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Abstract 

 

A new type of space debris was recently discovered by Schildknecht in near -

geosynchronous orbit (GEO). These objects were later identified as exhibiting properties 

associated with High Area-to-Mass ratio (HAMR) objects. According to their brightness 

magnitudes (light curve), high rotation rates and composition properties (albedo, amount of 

specular and diffuse reflection, colour, etc), it is thought that these objects are multilayer 

insulation (MLI). Observations have shown that this debris type is very sensitive to 

environmental disturbances, particularly solar radiation pressure, due to the fact that their 

shapes are easily deformed leading to changes in the Area-to-Mass ratio (AMR) over time.  

This thesis proposes a simple effective flexible model of the thin, deformable membrane 

with two different methods. Firstly, this debris is modelled with Finite Element Analysis 

(FEA) by using Bernoulli-Euler theory called “Bernoulli model”. The Bernoulli model is 

constructed with beam elements consisting 2 nodes and each node has six degrees of 

freedom (DoF). The mass of membrane is distributed in beam elements. Secondly, the 

debris based on multibody dynamics theory call “Multibody model” is modelled as a series 

of lump masses, connected through flexible joints, representing the flexibility of the 

membrane itself. The mass of the membrane, albeit low, is taken into account with lump 

masses in the joints. The dynamic equations for the masses, including the constraints 

defined by the connecting rigid rod, are derived using fundamental Newtonian mechanics. 

The physical properties of both flexible models required by the models (membrane density, 

reflectivity, composition, etc.), are assumed to be those of multilayer insulation. Both 

flexible membrane models are then propagated together with classical orbital and attitude 

equations of motion near GEO region to predict the orbital evolution under the 

perturbations of solar radiation pressure, Earth’s gravity field, luni-solar gravitational fields 

and self-shadowing effect. These results are then compared to two rigid body models 

(cannonball and flat rigid plate). In this investigation, when comparing with a rigid model, 

the evolutions of orbital elements of the flexible models indicate the difference of 

inclination and secular eccentricity evolutions, rapid irregular attitude motion and unstable 

cross-section area due to a deformation over time. Then, the Monte Carlo simulations by 

varying initial attitude dynamics (ψ ,  ,  ) and deformed angle ( d ) are investigated 

and compared with rigid models over 100 days. As the results of the simulations, the 
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different initial conditions provide unique orbital motions, which is significantly different 

in term of orbital motions of both rigid models.  

Furthermore, this thesis presents a methodology to determine the material dynamic 

properties of thin membranes and validates the deformation of the multibody model with 

real MLI materials. Experiments are performed in a high vacuum chamber (10
-4

 mbar) 

replicating space environment. A thin membrane is hinged at one end but free at the other. 

The free motion experiment, the first experiment, is a free vibration test to determine the 

damping coefficient and natural frequency of the thin membrane. In this test, the 

membrane is allowed to fall freely in the chamber with the motion tracked and captured 

through high velocity video frames. A Kalman filter technique is implemented in the 

tracking algorithm to reduce noise and increase the tracking accuracy of the oscillating 

motion. The forced motion experiment, the last test, is performed to determine the 

deformation characteristics of the object. A high power spotlight (500-2000W) is used to 

illuminate the MLI and the displacements are measured by means of a high resolution laser 

sensor. Finite Element Analysis (FEA) and multibody dynamics of the experimental setups 

are used for the validation of the flexible model by comparing with the experimental 

results of displacements and natural frequencies.  
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1 Introduction 

This chapter presents an overview of space debris and impact hazards to satellites and the 

development history of orbital debris models. The discovery of High Area-to-Mass Ratio 

(HAMR) debris and their properties are then described. This is followed by state of the art 

review of the different methodologies and approaches developed for orbital motion 

prediction of HAMR debris. Finally, the research motivation, objectives and the thesis 

structure will be presented at the end of the chapter. 

1.1 Space debris  

Space debris is generally classified in two groups: natural (meteoroid) and artificial (man-

made) particles by the Inter-Agency Space Debris Coordination Committee (IADC). As 

the results of 50 years of spaceflight, space activities have led to the increase in the number 

of the man-made objects from launchers (e.g. rocket upper stage, fairings, adapters etc.) 

and deployment of payloads (e.g. satellites and objects lost from astronauts ). In September 

2012, the U.S. Space Surveillance Network (SSN) was able to track more than 23,000 

objects with sizes larger than 10 cm and only one thousand of these were operational 

spacecraft. By extrapolation, objects larger than 1 cm could amount to over 750,000 

pieces. However, scientists estimate that the total number of space junk objects larger than 

1 mm to be more than 170 million. Due to the hypervelocity of debris, in the order of 2.8-8 

km/s, even orbiting paint flakes can damage active satellites as shown in Figure 1.1. In 

order to investigate the damage brought on by small debris on a satellite a joint National 

Aeronautics and Space Administration (NASA) and European Space Agency (ESA) 

investigation was performed. The results in Figure 1.1(b) and Figure 1.1(c) are clear 

evidence of the critical risks to satellites from debris impact. 
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(a)                                                                              (b) 

 

(c) 

Figure 1.1: Damage image detection from NASA. (a)A tiny piece of space junk (a paint fleck) damaged 

the window of the space shuttle during the STS-7 mission (Photo: the NASA Orbital Debris Program 

Office (ODPO)) (b) The image is from the orbital debris hole made in the panel of NASA’s Solar Max 

experiment. (c) A damage from collision with a tiny fragment with high speed of 6.8 km/s from ESA. 
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Figure 1.2 reports the time evolution of the catalogued space debris objects from 1956 to 

2013. This latter classification clearly shows that the fragments resulting from breakups are 

a major of the total populations. Two spikes can be clearly noticed in 2007 and 2009. In 

January 2007, a direct-ascent anti-satellite (ASAT) vehicle [1] was successfully tested by 

destroying an inactive Chinese Fengyun 1C (FY-1C) weather satellite. This impact 

generated more than 2,300 pieces of trackable debris and about 1 million pieces of 1 mm 

larger more debris than any previous space incident. In February 2009, the defunct Russian 

military satellite, Cosmos, collided into one of the active U.S. communications satellite, 

within the Iridium constellation, at 790 km above Siberia [2]. 

 

Figure 1.2 Number of Catalogued objects in Earth orbit by Object Types: This chart shows a summary 

of all objects in Earth orbit officially catalogued by the U.S. Space Surveillance. Fragmentation debris 

includes satellite breakup debris and anomalous event debris while missions-related debris includes all 

objects dispensed, separated, or released as part of the planned mission. [Orbital Debris Quarterly 

News, January 2013]. 

 

Both events generated the worst satellite breakups in history. The SSN reported that a total 

of 5579 had orbited into Low Earth Orbit (LEO) but over 5000 pieces were still at their 

impact orbits in January 2013. The major of fragment decays were from the Iridium 33 and 

Cosmos 2251 because of their lower altitudes. Comparing the orbital lifetime of the debris 

from Iridium 33 and Cosmos 2251, the former had shorter lifetime than the latter due to the 

use of lightweight composite materials in the construction of the Iridium spacecraft, which 

have higher Area-to-Mass ratio (AMR) properties. In addition, some of thousands of 
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fragments down to the millimetre size regime could not be tracked by the SSN. These tiny 

fragments are however still large enough to pose a risk to human space activities due to 

their very high velocities. 

Following the exponential growth of debris objects, there may occur an unbalance between 

the rate of production from collisions and the decay rates. This scenario is called “Kessler 

syndrome” from NASA’s Donald Kessler who, in 1968, suggested a scenario in which the 

amount and density of debris in low-Earth orbit reaches a critical mass resulting in a 

cascading and stochastic debris environment, creating an increasingly greater likelihood of 

collisions. In Figure 1.3, it shows NASA generated computer images of orbital debris 

currently being tracked in Low Earth Orbit and Geostationary Earth orbit (GEO). 

Currently, there are loose international guidelines, set forth by the NASA and ESA, which 

set the requirements for the deorbiting of spacecraft in LEO within 25 years of launch. 

These guidelines have been developed to mitigate the possible exponential growth in the 

number of man-made space objects. 

 

   

a)                                                                 b) 

Figure 1.3 Image of space junk surrounding Earth by computer from NASA Orbital Debris Program 

Office (a) LEO (b) GEO. 

 

1.2 Development of orbital debris models  

The NASA Orbital Debris Program Office (ODPO), established since the 1970s, has 

undertaken to conduct a measurement of the space environment (e.g. observation data of 

collision and explosions of spacecraft and upper stages) to understand the nature of the 

predicted debris environment. The first model developed was the Evolutionary debris 

environment model, EVOLVE, which was capable to describe a one-dimensional model of 

the orbit debris in LEO environment between 200 and 2000 km. As well as serving as 
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stand-alone models for simulating the initial characteristics of debris clouds in Earth orbit, 

the breakup model critically affects the output of NASA’s long-term satellite population 

environment model. This model is able to provide the estimation of size distribution, AMR 

and velocity distributions. The current version, EVOLVE 4.1 [3, 4], is updated with the 

database of observation data and the validation of debris size in range from 1 mm to 10 cm 

of debris test by Anz-Meador [5]. In addition, the standard breakup model in EVOLVE 

would encounter problems when the debris quantity from collision was more than a few 

hundred pieces. Li Yi –Young [6] presented a faster and more precise algorithm for 

calculating the debris cloud orbital lifetime and characterisation from spacecraft collision 

breakup. 

In order to investigate the orbit debris in GEO, “GEO EVOLVE 1.0” was developed by 

ODPO in 1999. This was the GEO region version of EVOLVE 4.0 and the first attempt by 

NASA to simulate the GEO environment. Initially, there was no information on the actual 

position of the GEO object and the model estimated the probability of a future collision 

event through a spatial density representation of two objects within a box that included the 

region of mutual orbital crossing. This effected to slow precession of the node and 

argument of perigee in GEO. Therefore, a new model to improve the overestimation of the 

future collision rate in GEO was required. The GEO EVOLVE 2.0 [7] was developed in 

2004, to address two main issues. Firstly, the development traffic database was upgraded to 

include more parameters such as insertion node, argument of perigee and mean anomaly of 

all launches from 1957 to 2001. Secondly, two new orbital propagation codes (GEOPROP 

and PROP3D) take into account orbital perturbations: atmospheric drag, lunar gravitational 

orbital perturbation, solar radiation pressure perturbation, Earth gravity-field zonal (J2, J3 

and J4) and tesseral (J2,2 , J3,1, J4,2, J4,4) harmonics perturbations and the Earth’s shadow 

effects, as well as including more precise fragment area-to-mass estimation from improved 

observation data.  

Motivations to develop a new model of replace EVOLVE hinge on two reasons. Firstly, a 

one-dimensional description in altitude of the debris environment is inadequate to address 

all issues. Secondly, with an increasing number of space debris, there was a requirement to 

build a full-scale debris mode to describe the near-Earth environment from Low Earth 

Orbit to Medium Earth Orbit (MEO) and to Geostationary Earth Orbit above. These 

concerns were addressed with A LEO-to-GEO Environment Debris model, (LEGEND) [8, 

9]. This model is capable of describing debris characteristics (e.g. size distribution, spatial 

density distribution, velocity distribution, flux etc.) as functions of time, altitude, longitude 
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and latitude. Moreover, LEGEND was updated with a historical simulation component 

(1957-2001). However, all debris in these models are assumed to be rigid object. 

In 1995, ESA developed an orbital debris model called “Meteoroid And Space Debris 

Terrestrial Environment Reference model” (MASTER) [10]. This model was introduced to 

analyse space debris flux and spatial densities in a 3D control volume spanning from LEO 

to GEO debris larger than 0.1 mm. The debris originated from explosion and collision 

fragments, dust, solid rocket motor, lunches and mission-related objects, meteoroids and 

surface degradation products, were observed by the Tracking & Imaging Radar (TIRA), 

European Incoherent Scatter Scientific Association (EISCAT), Goldstone and Haystack 

radars, the ESA Space Debris Telescope (ESASDT) and Database and Information System 

Characterising Objects in Space (DISCOS). In 2004, the debris surveys uncovered and 

unexpected debris population [11, 12]. These objects presented highly eccentric orbits 

rapidly changing orbit parameters, and varying brightness. The possible sources of these 

objects were suspected to be thermal insulation or multilayer insulation (MLI). Flegel [13] 

investigated the orbital dynamics of this debris type and concluded that it was a rigid 

object with effective cross-sectional area (
effA ), considering the maximum surface of the 

object ( A ), times a product of three coefficients (
eff reflectivity deformation tumblingA A D D D   ) 

that were modelled by the reduction in cross-sectional area due to tumbling (
tumblingD ), 

deformation (
deformationD ), and finally actual reflectivity (

reflectivityD ). A uniform distribution 

of values of the coefficients within their respective bounds was used for the propagation of 

the debris objects and then integrated and propagated in MASTER (version 2009). The 

predicted results compared well with the observations of the GEO region. 

1.3 Discovery of High area to mass ratio (HAMR) 

As mentioned above a new population of uncatalogued objects in GEO was detected in 

2004 [11, 12]. This first observation, acquired in the framework of the European Space 

Agency (ESA) for space debris in GEO and in the Geostationary Transfer Orbit (GTO), 

was discovered by the Astronomical Institute of the University of Bern (AIUB). New 

HAMR objects were then detected by the one metre ESA Space Debris Telescope 

(ESADAT), located in Tenerife, Spain, and the one meter Zimmerwald Laser and 

Astrometry Telescope (ZIMLAT), in Switzerland. Earlier studies had shown that the 

characteristics of HAMR debris were large eccentricity and inclination due to solar 

radiation pressure (SRP) effect and the orbital evolution of these objects significantly 
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differs from debris with low AMR. The characteristics of the debris light curve were then 

used to determine the sizes, attitude motion and possible composition of the HAMR 

objects. The light curve investigations by Früh [14] indicated that brightness of cannonball 

objects and rigid sheet objects clearly showed different brightness. The very rapid attitude 

motion due to SRP torque resulted in rapid brightness changes [15]. All current observed 

data of HAMR objects [16] have been collected several years and suggest that HAMR 

objects vary their AMR values throughout their orbital motion. It is also worth noting that 

they can change their geometry (deformation) over time. 

In further investigations, Liou [17] studied the orbital dynamics of this kind of debris from 

the same initial data as Schildknecht. It is thought that this debris originates from thermal 

blankets or MLI. The “thermal blanket” is used to cover all major external surfaces of a 

typical spacecraft as well as individual components to minimize heat transfer by separating 

the individual layer either by spatial separation or by insertion of low conductance spacer 

material. Multiple layers of thin, metalized substrate materials are combined from 

insulating blankets as shown in Figure 1.4. The basic substrates are extremely thin layers 

of PET
®
 (Polyethylene terephthalate), Kapton

®
 and Teflon

®
. These substrates, are coated 

with very thin metal (aluminium, gold or silver on one or both sides of substrate), have a 

thickness in the order of 1000 Ǻ, are very lightweight and flexible and have low outgassing 

properties under vacuum environment. For example, AMR of PET
®
 can have an AMR of 

111.11 m
2
/kg. The satellite bus may be covered by more than 20 layers while a sun shield 

for radio frequency antenna typically consists of less than five layers of MLI [18]. 
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a) 

     
b)                                                                              c) 

Figure 1.4 Multilayer insulation installed with real applications a) MLI Film sample from Dunmore b) 

Multilayer insulation blanket to the Thermal Infrared Sensors (TIRS) for Landsat satellite for the 

Landsat Data Continuity Mission (LDCM) from NASA website c) Multilayer Insulation Installed on 

Anticoincidence Detector (ACD) and the MicroMeteoroid Shield (MMS) from NASA website photo 

credit: Diane Schuster. 

 

This hypothesis seems to be backed by anecdotal evidence as observation of the Hubble 

space telescope in 1998, found the degradation of Fluorinated Ethylene Propylene (FEP
®
) 

surface of the MLI around the telescope [19]. Moreover, recent results of a statistic orbital 

decay analysis of the AMR distribution from Fengyun-1C breakup [20] have been shown 

that about 5% of the catalogued fragments have AMR ≥ 1 m
2
/kg and around 1% have 

AMR > 10 m
2
/kg (reaching to 90 m

2
/kg). This spread is very similar results that of the 

Cosmos 2252 fragment collision. However, the larger HAMR fragments generated by the 

Iridium 33 resulted in a faster debris decay and reentry of 26% of the catalogued fragment 

for AMR ≥ 1 m
2
/kg and 5% for AMR ≥ 10 m

2
/kg as shown in Figure 1.5. 
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a) 

 
b)                                                                  c) 

Figure 1.5 Area-to-Mass Ratio distribution inferred from a statistical orbital decay analysis a) 

Fengyun-1C b) Cosmos 2251 c) Iridium 33 Anselmo, L., et al. [20, 21]. 

 

In order to investigate the fragments of DebrisSat (DS) from an explosion of a spacecraft 

[22, 23], Murakami experimented by shooting an aluminium alloy solid sphere (30 mm, 

approximately 40 grams) through a satellite in two different areas as shown in Figure 1.6. 

The results of experiment can be seen in Figure 1.7. Figure 1.8 shows that MLI is the 

HAMR among other objects. The classification of debris with AMR from Murakami’s 

experiments supported the thesis that MLI could possibly be one of the sources of HAMR 

objects. 
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Figure 1.6 Shot F that shot through solar panel before. Shot R that was shot opposite side of the solar 

panel (Graphic by Murakami, J., et al. [23]). 

 

a)                                                                                       b) 

Figure 1.7 Overall of fragments a) Shot F b) Shot R[23]. 

 

  

Figure 1.8 Area to mass ratio from shot a) Short F b)Shot R (Graphic by Murakami, J., et al. [23]). 
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1.3.1 The investigation of orbital dynamics of High Area-to-Mass Ratio 

debris 

Having identified the HAMR debris population, the efforts were then focused on the 

investigation of the long term orbital dynamics under perturbations (solar radiation 

pressure and luni-solar third body attraction). Initially, the HAMR objects are assumed 

follow a simple cannonball model, which allows to neglect attitude motion and varying 

AMR values. 

Firstly, Liou [17] studied the orbital dynamics of HAMR objects in GEO using two 

numerical solvers: SPCM and PROP3D high fidelity orbit integrators based on Encke’s 

method. The coefficient of reflectivity, Cr (dimensionless radiation pressure coefficient), of 

the surface was considered to study the eccentricity and inclination evolution over 

extremely long periods by Anselmo [21]. Results showed that the Cr as a function of the 

AMR affected the variation of inclination. Another study of the orbital motion by Valk 

[24-26] applied a Hamiltonian formulation of averaged equations of motion to develop a 

semi-analytical theory for this type of debris over short-, mid- and long-term orbital motion 

in GEO environments, which included the Earth shadow effect (cylindrical model). This 

approach was faster than traditional numerical integration and much more accurate than 

analytical theories. All investigations agreed that the amplitude of inclination was 

proportional to the AMR values and the resulted in periodic significant changes in term of 

eccentricity. 

In conclusions, all the above studies approximated HAMR debris to the cannonball model, 

which treats the object as a sphere with constant reflection properties and ignores the 

coupling of orbital dynamics with attitude dynamics.  

1.3.2 Coupled attitude and orbital dynamic and light curve  

In order to improve the accuracy of orbital prediction of HAMR debris, Früh analyzed the 

coupled attitude and orbital motion of GEO HAMR debris over short time periods [14]. In 

this study, MLI objects were assumed to be a single sheet of MLI in a different geometry 

(flat plate or curled plate) and the substrate of MLI materials are assumed to be PET
®
 and 

Kapton
®
. The equations of motions were modelled under full GEO environment 

(gravitational field, direct solar radiation pressure, Earth magnetic field and the influence 

of the Earth shadow effect). The result demonstrated that rapid attitude motion due to solar 

torque led to significant changes in the eccentricity and inclination of the orbits when 
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compared with the cannonball model. Furthermore, the self-shadowing effect by means of 

the tessellation technique [27] provided further changes to both attitude and orbital 

elements evolution. Coupling the attitude and orbital dynamics was shown to improve the 

accuracy prediction of the debris orbital evolution. 

However, the oversimplification of a rigid body due to assumption of a constant AMR 

value (no deformation) led to inaccurate propagation of the orbital dynamics for this debris 

type [14]. This is supported by the studies on AMR variation of the HAMR debris by 

Musci and Früh [16, 28]. The results of the observations suggest a complicated attitude 

motion and deformation of the debris, which results on an actual change in the AMR 

values over time. In addition, the investigation from Sakva [29], which compared the 

observation data of a known object with simulation results based on cannonball model, 

showed that the SRP cannonball model was not appropriate for either short or long term 

orbit prediction of HAMR objects. 

McMahon [30] studied the solar radiation effects on HAMR objects with varying 

geometries. The HAMR model was capable of assuming one of five configurations as 

shown in Figure 1.9. The basic idea behind this work is that as the object increases its spin 

rate, it would relax into an increasingly flatter shape. The debris would then behave as a 

perfectly flat rigid object (Figure 1.9(c)). The results of this study agreed with previous 

investigations [17, 24-26, 31] in that SRP can induce very fast tumbling. There are 

however some limitations with this work most notably that the deformed mode requires 

integration time steps several orders less than those typical of orbital motion and hence 

long term propagation becomes exceedingly expensive in computational terms. 

Additionally, this model does not behave like a continuously deformed object but only as a 

discrete set of 5 possible configurations. 

 

                                  a)                                                  b)                                             c) 

Figure 1.9 Show some changing shape moving from the initial geometry a)1
st
 shape(initial shape) b) 4

th
 

shape c) 5
th

 shape(flat pate) [30]. 
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1.4 Research motivation and objectives 

A new debris type was discovered in 2004 with HAMR, reflection properties, fast 

tumbling and significantly perturbed orbital motions in GEO environment [11, 12, 16, 32]. 

Following detailed observations and laboratory-based analysis, it is believed that these 

objects could be MLI pieces that delaminated from spacecraft due to aging, explosions or 

collisions [19, 22, 23]. 

The orbital evolutions of HAMR objects by approximation through the cannonball model, 

with constant AMR and no consideration for attitude motion, have been studied in GEO 

under perturbations over short and long term periods. The orbital dynamics of HAMR 

objects are highly perturbed due to direct solar radiation pressure and even small changes 

in the effective AMR, which can lead to significant changes in the orbital evolution [17, 

24-26, 31]. However, observations indicated that the AMR values change over time and 

hence the objects exhibit rapid attitude changes. This means that more accurate HAMR 

modelling is required to consider the 6 Degrees of Freedom (DoF) motion by coupling 

orbital and attitude dynamics. The SRP torque will be responsible for the fast attitude 

dynamics of this debris type. Additionally, a more accurate model of the varying shape of 

the HAMR debris will provide a more precise prediction because of more the better 

modelling of the SPR effects on the object. It is therefore desirable to model a simple yet 

effective, flexible model that can account for variations of the cross-sectional area while 

keeping the computational complexity low. This model will be a more accurate long term 

orbital prediction [14, 27, 30, 33]. 

In recent studies by Channumsin et al.[34, 35], the HAMR debris is modeled as a simple, 

flexible model based on finite element method and multibody dynamics. Both models are 

able to adapt to a continuous changing shape. The results of this investigation have shown 

irregular and fast rotation including each time step of the propagation. Solar radiation 

pressure significantly perturbs the orbital dynamics, generates unstable attitude motion and 

leads to deformation of the geometry of the object. In order to validate these flexible model 

two experiments performed in a vacuum chamber to reduce air friction, have been carried 

out. The first experiment allowed the determination of the bending stiffness and damping 

ratio of the membrane by means of free motion. Then, forced motion is achieved by 

exposing the membrane to high power spotlight, representing SRP, and measuring the 

displacement. The experimental results show a good agreement with the numerical 

simulations of the multibody model, and FEA model. 
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In summary, the main objectives of this doctoral thesis are the following: 

1. Development of a simple yet effective model for flexible debris 

 Develop a model flexible debris based on Finite Element Method and multibody 

dynamics  

 Investigate the orbital dynamics of flexible debris under GEO perturbations (Earth 

gravitation, luni-solar third body attractions and solar radiation pressure) and 

compare the results with a rigid model. 

 Investigate the attitude and orbital dynamics as well as varying geometry of the 

flexible model under self-shadowing effect. 

2. Validations of the flexible model 

 Design and perform an experiment to determine the damping ratio of a real 

multilayer insulation membrane. 

 Perform an experiment to simulate solar radiation pressure displacement and 

compare the results with the analytical methods (multibody dynamics, normal 

mode theory and Finite Element Analysis (FEA). 

1.5 Thesis structure 

This doctoral thesis is divided into six main chapters that cover different aspects of the 

study. The main goal of this thesis is to develop and a simple yet effective, model of 

flexible, low strength debris. The orbital dynamics of the new model are then compared to 

the classic model, based on rigid object and cannonball assumptions. Experimental data 

will then be used to validate the analytical models.  

Chapter 2 is to model the coupling of orbital and attitude dynamics of a rigid object. 

Orbital motion subject to environmental perturbations from the Earth’s gravitation, third 

body perturbations (Sun and Moon) and solar radiation pressure in GEO environment are 

presented in this chapter. The simulated section presents the orbital dynamics of the 

cannonball model (neglecting attitude motion) and flat rigid plate (coupled attitude and 

orbital motions). 
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Chapter 3 introduces a simplified but effective model to represent the deformation flexible 

HAMR debris, subject in particular to torques caused by solar radiation pressure and the 

Earth gravitational field, by means of Finite Element Method (FEM). This model adds a 

further set of dynamical equations, which accounts for the flexibility of the object, into the 

attitude and orbital equations; the resulting system is then numerically integrated to better 

evaluate the coupling between orbital and attitude dynamics. Due to a more precise 

estimation and prediction of the actual shape and orientation of the debris at any given time 

than by simply assuming the case of a rigid body, the effects of the perturbations on the 

orbit can be computed more precisely leading to improvements in the long-term prediction 

of the orbital evolution. Results show that the eccentricity changes of flexible debris are 

different than for equivalent rigid bodies and their attitude motions are unique. 

Chapter 4 presents a flexible model as a series of lump mass, connected through flexible 

joints, representing the flexibility of the membrane itself. The mass of the membrane, 

albeit low, is taken into account with lump masses in the joints. The equations of motion, 

including the constraints defined by the connecting rigid rod, are derived using 

fundamental Newtonian mechanics. The physical properties of the objects required by the 

model (membrane density, reflectivity, composition, etc.), are assumed to be those of real 

multilayer insulation. This flexible membrane model is then propagated together with 

classical orbital and attitude equations of motion near a GEO region to predict the orbital 

evolution under the perturbations of solar radiation pressure, Earth gravity field, luni-solar 

third bodies and self-shadowing effect. Firstly, when comparing with a rigid model, the 

orbital elements over 12 days of are significantly different. The second study, a Monte 

Carlo simulation over 100 days with varying initial attitude dynamics (yaw (ψ ), pitch ( ), 

and roll ( )) and deformation angle ( d ) leads to significantly different orbital motion. 

Chapter 5 presents a methodology to determine the dynamic properties of thin membranes 

with the aim to validate the deformation of the flexible model. Experiments are performed 

in a high-vacuum chamber (10
-4

 mbar) to significantly decrease air friction, inside which a 

thin membrane is hinged at one end but free at the other. A free motion test is used to 

determine the damping characteristics and natural frequency of the thin membrane via 

logarithmic decrement and frequency response. The membrane is allowed to freely swing 

in the chamber and the motion is tracked by a static camera. A Kalman filter technique is 

implemented in the tracking algorithm to reduce noise and increase the tracking accuracy 

of the oscillating motion. Then, the effect of the solar radiation pressure on the thin 



  16 

 

membrane is investigated: a high power spotlight (500-2000 W) is used to illuminate the 

sample and any displacement of the thin membrane is measured by means of a high-

resolution laser sensor. Analytic methods from the natural frequency response and Finite 

Element Method including multibody simulations of both experimental setups are used for 

the validation of the flexible model by comparing with the experimental results of 

amplitude decay, natural frequencies and deformation. The experimental results show good 

agreement with finite element methods. 

Chapter 6 concludes the overall of outcomes of this thesis. In the end, this chapter 

describes limitation of this thesis and future research plans. 
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 2 
 

2 Orbital dynamics of rigid object 

The main objective of this chapter is to investigate and compare the orbital dynamics of 

HAMR rigid objects (cannonball and flat plate) under conservative perturbations from the 

Sun, Moon and Earth gravitations and non-conservative perturbations from solar radiation 

pressure (SRP) over short term and long term periods in the GEO region. Section 2.1 

presents the fundamental concepts of orbital motion and perturbing accelerations relevant 

to this study. Section 2.2 and 2.3 describe the attitude dynamics rotational kinematics 

respectively while section 2.4 provides the integration approach to the propagation of the 

equation of motion. Finally, section 2.5, presents and discusses the results. 

2.1 The perturbed equation of motion 

The general equation of orbital evolution per unit mass, under perturbations in GEO 

environment can be expressed in Cartesian coordinates as: 

SRPtotr a a a a    (2.1) 

Where 
totr  is the total acceleration vector of the object, a  is the acceleration from the 

Earth gravity, the perturbing accelerations of a  and a  are the results of the third-body 

attraction induced by the Sun and Moon respectively, SRPa  is induced by the solar radiation 

acceleration. 

2.1.1 Two-Body Problem 

Newton’s law of gravitation determines that every point mass attracts every single point 

mass by a force, which is proportional to the product of the two masses and inversely 

proportional to the square of the distance between them. In this research, we focus on the 

natural debris orbiting around the Earth. The force of gravity acting on the object from the 

Earth is written as: 
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(2.2) 

Where 
objm  is mass of the debris, M  is the mass of the Earth (5.9742×10

24
 kg), G  is the 

universal gravitation constant (6.67259×10
-11

 m
3
/kg/s

2
), r  is the position vector of the 

debris in an Earth Centred Inertial (ECI) frame (inertial frame of this dissertation ˆ ˆ ˆ(I,J,K) ). 

As the mass of the debris (
objm ), is significantly less than the mass of the Earth, m . Then, 

the quantity of Gm  can be replaced with the Earth gravitational constant (  =3.986×10
5
 

km
3
/s

2
). The relative acceleration can be therefore written as: 

2
 

r
r

r r

  
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 
 

(2.3) 

2.1.2 Luni-solar perturbation 

For a debris orbiting in GEO regions, the main third-body gravitational perturbing forces 

acting on the space debris are the Sun and Moon as shown in Figure 2.1. 
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a) 

 
b) 

 
c 

Figure 2.1 Geometry the for third bodies in an reference frame a) Geometry of the Sun and Moon b) 

Geometry of the Sun vector c) Geometry of the Moon vector. 
 

The accelerations of the third body gravitational perturbations from the Sun and Moon [36] 

are given by: 

3

   
 



k
k k

k

r r
r

r r
  

(2.4) 
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Where  r  is the ECI position of the space debris,    kr  is the position vector of the third 

body (the subscript of  k   1,2 k   are the Sun and Moon respectively (Note: the position 

vector from the Earth to the Sun and Moon changing over time are required because it is 

important to calculate both third body gravitational perturbations and solar radiation 

pressure. It is been described in Appendix A), the quantity k kGM  is the gravitational 

constants of the third body from the Sun and Moon ( 1 = 1.32712438x10
20

 m
3
/s

2 
and 2 = 

4.902794x10
12

 m
3
/s

2
 respectively), kM  is the third body mass of the Sun and Moon 

respectively ( 1M = 1.9891×10
30

 kg and 2M = 7.348×10
22

 kg). Eq.(2.4) cannot be used 

directly for describing the motion of space debris with respect to the centre of the Earth. It 

is required to add the another term as: 

3

   
  k

k k

k

r
r

r
  

(2.5) 

As a consequence, the acceleration of the space debris expressed with respect to the 

Earth’s centre of mass is given as: 

3 3

        
    
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k k
k k

k k

r r r
r

r r r
  

(2.6) 

The first term of the third-body perturbation is known as the direct effect and the second 

term is the indirect effect accounting for the inertial acceleration of the ECI frame. In this 

doctoral dissertation, the starting date of all simulations is January 1, 2012. Figure 2.2 

shows the Sun and the Moon positions in ECI coordinates. The Sun and Moon vectors are 

scaled 1000 and 10 times respectively. 
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Figure 2.2 The Sun and Moon positions in ECI frame on January 1, 2012 by scaling of the sun and 

moon vectors 1,000 and 10 times respectively. 

 

2.1.3 Solar Radiation Pressure 

Solar radiation pressure caused by the incident ray of light from the Sun is a non-

conservative perturbation. For HAMR object, this perturbation in GEO is dominant 

perturbation while the Earth radiation, thermal forces effect and atmospheric drag can be 

negligible in that altitude [11, 12, 17, 37, 38]. The model of SRP acceleration depends on 

many factors. Firstly, the solar flux generally varies throughout the year and over the 11 

years solar activity cycle. In all the numerical simulations through this dissertation, the 

solar flux is assumed to be constant ( E  = 1,353 W/m
2
) [36]. Secondly, the reflective 

properties of material will directly affect how much force of SRP imparts on the debris. 

Thirdly, the cross-sectional area of the space debris is directly proportional to the solar 

radiation pressure force. In addition, the development of an accurate SRP model should 

also include the correct position of the Sun with respect to the object and the Earth. 

In this chapter, we assume the HAMR debris to be a flat rigid plate and the SRP 

perturbation will include absorption and reflection of the solar radiation solar on an 

effective cross-sectional area (
effA ) as shown in Figure 2.3. The solar radiation incident 

shows the incident angle ( inc ) defined as the angle between the normal unit vector ( N̂ ) 

and the sun unit vector ( Ŝ ) defining the direction from the Sun to the debris surface. 
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Figure 2.3 The incident angle between the normal vector and the sun vector. Geometry of the incident, 

reflected, diffused and absorbed radiation. 

 

The SRP perturbing acceleration expressed by means of the Lambertian diffusion to model 

the diffuse and specular solar radiation forces that expose on a space debris [39] is given 

by: 

2

2

1

ˆˆcos( ) 2    cos( ) (1 )
3

Rd
SRP inc

ob

Rs inc Rs

j

AUA E
a

m C r r

C
C N C S 

  
     

  
 

(2.7) 

Where 
objm  is the mass of the debris, RdC  , RsC  and RaC  are the coefficients of diffuse, 

specular and absorbed reflectivity respectively and A  is the maximum area of flat plate. 

The relationship between RsC , RaC  and RdC  is 1 = RaC + RsC + RdC , c  is velocity of light 

(299,792,458 m/s), AU  is the astronomical unit (149,597,870 km). 

For SRP of a spherical body with uniform reflection properties, attitude motion does not 

have any effect on the orbital evolution. The cannonball model is commonly used as the 

default solar radiation pressure model in orbit analysis programs in GEODYN-II [40]. The 

debris is assumed to be a uniform sphere and the direct radiation acceleration is given by: 

2
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(2.8) 

Where 
sphereA  is cross-sectional area of the sphere.  
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Finally, the equation of motion of a debris is given by: 
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(2.9) 

The SRP acceleration ( SRPa ) in Eq.(2.9) depends on the model, which Eq.(2.7) and (2.8) 

are for flat rigid plate and cannonball models respectively  

2.2 Attitude Dynamics 

Euler’s rotation equations are the most common method to describe the rotation of a rigid 

body using a rotating frame of reference with its axis fixed to the body and parallel to the 

principal axis of inertia. 

2.2.1 Angular momentum 

The net total torque on a rigid body is related to the time derivative of the angular 

momentum is given as: 

      ( )tH I I       
(2.10) 

Where   H  is the time derivative of the angular momentum vector of a rigid body, t  is the 

total sum of all external torques acting on the body, I  is the moment of inertia of the rigid 

body,   is the angular velocity and   is the angular acceleration. 

Throughout this thesis, the total external torques considered for the attitude of HAMR 

debris are those due to solar radiation pressure and gravity gradient torques. Thus, the total 

torque can be defined as: 

     SRt GravP     (2.11) 

Where t  is the total external torque from solar radiation torque ( SRP ) and gravitational 

torque ( Grav ). 
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The solar radiation torque ( SRP ) is given by: 

   ( )SRP SRP SRPT F     (2.12) 

Where  SRP  is the vector from the geometric centre of the objects to the centre of pressure, 

SRPF  is solar radiation pressure and  T  is the transformation matrix from the inertial frame 

to the body frame describing in section 2.3. 

The gravitational torque [41] for a rigid body is derived by determining the gravitational 

force as: 

3

3
Grav

GM
R IR

R
       

(2.13) 

Where  R T r   is the unit vector of the object in the inertial system transforming to the 

unit vector in a body frame. 

2.3 Rotational Kinematics 

2.3.1 Direction cosine matrix 

The attitude of a rigid body is most conveniently expressed through a set of axis fixed to 

the body frame. The transformation of the inertial coordinate frame ( N ) to the body 

coordinate frame ( B ) is given as:  
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T N

B N

B N

     
     


     
          

 

(2.14) 

The rotation matrix (  T ) consists of three angular rotations of yaw (ψ ), pitch ( ) and roll 

( ), in a 3-1-3 sequence. The rotation matrix can be written as the product of the three 

successive rotation matrices: 
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 

cosψ sin ψ 0 1 0 0 cos sin 0

sin ψ cosψ 0 0 cos sin sin cos 0

0 0 1 0 sin cos 0 0 1

T

 

   

 

     



    

 
     
          

 

(2.15) 

Which can be expressed as: 

 

               

               

   

3 1 3  ( ) ( ) (ψ)

c(ψ) c( ) ψ ψ c( ) (ψ)

c(ψ) c( ) ψ ψ +c( )c( ) ψ

s( ) ψ s( ) ψ ( )

T R R R

c s s c s s c s s

s c s s s c c s

s c c

 

       

       

  



 

   



 
 
 
 
 

 

(2.16) 

Where cos is abbreviated by “ c ” and sin by “ s ” and  

1 13

23

1

33

1 31

32

tan ( )

cos ( )

tan ( )

T

T

T

T

T




















 

(2.17) 

There is however one drawback to using the Euler angle rotations in that there may be a 

singularity. To avoid this we can makes use of a different attitude parametrisation method 

by means of quaternions. 

2.3.2 Quaternions  

The properties of quaternions is that the summation of squares of each quaternion unit 

must always equal 1. It can assist to validate the calculated quaternions. 

2 2 2 2

1 2 3 4 1     q q q q  (2.18) 

The elements of the quaternions are presented in terms of the principal eigenvector, e , and 

the singular rotation angle,  , is written as: 

1 1 sin( )
2

q e


  
(2.19) 

2 2 sin( )
2

q e


  

(2.20) 
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3 3 sin( )
2

q e


  

(2.21) 

4 cos( )
2


q  

(2.22) 

 

And then, it can be written in matrix form: 

1

2

3

4

 
 
 
 
 
 

q

q
q

q

q

 

(2.23) 

Euler’s eigenaxis rotation theorem [42] states that it is possible to rotate a fixed frame onto 

any arbitrary frame with a simple rotation of an angle  , around an axis e   that is fixed in 

both frames called the Euler axis of rotation. With this representation, the transformation 

matrix can be written as: 

             1 2 3 1 2 3 cos cos sin [ ]       
T

R e e e e e e E    (2.24) 

Where    is identity matrix and  

3 2

3 1

2 1

0

[ ] 0 

0

e e

E e e

e e

 
 

 
 
  

 

(2.25) 

Substituting Eq.(2.25) into Eq. (2.24), yields: 

 
       

       

       

2 2

1 1 1 2 1 2 3 1 3 1 3 2

2 2

1 2 1 2 3 2 2 2 3 2 3 1

2 2

1 3 1 3 2 2 3 2 3 1 3 3

( ) ( )

( ) ( ))

( ) ( ))

c e e e e e e e e e e e e

R e e e e e c e e e e e e e

e e e e e e e e

c c s c s

c s c c s

c e e c es c s ce

     

     

     

      
 

       
       

 

(2.26) 

Where cos is abbreviated by “ c ” and sin by “ s ” and  

The unit vectors of the eigenvector can be expressed in terms of the angular rotation and 

elements of the transformation matrix in Eq. (2.16): 
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23 32
1

( )

2s n
 

i ( )

T T
e




  

(2.27) 

31 13
2

( )

2s n
 

i ( )

T T
e




  

(2.28)  

12 21
3

( )

2s n
 

i ( )

T T
e




  

(2.29)  

 

The direction cosine matrix in Eq. (2.16) can be expressed in term of quaternions: 

2 2

11 12 13 2 3 1 2 3 4 1 3 2 4

2 2

21 22 23 1 2 3 4 1 3 2 3 1 4

2 2

31 32 33 1 3 2 4 2 3 1 4 1 2

1 2( ) 2( ) 2( )

2( ) 1 2( ) 2( )

2( ) 2( ) 1 2( )

q q q q q q q q q q

q q q q q q q q q q

q q q q q q

T T T

T T T

T qT q qT q

    




  

     
         

 

(2.30)  

Then 

2 2

2 3 1 2 3 4 1 3 2 4

2 2

1 2 3 4 1 3 2 3 1 4

2 2

1 3 2 4 2 3 1 4 1 2

1 2( ) 2( ) 2( )

2( ) 1 2( ) 2( )

2( ) 2( ) 1 2( )

x x

y y

z z

B q q q q q q q q q q N

B q q q q q q q q q q N

B q q q q q q q q q q N

       
    

       
           

  

(2.31) 

The quaternion matrix can be converted back into a direction cosine matrix from: 

 23 32

1

4

 
4

T T
q

q


  

(2.32) 

 31 13

2

4

 
4

T
q

q

T 
  

(2.33) 

 12 21

3

4

 
4

T T
q

q


  

(2.34) 

11 22 33
4

1

2

T T
q

T   
  

(2.35) 

 

We can also express the rate of change of the quaternions as: 

1
   
2

 q q  
(2.36) 
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with 

3 2 1

3 1 2

2 1 3

1 2 3

0

0
   

0

0

  

  

  

  

 
 

  
 
 
   

 

(2.37) 

2.4 Numerical integration 

In this thesis, the numerical integrator used to solve the propagation of this thesis is the 

Runge-Kutta method in MATLAB
®
. The command ODE45 performs a direct numerical 

integration of a set of 1
st
 order differential equations y' = f(t,y), y(to) = yo from start time 

(to) to some final time (tf). ODE45 varies the size of the step of the independent variable in 

order to meet the accuracy you specify at any particular point along the solution. If ODE45 

can take "big" steps and still meet this accuracy, it will do so and will therefore move 

quickly through regions where the solution does not "change" greatly. In regions where the 

solution changes more rapidly, ODE45 will take "smaller" steps. While this strategy is 

good from an efficiency or speed point of view, it means that the solution does not appear 

at a fixed set of values for the variable (as a fixed-step method would) and sometimes the 

solution curves look a little ragged. In my thesis, I had changed only RelTol: 1e6 (default = 

1e3) in order to improve the speed of simulation. Then, the propagation of the 2
nd

 order 

differential equations of orbital and attitude equations is converted to an equivalent system 

of the 1
st
 order equations. The new system of orbital dynamics is then written as: 

SRPa a a a

r v

v 



  
 

(2.38) 

In case of coupled attitude and orbital dynamics, the equations of motion are given by: 

    ( )

1
 

2

SR

t

Pa a

I

v

a

r

q

v a

q

   

 

 





  





 

(2.39) 
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All simulations in this chapter are performed on a PC with CPU @ 1.80 GHz and 8GB 

RAM. The validation results of MATLAB
®
 code developed by the author yield reasonable 

results as compared to System Tool Kit (STK) software in case of cannonball. The other 

cases in the thesis were unable to be generated in STK due to the coupling attitude and 

deformation dynamics. 

2.5 Simulation analysis 

This section investigates the short and long term orbital evolution of different rigid objects 

modelled either as cannonball or flat rigid plate shown in Figure 2.4. For preliminary 

investigation, both objects have been assumed as the same as reflection properties [18] RsC

= 0.6, RdC  = 0.26 and RaC  = 0.14 and the same AMR set to 20 m
2
/kg. The cannonball rigid 

body is used to represent the standard model. The flat rigid plate consists of one substrate 

aluminized with an extremely thin layer (25.4 micron) on both sides and an area of one 

square meter. The motion of this flat rigid plate coupled attitude and orbital motion is 

propagated twice: the first time with no any torque disturbing on this simulation called 

“fixed attitude”, the second considering a torque with propagations called “coupled 

attitude”. The initial values of the orbital elements and initial Euler angles are shown in 

Table 2.1 and Table 2.2. The attitude motion has been calculated by means of quaternions 

to avoid singularities but shown in terms of Euler angles to allow for a clearer. 

 

Figure 2.4 Cross-section of cannonball and thin flat plate. 

 

Table 2.1 The initial Kepler elements. 

Semi-major 

axis(km) 

Eccentricity Inclination 

(degree) 

Argument of 

perigee (degree) 

Longitude of ascending 

node (degrees) 

Mean anomaly 

(degree) 

42,164 0.0001 1.0 1.0 30.0 5.0 
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Table 2.2 The initial Euler’s angle and angular velocities. 

Euler’s angle 1
st
 rotation 

( ψ ) 

2
nd

 rotation 

( ) 

3
rd

 rotation 

( ) 

Angle(degree) 15.5 32 43 

Angular velocity(degree/s) 0 0 0 

 

2.5.1 Short term evolution 

Figure 2.5 shows the periodic short term evolution of the inclination and eccentricity in 

GEO environments (Earth’s gravity, third body from the sun and the moon and solar 

radiation pressure) of cannonball, fixed attitude and coupled attitude, in which a secular 

trend towards high values of the two orbital parameters can clearly be seen. All evolutions 

of the orbital parameters are typical of HAMR objects. The results show that the 

eccentricity of cannonball has the highest secular trend but the eccentricity of coupled 

attitude lies between the cannonball and the fixed attitude. The inclinations of cannonball 

and fixed attitude show a similar periodic trend with smaller amplitude for the fixed 

attitude. The coupled attitude presents non-pattern of inclination, which is significantly 

different from the others because the variations of SRP forces in Figure 2.6, are due to the 

change of effective cross-sectional area subjecting to the fluctuation of SRP acceleration. It 

is because the gravity gradient torque induced to significantly change the attitude motion 

as shown in Figure 2.7. There is however no SRP torque disturbing because the centre of 

pressure is on the same as the centre of mass (no deformation). For fixed attitude, which is 

no any torque to disturb, the SRP accelerations slightly decrease because the cross-

sectional area depends on the sun vector and initial attitude sets while the SRP acceleration 

of cannonball is almost constant during the 6 days. This can be explained in that the 

acceleration of the cannonball model depends solely on the direction of the sun vector. 
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a)                                                                           b) 

Figure 2.5 Comparison inclination and eccentricity evolution of coupled attitude, fixed attitude and 

cannonball over 6 days under conservative perturbations (Earth’s gravity, third body from the sun 

and the moon) and non- conservative perturbation (SRP) a) Eccentricity evolution b) Inclination 

evolution. 
 

 

 
Figure 2.6 Comparison of the total absolute acceleration and cross-sectional area of cannonball and 

flat rigid plate over 6 days. 
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a)                                                                           b) 

 
c) 

Figure 2.7 Comparisons of Euler angle evolutions of coupled attitude and fixed attitude over 6 days 

under conservative perturbations Earth’s gravity, third body from the sun and the moon and non-

conservative perturbations (SRP) a) the 1
st
 Euler rotation ( ψ ) b) the 2

nd
 Euler rotation ( ) c) the 3

rd
 

Euler rotation ( ). 

 

2.5.2  Long term evolution 

The evolutions of eccentricity and inclination over a period of 100 days for the two rigid 

bodies are shown in Figure 2.8. The eccentricity trend of the cannonball and coupled 

attitude increases in different rate that it appears to be linear but coupled attitude tapers off 

towards the end day while the fixed attitude shows an oscillating behaviour, increasing 

until the 28
th

 day, then decreasing before growing up rapidly. The inclination evolutions 

show the significantly different trends for all objects due to the differences of SRP 

accelerations as shown in Figure 2.9. For coupled attitude, the absolute SRP acceleration 

trend (blue line) significantly fluctuates, which the range is between 1.65 10
-7 

km/s
2
 and 

1.2510
-11 

km/s
2
, and relates to the variations of cross-sectional area but the change of 

total absolute acceleration of fixed attitude (red line) is going down since starting 

simulation until the 28.53
th

 day is the lowest SRP acceleration (1.315 10
-11 

km/s
2
) 

because the normal vector is almost perpendicular to the Sun vector (cross-sectional area = 

0.0003231 m
2
) after that the cross-sectional area trend grows up, which coherent with the 
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absolute SRP accelerations. Comparing the both simulations of flat rigid plate with 

cannonball, the total absolute accelerations (green line) of cannonball do not significantly 

change over 100-day evolutions. In conclusion, this investigation supports that the HAMR 

debris is very sensitive to SRP model and a different orientation of the object leads to 

importantly change the orbital dynamics.  

 

a)                                                                          b) 

Figure 2.8 Comparison inclination and eccentricity evolutions of coupled attitude, fixed attitude and 

cannonball over 100 days under conservative perturbations (Earth’s gravity, third body from the sun 

and the moon) and non-conservative perturbation (SRP) a) Eccentricity evolution b) Inclination 

evolution. 

 

  

Figure 2.9 Comparison of the total absolute acceleration and variations of cross-sectional area of 

coupled attitude, fixed attitude and cannonball over 100 days. 
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2.6 Summary 

This chapter presented the analysis of the short and long term evolution of the orbital 

elements of two different rigid body models: cannonball and flat rigid plate in near 

geostationary orbits. The attitude motion of flat rigid plate (fixed attitude, coupled 

attitude), leading to vary of SRP exposed area, effects to different orbital dynamics in short 

and long term evolutions although coupled attitude has only a gravity gradient torque 

disturbing to the attitude. However, assumption of flat object is an oversimplification of 

the problem. The combination of orbital, light curve and spectral measurements suggest 

that AMR is not stable (deformation) and fast complex rotation [16, 30]. The deformation 

of HAMR model that leads to varieties of the AMR value itself over time and induces the 

faster attitude motion due to SRP torque, highly effecting to change both orbital elements 

and attitude motions as the investigations of Früh and McMahon, is necessary to combine 

in the orbital propagation. Therefore, the next chapter will investigate the attitude-orbit 

motions of the new model based on Bernoulli-Euler theory that can be changed a shape 

during propagation in order to increase the accuracy of prediction. 
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 3 
 

3 Flexible model with Bernoulli-Euler theory 

This chapter introduces a simplified model to represent the deformation of HAMR debris 

by means of Bernoulli-Euler theory which underpins Finite Element Analysis (FEA). The 

Euler eigenaxis rotation theorem loses its validity when a body is deformed leading to 

changes in its centre of mass and moments of inertia. The attitude representation for the 

flexible model is therefore presented in this chapter. This model adds a further set of 

dynamical equations, which accounts for the flexibility of the body, into the attitude and 

orbital equations; the resulting system is then numerically integrated to evaluate the 

coupling between orbital and attitude dynamics over 6 and 100 days and the ensuing 

results are then compared with two rigid models of similar objects (cannonball and a flat 

rigid body) in GEO. 

3.1 Bernoulli-Euler theory 

Bernoulli-Euler theory [43] is used here to investigate the deformation of the flexible 

debris. Figure 3.1(a) represents a one beam element with two nodes (two end of beam) and 

12 degrees of freedom (three linear and three angular at each node) in the inertial frame

ˆ ˆ ˆ( , , )I J K . 

  
a)                                                                             b) 

Figure 3.1 Bernoulli beam element with 2 nodes in a) inertial frame ˆ ˆ ˆ(I,J,K) . b) body frame ˆ ˆ ˆ(i, j,k)  
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The nodal displacements for an element consisting of the 1
st
 and 2

nd
 node are given by: 

1 2 3 1 1 1 4 5 6 2 2 2

T

x y z x y zU u u u u u u          (3.1) 

 

Where iu  are linear displacements and   are angular displacements. 

3.1.1 Mass and stiffness matrix in body frame  

The standard mass matrix of the Bernoulli-Euler beam element in the body frame ( M 
 

) is 

expressed as: 

2 2

2

2 2

2

1 1
0 0 0 0 0 0 0 0 0 0

3 6

13 11 9 13
0 0 0 0 0 0 0 0

35 210 70 420

13 11 9 13
0 0 0 0 0 0 0 0

35 210 70 420

0 0 0 0 0 0 0 0 0 0
3 6

611
0 0 0 0 0 0 0 0

210 105 140

611
0 0 0 0 0 0 0 0

210 105 140

1 1
0 0 0 0 0 0 0 0 0 0

6 3

9 13 13
0 0 0 0 0
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y z y z

y

z

L L

L L

I I I I
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EIL L L

L

EIL L L
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M AL

L





 

 

 

 

  
 

2 2
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6 3

13 11
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13 11
0 0 0 0 0 0 0 0
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 
 
 

 
 

 
 
 
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 
 

 
 
 

  
  

 

(3.2) 

 

Where E  is Young's modulus of the material, L  is length of the element,   is density of 

the material, A  is the cross-sectional area of the beam, 
yI  and zI  are the mass moments of 

inertia with respect to the y axis and z axis respectively.  

In this investigation, we assume the deformation of beam in terms of small deformations 

and the material stiffness does not change during loading. Assuming a large displacement 

would imply a change to the stiffness of the body which would need to be updated at every 
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time step leading to high computational requirements. The standard stiffness matrix for a 

Bernoulli-Euler beam element in the body frame K    is given by: 

3 2 3 2

3 2 3 2

2 2

2 2 2

3

0 0 0 0 0 0 0 0 0 0

12 6 12 6
0 0 0 0 0 0 0 0

12 6 12 6
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0 0 0 0 0 0 0 0 0 0
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EI EI EI EI
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(3.3) 

 

Where G  is the shear modulus and J  is the polar moment of inertia of the cross section 

area of beam. 

3.1.2 Coordinate transformation 

The body frame can be transformed onto an inertial frame of reference (Figure 3.2) by 

using the following transformation matrix: 

3 3

3 3

3 3

3 3

0 0 0

0 0 0

0 0 0

0 0 0

x

x

e

x

x

T









 
 
 
 
 
 

 

 

(3.4) 

Where 

Xx Yx Zx

Xy Yy Zy

Xz Yz Zz

C C C

C C C

C C C



 
 


 
  

 and XxC  = cos Xx  
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Figure 3.2 Direction cosines associated with the x axis 

 

Where Xx , Yx  and Zx  are measured from inertial axes Î , Ĵ  and K̂  with respect to the 

local axis x respectively. 

Thus, the stiffness matrix and mass matrix in inertial coordinates are obtained as: 

  T

e eK T K T     and   T

e eM T M T     (3.5) 

 

Finally, the most common and convenient approach is to define the damping matrix (  C ) 

is through Rayleigh damping [44], which assumes a proportionality to the mass matrix       

( M ) and stiffness matrix ( K ) given by: 

     C M K    (3.6) 

 

Where   and   are coefficients related to the mass and stiffness of the system. In the 

formulation of Rayleigh damping, the mass p damping effect is dominant at the lower 

frequencies while the stiffness damping is dominant at the higher frequencies.  and  

are therefore the attributes of the lower and higher resonant frequencies, respectively. In 

this investigation,  and  are defined as 0.0334 s
-1

 and 0.0475 s. (See more information 

in Appendix C). 

3.1.3 Dynamical equation 

The analysis of the dynamical equations of the beam element requires the description of 12 

degrees of freedom, expressed as: 

 

 
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     M U C U K U F    (3.7) 

 

where  M is mass matrix of the beam element in the inertial frame,  C  is damping matrix 

of the beam element in the inertial frame,  K  is stiffness matrix of the beam element in 

the inertial frame. U , U  and U are the vectors of position, velocity and acceleration in the 

inertial frame respectively as: 

1 2 3 1 1 1 4 5 6 2 2 2

T

x y z x y zU u u u u u u        
 

1 2 3 1 1 1 4 5 6 2 2 2

T

x y z x y zU u u u u u u        
 

 

(3.8) 

The external force ( F ) is the external column force vector, which consists of translational 

force ( , , )x y zF F F  and torsion moment ( , , )x y zM M M  along the x, y and z axis: Also, the 

external forces are applied at the nodes of beam elements. If external forces are applied 

between nodes, they are replaced by work-equivalent nodal forces.  

1 1 1 1 1 1 2 2 2 2 2 2

T

x y z x y z x y z x y zF F F F M M M F F F M M M     (3.9) 

 

3.2 Deformation Analysis  

In this section, we analyse the deformation of a flat thin plate modelled by means of beam 

elements as shown in Figure 3.3. PET
®
 is selected as substrate material of a membrane. 

Reflection and material properties of PET
®
, shown in Table 3.1, are based on the red book 

[18]. The basic structure of MLI is composed of a single sheet of PET
®
, with thickness of 6 

μm and an aluminium coating of 1000 Ǻ thick on both sides. This investigation assumes 

the model to be a single layer of PET
®

. 

Table 3.1 Properties of PET
®
 material[18]. 

Type material Mass Density  

[kg/m
3
] 

Young’s Modulus 

 [N/m
2
] 

Poisson’s ratio 

( ) 

Cs, Cd, Ca 

PET 1,390 8.81x10
9
 0.38 0.6 0.26 0.14 

 

In the initial test, we model a thin flat plate (1 1  m
2
) with 12 beam elements as shown in 

Figure 3.4. There are 9 nodes and 54 DOFs. Then, we test the model by applying a force at 

the geometric centre of the model as shown in Figure 3.4. The results show that the shape 

is deformed in the direction of the force and the tension force causes the nodes to move. 
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a)                                                                  b) 

Figure 3.3 Comparison thin flat plate with flexible model based on FEA a) thin flat pate b) flexible 

model (12 beam elements, 9 nodes, 54 DOFs) 

 

a)                                                                              b) 

Figure 3.4 The simulated results of the thin flat plate by applying the sudden force -7.000E-5 N in the 

centre of a membrane for one second a) Initial shape b) the simulated results. 

 

3.2.1 Simplification of flexible model 

In order to reduce the computational cost when coupling flexible modes with attitude and 

orbital motions, a simple model is initially analysed. This consists of 3 nodes, connected 

with 2 beam elements representing the plate of a membrane as shown in Figure 3.5. The 

mass of the flat sheet is distributed on both beam elements. The model will have 18 

degrees of freedom. The length of each beam element ( 1 2L L ) is 0.5 m. This model is 

called “Bernoulli model”. 
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a)                                                                   b) 

Figure 3.5 Simplification flexible model a) beam element represents a plate of a membrane b) side 

view. 

 

3.2.2 Deformation of Bernoulli model 

In order to test the deformation of the Bernoulli model, we perform two numerical 

simulations; the first with the same stiffness of PET and the second with a stiffness 100 

times higher than that of PET.  

We assume two different initial shapes, triangular and flat as shown in Figure 3.6. These 

configurations are then subjected to a force of magnitude 8.011E-5 N on the 1
st
 node acting 

first along the x axis and then along the y axis (x and y directions respectively). In Figure 

3.7(a), the 1
st
 node displacement moves to the right side while the 3

rd
 node move 

downwards. The 1
st
 node of the flat plate in Figure 3.8(a) moves down and results pulls 

with it the 2
nd

 and 3
nd

 nodes due to tension forces. These results are used to validate the 

simple model of the natural displacements of low weight and thin material. Due to the 

deformation in Figure 3.7(b) and Figure 3.8(b), it effects to shift the centre of mass from its 

initial position. As a result, it affects the method to define the attitude motion of the 

Bernoulli model is as shown in a section 3.2.5. 

 
a)                                                                          b) 

Figure 3.6 Initial shape of Bernoulli body a) triangular shape b) flat plate. 
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a)                                                                          b) 

Figure 3.7 Numerical results of triangular shape and change of centre of mass over 4 seconds by a 

force 8.011E-5 N (blue arrow) in the first node in x direction axis a) simulated results b) change of 

centre of mass. 

  
a)                                                                 b) 

Figure 3.8 Numerical results of flat plate and change of centre of mass over 4 seconds by force 8.011E-

5 N (blue arrow) in the first node in negative y direction axis a) simulated results b) change of centre of 

mass. 

The second numerical analysis is performed by increasing Young’s modulus to 8.81E11 

(100 times of PET
® 

as equal as a metal [45]) and the initial shape is set to be a flat shape. 

Figure 3.9 shows that when applying a force of same magnitude as before along the 

negative y direction the body rotates around the centre of mass and there appears to be no 

deformation. In fact, the centre of mass moves only by a few millimetres as shown in 

Figure 3.9(b). It can be seen that by increasing the stiffness of the model leads to the 

behaviour as a rigid plate. 
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a)                                                                         b) 

Figure 3.9Numerical results with E = 8.81E11 N/m
2
 of flat plate and change of centre of mass over 4 

seconds are forced (8.011E-5 N) (blue arrow) in the first node in y direction axis a) simulated results b) 

change of centre of mass. 

 

3.2.3 Solar radiation pressure for Bernoulli model  

Solar radiation pressure will act upon both beam elements and defined as: 

2

, , , ,2

1

1ˆ ˆ ˆˆ ˆ ˆ(1 ) 2( )
3

SRP j j j j Rs j j Rs j j j Rd j j

j

AE
F A S N C S C S N C N

C x x

  
     

 
 (3.10) 

 

According to Bernoulli-Euler theory, this SRP force acting on the centre of a beam element 

will pass through on the two nodes connected with that beam element in the same 

direction. The SRP acceleration of j
th

 and j+1
th

 nodes (Figure 3.10) can be defined as: 

 

,

, , 1

/ 2SRP j

SRP j j

j

F
a

m
   (3.11) 

 

where 
jx  and 1x  are the position vector of the geometric centre of j

th
 beam element and the 

Sun vector in ECI frame respectively, E  is the solar constant (1,353 W/m
2
), C  is speed of 

light (299,792,458 m/s), 
jA  is the area of the j

th
 beam element, 

jm  is the mass of the j
th

 

beam element, ,Rs jC , ,Rd jC  and ,Ra jC  are the coefficients of specular, diffuse and absorbed 

reflectivity for the j
th

 beam element respectively. The surface normal unit vector, ˆ
jN , and 

the solar incidence unit vector, ˆ
jS , are required to specify the orientation of the Bernoulli 

body on the centre of pressure of the j
th

 beam element. 
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Figure 3.10 Solar radiation pressure on each node in side view. 

 

 

3.2.4 Gravitational forces for Bernoulli model  

The gravitation forces (Earth’s gravity and third body perturbations from the Sun and the 

Moon as introduced in Chapter 2) will act on each node as shown in Figure 3.11 in the case 

of the Earth’s gravity forces ( F
). 

 
Figure 3.11 The Earth gravity forces on each node in side view. 

 

3.2.5 Attitude dynamics of the Bernoulli model 

As shown in Chapter 2, Euler angles can be used to describe the attitude of a rigid body. 

The attitude is referenced to the centre of mass but in the case of a Bernoulli model, the 

centre of mass and moments of inertia will change when the body is deformed from its 

initial configuration. Therefore, Euler angles cannot be used and we must determine the 

origin of the body reference frame on the second node as shown in Figure 3.12.  
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Figure 3.12 Attitude motion of Bernoulli model in body frame ( b
x , b

y , b
z ). 

 

The 
1B  and 

2B  are vectors from the 2
nd

 node to 1
st
 node and 3

rd
 node in body frame 

respectively. The bx  is the cross product between 
1B  and 

2B . The y-axis ( by ) is 

perpendicular to the x axis and the z-axis ( bz ) is cross product between bx  and by  We 

define the transformation matrix following a 3-1-3 sequence, (ψ , , ) and then use 

quaternions to determine the attitude representation of the Bernoulli body. 

3.2.5.1 Gravity gradient torque 

The gravitational forces acting on each node are illustrated in Figure 3.12(a). The 

difference in the normal component of the gravitational forces results in a gravitational 

torque at each node, given by: 

, ( ) ( 1)( )G j G j G j jM F F L     (3.12) 

 

Where ,G jM  is the gravitational torque of j
th

 beam element (j =1 and 2) and ( )G jF  is a 

perpendicular gravitational force of the j
th

 node on j
th

 beam element, ( 1) G jF  is a 

perpendicular gravitational force of the j+1
th

 node on j
th

 beam element. 
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3.2.5.2 Solar radiation torque 

We consider the solar rays acting on each beam element as shown in Figure 3.12 (b). The 

SRP torque on each beam element is generated when the perpendicular SRP forces on the 

two nodes on the same beam are different:  

, ( ) ( 1)( )sun j sun j sun j jM F F L     (3.13) 

 

Where ,sun jM  is the solar radiation torque of j
th

 rod, ( )sun jF is a perpendicular SRP force of 

the j
th

 node on j
th

 beam element and ( 1) sun jF  is a perpendicular SRP force of the j+1
th

node 

on j
th

 beam element. 

    
a)                                                                              b) 

Figure 3.13 External torque acting on the flexible model a) Gravity gradient torque b) Solar radiation 

torque. 

 

3.3 Numerical Analysis 

The aim of this analysis is to compare the orbit propagation of three bodies: two of which 

are rigid, cannonball and flat plate, and a flexible body, Bernoulli model, in GEO 

environment (under Earth’s gravity, third body gravitations from the Sun and Moon and 

SRP) by using attitude and dynamics equations from chapter 2. Initial orbital parameters 

and initial Euler angle and angular velocities are presented in Table 3.2 and Table 3.3. 

Table 3.2 Keplerian’s elements. 

Semi-major 

axis(km) 

Eccentricity Inclination

(degree) 

Argument of 

perigee(degree) 

Longitude of ascending 

node(degree) 

Mean anomaly 

(degree) 

41,164 0.0001 2.0 10.0 3.0 270.0 
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Table 3.3 The initial Euler’s angle and angular velocities. 

Euler’s angle 1
st
 rotation 

( ψ ) 

2
nd

 rotation 

( ) 

3
rd

 rotation 

( ) 

Angle(degree) 5 20 10 

Angular velocity(degree/s) 0 0 0 

 

The initial shape is that of a flat sheet for both rigid and flexible models. All models have 

the same material properties [46, 47], as shown in Table 3.1. 

3.4 Numerical Integration methods 

The numerical integration to solve the propagation of the second order differential 

equations of orbital and attitude equations for the flexible model used here is the Runge-

Kutta method in MATLAB. Since ODE45 can only solve a first order ODE. The dynamics 

equation of FEA has to be converted to first order ODE. We therefore introduce 2 new 

state variables 1y and 2y  defined as: 

1

2

y U

y U




 

(3.14) 

Then, we take the 1
st
 order derivative in Eq.(3.14) such that: 

1

2

y U

y U




 

(3.15) 

The above gives two new first order ODE’s by substituting U  and U  into Eq.(3.7): 

     

1 2

1

2 1 2( )

y y

y M F K y C y




  
 

(3.16) 

Finally, we can couple with FEA with orbital dynamics are expressed: 
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     

1 2

1

2 1 2( )

SRPa a a a

r v

v

y y

y M F K y C y






  





  

 

(3.17) 

All simulations in this chapter are performed on a PC with CPU @ 1.80 GHz and 8GB 

RAM. 

3.5 Results 

Figure 3.14 shows the comparison in the evolutions of eccentricity and inclination between 

the two rigid bodies (cannonball (green line), flat rigid plate (blue line)) and the Bernoulli 

model (red line) over a period of 6 days. The inclination of the flat rigid sheet is non-

periodic and the increasing rate of eccentricity evolution is the lowest. For Bernoulli 

model, the inclination is the same periodic as the cannonball but the amplitude is higher. 

The attitude motion of a flat rigid plate in Figure 3.15 is significantly slower than the 

results of the Bernoulli model in Figure 3.16. This is because of both gravity and SRP 

torques acting on the Bernoulli model while the flat rigid body is subjected only to gravity 

torque. According to results on the orbital dynamics of HAMR debris from Schildknecht 

and Scheeres [48, 49], they suggest that the rapid tumbling of a flat plate is averaged and 

leads to the same effective surface as a cannonball behaviour under conditions of rigid 

object. This is however not the case in this study. The change of cross-sectional area of the 

deformation of the Bernoulli model leads to provide dominant orbital prediction because 

different SRP forces on each beam element can support or erase the total SPR forces, 

which generated SRP torque. It is worthy noting that the constant cross-sectional area 

(cannonball) and constant area-to-mass ratio (flat rigid plate) are not good to approximate 

for HAMR debris. The next paragraph will describe how SPR forces vary due to the 

deformation of the Bernoulli model.  
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a)                                                                      b) 

Figure 3.14 Comparison of inclination (a) and eccentricity (b) evolutions of Bernoulli model, flat rigid 

plate and cannonball under over 6 days under conservative perturbations (Earth’s gravity and third 

body attractions from the sun and moon) and non-conservative perturbation (SRP). 

 

 
a)                                                                              b) 

 
c) 

Figure 3.15 Euler angle evolutions over 6 days of flat rigid plate under conservative perturbations and 

non-conservative perturbations a) the 1
st
 Euler rotation ( ψ ) b) the 2

nd
 Euler rotation ( ) c) the 3

rd
 

Euler rotation ( ). 
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a)                                                                              b) 

 
c) 

Figure 3.16 Comparison Euler angle evolutions 1-1.2 days of both Bernoulli model and flat rigid plate 

under conservative perturbations and non-conservative perturbations a) the 1
st
 Euler rotation ( ψ ) b) 

the 2
nd

 Euler rotation ( ) c) the 3
rd

 Euler rotation ( ). 

 

Next, we analyse the behaviours of SRP forces and the deformation of the Bernoulli model 

by sampling 10 minutes from 6-day propagations. There are three possible directions for 

the sun unit vector (red arrow) to act on both beam elements. For examples, the first and 

second cases in Figure 3.17(a) and Figure 3.17(b) are the sun vector acting along the same 

sides and different sides of Bernoulli model respectively. The last case in Figure 3.17(c) 

shows that the sun unit vector passes through on the front side because a self-shadowing 

effect is being ignored at this moment. All cases lead to the different SRP acceleration 

acting on each beam element (blue and red lines for the 1
st
 and 2

nd
 beams in Figure 3.18 

respectively) and the SRP summation of both beam elements (black line) are able to be 

supported or erased. The unbalance SRP accelerations of each beam element lead to the 

deformation of the model and generate SRP torque (Figure 3.18(d)), which causes a fast 

tumbling as shown in Figure 3.16. It is worthwhile to be noted that deformation of the 

Bernoulli model leads to highly vary SRP accelerations and induce SRP torque causing 

rapid rotation. In addition, the ignorance of a self-shadowing may lead to reduce the 
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accuracy of prediction of both attitude and orbital motions that will be investigated in the 

next chapter. 

  
a)  

 
b) 

 
c) 

Figure 3.17 Some configurations of Bernoulli model over 6 days in the inertial frame a) Solar radiation 

acting on the same sides (1
st
 case) b) SRP force acting on front side and back side (2

nd
 case) c) Over 

SRP force on the backside due to ignorance of self-shadowing effect (3
rd

 case). (a blue arrow is a 

normal unit vector, green arrow is a unit SRP force vector and red arrow is a unit sun vector). 
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a)                                                                         b) 

  
c)                                                                         d) 

Figure 3.18 The results of SRP accelerations and absolute SRP torques in radial-tangential and normal 

frame ˆ ˆ ˆ(R,T, N)  of both beam elements in 10 minutes a) radial acceleration b) tangential acceleration c) 

normal accelerations d) SRP torques. 

 

In the 100-day investigations in Figure 3.19, the eccentricity of cannonball lies between 

flat rigid sheet and Bernoulli model while the changed range of the inclination of the rigid 

flat sheet is narrow range between 1.61 and 2.03 degrees when comparing with Bernoulli 

model and cannonball. In overall, the prediction of orbital dynamics of Bernoulli model, 

which is coupled both deformation and attitude-orbit dynamics, significantly differs with 

rigid models due to deformed shapes. However, the computational cost of 100 days 

propagation is highly expensive. The CPU consumes 10.34 minutes/day evolution for CPU 

1.80 GHz. It will take longer time for the propagation of many years. 
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a)                                                                              b) 

Figure 3.19 Comparison inclination and eccentricity evolution of Bernoulli model, flat rigid plate and 

cannonball models under over 100 days under conservative perturbations (Earth’s gravity and third 

body attractions from the sun and moon) and non- convective perturbation (SRP) a) Eccentricity 

evolution b) Inclination evolution. 
 

3.6 Summary 

This chapter investigated the 6 DoF motion of the flexible HAMR object based on Finite 

Element Analysis (Bernoulli-Euler theory) in geostationary region over short and long 

term periods. The material properties of all models are assumed as PET
®
 (multilayer 

insulation). As a result of this study, the deformation of the object leads to fast tumbling of 

the Bernoulli model due to SRP torque as support the investigation from McMahon [30]. 

The very fast attitude motion effects to the differences of both inclination and eccentricity 

from both rigid objects (flat rigid plate and cannonball). However, the computational time 

is high cost that will consume the long propagation time when predicting over many 

decades, although we consider the small displacement (stiffness constant), which is loosen 

some accuracies of deformation dynamics effecting to attitude and orbital dynamics. 

Therefore, the next chapter will be introduced the flexible model based on a multibody 

dynamics in order to reduce the computational cost and stiffness constant by using suitable 

constraint equation instead. In addition, the self-shadowing effect and imperfect reflection 

properties will be investigated to predict attitude-orbit dynamics in over 12 and 100 days. 
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 4 
 

4 Flexible model with multibody dynamics 

This chapter models the MLI debris through a systematic treatment of the dynamic 

behaviour of interconnected bodies. The results of this chapter include not only the 

prediction of the orbital evolution, but also the attitude and the deformation state of the 

membrane. The two substrates of MLI debris considered here are PET
®

 and Kapton
®
. The 

orbital and attitude motions are studied under perturbations due to Earth’s gravity field (J2), 

solar radiation pressure and third body gravity from the Sun and Moon in the GEO region, 

and compared with the orbital dynamics of two rigid body models (cannonball and flat 

rigid plate) under the same environmental conditions. Due to their deformations, HAMR 

objects may self-shade leading to changes in the effective cross-sectional area and thus the 

effects of SRP. This investigation considers self-shadowing, adapting the algorithm used in 

the case of planar shadow projection to address planar surfaces. The last study consists of 

Monte Carlo simulations by varying the initial conditions (attitude dynamics and variable 

shape) and compares the results of the propagation of a conventional rigid body or 

cannonball model. 

4.1 Flexible multibody model 

A thin and highly flexible body is modelled in this chapter by using multibody dynamics 

and solved by means of Newtonian mechanics. The thin membrane in Figure 4.1 is 

modelled as a series of lump masses, interconnected with rigid rods at the centre of 

horizontal plate. The lump masses act as rotational joints for the plates and include 

rotational springs and dampers to simulate the bending stiffness of the membrane. The 

folding lines represented by each lump mass are all parallel to each other and the plane of 

deformation is described in a two-dimensional plane perpendicular to the folding lines. For 

this preliminary study, three lump masses are considered (Figure 4.2(a)), connected 

through two rigid rods in order to simplify the model and reduce the computational cost. 

The mass in the middle acts as a rotational hinge with spring and damper. Essentially, this 

model concentrates the distributed mass of the MLI sheet on lump masses, and its stiffness 
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and damping properties on the central hinge. The sheet is assumed infinitely rigid in the 

plane of the membrane itself. The deformed geometry of multibody model is defined 

through the deformation angle ( d ) as shown in Figure 4.2(b). The dimensions are 1 x 1 

m
2
 in width and length respectively and the length of both rigid rods ( 1 2l l l  ) is 0.5 m 

as shown in Figure 4.2. 

 
a) 

 
b) 

Figure 4.1 Comparing a multibody model with a thin membrane a) flat plate in 3D view b) side view. 

 

 
a) 

 
b) 

Figure 4.2 Simplified models as three lump masses installed with torsional damper and spring in 3D 

view and side view a) flat plate shape b) deformed shape. 
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a)                                                                         b) 

Figure 4.3 Multibody model a) The model in the inertial frame b) Free body diagram on each lump 

mass. 
 

To analyse the forces acting on each mass in Figure 4.3, Newton’s second law of motion 

leads to: 

,1 1 1 1totalF T m x   (4.1) 

,2 1 2 2 2totalF T T m x    (4.2) 

,3 2 3 3totalF T m x   (4.3) 

 

From these equations, we can calculate acceleration for each mass: 

1 ,1 1 1( ) /totalx F T m   (4.4) 

2 ,2 1 2 2( ) /totalx F T T m    (4.5) 

3 ,3 2 3( ) /totalx F T m   (4.6) 

 

Where im  is i
th

 lump mass (i = 1, 2 and 3), ,total iF  is total force vector acting on the i
th

 lump 

mass ( , , , ,total i ext i s i d iF F F F   ), ,ext iF  is the external force vector from conservative and 

non-conservative perturbations (J2, SRP and the third-body from the Sun and the Moon), 

jT  is the tension force generated by the j
th

 rod ( j  = 1 and 2), ,s iF  is the rotational spring 

force vector of i
th

 mass, ,d iF  is the rotational damper force vector of i
th

 mass, 
ix  is total 

acceleration vector of i
th

 lump mass. The rotational spring force is: 
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, /s i s dF k l  (4.7) 

/s yk E I l   

 

Where sk  is rotational spring constant, 
yE  is Young modulus of material, I  is the 

moment of inertia of cross section area, l  is the length of rod. The rotational damping 

force vector is: 

, /d i s dF c l  (4.8) 

s F sc D Mk   

 

Where sc  is the rotational damping constant, 
d  is angular velocity of the deformation, 

FD  is dissipation factor of the material [50], M  is total mass of membrane. To enforce 

that the distance between the masses shall be constant (as the membrane cannot stretch in 

its own plane, but only bend out of it), the constraint equations is: 

2 2 2 2

1 1 1( ) ( ) ( )j j j j j j jx x y y z z l         (4.9) 

 

Then, the 2
nd

 order differential of Eq.(4.9) is expressed as: 

1 1 1 1

2 2 2

1 1 1 1 1

2( )( ) 2( )( )

2( )( ) 2( ) 2( ) 2( ) 0

j j j j j j j j

j j j j j j j j j j

x x x x y y y y

z z z z x x y y z z

   

    

    

         
 

(4.10) 

 

Finally, in order to complete the dynamic equations, we substitute the acceleration vectors 

of each mass in Eq.(4.10)) in both rigid rods ( 1j   and 2) to find the tension of both rods   

(
1T  and 

2T ) and write in matrix form as: 

1 2 11

3 4 22

C C AT

C C AT

    
    
    

 
(4.11) 
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( )

1 1
( )( )
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(
( ) ( ) ( )

total total

total

C x x
m m

x x
C

m

x x
C

m

C x x
m m

x x x x
A x x y y z z F F

m m

x
A x x y y z z F
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F

m m

 


 

 

Then, we can find 
1T  and 

2T  by left-multiplying by  
1

C


 

 
1

1 2 11

3 4 22

C C AT

C C AT


     

     
   

 

(4.12) 

 

Finally, we obtain the accelerations of each lump mass, which can be found through 

Eq.(4.4) - (4.6) to study the orbital evolution. 

4.2  Model test 

The first test is to analyse the deformations arising from the presence of a rotational spring 

and damper and then the model will be forced to simulate a movement and rotation of the 

multibody model. In this section, each lump mass is defined as 1 kg and the characteristic 

parameters for the rotational spring and damper are assumed to be sk  = 0.01 N·m/rad and 

sc  = 0.05 N·m·s/rad respectively. 

4.2.1 Rotational spring and damper test 

In order to test the rotational spring and damper of the model, it is required to set a non-flat 

geometry as an initial condition (triangular shape in Figure 4.4(a)). Firstly, we consider the 

case of spring only. The continuous oscillation of the model in Figure 4.4(b) is forced by 

the rotational spring. If we consider both spring and damper in Figure 4.4(c), then it can be 

seen that the damper reduces the amplitude of the oscillation until it motion stops 

completely. 
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a) 

 
b)                                                                         c) 

Figure 4.4 Simulation of multibody model without external force a) initial geometry before simulation 

(triangular shape) b) time-lapse of the deformation when only the spring is considered, leading to 

continuous oscillations c) time-lapse of the deformation when both spring and damper are considered. 

The damper quickly reduces s the oscillation in 10 seconds (1 plot/0.1440 second). 
 

4.2.2 Displacement and rotation test 

This model is tested in 4 different cases. In the first and second test (Figure 4.5 and Figure 

4.6), a continuous force of 1 N in the y direction and 1 N in both x and y directions is 

applied. The multibody model will not show any deformation due to the fact that the same 

force is acting on each lump mass. The body moves in the direction of the force with 

increasing velocity. In the third case in Figure 4.7(a) a force of 1 N is applied for 1 second, 

only on the central mass in the z direction. The results show that the two plates move up 

and down due to the presence of the spring in Figure 4.7(b). In the last test in Figure 4.8(a) 

a force of 1 N is applied for 1 second in both on the first mass  in both x and z directions. 

The results show that in this case the model rotates and translates following the applied 

force direction in Figure 4.8(b). The results show that the multibody model is capable of 

describing 7 DOFs (3 linear, 3 angular and 1 deformation) when different force vectors are 

acting on the lump masses. 
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a)                                                                         b) 

Figure 4.5 Simulation of multibody model in 4 seconds with external force, 1 N (green arrow) in y 

direction on each lump mass continuously a) initial position in 2D view b) direction of movement in 2D 

view (1 plot/0.6 seconds). 
 

 
a)                                                                                              b) 

Figure 4.6 Simulation of multibody model in 4 seconds with external force, 1 N (green arrow) in y 

direction on each lump mass continuously a) initial position in 2D view b) direction of movement in 2D 

view (1 plot/0.6 second). 

 

 
a)                                                                                             b) 

Figure 4.7 Simulation of multibody model for 8 seconds with external force 1 N (green arrow) for one 

second in x and y directions on each lump mass a) initial position in 2D view b) direction of movement 

in 2D view (1 plot/1.33 seconds). 
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a)                                                                                                  b) 

Figure 4.8 Simulation of multibody model in 8 seconds with external force 1 N for one second (green 

arrow) in x and z directions on each lump mass a) initial position in 3D view b) direction of movement 

in 3D view (1 plot/1.33 seconds). 

 

 

4.3 Modified Equinoctial Elements 

The set of orbital elements, described by Gaussian variation of parameters (VOP), are 

chosen to study all dynamic evolutions in this chapter. This method has a singularity 

problem, when the eccentricity and orbital inclination equal to 1 and 90 degrees 

respectively. To avoid this singularity, the modified equinoctial orbital elements (MEE) 

[51] were introduced. The set of MEE equations are defined in terms of the equinoctial 

orbital elements (EQU) as follows: 

2(1 )p a e    

cos( )f e     

sin( )g e    (4.13) 

tan( / 2)sinh i    

tan( / 2)sink i    

L      

 

Where  is gravitational constant, a is the semi-major axis (km), e is the eccentricity, i  is 

the inclination (degree),   is the argument of perigee (degree),   is right ascension of 

ascending node (degree) and   is true anomaly (degree), p  is semilatus rectum (km) and

L  is true longitude (degree). The variation of the modified equinoctial elements is 

expressed in: 
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(4.14) 
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Where , ,r t n   are non-two-body perturbations in the radial ( R̂ ), tangential ( T̂ ) and 

normal ( N̂ ) directions respectively, 
2 21s h k    and 1 cos sinw f L g L   . 

4.4 Perturbations 

In this chapter, we consider J2, third body perturbations from the Sun and Moon and SRP 

perturbations. Therefore, the total perturbing acceleration is expressed as: 

2J SRPaa a a      (4.15) 

4.4.1 J2 perturbation 

Planetary oblateness is considered through the J2 harmonic [52]. The gravitational potential 

of the Earth due to the oblateness effect is expressed as: 

2
2

2,0 2 3

1
(3sin 1)

2

R
R J

r
     

(4.16) 

 

Where 2J  is the 2
th

 zonal harmonic coefficient (1.0826269x10
-3

), R
 is the radius of the 

Earth (6,378.137 km), r  is the geocentric position of the debris and   is the geocentric 

latitude of the object in the Earth fixed frame. Therefore, the 2
nd

 differential of Eq.(4.16) 

are 2J  acceleration (
2Ja ) along each component of inertial reference frame ( Î , Ĵ , K̂ ) as: 
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 (4.17) 

2 2
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2, 5 2

3 5
3

2

K K
j K

K

J R rR r
a

r r r

 
 

    
  

  

 

4.4.2 Solar radiation pressure of multibody model  

For the multibody model based on multibody dynamics, solar radiation pressure depends 

on the area and its orientation with respect to the radiation coming from the Sun. The SRP 

equation is similar as the SRP equation using with Bernoulli-Euler model in chapter 3 by 

applying SRP force on lump masses instead of nodes as: 

2

, , , ,2

1

1ˆ ˆ ˆˆ ˆ ˆ(1 ) 2( )
3

SRP j j j j s j j s j j j d j j

j

E AU
F A S N C S C S N C N

c r r

 
     

 
 (4.18) 

 

Thus, the SRP acceleration of both lump masses of the j
th

 rod (
, , 1SRP j ja 

) can be defined as: 

,

, , 1

, 1

/ 2SRP j

SRP j j

j j

F
a

m




  (4.19) 

 

where 
jA  is the cross sectional area of the 

thj rod, 
, 1j jm 

 is the lump mass of the 
thj  and 

th1j   lump mass, E  is the solar constant (1,353 W/m
2
), c  is speed of light (299,792,458 

m/s) and 
,s jC , 

,d jC  and 
,a jC  are the coefficients for specular, diffuse reflectivity and 

absorption for the 
thj  rod respectively. The Sun unit vector ( ˆ

jS ) and the surface normal 

unit vector ( ˆ
jN ) are required to specify the orientation of debris on the centre of pressure 

of the 
thj  rod and jr  and 1r  are the geocentric position of centre of rigid rod and the Sun 

respectively. 

4.4.3 Average solar radiation pressure of rigid flat plate 

The attitude motion will alter the effects of solar radiation pressure due to the changing 

size of the effective cross-sectional area. For flat rigid debris, the average of SRP force 

over the possible tumbling motion is considered and this averaged force is then propagated. 
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The benefits of this approach are to reduce computational cost by decoupling attitude and 

orbital dynamics. 

In order to model a tumbling piece of debris, we can assume that any orientation in the 

inertial space will have equal probability of occurring. Therefore, the average force is 

obtained by integrating over the latitude and longitude of the Sun. It is useful to integrate 

in terms of a spherical coordinate frame:  

2

0 0

1

4
avg SRP s sF F d d

 

 


    (4.20) 

 

We set the unit Sun vector as:  

1

ˆ 0

0

S

 
 


 
  

 
(4.21) 

 

And a general normal vector can be described as: 

cos sin

ˆ sin sin

cos

s s

s s

s

N

 

 



 
 


 
  

 
(4.22) 

 

Therefore, the equivalent area is expressed:  

avg

eq

SP

F
A

P
  (4.23) 

Where 
SP

E
P

c
  is solar radiation pressure per square unit metre.  

Then, the average SRP acceleration of the flat rigid sheet can be calculated as: 

ˆeq

AVG SP

A
a P S

M
   (4.24) 

 

However, the disadvantage of the spherical integration coordinates is that when we 

perform to integrate on the two angles, the results of points are not uniform distributions on 
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the sphere surface but they are concentrated on the pole, which may reduce some of all 

possible solar latitude and longitude that effects the value of average SRP force [53].  

4.5  Self-shadowing 

There are three main methods commonly used in real-time 3D computer graphics to 

represent shadowing effects. These are: planar shadow, shadow volume and shadowing 

mapping. In this thesis, the planar shadow method, first developed by Blinn [54] is applied 

to generate shadows by projecting the shadow casting object’s polygons onto a plane. This 

method is suitable to calculate self-shadowing of the multibody model because it is the 

easiest and fastest to implement and the multibody model has a simple geometry but the 

disadvantage of a shadow casted on a plane does not create soft shadow (penumbra), which 

SRP will not be nil because of partial illumination. In Figure 4.9, the point ( p ) is the 

projection of each vertex ( v ) onto the plane P: 0p p pn x d   due to a light source vector    

( l ). The shadow cast the on plane can be defined as: 

( )
( )

d n l
p l v l

n v l

 
  

 
 (4.25) 

 

This can be written into a projection matrix ( p Mv ) [55].  

.

.

.

.

x x x y x z x

y x y y y z y

z x z y z z z

x y z

n l d l n l n l n l d

l n n l d l n l n l d
M

l n l n n l d l n l d

n n n n l

     
 

    
 
     
 

    

 

(4.26) 

The self-shadowing algorithm has two main steps. Firstly, when two planes are oriented in 

space, it will perform a check to determine which plane, if any, casts a shadow on the 

other. The vector from the Sun to the centre of mass on the plane will determined which 

plane is closer to it. The algorithm then determines if an area of the plane is exposed to 

SRP by checking the intersection between the shadow and the plane. In case of the non-

intersection, SRP forces of both planes are normally calculated. This algorithm is 

calculated at each integration step. 
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Figure 4.9 Planar shadow projection. 

 

Figure 4.10(a) presents a self-shadowing simulation test. The above plane (pink: 1
st
 plane) 

acts as a shading plane. The bottom plane (blue: 2
nd

 plane) has a shadow (grey) cast upon 

its surface. The light source is at coordinates (5, 1, 4) in x, y, z axis. The shaded area 

depends on the position of the light source and the object’s shape. Figure 4.10(b) and 

Figure 4.10(c) show different shadows created by moving the light source coordinates at 

(5, -1, 2) and (-1, 0, 4.5) as well as the orientation of the object. It can clearly be seen that 

different orientations and relative positions cause significant changes in the solar radiation 

pressure on a shaded plane. 

 
a) 

 
b)                                                                            c) 

Figure 4.10 Self-shadowing area simulations a) light source above the model and full shadow on the 

second plane b) shadow area after moving light source position c) shadow area after rotating. 
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4.6  Simulation Analysis 

Two different kinds of MLI [18] are selected for analysis: PET
®

 and Kapton
®
. PET

®
 

(perfect reflection properties) is coated aluminium on both sides while Kapton
®
 is coated 

only on one side (imperfect reflection properties) as shown in Figure 4.11. There are three 

models types considered for these investigations (cannonball, flat rigid plate and 

multibody). The material properties are listed in  

Table 4.1 and the initial geometries of both rigid flat plate and multibody model are 

assumed to be that of a flat sheet (Figure 4.11). All objects start with the same set of 

Keplerian elements as shown in Table 4.2 and the starting date of the simulation is the 

same used in section 2.1.2 of chapter 2. Initial Euler angles measured at the second lump 

mass that is assumed to be the origin of body frame of reference are chosen to be 50, 9 and 

85 degrees (3-1-3 rotation sequence) respectively and the initial angular velocity set to zero 

for all components. The attitude dynamics of the multibody model refers to the attitude 

dynamic first presented in section 3.2.4 of chapter 3. The numerical integration used to 

solve the differential equations in this study is the ODE45 in MATLAB
®
.  

   
Figure 4.11 Cross-sectional objects of cannonball model and flat rigid object. 

 

 

Table 4.1 Properties of PET and Kapton [18] 

Material type AMR 

[m
2
/kg] 

Young’s 

Modulus 

(E) [N/m
2
] 

RsC , RdC , RaC  
sk  

(N·m/rad) 

sc  

 (N·m·s/rad) 

PET Coated 111.11 8.81x10
9
 0.60 0.26 0.14 0.0043 1.2388E-05 

Kapton Coated 26.30 2.50x10
9
 0.60 0.26 0.14 0.0051 1.3904E-05 

 uncoated 26.30  0.00 0.10 0.90   
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Table 4.2 Initial orbital elements. 

Semi-major 

axis(km) 

Eccentricity Inclination

(degrees) 

Argument of 

perigee(degrees) 

Longitude of ascending 

node(degrees)) 

Mean anomaly 

(degrees) 

41,254 0.0001 5.0 9.0 30.0 270.0 

 

 

The orbital and attitude evolutions of both debris models have been investigated under 

selected perturbation regimes. J2 perturbation only is labelled with subscript “j”, the third 

body gravitational perturbations from the Sun and the moon are labelled with subscript 

“g”, while SRP force is labelled with subscript “s”. Self-shadowing of multibody model is 

denoted by subscript “h”. The capital letters “C”, “R” and “M” indicate the cannonball 

model, rigid body and multibody body respectively. The material of the model is labelled 

with superscript “p” and “k” standing for PET
®
 and Kapton

®
 respectively. The summary of 

the objects and their characteristics used in the numerical simulations is shown in Table 

4.3. 

Table 4.3 Summary of letters to describe simulated objects. 

Model Letter Material Superscript Perturbations Subscript 

Cannonball C PET p J2 j 

Rigid flat sheet  R Kapton k Third body  g 

Multibody model M   SRP s 

    Shadow effect h 

 

4.7 Results and Discussion 

In this section, we present the physical dynamics and orbital parameters of the multibody 

model and compare that with the flat rigid sheet and cannonball model (reference object) 

for two material types (PET
®
 and Kapton

®
) over a period of 12 days. In order to analyse 

the effects of each perturbation, we investigate three scenarios: J2 and SRP, gravitational 

(J2 and third body) and finally consider all perturbations. All investigations are simulated 

with a personal PC CPU @ 1.80 GHz. Then, in order to investigate different initial 

conditions for the attitude dynamics and deformed shape, Monte Carlo simulations with 

300 different initial conditions are run on a Linux-based parallel computing cluster with 50 

processor cores. 

4.7.1 Dynamics under J2 and solar radiation pressure 

Figure 4.12 shows the dynamical evolution for the PET
®
 over 12 days for four different 

scenarios: 
p

jsM , ,

p

js hM  , 
p

jsR and 
p

jsC . The variations of the orbital elements are significantly 
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different for each object. Both eccentricity of p

jsM  and ,

p

js hM  lie between p

jsC  and p

jsR  

while the inclination of 
p

jsC  show the largest amplitudes in variations of inclination. It can 

be seen that the inclination of 
p

jsM  and ,

p

js hM  present almost similar periodic behaviours. 

The reason for this is that the SRP accelerations of multibody model depends on variations 

of the effective cross-section area throughout the orbital revolution due to tumbling and 

self-shading effect while the SRP accelerations of both rigid bodies are caused only by the 

varying distance to the Sun, which does not significantly change in the short period of the 

simulation. 

In the same simulation with Kapton
®

 (
k

jsM , ,

k

js hM , 
k

jsR  and 
k

jsC ), Figure 4.13 shows that 

the orbital evolutions of the 
k

jsC  exhibits the highest secular trend in eccentricity and the 

largest amplitude in variations of the inclination. It is, therefore, worthy to note that 

cannonball model is not suitable to approximate the orbital motion of an object with 

imperfect reflection properties. The inclination evolutions of 
k

jsM  and ,

k

js hM  are larger than 

k

jsR  due to variations in the effective cross sectional area of the flexible model as the 

previously mentioned for the case of PET
®
. Comparing both material types for the 

multibody model, the evolutions of Kapton
®
 are obviously smaller due to AMR, which is 

around 5 times lower and imperfect reflection properties. 

 

Figure 4.12 Comparison in eccentricity and inclination evolution of 
p

js
M , 

p

js,h
M , 

p

js
R  and 

p

js
C  under J2 

and solar radiation pressure over 12 days. 
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Figure 4.13 Comparison in eccentricity and inclination evolutions of 
k

js
M , 

k

js,h
M , 

k

js
R  and 

k

js
C  under J2 

and solar radiation pressure over 12 days. 
 

In order to better understand the dynamics of the multibody model, we restrict the time of 

the investigation to 10 minutes and start from the same initial configuration in Figure 4.14 

(deformed angle: 30 degrees) and same initial positions and velocities for both PET
®

 and 

Kapton
®
. Figure 4.15(a) shows the physical dynamics of 

p

jsM  without considering the self-

shadowing effect. In this case, the absolute accelerations of both planes (
p

jsM ) in Figure 

4.15(b) do not reach zero. Comparing with the evolution of ,

p

js hM  in Figure 4.16(a), we can 

notice that the self-shadowing effect leads to different deformation and tumbling when 

comparing with
p

jsM . The first plane, ,

p

js hM  is not exposed to direct solar radiation pressure 

due to self-shadowing effect and the overall absolute accelerations of both planes in Figure 

4.16(b) show a null or small accelerations. The rotations of 
p

jsM  is different when 

comparing the rotations of ,

p

js hM  as shown in Figure 4.15(c) and Figure 4.16 (c) 

respectively. Self-shading effect causes both different deformations and unique rapid non-

stable attitude motion of 
p

jsM  and ,

p

js hM . This is due to the fact that self-shadowing reduces 

the amount of SRP acting one side of the plate leading to a difference in the force vectors 

between the two sides. 
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a)                                                                              b) 

Figure 4.14 Initial geometry in the inertial frame of investigation in 10 minutes under J2 and solar 

radiation pressure a) 2D view b) side view. 

 

 
a) 

 
b)                                                                         c) 

Figure 4.15 Simulation results of PET
®
 under J2 and solar radiation pressure without self-shadowing   

(
p

js
M ) in 10 minutes a) time-lapse of deformation in the inertial frame (1 plot/ 30 seconds) b) absolute 

acceleration of both planes c) Euler angle evolution.  
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a) 

 
b)                                                                           c) 

Figure 4.16 Simulation results of PET
®
 under J2 and solar radiation pressure with self-shadowing          

(
p

js,h
M ) in 10 minutes a) time-lapse of deformation in the inertial frame (1 plot/ 30 seconds) b) absolute 

acceleration of both planes c) Euler angle evolution. 
 

The analysis of the motion of Kapton
®

 model under the effects of J2 and SRP over a period 

of 10 minutes is shown in Figure 4.17 and Figure 4.18. Due to the non-uniform reflection 

properties of Kapton
®
, the front surface is coated with highly reflective aluminium while 

the back side does not have any coating and hence has significantly lower reflectivity. 

There are three possible scenarios for the perturbations forces acting on the model. Firstly, 

the SRP acts on the aluminium-coated surfaces and the object moves subject to both SRP 

and J2 perturbations. Secondly, if SRP acts on the uncoated sides then the motion of the 

object is dominated by gravitational perturbation rather than SRP. Lastly, when SRP acts 

on the coated side of one plane and non-coated side of another one, then the effect on the 

two planes is going to be significantly different. This leads to the deformation of the 

geometry and rotations as shown in Figure 4.17(a). This mechanism is similar to the self-

shadowing effect. Comparing the absolute acceleration of both 
k

jsM  and ,

k

js hM , the 

complete shading plane ( ,

k

js hM ) on the first plane in Figure 4.18(b) is found at the start due 

to zero absolute acceleration as initial conditions while 
k

jsM , shows that SRP forces acts on 

both planes. These mechanisms of self-shadowing are as similar to the case of PET
® 

in the 

previous case study. 
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To summarise, the short term period analysis of both PET
®
 and Kapton

®
, the self-

shadowing causes a variation in the SRP forces acting on the body which results in 

different deformations and tumbling of the multibody model when compared to the results 

without considering self-shadowing effects. The rotation of ,

p

js hM  is however faster than 

,

k

js hM  due to lighter weight and uniform reflection properties. 

 
a) 

 
b)                                                                            c) 

Figure 4.17 Simulation results of Kapton
®
 under J2 and solar radiation pressure without self-

shadowing (
k

js
M ) in 10 minutes a) time-lapse of deformation in inertial frame (1 plot/ 30 seconds) b) 

absolute acceleration of both planes c) Euler angle evolution. 
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a) 

 
a)                                                                              b) 

Figure 4.18 Simulation results of Kapton
®
 under J2 and solar radiation pressure with self-shadowing    

(
k

js,h
M ) in 10 minutes a) time-lapse of deformation in inertial frame (1 plot/ 30 seconds) b) absolute 

acceleration of both planes c) Euler angle evolution. 

 

4.7.2 Effective cross-section area under J2 and solar radiation pressure 

The change of effective cross-section area alters the variations in the incidence angles on a 

debris surface thus leading to the attitude dynamics of debris. Figure 4.19(a) and Figure 

4.19(b) show the propagations of effective cross-section area over a period of 10 minutes 

of PET
®

 (
p

jsM , ,

p

js hM  and 
p

jsR ) and Kapton
®

 (
k

jsM , ,

k

js hM  and 
k

jsR ) under J2 and SRP 

disturbances. The effective cross-section areas of the rigid model (
p

jsR and 
k

jsR ) are 

calculated by averaging all possible attitudes of effective area over solar latitude and 

longitude leading to both average exposed area values of 0.1747 m
2
 and 0.1040 m

2
 

respectively. The equivalent area of 
k

jsR  is around 1.6 times smaller due to imperfect 

reflection properties. For the multibody model, the effective cross-section areas are the 

summation of the effective cross-section area of both planes due to their rotations. 
 

Analysing the effects of self-shadowing in Figure 4.19, it can be seen that the effective 

cross-sectional area with self-shadowing differs significantly from that with non-self-

shadowing for both PET
®
 and Kapton

®
. The rate of change of the effective cross-section 

area of 
p

jsM  and ,

p

js hM  in Figure 4.19(a) fluctuates more rapidly than that of 
k

jsM  and ,

k

js hM  
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in Figure 4.19(b). The highest value of effective cross-sectional area indicates that the SRP 

vector acts almost perpendicularly to the debris plane while the lowest value corresponds 

to the debris plane being almost parallel to SRP vector. These results are in accordance 

with the unstable attitude motion and variations in SRP accelerations discussed in previous 

section. 

 
a)                                                                                b) 

Figure 4.19 Comparison in variations of effective cross-section area under J2 and solar radiation 

pressure in 10 minutes a) PET
®
 b) Kapton

®
. 

 

4.7.3 Dynamics under J2 and luni-solar third body perturbations 

Figure 4.20(a) and Figure 4.20(b) show that there are very small changes in both 

inclination and eccentricity of 
p

jgM , 
p

jgR , 
k

jgM  and 
k

jgR . Figure 4.20(c) and Figure 4.20(d) 

shows the difference in inclination and eccentricity of both materials in the order of 10
-5

 

and 10
-8

 respectively when applied to the flat rigid plate model. While the changes for the 

eccentricity appear to be bounded, the inclination change suggests a secular trend. It would 

suggest that the gravitational effects insignificantly change in the orbital dynamic of 

multibody model when comparing with cannonball. For the simulation of the deformation 

dynamics, Figure 4.21 shows a spin of 
p

jgM . The cause for this behaviour is that the gravity 

gradient torque acts with sufficiently difference on each lump mass. This leads to the 

deformation of the body and the tumbling motion (Figure 4.21(b)-Figure 4.21(c)). 
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a)                                                                          b) 

 
c)                                                                             d) 

Figure 4.20 Comparison inclination and eccentricity evolution of 
p

jg
M , 

p

jg
R , 

k

jg
M  and 

k

jg
R  under J2 

and third body perturbations over 12 days a) Inclination evolution b) Eccentricity evolution. c) 

Difference in inclination between multibody model and rigid models d) Difference in eccentricity 

between multibody and rigid mode. 
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a) 

 
b)                                                                             c) 

Figure 4.21 Show tumbling and deformation of PET
®
 object under J2 and the third body from the Sun 

and Moon during 1.8296-1.8305 day (65 seconds) a) time-lapse of deformation in inertial frame (1 plot 

/3 seconds) b) Deformed angle evolution c) Euler angle evolution. 

 

4.7.4 Dynamics under all perturbations 

This section aims to investigate the orbital evolution under the effects of all perturbations 

for the three objects ( ,

p

jgs hM , ,

k

jgs hM , 
p

jgsR , 
k

jgsR , 
p

jgsC  and 
k

jgsC )  over a period of 12 days 

with the self-shadowing effect considered for the multibody models ( ,

p

jgs hM , ,

k

jgs hM ). Figure 

4.22 shows the orbital dynamics of the bodies. 
p

jgsC  presents the highest variations in both 

inclination and eccentricity. The maximum inclination change of ,

p

jgs hM  can reach 

0.033i   while for ,

k

jgs hM , this is one order of magnitude smaller at around 0.006i  . 

The difference is due to PET
®
 being lighter than Kapton

®
 and having uniform reflection 

properties. It is evident from these results that the variations in both inclination and 

eccentricity caused by SRP are dominant over those exerted by J2 and the third body from 

the Sun and Moon. The attitude motions of ,

p

jgs hM  and ,

k

jgs hM  during 1.0-1.5 day are shown 

in Figure 4.23 and Figure 4.24 respectively and both display very fast and complex motion. 

It is worthy to note that the combinations of the multibody model, reflection properties and 
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the self-shadowing effect lead to unique non-stable rotations and deformations of both 

PET
®
 and Kapton

®
. This simulation takes 3.26 minutes/day evolution on a personal PC 

CPU @ 1.80 GHz with RAM 8 GB. This is around three times faster than the time 

required for the simulation of the Bernoulli model. 

  

Figure 4.22 Comparison in eccentricity and inclination evolution over 12 days of 
p

jgs,h
M , 

k

jgs,h
M , 

p

jgs
R , 

k

jgs
R , 

p

jgs
C  and 

k

jgs
C  under J2 , third body perturbations and solar radiation pressure. 

 

 
a)                                                            b) 

 
c) 

Figure 4.23 Euler angle evolution of 
p

jgs,h
M  during 1.0-1.5 day under J2, third body perturbations and 

the direct solar radiation pressure a) the 1
st
 Euler rotation b) the 2

nd
 Euler rotation c) the 3

rd
 Euler 

rotation. 
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a)                                                                                       b) 

 
c) 

Figure 4.24 Euler angle evolution of 
k

jgs,h
M  during 1.0-1.5 day under J2, third body perturbations and 

the direct solar radiation pressure a) the 1
st
 Euler rotation b) the 2

nd
 Euler rotation c) the 3

rd
 Euler 

rotation. 

 

4.7.5 Monte Carlo simulation 

In a real case scenario the attitude and shape of the debris will not be known. Performing a 

Monte Carlo analysis can therefore shed some light on understanding the effects that 

different initial conditions have on the orbital propagation of the debris. A Monte Carlo 

simulation of the multibody model is therefore, performed to investigate the uncertainty of 

the orbital evolution over a period of 100 days under different initial attitude and 

deformation angle of the multibody model ( ,

p

jgs hM ) by comparing it with cannonball model 

(
p

jgsC ) and flat rigid plate (
p

jgsR ). All objects will be in the same initial orbit shown in Table 

4.2 and the same starting date. In the case of the rigid models, there are 3 cannonball 

objects with different AMR of 50, 70 and 111.11 m
2
/kg and flat rigid plates: 

p

jgsR  with 

AMR of 19.56 m
2
/kg with averaged solar radiation pressure average. 

The computational cost over 100 days of Monte Carlo for the multibody model is higher 

due to the coupling of deformation attitude and orbital dynamic as well as the inclusion of 
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self-shadowing effects when compared to the rigid model. The sampling technique is, 

therefore, important to select the suitable sampling sizes of initial rotation angles and 

deformed angle. From the study of Burhene and Matala by comparing different sampling 

methods (random sampling, stratified sampling, Latin hypercube sampling and sampling 

based on Sobol sequence) [56, 57], the Latin hypercube (LH) sampling shows the fastest 

convergence and produces reasonable results even for very small sample sizes. This 

technique is flexible in terms of data density and location and has good uniformity with 

respect to each dimension variable. 

Figure 4.25 shows a mean value of uniform distribution sampling of attitude dynamics and 

deformation angle by varying the sample size. Due to the large the number of sampling 

sizes and complicated dynamics of multibody model to predict orbital motions of all 300 

initial conditions, this investigation requires the expensive computations. The simulations 

were, therefore, performed in parallel on a Linux-based computer cluster with 50 processor 

cores. 

 
Figure 4.25 Comparing mean values of 4 variables (yaw, pitch, roll and deformed angle) in different 

sampling size by using Latin hypercube method in term of uniform distribution [0,1]. 

 

Figure 4.26 shows the final values of eccentricity, inclination and semi-major for 
p

jgsC , 

p

jgsR  and ,

p

jgs hM  over 50 days. It can be noticed that 
p

jgsC  with AMR: 111.11 (triangular) 

and 
p

jgsR  (cross) shows the highest and lowest eccentricity respectively and for 
p

jgsC  with 

AMR 70 m
2
/kg (diamond), the orbital evolutions of this object is close to the debris cloud 

of ,

p

jgs hM . We produce the histogram and fitted normal distribution of the orbital element 

data of ,

p

jgs hM  by using statistical data binning as show in Figure 4.27, presenting that 

eccentricity, inclination and semi-major evolutions are in range of 0.31–0.34, 4.30–4.62 
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degrees and 41,611–42,629 km respectively. These results imply that the propagation of a 

different initial rotational motion and a unique shape provide a different orbital motion. 

 
a)                                                                           b) 

Figure 4.26 Comparison the orbital distribution of the Monte Carlo simulation of the multibody model 

(green circle) with rigid flat plate (blue circle) and cannonball objects (red symbols) over 50 days a) 

inclination vs eccentricity b) semi-major axis vs eccentricity. 

 

 
a)                                                                           b) 

 
c) 

Figure 4.27 Histogram and fitted normal distribution of orbital evolutions of ,

p

jgs hM  over 100 days a) 

inclination (b) eccentricity (c) semi-major axis. 

 

After evaluating the orbital dynamics over 100 days in Figure 4.28, all rigid bodies (
p

jgsC  

and 
p

jgsR ) in Figure 4.28(b) of the graph plotting semi-major vs inclination move in the 
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,

p

jgs hM  clusters between semi-major axis range of 42,139-42,211 km with inclination range 

of 5.45- 6.98 degrees. The histogram of multibody model cluster (Figure 4.29) displays 

larger clouds: inclination range of 0.52–0.62 degrees, eccentricity range of 4.72–5.59 and 

semi-major axis of 41,504-42,964 km that coherent with SD values increase in all orbital 

elements when compared to the 50
th

 day. As the results of the Monte Carlo simulations 

over 100 days, it is worthwhile noting that the different initial conditions of multibody 

model lead to different evolution because the model is subject to changes in the effective 

cross-sectional area, which results in large variations in the SRP force vector. In case of the 

rigid object (
p

jgsC  and 
p

jgsR ), the secular eccentricity is proportional to AMR value but the 

evolutions of both inclination and semi-major axis of cannonball model display narrower 

variations when compared to multibody model. These results support the suggestions of 

real measurements as well as characterization measurements that the effectively exposed 

area is not stable and the objects are possible in fast attitude motion. Therefore, it can be 

noted that the cannonball model and flat rigid plate despite using an averaged area values 

do not appear to provide a good approximation to the orbital dynamics of MLI debris.  

 
a) 

 
b)                                                                                        c) 

Figure 4.28 Comparison the orbital distribution of the Monte Carlo simulation of the multibody model 

(black circle) with rigid flat plate (blue circle) and cannonball objects (red symbols) over 100 days a) 

eccentricity vs inclination b) semi-major axis vs inclination c) Magnify on the blue area of semi-major 

axis vs inclination. 
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a)                                                                           b) 

 
c) 

Figure 4.29 Histogram and fitted normal distribution of orbital evolutions of ,

p

jgs hM  over 100 days a) 

inclination (b) eccentricity (c) semi-major axis 
 

 

4.8  Summary 

A new model for high area-to-mass ratio (HAMR) objects based on multibody dynamics 

that is able to couple deformation, attitude and orbit dynamics in near GEO region has 

been presented. The specific results of the effects of various perturbations on different 

orbital parameters and physical properties of the body are analysed.  

Compared to the orbital element evolutions of a flat rigid model, the multibody model 

displays larger changes in inclination and eccentricity. The fast rotation of the multibody 

model leads to inclination and eccentricity changes that are different from a flat rigid plate. 

Then, the self-shadowing effect provides different orbital and attitude dynamics, 

deformation and hence effective cross-section area when compared to a body without self-

shadowing effects. 

The J2 and luni-solar perturbations can induce body rotation due to gravity torque. Larger 

area-to-mass ratios are also the reason for higher oscillations in both inclination and 
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eccentricity as well as rapid irregular spin. In all simulations the results show that 

perturbations from solar radiation pressure also play a significant role in both the 

dynamical evolution and rapid complex rotation of the body. 

According to the results of the Monte Carlo simulations, different initial conditions of in 

the attitude dynamics and shape orientation leads to substantially different orbital 

dynamics over a period of just 100 days. The results also appear to support the idea that 

rigid objects (cannonball and rigid flat plate) are not a good approximation to predict the 

long term orbital evolutions of HAMR debris [14, 29, 30]. 

The next chapter is will describe set experimental setup, through the use of a vacuum 

chamber that replicates the space environment to determine the characteristics of the 

material (damping ratio) and natural frequency of real multilayer insulation including the 

validation the multibody model through experimental results. 
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 5 
 

5 Experimental validation 

5.1 Introduction 

This chapter presents a methodology to determine the dynamic properties of thin 

membranes with the aim to validate the deformation of the computational flexible model. 

The experiments are performed in a high-vacuum chamber in order to replicate as much as 

possible, the space environment. The first experiment, a free motion test, is used to 

determine the damping characteristics and natural frequency of the thin membrane with the 

free vibration decay technique. The motion is tracked through an optical camera, and a 

Kalman filter is implemented in the tracking algorithm. Then, the effect of solar radiation 

pressure of the thin membrane is investigated in the second experiment by mean of a high 

power spotlight which is used to illuminate the sample and any displacement of the thin 

membrane is measured by means of a high-resolution laser sensor. Analytic methods of 

both experimental setups are used for the validation of the multibody model by comparing 

with the experimental results of amplitude decay, natural frequencies and forced 

displacement. 

5.2 Experimental setup 

The two experimental setups (free motion and forced motion experiments) of this chapter 

are described in this section. Three MLI samples are used in both experiments: PET 1 mil, 

Kapton 1 mil and PET 5 mils. All samples have the same width (5 cm) and length (20 cm) 

and their physical characteristics and properties are shown in Table 5.1. 

Table 5.1 Properties of PET and Kapton [18, 58]. 

Material type Thickness mil (µm) Mass 

(mg) 

Density 

(kg/ m
3
) 

Young’s 

Modulus 

(N/m
2
) 

Cs, Cd, Ca 

PET 1mil 1 (25.4) 0.3530 1,390 8.81x10
9
 0.60 0.26 0.14 

PET 5 mils 5 (127) 1.7653 1,390 8.81x10
9
 0.60 0.26 0.14 

Kapton 1 mil 1 (25.4) 0.3606 1,420 2.50x10
9
 0.60 0.26 0.14 
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5.2.1  Free motion experiment setup 

The setup for the free motion test is shown in Figure 5.1. This test aims to find the 

damping characteristics of each MLI sample. The sample is attached by means of a stand 

and held in place by an electromagnetic latch. The camera (Canon IXUS 110 IS, 30fps) is 

set in front of the mirror window. Before starting the experiment, we drain the air inside of 

the vacuum chamber (size : 30x30x28.7 cm
3
) down the lowest possible level of 10

-4
 mbar 

(high vacuum level). The power to the electromagnetic latch is then turned off and this 

releases the sample, which swings freely and this motion is recorded by the camera. The 

data is used for the object tracking process to allow measurement of the amplitude decay 

and application of Fast Fourier Transform (FFT) process to define the natural frequencies 

of the MLI samples. 

 
a)                                                                   b) 

                   
c)                                                               d) 

Figure 5.1 Schematic drawing and experimental setup of the free motion setup a) side view b) back 

view c) outside vacuum d) inside vacuum. 
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5.2.1.1 Object tracking 

In order to measure the motion of the MLI sample inside the vacuum chamber during the 

experiment, object motion tracking, through a recorded video, is used. This is achieved by 

measurement of the movement of a red point, representing the lump mass of the multibody 

model. There are six major steps, illustrated in Figure 5.2 to this proc. The motion of the 

sample is converted to be an image sequence (Figure 5.3(a)). The three red pixels are then 

extracted and separated from blue and green pixels (Figure 5.3(b)). In the object 

recognition and representation step (Figure 5.3(c)), the extracted red pixels are converted 

to white in a binary image. This will then allow to process a representation of each 

recognized tracked object. The last step, Kalman filter tracking, uses a Kalman 

algorithm[59, 60] to estimate an observable state, which is updated in each time step with a 

linear state update, and plots the tracking blue rectangle around the object’s movement at 

each time step (Figure 5.3(d)). 

 
Figure 5.2 Object tracking process. 
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a)                                                                   b) 

    
c)                                                                   d) 

Figure 5.3 Object tracking simulation a) an extracted image from a video record b) Extracting the red 

pixels from a picture c) Converting a grayscale image into a binary image d) Blue mark on the red 

three points on an image. 

 

5.2.1.2 Kalman filter 

The Kalman filter is an algorithm that uses a series of measurements observed over time to 

predict a future state and uses available measurements to correct this prediction. For visual 

object tracking, Kalman filtering is usually achieved by representing the uncertainty via a 

Gaussian function, to balance the effects of tracking results from observation and 

prediction. In this experiment, the state measurements of the free motion experiment are 

represented by the positions of three red points. The Kalman filter algorithm has, two 

steps: prediction and update. 

5.2.1.2.1 Prediction 

The prediction step makes uses of the state estimate from the previous time step to produce 

an estimate of the state at the current time step.  

1) State prediction, 
1iX 
: a Kalman filter makes a prediction of the state at i +1 defined by: 

Red points 
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1
ˆ

i s iX X   (5.1) 

Where s  is the state transition matrix and ˆ
iX  is the current state vector. 

In the model of object tracking on 2D camera images [61], the state vector consists of a 

two-dimensional position, velocity and acceleration. By considering a constant 

acceleration, the state transition matrix can be determined from the basic kinematic 

equation as follow: 

2

1

1

2
t t t tx x x t a t       

(5.2) 

1t t tv v a t     (5.3) 

1t ta a   (5.4) 

 

Where tx  and 1tx   is vector  x y x y x y  in time of t  and 1t   respectively. x  

and y  are the coordinates of the red point representing a lump mass and x  and y  are its 

velocity and t  is the discrete time of sequence image. Therefore, s  matrix is expressed 

as: 

1 0 0 0.5 0

0 1 0 0 0.5

0 0 1 0 1 0

0 0 0 1 0 1

0 0 0 0 1 0

0 0 0 0 0 1

s

t t

t t

  
 

 
 
 

   
 
 
 
   

(5.5) 

 

2) State covariance prediction: a Kalman filter estimates the error covariance 
1iP
 forward 

as: 

1
ˆ T

i iP P Q   
 

(5.6) 

 

Where Q  is the process noise covariance and ˆ
iP  is the error covariance matrix. 
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5.2.1.2.2 Measurement update 

After predicting the state and its error covariance at time i +1 the process then continues 

as: 

1) Kalman Gain: the Kalman filter computes a Kalman gain 1iK   used to correct the state 

estimates 
1iX 
: 

1

1 1 1 1 1 1( )T T

i i i i i iK P H H P H R 

        (5.7) 

 

Where 
1iH 
 is a matrix that converts the state space into a measurement space at i +1 and 

R  is a measurement noise covariance. 

2) Update Estimate with measurement 
1

ˆ
iX : the Kalman gain and measurement from time 

step, are then used to update the state estimate as;. 

1 1 1 1 1 1
ˆ [ ]i i i i i iX X K Z H X         (5.8) 

 

Where 1iZ  is the measurement vector. 

3) Update error Covariance estimate (
1

ˆ
iP

): the final step of the Kalman filter’s iteration is 

the update of the error covariance 
1iP
 to 

1
ˆ
iP

. 

1 1 1 1
ˆ [ ]i i i iP I K H P      (5.9) 

Where I  is the identity matrix. 

  

5.2.1.3 Multibody model 

As introduced in Chapter 4, the multibody, flexible model is represented as three lump 

masses connected with rigid rods ( L = 1L = 2L = 0.10 m). The 2
nd

 lump mass includes a 

rotational spring and damper. The multibody model based on both free motion and forced 

motion experiments in Figure 5.4 is fixed at one end to the top of the vacuum chamber 

while the other end is left to swing freely under the effects of gravity and other external 

forces. This 3D membrane is modelled as two dimensional, considering only the plane of 

the main oscillation. This plane is perpendicular to the plane of the undeformed membrane 

itself. The first lump mass is defined as origin of the frame of reference at the pivot point.  
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a)                                                         b) 

Figure 5.4 Multibody model of the three lump masses a) initial position b) Displacement after applying 

an external force on the lump mass. 

 

In order to develop the system dynamics, we first define the positions of each lump mass   

( 1 1 2 2 3 3, , , , ,x y x y x y ) in terms of the deformation angles ( 1 , 2 ) as: 

1 0x   (5.10) 

1 0y   (5.11) 

2 1 1sinx L   (5.12) 

2 1 1cosy L    (5.13) 

3 2 2 2sinx x L    (5.14) 

3 2 2 2cosy y L    (5.15) 

 

The free-body diagram in Figure 5.5 shows the net force acting on each lump mass. The 

net forces on the 1
st
 mass are zero due to the pivot point.  
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a)                                                         b) 

 
c) 

Figure 5.5 Free body diagram of each lump mass a) 1
st
 lump mass (fixed position)b) 2

nd
 lump mass c) 

3
rd

 lump mass. 

 

The equation of motion of the 2
nd

 lump mass is represented in the horizontal and vertical 

forces (
_ ,2x totF and

_ ,2y totF ) by using the second law of Newton: 

2 2 1 1 2 2 _ ,2x totm x T s T s F     (5.16) 

2 2 1 1 2 2 2 _ ,2y totm y T c T c m g F     (5.17) 

 

Where 2m  is the second lump mass 
_ ,2x totF  and 

_ ,2y totF  are total force vectors acting on the 

2
th

 lump mass in x and y direction respectively ( ,2 int,2 ,2 ,2tot ext DF F F F   ), 
int,2F  is the 

internal force vector from the summation of rotational damper and spring force vectors       

( int,2 spring damperF F F  ), ,2extF  is the external force vector, 
,2DF  is the air friction, jT  is the 

tension force vector generated by the thj  rods ( j = 1 and 2), 2x  is acceleration in x 

direction of the 2
th

 lump mass, 
1 1sins  , 1 1cos ,c   2y  is acceleration y direction the 2

th
 

lump mass and 2 2sins  , 2 2cosc  . The rotational spring and damper forces are 

expressed as: 

2 1( ) /spring eq iF K L    (5.18) 



  93 

 

2 1( ) /damper eq iF C L    (5.19) 

 

Where 
1  and 

2  are angular velocities of 1L  and 2L  respectively, 
eqK  is the equivalent 

stiffness coefficient and 
eqC  is the equivalent damping coefficient. The general equation of 

the air friction [62] is expressed as:  

21

2
D i DF V AC   (5.20) 

 

Where   is the air density, A  is the area of the object, 
iV  is the velocity of the i

th
 lump 

mass and DC  is the drag coefficient ( DC  of flat plate = 1.9). The equation of motion of the 

3
rd

 lump mass is: 

3 3 2 2 _ ,3s x totm x T F    (5.21) 

3 3 2 2 3 _ ,3c y totm y T m g F    (5.22) 

 

Then, we substitute Eq.(5.21) and (5.22) into Eq.(5.16) and (5.17): 

2 2 1 1 3 3 _ ,3 _ ,2x tot x totm x T s m x F F      (5.23) 

2 2 1 1 3 3 3 2 _ ,2 _ ,3c y tot y totm y T m y m g m g F F       (5.24) 

 

We multiply 1cos  in Eq.(5.23) and 1sin  in Eq.(5.24) and rearrange the LHS in term of 

1 1 1T s c : 

1 1 1 1 2 2 3 3 1 1 _ ,2 _ ,3( )x tot x totT s c c m x m x c c F F      (5.25) 

1 1 1 1 2 2 1 3 3 1 3 2 _ ,2 _ ,3c ( )y tot y totT s s m y s m y s m g m g F F        (5.26) 

 

Then, substituting Eq (5.25) into Eq (5.26): 

1 _ ,2 _ ,3 1 2 2 3 3 1 1 2 2 1 3 3

1 3 2 _ ,2 _ ,3

( )

( )

x tot x tot

y tot y tot

c F F c m x m x c s m y s m y

s m g m g F F

    

    
 

(5.27) 

 

In order to find expressions for the angular acceleration of 
1  and 

2  in terms of 
1 , 

1 , 
2

and 
2 , the second order derivatives from Eq.(5.12) to Eq.(5.15) are the acceleration as: 

2

2 1 1 1 1 1 1sin cosx L L       (5.28) 
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2

2 1 1 1 1 1 1cos siny L L      (5.29) 

2

3 2 2 2 2 2 2 2sin cosx x L L       (5.30) 

2

3 2 2 2 2 2 2 2cos siny y L L       (5.31) 

 

The next step is a substitution of the acceleration from Eq.(5.28) to Eq.(5.31) in Eq.(5.27): 

2

1 1 2 3 2 2 3 2 1 2 2 3 2 1

1 _ ,2 _ ,3 1 3 2 _ ,2 _ ,3

( ) cos( ) sin( )

( ) ( )x tot x tot y tot y tot

L m m L m L m

c F F s m g m g F F

          

      

 

(5.32) 

 

In the same way for the 3
rd

 lump mass, we multiply Eq.(5.21) by 2cos  and Eq.(5.22) by 

2sin  and substitute the acceleration from Eq.(5.28) to Eq.(5.31). Finally, the equation 

for the angular acceleration of the third lump mass will be expressed as: 

2

1 1 3 2 1 2 2 3 2 1 3 2 1 2 3 _ ,3 2 _ ,3cos( ) sin( ) ( )y tot x totL m L m L m s m g F c F              (5.33) 

 

Eq.(5.32) and Eq.(5.33) can be written in matrix form: 

1 2 11

3 4 22

C C A

C C A





    
    
    

 (5.34) 

 

Where: 

1 2 3 1

2 3 2 2 1

3 3 2 2 1

4 3 2

2

1 2 2 3 2 1 1 _ ,2 _ ,3 1 _ ,2 _ ,3 2 3

2

2 2 1 3 2 1 2 3 _ ,3 2 _ ,3

( )

cos( )

cos( )

sin( ) ( ) ( ( ) )

sin( ) ( )

x tot x tot y tot y tot

x tot x tot

C m m L

C m L

C m L

C m L

A L m c F F s F F m m g

A L m s m g F c F

 

 

  

  

 

 

 



       

     

 

By multiplying the left hand side of Eq.(5.34) by the inverse of the C matrix. We can 

define the angular acceleration vector as:  

1

1 2 11

3 4 22

C C A

C C A






     

     
   

 
(5.35) 
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5.2.1.3.1 Numerical integration 

The numerical integrator used to solve the dynamics of the multibody model equations is 

ODE45 (MATLAB
®
). It requires to convert the 2

nd
 order equations into the 1

st
 order 

equations. Then, the new system is written as: 

1 1

2 2

1 1

2 2

 

 

 

 









 

(5.36) 

All simulations in this chapter are performed on a PC with CPU @ 1.80 GHz and 8GB 

RAM. 

5.2.1.4 Underdamped free vibration 

The free motion of membrane is slowly damped due to friction present in the system at the 

hinge and residual atmosphere in the vacuum chamber. The MLI membrane is modelled as 

a double pendulum as shown in Figure 5.4. The amplitude of the oscillation decreases as 

shown in Figure 5.6.  

 
Figure 5.6 Transient response of a decaying time-history. 

 

The damped vibration period ( d ) in Figure 5.6 is defined as: 
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2
d

d





  (5.37) 

 

Where d  is the damped natural frequency: 
21d n    and n  is the natural 

frequency of the system. 

The amplitude response in the time domain can be transformed in frequency domain 

(Figure 5.7) by using FFT in order to estimate the damping ratio ( ) of a sample.  

 
Figure 5.7 Frequency response. 

 

The half-power bandwidth from the frequency response is a very useful tool for computing 

the damping ratios for multi freedom systems as: 

2 1( )

2 n

 





  (5.38) 

 

From the amplitude decay and frequency response in Figure 5.6 and Figure 5.7, we can 

find an equivalent stiffness constant (
eqK ), and equivalent damping coefficient (

eqC ). They 

are defined as: 

2

eq nK M  (5.39) 

and 

2eq nC M   (5.40) 
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Where M  is the total mass of a membrane. 

We can now measure the damping ratio of the material by observing the amplitude decay 

of the displacement and computing the natural frequency from the frequency response. 

Based on an unforced damped two-degree-of-freedom mass-spring-damper system, the 

differential equation is written as following: 

      0M C K      (5.41) 

 

Where  M  is mass matrix,  C  is the damping coefficient matrix,  K  is the stiffness 

matrix,   is angular acceleration vector,   is angular velocity vector and   is angular 

displacement vector. 

5.2.1.4.1.1 Normal modes 

In order to analyse the normal modes of oscillation of the multibody model, we reduce 

Eq.(5.41) to a standard eigenvalue form by removing the damping matrix. The new 

equation can be written as: 

    0M K    (5.42) 

 

And the general solutions have the form: 
1,2 1,2( ) j tt A e   . Therefore, we can find the 

normal modes as: 

   2det( ) 0K M   (5.43) 

 

The natural frequencies [63], which are the eigenvalues (
2 ) of the multibody model, are 

determined by solving Eq.(5.43) as the solution of the quadratic equation: 

 

2 2

1 4 2 5 1 4 2 5 1 5 62

2

2 4 6

( ) 2

2

k k k k k k k k k k k

k k k


   



 

(5.44) 
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Where: 

1 ,2 1 ,1 1

2 2

2 1 ,1 1 ,1 1

2

4 ,2 1 1 2

5 ,2 1

6 1 ,2 1

1 2

( / 2)

( / 2)

( / 2 )

( / 2)

( / 2)

   and  are the moments of inertia of rigid rod

rod rod

rod rod

rod

rod

rod

k g m L m L

k I m L m L

k m L I

k m g L

k L m L

I I

 

  

 

 

 

 

From Eq.(5.44), we can find the normal modes of the oscillation. The ratios of the 

amplitude 1A  and 2A of two coordinates are expressed as: 

 
5 61

2 2
2 2 4 6 1 4

( )
k kA

A k k k k k







 
 (5.45) 

 

The 1
st
 mode ( 1 2( / )A A > 0) represents both rigid rods oscillating in the same direction 

(in-phase in Figure 5.8(a)). The 2
nd

 mode ( 1 2( / )A A < 0) implies that the rigid rods move 

in opposite directions (out of phase in Figure 5.8(b)). The analytic method to determine 

natural frequency called “normal mode” will be compared with modal analysis performed 

by using ANSYS
®
 and the experimental results obtained during free motion experiment. 

 

a)                                                                       b) 

Figure 5.8 Two normal modes of multibody model a) 1
st
 mode b) 2

nd
 mode. 

 

5.2.2 Forced motion experimental setup 

For the forced motion set up illustrated in Figure 5.9, we use a high power spotlight 

beamed onto the sample. A dimmer allows to vary the spotlight power in order to study the 

relationship between light intensity and sample displacement. A high resolution laser 
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measurement system optoNCDT 1700-2LL [64], (resolution: 0.1 µm and measuring range 

2 mm) is used to measure the displacement at the bottom of sample (the 3
rd

 lump mass) as 

shown in Figure 5.9(c). The RS422 converter [64], which converts serial data from the 

sensor to a USB port, is installed to interface the sensor with a laptop. The experiment has 

been repeated five times on each sample and the average of the five measurements are used 

here to critically evaluate the results. In this experiment, the heat of radiation pressure from 

spotlight is able to generate air flow inside because air flows from the colder to the hotter 

(thermal transpiration) leading to oscillation of measurement data. We can measure this 

effect by using Crookes radiometer known as a light mill that was developed to measure 

the intensity of radiant energy or thermal effect. Basically, the air pressure inside vacuum 

chamber needs to strike a balance between 1 Pa and 10
−3 

Pa. A strong vacuum inside the 

bulb does not permit motion because there are not enough air molecules to cause the air 

currents that propel the vanes and transfer heat to the outside before both sides of each 

vane reach thermal equilibrium by heat conduction through the vane material. For this 

experiment, we however can ignore this effect because a vacuum chamber is very high 

level to bring a pressure down into low level air molecules and the measurement data 

during experiment did not show the oscillation.  

In addition, the experimental results will be compared with the numerical results obtained 

from the analytic solution of both multibody dynamics and FEM simulations (through 

commercial package ANSYS
®
). 

 

 

 

 

 

 

 

 



  100 

 

   
a)                                                                   b) 

   
c)                                                               d) 

Figure 5.9 Schematic drawing and experimental set up of a forced motion setup a) schematic on side 

view b) interface program c) outside view of the experiment d) inside view of the vacuum chamber. 

 

5.2.2.1 Radiation pressure force of the spotlight 

The forced motion investigation is the experiment to measure the displacement of the free 

end of a membrane by exposing it to the radiation pressure from a spotlight. The aim is to 

replicate the effect of solar radiation pressure on the MLI element. The spotlight is 

assumed to emit like a perfect parabolic mirror [21] as shown in Figure 5.10. The 

estimation of the radiation pressure is given by: 

2

2

4
rad

P
I

d




  (5.46) 

 

Where radI  is radiation flux, P  is the power of the spotlight, d  is the distance of the light 

source from the membrane and   is the transmissivity efficiency of the clear glass 

window of the vacuum chamber, which is approximated as perfect ( =1). 
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Figure 5.10 Schematic drawing of spotlight exposure. 

 

In this experiment, we need to account for the specular and diffuse reflection properties of 

the MLI. Therefore, the solar radiation force (
expF ) [36] can be calculated as: 

exp exp
ˆˆcos( ) 2    cos( ) (1 )

3

rad Rd
inc Rs inc Rs

I C
F A C N C S

C
 

  
     

  
 (5.47) 

 

Where 
expA  is exposed area of sample, c  is the speed of light (299,792,458 m/s), 

RdC  and 

RsC  are the coefficients of diffuse and specular reflectivity respectively. The relationship 

between 
RsC ,

RaC  and 
RdC  is 1=

RsC +
RaC +

RdC , N̂  is the normal unit vector of membrane, Ŝ  

is the spotlight incidence unit vector.  

In this experiment, the spotlight operates along the x axis direction and the incident angle   

(
inc ) is perpendicular to the membrane. Then, Eq.(5.47) defines the external force acting 

on the MLI element. 

5.3 Experimental results 

5.3.1 Free motion investigation. 

Figure 5.11 shows the angular motion of the Kapton 1 mil MLI element under normal 

atmospheric conditions. The result shows that air friction plays a lead role in supressing the 

motion of the MLI element. The object tracking detections of the free fall motion of PET 1 

mil, Kapton 1 mil and PET 5 mils in vacuum environment are shown as in Figure 5.12, 

Figure 5.13 and Figure 5.14 respectively. The motions of lump masses are denoted by a 

blue rectangle. 
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Figure 5.11 Free vibration response of Kapton 1 mil in normal atmosphere. 

 

a)   
 

b) 
 

c) 

Figure 5.12 Detection of three red points of PET 1 mil. 

 

a) b) 
 

c) 

Figure 5.13 Detection of three red points of Kapton 1 mil.  

 



  103 

 

 
a) 

 
b) 

 
c) 

Figure 5.14 Detection of three red points of PET 5 mils. 

 

Figure 5.15 shows the free vibration of the deformation angles 1  and 2  in the time 

domains and frequency domains for each MLI sample. The settling times of the PET 1 mil, 

Kapton 1 mil and PET 5 mils are 12.41, 12.52 and 24:30 seconds respectively. The bigger 

mass will affect the higher gravitational potential energy. With more energy, the bigger 

mass will swing faster. The natural frequency, which has the same value for both 1  and 

2 , is 0.5156, 0.2109 and 1.3090 Hz. It is obvious that amplitude, settling time and natural 

frequency of a sample depends on its material properties and dimension. From these 

results, we can compute the damping ratio ( ) from Eq.(5.38). The equivalent rotational 

spring and damping coefficients on the 2
nd

 lump mass can be calculated with Eq.(5.39) and 

Eq.(5.40) respectively. We can see the damping ratio Table 5.2 shows the damping ratio, 

stiffness and damping coefficients obtained from the experimental data. We will use values 

in Table 5.2 to investigate the amplitude decays and natural frequencies of the multibody 

model. 

Table 5.2 Damping ratio, stiffness and damping coefficients of MLI sample from experimental results. 

Material 
  eqK  

( N m/rad ) 

eqC  

( N m s/rad  ) 

PET 1 mil 0.0409 0.0258 2.467E-04 

Kapton 1mil 0.0441 0.0251 2.652E-04 

PET 5 mils 0.0145 0.1162 4.153E-04 
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a) 

 
b) 

 
c) 

Figure 5.15 Free vibration response of the damping experiments in time and frequency domains a) 

PET 1 mil b) Kapton 1 mil c) PET 5 mils. 

 

The free motion simulation of the numerical multibody model of Kapton 1 mil is, for 

example, shown in Figure 5.16, which motion is similar as the 1
st
 mode in Figure 5.8. The 

settling times of the PET 1 mil, Kapton 1 mil and PET 5 mils are shown in Figure 5.17 and 

are 24.30, 25.10 and 40.10 seconds respectively. As shown in the experimental results, 

Kapton 1 mil takes the shortest time to stabilise while PET 5 mils takes the longest. The 

results are coherent with the damping ratios ( ), as Kapton 1 mil and PET 5 mils have the 

highest and lowest damping coefficient (
eqC ) respectively. Comparing the experimental 

results with the numerical simulations, we can see that the motion appears to match well 
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for the initial 2-3 cycles but then the settling time for the numerical results are 

approximately double that of the experimental results. This is caused by the presence of 

dissipative forces at the hinge inside the vacuum chamber. 

 
Figure 5.16 The simulation example of free motion of multibody dynamics for Kapton (1 plot/0.5004 

second). 

 

 

 

 

 

 

 

 

Starting point 
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a) 

 
b) 

 
c) 

Figure 5.17 Free vibration response of the damping experiments in time and frequency domains a) 

PET 1 mil b) Kapton 1 mil c) PET 5 mils. 

 

The natural frequencies of the PET 1 mil, Kapton 1 mil and PET 5 mils from the 

experimental results in Figure 5.15 are 0.5156, 0.2109 and 1.3090 Hz which match well 

with the results obtained through the numerical simulations in Figure 5.17 (0.5581, 0.2087 

and 1.4190 Hz respectively). We now analyse the phase of both 
1  and 

2 in order to 

investigate the normal mode of the oscillation response. We can see from Figure 5.15 and 

Figure 5.17 that in both numerical and experimental results, the amplitudes of all samples 

are in-phase throughout the motion. These results therefore imply that the natural 

frequency of all samples is in the 1
st
 mode as shown in Figure 5.8.  
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The numerical results of the modal analysis of the 1
st
 and 2

nd
 modes of all samples with 

ANSYS
®
 in Figure 5.18 is similar to normal mode of multibody model in Figure 5.8. A 

summary of the natural frequency values, obtained through experimental results, numerical 

multibody model simulations, normal mode through Eq.(5.44) and FEA are shown in 

Table 5.3. We can see that the natural frequency for all samples appear to be very similar. 

        
a)                                                            b) 

Figure 5.18 Mode shape from FEA(ANSYS
®
): Natural modes a) the 1

st
 mode b) the 2

nd
 mode. 

 

Table 5.3 Natural frequency comparison. 

Material Natural Frequency (Hz) 

Free 

vibration 

simulation 

(MATLAB
®
) 

Free 

vibration 

method 

(Experiment) 

Normal mode 

 

Free vibration 

method 

(ANSYS
®
) 

f1 f1 f1 f2 f1 f2 

PET 1 mil 0.5581 0.5156 0.5265 1.3474 0.5350 1.3815 

Kapton 1mil 0.2087 0.2109 0.2299 0.6147 0.2095 0.6270 

PET 5 mils 1.4190 1.3090 1.3480 8.1566 1.3338 8.3209 

 

5.3.2  Forced motion investigation 

To determine the motion of the MLI samples subject to external forces, we illuminate the 

samples with a high power spotlight. The spotlight is calibrated at four different power 

values (500, 1000, 1500 and 2000 W) and each experiment (coupling of MLI sample and 

power intensity) is ran five times with the results then averaged. Figure 5.19 shows that the 

numerical and FEA results align well with the experimental results. All results show very 

small displacements in the order of micrometres. The displacement of the numerical result 

is lower than that for FEA and experiment, which all results nevertheless show small 

nonlinear behaviour in all membrane types. 
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a)                                                                                b) 

 
c) 

Figure 5.19 Comparison of displacement results of forced motion experiment, FEA and multibody 

dynamics a) PET 1 mil b) Kapton 1 mil c) PET 5 mils. 

 

In Figure 5.4, ∆ is the relative error of the displacement of the numerical and FEA 

compared to the experimental results. The relative error of the numerical model is the 

largest (12.01%) at 1000W while the relative error of FEA has the maximum relative error 

at 500W for both PET 1 mil (6.46%) and Kapton 1 mil (6.48%) but the relative minimum 

error is PET 5 mils (0.70%). The relative error of both numerical and FEA of all membrane 

types at 2000W is less than the relative error at 1000W and 1500W for all cases but not 

that of the relative error of FEA (PET 5 mils, ∆ = 0.70%) at 500W. To summarise, the 

relative error range of the numerical model is 3.45-12.01% while the relative error range of 

FEA is 0.70-6.48%. This suggests that the finite element analysis software handles a 

nonlinear problem better than the numerical model. However, when the deformation 

motion is coupled with the attitude and orbital dynamics propagation the computational 

cost of using such a software becomes unduly large. With this in mind, the numerical 

model appears to be more than adequate to provide a fairly accurate first estimate of the 

motion of an orbiting MLI element subject to environmental perturbations.  
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Table 5.4 The relative error of the analytic simulation (Multibody model and FEA) compared to the 

measured displacement. 

Material Method 
∆ (%error) 

500(w) 1000(w) 1500(w) 2000(w) 

PET 1 mil 
Multibody -9.93 -12.01 -8.13 -3.55 

FEA 6.46 5.19 5.20 1.73 

Kapton 1mil 
Multibody -8.28 -9.83 -7.48 -3.45 

FEA 6.48 5.59 5.62 2.90 

PET 5 mils 
Multibody -3.57 -8.49 -11.40 -3.71 

FEA 0.70 4.75 6.20 2.88 

 

5.4 Summary 

This chapter described the experimental setup used to validate the numerical, multibody 

model introduce in Chapter 4. The first experiment (free motion experiment) is performed 

to determine the damping characteristics of the membranes and their fundamental natural 

frequencies. The second experiment addresses the forced motion of a membrane exposed 

to a radiation pressure from a high power spotlight. The experimental results are then used 

to validate the numerical simulations of multibody model as well as compared to normal 

mode and FEA results. 

The results from the free motion experiment allow us to determine the damping 

characteristic and natural frequencies of a thin and low strength membrane. The values of 

the natural frequencies obtained through the experiment show good agreement with and the 

numerical results. The experimental results for the settling time are however substantially 

shorter than the numerical ones but this appears to be due to residual dissipative forces 

presenting during the experiment. The results for the forced motion experiment show that 

the numerical multibody model has good agreement with the experimental results. The 

relative errors obtained by means of FEA are better than those achieved through the 

numerical model, but when coupled with attitude and orbit dynamics propagation the 

computational costs of using such a software become almost prohibitive. 
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6 
 

6 Conclusions 

This dissertation presents the development of an effective and simple flexible model to 

represent HAMR objects, by means of Bernoulli and multibody models and compares their 

orbital dynamics with that of rigid models (flat plate and cannonball). The computational 

model for the flexible body is then validated through vacuum chamber experiments. This 

final chapter summarizes and comments the work done and the findings of this thesis. The 

last section of this chapter will discuss limitations of this dissertation and possible future 

investigations. 

Unexpected HAMR space debris discovered in the GEO region is thought to be MLI 

materials separated from the spacecraft due to fragmentation, collision events or aging 

process. The observation of spectral measurements provide that HAMR debris are very fast 

rotation and very sensitive to SRP, unstable AMR and reflection to a light (light curve). 

The investigation in Chapter2 show that attitude dynamics of this debris play one of 

important factors leading unique orbital prediction when comparing with rigid object due 

to vary SRP but it does not answer the unstable AMR. Therefore, Chapter 3 and Chapter 4 

show two approaches to model and integrate deformable, highly reflective membranes in 

GEO orbits. The first model (Chapter 3) is based on modelling the flexibility of the 

membrane as Bernoulli-Euler beam theory and the second model (Chapter 4) discretizes 

the membrane with lump masses connected by rods. Both approaches assume that the 

membrane can fold along one folding line, which remains fixed on the membrane. 

However, both approaches can be extended by considering more folding lines, at additional 

computational cost.  

Both approaches were used to predict the orbit of a typical GEO debris, and compared with 

other propagation methods by using rigid body approximation (cannonball and flat rigid 
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plate), and showed sensible differences in the evolution of the orbital parameters, 

particularly inclination and eccentricity.  

The linear approach (small deformation) of Bernoulli model is somewhat intrinsically 

limited due to the fact that large displacements that need to update the stiffness of the body 

at every time step that will take more additional cost of computation cannot be correctly 

model large membranes, whose deformations are clearly not limited in principle. The 

multibody approach overcomes this limitation and at the lower cost of computational 

effort. However, the speed of computation by using ODE45 is able to improve by 

optimizing relative tolerance (RelTol) and absolute tolerance (AbsTol) or change the 

numerical method that provide many integration function in MATLAB
®
 because each 

Methods intended to solve different stiff problems efficiently do more work per step, but 

can take much bigger steps. At each step, they use MATLAB matrix operations to solve a 

system of simultaneous linear equations that helps predict the evolution of the solution 

[65]. 

The Earth gravity (J2), SRP, gravitational attraction of the Sun and Moon, self-shadowing 

effects were all considered in the propagation. However, as it was mentioned in the 

introduction, because MLI membranes are aluminized and hence conductive, self-induced 

currents are also an important source of internal forces that contribute to the attitude 

dynamics and the deformation of the sheet. SRP perturbation is the main contributor to 

changes in the cross-sectional area of the flexible model leading to variations in shapes and 

inducing rapid and irregular tumbling and unique orbital motion when compared to the 

rigid approach. In addition, the results also suggest that the self-shadowing effect plays a 

significant role in the attitude and orbital motion when compared to the results without 

self-shadowing. 

Monte Carlo simulation by varying initial conditions for the attitude configuration and 

different initial shape of the multibody model lead to significant changes in the Keplerian 

elements over both short and long term propagations. It is worthwhile noting that the more 

accurate the shape of the MLI debris can be defined, the more precision the propagation of 

translational and rotational motions will be.  

Although all flexible body methods were matched to equivalent rigid-body 

approximations, and the results of the orbital integration were compared, no validation of 

either approach was done using real space debris data from empirical observations. 
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Potentially, light curves of flexible debris could be estimated by considering the relative 

position and attitude with respect to the sun and an observer on the Earth. Simulations 

could be carried out by assuming that a particular debris object is a deformable MLI sheet, 

and then matching the simulated attitude/deformation motion with the observed light 

curve. However, these would depend on extremely precise initial conditions, as well as 

characteristics (size, thickness, reflection properties and material type) of the debris sheet, 

which are not available, making this type of validation extremely difficult. 

In addition, the multibody approach makes use of discrete rotational springs and dampers 

to account for the bending stiffness of the membrane. The spring and damper constants 

were estimated through semi-empirical formulas, based on the data of the materials of the 

typical MLI membranes. These estimations however can be wrong because of the 

extremely thin nature of the membrane itself. The first experiment in Chapter 5 (free 

motion experiment) was be set up, in order to have a better estimation of these parameters. 

An MLI sheet is held hanging on the top wall of a vacuum chamber. The sheet is then 

displaced from its equilibrium position along the vertical, and left swinging due to gravity. 

The amplitude and frequency of oscillation over time (monitored through a glass window 

by using image process technique to measure the movement) are related to the elastic 

properties of the membrane. The vacuum chamber ensures that the effect of the air friction 

is negligible. The rotational spring and damper in the multibody model can then tuned such 

that the response of the model matches that of the real membrane. The second experiment 

(forced motion experiment) by means of a high energy spotlight replicating solar radiation 

exposure has been performed and the displacement is measured by a laser sensor. Both 

experiments performed on three different samples show fairly good agreement with 

multibody model and the FEM simulation (ANSYS
®
). The relative errors in the FEA are 

better than those in the multibody model. This is due to FEA being able to better solve 

systems with higher degrees of freedom. Long term orbital propagation of HAMR objects 

by means of FEA will however require high computational costs. However, the multibody 

model, while possibly less accurate, does enable orbital propagation HAMR debris at 

substantially lower computational costs. 

The outcomes of this work have a direct effect on the ability to predict the long term 

evolution of HAMR debris. It will provide a clearer understanding of MLI-type debris, 

thus enabling the community to develop appropriate mitigation strategies and enhances the 

reliability and success probability of current and future space mission by minimising the 

possibility of debris impact. For example, the flexible model will allow to increase solution 
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ranges of the orbital debris models developed by NASA and ESA (e.g. EVOLVE, GEO 

EVOLVE, LEGEND and MASTER 2009) including break up model of debris from 

collision or explosion events.  

Other application areas can also benefit from this work. More accurate orbital propagation 

of space debris can enhance active debris removal concepts such as drag sail or robotic arm 

or allow the development of new concepts for space debris removal. Additionally flexible 

spacecraft appendages such as antennas and solar panels can benefit from the flexible 

model developed here as attitude slews often cause dynamic deformation in these 

structures. Finally, more accurate prediction of solar sail dynamics can be improved by 

extending the flexible model to the entire sail as well as future large space structures, 

which such as solar power satellites which will be highly flexible and have high area to 

mass ratios. 

6.1 Limitations and future work 

The flexible model developed here is currently able to represent deformations only in one 

direction, which is perpendicular to the membrane. Improvement of this model, therefore, 

should focus on increase the deformation directions as well as increasing the number of 

lump masses from the current three. The more accurate the modelling of the real shape is, 

the more precise the orbital propagation will be. This will however come at substantial 

computational costs.  

Due to budget constraints, we were not able to determine, during the experimental 

campaign the thermal expansion of the MLI membrane, which may be responsible for part 

of the material deformation due to thermal bending. Moreover, the validation of the 

radiation pressure force of Eq.(5.47) from the spotlight can be validated by a light detector 

to measure the actual power of the spotlight on a membrane, comparing it with the 

calculation of the radiation exposure equation. To summarise, further investigations can be 

concluded as following: 
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Future development of the flexible model 

 Increase the number of lump masses and allow for more directions of the 

deformation in order to improve the more accuracy of shape by accepting higher 

computational cost. 

 Investigate attitude and orbital motions due to electrostatic charging of the flexible 

model [33]. 

 Investigate the Earth’s shadow effects on the attitude-orbit dynamics of flexible 

model.  

 Request the observation data from Astronomical Institute of the University of Bern 

(AIUB), which have the huge data of HAMR debris and investigate the light curve 

and orbital evolution of flexible model based on the same initial conditions of real 

observations [11, 12, 16] of HAMR debris and compare the simulated results with 

the observed .  

 To speed up ODE function, there is two possible ways to do. Firstly, it is good idea 

to play with RelTol and AbsTol settings. Secondly, if a simulation still take long 

time, it is possible the dynamics that is stiff problem. We can try to change the 

numerical method. MATLAB [65] have many integrations such as ODE23, 

ODE113, ODE15s, ODE23s, ODE23t and ODE23tb and compare the speed of each 

integration. 

Further experiments 

 Validate the exposure equation in chapter 5 and thermal expansion bending by 

means of a light detector and thermal sensor. 

 Investigate the effect of thermal transpiration in the forced motion experiment by 

using Crookes radiometer 

 Zero-g weightlessness experiment for further validation of the model  
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Appendix A 
 

Appendix A  

A.1 Sun vector 

The number of Julian centuries ( TDBT ) required to define the Earth-Sun vector [36] at any 

given time is given by: 

2451545

36525


TDB

JD
T  (A.1) 

 

Where TDBT  is the number of Julian centuries based on barycentric dynamical time (TDB) 

and JD  is Julian Date. And then using the number of Julian centuries is to calculate the 

solar mean anomaly ( M ), mean longitude of the Sun (  M ), ecliptic longitude of the 

Sun( ecliptic
), magnitude of the distance to the Sun ( r ) and the obliquity of the ecliptic ,ε, 

can be calculated as: 

357.5277233 35999.05034  TDBM T  (A.2) 

280.460 36000.770M TDBT    (A.3) 

  1.914666471sin( ) 0.019994643sin(2 )ecliptic M M M     (A.4) 

 1  .000140612 0.0167086cos 0.000139589cos(2 )  r M M  
(A.5) 

ε  23.439291 0.0130042  TDBT  (A.6) 

  

The distance between the Earth and the Sun vector ( r ) referred to the epoch date is : 

1

cos( )

cos( )sin( )

sin( )sin( )

ecliptic

ecliptic

ecliptic

r r



 

 

 
 

  
 
 

 

(A.7) 

A.2 Moon vector  

The Moon position with respect to the Earth [36] requires to Julian centuries as similar as 

the sun vector and is calculate as: 



116 

 

 

 

 

 

 

   218.32 481,267.883

   6.29sin 134.9 477,198.85

1  .27sin 259.2 413,335.38

 0.66sin 235.7 890,534.23

 0.21sin 269.9 954,397.70
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 0.11sin 186.6 966
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(A.8) 

 

 

 

 

5.13 sin 93.3 481,202.03

0.23sin 228.2 960,,400.87

 0.28sin 318.3 6003.18

0.17sin 217.6 407,332.20
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(A.9) 

 

 

 

 

ρ 0.9508 0.0518sin 134.9 477,198.85

0.0095cos 259.2 413,335.18

0.0078cos 235.7 890,534.23

0.0028sin 269.9 954,397.70

  

 
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(A.10) 

7  2 7  323.439 291 0.0130042 1.64  1  0 5.04  1  0     TDB TDB TDBT x T x T  (A.11) 

1
 

sinρ
r   

(A.12) 

Where  ecliptic  is ecliptic longitude of the moon, 
ecliptic  is ecliptic latitude of the moon, ρ 

is the horizontal parallax and 𝜀 is the obliquity of the ecliptic. And then the moon position 

vector in the Earth radius is as: 

2

cos( ) os( )

cos( )cos( ) os( ) sin( )sin( )

sin( )cos( ) os( ) cos( )sin( )

ecliptic ecliptic
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(A.13) 
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Appendix B 
 

Appendix B  

B.1 Moment of inertia  

The inertia tensor, a matrix of the moments of inertia, will take place in all three coordinate 

axis, x, y and z [42]. 

  
 
  
   

xx xy xz

yx yy yz

zx zy zz

I I I

I I I

I I I

 

(B.1) 

It is assumed that the origin of the body frame is positioned on the centre of mass of all 

simulated objects. In this case, all components spare the diagonal of the moment of inertia 

tensor become zero: 

0 0

0 0

0 0

 
 


 
  

xx

yy

zz

I

I I

I

 

(B.2)   

In this work, there are two objects of this thesis to compute moment of inertia for attitude 

dynamics such as a thin flat plate and thin rod. 

    

a)                                                                              b) 

Figure B.1 Moment of inertia in the body frame a) a flat plate b) a beam 
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B.1.1 Moment of thin flat plate. 

2  ( ) /12 xxI m w  

2 2( ) /12yyI m w l   

2  ( ) /12zzI m l  

(B.3) 

 

B.1.2 Moment and thin rod 

 0xxI   

2( ) /12yyI m l  

2  ( ) /12zzI m l  

(B.4) 

 

B.2 Parallel axis theorem 

The moment of inertia of a flexible models consisting of 2 beam elements in a particular 

axis (Figure B.2) is equal to the moment of inertia around parallel axis that goes through 

the centre of mass. In this case, we define the centre of mass on the 2
nd

 node. The moment 

of inertia about any axis parallel through the centre of rotation is given by: 

2 CMI mI d  (B.5) 

 

  

Figure B.2 Moment of inertia of flexible model by centre of mass at the 2
nd

 node. 

 

In flexible model based on finite element method, the 2
nd

 node (the end of rod) is defined 

the centre of rotation of the flexible model. The moment of inertial of the 1
st
 and 2

nd
 beam 

elements at 2
nd

 node are expressed as:  

2

2

2 21 1 1

12 4 3
nd node

ml ml mlI    (B.6) 
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Appendix C 
 

Appendix C  

C.1 Rayleigh damping 

The Reylieigh damping [44] is one of the simplest methods to approximate damping and 

often utilized in FEM simulation.  

      C M K   (C.1) 

 

Where  C  is damping matrix of physical system,  M is mass matrix of physical system 

and  K  is stiffness matrix.   and   are constants with unit of s
-1

 and s respectively. In 

the formulation of Rayleigh damping orthogonal transformation of damping matrix reduces 

to matrix to form the equation 

2 2  i i i    (C.2) 

 

Where i  is damping ratio of i
th

 mode and i  is the natural frequency of i
th

 mode. Finally, 

we write this equation in term of damping ratio ( i ) in term of LHS. 

2
 

2
  i

i

i







 

(C.3) 

 

From Eq. (C.3), it can explain that when frequency ( i ) will be the small, term of / 2 i   

will dominate, and as i  will increase the term i  will start domination and / 2 i   will 

approach to zero as shown in Figure C.1 
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Figure C.1 Frequency effect of proportional damping on damping ratio. 

  

The mass and stiffness proportional coefficients from i  to 
j  can be solved from the Eq. 

(C.3). Then, they are given by: 

2 2
 2






j j i i

i j

j i

  
 

 
 

2 2
 2





j j i i

j i

  




 
 

(C.4) 

 

In practical engineering, it is very difficult to calculate value of damping ratio for all the 

modes. The selecting damping ratio is typically simplified to be constant for all significant 

modes. In this investigation of the flexible model based on FEA theory, we define the 

damping ratio of this MLI as equal as 5% and consider modes of natural frequencies from 

1
th

 mode to 8
th

 modes, which are determined by commercial programme software 

(ANSYS
®
) as shown in Figure C.2. The boundary of thin membrane is set none of any 

support. As a result, we can compute as equal as   and   as 0.0334 s
-1

 and 0.0475 s 

respectively. 
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a) 

 
b) 

 
c) 

 
d) 

 
e) 

 
f) 

 
g) 

 
h) 

Figure C.2 Natural frequency response of PET (1x1 m
2
) in 8 modes a) 1

st
 mode: 0.0021 Hz b) 2

nd
 mode: 

0.0134 Hz c) 3
rd

 mode: 0.0662 Hz d) 4
th

 mode: 0.2366 Hz e) 5
th

 mode: 0.2414 Hz f) 6
th

 mode: 0.2484 Hz 

g) 7
th

 mode: 0.2562 Hz h) 8
th

 mode: 0.2688 Hz. 
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C.2 Shear Modulus 

In the simplest case of an isotropic material, the relationship between young modulus and 

shear modulus of isotropic material is given as: 

2(1 )

y

y

E
G





 

(C.5) 

Where 
yG is shear modulus, 

yE  is young modulus and v  is Poisson’s ratio. 
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Appendix D 
 

Appendix D  

D.1 Sampling of Monte Carlo simulation 

The Latin hypercube sampling (LHS) is used for sampling attitude motions (ψ , , ) and 

deformed angle ( d ). The results of 4 variables in uniform distribution [0,1] can be shown 

in 4 plots in Figure D.1.  

 

a)                                                                                 b) 

  

c)                                                                                 d) 

Figure D.1 Three-dimensional plot of sampled points by using Latin hypercube in against each other of 

the 4 parameter space (roll, pitch, yaw and deformed angle) a) roll, pitch, yaw b) roll, pitch, deformed 

angle c) yaw, roll, deformed angle d) yaw, roll, deformed angle. 
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The results of 300 different initial conditions in the actual range of 3 rotational angles and 

deformed angle are shown in Table D.1 

Table D.1 300 initial conditions by using LHS sampling. 

Sampling NO. Yaw(deg) pitch(deg) Roll(deg) Deformed angle(deg) 

1 162.05 172.01 37.40 220.57 

2 9.71 100.18 22.96 306.27 

3 40.23 157.96 45.37 343.66 

4 17.50 133.99 110.60 352.87 

5 103.06 26.09 108.59 323.41 

6 87.24 0.72 96.84 13.97 

7 20.08 138.06 116.80 19.42 

8 140.53 97.20 134.93 134.01 

9 132.67 41.76 57.80 33.63 

10 32.78 127.66 54.87 144.75 

11 114.11 119.92 94.69 266.29 

12 145.37 153.94 129.96 313.17 

13 148.98 62.50 161.10 120.56 

14 73.66 58.99 63.34 325.08 

15 147.52 50.22 42.22 230.50 

16 11.82 3.38 25.11 156.33 

17 20.92 48.49 63.64 295.85 

18 146.77 151.58 8.48 357.27 

19 100.82 28.65 64.64 138.20 

20 163.66 102.97 23.69 177.53 

21 37.63 15.48 105.91 221.33 

22 153.76 147.33 154.18 150.49 

23 12.51 170.95 158.76 224.03 

24 108.69 52.04 97.57 219.16 

25 10.34 42.32 133.70 288.01 

26 51.11 165.34 79.29 212.86 

27 45.66 146.39 5.01 97.42 

28 54.07 137.90 36.89 168.48 

29 108.59 95.60 42.77 159.53 

30 123.87 107.05 99.55 133.13 

31 168.13 109.09 16.24 327.08 

32 117.55 75.99 80.98 128.78 

33 115.05 144.82 105.46 195.99 

34 79.53 29.69 149.70 69.17 

35 69.92 21.09 119.31 183.01 

36 92.47 98.34 144.45 54.99 

37 155.24 103.22 15.66 191.87 

38 77.33 30.51 104.68 253.71 

39 161.86 27.76 22.28 111.15 

40 148.05 14.40 129.29 214.37 

41 151.75 78.32 60.09 305.89 

42 159.20 91.52 121.06 321.62 

43 65.69 1.43 152.93 277.89 

44 12.79 45.62 0.81 77.08 
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Sampling NO. Yaw(deg) pitch(deg) Roll(deg) Deformed angle(deg) 

45 56.11 61.63 83.34 227.11 

46 21.43 3.64 65.83 250.96 

47 121.49 127.05 141.54 1.43 

48 170.45 147.73 136.63 217.77 

49 117.75 76.62 117.05 341.69 

50 83.10 141.44 75.29 20.54 

51 51.66 178.71 46.64 80.58 

52 69.05 78.61 26.79 333.58 

53 125.13 170.36 38.71 67.13 

54 95.80 79.35 112.92 113.17 

55 149.80 37.62 107.85 238.49 

56 65.25 36.19 170.63 75.57 

57 22.06 136.41 93.60 164.89 

58 153.38 166.73 165.59 190.75 

59 86.23 152.14 44.72 158.28 

60 53.41 74.23 99.89 180.77 

61 110.70 167.92 18.67 65.99 

62 103.99 86.67 147.51 33.04 

63 174.51 128.20 34.69 340.66 

64 13.53 92.36 102.64 39.94 

65 131.90 66.55 145.93 124.00 

66 164.76 112.55 166.10 287.33 

67 38.64 120.16 115.24 44.92 

68 163.89 39.69 36.56 201.04 

69 150.65 104.16 18.37 310.36 

70 120.51 169.38 68.58 343.16 

71 118.46 156.94 176.98 165.76 

72 98.77 173.27 52.87 94.85 

73 34.62 116.57 43.25 63.71 

74 112.95 73.55 29.74 245.09 

75 74.41 82.25 159.46 36.86 

76 87.99 2.01 83.63 48.80 

77 107.70 60.37 100.84 246.64 

78 160.32 137.19 3.22 148.12 

79 26.59 119.30 89.37 89.28 

80 177.44 83.65 147.60 107.71 

81 158.62 165.79 12.42 194.91 

82 88.63 175.44 62.86 55.96 

83 152.92 92.43 72.97 3.27 

84 60.14 81.15 131.24 0.02 

85 96.82 139.68 171.47 184.02 

86 136.49 23.63 174.38 330.73 

87 75.18 143.58 113.90 346.66 

88 55.53 133.29 150.74 128.03 

89 55.09 109.51 53.65 200.35 

90 104.43 54.08 70.61 130.34 

91 89.39 107.59 43.86 186.33 

92 90.26 105.53 175.86 23.07 
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Sampling NO. Yaw(deg) pitch(deg) Roll(deg) Deformed angle(deg) 

93 176.40 36.64 2.14 100.68 

94 144.50 13.80 122.36 136.90 

95 44.10 40.70 71.01 279.98 

96 173.15 177.82 127.90 47.86 

97 9.04 140.88 27.66 141.89 

98 2.71 9.79 17.03 333.90 

99 42.78 101.07 104.15 87.82 

100 61.58 46.93 157.80 263.28 

101 72.99 96.44 111.02 115.72 

102 156.64 106.65 143.68 170.61 

103 169.97 10.24 6.40 232.84 

104 13.90 155.91 112.44 242.34 

105 81.31 89.87 67.87 163.01 

106 172.46 35.66 30.33 3.80 

107 48.16 176.00 28.38 153.59 

108 6.20 160.63 7.25 302.81 

109 1.05 115.49 77.93 328.98 

110 46.62 67.67 175.67 210.76 

111 122.11 163.46 155.11 303.93 

112 30.63 159.98 108.72 131.54 

113 128.01 12.31 77.14 307.28 

114 75.79 18.94 4.10 317.43 

115 71.43 42.64 136.87 224.97 

116 174.60 59.43 122.98 143.96 

117 18.35 148.89 8.18 92.13 

118 52.34 5.34 131.48 359.03 

119 81.93 45.10 144.76 229.07 

120 127.40 129.43 13.41 270.67 

121 135.54 19.48 90.90 314.79 

122 3.19 152.94 178.74 167.45 

123 142.63 32.73 74.84 99.58 

124 64.06 84.42 125.72 171.97 

125 82.64 48.83 39.89 11.73 

126 18.62 102.38 92.64 82.54 

127 68.53 173.63 11.72 199.10 

128 29.58 27.09 6.95 145.75 

129 62.41 154.29 91.49 271.69 

130 171.79 90.87 55.71 297.51 

131 139.08 110.02 14.25 203.78 

132 150.29 0.41 125.28 204.70 

133 26.12 90.55 59.58 217.00 

134 41.12 131.39 140.67 205.34 

135 106.23 100.42 35.94 172.91 

136 1.44 177.31 5.79 125.48 

137 56.90 95.37 138.07 291.44 

138 118.82 11.67 78.53 286.19 

139 39.84 22.59 90.08 103.45 

140 122.53 88.79 48.77 71.28 
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Sampling NO. Yaw(deg) pitch(deg) Roll(deg) Deformed angle(deg) 

141 24.25 31.41 70.10 90.38 

142 91.38 84.87 148.87 72.64 

143 27.10 113.75 153.55 201.95 

144 97.67 22.92 46.98 192.85 

145 53.25 17.90 124.40 115.17 

146 36.24 5.55 49.99 299.40 

147 85.70 18.31 85.21 18.97 

148 101.60 75.35 20.96 146.44 

149 61.96 81.79 56.63 320.68 

150 134.31 150.60 169.51 313.66 

151 66.35 43.81 79.02 79.94 

152 5.87 146.40 161.91 84.11 

153 80.83 68.69 114.03 335.36 

154 64.39 6.20 126.02 231.90 

155 70.34 132.71 98.48 101.51 

156 8.79 31.06 71.55 35.59 

157 135.84 6.80 86.17 249.90 

158 16.10 108.29 160.43 206.63 

159 59.85 140.26 119.57 39.13 

160 83.97 124.54 25.77 56.67 

161 125.90 51.23 69.26 257.39 

162 49.32 99.20 150.27 9.13 

163 146.36 33.21 52.22 96.74 

164 137.34 98.45 84.53 350.54 

165 66.94 38.04 60.82 5.12 

166 50.39 125.37 27.51 284.68 

167 129.50 70.55 115.07 279.01 

168 79.81 41.12 124.18 29.51 

169 171.27 106.03 162.14 252.15 

170 116.45 25.64 139.65 15.30 

171 22.82 49.45 61.93 17.98 

172 142.13 16.48 109.43 284.28 

173 124.80 71.18 31.18 276.23 

174 25.19 155.07 1.25 355.22 

175 42.02 111.55 81.38 345.01 

176 168.98 67.03 156.95 264.68 

177 41.73 118.50 32.45 349.56 

178 5.14 114.26 58.53 41.74 

179 100.68 60.95 168.02 237.51 

180 0.32 32.09 172.08 139.85 

181 103.39 167.16 151.33 197.54 

182 89.73 97.11 155.50 338.11 

183 155.75 168.07 64.94 318.29 

184 107.26 87.39 152.17 78.04 

185 7.28 164.05 50.43 22.69 

186 123.04 138.85 141.88 75.86 

187 29.21 93.82 100.47 240.97 

188 169.22 4.44 13.02 160.79 
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Sampling NO. Yaw(deg) pitch(deg) Roll(deg) Deformed angle(deg) 

189 4.27 43.37 109.95 175.91 

190 128.51 79.97 135.53 255.43 

191 137.61 158.75 167.90 119.36 

192 126.10 161.89 14.41 300.53 

193 78.57 115.19 41.96 294.37 

194 162.85 86.16 132.14 111.75 

195 94.20 142.88 118.54 292.78 

196 113.85 64.88 103.72 6.38 

197 30.54 121.32 31.77 301.22 

198 154.65 63.27 173.42 177.62 

199 91.01 24.79 178.06 31.85 

200 167.67 85.39 57.37 208.38 

201 139.62 7.91 11.31 49.22 

202 44.57 101.92 168.85 331.82 

203 32.14 171.50 82.54 260.02 

204 25.29 33.78 40.74 46.34 

205 49.05 9.39 59.40 70.78 

206 46.91 83.02 163.56 181.80 

207 47.50 72.10 174.67 105.45 

208 92.25 172.65 19.62 234.83 

209 63.16 122.48 169.99 30.89 

210 148.40 130.23 111.76 274.80 

211 105.73 21.93 142.86 108.27 

212 159.75 94.60 164.57 50.81 

213 133.20 163.11 17.61 93.12 

214 126.74 123.11 166.39 352.20 

215 157.87 76.92 47.56 67.66 

216 31.59 55.99 40.86 326.24 

217 28.31 179.27 24.04 52.46 

218 93.02 136.00 98.14 169.40 

219 59.26 58.17 49.59 338.56 

220 120.95 69.50 148.24 44.33 

221 50.40 104.76 21.03 281.41 

222 43.43 131.46 142.76 235.40 

223 111.59 74.60 101.79 261.70 

224 112.23 112.00 0.59 59.04 

225 179.37 174.11 96.36 134.43 

226 177.62 150.45 39.24 248.91 

227 132.35 69.66 106.71 155.92 

228 151.89 47.83 87.36 87.50 

229 72.07 145.43 121.75 315.63 

230 33.91 93.12 48.23 244.26 

231 143.35 88.18 164.20 238.93 

232 116.11 26.47 120.55 12.11 

233 178.42 20.41 162.75 229.25 

234 140.04 53.61 79.95 15.87 

235 175.45 176.77 146.86 266.46 

236 33.20 16.96 85.01 354.39 
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Sampling NO. Yaw(deg) pitch(deg) Roll(deg) Deformed angle(deg) 

237 131.17 46.25 136.10 247.54 

238 58.78 65.70 2.97 268.63 

239 109.75 118.09 179.07 209.90 

240 93.61 20.12 15.20 349.07 

241 102.44 7.76 33.61 28.36 

242 166.77 54.65 93.06 327.64 

243 84.16 168.89 139.11 179.57 

244 19.59 161.25 67.75 122.48 

245 138.14 129.96 54.39 309.48 

246 73.93 120.62 31.89 8.25 

247 95.38 113.01 159.78 73.81 

248 60.72 39.14 52.10 174.09 

249 111.65 128.93 66.48 320.24 

250 156.03 34.64 9.04 259.03 

251 115.24 159.11 38.24 311.60 

252 96.07 13.94 95.38 149.45 

253 166.90 56.75 45.81 27.59 

254 67.85 148.39 107.17 10.31 

255 2.06 24.19 145.38 189.38 

256 6.67 134.89 73.76 184.95 

257 145.07 89.39 139.84 282.54 

258 175.93 52.78 128.85 292.97 

259 134.75 110.94 179.60 261.54 

260 57.82 38.49 4.65 275.39 

261 130.20 125.94 117.63 122.23 

262 22.71 50.81 95.80 211.87 

263 165.98 34.96 166.84 289.85 

264 143.99 57.38 123.44 53.62 

265 35.69 164.69 87.69 214.89 

266 84.83 122.24 56.01 347.13 

267 173.91 135.25 81.82 161.24 

268 38.34 174.92 76.62 93.67 

269 57.03 77.56 21.81 336.32 

270 7.86 53.34 89.41 61.77 

271 34.92 149.41 137.58 358.02 

272 16.75 72.95 88.59 255.92 

273 130.18 132.12 61.36 193.35 

274 14.50 117.34 74.22 102.16 

275 98.31 153.11 126.92 38.13 

276 141.04 71.71 157.94 42.84 

277 15.04 179.68 132.88 269.51 

278 119.94 55.79 28.92 126.97 

279 86.47 8.64 26.31 136.57 

280 77.76 62.26 20.28 152.22 

281 110.32 144.19 51.14 297.77 

282 179.52 142.49 10.02 222.08 

283 28.12 58.68 33.30 57.86 

284 39.31 162.10 173.02 26.21 
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Sampling NO. Yaw(deg) pitch(deg) Roll(deg) Deformed angle(deg) 

285 160.94 116.34 35.15 85.53 

286 10.83 16.04 86.88 24.97 

287 16.83 123.93 130.76 60.65 

288 105.41 64.46 92.33 62.57 

289 3.65 29.34 102.34 110.24 

290 23.62 11.33 134.17 226.06 

291 78.81 142.19 172.65 272.83 

292 99.23 157.54 75.81 187.50 

293 45.57 2.82 116.01 243.29 

294 76.39 44.84 10.43 118.14 

295 165.02 12.81 156.58 105.67 

296 70.85 63.74 154.65 140.46 

297 99.95 67.85 177.17 116.87 

298 37.01 126.31 72.16 153.83 

299 67.73 80.48 66.67 164.02 

300 157.35 156.55 127.48 83.67 
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Appendix E 
 

Appendix E  

E.1 Instrument and interface  

The high power spotlight (2,000 W) and dimmer to vary the power of the spotlight, which 

is used in the forced experiment are shown in Figure E.1. 

        

a) 

                     

b)                                                       c) 

Figure E.1 Instruments in the forced motion experiment. a) high power spotlight (2000W) b) dimmer 

c) laser displacement sensor (resolution 0.1 µm). 

 

The schematic drawing to interface the laser sensor (optoNCDT 1700, MICRO-EPSILON) 

[64] connected with a laptop is shown in Figure E.2. The power supply is capable to covert 

from AC 220 V to DC power 15 V to supply the laser sensor. A RS422/USB converter 

[64]is a converter to interface the sensor with a laptop by using USB line. The transmitted 

data of a RS422 requiring in order to connect the sensor have 4 lines (Rx-, Rx+, Tx- and 

Tx+). The input lines, which are Rx- and Rx+ (yellow and grey colours respectively), 

receive data from interface programme on a laptop into a sensor and another two lines, 

which are Tx- and Tx+ (brown and green colours respectively), use to send the measured 

data back to a interface programme. 
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Figure E.2 Schematic drawing of interface of laser sensor with Laptop. 

 

E.2 Object tracking test 

In the chapter 5 of the free motion experiment, object tracking algorithm is to detect and 

measure the movement of red pixels. Before implementing with the experiment, there are 

two simulated tests. In the first test, we use the programme to detect the movement of a red 

balls and red heart as shown in Figure E.3 and Figure E.4 respectively. Both results of tests 

show that this algorithm is able to capture the movements of both red ball and red hearts in 

over time of simulations by using the blue frame. 

   
a)                                                 b)                                                  c) 

   
                                d)                                                      e)                                                  f) 

Figure E.3 Object tracking simulation to detect the movement of a red ball a)-f) show the detection of 

red ball’s motion from left to right sides in 2 seconds. 
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                            a)                                                     b)                                                     c) 

   
                             d)                                                    e)                                                     f) 

Figure E.4 Object tracking simulation to detect the movement of a red heart a)-f) show the detection of 

pink heart’s motion from left to right sides in 5 seconds. 
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