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Abstract

The long-term adverse effects on health associated with air pollution exposure can be

estimated using either cohort or spatio-temporal ecological designs. In a cohort study,

the health status of a cohort of people are assessed periodically over a number of years,

and then related to estimated ambient pollution concentrations in the cities in which

they live. However, such cohort studies are expensive and time consuming to implement,

due to the long-term follow up required for the cohort. Therefore, spatio-temporal

ecological studies are also being used to estimate the long-term health effects of air

pollution as they are easy to implement due to the routine availability of the required

data. Spatio-temporal ecological studies estimate the health impact of air pollution by

utilising geographical and temporal contrasts in air pollution and disease risk across

n contiguous small-areas, such as census tracts or electoral wards, for multiple time

periods. The disease data are counts of the numbers of disease cases occurring in each

areal unit and time period, and thus Poisson log-linear models are typically used for the

analysis. The linear predictor includes pollutant concentrations and known confounders

such as socio-economic deprivation. However, as the disease data typically contain

residual spatial or spatio-temporal autocorrelation after the covariate effects have been

accounted for, these known covariates are augmented by a set of random effects. One key

problem in these studies is estimating spatially representative pollution concentrations

in each areal which are typically estimated by applying Kriging to data from a sparse

monitoring network, or by computing averages over modelled concentrations (grid level)

from an atmospheric dispersion model.

The aim of this thesis is to investigate the health effects of long-term exposure to Nitro-

gen Dioxide (NO2) and Particular matter (PM10) in mainland Scotland, UK. In order

to have an initial impression about the air pollution health effects in mainland Scotland,

chapter 3 presents a standard epidemiological study using a benchmark method. The

remaining main chapters (4, 5, 6) cover the main methodological focus in this thesis

which has been threefold: (i) how to better estimate pollution by developing a multi-

variate spatio-temporal fusion model that relates monitored and modelled pollution data

over space, time and pollutant; (ii) how to simultaneously estimate the joint effects of

multiple pollutants; and (iii) how to allow for the uncertainty in the estimated pollution

concentrations when estimating their health effects.



Specifically, chapters 4 and 5 are developed to achieve (i), while chapter 6 focuses on

(ii) and (iii). In chapter 4, I propose an integrated model for estimating the long-

term health effects of NO2, that fuses modelled and measured pollution data to provide

improved predictions of areal level pollution concentrations and hence health effects. The

air pollution fusion model proposed is a Bayesian space-time linear regression model

for relating the measured concentrations to the modelled concentrations for a single

pollutant, whilst allowing for additional covariate information such as site type (e.g.

roadside, rural, etc) and temperature. However, it is known that some pollutants might

be correlated because they may be generated by common processes or be driven by

similar factors such as meteorology. The correlation between pollutants can help to

predict one pollutant by borrowing strength from the others. Therefore, in chapter

5, I propose a multi-pollutant model which is a multivariate spatio-temporal fusion

model that extends the single pollutant model in chapter 4, which relates monitored

and modelled pollution data over space, time and pollutant to predict pollution across

mainland Scotland.

Considering that we are exposed to multiple pollutants simultaneously because the air

we breathe contains a complex mixture of particle and gas phase pollutants, the health

effects of exposure to multiple pollutants have been investigated in chapter 6. Therefore,

this is a natural extension to the single pollutant health effects in chapter 4. Given NO2

and PM10 are highly correlated (multicollinearity issue) in my data, I first propose a

temporally-varying linear model to regress one pollutant (e.g. NO2) against another

(e.g. PM10) and then use the residuals in the disease model as well as PM10, thus

investigating the health effects of exposure to both pollutants simultaneously. Another

issue considered in chapter 6 is to allow for the uncertainty in the estimated pollution

concentrations when estimating their health effects. There are in total four approaches

being developed to adjust the exposure uncertainty.

Finally, chapter 7 summarises the work contained within this thesis and discusses the

implications for future research.
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Chapter 1

Introduction

A recent World Health Organisation report estimates that outdoor air pollution was

responsible for the premature deaths of 3.7 million people under the age of 60 in 2012

(World Health Organisation [142]), which indicates that the air we breathe has a major

impact on our health and the environment, and air pollution is a global health problem.

The health impact of air pollution exposure has been widely recognised since the 1950’s,

as a result of the London smog in December 1952, which is estimated to have resulted

in more than 3,000 excess deaths compared with previous years (Bell and Davis [9]). To

combat this problem, the Clean Air Act was introduced by the UK government in 1956,

which was an important milestone in the development of a legal framework to protect

the environment. The act introduced a number of measures to reduce air pollution,

especially by introducing “smoke control areas” in some towns and cities in which only

smokeless fuels could be burned. Since then additional legislation has been introduced,

including further clean air acts in 1968 and 1993, the UK Air Quality Strategy in 1997,

2000 and 2007 (Department for Environment and Food And Rural Affairs [32]), and the

2008 ambient air quality directive (2008/50/EC). The Air Quality Strategy established

the framework for air quality improvements across the UK and set out the Air Quality

Standards and Objectives which has been set to benchmark air quality in terms of

protecting human health and the environment. For example, daily mean particulate

matter concentrations (measured as PM10) must not exceed 50µgm−3 more than 35

times a year. The 2008 ambient air quality directive (2008/50/EC) sets legally binding

limits for concentrations in ambient (outdoor) air of major air pollutants that are known

to have a significant impact on human health including particulate matter (PM10 and

1
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PM2.5) and nitrogen dioxide (NO2). As a result, pollution levels today are continuously

measured by a network of monitors, which record ambient (background) concentrations

at both road-side and background environments. Numerous pollutants are measured

by this network, including Ozone (O3), Carbon monoxide (CO), Sulphur dioxide (SO2),

NO2, PM10 and PM2.5.

1.1 Pollutants and their potential health effects

The adverse effects of air pollution on health have been widely investigated all over the

world, and various pollutants which have adverse effects on health have been reported,

including O3, CO, SO2, NO2, PM10 and PM2.5.

O3 is not emitted directly from any human-made source. It arises from chemical reac-

tions between various air pollutants, primarily NOX (NO and NO2) and Volatile Organic

Compounds (VOCs), initiated by strong sunlight. Since O3 is a highly reactive sub-

stance, any adverse health effects will be found essentially at the sites of initial contact:

the respiratory tract (nose, throat and airways), the lungs, and at higher concentrations,

the eyes (Health and Safety Executive [55]). Very high levels can damage airways lead-

ing to inflammatory reactions. Ozone reduces lung function and increases incidence of

respiratory symptoms, respiratory hospital admissions and mortality (Department for

Environment and Food And Rural Affairs [32]).

CO is formed from incomplete combustion of carboncontaining fuels. Road transport is

the largest source of CO, and residential and industrial combustion also make significant

contributions. Exposure to CO can reduce the oxygen-carrying capacity of the blood,

which is risky for those people with a reduced capacity for pumping oxygenated blood to

the heart due to several types of heart disease. Exposure to CO can cause them to expe-

rience myocardial ischemia (reduced oxygen to the heart), often accompanied by chest

pain (angina), when exercising or under increased stress (United States Environmental

Protection Agency: https://www3.epa.gov/ ).

SO2 emissions are usually dominated by combustion of fuels containing sulphur, such as

coal and heavy oils by power stations and refineries. For people suffering from asthma

and chronic lung disease already, SO2 can likely cause constriction of the airways of

the lung. Exposure to high levels of SO2 can have potential damage to ecosystems,
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including degradation of chlorophyll, reduced photosynthesis, raised respiration rates

and changes in protein metabolism (Department for Environment and Food And Rural

Affairs [32]). Recent research has also reported the adverse effects of SO2. For example,

Brown et al. [18] reported that the odds of admission for all respiratory diseases were

statistically significantly greater in the SO2 episode week than in the control week (odds

ratio 1.40, with a 95% confidence interval (1.00, 1.94)). Elliott et al. [41] found significant

associations between BS and SO2 concentrations and mortality. Chen et al. [27] found

that an increase of 10µgm−3 in the two-day moving average SO2 concentration was

associated with 0.75% (95% posterior interval (PI), 0.47% to 1.02%), 0.83% (0.95% PI,

0.47% to 1.19%) and 1.25% (95% PI, 0.78% to 1.73%) increase of total, cardiovascular

and respiratory mortality, respectively.

NO2 and nitric oxide (NO) are both oxides of nitrogen and together are referred to as

NOX which are produced by combustion processes in air. Road transport is the main

source, followed by the electricity supply industry and other industrial and commercial

sectors. Exposure to high levels of NO2 can cause inflammation of the airways. Long

term exposure may affect lung function and respiratory symptoms. NO2 also enhances

the response to allergens in sensitive individuals and contributes to the formation of

secondary particles and ground level O3, both of which are associated with ill-health

effects. Chauhan et al. [26] reported that NO2 increased the susceptibility to respiratory

infections, while Lee et al. [76] showed that long-term exposure (over 3 years) to NO2 was

significantly associated with respiratory hospital admissions in Edinburgh and Glasgow.

Particulate Matter (PM10 and PM2.5) is generally categorised on the basis of the size of

the particles (for example PM2.5 is particles with a diameter of less than 2.5 microme-

tres). Particulate Matter is made up of a wide range of materials and arises from both

human-made (such as stationary fuel combustion and transport) and natural sources

(such as sea spray and Saharan dust). Concentrations of Particulate Matter comprises

primary particles emitted directly into the atmosphere from combustion sources and sec-

ondary particles formed by chemical reactions in the air. Exposure to Particulate Matter

is associated with respiratory and cardiovascular illness and mortality as well as other

ill-health effects. These associations are believed to be causal because PM10 roughly

equates to the mass of particles less than 10 micrometres in diameter that are likely to

be inhaled into the thoracic region of the respiratory tract. Lee et al. [76] showed that

long-term exposure (over 3 years) to PM10 was significantly associated with respiratory
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hospital admissions in Edinburgh and Glasgow, while Lee [74] reported that a 1.7µgm−3

increase in PM10 concentrations was associated with 6.6% additional hospital admissions

due to respiratory diseases across Scotland. Recent reviews (Committee on the Medical

Effects of Air Pollutants [29]) have suggested exposure to a finer fraction of particles

(PM2.5) give a stronger association with the observed ill-health effects because they can

travel deeper into lungs. US Environmental Protection Agency [133] also reported an

increase of 1% (range 0.4% to 1.8%) in annual all-cause deaths for a 1µgm−3 increase

in the annual average of PM2.5 exposure in the United States.

1.2 Methods for examing air pollution health effects

According to the existing literature in epidemiological studies, the adverse effects on

health associated with air pollution exposure can be considered in two ways, the short-

term and long-term effects. These refer to studies investigating associations of health

effects with variations in ambient pollution concentrations averaged over a short-time

period (often daily averages) or long-term differences in concentrations (often annual

averages).

For short-term effects, daily counts of disease cases are regressed against air pollution

concentrations on the preceding few days, utilising an ecological (at the population level)

time series design. A number of existing studies in epidemiological studies were focused

on the adverse effects on health associated with short-term exposure to air pollution,

with examples including Neukirch et al. [93], Kontos et al. [69], Katsouyanni et al. [65],

Dominici et al. [38], Desqueyroux et al. [34], Gilmour et al. [47], Goldberg and Burnett

[49], Wong et al. [141] and Lee et al. [79].

In contrast, the long-term effects of air pollution can be estimated using either cohort

or spatio-temporal ecological designs. In a cohort study, the health status of a cohort of

people are assessed periodically over a number of years, and then related to estimated

ambient pollution concentrations in the cities in which they live, with examples including

American cohort studies - the Six Cities study (Dockery et al. [37], Laden et al. [71]), the

American Cancer Society (ACS) study (Pope et al. [102]) and several European cohort

studies reporting long term effects of air pollution on mortality(Hoek et al. [60], Hoek
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et al. [59], Nafstad et al. [92], Raaschou-Nielsen et al. [106], Carey et al. [23], Cesaroni

et al. [25], Beelen et al. [7], Stockfelt et al. [122]).

However, such cohort studies are expensive and time consuming to implement, due to

the long-term follow up required for the cohort. Therefore spatio-temporal ecological

studies are also being used to estimate the long-term health effects of air pollution as

they are easy to implement due to the routine availability of the required data. Examples

of such studies in a purely spatial context include Jerrett et al. [63], Maheswaran et al.

[85], Maheswaran et al. [84], Barceló et al. [5], Lee et al. [76], Young et al. [143], Haining

et al. [53], Lee [74], while spatio-temporal designs include Elliott et al. [41], Janes et al.

[62], Greven et al. [52], Lawson et al. [72], Rushworth et al. [109].

Spatio-temporal ecological studies estimate the health impact of air pollution by utilising

geographical and temporal contrasts in air pollution and disease risk across n contigu-

ous small-areas, such as census tracts or electoral wards, for multiple time periods. The

disease data are counts of the numbers of disease cases occurring in each areal unit

and time period, and thus Poisson log-linear models are typically used for the analysis.

The linear predictor includes pollutant concentrations and known confounders such as

socio-economic deprivation. However, the disease data typically contain residual spatial

or spatio-temporal autocorrelation after the covariate effects have been accounted for,

which is caused by numerous factors, including unmeasured confounding, neighbourhood

effects (where subjects behaviour is influenced by neighbouring subjects) and grouping

effects (where subjects choose to be close to similar subjects) (Rushworth et al. [109]).

Therefore, these known covariates are augmented by a set of random effects which are

commonly modelled by the class of conditional autoregressive (CAR) prior distributions,

which are a type of Markov random field model. Spatial correlation between the ran-

dom effects is determined by a binary n × n neighbourhood matrix W . Based on this

neighbourhood matrix, the most common models for the random effects include intrinsic

autoregressive (IAR) (Besag et al. [15]), convolution or BYM model (Besag et al. [15]),

as well as those proposed by Cressie [31] and Leroux et al. [80]. These CAR models

differ by holding different assumptions about how the random effects depend on each

other across space, more details can be seen in chapter 2. While the study is a spatio-

temporal design, Rushworth et al. [109] proposed a CAR model which allows for the

residual spatio-temporal autocorrelation.



Chapter 1. Introduction 6

One key problem in these studies is estimating spatially representative pollution con-

centrations, using either measured data from a sparse network of monitors or modelled

concentrations on a regular grid from an atmospheric dispersion model, such as those

produced by AEA [1]. The latter provide complete spatial coverage of the study re-

gion but are known to contain biases (Berrocal et al. [11]). However, the monitored

(point locations) and modelled (grid boxes) pollution data are spatially misaligned with

the disease data (irregularly shaped areal units), and the problem about dealing with

multiple data sources on different scales is often referred to as the change of support

problem (Gelfand et al. [44], Gotway and Young [50]). There are a few epidemiological

studies which use monitored pollution data alone to estimate spatially representative

pollution concentrations, where geostatistical Kriging has been used to spatially align

the monitored pollution data to the disease counts (Elliott et al. [41], Janes et al. [62]).

In contrast, some studies use modelled concentrations alone to estimate spatially repre-

sentative pollution concentrations, where simple averaging is used to correct the spatial

misalignment of the modelled concentrations (Maheswaran et al. [84], Lee et al. [76],

Warren et al. [136]). Recently, Vinikoor-Imler et al. [134], Vinikoor-Imler et al. [135],

Sacks et al. [111] and Warren et al. [137] have estimated pollution using both monitored

and modelled pollution data, by utilizing the fusion approaches proposed by Fuentes

and Raftery [42], Berrocal et al. [11] or McMillan et al. [87].

1.3 Research region

The United Kingdom (UK) is a sovereign state in Europe, which lies off the north-

western coast of the European mainland and includes the island of Great Britain, the

north-eastern part of the island of Ireland and many smaller islands. The UK has a

population of about 64 million people, which consists of four countries: England (53.8

million), Scotland (5.3 million), Wales (3.1 million), and Northern Ireland (1.8 million).

In the UK, the number of annual deaths are around half a million which is roughly

0.1% of the population. Three main leading causes of death are cancer (International

Classification of Disease version 10 codes C00-D48), cardiovascular disease (Interna-

tional Classification of Disease version 10 codes I00-I99) and respiratory disease (Inter-

national Classification of Disease version 10 codes J00-J99). According to Townsend

et al. [131], the total number of deaths in the UK in 2014 is 570,341, among which
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167,582 (29.4%) deaths are caused by cancer, 154,639 (27.1%) by cardiovascular disease

and 75,282 (13.2%) by respiratory disease. The distribution of the deaths across the

four countries in the UK is: 468,875 deaths from England, 54,239 from Scotland, 31,439

from Wales and 14,678 from Northern Ireland.

The health effects of air pollution are still significant. Evidence from the Department

for Environment and Food And Rural Affairs [33] suggests that the effects of NO2 on

mortality are equivalent to 23,500 deaths annually in the UK. The impact of exposure

to particulate matter is estimated to have an effect on mortality equivalent to nearly

29,000 deaths in the UK (Committee on the Medical Effects of Air Pollutants [29]).

The main aim of this thesis is to investigate the health effects of long-term exposure

to air pollution (NO2 and PM10) in mainland Scotland. There have been few previous

related epidemiological studies in Scotland, for example, only Prescott et al. [104], Carder

et al. [22] and Willocks et al. [139] have investigated the association between short-

term exposure to air pollution and ill health, while only Lee et al. [76] and Lee [74]

have attempted to quantify the long-term effects of exposure using an ecological spatio-

temporal design.

The Air Quality in Scotland website (http://www.scottishairquality.co.uk/ ) provides am-

ple information about air pollution in Scotland, such as a Daily Air Quality Index

(DAQI), an interactive map which can be used to explore different Scottish air quality

monitoring sites, and a database containing tables of measured concentration data and

statistics from the air quality monitoring sites.

The DAQI uses the index and banding system approved by the Committee on Medical

Effects of Air Pollution (COMEAP) which uses 1-10 index divided into four bands to

provide more detail about air pollution levels in a simple way, 1-3 (Low), 4-6 (Moder-

ate), 7-9 (High), 10 (Very High). The overall air pollution index for a site or region is

calculated from the highest concentration of five pollutants: NO2, SO2, O3, PM2.5 and

PM10.

There are in total 91 monitoring sites across Scotland, which consist of the automatic

networks that measure various pollutants, including NO2, CO, SO2, O3, PM2.5 and

PM10. Monitoring sites can be classified according to the types of environment in which

they are located, in order to permit more meaningful evaluation of data, such as rural,
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urban background and roadside. The automatic networks produce hourly pollutant

concentrations, with the data going back as far as 1986 at some sites. A range of simple

statistics are routinely calculated by the database for the automatic monitoring data,

including: daily mean, maximum and minimum values for all pollutants, 8-hour running

mean values for O3 and CO, daily maximum 8-hour running means for O3, running

24-hour means for particulate matter. In addition, monthly and annually statistics are

also provided.

In this thesis, NO2 and PM10 are considered as the pollutants being investigated (due to

the sparse observations for the other pollutants), whose data are obtained in two types,

measured concentrations from the automatic networks and diffusion tubes, and mod-

elled concentrations (DEFRA) at a 1 kilometre (km) resolution from an atmospheric

dispersion model (AEA [1]). Disease data have been collected for n = 1, 207 Inter-

mediate Geographies (IG) in mainland Scotland, which have an average population of

around 4,300 people. The disease data are from the Scottish neighbourhood statistics

database (http://www.sns.gov.uk/ ), and comprise yearly numbers of admissions to non-

psychiatric and non-obstetric hospitals in each IG with a primary diagnosis of respiratory

disease (International Classification of Disease version 10 codes J00-J99). In addition

to pollution and disease prevalence data, other covariate data such as socio-economic

deprivation were also collected. Both the disease and covariate data are collected from

2007 to 2011, while the pollution data are from 2006 to 2010, to make sure that the

exposure occurred before the hospital admissions. As the spatial patterns of disease and

exposure are different in each year, here I consider the space-time correlation between

disease and exposure rather than collapsing (averaging) across time and looking at space

only.

A few key statistical challenges are covered in this thesis. The first one is how to

improve the pollution predictions from a sparse network of monitoring stations. The

second challenge lies in the predictions of more than one pollutants in a single model,

which is required to allow the use of the correlation among pollutants to help improve the

prediction of one pollutant by borrowing strength from the others. Another challenge

is to consider the health effects of the exposure to multiple pollutants simultaneously,

as the air people breathe is a mix of different pollutants. The last statistical challenge

covered in this thesis is how to propagate exposure uncertainty into the investigation of
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its health effects. This is important because the predicted exposures are always subject

to uncertainty, such as the prediction error and the measurement error in measured data.

1.4 Thesis structure

I achieve the goal of this thesis by two main steps, improving the prediction of the

spatially representative pollution concentrations and then investigating their impacts on

health. More details are given as follows by introducing the structure of this thesis.

The remainder of this thesis is divided into six chapters. Chapter 2 provides an overview

of the statistical methodology which is used in this thesis as well as the related literature.

Chapter 3 is an initial impression about the air pollution health effects in mainland

Scotland using a benchmark method. In chapter 4, I propose an integrated model

for estimating the long-term health effects of NO2, that fuses DEFRA and measured

pollution data to provide improved predictions of areal level pollution concentrations

and hence health effects. This is a single-pollutant health study. However, as the air we

breathe contains a complex mixture of particle and gas phase pollutants, we are exposed

to multiple pollutants simultaneously. These pollutants might act independently or in

combination (in an additive, synergistic, antagonistic, or interactive manner) to affect

human health. A traditional single pollutant health study fails to account for these

combined effects of pollutant mixtures. Therefore, in chapter 5, I propose a multi-

pollutant model which extends the single pollutant model in chapter 4, based on which

the multi-pollutant concentrations can be predicted across mainland Scotland. The

modelling carried out in chapter 5 will be used to provide pollution predictions for

a study investigating the health effects of multi-pollutants in chapter 6. As the air

pollution concentrations are spatially aggregated predictions from my pollution model,

they are subject to variation. In addition, allowing the exposure uncertainty to be

propagated into the investigation of its health impact is important in epidemiological

studies. Therefore, in chapter 6, I also consider four approaches to adjust the exposure

uncertainty. Finally, chapter 7 summarises the work contained within this thesis and

discusses the implications for future research.



Chapter 2

Statistical background

This chapter introduces the statistical theory and methodologies used and developed,

where section 2.1 introduces the normal linear model, in which the added variable plot is

also introduced. Section 2.2 explores generalised linear models (GLMs) and their uses,

with a particular focus on Poisson GLMs which are used in the spatial modelling ap-

proaches in this thesis. Spatial modelling and spatio-temporal modelling are introduced

in Section 2.3, and these will form the basis of the methodology developed in chapters

4 and 5. Section 2.4 introduces Bayesian statistics, which is the statistical framework

employed throughout this thesis, including the concepts of prior, posterior distributions,

and methods of inference for Bayesian approaches.

2.1 The normal linear model

A linear regression model relates an observed quantity y to a number of other quantities,

z1, z2, ..., zp as:

y = β0 + β1z1 + β2z2 + ...+ βpzp + ε. (2.1)

β0, β1, ..., βp are parameters which are a key part of the systematic or structural part

of the model and ε is an error term that accounts for uncertainties. y is the response

variable, and z1, z2, ..., zp are explanatory variables.

10
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The model parameters βj(j = 1, ..., p) describe how the mean value of y changes as

the explanatory variables change, under the assumption that the underlying structure

is linear. βj can be interpreted as the amount of change in the mean value of y while zj

increases by one unit and the other explanatory variables are held fixed. The error term ε

reflects the fact that data are subject to variation, from natural processes, measurement

error and other sources.

If (2.1) is used for a set of n observations of the response and explanatory variables, the

explicit form of the equations would be:

yi = β0 + Σp
j=1βjzij + εi, i = 1, ..., n, (2.2)

where for each i, yi is the ith observation of the response, zij is the ith observation of the

jth explanatory variable (j = 1, 2, ..., p), and εi is the unobservable error corresponding

to this observation. This set of n equations can be written in a compact form by,

y = Zβ + ε, (2.3)

where

y =


y1

y2

...

yn

 ,Z =


1 z11 ... z1p

1 z21 ... z2p

... ... ... ...

1 zn1 ... znp

 ,β =


β0

β1

...

βp

 , ε =


ε1

ε2

...

εn

 .

The description of Model (2.3) is completed by specifying a number of assumptions as

follows, each of which needs to be considered and checked, where possible.

(A1) The relationship between the mean value of y and each zj is linear if the other

explanatory variables are held fixed.
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(A2) The distribution of the error term is normal.

(A3) The variance of the error term is the same for all observations.

(A4) The error terms are independent.

Assumptions (A2) to (A4) can be written as ε ∼ N(0, σ2I), where σ2 is a constant

representing the variance of error term.

2.1.1 Model fitting

The least squares method is the oldest method used for estimation in the linear model.

The error vector of the linear model (2.3) can be written as (y−Zβ), and the estimates

of the model parameters β are obtained by minimising the sum of squared elements

of this error vector. Such an estimator is called a least squares estimator (LSE) of β.

Formally, an LSE is

β̂LS = arg min
β

(y −Zβ)>(y −Zβ). (2.4)

Provided Z>Z has full column rank, the unique least squares estimator of β is β̂LS =

(Z>Z)−1Z>y.

The other two simple but important results which give the mean and variance of the

least squares estimator are,

E[β̂LS ] = β, var[β̂LS ] = (Z>Z)−1σ2. (2.5)

The first of these results tells us that the distribution of the least squares estimators is

centred on the true value and it is unbiased. The second result expresses the precision

of the estimates.

An unbiased estimate of σ2 is given by,

σ̂2 =
y>(I −H)y

n− p
, (2.6)
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where I is an n× n identity matrix and H = Z(Z>Z)−1Z> is called the hat-matrix.

A measure of how well the model fits the data is called the coefficient of determination:

R2 = 1− Σ(ŷi − ȳ)2

Σ(yi − ȳ)2
, (2.7)

where ȳ is the mean of n responses and ŷi is the ith fitted value. Its range is 0 ≤ R2 ≤ 1,

where values closer to 1 indicate a better fit.

2.1.2 Model checking

Before the linear model is used to draw conclusions, it is necessary to check that it does

indeed fit the data well and provides a good description of the observed data. Notice

that all four of the model assumptions (A1 to A4) can be expressed as statements

about the error terms εi. Therefore, it is helpful to estimate these through the residuals

ε̂i = yi − (β̂0 + β̂1zi1 + β̂2zi2 + ... + β̂pzip). The following are some ways we can check

the assumptions.

(1) If assumptions (A1), (A3) hold, a plot of the residuals against the fitted values

(β̂0 + β̂1zi1 + β̂2zi2 + ...+ β̂pzip) should show only random scatter, without any systematic

patterns or change in the spread of the residuals.

(2) Assumption (A2) can be checked by drawing a histogram and a qq-plot. In the latter

a straight line is expected.

(3) It is more difficult to check the assumption of independence as it depends on the

type of data being modelled (e.g. time series, spatial, longitudinal). For example, it is

useful to think carefully about the way in which the data have been collected to provide

reassurance that there are no obvious ways in which dependence could arise.

If the model assumptions are not valid, one useful strategy is to seek transformations

of the data (the response, the covariates or both) onto scales where the assumptions

become valid. However, there are also cases where transformation cannot fully solve the

problem. Sometimes this is because the type of data we are dealing with is intrinsically

non-normal, for example in the form of counts. In that case it is better to use the
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extension of linear models known as generalized linear models. This topic will be covered

later in this chapter.

2.1.3 Added variable plot

In a linear model, for multiple regression, if one explanatory variable is highly correlated

with other explanatory variables, the issue of collinearity will occur, which results in poor

estimation of the influence of each explanatory variable separately.

If two explanatory variables (z1, z2) are perfectly linearly correlated (cor(z1, z2) = ±1),

only z1 or z2 is needed to be in the linear model, because one of them contains all the

information of the other with respect to the explanation of the variance of the response.

Following this, an interesting question would be how to evaluate the necessity of adding

an additional explanatory variable into the model.

The added variable plot is also referred to as a partial regression plot which is the

most commonly used method for obtaining a graphical evaluation of the effect of adding

an explanatory variable (say, Xi) to a model which already contains X0,..., Xi−1. An

added variable plot illustrates the incremental effect on the response of specific terms

by removing the effects of all other terms. It is formed by: (1) Compute the residuals

of regressing the response variable against the explanatory variables X0,..., Xi−1; (2)

Compute the residuals from regressing Xi against X0,..., Xi−1; (3) Plot the residuals

from (1) against the residuals from (2). If there is a pattern in this plot, then Xi should

be added to the model (Ryan [110]).

As it is well known that the residuals from a linear model are uncorrelated to any

explanatory variable in the model, I adopted this theory to deal with the multicollinearity

in my study of multiple pollutants health effects. I regress one pollutant against another,

e.g. regressing PM10 against NO2. Then I use the residuals of this model, which are

uncorrelated with NO2 and represent the remaining signal of PM10 which cannot be

explained by NO2, and the NO2 data in a single disease model without causing any

multicollinearity issues, so as to investigate the health effects of exposure to both NO2

and PM10 simultaneously.
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2.2 Generalised linear models

The assumptions underlying a linear model are that (at least to a good approximation)

the errors are normally distributed, the error variances are constant and independent

of the mean, and the systematic effects combine additively (linearity). When data for

a coninuous characteristic cover only a limited range of values, these assumptions may

be justifiable. However, these assumptions could be far from being satisfied when the

response is measured on a ratio scale or takes the form of a set of counts. Therefore, a

generalised linear model (GLM) is a natural extension to the linear model, which allows

the response variable, y, to be one from a set of independent random variables from

any exponential family distribution, f . A random variable y belongs to the exponential

family of distributions if its probability mass function (discrete) or probability density

function (continuous) can be written in the canonical form:

p(y | θ, φ) = exp[(yθ − b(θ))/a(φ) + c(y, φ)] (2.8)

for some functions a(·), b(·) and c(·). Members of this exponential family include several

important distributions: Gaussian, Binomial, Exponential and Poisson distributions.

A generalised linear model takes the form:

yi ∼ f(θi) i = 1, ..., n, (2.9)

g(θi) = ηi = z>i β,

where zi is a covariate vector, β is the unknown regression parameters, ηi = z>i β is

known as the linear predictor, and g(·) is a monotonic invertible link function which

does not depend on f(·). The commonly used link functions g(·) include log, square

root and logit transformations. The linear model (2.1) is a special case of the GLM, in

which the link function is the identity function g(θi) = θi and f(yi | θi) = N(θi, σ
2).

The Poisson GLM is used throughout this thesis, as the disease data in my study are

counts. These response data can only take a non-negative value, so the log is a suitable



Chapter 2. Statistical background 16

and commonly used link function in the GLM. The basic Poisson GLM is specified as

follows:

yi ∼ Poisson(θi) i = 1, ..., n, (2.10)

log(θi) = z>i β.

In this study, Poisson GLMs are fitted under the Bayesian framework which is introduced

in section 2.4.

2.3 Spatial methods

Spatial analysis methods are used in a wide range of fields, such as spatial economics,

image processing, epidemiology and environmental science. In spatial problems, spatial

data are any form of statistical data which have geographical locations attached, and

they are classified into three main types: point-referenced data, areal data and point

pattern data. They come from different spatial processes, namely, geostatistical, areal

and point processes. The key concepts about both point-referenced and areal data which

are the two types of spatial data in my research are introduced in this section.

2.3.1 Geostatistical data

A geostatistical process is the stochastic process

X(s) : s ∈ D, (2.11)

where X(s) is the random variable representing the stochastic process at location s,

D is a fixed subset of the p-dimensional space Rp. In my study, I focus on p = 2, so

D ⊂ R2. The locations s at which data could occur varies continuously over D. However,

in my study, data are observed at a finite number (n) of locations which are denoted

by x = {x(s1), ..., x(sn)}. The corresponding random variables are denoted by X =

{X(s1), ..., X(sn)}. An example of point-referenced data would be the concentrations
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of air pollution in Scotland recorded at a number of monitoring stations. The overall

concentration pattern for all of Scotland could then be estimated based on the data

obtained at these fixed monitoring stations.

Geostatistics tries to answer questions about modelling, identification and separation of

small and large scale variations, prediction (or kriging) at unobserved sites and recon-

struction of X across the whole space. The key challenge when modelling spatial data

compared with some types of non-spatial data is dependence (correlation). Typically,

geostatistical data usually display positive correlation such that the nearer in space two

observations are, the more similar their values are likely to be. This correlation is caused

by the variable of interest being affected by other unmeasured processes which are them-

selves spatially correlated. In the following, more concepts about a geostatistical process

used in this thesis are introduced.

Covariance

Covariance functions are used to quantify and model the correlation between observa-

tions. The covariance function of X(s) : s ∈ D is defined as

CX(s, t) = Cov[X(s), X(t)] (2.12)

= E[(X(s)− µX(s))(X(t)− µX(t))],

where µX(s) is the theoretical mean/expectation of the stochastic process {X(s)} at

location s, and µX(t) at location t. The covariance measures the strength of the linear

dependence between X(s) and X(t).

The variance function of {X(s)} is the special case of the covariance with s = t, which

is

Var[X(s)] = CX(s, s) (2.13)

= Cov[X(s), X(s)]

= E[(X(s)− µX(s))2]

= σ2
X(s),
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Semi-variogram

In geostatistics, the semi-variogram is used in exploratory data analysis to identify if

there is any spatial correlation in the data. The semi-variogram of a geostatistical process

X(s) : s ∈ D is a function given as

γX(s, t) =
1

2
Var[X(s)−X(t)], (2.14)

which measures the variance of the difference in the process at two spatial locations s

and t.

The relationship between the semi-variogram and covariance is given as follows:

γX(s, t) =
1

2
Var[X(s)−X(t)] (2.15)

=
1

2
Cov[X(s)−X(t), X(s)−X(t)]

=
1

2
{CX(s, s) + CX(t, t)− 2CX(s, t)},

Let t = s+h, then h is called the spatial lag or displacement. In addition, we assume that

geostatistical process X(s) : s ∈ D is weakly stationary (1st moment and autocovariance

do not vary with respect to time), then,

Cov[X(s), X(t)] = Cov[X(s), X(s+ h)] (2.16)

= CX(s, s+ h)

= CX(h).

With this, the semi-variogram can be simplified to
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γX(s, t) = γX(h) = CX(0)− CX(h) (2.17)

= σ2
X − CX(h),

and additionally assuming that the covariance between values of X(s) at any two loca-

tions depends only on the distance between them (isotropy), we get,

γX(h) = σ2
X − CX(h), (2.18)

where h = ‖h‖ denotes the length of the lag vector h as measured by its Euclidean dis-

tance. In two dimensional geostatistics, h = (h1, h2), then we have ‖h‖ =
√

(h2
1 + h2

2).

Therefore, the semi-variogram can be calculated given the covariance function.

The most commonly used covariance functions include exponential, Gaussian, power

exponential, spherical, wave and linear function (Diggle and Ribeiro [36]). A broad

class of covariance models is the Matérn family functions, details of which can be seen in

Matérn [86]. As exponential covariance has been commonly used in the existing literature

(see e.g. Sahu et al. [112], Pannullo et al. [97] and Berrocal et al. [11]), in this study, it is

also used in exploratory analysis to test any spatial correlation in pollution observations

after accounting known covariates. I acknowledge the simplification associated with

choosing the exponential covariance structure, however, other members of the Matérn

family of covariance functions can be chosen. More details about exponentrial covariance

function are presented as follows.

The exponential covariance function is

CX(h) =


σ2 exp (−h/φ), h > 0;

τ2 + σ2, h = 0,

(2.19)

and the associated semi-variogram is
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Figure 2.1: Exponential covariance function and associated semi-variogram.

γX(h) =


τ2 + σ2(1− exp (−h/φ)), h > 0;

0, h = 0,

(2.20)

where the parameter τ2 > 0 is the nugget effect which is the limiting value of the

semi-variogram as h→ 0. This parameter represents measurement error, or the spatial

variability on a smaller scale than the distance between the two closest points in the

sampling region (Diggle and Ribeiro [36]). On the other hand, while h → ∞, the

limiting value of the semi-variogram (τ2 + σ2) is called the sill. The parameter σ2 > 0

is the partial sill which is also equal to the sill minus the nugget effect. The parameter

φ is a range parameter measuring how quickly the covariance decays to zero. Another

important parameter about the semi-variogram is the range, which is the distance beyond

which locations will be spatially independent. Hence, responses at locations separated

by distances greater than the range are spatially uncorrelated. For semi-variograms

which reach their sill asymptotically, the effective, or practical range can be identified.

One definition of the effective range is provided in Cressie [31] who proposed that the

effective range is the distance at which the semi-variogram reaches 95% of its sill. An

example of the exponential covariance function CX(h) and semi-variogram γX(h) can

be seen in Figure 2.1.

Spatial correlation investigation

The semi-variogram can be used to investigate the presence of spatial correlation in

geostatistical data. Suppose we have a geostatistical process {Y (s) : s ∈ D} (e.g. the

residuals from a linear regression), and observe the realization
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y = (y(s1), ..., y(sn))>, (2.21)

the semi-variogram for Y (s) is defined by

γY (s, t) =
1

2
Var[Y (s)− Y (t)] (2.22)

=
1

2
E[(Y (s)− Y (t))2]− 1

2
E[Y (s)− Y (t)]2.

In practice, once any trend among the geostatistical data has been removed, E[Y (s) −

Y (t)] = 0. Therefore, a coarse estimate of the semi-variogram for Y (s) is given by

γY (s, t) =
1

2
[y(si)− y(sj)]

2, for each i 6= j. (2.23)

Assuming Y (s) is stationary and isotropic, a plot of these quantities versus hij = ‖si−sj‖

is called a variogram cloud. However, this plot can be very noisy and it is hard to

see spatial structure from it. Therefore, the empirical semi-variogram and the binned

empirical semi-variogram are usually used in practice. When the geostatistical data

are evenly allocated across space throughout the spatial domain, the empirical semi-

variogram can be used instead of the semi-variogram to test the spatial correlation

among data, which is defined by

γ̂Y (h) =
1

2 | N(h) |
Σ(si,sj)∈N(h)[y(si)− y(sj)]

2, (2.24)

N(h) = {(si, sj) : ‖si − sj‖ = h},

where N(h) denotes the set of pairs of spatial locations at a distance h apart, and

| N(h) | denotes the number of points in this set.

However, for unevenly spaced data throughout the spatial domain, the size of N(h)

may be one for a number of observable distances h. In this case, the true variogram

cannot be well estimated by the empirical semi-variogram, and the binned empirical
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semi-variogram is prefered. Suppose we partition the space of distances into K intervals

(bins)

Ik = (hk−1, hk], k = 1, ...,K, (2.25)

where 0 = h0 < h1 < ... < hK . Let hmk = (hk−1 + hk)/2 denote the midpoint of the

interval, the pairs of distances in each interval is given by

N(hk) = {(si, sj) : ‖si − sj‖ ∈ Ik}, (2.26)

and the binned empirical semi-variogram is

γ̂Y (hmk ) =
1

2 | N(hk) |
Σ(si,sj)∈N(hk)[y(si)− y(sj)]

2, (2.27)

where 30 pairs per bin is one rule of thumb to define Ik (Journel and Huijbregts [64]).

One way to assess the presence of spatial correlation is to plot the semi-variogram, and

overlay on top the upper and lower limits for the set of semi-variograms that would have

occurred under independence. These limits are computed using Monte Carlo methods

and are often called a Monte Carlo envelope (Diggle and Ribeiro [36]). If the estimated

semi-variogram from the data lie completely inside the envelope, then the data contain

no substantial spatial correlation.

Geostatistical model

In my study, the geostatistical process, {X(s)}, is assumed to come from a stationary

isotropic Gaussian process as the residuals of pollution observations are expected to have

no spatial pattern after accounting for the covariates (e.g. monitoring site environment,

temperature). It can be commonly modelled in an additive form, which decompose its

variation into
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X(s) = µX(s) + εX(s), (2.28)

where µX(s) = E[X(s)] is the spatially varying mean used to capture most of the spatial

variation in the process {X(s)}. εX(s) is a spatial geostatistical error process used to

capture the small scale correlation in {X(s)}. For the stationary Gaussian model, the

parameters to be estimated are the mean µX(s) and any additional parameters which

define the covariance structure of the data. Typically, these include the nugget effect,

partial sill, and decay (or range) parameter.

A sensible method to complete the specification of the geostatistical model is to model

the mean µX(s) = z(s)>β as a linear combination of p covariates, that is z(s) =

(1, z2(s), ..., zp(s)) and β = (β1, ..., βp). For n points, we can write down in compact

matrix form,

µX = (µX(s1), ..., µX(sn)) = Zβ, (2.29)

where Z is the n× p design matrix of covariates for all n locations.

The error term of the model, εX = (εX(s1), ..., εX(sn)) is modelled as

εX = N(0,Σ(θ)), (2.30)

where in my study Σ(θ) = σ2 exp(−D/λ) + τ2I is the n × n covariance matrix given

by an exponential correlation function of distance, in which θ represents the covariance

parameters (σ2, λ, τ2), and D is the n× n Euclidean distance matrix between the data

locations, σ2 represents the partial sill, τ2 is the nugget effect and λ is the spatial range

parameter. With these assumptions, the Gaussian geostatistical model can be written

as,
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X ∼ N(Zβ,Σ(θ)). (2.31)

The parameters of Model (2.31) can be estimated by maximising the likelihood. An

algorithm for maximisation of the log-likelihood proceeds as follows.

The log-likelihood function of Model (2.31) is given by,

L(β, σ2, τ2, φ) = −1

2
{n log (2π) + log {| σ2 exp(−D/λ) + τ2I |} (2.32)

+ (X −Zβ)>(σ2 exp(−D/λ) + τ2I)−1(X −Zβ)}

maximisation of which yields the maximum likelihood estimates of the model parameters.

In order to make the estimation easier, we parametrise to ν2 = τ2/σ2, where ν2 is called

the noise to signal ratio. I also denote V = exp(−D/λ) + ν2I, so that Σ(θ) = σ2V .

Given V , the log-likelihood function is maximised at

β̂(V ) = (Z>V −1Z)−1Z>V −1X (2.33)

σ̂2(β,V ) = n−1(X −Zβ)>V −1(X −Zβ)>.

In practice, as the maximum likelihood estimator for σ2 is biased, so the alternative

below is used,

σ́2(β,V ) = (n− p)−1(X −Zβ)>V −1(X −Zβ)> (2.34)

where p is the number of parameters in the mean model (2.29).

By substituting the estimates
(
β̂(V ), σ̂2(β̂,V )

)
into the log-likelihood function (2.32),

we obtained the profile likelihood (or reduced likelihood) for (φ, ν2):
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L0(ν2, φ) = −1

2
{n log (2π) + n log σ̂2(V ) + log | V |+ n} (2.35)

This is optimised numerically with respect to φ and ν2, then the estimates (φ̂, ν̂2) are

obtained, followed by back substitution to obtain β̂ and σ̂2.

Spatio-temporal geostatistical model

When the geostatistical data contain more than one time period, a spatio-temporal

geostatistical model is required. In this thesis, I focus on the spatio-temporal pollution

model proposed by Sahu et al. [112], which is used in chapter 4 for a comparison to my

proposed model. The model has the general form:

Xt = Ot + εt t = 1, ..., T, (2.36)

Ot = ρOt−1 +Ztββ + ηt t = 2, ..., T,

where Xt denotes the vector of measured pollution data in year t. These noisy data are

modelled as a linear combination of the true values Ot and independent (white noise)

errors εt. The true values are modelled with a first order autoregressive component

(ρOt−1), a regression component (Ztββ) whereZt is the covariate matrix and ββ is a vector

of regression parameters, and a spatial autocorrelation component ηt. ηt is modelled

independently for each time period, and is given a multivariate Gaussian prior with

mean zero and an exponential correlation matrix.

2.3.2 Areal data

Denote a partition of n distinct regions as {Bi : i = 1, ..., n} and D is the region

interest, such that
⋃n
i=1Bi = D, Bi

⋂
Bj = Ø for each i 6= j, then an areal process is

the stochastic process

{X(Bi) : i = 1, ..., n} (2.37)
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2.3.2.1 Spatial association in areal data

Similar to geostatistical data, measuring and then modelling the spatial association

in areal data is also very important. The most common statistic to measure spatial

correlation for areal data is Moran’s I (Moran [91]) which is defined as,

I =
nΣi=1Σj=1wij(Xi − X̄)(Xj − X̄)

w..Σn
i=1(Xi − X̄)2

(2.38)

where X = (X1, ..., Xn) denotes the areal process, wij is the element of a proximity

matrix W and w.. = ΣiΣjwij . The proximity matrix W defines how the n distinct

regions {Bi : i = 1, ..., n} are potentially related to one another, the elements of which

can be continuous (e.g. how far apart are the different regions from one another) or

discrete (e.g. which regions are neighbours). In my study, I use the latter to define W

and wij is equal to one if areas (i, j) share a common border, and is zero otherwise.

A permutation test can be used to test whether there is any spatial association in the

areal data (H0 - no spatial association; H1 - some spatial association). To conduct this

test, I compute the observed Moran’s I test statistic, Iobs first, then calculate Moran’s

I statistics (I1, ..., Ik) based on K different random permutations of the areal dataset.

Finally, the estimated two-sided p-value for the test is given as,

2

K + 1
ΣK
k=1I(Ik >| Iobs |) (2.39)

2.3.2.2 Spatial modelling for areal data

In my study, the disease data are counts of the numbers of disease cases occurring in each

areal unit (IG), and thus Poisson log-linear models are typically used for the analysis.

Denote the observed and expected numbers of respiratory hospital admissions in each IG

by Y = (Y1, . . . , Yn) and E = (E1, . . . , En), respectively, the latter of which is included

in the regression model as an offset term. The expected counts are usually calculated

by Ek = Σm
j=1Njkrj , where Njk is the population in area k in strata j, rj is the rate of
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disease for strata j. The vector of p covariates for area k is denoted by bk, and xk is

the pollution concentration in area k. The spatial disease model is given by,

Yk | Ek, Rk ∼ Poisson(EkRk) for k = 1, . . . , n, (2.40)

ln(Rk) = b>k α+ xkβ + φk,

where Rk denotes the overall risk of disease in area k, and a value of 1 corresponds to

observing as many admissions as you expect from the population demographics (e.g.

E[Yk] = Ek). Here α = (α1, . . . , αp) are unknown covariate parameters, while β is an

unknown parameter which quantifies the relationship between pollution and respiratory

ill health. The last term in the model is a set of random effects φ = (φ1, . . . , φn)

capturing the overdispersion and spatial correlation remaining in the disease data after

adjusting for the covariates.

The random effects φ = (φ1, ..., φn) are commonly modelled by the class of conditional

autoregressive (CAR) prior distributions, which are a type of Markov random field

model. Spatial correlation between the random effects is determined by a binary n× n

neighbourhood matrix W . Based on this neighbourhood matrix, the most common

models for φ include intrinsic autoregressive (IAR), convolution or BYM model, as well

as those proposed by Cressie [31] and Leroux et al. [80].

Intrinsic CAR

The simplest CAR prior is the intrinsic autoregressive (IAR) model, which was proposed

by Besag et al. [15] and has full conditional distribution f(φk | φ−k) given by

φk | φ−k,W , ν2 ∼ N

(
Σn
j=1wkjφj

Σn
j=1wkj

,
ν2

Σn
j=1wkj

)
. (2.41)

where φ−k = (φ1, . . . , φk−1, φk+1, . . . , φn). The conditional expectation of φk is repre-

sented by the mean of the random effects in neighbouring areas, and the conditional

variance is inversely proportional to the number of neighbours. This variance structure

indicates that the more neighbours an area has, the more information there is in the data
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about the value of its random effect, which is obviously not the case if data contain weak

to no spatial correlation. Therefore, this model is only appropriate for strong spatial

correlation structures.

BYM

The convolution or BYM model, which was also proposed by Besag et al. [15], is given by

φk = θk + Ψk,

θk | σ2 ∼ N(0, σ2), (2.42)

Ψk | Ψ−k,W , ν2 ∼ N

(
Σn
j=1wkjΨj

Σn
j=1wkj

,
ν2

Σn
j=1wkj

)
.

The different strength of the spatial correlation can be achieved by varying the relative

sizes of these two components (θ,Ψ). However, each data point is represented by two

random effects, and hence only their sum is identifiable.

Cressie CAR

This model was proposed by Cressie [31] and Stern and Cressie [121], and is given by

φk | φ−k,W , ν2, ρ ∼ N

(
ρΣn

j=1wkjφj

Σn
j=1wkj

,
ν2

Σn
j=1wkj

)
. (2.43)

When ρ equals to zero the random effects are independent, and there is no reason for

the conditional variance of φk to be inversely proportional to the number of neighbours,

as they provide no information about φk.

Leroux CAR

This model was proposed by Leroux et al. [80] which Lee [73] suggested to be preferred

as it produces consistently good results across a range of spatial correlation strengths.

This model has been further explored by Macnab [83]. Its univariate full conditional
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distribution is given by

φk | φ−k,W , ν2, ρ ∼ N

(
ρΣn

j=1wkjφj

ρΣn
j=1wkj + 1− ρ

,
ν2

ρΣn
j=1wkj + 1− ρ

)
. (2.44)

The conditional expectation is a weighted average of the random effects in neighbouring

areas, while the conditional variance has a more attractive form. When ρ = 1, the model

reduces to the intrinsic model, ρ = 0 the conditional variance is a constant which means

that there is no longer any information about φk in the neighbouring random effects.

2.3.2.3 Spatio-temporal modelling for areal data

The spatial modelling approaches introduced in last section can be used on areal data

with only one time period. However in some cases, data are collected across T time points

at each of the n areal units, and spatio-temporal modelling approaches are required.

Denote (Ykt, Ekt) as the observed and expected numbers of disease cases in areal unit k

during time period t, the spatio-temporal disease model used in my study was developed

by Rushworth et al. [109], and is given by:

Ykt | Ekt, Rkt ∼ Poisson(EktRkt), (2.45)

ln(Rkt) = bTktα+ xktβ + φkt,

φt | φt−1 ∼ N
(
γφt−1, ν

2Q(ρ,W )−1
)
, t ∈ 2, ..., T ,

φ1 ∼ N
(
0, ν2Q(ρ,W )−1

)
.

The risk of disease in areal unit k and time period t is denoted by Rkt, and is modelled

by three components on the log-scale. The first is a vector of covariates, bkt, and α are

the corresponding regression parameters. xkt is the pollution concentration in areal unit

k and time period t while β is an unknown parameter used to quantify the relationship

between pollution and health.
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φkt is a random effect included to allow for any spatio-temporal autocorrelation re-

maining in the disease counts after the covariate effects have been accounted for. This

space-time specification of random effects is chosen instead of other ones with separate

effects for space and time (e.g. φk + φt) because model (2.45 ) can be fitted by the R

package CARBayesST directly. Here φt = (φ1t, . . . , φnt) denotes the vector of random

effects for time period t, and is modelled by a multivariate first order autoregressive

process with temporal autocorrelation parameter γ and variance ν2. Spatial autocor-

relation is induced in the random effects by the precision matrix, which is given by

Q(ρ,W ) = ρ(diag(W1)−W )+(1−ρ)I and corresponds to the conditional autoregres-

sive (CAR) prior proposed by Leroux et al. [80]. Further details about the specification

of this model is given in Rushworth et al. [109]. Note that this space-time specification

of random effects is chosen model 2.45

2.4 Bayesian modelling

In a statistical model, the observed data are usually believed to have come from a

probability model with a set of unknown parameters which are then estimated from the

data. A commonly used approach to estimate these unknown parameters is the likelihood

approach. The parameters are chosen to be the best estimates which maximise the

likelihood function. Under this framework, it is assumed that the unknown true values

of the model parameters are fixed.

An alternative to the likelihood approach is the Bayesian approach, which comes from

Thomas Bayes (1702-1761). He published a paper “An essay towards solving a problem

in the doctrine of chances” which included a form of Bayes Theorem. The approach was

also independently developed by Laplace approximately 50 years later.

2.4.1 Bayes’ theorem

Bayes’ theorem can be expressed for random variables. If random variables θ (model

parameters) and Y (data) have probability density function f(θ) and f(Y ) respectively,

then,
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f(θ | Y ) =
f(Y | θ)f(θ)

f(Y )
, (2.46)

which shows the rule to update model parameters θ by using data Y . In Bayesian

statistics, the parameters are treated as random and can therefore have probability

distributions f(θ) assigned to them. The prior of the parameters is the belief about the

parameters before observing any data, which then can be updated to get its posterior

distribution f(θ | Y ) in light of the observed data, Y , via the data likelihood f(Y | θ).

f(Y ) is the marginal distribution of the observed data, which is independent of model

parameters θ. Therefore, the posterior distributions can instead be expressed up to a

constant of proportionality as

f(θ | Y ) ∝ f(Y | θ)f(θ). (2.47)

2.4.2 The first stage of a Bayesian model: probability model

Before using data to estimate model parameters, a probability distribution from which

the data are collected needs to be identified. This probability model forms the first stage

of the Bayesian model. In my study, the Poisson distribution (see e.g. model (2.40))

has been used as a disease model because the disease data are counts of the numbers of

disease cases occurring in each areal unit (IG) and time period. The Normal distribution

has been used in the air pollution models (see e.g. model (4.3) and (5.1)).

2.4.3 The second stage of the Bayesian model: prior

The prior in Bayesian statistics is the previous knowledge or belief about the parameters

θ before observing the data. The prior distribution could be based on information from

previous studies on similar data sets or an estimate from an expert, or it could simply

be used to represent a position of prior ignorance (non-informative prior).

In practice, we usually choose f(θ) to be within a standard family of distributions to

make posterior computations tractable. In certain situations, we can choose the prior
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distribution to be conjugate to the likelihood, in which case the prior and posterior

distribution will be from the same family. For example, Table 2.1 show the commonly

used conjugate priors in my study.

Table 2.1: Commonly used conjugate priors.

Likelihood Model parameter Conjugate prior distribution

Multivariate normal Mean Multivariate normal
Normal Variance Inverse Gamma
Multivariate normal Covariance matrix Inverse-Wishart

In some cases we may have little or no intuition about the value of the parameter in

advance of observing the data. Then we need to represent our lack of prior knowl-

edge by assigning a weakly informative prior which will have a negligible effect on the

posterior. In such cases, the posterior distribution f(θ | Y ) is driven by the observed

data rather than the prior. Three commonly used weakly informative priors are used

in my study. For a real value parameter θi, I use a Gaussian distribution with a very

large variance (e.g. θi ∼ N(0, 1000) ). For a parameter on a specific interval, a uni-

form distribution on the entire possible range of values (e.g. θi ∼ Uniform(0, 1)) is

used. For a variance parameter, a weakly informative Inverse-Gamma can be used (e.g.

θi ∼ Inverse-Gamma(a = 0.001, b = 0.001)). In practice, the use of this non-informative

prior distribution for variance parameter needs to be considered carefully as inferences

can become very sensitive to a, b in the model for data sets in which low values of variance

are possible (Gelman [45]).

2.4.4 Using the data to update the prior: posterior distribution

According to Bayes theorem, the posterior density function is proportional to the prior

density times the likelihood function, f(θ | Y ) ∝ f(Y | θ)f(θ). In this section, I show

how to derive the posterior distributions in Bayesian statistics by deriving the posterior

distributions for the common priors and likelihoods in this thesis shown in Table 2.1.

• Model:

y1, ..., yn | θ ∼ i.i.d. N(θ, σ2), σ known (2.48)

θ ∼ N(µ0, τ
2
0 ), µ0, τ0 fixed constants.
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• Posterior:

f(θ | Y ) ∝ f(θ)f(Y | θ) (2.49)

= exp

{
−(θ − µ0)2

2τ2
0

} n∏
i=1

exp

{
−(yi − θ)2

2σ2

}
= exp

{
−1

2

[
(θ − µ0)2

τ2
0

+
Σn
i=1(yi − θ)2

σ2

]}
= exp

{
−1

2

[
(θ − µ0)2

τ2
0

+
Σn
i=1y

2
i − 2θΣn

i=1yi + nθ2

σ2

]}
∝ exp

{
−1

2

[
(θ − µ0)2

τ2
0

+
nθ2 − 2nθȳ

σ2

]}
∼ N(µn, τ

2
n),

where

1

τ2
n

=
1

τ2
0

+
n

σ2
; (2.50)

µn =
µ0/τ

2
0 + nȳ/σ2

1/τ2
0 + n/σ2

.

• Model:

y1, ..., yn | θ ∼ i.i.d. N(θ, σ2), θ known (2.51)

σ2 ∼ Invese-Gamma(a, b), a, b fixed constants.

• Posterior:

f(σ2 | Y ) ∝ f(σ2)f(Y | σ2) (2.52)

∝ (σ2)−(a+1) exp (−b/σ2)× (σ2)−n/2 exp

{
−Σn

i=1(yi − θ)2

2σ2

}
= (σ2)−(a+n/2+1) exp

{
− 1

σ2

[
b+

Σn
i=1(yi − θ)2

2

]}
∼ Invese-Gamma

(
a+ n/2, b+

Σn
i=1(yi − θ)2

2

)
.

• Model:

Y | V ∼ N(θ,V ), θ known (2.53)

V ∼ Invese-Wishart(ν,Φn×n), ν,Φn×n fixed constants.
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• Posterior:

f(V | Y ) ∝ f(V )f(Y | V ) (2.54)

∝ | V |−(ν+n+1)/2 exp

{
−1

2
tr(Φn×nV

−1)

}
| V |−1/2 exp

{
−1

2
(Y − θ)>V −1(Y − θ)

}
∝ | V |−(ν+n+2)/2 exp

{
−1

2
tr(Φn×nV

−1)

}
exp

{
−1

2
tr
(

(Y − θ)(Y − θ)>V −1
)}

∝ | V |−(ν+n+2)/2 × exp

{
−1

2
tr
([

Φn×n + (Y − θ)(Y − θ)>
]
V −1

)}
∼ Invese-Wishart

(
ν + 1,Φn×n + (Y − θ)(Y − θ)>

)
.

2.4.5 Inference

In Bayesian modelling, the deviance information criterion (DIC) (Spiegelhalter et al.

[119]) is usually used as a Bayesian measure of model fit that is penalised for complex-

ity. It can be written as a function of the log likelihood,

DIC = 2 logL{E(φ | y) | y} − 4Eφ|y{logL(φ | y)}, where φ denotes model parameters

and y denotes observed data. After selecting a Bayesian model, the inference is based

on the posterior distributions of the unknown model parameters. Some of the posterior

distributions are straightforward to compute. For example, distributions with a conju-

gate prior usually have a posterior distribution which follows a standard distributional

form (see for example the posteriors discussed in section 2.4.4). In many cases, the cal-

culation of the posterior distribution is much more complex which commonly requires

a numerical simulation to draw a sample of model parameter values from an approxi-

mation of the posterior distribution f(θ | Y ), so as to estimate the distribution of the

model parameters.

2.4.5.1 Markov chain Monte Carlo simulation

Markov chain Monte Carlo (McMC) simulation is the most common simulation method

used to draw samples from the distributions of unknown model parameters when the

likelihood is tractable. It operates by sequentially sampling parameter values from a

Markov chain whose stationary distribution is exactly the desired joint posterior distri-

bution of interest. The Bayesian McMC computing in my study is accomplished using

one of two basic algorithms, the Gibbs sampling algorithm (Geman and Geman [46],
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Gelfand and Smith [43]) and Metropolis-Hastings (M-H) algorithm (Metropolis et al.

[88], Hastings [54]).

Gibbs Sampling algorithm

Suppose the parameter θ is partitioned as θ = {θ1, θ2, ..., θp}. To implement the Gibbs

sampling algorithm, we must assume that samples can be generated from each of the

full (or complete) conditional distributions {f(θi | θj 6=i,Y ), i = 1, ..., p} in the model.

These full conditional distributions are available in closed form. Given the current state

of the Markov chain is θ(0) = {θ(0)
1 , θ

(0)
2 , ..., θ

(0)
p }, the algorithm proceeds as follows:

For (t = 1, ..., T ), repeat:

1. Draw θ
(t)
1 from f(θ1 | θ(t−1)

2 , ..., θ
(t−1)
p ,Y );

2. Draw θ
(t)
2 from f(θ2 | θ(t)

1 , θ
(t−1)
3 ..., θ

(t−1)
p ,Y );

.

.

.

p. Draw θ
(t)
p from f(θp | θ(t)

1 , ..., θ
(t)
p−1,Y ).

Components could also be updated in random order (random sweep).

Metropolis Hastings algorithm

When the prior f(θ) and the likelihood f(Y | θ) are not a conjugate pair, the poste-

rior distribution f(θ | Y ) ∝ f(Y | θ)f(θ) is not in closed form, and the Metropolis

Hastings algorithm can be used to draw samples from the joint posterior distribution.

We begin the Metropolis Hastings algorithm by specifying a candidate (or proposal)

density q(θ∗ | θ(t−1)) which is a valid density function for every possible value of the

conditioning variable θ(t−1), and satisfies q(θ∗ | θ(t−1)) = q(θ(t−1) | θ∗) (Metropolis

algorithm, a special case of the Metropolis Hastings algorithm). Given a starting value

θ(0) at iteration t = 0, the algorithm proceeds as follows:

For (t = 1, ..., T ), repeat:

1. Draw θ∗ from q(· | θ(t−1));
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2. Compute the ratio r = f(Y |θ∗)f(θ∗)
f(Y |θ(t−1))f(θ(t−1))

3. If r ≥ 1, set θ(t) = θ∗; If r < 1, θ(t) =


θ∗, with probability r

θ(t−1), with probability 1− r

For both algorithms, for t sufficiently large (say, bigger than t0), {θ(t), t = t0 + 1, ..., T}

is a (correlated) sample from the true posterior, from which any posterior quantities of

interest may be estimated. For example, we can use a sample mean to estimate the

posterior mean,

Ê(θi | Y ) =
1

T − t0
ΣT
t=t0+1θ

(t)
i . (2.55)

The time from t = 0 to t = t0 is commonly known as the burn-in period. An appro-

priate t0 is chosen to guarantee the convergence of the chain of θ
(t)
i , t = t0 + 1, ..., T

which will be discussed later. In this study, I also use this posterior sample to build a

95% credible interval (easily obtained by taking the 2.5th and 97.5th percentiles of the

simulated posterior draws as the lower and upper bounds respectively) of the parameter

θi, which captures the uncertainty of estimation. Note that an McMC chain is strongly

autocorrelated and produces clumpy samples that are unrepresentative, in the short run,

of the true underlying posterior distribution. One way to decrease autocorrelation is to

thin the sample, using only every nth step. Therefore, in practice a posterior sample

used for inference is usually a thinning sample from a completed posterior sample.

Consider an MCMC chain that is strongly autocorrelated. Autocorrelation produces

clumpy samples that are unrepresentative, in the short run, of the true underlying

posterior distribution. Therefore, if possible, we would like to get rid of autocorrelation

so that the MCMC sample provides a more precise estimate of the posterior sample. One

way to decrease autocorrelation is to thin the sample, using only every nth step. If we

keep 50,000 thinned steps with small autocorrelation, then we very probably have a more

precise estimate of the posterior than 50,000 unthinned steps with high autocorrelation.

But to get 50,000 kept steps in a thinned chain, we needed to generate n*50,000 steps.

With such a long chain, the clumpy autocorrelation has probably all been averaged out

anyway! In fact, Link and Eaton show that the longer (unthinned) chain usually yields
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better estimates of the true posterior than the shorter thinned chain, even for percentiles

in the tail of the distribution, at least for the particular cases they consider.

Convergence monitoring and diagnosis

When an McMC algorithm has converged at time T , its output can be treated as com-

ing from the true stationary distribution of the Markov chain for all t > T . Some

researchers have attempted to establish conditions for convergence of various McMC al-

gorithms under a rigorous mathematical framework (Roberts and Smith [107], Roberts

and Tweedie [108], Meyn and Tweedie [89]). In this thesis, the convergence of McMC

is checked by doing trace plots (should be no patterns) or by the Heidelberg and Welch

Diagnostic (Heidelberger and Welch [57], Heidelberger and Welch [58]), which consists

of two parts: a stationary portion test and a half-width test. The stationarity test as-

sesses the stationarity of a Markov chain by testing the hypothesis that the chain comes

from a covariance stationary process. The half-width test checks whether the Markov

chain sample size is adequate to estimate the mean values accurately. Heidelberger and

Welch [58] combined the method of Schruben [115] and Schruben et al. [114] to propose

a comprehensive procedure for generating a confidence interval of prespecified width for

the mean of a parameter when the chain has an initial transient (a state when the algo-

rithm has not reached stationarity yet). The diagnostic is appropriate for the analysis

of individual chains, and the procedure is given as follows.

Given an McMC chain xj : j = 1, ..., n, the stationarity test of Schruben [115] and

Schruben et al. [114] is applied to the chain, in which the null hypothesis of convergence

is based on Brownian bridge theory and uses the Cramer-von-Mises test statistic (Cowles

and Carlin [30])

∫ 1

0

(
Tbntc − bntcx̄√

nS(0)

)2

dt (2.56)

where
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Tk =


0, k = 0

Σk
j=1xj , k ≥ 1

(2.57)

and S(0) is the spectral density evaluated at frequency zero. The spectral density is

estimated from the second half of the original McMC chain. If the null hypothesis is

rejected, then the first 0.1n of the samples are discarded and the test reapplied to the

remaining chain. This processes is repeated until the test is either non-significant or

50% of the samples have been discarded, at which point the chain is declared to be

non-stationary and the McMC chain needs to run longer. If convergence is not rejected

in the final step, a half-width test is performed by computing the mean and associated

(1 − α)100% confidence interval. This test is passed if the half-width of the confidence

interval is less than a user-specified level of accuracy ε, otherwise the test is failed (Cowles

and Carlin [30]).



Chapter 3

The impact of air pollution on

health

3.1 Introduction

The health impact of air pollution exposure has been widely recognised since the 1950’s,

as a result of the London smog in December 1952, which is estimated to have resulted

in more than 3,000 excess deaths compared with previous years (Bell and Davis [9]).

Recently, the adverse effects of air pollution on health have been widely investigated all

over the world. In the USA, an expert elicitation by the US Environmental Protection

Agency [133] reports an increase of 1% (range 0.4% to 1.8%) in annual all-cause deaths

for a 1µgm−3 increase in the annual average of PM2.5 exposure in the United States. In

China, focusing on 17 Chinese cities, Chen et al. [27] found that an increase of 10µgm−3

in the two-day moving average SO2 concentration was associated with 0.75% (95% poste-

rior interval (PI), 0.47% to 1.02%), 0.83% (95% PI, 0.47% to 1.19%) and 1.25% (95% PI,

0.78% to 1.73%) increase of total, cardiovascular and respiratory mortality, respectively.

In Europe the Dutch cohort study by Hoek et al. [59] found a 17% (95% confidence

interval (CI), 24% to 78%) adjusted excess risk for all-cause mortality with a 10µgm−3

increase of background concentrations of black smoke (BS). In the UK, Elliott et al.

[41] found significant associations between BS and SO2 concentrations and mortality.

Lee [74] reported that a 1.7µgm−3 increase in PM10 concentrations was associated with

6.6% additional hospital admissions across Scotland, while Lee et al. [76] showed that

39
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long-term exposure (over 3 years) to PM10 and NO2 was significantly associated with

respiratory hospital admissions in Edinburgh and Glasgow while the risks for Aberdeen

and Dundee were generally positive but nonsignificant.

The air pollutants commonly associated with ill health include PM2.5, PM10, NO2, SO2

and O3, the effects of which on specific diseases can vary. For example, respiratory

disease is often associated with the concentrations of PM10 (Lee [74], Lee et al. [76]),

PM2.5 (Tecer et al. [125]), NO2 (Lee et al. [76]) and SO2 (Elliott et al. [41]), while skin

cancer has been associated with O3 (Thormod et al. [128], Diepgen and Mahler [35]).

The disease and pollutants considered in this study are respiratory disease and NO2 and

PM10, respectively. The disease data are counts of the numbers of respiratory hospital

admissions within non-overlapping areal units. This is called a small-area ecological

study design. The pollution data are from two sources: (a) measured data which are

sparsely distributed in space; (b) modelled grid data from dispersion models. Therefore,

the pollutant data and the disease data relate to different spatial scales, and the first

thing we need to do before investigating the relationship between them is to convert the

pollution data to a comparable small-area scale on which the disease data are aggregated.

The simplest method for doing this is to compute the spatial mean concentrations over

the modelled grid data lying within each small area, which ignores the monitoring data.

A more complex approach is to firstly fuse measured data and modelled grid data before

converting them into the small-area scale just as the first method does, which is expected

to provide improved predictions of areal level pollution concentrations. The first method

can be treated as a benchmark method to deal with the issue, as it is adopted in most

of the existing research (see e.g. Maheswaran et al. [84], Lee [73], Lee [74], Warren et al.

[136], Rushworth et al. [109]), and is therefore adopted in this chapter to get an initial

impression of the impact of air pollution on health in Scotland.

Note that various aggregation functions for transferring spatial data into a single metric

have been discussed by researchers (see e.g. Bruno and Cocchi [20]), however, the exist-

ing literature in the context of investigating air pollution health effects uses the average

metric (mean or median) almost exclusively (e.g. Maheswaran et al. [84], Lee et al. [76],

Lee [73], Rushworth et al. [109]). In this study, I investigate both spatial mean and

maximum metrics as it may be that peak concentrations are more representative for the

exposure. For example, NO2 concentrations are usually higher near main roads, where
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most of the exhaust fumes are produced, and peak concentrations are more suitable for

the estimation of the real exposure if the population are dense next to main roads.

3.2 Data description

The data in this study region relate to the set of 1,207 Intermediate Geographies (IG)

that comprise mainland Scotland, which each has an average population of around 4,300

people. The disease data analysed in this study are from the Scottish neighbourhood

statistics database, whose website is http://www.sns.gov.uk/. The response variable is

the numbers of admissions to non-psychiatric and non-obstetric hospitals in each IG

in 2011 with a primary diagnosis of respiratory disease. These data are denoted by

Y = (Y1, . . . , Yn), where Yk denotes the count for area k. The number of admissions in

an IG depends on its population size and demographic structure. Therefore I use age

and sex as external variables to calculate the expected number of admissions in each IG

based on standard hospital admission rates stratified by age (0-14, 15-24, 25-34, 35-44,

45-54, 55-64, 65-74, 75-84, 85+ years) and sex for the whole of Scotland. These rates

can be obtained from the Information Services Division, which is part of the National

Health Service in Scotland. The equation Ek = Σm
j=1Njkrj indicates how to compute the

expected counts, where Ek denotes the expected count in area k, Njk is the population

in area k in strata j, rj is the rate of disease for strata j in Scotland.

The distribution of both observed and expected admissions in 2011 are shown in Fig-

ure 3.1, where the bottom panels show the histogram and spatial distribution of stan-

dardized incidence ratio (SIR) where SIRk = Yk/Ek. Figure 3.1 shows that overall the

expected hospital admissions are over-estimated comparing to real observed hospital ad-

missions, since the median of the former (about 100) is much higher than that from the

latter (about 70). The spatial map of SIR shows that a higher standardized incidence

ratio is found in Glasgow and Edinburgh cities (the set of small densely populated IGs

in the lower middle part of the country) and those around Loch Doon (the darker area

at bottom left).

The pollutants considered in this study are both NO2 and PM10. Strong relationships

between respiratory diseases and NO2 and PM10 have been demonstrated in related

research, such as Oftedal et al. [95], Belanger et al. [8], Kattan et al. [66], Wiwanitkit
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Figure 3.1: The distributions of the observed and expected admissions in 2011 and
their standardized incidence ratio: top left is the observed hospital admissions, top right
is the expected hospital admissions, two figures in the bottom are the corresponding

SIR.
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[140], Thishan Dharshana and Coowanitwong [126], Lee et al. [76] and Lee [74]. The

modelled pollution data gridded to 1 km spatial resolution in this study are freely avail-

able, and can be downloaded from the Department for Environment Food and Rural

Affairs (DEFRA) database (http://uk-air.defra.gov.uk/). I use pollution data for 2010

in this study rather than 2011, to make sure that the air pollution exposure occurred

before the respiratory disease hospital admissions. However, these modelled grid data

are only available for each 1 km grid square across the UK, which does not match the

resolution of Intermediate Geographies. Therefore, I converted them to the Intermedi-

ate Geography scale by computing the spatial mean or maximum concentrations over

the grid squares lying within each IG. The spatial distributions of NO2 and PM10 in

Scotland are shown in Figure 3.2. It is obvious that both NO2 and PM10 concentrations

are higher in the east of Scotland as well as in Glasgow and Edinburgh. The maps using

spatial mean metric are much smoother than those from using spatial maximum metric.

A number of covariates corresponding to 2011 are considered to describe the spatial

pattern in disease risk, including the measures of socio-economic deprivation: (a) the

percentage of people living in each IG who are in receipt of Job Seekers Allowance (JSA),

and (b) the natural log of median property price in an area (Logprice).

3.3 Exploratory analysis

The relationships between the covariate variables and respiratory hospital admissions

are shown in Figure 3.3 where logSIR denotes the natural log of the SIR (the scale on

which the covariates will be modelled). Figure 3.3 suggests a linear relationship between

log(SIR) and the covariates Logprice. Note that the relationship between log(SIR) and

JSA is only roughly linear, however, the linear relationship is assumed in my study so

that it is easier to interpret.

Previous studies such as Lee et al. [76], Lee [73], Lee [74], have shown that disease data

in contiguous areal units usually contain spatial correlations even after incorporating

covariates, which is due to those confounding covariates that have not been identified.

Therefore, I assessed the spatial correlation of the residuals from a non-spatial Poisson

model in which the observed admissions counts are regressed against NO2 or PM10, the

percentage of people living in each IG who are in receipt of Job Seekers Allowance, the
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Figure 3.2: The spatial distributions of NO2 and PM10 for 2010 in Scotland (unit:
µgm−3). Top left is based on using the mean gridded NO2 concentrations in each IG,
top right is based on using the max gridded NO2 concentrations in each IG, bottom
left is based on using the mean gridded PM10 concentrations in each IG, bottom right

is based on using the max gridded PM10 concentrations in each IG.
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Figure 3.3: Scatterplots of log respiratory disease SIR (log(SIR)) against Job Seekers
Allowance (JSA) and log of median property price (logprice).

10.5 11.0 11.5 12.0 12.5 13.0

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5

logprice

lo
g 

(S
IR

)

0 5 10 15

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5

JSA

lo
g 

(S
IR

)

natural log of median property price in each IG, and the expected number of admissions

as an offset term. Moran’s I is adopted to test the spatial correlation of these model

residuals. For both of the models with NO2 or PM10, Monte-Carlo simulation of Moran’s

I p-value equals 9.999e-05 indicating that the residuals of the non-spatial model contain

a strong spatial correlation structure.

3.4 Methods

As it was shown in the previous section that the residuals of the non-spatial model

contain a strong spatial correlation structure after accounting for the covariate effects,

I use spatial models to model the disease data. These models are poisson log-linear

models combined with conditional autoregressive (CAR) models to deal with the spatial

correlation coming from this small-area ecological study design. The spatial pattern

in the disease data are modelled by known covariates and random effects, the latter

accounting for residual spatial correlation.
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I denote the observed and expected numbers of respiratory hospital admissions in 2011

in each IG by Y = (Y1, . . . , Yn) and E = (E1, . . . , En), respectively, the latter of which

is included in the regression model as an offset term. The p covariates are denoted

by B = (b1, . . . ,bn), where bk is the vector of observations for area k. I denote the

vector of NO2 (or PM10) concentrations in 2010 as x = (x1, . . . , xn). In this chapter,

I consider two model formulations, Gaussian and Poisson, to assess the robustness of

my conclusions. The Gaussian regression model used in my study is given by eqn (3.1)

while the Poisson regression model is given by eqn (3.2).

ln

(
Yk
Ek

)
∼ N

(
b>k α+ xkλ+ φk, σ

2
)

for k = 1, . . . , n, (3.1)

Yk | Ek, Rk ∼ Poisson(EkRk) for k = 1, . . . , n, (3.2)

ln(Rk) = b>k α+ xkλ+ φk,

where Rk denotes the overall risk of disease in area k, and a value of 1 corresponds to

observing as many admissions as you expect given the population demographics (e.g.

E[Yk] = Ek). Here α = (α1, . . . , αp) are unknown covariate parameters, while λ is an

unknown parameter which quantifies the relationship between NO2 (or PM10) and respi-

ratory ill health. The last term in the model is a set of random effects φ = (φ1, . . . , φn)

capturing the overdispersion and spatial correlation remaining in the disease data after

adjusting for the covariates.

In disease mapping studies, the random effects φ = (φ1, ..., φn) are commonly modelled

by the class of conditional autoregressive (CAR) prior distributions, which are a type

of Markov random field model. Spatial correlation between the random effects is deter-

mined by a binary n×n neighbourhood matrix W , whose jkth element wjk is equal to 1

if areas (i, j) are defined to be neighbours, and is 0 otherwise. The three most common

ways to define areas (i, j) to be neighbours are: (i) they share a common border, (ii)

their central points are within a fixed distance, (iii) one area is one of the h closest

areas to another area in terms of distance. In this thesis, I utilize the common border

specification which is the most standard. Four commonly used conditional autoregres-

sive models, intrinsic autoregressive (IAR), convolution or BYM model, as well as those
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proposed by Cressie [31] and Leroux et al. [80] are used in this chapter. They have been

introduced in detail in chapter 2.

3.5 Results

For all the results presented in this section, inference is achieved using McMC simulation,

where the Markov chain was burnt in for 20,000 iterations, after which convergence was

assessed to have been reached, and then the remaining 30,000 iterations were used for

the final results.

3.5.1 The effect of NO2 on health

To assess the robustness of the conclusions, I estimate the association between air pol-

lution and health (λ) using 8 models, which combine the likelihood models (3.1) and

(3.2) with the prior models (2.41) to (2.44). The models are implemented in R using

the package CARBayes proposed by Lee [75] which is freely available from the Compre-

hensive R Archive Network (CRAN,http://CRAN.R-project.org/package=CARBayes).

CARBayes can fit the general exponential family Bayesian hierarchical model where the

response data can be Binomial, Gaussian or Poisson.

The fit of the models was assessed by checking their residuals. Take an example from

modelling maximum NO2 using the Poisson model with the Leroux CAR prior. The

left panel in Figure 3.4 shows the standardized residuals against the fitted values, in

which no pattern is found. The right panel is a normal qq plot of the residuals to assess

their normality, which shows that most of the points follow a linear trend suggesting

the residuals of the model can be treated as normally distributed. Therefore, the model

appears to be appropriate for the health data. Note that the Poisson distribution can

be considered approximately Normal when its mean is larger than 20 (Central Limit

theorem), and the responses in my data set are overall much higher than 20.

The output of the Poisson model with the Leroux CAR prior is shown in Table 3.1

(using mean NO2 as pollution concentrations) and Table 3.2 (using maximum NO2 as

pollution concentrations), in which, according to the 95% credible intervals for model

coefficients, there is evidence that the percentage of people living in each IG who are in
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Figure 3.4: Model residuals from fitting a Poisson model for maximum NO2 with the
Leroux CAR prior.
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receipt of Job Seekers Allowance (JSA) and the log median property price in an area all

have a significant association with the number of hospital admissions due to respiratory

disease, because their 95% credible intervals do not contain the neutral value, 0. Note

that the regression coefficient for mean NO2 in Table 3.1, 0.0031, represents the log

increase of SIR for 1 µgm−3 increase of NO2, and it is the same for Table 3.2.

Table 3.1 also shows that the mean NO2 concentration in each IG is not significantly

associated with respiratory disease hospital admissions due to respiratory diseases, as

the corresponding 95% credible interval for λ contains 0. However, there is a significant

association for maximum NO2 as shown in Table 3.2.

In order to test the robustness of my conclusions, the remaining seven models were

applied and their results are compared in Table 3.3 (mean NO2) and Table 3.4 (max

NO2). These tables present a comparison of the estimated relative risk (exp (λ ∗ sd))

based on a standard deviation increase of NO2 which is 6.84µgm−3 in my study.
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Table 3.1: Posterior means and 95% credible intervals of the regression, autocorrela-
tion and variance parameters from fitting a Poisson model for mean NO2 with a Leroux

random effect.

Variable Mean 2.5% 97.5%

(Intercept) 1.4569 0.8440 2.0876
Mean NO2 0.0030 -0.0007 0.0069
Logprice -0.1873 -0.2382 -0.1366
JSA 0.0713 0.0636 0.0793
τ2 0.1045 0.0913 0.1190
ρ 0.7900 0.6600 0.9000

Table 3.2: Posterior means and 95% credible intervals of the regression, autocorrela-
tion and variance parameters from fitting a Poisson model for max NO2 with a Leroux

random effect.

Variable Mean 2.5% 97.5%

(Intercept) 1.5984 1.0105 2.3006
Max NO2 0.0050 0.0019 0.0078
Logprice -0.2018 -0.2591 -0.1530
JSA 0.0707 0.0626 0.0782
τ2 0.1033 0.0901 0.1180
ρ 0.7800 0.6500 0.8900

Table 3.3: Relative risk for a 6.84µgm−3 increase of NO2 for eight models based on
mean NO2 data in each IG.

Models Relative risk 95%credible interval DIC

G.bymCAR 1.009 (0.983, 1.035) -2250.267
G.iarCAR 1.009 (0.982, 1.036) -228.072
G.lerouxCAR 1.016 (0.990, 1.043) -254.780
G.cressieCAR 1.016 (0.990, 1.043) -245.202
P.bymCAR 1.011 (0.984, 1.039) 9227.990
P.iarCAR 1.000 (0.973, 1.026) 9263.629
P.lerouxCAR 1.021 (0.995, 1.048) 9254.250
P.cressieCAR 1.017 (0.989, 1.043) 9261.201

According to Table 3.3, the relative risk of mean NO2 in all models is not significant,

as all the 95% credible intervals for the estimates contain the null risk of 1. This

indicates that mean NO2 does not have a significant influence on respiratory disease.

This consistency in the estimation of relative risk also indicates the robustness of the

relative risk.

Similarly, while the peak concentration in each IG is used to represent the exposure,

the relative risk estimates across the eight models are robust (see Table 3.4), as the

estimated relative risks are all significant and similar ranging from 1.021 to 1.034. All

models indicate a significant association between the peak NO2 concentrations in each
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Table 3.4: Relative risk for a 6.84µgm−3 increase of NO2 for eight models based on
maximum NO2 data in each IG.

Models Relative risk 95%credible interval DIC

G.bymCAR 1.023 (1.002, 1.046) -729.099
G.iarCAR 1.023 (1.001, 1.045) -228.573
G.lerouxCAR 1.028 (1.006, 1.050) -260.555
G.cressieCAR 1.028 (1.005, 1.050) -250.423
P.bymCAR 1.021 (1.001, 1.042) 9230.584
P.iarCAR 1.024 (1.002, 1.043) 9264.303
P.lerouxCAR 1.035 (1.013, 1.055) 9251.032
P.cressieCAR 1.031 (1.008, 1.052) 9258.653

IG and the respiratory disease hospital admissions. The relative risk in these models

can be interpreted as: with a 6.84µgm−3 increase of peak NO2 concentration, hospital

admissions related to respiratory disease in each IG will increase by about 2.6% (ranging

from 2.1% to 3.5%).

3.5.2 The effect of PM10 on health

While investigating the effect of PM10, the results of a Poisson model with a LerouxCAR

prior (an example which is consistent with NO2) are shown in Table 3.5 and Table 3.6.

Similarly, the normality test of model residuals for maximum PM10 is shown in Fig-

ure 3.5, in which both the standardized residuals against the fitted values plot and the

normal qq plot of the residuals indicate the model is appropriate for the health data.

Table 3.5 and Table 3.6 show that the percentage of people living in each IG who

are in receipt of Job Seekers Allowance (JSA) and the log median property price in

an area all are associated with the number of hospital admissions due to respiratory

disease. Both mean and maximum PM10 concentrations in each IG are associated with

respiratory disease hospital admissions, as the corresponding 95% credible intervals of

λ don’t contains 0. Note that the regression coefficient for mean PM10 in Table 3.5,

0.0281, represents the log increase of SIR for 1 µgm−3 increase of PM10, and it is the

same for Table 3.6.

I also assess the robustness of the relative risk of PM10 using 8 models, which combine the

likelihood models (3.1) and (3.2) with the prior models (2.41) to (2.44). The estimated

relative risk from these 8 models, based on a standard deviation increase of PM10, which

is 1.872µgm−3 in my study, are shown in Table 3.7 and Table 3.8. According to Table 3.7,
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Figure 3.5: Model residuals from fitting a Poisson model for maximum PM10 with
the Leroux CAR prior.
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Table 3.5: Posterior means and 95% credible intervals of the regression, autocorre-
lation and variance parameters from fitting a Poisson model for mean PM10 with a

Leroux random effect.

Variable Median 2.5% 97.5% n.sample % accetp

(Intercept) 1.1235 0.4903 1.7678 30000 59.5
PM10 0.0281 0.0158 0.0391 30000 59.5
Logprice -0.1852 -0.2357 -0.1358 30000 59.5
JSA 0.0715 0.0641 0.0790 30000 59.5
τ2 0.1013 0.0886 0.1156 30000 100.0
ρ 0.7800 0.6500 0.8800 30000 57.5

Table 3.6: Posterior means and 95% credible intervals of the regression, autocorrela-
tion and variance parameters from fitting a Poisson model for max PM10 with a Leroux

random effect.

Variable Median 2.5% 97.5% n.sample % accetp

(Intercept) 1.4140 0.7338 2.0356 30000 59.2
PM10 0.0209 0.0111 0.0311 30000 59.2
Logprice -0.2041 -0.2533 -0.1476 30000 59.2
JSA 0.0720 0.0642 0.0803 30000 59.2
τ2 0.1031 0.0904 0.1171 30000 100.0
ρ 0.8000 0.6800 0.9000 30000 54.1
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Table 3.7: Relative risk for a 1.872µgm−3 increase of PM10 from the eight models
based on mean PM10 data in each IG.

Models Relative risk 95%credible interval DIC

G.bymCAR 1.055 (1.028, 1.082) -734.132
G.iarCAR 1.055 (1.027, 1.082) -232.047
G.lerouxCAR 1.055 (1.029, 1.082) -259.467
G.cressieCAR 1.056 (1.030, 1.081) -254.396
P.bymCAR 1.053 (1.032, 1.081) 9224.436
P.iarCAR 1.051 (1.026, 1.080) 9263.939
P.lerouxCAR 1.054 (1.030, 1.076) 9251.504
P.cressieCAR 1.053 (1.029, 1.077) 9257.276

Table 3.8: Relative risk for a 1.872µgm−3 increase of PM10 for eight models based
on maximum PM10 data in each IG.

Models Relative risk 95%credible interval DIC

G.bymCAR 1.037 (1.016, 1.058) -920.583
G.iarCAR 1.037 (1.015, 1.058) -232.890
G.lerouxCAR 1.038 (1.018, 1.059) -260.187
G.cressieCAR 1.038 (1.017, 1.059) -254.859
P.bymCAR 1.035 (1.013, 1.055) 9226.393
P.iarCAR 1.035 (1.015, 1.058) 9259.560
P.lerouxCAR 1.040 (1.021, 1.060) 9250.586
P.cressieCAR 1.038 (1.019, 1.056) 9257.458

the relative risk of mean PM10 estimates from all models are very similar, and none of

their 95% credible intervals contains the neutral value 1. This indicates that mean

PM10 has a significant influence on respiratory disease, and the relative risk is robust.

The relative risks of mean PM10 in Table 3.7 indicate that with a 1.872µgm−3 increase

of mean PM10 concentrations, respiratory hospital admissions are likely to increase by

about 5.4% (ranging from 5.1% to 5.6%). On the other hand, Table 3.8 shows that with

a 1.872µgm−3 increase of peak PM10 concentration, the hospital admissions related to

respiratory disease in each IG will increase about 3.7% (ranging from 3.5% to 4.0%).

Therefore, both the mean and maximum spatial metrics of PM10 in each IG are strongly

associated with the hospital admissions related to respiratory diseases.

3.6 Discussion

The effects of long-term air pollution exposure on public health in Scotland have been

investigated. It was found that significant excess relative risks of respiratory hospital
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admissions were associated with long-term exposures to NO2 or PM10 across IGs in

mainland Scotland.

For NO2, when the spatial mean NO2 concentration over the grid squares lying within

each IG was used to represent pollution concentration, the relative risk of NO2 is not

significant. In contrast, the peak NO2 concentrations are associated with respiratory

diseases such that with a 6.84µgm−3 increase of peak NO2 concentration, the hospital

admissions related to respiratory disease in each IG will increase about 2.6% (ranging

from 2.1% to 3.4%).

Both the spatial mean and maximum spatial metrics of PM10 in each IG are associated

with respiratory diseases. With a 1.872µgm−3 increase of mean PM10 concentration,

hospital admissions related to respiratory disease in each IG will increase about 5.4%

(ranging from 5.1% to 5.6%). This value is higher than the 3.7% (ranging from 3.5% to

4.0%) obtained by using the spatial maximum PM10 metric.

My findings about the adverse effects of NO2 and PM10 are broadly consistent with

those from other recent studies. For example, Lee et al. [76] reported a relative risk of

1.04 - 1.12 for a 8µgm−3 increase in NO2 concentrations and a relative risk of 1.06 - 1.10

for a 1.7µgm−3 increase in PM10 concentrations when they investigated the relation-

ship between long-term exposures to NO2, PM10 and respiratory hospital admissions in

Lothian and Greater Glasgow. Belanger et al. [8] reported that exposure to indoor NO2

at levels well below the Environmental Protection Agency outdoor standard (53 ppb)

is associated with respiratory symptoms among children with asthma in multifamily

housing. Kattan et al. [66] also found that higher levels of indoor NO2 are associated

with increased asthma symptoms in nonatopic children and decreased peak flows. Of-

tedal et al. [95] shown statistically significant respiratory health effects of exposure to

NO2. The adverse effects of PM10 on respiratory diseases were also reported in other

researches (e.g. Lee [74], Thishan Dharshana and Coowanitwong [126] and Wiwanitkit

[140]).



Chapter 4

Estimating the long-term health

effects of air pollution by fusing

modelled and measured pollution

data

4.1 Introduction

In the study of air pollution health effects, one key problem is estimating spatially repre-

sentative pollution concentrations using two main sources of data: measured data from

a sparse network of monitors and modelled concentrations on a regular grid from an

atmospheric dispersion model, such as those produced by AEA [1]. The latter provide

complete spatial coverage of the study region but are known to contain biases (Berro-

cal et al. [11]). Geostatistical Kriging has been used to spatially align the monitored

pollution data to the disease counts (Elliott et al. [41] and Janes et al. [62]), while sim-

ple averaging is used to correct the spatial misalignment of the modelled concentrations

(Maheswaran et al. [84]; Lee et al. [76] and Warren et al. [136]). Recently, Vinikoor-Imler

et al. [134], Vinikoor-Imler et al. [135], Sacks et al. [111] and Warren et al. [137] have

estimated pollution using both monitored and modelled pollution data, by utilizing the

fusion approaches proposed by Fuentes and Raftery [42], Berrocal et al. [11] or McMillan

et al. [87].

54
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There are two main streams of literature on fusing these two sources of data. The first

one is to treat the monitoring data as the true data and use model output data as a

covariate to predict point measurements. For example, Berrocal et al. [11] modelled the

relationship between observations and numerical model output by taking the numerical

output as data via a linear regression with spatially varying coefficients assumed to

arise from correlated spatial Gaussian processes. Bruno et al. [21] calibrated radar

measurements via rain gauge data, by treating rain gauges as the reference measures.

Pannullo et al. [97] proposed a geostatistical fusion model that regressed combined NO2

concentrations from both automatic monitors and diffusion tubes against modelled NO2

concentrations from an atmospheric dispersion model to improve the prediction of NO2

across West Central Scotland.

An alternative fusion approach is to assume an underlying unknown ground truth process

which is linked separately to monitoring data and model output. For example, both

Fuentes and Raftery [42] and Wikle and Berliner [138] assumed that there exists an

underlying unobserved spatial process driving observational data and the numerical

model output, while the former specified the true process at the point level and the

latter modeled the true process at areal unit scale. The observations are related to the

unobserved process via a measurement error model, while the numerical model data are

via a linear model that accounts for potential bias in the model output. McMillan et al.

[87] also assumed a true spatial process related to both observational data and numerical

model output, however, they specified the underlying process at the block level rather

than the point level. Sahu et al. [113] investigated space-time wet deposition patterns

over eastern USA by developing a data fusion approach using a measurement error

specification to combine gridded CMAQ output (Community Multi-scale Air Quality)

and point level monitoring data. The model components have been linked using latent

processes in a Bayesian hierarchical framework.

These fusion models can be classified into spatial modelling and spatio-temporal mod-

elling according to their ability to handle spatial only data or spatio-temporal data.

The former addresses data without a time dimension, with examples being Fuentes and

Raftery [42], Berrocal et al. [11] and Pannullo et al. [97]. In contrast, a spatio-temporal

model is used to accommodate data collected over time, with examples being Shaddick

and Wakefield [117], Berrocal et al. [11], McMillan et al. [87] and Lawson et al. [72].

These fusion models usually assume spatial autocorrelation in the data.
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In the previous chapter, evidence of the effects of air pollution on health has been found.

The relationship between air pollution and health effect was investigated by using a

benchmark method of converting modelled pollution data (DEFRA) into the small-area

scale on which the disease data were collected. However, the results are only based on

DEFRA data without using the measured observations, and the latter are known to be

more reliable. The fusion of the measured data and DEFRA data is expected to provide

improved predictions of areal level pollution concentrations.

This chapter proposes a two-stage approach to investigate the health effects of air pol-

lution, with inference in a Bayesian setting based on McMC simulation. The first stage

is a novel statistical fusion model that regresses the monitored and modelled pollution

concentrations at the point-level, then makes point-level predictions of pollution across

my study region, and finally aggregates these point-level predictions to the areal level

required to align with the disease counts. The second stage regresses these areal level

pollution summaries to the disease counts, allowing for the spatio-temporal autocorre-

lation in the data.

I develop my methodology for a new study investigating the long-term effects of NO2

concentrations on respiratory disease in Scotland, UK. There have been few previous

epidemiological studies of this type in Scotland, for example, only Prescott et al. [104],

Carder et al. [22] and Willocks et al. [139] have investigated the association between

short-term exposure to air pollution and ill health, while only Lee et al. [76] and Lee [74]

have attempted to quantify the long-term effects using an ecological spatio-temporal de-

sign. The study presented in this chapter is one of the most comprehensive investigations

into the effects of NO2 concentrations on health in Scotland, as my study region is all of

mainland Scotland for the five year period spanning from 2007 to 2011. In conducting

this study I compare my proposed modelling approach with the simpler approach of us-

ing only the DEFRA concentrations, which allows us to assess the validity of using the

latter in such ecological studies. I also consider whether the average (spatial mean) or

the peak (spatial maximum) NO2 concentration across each areal unit is an appropriate

measure of exposure. The remainder of this chapter is organised as follows. In Section

4.2 I describe the study background and present some exploratory analysis, while Section

4.3 proposes my new integrated pollution and health model. The results of my study

are presented in Section 4.4, while Section 4.5 provides a concluding discussion.
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4.2 Background

4.2.1 Data description

As described in the previous chapter, my focus remains on mainland Scotland and the

disease data are still the hospital admissions related to respiratory diseases. However,

I considered 5 year disease data from 2007-2011 rather than just a single year. The

disease count for area k in year t is denoted by Ykt, so the set of values for all n IGs in

year t is denoted by Yt = (Y1t, . . . , Ynt). As was mentioned in chapter 3, the number

of admissions in an IG depends on its population size and demographic structure, so I

adjust for this by computing the expected numbers of admissions for each area in each

year. These expected disease counts are denoted by Ekt, and the standardized incidence

ratio (SIR) is given by SIRkt = Ykt/Ekt. Recall a spatial map of SIR for 2011 which

is also shown in the top left panel of Figure 4.1. The figure shows that the majority of

the high risk IGs are in the major cities of Glasgow and Edinburgh, which are the set

of small densely populated IGs in the lower middle part of the country. This pattern

in risk is largely driven by the geographical patterning in socio-economic deprivation,

which needs to be controlled for in the model. The summary of SIR from 2007-2010 can

be seen in Figure 4.2. In this chapter I still use the same proxy measures of deprivation

as in chapter 3, namely the percentage of people living in each IG who are in receipt of

Job Seekers Allowance (JSA), and the median property price in an area. The percentage

of people in receipt of JSA in an IG ranges between 0.05% and 15.3% with a median

value of 2.7%, while the median property price in an IG ranges between £22, 800 and

£500, 000, with a median value of £125, 000.

The pollutant considered in this chapter is NO2, whose health effects have been demon-

strated in the previous chapter and the existing literature, such as Ehrlich et al. [40],

Tunnicliffe et al. [132], Lee et al. [76]. I use data on annual mean concentrations be-

tween 2006 to 2010 in this study rather than 2007 to 2011, to ensure that the NO2

exposure occurred before the hospital admissions. I obtained two types of NO2 data for

my study, measured concentrations at a small number of locations and DEFRA data.

The measured data are collected from two different devices, automatic monitors and

diffusion tubes, and both data sets can be freely obtained from Air Quality in Scotland

(http://www.scottishairquality.co.uk/ ). The data locations have been classified as either
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Figure 4.1: Summary of the data. Top left is the SIR for respiratory disease in
Scotland in 2011, top right is the modelled annual average NO2 concentrations in 2010
(µgm−3), bottom left is the locations of the measured NO2 data (N for monitoring
sites, + for tube sites), and bottom right shows Scotland partitioned into urban (black)

and rural areas (grey).
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Figure 4.2: Summary of SIR. Top left and right are the SIR for respiratory disease
in Scotland in 2007 and 2008, respectively, while the bottom left and right are for 2009

and 2010, respectively.
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urban background, kerbside, roadside or rural, and a summary of the observed data is

shown in Table 4.1. As might be expected, the pollution levels recorded at urban loca-

tions are higher than those at rural locations, and the closer the monitoring stations are

to a main road, the higher the NO2 concentrations are. The locations of the measured

data are presented in Figure 4.1, which shows that they provide poor spatial coverage

of Scotland as the major cities are well represented but the rest of the study region con-

tains hardly any monitors. Therefore standard geostatistical prediction methods may

not be appropriate here, due to the large distances between data locations and potential

prediction locations.

Therefore, the DEFRA data are also used in this chapter as they have complete spatial

coverage of Scotland. The fusion of both measured concentrations and DEFRA data is

expected to improve the prediction of exposure. The DEFRA data for 2010 is shown

in the top right panel of Figure 4.1, which exhibits a similar pattern with the spatial

map of SIR for 2011, with high values in the lower middle part of the country. The

summary of modelled NO2 from 2006-2009 can be seen in Figure 4.3 As temperature

can affect air circulation and thus the spatial distribution of air pollution, I consider

it as a covariate in my proposed pollution model outlined in Section 4.3. Temperature

data are available as annual averages across Scotland at the 5km resolution from the

Met Office (http://www.metoffice.gov.uk/ ), and exhibit a general north-south trend as

expected.

Table 4.1: Summary of the measured NO2 data by site type and year: the numbers
within the round brackets represent the number of sites in the form (automatic monitors,
diffusion tubes), while those within square brackets indicate their corresponding mean

concentrations (µgm−3).

Site type \ Year 2006 2007 2008 2009 2010

Urban Background (3, 29) (3, 29) (6, 29) (6, 29) (6, 29)
[27.3, 18.8] [26.3, 18.4] [27.0, 18.8] [26.3, 20.1] [26.0, 21.1]

Kerbside (1, 54) (4, 54) (4, 54) (3, 55) (5, 55)
[68.0, 31.5] [64.0, 33.5] [65.5, 31.2] [67.3, 30.7] [59.0, 32.4]

Roadside (11, 94) (15, 94) (25, 95) (30, 99) (34, 99)
[43.8, 33.4] [42.4, 34.4] [36.9, 34.4] [36.2, 33.2] [38.2, 34.8]

Rural (3, 0) (3, 0) (3, 0) (3, 0) (3, 0)
[8.0, NA] [8.00, NA] [8.33, NA] [7.33, NA] [9.33, NA]

As previously discussed the measured pollution data are classified according to their

local environment, such as roadside, urban background or rural. This is likely to be

an important covariate in the model, and thus I have to choose the local environment
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Figure 4.3: Summary of modelled NO2. Top left and right are the modelled NO2 for
respiratory disease in Scotland in 2006 and 2007, respectively, while the bottom left

and right are for 2008 and 2009, respectively.
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for each of my prediction locations. The set of prediction locations will be the 68,448

1km grid squares on which the modelled concentrations are computed, and hence they

represent the average pollution concentrations in each 1km region. Therefore I do not

specify any of the locations as roadside, as the majority of each grid square will not

comprise roads (there will of course be roads in a large number of grid squares). I have to

make a choice between each prediction location being urban background or rural, and for

this I use the Scottish Government 8 fold Urban Rural Classification (Government [51]).

The Scottish Government Urban Rural Classification provides a standard definition of

rural areas in Scotland. This classification is updated every two years to incorporate the

most recent Small Area Population Estimates (SAPE) produced by National Records

of Scotland (NRS) and Royal Mail Postcode Address File (PAF). NRS Small Area

Population Estimates (SAPE) together with information from the Royal Mail Postcode

Address File ( PAF) were used to classify 2010 postcode units as high or low density.

This information was then used to identify areas of contiguous high density postcodes

with a population of 500 or more that make up a Settlement. Details of the methodology

used for the Mid-2010 Population Estimates for Settlements can be found at Mid 2010

population estimates for settlements (http://tinyurl.com/pqvy9mw). In my study, the

2009-2010 Urban Rural Classification is adopted, in which the data zone classification

identifying urban and rural areas is based on settlement size and drive times.

The classification is available in a number of forms, including Scottish Government 2

fold Urban Rural Classification, Scottish Government 3 fold Urban Rural Classification,

Scottish Government 6 fold Urban Rural Classification and Scottish Government 8 fold

Urban Rural Classification. My study is based on the Scottish Government 8 fold Urban

Rural Classification because its shapefile can be freely downloaded from Scottish Gov-

ernment (http://tinyurl.com/oqyl36y). The definition about this classification is shown

in Table 4.2. Note that the site types of the monitoring stations include urban back-

ground, kerbside, roadside and rural. These site types in pollution model are different

from the classifications in Table 4.2. Therefore, I classify any areas with settlements of

over 10,000 people as urban (class 1 and 2), while the rest (class 3-8) are assumed to be

rural, and this gives the map shown in the bottom right panel of Figure 4.1.
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Table 4.2: Scottish Government 8 fold Urban Rural Classification

Classes Definition

1 Large Urban Areas Settlements of over 125,000 people.

2 Other Urban Areas Settlements of 10,000 to 125,000 people.

3 Accessible small Towns Settlements of between 3,000 and 10,000 people
and within 30 minutes drive of a settlement of
10,000 or more.

4 Remote Small Towns Settlements of between 3,000 and 10,000 people
and with a drive time of over 30 minutes to a
settlement of 10,000 or more.

5 Very Remote Small Towns settlements of between 3,000 and 10,000 people
and with a drive time of over 60 minutes to a
settlement of 10,000 or more.

6 Accessible Rural Areas with a population of less than 3,000 peo-
ple, and within a 30 minute drive time of a set-
tlement of 10,000 or more.

7 Remote Rural Areas with a population of less than 3,000 peo-
ple, and with a drive time of over 30 minutes to
a settlement of 10,000 or more.

8 Very Remote Rural areas with a population of less than 3,000 peo-
ple, and with a drive time of over 60 minutes to
a settlement of 10,000 or more.

4.2.2 Exploratory analysis

I now present an exploratory analysis of the measured pollution data to inform my

modelling approach proposed in Section 4.3, which aims to quantify the level of residual

spatial autocorrelation remaining in these data after accounting for the known covariates.

I model the measured NO2 concentrations on the natural logarithm scale, as they are

non-negative and skewed to the right and apply a simple geostatistical model to these

transformed data for each year separately, where the covariates include the DEFRA

concentrations (each monitoring site or diffusion tube is assigned the closest gridded

DEFRA concentration) on the natural logarithm scale, the site type (e.g. roadside,

rural, etc) and temperature. The geostatistical model I fit has the form

X ∼ N(Zβ,Σ = σ2 exp(−D/λ) + τ2I), (4.1)

where X is the vector of measured NO2 concentrations (from the automatic monitors

and diffusion tubes) for a single year. The covariates are contained in the matrix Z,

while β are the associated regression parameters. The covariance matrix is given by an

exponential correlation function of distance, where D is the Euclidean distance matrix
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Figure 4.4: The empirical semi-variogram of the residuals from the geostatistical
model for 2010 (circles), with 95% Monte Carlo simulation envelopes (dashed lines).
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between the data locations, σ2 represents the partial sill, τ2 is the nugget effect and λ

is the spatial range parameter.

The model is fitted in the geoR (http://www.r-project.org) software in R, with inference

based on maximum likelihood. The results show that the presence of residual spatial

autocorrelation after accounting for the covariates is uncertain, as both the partial sill

parameters (ranging between 0.059 and 0.083 for the five years of data) and the range

parameters (ranging between 0.078 km and 0.924 km for the five years of data) are

very small, and the empirical semi-variogram analysis suggests there is no or very weak

residual spatial autocorrelation remaining, as the empirical semi-variogram are inside or

right on the border of the Monte Carlo envelopes at all distances (see e.g. Figure 4.4

for 2010, and the semi-variogram plots for the other years are similar and are not shown

here). This suggests that the available covariates, including the DEFRA concentrations

(which themselves are spatially autocorrelated as shown in Figure 4.1) have captured

the majority of the spatial structure in these data, and that including an additional set

of spatially autocorrelated random effects is likely unnecessary.
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4.2.3 Spatio-temporal pollution modelling

As described in Section 4.2.2 the pollution data contain very weak spatial autocorrelation

after accounting for the covariates, and thus the spatio-temporal model proposed for

the pollution data in Section 4.3 does not account for residual spatial autocorrelation.

However, to assess the validity of this modelling approach I compare my proposed model

against the spatio-temporal pollution model proposed by Sahu et al. [112], hereafter

referred to as SGH which does allow for residual spatial autocorrelation. The model

can be implemented using the R package spTimer and has the general form:

Xt = Ot + εt t = 1, ..., T, (4.2)

Ot = ρOt−1 +Ztβ + ηt t = 2, ..., T,

where Xt denotes the vector of measured pollution data in year t. These noisy data are

modelled as a linear combination of the true values Ot and independent (white noise)

errors εt. The true values are modelled with a first order autoregressive component

(ρOt−1), a regression component (Ztβ, where Zt is the tth row of Z in Model (4.1))

and a spatial autocorrelation component ηt. The latter is modelled independently for

each time period, and is given a multivariate Gaussian prior with mean zero and an

exponential correlation matrix, identical to Model (4.1).

4.3 Methodology

There are two main types of statistical fusion models developed in the literature, with the

first being a regression calibration approach which regresses the measured data against

the modelled concentrations via a spatially varying linear regression (see e.g. Berrocal

et al. [11]; Berrocal et al. [13] and Berrocal et al. [14]). The second approach is to

assume an underlying unknown ground truth process, which is informed separately by

the monitoring data and model output (see e.g. Fuentes and Raftery [42]; Wikle and

Berliner [138] and McMillan et al. [87]).
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In this section, I propose an integrated model for estimating the long-term health ef-

fects of air pollution, that fuses DEFRA concentrations and measured pollution data

to provide improved predictions of areal level pollution concentrations. As has been

mentioned in Section 4.1, most of the existing epidemiological studies have used each of

these data sources in isolation to estimate air pollution concentrations at the areal unit

level, while only a few papers published recently attempted to examine the effects of air

pollution on health by using fused estimates of monitored and modelled pollution data.

Therefore, the present study will contribute to the extension of this literature which uses

either only the measured pollution data (e.g. Janes et al. [62] and Young et al. [143]) or

the modelled pollution data (e.g. Maheswaran et al. [84] and Lee et al. [76]) to estimate

areal level pollution summaries. I propose a two-stage modelling approach to achieve

this goal, the first stage of which is a spatio-temporal model that produces posterior

predictive distributions for pollution concentrations at the 1 km resolution in Scotland,

then an aggregation step to address the different spatial supports of the pollution and

disease data. The second stage estimates the health impact of air pollution using the

spatially aggregated pollution summaries.

4.3.1 Stage 1 - air pollution model

I propose a Bayesian space-time linear regression model for relating the measured con-

centrations to the modelled concentrations, whilst allowing for additional covariate infor-

mation such as site type (e.g. roadside, rural, etc) and temperature. My model allows for

temporal autocorrelation in the model parameters in adjacent years, because annual av-

erage concentrations are unlikely to change greatly from one year to the next. Conversely,

I do not assume the measured concentrations are spatially autocorrelated after account-

ing for the covariate effects, because the exploratory analysis in Section 4.2.2 provides

little evidence for the presence of such autocorrelation. Let Xt = (Xt(s1), ..., Xt(snt))

denote the vector of nt measured NO2 concentrations (on the natural log scale) at sites

(s1, . . . , snt) in year t, where t = 1, 2, ..., T . These measured concentrations are related

to an nt × p design matrix of covariates Zt (including the modelled concentrations on

the natural log scale), and the full model I propose is given by:
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Xt ∼ N(Ztββt, σ
2
t It) t = 1, ..., T, (4.3)

ββt ∼ N
(
ββ + κ(ββt−1 − ββ), τ2V

)
t = 2, ..., T,

ββ1 ∼ N(ββ, τ2V ),

ββ ∼ N(0, 1000V ),

V ∼ Inverse-Wishart(ν = p,Ψ = 100Ip×p),

ln (σ2
t ) ∼ N(ln (σ2

t−1), σ2) t = 2, ..., T,

f(ln (σ2
1)) ∝ 1,

κ ∼ Uniform[0, 1],

τ2, σ2 ∼ Inverse-Gamma(a = 0.001, b = 0.001).

The measured pollution data in year t are modelled by a linear regression model with

mean Ztββt and variance σ2
t It, where It is an nt×nt identity matrix. The p×1 vector of

regression parameters in the mean model ββt is assumed to be temporally autocorrelated,

following a centred multivariate first order autoregressive process. The extent of this

temporal dependence is captured by a commonly used global autoregressive parameter

κ, which is assigned a uniform prior on the unit interval [0, 1]. If κ = 0, ββt is estimated

independently for each year and is smoothed towards an overall mean value for all years

ββ, while if κ = 1, ββt is temporally autocorrelated with ββt−1. The covariance matrix V

captures the potential correlations among the elements of each ββt, and these correlations

are assumed to be constant for all years. The observation variance σ2
t is also assumed to

be temporally autocorrelated via a first order random walk prior which is a simple and

computationally efficient approach to model temporal autocorrelation, and as it must

be non-negative, the log scale is used. Finally, I choose weakly informative conjugate

prior distributions for (V , σ2, τ2) by assuming them to be Inverse-Wishart and Inverse-

gamma distributed respectively, where for the former ν = p and Ψ = 100Ip×p as this

was used by Lawson et al. [72] as well. Inference for the collection of model parameters

Θ = (ββ1, . . . ,ββT ,ββ,V , κ, σ
2
1, . . . , σ

2
T , τ

2, σ2) is based on McMC simulation, using both

Gibbs sampling and Metropolis-Hastings steps. The posteriors of Θ are achieved as

follows.
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Firstly, the likelihood of Model (4.3) is given by,

f(X1, ...,XT ) =

T∏
t=1

f(Xt) (4.4)

=
T∏
t=1

N(Xt | Ztββt, σ2
t It).

Then the prior can be written as,

f(θ) = f(ββ1, ...,ββT ,ββ, σ
2
1, ..., σ

2
T , σ

2, τ2, κ,V ) (4.5)

= f(σ2)f(τ2)f(κ)f(V )f(ββ)f(ββ1 | ββ)f(ββ2, ...,ββT )f(σ2
1)f(σ2

2, ..., σ
2
T )

= f(σ2)f(τ2)f(κ)f(V )f(ββ)f(ββ1 | ββ)
T∏
t=2

f(ββt | ββt−1)f(σ2
1)

T∏
t=2

f(σ2
t | σ2

t−1, σ
2)

= IG(σ2 | a, b)IG(τ2 | a, b)U(κ | 0, 1)IW(V | ν,Ψ)N(ββ | 0, 1000V )

∗N(ββ1 | ββ, τ2V )
T∏
t=2

N
(
ββt | ββ + κ(ββt−1 − ββ), τ2V

) T∏
t=2

N
(
ln (σ2

t ) | ln (σ2
t−1), σ2

)
.
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Basing on the likelihood and prior, I get the conditional posterior distributions for all the parameters,

f(σ2 | −) ∝ IG

(
a+

1

2
(T − 1), b+

1

2
ΣT
t=2(ln (σ2

t )− ln (σ2
t−1))2

)
(4.6)

f(τ2 | −) ∝ IG(a+
T ∗ p

2
, b+

1

2
(ββ1 − ββ)>V −1(ββ1 − ββ) +

1

2
ΣT
t=2(ββt − ββ − κ(ββt−1 − ββ))>V −1(ββt − ββ − κ(ββt−1 − ββ)))

f(V | −) ∝ Inverse-Wishart(ν + T + 1,Ψ +
ββββ>

1000
+

(ββ1 − ββ)(ββ1 − ββ)>

τ2
+

ΣT
t=2(ββt − ββ − κ(ββt−1 − ββ))(ββt − ββ − κ(ββt−1 − ββ))>

τ2
)

ln f(σ2
1) | − ∝ −n1

2
ln (σ2

1)− 1

2σ2
[ln (σ2

2)− ln (σ2
1)]2 − 1

2σ2
1

(X1 −Z1ββ1)>(X1 −Z1ββ1)

ln f(σ2
t ) | − ∝ −nt

2
ln (σ2

t )−
1

2σ2
[ln (σ2

t )− ln (σ2
t−1)]2 − 1

2σ2
[ln (σ2

t+1)− ln (σ2
t )]

2

− 1

2σ2
t

(Xt −Ztββt)>(Xt −Ztββt), t = 2, ..., T − 1

ln f(σ2
T ) | − ∝ −nT

2
ln (σ2

T )− 1

2σ2
[ln (σ2

T )− ln (σ2
T−1)]2 − 1

2σ2
T

(XT −ZTββT )>(XT −ZTββT )

f(κ | −) ∝ N(µκ, σκ)

f(ββ1 | −) ∝ N(µ1,Σ1)

f(ββt | −) ∝ N(µt,Σt), t = 2, ..., T − 1

f(ββT | −) ∝ N(µT ,ΣT )

f(ββ | −) ∝ N(µ,Σ)
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where,

µκ =

[
ΣT
t=2(ββt−1 − ββ)>V −1(ββt−1 − ββ)

τ2

]−1 [
ΣT
t=2(ββt − ββ)>V −1(ββt−1 − ββ)

τ2

]
(4.7)

σ2
κ =

[
ΣT
t=2(ββt−1 − ββ)>V −1(ββt−1 − ββ)

τ2

]−1

µ1 =

[
(1 + κ2)V −1

τ2
+
Z>1 Z1

σ2
1

]−1 [
V −1ββ + κV −1(ββ2 − ββ + κββ)

τ2
+
Z>1 X1

σ2
1

]
Σ1 =

[
(1 + κ2)V −1

τ2
+
Z>1 Z1

σ2
1

]−1

µt =

[
(1 + κ2)V −1

τ2
+
Z>t Zt
σ2
t

]−1 [
V −1(ββ + κ(ββt+1 − ββ + κββ) + κ(ββt−1 − ββ))

τ2
+
Z>t Xt

σ2
t

]
t = 2, ..., T − 1

Σt =

[
(1 + κ2)V −1

τ2
+
Z>t Zt
σ2
t

]−1

t = 2, ..., T − 1

µT =

[
V −1

τ2
+
Z>T ZT
σ2
T

]−1 [
V −1(ββ + κ(ββT−1 − ββ))

τ2
+
Z>TXT

σ2
T

]
ΣT =

[
V −1

τ2
+
Z>T ZT
σ2
T

]−1

µ =

[
V −1

1000
+
V −1(1 + (1− κ)2(T − 1))

τ2

]−1 [
V −1ββ1 + ΣT

t=2(1− κ)V −1(ββt − κββt−1)

τ2

]
Σ =

[
V −1

1000
+
V −1(1 + (1− κ)2(T − 1))

τ2

]−1
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Table 4.3: Simplifications of the general model (4.3).

Model Simplification

1A κ = 0,V = I, σ2
t = σ2

1B κ = 1,V = I, σ2
t = σ2

1C V = I, σ2
t = σ2

1D σ2
t = σ2

1E The full model

Model (4.3) is very general, and I compare its performance to a number of simplifications

when modelling the NO2 data in this chapter to see if the full model complexity is

necessary for my data. The simplifications I consider are outlined in Table 4.3. Model

1A is the simplest special case and assumes the elements of ββt are independent of each

other and over time, and additionally the observation variance σ2
t is assumed to be

constant in time. Models 1B and 1C are similar, and respectively assume ββt follow first

order random walk and first order autoregressive processes. Model 1D allows the full

generality of the mean model for ββt, but assumes the observation variance is constant,

while Model 1E is the full model given by (4.3).

The posteriors of model parameters for Model 1A to 1D are also provided as follows.

(Model 1A)

The model is given by:

Xt ∼ N(Ztββt, σ
2I) t = 1, ..., T, (4.8)

ββt ∼ N
(
ββ, τ2I

)
t = 1, ..., T,

ββ ∼ N(0, 1000I),

τ2, σ2 ∼ Inverse-Gamma(a = 0.001, b = 0.001).

The posterior distributions for all the parameters are given by:
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f(σ2 | −) ∝ IG

(
a+

1

2
ΣT
t=1nt, b+

1

2
ΣT
t=1(Xt −Ztββt)>(Xt −Ztββt)

)
(4.9)

f(τ2 | −) ∝ IG

(
a+

T ∗ p
2

, b+
1

2
ΣT
t=1(ββt − ββ)>(ββt − ββ)

)
f(ββt | −) ∝ N(µt,Σt), t = 1, ..., T,

f(ββ | −) ∝ N(µ,Σ)

where,

µt =

[
I

τ2
+
Z>t Zt
σ2

]−1 [
ββ

τ2
+
Z>t Xt

σ2

]
, t = 1, ..., T, (4.10)

Σt =

[
I

τ2
+
Z>t Zt
σ2

]−1

, t = 1, ..., T,

µ =

[
I

1000
+
T

τ2
I

]−1 [ΣT
t=1ββt
τ2

]
Σ =

[
I

1000
+
T

τ2
I

]−1

(Model 1B)

The model is given by:

Xt ∼ N(Ztββt, σ
2I) t = 1, ..., T, (4.11)

ββt ∼ N
(
ββt−1, τ

2I
)

t = 2, ..., T,

ββ1 ∼ N(0, 1000I),

τ2, σ2 ∼ Inverse-Gamma(a = 0.001, b = 0.001).

The posterior distributions for all the parameters are given by:
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f(σ2 | −) ∝ IG

(
a+

1

2
ΣT
t=1nt, b+

1

2
ΣT
t=1(Xt −Ztββt)>(Xt −Ztββt)

)
(4.12)

f(τ2 | −) ∝ IG

(
a+

(T − 1) ∗ p
2

, b+
1

2
ΣT
t=2(ββt − ββt−1)>(ββt − ββt−1)

)
f(ββ1 | −) ∝ N(µ1,Σ1),

f(ββt | −) ∝ N(µt,Σt), t = 2, ..., T − 1,

f(ββT | −) ∝ N(µT ,ΣT )

where,

µ1 =

[
(

1

τ2
+

1

1000
)I +

Z>1 Z1

σ2

]−1 [
ββ2

τ2
+
Z>1 X1

σ2

]
(4.13)

Σ1 =

[
(

1

τ2
+

1

1000
)I +

Z>1 Z1

σ2

]−1

µt =

[
2

τ2
I +

Z>t Zt
σ2

]−1 [
ββt−1 + ββt+1

τ2
+
Z>t Xt

σ2

]
, t = 2, ..., T − 1

Σt =

[
2

τ2
I +

Z>t Zt
σ2

]−1

, t = 2, ..., T − 1

µT =

[
I

τ2
+
Z>T ZT
σ2

]−1 [
ββT−1

τ2
+
Z>TXT

σ2

]
ΣT =

[
I

τ2
+
Z>T ZT
σ2

]−1

(Model 1C )

The model is given by:

Xt ∼ N(Ztββt, σ
2I) t = 1, ..., T, (4.14)

ββt ∼ N
(
ββ + κ(ββt−1 − ββ), τ2I

)
t = 2, ..., T,

ββ1 ∼ N(ββ, τ2I),

ββ ∼ N(0, 1000I),

κ ∼ Uniform[0, 1],

τ2, σ2 ∼ Inverse-Gamma(a = 0.001, b = 0.001).
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The posterior distributions for all the parameters are given by:

f(σ2 | −) ∝ IG

(
a+

1

2
ΣT
t=1nt, b+

1

2
ΣT
t=1(Xt −Ztββt)>(Xt −Ztββt)

)
(4.15)

f(τ2 | −) ∝ IG

(
a+

T ∗ p
2

, b+
1

2
(ββ1 − ββ)>(ββ1 − ββ) +

1

2
ΣT
t=2(ββt − ββ − κ(ββt−1 − ββ))>(ββt − ββ − κ(ββt−1 − ββ))

)
f(κ | −) ∝ N(µκ, σκ)

f(ββ1 | −) ∝ N(µ1,Σ1)

f(ββt | −) ∝ N(µt,Σt), t = 2, ..., T − 1

f(ββT | −) ∝ N(µT ,ΣT )

f(ββ | −) ∝ N(µ,Σ)
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where,

µκ =

[
ΣT
t=2(ββt−1 − ββ)>(ββt−1 − ββ)

τ2

]−1 [
ΣT
t=2(ββt − ββ)>(ββt−1 − ββ)

τ2

]
(4.16)

σ2
κ =

[
ΣT
t=2(ββt−1 − ββ)>(ββt−1 − ββ)

τ2

]−1

µ1 =

[
(1 + κ2)I

τ2
+
Z>1 Z1

σ2

]−1 [
ββ + κ(ββ2 − ββ + κββ)

τ2
+
Z>1 X1

σ2

]
Σ1 =

[
(1 + κ2)I

τ2
+
Z>1 Z1

σ2

]−1

µt =

[
(1 + κ2)I

τ2
+
Z>t Zt
σ2

]−1 [
ββ + κ(ββt+1 − ββ + κββ) + κ(ββt−1 − ββ)

τ2
+
Z>t Xt

σ2

]
t = 2, ..., T − 1

Σt =

[
(1 + κ2)I

τ2
+
Z>t Zt
σ2

]−1

t = 2, ..., T − 1

µT =

[
I

τ2
+
Z>T ZT
σ2

]−1 [
ββ + κ(ββT−1 − ββ)

τ2
+
Z>TXT

σ2

]
ΣT =

[
I

τ2
+
Z>T ZT
σ2

]−1

µ =

[
I

1000
+

1 + (1− κ)2(T − 1)

τ2
I

]−1 [
ββ1 + ΣT

t=2(1− κ)(ββt − κββt−1)

τ2

]
Σ =

[
I

1000
+

1 + (1− κ)2(T − 1)

τ2
I

]−1
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(Model 1D)

The model is given by:

Xt ∼ N(Ztββt, σ
2I) t = 1, ..., T, (4.17)

ββt ∼ N
(
ββ + κ(ββt−1 − ββ), τ2V

)
t = 2, ..., T,

ββ1 ∼ N(ββ, τ2V ),

ββ ∼ N(0, 1000V ),

V ∼ Inverse-Wishart(ν = p,Ψ = 100Ip×p),

κ ∼ Uniform[0, 1],

τ2, σ2 ∼ Inverse-Gamma(a = 0.001, b = 0.001).

The posterior distributions for all the parameters are given by:
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f(σ2 | −) ∝ IG

(
a+

1

2
ΣT
t=1nt, b+

1

2
ΣT
t=1(Xt −Ztββt)>(Xt −Ztββt)

)
(4.18)

f(τ2 | −) ∝ IG

(
a+

T ∗ p
2

, b+
1

2
(ββ1 − ββ)>V −1(ββ1 − ββ) +

1

2
ΣT
t=2(ββt − ββ − κ(ββt−1 − ββ))>V −1(ββt − ββ − κ(ββt−1 − ββ))

)
f(V | −) ∝ Inverse-Wishart

(
ν + T + 1,Ψ +

ββββ>

1000
+

(ββ1 − ββ)(ββ1 − ββ)>

τ2
+

ΣT
t=2(ββt − ββ − κ(ββt−1 − ββ))(ββt − ββ − κ(ββt−1 − ββ))>

τ2

)
f(κ | −) ∝ N(µκ, σκ)

f(ββ1 | −) ∝ N(µ1,Σ1)

f(ββt | −) ∝ N(µt,Σt), t = 2, ..., T − 1

f(ββT | −) ∝ N(µT ,ΣT )

f(ββ | −) ∝ N(µ,Σ)



C
h

a
p

ter
4
.

A
ir

po
llu

tio
n

h
ea

lth
eff

ects
u

sin
g

m
od

elled
a
n

d
m

ea
su

red
po

llu
tio

n
d
a
ta

78

where,

µκ =

[
ΣT
t=2(ββt−1 − ββ)>V −1(ββt−1 − ββ)

τ2

]−1 [
ΣT
t=2(ββt − ββ)>V −1(ββt−1 − ββ)

τ2

]
(4.19)

σ2
κ =

[
ΣT
t=2(ββt−1 − ββ)>V −1(ββt−1 − ββ)

τ2

]−1

µ1 =

[
(1 + κ2)V −1

τ2
+
Z>1 Z1

σ2

]−1 [
V −1ββ + κV −1(ββ2 − ββ + κββ)

τ2
+
Z>1 X1

σ2

]
Σ1 =

[
(1 + κ2)V −1

τ2
+
Z>1 Z1

σ2

]−1

µt =

[
(1 + κ2)V −1

τ2
+
Z>t Zt
σ2

]−1 [
V −1(ββ + κ(ββt+1 − ββ + κββ) + κ(ββt−1 − ββ))

τ2
+
Z>t Xt

σ2

]
t = 2, ..., T − 1

Σt =

[
(1 + κ2)V −1

τ2
+
Z>t Zt
σ2

]−1

t = 2, ..., T − 1

µT =

[
V −1

τ2
+
Z>T ZT
σ2

]−1 [
V −1(ββ + κ(ββT−1 − ββ))

τ2
+
Z>TXT

σ2

]
ΣT =

[
V −1

τ2
+
Z>T ZT
σ2

]−1

µ =

[
V −1

1000
+
V −1(1 + (1− κ)2(T − 1))

τ2

]−1 [
V −1ββ1 + ΣT

t=2(1− κ)V −1(ββt − κββt−1)

τ2

]
Σ =

[
V −1

1000
+
V −1(1 + (1− κ)2(T − 1))

τ2

]−1
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The pollution model (4.3) is used to predict the pollution concentrations at 1 km res-

olution across mainland Scotland, which results in 68,448 prediction locations for each

of T = 5 time periods (years). For a single location s∗ and time period t, predictions

are made from the posterior predictive distribution f(Xt(s∗)|X), where X denotes the

vector of measured pollution data on the natural log scale for all time periods. M pre-

dictions are made from each posterior predictive distribution via composition sampling,

sampling from the distribution N(Z>∗tβt, σ
2
t It), using the equation

X
(m)
t (s∗) | Θ(m) ∼ N(Z>∗tβ

(m)
t , σ2(m)

t It) m = 1, . . . ,M,

where (m) denotes the mth McMC sample drawn from the posterior distribution of the

model parameters and Z∗t is the corresponding vector of covariates for the prediction

location s∗ at time t. The posterior mean of the M exponentiated predictions (as the

measured data were modelled on the natural log scale) is taken at each grid point, re-

sulting in Q = 68, 448 spatial point predictions (X̃t(s1∗) . . . , X̃t(sQ∗)) for each of T = 5

time periods. The disease data relate to irregularly shaped geographical units, and are

thus spatially misaligned to the point level pollution predictions. Therefore I consider

two different spatial aggregation approaches here, the spatial mean and the spatial max-

imum value in each areal unit. Specifically, for areal unit k and time period t I consider

the following two metrics:

X̃
(1)
kt =

1

Nk

∑
r∈Ak

X̃t(sr∗) X̃
(2)
kt = max

r∈Ak

{X̃t(sr∗)}, (4.20)

where Ak is the set of prediction locations (centroid of each 1 km grid) that fall within

the kth areal unit, while Nk is the cardinality of this set. For an areal unit without

any prediction locations located, Ak represents the nearest prediction location from the

centroid of that areal unit and Nk = 1. Nk can be very different due to different area for

the IGs (see the top right in Figure 4.1). For example, there are 135 IGs without any

prediction locations located and 364 IGs with 1, while there are 129 IGs with more than

100 prediction locations. I note that various aggregation functions for transferring spatial
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data into a single metric have been discussed by researchers (see e.g. Bruno and Cocchi

[20]), however, the existing literature in the context of investigating air pollution health

effects uses the mean almost exclusively (e.g. Maheswaran et al. [84] and Lee et al.

[76]), whereas here I investigate both metrics as it may be that peak concentrations

(over space) are more correlated with disease risk than average concentrations. Note

that the population are usually not uniformly spread across an areal unit, a population

weighted average of the predictions might be more reasonable. However, the population

distribution information is usually lacking in practice, which limits its application.

4.3.2 Stage 2 - disease model

Recall from Section 4.2 that (Ykt, Ekt) are the observed and expected numbers of disease

cases in areal unit k during time period t, and the model presented here relates the

pollution metrics in equation (4.20) to these disease counts whilst accounting for other

covariate factors and spatio-temporal autocorrelation. The model I use was developed

by Rushworth et al. [109], and is given by:

Ykt | Ekt, Rkt ∼ Poisson(EktRkt), (4.21)

ln(Rkt) = bTktα+ X̃
(j)
k(t−1)λ+ φkt,

α ∼ N (0, 1000I) ,

φt | φt−1 ∼ N
(
γφt−1, ν

2Q(ρ,W )−1
)
, t ∈ 2, ..., T ,

φ1 ∼ N
(
0, ν2Q(ρ,W )−1

)
,

λ ∼ N (0, 1000) ,

ν2 ∼ Inverse-Gamma(a = 0.001, b = 0.001),

γ, ρ ∼ U[0, 1].

The risk of disease in areal unit k and time period t is denoted by Rkt, and is modelled

by three components on the log-scale. The first is a vector of covariates, bkt such as mea-

sures of poverty, and α are the corresponding regression parameters which are assigned

a zero-mean Gaussian prior with a diagonal variance matrix and a large variance. The

pollution metric used in this model is X̃
(j)
kt from equation (4.20), where j = 1, 2 denotes
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the spatial mean and spatial maximum pollution concentration respectively. The key

parameter of interest in this model is λ, the increase in the log-risk of disease for a 1 unit

increase in pollution, and this is assigned a weakly informative Gaussian prior with a

large variance. Note that the linear effect for the exposure in model 4.21 is suggested by

the scatter plots between the natural log of SIR and the exposure which are not shown

here.

The final term in the model is φkt, which is a random effect included to allow for any

spatio-temporal autocorrelation remaining in the disease counts after the covariate ef-

fects have been accounted for. Here φt = (φ1t, . . . , φnt) denotes the vector of random

effects for time period t, and is modelled by a multivariate first order autoregressive

process with temporal autocorrelation parameter γ and variance ν2. Spatial autocor-

relation is induced into the random effects by the precision matrix, which is given by

Q(ρ,W ) = ρ(diag(W1)−W )+(1−ρ)I and corresponds to the conditional autoregres-

sive (CAR) prior proposed by Leroux et al. [80]. Here spatial similarity is determined

by a binary n × n adjacency matrix W , which is based on the contiguity structure of

the n areal units. In this matrix wkk′ = 1 if areal unit k shares a border with areal unit

k′, otherwise wkk′ = 0, and also wkk = 0 for all k. The level of spatial autocorrelation

in the random effects is controlled by ρ, and this can be more clearly seen by re-writing

the prior for φ1 in its full conditional form f(φk1|φ−k1), where φ−k1 denotes the vector

of random effects for time period 1 except for φk1. This full conditional distribution is

given by

φk1|φ−k1 ∼ N

(
ρ
∑n

i=1wkiφi1
ρ
∑n

i=1wki + 1− ρ
,

ν2

ρ
∑n

i=1wki + 1− ρ

)
, (4.22)

and if ρ = 0 the random effects are a-priori independent with mean zero and a constant

variance. In contrast if ρ = 1 the random effects are spatially autocorrelated, as the

conditional expectation of φk1 is the mean of the random effects in neighbouring areal

units while the variance is inversely proportional to the number of neighbouring units.

Further details about the specification of this model is given in Rushworth et al. [109].

Finally, I choose weakly informative hyperpriors for the parameters (ν2, ρ, γ), which

allows their values to be informed by the data. Inference for the collection of model

parameters Θ = (α, λ,φ1, . . . ,φT , ν
2, γ, ρ) are based on McMC simulation, using both
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Gibbs sampling and Metropolis-Hastings steps, and was implemented using the R pack-

age CARBayesST which is freely available to download from http://cran.r-project.org.

4.4 Results

I now present the results of my study investigating the long-term effects of NO2 con-

centrations on respiratory hospitalisation risk in mainland Scotland between 2007 and

2011. Section 4.4.1 presents a validation study comparing the predictive performance

of a number of different pollution models, and section 4.4.2 summarises the predictions

from the best performing pollution model. Section 4.4.3 presents the estimated health

effects, while section 4.4.4 tests the robustness of the health associations. For all the

results presented in this section, inference is achieved using McMC simulation, where the

Markov chain was burnt in for 20,000 iterations and then the remaining 30,000 iterations

were used for the final results.

4.4.1 Pollution model validation

In this section I compare the predictive performance of the five variants of the air

pollution model (4.3) proposed here and summarised in Table 4.3 with two alternatives,

the Gaussian process model (4.2) (referred to as SGH), and simply using the DEFRA

concentrations in isolation. I also validate the use of DEFRA concentrations in pollution

models by running two extra pollution models without using the DEFRA concentrations

as a covariate, Model 1E and Model SGH. I measure predictive performance using a 10-

fold cross validation approach, where in each run I leave out 15% of the non-rural sites

as a test set (only 3 rural sites are contained in the data and removing them might cause

unstable prediction), and fit each model to the remaining data and predict the pollution

concentrations in the test set. I quantify model performance by computing the prediction

bias, root mean square prediction error (RMSPE) and the coverage probabilities of the

95% prediction intervals. These results are presented in Table 4.4, and as previously

discussed all models are fitted to the pollution data on the natural log scale.

The table shows a number of key results. Firstly, the five variants of the pollution model

proposed here give almost identical results, with negligible bias, lower RMSPE than the

other models considered and close to the nominal 95% coverage probabilities. Thus
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my proposed model outperforms the competitors considered here, and will be used for

pollution estimation in the remainder of this section. Specifically, as Model 1A is simpler

than the other variants proposed here and performs comparably, I use it for predicting

pollution concentrations to be used in the disease model. The comparable performances

of Models 1A and 1E for our data are because the estimated error variances σ2
t from the

latter are very similar in each year, with posterior means of 0.096, 0.096, 0.095, 0.091,

0.089 for the five years. Furthermore, the other simplification that the covariance matrix

V = I is also not unrealistic, as the off diagonal elements of this matrix estimated from

1E are much smaller (ranging between -7.3 and 6.2) than the diagonal ones (ranging

between 28.4 and 48.3).

Model SGH has an RMSPE that is around 24% higher than those from Models 1A to 1E,

despite all models having the same covariates. This is because the spatial random effects

in Model SGH are competing with the covariates to explain the variation in the response,

resulting in attenuation in the estimated covariate effects. This is observed in Table 4.5,

where the regression coefficients from Model SGH are smaller in absolute value than the

corresponding estimates from Model 1A. This results in poorer prediction because the

DEFRA concentrations are naturally a better predictor of the measured concentrations

than a spatial random effect. Secondly, the prediction intervals from Model SGH are too

wide with a coverage of 100%, which is likely to be because it has much larger standard

deviation parameters compared with Model 1A (the observation standard deviations are

0.30 and 0.96 for Models 1A and SGH respectively). Table 4.4 also shows that using the

DEFRA concentrations in isolation results in poorer spatial prediction than using both

sources of data, with a RMSPE of 0.86 compared with 0.31 for the models proposed here.

Finally, Table 4.4 shows that the DEFRA concentrations are an important covariate

in the air pollution model as they can reduce RMSPE. Specifically, Model 1E without

DEFRA concentrations has an RMSPE that is around 26% higher than that from Model

1E with DEFRA concentrations, while this value is about 17% for Model SGH.

4.4.2 Pollution model prediction

Since Model 1A performed as well as Model 1E, I use it to make pollution predictions

at the 1km resolution across mainland Scotland. As described in Section 4.3 posterior

predictive mean concentrations were computed at Q = 68, 448 prediction locations,
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Table 4.4: Bias, root mean square prediction error and coverage probabilities from a 10
fold cross validation excercise for the models proposed in this chapter, the autoregressive

Gaussian process model (SGH) and using only the DEFRA concentrations.

Model Bias RMSPE Coverage

DEFRA NO2 -0.7377 0.8648 –
1A 0.0250 0.3116 93.86%
1B 0.0249 0.3117 93.67%
1C 0.0249 0.3117 93.99%
1D 0.0250 0.3124 93.80%
1E 0.0259 0.3113 93.80%
1E without DEFRA NO2 0.0158 0.3927 93.99%
SGH 0.0184 0.4174 100%
SGH without DEFRA NO2 0.0210 0.4878 100%

Table 4.5: Posterior means for the regression parameters from Model 1A and the
Gaussian process model SGH. The five columns (β1, . . . ,β5) are the yearly regres-
sion parameter estimates from Model 1A, whlie Model SGH has constant regression

parameters over time (final column).

Parameter β1 β2 β3 β4 β5 SGH

Kerbside 0.577 0.580 0.569 0.568 0.576 0.294
Roadside 0.592 0.597 0.594 0.587 0.595 0.304
Rural -0.592 -0.588 -0.587 -0.590 -0.588 -0.068
DEFRA concentrations 0.375 0.541 0.549 0.516 0.475 0.142
datatype 0.154 0.158 0.145 0.139 0.144 -0.012
Temperature 0.078 0.091 0.082 0.069 0.073 0.052

and were then aggregated to the IG scale using both the spatial mean and the spatial

maximum (see equation (4.20)). These areal level summaries are shown in Figure 4.5,

and will be used in the disease model in the next subsection. The plots show that air

pollution is highest in the most densely populated cities of Glasgow and Edinburgh,

in the middle (north to south) of mainland Scotland. This pattern is similar to the

spatial map of DEFRA concentrations for 2010 shown in Figure 4.1 because the latter

is naturally an important predictor of the measured data. The correlations between

the DEFRA and predicted pollution concentrations are high, being 0.918 for the spatial

mean across an IG and 0.885 for the spatial maximum. Additionally, the spatial mean

and maximum estimates from Model 1A are highly correlated, as a Pearson’s correlation

coefficient between the mean and maximum concentrations across an IG is 0.884. Note

that the DEFRA concentrations are lower on average than the predictions from Model

1A, especially for those urban background grids. For example, a scatterplot of all model-

predicted versus DEFRA values for 2010 is shown on the left of Figure 4.6, and a spatial

map of the differences between model-predicted and DEFRA values on the right.
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Figure 4.5: Spatially aggregated predicted NO2 concentrations (µgm−3) from Model
1A for 2010. The left panel shows the spatial mean concentration over each IG, while

the right panel shows the spatial maximum concentration over each IG.
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4.4.3 Disease model results

I begin by assessing the necessity of allowing for spatio-temporal autocorrelation in the

disease data via the random effects in Model (4.21), by fitting a simplified version of that

model with only known covariates. The covariates I include are mean NO2 concentration

in each IG, as well as the two proxy measures of socio-economic deprivation, namely the

percentage of people in receipt of job seekers allowance (JSA) and the natural log of

the median property price (Logprice). The residuals from this model show substantial

spatial autocorrelation, with significant Moran’s I statistics ranging between 0.254 and

0.320 over the five years. These residuals also exhibit temporal autocorrelation, as

the correlation between two consecutive period residuals are 0.659, 0.632, 0.630, 0.651

respectively (computed between the 1,207 spatial data points corresponding to 1,207

IGs for consecutive years). Therefore it is appropriate to include the random effects in

Model (4.21) to allow for the spatio-temporal autocorrelation remaining in the disease

counts after the covariate effects have been accounted for.

I fit four different models to the respiratory disease hospital admissions data, which

differ only in the NO2 metric included in the model. Model I and II correspond to the
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Figure 4.6: Comparison between DEFRA and predicted NO2 concentrations (µgm−3)
from Model 1A for 2010. The left panel is a scatterplot of all model-predicted versus
DEFRA values while the right panel shows a spatial map of the differences between

them.
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spatial mean and maximum of the DEFRA concentrations, while Models III and IV

relate to the spatial mean and maximum of the predicted pollution concentrations from

Model 1A. The results of fitting these models are displayed in Table 4.6, which shows

that ρ ≈ 0.92 and γ ≈ 0.83 indicating high spatial and temporal autocorrelation in the

disease data after the covariate effects have been accounted for, validating the use of the

random effects model. These results are robust to the choice of NO2 metric used in the

model. Table 4.6 also shows that the covariate effects are substantial and robust across

the four models, as their 95% credible intervals do not contain the null risk value of one.

This indicates that the natural log of the median property price and the percentage

of people receiving job seeker allowance are significantly related to hospital admissions,

with a 0.38 increase in Logprice relating to 8% lower hospital admissions while a 2.35%

increase in JSA results in 20% higher hospital admission rates.

Finally, Table 4.6 displays the long-term effects of the four metrics of NO2 on respiratory

hospitalisation risk, which are presented as relative risks for a 6.84 µgm−3 (one stan-

dard deviation of the mean NO2 across the 1,207 IGs) increase in concentrations. The

spatial maximum of DEFRA concentrations (Model II) in each IG shows a significant
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relationship with respiratory disease while the spatial mean of DEFRA concentrations

(Model I) does not. Model II indicates that a 6.84 µgm−3 increase in maximum NO2

exposure is associated with 2.3% higher respiratory disease hospital admissions in Scot-

land, whereas no relationship is observed when the spatial mean is used. This is similar

to the work of Young et al. [143], who found that the risk of myocardial infarction is

more highly correlated with monthly maximum ozone concentrations than the average

concentrations. However, as previously discussed the DEFRA concentrations are known

to be biased estimates of exposure (see Table 4.4), but the results from Models III and

IV using the pollution concentrations estimated from Model 1A validate those using the

DEFRA concentrations. Specifically, the spatial maximum concentrations in Model IV

are associated with a significant 2.1% increased risk of disease, in comparison to a 2.3%

increased disease risk using the DEFRA concentrations. Similarly, the spatial mean

metric used in Models I and III show no relationship with disease risk.

Table 4.6: Posterior means and 95% credible intervals of the regression, autocorrela-
tion and variance parameters from fitting the disease model (4.21) with four different
pollution metrics. Model I and II correspond to the spatial mean and maximum of
the DEFRA concentrations, while Models III and IV relate to the spatial mean and
maximum of the predicted pollution concentrations from Model 1A. The regression
parameters are presented as relative risks for a standard deviation increase in each

covariates value, which is NO2 6.84 µgm−3, Logprice 0.38, JSA 2.35.

Parameter Model I Model II Model III Model IV

NO2 1.009 1.023 0.993 1.021
(0.991,1.028) (1.008,1.038) (0.980,1.008) (1.004,1.037)

Logprice 0.920 0.920 0.920 0.921
(0.910,0.931) (0.910,0.929) (0.909,0.929) (0.911,0.930)

JSA 1.197 1.196 1.200 1.196
(1.181,1.213) (1.181,1.212) (1.185,1.215) (1.180,1.214)

ν2 0.061 0.061 0.061 0.061
(0.057,0.065) (0.056,0.065) (0.056,0.065) (0.056,0.065)

ρ 0.917 0.918 0.926 0.911
(0.877,0.951) (0.879,0.951) (0.891,0.956) (0.866,0.946)

γ 0.831 0.831 0.832 0.830
(0.795,0.867) (0.794,0.867) (0.797,0.867) (0.792,0.865)

4.4.4 Sensitivity analysis

As mentioned in Section 4.3.2, the flexible spatial-temporal random effects in the health

model are included to account for residual auto-correlation after accounting for the

effects of covariates. These flexible random effects need to compete with the explanatory

ability of the NO2 exposure. Therefore, I test the robustness of the health associations



Chapter 4. Air pollution health effects using modelled and measured pollution data 88

Table 4.7: Relative risk of NO2 against various basis dimensions of the space smooth-
ness.

Basis Dimension Model I Model II Model III Model IV

k=30 1.008 1.023 0.999 1.032
(1.002,1.014) (1.018,1.029) (0.994,1.004) (1.026,1.038)

k=40 1.009 1.025 0.996 1.027
(1.003,1.016) (1.019,1.031) (0.990,1.001) (1.021,1.034)

k=50 1.007 1.024 0.993 1.026
(1.000,1.014) (1.018,1.030) (0.987,0.998) (1.019,1.033)

k=60 1.002 1.021 0.989 1.023
(0.995,1.009) (1.014,1.027) (0.983,0.994) (1.016,1.030)

by fitting a range of generalized additive models to the data, where the random effects

are replaced by smooth functions in space and time (splines) with varying levels of

smoothness. Specifically, I use a linear combination of separate smooth functions for

space and time, with the former being an isotropic smooth function using thin plate

splines. As the data in my study contain only 5 years, the basis dimension for time

can vary from 3 to 5, which actually makes little change in the smooth function and

therefore is fixed at the median value 4 in the analysis. I test the robustness of the health

associations against a set of different basis dimensions for the spatial smooth term, and

the results are shown in Table 4.7. Table 4.7 shows that the health associations with

NO2 are robust against varying levels of control for space smoothness, as the estimates

are similar to those in Table 4.6 regardless of the different levels of space smoothness.

4.5 Discussion

In this chapter, I have proposed an integrated model for estimating the long-term health

effects of air pollution, that fuses DEFRA and measured pollution data to provide

improved predictions of areal level pollution concentrations and hence health effects.

The improvement in the pollution prediction is highlighted in Table 4.4, which shows

a 25% and a 64% decrease in RMSPE compared to using a spatio-temporal random

effects model and the DEFRA concentrations respectively. The epidemiological study

presented in this chapter is one of the most comprehensive investigations into the effects

of NO2 concentrations on health in Scotland, as my study region is all of mainland

Scotland for the five year period spanning from 2007 to 2011.
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My findings show that a 6.84 µgm−3 increase in peak NO2 concentrations (spatial maxi-

mum) within an IG is associated with 2.3% higher respiratory disease hospital admissions

in Scotland, while no such relationship is observed with mean concentrations (spatial

mean) in an IG. This suggests that the choice of spatial aggregation metric used to

quantify areal level pollution concentrations has a major impact on the resulting health

effect estimate, which naturally leads to the question of which metric should one use.

This issue has received little attention to date in the literature, as different exposure

metrics have been used in epidemiological studies (see e.g. Basu et al. [6] and Berrocal

et al. [12]). However, the majority of epidemiological studies use the average (mean)

concentration (see e.g. Maheswaran et al. [84]; Lee et al. [76] and Warren et al. [136]).

The second interesting finding of my research is the consistency between the estimated

health effects of NO2, when the latter is estimated using the DEFRA concentrations

alone and both the measured and DEFRA concentrations. This consistency was observed

when considering both the spatial mean and maximum as the aggregation functions, and

suggests that the DEFRA concentrations appear reliable to use in health effect studies

despite being biased.

There is a limitation of the design of the monitoring network in my study, where the

monitor locations are highly clustered in the central part of the study region in Glasgow

(west) and Edinburgh (east), and no monitors exist in large parts of the study region

(see Figure 4.1). Therefore, the predictive performance cannot be assessed uniformly

across Scotland when I evaluated the prediction performance of several exposure models

using a 10-fold cross-validation. In other words, the prediction performance at rural areas

where no monitors exist is unknown. However, as these areas are rural regions then NO2

concentrations are low (away from traffic sources), so the level of uncertainty should be

low and the DEFRA concentrations should be able to pick up the low background levels.

This is also the key reason for using a fusion model to utilize the good spatial coverage

of the DEFRA concentrations to provide estimation of pollution in these largely rural

regions.

In my study the air pollution concentrations are assumed to be known and constant

across each IG, by spatially aggregating predictions from my pollution model. However,

these predictions are likely to contain errors and uncertainties, and in future work I will

investigate these issues within a hierarchical modelling framework. A further avenue
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of future work could be the investigation of the individual and joint effects of different

pollutants, rather than simply considering NO2 as was the case here.



Chapter 5

Multi-pollutant concentrations

prediction

5.1 Introduction

In the previous chapter, the long-term effects of NO2 on respiratory diseases in mainland

Scotland has been investigated, in a single-pollutant health study. However, the real

world is much more complex, and the air we breathe contains a complex mixture of

particle and gas phase pollutants which means that we are exposed to multiple pollutants

simultaneously. These pollutants might act independently or in combination (in an

additive, synergistic, antagonistic, or interactive manner) to affect human health. A

traditional single pollutant health study fails to account for these combined effects of

pollutant mixtures. Therefore, it is necessary to extend the current single pollutant risk

assessment to account for multiple pollutants. This chapter will build a new model to

predict multi-pollutant concentrations simultaneously, which then can be used for the

study of multi-pollutant health effects in the next chapter.

Model 4.3 in the previous chapter is a general model to deal with the prediction of

a single pollutant. For predicting multiple pollutant concentrations, a possible way is

to apply Model 4.3 to each pollutant separately. However, this method ignores the

correlations among pollutants (e.g. pollutant dependence was shown in Shaddick and

Wakefield [117], Kumar and Joseph [70] and Berrocal et al. [11], whilst in my data

set the correlation between PM10 and NO2 is about 0.8), with which the prediction of

91
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one pollutant can borrow strength from the remaining pollutants. For example, Berrocal

et al. [13] showed that a bivariate downscaler model, which allows for correlation between

Ozone and PM2.5, outperforms the independent downscaler model.

The aim of this chapter is to propose a multi-pollutant model for Scotland that extends

Model 4.3, based on which the multi-pollutant concentrations can be predicted across

mainland Scotland simultaneously and the correlation between pollutants is allowed

to be used to improve the prediction. The modelling carried out in this chapter will

be used to provide pollution predictions for a study investigating the health effects

of multi-pollutants in the next chapter. The structure of this chapter is organized as

follows. Section 5.2 introduces the data used in my study. Section 5.3 describes the

multi-pollutant model then deduces the posterior distributions for the model parameters

and a McMC inference scheme, and discusses issues of missing data. Section 5.4 report

a simulation study for the multi-pollutant model to assess its efficacy, while Section

5.5 is a validation study comparing the performance of the multi-pollutant model with

the previous single pollutant model. Section 5.6 models the real data set in my study.

Section 5.7 concludes with some discussion.

5.2 Data description

As described in chapter 3, my focus remains on mainland Scotland. Note that the

pollutants people breathe include NO2, PM10, O3, PM2.5, SO2, CO and so on, however,

the pollutants considered in this study include only NO2 and PM10 due to the sparse

observations for the other pollutants. For example, the number of monitoring sites for

PM2.5 from 2006 to 2010 are 0, 1, 1, 3, 5, respectively, while they are 7, 3, 2, 3, 3 for

CO.

Data for both NO2 and PM10, which are the annual mean concentrations from 2006 to

2010, are from two sources, measured concentrations at a small number of locations and

DEFRA data. The measured data are collected from automatic monitors (91 monitoring

sites) which can be freely obtained from Air Quality in Scotland

(http://www.scottishairquality.co.uk/ ). The top left of Figure 5.1 is a map of the moni-

toring sites for both NO2 and PM10 in 2010, in which is shown that the monitors located

in big cities (e.g. Glasgow and Edinburgh in the bottom central of the map) are likely
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to measure both pollutants, while there are some sites away from big cities measuring

NO2 only. This is because PM10 mainly comes from the burning of fossil fuels in ve-

hicles which happens mostly in big cities, while NO2 comes mainly from not only the

burning of fossil fuels but also the atmosphere by lightning and some is produced by

plants, soil and water. Among the 91 monitoring sites, there are actually 29 sites having

neither NO2 nor PM10 observations from 2006 to 2010, which indicates that the total

sites for this study is 62 rather than 91. There are in total 50 monitoring sites with NO2

measurements for 2010 and 42 for PM10, among which 33 sites have measurements for

both pollutants. Similar information for the other years can be seen in Table 5.1. All

these monitoring observations will be used to predict pollution concentrations across my

study region.

The monitoring sites have been classified as either urban background, kerbside, roadside

or rural, with simple summaries displayed in Table 5.2. As might be expected, for both

PM10 and NO2, the pollution levels recorded at urban locations are higher than those

at rural locations, and the closer the monitoring stations are to a main road, the higher

the NO2 and PM10 concentrations are.

Table 5.1: Numbers of monitoring sites measuring NO2 and PM10.

Site type 2006 2007 2008 2009 2010

Sites for NO2 18 27 40 44 50
Sites for PM10 12 17 29 35 42
Sites for both 10 14 22 25 33

Table 5.2: Summary of the monitoring data by site type and year: the numbers within
the round brackets represent the number of sites in the form (NO2, PM10), while those

within square brackets indicate their corresponding mean concentrations (µgm−3).

Site type \ Year 2006 2007 2008 2009 2010

Urban Background (3, 2) (3, 3) (6, 6) (6, 6) (6, 7)
[27.3, 20.0] [26.3, 17.0] [27.0, 16.2] [26.3, 14.1] [26.0, 14.2]

Kerbside (1, 1) (4, 1) (4, 1) (3, 2) (5, 2)
[68.0, 38.0] [64.0, 32.0] [65.5, 27.0] [67.3, 22.0] [59.0, 24.0]

Roadside (11, 8) (15, 11) (25, 20) (30, 26) (34, 32)
[43.8, 24.1] [42.4, 22.2] [36.9, 20.8] [36.2, 17.7] [38.2, 19.2]

Rural (3, 1) (3, 2) (3, 2) (3, 1) (3, 1)
[8.0, 15.0] [8.0, 10.5] [8.3, 10.5] [7.33, 11.0] [9.33, 12.0]

As has been presented in Figure 5.1 the monitoring observations provide poor spatial

coverage of Scotland as the major cities are well represented but the rest of the study

region contains hardly any monitors. Therefore, the standard geostatistical prediction
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Figure 5.1: Summary of the data. Top left is a map of the monitoring sites for both
NO2 and PM10 in 2010 (N: common sites; red +: sites with only NO2; blue •: sites
with only PM10), top right is the modelled annual average PM10 concentrations in 2010
(µgm−3), bottom left are scatter plots between measured NO2 and measured PM10,
modelled NO2 and modelled PM10 for common sites, bottom right are scatter plots

between measured and modelled data for common sites.
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methods may not be appropriate here, due to the large distances between data locations

and potential prediction locations. As a result of this poor spatial coverage, the DEFRA

concentrations (also called modelled concentrations or modelled data) are also used.

These data have complete spatial coverage of Scotland, but are known to have certain

biases and needed to be calibrated to the measured data. These data are displayed in

Figure 5.1 for PM10 in 2010 and show that the concentrations are much higher in the

lower middle part of the country (Glasgow and Edinburgh cities), and in the east of the

country where other large cities are located (e.g. Aberdeen and Dundee). The modelled

concentrations for NO2 have been shown in the previous chapter.

Note that the multi-pollutant model proposed in this chapter focuses on the use of

between pollutant correlations to improve prediction, it is natural and important to

investigate the correlation between NO2 and PM10 in my data set. Figure 5.1 shows

that the linear correlation between NO2 and PM10 is strong, with 0.74 between mea-

surements and 0.82 between modelled data (DEFRA). Figure 5.1 also shows that the

linear correlation between measurements and modelled data is moderate (0.45, 0.31 for

NO2 and PM10, respectively), indicating that the modelled data are a good predictor of

the measurements.

Finally, temperature data and the classification of urban, background are also used in

this study and they are the same as those described in chapter 4.

5.3 Methodology

In this section I propose a new Bayesian hierarchical model to predict multiple pollutant

concentrations simultaneously. Rather than using a single pollutant model to do the

prediction for each pollutant separately (see e.g. Vinikoor-Imler et al. [134], Vinikoor-

Imler et al. [135]), the model proposed in this section allows the correlation between

pollutants to improve the prediction of each pollutant by borrowing strength from the

other pollutants (e.g. Berrocal et al. [11]). Unlike those methods proposed by Shaddick

and Wakefield [117], Berrocal et al. [11], McMillan et al. [87] and Lawson et al. [72],

which include a spatial correlation term in the model, the proposed model here does not

consider the spatial correlation among the observations, as the pollution observations

across mainland Scotland do not have any residual spatial correlation after accounting for
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the site environment, spatially correlated modelled concentrations and the temperature

data (see chapter 4).

5.3.1 Modelling

The multi-pollutant model extends the single pollutant model defined in the previ-

ous chapter. Denote the n measured pollution concentrations from monitoring sites

at locations (s1, . . . , sn) for q pollutants for year t as
(
X

(t)
1 , ...,X

(t)
q

)
, where X

(t)
j =(

X
(t)
j (s1), . . . , X

(t)
j (sn)

)
, and is the set of observations over space for pollutant j in

year t. The first level of the multi-pollutant model is given as,


X

(t)
1

X
(t)
2

...

X
(t)
q

 ∼ N



Z

(t)
1 0 0

0 ... 0

0 0 Z
(t)
q



ββ

(t)
1

...

ββ
(t)
q

 , σ2
tCq×q ⊗ In

 , t = 1, ..., T,(5.1)

where the measured pollution data are modelled by a linear regression model with mean

(Z
(t)
1 ββ

(t)
1 , ...,Z

(t)
q ββ

(t)
q ) for q pollutants for year t, respectively. Here

(
Z

(t)
1 , . . . ,Z

(t)
q

)
are

the n×p design matrices, and within each are an intercept term and key covariates such

as site environment indicators and the modelled data. Then
(
ββ

(t)
1 , . . . ,ββ

(t)
q

)
, each of

which is a p× 1 vector, are the corresponding regression parameters for year t, and are

assumed to be temporally autocorrelated, following a centred multivariate first order

autoregressive process. That is:
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ββ

(t)
1

...

ββ
(t)
q

 ∼ N



ββ1 + κ(ββ

(t−1)
1 − ββ1)

...

ββq + κ(ββ
(t−1)
q − ββq)

 , τ2Ipq×pq

 t = 2, ..., T, (5.2)


ββ

(1)
1

...

ββ
(1)
q

 ∼ N



ββ1

...

ββq

 , τ2Ipq×pq

 ,


ββ1

...

ββq

 ∼ N




0

...

0

 , 1000Ipq×pq

 .

The extent of this temporal dependence is captured by κ, which is assigned a uniform

prior on the unit interval [0,1], κ ∼ Uniform[0, 1]. If κ = 0, (ββ
(t)
1 , ...,ββ

(t)
q ) are esti-

mated independently for each year and are smoothed towards an overall mean value

(ββ1, ...,ββq) for all years, while if κ = 1, (ββ
(t)
1 , ...,ββ

(t)
q ) are temporally autocorrelated

with (ββ
(t−1)
1 , ...,ββ

(t−1)
q ).

The covariance matrix in the likelihood model (5.1) is σ2
tCq×q ⊗ In, which assumes

constant correlations between pollutants at each monitoring site, but no such correlation

across sites. In is an n×n identity matrix, where n is the number of monitoring sites in

my study. Cq×q is a covariance matrix for all pollutants at the same site, in which the

element Cij represents the covariance between pollutant i and j at each monitoring site.

This covariance matrix is assumed to follow an Inverse-Wishart distribution, Cq×q ∼

Inverse-Wishart(ν = q,Ψ = 100Iq×q) (Lawson et al. [72]). Finally, σ2
t is a scaling

parameter to allow different levels of residual variation over time. This scaling parameter

is assumed to be temporally autocorrelated via a first order random walk prior, and as

it must be non-negative, the log scale is used. That is:
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ln (σ2
t ) ∼ N(ln (σ2

t−1), σ2) t = 2, ..., T, (5.3)

f(ln (σ2
1)) ∝ 1.

Finally, I choose weakly informative conjugate prior distributions for (σ2, τ2) by assum-

ing them to be Inverse-gamma distributed, σ2, τ2 ∼ Inverse-Gamma(a = 0.001, b =

0.001). Inference for the collection of model parameters

Θ = (ββ
(1)
1 , . . . ,ββ

(1)
q , . . . ,ββ

(T )
1 , . . . ,ββ

(T )
q ,ββ1, . . . ,ββq,Cq×q, κ, σ

2
1, . . . , σ

2
T , τ

2, σ2) is based

on McMC simulation, using both Gibbs sampling and Metropolis-Hastings steps, and I

implemented the algorithm in the R programming language. Full details of the algebra

for the full conditional distributions is given below.

5.3.2 Computation of the posterior distribution

The posterior distribution is the probability of the parameters given the data, which

is defined as the product of the likelihood function and the prior distributions. The

likelihood function for Model (5.1) is given as follows.
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Denote Σt = σ2
tCq×q ⊗ In, X(t) = (X

(t)
1 , . . . ,X

(t)
q ), Z(t) = diag(Z

(t)
1 , . . . ,Z

(t)
q ), ββ(t) = (ββ

(t)
1 , . . . ,ββ

(t)
q ), the likelihood function for Model (5.1) is

given by:

f(X(1), . . . ,X(T ) | −) = f(X(1), . . . ,X(T ) | ββ(1), . . . ,ββ(T ),ββ1, . . . ,ββq,Cq×q, κ, σ
2
1, . . . , σ

2
T , τ

2, σ2)

=

T∏
t=1

1

(2π)qn/2 | Σt |1/2
exp

(
−1

2
(X(t) −Z(t)ββ(t))>Σ−1

t (X(t) −Z(t)ββ(t))

)
.

Given the prior,

f(Θ) = f(ββ
(1)
1 , . . . ,ββ(1)

q , . . . ,ββ
(T )
1 , . . . ,ββ(T )

q ,ββ1, . . . ,ββq,Cq×q, κ, σ
2
1, . . . , σ

2
T , τ

2, σ2)

=

T∏
i=1

q∏
j=1

f(ββ
(i)
j )

q∏
j=1

f(ββj)f(Cq×q)f(κ)
T∏
i=1

f(σ2
i )f(τ2)f(σ2)

=

q∏
j=1

N(ββ
(1)
j | ββj , τ

2Ip)

T∏
i=2

q∏
j=1

N(ββ
(i)
j | ββj + κ(ββ

(i−1)
j − ββj), τ2Ip)

q∏
j=1

N(ββj | 0, 1000Ip)IW(Cq×q | ν,Ψ)U(κ | 0, 1)

×
T∏
i=2

N(ln (σ2
i ) | ln (σ2

i−1), σ2)IG(τ2 | a, b)IG(σ2 | a, b)

The parameters are updated by using the full conditional distributions as follows (denote ηij as the ijth element of C−1
q×q).

f(Cq×q | −) ∝ Inverse-Wishart

(
ν + nt,Ψ + ΣT

t=1

M
(t)
q×q

σ2
t

)
, where M

(t)
ij = Σ

(
diag

(
(X

(t)
i −Z

(t)
i ββ

(t)
i )(X

(t)
j −Z

(t)
j ββ

(t)
j )>

))
,
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f(τ2 | −) ∝ IG(a+ qpt
2 , b+

Σq
i=1Σq

j=1(ββ
(1)
i −ββi)

>(ββ
(1)
j −ββj)

2 +
ΣT

t=2Σq
i=1Σq

j=1

(
ββ

(t)
i −ββi−κ(ββ

(t−1)
i −ββi)

)>(
ββ

(t)
j −ββj−κ(ββ

(t−1)
j −ββj)

)
2 ),

f(σ2 | −) ∝ IG
(
a+ 1

2(T − 1), b+ 1
2ΣT

t=2

(
ln (σ2

t )− ln (σ2
t−1)

)2)
,

ln f(σ2
1 | −) ∝ − qn

2 ln (σ2
1)− 1

2σ2 [ln (σ2
2)− ln (σ2

1)]2 − 1
2σ2

1
Σq
i=1Σq

j=1ηij

(
X

(1)
i −Z

(1)
i ββ

(1)
i

)> (
X

(1)
j −Z

(1)
j ββ

(1)
j

)
,

ln f(σ2
T | −) ∝ − qn

2 ln (σ2
T )− 1

2σ2 [ln (σ2
T )− ln (σ2

T−1)]2 − 1
2σ2

T
Σq
i=1Σq

j=1ηij

(
X

(T )
i −Z(T )

i ββ
(T )
i

)> (
X

(T )
j −Z(T )

j ββ
(T )
j

)
,

ln f(σ2
t | −) ∝ − qn

2 ln (σ2
t )− 1

2σ2 [ln (σ2
t )− ln (σ2

t−1)]2− 1
2σ2 [ln (σ2

t+1)− ln (σ2
t )]

2− 1
2σ2

t
Σq
i=1Σq

j=1ηij

(
X

(t)
i −Z

(t)
i ββ

(t)
i

)> (
X

(t)
j −Z

(t)
j ββ

(t)
j

)
, 1 < t < T ,

f(ββi | −) ∝ N(µi,Σi),

where µi =
[(

1
τ2

+ 1
1000 + (1−κ)2(T−1)

τ2

)
Ip

]−1
[
ββi

τ2
+

Σq
j=1(ββ

(1)
j −ββj)

τ2
+ ββi

1000 −
Σq

j=1ββj

1000 + (T−1)(1−κ)2ββi

τ2
+ ΣT

t=2

Σq
j=1(1−κ)(ββ

(t)
j −κββ

(t−1)
j −(1−κ)ββj)

τ2

]
Σi =

[(
1
τ2

+ 1
1000 + (1−κ)2(T−1)

τ2

)
Ip

]−1
,

f(ββ
(T )
i | −) ∝ N(µ

(T )
i ,Σ

(T )
i ),

where µ
(T )
i =

[
ηii(Z

(T )
i )>Z

(T )
i

σ2
T

+
Ip
τ2

]−1 [
ηii(Z

(T )
i )>Z

(T )
i ββ

(T )
i

σ2
T

+
Σq

j=1ηij((Z
(T )
i )>X

(T )
j −(Z

(T )
i )>Z

(T )
j ββ

(T )
j )

σ2
T

+
ββ

(T )
i
τ2

+
Σq

j=1((1−κ)ββj+κββ
(T−1)
j −ββ(T )

j )

τ2

]
Σ

(T )
i =

[
ηii(Z

(T )
i )>Z

(T )
i

σ2
T

+
Ip
τ2

]−1

,

f(ββ
(1)
i | −) ∝ N(µ

(1)
i ,Σ

(1)
i ),

where µ
(1)
i =

[
ηii(Z

(1)
i )>Z

(1)
i

σ2
1

+
Ip
τ2

+
κ2Ip
τ2

]−1

[
ηii(Z

(1)
i )>Z

(1)
i ββ

(1)
i

σ2
1

+
Σq

j=1ηij

(
(Z

(1)
i )>X

(1)
j −(Z

(1)
i )>Z

(1)
j ββ

(1)
j

)
σ2
1

+
ββ

(1)
i
τ2

+
Σq

j=1(ββj−ββ
(1)
j )

τ2
+

κ2ββ
(1)
i

τ2
+

Σq
j=1(κββ

(2)
j −κ(1−κ)ββj−κ2ββ

(1)
j )

τ2
]

Σ
(1)
i =

[
ηii(Z

(1)
i )>Z

(1)
i

σ2
1

+
Ip
τ2

+
κ2Ip
τ2

]−1

,
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f(ββ
(t)
i | −) ∝ N(µ

(t)
i ,Σ

(t)
i ), 1 < t < T,

where µ
(t)
i =

[
ηii(Z

(t)
i )>Z

(t)
i

σ2
t

+
Ip
τ2

+
κ2Ip
τ2

]−1

[
ηii(Z

(t)
i )>Z

(t)
i ββ

(t)
i

σ2
t

+
Σq

j=1ηij

(
(Z

(t)
i )>X

(t)
j −(Z

(t)
i )>Z

(t)
j ββ

(t)
j

)
σ2
t

+
ββ

(t)
i
τ2

+
Σq

j=1

(
(1−κ)ββj+κββ

(t−1)
j −ββ(t)

j

)
τ2

+
κ2ββ

(t)
i

τ2
+

Σq
j=1

(
κββ

(t+1)
j −κ(1−κ)ββj−κ2ββ

(t)
j

)
τ2

]

Σ
(t)
i =

[
ηii(Z

(t)
i )>Z

(t)
i

σ2
t

+
Ip
τ2

+
κ2Ip
τ2

]−1

f(κ | −) ∝ N(µκ, σκ), where µκ =
ΣT

t=2Σq
i=1Σq

j=1

(
(ββ

(t)
i −ββi)

>(ββ
(t−1)
j −ββj)+(ββ

(t−1)
i −ββi)

>(ββ
(t)
j −ββj)

)
2ΣT

t=2Σq
i=1Σq

j=1(ββ
(t−1)
i −ββi)>(ββ

(t−1)
j −ββj)

, σκ = τ2

ΣT
t=2Σq

i=1Σq
j=1(ββ

(t−1)
i −ββi)>(ββ

(t−1)
j −ββj)
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5.3.3 Dealing with missing data

As there are in total 62 monitoring sites used to measure NO2 and PM10 during 2006-

2010, it is expected to have in total 620 (2 pollutants × 62 sites × 5 years) observations.

However, according to the map of the monitoring sites in Figure 5.1 and the summaries

of monitoring sites in table 5.1, some sites measure NO2 or PM10 only and the number

of monitors for each year is also different. Table 5.1 shows that there are actually only

314 observations (sum of the first two rows) for both pollutants during 2006-2010. The

proportion of missing data is about 49%.

There are a few reasons that could lead to these missing data. Firstly, the urban air

pollution monitoring sites are usually used to detect noncompliance with air quality

standards [EPA (2006)], so they are preferentially located according to different pol-

lutants. Secondly, the monitoring sites for a specified pollutant are also changed over

time, with some new sites being added to the network while some of the existing sites

are removed.

In my study, the model proposed in this chapter is a Bayesian model and a well known

method to deal with missing data under a Bayesian framework is to treat the missing

data as parameters, then update them using McMC (Tan et al. [124]). This goal can

be achieved based on the multivariate normal distribution theory. Specifically, denote a

vector of all the measurements for one year as Y2, all the missing monitoring data for

the same year as Y1, then we can have,

 Y1

Y2

 ∼ N

 θ1

θ2

 ,
 Σ11 Σ12

Σ21 Σ22

 (5.4)

Y1 | Y2 ∼ N
(
θ1 + Σ12Σ

−1
22 [Y2 − θ2],Σ11 −Σ12Σ

−1
22 Σ21

)

As it is computationally expensive to compute the inverse matrix for Σ22 in each iteration

of the McMC scheme, and it is known from the previous study that the spatial correlation

between the monitoring data are very weak, therefore an approximate method used

to update the missing observation at each site is adopted. This approximate method

assumes the distribution of a missing value at a monitoring site only depends on the

other pollutants at the same site rather than all the observations across all sites. For
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example, for a monitoring site k with NO2 measurement but not PM10 (the case of two

pollutants), PM10 measurement is missing at site k and its prediction only depends on

the NO2 measurement at site k.

5.4 Simulation study

In this section, I present a simulation study to evaluate the performance of the multi-

pollutant model proposed in the previous section. This simulation contains three parts,

with the first part describing how the simulated data are generated. The second part

describes the simulation method and the last part presents the results of the simulation.

5.4.1 Data generation

Simulated pollution data are generated from Model (5.1) for two pollutants, NO2 (X
(t)
1 )

and PM10 (X
(t)
2 ). As there are more common monitoring sites (measuring both NO2 and

PM10) in 2010 than the other years (see Table 5.1), I use the covariate data corresponding

to these monitoring sites to form the design matrices (Z
(t)
1 ,Z

(t)
2 ) in Model (5.1) in

this simulation study. Each design matrix consists of an intercept term and variables

including indicator variables for kerbside, roadside and rural site type, modelled data

and temperature. The regression parameters for each year,
(
ββ

(t)
1 ,ββ

(t)
2

)
, were generated

from a temporal model (5.2) based on the initial value (ββ1,ββ2), where the temporal

correlation control parameter κ is fixed at 0.6 which is similar to the estimate from

the single pollutant Model (4.3) applied to the NO2 data in the last chapter. τ2 which

represents the white noise of the regression parameters over time is fixed at 0.1 and

the overall mean values (ββ1,ββ2) are also fixed and shown in Table 5.3. In the table,

β11 refers to the first element of ββ1 while β21 is the first element of ββ2. The values

of (ββ1,ββ2) are the maximum likelihood estimates obtained by fitting a normal linear

model to NO2 and PM10 data for 2010 (both measured and modelled pollution data are

on the log scale).

Furthermore, in Model (5.1) σ2
t was also generated from a temporal Model (5.3) on

the log scale based on an initial value σ2
1 = 0.06, with the white noise σ2 = 0.01, and

C2×2 =

 1 0.7

0.7 1

, which indicates the variances of both NO2 and PM10 for the first
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period are σ2
1 × C11 = σ2

1 × C22 = 0.06, and the correlation between NO2 and PM10 is

0.7. The equal variances assumption of NO2 and PM10 is a simplification of the real

data set in my study, as in 2010, the variances of log(NO2) and log(PM10) are 0.102 and

0.040, respectively. The correlation value is similar to the correlation between NO2 and

PM10 from the real data set in 2010 which is 0.74.

Table 5.3: Simulation settings of regression parameters for Model (5.1)

Covariate ββ1 ββ2

Intercept β11= 3.00 β21=2.14
Kerbside β12=0.67 β22=0.48
Roadside β13=0.33 β23=0.28
Rural β14=-0.23 β24=-0.08
Modelled data β15=0.41 β25=0.39
Temperature β16=-0.12 β26=-0.06

5.4.2 Simulation method

I use the settings above to generate 100 simulated data sets, comprising
(
X

(t)
1 ,X

(t)
2

)
for t =

1, ..., 5. Each simulated data set is then used to fit the multi-pollutant model with 50,000

iterations (with 20,000 as burn-in iterations, after which the chain is checked for con-

vergence). Model inference is obtained based on 30,000 posterior samples. In order to

assess the performance of the multi-pollutant model, three statistics are calculated for

each model parameter, namely: bias, root mean square error (RMSE) and the coverage

probabilities of the 95% credible interval (CI). Note that in this simulation study, some

parameters are fixed in each of the simulated data sets as mentioned above (e.g. ββ1,ββ2),

however, some vary in each simulation (e.g. ββ
(t)
1 ,ββ

(t)
2 ). The latter are allowed to vary

as they are generated from a specific distribution in each generation of the simulated

data. Therefore, the bias and RMSE in this simulation study are given by

Bias(θ̂) =
1

m
Σm
i=1(θ̂i − θi) m = 100

RMSE(θ̂) =

√
1

m
Σm
i=1(θ̂i − θi)2 m = 100,

where θi is the true value of any parameter in the ith simulated data set and θ̂i is its

estimate. Finally, the CI coverage is the percentage of the 95% CI containing the true

parameter value.
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5.4.3 Simulation results

The simulation results are shown in Table 5.4, 5.5 and 5.6.
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Table 5.4: The bias of each parameter from the simulation study of Model (5.1).

Fixed parameters β11 β12 β13 β14 β15 β16 β21 β22 β23 β24 β25 β26

0.04 -0.04 -0.01 -0.01 -0.03 -0.01 0.02 -0.05 -0.02 -0.00 -0.03 -0.00

Fixed parameters σ2 κ τ2

0.02 -0.06 -0.01

Varied parameters β
(t)
11 β

(t)
12 β

(t)
13 β

(t)
14 β

(t)
15 β

(t)
16 β

(t)
21 β

(t)
22 β

(t)
23 β

(t)
24 β

(t)
25 β

(t)
26

t=1 0.06 -0.03 0.00 -0.04 -0.00 -0.01 0.06 -0.03 0.00 -0.04 -0.00 -0.01
t=2 0.06 -0.04 -0.03 -0.02 -0.01 -0.00 0.06 -0.04 -0.03 -0.02 -0.01 -0.00
t=3 0.06 -0.00 -0.02 -0.01 0.02 -0.01 0.06 -0.00 -0.02 -0.01 0.02 -0.01
t=4 0.04 -0.02 -0.02 -0.04 -0.02 0.00 0.04 -0.02 -0.02 -0.04 -0.02 0.00
t=5 0.06 -0.01 -0.02 -0.06 -0.02 0.00 0.06 -0.01 -0.02 -0.06 -0.02 0.00

Covariance σ2
1Cij σ2

2Cij σ2
3Cij σ2

4Cij σ2
5Cij

i=j=1 0.002 0.001 0.001 -0.000 -0.001
i=1,j=2 0.001 0.001 0.000 -0.000 -0.001
i=j=2 0.003 0.000 0.001 0.001 -0.000
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Table 5.5: The RMSE of each parameter from the simulation study of Model (5.1).

Fixed parameters β11 β12 β13 β14 β15 β16 β21 β22 β23 β24 β25 β26

0.50 0.29 0.26 0.26 0.27 0.25 0.61 0.25 0.26 0.26 0.26 0.24

Fixed parameters σ2 κ τ2

0.04 0.20 0.03

Varied parameters β
(t)
11 β

(t)
12 β

(t)
13 β

(t)
14 β

(t)
15 β

(t)
16 β

(t)
21 β

(t)
22 β

(t)
23 β

(t)
24 β

(t)
25 β

(t)
26

t=1 0.51 0.18 0.13 0.20 0.09 0.05 0.51 0.18 0.13 0.20 0.09 0.05
t=2 0.49 0.15 0.11 0.19 0.11 0.05 0.49 0.15 0.11 0.19 0.11 0.05
t=3 0.48 0.16 0.12 0.20 0.09 0.05 0.48 0.16 0.12 0.20 0.09 0.05
t=4 0.45 0.17 0.13 0.20 0.10 0.05 0.45 0.17 0.13 0.20 0.10 0.05
t=5 0.45 0.17 0.12 0.26 0.09 0.06 0.45 0.17 0.12 0.26 0.09 0.06

Covariance σ2
1Cij σ2

2Cij σ2
3Cij σ2

4Cij σ2
5Cij

i=j=1 0.010 0.008 0.009 0.008 0.010
i=1,j=2 0.008 0.007 0.007 0.007 0.008
i=j=2 0.010 0.009 0.009 0.008 0.009
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Table 5.6: The CI coverage (%) for each parameter from the simulation study of Model (5.1).

Fixed parameters β11 β12 β13 β14 β15 β16 β21 β22 β23 β24 β25 β26

94 94 95 98 91 93 95 94 94 98 97 97

Fixed parameters σ2 κ τ2

97 100 98

Varied parameters β
(t)
11 β

(t)
12 β

(t)
13 β

(t)
14 β

(t)
15 β

(t)
16 β

(t)
21 β

(t)
22 β

(t)
23 β

(t)
24 β

(t)
25 β

(t)
26

t=1 94 93 89 97 98 94 94 93 89 97 98 94
t=2 97 97 96 98 97 93 97 97 96 98 97 93
t=3 95 94 96 98 98 93 95 94 96 98 98 93
t=4 96 94 94 94 98 94 96 94 94 94 98 94
t=5 96 95 92 93 98 96 96 95 92 93 98 96

Covariance σ2
1Cij σ2

2Cij σ2
3Cij σ2

4Cij σ2
5Cij

i=j=1 98 98 99 98 98
i=1,j=2 95 98 98 99 98
i=j=2 96 97 98 99 100
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Table 5.7: Bias, RMSE and 95% coverage (the same order in each bracket) for the covariance in the simulation study of Model (5.1) for more
levels of correlation between NO2 and PM10.

Correlation Index σ2
1Cij σ2

2Cij σ2
3Cij σ2

4Cij σ2
5Cij

i=j=1 (0.001, 0.009, 98) (0.000, 0.009, 94) (0.000, 0.009, 92) (0.001, 0.009, 97) (0.000, 0.011, 95)
Corr=0.1 i=1,j=2 (-0.000, 0.005, 98) (0.000, 0.005, 95) (0.000, 0.005, 95) (0.000, 0.005, 94) (0.000, 0.005, 97)

i=j=2 (0.002, 0.009, 100) (0.001, 0.008, 97) (0.001, 0.009, 97) (0.002, 0.008, 97) (0.001, 0.011, 93)

i=j=1 (0.000, 0.009, 98) (-0.000, 0.008, 100) (-0.001, 0.009, 97) (-0.001, 0.008, 99) (-0.001, 0.010, 98)
Corr=0.5 i=1,j=2 (-0.001, 0.007, 95) (-0.001, 0.006, 95) (-0.002, 0.006, 95) (-0.001, 0.006, 95) (-0.002, 0.007, 97)

i=j=2 (0.001, 0.009, 96) (0.000, 0.009, 98) (-0.000, 0.009, 94) (-0.000, 0.009, 96) (-0.002, 0.010, 97)

i=j=1 (0.001, 0.010, 94) (0.000, 0.009, 93) (-0.000, 0.009, 94) (0.000, 0.009, 97) (-0.000, 0.009, 98)
Corr=0.9 i=1,j=2 (0.001, 0.010, 95) (0.000, 0.009, 95) (-0.000, 0.008, 95) (0.000, 0.009, 94) (-0.000, 0.009, 98)

i=j=2 (0.002, 0.011, 93) (0.001, 0.009, 94) (0.000, 0.009, 96) (0.001, 0.009, 95) (0.000, 0.009, 97)
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Table 5.8: Comparison of bias, RMSE and 95% coverage (the same order in each bracket) for fixed coefficients between the simulation study of
Model (5.1) (round brackets) and single-pollutant model (4.3) (square brackets) for more levels of correlation between NO2 and PM10.

Parameter Corr=0.1 Corr=0.5 Corr=0.9

β11 (0.04, 0.53, 93) [2.22, 2.53, 100] (-0.05, 0.55, 95) [2.36, 2.70, 100] (0.06, 0.47, 97) [2.35, 2.68, 100]
β12 (-0.05, 0.25, 94) [-0.03, 1.11, 70] (0.01, 0.25, 96) [0.02, 1.09, 70] (-0.02, 0.27, 93) [-0.06, 1.13, 74]
β13 (0.01, 0.26, 94) [-0.32, 1.14, 78] (0.00, 0.28, 92) [-0.32, 1.14, 80] (-0.04, 0.26, 97) [-0.35, 1.17, 80]
β14 (0.05, 0.34, 89) [-0.90, 1.43, 76] (-0.02, 0.31, 93) [-0.92, 1.46, 71] (0.04, 0.31, 93) [-0.94, 1.49, 72]
β15 (0.00, 0.27, 92) [-0.28, 1.20, 95] (-0.03, 0.25, 95) [-0.31, 1.13, 96] (-0.02, 0.22, 94) [-0.32, 1.16, 92]
β16 (0.33, 0.25, 97) [-0.78, 1.35, 83] (-0.01, 0.25, 91) [-0.81, 1.36, 82] (0.04, 0.25, 94) [-0.81, 1.33, 85]
β21 (-0.01, 0.72, 92) [1.62, 1.91, 100] (-0.15, 0.56, 99) [1.67, 1.97, 100] (0.03, 0.57, 94) [1.76, 2.01, 100]
β22 (0.03, 0.28, 95) [-0.09, 0.81, 82] (0.00, 0.28, 95) [-0.06, 0.84, 80] (-0.06, 0.31, 90) [0.00, 0.81, 81]
β23 (-0.03, 0.25, 98) [-0.21, 0.84, 80] (-0.00, 0.26, 94) [-0.21, 0.81, 84] (0.00, 0.27, 95) [-0.21, 0.80, 85]
β24 (0.05, 0.31, 91) [-0.60, 1.02, 73] (0.01, 0.32, 90) [-0.60, 1.03, 77] (-0.03, 0.28, 98) [-0.62, 0.98, 80]
β25 (0.05, 0.29, 96) [-0.17, 0.90, 100] (0.03, 0.33, 92) [-0.15, 0.80, 100] (-0.05, 0.30, 92) [-0.17, 0.84, 100]
β26 (-0.03, 0.26, 90) [-0.56, 0.94, 90] (-0.03, 0.28, 91) [-0.58, 0.95, 89] (0.00, 0.24, 97) [-0.57, 0.97, 89]
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Table 5.4 shows that the biases for all the regression parameters are close to zero so the

model parameter estimates are unbiased. Note that the bottom left of Table 5.4 refers

to the bias of σ2
tCij (covariance matrix element) rather than for σ2

t and Cij separately,

because Cq×q is updated by an Inverse-Wishart distribution which produces only a co-

variance matrix rather than a correlation matrix, and this covariance matrix is possibly

on a different scale compared to the original values because the scaling parameter σ2
t

can adjust this difference. All the estimated elements of the covariance matrix have

ignoreable biases, indicating the proposed multi-pollutant model can inform both the

variance of each pollutant and their correlation based on the simulated data. For unbi-

ased estimators, the RMSE measures the amount of variation in the estimate around the

true value, with smaller values indicating more precise estimation. Table 5.5 displays the

RMSE for each model parameter in the simulation study of the multi-pollutant model,

which shows that the intercepts in the model (β11, β21, β
(t)
11 , β

(t)
21 ) have much higher un-

certainty than the other regression parameters. This is expected as in a simple linear

model, the intercept is sensitive to the change of slope of the fitted line. The RMSE of

the elements of the covariance matrix are very low (ranging from 0.007 to 0.010) indi-

cating that the variance of each pollutant and their correlation are estimated precisely.

In addition, the table also shows that the multi-pollutant model has low RMSE values

for the white noise σ2 and τ2.

Table 5.6 presents the coverage for each parameter, which shows that all the parameters

are estimated well because the coverages are quite close to their nominal 95% level. Note

that the CI coverage of β
(1)
13 and β

(1)
23 are a little lower than those from the other years,

which is likely because the variance of their posteriors are smaller compared to those

from the other four years. For example, the variance of β
(1)
13 is 0.098 while they are

0.134, 0.146, 0.169, 0.133 for β
(2)
13 , β

(3)
13 , β

(4)
13 , β

(5)
13 , respectively. On the other hand, the

CI coverage for σ2
5C22 is a little higher than those from the other years, which is likely

because the variance of its posterior samples is higher than those from the other years

(the variance of σ2
5C22 is 0.00022 while they are 0.00014, 0.00012, 0.00009, 0.00010 for

σ2
1C22, σ2

2C22, σ2
3C22, σ2

4C22, respectively). The high CI coverage of κ is also likely due

to the high variance of the posterior samples.

In order to test the performance of the multi-pollutant model (5.1), I consider the extra

simulations with different levels of correlation (Corr=0.1, 0.5, 0.9) between NO2 and

PM10 and also compare their results with those from the single-pollutant model (4.3).
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Table 5.7 shows that the bias, RMSE and coverage for the covariance for different levels

of correlation between NO2 and PM10 are similar to those with Corr=0.7. Therefore,

the multi-pollutant model works for different levels of correlation. Table 5.8 compares

the performance between the multi-pollutant model and single pollutant model, which

suggests that the former outperforms the latter in terms of bias, RMSE and coverage.

5.5 Validation study

In this section, a validation study is presented, that compares the performance of the

multi-pollutant model (5.1) and the single pollutant model (4.3). As the multi-pollutant

model proposed in this chapter focuses on using between pollutant correlations to im-

prove prediction, I use the observations from the common sites as the test data of this

validation study. This enables the information regarding one pollutant to help improve

the prediction of the other pollutant. For computational efficiency, only the common

sites for 2010 have been used. Specifically, I run a leave one out cross validation for those

common monitoring sites excluding 2 kerbside sites and 1 rural site. That is, for each

common site in 2010 I leave out the PM10 concentration only, and use all the remaining

observations for both NO2 and PM10 from 2006-2010 to predict it. This process is then

repeated for NO2. In running the single pollutant model, only the observations at each

site in 2010 are left out. The results of the validation study are shown in Table 5.9 which

indicates that the multi-pollutant model outperforms the single pollutant model.

Table 5.9: Bias, root mean square prediction error and coverage probabilities from
a leave one out cross validation excercise for the single pollutant model (4.3) and the

multipollutant model (5.1), based on the the common sites in 2010.

Model Bias RMSPE CI Coverage

Single pollutant for NO2 -0.008 0.248 96.6
Multi-pollutant for NO2 -0.006 0.213 96.6
Single pollutant for PM10 -0.015 0.160 90.0
Multi-pollutant for PM10 -0.019 0.135 90.0

Firstly, both single and multi-pollutant models are essentially producing unbiased es-

timates. Secondly, the RMSPE values indicate that the multi-pollutant model outper-

forms the single pollutant model, with improvements of 14% and 16% respectively for

NO2 and PM10. This is mainly because the correlation between NO2 and PM10 of 0.627

(seen in Table 5.10) is substantial and hence improves the prediction. Thus knowing
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the value of one pollutant at a site increases the predictive accuracy for the other pol-

lutant. Table 5.9 also shows that the RMSPE for NO2 is much higher than for PM10,

which is mainly because the variance/uncertainty in NO2 observations is higher than

that for PM10. For example the marginal error variance for PM10 is about 0.024 from

both single and multi-pollutant models, which compares to about 0.067 for NO2 (Table

5.10). Finally, Table 5.9 also shows that both single and multi-pollutant models have

the same performance in terms of the 95% CI Coverage, all of which are good because

they are close to their nominal 95% levels. Note that the coverage for PM10 is lower at

90%, which is likely because the validation study is only based on 30 sites and hence

maybe unstable.

Table 5.10: Results from the single pollutant model (4.3) and the multipollutant
model (5.1) for 2010.

Model Variable Posterior mean Posterior 95% CI

Multi-pollutant corr(NO2, PM10) 0.627 (0.490, 0.730)
σ2
NO2

0.068 (0.051, 0.091)

σ2
PM10

0.025 (0.018, 0.033)

Single pollutant σ2
NO2

0.067 (0.054, 0.083)

σ2
PM10

0.023 (0.018, 0.030)

5.6 Application

The multi-pollutant model proposed in this chapter has been applied to a real data set

from Scotland from 2006-2010, to predict multi-pollutant concentrations, which are then

used for the study of multi-pollutant health effects in the next chapter. The pollutants

include NO2 and PM10 which have been described in Section 5.2, and both the measure-

ments and the modelled data are on the log scale. The predictors for both pollutants for

each year contains the site types (e.g. kerbside, roadside, rural, background), modelled

data, and temperature. Inference for the multi-pollutant model is implemented within a

Bayesian framework via McMC simulation, using a mixture of Gibbs sampling steps and

Metropolis-Hastings moves. The results presented in this section are based on 30,000

posterior samples after 20,000 burn-in iterations.
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5.6.1 Model fitting

The multi-pollutant model was used to model the real data set in my study and the

Markov chain Monte Carlo simulations for all the regression parameters had converged

according to the Heidelberg and Welch Diagnostic with default arguments in R (eps=0.1,

p-value=0.05) (Heidelberger and Welch [57], Heidelberger and Welch [58]). An example

of the traceplot for the parameters of the simulations is shown in Figure 5.2 which

displays the traceplot of the overall mean (ββ1) of the regression parameters.

The posterior means of the regression parameters from the application study are pre-

sented in Table 5.11, showing that all the regression parameters of both NO2 and PM10

vary slightly over time, which is expected as the potential correlations between predic-

tors and the response are likely unchanged within five years. This likely suggests that a

simplification of model 5.2 by assuming constant regression parameters across time could

be suitable for my research data. Table 5.11 also shows that the coefficient of modelled

NO2 (ββ1) data is much higher than for PM10 (ββ2), indicating the modelled NO2 is a

better predictor for measured NO2 than the modelled PM10 for measured PM10. This

is not surprising as the correlation between modelled NO2 and measured NO2 is higher

than that between modelled and measured PM10 (see the bottom right in Figure 5.1).

Furthermore, it is also interesting to compare the output from the multi-pollutant model

to those from the single pollutant model in the previous chapter. For example, the coef-

ficient of the modelled data for NO2 from the multi-pollutant model is lower than that

from the single pollutant model (see Table 4.5). The drop of the coefficient is likely

because in the multi-pollutant model the information on the correlation between NO2

and PM10 helps to explain part of the variance in NO2 response.

Table 5.11: Posterior means for the regression parameters from multi-pollutant model.

Parameter ββ
(1)
1 ββ

(2)
1 ββ

(3)
1 ββ

(4)
1 ββ

(5)
1 ββ

(1)
2 ββ

(2)
2 ββ

(3)
2 ββ

(4)
2 ββ

(5)
2

Intercept 1.14 1.14 1.14 1.14 1.14 1.40 1.40 1.40 1.40 1.40
Kerbside 0.88 0.88 0.88 0.89 0.88 0.53 0.53 0.53 0.53 0.53
Roadside 0.51 0.50 0.49 0.49 0.49 0.29 0.30 0.30 0.30 0.31
Rural -0.73 -0.73 -0.72 -0.72 -0.72 -0.31 -0.31 -0.31 -0.31 -0.31
Modelled data 0.43 0.43 0.43 0.44 0.44 0.29 0.28 0.29 0.29 0.30
Temperature 0.09 0.09 0.08 0.08 0.09 0.08 0.07 0.07 0.05 0.06
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Figure 5.2: The results of the 30,000 McMC simulations for the overall mean of the
regression parameters.
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5.6.2 Model prediction

As the multi-pollutant model seems to outperform the single pollutant model (see Sec-

tion 5.5), it is used to predict the pollution concentrations (NO2 and PM10) at 1 km

resolution across mainland Scotland, which results in 68,448 prediction locations for each

of T = 5 time periods (years). For a single location s∗ and time period t, predictions

of NO2

(
X

(t)
1 (s∗)

)
and PM10

(
X

(t)
2 (s∗)

)
are made from the posterior predictive distri-

bution f
(
X

(t)
1 (s∗), X

(t)
2 (s∗)|X

)
, where X denotes the measured pollution data for both

pollutants on the natural log scale for all time periods. M = 100 predictions are made

from each posterior predictive distribution via composition sampling, sampling from the

distribution N

 Z(t)
1 (s∗)ββ

(t)
1

Z
(t)
2 (s∗)ββ

(t)
2

 , σ2
tC2×2 ⊗ In

, using the equation

[(
X

(t)
1 (s∗)

)(m)
,
(
X

(t)
2 (s∗)

)(m)
]
| Θ(m) ∼ N

 Z(t)
1 (s∗)(ββ

(t)
1 )(m)

Z
(t)
2 (s∗)(ββ

(t)
2 )(m)

 , (σ2
t )

(m)(C2×2)(m) ⊗ In


(5.5)

where (m) denotes the mth McMC sample drawn from the posterior distribution of the

model parameters and Z
(t)
1 (s∗), Z

(t)
2 (s∗) are the corresponding vectors of covariates for

the prediction location s∗ at time t for NO2 and PM10, respectively. The posterior mean

and standard deviation of the M exponentiated predictions (as the measured data were

modelled on the natural log scale) is taken at each grid point for NO2, resulting in

Q = 68, 448 spatial point predictions (X̃
(t)
1 (s1∗) . . . , X̃

(t)
1 (sQ∗)) and also their standard

deviations for each of T = 5 time periods. The same procedure has been done for PM10.

For example, Figure 5.3 shows the maps of the predicted NO2, PM10 and their predicted

standard deviations on 1km grid across mainland Scotland for 2010, showing that the

predicted NO2, PM10 have a similar pattern to their modelled data (See Figure 4.1

and 5.1) where the concentrations are high in the lower middle part of the country.

Figure 5.3 also shows that the predicted uncertainty tends to be high where the predicted

concentrations are high. For 2006 to 2009, the maps of the predicted NO2, PM10 are

similar to 2010 and they are not shown here.

As the disease data used in the next chapter to investigate the multiple pollutants health

effects relate to irregularly shaped geographical units (IGs), and are thus spatially mis-

aligned to the grid level pollution predictions, I consider two different spatial aggregation
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Figure 5.3: The predicted NO2 and PM10 for 2010 from multi-pollutant model based
on 1km resolution (unit: µgm−3). Top left is the predicted NO2 and top right is its
predicted standard deviation, bottom left is the predicted PM10 and bottom right is

its predicted standard deviation.
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approaches here to convert the gridded data into the IG scale, the spatial mean and the

spatial maximum value in each areal unit, which have been used in the previous chapter

(equation 4.20). The areal level summaries are shown with an example of Figure 5.4,

which displays the predicted NO2, PM10 for 2010 on IG scale. The figure shows that

the maps using spatial mean aggregation function are much smoother than those using

spatial maximum aggregation function. This indicates the heterogeneous distribution of

the gridded data within IGs.

5.7 Conclusion

In this chapter, a multi-pollutant model which extends the single pollutant model in the

previous chapter is proposed, which allows the use of the correlation between pollutants

to improve predictions. The performance of this multi-pollutant model is good since

the simulation study shows that the model parameters are estimated without bias, the

RMSE of each parameter is low, and the coverage of each parameter is quite close to its

nominal 95% level. Furthermore, the validation study shows that the multi-pollutant

model outperforms the single pollutant model proposed in the previous chapter in terms

of the RMSE, with the improvements of 14% and 16% for NO2 and PM10, respectively.

The multi-pollutant model is then applied to a real data set from Scotland from 2006-

2010, and both the predicted NO2 and PM10 concentrations for each 1km grid across

Scotland are obtained. Finally, these gridded data are converted into IG scale by taking

the spatial mean or maximum of the gridded data lying in each IG as the representative

concentrations for that IG, which will be used in the next chapter to investigate the

multiple pollutant health effects.
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Figure 5.4: The predicted NO2 and PM10 for 2010 from multi-pollutant model based
on IG scale (unit: µgm−3). Top left is based on using the max gridded NO2 concen-
trations in each IG, top right is based on using the mean gridded NO2 concentrations
in each IG, bottom left is based on using the max gridded PM10 concentrations in each
IG, bottom right is based on using the mean gridded PM10 concentrations in each IG.
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Chapter 6

Health Effects of Exposure to

Multiple Pollutants

6.1 Introduction

Recall that the pollutants people breathe contain a complex mixture of particle and

gas phase pollutants (e.g. NO2, PM10, O3, PM2.5, SO2, CO), therefore a traditional

single pollutant health study in chapter 4 fails to account for the combined effects of

pollutant mixtures. This chapter aims to explore the health effects of exposure to

multiple pollutants simultaneously, and also to develop and compare several methods

for incorporating exposure uncertainty into the investigation of health effects.

In the previous chapter a Bayesian multi-pollutant model allowing the correlation be-

tween pollutants to help improve the predictions was proposed, which extends the single

pollutant model proposed in chapter 4. By applying this multi-pollutant model to the

real data set in my study, 68448 1km gridded predictions for NO2 and PM10 are ob-

tained across mainland Scotland. Then the spatial mean and maximum aggregation

functions are used to convert these grid level concentrations into areal units (IG), which

results in two spatially representative concentration maps for each pollutant. Note that

the pollutants considered in my study include only NO2 and PM10 due to the sparse

observations for the other pollutants.

A simple approach to investigate multi-pollutant exposure in epidemiologic analysis is to

use a co-pollutant model, which fits a single regression model with multiple pollutants to

120
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estimate the health effects of each pollutant (e.g. Yu et al. [144], Tolberta et al. [130]).

However, a number of pollutants are highly correlated with each other such as PM2.5

and NO2 (Seaton and Dennekamp [116]), because they may be generated by common

processes or be driven by similar factors such as meteorology, which means that it is

inappropriate to include such pollutants in a single model as they are collinear, and thus

their individual effects would not be well estimated.

Therefore, several statistical methods have been proposed to deal with this multi-

collinearity issue. A simple approach is to construct an air quality indicator (AQI)

based on the average of multiple pollutants, which is also called a Score of Exposure,

with examples including Bruno and Cocchi [20], Powell and Lee [103], Lee et al. [77]

and Hong et al. [61]. An AQI is a number that can be used by government agencies

to inform the public how polluted the air currently is or how polluted its forecast to

become. Different countries have their own air quality indices, corresponding to differ-

ent national air quality standards. For example, a Daily Air Quality Index has been

used in the UK, which depends on pollutant concentrations averaged over specified pe-

riods (http://www.metoffice.gov.uk/ ), while an Air Quality Health Index is adopted by

Canada, which is calculated based on the relative risks of a combination of common air

pollutants that are known to harm human health (https://ec.gc.ca/ ). Generally speak-

ing, air pollution data are collected according to three dimensions: time, space and type

of pollutant. These dimensions are reduced by means of aggregation processes, so as to

obtain a synthetic value (Bruno and Cocchi [20]). However, the score is based on an

a-priori attribution of weights to each pollutant (equal weights are usually taken), which

ignores the correlation between the contributing pollutants and does not allow for de-

termination of the effect of each type of pollutant. A special case of a Score of Exposure

is to utilise a Surrogate, which is the use of the ambient concentration of one pollutant

as an indicator of a combined exposure to several pollutants (Kim et al. [67]). Recently,

another promising method to attribute the weights to each pollutant to obtain exposure

metrics is based on health effects (risk-based metrics) (Oakes et al. [94]). The metrics

incorporate health information and are primarily used to communicate the potential risk

associated with air quality in a health study (To et al. [129]). There are two common

ways to build risk-based metrics. The first is to weight the pollutant concentrations by

scaling them to air quality standards developed to protect public health, and then sum
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the scaled concentrations. The second is an additive combination of pollutant concentra-

tions, in which the individual pollutant concentrations are weighted by their estimated

effects on health. The risk-based metrics are based on determining the metric that has

the strongest association with health (Pachon et al. [96]). The question regarding this

metric is the appropriateness of using health information to create a metric that is then

used as an explanatory variable in a health study.

Another approach, Dimension reduction analysis, can also be used to adjust for the issue

of multicollinearity. Factor analysis (including Principal Components Analysis (PCA))

is a commonly used method of Dimension reduction analysis. It can minimize multi-

collinearity because the derived factors are orthogonal to one another, with examples

including Rushworth et al. [109], Arif and Shah [3] and Qian et al. [105]. As factor

analysis reduces the dimension of explanatory variables, it allows fewer potential pa-

rameterizations of main effects and interactions to be considered. However, there are

some difficulties of factor analysis, which are the choice of the number of factors and the

threshold loading value to interpret the factors.

A Bayesian hierarchical modelling approach can also be used to model multiple pollu-

tants in which the pollutants are correlated, by adding a structured prior model for

the exposure effects. MacLehose et al. [82] summarized four classes of higher-level

(prior) distributions for incorporating similarities among multiple exposures, includ-

ing two parametric and two semiparametric models. These models differ in how their

prior distributions are specified. The first parametric model assumes the exposure effects

of each pollutant follow a normal prior with fixed mean and variance which are deter-

mined by researchers. The lack of a prior distribution on the prior mean and variance

is the distinguishing feature of this model. The second parametric model accounts for

the uncertainty in the prior variance by placing a prior distribution on it. Rather than

assuming a normal prior distribution, the two semiparametric models relax this assump-

tion by letting the prior distribution be random. More details about these four models

can be found in MacLehose et al. [82]. The drawbacks of this approach include the

subjective information that many frequentists distrust, and the requirement of defining

a complete statement of the a-priori distribution that many researchers find too exact

to be realistic.

Recently, Bayesian kernel machine regression (BKMR) was also introduced by Bobb
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et al. [17] as a new approach to study mixtures, in which the health outcome is regressed

on a flexible function of the mixture (e.g. air pollution or toxic waste) components that is

specified using a kernel function. Besides, Bayesian profile regression can also avoid the

pitfalls of exposure variables that are highly collinear. It was used in recent studies (see

e.g. Papathomas et al. [99], Pirani et al. [101] and Coker et al. [28]), which uses covariate

values to observe joint patterns within the covariate data (reducing the dimensionality

of the covariate data) and then relate health risks to joint patterns of exposure.

In epidemiological studies, exposure uncertainty is a key aspect because the exposures

are only estimates and subject to uncertainty which needs to be accounted for. Blair

et al. [16] concluded that exposure misclassification probably occurs in nearly every

epidemiologic study. The effects of exposure uncertainty and the various methods pro-

posed to correct for biases that result when exposure uncertainty is present have been

discussed in Armstrong [4], Thomas et al. [127], Carroll et al. [24]. In addition, the

effects of exposure uncertainty on point and interval estimates of exposure-disease as-

sociations have been investigated theoretically by Gladen and Rogan [48], Pickles [100],

Brunekreef et al. [19], and Stram [123]. However, exposure uncertainty is still an under

research topic in epidemiological study as there have been few original scientific publi-

cations that make use of existing methods for explicit exposure uncertainty correction

in environmental or occupational health fields (Spiegelman [120]). Spiegelman [120] also

suggested three reasons for this: the methods may be inappropriate for the particular

features of environmental health studies, the use of methods to correct for exposure

uncertainty requires exposure validation data which may not be available and the lack

of human and technical capacity to perform the necessary adjustments. There have

been a few recent studies considering exposure uncertainty while investigating air pol-

lution health effects. For example, Dominici et al. [39] and Molitor et al. [90] developed

Bayesian hierarchical measurement error models to incorporate exposure measurement

error into the investigation of relative risk. Other examples include Bennett et al. [10],

Shin et al. [118], Li et al. [81], Allodji et al. [2], and Kioumourtzoglou et al. [68].

In this chapter, both the single pollutant and the multi-pollutant health effects are

investigated under the Bayesian framework. The single pollutant health effects are

investigated based on the improved pollution predictions from the multi-pollutant model

(5.1), while the multi-pollutant health effects are investigated by borrowing the theory

of the added variable plot to handle the collinearity among multiple pollutants. I also
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consider propagating the exposure error into the investigation of health effects. The

reminder of this chapter is organised as follows. Section 6.2 provides the background to

the study and a summary of the data. Section 6.3 outlines the modelling approaches

used in this study. Section 6.4 presents the results of my study. Finally, Section 6.5

contains a concluding discussion.

6.2 Data description

The disease data and the covariates remain the same as chapter 4. The disease data are

yearly numbers of admissions to non-psychiatric and non-obstetric hospitals in each IG

from 2007 to 2011 with a primary diagnosis of respiratory disease, and the covariates

include the percentage of people living in each IG who are in receipt of Job Seekers

Allowance (JSA), and the median property price in each IG.

The pollutants considered in this study are annual mean NO2 and PM10 from 2006-2010,

which are the improved pollution predictions from the application of the multi-pollutant

model proposed in chapter 5. These predictions consist of 100 sets to account for poste-

rior uncertainty, with each set including predictions for each of NO2 and PM10 on a 1km

grid (68,448 in total) across mainland Scotland (see e.g. the maps of the predicted NO2,

PM10 and their predicted standard deviations on 1km grid across mainland Scotland for

2010 in Figure 5.3).

In this chapter, for all the models without considering exposure uncertainty, I use the

mean of the 100 predictions for each grid to represent its predicted concentration. Then

these grid level data are converted into areal units on which the disease data are aggre-

gated, utilizing the spatial mean or maximum aggregation function. For each pollutant,

this gives a predicted concentration for each spatial metric (spatial mean or maximum)

for each IG.

For the models considering exposure error, each set of the grid level data are directly

converted into areal units on which the disease data are aggregated, utilizing the spatial

mean or maximum aggregation function. For each pollutant, this gives 100 predicted

concentrations for each spatial metric (spatial mean or maximum) for each IG. The

variance of these different predictions in each IG accounts for the uncertainty of exposure.
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6.3 Methodology

6.3.1 Single pollutant disease model

Recall from chapter 4 that (Ykt, Ekt) are the observed and expected numbers of disease

cases in areal unit k during time period t, and the model presented here relates the

pollution metrics in section (5.6.2) to the disease counts whilst accounting for other

covariate factors and spatio-temporal autocorrelation. The model used to investigate

single pollutant health effects is the same as chapter 4, and is given by:

Ykt | Ekt, Rkt ∼ Poisson(EktRkt), (6.1)

ln(Rkt) = bTktα+Xqk(t−1)λ+ φkt,

α ∼ N (0, 1000I) ,

φt | φt−1 ∼ N
(
γφt−1, ν

2Q(ρ,W )−1
)
, t = 2, ..., T ,

φ1 ∼ N
(
0, ν2Q(ρ,W )−1

)
,

λ ∼ N (0, 1000) ,

ν2 ∼ Inverse-Gamma(a = 0.001, b = 0.001),

γ, ρ ∼ U[0, 1],

where Xqkt is the spatially representative pollution concentration of pollutant q in areal

unit k during year t. More details about the model can be seen in section 4.3.2.

6.3.2 Co-pollutant disease model

The health effects of exposure to multiple pollutants (2 pollutants in my study) can be

investigated by simply applying Model (6.1) with multiple pollutants to estimate the

health effects of each pollutant. This can be achieved by simply replacing the equation

in Model (6.1) with:
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ln(Rkt) = bTktα+X1k(t−1)λ1 +X2k(t−1)λ2 + φkt,

λ1, λ2 ∼ N (0, 1000) ,

The co-pollutant disease model is a benchmark method to deal with multiple pollutants,

however, this method ignores the high correlation between pollutants (X1kt and X2kt)

and the health effects of each pollutant are likely to be poorly estimated. Therefore, I

propose another multi-pollutant disease model which is given in the next section.

6.3.3 Multi-pollutant disease model

As the pollutants in my study (NO2 and PM10) are highly correlated (see chapter 5),

the co-pollutant disease model does not provide reliable estimate of the health effects

of each pollutant separately. Therefore, in this section I borrow the idea of the added

variable plot to deal with this multicollinearity issue allowing both NO2 and PM10 to

be included in a disease model.

The added variable plot is also referred to as partial regression plot which is a commonly

used method for obtaining a graphical evaluation of the effect of adding an explanatory

variable (say, Xi) to model. An added variable plot illustrates the incremental effect on

the response of specific terms by removing the effects of all other terms. It is formed by:

(1) Compute the residuals of regressing the response variable against the explanatory

variables but omitting Xi; (2) Compute the residuals from regressing Xi against the

remaining explanatory variables; (3) Plot the residuals from (1) against the residuals

from (2). If there is a pattern in this plot, then the adding explanatory variable is

suggested to be added into the model (Ryan [110]).

The added variable plot is based on the fact that the residuals from a standard linear

regression are uncorrelated with an explanatory variable in that model. Therefore,

in my study, I regress one pollutant against another, e.g. regressing PM10 against

NO2. Then I take the residuals of this model, which are uncorrelated with NO2 and

represent the remaining signal of PM10 which cannot be explained by NO2. Finally,



Chapter 6. Health Effects of Exposure to Multiple Pollutants 127

these residuals and the NO2 data can be included in a single disease model without

causing any multicollinearity issues, so as to investigate the health effects of exposure

to both NO2 and PM10 simultaneously.

Therefore, I firstly propose a temporally-varying linear model to regress one pollutant

against another, which allows the intercept and slope for each time period t = 1, ...T to

be different. The reason why I use a temporally-varying linear model here is because

both the intercept and slope vary for different time periods, and a simple linear model

which forces both the intercept and slope to be the same for the entire time period will

lead to an obvious pattern in the model residuals. The proposed temporally-varying

linear model is given as,


X

(1)
2

X
(2)
2

...

X
(T )
2

 =


β

(1)
0 1 + β

(1)
1 X

(1)
1

β
(2)
0 1 + β

(2)
1 X

(2)
1

...

β
(T )
0 1 + β

(T )
1 X

(T )
1

+


ε(1)

ε(2)

...

ε(T )

 (6.2)


ε(1)

ε(2)

...

ε(T )

 ∼ N(0, σ2InT×nT )

where X
(1)
2 = {Xk : k = 1, ..., n} is a vector of the pollution data across all IGs for

pollutant 2 at time 1, ε(1) = {εk : k = 1, ..., n} is a vector of the model residuals across

all IGs for time 1, 1 = (1, ..., 1)n×1. Similarly, X
(1)
1 = {Xk : k = 1, ..., n} is a vector

of the pollution data across all IGs for pollutant 1 at time 1. This temporally-varying

linear model is fitted using least-squares. Note that the purpose to use added variable

plot idea here is to try to understand the additional effect of one pollutant given the

other one, so I do not consider the other covariates (e.g. JSA).

As mentioned earlier, it is well known that the residuals from a linear regression are

uncorrelated to a model explanatory variable. However, for the temporally-varying

linear model proposed (model (6.2)), this statement is not so obvious, so I provide a

proof as follows.
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Theorem 6.1

Denote the estimated model residuals,
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Proof 6.1

As (β̂
(t)
0 , β̂

(t)
1 ) are estimated by minimizing the sum of squared errors SSE(β̂

(t)
0 , β̂

(t)
1 ) =

ΣT
t=1(X

(t)
2 − β̂

(t)
0 1 − β̂(t)

1 X
(t)
1 )>(X

(t)
2 − β̂

(t)
0 1 − β̂(t)

1 X
(t)
1 ), set the partial derivatives of

SSE(β̂
(t)
0 , β̂

(t)
1 ) with respect to β̂

(t)
0 and β̂

(t)
1 equal to zero,

∂SSE(β̂
(t)
0 , β̂

(t)
1 )

∂β̂
(t)
0

= 0, (6.3)

⇒ −2× 1 · (X(t)
2 − β̂

(t)
0 1− β̂(t)

1 X
(t)
1 ) = 0,

⇒ 1 · ε̂(t) = 0,

∂SSE(β̂
(t)
0 , β̂

(t)
1 )

∂β̂
(t)
1

= 0, (6.4)

⇒ −2×X(t)
1 · (X

(t)
2 − β̂

(t)
0 1− β̂(t)

1 X
(t)
1 ) = 0,

⇒X
(t)
1 · ε̂

(t) = 0.

Equation (6.3) and (6.4) give (X
(t)
1 − X̄11) · ε̂(t) = 0, where X̄1 =

Σn
k=1ΣT

t=1X1kt

kt .
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As

E(ε̂(t)) = E(X
(t)
2 − β̂

(t)
0 1− β̂(t)

1 X
(t)
1 ) = (β

(t)
0 1 + β

(t)
1 X

(t)
1 − β

(t)
0 1− β(t)

1 X
(t)
1 ) = 0,

we have

(X
(t)
1 − X̄11) · (ε̂(t) − E(ε̂(t))) = 0.

Therefore,

ΣT
t=1(X

(t)
1 − X̄11) · (ε̂(t) − E(ε̂(t))) = 0.

That is,

cor

((
ε̂(1), ε̂(2), ..., ε̂(T )

)>
,
(
X

(1)
1 ,X

(2)
1 , ...,X

(T )
1

)>)
=

ΣT
t=1(X

(t)
1 − X̄11) · (ε̂(t) − E(ε̂(t)))√

ΣT
t=1(X

(t)
1 − X̄11) · (X(t)

1 − X̄11)ΣT
t=1(ε̂(t) − E(ε̂(t))) · (ε̂(t) − E(ε̂(t)))

= 0.

End of proof

Until now, it has been shown that the residuals from the proposed temporally-varying

linear model (6.2) are uncorrelated to the explanatory variable in the model which is

pollutant X1 = (X
(1)
1 , ...,X

(T )
1 ). Therefore, these model residuals ε̂ and pollutant X1

can be put in a single disease model without causing multicollinearity issues. In other

words, the information of both pollutants can be used simultaneously to investigate the

multi-pollutant health effects. The multi-pollutant disease model can be obtained by

simply replacing the equation in Model (6.1) by:

ln(Rkt) = bTktα+X1k(t−1)λ+ ε̂k(t−1)λr + φkt, (6.5)

λ, λr ∼ N (0, 1000) ,
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Figure 6.1: Four approaches to adjust for exposure uncertainty: X1kt could be NO2

or PM10.

where ε̂kt = X2kt− β̂
(t)
0 − β̂

(t)
1 X1kt is the kth element of ε̂(t) interpreted as the remaining

signal from pollutant X2kt which cannot be explained by pollutant X1kt. λr is the

regression coefficient for variable ε̂kt and assumed to be non-informative in the model

by specifying a large variance in its prior distribution.

6.3.4 Dealing with exposure uncertainty

The multi-pollutant disease model (6.5) assumes the pollution data X1kt is known and

fixed in the disease model, which however is not true. Because X1kt is based on the

predicted concentrations from the multi-pollutant model, and the uncertainty of the

predictions from the multi-pollutant model come from two main sources, with the first

being the measurement error for the observed data and the second being the prediction

uncertainty from the multi-pollutant model. Therefore, it is of interest to allow the

uncertainty in the pollution predictions to be propagated through the model to inves-

tigate their impact on the health effects. In my study, I compare four approaches (see

Figure 6.1) to allow the uncertainty of exposure to be propagated into the investigation

of health effects for the multi-pollutant disease model.

Approach 1
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The first approach to adjust for the exposure uncertainty is to fit the multi-pollutant

disease model (6.5) 100 times, with exposure data being a different posterior sample from

the multi-pollutant model each time. These different exposure data are the M = 100

sets of predictions from multi-pollutant model (see section 5.6.2), the variance of which

represents the uncertainty of the exposure. Then model inference is obtained based on

all the posterior samples from these 100 runs of the multi-pollutant disease model.

Approach 2

An alternative to propagate the exposure uncertainty is to incorporate it into the

Bayesian hierarchical model by allowing the exposure to be sampled from the M = 100

sets of predictions (sample from the joint posterior) for each iteration of the McMC

algorithm. That is the following model has been added to model (6.5)

X1kt = Xi
1kt (6.6)

ε̂kt = ε̂ikt

i = Random(1,2,...,100)

where ε̂ikt corresponds to the residuals resulting from fitting model (6.2) to the ith set

of pollution predictions.

Approach 3

If the variation of the 100 exposure estimates within IGs are comparable to that across

IGs, the performance of both approaches 1 and 2 could be poor. Specifically, the true

effects between health risk and the pollution we want to estimate might be hidden by

the massive posterior uncertainty in the pollution data. Given that the 100 exposure

estimates within each IG are the estimates of a true exposure, their estimate errors

belong to the classical type which assumes that the estimates are unbiased. Errors

of the classical type arise when a quantity is measured by some device and repeated

measurements vary around the true value (Heid et al. [56]). In this case, an alternative

is to add a classical measurement error model as an extra level in the multi-pollutant

disease model. This can be achieved by adding the following into model (6.5).
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X1
1kt, ..., X

100
1kt ∼ N

(
X1kt, σ

2
1

)
, (6.7)

X1kt ∼ N
(
µ1kt, σ

2
1kt

)
,

σ2
1 ∼ Inverse-Gamma(a = 0.001, b = 0.001),

ε̂1kt, ..., ε̂
100
kt ∼ N

(
ε̂kt, σ

2
2

)
,

ε̂kt ∼ N
(
µ2kt, σ

2
2kt

)
,

σ2
2 ∼ Inverse-Gamma(a = 0.001, b = 0.001),

where σ2
1, σ

2
2 are the variances ofX1kt, ε̂kt, respectively, which are allocated non-informative

priors. In addition, weakly informative priors
(
µ1kt, σ

2
1kt, µ2kt, σ

2
2kt

)
can be specified for

X1kt and ε̂kt.

A few assumptions have been made for approach 3. In other words, this approach

is appropriate when the predicted exposures (Xi
1kt) in each IG for each time period

are unbiased, independent and from a normal distribution, and all the predicted IG

exposures have a constant variance across IGs and time periods. These assumptions

are also made for the residuals (ε̂ikt) from model (6.2), which is reasonable because the

residuals are from a linear model (6.2) and the model assumptions are checked later

(section 6.4.3). In the following, I justify these assumptions of Xi
1kt.

Xi
1kt are assumed to be unbiased, because the predicted concentrations from the multi-

pollutant model proposed in chapter 5 appear to be unbiased (see Table 5.9). I check the

independence of the predicted exposures in each IG using the Autocorrelation Function

(ACF), the result of which shows that Xi
1kt are independent. For example, Figure 6.2

shows the ACF plots of Xi
1kt for a randomly selected (k, t). The dependence among

Xi
1kt is because they come from the thinned McMC chain rather than the raw McMC

chain. I check the normality assumption by a normal qq-plot. An example is shown in

Figure 6.3, in which most of the points follow a linear trend suggesting the data can be

treated as normally distributed.

The last assumption of approach 3 is the constant variance for Xi
1kt across IGs and

time periods. Indeed, this is not a good assumption for my data, as the variances for
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Figure 6.2: ACF plots of Xi
1kt for a randomly selected (k, t).
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Figure 6.3: Normal qq plots of Xi
1kt for a randomly selected (k, t).
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Figure 6.4: Scatter plots of the variance of X1kt against X̄1kt and (X̄1kt)
2 for maxi-

mum NO2.

Xi
1kt vary considerably (see Figure 6.6 where the distribution of the standard deviation

of X1kt within IGs is shown). However, this assumption makes the model much easier

to fit and it is also interesting to investigate how this assumption affects the estimated

health impact (compared to approach 4), which is the reason I consider it here.

Approach 4

This approach is to adjust the constant variance assumption of X1kt in approach 3, which

investigates the features of the variation of X1kt first and then relax the assumption. I

used the predictions of X1kt to investigate the assumption and found that there is a linear

trend between the posterior variance of X1kt and (X̄1kt)
2, where X̄1kt = 1

100Σ100
i=1X

i
1kt,

var(X1kt) = 1
100−1Σ100

i=1(Xi
1kt − X̄1kt)

2. For example, Figure 6.4 shows the relationship

between the variance of X1kt and (X̄1kt)
2 for spatial maximum NO2.

Therefore, I adjust the constant variance assumption of X1kt by allowing its variance

to be different across the IGs and time periods. The model of X1kt in approach 3 is

extended to,
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X1
1kt, ..., X

100
1kt ∼ N

(
X1kt, σ

2
1X

2
1kt

)
, (6.8)

X1kt ∼ N
(
µ1kt, σ

2
1kt

)
,

σ2
1 ∼ Inverse-Gamma(a = 0.001, b = 0.001),

where the variation of X1kt is assumed to be linearly dependent on X2
1kt without an

intercept term as suggested by Figure 6.4.

Note that it is under-researched how to allow the exposure variation in disease models,

and in both approaches 3 and 4, this variation is allowed. The exposure has been

specified a normal distribution prior which is what we believe about the pollution data

before fitting the disease model, and the exposure is allowed to be updated depending

on the health data.

6.4 Results

Inference for all models is implemented within a Bayesian framework via McMC sim-

ulation, using a mixture of Gibbs sampling steps and Metropolis-Hastings moves. The

results from my study are based on 50,000 iterations (with 20,000 as burn-in iterations,

after which the chain is checked for convergence). Model inference is obtained based

on the remaining 30,000 posterior samples. The McMC simulation is implemented in R

with the package CARBayesST (see Rushworth et al. [109]).

The regression parameters in disease models are presented as relative risks for a stan-

dard deviation increase in each covariate value, which are NO2 6.84 µgm−3, PM10 1.872

µgm−3, Logprice 0.38, JSA 2.35, residual standard deviation of mean PM10, max PM10,

mean NO2 and max NO2 are 0.71 µgm−3, 0.77 µgm−3, 2.17 µgm−3, 2.61 µgm−3, re-

spectively (see Table 6.3).
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6.4.1 Single pollutant health effects

This section presents the long-term effects of each pollutant individually on health.

The pollution data are the predicted concentrations from the multi-pollutant model

proposed in the previous chapter, which contain two spatially representative pollution

concentration metrics (spatial mean and maximum) for each of NO2 and PM10, and the

health data are respiratory hospitalisation cases. The results are shown in Table 6.1.

Table 6.1: Posterior means and 95% credible intervals of the regression, autocorrela-
tion and variance parameters from fitting the single pollutant disease model.

Parameter Mean NO2 Max NO2 Mean PM10 Max PM10

Pollutant 0.997 1.030 1.017 1.056
(0.983,1.010) (1.013,1.048) (1.005,1.029) (1.046,1.067)

Logprice 0.920 0.920 0.923 0.915
(0.910,0.931) (0.910,0.931) (0.913,0.934) (0.906,0.926)

JSA 1.200 1.197 1.193 1.181
(1.185,1.215) (1.181,1.211) (1.176,1.209) (1.166,1.198)

ν2 0.061 0.060 0.061 0.056
(0.056,0.066) (0.056,0.065) (0.056,0.065) (0.052,0.061)

ρ 0.925 0.900 0.870 0.683
(0.886,0.955) (0.856,0.940) (0.785,0.926) (0.593,0.773)

γ 0.832 0.829 0.829 0.814
(0.796,0.869) (0.792,0.865) (0.792,0.864) (0.778,0.851)

DIC 45120 45118 45117 45103

For NO2, Table 6.1 shows that the spatial maximum NO2 in each IG shows a significant

relationship with respiratory disease while the spatial mean NO2 does not. This is

because the 95% credible interval of the relative risk for the former does not contain the

neutral effect, 1, while the latter does. Specifically, Table 6.1 indicates that a 6.84 µgm−3

increase in peak NO2 exposure is associated with 3% higher respiratory disease hospital

admissions in Scotland, whereas no relationship is observed when the spatial mean NO2

is used. This result is similar to what I found in chapter 4, where the pollution data

are the DEFRA concentrations or the predicted pollution concentrations from the single

pollutant model (4.3).

For PM10, both the spatial mean and maximum PM10 in each IG show significant

relationships with respiratory disease, indicating that a 1.872 µgm−3 increase in mean

PM10 exposure is associated with 1.7% higher respiratory disease hospital admissions in

Scotland, whereas it is 5.6% for a 1.872 µgm−3 increase in peak PM10 exposure. This
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result is similar to what I had found in chapter 3, where the pollution data are the

DEFRA data alone. Therefore, it validates the use of DEFRA PM10 data in my study.

Table 6.1 also shows that ρ > 0.68 and γ > 0.8 across the four models indicating

high spatial and temporal autocorrelation in the disease data after the covariate effects

have been accounted for. Note that ρ from model (Max PM10) is much lower than the

other models, indicating that the spatial autocorrelation in the disease data after the

covariate effects have been accounted for in this model is lower. This is likely because

the maximum metric for PM10 is able to capture more spatial correlation in the disease

data, as the DIC for model (Max PM10) is 45103 which is lower than those from the

remaining models, 45120, 45118, 45117, respectively.

6.4.2 Co-pollutant health effects

The output of the co-pollutant disease model is displayed in Table 6.2, which indicates

that the exposure in each IG using either the spatial mean or maximum PM10 has an

adverse effect on health. However, those results for NO2 show a beneficial effect, and

this is unrealistic. This happens because NO2 and PM10 are highly correlated. When

both of them are fitted in a single model, the health effects for each pollutant are not

well estimated. Table 6.2 also shows that the health effects of NO2 are lower (even

become beneficial) compared to those from the single pollutant health effects in Table

6.1, while those for PM10 are over estimated. In addition, the 95% credible interval for

the relative risks are much wider than those from the single pollutant health effects (see

Table 6.1), indicating that there is more uncertainty for the estimates of the relative

risks. Therefore, the co-pollutant model is not suitable for investigating the health

effects of correlated pollutants.

6.4.3 Multi-pollutant health effects

This section presents the results from fitting the multi-pollutant disease model. In

my study, I consider two orders to combine both NO2 and PM10 exposures into the

disease model, with the first way is that X1 = (X
(1)
1 , ...,X

(T )
1 ) represents NO2, X2 =

(X
(1)
2 , ...,X

(T )
2 ) represents PM10, while the other way is that X1 represents PM10, X2

represents NO2. In addition, there are two spatially representative concentrations for
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Table 6.2: Posterior means and 95% credible intervals of the regression, autocorrela-
tion and variance parameters from fitting the co-pollutant disease model.

Parameter Spatial mean Spatial maximum

NO2 0.926 0.976
(0.904,0.945) (0.958,0.993)

PM10 1.075 1.069
(1.058,1.094) (1.052,1.081)

Logprice 0.922 0.916
(0.911,0.932) (0.905,0.925)

JSA 1.190 1.182
(1.174,1.206) (1.168,1.199)

ν2 0.058 0.056
(0.054,0.063) (0.052,0.061)

ρ 0.758 0.677
(0.682,0.833) (0.585,0.778)

γ 0.819 0.814
(0.783,0.853) (0.778,0.849)

DIC 45112 45100

the exposure. Therefore, in our study, there are four possible ways to fit model (6.2)

and then model (6.5): either using spatial mean or maximum metrics, and where X1

represents either NO2 or PM10.

The model summaries for model (6.2) are shown in Table 6.3, in which the high R2

values (from 0.845 to 0.941) indicate a high correlation between NO2 and PM10. The

table also indicates that there is more variation among the model residuals from using

the spatial maximum metric, compared to those using the spatial mean metric, because

the R2 from the former is lower than the latter for both NO2 and PM10.

The fit of model (6.2) is assessed by checking the model residuals. There is no pattern

in the residual plot against the fitted values, and the normal qq plot of the residuals

shows that most of the points follow a linear trend suggesting the residuals of the model

can be treated as normally distributed (given the size of data is 68448, the tails in the

plot is acceptable). This indicates that the temporally-varying linear model is suitable

for my data set. For example, Figure 6.5 displays the residual plot and its qq plot for

regressing the spatial maximum PM10 against the spatial maximum NO2.

After fitting model (6.2), the remaining signal of X2 which can not be explained by X1

is obtained, which is then added as an covariate into the multi-pollutant disease model.

The results of the multi-pollutant disease model are presented in Table 6.4.
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Table 6.3: Model summaries from model (6.2) (unit for residuals: µgm−3)

Residuals R2 sd(residuals)

mean PM10 0.941 0.71
max PM10 0.908 0.77
mean NO2 0.920 2.17
max NO2 0.845 2.61

Figure 6.5: Model residuals from regressing spatial maximum PM10 against spatial
maximum NO2.
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For models with NO2, compared to the single pollutant health effects in Table 6.1, Table

6.4 shows that the remaining signal from PM10 does not affect the relative risk of NO2. In

addition, the DIC values do not change dramatically between the single pollutant disease

model and the multi-pollutant disease model, indicating that the remaining signal from

PM10 is not very helpful to explain the residuals from the disease data after accounting

for NO2 and other covariates. This is also supported by the non-significant relative risk

of the remaining signal, whose 95% credible interval is (0.994,1.012) using the spatial

mean metric and (0.997,1.013) using the spatial maximum metric. It likely suggests that

NO2 is sufficient to be used alone to investigate the health effects of exposure to both

NO2 and PM10 on respiratory disease in Scotland, given the high correlation between

them.
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Table 6.4: Posterior means and 95% credible intervals of the regression, autocorrela-
tion and variance parameters from fitting the multi-pollutant disease model.

Parameter Mean NO2 Max NO2 Mean PM10 Max PM10

Pollutant 0.997 1.030 1.023 1.063
(0.984,1.011) (1.015,1.045) (1.008,1.034) (1.055,1.072)

Residuals PM10 1.004 1.005 NA NA
(0.994,1.012) (0.997,1.013) NA NA

Residuals NO2 NA NA 1.004 1.018
NA NA (0.991,1.015) (1.009,1.028)

Logprice 0.921 0.920 0.923 0.915
(0.910,0.931) (0.909,0.929) (0.912,0.934) (0.905,0.926)

JSA 1.199 1.196 1.189 1.176
(1.183,1.217) (1.178,1.214) (1.174,1.204) (1.160,1.193)

ν2 0.061 0.060 0.061 0.055
(0.056,0.065) (0.056,0.065) (0.056,0.065) (0.051,0.059)

ρ 0.925 0.900 0.842 0.634
(0.885,0.955) (0.846,0.940) (0.755,0.915) (0.550,0.735)

γ 0.832 0.829 0.828 0.813
(0.795,0.869) (0.794,0.864) (0.792,0.863) (0.776,0.848)

DIC 45116 45126 45111 45098

For models with PM10, Table 6.4 also shows that the remaining signal from spatial mean

NO2 which can not be explained by spatial mean PM10 is not significant in the disease

model, given the PM10 pollutant and other covariates. However, by using the spatial

maximum metric, the remaining signal from NO2 is significant in the disease model, as

the 95% credible interval for the relative risk does not contain the neutral effect, 1. This

is likely because the residuals in model (Max PM10) contain non-ignorable signals which

can help to explain the disease data after accounting for PM10 and other covariates. This

is consistent with Table 6.3, in which the R2 for the temporally-varying linear model

corresponding to model (Max PM10) is the lowest, 0.845, indicating that there is more

residual structure remaining.

As the components from PCA are also orthogonal, I compare the results from the multi-

pollutant disease model to those by using PCA to deal with collinearity. For mean NO2

and PM10, the loadings for the first PC are both 0.707, while they are 0.707 and -0.707

for the second PC. For max NO2 and PM10 the loadings for the first PC are both -0.707,

while they are -0.707 and 0.707 for the second PC. The results based on PCA are shown

in Table 6.5 which indicates that both components are significantly correlated to disease

risk, as the 95% CI for each PC does not contain the neutral value, 1. For mean NO2

and PM10, the relative risk of PC1 is higher than 1 suggesting the adverse effects of the



Chapter 6. Health Effects of Exposure to Multiple Pollutants 142

combination of NO2 and PM10 as the loadings for PC1 are positive. Similarly, for max

NO2 and PM10, the relative risk of PC1 is lower than 1 which also suggests the adverse

effects of the combination of NO2 and PM10 as the loadings for PC1 are negative.

Table 6.5: Posterior means and 95% credible intervals of the regression, autocorre-
lation and variance parameters from fitting the PCA disease model (the relative risks

are based on the same increasing units with those in Table 6.4).

Parameter Mean NO2 Max NO2 Mean PM10 Max PM10

PC1 1.135 0.730 1.035 0.918
(1.041,1.249) (0.680,0.800) (1.011,1.063) (0.900,0.941)

PC2 0.901 1.068 0.728 1.248
(0.884,0.922) (1.050,1.089) (0.685,0.779) (1.179,1.335)

Logprice 0.922 0.916 0.922 0.916
(0.912,0.932) (0.906,0.925) (0.912,0.932) (0.906,0.925)

JSA 1.189 1.185 1.189 1.185
(1.172,1.204) (1.170,1.199) (1.172,1.204) (1.170,1.199)

ν2 0.058 0.056 0.058 0.056
(0.054,0.063) (0.051,0.060) (0.054,0.063) (0.051,0.060)

ρ 0.753 0.679 0.753 0.679
(0.665,0.835) (0.590,0.757) (0.665,0.835) (0.590,0.757)

γ 0.819 0.814 0.819 0.814
(0.784,0.853) (0.778,0.849) (0.784,0.853) (0.778,0.849)

DIC 45106 45099 45106 45099

In summary, the multi-pollutant disease model solves the multicollinearity issue from

the highly correlated NO2 and PM10, which enable the investigation of the health effects

of exposure to both pollutants simultaneously. The results from the multi-pollutant dis-

ease model (Table 6.4) indicate that a 6.84 µgm−3 increase in peak NO2 exposure is

associated with 3% higher respiratory disease hospital admissions in Scotland, whereas

no relationship is observed when the spatial mean NO2 is used, and a 1.872 µgm−3

increase in mean PM10 exposure is associated with 2.3% higher respiratory disease hos-

pital admissions in Scotland, whereas it is 6.3% for a 1.872 µgm−3 increase in peak

PM10 exposure. Table 6.4 also likely to suggest that there are independent health ef-

fects for NO2 and PM10, as the remaining signal from spatial max NO2 which can not

be explained by spatial max PM10 is still significantly associated with health.

6.4.4 Health effects with consideration of exposure uncertainty

This section investigates the multi-pollutant health effects while the exposure error is

considered. Four approaches described in section 6.3.4 have been used to achieve this

goal and the results are provided as follows.
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6.4.4.1 Results from approach 1

The results from fitting the multi-pollutant disease model 100 times are given in Table

6.6, in which for each parameter, the point estimate and credible interval are calculated

from 300,000 posterior samples (100 sets of the thinned posterior samples (3,000) from

each fitting of the disease model).

Table 6.6: Posterior means and 95% credible intervals of the regression, autocorre-
lation and variance parameters from fitting the multi-pollutant disease model using

approach 1.

Parameter Mean NO2 Max NO2 Mean PM10 Max PM10

Pollutant 0.999 1.005 1.002 1.005
(0.990,1.007) (0.997,1.012) (0.995,1.008) (0.999,1.010)

Residuals PM10 1.000 1.000 NA NA
(0.997,1.003) (0.998,1.003) NA NA

Residuals NO2 NA NA 1.000 1.002
NA NA (0.996,1.004) (0.998,1.005)

Logprice 0.920 0.920 0.921 0.919
(0.910,0.930) (0.910,0.930) (0.911,0.931) (0.909,0.929)

JSA 1.199 1.198 1.198 1.198
(1.183,1.215) (1.182,1.215) (1.182,1.214) (1.181,1.214)

ν2 0.061 0.061 0.061 0.061
(0.056,0.065) (0.056,0.065) (0.056,0.065) (0.056,0.065)

ρ 0.923 0.919 0.916 0.909
(0.884,0.953) (0.878,0.950) (0.870,0.951) (0.861,0.945)

γ 0.832 0.831 0.832 0.829
(0.802,0.861) (0.801,0.860) (0.802,0.861) (0.798,0.858)

Compared to the results from the multi-pollutant disease model without considering

exposure uncertainty in Table 6.4, Table 6.6 shows that the relative risk using spatial

maximum NO2, spatial mean and maximum PM10 are no longer significant, and all the

95% CI of relative risk are narrower. According to my knowledge, the disappearance of

the significant relative risk is likely not the real case. Instead, it is likely caused by the

comparable variation of the 100 exposure estimates within IGs, compared to the exposure

variation across IGs. Figure 6.6 shows the histograms for the standard deviation of the

exposure within IGs for the spatial mean (maximum) of both NO2 and PM10, in which

the red lines are the exposure variation across IGs while exposure uncertainty is not

considered. These histograms show that the exposure estimate variations within IGs

are comparable to those across IGs, as a non-ignorable part of the former is higher than

the latter. The shrinkage of the relative risk CI in Table 6.6 is likely because the model

is more certain about the neutral health effect of each exposure set (out of 100 sets).
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Figure 6.6: Standard deviations (sd: µgm−3) of the exposure within IGs: with the
red lines are the sd of the exposure across IGs while exposure error is not considered.
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Table 6.6 also displays that the ρ for Model (Max NO2, Mean PM10, Max PM10) are

0.919, 0.916,0.909, respectively. They are higher than those from the multi-pollutant

disease model without considering exposure error (0.900, 0.842,0.634, see Table 6.4),

indicating higher spatial auto-correlation of the model residuals while the exposure un-

certainty is allowed. This is likely because the relative risks for these models in Table

6.6 are no longer significant and also lower than those from Table 6.4, indicating that

the exposure in Table 6.4 helps explain more disease data variation and then there is

less spatial structure left in the residuals.

6.4.4.2 Results from approach 2

While I consider the exposure uncertainty by allowing the exposure to be sampled from

the W = 100 sets of predictions for each iteration of the McMC, the results are displayed

in Table 6.7 which are similar to those from approach 1. That is the relative risk where

using spatial maximum NO2, spatial mean and maximum PM10 are no longer significant,

and all the 95% CI become narrower. The disappearance of the significant relative risk

is also likely because the exposure estimate variations within IGs are comparable with

that across IGs. The spatial correlation parameters ρ are also higher compared to those

models without considering exposure error (Table 6.4).

6.4.4.3 Results from approach 3

As the variation of the predicted exposures within IGs is comparable to that across the

IGs and time periods, both approaches 1 and 2 are not appropriate for considering the

exposure error in the investigation of the health effects of exposure. Approach 3, which

considers the exposure error by adding a classical measurement error model into the

multi-pollutant disease model, can address this issue because it allows the variation of

exposure being estimated from the predicted exposures in each IG.

Before fitting approach 3, non-informative priors have been used for X1kt, ε̂kt, that is

σ2
1kt = σ2

2kt = 100, 000, µ2kt = 0 and µ1kt is the average level of the exposure across IGs

according to my knowledge (mean NO2 17 µgm−3, max NO2 19 µgm−3, mean PM10

13 µgm−3, max PM10 15 µgm−3). The convergence of (X1kt, ε̂kt, σ
2
1, σ

2
2) in approach 3
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Table 6.7: Posterior means and 95% credible intervals of the regression, autocorre-
lation and variance parameters from fitting the single pollutant disease model using

approach 2.

Parameter Mean NO2 Max NO2 Mean PM10 Max PM10

Pollutant 1.000 1.002 1.001 1.002
(0.995,1.005) (0.998,1.006) (0.998,1.005) (1.000,1.005)

Residuals PM10 1.000 1.000 NA NA
(0.998,1.002) (0.999,1.001) NA NA

Residuals NO2 NA NA 1.000 1.001
NA NA (0.998,1.002) (0.999,1.003)

Logprice 0.920 0.919 0.920 0.919
(0.909,0.931) (0.909,0.931) (0.910,0.929) (0.909,0.931)

JSA 1.198 1.198 1.198 1.196
(1.183,1.215) (1.182,1.215) (1.182,1.213) (1.181,1.214)

ν2 0.061 0.061 0.061 0.061
(0.057,0.065) (0.057,0.065) (0.056,0.065) (0.056,0.065)

ρ 0.921 0.920 0.919 0.914
(0.882,0.953) (0.878,0.949) (0.878,0.950) (0.873,0.947)

γ 0.832 0.831 0.831 0.830
(0.801,0.861) (0.800,0.860) (0.801,0.860) (0.801,0.860)

was checked and observed. For example, Figure 6.7 shows the trace plot of σ2
1, σ

2
2 and

a randomly selected X1kt and ε̂kt while applying approach 3 to spatial maximum PM10,

which indicates the parameters have converged.

The posterior mean and 95% credible intervals for σ2
1 (variance of X1kt within an IG)

and σ2
2 (variance of ε̂kt within an IG) are shown in Table 6.8. For all the models, σ2

2

is higher than σ2
1 and the CI is wider, indicating that there is less certain information

about ε̂ compared to X1.

Table 6.8: Posterior mean and 95% credible intervals for σ2
1 (variance of X1kt within

an IG) and σ2
2 (variance of ε̂kt within an IG) from model (6.7).

X1kt σ2
1 = Var(X1kt) ε̂kt σ2

2 = Var(ε̂kt)

Mean NO2 0.260 (0.259, 0.261) Residuals mean PM10 0.825 (0.822, 0.828)
Max NO2 0.415 (0.413, 0.416) Residuals max PM10 0.723 (0.721, 0.726)
Mean PM10 0.310 (0.309, 0.311) Residuals mean NO2 0.715 (0.712, 0.717)
Max PM10 0.455 (0.454, 0.457) Residuals max NO2 0.531 (0.529, 0.533)

The main results from approach 3 shown in Table 6.9 display that the relative risks of

pollution in model (Max NO2, Mean PM10, Max PM10) are significant, indicating that

a 6.84 µgm−3 increase in peak NO2 exposure is associated with 4% higher respiratory

disease hospital admissions in Scotland, where as no relationship is observed when the
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Figure 6.7: McMC trace plot for σ2
1 , σ

2
2 and a randomly selected (X1kt, ε̂kt) from

approach 3 by using spatial maximum of PM10.

spatial mean NO2 is used, and a 1.872 µgm−3 increase in mean PM10 exposure is asso-

ciated with 1.7% higher respiratory disease hospital admissions in Scotland, whereas it

is 4.7% for a 1.872 µgm−3 increase in peak PM10 exposure.

Similar to the results from the multi-pollutant disease model without considering expo-

sure uncertainty (Table 6.4), Table 6.9 also shows that the remaining signal from PM10

is not helpful to explain the residuals from the disease data after accounting for NO2

and other covariates. The 95% CIs of the relative risk contain the neutral effect, 1,

which are (0.990,1.031) for using spatial mean metric and (0.984,1.010) for using spatial

maximum metric. The same result has been found for the remaining signal from spatial

mean NO2, however, the remaining signal from spatial maximum NO2 is significant in

the model, the likely reason of this has been discussed in section 6.4.3.

Compared to Table 6.4, Table 6.9 also displays wider CI for the relative risk, which is to

be expected, because the uncertainty of exposure (X1) have been propagated into the

estimation of the relative risk. The same is true for ε̂.
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Table 6.9: Posterior means and 95% credible intervals of the regression, autocorre-
lation and variance parameters from fitting the multi-pollutant disease model using

approach 3.

Parameter Mean NO2 Max NO2 Mean PM10 Max PM10

Pollutant 0.993 1.040 1.017 1.047
(0.976,1.011) (1.024,1.060) (1.004,1.032) (1.034,1.061)

Residuals PM10 1.010 0.998 NA NA
(0.990,1.031) (0.984,1.010) NA NA

Residuals NO2 NA NA 0.981 1.012
NA NA (0.965,1.004) (1.002,1.026)

Logprice 0.921 0.918 0.922 0.911
(0.910,0.930) (0.908,0.929) (0.913,0.933) (0.901,0.921)

JSA 1.200 1.197 1.194 1.188
(1.184,1.218) (1.182,1.214) (1.176,1.210) (1.170,1.204)

ν2 0.061 0.060 0.061 0.059
(0.056,0.065) (0.056,0.065) (0.057,0.065) (0.055,0.063)

ρ 0.927 0.899 0.885 0.777
(0.888,0.957) (0.856,0.936) (0.805,0.936) (0.690,0.853)

γ 0.832 0.825 0.828 0.811
(0.802,0.860) (0.796,0.854) (0.799,0.858) (0.781,0.839)

DIC 45126 45128 45116 45116

6.4.4.4 Results from approach 4

The same as approach 3, before fitting approach 4, non-informative priors have been

used for X1kt, ε̂kt. The convergence of (X1kt, ε̂kt, σ
2
1, σ

2
2) in approach 4 was checked and

observed. For example, Figure 6.8 shows the trace plot of σ2
1, σ

2
2 and a randomly selected

X1kt and ε̂kt while applying approach 4 to spatial maximum PM10, which indicates the

model parameters have converged.

The posterior mean and 95% credible intervals for σ2
1 (slope between var(X1kt) and X2

1kt)

and σ2
2 (variance of ε̂kt within an IG) are shown in Table 6.10. σ2

2 is expected to be the

same with those from approach 3, as approach 4 only adjusts the constant variance for

X1kt. The values for σ2
1 which is the slope between var(X1kt) and X2

1kt, indicate that

the dependency between var(X1kt) and X2
1kt) for NO2 is much stronger than PM10 as

the slopes for NO2 are steeper than those for PM10.

The main results from approach 4 are shown in Table 6.11. According to this table,

the relative risks of the pollutants (Max NO2, Mean PM10, Max PM10) are significant,

indicating that a 6.84 µgm−3 increase in peak NO2 exposure is associated with 3.4%

higher respiratory disease hospital admissions in Scotland, whereas no relationship is
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Figure 6.8: McMC trace plot for σ2
1 , σ

2
2 and a randomly selected (X1kt, ε̂kt) from

approach 4 by using spatial maximum of PM10.

Table 6.10: Posterior mean and 95% credible intervals for σ2
1 (slope between var(X1kt)

and X2
1kt) and σ2

2 (variance of ε̂kt within an IG) from model (6.8).

X1kt σ2
1(slope between var(X1kt) and X2

1kt) ε̂kt σ2
2 = var(ε̂kt)

Mean NO2 0.0435 (0.0434, 0.0437) Residuals mean PM10 0.825 (0.822, 0.828)
Max NO2 0.0568 (0.0566, 0.0570) Residuals max PM10 0.723 (0.721, 0.726)
Mean PM10 0.0172 (0.0171, 0.0173) Residuals mean NO2 0.715 (0.712, 0.717)
Max PM10 0.0214 (0.0214, 0.0215) Residuals max NO2 0.531 (0.529, 0.533)

observed when the spatial mean NO2 is used, and a 1.872 µgm−3 increase in mean

PM10 exposure is associated with 1.4% higher respiratory disease hospital admissions in

Scotland, whereas it is 3.3% for a 1.872 µgm−3 increase in peak PM10 exposure.

As the only difference between approach 4 and 3 is that the former allows the variance

of X1kt to be different across IGs and time periods while the latter assumes a constant

variance for X1kt across k and t, I compare the relative risk of X1kt from approach 4

to that from approach 3. Firstly, the point estimates of the relative risk of X1kt from

approach 4 are slightly lower than approach 3 but the statistical significance is consistent

for both approaches. That is the relative risks of pollutant in model (Max NO2, Mean

PM10, Max PM10) are significant. Secondly, the credible intervals of the relative risk
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of X1kt from approach 4 are narrower than approach 3, indicating that allowing the

varying variance of X1kt can reduce the uncertainty of the estimates of the relative risk

of X1kt.

It is also of interest to compare the results from approach 4 to the multi-pollutant

disease model which doesn’t consider the uncertainty of exposure (Table 6.4). For model

Mean NO2, Mean PM10 and Max PM10, the point estimates of the relative risk of X1kt

from approach 4 drop. For model Mean NO2, Max NO2 and Mean PM10, the credible

intervals of the relative risk of X1kt from approach 4 are narrower even though this

approach propagates the uncertainty of pollution X1kt into the estimation of the relative

risk. This is likely because the pollutant X1kt in approach 4 is allowed to be updated

depending on the health data which will probably be informative for X1kt, then the

uncertainty of the relative risk of X1kt is reduced. Note that approach 3 also allows X1kt

to be updated depending on the health data, but the credible intervals of relative risk

of X1kt are still wider than those from the multi-pollutant disease model which doesn’t

consider the uncertainty of exposure (Table 6.4). This is likely because the assumption

of the constant variance of X1kt in approach 3 is not appropriate which weaken the

improvement from the informative health data.

Table 6.11: Posterior means and 95% credible intervals of the regression, autocor-
relation and variance parameters from fitting the multi-pollutant disease model using

approach 4.

Parameter Mean NO2 Max NO2 Mean PM10 Max PM10

Pollutant 0.992 1.034 1.014 1.033
(0.979,1.002) (1.021,1.046) (1.003,1.024) (1.024,1.043)

Residuals PM10 1.013 0.998 NA NA
(0.992,1.032) (0.985,1.009) NA NA

Residuals NO2 NA NA 0.978 1.012
NA NA (0.954,1.004) (1.004,1.024)

Logprice 0.920 0.918 0.922 0.912
(0.909,0.931) (0.908,0.929) (0.912,0.931) (0.901,0.921)

JSA 1.202 1.193 1.194 1.186
(1.183,1.217) (1.175,1.208) (1.179,1.209) (1.171,1.203)

ν2 0.061 0.060 0.061 0.059
(0.056,0.065) (0.056,0.065) (0.056,0.065) (0.055,0.063)

ρ 0.930 0.889 0.885 0.778
(0.894,0.959) (0.835,0.931) (0.822,0.932) (0.689,0.850)

γ 0.832 0.825 0.829 0.811
(0.802,0.862) (0.795,0.854) (0.799,0.858) (0.781,0.841)

DIC 45128 45125 45120 45111
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6.5 Discussion and conclusion

In this chapter I investigated the health effects from exposure to NO2 and PM10 simul-

taneously, and also tried four approaches to propagate the exposure uncertainty into the

investigation of health effects.

The investigation of the impact from the exposure to multiple pollutants is a natural

extension to the single pollutant health effects (see chapter 4), because the polluted

air people breathe is a mixture of different pollutants. In this study, I showed that

the benchmark method, co-pollutant disease model, could lead to poor estimation of

the influence of each individual pollutant, given NO2 and PM10 are highly correlated

(multicollinearity issue). Therefore, I proposed a temporally-varying linear model to

regress one pollutant (X2) against another (X1), the residuals of which are then included

along with (X1) into a single disease model to investigate the impact of exposure to both

pollutants simultaneously thus resolving the multicollinearity issue.

The residuals from the temporally-varying linear model are interpreted as the remaining

signal from (X2) which can not be explained by (X1), and the residual coefficient in

the multi-pollutant disease model can be interpreted as the impact of the variation in

one pollutant which can not be explained by another pollutant on the risk. Therefore,

whether X1 (main pollutant in the multi-pollutant disease model) represents NO2 or

PM10 should depend on which pollutant we want to investigate. In this study, I consider

both situations (X1 represents NO2 or PM10) and the results show that a 6.84 µgm−3

increase in peak NO2 exposure is associated with 3.4% higher respiratory disease hospital

admissions in Scotland, whereas no relationship is observed when the spatial mean NO2

is used, and a 1.872 µgm−3 increase in mean PM10 exposure is associated with 1.4%

higher respiratory disease hospital admissions in Scotland, whereas it is 3.3% for a 1.872

µgm−3 increase in peak PM10 exposure. The results also indicate that the remaining

signal from both spatial mean and maximum PM10 which can not be explained by NO2,

are not helpful to explain the residuals from the disease data after accounting for NO2

and other covariates. Similarly, the remaining signal from spatial mean NO2 which can

not be explained by spatial mean PM10 is not significant in the disease model, given the

PM10 pollutant and other covariates. However, when using spatial maximum metric, the

remaining signal from NO2 is significant in the disease model. This is likely because the
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residual variable in this model contains non-ignorable signal which can help to explain

the disease data after accounting for the PM10 and other covariates.

Allowing the exposure uncertainty to be propagated into the investigation of health

impact is important in epidemiological studies, because the the predicted exposures are

likely to contain errors and uncertainties. In this study, I consider four approaches

to adjust the exposure uncertainty. The first one is to fit the multi-pollutant disease

model 100 times, with a different posterior predictive sample for pollution each time.

The second approach is to incorporate the uncertainty of the exposure into the muti-

pollutant disease model by allowing the exposure being sampled from the M = 100 sets

of predictions for each iteration of the McMC algorithm. The third approach is to add

a classical measurement error model as an extra level in multi-pollutant disease model,

while the last approach is similar to the third approach except that the variance of (X1) is

allowed to be varied across IGs and time periods which matches the real data set better.

Note that it is a two stage process to propagate exposure uncertainty in my study as

the exposure predictions were obtained before fitting the disease models. However, a

holistic approach by combining the exposure model and the disease model into a unified

model could also be possible. This unified model will allow the exposure uncertainty to

propagate directly into the disease models as the relative risks are estimated based on

the pollution observations rather than the predictions from exposure model.

The results suggest that both approaches 1 and 2 appear to perform poorly as the

significant relative risks observed previously have disappeared, due to the variation of

the exposure estimates within IGs being comparable to that across IGs. In contrast,

both approaches 3 and 4 maintain the significant relative risks while incorporating the

exposure uncertainty. The results also show that the point estimates of the relative risk

of X1kt from approach 4 are slightly lower than approach 3 but the statistical significance

is consistent for both approaches. That is the relative risks of pollutant in model (Max

NO2, Mean PM10, Max PM10) are significant. In addition, the credible intervals of the

relative risk of X1kt from approach 4 are narrower than approach 3, indicating that

allowing the varying variance of X1kt can reduce the uncertainty of the estimates of the

relative risk of X1kt. Compared to the multi-pollutant disease model which does not

consider the uncertainty of exposure, the 95% credible intervals for relative risk of X1kt

from approach 4 are narrower even though this approach propagates the uncertainty of

pollution X1kt into the estimation of the relative risk. This is likely because the pollutant



Chapter 6. Health Effects of Exposure to Multiple Pollutants 153

X1kt in approach 4 is allowed to be updated depending on the health data which will

probably be informative for X1kt, thus the uncertainty of the relative risk of X1kt is

reduced.

Note that both approaches 3 and 4 are computationally expensive because a large num-

ber of parameters (as the exposure for each IG and each period is treated as an unknown

parameter) are updated in each iteration of the McMC algorithm. In my study, it takes

only about 15 minutes (using R software) to fit the multi-pollutant disease model (6.5)

without considering exposure uncertainty based on a normal PC. However, the com-

putational burden dramatically increases while implementing either approach 3 or 4,

which requires about 7 hours. Therefore, I wrote C++ subroutines to make the coding

computationally efficient and the running time drops sharply from 7 hours to 35 minutes.

In this study, two spatial aggregation functions (mean and maximum) have been used

to construct spatially representative pollution concentrations, while the majority of epi-

demiological studies use the average (mean) concentration (see e.g. Maheswaran et al.

[84]; Lee et al. [76] and Warren et al. [136]). The results suggest that the choice of spa-

tial aggregation metric used to quantify areal level pollution concentrations has a major

impact on the resulting health effect estimate, which naturally leads to the question of

which metric should one use. For example, spatial maximum metric for NO2 is likely

to be better than mean if the population are dense near the main roads, because NO2

concentrations are usually higher near main roads where most of the exhaust fumes are

produced.



Chapter 7

Conclusion

In this thesis, the long-term air pollution health effects had been investigated using

a spatial ecological design in which the exposure uncertainty was incorporated into

the estimation of health effects. The study region was mainland Scotland, UK, which

consists of 1,207 Intermediate Geographies, each having an average population of around

4,300 people.

The disease data were yearly numbers of admissions to non-psychiatric and non-obstetric

hospitals aggregated in each Intermediate Geography from 2007 to 2011 with a primary

diagnosis of respiratory disease, while the pollutants contain NO2 and PM10 reported

as the annual mean and come from a sparse monitoring network and an atmospheric

dispersion model (DEFRA). I used the pollution data from 2006 to 2010 rather than from

2007 to 2011, to make sure that the exposure occurred before the hospital admissions.

In addition, other confounding variable were also considered in this study to describe

the spatial pattern in disease risk, including the percentage of people living in each IG

who are in receipt of Job Seekers Allowance and the natural log of median property price

in each IG.

As the disease data were counts, I used Poisson log-linear models for the analysis. In

the model, the random effects were modelled using conditional autoregressive (CAR)

priors to account for residual spatio-temporal autocorrelation in the disease data after

the known covariates have been accounted for.
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The models were fitted under a Bayesian framework with the McMC being computed

using one of two basic algorithms, the Gibbs sampling algorithm and the Metropolis-

Hastings (M-H) algorithm. More details about this thesis are given as follows.

7.1 Initial impression of the air pollution health effects

The initial impression of the air pollution health effects was conducted in chapter 3,

which used a benchmark method to investigate the health effects of NO2 and PM10

individually. In this benchmark method, the pollution data from the monitoring network

were not used, instead, only the modelled grid pollution data (DEFRA) have been

used. The DEFRA data were converted into the IG scales on which the disease data

were collected, by computing the spatial mean (or maximum) concentrations over the

modelled grid data lying within each small area.

Note that the spatial mean is almost exclusively used as the aggregation function to

transfer the DEFRA pollution data into a single metric for each IG (e.g. Maheswaran

et al. [84] and Lee et al. [76]). In this thesis, I investigated both spatial mean and

maximum metrics as it may be that peak concentrations are more suitable to be used

to represent population exposure.

The results indicated that significant excess relative risks of respiratory hospital admis-

sions were associated with long-term exposures to NO2 or PM10 across IGs in mainland

Scotland. Specifically, with a 6.84µgm−3 increase of peak NO2 concentration, the hospi-

tal admissions related to respiratory disease in each IG will increase about 2.6% (ranges

from 2.1% to 3.4%), while a significant increase was not found using the spatial mean

NO2. With a 1.872µgm−3 increase of mean PM10 concentration in the air, the hospital

admissions related to respiratory disease in each IG will increase about 5.4% (ranges

from 5.1% to 5.6%), while it is 3.7% (ranges from 3.5% to 4.0%) using the spatial max-

imum PM10 metric. These results are broadly consistent with those from other recent

studies.

One obvious shortcoming for this benchmark method is that only the DEFRA data had

been used to estimate exposure, which ignored the measured observations, and the latter

are known to be more reliable.
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7.2 Improved air pollution predictions - single-pollutant

model

In chapter 4 I proposed a single-pollutant model, which was a novel statistical fusion

model and enabled the use of both DEFRA and monitoring measurements to make

point-level predictions of pollution across my study region, and finally aggregate these

point-level predictions to the areal level to get the exposure for each IG.

The single-pollutant model was a spatio-temporal model which allowed for temporal

autocorrelation in the model parameters in adjacent years. Conversely, I did not assume

the measured concentrations were spatially autocorrelated after accounting for the co-

variate effects even though they are spatial data, because the exploratory analysis using

geostatistical models provided little evidence for the presence of such autocorrelation

after accounting for covariate effects (including DEFRA data). In order to assess the

validity of this modelling approach, I compared my proposed model against using DE-

FRA data in isolation and the spatio-temporal pollution model (SGH) proposed by

Sahu et al. [112] which did allow for residual spatial autocorrelation.

I measured the predictive performance using a 10-fold cross validation approach, and

then quantified model performance by computing the prediction bias, root mean square

prediction error (RMSPE) and the coverage probabilities of the 95% prediction intervals.

The results showed that the single-pollutant model gave negligible bias, and model SGH

had an RMSPE that was around 24% higher than that from my proposed single-pollutant

model, despite all models having the same covariates. This is because the spatial random

effects in Model SGH were competing with the covariates to explain the variation in

the response, resulting in attenuation in the estimated covariate effects. The results

also showed that using the DEFRA concentrations in isolation results in poorer spatial

prediction than using both sources of data, with a RMSPE of 0.86 compared with 0.31 for

the models proposed here. Finally, it is also shown that the DEFRA concentrations were

an important covariate in the air pollution model as they resulting a reduced RMSPE.
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7.3 Improved air pollution predictions - multi-pollutant

model

In chapter 5, the multi-pollutant model which extended the single-pollutant model in

chapter 4 was proposed to predict multiple pollutant concentrations. It allowed the cor-

relation among pollutants to help improve the prediction of one pollutant by borrowing

strength from the others.

The multi-pollutant model was also a spatio-temporal model which allowed the regres-

sion parameters to be temporally autocorrelated. Similar to the single-pollutant model,

the spatial correlation among the observations was not considered, as the pollution ob-

servations across mainland Scotland did not have any residual spatial correlation after

accounting for covariate effects.

The performance of this multi-pollutant model was good since the simulation study

showed that the model parameters were estimated without bias, the RMSE of each

parameter was low, and the coverage of each parameter was quite close to its nominal

95% level. Furthermore, the validation study showed that the multi-pollutant model

outperformed the single pollutant model proposed in chapter 4 in terms of the RMSE,

with improvements of 14% and 16% for NO2 and PM10, respectively.

7.4 Single pollutant health effects

I investigated the single pollutant health effects by fitting a single disease model (4.21) us-

ing each pollutant individually. Three types of pollution data had been considered in this

study, DEFRA data, predictions from the single pollutant model and predictions from

the multi-pollutant model. It is believed that the quality of the pollution predictions

from the multi-pollutants model was better than the other two, as the multi-pollutant

model used the correlation among pollutants to improve prediction. In addition, the

quality of the pollution predictions from the single pollutant model were also better

than the DEFRA data, as the former predicted the pollution using both the monitoring

measurements and the DEFRA data. Therefore, it is of interest to compare the esti-

mated relative risks while using different types of pollution data. The results from the

DEFRA data were shown in chapter 3 which were also reviewed in section 7.1. The
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results from fitting to the predictions from the single pollutant model and the multi-

pollutant model were shown in chapter 4 and 6, respectively.

For NO2, the statistical significance of the estimated relative risk was consistent for

the three types of pollution data. That is the peak NO2 concentration in the air was

significantly associated with the respiratory hospital admissions in each IG, while the

spatial mean NO2 concentration was not. The similarity of the results across pollutant

predictions validates the use of the DEFRA NO2 data in my study even though they

are known to be biased. The results from using the predictions from the multi-pollutant

model suggested that a 6.84 µgm−3 increase in peak NO2 exposure was associated with

3% (1.3%, 4.8%) higher respiratory disease hospital admissions in Scotland, whereas no

relationship was observed when the spatial mean NO2 was used.

For PM10, the statistical significance of the estimated relative risk was also consistent

for both DEFRA data and the predictions from the multi-pollutants model. That is

both the peak and mean PM10 concentrations in the air were significantly associated

with the respiratory hospital admissions in each IG. The use of the DEFRA PM10

data in my study was also validated. The results from using the predictions from the

multi-pollutant model suggested that a 1.872 µgm−3 increase in peak PM10 exposure

was associated with 5.6% (4.6%, 6.7%) higher respiratory disease hospital admissions

in Scotland, while it was 1.7% (0.5%, 2.9%) higher for a 1.872 µgm−3 increase in mean

PM10.

7.5 Multiple pollutants health effects

I investigated the impact of the exposure to both NO2 and PM10 simultaneously in

chapter 6. As NO2 and PM10 were highly correlated to each other in my study, I first

regressed NO2 (or PM10) on PM10 (or NO2) and used its residuals in the disease model

as well as PM10 (or NO2), thus investigating the health effects of exposure to both

pollutants simultaneously. These residuals were interpreted as the remaining signal

from NO2 (or PM10) which could not be explained by PM10 (or NO2), however, it was

difficult to interpret their effects in the multi-pollutant disease model.

The output from the multiple pollutant disease model confirmed the adverse effects of

both NO2 and PM10 from the single pollutant studies. It showed that a 6.84 µgm−3
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increase in peak NO2 exposure was associated with 3.4% (2.1%, 4.6%) higher respiratory

disease hospital admissions in Scotland, whereas no relationship was observed when the

spatial mean NO2 was used, and a 1.872 µgm−3 increase in peak PM10 exposure was

associated with 3.3% (2.4%, 4.3%) higher respiratory disease hospital admissions in

Scotland, whereas it was 1.4% (0.3%, 2.4%) for a 1.872 µgm−3 increase in mean PM10

exposure.

The results also indicated that the remaining signal from both spatial mean and max-

imum PM10 which could not be explained by NO2, were not helpful to explain the

residuals from the disease data after accounting for NO2 and other covariates. Similarly,

the remaining signal from spatial mean NO2 which could not be explained by spatial

mean PM10 was not significant in the disease model, given the PM10 pollutant and other

covariates. However, by using the spatial maximum metric, the remaining signal from

NO2 was significant in the disease model. This is likely because the residual variable

in this model contained a non-ignorable signal which could help to explain the disease

data after accounting for the PM10 and other covariates.

7.6 Dealing with exposure uncertainty

In this thesis, I developed and compared four approaches to incorporate the exposure

uncertainty outlined in chapter 6. The first one was to fit the multi-pollutant disease

model 100 times, with a different posterior predictive sample for pollution each time.

The second approach was to incorporate the uncertainty of the exposure into the muti-

pollutant disease model by allowing the exposure to be sampled from the M = 100 sets

of predictions for each iteration of the McMC algorithm. The third approach was to

add a classical measurement error model as an extra level in the multi-pollutant disease

model, while the last approach was similar to the third approach except that the variance

of exposure was allowed to be varied across IGs and time periods which matched the

real data set better.

The results suggested that both approaches 1 and 2 appear to perform poorly as the

significant relative risks observed previously have disappeared, due to the variation of the

exposure estimates within IGs being comparable to that across IGs. In contrast, both

approaches 3 and 4 maintain the significant relative risks while allowing the exposure
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errors. The estimates of the relative risk of exposure from both approaches 3 and 4

were consistent, that spatial maximum NO2, spatial mean and maximum PM10 were

all significantly associated with the respiratory hospital admissions. In addition, the

uncertainty of the relative risk of X1kt is reduced compared to the multi-pollutant disease

model which doesn’t consider the uncertainty of exposure, indicating that the health

data are informative for the update of pollution as the pollution data in approach 4

were allowed to be updated depending on the health data. Note that both approaches 3

and 4 are computationally expensive due to the requirement of updating a large number

of parameters (as the exposure for each IG and each period is treated as an unknown

parameter) in each iteration of the McMC algorithm.

7.7 Key themes

This thesis contributes to epidemiological studies by improving our understanding in a

few aspects. The pollution predictions are improved by fusing multiple sources of pollu-

tion data, with the example in this thesis that the predicted NO2 concentrations from a

fusion model of both measured and DEFRA data are better than the standard DEFRA

data. The prediction of one pollutant can be improved by borrowing the strength from

the others, which is shown by the validation study of the proposed multi-pollutant model

in chapter 5. Although the pollution concentrations can be improved by fusing different

sources of pollution data, the health effects are largely consistent between using these

fused pollution concentrations and the standard DEFRA data. This validates the use

of DEFRA data in the study of air pollution health effects.

Exposure uncertainty is a key aspect in the study of air pollution health effects as the

exposures are only estimates and subject to uncertainty which needs to be accounted for.

This thesis develops several new methods to propagate the exposure uncertainty into

the health effects model. However, the exposure uncertainty in epidemiological studies

is an under researched topic which needs more work, such as the investigation of its

effects via simulation studies.

We also learn that there are independent health effects for different pollutants, which is

shown in this study, since the remaining signal from NO2 which cannot be explained by
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PM10 is significantly associated with the respiratory hospital admissions after accounting

for PM10 and other covariates effects.

7.8 Discussions and future work

There are several limitations and possible extensions to the statistical analysis of air

pollution health effects that has been carried out within this thesis. The nature of

possible future work involves not only direct extensions of the analysis of the problems

presented, but also could involve additional statistical challenges.

There is a limitation of the design of the monitoring network in my study, where the

monitor locations are highly clustered in urban area while no monitors exist in large parts

of the study region (see Figure 4.1). Therefore, in chapter 4, the predictive performance

for those exposure models cannot be assessed uniformly across Scotland, which lead to

the uncertainty of the prediction performance at rural areas where no monitors exist.

However, as it is known that the NO2 concentrations are low in rural regions where the

traffic is few, so the level of uncertainty should be low and the DEFRA concentrations

should be able to pick up the low background levels.

Another potential limitation lies in the socio-economic deprivation confounders used in

this thesis, which are the percentage of people in receipt of job seekers allowance and

the natural log of the median property price. Socio-economic deprivation is difficult to

measure because it includes various aspects such as income, education and housing, and

these variables are potentially highly correlated. For example, the Index of Multiple De-

privation is an alternative way of measuring socio-economic deprivation. Recent research

by Pannullo et al. [98] reported that the different measures of deprivation can result in

a variety of pollution-health effects. Therefore, it will be worth extending my current

work by investigating how different measures of deprivation affect the pollution-health

effects.

Through the thesis, in disease models the conditional autoregressive (CAR) models were

specified as a prior distribution for a set of random effects, and the spatial correlation

structure induced by these models was determined by geographical adjacency, which

means that two areas have correlated random effects if they share a common border. A

challenge which is also a limitation lying in this assumption is that two geographically



Chapter 7. Conclusion 162

adjacent IGs might have very different risk profiles because of different deprivation levels

or maybe living habits. For example, Lee and Mitchell [78] identified such risk boundaries

in their study in Greater Glasgow. In this case, the random effects for these IGs could

be uncorrelated rather than correlated which is assumed by the neighbouring effects.

Therefore, a potential avenue of future work could be the investigation of the effects

using different definitions of neighbours (e.g. two IGs are defined to be neighbours if

their central points are within a fixed distance, or if one area is one of the h closest areas

to another area in terms of distance).

In this study, the spatial mean or maximum concentrations in each IG have been used to

represent the exposure of the people living there. However, this estimated exposure could

be very different to the real exposure. For example, the air pollution concentrations are

very different from indoors to outdoors and the time for each individual to be outdoors

depends mainly on their jobs. Another example is that some people work far away from

where they live and in this case, the real exposure for these people should be estimated

as a combination of where they work and where they live. Therefore, a further avenue

of future work could be new methodologies to improve exposure estimation.

Note that the respiratory disease is not the only health consequence of long-term ex-

posure to air pollution. In addition, because poor respiratory health can contribute to

other serious diseases, the true health burden to which air pollution may contribute is

likely to be far larger than that estimated. Therefore, an interesting question to answer

in air pollution health studies is: What is the health burden of air pollution? Such stud-

ies would require a multivariate disease model which considers the pollution impacts on

different types of diseases rather than only one specific disease type.

My study showed the consistency between the estimated health effects while using two

types of pollution data, the DEFRA concentrations alone and both the measured and

DEFRA concentrations. This consistency was observed when considering both the spa-

tial mean and maximum as the aggregation functions, and suggested that the DEFRA

concentrations appeared reliable to use in health effect studies despite being biased.

Therefore, it could be of interest to examine whether this result is widely true for other

study regions and pollutants, or whether it is not always so consistent. This reliability

of the DEFRA data is a key question, because its widespread availability makes it a
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popular choice for health effect studies, especially when the measured data are spatially

sparse.

It is of interest to extend the study to a wider or another region, e.g. the whole UK,

so as to know whether the adverse effects of NO2 and PM10 are general or just local

to Scotland. Another extension could be the investigation of air pollution health effects

based on a finer temporal scale, such as monthly, so that the long-term effects of air pol-

lution on health can be investigated with different lags between the occurence of disease

and the exposure. Such studies would be helpful to understand how the relationship

between exposure and human health changes by time.

Finally, the residuals from the temporally-varying linear model (6.2) are interpreted as

the remaining signal from (X2) which can not be explained by (X1), and the residual

coefficient in the multi-pollutant disease model can be interpreted as the impact of the

variation in one pollutant which can not be explained by another pollutant on the risk.

Therefore,X1 (main pollutant in the multi-pollutant disease model) should represent the

main pollutant we want to investigate. Theoretically, we can use the same methodology

to explore simultaneously as many pollutants as we want. However, a challenge for such

studies could be the availability of pollution data. In practice, very few pollutants have

dense networks of monitors to cover a big area (e.g. in my study, the other pollutants

besides NO2 and PM10 are sparsely measured across Scotland), so it is more likely to

investigate such multiple pollutant health effects based on a relative small region. The

proposed multi-pollutant disease model in chapter 6 can be extended to deal with more

than two pollutants. I use three pollutants (X1,X2,X3) as an example to explain how to

extend the multi-pollutant disease model to handle more than two pollutants. Firstly,

regress X2 against X1 to get the residuals ε̂21 which are uncorrelated to X1. Then,

regress X3 against both X1 and X2 to get the residuals ε̂321 which are uncorrelated to

both X1 and X2 (ε̂321 ·X1 = ε̂321 ·X2 = 0). As ε̂21 = X2 − βX1 (β is a constant),

ε̂321 · ε̂21 = ε̂321 · (X2 − βX1)

= ε̂321 ·X2 − ε̂321 · βX1

= 0− 0

= 0
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Therefore, ε̂321 is uncorrelated to ε̂21, and X1, ε̂21, ε̂321 can be put into a single disease

model without causing multicollinearity. Again, a challenge for using this multi-pollutant

disease model to investigate the health effects of exposure to multiple pollutants is the

interpretation of the results, e.g. how to interpret the effects of ε̂321. Note that the

multi-pollutant model proposed in chapter 5 will be used to predict pollution prior

to fitting the multi-pollutant disease model, where the computational challenge likely

occurs. In my study, the spatial correlation between the monitoring data are very weak,

therefore an approximate method used to update the missing observation at each site

is adopted, which assumed the distribution of a missing value at a monitoring site only

depended on another pollutant at the same site rather than all the observations across

all sites. Under this approximation, it took about 3 hours to predict the 1km gridded

concentrations for both NO2 and PM10 across mainland Scotland. If more pollutants are

considered and the spatial correlation between monitoring data is no longer ignorable,

the computational burden could increase dramatically. In addition, more pollutants

also means the increase of computational burden in the implementation of the multi-

pollutant disease model, especially those models proposed in approach 3 and 4 where

the exposure estimates are updated in each iteration of the McMC algorithm.
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