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SUMMARY

The aim of this thesis was to investigate the electrical

and mechanical responses to inhibitory non-adrenergic non-

cholinergic (NANC) nerve stimulation in the bovine retractor
mv.s,le..

penisA(BRP) and compare them with those to an inhibitory

extract made from this muscle. The extract may contain

the NANC inhibitory transmitter of the BRP and possibly

of other smooth muscles. Because of species differences

in the electrical response to NANC nerves in the rat and
mlAsd(..Sf

rabbit anococcygeusA the effects of the extract on these

tissues was also investigated. Prior to the investigation

of the extract, both the excitatory and inhibitory res-·

ponses to field stimulation in the BRP, and the effects of

passive membrane potential displacement were studied using

conventional intra- or extracellular (sucrose gap) recording
techniques.

The majority of cells in the BRP were electrically

quiescent independent of the resting tone. The most

frequent (in approximately 25% of preparations) form of

spontaneous activity, oscillations in membrane potential

and tone, may represent a pacemaker activity. The BRP

had cable properties; the time constant and space constant

indicated a high membrane resistance.

In the absence of tone, field stimulation of the BRP
ju.f\c.bon

evoked excitatorYAPotentials (ejps) in every cell impaled



and contractions, graded with the strength, frequency

and number of pulses; spikes were not observed. Guan-

ethidine (1-3 x 10-5M) abolished the ejps and contractions,

confirming their adrenergic origin. Noradrenaline added

exogenously depolarised and contracted the muscle. These

effects were blocked by the a-adrenoceptor antagonists,

phentolamine and prazosin. However, phentolamine (2.5x

10-6M) inhibited the contraction without reducing the

ejp significantly. These effects may be independent of

adrenoceptor blockade or the ejp may be mediated by a

substance other than noradrenaline (e.g. ATP) released

from adrenergic nerves. Prazosin (1.4 x lO-6M) failed

to block either the ejp or contraction, indicating the

possible existence of two types of adrenoceptor in the

BRPi one activated by neuronally-released and the other

by exogenously-added noradrenaline. ATP, a contaminant

in the extract, also depolarised and contracted the BRP.

Physostigmine reduced whilst atropine enhanced the

ejps and contractions without similarly affecting the
response to exogenous noradrenaline. This confirmed the

presence of a cholinergic inhibitory innervation acting

on the excitatory adrenergic fibres (Klinge and Sj8strand,
1977) •

TEA (1x lO-4M) enhanced the ejp and contraction.

Higher concentrations (0.5 to 10 x la-3M) depolarised,

increased the tone and evoked electrical and mechanical

4
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oscillations but no spikes. The depolarisation and con-

traction to exogenous noradrenaline were not enhanced,

indicating that TEA acts on the adrenergic nerves. Some

post-synaptic effect to block K+ channels also seems

likely.

The relationship between ejp amplitude and membrane

potential in the double sucrose gap was linear and in-

dicated a reversal potential more positive than -30mV.

Electrotonic pulse amplitude decreased during the ejp,

indicating an increased membrane conductance. Ejps and

contractions were reduced following the replacement of
th¢. Na.(t e Ft-he:. t<rt.'os ~ct...tiot\

with sodium glutamate. This may be due

to the effects of glutamate itself (e.g. Ca2+ chelation)

rather than reduction in the membrane Cl- gradient.

Tone usually developed spontaneously and was accom-

panied by membrane depolarisation (from -53 to -45mV) which

may open voltage-dependent channels, causing Ca2+ entry

and/or its release from intracellular binding sites. Field

stimulation produced inhibitory potentials (ijps) and

relaxations graded with the strength and number of pulses

but showing little frequency dependence. Rebound depolar-

isation and contraction often followed the ijp and relax-

ation. Tetrodotoxin (3x IO-6M), but not adrenergic or

cholinergic antagonists, abolished the ijp and relaxation,

confirming their non-adrenergic non-cholinergic neurogenic
nature.
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The extract, prepared and acid-activated as described

by Gillespie, Hunter and Martin (1981), hyperpolarised

and relaxed the BRP, as did sodium nitroprusside and

adenosine triphosphate (ATP). Unlike the activated

extract or sodium nitroprusside, desensitisation to ATP

occurred rapidly and without any change in the inhibitory

electrical or mechanical responses to field stimulation.

The ijp and relaxation in the BRP were insensitive

to apamin but abolished by oxyhaemoglobin (4-8x lO-6M), as

were the responses to extract and sodium nitroprusside.

In TEA (lO-2M), field stimulation evoked relaxations

with no accompanying electrical change. The ijp may be

unconnected with or additional to another mechanism pro-

ducing relaxation.

The relationship between membrane potential and ijp

in the BRP was non-linear. Ijp amplitude was initially

increased during membrane potential displacement from

-45mV to approximately -60mV. Thereafter (-60 to -l03mV)

the ijp was reduced. Ijps were abolished at -27 and

-103mVi reversal was not observed. The hyperpolarisation

to extract was also enhanced during passive displacement

of the membrane potential to more negative values (-57mV).

Membrane resistance increased during the ijp. The

extract produced inconsistent changes in membrane resist-

ance, possibly because of the presence of more than one
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active component. K+ withdrawal failed to enhance the

ijp or hyperpolarisation to extract and 20mM K+ did not

abolish the the ijp at membrane potentials exceeding EK

(-49mV). Thus, the ijp or hyperpolarisation to extract

are unlikely to be mediated by an increased K! conductance.

Reducing the Cl- abolished the hyperpolarisation to

field stimulation and extract. This occurred more

quickly than the anticipated reduction in the Cl- gradient

and may be due to Ca2+ chelation by the anion substitute

(glutamate or benzenesulphonate) or blockade of the resting

conductance which is normally inactivated by the transmitter.

Ouabain (1-5x lO-5M), which reduces both the Na+ and Cl-

gradients, abolished the ijp, implicating either of these

ions as the ionic species involved.

In the rat and rabbit anococcygeus, field stimulation

and extract each red~~ed guanethidine-induced tone. This

was unaccompanied in the majority of cells in the rat by

any significant electrical response. In the remaining

cells, inhibition of the membrane potential oscillations

occurred. The rabbit anococcygeus differed in that in-

hibition of the electrical oscillations was observed in
every cell exhibiting this behaviour. However, the

majority of cells in the rabbit were electrically quies-

cent and showed only small hyperpolarisations to field

stimulation and no electrical response to extract. Apamin

(1 x lO-7M) failed to block the electrical and mechanical

response to field stimulation in the rabbit but did inhibit
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transiently that to extract. The latter effect may be
due to the initial excitatory effects of apamin.

The similarities between the electrical effects of
the extract and those of inhibitory nerve stimulation in
the BRP, rat and rabbit anococcygeus muscles are generally
consistent with their being mediated by the same active
component. Moreover, the ijp in the BRP shows properties
which have not been reported in other non-adrenergic non-
cholinergically innervated smooth muscles.
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CHAPTER 1

INTRODUCTION
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FOREWORD

The autonomic nervous system comprises, for the purpose

of this thesis, a system of nervous pathways with a ganglionic

synapse between the effector organ and the central nervous

system (Campbell, 1970). Autonomic nerves innervate all smooth

muscle, cardiac muscle and secretory cells. Gaskell (1866)

first traced the autonomic pathways from the central nervous

system, describing the cranial, thoraco-lumbar and sacral out-
(see (,tlske(i.C I'II~J

flows. A These outflows were grouped together by Langley (1898)

under the term autonomic nervous system.

Within the autonomic nervous system, two systems were

distinguished: sympathetic (thoraco-lumbar), and parasympathetic

(cranial, sacral). Sympathetic fibres, unlike parasympathetic

fibres, synapse with ganglia in the paravertebral chains and

generally have short pre-ganglionic and long post-ganglionic

fibres. The parasympathetic system generally has long pre-

ganglionic and short post-ganglionic fibres with ganglia

situated in or near the innervated organs. In organs inner-

vated by both the sympathetic and parasympathetic systems,

their effects are usually mutually antagonistic. The two
w~('~ tko"h.t ~ I~ ~

systems A differ pharmacologicallYjl the parasympathetic
system WClS antagonised by atropine, whereas the sympathetic

systemwCl.~not (see Mitchell, 1953: Campbell, 1970).

It was within the framework of the two systems, sympa-

thetic and parasympathetic, that the concept of the chemical

transmission of nerve impulses in the autonomic nervous system
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was introduced. Similarities between the effects of sympa-

thetic nerve stimulation and those of adrenal extracts,

first illustrated by Langley (1901), were confirmed for pure

adrenaline (Elliot, 1905). Parasympathetic nerves were

mimicked by drugs such as muscarine (Dixon and Brodie, 1903).

These observations, together with those of Loewi and Navratil,

established that autonomic nerves released specific neuro-

transmitters which acted on the effector organ (see Gershon,

1970). Accordingly, nerves were classified on the basis

of the neurotransmitter released. Dale (1933) used the term

"adrenergic" for those nerve fibres which released adrenaline

(later found to be noradrenaline~ Euler, 1946), and "cholin-

ergic" for those which released acetylcholine. All pre-

ganglionic and most post-ganglionic parasympathetic fibres

were cholinergic. Sympathetic post-ganglionic fibres were

mostly adrenergic. Classically, then, the autonomic nervous

system consisted of two systems integrated within the central

nervous system.

Deviations from the classical view have often been

encountered. That some sympathetic nerve fibres released
(su_ B~lq71)
(1885 'Jjv. who foundacetylcholine was demonstrated by Rogwicz

that following degeneration of the facial nerve in the dog,

the muscles moving the lips contracted in response to cer-

vical sympathetic nerve stimulation (see Burn, 1971). Euler

and Gaddum (1931) concluded that there were nerve fibres

releasing acetylcholine in the cervical sympathetic nerve.

Other sympathetic fibres also released acetylcholine, e.g.
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those innervating the sweat glands and spleen. Burn and

Rand (1965) proposed that all adrenergic nerves released

acetylcholine which fed back onto the nerve ending to

initiate the release of noradrenaline. Thus, sympathetically-

mediated cholinergic effects could be due to the overflow

of acetylcholine from the nerve endings. A more likely

explanation was that some autonomic fibres, although anatomic-

ally sympathetic, were functionally cholinergic (Campbell,

1970) .

Stimulation of autonomic nerves can produce responses

mediated neither by cholinergic nor by adrenergic nerves.

Such responses were first recognised in the gastrointestinal

tract. Classically, parasympathetic nerve stimulation con-

tracted the gut while sympathetic stimulation produced relax-

ation (Langley, 1921). However, vagal (parasympathetic)

stimulation could produce, in certain circumstances, relax-

ation of the stomach (Langley, 1898) and small intestine

(Bayliss and Starling, 1899). The inhibitory effect of the

vagus was facilitated by atropine and therefore was not

attributable to cholinergic post-ganglionic fibres (Langley,

1898). The possibility that vagal inhibition was mediated

by adrenergic fibres was not fully explored until the advent

of the adrenergic neurone blocking drugs. These were in-

effective at antagonising the inhibitory responses to vagal

or transmural stimulation while blocking those to perivascular

sympathetic nerves (see Gillespie, 1982). Electrical record-

ings demonstrated the presence of inhibitory nerves in the
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gut wall which, in response to field stimulation, produced

large hyperpolarisations in smooth muscle cells. In contrast,

sympathetic nerve stimulation produced little or no electrical

change (Bennett, Burnstock and Holman, 1966a,b). The combin-

ation of the pharmacological and electrical evidence with

that obtained from histochemical and structural studies

pOinted to the existence of a non-adrenergic, non-cholinergic

inhibitory nerve supply to the gut and related smooth muscles

(see Burnstock, 1972; Gillespie, 1982).

As implied by the term non-adrenergic non-cholinergic,

the transmitter released by these nerves is unidentified.

Likely candidates are a pu~ine (purinergic hypothesis), e.g.

adenosine triphosphate (ATP), or a peptide (peptidergic

nerves), e.g. vasoactive intestinal polypeptide (VIP). The

analysis of these two hypotheses has been greatly impeded
by the lack of specific antagonists. Neither hypothesis

holds for all sites innervated by non-adrenergic non-cholin-

ergic nerves.

Investigations to determine the identity of the non-

adrenergic non-cholinergic transmitter have made use of the

techniques employed to isolate noradrenaline and acetyl-

choline. These include attempts to collect the transmitter

released by nerve stimulation (Burnstock, Campbell, Satchell

and Smythe; 1970), or by extraction from tissues known to

possess a non-adrenergic non-cholinergic innervation (Ambache,

Killick and Zar, 1975). Thus, an inhibitory extract from

the bovine retractor penis muscle, prepared originally by
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Ambache, Killick and Zar (1975) and further purified by

Gillespie, Hunter and Martin (1981), is being investigated.

This extract may contain the inhibitory transmitter of the

bovine retractor penis and possibly of other smooth muscles.

The isolation and identification of the non-adrenergic non-

cholinergic transmitter would considerably aid elucidation

of its mechanism of action. Such investigations are pre-

sently hampered by the necessity to stimulate nerve fibres

in order to release the transmitter. Thus, adrenergic and

cholinergic antagonists are required, and changes made to

elucidate the mechanism of action of the transmitter, e.g.

to the ionic environment, may affect transmitter release.

These problems, combined with the possible clinical implic-

ations of identifying the transmitter, provide the mandate

for continued research in the field.

EVIDENCE FOR THE EXISTENCE OF NON-ADRENERGIC NON-CHOLINERGIC
AUTONOMIC NERVES

The first evidence for a third system of autonomic

nerves came from studies on the control of gastrointestinal

motility. Here, vagal (parasympathetic) stimulation produced

two effects: excitation blocked by atropine, and atropine-

resistant inhibition (Langley, 1898; Bayliss and Starling,

1899; May, 1904). Thus it was suggested that the response

(excitation or inhibition) might be determined by intrinsic

neural reflexes in the gut (Carlsson, Boyd and Pearcy, 1922)

or the level of resting tone (McSwiney and Wadge, 1928),
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neither of which explained why the inhibitory response was

atropine resistant. Atropine resistance was attributed to

the presence of sympathetic fibres in the vagus (Harrison

and McSwiney, 1936), but differences between the inhibitory

response to vagal and direct sympathetic (splanchnic) stimul-

ation made this unlikely. The response of the small intestine

to sympathetic nerve stimulation was reduced be repetitive

stimulation while that to the vagus persisted (Bayliss and

Starling, 1899).

Other characteristics of vagal inhibition, notably its

shorter latency (Harrison and McSwiney, 1936) and following

"rebound" contraction (Brown and Garry, 1932), also dis-

tinguished it from th~se of sympathetic nerve stimulation.

Stimulation of the cervical sympathetic trunk produced no

change in stomach motility, whereas direct stimulation of
the brain evoked relaxations which were abolished by vagotomy

(Eliasson, 1952; Sernba, Fujii and Kimura, 1964). Inhibitory

fibres in the vagus were therefore carried in the cranial
outflow and were anatomically parasympathetic. Vagal in-

hibition was mimicked by nicotine (Arnbache, 1951) and reduced

or abolished by hexamethonium (Sernbaet aI, 1964; Campbell,

1966), suggesting that it was mediated by post-ganglionic

adrenergic fibres with a pre-ganglionic vagal input. The

adrenergic antagonists ephedrine (Arnbache, 1951), phentol-

amine (Paton and Vane, 1963) and bretylium (Greeff, Kasperat

and Osswald, 1962) were initially shown to reduce or abolish

vagal inhibition. However, at the high concentrations employed,
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antagonism by these drugs could not be attributed merely

to blockade of adrenergic transmission. Phentolamine blocked

both the excitatory and inhibitory responses of the stomach

to vagal stimulation and drugs (Paton and Vane, 1963), and

high concentrations of bretylium blocked ganglionic trans-

mission (Kosterlitz and Lees, 1961; Campbell, 1966). Sub-

sequently, responses to vagal or field stimulation have been

observed when symp~thetic nerve stimulation was blocked by

adrenergic neurone blocking agents (Burnstock, Campbell and

Rand, 1966) or a combination of ~- and S-adrenoceptor blocking

antagonists (Bucknell and Whitney, 1964; Day and Warren, 1967).

Such responses were no~ confined to the gut. The in-

hibitory response of other smooth muscles, e.g. the anococ-
(\'\usc.~s

cygeousAof rat, rabbit and mouse (Gillespie, 1972; Creed,

Gillespie and McCaffery, 1977; Gibson and YU1 1983), rectoc-
rnu.~.:Qe.

cygeousA (King and Muir, 1981), blood vessels (Hughes and Vane,
('f\.: L....... -.J. l3...;-4\stot..k

1967), lung (RobinsonJ A 1971), gall bladder (Davison,

Al-Hassini, Crowe and Burnstock, 1978) and accessory smooth
muscles of reproduction (Klinge and Sjostrand, 1974) proved

equally resistant to blockade by either adrenergic or

cholinergic antagonists (see Burnstock, 1972,1977,1979;

Furness and Costa, 1973: Gillespie, 1982).

Non-adrenergic non-cholinergic autonomic responses were

not restricted to inhibition. The contractile response of

the urinary bladder to parasympathetic (classically cholin-

ergic) nerve stimulation was only partially blocked by

atropine (Henderson and Roepke, 1934). This was variously
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attributed to the inability of atropine to gain access to

the receptor sites (Carpenter and Rand, 1965) or its dis-

placement by a high concentration of acetylcholine released

in close proximity to the receptors (Huckovoc, Rand and Vanov,

1965). The former seems incompatible with electron micro-

scopical data showing gaps of 20nm or larger between nerve

varicosities and smooth muscle (Caeser, Edwards and Ruska,

1957; Thaemert, 1963). Also, the contractile response to

exogenously-added acetylcholine was blocked by atropine

(Ambache and Zar, 1970). The amount of acetylcholine required

to overcome the blockade exceeded that released during nerve

stimulation (Dumsday, 1971), making it unlikely that atropine

was displaced from the receptors by neuronally-released acetyl-

choline. Adrenergic nerves were unlikely to mediate the

contractile response because first, it was not blocked by

a- or S-adrenoceptor antagonists; secondly, noradrenaline

inhibited the urinary bladder in vitro (Edg~ ,1955; Ambache

and Zar, 1970) .

Contractile responses resistant to adrenergic and cholin-

ergic antagonists have also been demonstrated in guinea-pig

ileum (Ambache and Freeman, 1968), cat colon in response to

pelvic nerve stimulation (Hulten and Jodal, 1969) , chicken

oesophagus in response to vagal stimulation (Hassa~ ,1969)

and chicken rectum in response to stimulation of Remaks

nerve (Bartlett and Hassan, 1971),

It has been suggested that the contractile response of
rnv.SLtr..

vas-deferensAto field stimulation is in part non-adrener-the
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gic non-cholinergic (Ambache and Zar, 1971). However,

recent evidence suggests that the rapid "twitch", which is

resistant to adrenergic and cholinergic receptor blocking

agents, may be mediated by ATP released as a cotransmitter

(Burnstock, 1981) from adrenergic nerves rather than a

separate population of non-adrenergic non-cholinergic fibres

(Feda~ I Hogaboom, O'Donnell, Colby and WestfallJ 1981:

Sneddo~ I Westfall and Feda~ I 1982).

The development of intracellular and extracellular

electrical recording from smooth muscle enabled the sympa-

thetic and intramural inhibitory innervation to be compared

at a cellular level. In the taenia coli, perivascular

sympathetic nerve stimulation with a single pulse produced

no electrical or mechanical response. Trains of pulses at

low frequency (below 5Hz) inhibited spike activity and
relaxed the muscle without a change in membrane potential.

Only at higher stimulation frequencies was the relaxation

accompanied by hyperpolarisation which reached a maximum of

some 16mV (Bennett, Burnstock and Holma~ i 1966a). In con-

trast, field stimulation with a single pulse evoked an

inhibitory junction potential (ijp) which could reach 25mV,

and relaxation (Bennett and Holman, 1963; Bennett, Burnstock

and Holman, 1966b). With trains of pulse~, ijps summated

to values of up to 30mV. Whereas the inhibitory response to

sympathetic nerve stimulation increased with frequencies

exceeding 10HZ, that to field stimulation reached a maximum

below 10Hz (Bennett et aI, 1966a,b). In the colon and
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stomach, sympathetic stimulation produced small changes in

membrane potential, while field or vagal stimulation pro-

duced large hyperpolarisations (compare Gillespie, 1962 with

Furness, 1969; Beani, Bianchi and Crema, 1971). Like the

relaxations to field or vagal stimulation, ijps were un-

affected by atropine or guanethidine and appeared to be

mediated by non-adrenergic non-cholinergic nerves (Bennett

et aI, 1966b: Beani et aI, 1971).

The inability of low frequency sympathetic nerve stimul-

ation to produce significant changes in membrane potential

is consistent with histochemical studies using specific

catecholamine fluorescence (Fal~k 1962). With the exceptions
J

of sphincteric muscle and the taenia coli (Gillespie and

Maxwell, 1971), adrenergic fibres show little ramification

in the smooth muscle layers but terminate mainly in the

enteric neural plexuses (Norberg, 1964; Jacobowitz, 1965;

Costa, Furness and Gabella, 1971). The distribution of
adrenergic fibres is more in keeping with a role as modul-

ators of cholinergic activity than as a direct influence
on the smooth muscle of the gut (Norberg and Sj8qvist, 1966).

The inhibitory responses of the gut and related smooth

muscles to field stimulation was unaffected by the absence

of adrenergic fibres. In the foetal intestine of rabbit

or mouse, relaxations to field stimulation resistant to

adrenergic and cholinergic antagonists were observed after

16-17 days gestation. The response to sympathetic nerve

stimulation was absent until some 30 days after birth (Gershon
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and Thompson, 1973). Sympathetic denervation either by

physical methods such as storage of (Burnstock et aI, 1966)

or tissue culture from ( ~'kimar~ 1971) the taenia coli;

freezing the perivascular nerves to the colon (Furness, 1969),

or the pharmacological methods of immunosympathectomy in the

anococcygeus (Gibson and Gillespie, 1973) and 6-hydroxydopamine

in toad lung (Robinson et aI, 1971) and anococcygeus (Gibson

and Gillespie, 1976), also failed to abolish the inhibitory

responses to field stimulation.

The electron microscopical evidence for non-adrenergic

non-cholinergic nerves is as yet equivocal. Baumgarten,

Holstein and Owrnan (1970) distinguished three types of nerve

profile in Auerbach's plexus. Adrenergic nerves were recog-

nised by the presence of small (40-60nm) or medium-sized

(50-80nm) granular vesicles which increased in electron
density following treatment with 5-hydroxydopamine. 6-hydroxy-

dopamine caused these profiles to degenerate. Cholinergic

profiles were thought to contain mainly small (35-60nm)
electron lucent and large (80-110nm) opaque membrane-bound

vesicles. The third type of profile allegedly had large

granular vesicles (later termed "large opaque vesicles" or

"LOVs"j Burnstock, 1972) and small (40-60nm) clear vesicles

in equal proportions. Such profiles, designated "p-type"

because of their similarity to the peptide secretory neurones

of the hypothalamus, have since been reported in other

tissues known to exhibit non-adrenergic non-cholinergic

responses, e.g. toad lung (Robinson, McLean and Burnstock,
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1971), guinea-pig myenteric plexus (Gabella, 1972), avian

gizzard (Burnstock, 1972), bovine retractor penis muscle

(Eranko, Klinge and Sj8strand, 1976) and rat anococcygeus

muscle (Gibbins and Haller, 1979). The p-type profile was

one of eight types identified in Auerbach's plexus of the

guinea-pig by comparing vesicle size, shape and content

(Cook and Burnstock, 1976).

However, some inconsistencies have emerged. For example,

few p-type profiles were found in the circular muscle of

rabbit jejunum, yet atropine and guanethidine-resistant

ijps of up to 25mV were recorded in response to a single

pulse (Daniel, Taylor, Daniel and Holman, 1977). The

authors suggested that the differences between nerve pro-

filed observed previously could arise from the heterogeneous

distribution of the vesicles. A detailed comparison of
vesicle size and occurrence in nerve profiles from a variety

of tissues showed no significant correlation between non-

adrenergic non-cholinergic responsesand p-type profiles. For
instance, there was no significant difference between the

number of large granular vesicles present in p-type profiles

of the rabbit anococcygeus and hepatic portal vein when com-

pared with cholinergic nerves in rabbit or guinea-pig atria

(Gibbins, 1982) •

Although the electron microscopical evidence is equi-

vocal .I pharmacological, electrical and histochemical studies

indicate clearly that there is a third group of autonomic
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fibres which release neither acetylcholine nor noradren-

aline, their transmitter(s) is as yet unknown.

MECHANISM OF ACTION OF NON-ADRENERGIC NON-CHOLINERGIC
AUTONOMIC NERVES AS REVEALED BY ELECTRICAL RECORDING

Inhibition

In many smooth muscles non-adrenergic non-cholinergic

nerve-evoked relaxation is accompanied by an inhibitory

junction potential (ijp). That of the taenia coli is

particularly well characterised. In this muscle, spon-

taneous tone is maintained by the influx of Caz+during the

spike potential (see Tomita, 1980). Field stimulation with

a single pulse evoked ijps of short latency (45-80ms ')

and sufficiently long duration (1 s ) to inhibit spike

discharge and relax the muscle. Ijps were graded with
stimulus strength and summated at frequencies above 5Hz

(Bennett et al, 1966b). Both the ijp and relaxation were

abolished by tetrodotoxin (TTX) (Blilbring and Tomita, 1967),

confirming their neurogenic origin. Transmitter release
Z+appears to be via a Ca -dependent process. Ijps in

intestinal muscle were reduced by decreasing external Ca~+
2+(Holman and Weinrich, 1975) or by increasing Mg (Bauer and

Kuriyama, 1982a). Maximum amplitude of the inhibitory

potential varies between different tissues. Values of up

to 30mV were recorded in the guinea-pig taenia coli

(Bennett et al, 1966b), while the maximum in the rat

anococcygeus was 6mV (Creed and Gillespie, 1977). The
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mechanism by which hyperpolarisation produces relaxation

of the anococcygeus has yet to be elucidated. Unlike the

taenia, the rat anococcygeus does not exhibit spike

potentials (Creed, Gillespie and Muir, 1975).

Hyperpolarisation is not a universal response to

inhibitory non-adrenergic non-cholinergic nerve stimulation.

The cat trachea relaxed without any apparent electrical

change (Ito and Takeda, 1982). This may be because the

same transmitter can act via different mechanisms, or

different transmitters may be involved (see Burnstock, 1981).

The ionic basis for the non-adrenergic non-cholinergic

ijp, in the tissues studied, is a selective increase in K+

conductance. The equilibrium potential (EK) for K+ at

approximately -80 to -90mV lies some 30-40mV more negative

than the membrane potential of most gut smooth muscle. When

EK was made more negative by reducing or removing the

external K+, the amplitude of the ijp was also increased

in the taenia (Bennett, Burnstock and Holman, 1963: Tomita,

1972) and jejunum (Hidaka and Kuriyama, 1969). Raising

the external K+ concentration decreased ijp amplitude,

presumably by making EK more positive. The ijp in the

taenia coli (Tomita, 1972), rabbit anococcygeus (Creed and

Gillespie, 1977) and guinea-pig ileum (Bauer and Kuriyama,

1982a)were reduced when field stimulation was carried out

during passive hyperpolarisation of the membrane potential

and abolished at -80 to -90mV when there would have been no
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net driving force on K+. At membrane potentials exceed-

ing -90mV, ijps were reversed to depolarisation. During

the ijp there was an increase in membrane conductance as

shown by a decrease in the size of electrotonic current

pulses (Den Hertog and Jage~ I 1975; Creed and Gillespie,

1977) and increased rate of ~2K+ efflux during field

stimulation (Den Hertog and Jager, 1975). There is also

pharmacological evidence implicating K+. Apamin, a neuro-

toxin isolated from bee venom (see Jenkinson, 1981), which

blocks Ca2+- stimulated K+ channels in hepatocytes (Banks,

Brown, Burgess, Burnstock, Claret, Cocks and Jenkinson,

1979) also blocks the non-adrenergic non-cholinergic ijp

in the taenia (Maa~ I 1981), stomach (Vladimirova and Sh~ba,

1978) and small intestine (Bauer and Kuriyam~ , 1981b).

Thu~ ,the increase in K+ conductance at these sites may
be dependent on intracellular Ca2+. Not all non-adrenergic

non-cholinergic inhibitory nerve responses are apamin-

sensitive. Field stimulation-evoked relaxation of the

bovine retractor penis was not blocked by apamin but was

abolished by oxyhaemoglobin (Bowman, Gillespie and Pollock,

1982). This suggests that a different mechanism may be

involved.

Rebound phenomenon
After the cessation of inhibitory nerve stimulation,

a rebound contraction is often observed, particularly if

the resting tone level is low (Cocks and Burnstock, 1979).

Rebound contraction has been attributed to the secondary

release of prostaglandins. The prostaglandin synthesis
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inhibitor, indomethacin, was shown to block rebound con-

traction in the taenia coli (Burnstock, Cocks, Paddle and

Staszewska-Barczak, 1975; Cocks and Burnstock, 1979).

However, other studies have failed to confirm the involve-

ment of prostaglandins. Neither indomethacin nor aspirin

were effective at blocking rebound contraction of the

taenia coli or ileum (Kadlek, Masek and Seferna, 1974) and

duodenum (Mitchell and Wood, 1976).

The electrical basis for rebound contraction is a

depolarisatio~ I following the ijp, which may reach the thres-

hold for triggering spike activity (Bennett et al, 1966;

Furness, 1969) or an oscillation in membrane potential

(Creed and Gillespie, 1977). The nature of the rebound

response is uncertain. In-the taenia coli, an "after-

depolarisation" was observed following passive hyperpolar-

isation of the membrane using externally-applied current

(Furness, 1970; Tomita, 1966), implying that it is merely

a consequence of the preceding inhibition (Bennett, 1966).

However, in guinea-pig intestinal muscle, passive hyper-

polarisation failed to produce an after-depolarisation if

the time-course of the electrotonic potential was made

similar to that of the ijp. A depolarisation was only

observed if the current was switched off abruptly (Bywater
\-\oQf\'\o..l'\ ClJ\cl T~(l",,;A 1981). Moreover, apamin blocked the ijp without

affecting rebound depolarisation in the taenia coli (Maas

and Den Hertog, 1979) and guinea-pig intestine (Bywater

et aI, 1981). This suggests that the rebound response is

due to the activity of non-adrenergic non-cholinergic



26

excitatory nerves.

Excitation

The electrical basis for the motor response to non-

adrenergic non-cholinergic nerve stimulation in the

urinary bladder (Ursillo, 1961: Creed, Ishikawa and Ito,

1983), chicken rectum (Takewadi and Ohashi, 1977~ and

guinea-pig ileum (Bywater et all 1981; Bauer and Kuriyama,

1982a; Bywater and Taylor, 1983) is an excitatory junction

potential (ejp). Ejps were graded with stimulus strength

and could reach the threshold for generating action poten-

tials. Tetrodotoxin abolished the ejps (Takewaki and

Ohashi, 1977; Bauer and Kuriyama, 1982ai Creed et aI, 1983),

confirming their neurogenic origin. Transmitter release

appeared to be via a Cat+-dependent process because ejps

were reduced by increasing the external Mgl+ (Bauer and

Kuriyama, 1982a). The latency of the ejp varies consider-

ably from 5-l5ms in the chicken rectum to 350-900ms in
gUinea-pig ileum. This may be due to differences in the
distance between nerve varicosities and smooth muscle cells,

different transmitters or post-synaptic mechanisms.

The ionic basis of the non-adrenergic non-cholinergic

ejp remains to be fully elucidated. In the ileumJ ejps

were enhanced by passive hyperpolarisation of the membrane

potential and had a reversal potential of -27mV (Bauer

and Kuriyama, 1982a). This may be the equilibrium poten-

tial for one ion, e.g. Cl- J or the net reversal
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potential for a number of ions, e.g. Na+ and K+.

PUTATIVE NON-ADRENERGIC NON-CHOLINERGIC TRANSMITTERS

Of the various candidates proposed as the transmitter(s)

released from non-adrenergic non-cholinergic post-ganglionic

nerves, either a purine, e.g. ATP (Burnstock, 1972) or a

peptide, e.g. VIP, substance P, somatostatin, neurotensin,

enkephalin (Bloom and Polak, 1978: Humphrey and Fischer,

1978) appear the most likely. The possible transmitter

role of these candidates is generally assessed according

to the Eccles (1964) criteria. These state that the trans-

mitter candidate should mimic nerve stimulation, be present

and synthesised in nerve fibres, be released by nerve

stimulation, be antagonised by drugs which block the action

of the transmitter, be potentiated by drugs which inhibit

termination of the transmitter.

Mimicry of nerve stimulation

On the basis that the candidate should mimic nerve

stimulation, some of the peptides can be excluded as in-

hibitory transmitters. Substance P, neurotensin and somato-

statin contract the guinea-pig taenia coli. Enkephalin

was inactive (Cocks and Burnstock, 1979). VIP in low con-

centrations produced relaxation but, unlike that to non-

adrenergic non-cholinergic nerve stimulation, it was slow

in both onset and duration. ATP produced relaxations of

similar latency and duration to nerve stimulation. A
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rebound contraction also followed the inhibitory response

to ATP and inhibitory nerve stimulation but not to VIP

(Cocks and Burnstock, 1979). ATP relaxed a number of gut

smooth muscles known to possess a non-adrenergic non-

cholinergic innervation, including stomach circular muscle,

descending colon and ileum of guinea-pigs and rabbits,

rat gastric fundus, duodenum and colon, mouse duodenum and

colon (Burnstock et aI, 1970).

The inhibitory effect of ATP was TTX-insensitive

and not therefore due to the production of action poten-

tials in non-adrenergic non-cholinergic nerves (Burnstock

et aI, 1970). Two types of receptor have been distinguished
_ u

for ATP and other purines. P1 receptors are most sensitive

to adenosine, blocked by methylxanthines and mediate an
increase in cAMP levels (Burnstock, 1979 ,1981). ·purinergic

hP2 receptors mediate the response of intestinal muscle to

ATP. These receptors are blocked preferentially by
quinidine, 2-substituted imidazolines, 2-2'-pyridylisatogen

or apamin and evoke prostaglandin synthesis. In the rat

anococcygeus, relaxations to ATP were small or absent

altogether unless prostaglandin synthesis was inhibited

with indomethacin (Burnstock, Cocks and Crowe, 1978).
There was no such requirement for the relaxation to field

stimulation.

The inhibitory effect of VIP on canine antral muscle

was also TTX-insensitive (Morgan, Schultz and Szurszewski,
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1978). However, VIP had no direct effect on the longi-

tudinal muscle of guinea-pig ileum but stimulated neurones

in the myenteric plexus (Williams and North, 1979; North,

1982). Thus, VIP appears to act both directly and in-

directly on smooth muscle preparations.

Electrically, ATP mimics inhibitory nerve stimulation

in a number of smooth muscles which exhibit non-adrenergic

non-cholinergic ijps, e.g. taenia coli (Axelsson and

Holmberg, 1969; Tomita and Watanabe, 1973; Jager and

Schievers, 1980), guinea-pig stomach (Vladimirova and

Shuba, 1978) and rabbit caecum (Small, 1974). A discrep-

ancy arose when the concentration of ATP required to

produce hyperpolarisation was compared with that producing

relaxation in the taenia coli. Maximal relaxation was
Ix

produced at concentrations (approximatelYftlo-4M) which,
unlike inhibitory nerve stimulation, failed to hyperpolarise.

Only at higher concentrations(IxlO-3M) was a hyperpolaris-

ation produced (Tomita and Watanabe, 1973). The ionic

basis for this hyperpolarisation was the same as that to

inhibitory nerve stimulation and involved an increase in

conductance to K+ (Tomita and Watanabe, 1973; Maas, Den

Hertog, Ras and Van Den Akker, 1980). Apamin, which

blocks the inhibitory potential to field stimulation,

abolished the hyperpolarisation to ATP (Vladimirova and

Shuba, 1978; Maas and Den Hertog, 1979) and the concomitant

increase in ~2K efflux (Maas et aI, 1980).
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VIP also hyperpolarised the taenia coli but the

latency of the response (lOs or greater) was considerably

longer than that to inhibitory nerve stimulation or ATP.

Apamin failed to block the hyperpolarisation to VIP

(Hills, Collis and Burnstock, 1983), suggesting that the

ionic basis of the response is different from that to

inhibitory nerve stimulation or ATP. In the cat trachea,

low concentrations of VIP (lO-12 to lO-9M) mimicked in-

hibitory nerve stimulation producing relaxations with

no electrical change. At higher concentrations (lO-8M),

however, which produced relaxations similar in magnitude

to those produced by nerve stimulation, VIP did hyper-

polarise and increase membrane conductance (Ito and Takeda,

1982).

In some tissues ATP and VIP. produced electrical

effects which were opposite to non-adrenergic non-

cholinergic nerve stimulation. VIP depolarised opossum

oesophageal muscle in which non-adrenergic non-cholinergic

nerve stimulation evoked ijps (Daniel, Helmy-Elkoly, Jager

and Kannan, 1983). In the smooth muscle of pig stomach

(Ohga and Taneike, 1977) and guinea-pig ileum (Bauer and

Kuriyama, 1982b), ATP depolarised cells which showed non-

adrenergic non-cholinergic ijps and hyperpolarised those

showing ejps. Thus, ATP is unlikely to be the transmitter

at either site.

Substance P directly stimulates both myenteric neurones



31

(Katayama and North, 1978; North, 1982; Otsuka and Konishi,

1983) and intestinal muscle (Szeli, Molina, zappia and

Bertaccini, 1977; Yau, 1978) where it may mediate the

non-adrenergic non-cholinergic contraction to field stimul-

ation (Franco, Costa and Furness,1979). Longitudinal and

circular muscle cells in the ileum in which field stimul-

ation evoked a non-adrenergic non-cholinergic ejp were

depolarised by substance P. Moreover, the ejp was
abolished during the depolarisation to substance P. This

effect was not reversed by passive hyperpolarisation of

the membrane potential and suggests that the ejp and

substance P-evoked depolarisation share the same ionic

basis (Bauer and Kuriyama, 1982b). substance P also

mimics non-adrenergic non-cholinergic nerve stimulation

at other sites including the motor response of the colon
and rectum to pelvic nerve stimulation (Anderson, Bloom,

Edwards, J&rhult and Mellander, 1983), and in the rat

parotid gland, where an increase in enzyme secretion, Rb
efflux,depolarisation and decreased membrane resistance were

observed (Gallacher, 1983).

ATP, VIP and substance P each mimic non-adrenergic

non-cholinergic nerve stimulation at some sites. The

lack of mimicry observed at others may reflect the exis-

tence of yet other autonomic transmitters.

Presence of transmitter candidate in nerves

A number of potential transmitters have been found in
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autonomic nerves. Quinicrine, a fluorophore which binds

ATP, has been used to demonstrate nerve fibres containing

ATP in gastrointestinal smooth muscle (Olson, Alund and

Norberg, 1976), urinary bladder (Burnstock, Cocks, Crowe

and Kasikov, 1978) and anococcygeus muscle (Burnstock,

Cocks and Crowe, 1978). However, these results are con-

sistent with the role of ATP in energy metabolism and may

be unrelated to non-adrenergic non-cholinergic trans-

mission. ATP is also known to be present in the synaptic

vesicles of adrenergic fibres where it may act as a co-

transmitter (Fedan et al, 1981).

Various peptides including VIP, substance P, somato-

statin, enkephalin and neurotensin have been detected by

immunohistochemical fluorescence in autonomic nerves
throughout the gastrointestinal tract (Hokfelt, Johansson,

I\~","",,,t.s, Ed.v\,,:i~"~, HtlKo..uOt'\ <lJ\J. S'un.clQe.r:,
Efendi, Luft and Arimura, 1975; UddmanJ\.1978; Edin, Lund,

db " " f 1 dLun erg, Ahlman, Dohlstrom, Fahrenkrug, Hok e t an

Kewenter, 1979; Costa, Furness, Buffa and Said, 1980;
Schultzberg, Hokfelt, Nilsson, Terenius, Rothfe1d, Brown,

Elde, Goldstein and Said, 1980; Jessen, Saffrey, Noorden,

Bloom, Polak and Burnstock, 1980: Saffrey, Polak and

Burnstock, 1982; Cai, Gu, Kuang, McGregor, Guatei, Bloom

and Polak, 1983). VIP and substance P immunoreactive

fibres were the most abundant, particularly in the fI'\,J"ntari'"

and submucous plexuses. In the colon, VIP was localised

in p-type (allegedly non-adrenergic non-cholinergic)
fibres in the lamina propria and submucous plexus (Larsson,
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1977). The taenia coli was innervated by both VIP and

substance P immunoreactive nerves (Jessen et al, 1980) I

suggesting possible roles in the inhibitory and rebound

responses respectively. However, VIP and substance P

immunoreactive fibres were sparse or completely absent

from intestinal longitudinal muscle (Saffrey et al, 1982;

Schultzberg et al, 1980) or gall bladder muscle except

in the sphincteric region (Cai et al, 1983), yet both
of these show non-adrenergic non-cholinergic responses to

field stimulation. This may be because the transmitter

reaches the smooth muscle cells by overflow from the

ganglionic plexus (see Franco et al, 1979), but the
electrophysiological evidence, showing large non-adrenergic

non-cholinergic ijps and ejps to a single pulse argues
for the direct innervation of the smooth muscle cells (see

Gillespie, 1982). Neurotensin immunoreactive fibres were

present in the longitudinal muscle of chicken gut but

only in the upper tract (Saffrey et al, 1982). The cir-

cular muscle layer did possess substance P, VIP and
enkephalin immunoreactive fibres (Schultzberg et al, 1980;

Costa et al, 1980).

The distribution of peptides in the gut corresponds

with a role as neurotransmitters acting either on other

neurones, secretory cells, sphincteric and possibly pro-

pulsive smooth muscle. With the exceptions of somato-

statin and neurotensin, blood vessels also showed a dense

innervation, suggesting that the control of intestinal
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blood flow may be mediated by peptidergic nerves.

Release of transmitter candidate

First indications that ATP might be released by

nerve stimulation came from studies on the perfused

stomach of guinea-pig and toad. Vagal stimulation caused

a rise in the levels of the ATP metabolites, adenosine

and inosine, in the perfusion fluid. A similar effect was

observed in response to field stimulation of Auerbach's

plexus (Burnstock, Campbell, Satchell and Smythe, 1970).

The taenia coli pre-loaded with lH-adenosine, released

lH-ATP in response to field stimulation (Su, Bevan and

Burnstock, 1971). More recent studies have employed the

luciferin-luciferase technique to detect directly ATP

released by field stimulation of the urinary bladder

(Burnstock, Cocks, Crowe and Kasakov, 1978) and rat
anococcygeus (Burnstock, Cocks and Crowe, 1978). Adrenergic

nerves were excluded as the source of ATP because release

was unaffected by 6-hydroxydopamine. There appears some

doubt over whether ATP was liberated exclusively from

nerves. In the bladder release was TTX-sensitive and Ca2+-

dependent, suggesting a neurogenic origin (Burnstock et al,

1978a). However, the release of lH-ATP from the taenia

had both TTX-sensitive and insensitive components (Rutherford

and Burnstock, 1978) and was evoked by various exogenously-

added inhibitory agents including noradrenaline, papaverine

and nitroglycerin (Kuchii, Miyahara and Shibato, 1973).
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That such a diverse group of drugs should release ATP
from non-adrenergic non-cholinergic nerves seems unlikely.
Combined with the partial insensitivity of ATP release to
TTX (Rutherford and Burnstock, 1978), the results suggest
that some of the ATP released may be of myogenic origin.

VIP release, as measured by an increase in its resting
concentrations in blood or lymph, has been demonstrated
in response to stimulation of the pelvic (Fahrenkrug,
Haglund, Jodal, Lundgren, Olbe and Schaffalitzky de Mucka-
dell, 1978; Anderson, Bloom, Edwards, J!rhult and Mellander,
1983) and vagus (Fahrenkrug, Galbo, Holst and Schaffalitzky
de Muckadell, 1978: Bloom and Edwards, 1980) nerves.
Significantly, VIP was released from the vagus following
stimulation of the high threshold fibres responsible for
the non-adrenergic non-cholinergic nerve-mediated inhibition
of gut motility (Jansson, 1969). Release was alsO evoked
by di stension of the oesophagus and small bowel (Fahrenkruget al,
1978) or proximal stomach (Chayvialle, Miyata, Rayford and
Thompson, 1981). This suggests that reflex relaxation of
the stomach, and descending inhibition of the intestine
(see Abrahamson, 1973) may be mediated by nerve fibres

releasing VIP.

Blockade of nerve stimulation and transmitter candidate

various attempts have been made to compare ATP with
non-adrenergic non-cholinergic nerve responses pharmaco-
logically, either by using non-selective blocking agents
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or by desensitisation of the tissue to ATP.

Quinidine has been shown to antagonise both ATPand

the non-adrenergic non-cholinergic inhibitory nerve response

in the taenia but the responses to exogenous noradrenaline

and sympathetic nerve stimulation were also affected

(Burnstock et al, 1970). Another potential ATP receptor

antagonist, 2-2-pyridylisatogen tosylate (PIT), antagonised

the motor response of the urinary bladder to field stimulat-

ion, ATP, acetylcholine and histamine (Burnstock et al,

197sa). PIT has been used more successfully on the taenia

coli. Here the response to ATP was abolished while that to

field stimulation and exogenous noradrenaline persisted

(Spedding and Weetman, 1975). Phentolamine in a concen-

tration exceeding that required to block a-adrenoceptors

also abolished the inhibitory response of the teania to ATP

without antagonising field stimulation (Ambache, Daly,
Killick and Woodley, 1977). These results suggest either

that ATP is not the transmitter or that neuronally-released

ATP is less sensitive to blockade by drugs than exogenously-

added transmitter.

If ATP was the non-adrenergic non-cholinergic trans-

mitter, desensitisation to its effect should be accompanied

by a loss of the response to nerve stimulation. Such

experiments have given conflicting results. Desensitisation

to ATP or its more stable derivative, a~-methylene ATP, was

accompanied by a reduction in nerve-evoked relaxation of

the rabbit ileum (Burnstock etal, 1970), contraction of
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the urinary bladder (Burnstock et al, 1972) and colon

(Hedlund, Fandriks, Delbro and Fasth, 1983).

In other reports, however, desensitisation to ATP had

no effect on the response to non-adrenergic non-cholinergic

nerve stimulation, e.g. guinea-pig urinary bladder (Arnbache

and Zar, 1970) and ileum (Weston, 1973a), rabbit duodenum

(Weston, 1973b) and cat trachea (Ito and Takeda, 1982).

The contradictory nature of the results may arise from

the different methods used to produce desensitisation to

ATP.

Pharmacological analysis of VIP has also been hindered

by the lack of a selective. 'receptor' antagonist. Blockade

of the relaxation to both VIP and nerve stimulation by VIP-

antiserum was observed in the oesophageal sphincter. The
effect appeared to be specific as the relaxation to isopren-

~~H-cU\ CV\d S«.ic:!
aline was not blocked (Goyal, , 1980). The proteolytic

'"enzyme, a-chymotrypsin, has also been used on the presumption

that it would digest neuronally-released VIP. In the taenia

coli, a-chymotrypsin blocked the inhibitory response to

VIP but not that to field stimulation (MaCKen3ie. and

Burnstock,1980). This may either mean that VIP is not the
transmitter or that a-chymotrypsin was incapable of breaking

down neuronally-released peptide.

Blockade of inhibitory nerve stimulation in the bovine

and dog retractor penis muscles by haemolysed blood was un-

accompanied by any change in the relaxation to VIP (Bowman,

Gillespie and Hunter, 1982). It seems unlikely that haemo-
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lysate was preventing transmitter release because the in-

hibitory responses to sodium nitroprusside and isobulto-

methylxanthene were also blocked (Bowman and Gillespie, 1981a).

Desensitisation to the inhibitory effect of VIP on the cat

trachea was accompanied by a marked reduction in response

to inhibitory nerve stimulation (Ito and Takeda, 1982),

suggesting that VIP may be a transmitter at this site.

Potentiation of nerve stimulation and transmitter candidate

The rapid recovery which followed the excitatory and

inhibitory responses to non-adrenergic non-cholinergic nerve

stimulation suggested that there was an efficient inactiv-

ation mechanism for the transmitter. ATP was also rapidly

metabolised to adenosine and inosine (Burnstock et aI, 1970).

The gut contains 5-nucleotidases, adenosine deaminase and
Mg2+-stimulated ATPase enzymes which provide an efficient

inactivation mechanism for ATP (Burnstock, 1979). In the

taenia coli, there is an uptake system for adenosine which,

if present in 'purinergic nerves', would provide fresh

supplies of substrate for conversion to the transmitter

(Kuchii et aI, 1973). The adenosine uptake inhibitors
(e.g. dipyridamole) have been shown to potentiate the response

of the taenia coli to the inhibitory nerve stimulation and

ATP (Satchell, Lynch, Bourke and Burnstock, 1972). This

could be explained, within the framework of the purinergic

nerve hypothesis, if the increased levels of adenosine

caused end-product inhibition of the enzymes responsible for
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breaking down ATP. However, the amplitude of the hyper-

polarisation to non-adrenergic non-cholinergic nerve

stimulation or ATP was not potentiated by dipyridamole,

suggesting that the concentration of neither ATP nor the
inhibitory transmitter was increased (Jager,1976,1979).The

rabbit duodenum (Hulme and Weston, 1974) failed to show

any enhancement of the relaxation to non-adrenergic non-

cholinergic nerve stimulation in the presence of adenosine

uptake inhibitors. Thus, they provide no evidence for

purinergic inhibitory nerves in these tissues.

EXTRACTION OF PUTATIVE TRANSMITTERS AND OTHER PHARMACO-
LOGICALLY ACTIVE SUBSTANCES FROM TISSUES

Extraction from tissues has been an important source

of pharmacologically active substances since the early
report of Oliver and schafer (1895a). They demonstrated

that extracts of pituitary, thyroid and spleen produced

changes in the blood pressure of anaesthetised animals.

The extraction of neurotransmitters is particularly

difficult because they are present in small quantities, are

often readily broken down by enzymes, or may be chemically

unstable. Such extracts may also contain impurities which

either mimic or antagonise the desired active component.

In 1895 the peripheral actions of an extract from the

adrenal medulla were described (Oliver and Schafer, l89Sb).

This extract contracted arterioles and the spleen. The
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active component in the extract was later isolated and

called adrenaline (Takamine, 1901). The peripheral actions

of adrenaline on the heart, blood vessels and gastrointestinal

motility closely paralleled those of sympathetic nerve

stimulation (Elliot, 1904,1905), suggesting that sympathetic

nerves might act by releasing adrenaline (Dale, 1935; Cannon

and Bacq, 1931). However, Euler (1946), using extracts of

lumbar sympathetic chain and splenic arterial nerves, found

that their activity correlated more closely with a derivative

of adrenaline - noradrenaline. (sO!."-.. f';_~J IqS'l)

Early attempts to extract the transmitter released from

parasympathetic nerves met with limited success. Dixon's

(1906,1907) method involved prolonged vagal stimulation

followed by extraction of the heart in boiling water. The

resulting extract weakly mimicked vagally-mediated brady-

cardia and the active component was termed 'inhibitin'.

Inhibitin may have been choline (Dale, 1935). Acetylcholine

was not extracted in stable form until 1929 by Dale and
Dudley. They mixed ox and horse spleen in cold ethanol to

obtain an unstable ester of choline. The active substance

was identified as acetylcholine by comparing the pharmaco-

logical activity of the two on blood pressure, denervated

gastrocnemius and rabbit jejunum, and by physico-chemical

tests. Interestingly, the yield of acetylcholine extracted

was very much reduced if the tissue was minced before

adding the ethanol. This illustrates the influence of ex-

traction conditions on the ability to extract unstable

substances.
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The pharmacology of histamine, like that of acetyl-

choline, was known before its identification in tissue
:;II"v\l~Ltles c:.f. K-,e,._

The A pharmacological properties of

histamine, obtained from the decarboxylation of histidine,
of

andAtissue extracts was demonstrated by Dale and Laidlaw
(1910). Properties included the ability to produce symptoms

extracts.

similar to those of anaphylactic shock. The active com-

ponent was crystallised from acid extracts of the mucosal

layer of ox intestine (Barger and Dale, 1911), but histamine

was not unequivocally identified in body tissues until it

was obtained in alcoholic extracts of lung and liver (Best,

Dale, Dudley and Sharpe, 1927).

5-Hydroxytryptamine (5-HT) was obtained in the 1930s

by Erspamer in extracts of intestinal mucosa (see Douglas,

1975; Erspamer, 1954), which were found to stimulate gastro-

intestinal motility. The active component was termed

enteramine. Independently, Rapport, Green and Page (1948a,

b,c) reported the pharmacological and physico-chemical
properties of 'serotonin', a crystalline substance obtained

from blood serum. Serotonin possessed vasopressor pro-

perties, contracted rabbit ileum and was a potent vasocon-

strictor in the rabbit ear artery. These pharmacological

properties were similar to those of an indolalkylamine - 5-HT

(Rapport, 1949). Subsequently, both enteramine and serotonin

were identified as 5-HT (Erspamer and Azero, 1952).

A report by Kurzok and Lieb (1930) that human uterine

muscle was contracted by seminal fluid prompted Goldblatt
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(1935) and Euler (1935) independently to extract the active

component(s) in ethanol or acetone. Goldblatt's extract

from human seminal fluid decreased blood pressure in

anaesthetised cats and rabbits, contracted rabbit ileum

and, more interestingly, potentiated the contractile effect

of adrenaline in the seminal vesicles. These actions were

attributed to the presence of two active components in the

extract. Euler (1935) used an extract of monkey vesicular

gland. This extract also decreased blood pressure but,

unlike extracts of prostate or seminal fluid, it had little

effect on intestine or uterus. The active component in the

extract was called vesiglandin. Euler (1936) later dis-

tinguished pharmacologically between two active substances

_ vesiglandin and prostaglandin - extracted from the

accessory genital glands. Prostaglandin-like activity has

also been extracted from other tissues. The active compon-

ents have been called variously darmstoff, irin, menstrual

stimulant and medullin (see Horton, 1972). The activity
present in these extracts is now known to be due to a diverse

group of structurally-related lipid-soluble unsaturated

hydroxyacids called collectively prostaglandins (Bergstrom,

Carlson and Weeks, 1968).

peptides were also obtained from extracts. Euler and

Gaddum (1931) demonstrated that an acid-alcohol extract of

horse brain or intestine produced atropine-resistant intes-

tinal contractions of delayed onset and decreased blood

pressure. Activity was neither due to histamine nor to
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acetylcholine, and was absent from similarly made extracts

of intestinal mucosa. The active component, called substance

P, was identified in the early 1970s when its composition

(Chang and Leeman, 1970) and amino acid sequence (Chang,

Leeman and Niall, 1970) were determined.

Vasoactive intestinal polypeptide (VIP) was originally

obtained in methanol extracts of pig intestine (Said and

Mutt, 1970) which were found to produce cardiovascular

changes, hyperglycaemia and respiratory stimulation. Neuro-

tensin, another novel peptide with hypotensive activity, was

an active component in an acidified-acetone extract of bovine

hypothalami (Carraway and Leeman, 1973). In vitro, neuro-_ ....-
tensin relaxed rat duodenum and contracted rat uterus and

guinea-pig colon.

The existence of· an endogenous opioid was demonstrated

by the ability of acid extracts of decerebrate brain to

antagonise competitively receptor binding of the opiate
antagonist dihydromorphine to brain tissue and guinea-pig

ileum (Terenius and Wahlstrom, 1974). The active component

in the extract was thought to be a peptide (Terenius and

Wahlstrom, 1975). A similar extract was prepared and further

purified by Hughes (1975). The purity was assessed by the

concentration of naloxone required to reverse the inhibitory

effect of the extract on the twitch response of the vas

deferens.
I II

Extracts which contained largely enkephalinswere

antagonised by a lower concentration of naloxone than was
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.. o.: IIrequired to antagonise less pure extracts. lhe €J,l<erhA.~S

wkreidentified as a mixture of two pentapeptides - methionine-

enkephalin and leucine-enkephalin - by comparing their mass

spectra (Hughes, Smith, Kosterlitz, Fothergill, Morgan and

Morris, 1975).

In 1975, Ambache, Killick and Zar reported the extraction

in acid of a substance from the bovine retractor penis which

mimicked inhibitory nerve stimulation in this tissue.

Extract-evoked relaxation was TTX-insensitive, suggesting a

direct effect on the smooth muscle. Antagonists against

muscarinic, adrenergic and histamine receptors were in-

effective against both the extract and inhibitory nerve

stimulation. When the extract was partitioned with ether,

inhibitory activity remained in the aqueous phase and was

therefore not due to prostaglandins. Neither was the in-
hibitory activity due to adenine nucleotides, as these could

be removed by adsorption onto a~mina without loss of extract

activity (Bowman, Gillespie and Martin, 1979). Methanol

extracts of bovine retractor penis or rat anococcygeus

muscles were found to be inactive unless they were exposed

briefly (10 min) to acid (pH 2.0) (Gillespie and Martin,

1980; Gillespie, Hunter and Martin, 1981). Thus, the in-

hibitory material existed in two interconvertib1e forms.

After exposure to acid, the activated form reverted back at

a temperature-dependent rate to the inactive form. Extract

activity was unaffected by the proteases trypsin, subtil1isin

or pepsin, suggesting that it was not due to a peptide.
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Inhibitory activity was destroyed by periodic acid, which

attacks C-C bonds with glycols, and sodium borohydride,

which reduces aldehydes, implying that the active component

may be a carbohydrate (Gillespie et aI, 1981).

The extract also relaxed gut smooth muscle including

the taenia, stomach fundal strip, duodenum and colon which

possess a non-adrenergic non-cholinergic inhibitory innerv-

ation (Crossley and Gillespie, 1983). In common with in-

hibitory nerve stimulation in the BRP, the effect of the

extract was antagonised by a haemolysate from red blood
(~OW(l'\CJ\ c,1.(\J. C{IH~IE. J ,,, '81) .)

cellsA suggesting a common mechanism of action. However,

the extract does not appear to contain the non-adrenergic

inhibitory transmitter of the taenia coli because, unlike

inhibitory nerve stimulation in this tissue, the relaxation
to extract was apamin-insensitive (Bowman and Gillespie, 1981b).

The results suggest that the extract contains a novel

inhibitor of smooth muscle. The aim of the present study

was to investigate the electrical basis for the relaxation
to the extract and field stimulation in the bovine retractor

penis, and the related rat and rabbit anococcygeus muscles.

Combined electrical and mechanical recording using conven-

tional intra- and extracellular (sucrose gap) techniques

have been employed. Initially, both the excitatory and

inhibitory electrical responses in the bovine retractor penis

to field stimulation were characterised and their ionic

bas's investigated. Pharmacological techniques have been



used to investigate the receptor types and mechanisms in-

volved in the response to field stimulation, extract and

drugs and thus elucidate the possible transmitter role of

the inhibitory material contained in the extract.
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CHAPTER 2

METHODS



TISSUES

Bovine retractor penis muscle

The bovine retractor penis is a paired smooth muscle

originating from the first two coccygeal vertebrae and

passing along the ventral surface of the bulbocavernosus

muscle to- insert into the distal part of the penis. When

contracted, the bovine retractor penis muscles keep the

penis withdrawn and in a characteristic sigmoid flexure

(Fig. 1). Specimens of bovine retractor penis were ob-

tained from the Glasgow abattoir. After slaughter of a

bullock, a cut was made through the mid-line of the pelvic

region to expose the penis. The penis was severed at the

level of the ischiocavernosus and bulcocavernosus muscles

and, together with the bovine retractor penis muscles,
removed by cutting it free from connective tissue and fat.

Specimens were transported to the laboratory in plastic

bags. The interval between slaughter and the arrival of

the specimens at the laboratory varied from l-3h.

In the laboratory, the bovine retractor penis muscles

were dissected free from the penis and attached connective

tissue and stored in Krebs solution at 4°C for up to two
days before use. For electrical and mechanical recording,

thin strips of muscle (O.1-O.2cm width for sucrose-gap

studies or O.3-0.4cm for intracellular recording) 1.S-2.0cill

long were dissected from the middle portion of the bovine
«,

retractor penis by cutting along the lines of cleNage sep-
\

arating the smooth muscle bundles.



FIGURE 1

The bovine penis (P) in its characteristic sigmoid
flexure and the attached retractor penis muscles (B)
extending to the bulbocavernosus (BC). Thin strips
of tissue (T), taken from the mid-portion of the
bovine retractor penis were used for combined elec-
trical and mechanical recording. The size of the
bovine retractor penis is indicated by the 30cm rule
in the background.
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Rat anococcygeus muscle

The rat anococcygeus is a paired smooth muscle

originating from the upper coccygeal vertebrae and passing

first behind and then to either side of the colon. The

muscles join in front of the colon to form a ventral bar

approximately O.1-0.2cm away from the anus.

Male rats weighing 150-250g were killed by stunning

and exsanguination and the anococcygeus muscles removed as

described by Gillespie (1972). The abdominal contents were

exposed by a mid-line incision and deflected to reveal the

descending colon which was ligated and cut at the level of

the pelvic brim. The pelvis was split and the bladder and

urethra removed. The colon was pulled forward and connect-

ive tissue behind it removed until the anococcygeus muscles

were visible. Both muscles were ligated at their points

of attachment to the coccygeal vertebrae and at the ventral

bar prior to removal. The isolated muscles were transferred

to a petri-dish containing Krebs solution gassed with a

95% O2/5% CO2 mixture at room temperature.

Rabbit anococcygeus muscle

The paired anococcygeus muscles in the rabbit originate

from the upper coccygeal vertebrae and lie behind the terminal

colon some lcm above the anal margin. The muscles pass on

either side of the colon, ending within the longitudinal

external muscle. They do not, as in the rat, unite in front

of the colon.
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Dutch rabbits of either sex (1.5-2.5kg) were killed

by stunning and exsanguination, and the anococcygeus muscles

removed as described by Creed, Gillespie and McCaffrey

(1977). The dissection procedure was similar to that

described for the rat. After exposing the abdominal con-

tents, the urinary bladder, and the reproductive organs in

the male, were ligated and excised. The anococcygeus muscles

were located at their points of attachment to the coccygeal

vertebrae, ligated and dissected free up to the colon. The

muscles were tied just before their insertion into the colon

and transferred to a petri-dish containing Krebs solution

gassed with a 95% O2/5% CO2 mixture at room temperature.

Muscles could be stored without apparent deterioration for

up to 24h before use ..

SETTING UP MUSCLES FOR ELECTRICAL AND MECHANICAL RECORDING

After removal, the muscles were cleaned of surface

connective tissue under a dissection microscope and mounted

horizontally in an organ bath for intracellular recording

or a sucrose gap. An initial tension of O.5-lg was

applied when investigating the excitatory responses in each

muscle. In order to investigate the inhibitory responses

of the bovine retractor penis, either the tension was in-

creased in a stepwise fashion up to 3g until tone developed
Spcnt-AI'e" .....~4"~ or,as with the rat and rabbit anococcygeous, guanethidine

(1-3 x lO-sM) was administered.
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PHYSIOLOGICAL SOLUTIONS: CHANGES IN IONIC COMPOSITION

The composition of the : Krebs solution used

throughout the investigation is shown in Table 1. When

the ionic composition of the Krebs solution was modified,

isotonicity was maintained by substitution for, or reduction

in the concentration of another appropriate ion. In K+-free

Krebs, the total KCl content (4.7mM) was replaced by NaCl.

Low Cl- Krebs solution was obtained by replacing the NaCl

content (lll.8mM) with Na glutamate. Complete removal of

Cl- was by replacement of NaCl with Na-benzenesulphonate

and CaCl2 and MgCl2 by CaS04 and MgS04 respectively. Two

different impermeable anions, glutamate and benzenesulphonate

were used in order to distinguish between the effect of Cl

withdrawal per se and that of the anion substitute itself.

In solutions containing an increased concentration of
K+ (20rnM), an equivalent reduction in the concentration

"""J. H,e. M¢e.liJled. rh~pj~ il:QQ.
of NaCl was made. The .pH of the KrebsAsolution was main-

tained at 7.4 by gassing with a 95% O2/5% CO2 mixture.

DEVELOPMENT OF TECHNIQUES: INTRACELLULAR RECORDING

During the initial investigation of the extract, it

became clear that the organ bath in use in the laboratory

(Fig. 2) required modification. The heat lability of the

extract (half life of inhibitory activity at 37°C, approxi-

mately 10-20s; Gillespie, Hunter and Martin, 1981) precluded

its addition to the pre-heated perfusion solution. Thus it

was necessary to inject the extract at 0-4°C into the bath.
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FIGURE 2

Organ bath for combined intracellular electrical and
mechanical recording consisting of a central trough
(5 x 1 x 1cm) cut from a perspex block (5 x 11 x 2cm)
and drilled to accept stainless steel inlet (I) tubes
for Krebs solution and outlets (0) for drainage. The
muscle (M) was secured at one end by an adjustable
stainless steel hook (H) and at the other by an iso-
metric transducer (TR). Field stimulation by an
isolated stimulator was effected via Ag/AgCl ring
electrodes (R). Intracellular recordings were made
from an area of tissue pinned out onto a Sylgard block
(S) mounted on perspex. Oxygenated Krebs solution was
pumped to the bath by a Watson-Marlow flow inducer at
a rate of 6ml/min. The polythene tubing (internal
diameter 0.25cm) containing the Krebs solution was
surrounded by an outer tube (internal diameter 1.Ocm)
containing liquid paraffin at 40 ± 0.1°C) pumped from a
thermostatically controlled Tempette pump. The
temperature of the Krebs solution in the bath was
37 ± 0.5°C.
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However, injections (20-200~1) of either warm (36°C) or

cold saline were sufficient in themselves to produce

relaxations of the muscle which could not be distinguished

from those to extract. The cause of this response was a

temperature drop (2-3°C over a period of 1-2 min) pro-

duced by disturbing the bath fluid.

Two approaches to this problem were investigated.

First, the injection technique was modified to prevent

disturbance of the bath fluid. The fate of added solutions

was followed visually after injecting methylene blue (0.01%).

Injections made at a slow rate (O.3-1.0ml/min) using a

mechanically driven syringe (Palmer slow-injection apparatus)

produced a smaller temperature drop but the dye failed to

equilibrate quickly. Because of the short active life of

the extract, slow equilibration could cause a significant

loss of activity before it reached the muscle. Accordingly,

a second approach, that of mixing the bath fluid, was

adopted. Vigorous gassing with 95% O2/5% CO2 at a number

of sites failed to mix the bath fluid or to prevent the

temperature reduction caused by injection.

The method adopted, and incorporated into the design

of the second bath (Fig. 3), was based on the ability of

rapid injections to mix the bath fluid. Thus, injections

made to occur continuously at a rapid rate would mix the

bath contents adequately. This was achieved by reducing

the bore of the tubes carrying the Krebs solution to a

very small diameter (approximately 0.01cm) by inserting a



FIGURE 3

Organ bath with modified perfusion system. Oxygenated
pre-heated Krebs solution was pumped into the bath
by a Watson-Marlow flow inducer at a rate of 6ml/min
via two inlets (I). In order to mix the bath fluid
continuously with injected material, the bore of each
inlet was reduced by a drawn-out polythene tube (P in
insert, internal diameter approximately O.Olcm) sealed
into each inlet with silicon-rubber compound (SR on
insert, R.S. Stock No. 555 588). Krebs solution
entered the bath as two jets of fluid which ensured
that adequate mixing occurred. Other details including
method of recording and field stimulation are as
described in Fig. 2.

TR = isometric transducer; H = adjustable hook;
R = Ag/AgCl ring electrodes; S = Sylgard block;
M = muscle; 0 = outlets.
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piece of drawn-out polythene tubing (Fig. 3). Krebs

solution was forced through each inlet at a rate of

3ml/min using a Watson-Marlow flow inducer. As a result,

injections (20-200~1) of cold saline produced small (O.SOC)

transient (10-15 sec) reductions in temperature which,

unlike equivalent volumes of inhibitory extract, failed

to evoke relaxation.

APPARATUS: INTRACELLULAR RECORDING

The organ bath consisted of a trough (5 x 1 x 1cm)

cut from a P erspex block (5 x 11 x 2cm). To minimise

mechanical vibrations, the bath was bolted to two non-

conducting pillars of bakelite which were fastened to a

steel plate (200kg) on a table mounted on Mufflite (K-150)

anti-vibration dampers. The bath was perfused continuously

at a rate of 6ml/min via two inlets with Krebs solution.

The polythene tubing containing the Krebs solution was sur-

rounded by an outer tube (internal diameter approximately

1•Oem) containing liquid paraffin at 40 ± 0.1 °c, pumped from
0. \cz""pette... (IE.I) f'WV\.P l"'oc.l~Jtcul Co r~<t.. teJ\l\.r~w-«... to
\,..Jltl,~ o- l°c.. t..;". 'd:~ . (for modif ications, see
Cunnane, 1979). The temperature of the Krebs solution in

the bath was 37 ± 0 .5°c .

One end of the muscle was secured to a stainless steel

hook and the other passed through bipolar Ag/AgCl ring

electrodes (O.1cm width, 1cm apart, mounted in Araldite)

and secured to a Grass isometric force-displacement trans-
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ducer (FT03C). Field stimulation was effected by means

of a Devices isolated mark III or IV stimulator triggered

by a Devices pulse generator (type 2521) and Digitimer.

Changes in membrane potential were recorded intracellularly
(Ltc:V"~ Ek.h:>I"I"J.i«oi (elt. tJo. C{£.15cF-IO.·,.Sm..0

using capilla.ry g.lass'Amicroelectrodes (15-40 M Q) fil.l~_d.,
b~ ,rnj\'\LC"SUJI\. C1\c.('Qe:~ectn"t~!. ....,~-e pl.l.{~a en ~ hori3o;\t-'& pJ.~u.(~:·.' ::(.l.:1~)

with 3M KC1A Electrical recordings were made from a small

area of tissue pinned out onto a Sylgard (Dow Corning)

platform (0.6 x 0.6cm) adjacent to the stimulating electrodes.
(ShOJ\k ~e.,,~~ 2' ).Cf'f'I)

The microelectrodeAwas connected to a unity gain high

impedence (10w n) DC preamplifier (W.P.I M4A) via an

Ag/AgCl half-cell attached to a probe matched and calibrated

for the amplifier used. The indifferent electrode was an

Ag/AgCI pellet hela in solution in the organ bath. Elec-

trical signals passed via the preamplifier, and were dis-

played on one channel of a Tektronix storage oscilloscope

(type 5103N) and digital voltmeter (Fairchild, M53). The

other channel of the oscilloscope was used to display

electrical signals from the transducer. Electrical and

mechanical data were recorded permanently on a Racal in-

strumentation FM tape recorder (Store 4DE, band width 313-

40KHz) and SE UV oscillograph (type 3006 or 6150) .

INTRACELLULAR RECORDING FOLLOWING DISPLACEMENT OF THE
MEMBRANE POTENTIAL

The passive membrane properties of the bovine retractor

penis were investigated by the method of Abe and Tomita

(1968). The bath, similar to that described previously,
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was divided by an Ag/AgCI plate (P1, Fig.4) into two com-

partments: one for recording and field stimulation, the

other for passing current through the muscle. Both com-

partments were perfused continuously (each at 3ml/min)

at 37 ± 0.5 QC using a Watson-Marlow flow inducer for the

recording and gravity flow for the current-passing com-

partment.

The current-passing chamber was bounded by two Ag/AgCI

plates (250~m thick), 1cm apart and breached with a small

hole (diameter 0.15cm) through which the muscle passed.

The surface of the plate adjacent to the recording com-

partment was insulated by a coating of Araldite to electric-

ally isolate the recording and current-passing compartments

from each other. The recording compartment contained a

Sylgard platform onto which the muscle was pinned,

the indifferent electrode, the microelectrode and the

electrodes for field stimulation. The electrodes

comprised two flattened Ag/AgCI wires (0.15cm wide), one

of which lay underneath an area of tissue pinned out onto

the Sylgard base; the other was held in the fluid above the

surface of the tissue (Fig. 4). The length of tissue

extending into the current-passing compartment was 0.8-

0.9cm.

In order to investigate the passive membrane pro-

perties, current pulses of 1.0-1.5s duration were delivered

to the plates by a Devices isolated stimulator triggered by



FIGURE 4

Cut-away view of the organ bath modified to allow
displacement of the membrane potential by the
technique of Abe and Tomita (1968). The bath was
divided by an Ag/AgCl plate (P1) into two compart-
ments. Changes in membrane potential were recorded
from the muscle (M) pinned out onto Sylgard (S) in the
recording compartment (to the left of P1). Current
was applied to the muscle via the Ag/AgCl plates (P1
and P2) which enclosed the current-passing compartment.
The relative current intensity (I) was measured via two
Ag/AgCl wires which dipped into the current-passing
compartment and were connected differentially to one
channel of the oscilloscope. The recording compartment
contained bipolar Ag/AgCl electrodes (e) for field
stimulation. One pole lay underneath the muscle and the
other was held in the fluid above. Oxygenated pre-
heated Krebs solution was supplied to the recording com-
partment by a Watson-Marlow flow inducer as described
in Fig. 3. The current-passing compartment was perfused
separately with Krebs (37 ± O.SOC) solution supplied via
a separate inlet (In) by gravity flow.
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a Digitimer. The longer pulse widths (up to 60s) re-
quired to investigate the effect of displacing the
membrane potential on the response to field stimulation

c V~· >"-'1:\".,;,':'-

and extract were provided by an isolatedLcurrent source

triggered by a Digitimer.

CRITERIA FOR CELL PENETRATION

Satisfactory cell penetration was indicated by an
abrupt change in potential from 0 to a steady state value
of between -50 and -70mV for muscles with a low level of
resting tone and-Itot:o-50mVafter the development of tone.
An interval of some 30s was allowed between impalement of
a cell and the application of a stimulus. During this
period the lack of a significant change in membrane poten-
tial was considered to indicate successful penetration.

COLLAGENASE INCUBATION

Considerable difficulty was often experienced in
making impalements successfully in the bovine retractor
penis, particularly after the muscle had developed tone.
The obvious presence of dense layers of connective tissue
overlying the muscle appeared to be a possible cause of
the problem. As it was impracticable to dissect off all
such tissue, collagenase was employed as an alternative

method of removal.

A small number of tissues (4) were incubated with
collagenase (67-670units/ml for 30.min) in Krebs solution
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at room temperature. Following incubation, the tissues

were washed with Krebs solution before setting up in the

organ bath.

EXTRACELLULAR RECORDING BY SUCROSE GAP METHOD.
The use of extracellular electrical recording was

prompted by the difficulty in obtaining stable micro-

electrode impalements in the bovine retractor penis.
This problem is common to other smooth muscles because of

the small size of the cells (5-10~m) and has led to the

use of the sucrose gap technique (St~mpfli, 1954) for

recording from smooth muscle (Burnstock and Straub, 195&).

Normally, transmembrane potential changes are effectively

short-circuited by the low resistance pathway formed by

the external solution. For this reason only a small frac-

tion of the true change in membrane potential can be

recorded using external electrodes alone (see Coburn,

Ohba and Tomita, 1975), In the sucrose gap, the external
resistance is increased by replacement of the normal physio-

logical solution with isotonic sucrose solution of high

resistance. Electrical recordings are made from two

regions of muscle on either side of a portion bathed in

sucrose solution. One of these regions is usually bathed

with isotonic KCl to inactivate the muscle and the other

is bathed with a physiological (Krebs) solution. The method

employed for maintaining a boundary between the different

solutions varies (see Bolton, Tomita and Vassort, 1980).



FIGURE 5

Schematic diagram of a cross-sectional view of the
membrane-type single sucrose gap. The'apparatus is
divided by latex rubber contraceptive membranes (m)
into three chambers A, Band C made of perspex. Chambers
A and B were each perfused with isotonic KCl (lSOmM)
and sucrose (300mM;S)respectively at room temperature.
Chamber C was perfused with oxygenated Krebs solution (K).
Each solution was supplied via polythene tubing by gravity
flow. The polythene tubing (internal diameter 0.25crn)
containing the Krebs solution was surrounded by an outer
tube (internal diameter 1.Ocm) containing liquid paraffin
at 40 ± 0.1 "C pumped from a thermostatically controlled
Tempette pump. The temperature of the Krebs solution
at the gap was 37 ± O.SoC. The muscle (M) passed through
small holes (0.03cm) in the membranes. Contact between
the different solutions in chambers A, Band C was
prevented by the close fit of the membrane around the
muscle. Field stimulation (0.1-0 .Sms, supramaximal
voltage) was effected via Ag/AgCl ring electrodes (R)•
Changes in potential were recorded via Ag/AgCl wires in
contact with the fluid in chambers A and C. Chamber C
was earthed. Mechanical responses were measured by an
isometric transducer (TR).
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In the present study, latex contraceptive-rubber

membranes were employed. These divided the apparatus

into three chambers (Fig. 5), each perfused continuously

(O.8-1.2ml/min) with various solutions surplied by gravity

flow. Chambers A and B were perfused with isotonicKCI (150mM)

and sucrose (300mM)solutions respectively at room temperature.

Chamber C, the Krebs chamber, was perfused with oxygenated

pre-warmed (37 ± O.SOC) Krebs solution. The membranes were

breached by a small hole (O.03cm diameter) through which

the muscle passed. Contact between the different solutions

was prevented by the close fit of the membranes around the

tissue. Changes in potential were recorded between the KCI

and Krebs solution via Ag/AgCl wires. The Krebs side was

earthed and the KCI side connected to the input probe of

a unity gain pre-amplifier (WPI M4A). Electrical and

mechanical responses were recorded as described previously.

Field stimulation was carried out via bipolar Ag/AgCl

ring electrodes, lcm apart in the Krebs chamber (Fig. 5)
and O.2cm away from the sucrose chamber, using the apparatus

described previously.

APPARATUS: EXTRACELLULAR RECORDING

Two different designs of membrane-type sucrose gaps

were used. One was a modification of a prototype given

by Dr. Lees (Wallis, Lees and Kosterlitz, 1975), the other

was kindly donated by Dr. Mollie Holman. Both designs

work on the principle described previously. The apparatus



FIGURE 6

Exploded view of the components of the Holman-type
sucrose gap. In single sucrose gap form, the appara-
tus comprised three main chambers A, Band C.
Chambers A and B, the KCl and sucrose chambers res-
pectively, were each made from a single piece of
perspex. Chamber C, the Krebs chamber, was made from
five individual perspex components including two Ag/AgCl
ring electrodes (R) for field stimulation (shown en-
larged below their perspex holders) which were mounted
in perspex holders. Two latex rubber contraceptive
membranes (lcm square), pierced by a small hole (O.03cm)
were placed on either side of B to separate the three
chambers from each other. The hole in each membrane
was aligned with the centre of each chamber. In double
sucrose gap form, chamber C was split into a test chamber
(T) and a sucrose chamber (D), by inserting another mem-
brane between T and D. Prior to assembly of the apparatus
in either single or double sucrose gap form, the mating
surfaces of the components were greased (Vaseline +

paraffin wax, ratio 1 or 2:1) to prevent leakage. After
assembly (b) the components were pressed together by
two clamping screws. The muscle was pulled through each
chamber and the membranes by a fine thread (8-00 gauge
suture), inserted before assembly. Field stimulation in
the double gap was carried out via two Ag/AgCl ring
electrodes in the test chamber (T). The membrane
potential was displaced by passing current via the two
Ag/AgCl ring electrodes mounted in chamber D.



64



FIGURE 7

Exploded view of the components of the Wallis, Lees
and Kosterlitz-type single sucrose gap. The apparatus
comprised three main chambers A, Band C. Chambers A
and B, the KCl and sucrose chambers respectively, were
each made from a single piece of perspex. Chamber C,
the Krebs chamber, was made from five individual perspex
components including the Ag/AgCl electrodes for field
stimulation, which were mounted in perspex holders.
The outp~t from an isolated stimulator was connected to
E and the screen (5) to earth. Two latex rubber contra-
ceptive membranes, pierced by a small hole (0.03cm
diameter) ,were placed on either side of B to separate
the three chambers from each other. The hole in the
membranes was aligned with the centre of each chamber.
Prior to assembly, the mating surfaces of the components
were greased (Vaseline + paraffin wax, ratio 1 or 2:1)
to prevent leakage. After assembly, the components were
pressed together firmly by a perspex clamp (Fig. 8).
The muscle was pulled through each chamber and the mem-
branes with a fine thread (8-00 gauge suture), inserted
before assembly.
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comprised three chambers made from perspex and drilled

to allow the inflow and outflow of solution (Figs. 6,7).

Chambers A and B, the KCl and sucrose chambers respectively,

were each made from one piece of perspex. Chamber C, the

Krebs chamber, was made up from a number of individual

pieces including the ring electrodes for field stimul-

ation which were mounted in perspex. Prior to assembly

the mating surfaces of the perspex were coated with grease

(Vaseline + paraffin wax, ratio 1 or 2:1) to prevent leak-

age from the chambers. Also, a fine thread (8-00 gauge

suture) was passed through the holes in the membranes and

components of the gap. This thread was used after assembly

to pull the tissue through the membranes and chambers of

the sucrose gap. Inthe Holman-type gap, the components

were clamped together with two screws (Fig. 6b), while the

Wallis Lees and Kosterlitz-type employed a separate perspex

clamp for this purpose (Fig. 8).

DOUBLE SUCROSE GAP - PRINCIPLE

The double sucrose gap (Fig. 9; Bulbring and Tomita,

1969) allows displacement of the membrane potential by
passing current through the muscle membrane. The amplitude

of displacement is dependent upon membrane resistance; thus

changes in the latter can be measured simultaneously with

changes in membrane potential and tension. Current pulses

were applied to the muscle via Ag/AgCl ring electrodes
mounted in an additional sucrose (300rnM)chamber (Fig. 9).

Due to the high resistance of the sucrose solution, the



FIGURE 8

Perspex clamp employed to hold together the components
of the Wallis, Lees and Kosterlitz-type sucrose gap
(Figs. 7,11). Each component slotted firmly into a
channel cut into the clamp. The components were
pressed together by the block (B) which was pushed by
turning the screw (Sc). The whole assembly was held
rigid by a brass support bar (S).



67



FIGURE 9

Schematic cross-sectional view of the membrane-type
double sucrose gap. The apparatus is divided into
four chambers A, B, T and 0, separated by latex rubber
contraceptive membranes (m). Chambers A and B were
perfused with isotonic KCl (150mM) and sucrose (300mMiS)
solutions respectively at room temperature. Chamber T
was perfused with oxygenated Krebs solution (K) pre-
warmed to 37 ± O.SoC by the liquid paraffin heating
jacket, described previously (see legend, Fig. 2).
Chamber 0 was perfused with isotonic sucrose (300mM)
solution at room temperature. Each solution was
supplied by gravity flow. The muscle (M) passed through
small holes (O.03cm diameter) in the membranes. Con-
tact between the different solutions in chambers A, B,
T and 0 was prevented by the close fit of the membrane
around the tissue. Only a small portion of muscle
(O.15cm length) was exposed to Krebs solution. Field
stimulation (O.1-O.5ms, supramaximal voltage) was
effected via bipolar Ag/AgCl electrodes (not shown on
diagram) in chamber T. The membrane potential was dis-
placed by applying current to the muscle via two Ag/AgCl
ring electrodes (R) ID Chamber O. Changes in potential were
recorded via Ag/AgCl wires in contact with the fluid in
chambers A and T. Chamber T was earthed. Mechanical
responses were measured by an isometric transducer (TR).
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current passes mainly through the tissue (see Coburn et aI,

1975; Szurszewski, 1974). A biphasic converter (Fig. 10)

was used to provide pulses of alternating polarity.

Only a small portion of tissue (O.lScm) was exposed to

Krebs solution (at 37 ± O.SOC) in the test chamber (T).

Contact between the solutions in chambers T and D was

prevented by a latex rubber membrane. Changes in poten-

tial were recorded between the KCl and Krebs solution via

Ag/AgCl wires, as described previously for the single

sucrose gap. Field stimulation was effected by means of

bipolar Ag/AgCl electrodes in chamber T.

APPARATUS: DOUBLE SUCROSE GAP

The 'Holman-type double sucrose gap employed the same

components as the single gap version (Fig. 6), except

that chamber C was divided by a membrane to give two

chambers, T and D. Field stimulation was effected via two

Ag/AgCl ring electrodes O.lScm apart at each end of the

test chamber.

The Wallis, Lees and Kosterlitz-type double sucrose

gap (Fig. 11) employed different components to the single

gap version. The Krebs inlet and outlet of the test

chamber consisted of grooves cut into the perspex. Field

stimulation was effected by means of two flattened Ag/AgCl

wires mounted on either side of the muscle in the test

chamber.



FIGURE 10

Circuit diagram of the biphasic converter employed
for alternately changing the polarity of the current
pulses applied in the double sucrose gap. The
output of an isolated stimulator was connected to
AB. Both the stimulator and biphasic converter were
triggered simultaneously at the required frequency
(1 pulse every 6-20s) by a Digitimer. The output
A'B' was connected to Ag/AgCl ring electrodes in the
sucrose chamber of the double sucrose-gap.

K = Kilo-ohms, T = transistor, M = diode

...
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FIGURE 11

The components of the Wallis, Lees and Kosterlitz-
type double sucrose gap. The apparatus comprised
four main chambers A, B, T and O. Chambers A and B,
the KCl and sucrose chambers respectively, were each
made from a single piece of perspex and were also part
of the single sucrose gap (Fig. 7). The test chamber
(T) was also made from a single piece of perspex in
which inlet and outlet grooves had been cut in order
to allow perfusion with Krebs solution. Chamber 0,
the second sucrose chamber, was made of five individual
components. These included two Ag/AgCl ring electrodes
mounted in perspex through which current was applied to
displace the membrane potential. Three latex rubber
contraceptive membranes, each pierced by a small hole
(O.03cm diameter), were placed on either side of B
and between T and D to separate the four chambers from
each other. Prior to assembly, the mating surfaces of
the components were greased (Vaseline + paraffin wax,
ratio 1 or 2:1) to prevent leakage. After assembly
the components were pressed together firmly with a per-
spex clamp (Fig. 8). The muscle was pulled through each
chamber and the membranes with a fine thread (8-00 gauge
suture), inserted before assembly. Field stimulation
was carried out via two flattened Ag/AgCl wires in the
test chamber (T).
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PREPARATION OF MEMBRANES FOR SUCROSE GAP RECORDING

Unrolled condoms were washed in propan-2-ol and

rinsed in water to
~withAtissues, each

remove lubrication. After drying

contraceptive rubber was coated with

chalk to aid handling. With the Wallis, Lees and

Kosterlitz sucrose gap, a sheet of membrane (lcm width)

was cut and used to cover the mating surfaces of each

chamber. The Holman-type sucrose gap used a smaller

piece of membrane (lcm square) between each chamber.

Holes were punched in line with the centre of each chamber

using a punch made from a 27 gauge needle. To facilitate

the making of holes, the punch was applied to the membrane

through a holder (Fig. 12), which held the membrane flat

against a piece of card. The holes were inspected under

a microscope (x 40) to ensure that they were uniform and

free from ragged edges which might interfere with the

seal between the tissue and the membrane. A fine stiff

wire passed through the punch removed any adhering material.

MAKING THE MEMBRANE PUNCH

Punches were made from stainless steel tubing l-2cm

long. Various gauges of tubing (36-27) were tested, the

most suitable for the bovine retractor penis being 27

gauge. The end of the tube was ground flat using an oil-

stone. To ensure that the flattened end was perpendicular

to the wall of the tube, a clamp (designed by T. Clark,

Fig. l3a) was used to hold it in contact with the oil-
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FIGURE 12

Apparatus used to cut holes in contraceptive rubber
membranes for sucrose gap recording. The membrane
(M) was held flat by pressing it between two pieces
of perspex, the upper of which was drilled to allow
access of the punch (P). The punch, held in a pin-
chuck, was applied lightly to the membrane (M) and
rotated to produce a clean hole. A piece of card
placed underneath the membrane prevented blunting
of the punch.
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FIGURE 13

Apparatus used to make membrane punches. A piece
of stainless steel tubing (T, 27 gauge, internal
diameter O.025cm), gripped in a purpose-made clamp
(a), was ground flat at one end using an oil-stone
(b). The outer edge of the flattened end was
bevelled by drawing the tubing, held in a pin-chuck,
lightly across an oil-stone. At the same time, the
tubing was rotated (c). Finally, the inner edge of
the tubing was sharpened (d) using a watchmakers'
broach (B) to produce the finished punch, shown
enlarged in cross-section (e).
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stone (Fig. 13b). A sharp cutting edge was formed by

bevelling the internal and external walls of the tube

such that they met to form a point. The outer cutting

edge was bevelled by drawing it lightly across an oil-

stone, the tube being held in a pin-chuck (Fig. 13c)

and rotated at the same time. The internal diameter

was then increased by sharpening it with a watchmakers'

broach (Fig. 13d). These two procedures were repeated

until a sharp, uniform cutting edge of the correct

diameter (approximately O.03cm) was produced (Fig. 13e).

PREPARATION OF THE INHIBITORY EXTRACT OF THE BOVINE
RETRACTOR PENIS MUSCLE

The inhibitory extract was prepared in advance by

staff in Professor Gillespie's laboratory. Since the

method of preparation has been modified on several

occasions, that used during the present investigation

is described.

Bovine retractor penis muscles, free of connective

tissue, were weighed, minced (Moulinex domestic mincer)

and extracted in ice-cold (0-4°C) methanol (Sml/g wet

weight of tissue) for a period of 30 min. At the beginning

of the extraction and thereafter at IS-min intervals, the

mixture was stirred vigorously (MSE stirrer) for 2-5 min

and then filtered (Whatman No.1). The filtrate was

treated by one of the following methods.
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Method I

The filtrate was pumped (2-3ml/min) through an anion
exchange resin (Bio-Rad AGI x 8 formate form, 200-400
mesh) at 0-4°C in a cold room by a Watson-Marlow flow
inducer. The effluent was discarded and the column
washed with distilled water (lOml). The column was then
eluted with SOOmM NaCl (2Sml), the first Sml of effluent
being discarded and the rest (containing the inhibitory
extract) divided equally among 10 glass ampoules in which
it was freeze-dried overnight. A small amount of silica
gel in the neck of each ampoule kept the extract dry.
Each tube was sealed and stored at -30°C.

Method II

The filtrate was put into centrifuge tubes, chilled
in liquid N2 and spun for 6 min at 4000 rpm. The super-
natant was filtered through a Millipore filter (O.4S~m).
The rest of the procedure was exactly as described in

method I.

Reconstitution of the extract

Freeze-dried extracts were reconstituted in distilled
water on ice at 0-4°C. For sucrose gap studies, the con-
tents of two or three ampoules (usually some l2g) were
dissolved in 2.S-3.0ml distilled water. For intracellular
studies, in which the maximum addition volume was greater,
the extract was made up to a concentration equivalent to
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2g wet weight tissue/mI. In both cases the resulting

solution was adjusted to pH 9.0 by adding NaOH (IN), and

passed through an alumina column at 0-4°C to remove adenine

nucleotides (Bowman, Gillespie and Martin, 1979). This

procedure is referred to as 'cleaning' and the effluent

as 'cleaned extract'. The concentration of adenine

nucleotides present before and after cleaning was deter-

mined spectrophotometrically at 260nm by reference to a

standard curve.

The cleaned extract, which contained the inhibitory

factor in unactivated form (Gillespie et aI, 1981), was

divided into two parts. One part was adjusted to pH

7.0-7.4 by adding HCl (IN) and this comprised cleaned

unactivated extract (CUE). The other part was adjusted

to pH 2.0 by adding HCl (IN) and kept for 10 min on ice

(0-4°C). This process was termed 'activation' and the

product 'cleaned activated extract' (CAE). After activation

the pH was readjusted to 7.0-7.4 by the addition of NaOH

(IN). Both forms of the extract (CUE and CAE) were

kept at 0-4°C on ice before use. The CUE served as a

control for the activated form. On some occasions, the

electrical and mechanical activity of uncleaned extract

was investigated.

DRUGS

The following drugs were used: Apamin (Uniscience),

adenosine triphosphate (ATP, Boehringer), atropine sulphate
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(BDH), collagenase (Sigma), guanethidine sulphate (Ciba),

indomethacin (Sigma), noradrenaline bitartrate (Koch-Light),

oxyhaemoglobin (prepared from human red blood cells by

Dr. D. Pollock containing glucose 2% dry weight to act

as stabiliser), phentolamine mesylate (Ciba), physostig-

nine salicylate (BDH), prazosin hydrochloride (kindly

donated by Pfizer), propranolol hydrochloride (ICI),

2-o-propoxyphenyl-8-azapurin-6-one (M and B 22948, kindly

donated by Dr. A. Drummond) I sodium nitroprusside (BDH),

tetraethylammonium bromide (Koch-Light) and tetrodotoxin

(Sankyo) •

With the following exceptions, drugs were dissolved

in saline (0.9%) prior to their addition to the organ bath
l

or sucrose gap. co~agenase was dissolved in Krebs solution,

indomethacin in sodium carbonate solution (O.09M), M and B

22948 in sodium hydroxide (approximately O.01M) noradren-

aline in saline with ascorbic acid (2 x lO-~M) and ethylene

diarnine tetra-acetic acid (3 x lO-sM) to prevent oxidation

of the catecholamine. Oxyhaemoglobin andprazosin were

each dissolved in distilled water.

ADDITION OF DRUGS AND INHIBITORY EXTRACT

Antagonist drugs were added to the Krebs solution

perfusing the organ bath or sucrose gap unless otherwise

stated. Inhibitory extract and agonist drugs, which

included adenosine triphosphate, noradrenaline and sodium

nitroprusside, were added by injection into the organ bath
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or perfusion flow to the sucrose gap. The maximum volume
added, some 200~l in intracellular studies or 20~l in
sucrose gap studies, was limited by the sensitivity of the
tissue to the injection of cold solutions. In the sucrose
gap, the injection volume was further limited by arte-
factual electrical changes (usually an apparent depolaris-
ation) caused by injecting volumes in excess of 20~l into
the perfusion flow. The cause of this effect was the
change in the perfusion rate produced by the injection.

EXPRESSION OF INTRA- AND EXTRACELLULAR RESULTS

The results obtained with intra- and extracellular

recording were qualitatively similar. The terms
'excitatory' and 'inhibitory' potentials refer to responses
to field stimulation using either method of recording.
Excitatory (ejps) and inhibitory (ijps) junction potentials
refer respectively to intracellularly-recorded events.
The values of resting membrane potential, amplitude,
latency, rise time and time to decay to half-amplitude were
obtained from intracellular recordings. Results are quoted
as means ± standard deviation. Statistical
significance was evaluated using the Student's t-test or
a paired t-test. p values of <0.05 were considered to be

significant.
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BOVINE RETRACTOR PENIS:
RESTING ACTIVITY AND EXCITATION

RESTING ACTIVITY IN THE BOVINE RETRACTOR PENIS

When first set up the muscle had no resting tone.

Under these conditions the resting membrane potential was

-53 ± 7mV (n=184, range -42 to -70mV). Tone developed
spontaneously and was accompanied by a significant (p < 0.001)

depolarisation of the cells to a membrane potential of

-45 ± 5mV (n=92, range -37 to -56mV) .

Most of the preparations were electrically quiescent,

independent of the amount of resting tone. However, in

about 25% of preparations, spontaneous electrical activity

was observed. This took various forms; the most common,
recorded both intra- and ~xtracellularly, was an intermittent

oscillation in membrane potential of 2-15mV and a periodicity

of 10-15s unaccompanied by action potentials but often associ-

ated with corresponding fluctuations in tone. Oscillations

were unaffected by tetrodotoxin (TTX, 3 x 10-6M), indicating

their myogenic origin (Fig. l4a).

Spontaneous ejps (Fig. l4b) were seen infrequently

(less than 1% cells impaled). Their amplitude ranged from
~o

1-2.5mV (mean 2.0 ± o. 4mV), the~time peak was 119 ± 25ms, and

the time to decay to half amplitude 121 ± 25ms (n=23 in each

case). On one occasion, a spike potential of some 40mV

was seen (Fig. 14b).



FIGURE 14

spontaneous electrical activity in the bovine
retractor penis recorded intracellularly.
(a) Tetrodotoxin (tTTX, 3 x lO-GM for 7 min)-
resistant rhythmic oscillations in membrane
potential (from the same cell). (b) Excitatory
junction potentials and spike (different cells) •
(c) Inhibitory junction potentia~

lA S4ft\e..(,J.1;; time between panels 3 min. (_(.I..) ,lh) ~cl (c...)

VJe.(c.. I'~~ J~ J...:.JJ~ ~~~_S .
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FIGURE 15

Electrotonic potentials (upper trace) recorded
from one cell in the bovine retractor penis in
response to outward (upper panel) and inward
(lower panel) current pulses (duration ls) of
different intensities (V/cm, lower trace) using
the method of Abe and Tomita (1968). The ampli-
tude of the membrane potential change recorded
comprised the electrotonic potential together
with the voltage change caused by the current
spread from the current-passing compartment.
Accordingly, the true electrotonic potential
was represented by the difference between these
values (Bywater and Taylor, 1979). Spikes were
not observed even in response to large outward
current pulses.
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FIGURE 16

Current (V/cm) voltage (E.P. mV) relationships
recorded by the method of Abe and Tomita (1968)
from two cells in the bovine retractor penis
preparation at different distances from the
stimulating plate (. .,O.3nm; •• ,O.5Irm)in

response to inward and outward current pulses
(duration ls). Rectification was apparent with
outward current. In response to inward current,
the membrane behaved as an ohmic resistor.
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Spontaneous ijps were also infrequent (less than 1%
cells impaled). These could reach 8mV (mean 3.0 ± 2.0mV,
n=26), their time to peak was 333 ± 2l9ms, and the time
to decay to half amplitude 410 ± 160ms (n=13, Fig. 14c).

PASSIVE MEMBRANE PROPERTIES OF THE BOVINE RETRACTOR PENIS

Recording of electrotonic potential

The electrical changes recorded intracellularly in
response to inward (hyperpolarising) or outward (depolar-
ising) current pulses (1-2sduration) comprised the electro-
tonic potential together with the voltage change caused
by the spread of current from the current-passing compart-
ment (Bywater and Taylor, 19!O). The amplitude of the
electrotonic potential was obtained by subtracting the
potential change recorded outside from that recorded in-

side the cell.

Voltage current relationship

The steady-state electrotonic potentials evoked by
outward and inward current pulses of different intensities
are shown in Figure 15. Spikes were not observed in res-
ponse to outward current pulses, even when large currents
were used. In response to inward current pulses, the
membrane behaved as an ohmic resistor, there being no
evidence of non-linearity (Fig. 16). Rectification was
apparent with outward current pulses (Fig. 16).



FIGURE 17

Decay of the electrotonic potential (mV) with
distance (mm) from the stimulating plate recorded
by the method of Abe and Tomita (1968) from four
cells in the bovine retractor penis at different
distances from the stimulating plate. The
current intensity was constant throughout.
The amplitude of the electrotonic potential
decayed exponentially with distance from the
plate. The space constant (A = 1.74mm) was
obtained from the slope of the semi-log plot.
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Space constant (A)

Electrotonic potentials in response to inward current

pulses were recorded at distances of up to 4mm from the

stimulating plate, indicating that the muscle possesses

cable properties. The amplitude of the electrotonic

potential decayed exponentially with distance from the
plate (Fig. 17). The space constant (A) was obtained from

the slope of the semi-log plot of amplitude of electro-

tonic potential against distance from the plate (Fig. 17).

A ranged from 1.3-2 .lmm with a mean of 1.7 ± O.3mm (n=7).

Time constant (T)

The membrane time constant was obtained from a plot of

time for the electrotonic potential to reach 50% steady-

state against distance from the stimulating plate. The

slope of this plot approaches Tm/2A when the distance in-

creases and when the length of tissue between the plates

is greater than 3A (Bywater and Taylor, 1980). Thus, Tm

(slope x 2A) was obtained by substitution of the value of

A. Values for Tm showed a marked variation from 160-450ms

with a mean of 296 ± 113ms (n=6).

EXCITATORY RESPONSES TO FIELD STIMULATION OF THE BOVINE
RETRACTOR PENI S

In the absence of tone, field stimulation (O.l-O.Sms

supramaximal voltage) produced excitatory potentials and

contractions. Single stimuli evoked excitatory potentials



FIGURE 18

Excitatory potentials (upper trace) and contractions
(lower trace) to field stimulation (single pulse at
Sand 5 pulses at 1 to 20Hz as indicated below bars)
of the bovine retractor penis. Excitatory potent-
ials summated at frequencies of 2Hz or above.
Optimal frequency was about 10Hz. Spikes were
not observed in response to either single or
trains of stimuli. Sucrose gap recording: supra-
maximal voltage, O.Sms pulse width.
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FIGURE 19

Excitatory potentials (upper trace) recorded from
a single cell and contractions (lower trace) of
the bovine retractor penis to field stimulation
(supramaximal voltage; O.5ms pulse width; 3 to 10
pulses, 10Hz as indicated below bars). Excitatory
potentials and contractions were graded with in-
creasing numbers of pulses. Spikes were not
observed. Loss of impalement is shown by the
sharp vertical deflection in the lower right panel.
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FIGURE 20

Variation in the duration of the excitatory

potential (upper trace) to field stimulation

(single pulse at S and three at 10Hz) and the

accompanying contraction (lower trace) recorded

from two different bovine retractor penis pre-

parations (upper and lower panels). The duration

of the excitatory potential varied from a brief

depolarisation which reached a maximum during

field stimulation (upper panels), to a prolonged

depolarisation reaching a peak after the cessation

of field stimulation. Intracellular electrical

recording: supramaximal voltage, O.Sms pulse width.
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which could reach 7mV (mean 3.5 ± 2mV, n=16) and contractions.

The latency of the excitatory potential to single stimuli

was 47 ± Sms, the time to peak 111 ± 44ms, and time to decay

to half amplitude 268 ± 135ms (n=16 in each case). Trains

of stimuli (1-50Hz) produced excitatory potentials and con-

tractions graded with frequency (optimal 10Hz, Fig.18) and,

at constant frequency, with increasing numbers of pulses

(Fig.19). The excitatory potentials did not facilitate

but summated at frequencies of 2Hz or above. The time to

peak of the excitatory potentials (3-12 pulses, 10Hz) varied

between 80 and lS00ms (mean 499 ± 331ms, n=S4). The duration

of the excitatory potentials in response to the same stimulus

also varied. On some occasions, peak depolarisation was

reached during field stimulation (Fig.20) and decayed

rapidly. On others, the initial peak was followed by a

slower depolarisation, often of greater amplitude (Fig.20).

These differences may arise from the varying activity of

the inhibitory transmitter which may act to truncate the

excitatory potential.

The latency of the contraction (3-12 pulses, 10Hz)

was 400-1200 ms (mean 647 ± 197ms, n=47). Spikes were not

observed to either single or trains of stimuli. Excitatory

potentials and contractions were abolished by guanethidine

(l-3xlO-SM, Fig.21), indicating that they were mediated

by adrenergic fibres.



FIGURE 21

The effect of guanethidine (3x lO-5M at bar for
the times indicated) on the excitatory potential
(upper trace) and contraction of the bovine re-
tractor penis in response to field stimulation
(20 pulses at 20Hz~ O.5ms pulse width, supra-
maximal voltage). The excitatory potentials and
contractions were abolished, leaving a small
hyperpolarisation (last panel). Sucrose gap
recording.
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FIGURE 22

Dose-dependent depolarisation (upper trace) and
contraction (lower trace) of the bovine retractor
penis in response to exogenously added noradren-
aline (2-10 x 10-10 moles). The depolsarisation
and contraction was sometimes biphasic (response
to 5 and 10 x 10-10 moles), consisting of an
initial rapid component, sometimes associated
with an oscillation in membrane potential,
followed by a slower, more prolonged response.
Sucrose gap recording.
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EFFECTS OF NORADRENALINE ON THE BOVINE RETRACTOR PENIS

Noradrenaline (NA, 0.02-10 x 10-9 moles) produced a
dose-dependent depolarisation (1-20mV) and contraction
which sometimes appeared biphasic, comprising an initial
rapid component followed by a slower, more prolonged res-
ponse (Fig. 22). The sensitivity of different specimens of
bovine retractor peniS to noradrenaline varied considerably.
Threshold dose ranged from 0.02-0.5 x 10-9 moles. This
may have been due to the use of specimens taken from animals

of different age and breed.

EFFECT OF ~-ADRENOCEPTOR ANTAGONISTS ON THE EXCITATORY
RESPONSES TO FIELD STIMULATION AND EXOGENOUSLY ADDED
NORADRENALINE

The excitatory response to field stimulation (10Hz,
O.5ms) of intramural nerves was noticeably resistant to ~-
antagonists, the contraction being more sensitive than the
excitatory potential. Thus, while phentolamine (2.Sx
10-SM for some 60 min) reduced the mechanical contraction
in response to field stimulation, usually by some 60-80%,
the accompanying excitatory potential was much less (20-30%
reduction) affected (Fig. 23). When the preparation was
perfused with very large concentrations (2.5 x 10-4M) of
the drug, a further small (10%) reduction in both electrical
and mechanical responses to field stimulation occurred, but
neither component was abolished. Prazosin (0.05-1.4 x 10-6M)
was even less effective. In its presence, the excitatory



FIGURE 23

The effect of phentolamine (2.5 x lO-6M and 2.5 x
lO-5M at arrows for the times indicated) on the
excitatory potential (upper trace) and contraction
of the bovine retractor penis to field stimulation
(3 pulses, 10Hz; O.5ms pulse width, supramaximal
vol tage). In the presence of phentolamine (2.5 x
lO-6M) the contraction was reduced at a time (5
to 25 min) when the excitatory potential was not
affected significantly. The excitatory potential
was reduced noticeably only after the application
of higher (2.5 x lO-5M) concentrations of drug for
prolonged (18 min) periods. Sucrose gap recording.
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FIGURE 24

The effect of prazosin (7 x 10-7 and 1.4 x 10-6M
in (b) at bar for the times indicated) on the
excitatory potential (upper trace) and contract-
ion (lower trace) of the bovine retractor penis
to field stimulation (6 pulses, 10Hz; O.Sms pulse
width, supramaximal voltage) and noradrenaline
(tNA, 1 x 10-8 moles). Compared with controls in
(a), the excitatory response to noradrenaline was
eliminated while that to field stimulation was
only slightly reduced. Sucrose gap recording.
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potential and contraction were at best only slightly
reduced (10-15%; Fig. 24). Prazosin frequently depolar-
ised the membrane and raised tone. When this occurred,
both the electrical and mechanical responses to field
stimulation were reduced. In contrast, both phentolamine
(5xlO-6M) and prazosin (7x 10-7M) inhibited (Fig. 24)
the depolarisation and contraction produced by exogenous
noradrenaline (0.02-2 x 10-8 moles).

CHOLINERGIC INFLUENCE ON THE EXCITATORY ELECTRICAL AND
MECHANICAL RESPONSES TO FIELD STIMULATION

Recent evidence (Klinge and Sjostrand, 1977) for a
cholinergic component which regulates the release of the
excitatory transmitter in the bovine retractor penis
prompted the investigation of the effects of atropine and
physostigmine on the excitatory potentials and contraction
in response to field stimulation (5-10 pulses, 10Hz every

5 min) with the sucrose gap t~ir'

Atropine (0.5 x lO-6M) initially hyperpolarised the

membrane by 2-3mV over a 10-15 min period. As
a result, the amplitude of the excitatory potential was
slightly increased, while that of the accompanying con-
traction was either not affected significantly or slightly
reduced. After some 45 min in the presence of atropine,
during which there was no further membrane hyperpolarisation,
both the excitatory potential and contraction were increased
by up to 50 and 75% respectively. In contrast, the electrical



FIGURE 25

The effects of physostigmine (b, 5 x 10-6M at upper
arrow for the times indicated) alone and in combin-
ation with atropine (l x 10-6M at lower arrow for
the time indicated) on the depolarisations
(upper trace) and contractions (lower trace) of
the bovine retractor penis to noradrenaline (tNA,
S x 10-10 moles) and to field stimulation (8 pulses,
10Hz; O.Sms pulse width, supramaximal voltage).
Compared with controls (a), the depolarisations
and contractions to field stimulation were depressed
by physostigmine; those to exogenous noradrenaline
were not. Atropine reversed the effects of physo-
stignine. Sucrose gap recording.
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and mechanical responses to exogenous noradrenaline (20-50

x 10-12 moles) were reduced.

Physostigmine (1-5 x lQ-6M) initially (10-15 min
contact) enhanced the excitatory potential and contraction
in response to field stimulation by up to 20 and 50% res-
pectively. Following this, both the excitatory potential
and the contraction were inhibited by a maximum of 60-80%
after 45 min contact time. The response to exogenous nor-
adrenaline was either not significantly affected or slightly
enhanced (Fig. 25). Atropine (1x la-6M) restored the ex-
citatory potential and contraction to pre-physostigmine

levels (Fig. 25) •.

EFFECTS OF TETRAETHYLAMMONIUM (TEA) ON THE EXCITATORY
ELECTRICAL AND MECHANICAL RESPONSES TO FIELD STIMULATION
AND EXOGENOUSLY APPLIED NORADRENALINE

The effects of TEA (0.1-10 x 10-3M) were studied in
the single sucrose gap. TEA (0.1 x 10-3M) increased the
amplitude of the excitatory potential in response to single
pulses or trains of stimuli (3-6 pulses, 10Hz) by up to
200% (Fig. 26). The accompanying contraction was also en-
hanced by between 400 and 1100%. In the presence of TEA,
the excitatory potential to short trains was followed by an
oscillation in membrane potential and tone.

Higher concentrations of TEA (0.5-10 x 10-3M) initially
depolarised the membrane potential (10-20mV) and increased
the resting tone level. After some 15-20 min, the membrane



FIGURE 26

The effect of tetraethylammonium (b, 1 x lO-4M for
15 min) on the excitatory potential (upper trace)
and contraction (lower trace) of the bovine re-
tractor penis in response to field stimulation
(single pulse at S, 3 and 6 pulses, 10Hz: O.Sms
pulse width, supramaximal voltage). Compared
with controls (a), the responses to field
stimulation were enhanced in the presence of
TEA and electrical and mechanical oscillations
developed. Sucrose gap recording.
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potential and tone recovered partially and fluctuations

in both were observed. The amplitude of the excitatory

potential and contraction were subsequently reduced during

periods of depolarisation and high tone, or enhanced during

phases of repolarisation and low tone. The rate of rise of

the excitatory potential was increased but spikes were not

observed even in response to trains of pulses at high

frequency (50Hz).

In contrast to field stimulation, the depolarisation

and contraction in response to exogenously added noradren-

aline (0.1-2 xlO-9 moles) was not enhanced by TEA (0.5-5

x 10-3M).

THE EFFECT OF INHIBITORY EXTRACT AND ADENOSINE TRIPHOSPHATE
(ATP) IN THE ABSENCE OF TONE

In the absence of tone, both the cleaned activated

and cleaned unactivated forms of the extract (lO-50~1)
produced a depolarisation (up to 8mV), but without any sig-

nificant mechanical response. Because the cleaned extract

contained ATP (approximately 10-4M), the possibility that

this was responsible for the depolarisation was investigated.

ATP (0.1-20 x 10-9 moles) produced a depolarisation (up

to l8mV) which, unlike that produced by the extract, was

accompanied by a contraction (Fig. 27). These effects

lacked dose-dependency and the maximum response was often

small by comparison with that produced by field stimulation

or exogenously added noradrenaline. This may be due to



FIGURE 27

Depolarisations (upper trace) and contractions
(lower trace) of the bovine retractor penis in
response to adenosine triphosphate (ATP, 1-10 x
10-9 moles as indicated below bars). There was
no increase in the amplitude of the electrical
or mechanical response when the dose of ATP was
increased from 2 to 5 or 10 x 10-9 moles. This
may be because of desensitisation to ATP, which
was evident when dose intervals of up to 10 min
were used. Compared with the depolarisations
and contractions to noradrenaline (Fig.9), those
to ATP were brief and unaccompanied by oscil-
lations in membrane potential. Sucrose gap
recording; time between panels approximately
8 min.
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desensitisation to ATP, which was observed when dose

intervals of up to 10 min were used, or the onset of

the inhibitory effects of ATP.

The ability of 'pure ATP', but not equivalent doses

of ATP present in the cleaned unactivated extract, to

contract the bovine retractor penis suggested that the

extract contained a non-acid activated component which

inhibited the contraction to ATP. To investigate this,

cleaned unactivated extract (containing approximately

10-4M ATP) and ATP (10-4 or 2 xlO-4M) were mixed (O.Sml

of each). Additions made from this solution depolarised

the muscle without contracting it. This suggests that ATP

may be responsible for the depolarisation produced by the

extract and that the contractile effect might have been

inhibited by other substances present, e.g. sodium chloride

(SOOrnMapproximately) or formate, but not the acid-

activated inhibitory substance.

RELATIONSHIP BETWEEN THE AMPLITUDE OF THE EXCITATORY
POTENTIAL AND THE MEMBRANE POTENTIAL

Field stimulation (6-10 pulses, 5-l0HZ: O.Sms pulse

width, supramaxima1 voltage) was applied during displace-

ment of the membrane potential in the depolarising or hyper-

polarising directions (lOs pulses, 0.2-6 x 10-6A) in the

double sucrose gap. Conditioning depolarising currents

reduced, while hyperpolarising currents enhanced the ampli-

tude of the excitatory potential (Fig. 28). It was difficult



FIGURE 28

The effect of displacement of the membrane

potential by (a) depolarising and (b) hyper-
'Se,o~ ~e. 6 f' ~

polarising currents on theA excitatory potentials

to field stimulation (6 pulses, 10Hz) in the
bovine retractor penis. Current values (x lO-6A)

are indicated above the traces: double sucrose

gap recording. The amplitude of the excitatory

potential was reduced when field stimulation was

carried out during conditioning depolarisation

of the membrane potential. During the conditioning

hyperpolarisation, the excitatory potential was

enhanced. The relationship (c) between amplitude

of the excitatory potential (EP) and membrane pO~4\tioL

cl\,,~l.:!..c~,t (6. MP) obtained from the results shown

in (a) and (b) was linear (correlation coefficient

0.883, degrees of freedom 5, P < O.001). The value

of membrane polarisation at which the excitatory

potential = 0 was obtained by extrapolation.
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to depolarise the membrane sufficiently to abolish the
excitatory potential, but extrapolation of the linear
plots (correlation coefficient 0.99 ± 0.01, n=3) of membrane
potential against excitatory potential revealed the latter
to be abolished by a displacement of 20-25mV (mean 23 ± 2.0
mV, n=3). Since the resting membrane potential of the
cells in low tone is -53mV (intracellular recording), this
gives an apparent reversal potential for the excitatory
potential of approximately -30mV. The true value is presum-
ably more positive than -30mV, as membrane potential changes
recorded in the sucrose gap are less than those recorded
intracellularly (Bennett and Burnstock, 1966). Because of
the spontaneous development of tone and difficulty in main-
taining impalements, the reversal potential was not determined

by intracellular methods.

Interestingly, there was no emergence of inhibitory
potentials to field stimulation during displacement of
the membrane potential by depolarising current pulses.

CONDUCTANCE CHANGE DURING THE EXCITATORY POTENTIAL

Brief (duration Is) electrotonic pulses were reduced
or abolished during the excitatory potential (Fig. 29).
This indicates that the transmitter increases the permeability
of the membrane to one or more ions with a net equilibrium
potential more positive than the resting membrane potential.



FIGURE 29

Change in membrane resistance during the excit-

atory potential (upper trace) and contraction

(lower trace) to field stimulation (9 pulses,

10Hz) in the bovine retractor penis. Brief

(duration Is) electrotonic pulses (applied at

bars shown above the upper trace) were abolished

during the excitatory potential, indicating that

the excitatory transmitter decreased the membrane

resistance. Double sucrose gap recording.
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EFFECT OF REDUCING THE EXTERNAL CONCENTRATION OF CHLORIDE
ON THE EXCITATORY ELECTRICAL AND MECHANICAL RESPONSES TO
FIELD STIMULATION AND EXOGENOUS NORADRENALINE

The possible role of chloride in the excitatory
potential and the depolarisation to exogenous noradrenaline
was investigated in the single sucrose gap. Replacement of
the sodium chloride content (111.8x 10-3M) of the normal
Krebs solution with sodium glutamate depolarised the membrane
potential (6-8mV) and slightly increased the resting tone
level. The excitatory potential (single pulse to 7 pulses
at 10Hz) was initially unchanged. After 25-30 min, both
the excitatory potential and contraction were reduced to
below control values (Fig. 30). Maximum reduction of the
excitatory potential (25-68%) was observed after some 35 min
at which time the accompanying contraction was reduced by
30-60%. These effects were reversed partially by restoring
the chloride content of the Krebs solution.

In the presence of low chloride (40-60 min), the
depolarisation response to exogenously added noradrenaline
(1-2 x 10-10 moles) was reduced by 27-70% and the contraction

by 30-80% (Fig. 30).

Recent studies (Aickin and Brading, 1983; see Discussion,
this thesis) suggest that inhibition of the depolarisation
and contraction in response to field stimulation or exogenous
noradrenaline following the partial withdrawal of Cl- may
not be due to a reduction in the Cl- gradient across the
smooth muscle cell membrane. Another effect of Cl- withdrawal



FIGURE 30

The effect of reducing the external chloride
levels from 111.8 x la-3M in (a) to 12.7 x la-3M
in (b) (by substitution of sodium chloride with
sodium glutamate) for the times indicated on
the excitatory electrical (upper trace) and
mechanical (lower trace) responses to field
stimulation (3 and 6 pulses, 10Hz; O.Sms pulse
width, supramaximal voltage) and exogenously
added noradrenaline (1x 10-10 moles) in the
bovine retractor penis. The depolarisations
and contractions to both stimuli were reduced
by prolonged chloride withdrawal. Single sucrose
gap recording.
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such as a change in intracellular pH or some action of
glutamate, e.g. chelation of Ca2+, may account for the
results obtained.



1:10

BOVINE RETRACTOR PENIS:
INHIBITION

INTRACELLULAR ELECTRICAL RECORDING FROM THE BOVINE
RETRACTOR PENIS AFTER THE DEVELOPMENT OF TONE

After the development of tone (up to ISg), impalements
were particularly difficult to make. Strips of bovine
retractor penis were incubated with collagenase (67-670
units/ml) to investigate the contribution of dense connective

tissue to the difficulty of cell impalement.

Collagenase-treated tissue was fragile, the smooth
muscle bundles tending to separate as the preparation was
pinned out in the organ bath. There was no significant
difference between the ability to make impalements in
collagenase-treated and untreated preparations. Moreover,
it was difficult to obtain prolonged impalements in collagen-
ase-treated preparations, presumably because of the reduced
ability to pin-out the tissue securely. Thus, no electrical
recordings were made from collagenase-treated preparations.

INHIBITORY RESPONSE TO FIELD STIMULATION

The spontaneous development of tone in the bovine
retractor penis was accompanied by depolarisation of the
membrane potential, reduction in or abolition of the ex-
citatory potential, and the emergence of inhibitory
electrical and mechanical responses to field stimulation

(Fig.31).



FIGURE 31

Change in the response to field stimulation
(5 pulses at 1 and 5Hz, O.5ms pulse width,
supramaximal voltage) after the spontaneous
development of tone in the bovine retractor
penis. Before the development of tone, field
stimulation produced an excitatory potential,
poorly maintained in response to 1Hz, and
contraction. There followed a period of
spontaneous depolarisation and contraction
during which field stimulation evoked an
inhibitory potential and relaxation. Con-
tinuous sucrose gap recording.
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FIGURE 32

Inhibitory potentials (upper trace) from a
single cell, and relaxations (lower trace) of
the bovine retractor penis in response to field
stimulation (1 at S to 9 pul.ses, 5Hz; O.5rnspulse width
as indicated below bars, supramaximal voltage)
after the development of tone. The amplitude
of the inhibitory potential and relaxation was
graded with increasing numbers of pulses. A
rebound depolarisation, as in the lower right-
hand panel, and rebound contraction sometimes
followed the inhibitory response.
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FIGURE 33

Inhibitory potentials (upper trace) from a single
cell and relaxations of the bovine retractor penis
in response to field stimulation (3 pulses, l-20Hz;
O.Sms pulse width, supramaximal voltage as indicated
below bars) after the development of tone. The
amplitude of the inhibitory potential and relaxation
showed little variation with stimulus frequency.
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FIGURE 34

Inhibitory potentials, rebound depolarisations
(upper traces) from a single cell and accompanying
mechanical responses to field stimulation (single
pulse at Sand 2-5 pulses, 5Hzi a.Sms pulse width
as indicated below bars, supramaximal voltage) in
the bovine retractor penis. The amplitude of the
rebound depolarisation was graded with increasing
numbers of pulses and appeared independent of the
amplitude of the preceding inhibitory potential.
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When tone had developed fully, single stimuli produced

inhibitory potentials which could reach an amplitude of

8mV (mean 3 ± ImV, n=18); the time to peak was 222 ± 94ms

(n=18) and time to decay to half amplitude 2082 ± 1140ms

(n=17). Latency measurements were made difficult by the

slow rate of rise of the inhibitory potential and its

relatively small amplitude. The values ranged from lOOms

to 2500ms (mean 108l±782ms, n=18). The amplitude of

inhibitory potentials (up to 20mV) and relaxations to

trains (3-20 pulses, 5-50Hz) of stimuli were graded with

the strength and number of stimuli (Fig. 32), but showed

little variation with stimulus frequency (I-20Hz; Fig. 33).

The time course of the inhibitory potential following

trains of pulses was prolonged, the time to peak being

2750 ± 640ms (n=48). A rebound depolarisation, graded with

increasing numbers of pulses (Fig. 34), and contraction

often followed inhibitory responses to single or trains

of stimuli.

Both the inhibitory potential and relaxation were well

maintained during prolonged (20-40s) periods of field

stimulation at l-lOHz (Fig. 35a). If during the inhibitory

potential, field stimulation at low frequencies (I-2Hz)

was continued, small excitatory potentials were often ob-

served to be superimposed upon the existing hyperpolaris-

ation (Fig. 35b). This demonstrates the discrete effects

of the excitatory and inhibitory transmitters. Facilitation

of the inhibitory potentials occurred at low (0.2Hz)



FIGURE 35

Characteristics of the electrical (upper trace)
and mechanical responses of the bovine retractor
penis to field stimulation (0.2ms pulse width,
supramaximal voltage) following the development
of tone. (a) The inhibitory potential and relax-
ation were well maintained during prolonged (20s)
periods of field stimulation (8 and 10Hz). (b)
During the inhibitory potential elicited by field
stimulation (10 pulses, 1Hz), small excitatory
potentials emerged. (c) Facilitation of inhibitory
potentials occurred in response to single stimuli
(0.2Hz at dots) before loss of impalement. (a)
and (b) sucrose gap, (c) intracellular recordings.
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FIGURE 36

Variations in the nature of the inhibitory
potential (upper trace) to field stimulation
(single pulse at 5 or 3 at 10Hz, O.Sms pulse
width, suprarnaximal voltage) and the accompany-
ing relaxation (lower trace) in the bovine
retractor penis recorded at high chart speed.
The majority of inhibitory potentials were
continuous (upper panels) but others were inter-
rupted after the cessation of field stimulation
by a brief repolarisation to the base line
membrane potential (lower panels). Intra-
cellular electrical recordings from two differ-
ent preparations (upper and lower panels) .
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FIGURE 37

The effects of tetrodotoxin, guanethidine and

atropine on the inhibitory potential (upper trace)

and relaxation of the bovine retractor penis in

response to field stimulation (5Hz; O.5ms pulse

width, supramaximal voltage) . (a) Abolition of

the inhibitory potential (3 pulses) by tertodo-

toxin (TTX, 3xlO-6M for the times indicated)

was followed by loss of impalement. In another

cell in the same preparation (third panel in (a» I

6 pulses failed to evoke an electrical or mechan-

ical response in the presence of TTX. In (b),

recordings from another preparation, inhibitory

potentials and relaxations (5 pulses) were evident

after prolonged contact with guanethidine (times

as indicated) and, from a different cell, a mix-

ture of guanethidine (90 min contact) and atropine

(50 min contact). Intracellular electrical
recordings.
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frequencies of stimulation (Fig. 35c) and summation at
1Hz or above. After the cessation of field stimulation,
some inhibitory potentials were briefly interrupted by a
repolarisation back to the resting membrane potential,
following which hyperpolarisation continued (Fig. 36).
Such responses were sometimes associated with a small con-
traction, which preceded relaxation, suggesting that re-
polarisation during the inhibitory potential may have been
due to the activity of an excitatory transmitter.

The inhibitory potential and relaxation were abolished
by tetrodotoxin (3x lO-6M) but unaffected by phentolamine
(5x 10-6M), propranolol (4x lO-6M) or a mixture of guan-
ethidine (3x lO-5M) and atropine (3x lO-6M), confirming
that they were mediated by non-adrenergic non-cholinergic

nerves (Fig. 37).

EFFECT OF THE INHIBITORY EXTRACT ON MEMBRANE POTENTIAL
AND TONE

The acid-activated form of the extract, either cleaned
or uncleaned, produced a dose-dependent hyperpolarisation
and relaxation of the bovine retractor penis (Fig. 38).
These effects were not mimicked by equivalent volumes of
cleaned unactivated extract. The time of onset of the
hyperpolarisation response to extract was about 2s and
its duration ranged from 40 to l50s. The amplitude of
the hyperpolarisation to activated extract or in-

hibitory nerve stimulation recorded intracellularly in the



FIGURE 38

The effect of inhibitory extract on the membrane

potential (upper trace) and tone of the bovine

retractor penis. Cleaned activated extract (CAE,

2-l5~1 as indicated below arrows) produced a dose-

dependent hyperpolarisation and relaxation, thus

mimicking the effect of field stimulation (single

pulse at S). The hyperpolarisation to both field

stimulation and extract was followed by a rebound

depolarisation. In comparison, the cleaned un-

activated extract (CUE, l5~1) produced only a

slight electrical and mechanical inhibition.

Sucrose gap recording.
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same tissues (n=4) ranged from 2 to 15mV. The inhibitory
response to the extract was often followed by a rebound
depolarisation and contraction which further confirmed the
similarity between the extract and inhibitory nerve stimul-

ation. Occasionally, the hyperpolarisation to activated
extract was preceded by a brief depolarisation. Depolar-
isations were also observed in response to cleaned unactiv-
ated extract and were probably due to the presence of

impurities, e.g. ATP.

EFFECT OF SODIUM NITROPRUSSIDE ON MEMBRANE POTENTIAL
AND TONE

Previous reports (Bowman and Gillespie, 1981; Bowman
and Drummond, 1984) that the inhibitory extract and sodium
nitroprusside might relax the bovine retractor peniS via
a similar mechanism prompted the investigation of the

Qt(.(..~ro~$IOec;JkJ effects of sodium nitroprusside.

Sodium nitroprusside (10-10_10-8 moles) produced a
dose-dependent hyperpolarisation ranging from 2-10mV in
amplitude, 25-150s duration, and accompanied by a relaxation
(Fig. 39). When the level of spontaneously-developed tone
was low, the inhibitory response to sodium nitroprusside
was followed by a prolonged rebound depolarisation and
contraction, sometimes accompanied by electrical and
mechanical oscillations (Fig. 39).



FIGURE 39

The effect of sodium nitroprusside (NP, 1-5 x
10-9 moles) on the membrane potential (upper
trace) and tone (lower trace) of the bovine
retractor penis. A dose-dependent hyperpolar-
isation was followed by a prolonged rebound
depolarisation.
recording.

Sucrose gap
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FIGURE 40

The effects of field stimulation (la pulses, 1Hz;
O.Sms pulse width, supramaximal voltage), adenosine
triphosphate (ATP, 0.5-5 x 10-9 moles as indicated
below arrows) and cleaned unactivated extract (CUE,
l51J.1containing approximately 1.5 x 10-9 moles ATP)
on the membrane potential (upper trace) and tone of
the bovine retractor penis. Although added before
the ATP, CUE produced no significant electrical or
mechanical inhibition. ATP (1st dose) hyperpolar-
ised and relaxed the muscle in similar manner to
field stimulation. Desensitisation to AT? was
apparent with the second dose, added 5 min after
the first. Successive doses of larger amounts
failed to produce a response of comparable magnitude
to the first. The response to field stimulation was
unaffected. Sucrose gap recording.
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EFFECT OF ATP ON THE BOVINE RETRACTOR PENIS AFTER THE
DEVELOPMENT OF TONE

ATP (O.2-5xlO-9 moles) produced initially a hyper-
polarisation which was rapid in onset, and a relaxation
(Fig. 40). However, the muscle rapidly desensitised to
ATP. Higher doses (1-5x la-8moles) then produced a bi-
phasic electrical and mechanical response consisting of an
initial rapid depolarisation and contraction followed by a
small prolonged hyperpolarisation and relaxation. Interest-
ingly, although the cleaned extract contained ATP (approxi-
mately lO-4M), there was no hyperpolarisation in response
to cleaned unactivated extract (up to 20~1 - equivalent to
2 xlO-9 moles ATP). Neither was the muscle desensitised to
ATP by frequent doses of extract. This suggests that ATP
present in the extract may be inhibited by another component.

Desensitisation to ATP was unaccompanied by any change
in the electrical or mechanical response to inhibitory nerve
stimulation (Fig. 40), suggesting that the transmitter and
ATP acted via different mechanisms.

EFFECTS OF NORADRENALINE ON MEMBRANE POTENTIAL AND TONE

On one occasion, in the presence of prazosin (1.4 x
IO-6M), following depolarisation of the membrane potential
and the development of tone, noradrenaline (0.1-2 x 10-9

moles) produced small hyperpolarisations (1-3mV) and relax-
ations (Fig. 4Ia). propranolol (4xlO-6M) blocked the
inhibitory response to noradrenaline, confirming its medi-



FIGURE 41

The effect of noradrenaline (NA, 0.5 x 10-9 moles)
on the membrane potential (upper trace) and tone
of the bovine retractor penis. (a) In the pre-
sence of prazosin (1.4 x 10-6M), following depolar-
isation and an increase in resting tone, noradren-
aline produced a small hyperpolarisation and
relaxation. (b) After 30 min propranolol (4 x
lO-6M, prazosin still present), the inhibitory
electrical and mechanical responses to noradren-
aline were abolished.
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FIGURE 42

The effect of apamin (5xlO-7M at bar for the
times indicated) on the inhibitory potential
(upper trace) and relaxation (lower trace) of
the bovine retractor penis in response to field
stimulation (10 pulses, l-lOHz, supramaximal
voltage, 0.2ms pulse width as indicated below
bars). The inhibitory potential was slightly
reduced without any decrease in the amplitude
of the relaxation. Sucrose gap recording.
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FIGURE 43

The effect of apamin (5x 10-7M at bar for the
times indicated) on the hyperpolarisation
(upper trace) and relaxation (lower trace) of
the bovine retractor penis in response to
sodium nitroprusside (NP,2-10 x 10-12 moles) •
The hyperpolarisation to sodium nitroprusside
was slightly reduced without any decrease in
amplitude of the relaxation. Sucrose gap
recording.
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ation by inhibitory 6-adrenoceptors (Fig.41b; Klinge and

Sjostrand, 1974).

THE EFFECTS OF POTENTIAL BLOCKING AGENTS ON THE INHIBITORY
RESPONSE TO FIELD STIMULATION, EXTRACT AND DRUGS

Apamin
Apamin (1-5 x 10-7M) depolarised the membrane potential

(by some 2-3mV, sucrose gap recording) and slightly increased

the tone.

The amplitude of the inhibitory potential (5-10 pulses,
l-lOHz; Fig.42) and hyperpolarisation to sodium nitroprusside
(0.5-5 x 10-12 moles; Fig.43) were slightly reduced (some 20%)
by apamin (5x 10-7M) without any reduction in the accompany-
ing relaxation. Thus, in comparison with the inhibitory
potential and relaxation in the taenia coli which are abol-
ished by 5xlO-7M apamin (Maas and Hertog, 1979; Maas, 1981;
Hills et al, 1983), the bovine retractorpenis was insensitive

to the drug.

Oxyhaemoglobin
Initially, oxyhaemoglobin (4-8 x 10-6M) depolarised

(by up to 8mV) the membrane potential and increased the tone.
Repolarisation to the original membrane potential (within
4-6 min) was followed by a slow hyperpolarisation and decrease

in resting tone.

The inhibitory potential and the accompanying relax-
ation to field stimulation (1-10 pulses, l-lOHz) were abolished



FIGURE 44

The effects of oxyhaemoglobin (Oxy Hb, 8 x lO-GM
for the times indicated) on the inhibitory
potential (upper trace) and relaxation (lower
trace) to field stimulation (10 pulses, 1-5Hz,
supramaximal voltage, 0.5rns pulse width) of
the bovine retractor penis. The inhibitory
potential and the relaxation were blocked by
oxyhaemoglobin. Sucrose gap recording;
phentolamine (5x lO-GM) present throughout.
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FIGURE 45

The effects of oxyhaemoglobin (Oxy Hb, 4 x lQ-6M
for the times indicated) on the hyperpolarisation
(upper trace) and relaxation (lower trace) of
the bovine retractor penis to cleaned activated
extract (CAE, 5-l0~1 as indicated below arrows)
and field stimulation (single pulse at Sand 5
pulses at 1Hz, supramaximal voltage, O.5ms
pulse width as indicated below bars) compared
in the same tissue. Blockade of the responses
to the extract (CAE) and field stimulation was
accompanied by the emergence of a contraction
to the latter which was unassociated with any
significant electrical change. The tone level
in (b) was greater than that in (a). Sucrose
gap recording.
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FIGURE 46

The effects of oxyhaemoglobin (Oxy Hb, 8 x 10-6M
for the times indicated) on the hyperpolaris-
ation (upper trace) and relaxation (lower trace)
of the bovine retractor penis to sodium nitro-
prusside (NP, 1-5 x 10-12 moles as indicated
below arrows). The inhibitory electrical and
mechanical responses together with the rebound
depolarisation to sodium nitroprusside were
blocked by oxyhaemoglobin. The tone level
was increased in the presence of oxyhaemo-
globin. Sucrose gap recording.
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by oxyhaemoglobin (4-8 x 10-GM) after some 5-10 min (Fig.
44), sometimes revealing a contraction which was unassoci-
ated with any electrical change (Fig.45). Blockade of the
inhibitory potential and relaxation was not overcome by
increasing the number of pulses applied (from 10 to 20).

The hyperpolarisations and relaxations to the inhibit-
ory extract (1-20~1; Fig.45) and sodium nitroprusside (1-50
x 10-12 moles; Fig.4G) were also blocked by oxyhaemoglobin
(4-8 x 10-6M). Blockade of the inhibitory electrical res-
ponses to the extract, sodium nitroprusside and field stimul-
ation occurred during periods both of depolarisation and
hyperpolarisation by oxyhQemoglobin, suggesting that it was.
not due to a change in resting membrane potential.

Tetraethylammonium (TEA)

Neither the inhibitory potential nor the relaxation to
field stimulation (1-10 pulses, l-lOHz) was enhanced by TEA
(1 x 10-4M). Higher concentrations (0.5-10 x 10-3M) produced
a concentration-dependent depolarisation (up to 40mV, sucrose
gap recording) and reduction in the amplitude of the inhib-
itory potential. The accompanying relaxation to field
stimulation was not abolished (Fig.47) and thus occurred
without any apparent change in membrane potential.

Ouabain

Ouabain (1-5 x 10-5M) initially dep.olarised (2-4mV) the
membrane potential and increased the resting tone. The in-
hibitory potential (1-10 pulses, l-lOHz) was reduced (by



FIGURE 47

The effect of tetraethylammonium (TEA, lO-2M
for the times indicated) on the inhibitory
potential (upper trace) and relaxation of the
bovine retractor penis to field stimulation
(la pulses, 1 and 5Hz, supramaximal voltage,
O.Sms pulse width). The membrane potential
was depolarised by TEA and the tone level in-
creased. The inhibitory potential but not
the relaxation to field stimulation was abol-
ished. The effect of TEA was reversed following
its removal (~). Sucrose gap recording.
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FIGURE 48

The effect of ouabain (Ouab, 5 x lO-5M, 45 min
contact) on the inhibitory potential (upper
trace) and relaxation of the bovine retractor
penis to field stimulation (10 pulses, 10Hz,
supramaximal voltage, 0.2ms pulse width). The
inhibitory potential was almost abolished after
prolonged contact with ouabain during" which
time the membrane hyperpolarised and tone de-
clined. In this preparation, which exhibited
biphasic electrical and mechanical responses
to field stimulation, a small excitatory
potential and contraction were also reduced
by ouabain. Sucrose gap recording.



>eo
~,....,

~
N
•o

~

134



135

30-40%) during this period with either no effect or apparent
enhancement of the mechanical response caused presumably by
increased tone. After 6-10 min there was a slow hyperpolar-
isation of the membrane and a progressive loss of resting
tone. During this time the inhibitory potential and relax-
ation were reduced further or, after prolonged contact (45-
60 min), abolished (Fig.48). The prolonged contact time
required for this effect indicated that antagonism of the
inhibitory potential was not due to a reduction in Na+-K+
ATPase activity per se.

Removal of ouabain produced a transient hyperpolaris-
ation (some 3mV). There was no recovery of the membrane
potential, spontaneous tone or inhibitory electrical and
mechanical responses to field stimulation during a 15-20 min
period.

THE EFFECT OF M and B 22948 ON THE INHIBITORY ELECTRICAL AND
MECHANICAL RESPONSES TO FIELD STIMULATION AND INHIBITORY
EXTRACT

M and B 22948 (2-o-propoxyphenyl-8-azapurin-6-one), which
( BeI"j.s~ro.nJ.. ) L""'J'lY'ist ""J SdU,4.fmaM) 1<f18)

inhibits cGMP-specific phosphodiesteraseA potentiated the
relaxation of the bovine retractor penis to field stimulation
(Bowman and Drummond, 1984). The effects of M and B 29948
on the inhibitory potential was therefore examined using
the sucrose gap.

Initially, M and B 22948 (3-9 x lO-6M) produced a transi-
ent (approximately 5 min) hyperpolarisation (5-8mV) and



FIGURE 49

The effect of the cGMP-specific phosphodi-
esterase inhibitor, M & B 22948 (2-0-propoxy-
phenol-8-azapurin-6-one, 9xlO-6M for the
times indicated) on the inhibitory potential
(upper trace) and relaxation (lower trace) of
the bovine retractor penis to field stimulation
(single pulse at S, 2 and 5 pulses at 1Hz,
supramaximal voltage, O.2ms pulse width, as
indicated below bars). Both the amplitude and
duration of the relaxation were increased by
M & B 22948. The amplitude of the inhibitory
potential was not enhanced, although its
duration was slightly increased. Sucrose gap
recording.
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FIGURE 50

The effect of the cGMP-specific phosphodi-
esterase inhibitor, M & B 22948 (9 x lO-GM
for the time indicated) on the hyperpolaris-
ation (upper trace) and relaxation (lower
trace) of the bovine retractor penis to cleaned
activated extract (CAE, 1-2~1). In the presence
of M & B 22948 the relaxation to inhibitory
extract was initially enhanced in amplitude
and duration without any apparent change in
the accompanying hyperpolarisation. However,
after some 20 min, both the hyperpolarisation
and relaxation to inhibitory extract was
reduced. Sucrose gap recording.
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relaxation, after which the membrane potential and tone
recovered. The relaxation to field stimulation (1-10
pulses, 1Hz) was increased in amplitude, by up to 800%
(single pulse), and in duration in the presence of M and B
22948. The accompanying inhibitory potential was unchanged
in amplitude, though its duration was sometimes increased

(Fig.49) .

The amplitude of the relaxation to inhibitory extract
was also increased by some 50% in the presence of M and B
22948 (9 x lO-6M), without any enhancement of the accompanying
hyperpolarisation (Fig.50). However, in contrast with the
inhibitory response to field stimulation, continued exposure
to M and B 22948 (20-25 min contact) inhibited the hyper-
polarisation and relaxation in response to extract (Fig.50).

RELATIONSHIP BETWEEN THE INHIBITORY POTENTIAL AMPLITUDE
AND MEMBRANE POTENTIAL

In these studies, the membrane potential was displaced
by passing current through the muscle and field stimulation
(1-15 pulses, I-10Hz, supramaximal voltage, O.Sms pulse
width) carried out. The results obtained intracellularly
using the technique of Abe and Tomita (1968) differed from
those obtained with the double sucrose gap, and are con-
sidered to be correct. The sets of results will be con-

sidered separately-

Intracellular results
The amplitude of the inhibitory potential was reduced
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or abolished when field stimulation was carried out during
displacement of the membrane potential from rest (some
-40 - -45mV) to more positive values using outward (depolar-
ising) current pulses. When inward (hyperpolarising) current
pulses were applied, there were two distinct changes in the
inhibitory potential. First, over the range -45 to approxi-
mately -60mV, the amplitude of the inhibitory potential
was increased (Fig.5l). Secondly, with further passive
hyperpolarisation to membrane potentials exceeding -60mV,
the inhibitory potential was reduced in proportion to the
change in membrane potential (Fig. 51). In the absence of
guanethidine, inhibitory potentials at values of membrane
potential more negative than rest were preceded by excitatory
potentials which increased in amplitude with further passive
hyperpolarisation. For this reason, guanethidine (O.2xlO-5M)
was usually present to abolish the excitatory potential.

In order to obtain the average values for the membrane
potential at which the inhibitory potential was abolished,
the results obtained from nine tissues were combined and
regression analysis carried out (Fig.5l). Data obtained
over the range of membrane potentials -55 - -6SmV and values
of membrane potential at which the inhibitory potential
was zero were excluded from the analysis. The two linear
plots obtained had opposite slopes of different magnitude.
Although this method of analysis is limited, it does suggest
that over the membrane potential range -27mV to -55mV the
inhibitory potential showed proportionately larger changes



FIGURE 51

Relationship between inhibitory potential ampli-
tude (ijp mV) in response to field stimulation
(10 pulses, 5Hz, supramaximal voltage, 0.5ms
pulse width) and membrane potential recorded
from the bovine retractor penis (9 different pre-
parations). Displacement of the membrane potential
from rest (some -40 to -45mV) to more positive
values using outward current pulses reduced the
amplitude of the inhibitory potential. Dis-
placement to more negative values produced two
distinct changes. As shown in the insert (recorded
from one cell), over the range -40 to -60mV the
amplitude of the inhibitory potential was enhanced.
With further displacement to membrane potentials
exceeding -60mV, the amplitude of the inhibitory
potential was reduced in proportion with the
change in membrane potential. The two lines shown
were obtained by regression analysis. Data ob-
tained over the range of membrane potentials -55
to -65mV and values at which the inhibitory
potential was abolished were excluded from the
analysis. (Respective correlation coefficients
and degrees of freedom 0.598, 43 for membrane
potentials -55 or less; 0.613, 21 for membrane
potentials -65 or greater.) The values for membrane
potential at which the inhibitory potential was
abolished obtained by extrapolation of the plot
were -103mV and -27mV. No reversal of the inhibit-
ory potential (to give a depolarisation) was
observed. Intracellular recordings using the
method of Abe and Tomita (1968).



11"1o _
~~___jl~___ll ~ _

~
I

o
I't\
I i"•· '. .·. ". .

~ • I.. ...~ ..., ",..... ~•• I• ••
.....
>e

I

ro-...
c:
Q.)...
oc..
Q.)
c:ro
I-

~
l

••• •• ••••

•• •
o
0"1
I

s....
I

•
-I

-
•

••

>e
Cl--.

• •

•

140

~
I

11"1
N
I

••
•

I::



141

in amplitude than over the range -6SmV to -103mV. The
values of membrane potential at which the inhibitory
potential was abolished, obtained by extrapolation of the
plots (Fig.51), were -103mV and -27mV. There was no
reversal of the inhibitory potential when the membrane was
either depolarised to values of -20mV or hyperpolarised to
some -120mV.

Double sucrose gap results

Inhibitory potentials were recorded only with diffi-
culty in the double sucrose gap. The maximum amplitude was
about 5mV. The cause of this difficulty appeared to be
the presence of a second sucrose chamber (current-passing
chamber, see Fig. 9, Methods section). Figure 52 shows the
abolition .of the inhibitory potential following the admission
of sucrose to the current-passing chamber. Inhibitory
potentials were only recovered by depolarising the tissue
with high concentrations (3-5xlO-5M) of guanethidine.

The resulting inhibitory potentials were unaffected by
displacement of the membrane potential in either the hyper-
polarising (up to -20mV) or depolarising (up to +15mV)
direction. This discrepancy with the intracellular results
may be due to the presence of an additional sucrose (current-
passing) chamber. The tissue exposed to sucrose undergoes
electrical changes which may spread electrotonically to the
region in the Krebs chamber (see Coburn et aI, 1975).



FIGURE 52

Double sucrose gap recording from the bovine
retractor penis showing (a) inhibitory potential
(upper trace) and relaxation (lower trace) in
response to field stimulation (10 pulses, 5Hz
supramaximal voltage; O.5ms pulse width as indi-
cated below bar) when sucrose was present on the
recording side of the gap only. The current-
passing chamber contained Krebs solution at room
temperature. In (b), 15 min after the admission
of sucrose to the current-passing chamber, the
inhibitory potential and relaxation were abolished.
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FIGURE 53

The effect of displacement of the membrane potential

by an inward (hyperpolarising) current pulse

(Relative intensity V/cm, lower trace) on the

hyperpolarisation (upper trace) in response to

cleaned activated extract (CAE, 50~1) in a single

cell of the bovine retractor penis. The amplitude

of the hyperpolarisation to extract was increased

during displacement of the membrane potential

from rest(-4lmV) to a more negative value (-57mV).

Intracellular recording using the method of Abe

and Tomita (1968).
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RELATIONSHIP BETWEEN AMPLITUDE OF HYPERPOLARISATION TO
INHIBITORY EXTRACT AND MEMBRANE POTENTIAL

This was investigated by the method of Abe and Tomita

(1968). The membrane potential was displaced passively for

prolonged periods (30-45s), during which the extract (20-

100~1) was added. Because of the difficulty of maintaining

impalements throughout this period, the relationship was

investigated over a limited range of membrane potentials

(-45mV to -57mV). A further restraint was that prolonged

displacement with large currents caused a loss of electrical

response to extract and field stimulation.

The amplitude of the hyperpolarisation to cleaned

activated extract (CAE) was increased and, on occasion,

preceded by a slight depolaristion, following displacement

of the membrane potential from rest (approximately -45mV)

to more negative values (up to -57mV) by inward current

pulses (Fig.53) .

Cleaned unactivated extract (CUE) was either ineffective

or depolarised slightly following passive hyperpolarisation

of the membrane potential.

CHANGE IN MEMBRANE RESISTANCE DURING THE INHIBITORY POTENTIAL

The effect of the inhibitory transmitter on membrane

resistance was determined intracellularly by the application

of inward or outward current pulses (duration Is) via ex-

ternal electrodes (Abe and Tomita, 1968) at the peak of the



FIGURE 54

Change in membrane resistance during the in-
hibitory potential recorded from a single cell
in the bovine retractor penis using the method
of Abe and Tomita (1968). An electrotonic
current pulse (duration lSi current intensity
V/cm shown in lower trace) was applied before
and during the inhibitory potential to field
stimulation (10 pulses, 5Hzi supramaximal volt-
age, 0.5ms pulse width as indicated below bar).
The amplitude of the electrotonic pulse was
increased during the inhibitory potential in-
dicating an increase in membrane resistance.
Guanethidine (2x 10-6M) present throughout.
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FIGURE 55

Current (V/cm)-voltage (E.P.mV) relationship

recorded from a single cell in the bovine

retractor penis in response to inward and out-

ward pulses (duration Is) in the absence (open

circles) and during (filled circles) the peak

amplitude of the inhibitory potential (10

pulses, 5Hz; supramaximal voltage, O.Sms pulse

width). There was a significant (p < 0.0025,

paired t-test) shift in the V/I plot to the

right during the inhibitory potential indic-

ating a decrease in membrane conductance.
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inhibitory potential (usually some 2s after the stimulus).

The amplitude of electrotonic pulses was increased by

up to 125% during the inhibitory potential (Fig.54), causing

a shift in the V/I curve to the right (Fig.55). Electro-

tonic potentials were increased by an average of 74 ± 22%

(n=14) during inhibitory potentials of 4mV amplitude.

These results indicate that the basis for the inhibitory

potential is a decrease in membrane ionic conductance.

THE EFFECT OF THE INHIBITORY EXTRACT ON MEMBRANE RESISTANCE

The effect of the extract on the amplitude of electro-

tonic current pulses (duration Is, every 6-8s) was investi-

gated intracellularly using the method of Abe and Tomita

(1968). CAE produced inconsist~nt changes in the amplitude

of the electrotonic pulses. These were either not affected

significantly (n=26), increased (n=26; Fig.56) or, on some

occasions (n=9) reduced. These inconsistencies may arise

from the presence of impurities in the extract. CUE pro-
duced no significant change in the amplitude of electro-

tonic pulses (Fig.56).

EFFECTS OF CHANGES TO THE IONIC ENVIRONMENT ON THE INHIBIT-
ORY RESPONSES TO FIELD STIMULATION AND INHIBITORY EXTRACT

Removal of K+

After some 3-6 min, the membrane potential hyperpolarised

(3-l0mV) and resting tone declined. The inhibitory potential



FIGURE 56

Changes in membrane resistance produced by the

inhibitory extract as indicated by the amplitude

of electrotonic current pulses (duration ls,

relative current intensity V/cm shown in lower

trace) recorded from two cells (upper and lower

panels) in the same bovine retractor penis pre-

paration. Cleaned unactivated extract (CUE)

produced no change in membrane potential or

resistance. Cleaned activated extract (CAE,

50~1) hyperpolarised the membrane and increased

the amplitude of the electrotonic pulses.

Intracellular recording using the technique of
Abe and Tomita (1968).
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FIGURE 57

The effect of removing the external potassium
(+K+o for the times indicated) on the inhibitory
potential (upper trace) and relaxation of the
bovine retractor penis in response to field
stimulation (10 pulses, l-lOHzi supramaximal
voltage, O.Sms pulse width as indicated below
bars). There was no initial enhancement of the
inhibitory potential during the K+-withdrawal.
After prolonged contact (25-33 min) with K+-free
Krebs, the membrane potential was hyperpolarised,
and both the resting tone and the inhibitory
potential reduced. Readmission of K+ (tK+o) pro-
duced initially a further hyperpolarisation and
a reduction in tone. The inhibitory electrical
and mechanical responses recovered in the con-
tinued presence of normal Krebs solution.
Sucrose gap recording.
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FIGURE 58

The effect of removing the external potassium

(~K+o for the times indicated) on the hyper-

polarisation (upper trace) and relaxation of

the bovine retractor penis in response to

cleaned activated extract (CAE, 5~1). The

hyperpolarisation to CAE was inhibited within

some 3 min in the absence of K+. Continued

exposure to K+-free solution hyperpolarised

the membrane and reduced both the resting tone

and the inhibitory electrical and mechanical

responses to extract. These effects were

reversed by readmitting K+ to the Krebs sol-

ution (tK+o). Sucrose gap recording.
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in response to field stimulation (1-10 pulses, I-10Hz)
was reduced by up to 50% after some 20 min (sucrose gap
recording). The accompanying relaxation was also reduced,
possibly because of the decline in resting tone caused by
the removal of K+ (Fig.57). In an intracellular study, in-
hibitory potentials,which were reduced in the absence of
potassium, recovered when field stimulation was carried out
during passive hyperpolarisation of the membrane to values
of up to -60mV. Thus, the inhibitory potential was not

+reduced as a result of the hyperpolarisation caused by K
withdrawal. Neither was the inhibitory potential abolished
because of a decrease in membrane resistance, as the V/I
plot for the cell was unchanged.

The hyperpolarisation in response to inhibitory ex-
tract (2-20~1: sucrose gap recording) was reduced within
5 min of K+ withdrawal. The maximum reduction (between
60 and 75%) occurred usually after some 20 min (Fig.S8).
The accompanying relaxation was reduced, again possibly
because of the loss of resting tone caused by K+ with-
drawal.

Readmission of K+ transiently hyperpolarised the
membrane potential (S-7mV) and decreased resting tone.
During this period, the inhibitory potential and relaxation
in response to field stimulation were further reduced. Re-
polarisation of the membrane and restoration of spontaneous
tone was accompanied by recovery of the inhibitory electrical



FIGURE 59

The effects of increasing the concentration of
potassium from normal (4.7 x 10-3M in (a» to
20 x 10-3M in (b) on the inhibitory potential in
response to field stimulation (10 pulses, 5Hz;
0.5ms pulse width, supramaximal voltage) recorded
from two cells in the same bovine retractor penis
preparation. In (a), the inhibitory potential
recorded in normal Krebs solution (resting mem-
brane potential -42mV) was enhanced during passive
displacement of the membrane potential to -73mV
(shown by broken line). (b) After some 20 min in
Krebs solution containing 20mM K+ (resting mem-
brane potential -33mV) in a different cell to (a),
an inhibitory potential was recorded at a membrane
potential of -83mV (shown by broken line), i.e.
34mV more negative than the estimated potassium
equilibrium potential. In both (a) and (b), the
value of the displaced membrane potentials were
obtained following subtraction of the voltage
transient recorded outside the cell during the
current pulse. Intracellular electrical recording
using the method of Abe and Tomita (1968).
Guanethidine (2x 10-6M) present throughout.
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and mechanical responses to field stimulation and to
inhibitory extract.

The lack of enhancement of the hyperpolarisation to
extract or field stimulation during K+ withdrawal suggested
that the response was not mediated by an increase in K+
conductance.

Increasing potassium

Krebs solution containing 20mM K+ (NaCl content reduced
accordingly, see Table 1) depolarised the cells significantly
from -38 ± 6 to -30 ± 5mV (p < 0.001, n=28 and 29 respectively).
The inhibitory potential was abolished but recovered during
passive hyperpolarisation of the membrane (Abe and Tomita,
1968) by electrotonic current pulses to values of up to
-83mV (Fig.59). If the internal concentration of K+
([K+]I) in the bovine retractor penis is similar to that
in the rat anococcygeus (127mM; Creed and Pollock, un-
published), EK in 20mM K+ ([K+]O) would be some -49mV (from
EK = 2.3RT/ZF log [K+]O/[K+]I). Since inhibitory potentials
were obtained at membrane potentials exceeding -49mV, this
suggests that the response is not mediated by an increase
in K+ conductance.

Reducing or removing chloride

The effects of reducing the external chloride chloride
on the inhibitory potential were similar regardless of whether
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glutamate or benzenesulphonate/sulphate were used as sub-
stitutes. The inhibitory potential was reduced within
5 min contact with the modified Krebs solution (Fig.60).
This effect appeared independent of any change in membrane
potential, as it occurred during periods of depolarisation
caused by substitution with glutamate, and hyperpolaris-
ation produced by benzenesulphonate/sulphate. The accompany-
ing relaxation in response to field stimulation was enhanced
in accordance with the increase in tone produced by glut-
amate or reduced in the presence of benzenesulphonate/
sulphate.

Continued exposure to low Cl- (glutamate) or Cl--free
(benzenesulphonate/sulphate) solution caused a slow hyper-
polarisation and loss of tone. The inhibitory potential
and relaxation was further reduced or abolished after 25-30
min (Fig.60). The inhibitory potential was not restored
during passive displacement of the membrane potential over
a range from -26mV to -l04mV by externally applied current
using the method of Abe and Tomita (1968).

The hyperpolarisation and relaxation to inhibitory
extract (2-20ul) was reduced or abolished within 6 min
after replacement of the external chloride with benzene-
sulphonate/sulphate (Fig.61). Reduction of the relaxation
appeared greater than could be accounted for merely by
the decreased level of resting tone.

Readmission of C1- restored (after some 30-60 min) the
membrane potential, tone and inhibitory electrical and mech-



FIGURE 60

The effect of reducing the external concentration

of chloride from 111.8mM to 12.7mM (+Cl-0 i replace-

ment anion glutamate for the time indicated) on

the inhibitory potential (upper trace) and relax-

ation of the bovine retractor penis in response

to field stimulation (10 pulses, 1-5Hz; supra-

maximal voltage, O.Sms pulse width as indicated

below bars). The inhibitory potential was reduced

during the initial depolarisation produced by

glutamate (10 min) and thereafter (25-35 min) when

the membrane was hyperpolarised and resting tone

abolished. Small excitatory potentials and con-

tractions were observed in this preparation after

prolonged Cl--withdrawal. Readmission of Cl-

(tel-o) restored the membrane potential, tone and

inhibitory electrical and mechanical responses

to field stimulation. Sucrose gap recording.
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FIGURE 61

The effect of removing the external chloride

(tCl-o; replacement anions sulphate and benzene-

sulphonate for the times indicated) on the hyper-

polarisation (upper trace) and relaxation of the

bovine retractor penis in response to cleaned

activated extract (CAE, 10-lSul) and field

stimulation (10 pulses, 1Hz; supramaximal voltage,

O.Sms pulse width). In normal Krebs, CAE and

field stimulation, but not CUE (lSul) produced

hyperpolarisation reduction in electrical

oscillation and relaxation. The hyperpolarisation

to CAE was reduced or abolished with 6 min of
Cl--withdrawal. The resting tone level was also

reduced and the membrane potential hyperpolarised.

Readmission of Cl- (tCl-o) restored the membrane

potential, tone and inhibitory electrical and

mechanical responses to extract. Sucrose gap
recording.
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anical responses to field stimulation (Fig.60) and in-

hibitory extract (Fig.61).
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RABBIT AND RAT ANOCOCCYGEUS

THE EFFECTS OF INHIBITORY NERVE STIMULATION AND EXTRACT
ON THE RABBIT ANOCOCCYGEUS

The response to field stimulation and extract was

studied by intracellular recording from preparations with

either spontaneously-developed or guanethidine (1-3x 10-5M)-

induced tone. The development of tone was accompanied by

a significant (p < 0 .01) depolarisation of the cells from

-55 ± 7mV (n=G8) to either a stable membrane potential of

-52 ± 8mV (n=102) in the majority (70%) of cells, or oscil-

lations in membrane potential (periodicity of oscillations

1.5-4.5s, amplitude 5-36mV). The average peak membrane

potential in these cells (-46 ± 6mV, n=78) was significantly

more depolarised (p < 0.001) than in electrically quiescent

cells.

Both field stimulation (5-20 pulses, 5-10Hz) and the

cleaned activated extract (CAE), but not the cleaned un-

activated extract (CUE), relaxed the muscle. This was

accompanied by an inhibition of the oscillations in membrane

potential, and additionally with the extract, a dose-

dependent hyperpolarisation (Fig.62). In the absence of

electrical oscillations, field stimulation evoked a small

(2-5mV) inhibitory potential and CAE produced no significant

electrical change (Fig.G3).



FIGURE 62

The effects of field stimulation (18 pulses, 5Hz;

supramaximal voltage, O.5ms pulse width at bar)

and cleaned activated extract (CAE, 4-20~1 as in-

dicated at arrows) on the membrane potential

(upper trace) and tone (lower trace) of the rabbit

anococcygeus. The relaxation to either stimulus

was accompanied by inhibition of the oscillations

in membrane potential, and additionally with the

extract, a dose-dependent hyperpolarisation.

Cleaned unactivated extract (CUE, lOO~l) was

relatively ineffective. Intracellular electrical

recording. Guanethidine (1 x lO-5M) present

throughout.
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FIGURE 63

The effects of field stimulation (5 pulses at 5 and

10Hz; supramaximal voltage, O.5ms pulse width as

indicated below bars) and cleaned activated extract

(CAE, lOO~l) on membrane potential (upper trace)

and tone (lower trace) of the rabbit anococcygeus.

The relaxation in response to inhibitory nerve

stimulation was accompanied by a small hyperpolar-

isation (inhibitory potential) while that to the

extract was not. These electrical responses were

characteristic of those cells which did not

exhibit oscillations in membrane potential. Intra-

cellular recording. Guanethidine (lx lO-5M) present

throughout.
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FIGURE 64

The effects of adenosine triphosphate (ATP; 2-1000

x 10-9ooles, as indicated below arrow) on the membrane

potential (upper trace), recorded from four differ-

ent cells, and tension in the rabbit anococcygeus.

In the absence (a) and presence (b) of tone, low

doses of ATP produced depolarisation and contraction.

Higher doses (c) produced, in the same preparation,

depolarisation followed by a small, prolonged

hyperpolarisation. The accompanying relaxation

preceded the hyperpolarisation. In (d), recordings

from a different preparation: when present the

electrical oscillations were inhibited and the

membrane hyperpolarised by large doses of ATP.

Intracellular electrical recording. Guanethidine
(1 x lO-5M) present during (b), (c) and (d).
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THE EFFECTS OF ADENOSINE TRIPHOSPHATE (ATP) ON MEMBRANE
POTENTIAL AND TONE IN THE RABBIT ANOCOCCYGEUS

In the absence or presence of tone, ATP (1-20 x 10-9

rnoles)evoked a rapid depolarisation (up to 12mV) and con-
traction (Fig.64, a and b). Higher doses of ATP (1-20
x 10-6mol) relaxed the tone. The accompanying electrical
response was either a depolarisation sometimes followed by
a small hyperpolarisation (Fig.64c), or an inhibition of
the electrical oscillations and hyperpolarisation (Fig.64c).
This effect was produced by doses of ATP which exceeded
those present in volumes of the CAE which produced an equi-
valent electrical and mechanical inhibition (SOul CAE con-
tained approximately S x 10-9mol) .

EFFECT OF APAMIN ON THE INHIBITORY RESPONSES OF THE RABBIT
ANOCOCCYGEUS TO FIELD STIMULATION AND INHIBITORY EXTRACT

Apamin (10-7M for up to 90 min) failed to block the
inhibitory potential and relaxation in response to field
stimulation (5-10 pulses, 2-lOHz; Fig.6S).

The electrical and mechanical responses to CAE were
transiently blocked (for some 10 min) by apamin (10-7M).
The blockade became ineffective in the continued presence
of the drug (Fig.66).

THE EFFECTS OF FIELD STIMULATION AND INHIBITORY EXTRACT
ON THE RAT ANOCOCCYGEUS AFTER THE DEVELOPMENT OF TONE

Tone was induced by guanethidine (1-3 x 10-5M) which



FIGURE 65

The effects of apamin (Ap, 1 x lO-7M for the

times indicated) on the inhibitory potential

(upper trace) and relaxation (lower trace) in

response to field stimulation (6 pulses, 5Hz:

supramaximal voltage, O.5ms pulse width as in-

ducated below bars) in the rabbit anococcygeus.

Apamin depolarised the cells and increased the

tone. The inhibitory potential and relaxation

were enhanced. Intracellular electrical record-

ings from four different cells in the same

preparation. Loss of impalement is shown by

the sharp vertical deflections (upper trace) .

Guanethidine (3x lO-5M) present throughout.
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FIGURE 66

The effect of apamin (Ap, 1 x 10-7M for the times

indicated) on the electrical (upper trace) and

mechanical (lower trace) responses to cleaned

activated extract (CAE, lO-50~1 as indicated) in

the rabbit anococcygeus. The inhibitory effects

of the extract on the oscillations in membrane

potential and tone (upper panels) were blocked

transiently by apamin. Blockade was overcome

by increasing the dose of extract to 50~1 or

during the continued presence of apamin (21 min) .

Intracellular electrical recording. Guanethidine
(1 x 10-5M) present throughout.
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also significantly (p < 0.001) depolarised the cells (from

-64 ± 9mV, n=8 to -43 ± 7mV, n=26) and caused oscillations

in membrane potential (periodicity 3-4.2s).

Both field stimulation (5-20 pulses, I-10Hz) and CAE

(20-100~1) relaxed the tone. The accompanying electrical

response was, in the majority of cells, insignificant.

In some 25% of cells, relaxation was preceded by inhibition

of the oscillations in membrane potential (Fig.67). CUE

produced no significant electrical or mechanical responses.



FIGURE 67

The effects of field stimulation (5 pulses, 5Hz;

supramaximal voltage, O.5ms pulse width) and

cleaned activated extract (CAE, 50-l00~1) on the

membrane potential (upper trace) and tone (lower

trace) in the rat anococcygeus. The relaxation

to field stimulation or CAE was accompanied by

an inhibition of the oscillations in membrane

potential. Cleaned unactivated extract (CUE,

lOO~l) was relatively ineffective. Intracellular

electrical recording. Guanethidine (1x 10-5M)
present throughout.
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CHAPTER 4
DISCUSSION
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THE BOVINE RETRACTOR PENIS

INTRACELLULAR RECORDING FROM THE BOVINE RETRACTOR PENIS
The bovine retractor penis comprises smooth muscle

bundles separated by wide bands of connective tissue.
Collagen fibrils surround the individual cells (Eranko
et al, 1976). The presence of such connective tissue may
explain the difficulty, particularly after the development
of tone, in making microelectrode impalements. Collagen-
ase caused separation of the smooth muscle bundles but
failed to facilitate cell impalement, possibly because
collagen fibrils surrounding the cells remained intact.

RESTING ACTIVITY AND PASSIVE MEMBRANE PROPERTIES
The resting electrical activity of the bovine retractor

penis displayed features common to other smooth muscles.
Spontaneous junction potentials were rare, confirming the
presence of large (some 200nm) junctions between the nerve
varicosities and smooth muscle cells (Crossley, 1981, un-
published). The most common form of spontaneous electrical
activity was oscillations in membrane potential which had
a myogenic basis and were similar to those recorded in the
dog retractor penis (Orlov, 1962), rabbit anococcygeus
(Creed and Gillespie, 1977), retococcygeus (Blakely, Cunnane
and Muir, 1978) and, recently, the bovine retractor penis
(Samuelson, Sjostrand and Klinge, 1983). Oscillations were
not due to membrane depolarisation per se since they were
not evoked by passive displacement of the membrane potential.
Like the bovine trachea (Kirkpatrick, 1980), oscillations
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were unassociated with action potentials. This is in

retractor penis

sucrose gap recordings from the bovine
S ·o!.tro.t'\J.. Q.l\J l<t~,e.by Samuelson,,')A (1983r in which small

contrast to the

(1-2mV) spikes were recorded. Electrical oscillations
were often accompanied by small fluctuations in tone and
may be due to the activity of pacemaker regions.

The bovine retractor penis, like other smooth muscles
(see Creed, 1979) had cable-like properties. The space
constant (1.7mm) is similar to that in other smooth muscles,
e.g. pulmonary artery (1.5mm), taenia coli (1.5mm), and
urinary bladder (1.7mm) (see Creed, 1979), but higher than
that in the rat anococcygeus (2.7mm; Creed,1975). This
suggests a relatively low value of membrane resistance
(Rm) or high internal resistance (Ri; since AZ = Rm/Ri).
The former view is favoured by the relatively high value
of TID (290ms) which exceeds that of the rat anococcygeus
(178ms; Creed, 1975) but is similar to the value obtained
for the bovine trachea (305ms) which has a relatively low
resting membrane potential (-47rnV)and also exhibits spon-
taneous electrical oscillations (see Kirkpatrick, 1975,1980).

EXCITATORY ELECTRICAL AND MECHANICAL RESPONSES TO FIELD
STIMULATION AND EXOGENOUS NORADRENALINE

The excitatory electrical and mechanical responses of
the bovine retractor penis to field stimulation resembled
those of the rat anococcygeus (Creed et aI, 1975) rather
than the rabbit anococcygeus (Creed and Gillespie, 1977)
or dog retractor penis (Orlov, 1962), both of which show
spike activity. Spikes in response to field stimulation
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of the bovine retractor penis have been reported (Samuelson
et aI, 1983), but the prolonged duration (some Is) and
small amplitude (approximately 2mV) of these responses
suggest that they may represent excitatory junction poten-
tials rather than spikes.

In the absence of tonel excitatory potentials, though
often small, were recorded from every cell impaled, in-
dicating a wide distribution of excitatory nerves. A
number of factors may account for the relatively small size
of the excitatory potentials. (a) The transmitter may
reach the cells in low concentrations, a view consistent
with the presence of large (200nm) junctions between nerve
varicosities and smooth muscle cells (Crossley, 1981, un-

published) • (b) The membrane potential (-53mV) is lower
and therefore closer to the reversal potential for the
excitatory potential than in the rat anococcygeus. (c)
The inhibitory transmitter, which is released during field
stimulation, may reduce the size and duration of the ex-
citatory potential and contraction (Klinge and Sjostrand,
1974). The view that the small excitatory potentials arise
because only a small proportion of key cells are innervated
and from which current spreads electrotonically is unlikely.
A prerequisite for this view, the presence of large ex-
citatory potentials in certain key cells, was not observed.
Moreover, the latency of the ejp (47ms) was small and showed
very little variation among different cells, further in-
dicating that each cell receives an excitatory innervation.
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The latency of the'excitatory potential in the bovine
retractor penis was shorter than that of the rat anococ-
cygeus (165msi Creed et al, 1975) and more in keeping with
transmission in the vas deferens and arteries where the
values range from 10-50ms (see Holman, 1970; Suprenant,
1980). Such differences are not accounted for by diffusion.
The average distance between nerve varicosities and smooth
muscle cells in the anococcygeus (260nm; Gillespie and
Lullman-Rauch, 1974) is similar to that in the bovine re-
tractor penis (some 200nmi Crossley, unpublished). Both
of these values are larger than the minimum separation in

the vas deferens.

Potential antagonists of excitatory electrical and mechan-
ical responses to field stimulation and exogenous noradren-
aline

The excitatory potential in the bovine retractor penis
displayed certain pharmacological characteristics similar
to those of the vas deferens and blood vessels. Both the
excitatory potential and contraction were abolished by
guanethidine, confirming their mediation by adrenergic
nerves (Klinge and Sjostrand, 1974). However, phentolamine
in concentrations which depressed the contraction to field
stimulation had little effect on the excitatory potential.
Phentolamine may inhibit contraction independently of the
receptors for neurally released noradrenaline as proposed
for blood vessels (Holman and Suprenant, 1980). This is
supported by the ineffectiveness of the al-adrenoceptor
antagonist, prazosin, against both the excitatory potential
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and contraction. Alternatively, the excitatory potential
may not be mediated by noradrenaline but by a co-trans-
mitter (e.g. ATP) released from the adrenergic fibres as
proposed for the vas deferens (Sneddon and Westfall, 1984).
If so, the noradrenergically-mediated component of the
contraction would be produced via a non-electrical mechan-
ism. Interestingly, the excitatory potential in the rat
anococcygeus has a phentolamine-resistant component which
is mimicked by ATP (Byrne and Large, unpublished).

Both phentolamine and prazosin were effective in-
hibitors of the depolarisation and contraction in response
to exogenous noradrenaline. Differences in the effective-
ness of a-adrenoceptor antagonists against neurally released
and exogenous noradrenaline are well known (Nickerson,
1949) and may reflect differences in the susceptibility to
or sensitivity of post-synaptic a-adrenoceptors. In view
of the relatively large distances between nerve varicosi-
ties and smooth muscle cells (200nm), access to the recep-
tors for neurally-released noradrenaline should be un-
hindered. A more likely alternative is that originally
proposed by Botta (1969) for the vas deferens, and more
recently by Holman and Suprenant (1980) for vascular smooth
muscle, that there may be 'junctional' or y- (Hirst and

Kir~t~Neild, 1980 il\ N.eild and Silverberg, 1982) adrenoceptors
which are activated by neurally-released noradrenaline
but which are insensitive to a-adrenoceptor antagonists,
and 'extrajunctional' receptors activated by exogenous
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noradrenaline and sensitive to ~-antagonists. There is
also some pharmacological evidence for two subpopulations
of a-adrenoceptor in the rat anococcygeus (Coats, Jahn
and Weetman, 19"82; McGrath, 1982) which may be due to the
presence of junctional and extrajunctional types. The
same may be true of the bovine retractor penis.

Effects of drugs potentiating or antagonising cholinergic
transmission

The effects of physostigmine and atropine on the
excitatory electrical and mechanical responses to field
stimulation and noradrenaline are consistent with _thepresence
of a cholinergic innervation acting on adrenergic nerves
to inhibit transmitter release (Klinge and Sjostrand, 1977;
Sjostrand, 1980). Electron microscopical studies have
shown allegedly cholinergic nerve profiles in close contact
with the adrenergic nerve endings in the bovine retractor
penis (Eranko et aI, 1976). However, it may be impossible
to distinguish microscopically between cholinergic and non-
adrenergic non-cholinergic nerve profiles (Gibbins, 1982).
In vivo the tone of the muscle may be due in part to
sympathetic nerve activity, in which case cholinergic
fibres, by inhibiting noradrenaline release, would cause

relaxation.

Physostigmine initially enhanced the excitatory poten-
tial and contraction. In the rat anococcygeus also, physo-
stigmine enhances the contraction in response to field
stimulation without changing noradrenaline overflow (Smith
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and Spriggs, 1983). The bovine retractor penis is con-
tracted by high concentrations of cholinergic agonists
(Klinge and Sjostrand, 1974), suggesting that enhancement
of the response to field stimulation by physostigmine
may be due to acetylcholine released from cholinergic
fibres acting on the smooth muscle directly.

Effects of tetraethylammonium (TEA) on resting activity
and excitation

TEA in low concentrations enhanced the amplitude of
the excitatory potential and contraction in response to
field stimulation. This was unaccompanied by membrane
depolarisation and was presumably due to the prolongation
of the action potential in the adrenergic nerve fibres,
and consequently an increase in transmitter release (rQ)Clk. o..",l Ho..J'~J

tQS1; .Thoenen, Hafely and Stachelin, 1967). The antimuscarinic
activity of TEA (Gillespie and Tilmisany, 1976) is unlikely
to account for the potentiation observed because of the
relatively low concentration required (10-4M) and the rapid
onset of effect (some 15 min). Potentiation of the ex-
citatory response to field stimulation by atropine took
some 30-45 min to occur. The depolarisation produced by
higher concentrations (0.5 - 10 x 10-3M) of TEA may have
been due either to a direct action on the smooth muscle
cell membrane or to the release of noradrenaline from
adrenergic nerves. The latter is supported by the lack of
any enhancement of the depolarisation and contraction in
response to exogenously-added noradrenaline. In other
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smooth muscle preparations, e.g. rabbit ear artery
D,.."cy""''''' ......d (4 !.tc~Q.s ) Iq"" )

(Droogmans, Raeymaekers and Casteels, 1977;Aand cat
spleen (Thoenen et aL, 1967), TEA (1.2 - la x la-3M) en-
hanced the depolarisation and contraction in response to
exogenous noradrenaline. However, in the rat anococcygeus,
although the response to noradrenaline was not enhanced by
TEA, the con traction in response to TEA (5 - 20 x 10-3M) had
phentolamine-sensitive and insensitive components, suggest-
ing both the liberation of transmitter and a direct action
on the smooth muscle cell membrane (Gillespie and Tilmisany,
1976). The action of TEA on nerves and muscle is presumably
to block K+ channels. This increases the amplitude of
action potentials in nerves and smooth muscle by reducing
the rate of repolarisation (Tasaki and Hagiwara, 1957;
Ito, Kur~yama and Sakamoto, 1970). Blockade of the resting
K+ conductance could also explain the depolarising action

of TEA.

The absence of action potentials in the presence of
TEA was surprising, particularly in view of the report by
Samuelson et al (1983) who recorded spontaneous spike
activity from the bovine retractor penis using the sucrose
gap technique. In other smooth muscle preparations, e.g.
carotid artery (Mekata, 1971), rat anococcygeus (Creed et
aI, 1975), tracheal smooth muscle (Kirkpatrick, 1975) and
ear artery (Droogmans and Casteels, 1977), which do not
normally exhibit spike activity, TEA destabilised the
membrane and evoked action potentials. The inability to
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record spike activity in the present study may have been
due to their very small size in the sucrose gap (approxi-
mately ImV: Samuelson et aI, 1983) or the presence of rubber
membranes which may, by constricting the tissue, have pre-
vented the propagation of spike activity to cells at the
Krebs-sucrose interface.

Change in membrane conductance during the excitatory
potential

There was an increase in membrane conductance during
the excitatory potential and a linear relationship between
its amplitude and the membrane potential. An apparent
reversal potential of -30mV was obtained for the excitatory
potential in the double sucrose gap. Since the potential
changes recorded in the sucrose gap are less than those
measured intracellularly (Bennett and Burnstock, 1966), the
true value for the reversal potential is probably more
positive than -30mV and may be closer to the value of
-20mV obtained by Creed (1975) for the rat anococcygeus.
A reversal potential of -20 to -30mV is more negative than
the anticipated equilibrium potentials for Cl-, Na+ (-13mV
and +13mV respectively in the rat anococcygeusi Creed and
Pollock, unpublished), but may reflect the net equilibrium
potential for more than one ion, e.g. Na+ and K+ or Cl-
and K+.

Effect of replacing sodium chloride with sodium glutamate
on the excitatory potential and contraction

Replacement of the sodium chloride in the Krebs solution
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with sodium glutamate reduced the amplitude of the
depolarisation and contraction in response to field
stimulation and exogenous noradrenaline. The basis for
this effect was unlikely to be a reduction in the chloride
gradient across the smooth muscle membrane as has been
proposed for the myometrium (Bulbring and Szurszewski,
1974). Although the intracellular chloride is rapidly
depleted (Casteels, 1971), recent studies on the vas def-
erens using chloride-sensitive microelectrodes (Aicken and
Brading, 1982,1983) indicate that in the presence of low
chloride solutions the chloride gradient was increased by
active uptake. The reduction in amplitude of the excitatory
responses in the bovine retractor penis may have been due
to a change in intracellular pH (Aicken and Brading, 1984)
or the effect of glutamate. In common with other anion
substitutes (Vaughan-Jones, 1979), glutamate chelates
calcium. This could have been overcome by increasing
the concentration of Ca2+ present in the modified Krebs
solution. Glutamate may inhibit transmitter release by
field stimulation, but this would not account for the
reduction in response to exogenous noradrenaline.

EXCITATORY RESPONSES TO ATP AND EXTRACT
ATP and extract each depolarised (by up to 18 and

8mV respectively) the bovine retractor penis. ATP also
depolarises other smooth muscles (Ohga and Taneika, 1977;
Bauer and Kuriyama, 1982b). The presence of ATP as a
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contaminant could account for the depolarisation of
the bovine retractor penis by the extract. However,
while the depolarisation to ATP was accompanied by a
small contraction, equivalent depolarisations produced
by the extract were unaccompanied by a mechanical response.
The lack of a mechanical response was common to both activ-
ated and unactivated cleaned forms of the extract and was
therefore not due to the activity of the acid-activated
component. The extract has a high tonicity (approximately
SOOmM NaCI), which together with other impurities (e.g.
formate) may inhibit the contractile response.

SPONTANEOUS DEVELOPMENT OF TONE
The spontaneous development of tone was accompanied

in the bovine retractor penis by a maintained membrane de-
polarisation, sometimes interrupted by oscillations in membrane
p~tentialbut not spikes. Spontaneous tone was unaffected
by TTX or phentolamine, suggesting a myogenic mechanism.
That an inhibitory substance released from the tissue
during dissection was subsequently destroyed after setting
up seems unlikely. The interval required for the develop-
ment of tone (O.5-3h) varied considerably whereas the
effect of any postulated inhibitory substance would have
been expected to wear off rapidly in a tissue which was
being continuously perfused. Membrane depolarisation
presumably opens voltage-dependent Ca2+ and possibly Na+
channels, causing an influx or intracellular release of
Ca2+ with subsequent activation of the contractile pro-
teins (see Bolton, 1979).
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The initial stimulus for membrane depolarisation
may be stretch, causing the whole muscle to depolarise,
or spontaneous oscillations in potential, possibly
arising from pacemaker cells. Physiologically, the
spontaneous development of tone is probably an important
property of the muscle which in vivo is usually contracted.

INHIBITORY RESPONSE TO FIELD STIMULATION

Following spontaneous membrane depolarisation and
the development of tone, the excitatory potential in
response to field stimulation was reduced or abolished.
This is not wholly accounted for by either membrane de-
polarisation or the concomitant release of inhibitory
transmitter. Relaxation of the bovine retractor penis
to field stimulation was accompanied by an inhibitory
potential and often followed by a rebound depolarisation
and contraction. These responses are similar to those
reported in other smooth muscles innervated by non-
adrenergic non-cholinergic inhibitory nerves, e.g. taenia
coli (Bennett et alq 1966a,b), rabbit anococcygeus (Creed
and Gillespie, 1977) and rectococcygeus (Blakelty et al.,
1978). A single pulse was sufficient to evoke an inhibit-
ory potential and relaxation in the bovine retractor penis,
indicating the presence of ~ ~itory innervation. The
inhibitory potential and relaxation were blocked by TTX
but not by adrenergic or cholinergic antagonists, confirm-
ing their non-adrenergic non-cholinergic neurogenic origin.

The latency of the inhibitory potential was unusually
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long (1087ms) in comparison with other smooth muscles
(e.g. rabbit anococcygeus l85ms; Creed and Gillespie,
1977; rabbit rectococcygeus 200-340ms; Blake~ et aI,
1978). This is not due to slow electrotonic conduction
of the response because (a) the latency was not significantly
decreased when electrical recordings were made from tissue
regions in close proximity to the stimulating electrodes
(see Figure 4, Methods section), (b) the qonduction velocity
in the taenia coli (6-10cm s-l; Bulbring and Tomita, 1967;
Tomita, 1970) is fast. One factor which may have con-
tributed to the large latency was the difficulty in making
measurements from inhibitory potentials which were often
s~all and with a slow rate of rise. The latency was not
reduced in the presence of guanethidine and was not there-
fore due to the opposing activity of the adrenergic nerves.
The inhibitory transmitter may be stored in the nerve ter-
minals in an inactive form and converted to the active
form on arrival of the nerve impulse (Bowman, Gillespie and
McGrath, 1983). Thus, the long latency could be due to
the time required for the conversion of the transmitter
from inactive to active form. Diffusion of transmitter to
the muscle cells is an unlikely cause because of its
rapidity in other tissues (within 50~s at the neuromuscular
junction; Katz and Miledi, 1965) and the rapid onset of
the excitatory potential (less than 50ms) in the bovine
retractor penis.

Other examples of long latency inhibitory potentials
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have been reported following the iontophoretic application
of muscarinic agonists in both nerves (Koketsu, Nishi and
Soeda, 1968; Hartzell, Kuff1er, Stickgold and Yoshikami,
1977) and smooth muscle (Purves, 1974; Bolton, 1976).
The rate of agonist-receptor binding is a possible rate-
limiting step, though this occurs within O.3ms in response
to acetylcholine at the neuromuscular junction (Fatt and
Katz, 1952). The latency may be determined by the rate

K..uf'F\...tR,c:;:'IIO<'_G..{'A ..i~ \ '{a.:~\K.\,\, t
of activation of ionic channels (Hartzell - ., 1977).
Delayed activation may result from the involvement of a
biochemical mechanism in the response. Such a mechanism
may exist in some ganglia (Greengard, 1976) where the

slow synaptic potential may be mediated by an acetylcholine-
activated guanylate cyclase. A similar mechanism in the
bovine retractor penis could also explain the considerable
variation in latency (standard deviation 782ms) which may
have been due to the different levels of substrates or
enzymes in the postulated biochemical step. Differences
in the distances between stimulation and recording elec-
trodes may also have contributed to the variability in
latency.

Relationship between the inhibitory potential and relaxation
The inhibitory potential preceded the relaxation to

field stimulation. However, the relationship between mem-
brane hyperpolarisation and relaxation is unclear. In
smooth muscles which admit Na+ or Ca2+ during spontaneous
action potentials, e.g. taenia coli or uterus, hyperpolaris-
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ation causes the cessation of firing and thus inhibits Ca2+
entry or intracellular release. The development of tone

in the bovine retractor penis was accompanied not by
action potentials but by a maintained depolarisation of
the membrane. Presumably the intracellular calcium is

maintained at a constantly elevated level. By closing
voltage-dependent Ca2+ and Na+ channels, membrane hyper-
polarisation would decrease Ca2+ entry and its release
from intracellular binding sites. This implies that both
Ca2+ and Na+ are continuously cycling acro~s the membrane,
i.e. are pumped out of the cell and re-enter via voltage-
dependent channels. Such a mechanism could exist, but
the small size of the inhibitory potential in some cells
(1-2mV, 10 pulses at 5Hz) appears insufficient to close
voltage-dependent Ca2+ channels unless there is very tight

coupling between the two. The inhibitory transmitter may
reduce intracellular Ca2+ by activating its sequestration
to intracellular binding sites, e.g. cell membrane, sarco-
plasmic reticulum or mitochondria, or extruding Ca2+ into
the extracellular space via a pump. These changes may be
triggered by the inhibitory potential.

The inhibitory potential did not appear to be an
essential step to producing a relaxation in response to
field stimulation (see Samuelson, 1983). This was illus-
trated by the action of TEA which, in high concentrations,
abolished the inhibitory potential but not the relaxation
to field stimulation. Ouabain also caused a reduction in
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the amplitude of the inhibitory potential without reducing
the mechanical response, though the latter effect may
have been masked by the increase in tone level in the
presence of the drug.

INHIBITORY RESPONSES TO EXTRACT, ATP, SODIUM NITROPRUSSIDE
AND NORADRENALINE

The acid-activated inhibitory extract, as previously
reported (Gillespie et aI, 1981), relaxed the bovine re-
tractor penis while the unactivated extract did not. The
relaxation was accompanied by a membrane hyperpolarisation
and, in this respect, the extract mimicked the inhibitory
transmitter. The duration of the hyperpolarisation to
extract was usually longer than that to field stimulation.
Such differences may arise from the method of administration
of the extract.

ATP and sodium nitroprusside each produced a hyper-
polarisation and relaxation of the bovine retractor penis.
The response to ATP was of particular interest because of
its possible transmitter role in other tissues (Burnstock,
1979) and presence as a contaminant in the extract. ATP
hyperpolarises a number of smooth muscles innervated by
non-adrenergic non-cholinergic inhibitory nerves, e.g.
taenia coli (Tomita and Watanabe, 1973) and guinea-pig
ileum (Bauer and Kuriyama, 1982b). The bovine retractor
penis desensitised to ATP so rapidly that it was impossible
to obtain a dose-response curve. For this reason, and
because it did not require acid activation, ATP is unlikely
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to be the active component in the inhibitory extract.
Neither is ATP a candidate for the inhibitory transmitter
because first, ATP also produced excitation, and secondly
desensitisation developed to ATP without loss of the res-
ponse to inhibitory nerve stimulation.

The effects of 'pure' ATP and ATP present in the
extract showed distinct differences. Although the un-
activated extract contained sufficient ATP to relax the
muscle and produce desensitisation to ATP, neither was
observed. This was not because ATP in the extract was
inactivated by one of the other components, because the
unactivated extract depolarised the muscle. The lack of
inhibitory effect of ATP present in the extract may have
been due to the presence of other impurities, e.g. sodium
chloride, formate.

Sodium nitroprusside was a very potent inhibitor of
tone in the bovine retractor penis, producing hyperpolaris-
ation and relaxation in doses as low as 1 x 10-13moles.
The onset to (1-2s) and duration of inhibition, and the
following rebound excitation to sodium nitroprusside, were
similar to that to inhibitory extract, suggesting that the
two may act via a similar mechanism.

In one preparation, following prolonged treatment with
a-adrenoceptor antagonist prazosin, noradrenaline produced
a small hyperpolarisation and relaxation mediated by in-
hibitory B-adrenoceptors. These do not appear to contribute
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to the inhibitory response to field stimulation because
of the ineffectiveness of guanethidine and propranolol as
antagonists and the dominant excitatory effect of exogenous
noradrenaline (Klinge and Sjostrand, 1974).

Rebound response to field stimulation, extract, sodium
nitroprusside and ATP

A rebound depolarisation and contraction often followed
the relaxation of the bovine retractor penis to field stimul-
ation, particularly in muscles with a low level of resting
tone. The amplitude of the rebound response appeared to
be independent of the preceding inhibition but was depend-
ent on the number of pulses applied. This suggests that
the rebound response may be mediated by non-adrenergic non-
cholinergic excitatorY nerves, as suggested for the guinea-
pig ileum (Bywater et al, 1981) and taenia coli (Haas, 1981),
in which apamin blocked the inhibitory potential and
relaxation without affecting the rebound depolarisation.
In the bovine retractor penis, however, the inhibitory
extract, ATP and sodium nitroprusside also produced rebound
depolarisation and contraction. Although the extract could
contain a non-adrenergic non-cholinergic excitatory trans-
mitter and ATP could be that transmitter, the rebound
response to sodium nitroprusside is difficult to explain
on this basis unless it released the transmitter. More-
over, blockade of the inhibitory response to field stimul-
ation with oxyhaemoglobin did not reveal a delayed depo1ar-
isation and contraction.
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Sites of action of extract, sodium nitroprusside and ATP
The short onset time required for the effects of the

activated extract, ATP and sodium nitroprusside, and the
non-tachyphylactic nature of the extract and sodium nitro-
prusside, suggest a direct action on the smooth muscle
cell membrane rather than the release of transmitter from
the inhibitory nerves. The absence of a technique to
eliminate the non-adrenergic non-cholinergiC innervation
meant that an indirect action of the agonists could not

be excluded.

POTENTIAL ANTAGONISTS OF THE INHIBITORY RESPONSE TO FIELD
STIMULATION, EXTRACT AND SODIUM NITROPRUSSIDE

A pharmacological comparison between the inhibitory
responses to field stimulation, extract and sodium nitro-
prusside was made using oxyhaemoglobin. Oxyhaemoglobin
blocked the relaxation to each, confirming recent reports
(Bowman, Gillespie and Pollock, 1982). The accompanying
hyperpolarisation to each stimulus was also blocked. The
large size of the oxyhaemoglobin molecule (molecular weight
approximately 60,000 daltons) suggests that it acts out-
side the cell, possibly by binding the transmitter, the
active component in the extract or sodium nitroprusside.
preventing their actions on the post-synaptic membrane
(Bowman and Drummond, 1984). Blockade of receptors could
explain the antagonism of the responses to inhibitory nerve
stimulation and extract but not sodium nitroprusside which
is thought to act directly on the membrane to cause hyper-
polarisation (H~usler and Thorens, 1976; Ito, Suzuki and
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Kuriyama, 1978) or stimulate guanylate cyclase directly
(Hardman, 1980).

POSSIBLE ROLE OF cGMP IN THE INHIBITORY RESPONSES TO
FIELD STIMULATION AND EXTRACT

The similarities between the effects of inhibitory
nerve stimulation, extract and sodium nitroprusside implied
a common mechanism of action. This mechanism might involve
cGMP. Sodium nitroprusside is known to increase cGMP levels
in smooth muscle by increasing the activity of guanylate
cyclase (Schultz, Schultz and Schultz, 1977; Diamond, 1977;
Hardman, 1980). Recently, field stimulation, extract and
sodium nitroprusside have been shown to increase cGMP levels
in the bovine retractor penis, an effect which was blocked
by oxyhaemoglobin (Bowman and Drummond, 1984). Moreover,
the compound M and B 22948, which inhibits cGMP-specific
phosphodiesterase, potentiated the relaxation in response
to field stimulation. This was confirmed in the present
study, though M and B 22948 failed to enhance the amplitude
of the inhibitory potential significantly. This was not
because the inhibitory potential was already maximal, since
increasing the number of pulses applied further increased
its amplitude. The duration of the inhibitory potential

.was sometimes increased by M abd B 22948, but the inconcist-
ency of this effect makes it unlikely to account for the
potentiation of the relaxation. Similarly, the relaxation
to inhibitory extract was initially increased by M and B
22948, though to a lesser extent that field stimulation,
without any apparent increase in the amplitude or duration
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of the hyperpolarisation. Thus, although cGMP does appear
to be involved in the relaxation to field stimulation and
extract, it does not appear to be involved in the accompany-
ing hyperpolarisation. The effects of dibromo-cGMP, which
relaxes the bovine retractor penis (Bowman and Drummond,
1984), on membrane potential should be investigated to
confirm this.

Although the initial effects of M and B 22948 on field
stimulation and the extract were similar, after prolonged
contact with the drug both the hyperpolarisation and
relaxation to extract were inhibited, while field stimul-
ation continued to be enhanced. Inhibition of the response
to extract usually occurred after the same period of ex-
posure to the M and B compound (approximately 20 min) •
Thus, it was unlikely to be due to loss of inhibitory activ-
ity in the extract caused by its reconversion to the un-
activated form, because the time between extract activation
and its addition to the preparation varied.

CHANGE IN MEMBRANE CONDUCTANCE DURING THE INHIBITORY
POTENTIAL

The inhibitory potential in the bovine retractor penis
was accompanied by a decrease in membrane conductance.
This is in contrast to the taenia coli (Jager and Scheivers,
1980) and rabbit anococcygeus (Creed and Gillespie, 1977),
in which an increase in conductance was observed. Decreases
in membrane conductance have been recorded during inhibitory
(Engberg and Marshall, 1971; Weight and Padjen, 1973a,b)



lB9

and excitatory (Dudel and Kuffler, 1960; Shuba, 1977)
potentials in both nerves and muscle. In crayfish muscle
fibres the increase in membrane resistance during the
excitatory post-synaptic potential (EPSP) was attributed
to the non-linear voltage-current relationship of the
membrane. The EPSP, though produced by an increased con-
ductance, itself caused a voltage-dependent decrease in
membrane conductance (Rueben and Gainer, 1962; Dudel, 1974).
Such a mechanism does not account for the increased membrane
resistance during the inhibitory potential in the bovine
retractor penis because (a) the V/I relationship was linear
for inward currents, (b) small (2mV) inhibitory potentials
which were unlikely to cause voltage-dependent changes in
membrane characteristics were accompanied by significant
decreases in membrane conductance.

IONIC BASIS FOR INHIBITORY POTENTIAL
The ionic species responsible for evoked changes in

membrane potential is usually indicated by the reversal
potential of the response. In the bovine retractor penis,
however, the relationship between the inhibitory potential
and the membrane potential was non-linear and gave two
apparent values for the reversal potential. This contrasts
with other smooth muscles innervated by non-adrenergic non-
cholinergic inhibitory nerves, e.g. taenia coli (Tomita,
1972), rat anococcygeus (Creed and Gillespie, 1977) and
guinea-pig anal sphincter (Lim and Muir, 1983), in which
the relationship was linear and had a reversal potential
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at approximately that of the potassium equilibrium
potential (some -80 to -90mV) and shows a greater similarity
to the slow inhibitory post-synaptic potential (ipsp) of

Hcu-t3dD. ) ItUI' ;
certain ganglia (Hartzell et al, 197nA Horn and Dodd, 1981).

Potassium
The inhibitory potential in the bovine retractor penis

was abolished at -103mV, which is higher than the anticipated
equilibrium potential for potassium (-87mV, assuming that
the internal concentration of potassium is the same as
measured in the rat anococcygeus, O.127M; Creed and Pollock,
unpublished). Unlike the taenia coli (Tomita, 1972) and
bullfrog sympathetic ganglia (Smith and Weight, 1977),
the amplitude of the inhibitory potential in the bovine
retractor penis was not increased when EK+ was made more
negative by removing Kt from the Krebs solution. Increasing
the external K+ concentration to 20mM would be expected to
change EK to -49mV. Inhibitory potentials were recorded
at membrane potentials exceeding this value. In normal
Krebs solution, reversal of the inhibitory potential was
not observed at membrane potentials more negative than
-103mV. Reversal would have been expected if the action
of the transmitter was to cause the membrane potential to
shift towards EK+ via an increase in K+ permeability (Tomita,

1972~ Horn and Dodd, 1981).

Together with the increase in membrane resistance
during the inhibitory potential, the results suggest that
the basis of the response in the bovine retractor penis is
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not an increase in K+ conductance. This may also explain
why apamin, which blocks K+ channels activated by the
inhibitory transmitter in other tissues (Maas, 1981; Bauer
and Kuriyama, 1982b), was relatively ineffective against
inhibitory responses to field stimulation in the bovine
retractor penis.

Chloride
The reduction in or removal of chloride from the Krebs

solution depressed or abolished the inhibitory potential
s~ggesting that it may be due to a change in permeability
to chloride. The inhibitory transmitter could either
stimulate CI- uptake into the cell or decrease its loss.
The former explanation requires that Cl- be pumped into
the cell against its concentration gradient via an active
mechanism stimulated by the transmitter. However, the
mechanism responsible for Cl- uptake, though uncertain,
does not appear to involve a distinct pump. Cl- uptake
appears to be via a carrier-operated mechanism (Aickin and
Brading, 1983) which may be driven by the sodium gradient
(see Brading, 1979, 1980). Selective enhancement of chloride
uptake also fails to explain why an increase in membrane
resistance occurred during the inhibitory potential. The
latter effect could be due to a decrease in Cl conductance.
Recent studies (Aickin and Brading, 1982,1983) suggest
that the resting ~l- conductance in smooth muscle cells
may be a small proportion (some 4%) of the total membrane
conductance. This may increase after the development of
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tone in the bovine retractor penis, although the inactiv-
ation of an already low CI- conductance by the inhibitory
transmitter could explain the small size of the inhibitory
potential.

The reduction in amplitude of the inhibitory potential
at membrane potentials ranging from -60 to -27mV may be
due to the combined effects of a decrease in potential
difference between ECl-and the membrane potential and
reduced membrane resistance. The latter effect may prevent
reversal of the inhibitory potential at membrane potentials
more positive than -27mV.

The inhibitory potential was reduced or abolished after
prolonged contact with ouabain or K+-free Krebs. solution,
both of which reduce. the Cl-gradient across the membrane
indirectly by inhibiting the Na+-K+ ATPase and hence re-
ducing the Na+ gradient (Brading, 1980). That a Na+-K+
ATPase is present in the bovine retractor penis was suggested
by the depolarising action of ouabain and the hyperpolaris-
ation which' occurred following the readmission of K+ after
prolonged K+ withdrawal (see Widdicombe, 1980). The pro-
longed contact time required for the abolition of the in-
hibitory potential by ouabain suggests that the inhibitory
transmitter does not stimulate the Na+-K+ ATPase itself.

Interestingly, the inhibitory potential was depressed
rapidly (within some 6 min) following K+ withdrawal or the
replacement of Cl- with glutamate or benzene sulphonate.



193

This cannot be attributed to a reduction in the Cl- gradient,
and consequently the abolition of the resting Cl- conduct-
ance. Intracellular Cl- activity in the vas deferens
dropped by only some one-seventh six minutes after complete
withdrawal of chloride. Moreover, after prolonged periods
in low Cl- (10% normal) solutions the chloride gradient
was larger than that in normal Krebs (Aicking and Brading,
1982). Unless Cl- regulation in the bovine retractor penis
differs considerably from that in the vas deferens, these
observations suggest that the reduction in amplitude of
the inhibitory potential in low (12.7 x 10-3M) and thus
possibly zero chloride solution may not be due to the
abolition of the Cl- gradient.

Both of the anion substitutes employed, glutamate and
benzene sulphonate, have Ca2+-chelating properties. The
resulting decrease in the external Ca2+ concentration may
interfere with drug-receptor combination or receptor activ-
ation. A decrease in membrane resistance caused by benzene
SUlphonate or glutamate appears unlikely, because in other
smooth muscles, e.g. taenia coli (Ohashi, 1970), uterus
(Bulbring and Szursweski, 1974), longitudinal muscle of
the ileum (Benham and Bolton, 1983) and rat anococcygeus
(Byrne and Large, unpublished) replacement of part or all
of the external chloride with impermeant anions (including
benzene sulphonate) either did not affect or increased
membrane resistance.

Blockade of non-adrenergic non-cholinergic 'receptors'
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also appears an unlikely mechanism of action for the
anion substitutes. Although some muscarinic receptor
blocking activity has been reported for benzene sulphonate
(Benham and Bolton, 1983), its effects on the inhibitory
potential in the bovine retractor penis were qualitatively
similar to those of glutamate which has a different
chemical structure.

Blockade of a resting conductance normally inactivated
by the action of the inhibitory transmitter is another
possibility. Trinitrobenzene sulphonate reduced K+ channel-
~losing rates in frog myelinated nerves (Cahalan and
Pappone, 1984), th~ugh this effect was irreversible. Re-
placement of chloride with glutamate or benzene sulphonate
hyperpolarised the membrane after some 5 min, suggesting
that the anion substitutes may block ionic channels. That
membrane hyperpolarisation was not due to changes in liquid
junction potentials (Coburn et aI, 1975) is supported by
the accompanying decrease in muscle tone.

The effect of the low CI- solutions may have been to
inhibit transmitter release by field stimulation. This,
again, seems unlikely in view of the persistence of non-
adrenergic non-cholinergic inhibitory potentials in the
taenia coli (Bennett, Burnstock and Holman, 1963; Tomita,
1972) and jejunum (Hidaka and Kuriyama, 1969) in low
chloride solutions.
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Sodium
The effect of ouabain on the inhibitory potential

is compatible with the transmitter inactivating a Na+
conductance. Reduction in the Na+ gradient, caused by
prolonged treatment with ouabain, may inactivate the Na+
channels involved and thus reduce the effect of the in-
hibitory transmitter. Some information on the role of
Na+ may have been gained by reducing its concentration in
the Krebs solution. However, the results would have been
difficult to interpret. Complete removal of sodium would
presumably abolish nerve activity whereas partial with-
drawal may be insufficient to affect the sodium conductance.
A further problem is that if Cl- uptake into smooth muscle
cells is driven by the Na+ gradient (Brading, 1979,1980).
any reduction in the latter would invariably reduce the
CI-:-gradient.

Calcium
A further possibility is that the inhibitory trans-

mitter reduced membrane Ca2+ conductance. After the
development of tone in the bovine retractor penis, Ca2+
may be continuously entering the cell and be pumped out
in a cycle, the net effect being a stable level of in-
creased intracellular free Ca2+. Thus, if the inhibitory
transmitter decreased Ca2+ entry it would cause both hyper-
polarisation and relaxation of the muscle. The effect of

.replacing CI- with benzene sulphonate or glutamate may
have been due to their Ca2+-chelating properties which
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would reduce the levels of external Ca2+ and hence the
Ca2+ gradient across the membrane. That this effect did
occur is suggested by the slow hyperpolarisation and re-
duction in tone observed after prolonged contact with the
low chloride solutions. However, the inhibitory potential
always preceded and was of shorter duration than the
relaxation to field stimulation, suggesting that the basis
for the two effects was different.

VOLTAGE DEPENDENCE OF THE INHIBITORY POTENTIAL
The voltage dependence of the inhibitory potential

over the membrane potential range -60 to -103mV was com-
patible with the response being due to a decrease in CI-,
Na+ or Ca2+ conductance. Anderson and Stevens (1973) pro-
posed that the voltage dependence of transmitter-evoked
conductance changes arose from the voltage sensitivity of
channel 'open time'. In their model, channel open time
was increased at high membrane potentials because the energy
barrier for a conformational change from open to closed was
increased. Such a model, if applicable to the bovine re-
tractor penis, would predict that as the membrane potential
was increased (beyond -60mV), the channel inactivated by
the inhibitory transmitter would spend progressively less
time in the closed conformation. Hence, the amplitude of
the inhibitory potential would be reduced.

The voltage dependence of the inhibitory potential
raised an interesting paradox. At a membrane potential of
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some -60mV the inhibitory potential was maximal, yet at
this membrane potential the tone level would normally be
zero and the muscle unable to relax. In order to observe
the inhibitory potential it was necessaryfor the muscle to de-

polarise (Fig.3l), yet after this had occurred, passive
hyperpolarisation of the membrane then enhanced the in-
hibitory potential. Moreover, passive depolarisation of
the membrane potential in the sucrose gap failed to unmask
an inhibitory potential to field stimulation. The differ-
ence between passive and spontaneous depolarisation may be
that in the latter, the conductance which is inactivated
by the inhibitory transmitter is switched on and may even
be the basis for spontaneous depolarisation.

IONIC BASIS FOR THE HYPERPOLARISATION TO INHIBITORY EXTRACT
If the extract contained the inhibitory transmitter,

then it should share the same mechanism of action. The
membrane resistance change during the hyperpolarisation to
inhibitory extract (cleaned activated) was inconsistent.
Most frequently, either no significant change or an in-
crease in membrane resistance occurred. The absence of
any change in some cells was not due to the hyperpolaris-
ation being small, since inhibitory potentials of only
1-2mV produced large increases. The lack of a consistent
increase to extract may have been due to contaminants,
e.g. ATP, which may have decreased membrane resistance,
thus masking the effect of the acid-activated component.
The amplitude of the hyperpolarisation to extract was
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increased during membrane potential displacement from
rest (-45mV) to more negative values (-57mV). This in-
dicates a similar voltage dependence to the inhibitory
potential.

In common with the inhibitory potential, the hyper-
polarisation to cleaned activated extract was reduced or
abolished following the withdrawal of K+ or Cl- from the
Krebs solution. However, the effects of Cl- withdrawal
occurred more rapidly than could be accounted for by a
reduction in the Cl- gradient alone and suggest that the
responses were inhibited directly by benzene sulphonate.

CONCLUSIONS
The inhibitory potential in the bovine retractor penis

showed some similarities to those recorded in other smooth
muscles possessing a non-adrenergic non-cholinergic innerv-
ation. Inhibitory potentials were evoked by a single pulse,
preceded relaxation and were TTX-sensitive but insensi-
tive to adrenergic or cholinergic antaqonists. Particularly
interesting characteristics of the response in the bovine
retractor penis included the accompanying increase in
membrane resistance, lack of enhancement by removing the
external K+, sensitivity to Cl- replacement by other anions
and its voltage dependency. These characteristics were
largely shared by the hyperpolarisation to inhibitory
extract and were compatible with the view that the extract
may contain the inhibitory transmitter in the bovine re-
tractor penis.
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Also of particular interest in this muscle was the
ability of the inhibitory transmitter to produce relax-
ation independently of any change in membrane potential
in the presence of TEA (0.5 to lxlO-2M). This indicates
two possible mechanisms, electrical and non-electrical,
by which relaxation may be produced.
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RAT AND RABBIT ANOCOCCYGEUS

The electrical and mechanical effects of the cleaned
activated extract and inhibitory nerve stimulation in the
rat anococcygeus were consistent with their mediation by
the same active component. The same proportion of cells
(some 25%) exhibited an electrical response to the extract
or field stimulation comprising inhibition of the oscil-
lations in membrane potential.

Differences between the amplitude of the electrical
response to inhibitory nerve stimulation in the rat and
rabbit anococcygeus reported previously (Creed and Gillespie,
1977) were less apparent. Unlike the rat, however, in the
rabbit the cleaned activated extract and inhibitory nerve
stimulation inhibited the oscillations in membrane potential
in every cell exhibiting this behaviour. Thus, the extract
did appear to distinguish between the two species in a
similar manner to inhibitory nerve stimulation. Relaxation
to ATP was also accompanied by inhibition of the oscillations
in membrane potential, though the dose of ATP required ex-
ceeded that present in volumes of activated extract which
produced equivalent electrical and mechanical effects by
approximately lOOO-fold.

In the majority of cells which failed to exhibit elec-
trical oscillations in the rabbit, neither inhibitory nerve
stimulation nor the activated extract produced large elec-
trical changes, although both relaxed the muscle. The
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absence of electrical response was particularly apparent
with the extract, possibly due to the presence of ATP
which depolarised the tissue. Differences between in-
hibitory nerve stimulation and the extract also emerged
when the effect of apamin was investigated on the rabbit
anococcygeus. Apamin failed to block the inhibitory
potential and relaxation to ·field stimulation, suggesting
that the K+ channels mediating the response differ from
those in the taenia coli. The effects of the extract
were inhibited transiently by apamin, possibly because of
the initial excitatory effects of the drug.

In both the rat and, to a lesser extent, the rabbit
anococcygeus the activated extract did mimic inhibitory
nerve stimulation, suggesting that it may contain the
non-adrenergic non-cholinergic transmitter in these
tissues and thus, that this transmitter may be the same
as that of the bovine retractor penis.
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