate if isovolumetric contraction occurred, was 

calculated using a manual sine-wave extrapolation of the early systolic and 

diastolic portions of the RV pressure curve. Pmax derivation was carried out by Dr 

R. Vanderpool at Department of Biomedical Engineering, University of Pittsburgh 

and Dr A. Bellofiore University of San Jose State.  
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ESP was approximated by mPAP (132). Ees was calculated as the slope of end-

systolic pressure volume line,  

Ees = (Pmax – mPAP) / (RVEDV – RVESV). 

Arterial elastance (Ea) was estimated by mPAP/(RVEDV – RVESV).  

RV-arterial coupling (Ees/Ea) was simplified for volumes as Pmax/mPAP – 1 

(hereafter referred to as the pressure method, Ees/Ea-P), or simplified for 

pressures as SV/ESV (hereafter referred to as the volume method, SV/ESV) (400). 
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A 

 
 
 
 
 

B  

 

Figure 4.4 Example of digitised RV pressure trace analysis.  
 

A Manual tracing of RV pressure time plot obtained at right heart catheterisation with data 

points exported to excel. Re-constructed digitised trace is shown in blue.  

B. Overlay of original RV pressure/time trace with digitised trace (again shown in blue) 
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On preliminary analysis of 3 beats from a single patient, significant beat to beat 

variation in calculated values for Pmax, Ees and Ees/Ea-P was observed. An example 

is shown in Figure 4.5.  

 

 

Figure 4.5 Beat to beat variation in calculated Pmax.  
 

3 RV pressure time curves for a single patient acquired at right heart catheterisation are indicated 
by blue arrows with the corresponding calculated values for Pmax, Ees and RV-arterial coupling 
Ees/Ea. 

 

An average RV pressure trace was therefore generated for each patient across a 

respiratory cycle, typically 4-6 beats. Figure 4.6 shows the correlation between 

the RV systolic pressure from the average trace, and the average RVSP determined 

by RHC demonstrating good agreement (Pearson r =0.991, p<0.001). The average 

RV pressure trace was used to determine Pmax for each patient as described above. 
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Figure 4.6 Correlation of calculated RVSP from average trace generation with invasively 
measured RVSP. 

 

4.3.3 Statistical methods 

Statistical analysis was carried out as described in section 2.3. Survival was from 

date of diagnostic right heart catheter and endpoint was date of either death, 

lung transplantation or censoring. Patients were censored if they were lost to 

follow up or alive at last day of study (4th August 2014). Only patients who 

received pulmonary vasodilator therapy (92/125) were included in survival 

analysis. 
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4.4 Results 

4.4.1 Patient Characteristics 

Patient haemodynamics, RV indices of structure and function and measures of RV 

arterial coupling are summarised in table 4-1. In comparison to normal subjects, 

PAH patients showed reduced RVEF, SVI and pulmonary arterial compliance 

(measured as either SV/PP or RAC MPA), and increased RV volumes (RVEDVI and 

RVESVI) and mass. 

4.4.2 Estimates of RV-arterial coupling 

4.4.2.1 Effective Arterial Elastance (Ea) 

Ea correlated with increasing levels of pulmonary vascular resistance (r2 = 0.616, 

p<0.001) and inversely with pulmonary artery compliance measured invasively 

(SV/PP, r2 = 0.538, p <0.001) and non invasively by cardiac MRI (RAC MPA, r2 = 

0.252, p <0.001). Correlations are shown in Figures 4.7 – 4.9. 

Ea was increased in PAH patients in comparison to normal subjects, 0.88 (0.63-

1.31) versus 0.23 (0.14 – 0.28) mmHg/mL, p <0.001.  

 



 

 

 

Table 4-1. Clinical characteristics, haemodynamics, right ventricular dimensions and function in PAH patients in comparison to normal subjects and 
patients with PH secondary to chronic lung disease.  

 No PH  Group 1 PAH p value HLDPH 

n 14 61  42 
Aetiology % (n)  CTDPAH 26 

IPAH 30 
POPH 4 
CHDAPH 1 

  

Age (years) 54 ± 15 52 ± 16 0.637 65 ± 12 
Sex (%female) 71 74  40 
     
mPAP (mmHg) 17 ± 4 49 ± 14 <0.001 44 ± 12 
PVR (Wood Units) 1.8 (1.1 – 2.3) 11.9 (7.5 – 15.5) <0.001 8.9 (5.9 -14.0) 
CI (L/min/m2) 3.3 ± 0.8 2.2 ± 0.7 <0.001 2.2 ± 0.6 
SV/PP (mL/mmHg) 3.23 (3.0 – 5.7) 0.93 (0.65 – 1.20) <0.001 1.09 (0.76-1.42) 
     
RVEF (%) 62 ± 12 34 ± 13 <0.001 37 ± 16 
RVEDVI (mL/m2) 77 ± 27 93 ± 26 0.043 88 ± 35 
RVMI (g/m2) 34 ± 11 53 ± 18 <0.001 50 ± 18 
SVI (mL/m2) 45 (42 – 54) 28 (21-33) <0.001 30 (24-35) 
RAC MPA (%) 45 (36 – 59) 21 (12 – 27) <0.001 19 (14-22) 
     
Ees mmHg/mL 0.31 (0.21 – 0.47) 1.19 (0.81 – 2.26) <0.001 0.89 (0.57 – 1.22) 
Ees (EDV adj) 0.46 (0.30 – 0.58) 1.79 (1.20 – 2.52) <0.001 1.53 (0.80 – 1.97) 
Ea mmHg/mL 0.23 (0.14 – 0.28) 0.88 (0.63 – 1.31) <0.001 0.82 (0.68 – 1.09) 
Ees/Ea-P 1.81 (1.33 – 2.23) 1.33 (0.88 – 1.73) 0.019 1.07 (0.69 – 1.35) 
SV/ESV 1.65 (1.17 – 1.79) 0.53 (0.30 – 0.84) <0.001 0.53 (0.30 – 0.88) 
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Figure 4.7 Correlation of Effective arterial elastance (Ea) with pulmonary vascular 
resistance. 
 

 Ea positively correlated with increasing PVR, R2 = 0.616, p<0.001 

 

 

Figure 4.8 Correlation of Effective arterial elastance (Ea) with pulmonary artery compliance 
(SV/PP).  
 

Ea fell with increasing PA compliance, logarithmic regression r2 = 0.538, p<0.001. y = 1.038 + -
0.682* log(x). 
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Figure 4.9 Correlation of effective arterial elastance (Ea) with pulmonary artery compliance 
estimated MPA RAC.  
 

Ea also fell with increasing PA compliance assessed by CMR MPA RAC, r2 = 0.252, p<0.001. y = 
2.399 + -0.501* log(x). 
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4.4.2.2 RV Contractility (Ees) 

Ees correlated with increasing levels of afterload, measured as either PVR (r2 = 

0.259 p <0.001) or Ea (r2 = 0.354, p <0.001). Correlations are shown in figures 4.10 

and 4.11 respectively. 

Ees was increased in PAH patients in comparison to normal subjects, 1.19 (0.81 – 

2.26) versus 0.31 (0.21 – 0.47) mmHg/mL p <0.001.  

After adjustment for PVR, neither age nor sex were determinants of Ees using 

linear regression analysis. In comparison to IPAH subjects, a diagnosis of HLD 

(despite correction for PVR) was associated with lower Ees. Table 4-2 shows the 

regression analysis. 

 

 

Table 4-2 Determinants of RV contractility (Ees).  

Variable Regression Coefficient P value 

age 0.018 0.827 

Male Sex  -0.063 0.421 

PH aetiology (IPAH control variable)  

CTDPH -0.117 0.214 

HLDPH -0.216 0.029* 

POPH -0.152 0.057 

Normal subjects -0.356 0.002** 

Linear regression of Ees with PVR 
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Figure 4.10 Correlation of RV contractility (Ees) with pulmonary vascular resistance. 
 

Ees increased in response to increasing levels of PVR, r2=0.259, p<0.0001 

 

Figure 4.11 Correlation of RV contractility (Ees) with afterload (Ea) 
 

Ees increased with increasing Ea, r2=0.354, p<0.0001 
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4.4.2.3 Pressure (Ees/Ea-P) and volume (SV/ESV) estimates of RV-arterial 
Coupling 

Both pressure (Ees/Ea-P) and volume (SV/ESV) estimates of RV-arterial coupling 

fell with increasing severity of pulmonary hypertension.  

Ees/Ea-P was lower in PAH patients compared with normal subjects, 1.33 (0.88 – 

1.73) versus 1.81 (1.33 – 2.23), p = 0.019 and inversely correlated with mPAP 

(Pearson r = -0.338, p <0.001) and PVR (Pearson r -0.381, p <0.001).  

SV/ESV was lower in PAH patients, 0.53 (0.30-0.84) in comparison to controls, 1.65 

(1.17 – 1.79), p <0.001. SV/ESV fell with increasing levels of mPAP (spearman r = 

-0.588 p <0.001) and PVR (spearman r = -0.715, p <0.001).  

Ees/Ea-P correlated with other measures of RV function, RVEF (Pearson r = 0.403, 

p <0.001) and negatively with RAP (r = -0.352, p <0.001) and NTproBNP (Spearman 

r = -0.248, p <0.001). SV/ESV more closely related to RAP (Spearman r = -0.449, p 

<0.001) and NTproBNP (Spearman r = -0.723, p <0.001).  

Both Ees/Ea-P and SV/ESV were moderate predictors of 6MWD in the whole cohort, 

r = 0.257 p = 0.002 and r = 0.272 p = 0.001 respectively, after adjustment for age. 

RVEF and SV were both superior predictors of 6MWD r = 0.288 p = 0.001 and r = 

0.453 p <0.001 respectively.  
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Figure 4.12 Regression of SV/ESV with pulmonary vascular resistance.  
 

SV/ESV fell with increasing severity of PH (determined by PVR), logarithmic regression shown, r2 = 
0.484 p<0.001, y = 1.751 + -0.486* log(x) 

 

 

Figure 4.13 Correlation of Ees/Ea-P with RV ejection fraction.  
 

r2 = 0.162, p <0.001. y = 0.73 + 0.02*x 
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4.4.2.4 RV-arterial coupling in pulmonary arterial hypertension 

Population characteristics of CTDPH and IPAH patients are shown in table 4-3. 

Between IPAH and CTDPH patients, there was no difference in Ees/Ea-P, (1.25 ± 

0.7 vs 1.30 ± 0.5 p = 0.759) or SV/ESV (0.48 (0.29 -0.80) vs 0.50 (0.29 – 0.87) 

p=0.637). 14 of the 26 CTDPH patients had systemic sclerosis associated PAH (SSc-

PAH). Ees/Ea-P and SV/ESV in comparison to IPAH patients was similar, 1.39 ± 0.5 

(p = 0.52) and 0.60 (0.30 – 0.89) (p = 0.44) respectively. 

4.4.2.5 RV-arterial coupling in pulmonary hypertension associated with 
chronic lung disease 

Table 4-4 summarises population characteristics and indices of RV function and 

coupling according to severity of associated pulmonary hypertension in patients 

with lung disease. As discussed in chapter 3, lung disease patients were older and 

more often male in comparison to PAH patients. Ees was lower in HLDPH patients 

(0.89 mmHg/mL) in comparison to both all PAH subjects (1.19 mmHg/mL, 

p=0.017) and IPAH (1.23 mmHg/mL p = 0.001) despite similar levels of afterload, 

Ea 0.82 vs 0.88 mmHg/mL p = 0.442 and 0.98 mmHg/mL p = 0.09 respectively. As 

a result, Ees/Ea-P was lower in HLDPH patients in comparison to IPAH subjects (1.07 

mmHg/mL vs 1.37 mmHg/mL p = 0.02) and trend towards lower values in 

comparison to PAH patients (1.33 mmHg/mL p = 0.058). Imaging measures of RV 

function SV/ESV and RVEF did not differ between groups, SV/ESV of 0.53 for all 

groups, p = 0.773 and p = 0.954 respectively, and RVEF 37% vs 34% p = 0.436 with 

PAH and 35%, p = 0.727 with IPAH subjects.  

Figure 4.14 displays RV contractility (Ees) according to severity of PH associated 

with chronic lung disease. Ees was increased in those with PH in comparison to 

controls with lung disease without PH, 0.94 versus 0.41 mmHg/mL, p = 0.021. No 

further increase Ees was demonstrated in those with severe PH, 0.89 mmHg/mL p 

= 0.791. Ea increased in parallel to increasing severity of PH, 0.31 vs 0.66 vs 0.95 

mmHg/mL in those with no, mild-moderate and severe PH respectively. As a 

result, significant decrease in RV-arterial coupling was seen in those with severe 

PH only, whether determined by the pressure or volume method, Ees/Ea-P 1.52 

mmHg/mL versus 1.26 mmHg/mL, p = 0.700 and 1.01 mmHg/mL, p = 0.008 in no, 

mild-moderate and severe PH (shown in Figure 4.15). SV/ESV (shown in Figure 

4.16) did not significantly decline between those with no PH and mild/moderate 
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PH, 1.28 versus 0.84 p = 0.280, but significant uncoupling occurred in the severe 

PH group, 0.37 p = 0.002 and p = 0.001 in comparison to those with no or 

mild/moderate PH respectively. 

 



 

 

Table 4-3 Characteristics of Idiopathic PAH patients in comparison to Connective tissue disease associated PAH and Systemic Sclerosis associated PAH. 
 

 IPAH CTDPH p-value SSc-PAH p-value 

n 30 26  14  

Age years 49 ± 18 55 ± 14 0.148 61 ± 11 0.024* 

Sex %female 70 85  93  

      

mPAP mmHg 56 ± 16 43 ± 8 0.001** 41 ± 7 0.002** 

PVR Wood Units 12.5 (9.3 – 19.1) 9.1 (5.4 – 13.1 0.011* 9.5 (5.4 – 13.1) 0.021* 

CI L/min/m2 2.1 ± 0.5 2.4 ± 0.7 0.106 2.3 ± 0.5 0.338 

SV/PP mL/mmHg 0.91 (0.65 – 1.11) 0.96 (0.68 – 1.40) 0.293 0.95 (0.75 – 1.35) 0.392 

      

RVEF % 35 ± 12 34 ± 14 0.810 34 ± 13 0.896 

RVEDVI mL/m2 92 ± 28 93 ± 28 0.870 87 ± 30 0.575 

RVMI g/m2 54 ± 18 51 ± 18 0.516 52 ± 20 0.714 

SVI mL/m2 27 (22 – 31) 30 (19 - 35) 0.532 27 (22 – 31) 0.801 

      

Ees mmHg/mL 1.23 (0.98 – 2.06) 1.04 (0.71 – 1.59) 0.068 1.13 (0.86 – 1.61) 0.226 

Ees (EDV adj) 2.04 (1.43 – 2.91) 1.69 (1.03 – 2.23)  1.67 (1.17 – 2.31)  

Ea mmHg/mL 0.98 (0.79 – 1.56) 0.79 (0.57 – 1.25) 0.119 0.70 (0.60 – 1.66) 0.082 

Ees/Ea-P 1.37 (0.72 – 2.01) 1.21 (0.94 – 1.63) 0.532 1.29 (0.98 – 1.79) 0.980 

SV/ESV 0.53 (0.34 – 0.82) 0.50 (0.29 – 0.87) 0.948 0.60 (0.30 – 0.89) 0.762 

NTproBNP pg/mL 886 (448 – 1197) 2989 (595 – 4206) 0.029* 2756 (608 – 4262) 0.039* 
  



 

Table 4-4 Haemodynamic, pulmonary and RV function characteristics of chronic lung disease patients with no, mild-moderate and severe pulmonary 
hypertension 

 mPAP <25mmHg mPAP 25-34mmHg mPAP ≥35mmHg 

n 8 12 30 
Aetiology % (n) 
COPD 
CPFE 
ILD 

 
(6) 
- 
(2) 

 
(4) 
(2) 
(6) 

 
(19) 
(10) 
(1) 

Age years 64 ± 9 70 ± 10 63 ± 12 
Sex (% female) 50 50 37 
    
mPAP mmHg 20 ± 3 30 ± 3 49 ± 9 
PVR Wood Units 2.7 (2.4-3.1) 5.0 (3.5-6.9) 10.8 (7.7-15.6) 
CI L/min/m2 2.5 ± 0.4 2.6 ± 0.4 2.0 ± 0.5 
RAP mmHg 4 ± 1 3 ± 4 9 ± 4 
SV/PP mL/mmHg 2.97 (2.63 – 3.88) 1.59 (1.15 -1.77) 0.87 (0.68 – 1.28) 
    
FEV1 % 82 ± 32 77 ± 30 73 ± 20 
FEV1:FVC 64 ± 23 68 ± 19 58 ± 12 
TLCO % 43 (29-65) 33 (26-36) 24 (19-36) 
Pa02 kPa 9 (7.9-11.8) (7) 7.3 (6.9-9.8) (7) 7.3 (6.8-8.5) (23) 
    
RVEF % 52 ± 16 49 ± 14 31 ± 13 
RVEDVI mL/m2 71 ± 20 65 ± 23 97 ± 34 
SVI mL/m2 38 ± 7 35 ± 10 29 ± 8 
    
Ees mmHg/mL 0.41 (0.35-0.63) 0.94 (0.49-1.47) 0.89 (0.64-1.17) 
Ea mmHg/mL 0.31 (0.26 – 0.40) 0.66 (0.44 – 0.81) 0.95 (0.77 – 1.46) 
Ees/Ea 1.52 (1.16 – 2.00) 1.26 (1.08 – 2.14) 1.01 (0.67 -1.18) 
SV/ESV 1.28 (0.64 – 1.98) 0.84 (0.59 – 1.40) 0.37 (0.27 – 0.69) 
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Figure 4.14 RV contractility in chronic lung disease patients with no, mild/moderate and 
severe PH. 
 

Median values 0.41, 0.94 and 0.89 in no, mild/moderate and severe PH groups. * p = 0.021 **p = 
0.002 in comparison to no PH group. p = 0.791 between those with mild/moderate and severe PH. 

 

 

Figure 4.15 Ees/Ea-P in chronic lung disease patients with no, mild/moderate and severe PH  
 

Median values 1.52, 1.26 and 1.01 mmHg/mL for no, mild/moderate and severe PH respectively. ** 
p = 0.008 in comparison to both no PH and mild/moderate PH groups. p = 0.700 between no PH 
and mild/moderate PH groups. 
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Figure 4.16 SV/ESV for chronic lung disease patients with no, mild/moderate and severe PH. 
  

Median values 1.28, 0.84 and 0.37 respectively. ** p = 0.002 in comparison to no PH and p = 0.001 
mild/moderate PH respectively. p = 0.280 between no PH and mild/moderate PH groups. 

 

4.4.3 RV-arterial coupling and prognosis 

41 deaths occurred during the follow up period in the 92 patients who received 

pulmonary vasodilator therapy and were included in this analysis. Higher Ea, RAP, 

RVESVI and NTproBNP, and lower RVEF, SVI, SV/PP and SV/ESV predicted survival 

on bivariate cox proportional hazards regression with age. In a multivariate model 

with age and PVR, RAP and SV/ESV (but not Ees/Ea-P) independently predicted 

outcome (HR 0.329 95%CI 0.165 – 0.656, p = 0.002). In the same multivariate 

model, RVEF independently predicted survival (HR 0.958 95% CI 0.929-0.988 

p=0.006). Table 4-4 shows the bivariate and multivariate cox analysis. 

Youden analysis identified optimal threshold level of 0.463 for SV/ESV and 31.6% 

for RVEF. Figure 4.17 displays the Kaplan Meier survival curves according to these 

threshold values. SV/ESV >0.463 was associated with improved outcome,1 and 3 

year survival 91% vs 80%, and 66% versus 38% respectively, p = 0.011. RVEF >31.6% 

predicted improved survival, 1 and 3 year survival 91% versus 80%, and 65% versus 

37% respectively, p = 0.011. 

 



 

 

Table 4-5 Bivariate and multivariate cox proportional hazards regression for baseline predictors of survival in patients treated for PAH. 
 

Variable Bivariate model* Multivariate model** 

 HR (95% CI) p-value HR (95% CI) p-value 

mPAP 1.007 (0.979 – 1.035) 0.626   

PVR 1.043 (0.981 – 1.108) 0.179 0.938 (0.861 – 1.022) 0.142 

RAP 1.084 (1.019 – 1.153) 0.011* 1.088 (1.013 – 1.168) 0.020* 

CI 0.600 (0.326 – 1.105) 0.101   

SV/PP 0.379 (0.150 – 0.954) 0.039*   

     

Ees 1.178 (0.795 – 1.745) 0.414   

Ea 2.456 (1.299 – 4.908) 0.011*   

Ees/Ea-P 0.592 (0.316 – 1.107) 0.101   

     

SV/ESV 0.399 (0.228 – 0.700) 0.001** 0.329 (0.165 – 0.656) 0.002** 

RVEF 0.957 (0.931 – 0.984) 0.002** #  

RVESVI 1.016 (1.005 – 1.028) 0.007**   

SVI 0.939 (0.900 – 0.980) 0.004**   

     

NTproBNP  1.491 (1.147 – 1.939) 0.003**   

     
*bivariate model with age ** multivariate model with age & PVR # RVEF 0.958 (0.929 – 0.988) p=0.006 in multivariate model with age, PVR & RAP 



 

 

Figure 4.17 Kaplan Meier survival curves dichotomised according to [a] SV/ESV >0.463 and [b] RVEF >31.6%. 
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4.4.4 Correlation between pressure and volume methods of 
measuring RV-arterial coupling 

Ees/Ea-P correlated with SV/ESV (r = 0.441, p <0.001), shown in figure 4.18. Bland 

Altman analysis of the two methods bias 0.556, SD 0.683 with limits of agreement 

-0.784-1.9 is shown in figure 4.19. 

V0 estimated by the volume intercept of the pressure-volume regression line 

correlated with RV EDV and ESV (r = 0.607 and r = 0.804 respectively, both 

p<0.001). Correlations are shown in Figures 4.20 and 4.21. Estimated values of V0 

ranged from -129ml to 285ml. 

Figures 4.22 and 4.23 show the difference between pressure and volume methods 

Ees/Ea-P – SV/ESV at increasing levels of mPAP and RV dilatation (RVESV).  
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Figure 4.18 Correlation between pressure (Ees/Ea-P) and volume (SV/ESV) estimates of RV-
arterial coupling. 
 

Linear regression r2 = 0.135, y = 1.01 + 0.41*x. p<0.001 

 

 

Figure 4.19 Bland-Altman analysis of difference in Ees/Ea-P - SV/ESV against mean of both 
values 
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Figure 4.20 Correlation of V0 with RV end diastolic volume. 
 

r2= 0.365 p<0.001. y = -62.1 + 0.68*x. p<0.001 

 

 

Figure 4.21 Correlation of V0 with RV end-systolic volume. 
 

r2 = 0.606, p<0.001. y = -44.4 + 0.9*x. p<0.001 



217 
 

 

Figure 4.22 Difference in pressure and volume estimates of Ees/Ea with increasing levels of 
mPAP. 
 

Greater discrepancy between values seen at lower levels of mPAP. 

 

Figure 4.23 Difference in pressure and volume estimates of Ees/Ea with increasing RV 
dilatation. 
 

Greater discrepancy between values seen at lower RV volume (RVESV) 

  



218 
 

4.5 Discussion 

The results described in this chapter show that effective arterial elastance (Ea) 

estimated by mPAP determined at RHC and CMR imaging to determine RV volumes 

reflects commonly quoted measures of RV afterload PVR or SV/PP. In agreement 

with previous studies, ventricular contractility (Ees) when estimated by the single 

beat method increased in response to this increased afterload in PAH subjects. 

RV-arterial coupling when estimated by the pressure method, Ees/Ea-P was lower 

in PAH subjects but a greater difference when estimated by the volume method, 

SV/ESV was observed. We found comparable estimates of Ees/Ea-P in normal 

subjects, 1.8 mmHg/mL in our study in comparison to 1.9 mmHg/mL in the study 

by Kuehne at al, where gold standard pressure-volume loop analysis was employed 

(412), suggesting validity of the single beat method employed in this chapter.  

RV-arterial coupling estimated by either Ees/Ea-P or SV/ESV related to functional 

status (determined by 6MWD), although this relationship was poorer than other 

measures of RV function such as SV or RVEF. Ees/Ea-P related to other indices of 

RV function determined by imaging (RVEF), RHC (RAP) or by biomarker NTproBNP, 

but this relationship was stronger with SV/ESV. 

4.5.1 Influence of PH aetiology on RV adaptation to afterload. 

Tedford et al have previously reported depressed RV contractility in PAH 

associated with systemic sclerosis in comparison to IPAH (413). In this study, 

Ees/Ea-P were similar in both, and the presence of associated connective tissue 

disease was not a determinant of Ees. Ees/Ea-P was 1.37 mmHg/mL which is similar 

to recent published data in IPAH patients (412, 416). One potential explanation 

for the differences reported by Tedford et al may be that a higher value of 2.1 

mmHg/mL for IPAH patients was a result of PH therapies such as epoprostenol in 

this cohort, and the value of 1.0 mmHg/mL in the Ssc-PAH patients more 

representative of treatment naïve population described in this study regardless of 

aetiology. 

Disproportionate elevation of NTproBNP was observed similar to previous studies 

and potentially still supports evidence for intrinsic myocardial dysfunction in 

CTDPH (417, 418).  
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In patients with PH secondary to chronic lung disease, RV-arterial coupling was 

preserved in early disease (mPAP 25-34mmHg) but uncoupling was demonstrated 

in severe PH characterised by an increase in RV volumes, and no further increase 

in RV contractility. This suggests similarities to IPAH patients where previous 

studies have reported initial preservation of RV-arterial coupling in patients with 

no increase in RV volumes (413). In agreement with the results presented in 

chapter 3, severe PH associated with chronic lung disease is characterised by not 

only RV dysfunction determined by falling RVEF and increasing RV volumes but 

also by impaired RV contractile response to the increased afterload, with resulting 

inefficient RV-arterial coupling whether determined by either pressure or volume 

method. Potentially, intrinsic myocardial dysfunction due to smoking related 

microvascular disease or inflammation which has been linked to LV dysfunction in 

COPD patients could explain impaired contractile response and be a future 

direction for study.  

4.5.2 RV-arterial coupling and relationship to outcome  

The results show that CMR imaging of RV volumes allows for the prediction of 

outcome in PAH by RV function defined either as EF or SV/ESV. Right heart 

catheterisation derived estimates of RV function such as RAP also independently 

predicted survival, but not CI nor measures of afterload such as PVR or SV/PP. 

Furthermore, there was no added value of combining invasive measurements of 

pressure with non-invasive measurements of volumes to assess the prognostic 

value of RV-arterial coupling. 

In agreement with the previous study by Vanderpool et al (415) Ees/Ea estimated 

by the volume method but not the pressure method predicted outcome. The 

pressure method applied to estimate Ees/Ea-P relies on a Pmax calculation based on 

the analysis of a RV pressure curve to estimate maximum pressure of an isovolumic 

beat at EDV (125), and mPAP assumed equal to ESP (132) as described in section 

4.1.1 While the pressure method generated Ees/Ea values that are quantitatively 

in the range of values reported by more robust methods (413, 419), the number 

of assumptions in the method may result in insufficient precision and explain the 

failure to predict outcome. The volume method rests on the indirect assumptions 

that Ees is a volume independent straight line crossing the origin, which is not 

correct (396). However, measurements of ESV and EDV by CMR have a high level 
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of accuracy and precision (64, 357), so that the information content of SV/ESV to 

estimate Ees/Ea is preserved and predicts outcome. 

Mathematically the volume method of estimating RV-arterial coupling, SV/ESV is 

similar to RVEF, where RVEF is the ratio of SV/EDV, so the advantage of SV/ESV 

over the traditionally used RVEF to assess RV adaptation to afterload could 

arguably be unclear. Whilst mathematically linked, they exhibit a non-linear 

relationship. This suggests a possible reason why SV/ESV could be more predictive 

because it widens the physiological range of values thereby increasing resolution 

of SV/ESV in patients with relatively normal RVEF (values of RVEF range 0.14-0.58 

in comparison to 0.18-1.5 for SV/ESV).(420) 

Right heart catheterisation is mandatory for the diagnosis of PH. However, the 

procedure allows for only an indirect description of RV function, with RAP to 

estimate EDV, or preload, SV/PP or PVR to estimate afterload, and SV to reflect 

contractility. In spite of these limitations, RAP, cardiac output and PVR have been 

reported to predict outcome in PAH (144, 269, 286, 287). However, this was in 

studies considering exclusively these invasive measurements. In the work 

presented here which combined right heart catheterisation and CMR 

measurements, only RAP and imaging of RV function (either RVEF or SV/ESV) 

independently predicted outcome. This result agrees with the notion that imaging 

provides a more accurate and relevant definition of RV function than a standard 

right heart catheterisation, without the added benefit of measures of afterload 

such as PVR or SV/PP. Furthermore, repeated invasive RHC to monitor an 

individual throughout the course of disease is likely less acceptable to the patient 

when the option of noninvasive imaging of RV function is equally or even superior 

modality in relation to prognosis. This is in agreement with previous study where 

improvement in PVR at RHC did not lead to improved outcome if RVEF continued 

to deteriorate (288). 

4.5.3 Limitations 

The correlation between pressure and volume estimates (Ees/Ea-P and SV/ESV) 

whilst highly significant displayed wide confidence intervals and limits of 

agreement on Bland Altman analysis (-0.78 to 1.9). This effect appeared more 

significant at greater values and at smaller values of RV ESV. V0 estimated by the 
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regression of the pressure-volume relationship (and therefore reliant on only two 

data points, including mPAP at RVESV (as shown in Figure 4.2b) unsurprisingly 

correlated with ESV in agreement with Trip et al (132), however would therefore 

not account for the greater disagreement between coupling estimates at lower 

values of RVESV. As discussed above, estimates of V0 by this method are likely 

inherently less accurate due to application of a linear regression of a slightly 

curvilinear relationship. The limitations of agreement therefore relates to 

impaired precision as a result of the several assumptions made in the derivation 

of each method as discussed in section 4.5.2. 

This was a single centre retrospective observational study. The invasive RV trace 

analysis required manual digitisation from analogue traces for analysis. The RHC 

and CMR (and therefore pressure and volumes) were not performed 

simultaneously. There were however no changes in therapy between 

measurements. The single beat method employed requires several inherent 

assumptions, such as the use of a sine wave to approximate the waveform of 

isovolumetric contraction (421), but despite this Pmax generated from single beat 

method has shown excellent correlation with Pmax derived from multi-beat PV-loop 

analysis at varying levels of venous return (125), which is regarded as the gold 

standard for measuring RV-arterial coupling and ideally should have been included 

for comparison. These studies however would have required alteration of venous 

return through techniques such as inferior vena cava balloon occlusion with 

potential for complications and were felt unacceptable risk to the patient. 

4.5.4 Clinical Implications 

The results described by this chapter indicate that invasive measures of RV 

function (such as RAP or CI) or pressure estimates of RV arterial coupling do not 

add prognostic advantage over imaging of RV volumes to determine function and 

coupling, when assessed at baseline. Imaging is more acceptable than right heart 

catheterisation to the patient particularly for serial monitoring. The results 

presented herein reinforce previous work that outcomes in PAH should focus on 

RV function, rather than metrics of afterload. 
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4.6 Conclusions 

In this chapter we have shown that RV-arterial coupling is inefficient in patients 

with PAH, relates to functional status and other metrics of RV function, and 

predicts outcome when determined by the volume but not the pressure method. 

Patients with PH related to hypoxic lung disease demonstrate impaired RV 

contractile response to increasing afterload in comparison to PAH subjects. RV 

function to predict outcome in PAH is best evaluated by imaging derived SV/ESV 

or EF. In this study, there was no added value of invasive simplified pressure-

derived estimates of RV-arterial coupling. In the following chapter the effect of 

PAH therapy on the simplified volume estimate of RV-arterial coupling will be 

explored.
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Chapter 5 - Non invasive monitoring of the RV-

pulmonary circulation unit in patients treated for 

pulmonary hypertension
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5.1 Introduction 

The results discussed in chapters 3 and 4 show that RV function at diagnosis is a 

strong prognostic factor in both PAH and severe PH associated with chronic lung 

disease. In this chapter, I propose to examine the effect of PH therapy on RV 

function assessed by both SV/ESV in comparison to other indices such as RV 

ejection fraction and stroke volume, and the prognostic value of this change in 

comparison to other commonly implemented outcome measures such as NTproBNP 

and 6MWD.   

As discussed in section 1.3.1, the ability of the right ventricle to adapt to the 

increased afterload that occurs in patients with pulmonary arterial hypertension 

has been recognised in recent years as the major determinant of functional status, 

exercise capacity and prognosis. Whether determined invasively with measures of 

right atrial pressure or cardiac index at RHC (142, 269), or by use of imaging 

modalities such as echocardiogram (422) or cardiac MRI (41), RV dysfunction both 

at diagnosis and during PAH therapy is associated with poorer outcome. 

Importantly, progressive RV dysfunction despite improvement in PVR with therapy 

has been demonstrated by cardiac MRI and associated with poorer outcome (288), 

highlighting the need for monitoring RV function in these patients. 

5.1.1 Effect of pulmonary vasodilator therapy on RV volumes and 
mass 

As discussed in section 1.3.4, several small pharmacological therapeutic studies 

have demonstrated no improvement in RV volumes or mass (302, 326, 327), with 

the exception of some studies showing a reduction in RV mass with sildenafil, but 

not Bosentan suggesting possibility of a drug class effect (324, 325, 329). Larger 

single or multicentre studies with mixed drug therapies have demonstrated 

improvement in RV EDVI and LVEDVI (41, 288, 373). Reverse remodelling after lung 

transplantation (321) or pulmonary endarterectomy (323) has however been 

demonstrated suggesting ability of the RV to recover if significant improvements 

in afterload are made. Increasing RVEDVI and falling LVEDVI but not change in RVM 

during PAH therapy have been demonstrated to predict worse survival (41). 
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5.1.2 Vascular stiffness 

As discussed in section 1.3.2 reduced vascular compliance (i.e. increased stiffness) 

assessed either invasively by SV/PP (285) or non-invasively by RAC MPA (314) 

measured at diagnosis in PAH is associated with poorer survival. In Chapter 4 RAC 

MPA was shown to inversely correlate with Ea (Figure 4.9, r2 = 0.252, p <0.001), a 

measure of total RV afterload. Invasive studies have demonstrated a reduction in 

PVR with PAH therapy, but the effect of therapy on vascular stiffness as assessed 

by RAC MPA is unknown, and if this is a useful marker of therapeutic response. 

5.1.3 RV function during PH therapy 

Small therapeutic studies have reported consistently on improved SV with PDE-5i, 

and Epoprostenol therapy (302, 324), with mixed outcomes in RV ejection 

fraction, with either no effect (326, 327) or improvement with dual therapy in one 

study (329). Larger single or multicentre studies have demonstrated improvement 

in both measures of RV function after PAH therapy (41, 288, 373). Furthermore, 

any further deterioration in RV function assessed by these indices during therapy 

has been clearly linked to worse prognosis despite improvements in afterload 

(288). 

As discussed in chapter 4, RV-arterial coupling, and in particular SV/ESV may be a 

preferable parameter for monitoring RV function during PH therapy as it is less 

pre-load dependent then RV ejection fraction (SV/EDV). Systemic vasodilatory 

effects of pulmonary vasodilators may increase venous return and therefore 

increase EDV, which decreases EF if SV is unaltered. Alternatively, an increase in 

CO (from either increase in heart rate or preload) may decrease PVR (mPAP – 

PAWP /CO) without any change in functional state of the pulmonary circulation. 

SV/ESV as a measure of RV arterial coupling may clarify cofounding effect of 

preload on longitudinal change in RV systolic function in patients undergoing PAH 

therapy.  

Various experimental animal models have examined the pharmacological effects 

of both inotropic agents and pulmonary vasodilators on RV-arterial coupling. 

Dobutamine has been shown to increase RV-arterial coupling by inotropy (increase 

in contractility, Ees) both with (423) and without a decrease in afterload (125, 
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424). Norepinephrine improves RV-arterial coupling through an exclusively 

inotropic effect (423), whilst levosimendan has been shown to improved coupling 

through combined increase in contractility and reduction in afterload in a 

pulmonary banding model of RV failure (424, 425). Epoprostenol has been shown 

to improve RV-arterial coupling by exclusive pulmonary vasodilatory (i.e. 

reduction in Ea) in both overcirculation induced PH (426) and pulmonary artery 

banding models of RV failure (427). Sildenafil administration improved RV-arterial 

coupling due solely to pulmonary vasodilatory effects in acute hypoxic model of 

PH (428), but additionally through positive inotropic effects in a PA banding 

chronic PH model (429). Bosentan administration in a chronic overcirculatory PH 

model did not demonstrate any improvement in contractility (410). These 

experimental studies suggest overall predominantly vasodilatory rather than 

inotropy related effects, with again the suggestion that PDE-5i may have some 

direct myocardial effects. To date no clinical studies have examined effect of PH 

therapy on RV-arterial coupling in PAH. 

5.1.4 6MWD and NTproBNP, surrogate markers of RV dysfunction. 

Cardiac MRI is regarded as the gold standard modality for interrogating RV 

structure and function due to the complex shape and contractile pattern of the 

RV being better suited to a 3D imaging modality. Cardiac MRI is not however 

available in all centres, and not tolerated by some patients due to claustrophobia 

or breathlessness, whilst 3D echocardiography is still largely limited to the 

research field.  

As discussed in section 1.2.5.3, exercise testing in the form of either a walking 

test or cardiopulmonary exercise test in addition to assessing the patient’s 

functional capacity has been used as a surrogate measure of RV function due to 

the relationships demonstrated with peak VO2, cardiac output, and stroke volume 

(290). The 6MWT is commonly employed as it is easy to perform. Absolute distance 

walked has been shown to predict survival both at diagnosis and whilst undergoing 

therapy (286, 290). However, change in 6MWD does not consistently predict 

survival benefit (430), its utility in less affected individuals is confounded by a 

ceiling effect (295) and distance walked is influenced by a number of confounders 

including patient motivation and comorbidity. 
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As discussed in section 1.2.5.4, the biomarker brain natriuretic peptide (BNP) is 

secreted by ventricular cardiomyocytes in response to increased stretch as a result 

of cardiac wall stress. The BNP precursor is split into a biologically active peptide 

and the more stable N terminal fragment (NTproBNP) (296). Both have been shown 

to reflect RV dysfunction and predict prognosis in PAH (301, 431). Biomarkers have 

the advantages of being independent of interpretation or operator skill, non-

invasive and quick to perform in an outpatient clinic.  

Figure 5.1 shows CMR measured RVEF, RVEDVI, 6MWD and NTproBNP for a patient 

with PAH undergoing pulmonary vasodilator therapy from point of diagnosis. As 

can be seen, whilst 6MWD continues to improve almost to a level considered as a 

treatment goal by current guidelines, this masks continued poor RV ejection 

fraction and increasing RV volume which may have been suspected by the 

persistently raised NTproBNP. 

5.2 Aims 

The results described in chapter 4 show that SV/ESV at diagnosis confers no 

prognostic advantage over RVEF, but both are strong predictors of outcome. As 

discussed earlier in this chapter, 6MWD, whilst a commonly employed outcome 

measure in clinical studies, has a number of limitations as a method of monitoring 

during PH therapy, but NTproBNP could potentially be a stronger prognostic 

variable due to a closer relationship to RV function. The aims of this chapter are: 

1. To examine the effect of PAH therapy on RV-arterial coupling assessed by 

the volume method SV/ESV. 

2. To assess the prognostic relevance of change in SV/ESV in comparison to 

other metrics of RV function, RVEF, SV and volumes, MPA RAC (as a 

noninvasive marker of RV afterload), 6MWD and NTproBNP. 

3. To compare relationship of change in NTproBNP (∆NTproBNP) with change 

in RV function in comparison to change in 6MWD (∆6MWD) during time 

course of the patient’s therapy.



 

 

 

Figure 5.1. Patient example of serial RV function and volumes in comparison to 6MWD and NTproBNP data from time of diagnosis.  
 

Time points represent 1. Diagnosis. 2. After 4 weeks of drug therapy. 3. At 3 months 4. At 1 year. Reference lines ----- lower limit of normal. ••••• upper limit of normal 
(85). 

Panel A demonstrates RV ejection fraction remains below normal range and B RV volume remains increased, with minimal improvement during therapy. Panel C 
however shows that 6MWD continues to increase, reference line of 440m represents ESC guideline for treatment target as a low risk patient (estimated 1 year mortality 
<5%) (432) and as a means of monitoring may provide false reassurance of treatment efficacy in this patient. Panel D demonstrates NTproBNP levels remain high (in 
agreement with suboptimal RV indices). Reference line 215 pg/mL represents ULN in females (379) (guideline target 300 ng/L). 
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5.3 Materials and methods 

5.3.1 Patient recruitment 

52 PAH patients who had a CMR study performed at diagnosis and at least one 

follow up study after a minimum of 3 months of PH therapy were identified from 

the cohort of 140 incident PAH cases described in chapter 4. Patients underwent 

multidisciplinary investigation as described in section 2.1.1. Cardiac MRI 

acquisition and data analysis were carried out as described in section 2.2. 6MWD 

and/or NTproBNP performed within 1 month of CMR was included for comparison. 

Several patients had undergone multiple CMR studies during PH therapy, (between 

2 and 5 CMR studies) with a total of 126 ∆RV values included in the analysis. All 

patients were treated with pulmonary vasodilators in accordance with guidelines.  

5.3.2 Statistical methods 

Statistical analysis was carried out as described in section 2.3. Survival was from 

date of second CMR study used to calculate ∆RV value, and endpoint was date of 

either death, lung transplantation or censoring. Patients were censored if they 

were lost to follow up or alive at last day of study (1st December 2015). Kaplan-

Meier survival curves were calculated, grouping subjects according to increase or 

decrease in SV/ESV, 6MWD or NTproBNP during PH therapy, with comparison of 

groups using logrank test. 

Correlations were performed to examine relationship between absolute and 

change in 6MWD or NTproBNP with RV volumes, function (SV/ESV and RVEF) and 

SV using Pearson or Spearman r and linear or nonlinear regression dependent on 

data distribution. 
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5.4 Results 

The 52 PAH patients in this study, 33 IPAH, 16 CTDPH and 3 POPH, displayed 

impaired RV function at diagnosis, RVEF 36%, SVI 28 mL/m2 and raised NTproBNP. 

The average time to first follow up study was 5.7 months. Table 5-1 shows the 

population characteristics.  

 

Table 5-1. Population Characteristics 
 

  

Age (years) 53 ± 16 

% Female 64 

Aetiology % (n) 

IPAH 

CTDPH 

POPH 

 

63 (33) 

31 (16) 

6 (3) 

mPAP (mmHg) 47 ± 14 

RAP (mmHg) 6 ± 4 

PVR (Wood Units) 10.0 (5.9 – 15.7) 

CI (mL/m2) 2.2 ± 1.7 

RVEF (%) 36 ± 16 

SV/ESV 0.462 (0.295 – 0.837) 

RVEDVI (mL/m2) 88 ± 29 

RVESVI (mL/m2) 59 ± 30 

SVI (mL/m2) 28 ± 11 

6MWD (m) 312 ± 90 

NTproBNP (pg/mL) 852 (272 – 2657) 

Mean ±SD or median (IQR) shown depending on data distribution. 
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5.4.1 Correlations of NTproBNP and 6MWD with RV function 

At diagnosis, NTproBNP correlated with RAP (r = 0.568, p <0.0001), PVR (r = 0.669, 

p <0.001) and RVMI (r = 0.693, p <0.0001) whilst 6MWD did not (r = -0.130, p = 

0.374, r = 0.079, p = 0.588 and r = 0.175, p = 0.230 respectively). There was no 

significant relationship between NTproBNP levels and 6MWD (r = 0.106, p = 0.494). 

6MWD did not correlate with RVEF (r = 0.052) or SV/ESV (r = -0.077), but weakly 

correlated with SVI (r = 0.296, p <0.0001) and increasing RV volumes, RVEDVI r = 

0.281, p = 0.003 and RVESVI r = 0.193, p = 0.041). Figures 5.2 – 5.5 display the 

correlations. 

NTproBNP strongly correlated with RV volumes, r = 0.504 with RVEDVI and r = 

0.655 with RVESVI, and inversely with RV function, r = -0.665 with SV/ESV, r = -

0.727 with RVEF and r =-0.406 with SVI, all p <0.001. Figures 5.6 to 5.9 describe 

the correlations. 
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Figure 5.2. Correlation of six minute walk distance with RV ejection fraction. 

  
No significant relationship was demonstrated, r2 = 0.003, p = 0.585. 

 

 

Figure 5.3. Correlation of six minute walk distance with stroke volume. 
 

Weak correlation was demonstrated (Pearson r = 0.296), y = 22.19 + 0.03x, r2 = 0.088, p = 0.002. 
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Figure 5.4. Correlation of RV end-diastolic volume with six minute walk distance.  
 

Weak positive correlation was demonstrated, y = 0.09x + 59.15, r2=0.079, p=0.003 

 

 

Figure 5.5 Correlation of RV end-systolic volume with 6MWD. 
 

Weak positive correlation was seen, y = 0.06x + 37.66. r2= 0.037, p = 0.041 
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Figure 5.6 Inverse correlation of RV ejection fraction with NTproBNP. 
 

Logarithmic regression shown, y = 76.19 + -6.05*log(x). r2 = 0.433, p<0.0001. 

 

 

Figure 5.7 Inverse correlation of SV/ESV with NTproBNP. 
 

Logarithmic regression shown, y = 1.79 + -0.16*log(x). r2= 0.209, p<0.0001. 
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Figure 5.8 Correlation of RV end-diastolic volume with NTproBNP. 
 

Y = 35.2 + 8.9*log(x). r2= 0.208 , p<0.0001 

 

Figure 5.9 Correlation of RV end-systolic volume with NTproBNP. 
 

y = -10.1 + 10.97*log(x), r2= 0.350, p<0.0001. 
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5.4.2 Change in RV function with therapy 

48/52 patients had CMR performed at diagnosis, and at less than 1 year of follow 

up. RVEF increased from 35±16 to 39±15, p = 0.008 and SV/ESV from 0.461 (0.295 

– 0.837) to 0.616 (0.341 – 1.066) p = 0.036. There was no improvement in RV 

volumes observed, but SVI increased from 27 ± 9 to 31 ± 10, p = 0.004. Figure 5.8 

– 5.12 display the paired analysis. 

35/48 patients had NTproBNP data at both diagnosis and to coincide with first 

follow up CMR, and 42/48 had 6MWD performed. Significant improvement in 6MWD 

but not NTproBNP was demonstrated. Figure 5.13 displays the analysis. 

23 patients had serial CMR measurements at diagnosis, after 3–8 months and 12-

18 months of therapy. A sustained improvement in both SV/ESV and RVEF was 

demonstrated (shown in figures 5.14 – 5.15), SV/ESV increased from 0.390 (0.317-

0.714) at diagnosis to 0.622 (0.421 – 1.099) at 3-8 months (p = 0.028) and sustained 

(but no further significant increase) at 12-18 months, 0.848 (0.489 – 1.157) p = 

0.354. Friedman test p = 0.006. RV volumes did not improve, RVESVI 63 ± 23 to 57 

± 27 and 59 ± 32 mL/m2 (ANOVA 0.242), RVEDVI 92 ± 29 to 91 ± 28 and 97 ± 34 

(ANOVA 0.206) at 3-8 and 12-18 months respectively. 
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Figure 5.10 Improvement in indices of RV systolic function following PH therapy. 
 

RVEF increased from 34.9 ± 16 to 38.9 ± 15 5, p = 0.008 (mean ± SD shown) and SV/ESV from 
0.481 (0.295 – 0.837) to 0.616 (0.341 – 1.066), p = 0.036 (median (IQR) shown). Paired statistical 
analysis performed. 

 

 

 

 

Figure 5.11. RV volumes at diagnosis and after PH therapy. 
 

No improvement in either RVEDVI (89 ± 28 to 90 ± 29 mL/m2, p=0.555) or RVESVI (61 ± 29 to 58 ± 
28 mL/m2, p=0.233) was observed. Mean and SD shown. Paired statistical analysis performed. 
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Figure 5.12. Change in stroke volume and vascular stiffness with PH therapy. 
 

SVI improved from 27 ± 9 to 31 ± 10 mL/m2, p=0.004 but no improvement in RAC MPA was observed 
(21 ± 10 to 23 ± 10%, p=0.174). mean ± SD shown. Paired statistical analysis performed. 

 

 

 

Figure 5.13. Change in six minute walk distance and NTproBNP following PH therapy. 
 

6MWD increased from 314 to 342 m (p=0.016, n=42) but NTproBNP did not, 998 to 726 pg/mL, 
(p=0.534, n=35). Mean ± SD or median (IQR) shown dependent on data distribution, paired statistical 
analysis performed. 
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Figure 5.14 Serial SV/ESV in patients undergoing PH therapy.  
 

Significant and sustained improvement in SV/ESV demonstrated (Friedman test p = 0.006 across 
series). Median (IQR) shown, n = 23. * p = 0.028 ** p = 0.005. no significant increase between 3-8 
and 12-18 months, p = 0.354. 

 

 

Figure 5.15 Serial RV ejection fraction in patients undergoing PH therapy.  
 

RVEF improved at 3-8 months of therapy and was sustained at 12-18 months (ANOVA p = 0.002), 
mean ± SD shown. * p = 0.02 ** p = 0.001, both in comparison to baseline. No significant further 
improvement between 3-8 months and 12-18 months (p = 0.254).  
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26/48 patients received PDE-5i therapy and 18/48 ETRAs (in the remaining 

patients, 1 received Prostanoid therapy, 1 patient a CCB and 2 patients 

combination therapy with both ETRA & PDE5i). Both groups had similar baseline 

characteristics, shown in table 5-2, although more CTD patients received ETRA 

therapy. Those receiving PDE-5i showed greater improvement in RV function 

assessed by either RVEF (36 ± 16 to 41 ± 15 %, p = 0.03) or SV/ESV (0.486 (0.307 – 

0.850) to 0.710 (0.414-1.111) p = 0.049), whilst those receiving ETRAs greater 

improvement in SVI (27 ±11 mL/m2 to 33 ± 11 mL/m2, p = 0.014) and 6MWD (271 

± 65 to 319 ± 85 m, p = 0.011), shown in table 5-3. There was no change in RVMI 

with PDE-5i (49 ± 17 to 49 ± 15 g/m2, p = 0.805) or ETRA therapy (58 ± 28 to 53 ± 

19 g/m2, p = 0.177). 

Examining those with pure IPAH only (excluding patients with co-existent lung 

disease as a factor), similar differential effects on RV function and SV were still 

present (data shown in table 5-4). 

 

 

 

 

Table 5-2. Characteristics of patients receiving Phosphodiesterase 5 inhibitors in 
comparison to those receiving endothelin receptor antagonists. 
 

 Patients receiving 
PDE-5i (n=26) 

Patients receiving 
ETRA (n=18) 

p value 

Age (years) 55 ± 17 52 ± 16 0.607 

Sex (% F) 62 72  

Aetiology 

IPAH 

CTDPAH 

POPH 

 

73 (19) 

19 (5) 

8 (2) 

 

50 (9) 

50 (9) 

 

mPAP (mmHg) 45 ± 12 50 ± 15 0.285 

PVR (Wood Units) 10.0 (5.5 – 14.2) 9.5 (5.9 – 17.8) 0.583 

CI (mL/m2) 2.2 ± 0.6 2.2 ± 0.6 0.908 
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Table 5-3. Change in right ventricular function according to class of drug therapy. 
 

 At diagnosis During therapy p value 

RVEF 

ETRA 

PDE5i 

 

34 ± 17 

36 ± 16 

 

38 ± 14 

41 ± 15 

 

0.098 

0.031* 

SV/ESV 

ETRA 

PDE5i 

 

0.447 (0.275-0.979) 

0.486 (0.307-0.850) 

 

0.620 (0.338-0.923) 

0.710 (0.414-1.111) 

 

0.396 

0.049* 

SVI 

ETRA 

PDE5i 

 

27 ± 11 

28 ± 9 

 

33 ± 11 

30 ± 10 

 

0.014* 

0.146 

RVEDVI 

ETRA 

PDE5i 

 

91 ± 30 

85 ± 25 

 

89 ± 30 

86 ± 23 

 

0.352 

0.722 

6MWD 

ETRA (14) 

PDE5i (24) 

 

271 ± 65 

325 ± 80 

 

319 ± 85 

347 ± 94 

 

0.011* 

0.154 

NTproBNP 

ETRA (11) 

PDE5i (22) 

 

2989 (434-4278) 

998 (238-2059) 

 

1107 (456-4954) 

490 (87-1784) 

 

0.722 

0.106 
    

Mean ± SD or median (IQR) shown and paired t test or wilcoxon matched pairs analysis depending 
on data distribution. 26 patients treated with PDE5i and 18 with ETRA therapy. Reduced number of 
patients receiving ETRA and PDE5i indicated (n) due to missing data for 6MWD and NTproBNP 
only.  

 

Table 5-4. Change in RV function in IPAH patients receiving either Phosphodiesterase 5 
inhibitors or endothelin receptor antagonists. 
 

 At diagnosis During therapy p value 

RVEF 

ETRA 

PDE5i 

 

30 ± 17 

32 ± 12 

 

33 ± 12 

38 ± 14 

 

0.245 

0.022* 

SV/ESV 

ETRA 

PDE5i 

 

0.317 (0.193-0.844) 

0.390 (0.284-0.781) 

 

0.512 (0.286-0.657) 

0.566 (0.403-0.965) 

 

0.678 

0.031* 

SVI 

ETRA 

PDE5i 

 

24 ± 13 

25 ± 7 

 

34 ± 11 

27 ± 10 

 

0.029* 

0.367 

Mean ± SD or median (IQR) shown. Paired data analysis performed. 15 IPAH patients received 
PDE5i and 9 ETRA, no missing data. 
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5.4.3 Relationship between change in RV function with change in 
NTproBNP and 6MWD. 

105 ∆6MWD, 88 ∆NTproBNP and 126 ∆RV values were derived from serial 

measurements from 52 PAH patients described in table 5-1. Table 5-5 displays the 

population median and range.  

∆6MWD correlated with ∆SVI (r = 0.441, p <0.001), ∆RVEF (r = 0.344, p <0.001) and 

∆SV/ESV (r = 0.272, p = 0.005) and negatively with ∆RVESVI (r = -0.235, p = 0.016) 

but not RVEDVI (r = -0.04, p = 0.632). Figures 5.16 – 5.20 display the correlations. 

∆NTproBNP strongly correlated with ∆RVEDVI (r = 0.372) and ∆RVESVI (r = 0.555) 

and negatively with ∆RVEF (r = - 0.569), ∆SV/ESV (r = -0.469) and ∆SVI (r = -0.545), 

all p <0.001. Figures 5.21 – 5.26 display the correlations with change in NTproBNP 

and log transformation of NTproBNP. 

∆6MWD did not correlate with ∆NTproBNP, Pearson r = - 0.202, p = 0.08. 

 

Table 5-5 Population range and median change in RV indices, 6MWD and NTproBNP. 
  

 n median range 

∆RVEF (%) 126 3.8 -24.8 – 47.2 

∆SV/ESV  0.105 -1.18 – 1.65 

∆SVI (mL/m2)  5.2 -16 – 40 

∆RVEDVI (mL/m2)  -0.31 -59 – 66 

∆RVESVI (mL/m2)  -3.9 -68 – 60 

∆6MWD (m) 105 24 -137 – 224 

∆NTproBNP (pg/mL) 88 -83 -5041 – 3193 

Relative change in NTproBNP (%)  -27 -99 - 412 
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Figure 5.16. Correlation of change in 6MWD with change in RV ejection fraction.  
 

Positive correlation between ∆RVEF and ∆6MWD, y = 3.5 + 0.06x, r2= 0.118, p <0.001 

 

 

Figure 5.17 Correlation of change in SV/ESV with change in 6MWD.  
 

Improvement in SV/ESV weakly correlated with 6MWD improvement, y = 0.09 + 1.52E-3x, r2 = 
0.074, p = 0.005
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Figure 5.18 Correlation of change in stroke volume with change in 6MWD. 
  

An increase in SVI was associated with increase in 6MWD, y = 2.31 + 0.05x, r2 = 0.195, p <0.0001
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Figure 5.19 Change in 6MWD in comparison to change in RV end-diastolic volume. 
 

No significant correlation was observed, r = -0.04, p = 0.682. 

 

 

Figure 5.20 Correlation of change in RV end-systolic volume with change in 6MWD.  
 

Weak relationship only seen, y = -2.67 + -0.07x, r2 = 0.06, p = 0.016  
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Figure 5.21 Correlation of change in RV ejection fraction with change in NTproBNP.  
 

Falling RVEF strongly associated with increased NTproBNP, y = 4.57 + -5.85E-3x, r2 = 0.324, 
p<0.0001 

 

 

Figure 5.22 Correlation of change in RV ejection fraction with change in log transformation 
of NTproBNP. 
y = 2.35 + -5.42x, r2 = 0.299, p<0.0001. 
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Figure 5.23 Correlation of change in SV/ESV with change in NTproBNP.  
 

Fall in SV/ESV strongly associated with increase in NTproBNP, y = 0.12 + -1.59E-4x, r2 = 0.220, 
p<0.0001 

 

Figure 5.24 Correlation of change in SV/ESV with change in log transformation of NTproBNP 
 

y = 0.05 + -0.16x, r2 = 0.255, p<0.0001 
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Figure 5.25 Correlation of change in stroke volume with change in NTproBNP. 
 

y = 4.62 + -3.66E-3x, r2 = 0.189, p <0.0001. 

 

 

Figure 5.26 Correlation of change in stroke volume with change in log transformation of 
NTproBNP. 
 

y = 62.59 + -4.36x, r2 = 0.248, p<0.0001 
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Figure 5.27 Correlation of change in RVEDVI with change in NTproBNP. 
 

Increasing RV end diastolic volume associated with increase in NTproBNP, y = 2.21 + 0.01x, r2 = 
0.297,p <0.0001 

 

 

Figure 5.28 Correlation of change in RV end-diastolic volume with change in log 
transformation of NTproBNP. 
 

y = 3.57 + 6.18x, r2 = 0.149, p<0.0001 
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Figure 5.29 Correlation of change in RV end-systolic volume with change in NTproBNP. 
 

Increasing RV end diastolic volume associated with increase in NTproBNP, y = -2.14 + 0.01x, r2 = 
0.512, p<0.0001 

 

 

Figure 5.30 Correlation of change in RV end-systolic volume with change in log 
transformation of NTproBNP. 
 

y = 0.51 + 9.06x, r2 = 0.337, p<0.0001
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5.4.4 Prognostic significance of change in RV function during PH 
therapy. 

26 deaths (50%) and 1 lung transplantation occurred during the mean follow up 

period of 2626 days. A comparative analysis of survivors and non survivors after 5 

years of follow up is shown in table 5-6. Survivors demonstrated greater 

improvement in 6MWD, NTproBNP and RVESVI. 

There were 7 deaths (50%) in the cohort of 14 patients with a fall in 6MWD at 

follow up in comparison to 16/32 (50%) in those with a stable or increased 6MWD, 

mean estimated survival 1909 versus 2495 days respectively, logrank p = 0.176. 

Figure 5.31 displays the KM survival curve. 

Patients with a decrease in NTproBNP showed a significantly improved outcome 

over those with an increase in levels, mean survival 2788 vs 1451 days, logrank p 

<0.001. 14/15 (93%) versus only 5/22 (23%) died during the follow up period. Figure 

5.32 displays the KM survival curve. 

 

Table 5-6 Comparative analysis of survivors and non survivors at 5 years according to 
change in RV indices, 6MWD and NTproBNP. 
  

 Alive (n=29) Deceased (n=17) p value 

∆RVEF 5 (-3 – 9) -3 (-9 – 9) 0.241 

∆SV/ESV 0.096 (-0.08 – 0.321) -0.069 (-0.156 – 0.146) 0.328 

∆SVI 5 ± 9 2 ± 7 0.266 

∆RVEDVI -0.5 ± 17 10 ± 21 0.062 

∆RVESVI -5 ± 16 8 ± 20 0.026* 

∆6MWD 50 ± 61 -5 ± 72 0.015* 

∆NTproBNP -130 (-615 – 51) 163 (-43 – 1458) 0.013* 

Relative change 
in NTproBNP 

-41 (-74 – 15) 21 (-26 – 66) 0.022* 

Survivors displayed reduction in NTproBNP (expressed as either absolute or %change) and RV 
end-systolic volume and increase in 6MWD in comparison to non-survivors. 
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Figure 5.31 Kaplan Meier survival curve according to change in 6MWD after instigation of 
PH therapy. 
  

No significant difference in outcome observed between those with stable/increase in 6MWD (n = 
32, solid line) and those with decrease in 6MWD (n = 14, dashed line), logrank p = 0.176. 
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Figure 5.32 Kaplan Meier survival curve according to change in NTproBNP after initiation of 
PH therapy. 
 

Patients with reduction in NTproBNP levels (n = 22, solid line) showed improved survival in 
comparison to those with increasing levels (n = 15, dashed line), logrank p<0.0001. 
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15/18 (83%) patients with decrease in SV/ESV died in comparison to 12/34 (35%) 

with a stable or increased SV/ESV after initiation of PH therapy. Mean survival 

estimates 1594 versus 2704 days, p = 0.002. Figure 5.33 displays the KM survival 

curve. All patients with change in RV function according to SV/ESV displayed same 

increase or decrease in function according to RVEF (i.e. KM survival curve 

identical) defined by a ≥3% change (433). 

 

 

 

Figure 5.33. Kaplan Meier survival curve according to change in SV/ESV with PH therapy. 
 

Decreased survival was demonstrated in those patients with a fall in SV/ESV (n = 18, dashed line) 
in comparison to those with a stable or increased in SV/ESV (n = 34, solid line). Logrank p = 0.002. 
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Increasing NTproBNP, RV volumes and decreasing SV/ESV, SVI, RVEF and 6MWD 

were associated with poorer outcome on univariate cox proportional hazards 

regression. Table 5-7 displays the hazard ratios for the analysis. On multivariate 

survival analysis with age and mPAP at diagnosis, ∆NTproBNP (HR 1.622 95%CI 

1.066-2.468, p=0.024) and ∆RVESVI (HR 1.030 95%CI 1.010 – 1.050, p=0.003) but 

not ∆6MWD (HR 0.995 95% CI 0.990-1.001, p=0.129) remained independent 

predictors of outcome. 

 



 

Table 5-7. Change in 6MWD, NTproBNP and indices of RV function to predict outcome.  

 

 Univariate model Multivariate model * 

 HR (95%CI) p value HR (95%CI) p value 

∆RVEF 0.949 (0.920 – 0.979) 0.001   

∆SV/ESV 0.316 (0.166 – 0.604) <0.001   

∆SVI 0.959 (0.925 – 0.994) 0.023   

∆RVEDVI 1.020 (1.006 – 1.034) 0.004   

∆RVESVI 1.032 (1.016 – 1.047) <0.001 1.030 (1.01 – 1.05) 0.003 

∆6MWD 0.994 (0.989 – 0.999) 0.016 0.995 (0.990 – 1.001) 0.129 

∆NTproBNP 2.125 (1.452 – 3.111) <0.001 1.622 (1.066 – 2.468) 0.024 

Univariate and multivariate (with age and mPAP at diagnosis) cox proportional hazards regression. Increasing ∆RVESVI and ∆NTproBNP predictive of poorer survival..
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5.4.5 Change in vascular stiffness (RAC MPA) as an outcome 
measure 

At diagnosis, PVR negatively correlated with RAC MPA, r = -0.350, p = 0.013 (n = 

50) suggesting RAC was reasonable measure of RV afterload in this population. 108 

∆RAC values were calculated from 47/50 patients with serial measurements. 

Median ∆RAC -0.20% (range -23 to +42 %). ∆RAC did not correlate with ∆6MWD (n 

= 90, r = 0.173, p = 0.104) nor change in RV function, ∆RVEF (r = 0.169, p = 0.081), 

∆SV/ESV (r = 0.174, p = 0.072).  

∆RAC did not predict survival on univariate cox proportional hazards regression, 

HR 0.992 95%CI 0.971 – 1.013, p = 0.444. There was no associated improvement in 

survival in those whom improved RAC (n = 21) in comparison to those with further 

decrease in RAC (n = 26) after PH therapy, logrank p = 0.917. Figure 5.34 displays 

the Kaplan Meier survival curves. 
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Figure 5.34. Kaplan Meier survival plot according to those with improved RAC MPA in 
comparison to those with further fall during PH therapy. 
 

No significant difference in survival was observed in those with improved (increase) in RAC (n=21, 
solid line) versus further decrease (n=26, dashed line), 1 year and 3 year survival 100 versus 92 % 
and 74 versus 76% respectively, logrank p = 0.917. 
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5.5 Discussion 

The results described by this chapter show improvement in RV-arterial coupling 

determined by the volume method SV/ESV with PAH therapy, and poorer survival 

in those patients with a further fall during therapy. In agreement with previous 

studies, improvement in RVEF and SV but not RV volumes or mass was also seen. 

These results confirm previous studies that parameters of RV dysfunction obtained 

at diagnosis and monitoring of those same variables (i.e. NTproBNP, RV ejection 

fraction and volumes) have prognostic significance in the evaluation of patients 

with PAH undergoing drug therapies. Additionally, changes in NTproBNP were 

shown to more closely parallel changes in RV volumes and systolic function than 

6MWD in patients undergoing PH therapy and independently predict survival. 

5.5.1 Determining change in RV function and afterload with CMR 

PAH specific therapies in current clinical use target one of three pathways 

involved in vascular remodelling and vasoreactivity of the pulmonary vasculature 

resulting in a reduction in PVR. As already discussed, progressive RV dysfunction 

however may occur despite this decrease in PVR. In early PAH, with largely 

preserved RV function and cardiac output, this reduction in PVR results in a fall in 

mPAP (as PVR equals mPAP-PAWP/CO) and therefore RV power output (CO x 

mPAP). In severe PH where RV dysfunction and failure has already ensued, 

therapeutic fall in PVR will translate to improvement in CO rather than fall in 

mPAP and therefore no change in RV work and little/no beneficial impact on the 

RV. Recent meta-analysis looking at pump function across clinical trials 

demonstrated that PAH specific therapies whilst reducing PVR and leading to 

reduction in mPAP and increase in SV are not associated with increase in 

contractility suggesting these therapies have predominantly vasodilatory and little 

or no cardiac specific effects (331). The results here show increase in SVI with 

therapy, but no improvement in RAC MPA with PH therapy, and no relationship to 

outcome in those with increased RAC (i.e. improved vascular stiffness). Due to the 

inverse hyperbolic relationship between compliance and PAP, by the time mPAP 

rises to diagnostic threshold compliance has reached plateau. This may explain a 

lack of effect seen with PH therapy in RAC, and the lack of significance of ∆RAC 

as a prognostic variable. Perhaps the utility of assessing RAC MPA lies in screening 

at risk populations for early pulmonary vascular disease where large falls in RAC 
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(or SV/PP) with minimal rise in PVR or mPAP as shown in chapter 3 for lung disease 

patients with PH. Further fall in either SV/ESV or RVEF however was associated 

with worse survival, but there was no prognostic advantage of SV/ESV over RVEF. 

This again suggests in agreement previous studies that outcome measures to assess 

improvements in RV function rather than afterload with PAH therapy are of more 

prognostic significance. In the situation where CMR is not readily available for this 

purpose, the closer relationship to NTproBNP suggests this is a more suitable 

measure for the clinic than 6MWD, which showed some relationship to SV, but 

poor (or contradictory relationship as 6MWD positively correlated with increased 

RVEDVI) relation to RVEF. 

Whilst RVEF at baseline was a strong predictor of outcome as shown in chapter 4 

and further fall during therapy was associated with poorer survival, ∆RVESVI but 

not ∆RVEF was an independent predictor of outcome. This may reflect the small 

change in RVEF observed (median 4%), although range showed considerable 

variation around this. RV ejection fraction is both a composite measure and 

preload dependent measure of RV systolic function, and perhaps use of ∆RVEF 

lacks sensitivity whilst increasing ∆RVESVI suggests declining contractility and is 

less preload affected. ∆SV/ESV which is proposed as less preload dependent did 

not perform superiorly in this study however.  

5.5.2 Significance of change in NTproBNP during PAH therapy 

Levels of NTproBNP (and BNP) have been shown to inversely correlate with RVEF 

and cardiac output, and correlate with mPAP, RAP, RVM and total pulmonary 

vascular resistance in PAH (297, 298). Changes in levels have been shown to 

parallel haemodynamics and functional status of PAH patients during treatment, 

and relative change in NTproBNP reflect relative change in CMR indices of RV 

structure and systolic function. High NTproBNP levels or in particular increasing 

levels during follow up have been shown to be independent predictors of mortality 

(299-301). The results described here add to the growing evidence in the literature 

that biomarkers such as NTproBNP are strong prognostic variables in PAH and 

reflect RV function, with increasing levels indicative of increasing RV volumes and 

reduction in systolic function. Additionally, in agreement with the recent study by 

Nickel et al (283), the results here show that ∆NTproBNP is an independent 

predictor of outcome in patients undergoing PH therapy, and potentially a superior 
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outcome measure than ∆6MWD. Increasing ∆RVESVI was also an independent 

predictor of outcome. However serial NTproBNP measurements have the added 

benefit of being readily obtained and monitored in a clinical outpatient setting 

unlike cardiac MRI indices of RV function. 

5.5.3 Significance of change in 6MWD during PAH therapy 

6MWD is known to correlate with peak oxygen pulse (which in turn correlates to 

SV and therefore indirectly RV function), CO and total pulmonary resistance, and 

to fall in proportion to worsening FC in PAH (290). Data in the literature is limited 

on the relationship between change in RV function and change in 6MWD during 

therapy. In patients with pulmonary hypertension of varying aetiology, 6MWD has 

been shown to correlate with SVI but not to RV ejection fraction or volume (434). 

Improved RV stroke volume with Epoprostenol therapy has been shown to relate 

to improved 6MWD in one small study, with the most significant increase in SV 

occurring in the first 4 months (302). In a small clinical study of Bosentan treated 

PAH patients, 6MWD improved more in those with an increase in RVEF in 

comparison to those with a stable or decreased RVEF (+98 vs -37 m, p = 0.01) 

(326). Other clinical studies have not however correlated functional improvement 

with improvement in haemodynamic parameters. 6MWD has several important 

limitations as an outcome measure. As discussed in section 1.2.5.3 6MWD is 

influenced by a number of confounders including patient motivation, age, weight 

and comorbidity. A recent study looking at utility of exercise variables including 

6MWT to predict outcome in IPAH versus associated PAH found whilst distance 

walked was of significance in those with IPAH this was not the case in patients 

with PAH associated with other aetiology such as connective tissue disease where 

one would expect limitations related to other factors such as degree of 

musculoskeletal disease (292). Additionally, a ceiling effect may occur whereby 

in those with greater baseline walk distance treatments that improve 

haemodynamics and symptoms may not translate into further additional 

significant increment in distance walked (295). All of these studies provide 

explanations for the poorer or even lack of correlation described here between 

absolute or ∆6MWD with absolute or ∆RVEF and ∆SVI. 

At diagnosis, lower 6MWD, between 250 – 332 m, have been shown to predict poor 

survival in IPAH patients (286, 290, 435). Improvement in absolute 6MWD above 
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380m after 3 months of PH therapy has been shown to confer improved survival, 

but prognostic significance of a change in 6MWD has not been consistently 

demonstrated (430, 436). A pooled analysis of 10 placebo controlled drug trials in 

PAH found that ∆6MWD accounted for only 22.1% of the treatment effect (291), 

with a calculated minimum of 41.8m corresponding to a significant reduction in 

clinical events. These studies however are confounded by select population for 

trial entry including a threshold minimum distance walked. The patients described 

in this chapter reflect treatment in a real life clinical setting, but in agreement 

with previous meta-analyses did not find ∆6MWD to independently predict 

outcome. 

5.5.4 Differential effects of PDE-5i and ETRA therapy on RV 
function 

The results described here suggest the possibility of greater improvement in RV 

function (assessed by either RVEF or SV/ESV) with PDE-5i than ETRAs. This would 

be in agreement with pre-clinical studies in animal models which have raised the 

possibility of direct myocardial effects with improvement in contractility with 

PDE-5i but not ETRAs (429). The conclusions that can be drawn from this study 

however are limited due to the retrospective nature of the study, so whilst 

characteristics of groups were similar this effect would be better examine in case 

matched prospective manner. More patients received PDE-5i than ETRAs which 

could bias the statistical analysis. Differential effects of class of PAH therapy on 

RV function would be important to evaluate further, as it would provide evidence 

for need of patient tailored therapy, such as combination therapy or PDE-5i in 

those with RV dysfunction at diagnosis. 

5.5.5 Limitations 

This was a single centre retrospective observational study. 6MWD and NTproBNP 

levels included for the study were obtained within 1 month of MRI measurements. 

Data on renal function was not collected and therefore unable to examine the 

potential influence of fluctuations in renal function on NTproBNP levels. Despite 

these limitations, correlations between 6MWD and NTproBNP with RV indices were 

comparable to previous work (431, 434). 



263 
 

5.6 Conclusion 

Both SV/ESV and RVEF are improved by PAH therapies. Further fall in SV/ESV 

during PAH therapy is associated with poorer survival, but this measure of RV 

function offers no additional prognostic value over RVEF in this study. Both 

absolute and ∆NTproBNP more closely reflect changing RV function and volume 

than 6MWD in patients undergoing PH therapies. ∆NTproBNP but not ∆6MWD is an 

independent predictor of outcome and is an attractive readily accessible method 

for monitoring RV function in a clinic setting. 
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Chapter 6 - General Discussion and Conclusions.
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6.1 Background 

Whilst the initial insult in PAH involves progressive vasculopathy of the pulmonary 

circulation, survival is determined by RV adaptation to the increased afterload 

that occurs, with patients ultimately dying of RV failure. Factors that influence 

this adaptation are complex, and include not only the severity of pulmonary 

vascular disease but rate of onset of PH, underlying disease aetiology, genetics, 

inflammation, neurohormonal activation, coronary perfusion and myocardial 

metabolism. RV afterload is a complex interplay of resistance, compliance and 

wave reflection and whilst commonly quoted measures of PVR are employed 

clinically, this assesses only part of this afterload, perhaps described better by 

effective arterial elastance (Ea). We know from the literature that reduction in 

afterload (defined by PVR) is not indicative of improved outcome in the face of 

continued RV dysfunction, and indeed further fall in RVEF despite improved PVR 

is associated with poorer survival. 

Given the importance of the right ventricle in PAH, preservation and improvement 

of RV function should be an important goal of PH therapy, but to date there is 

little data on the effect of these treatments on RV function and contractility, and 

whether one therapy has benefits over another in the setting of RV dysfunction. 

Simple, reproducible noninvasive measures of RV function may help establish the 

optimal therapeutic approach to RV dysfunction and improve management of PAH 

patients. At present it is unclear what the optimal method of assessing RV function 

is, with hemodynamic studies demonstrating the predictive value of RAP and CI 

(142, 269), echocardiography studies indicating the value of TAPSE and pericardial 

effusion (272, 437), CMR studies highlighting predictive value of RVEF, RV volumes 

and SV (41), and finally the biomarker NTproBNP (299, 300) or 6MWD have been 

linked to RV function and prognosis. Additionally recent research interest has 

focused on RV-arterial coupling, a measure of RV contractility in the context of 

the pulmonary vascular load which ideally requires instantaneous pressure and 

volume measurement determined invasively at increasing levels of preload, which 

therefore has limited clinical application at the bedside. From physiological 
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principles this measure has advantages over other commonly quoted measures of 

RV function and may be a superior metric to monitor RV function in patients 

undergoing therapy. CMR can be used to estimate RV-arterial coupling by the ratio 

of SV to RV ESV, which is a more attractive modality for clinical use. 

Whilst the prognostic significance of RV dysfunction in PAH is well established in 

the literature, less study has focussed on the importance of RV dysfunction in PH 

associated with lung disease, and the utility of imaging the RV with CMR or 

monitoring indirect markers of RV dysfunction such as NTproBNP may be of use in 

a disease where development of PH is associated with significant morbidity and 

mortality, and treatment options other than transplantation or supplementary 

oxygen provision, non-existent.  

6.1.1 Limitations of current methods employed to assess RV 
function and treatment response in PAH 

Right heart catheterisation is essential for the diagnosis of PAH, but invasive in 

nature and a small but real risk of complications limits its use as a regular follow 

up tool to monitor the patient during treatment. Over 20 different 

echocardiography parameters of RV structure and function have been identified, 

with several linked to prognosis in PAH (438). As discussed in section 1.1.2 

however, the complex structure and contractile pattern of the RV is less well 

suited to accurate measurement using 2D methodology, and particularly in PAH 

after onset of RV dilatation and dysfunction, systolic function is less 

representative by TAPSE due to presence of increasing TR and importance of 

transverse shortening in RV ejection. In addition, the technique is operator 

dependent, lacks standardised models for determination of volume or ejection 

fraction and may be difficult to interpret in clinical situations such as lung disease 

or obesity. Despite this, echo is readily available, inexpensive and safe and 

therefore likely to remain an important modality for both detecting PH, and 

assessing the RV. The development and validation of new methods including 

research field of 3D echo may address some of these limitations in the future. 

As discussed in section 1.2.5.3 6MWT is commonly employed in the clinic and as 

endpoint in clinical drug trials to assess both functional status but also indirectly 

RV function due to its relationship with V02max and CO. 6MWD is known to relate 
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to survival (290), but change in 6MWD does not consistently relate to outcome. 

Furthermore, relationship to RV EF has not been demonstrated and distance 

walked is also influenced by a number of factors such as patient co-morbidity or 

effort.  

The biomarker NTproBNP, as discussed in section 1.2.5.4, is known to correlate 

with RV volumes and falling RVEF, and change in levels reflects change in RV 

structure during therapy (297). Additionally, high levels are associated with poorer 

prognosis (300). Levels are affected by LV dysfunction, renal clearance and age, 

and it is uncertain what constitutes a validated threshold for increased risk from 

current literature. It is however easy to monitor in an outpatient setting.  

6.1.2 Potential advantages of cardiac MRI as a clinical outcome 
measure 

The advantages of CMR in assessing RV structure and function were described in 

detail in section 1.3. It is regarded in the literature as the gold standard method 

for assessing the RV due to high inter and intra observer reproducibility, and 3D 

modality is better suited to complex morphology of the RV. RV dilatation, low SV 

and RVEF have all been shown to predict poor outcome in PAH, with further 

decline during therapy particularly associated with poorer survival (41, 288).  

Furthermore, this modality offers the opportunity to study the RV-pulmonary 

circulation as a unit, with flow measurements in the great vessels also available. 

RV-arterial coupling represents matching of RV adaptation to the increased 

afterload that occurs in PAH. As discussed in detail in section 1.1.4.3 it is possible 

to assess this using CMR as SV/ESV ratio. This method of assessing RV function, 

particularly during the monitoring of patients undergoing PAH therapy, should be 

superior based on physiological reasoning to the commonly employed RVEF as it is 

less preload dependent.  

CMR imaging is expensive and not readily available in all PH centres. The 

advantages described above, and the non-invasive nature make this an attractive 

modality to employ in monitoring of patients and is likely more acceptable to the 

patient. 
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6.2 Imaging right ventricular dysfunction in pulmonary 
hypertension 

The aims of this thesis were to identify the optimal non-invasive method of 

monitoring RV dysfunction in PAH where treatment is clearly established, and 

contrast this to PH in chronic lung disease where the right ventricular 

characteristics, particularly with regard to severe or “disproportionate” PH has 

not been previously well studied with CMR.  

In chapter 3 CMR imaging demonstrated that in PH associated with lung disease 

RV function is preserved, however in severe PH/lung disease (defined as mPAP ≥ 

35mmHg) RV dysfunction is prevalent and shows similar characteristics to IPAH 

patients. This RV dysfunction strongly relates to prognosis, and a reduction in 

NTproBNP and improvement in 6MWD was seen with PAH targeted therapy. 

Previous trials of PAH therapy in group 3 disease has not focussed on treating 

severe PH phenotype, which may explain lack of treatment response reported 

previously in the literature (340, 342, 343). Additionally, CMR indices of PA 

stiffness or RVM performed well as screening tools to detect PH associated with 

lung disease where echocardiography to estimate sPAP may be difficult due to 

poor acoustic windows that often result in hyperinflated lung disease patients. 

In chapter 4 we saw that RV-arterial coupling assessed by either the pressure 

(Ees/Ea-P) or volume (SV/ESV) method was reduced in PH in comparison to normal 

subjects. Those with severe PH associated with lung disease potentially had 

disproportionately worse RV adaptation in comparison to PAH subjects (assessed 

by Ees/Ea-P in this chapter, and by higher NTproBNP, lower RV mass in chapter 3) 

which may be a potential explanation (in addition to the lung disease) for the 

significantly worse survival in this group. There was no advantage of SV/ESV over 

RVEF in predicting survival (although arguably the p-value was stronger for 

SV/ESV) suggesting despite physiological reasoning that SV/ESV is a superior 

metric of RV function, that either can be employed to determine outcome. 

Invasive measurements of Ees/Ea-P or RAP/CI had no prognostic advantage over 

CMR imaging of RV function.  

In Chapter 5 we saw improvement in RV-arterial coupling (assessed by SV/ESV) 

with PH therapy, and in agreement with previous studies improvement in other 
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indices of RV function, RVEF and SV. Deterioration in either measure of RV systolic 

function SV/ESV or RVEF during therapy was associated with worse outcome, with 

nether variable having prognostic advantage. NTproBNP closely related to change 

in RV function, whilst 6MWD did not, and change in NTproBNP but not 6MWD 

related to outcome, which was also seen in chapter 3 in patients with severe 

PH/lung disease.  

These studies suggest that CMR imaging of RV function, or use of NTproBNP in the 

clinic, in either PAH or severe PH/lung disease patients has the strongest 

prognostic benefit in monitoring patients undergoing therapy. Invasive 

haemodynamics or estimates of RV-arterial coupling had no additional prognostic 

advantage. 6MWD, whilst a good measure of functional limitation, performed 

inferiorly as an outcome measure in both pulmonary arterial disease, but also in 

a treated population with severe PH and chronic lung disease, and poorly related 

to RV function. This has implications in terms of endpoints for clinical trials where 

RV imaging is not commonly employed as an outcome measure of treatment 

efficacy, and in the clinic where NTproBNP can be readily employed to monitor 

RV response to therapy. 

6.3 Future directions. 

In the past the right heart was largely ignored by researchers or clinicians in 

cardiopulmonary fields. In 2006, the National Heart, lung and Blood Institute 

identified RV physiology as a priority in cardiovascular research (439). It is now 

increasingly evident the fundamental role the right heart plays in cardiopulmonary 

performance in not only pulmonary hypertension, but in normal subjects and those 

with left heart or intrinsic right heart disease. Future treatment advances in 

pulmonary hypertension will not only depend on development of drugs to target 

the molecular pathways involved in pulmonary vascular remodelling, but for the 

reasons drawn together in this thesis, recognise that the RV is an important 

therapeutic target in its own right.  

In chapter 3 we saw that RV performance is of equal significance in severe 

pulmonary hypertension related to lung disease as it is in IPAH, and is a potential 

focus for research in therapies for this poorly studied disease. Significant increase 

in SV was demonstrated in this small cohort, which has not been shown in previous 
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studies of haemodynamic response to pulmonary vasodilators in chronic lung 

disease with mild-moderate PH (340, 349) and may explain why an increase in 

6MWD was seen in this study and not consistently in previous studies of mixed (or 

even no) severity of associated PH. Future study on the role of pulmonary 

vasodilators in severe PH/lung disease could focus on improvement in RV 

performance as an outcome, rather than 6MWD which will also be hampered by 

ventilatory limitation, and whether if such an improvement is demonstrated this 

translates to improved survival. Additionally, the results in both chapter 3 and 4 

suggest impaired RV adaptation to increased afterload in severe PH/chronic lung 

disease in comparison to PAH which would be better addressed in a case matched 

prospective study. 

The work described in chapter 5 may support differential effects of PH therapies 

ETRAs and PDE-5i on RV function. This avenue is of interest in light of recent study 

AMBITION where up front combination therapy at diagnosis was associated with 

improved outcome (440). Focussing future research on pharmacological effects of 

these therapies on RV function may lead to better understanding of therapy 

regimes for those with RV dysfunction. Pre and post therapy studies combining 

RHC and CMR to determine Ees by the single beat method may address differential 

effects on RV contractility between drug classes.  

This work clearly shows that RV function is strongly linked to outcome in both PAH 

and lung disease PH, and that improvement in 6MWD, the most commonly 

employed outcome measure in current PAH therapy clinical trials, does not 

necessarily translate in to improved survival nor reflect RV function. Future 

clinical trials of pulmonary vasodilator therapy should also include RV specific 

functional outcomes, and either SV/ESV or RV ejection fraction determined by 

CMR is an attractive non-invasive endpoint.  

6.4 Conclusions. 

This thesis demonstrates the strong prognostic significance of RV function assessed 

by CMR imaging by either RV-arterial coupling (SV/ESV) or ejection fraction in both 

PAH and severe PH complicating chronic lung disease. Equal focus on RV function 

in addition to pulmonary vascular disease is therefore critical in determining 

clinical response and development of therapeutic avenues. 
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