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Abstract 

This thesis is an investigation of structural brain abnormalities, as well as 

multisensory and unisensory processing deficits in autistic traits and Autism Spectrum 

Disorder (ASD). To achieve this, structural and functional magnetic resonance 

imaging (fMRI) and psychophysical techniques were employed.   

ASD is a neurodevelopmental condition which is characterised by the social 

communication and interaction deficits, as well as repetitive patterns of behaviour, 

interests and activities. These traits are thought to be present in a typical population.  

The Autism Spectrum Quotient questionnaire (AQ) was developed to assess the 

prevalence of autistic traits in the general population. Von dem Hagen et al. (2011) 

revealed a link between AQ with white matter (WM) and grey matter (GM) volume 

(using voxel-based-morphometry). However, their findings revealed no difference in 

GM in areas associated with social cognition.  Cortical thickness (CT) measurements 

are known to be a more direct measure of cortical morphology than GM volume. 

Therefore, Chapter 2 investigated the relationship between AQ scores and CT in the 

same sample of participants. This study showed that AQ scores correlated with CT in 

the left temporo-occipital junction, left posterior cingulate, right precentral gyrus and 

bilateral precentral sulcus, in a typical population. These areas were previously 

associated with structural and functional differences in ASD. Thus the findings 

suggest, to some extent, autistic traits are reflected in brain structure - in the general 

population.  

The ability to integrate auditory and visual information is crucial to everyday life, and 

results are mixed regarding how ASD influences audiovisual integration.  To 

investigate this question, Chapter 3 examined the Temporal Integration Window 

(TIW), which indicates how precisely sight and sound need to be temporally aligned 

so that a unitary audiovisual event can be perceived. 26 adult males with ASD and 26 

age and IQ-matched typically developed males were presented with flash-beep (BF), 

point-light drummer, and face-voice (FV) displays with varying degrees of 

asynchrony and asked to make Synchrony Judgements (SJ) and Temporal Order 

Judgements (TOJ).  Analysis of the data included fitting Gaussian functions as well as 

using an Independent Channels Model (ICM) to fit the data (Garcia-Perez & Alcala-

Quintana, 2012). Gaussian curve fitting for SJs showed that the ASD group had a 
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wider TIW, but for TOJ no group effect was found. The ICM supported these results 

and model parameters indicated that the wider TIW for SJs in the ASD group was not 

due to sensory processing at the unisensory level, but rather due to decreased temporal 

resolution at a decisional level of combining sensory information. Furthermore, when 

performing TOJ, the ICM revealed a smaller Point of Subjective Simultaneity (PSS; 

closer to physical synchrony) in the ASD group than in the TD group. 

Finding that audiovisual temporal processing is different in ASD encouraged us to 

investigate the neural correlates of multisensory as well as unisensory processing 

using functional magnetic resonance imaging fMRI. Therefore, Chapter 4 investigated 

audiovisual, auditory and visual processing in ASD of simple BF displays and 

complex, social FV displays. During a block design experiment, we measured the 

BOLD signal when 13 adults with ASD and 13 typically developed (TD) age-sex- and 

IQ- matched adults were presented with audiovisual, audio and visual information of 

BF and FV displays. Our analyses revealed that processing of audiovisual as well as 

unisensory auditory and visual stimulus conditions in both the BF and FV displays 

was associated with reduced activation in ASD. Audiovisual, auditory and visual 

conditions of FV stimuli revealed reduced activation in ASD in regions of the frontal 

cortex, while BF stimuli revealed reduced activation the lingual gyri. The inferior 

parietal gyrus revealed an interaction between stimulus sensory condition of BF 

stimuli and group. Conjunction analyses revealed smaller regions of the superior 

temporal cortex (STC) in ASD to be audiovisual sensitive. Against our predictions, 

the STC did not reveal any activation differences, per se, between the two groups. 

However, a superior frontal area was shown to be sensitive to audiovisual face-voice 

stimuli in the TD group, but not in the ASD group. Overall this study indicated 

differences in brain activity for audiovisual, auditory and visual processing of social 

and non-social stimuli in individuals with ASD compared to TD individuals.  These 

results contrast previous behavioural findings, suggesting different audiovisual 

integration, yet intact auditory and visual processing in ASD.   

Our behavioural findings revealed audiovisual temporal processing deficits in ASD 

during SJ tasks, therefore we investigated the neural correlates of SJ in ASD and TD 

controls. Similar to Chapter 4, we used fMRI in Chapter 5 to investigate audiovisual 

temporal processing in ASD in the same participants as recruited in Chapter 4. BOLD 
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signals were measured while the ASD and TD participants were asked to make SJ on 

audiovisual displays of different levels of asynchrony: the participants’ PSS, audio 

leading visual information (audio first), visual leading audio information (visual first). 

Whereas no effect of group was found with BF displays, increased putamen activation 

was observed in ASD participants compared to TD participants when making SJs on 

FV displays. Investigating SJ on audiovisual displays in the bilateral superior temporal 

gyrus (STG), an area involved in audiovisual integration (see Chapter 4), we found no 

group differences or interaction between group and levels of audiovisual asynchrony. 

The investigation of different levels of asynchrony revealed a complex pattern of 

results indicating a network of areas more involved in processing PSS than audio first 

and visual first, as well as areas responding differently to audio first compared to 

video first. These activation differences between audio first and video first in different 

brain areas are constant with the view that audio leading and visual leading stimuli are 

processed differently.  
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1. Introduction 

In this thesis I will be investigating how different senses are combined by the brain 

and how that influences behaviour in both participants with ASD and typically 

developed (TD) participants. I will also be looking at how structural aspects of the 

brain correlate with autistic traits and how such underlying structural abnormalities 

can be related to audiovisual processing in ASD.   

Integration of information across different sensory modalities is an important part of 

everyday experience, as we are constantly flooded with different sensory stimuli and 

have to decide which stimuli belong together and which are unrelated. Integration of 

audio and visual information is particularly important in speech perception (Massaro, 

1998). It has been shown that we tolerate a degree of temporal asynchrony between 

sound and sight and still perceive it as one event; this is called the temporal 

integration window (TIW). 

Autism spectrum disorders (ASD) are a range of neurodevelopmental conditions often 

characterized by widespread abnormalities in social interactions and communication, 

as well as severely restricted interests and repetitive behaviour (American Psychiatric 

Association, 2000). Kanner (1943) originally reports sensory abnormalities in his 

description of autism. Sensory abnormalities have consistently been reported in 

clinical literature (e.g., Leekam, Nieto, Libby, Wing & Gould, 2007) and the DSM-V 

has included sensory abnormalities as a central feature in ASD. Traits of ASD are said 

to lie on a continuum within the general population (Frith, 1991; Baron-Cohen, 1995). 

To measure the extent of autistic traits in the general population the Autism-Spectrum 

Quotient (AQ; Baron-Cohen et al., 2001), a self-administered questionnaire, has been 

developed. The AQ is used to predict performance on tasks that are impaired in ASD, 

for example inferring others' mental states from the eyes (Baron-Cohen et al., 2001). 

1.1 Audiovisual temporal processing 

A well-known example of how we integrate audio and visual information to form a 

single percept is the McGurk illusion (McGurk & MacDonald, 1976), during which 

the pairing of incongruent visual and auditory speech information results in a novel 

integrated percept. For example the syllable “ba-ba” is simultaneously spoken over the 

video of someone saying “ga-ga” produces the combined percept of “da-da”. 

However, this McGurk illusion gets weaker the bigger the temporal asynchrony 
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between the visual and the auditory cues (e.g., Jones & Jarick, 2006). A similar 

illusion is the flash-beep illusion, which is based on the phenomenon that auditory 

stimulation (beeps) can influence the perception of visual stimulation (flashes). For 

example when a single flash is presented simultaneously with two beeps people 

perceive two flashes (Shams, Kamitani, & Shimojo, 2000). The bigger the temporal 

asynchrony between the second beep and the flash, the less often the second flash is 

perceived (Shams, Kamitani & Shimojo 2002). The attenuation of these multisensory 

illusions is due to the degree of asynchrony between the two multisensory signal cues, 

showing the importance of temporal synchrony, but also that multisensory integration 

does not require exact temporal synchrony. In the aforementioned examples, a small 

degree of asynchrony had little effect. 

1.2 Measuring audiovisual temporal processing 

During this section, the different methods used to investigate audiovisual processing 

are introduced. There are a variety of tasks that claim to measure the same 

psychophysical parameters, but whether the different tasks tap into the same 

perceptual mechanisms is questionable (Love, Petrini, Cheng & Frank, 2013).  The 

psychophysical parameters that are used when investigating audiovisual synchrony 

perception are the point of subjective simultaneity (PSS) and the width of the temporal 

integration window (TIW).  The PSS is a value that corresponds to the participant’s 

stimulus onset asynchrony (SOA) most often perceived as synchronous. This often 

deviates from the true synchronous point, i.e., when the SOA of the audio and the 

visual stimuli equals 0ms. Thus the PSS value presents the time difference between 

the audio and visual stimuli that is required for an individual to optimally perceive 

them as synchronous, and this is often a non-zero value as people are not perfect at 

detection asynchrony. For example, a negative PSS value indicates that the individual 

perceived synchrony when the audio information was presented before the visual 

information (audio-leading asynchrony). Furthermore, within a range of SOAs centred 

around the PSS, known as TIW, people are unable to reliably detect asynchrony 

between the audio and visual stimuli.  The TIW could be described as a range of 

SOAs, during which we are not sensitive to certain levels of asynchrony. Thus the 

TIW width measures the sensitivity of task responses to changes in SOA, i.e., narrow 

TIW represent higher sensitivity to deviation from perceived audiovisual synchrony. 

The PSS and the TIW width can be measured using a range of different tasks 
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1. 2. 1 Synchrony Judgements 

Synchrony Judgements (SJ) are commonly used to measure people’s PSS and TIW 

width. During SJs, participants are presented with audiovisual displays at various 

levels of SOA and are asked to judge whether the audio and the visual information 

were displayed in synch or out of synch (e.g., Petrini et al., 2009a,b; Love at al., 

2013). Commonly, the Gaussian probability density functions (e.g., Love et al., 2013, 

Petrini et al., 2009) or two cumulative Gaussians (e.g., van Eijk, Kohlrauch, Juola & 

van de Par, 2008, Stevenson et al 2014) are fitted to the proportion of synchronous 

responses at each SOA level from which the PSS and TIW width are derived. The PSS 

is the highest point of the fitted function, whereas the TIW width is either derived 

from the standard deviation or the full width at half maximum of the fitted function. 

SJ can lead to response biases, such as the equalisation bias which occurs because 

there is only one physically synchronous condition, but many asynchronous 

conditions. Participants might try to equalise frequency of the asynchronous and 

synchronous conditions, which has been reported before in other psychophysical 

experiments (Erlebacher & Sekuler, 1971). The width of the TIW might also depend 

on the participant’s subjective criterion setting. A participant might have less stringent 

criteria and responds “in synch” more often than someone with more stringent criteria 

(Vroomen & Keetels, 2010).  A cognitive bias of participants assuming that the audio 

and visual information naturally belong together and must therefore be synchronous 

might also occur (Vatakis & Spence, 2007). 

1.2.1 Temporal Order Judgements 

Temporal Order Judgements (TOJ) are also frequently used to investigate participants’ 

PSS and TIW width. During TOJs, the participants are presented with audiovisual 

displays at a range of different levels of SOAs and their task is to decide whether the 

audio or the visual information was presented first (e.g. Vatakis and Spence, 2007; de 

Boer-Schellekens, Eussen & JeanVroomen, 2013; Love et al., 2013). The PSS and 

TIW width are commonly derived from fitting a cumulative Gaussian distribution 

function to the proportion of video first or audio first responses (e.g., Love et al., 

2013). The PSS is the 50% point on the function and the TIW is either taken as the 

just noticeable difference (JND) or the standard deviation of the function. The PSS has 

been suggested to be influenced by a response bias, as participants may have a bias 

towards either responding audio first or visual first when they are guessing their 
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responses. However, Fujisaki and Nishida (2009) argued that the TIW width would 

not be influenced by this. 

1.2.2 Three Choice Synchrony Judgements 

Another popular task measuring the PSS and TIW width is the 3 choice Synchrony 

Judgement (SJ3) task, where participants are asked to indicate whether the audio 

stimulus or the visual stimulus was presented first or whether they were presented 

simultaneously. Two cumulative Gaussians are commonly fitted to the proportion of 

synchronous responses at each SOA (e.g., van Eijk et al., 2008). 

Although SJ, TOJ and SJ3 tasks have been used almost interchangeably in the 

literature to investigate temporal processing, recent research shows that these tasks 

produce different PSS and TIW width (Love at al., 2013; Petrini et al., 2010; Van Eijk 

at al., 2008), thus suggesting they measure different processes. Van Eijk at al. (2008) 

found that PSS estimates of SJ and SJ3 tasks were similar and highly correlated, 

whereas the PSS estimates of TOJ were significantly different and were uncorrelated 

to those of SJ and SJ3 tasks. These differences suggested that TOJ might have 

different underlying processes compared to the SJ tasks (Spence & Parise 2010). 

Furthermore, Love at al., (2013) showed no correlation of between SJ and TOJ for 

neither PSS nor TIW.  Further evidence for different underlying perceptual differences 

between the tasks is that training in one task does not influence performance of the 

other task (Mossbridge et al., 2006). Furthermore, the differences between these tasks 

have been argued to be due to decisional aspects and not due to sensory parameters of 

the tasks (Garcia-Perez & Alcala-Quintana, 2012). 

1.2.3    Implicit measures of sensitivity of audiovisual asynchrony 

While the above sections discussed explicit ways of measuring sensitivity to 

audiovisual asynchrony, it should be noted that there are also more implicit ways of 

measuring this sensitivity.  For example, the perception of audiovisual illusions is 

often dependent on temporal synchrony and can therefore be used as an implicit 

measurement of the sensitivity to audiovisual asynchrony.  The flash-beep illusion, 

described above, elicited when two beeps are presented simultaneous with a flash, 

which causes the participants to perceive two flashes. However, the bigger the 

temporal asynchrony between the second beep and the flash, the less often the second 

flash was perceived (Shams, Kamitani & Shimojo 2002). 
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1.3 Fitting procedures of synchrony judgements and temporal order judgements 

As mentioned above, the response data for SJs is commonly fitted with a Gaussian 

probability density function (e.g., Love et al., 2013, Petrini et al., 2009) or two 

cumulative Gaussians (e.g., van Eijk et al., 2008, Stevenson et al 2014), whereas, 

TOJs are often fitted with a cumulative Gaussian distribution function (e.g., van Eijk 

et al., 2008; Love et al., 2013) or a linear function (de Boer-Schellekens et al., 2013). 

Fitting these psychometric functions to SJ and TOJ responses does not account for 

asymmetry and irregularities within the data. For example, an individual’s proportion 

of synchronous responses in SJs are known to generally be asymmetric. Similarly, 

“video first” responses of an individual in TOJs often show a pronounced plateau 

midway along the range of SOAs. Once the data is averaged across individuals, 

however, these asymmetries and irregularities are likely to be averaged out, too, and 

information might be lost.  Therefore, it is questionable whether presenting the 

participants response data by using best-fitting Gaussian functions is the most 

appropriate procedure (Maier et al., 2011; Garcia-Perez & Alcala-Quintana, 2012). 

Maier et al. (2011) suggested four new metrics (peak location, peak performance, 

width, asymmetry) to measure synchrony perception performance and replace the PSS 

and TIW, which do not require fitting the data to Gaussian functions. However, this 

approach has its draw backs and the authors demonstrated the inability to calculate the 

width and asymmetry when the peak location was significantly shifted towards the 

video leading side of the x-axis, which forced them to define another alternative 

metric to represent the TIW. Another alternative to fitting Gaussian functions to the 

response data of temporal judgement tasks was suggested by Garcia-Perez and Alcala-

Quintana (2012). The authors proposed the Independent Channels Model (ICM) of 

timing judgements (Sternberg & Knoll, 1973) to fit the raw data of SJ and TOJ in a 

more flexible manner. 

1.3.1 Independent Channels Model 

Garcia-Perez and Alcala-Quintana (2012) used the Independent Channels Model 

(ICM) of timing judgements (Sternberg & Knoll, 1973) to fit the response data of SJ 

and TOJ in a more flexible way, allowing for individual asymmetries and irregularities 

in the data. Furthermore research suggests that SJ and TOJ tasks have different 

response biases. The nature of these response biases and the underlying processes 

have recently been modelled by Garcia-Perez and Alcala-Quintana (2012). In their 
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study they made use of the ICM of timing judgements to take into account the sensory 

processing factors and decisional aspects involved in SJs and TOJs (see Figure 1.1). 

The authors fitted the ICM to Van Eijk at al.'s (2008) data by both fitting the tasks 

together (assuming similar sensory parameters but different decisional parameters) 

and fitting the tasks separately (allowing for parameter differences across tasks). 

Garcia-Perez and Alcala-Quintana (2012) argued that by fitting the ICM to the data 

and estimating the arrival latencies, decisional factors, response bias and response 

errors they can infer underlying processes to the tasks. Their results showed that 

arrival latencies did not differ across tasks when stimulus conditions were identical, 

but that the resolution parameter was different across tasks. The ICM provides 

estimates similar to the TIW width and PSS comparable to the TIW width and PSS 

outcome measures obtained through the Gaussian fits. The parameters related to 

sensory and decisional factors of audiovisual processing that the ICM provides are 

Delta, the onset, Lambda, the rate parameter and Tau, the processing delay of the 

corresponding sensory information. Lambda Audio (A), Lambda Visual (V) and Tau 

describe the arrival latency in SJ and TOJ tasks, and Delta is the resolution parameter 

and it limits the observer’s ability to detect small differences in arrival latencies. TOJ 

includes an additional response bias parameter called Xi, taking into account the 

tendency of participants to respond “audio first” or “video first” more often. 

  

 

 

 
Figure 1.1 Model of timing judgments. a) Exponential distributions for the arrival latency of a visual stimulus 

(red curve) presented at time 0 and an auditory stimulus (blue curve) presented at time Δt 0 = 50 ms. Parameters 

as indicated in the inset. b) Bilateral exponential distribution of arrival-time differences and cutpoints on the 

decision space (vertical lines, at D = ±δ with δ = 60), determining the probability of each judgment (taken from 

Garcia-Perez & Alcala-Quintana, 2012). 
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1.4 Neuroanatomical differences in ASD 

Previous research has shown that the trajectory of brain volume development is 

different in ASD compared to the typical population. Brains of new-borns with ASD 

tend to be comparable in volume to brains of typically developing new-borns 

(Courchesne, Carper & Akshoomoff, 2003; Dawso at al., 2007), but tend to be 

enlarged in early childhood (Anagnostou & Taylor, 2011; Courchesne et al., 2001; 

Levy, Mandel & Schulz, 2009). In adolescence and early adulthood, the results are 

less clear, while some researchers find that the increased brain volume is still present 

in individuals with ASD (e.g., Freitag et al., 2009; Hazlett, Poe, Gerig, Smith, & 

Piven, 2006) others find a normalisation of total brain volume (e.g., Aylward et al., 

2002; Redcay & Courchesne, 2005; review: Courchesne et al., 2007; Hyde, Samson, 

Evans & Mottron, 2010). It is also elusive whether this putative increase in total brain 

volume is a result of grey matter (GM) volume (Hazlett et al., 2006), white matter 

(WM) volume (Herbert et al., 2004), or a combination of both. 

1.4.1    Diffusion tensor imaging differences in ASD 

Diffusion weighted magnetic resonance imaging (DW-MRI) has been suggested to be 

the  most direct, non-invasive way of mapping white matter (WM) tracts in vivo (Le 

Bihan et al., 2001). Diffusion tensor imaging (DTI) is used to investigate the WM 

tracts by providing a measure of diffusion (most often of water molecules) within 

voxels of the brain (Assaf &Pasternak, 2008). Factional anisotropy (FA) is one of the 

four different measures used to investigate the diffusivity of tissue microstructure. FA 

provides a measure of coherence of diffusion directionality (diffusion anisotropy), 

which ranges from entirely isotropic (identical properties in all directions) to 

entirely anisotropic (directionally driven). Other measures to investigate diffusivity of 

tissue microstructure are fibre coherence (Le Bihan et al., 2001); mean diffusivity 

(MD) as well as, axial diffusivity (AD) and radial diffusivity (RD), which describe 

diffusivity that is parallel and perpendicular to the axonal fibres, respectively. 

DTI findings in ASD are somewhat heterogeneous. However, overall it appears that 

WM abnormality in ASD is found throughout the entire brain. For example, a recent 

study by Roine et al. (2013) noted that their ASD group globally had increased FA 

compared with their TD group. With regards to individual structures and pathways, 
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WM abnormality has most reliably been found in the corpus callosum. More precisely, 

studies have found both reduction (e.g., Shukla et al., 2011; Walker et al., 2012; 

Gibbard et al., 2013) and increases (Billeci et al., 2012) of FA, and increased MD and 

RD (Shukla et al., 2011) in individuals with ASD compared with TD controls in 

different regions within the corpus callosum. 

Findings of other WM in other structures measured by DTI are again rather 

inconsistent.  A study found increased MD, RD and AD in individuals with ASD in 

posterior WM tracts (Walker et al., 2012), while another revealed increased MD and 

RD values in the frontal areas of the brain (Ameis et al., 2011) . Shukla et al. (2011) 

and Barnea-Goraly et al. (2010) noted that differences in ASD of MD, RD and AD are 

more extensive throughout the brain, and expand across association, commissural and 

projection fibres. 

1.4.2 Cortical thickness and grey matter volume 

In MRI studies, methods called cortical thickness analysis (CTA) and voxel-based 

morphometry (VBM) are commonly used to investigate structural properties of GM in 

ASD. CTA is said to directly measure cortical surface features, such as cortical 

thickness (CT; Jiao et al., 2010), while VBM gives a probabilistic measure of local 

GM and WM concentration (Ashburner & Friston, 2000). The VBM method has been 

reported to be restricted as it conflates information about morphology, size and 

position (Ashburner & Friston, 2001). CTA provides a more direct index of cortical 

morphology that is less susceptible to positional variance given that the extraction of 

the cortex follows the GM surface despite local variations in its position (Kim et al., 

2005). 

CT and GM volume are thought to reflect changes in myelination (Sowell et al., 2007) 

and neuronal loss in ageing (Salat et al. 2004), and CT procedures have been validated 

using post-mortem histological analysis (Rosas et al., 2002). CT measurements have 

also been used to provide a method of relating changes in brain structure to cognitive 

abilities, behaviour (Anagnostou &Taylor, 2011) and activation levels (Fusar-Poli et 

al., 2011), suggesting that functional and structural abnormalities share a common 

pathophysiology. However, it needs to be noted that the T1-weighted signal used to 

measure CT represent the degree of MRI visible water which is least visible in white 

matter, intermediately so in GM, and most visible in cerebrospinal fluid (Diwadkar & 



21 

 

Keshavan, 2002). MRI data has neither the resolution nor the specificity to explain the 

relationship between estimated CT and complex cellular processes including dendritic 

remodelling, cell death, synaptic pruning, or plausible encroachment from myelination 

(Toga, Thompson & Sowell, 2006). Diwadkar et al. (2011) investigated adolescent 

children of individuals with Schizophrenia and did not find a correlation between 

functional hypoactivity in frontal and parietal cortex and GM volume differences 

compared to control participants. Moreover, another study showed that the neural 

bases of GM estimates and blood oxygen level depletion (BOLD) appear to be 

independent or have a complex relationship (Kannurpatti, Motes, Rypma & Biswal, 

2010). 

1.4.3 Cortical thickness and grey matter volume differences in ASD 

A recent study by Zielinski et al. (2014) examined CT from childhood to adulthood 

using a large mixed cross-sectional and longitudinal sample of autistic subjects and 

their controls, and found early accelerated growth in childhood followed by 

accelerated thinning in adolescence and decelerated thinning in early adulthood. 

Similarly, Osipowicz, Bosenbark & Patrick (2015) examined GM volume across the 

lifespan of people with ASD and their controls, as well as, correlated GM volume with 

autism severity. They showed bilateral decreases of GM volume in the ASD group in 

the thalamus, the cerebellum, anterior medial temporal lobes and the orbitofrontal 

regions. More severe autism was associated with decreased GM volume in the 

prefrontal cortex, inferior parietal and temporal cortex, as well as, temporal poles. No 

increases of GM volume were associated with ASD or its severity. GM volume and 

autistic symptomology and severity have also been found to be correlated in children 

(Pierce & Corchesne, 2001), whereas other researcher have found no relationship 

(Langen, Durston, Staal, Palmen & van Engeland, 2007). 

Looking at GM and CT in adults with ASD, studies have reported GM volume or CT 

increases throughout the whole brain and specific regions, such as the frontal, 

temporal and parietal regions, lingual gyrus, insular regions, precentral gyrus 

postcentral and cingulate gyri, caudate nucleus, hippocampus, brainstem and midbrain 

(Hyde, Samson, Evans & Mottron, 2010; Ecker et al., 2010; Waiter et al., 2004; 

Doyle-Thomas et al., 2013; Ecker et al., 2013). Others have found specific reduction 

in GM volume or CT in temporal and parietal regions, sensory and motor cortex, 
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anterior cingulate, supramarginal gyrus, precentral and postcentral gyri, thalamus, 

corpus callosum, cerebellum, parahippocampal gyrus (Chung et al., 2005; Hadjikhani, 

Joseph, Snyder & Tager-Flusberg, 2006; Hyde et al., 2010; Scheel et al., 2011; Toal et 

al., 2010; Greimel et al., 2013;  Ecker et al, 2013; Ecker et al., 2010; McAlonan et al., 

2002;  Wallace, Dankner, Kenworthy, Giedd & Martin, 2010; See Table 1.1 for an 

overview). 

This heterogeneity of results across studies investigating cortical morphology in 

participants with ASD may be due to factors such as a variety of algorithms and 

techniques being used to compute CT and GM volume, differences in MRI image 

resolution across studies, as well as, sample heterogeneity (i.e., differences in 

diagnostic methods, participants’ ages and IQ). In fact, sample heterogeneity is a 

common problem in studying ASD. 

1.5 Neuroanatomical differences and autistic traits measured by AQ 

To measure the extent of autistic traits in the general population, the Autism-Spectrum 

Quotient (AQ; Baron-Cohen et al., 2001), a self-administered questionnaire, has been 

developed. The AQ has been used to predict performance on tasks that are impaired in 

ASD, for example inferring others' mental states from the eyes (Baron-Cohen et al., 

2001). The AQ has been shown to be associated with changes in brain structure, 

including GM volume, WM volume, SulcoGyral patterns and Diffusion Tensor 

Imaging (DTI) in typically developed brains (Iidaka et al., 2012; Kosaka et al., 2010; 

Geurts er al., 2013; Saito et al., 2013; Gebauer et al., 2015; Von dem Hagen et al., 

2011). However, a recent exploration-validation study showed no association between 

AQ scores and brain structure, including analysis of GM volume, CT and DTI 

(Koolschijn, Greurts, Leij & Scholte, 2015). 

Autistic traits in the general population have also been correlated with structural 

differences. Higher AQ scores correlate with smaller GM volume of right insula and 

inferior frontal gyrus, larger GM volume of left middle frontal gyrus (Kosaka et al., 

2010; Geurts et al., 2013; Saito et al., 2013) and reduced CT in right medial 

orbitofrontal cortex, postcentral gyrus, lingual gyrus (Gebauer et al., 2015), whereas 

others showed no links between AQ scores GM volume and CT (Koolschijn et al., 

2015). 
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Table 1.1  Studies investigating grey matter volume in ASD 
Brain Region  Method ASD TD controls  Authors 

↓* ↑* 
 

n** Age

*** 

Diagnosed by n** Age*

** 
 

Middle frontal gyrus L/R, Precentral gyrus R, Inferior frontal gyrus L/R,  Amygdala R, 

Hippocampal gyrus L/R, Uncinate L/R, Inferior parietal lobe L/R, Superior parietal lobe L/R, 

Precuneus, Posterior cingulate gyrus L/R, Precuneus L/R, Cerebellar cortex L/R, Putamen R, 

Caudate nucleus R 

Inferior frontal gyrus L, DLPFC L/R, Precentral gyrus L/R,  Middle temporal gyrus 

L/R, Inferior temporal gyrus L/R, STS L/R, Fusiform gyrus L/R, Inferior parietal 

lobe L/R, Medial occipital gyrus L/R, Lingual gyrus L/R, Insular cortex L/R 

SVM 

(support vector 

machine 

approach)  

22 

m 

27 (7) ADI-R,      ADOS,  

AQ 

22 

 

28 (7) 

 

Ecker et al., 2010 

Cerabellar Crus L/R, Cerebellar Lobule L/R Medial frontal gyrus L/R, Precentral gyrus L, Postcentral gyrus R, Fusiform gyrus 

R, Caudate nucleus L/R, Hippocampus L 

VBM 24 

m 

21 (11) DSM-IV, ADI, 

ADOS 

 

23 

m 

21 (11) Rojas et al., 2006 

Postcentral gyrus, R,  Precentral gyrus, L/R Brainstem/midbrain, medial frontal gyrus R, Medial oribital frontal gyrus L, Middle 

frontal gyrus L/R 

VBM 15 

m 

23 (6) 

 

ADI-R, ADOS 15 

m 

19 (5) 

 

Hyde et al., 2010 

Paracentral gyrus R, Postcentral gyrus R,  Precentral gyrus R 

 

Anterior fusiform gyrus L/R, Anterior STS L,  Dorsal posterior cingulate gyrus 

L/R, Heschl’s gyrus L/R, Lingual gyrus L, Medial frontal gyrus L/R, Medial 

oribital frontal gyrus L, Middle frontal gyri L/R, Posterior fusiform gyrus L, pSTS, 

L, Ventral posterior cingulate gyrus L, Dorsal anterior cingulate gyrus R, Inferior 

frontal gyrus R, Inferior parietal lobule R, Middle occipital gyrus R, Superior 

frontal gyrus R, STS R 

CTA      Hyde et al., 2010 

Thalamus R Fusiform gyrus R, Temporo-occipital region R, Frontal pole extending to the 

Medial frontal cortex L. 

VBM 16 

m 

15 (2) DSM-IV, ADI-R, 

ADOS-G 

16  

m 

15 (2) Waiter et al., 

2004 

Inferior orbital prefrontal cortex R, superior temporal sulcus L, Occipito-temporal gyrus L 

 

None CTA 16 

m 

16  (5) ADI-R 12 

m 

17 (3) Chung et al., 

2005 

Cerebellum R, Lenticular nucleus L/R, Cingulate gyrus R, Precuneus R, Medial frontal gyrus 

L/R, Superior frontal gyrus R 

None VBM 21 

(19 m) 

32 (10) ICD 10, ADI-R 24  

(22 m) 

 33 

(7) 

McAlonan et al., 

2002 

Cerebellum L/R, Parahippocampal gyrus L/R, Fusiform gyrus L/R, from Inferior  temporal 

gyrus L/R to STS L/R 

None  VBM 65 

(57 m) 

31 (10) ICD-10, ADI-R, 

ADOS 

 

33  

(30 m) 

32 (9) Toal et al., 2010 

Caudal middle frontal gyrus L, Paracentral frontal  gyrus L, Superior temporal  gyrus L, 

Inferior temporal gyrus L Entorhinal gyrus L, Fusiform, gyrus L,  Superior  Banks temporal 

sulcus L/R, Superior parietal  gyrusL/R, Inferior parietal gyrus L/R, Supramarginal gyrusL, 

Postcentral parietal lobe L 

None CT 

measurement  

41 

m 

17 (3) ADI,  

ADOS 

40  

m 

17 (3) Wallace et al.,, 

2010 

Posterior STS L, Middle temporal gyrus L, Supramarginal gyrus L None  CTA 28  

(18 m) 

33 (10) AQ 28  

(18 m) 

33 (9) Scheel et al., 

2011 

Inferior frontal gyrus L/R, inferior parietial lobe L/R, the STS R, precentral Gyrus L/R, inferior 

occipital gyrus L/R, orbitofrontal cortex L/R, Anterior cingulate R, supramarginal gyrus R, 

middle occipital gyrus L, superior parietal lobule R/L, medial parietal cortex L, superior 

parietal lobule L/R  

none  14m 33 (12) ADI-R, ADOS 14 m 31 (9) 

(1.4) 

Hadjikhani, 

Joseph, Snyder & 

Tager-Flusberg, 

2006; 

None Superior frontal gyrus L/R, Middle frontal gyrus L/R, Inferior frontal gyrus L/R, 

Medial frontal gyrus L/R, Orbitofrontal gyrus L/R, Precental Gyrus L/R, 

Postcentral Gyrus L/R, Superior parietal lobule L/R, Inferior parietal lobule/Middle 

occipital gyrus L, Inferior parietal lobule R, pSTG L/R, Middle temporal gyrus 

L/R, Inferior temporal gyrus L/R, Medial orbitofrontal gyrus L, Posterior cingulate 

L/R, Precuneus L, Parietoccipital fissure R.  

CTA 28 

 (21m) 

22.5 

(7.9) 

DSM-IV, ADI-R, 

ADOS 

26 

(17m) 

22.7 

(9.1) 

Doyle-Thomas et 

al., 2013 

Anterior cingulate cortex L/R, pSTS L/R, middle temporal gyrus.R. None VBM 47m 21.4 

(10.1) 

DSM-IV,ADOS-

G, ADI-R, AQ 

51m 18.3 

(7.5) 

Greimel et al., 

2013 

Frontal anterior cingulate L, Medial prefrontal cortex R, Middle temporal gyrus L/R, Inferior 

temporal gyrus R, Parahippocampal gyrus L, Superior parietal L/R, Supramarginal gyrus L, 

Precuneus L, Pericalcarine fissure R, Lingual gyrus R. 

Superior frontal L, Causal middle frontal L/R, Rostral middle frontal L/R, Pars 

opercularis L, Pars triangularis R, Medial orbitofrontal R, Middle temporal gyrus R, 

STG R, Inferior parietal L, Supramarginal gyrus L/R, Superior parietal R, Lateral 

occipital cortex L/R, Postcentral gyrus L/R, Posterior cingulate L.  

CT 

measurement 

84m 

 

26 (7) 

 

ICD-10, ADI-R 

 

84m 

 

28 (6) 

 

Ecker et al, 2013 

* Decreased (↓) and increased (↑) gray matter or cortical thickness in ASD compared to TD controls, ** Number of participants (m = males) *** Mean age, standard deviations are in brackets, 

For all studies the IQ of the ASD group was not different to that of the TD controls  
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1.6 Neuroscience of audiovisual processing 

From studies investigating multisensory integration, superior temporal cortex (STC) 

plays a major role in integrating audio and visual cues of social and non-social stimuli 

(Watson et al., 2014; Steveson & James, 2009; Allison, Puce, & McCarthy, 2000). 

Moreover, parts of the posterior superior temporal sulcus (pSTS; a sub region of the 

STC) have been shown to respond more to social signals, compared to non-social 

control stimuli in both the visual and auditory modalities, although the relative 

location of face- and voice-sensitive regions in pSTS remains unclear (face: Haxby, 

Hoffman, & Gobbini, 2000; Hoffman & Haxby, 2000; voice: Belin, Zatorre, Lafaille, 

Ahad, & Pike, 2000; Ethofer, Van De Ville, Scherer, & Vuilleumier, 2009; Grandjean 

et al., 2005; Latinus, Crabbe, & Belin, 2011). Moreover, evidence for the pSTS to be 

involved in audiovisual integration is currently accumulating. Functional magnetic 

resonance imaging (fMRI) studies investigating audiovisual integration have been 

searching for brain areas which are involved in the processing of unisensory audio and 

visual information, but show an even stronger activation response to the information 

when presented together. The different statistical criteria of audiovisual integration 

regions are summarised below. Researchers find the STC to be involved in integrating 

audiovisual integration of social and non-social stimuli and have revealed sub-regions 

to be specific for audiovisual object and face-voice processing (Stevenson & James, 

2009; Watson, et al., 2014). More specifically, Stevenson and James (2009) measured 

the super-additive changes in BOLD for multisensory and unisensory information and 

revealed different regions specific for audiovisual tool and speech stimuli within the 

STC. Moreover, they showed that these regions elicited identical patterns of neuronal 

convergence across a range of stimulus saliencies. Similarly, Watson et al., (2014) 

noted that the right STS contained a heteromodal people selective region (activated by 

face and voice), a separate region in the STS, with preference for audiovisual face-

voice stimuli as compared to objects. These findings suggest a dedicated social 

information processing role of the STS. 

1.7   Statistical criteria used to classify audiovisual brain regions 

Audiovisual integrative effects can be modelled many different ways using different 

statistical criteria, ranging from conservative to liberal: supra-additive, max criterion 

and mean criterion. All criteria, however, define more activation of audiovisual stimuli 
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than unisensory stimuli as enhancement, where the unisensory stimulus are binding 

together, and less activation as suppression, assuming that stimuli are not binding 

together, and no difference between audiovisual and unisensory activation is 

interpreted as no integration. Below is a summary of the super-additivity, the max 

criterion and the mean criterion (for more detailed reviews see Beauchamp, 2005; 

Laurienti et al., 2005; Goebel & van Atteveldt, 2009; Love et al., 2011; James & 

Stevenson, 2012).   

1.7.1 The super-additive criterion 

The super additive criterion is assuming that brain regions involved in multisensory 

integration show greater responses to multisensory stimuli that exceeds the sum of the 

responses to the unisensory stimuli  (i.e., Audiovisual > Audio + Visual). By 

employing this criterion, regions of the temporal, occipital, parietal and frontal lobes 

have been found to be involved in integration face- voice information (Joassin et al., 

2011a, 2011b). However, this technique was adopted from electrophysiology 

measuring the responses of single neurons and might not be the most appropriate 

method when recording the BOLD activation, as BOLD activation is used to measure 

the blood flow to a heterogeneous group of neurons. In an audiovisual integration 

area, the proportion of audiovisual neurons might be small compared to unisensory 

neurons. While only a small proportion of these neurons might respond in a super-

additive manner, and super-additive neurons have lower impulse counts compared to 

other neurons, the average impulse count of multisensory neurons is used to determine 

whether the response it super-additive (Laurienti et al., 2005). This suggests that 

BOLD activation may never exceed the super-additive criterion. Therefore, the super-

additive criterion is overly strict and is likely to lead to false-negative errors 

(Beauchamp, 2005). Interestingly, as found by Love et al.,  (2011) the super-additive 

criterion can also lead to false-positive errors due to a negative response in only one of 

the unisensory modalities. Thus the super-additive criterion is only the strictest of 

multisensory criteria if the brain regions show increased activity for both unisensory 

conditions compared to baseline. Otherwise, regions that are defined as super-additive 

and multisensory only are falsely defined as those only because in unisensory 

condition it caused a deactivation (Goebel & van Atteveldt, 2009).This could be 

avoided by utilising a heterosensory contrast (audio> baseline,  visual > baseline), 

which guarantees significant unisensory activation. 
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1.7.2 The max-criterion or conjunction analysis 

In fMRI, a conjunction analysis is commonly used to investigate brain regions that 

show a significantly stronger response to audiovisual information than to unisensory 

information of both sensory modalities (audiovisual > audio) ∩ (audiovisual > visual). 

This approach has been utilised to identify, for example, the superior colliculus, which 

is a well-recognised multisensory structure, as well as the bilateral STC, as regions of 

face-voice integration (Kreifelts et al., 2010; Szycik et al., 2008). Although, 

qualitatively the max-criterion is less stringent than the super-additive criterion (if 

there is no deactivation in one sensory modality), it may lead to loss in sensitivity.  

This is important when two different contrasts that are predicted to have small effects 

are submitted to such an analysis. However, there are different ways to improve the 

sensitivity of the max-criterion: restricting the analysis to a smaller number of voxels 

by defining anatomical regions (regions of interest; ROI), or to define separate 

conjunction analyses for specific comparisons, for example in emotion research 

(audiovisual happy > audio happy) ∩ (audiovisual happy > visual happy) (Pourtois et 

al., 2005). Due to the level of stringency, we chose the max-criterion or conjunction 

analysis to define audiovisual regions in Chapter 4.   

1.7.3 The mean criterion 

The mean criterion defines audiovisual regions by testing for a stronger response to 

audiovisual information than the average of the two unisensory responses to audio and 

visual information, i. e.,  audiovisual > (audio + visual)/2. This provides an index of 

the degree of audiovisual integration in brain regions. It is a more liberal criterion than 

the super-additive criterion and the max-criterion, and therefore is able to identify 

presumed multisensory regions, such as the STC. However, it has been argued to be 

too liberal, especially when one of the unisensory responses is weak or a deactivation, 

as this reduces the mean of the unisensory responses. Thus it is possible for the 

audiovisual response to exceed the mean even when the response is weaker than the 

largest unisensory response. Thus, similar to the super additive criterion, the mean 

criterion could lead to misinterpretations. Using face-voice stimuli, Love et al. (2011) 

used the mean criterion and found the regions in the occipital and temporal lobe 

involved in audiovisual integration. At closer inspection, the response profiles to the 
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face-voice stimulus of those audiovisual regions showed little difference to those of 

the unisensory regions. 

1.8  Neuroscience of temporal audiovisual processing 

Several studies have investigated the brain areas involved in synchrony perception, 

(e.g., Calvert, Campbell & Brammer, 2000; Werner & Noppeney, 2010) however, few 

studies have specifically looked at audiovisual SJ tasks (Miller & D’Esposito, 2005; 

Stevenson et al., 2010; Stevenson, Mullin, Wallace & Steeves, 2013; Love, 2011; 

Love et al., in preperation) and the role of the STC is less clear when the temporal 

aspects of audiovisual integration is introduced. A network of regions responding 

more to synchronous than asynchronous speech, including the right middle STC, and 

bilateral superior colliculus, fusiform gyrus, lateral occipital cortex, and extrastriate 

visual cortex has been found (Stevenson et al.,  2010). Similarly, Love (2011) 

examined participants’ brain activation during SJ tasks on physical and perceptual 

synchronous (group mean PSS) as well as asynchronous (±400, ±320, ±240, ±160, 

±80 ms between the audio and the video information) audiovisual speech displays. 

Like Stevenson et al., (2010), he showed an asynchrony network and a synchrony 

network, but only for perceptual synchrony (audio preceding visual information by 

about 90 ms) and not for physical synchrony (SOA = 0). He also distinguished two 

regions of the STC: a middle region of STC, responding to synchronous speech, and a 

posterior region, responding to asynchronous speech. Moreover, he defined the right 

posterior STC as a neural correlate of the fact that people are better at detecting 

asynchrony in audio-first (audio leading visual information) stimuli. These results 

reveal that investigating perceptually rather than physically defined contrasts disclose 

more activation for asynchronous stimuli compared to synchronous.  Furthermore, 

Love et al. (in preparation) compared the neural mechanism underlying SJs and TOJs, 

using audiovisual point-light drumming displays of audio-first condition, video-first 

(visual leading audio information) condition, physically synchronous condition as well 

as a condition that showed the participants PSS. Their results showed that the two 

judgements use different brain areas. The middle occipital cortex was found to show 

sustained activation during SJ and deactivation during TOJ. Whereas, transient 

activation was greater in TOJ than in SJ, in regions of the left middle occipital, middle 

frontal, precuneus and medial superior frontal lobe. Moreover, they showed that only 

during TOJ the right anterior cingulate showed more deactivation to audio- and visual-
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first conditions than to PSS and physical synchrony. This can be taken as evidence that 

the SJ and TOJ measure different aspects of audiovisual synchrony perception.  These 

results are mainly supported by a recently published study also comparing SJ and 

TOJ, demonstrating that TOJ recruits additional brain regions compared to SJ (Binder, 

2015). 

A recent repetitive transcranial magnetic stimulation (rTMS) study by Stevenson et al. 

(2013) measured the contribution of the STS to audiovisual temporal processing. 

rTMS stimulation, prior to making SJs on beep-flash stimuli of the multisensory 

region (STS), caused an overall widening of the TIW (increased tolerance for visual-

first stimuli). Whereas, stimulation of auditory (Hechl’s gyrus) and visual (striate 

cortex) regions caused a broadening within the audio-first stimuli and video-first 

stimuli, respectively. The broadening of the TIW to the more ecologically valid visual-

first stimuli with STS disruption advocates that audiovisual temporal processing in 

STS reflects learned environmental information.  

1.9 Audiovisual processing in Autism Spectrum Disorder 

The research in audiovisual integration in ASD is not entirely consistent. Several 

studies looking at lip reading (Smith and Bennetto, 2007; de Gelder et al., 1991) and 

the McGurk illusion (Irwin, Brancazio, Tornatore & Whalen, 2008) suggested 

abnormal audiovisual integration in ASD. For example, Smith and Bennetto (2007) 

revealed that individuals with ASD benefit less from additional visual information 

when perceiving speech and that they are worse at lip reading. They concluded that 

these findings could only be explained by a deficit in audiovisual integration. Irwin et 

al. (2011) made use of the McGurk illusion (McGurk & MacDonald, 1976) in which 

participants were visually presented with a video of a person saying the syllable “ga”, 

while being simultaneously presented with the voice of the person saying a different 

syllable “ma”. This led participants to report a fused percept such as “na”. They found 

that even when children with ASD looked at the speakers, they reported the fused 

percept less often than TD children. Therefore, children with ASD were influenced 

less by the incongruent visual information.  

Although behavioural performance of individuals with pervasive developmental 

disorder (PDD; a slightly broader diagnosis than ASD) was the same, 

electroencephalography (EEG) data argued that audiovisual integration of complex 
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phonological information is impaired in PDD, while low-level audiovisual integration 

is intact (Magnee, de Gelder, van Engeland and Kamner, 2008). In line with this idea, 

Mongillo et al. (2008), showed that behaviourally children with ASD performed 

differently from their control only in tasks involving the human speech (e.g., McGurk 

stimuli), but performed the same on a non-human audiovisual task for which they had 

to determine whether the sound of a bouncing ball matched it’s physical appearance. 

Similarly, utilising the flash-beep illusion, Van der Smagt, van Engeland, and Kemner 

(2007) also showed evidence that multisensory integration in ASD is preserved. The 

flash-beep illusion is based on the phenomenon that auditory stimulation (beeps) can 

influence the perception of visual stimulation (flashes), i. e., when a single flash is 

presented simultaneously with two beeps, people perceive two flashes (Shams, 

Kamitani, & Shimojo, 2000). They reported that adults with ASD also perceived the 

illusion of a second flash, and that the number of second flashes reported is the same 

between the ASD and TD group. 

However, a study by Williams et al. (2004) looked at children’s complex speech 

perception and showed that those with ASD performed comparable in audiovisual 

syllable identification tasks when controlling for unisensory deficits. In their 

experiment the ASD group and the TD group had to identify spoken syllables. In the 

audiovisual condition, the audio and the visual information was either congruent or 

incongruent (as in the McGurk stimulus). Children with ASD performed poorer at 

recognising the stimuli in unisensory (visual or auditory) conditions compared to their 

controls. Controlling for these lower performances in the unisensory conditions, both 

groups performed comparably in the audiovisual conditions. This suggests that while 

children with ASD have difficulties in the unisensory conditions, they still show 

normal audiovisual integration. The authors also showed that training improved the 

children’s ability to utilise visual information in their processing of speech.  

More recently, researchers looked into the development of audiovisual integration in 

ASD.  A cross-sectional study (Foxe et al., 2015) explored how seen and heard speech 

was integrated in ASD, from childhood to adolescence, when background noise was 

manipulated. Profound integration deficits were revealed in ASD, which were 

increasingly evident as background noise increased. These deficits were present in 

children with ASD from the age of 5 to 12 years old, but were resolved in teenage 
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children with ASD (13-15 year olds). The severity of the deficit in childhood and its 

amelioration in teenage years let the authors suggest that multisensory processing 

differences would be responsive to intervention in earlier childhood, with possibly 

great consequences for the development of social communication abilities in ASD. 

Interestingly, Ross, Del Bene, Molholm, Frey and Foxe (2015) highlighted the 

importance of considering sex differences in ASD research, as they recently revealed 

sex differences in audiovisual speech perception in children with ASD. More 

specifically they showed that girls both with and without ASD outperformed boys at 

recognising words under audiovisual listening conditions, however this sex difference 

was absent in their adult TD sample. The authors concluded that audiovisual 

integration is delayed in boys, compared to girls, and that in adulthood, females reach 

their performance maximum and males catch up.  

1.10 Temporal audiovisual processing in Autism  

The temporal relationship between the incoming information of sight and sound 

effects the way sensory information is integrated across these senses. As previously 

introduced, the TIW is used to measure how tolerant we are to temporal asynchrony 

between sound and sight and still perceive it as one event. Temporal processing has 

been shown to be altered in ASD (Brock, Brown, Boucher & Rippon, 2002; Szelag, 

Kowalska, Galkowski & Poppel, 2004).  Szelag et al. (2004) showed that children 

with ASD had deficits in reproducing the durations of both auditory and visual 

unisensory stimuli. Brock et al. (2002) proposed the temporal binding hypothesis of 

ASD. This theory is based on the idea originally formulated by Frith (1989), and 

termed as weak central coherence, which hypothesises that individuals with ASD 

mostly focus on local rather than global aspects of information. That is, individuals 

with ASD perceive sensory information in isolation (e.g. a voice), rather than as a 

meaningful whole (e.g. a person speaking). The temporal binding hypothesis of ASD 

proposes that the deficits in global processing are linked to impairments in temporal 

processing. In other words, individuals with ASD cannot exploit the temporal 

correspondence of different sensory inputs to the same extent as TD individuals. This 

claim is supported by recent evidence showing decreased sensitivity to audiovisual 

asynchrony in children, adolescents and young adults with ASD in low-level and 

complex speech stimuli (Bebko, Weiss, Demark & Gomez, 2006; Foss-Feig et al., 

2010; Kwakye, Foss-Feig, Cascio, Stone & Wallace, 2011; de Boer-Schellekens, 
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Eussen & JeanVroomen, 2013; Stevenson et al., 2014). This decreased sensitivity to 

audiovisual asynchrony was demonstrated by a broadened TIW in the ASD group 

compared to the TD group.  

Foss-Feig et al. (2010) investigated audiovisual temporal processing in ASD by taking  

advantage of the beep-flash illusion and its dependency on the SOA between the flash 

and the beeps; the bigger the SOA between the beeps and the flashes, the weaker the 

illusion. Their results showed that children with ASD successfully perceived the flash-

beep illusion over a wider TIW than TD controls. This finding suggests that 

individuals with ASD may show more extensive, but less temporally precise 

audiovisual integration. These findings were supported by Kwakye et al. (2011), who 

investigated audio, visual and audiovisual temporal acuity in children with ASD by 

measuring individuals’ thresholds on TOJ tasks under visual, auditory and audiovisual 

conditions.  Their multisensory task included two circles, presented successively 

above and below the central fixation point. The first circle was always presented 

simultaneously with a beep, while the second beep was presented at different SOAs 

(0–500 ms) after the second circle. The additional auditory information is known to 

increase performance compared to the visual task. However, the increase in 

performance is SOA dependent (Hairston et al., 2005, 2006). Whereas, no differences 

in thresholds for the visual TOJ task were seen between children with ASD and their 

controls, thresholds were higher in ASD on the auditory TOJ task. On the 

multisensory TOJ task, children with ASD showed performance improvements over a 

wider range of SOA than TD children, supporting the idea of an extended TIW. This 

potentially suggests that the extended multisensory is due to auditory processing 

differences. It would have been interesting to see whether the performance difference 

between the two groups would have reduced if they controlled for the auditory 

processing differences.  

More recently, de Boer-Schellekens et al., (2013) and Stevenson et al. (2014) 

investigated the TIW over a whole range of audiovisual stimuli, including simple 

beep-flash and speech displays, as well as a complex non-speech stimulus. In both 

studies the audiovisual displays were presented at different SOA between the audio 

and visual information, thus the visual information preceded or followed the 

corresponding audio information at different intervals. In de Boer-Schellekens et al.’s 

http://journal.frontiersin.org/Journal/10.3389/fnint.2010.00129/full


32 
 
 

(2013) study, adolescents and young adults (16-24 years of age) with ASD and TD 

controls were asked to make TOJ, and the researcher fitted a linear function to the 

response data to estimate the width of the TIW and PSS. This revealed a wider TIW in 

ASD across all display types, but no difference in the PSS. Whereas, Stevenson et al. 

(2014) utilised SJ and fitted psychometric sigmoid functions to the response data to 

estimate the TIW width. Their results demonstrated that children with ASD (aged 6-18 

years) only had an extended TIW for speech displays (a face saying: “ba” or “ga”), but 

not for the other, non-social and simpler displays (beep-flash and hammer-hitting-a-

nail displays). Contrary to the results by Kwakye et al. (2011), Stevenson and 

colleagues showed that audiovisual temporal processing deficits in ASD were not 

accompanied by unisensory processing deficits in unisensory TOJ tasks. The 

researchers also showed that the ASD participants reported less often a fused percept 

of the McGurk illusion. Furthermore, Stevenson et al. (2014) found that wider TIWs 

in the beep-flash, hammer and speech displays were correlated to weaker precepts of 

the McGurk illusion, but only in the ASD group. This demonstrates that difficulties in 

audiovisual integration in ASD are associated with reduced precision of detecting 

audiovisual asynchrony. However, if you consider the TIW and the McGurk effect to 

be a measure of ability to integrate audio and visual information, the result could seem 

surprising. A wider TIW would suggest that the person is able to integrate audio and 

visual information across an extended temporal gap between the two senses, and 

therefore a weaker percept of the McGurk illusion at the point of synchrony might 

seem contradictory. Since the participant samples’ ages ranged from 6 to 18 years old, 

it would have been interesting to see how the developmental trajectory of the TIW 

looks like in ASD and controls. Furthermore, the TIW reported in this sample were 

bigger than what is commonly reported in the literature. It would have been important 

to see how well their psychometric sigmoid functions fitted the response data.  

Previous literature regularly excluded participants from the final analysis when their 

response data could not be fitted by psychometric functions, as we can assume that 

they were unable to do the task. Moreover, the use of a unisenosry TOJ control task 

for their main audiovisual SJ experiment is questionable, as accumulating behavioural 

and fMRI evidence suggests that these tasks are actually measuring different processes 

(van Eijk et al., 2008; Love et al., 2013; Petrini et al., 2010; Vatakis et al., 2008; 

Vroomen & Stekelenburg, 2011; Love et al., in preperation; Binder, 2015).  
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Thus far the research is pointing towards temporal audiovisual processing differences 

in ASD. However, Grossman, Schneps & Tager-Flusberg (2009) have shown that 

adolescents with ASD perform comparably to their TD controls when doing SJs on 

meaningful phrases. The researchers looked at how adolescents with ASD integrate 

audiovisual information of meaningful phrases because it was previously suggested 

that the cognitive processing of meaningful phrases might be different to the 

processing of simple non-word syllables (Grant & Seitz, 1998). The accuracy of the 

onset asynchrony detection was no different between the ASD group and TD group. 

Grossman et al. (2009) suggested that these findings are due to the meaningful nature 

of the stimuli in combination with a non-distracting environment. Another reason for 

these findings could be the larger SOA intervals (ranging from 120ms to 500ms). 

1.11 Neuroimaging evidence for audiovisual integration differences in ASD 

Only a few neuroimaging studies have been conducted to investigate audiovisual 

integration in ASD. Much of the neuroimaging evidence for deficits in audiovisual 

integration comes from EEG studies. EEG records event-related potentials (ERPs), 

which provide a direct measure of the brain’s response to incoming sensory 

information. ERP components are defined as component waves of the more complex 

ERP waveform. More specifically, ERP components are defined by their polarity 

(positive or negative going voltage), scalp distribution, timing, and sensitivity to task 

manipulations. The temporal resolution of ERPs allows for the measurement of brain 

activity from one millisecond to the next. This permits one to describe the response in 

terms of early cortical sensory registration, sensory-perceptual processing, and later 

cognitive stages of processing (Foxe & Simpson, 2002; Lucan et al., 2010). EEG 

studies have revealed differences in audio (e.g., Dunn et al., 2008; Lepisto et al., 2005) 

and visual (Frey et al., 2013) sensory processing, as well as decreased integration of 

audiovisual information (e.g., Brandwein et al., 2013; Russo et al., 2010) in ASD 

compared to TD participants. Furthermore, the neurophysiological indices of sensory 

processing differences have recently been suggested to reflect neuropathology 

underlying clinical symptoms of ASD. This was demonstrated by the correlation of 

severity of ASD symptoms (as measured by the autism observation schedule; ADOS) 

and neural indices of early audio processing, as well as audiovisual integration 

(Brandwein et al., 2015). The authors proposed that these sensory processing 

differences might be a strong candidate for biomarkers of the clinical ASD phenotype. 
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Using fMRI, Doyle-Thomas, Goldberg, Szatmari and Hall (2013) showed that 

adolescents with ASD employ different cortical areas when processing audiovisual 

emotion stimuli compared to TD adolescents. More specifically, when presented with 

audiovisual emotional displays and asked to match the emotions to an emotional label 

on the screen, both groups activated regions in the frontal and temporal lobe, however, 

fewer regions were activated in the ASD group than the TD group. In the frontal lobe, 

the ASD group showed higher activation in regions of the medial frontal gyrus and 

middle frontal gyrus, whereas the TD group revealed more activation in regions of the 

superior frontal gyrus, precentral gyrus, posterior cingulate and distinct area of the 

middle frontal gyrus. In the temporal lobe, the ASD participants showed higher 

activation in the middle temporal gyrus, whereas the TD participants revealed higher 

activations in the superior temporal gyrus and middle temporal gyrus. Furthermore, 

areas in the parahippocampal gyrus and inferior occipital gyrus were activated 

stronger in the TD group. Similar activation patterns have previously been shown in a 

pilot study (including five ASD and four TD participants) examining the neural 

correlates of a similar audiovisual emotion matching task (Loveland et al., 

2008).  They showed that TD participants had more activation compared to the ASD 

participants in the STC, orbitofrontal cortex, posterior cingulate, parahippocampus 

and occipital regions (left fusiform gyrus, and bilateral lingual gyrus extending into 

the left cuneus). However, since both studies (Doyle-Thomas et al., 2013; Loveland et 

al., 2008) employ emotional stimuli and ask the participants to make emotion 

judgements, it is likely that the studies assess the underlying neural correlates of 

emotion processing and not audiovisual processing itself. Interestingly, thus far 

audiovisual synchrony has never been investigated in ASD using fMRI.  

1.12 Audiovisual temporal processing in other clinical populations  

Understanding audiovisual temporal processing and their underlying neural correlates 

is also important in other clinical populations. Several researchers have revealed 

deficits in audiovisual temporal processing in individuals with developmental dyslexia 

(Hairston, Burdette, Flowers, Wood, & Wallace, 2005), schizophrenia (Fourcher et al., 

2007) as well as people with synaesthesia (Neufeld, Sinke, Zedler, Emrich & Szycik, 

2012; Brang, Williams & Ramachandran, 2012). More specifically, individuals with 

dyslexia and schizophrenia seem to have a wider TIW compared to TD individuals 
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(Hairston et al., 2005; Foucher et al., 2007), whereas, in synaesthesia, the literature 

seems more contradicting (e.g., Neufeld et al., 2012; Brang et al., 2012).   

This shows that deficits in audiovisual temporal perception are a common discovery 

across different clinical populations, as well as in typical ageing. Therefore, 

understanding the audiovisual perception in clinical populations and TD individuals 

could enhance our understanding of the symptoms shared across these clinical 

populations. Furthermore, Kwakye et al. (2011) speculated that it could provide the 

foundation of a diagnostic tool, as well as becoming the basis of new intervention 

methods.  

1.12.1 Audiovisual temporal processing in dyslexia 

Although most of the audiovisual integration research has been done in ASD, 

evidence suggests that audiovisual integration differences are not unique to ASD and 

are also present in developmental dyslexia. Dyslexia is a disability in which affected 

individuals have reading difficulties, but have normal or above-normal intelligence.  

Both sensory and multisensory changes have been found to accompany dyslexia. 

Indeed, original clinical descriptions of dyslexia interventions predominantly refer to 

multisensory approaches (Henry, 1998).  

Hairston et al. (2005) adapted the audiovisual version of the visual TOJ task. In 

typical participants, the introduction of a pair of task-irrelevant sounds during 

performance of the visual TOJ task improved performance, especially when the 

second sound was presented after the appearance of the second light (Morein-Zamir, 

Soto-Faraco, & Kingstone, 2003). Hairston et al. (2005) showed that the dyslexic 

individuals received performance benefits from this second sound over a much wider 

range of SOAs compared to the TD controls, revealing an extended TIW.  It was 

speculated that this extended TIW could lead to profound difficulties when 

constructing strong reading representations, as it would cause ambiguity as to which 

auditory component of a written word (i.e., phonemes) belongs with which visual 

component (i.e., graphemes). Consequently, it would decline the speed and accuracy 

of reading (Hairston et al., 2005; Wallace & Stevenson, 2014). Supporting this, EEG 

studies have revealed that when people start to read fluently, letters and speech-sounds 

are integrated early and automatically in the auditory cortex, a process heavily reliant 

on the relative timing of the paired stimuli (Froyen, van Atteveldt, Bonte & Blomert, 
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2008;  Froyen, Bonte, van Atteveldt & Blomert, 2009), and that this progression to 

early and automatic processing does not seem to take place in dyslexia (Froyen, 

Willems & Blomert, 2011). Furthermore, an fMRI study showed that dyslexic 

individuals under activate regions of the STC when integrating audio and visual 

components of speech stimuli (Blau, van Atteveldt, Ekkebus, Goebel & Blomert, 

2009). As discussed above, STC plays an important role in audiovisual integration. 

1.12.2Audiovisual temporal processing in Schizophrenia 

Schizophrenia is characterised by cognitive deficits and processing abnormalities at 

the behavioural level of different sensory modalities (Williams, Light, Braff, & 

Ramachandran, 2010).  As audiovisual integration requires the senses to work together 

in a cooperative fashion, it is likely that audiovisual integration is impaired in 

Schizophrenia. It has been suggested that deficits in the integration of audiovisual 

information in individuals with Schizophrenia are specific to social or speech displays 

(de Gelder et al., 2005; de Jong et al., 2009; Szycik et al., 2009 ). Other research has 

shown a wider TIW in people with Schizophrenia, compared to the TD people 

(Martin, Giersch, Huron, & van Wassenhove, 2013). De Boer-Schellekens et al. 

(2014), however, found evidence for intact audiovisual temporal perception using TOJ 

task. They found that individuals with Schizophrenia were less sensitive to judging the 

temporal order of two successively presented visual stimuli than TD controls. 

However, their performance improved as to the level of the control group when two 

accessory sounds were added (temporal ventriloquism). This suggested that 

individuals with Schizophrenia are less sensitive to visual temporal order, but have no 

deficits when integrating auditory and visual information. Evidence from EEG studies, 

however, supports the view that individuals with Schizophrenia have deficits in 

audiovisual integration. Recently, Stekelenburg, Maes, Van Gool, Sitskoorn and 

Vroomen (2013) reported that in TD controls, visual information that predicts the 

onset of a sound reduces the auditory-evoked N1, compared to the N1 elicited in their 

audio-only condition. However, this reduction of the N1 was absent in individuals 

with Schizophrenia, proposing a deficit in audiovisual temporal prediction of sound. 

This supports the view that individuals with Schizophrenia did not integrate 

multisensory stimuli as well as controls.  

1.12.3 Audiovisual temporal processing in synaesthesia 

http://www.sciencedirect.com/science/article/pii/S0028393214002681#bib98
http://www.sciencedirect.com/science/article/pii/S0028393214002681#bib98
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Synaesthesia is the rare ability to perceive an internally generated perception in one 

sensory modality, triggered by an external stimulus from another sensory modality or 

sub-modality (Grossenbacher & Lovelace, 2001). Utilising the flash-beep illusion, as 

a tool to measure audiovisual integration, inconsistent findings have been reported that 

synaesthetes are either more (Neufeld et al., 2012) or less (Brang et al., 2012) 

susceptible to the illusion at short SOAs between the beeps. In other words, this means 

that they either integrate audio and visual information over a wider TIW or over a 

narrower TIW, respectively.  Both these results are in contrast to Whittingham et al. 

(2014) and Bargary’s (2008) results, reporting no differences in perception of the 

flash-beep illusion in people with synaesthesia and TD people, across a wide range of 

SOAs. The basis of the discrepancies of these findings is not entirely clear. However, 

the results could be due to differences of the characteristics of the synaesthetes across 

the studies. For example, Whittingham et al (2014) and Neufeld et al. (2012) included 

not only grapheme-colour synaesthetes, but also included colour-hearing synaesthetes 

in their sample. It might be that different types of synaesthesia affect multisensory 

integration in different ways. Furthermore, age differences between the samples could 

lead to potentially different results. It is possible, on the basis of previous findings 

(e.g. Hillock et al., 2011), that the ageing process has an effect on multisensory 

function. Indeed, when Bargary (2008) investigated age effects, they showed that 

older synaesthetes had a reduced susceptibility to the flash-beep illusion than the 

younger synaesthetes. However, this finding is inconsistent with studies of typical 

ageing which report an increase in multisensory integration in older adults (Setti, 

Burke, Kenny, Newell, 2011).  

1.12.4 Audiovisual temporal processing in typical aging  

Moreover, the TIW in older adults have been found to be wider, showing that they 

struggle to separate temporally distinct audio and visual information, as measured by 

SJ tasks (Chan, Pianta & McKendrick, 2014a) and the flash-beep illusion (Setti et al., 

2011). Furthermore, the researchers argue that this observation cannot only be 

explained by age-linked decreases in unisensory detection thresholds (decline in 

peripheral vision or hearing). Older adults still had a wider TIW compared to younger 

adults, when making SJ, even when visual contrasts and auditory pip intensity of the 

stimuli were based on individuals’ audio and visual detection thresholds. Moreover, it 
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has been found that audiovisual synchrony perception is less likely to be adapted in 

older age (Chan, Pianta & Mckendrick, 2014b). 

1.13 Objectives of this thesis  

The aim of Chapter 2 is to see how autistic traits correlate with cortical thickness of 

the brain in a typical population. Chapter 3 aims to investigate whether temporal 

audiovisual integration in ASD is different to that of TD participants, and whether this 

integration difference is dependent on the type of stimulus presented, or on the type of 

audiovisual synchrony task used. Moreover this chapter aims to understand the 

underlying process behind the atypical audiovisual integration in ASD. The objective 

of Chapter 4 is to investigate activation differences between the ASD and TD 

participants when perceiving audiovisual, auditory and visual, social and non-social 

displays, with a particular emphasis on investigating audiovisual sensitive areas. 

Chapter 5 aims to examine neural correlates of SJs in ASD and TD participants 

through using social and non-social audiovisual displays.  
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2 Cortical thickness investigation of autistic traits 

2.1 Abstract 

Autism Spectrum Disorder (ASD) is a neurodevelopmental condition characterised by 

social communication and interaction deficits, as well as repetitive patterns of 

behaviour, interests and activities. These traits are thought to be present in a typical 

population.  The Autism Spectrum Quotient questionnaire (AQ) was developed to 

assess the prevalence of autistic traits in the general population. Von dem Hagen et al. 

(2011) revealed a link between AQ with white matter (WM) and grey matter (GM) 

volume (using voxel-based-morphometry), as well as Blood Oxygen level-dependent 

(BOLD) response. Findings revealed no difference in GM areas associated with social 

cognition.  Using cortical thickness analysis in the same sample of participants, this 

study showed that AQ scores were correlated with cortical thickness (CT) in the left 

temporo-occipital junction, left posterior cingulate, right precentral gyrus and bilateral 

precentral sulcus, in a typical population. These areas were previously associated with 

structural and functional differences in ASD. Thus the findings suggest, to some 

extent, autistic traits are reflected in brain structure - in a typical population.  

2.2 Introduction 

Autism Spectrum Disorder (ASD) is a neurodevelopmental condition characterised as 

a variety of deficits in social communication and interaction (DSM V), as well as 

repetitive patterns of behaviour, interests and activities (American Psychiatric 

Association, 2013).  Traits of neurodevelopmental conditions, such as ASD, are said 

to lie on a continuum within the general population (Frith, 1991; Baron-Cohen, 1995).  

Previous research has shown that the trajectory of brain volume development is 

different in ASD compared to typically developed individuals. Brains of new-borns 

with ASD tend to be comparable in volume to brains of typically developing new-

borns (Courchesne, Carper & Akshoomoff, 2003; Dawson, Munson, Webb, Nalty, 

Abbott & Toth, 2007). The brains tend to be enlarged in early childhood (Courchesne 

et al., 2001; Hazlett et al., 2005; Stanfield et al., 2008). In adolescents and adults it is 

less clear; while some researchers have reported that this increased total brain volume 

is still present (e.g., Freitag et al., 2009; Hazlett, Poe, Gerig, Smith, & Piven, 2006), 

others have found normal total brain volume in adolescents and adults with ASD (e.g., 

Aylward et al., 2002; Redcay & Courchesne, 2005; review: Courchesne et al., 2007; 
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Hyde, Samson, Evans & Mottron, 2010). It is also elusive whether this putative 

increase in total brain volume is a result of grey matter (GM) volume (Hazlett et al., 

2006), white matter (WM) volume (Herbert et al., 2004), or a combination of both. 

Findings of structural brain differences of individual brain regions in ASD are even 

more inconsistent with regard to the localisation and direction (increases or decreases) 

with in those regions (for reviews see Amaral et al., 2008; Stanfield et al., 2008).  

In MRI studies, methods called voxel-based morphometry (VBM) and cortical 

thickness analysis (CTA) are commonly used to investigate grey matter morphometric 

changes in ASD. VBM gives a probabilistic measure of local GM and WM 

concentration (Ashburner & Friston, 2000), whereas cortical thickness analysis (CTA) 

directly measures cortical surface features, such as cortical thickness (CT; Jiao et al., 

2010). It is important to mention that VBM conflates information about morphology, 

size and position (Ashburner & Friston, 2001). CTA is less susceptible to positional 

variance because the extraction of the cortex follows the GM surface regardless of 

positional variance (Kim et al., 2005). Thus CTA provides a more direct index of 

cortical morphology.  Furthermore, since CT is measured in vertices rather than voxels 

it measures CT with sub-voxel precision compared to voxel-based measures (Fischl & 

Dale, 2000). 

CT and GM volume make use of the T1-weighted signal, representing the degree of 

MRI visible water, which is least visible in WM, intermediately so in GM, and most 

visible in cerebrospinal fluid (Diwadkar & Keshavan, 2002). MRI measurements of 

cortical morphology can reflect neuronal loss in ageing (Salat et al. 2004) and have 

been validated using post-mortem histological analysis (Rosas et al., 2002), showing 

that CT measured by MRI strongly correlates with post-mortem CT measurements. 

Moreover, CT changes have been related to cognitive function (Shaw et al., 2006; 

Narr et al., 2007), behaviour (Anagnostou &Taylor, 2011) and activation levels 

(Fusar-Poli et al., 2011; Schmitz et al., 2005), suggesting that functional and structural 

abnormalities share a common pathophysiology. However, it needs to be noted that 

MRI data have neither the resolution nor the specificity to explain the relationship 

between estimated CT and complex cellular processes, including dendritic 

remodelling, cell death, synaptic pruning, or plausible encroachment from myelination 

(Toga, Thompson & Sowell, 2006). Other research suggests that neural bases of GM 
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estimates and BOLD are independent or have a more complex relationship 

(Kannurpatti, Motes, Rypma & Biswal, 2010; Diwadkar et al., 2011).  

A recent study by Zielinski et al. (2014) examined CT from childhood to adulthood 

using a large mixed cross-sectional and longitudinal sample of autistic subjects and 

their controls. They found early accelerated growth in childhood, followed by 

accelerated thinning in adolescence, and decelerated thinning in early adulthood. 

Similarly, Osipowicz, Bosenbark & Patrick (2015) examined GM volume across the 

lifespan of people with ASD and controls, as well as correlated GM volume with 

autism severity. They showed bilateral decreases of GM volume in the ASD group in 

the thalamus, the cerebellum, anterior medial temporal lobes and the orbitofrontal 

regions. More severe ASD was associated with decreased GM volume in the 

prefrontal cortex, inferior parietal and temporal cortex, as well as temporal poles. No 

links between increased GM volume and ASD or symptom severity were found. 

Although this is in agreement with other research that found non relationship of GM 

morphology and autistic symptom severity (Langen, Durston, Staal, Palmen & van 

Engeland, 2007; Webb et al., 2009), others have found correlations between GM 

volume and autistic symptomology and severity in children (Hadan, et al., 2009; 

Pierce & Corchesne, 2001). Studies using CTA and VBM have reported both 

increased and decreased regional GM volume and CT in ASD. Some studies have 

reported GM volume or CT increases throughout the whole brain and in specific 

regions, such as the frontal, temporal and parietal regions, lingual gyrus, insular 

regions, precentral gyrus postcentral, cingulate gyri, caudate nucleus, hippocampus, 

brainstem and midbrain (Hyde, Samson, Evans & Mottron, 2010; Ecker et al., 2010; 

Waiter et al., 2004; Doyle-Thomas et al., 2013; Ecker et al., 2013). Others have found 

specific reductions in GM volume or CT in temporal and parietal regions, sensory and 

motor cortex, anterior cingulate, supramarginal gyrus, precentral, postcentral gyri, 

thalamus, corpus callosum, cerebellum, parahippocampal gyrus (Chung et al., 2005; 

Hadjikhani, Joseph, Snyder & Tager-Flusberg, 2006; Hyde et al., 2010; Scheel et al., 

2011; Toal et al., 2010; Greimel et al., 2013;  Ecker et al, 2013; Ecker et al., 2010; 

McAlonan et al., 2002;  Wallace, Dankner, Kenworthy, Giedd & Martin, 2010; See 

Table 1.1 for an overview).  
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Traits of ASD are thought to lie on a continuum within the general population (Frith, 

1991; Baron-Cohen, 1995). The Autism-Spectrum Quotient (AQ; Baron-Cohen et al., 

2011), a self-administered questionnaire, is used to measure the extent of autistic traits 

in the general population. The AQ has also been shown to distinguish between 

individuals with ASD and individuals with other psychiatric disorders (Woodbury-

Smith et al. 2005). Moreover, the AQ scores predict performance on tasks commonly 

associated with superior performance in individuals with ASD. For example, on a 

variety of psychometric tests, better disembedding is observed in high-AQ scores. 

These include: tests of block design (Stewart, Watson, Allcock & Yaqoob, 2009), the 

Embedded Figures Task (Grinter et al., 2009) and faster target detection in a visual 

search task (Almeida et al., 2010). The AQ also predicts performance in tasks that are 

impaired in ASD, such as inferring others' mental states from the eyes (Baron-Cohen 

et al., 2001), face processing as measured using the face inversion effect (Wyer, 

Martin, Pickup, & Neil Macrae, 2012), and spontaneous facial mimicry (Hermans, 

Van Wingen, Bos, Putman, & Van Honk, 2009).  

Autistic traits measured by AQ have also been shown to be associated with changes in 

brain structure and activation patterns in typically developed brains (Iidaka et al., 

2012; Kosaka et al., 2010; Geurts er al., 2013; Saito et al., 2013; Gebauer et al., 2015; 

Von dem Hagen et al., 2011; see Table 2.1 for an overview of studies investigating the 

relationship between AQ scores and brain structure). However, a recent exploration-

validation study showed no association between AQ scores and brain structure, 

including analysis of GM volume, CT, Division Tensor Imagining (DTI; Koolschijn, 

Greurts, Leij & Scholte, 2015).  

Looking specifically at the relationship between AQ scores and GM volume or CT, 

studies show that higher AQ scores correlate with smaller GM volume of the right 

insula and inferior frontal gyrus; larger GM volume of left middle frontal gyrus and 

superior frontal sulcus (Kosaka et al., 2010; von dem Hagen et al., 2011; Geurts et al., 

2013; Saito et al., 2013) and reduced CT in right medial orbitofrontal cortex, 

postcentral gyrus, lingual gyrus (Gebauer et al., 2015). However Koolschijn et al. 

(2015) showed no links between AQ scores and GM volume or CT. See Table 2.1 for 

an overview of recent findings of studies investigating associations between autistic 

traits and brain structure.  
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Von dem Hagen et al. (2011) investigated the WM and GM volume of the same 

participants using VBM. Changes in blood oxygen level dependent (BOLD) response 

were measured in 19 of the participants at rest, as well as when performing a Stroop 

task. Their results revealed that higher AQ scores were correlated with lower volumes 

of WM in the posterior superior temporal sulcus (pSTS); an area related to social 

processing such as attentional cueing from eye gaze (Bayliss & Tipper, 2005).  The 

pSTS has also been found to have structural differences in GM (Scheel et al., 2011; 

Greimel et al., 2013; Doyle-Thomas et al., 2013; Hyde et al., 2010) and WM (Barnea-

Goraly et al ., 2004), as well as functional  differences in ASD (Gusnard & Raichle, 

2001; Buckner et al., 2008).  Furthermore, Von dem Hagen et al. (2011) showed that 

the AQ correlated with the degree of cortical deactivation in an area neighbouring the 

pSTS whilst performing a Stroop task compared to baseline. However, using VBM, 

AQ and GM volume only correlated in the left superior frontal sulcus. Contrary to 

their hypothesis, no correlations between AQ and GM volume were found in areas 

involved in social cognition and mentalising, such as the pSTS, temporal parietal 

junction/angular gyrus and medial prefrontal sulcus.   

Table 2.1 Studies investigating the relationship between brain structure and autistic traits 

measured by AQ. 
Brain Region  Method N Age Autistic traits 

measurement 
Authors 

 
Higher AQ scores correlated with:  

- smaller GM volume of right insula and inferior frontal 

gyrus 

VBM 32  PDD-NOS 

40 (m) 

23.8 (4.2) Full AQ Kosaka et al., 

2010 

Higher AQ scores correlated with:  

-smaller WM volume in right posterior superior temporal 

sulcus  

-larger GM volume in left superior frontal sulcus 

VBM 91 (m) 25 (5) Full AQ Von dem Hagen 

et al., 2011 

Higher AQ scores correlated with:  

-larger GM volume of left middle frontal gyrus; 

- smaller GM volume in left inferior frontal gyrus central 

gyrus, posterior cingulate, inferior and superior parietal lobe 

VBM 85 (m=53) 21.5 (2.4) Full AQ a Geurts er al., 

2013 

Lower AQ prosociality scores correlated with: 

- smaller right insula in males  

- reduced structural coupling of right insula with ventral 

anterior cingulate in males 

VBM 79 (m) 

56 (f) 

29.4 (4.2) 

28.1 (4.4) 

Full AQ a Saito et al., 2013 

No correlation between AQ scores and sulcal subtype SulcoGyral 

patterns 

ASD: 51 (m) 

TD: 55 (m) 

30.9 (8.2) 

32 (7.1) 

Full AQ Watanabe et al., 

2014 

Higher AQ scores correlated with: 

-reduced CT in right medial orbitofrontal cortex, postcentral 

gyrus, lingual gyrus 

CT ASD: 25 (m=18) 

TD:26 (m=20) 

28.4 (6.4) 

25.2 (4.4) 

Full AQ Gebauer et al., 

2015 

None  VBM, CT, 

DTI  

204 (m=105) 

304 (m=155) 

22.85 (1.7) 

22.82 (1.73) 

AQ 28 (Hoekstra 

et al., 2011) 

Koolschijn et al., 

2015 

Higher AQ scores correlated with 

-larger volume of connectivity between the superior temporal 

sulcus and amygdala 

DTI 30 (m= 14) 22.5 (3.0) Full AQ Iidaka et al., 

2012 

  

n=Number of participants (m = males), Age= Mean age, standard deviations are in brackets, AQ=  autism spectrum quotient, PDD-NOS= pervasive 

developmental disorder not otherwise specified, VBM = voxel-based morphometry, CT = cortical thickness, TD = typically developed, GM = grey 

matter, WM = white matter 
a 4-point scale of AQ 
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VBM potentially conflates information about morphology, size and position 

(Ashburner & Friston, 2001), while CTA is less susceptible to positional variance, 

providing a more direct index of cortical morphology (Kim et al., 2005; Jiao et al., 

2010). Therefore, the current study made use of the semi-automatic, surface-based 

CTA tools in Brainvoyager to further investigate the relationship between CT and AQ 

in the same sample previously investigated by von dem Hagen et al. (2011). 

2.3 Methods 

2.3.1 Participants 

91 right-handed participants were included in this study (mean age = 25 ± 5 years, 

range: 18-42; 53 females). 95 participants were originally recruited through the 

volunteer panel of the MRC cognition & Brain Sciences unit at the University of 

Cambridge. Four participants were excluded; two were excluded due to excessive 

head movement and two due to poor image intensity distributions. None of the 

participants reported a history of psychiatric or physical illness. For 31 participants, 

two structural scans were taken and were then averaged to improve image quality.  

All participants completed the Autism Quotient (AQ) questionnaire developed by 

Baron-Cohen, Wheelwright, Skinner, Martin and Clubley (2001) (mean score: 16 ± 7, 

range: 2-33). The AQ contains 50 items measuring the degree of autistic traits within 

the general population, as well as in individuals with high functioning autism and in 

Asperger’s Syndrome. Examples of items include: “When I'm reading a story, I find it 

difficult to work out the characters' intentions”, and “I am often the last to understand 

the point of a joke.” A higher AQ score indicates a greater extent of autistic traits. The 

total AQ has been shown to have good test-retest reliability as well as good internal 

consistency (Baron-Cohen et al., 2001). Moreover, the AQ has been reported to have 

high sensitivity and specificity in individuals referred for a diagnosis of ASD: at a cut-

off score of 26, 83% of people with an ASD diagnosis were correctly identified 

(sensitivity 0.95, specificity 0.52), whereas a cut-off score of 32 correctly identified 

76% of people diagnosed with ASD (sensitivity 0.77, specificity 0.74) (Austin, 2005; 

Woodbury-Smith, Robinson, Wheelwright, Baron-Cohen, 2005;). Therefore, evidence 

suggests that AQ is a sensitive measure of autistic traits in the general population.  
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One participant scored 33 on the AQ and therefore scored above the cut-off point for 

Asperger’s and high-functioning autism (Baron-Cohen et al., 2001). However, the AQ 

is not a diagnostic measure, and none of the participants were reported to have a 

clinical ASD diagnosis. In all cases, written informed consent was obtained from all 

participants. The study was approved by the research ethics committee at Cambridge 

University (see von dem Hagen et al., 2011 for more detail). 

2.3.2 Procedure 

2.3.2.1 MRI Acquisition parameters 

A Siemens 3T Tim Trio scanner was used to acquire the anatomical scans, and all 

analyses were performed in BrainVoyager QX 2.4 and 2.6. (Brain Innovation, 

Maastricht, The Netherlands, http://www.BrainVoyager.com). A high-resolution 

structural magnetisation, resulting in rapid gradient echo scans (voxel size = 1 x 1 x 1 

mm, repetition time = 2250 ms, echo time = 2.99 ms, inversion time = 900 ms, flip 

angle = 9°, total scan time = 4 min 16 s), was acquired for all participants.  

2.3.2.2 Data preprocessing 

BrainVoyager QX 2.6 was used for processing all stages of the data. The structural 

data of all participants was converted from NIFTY files to VMR files (BrainVoyager’s 

own file format). The structural scans’ intensities were inhomogeneity corrected, the 

brains were extracted from the skull, and the scans were transformed into ACPC and 

Talairach space (Talairach and Tournoux, 1988). 

2.3.2.3 Advanced segmentation analysis 

Before the CTA was performed, several advanced segmentation steps had to be carried 

out. The data set was resampled from 1 x 1 x 1 mm to 0.5 x 0.5 x 0.5 mm iso-voxels 

using sinc interpolation. The “brain peeling” step and manual removal of dura was 

performed on some scans in which the previously performed brain extraction step was 

not satisfactory. The subcortical structures and ventricles were labelled as white matter 

and the cerebellum was manually removed. Lastly, the tissue contrast and 

homogeneity was enhanced using a sigma filter. 

The segmentation started with the white matter-grey matter (WM-GM) border 

followed by the GM-cerebrospinal fluid border. The results of this automatic step 



46 
 
 

were visually inspected and manually corrected by authors blinded to which AQ score 

the scan belonged to. CT maps were computed using the Laplace method (Jones, 

Buchbinder & Aharon, 2000) implemented by BrainVoyager QX. 

Since a good match between corresponding brain areas is important for group-level 

statistical data, analysis cortex-based alignment (CBA) was performed. It has been 

shown that a cortical matching approach substantially improves statistical analysis 

across participants by reducing anatomical variability (Fischl et al., 1999a;b; Dale et 

al.,1999). The cortical mapping approach by BrainVoyager QX aligns the brains using 

curvature information of the cortex, reflecting the gyral and sulcal folding pattern of 

the brain (Goebel, Staedtler, Munk, & Muckli, 2002; Goebel, Hasson, Harel, Levy, & 

Malach, 2004). CBA contains several steps. The input for CBA is the reconstructed 

cortex of a properly segmented brain hemisphere (without topological errors, e.g. 

"bridges", otherwise the morphing and subsequent alignment will fail). Any 

topological errors were manually corrected. BrainVoyager’s atlas brain of Colin was 

included. Then, the folded cortex meshes were transformed into spherical mesh 

representations (for each hemisphere separately), which provided a parameterizable 

surface for across-subject non-rigid alignment. Each vertex on a sphere corresponded 

to a vertex of the corresponding folded cortex and vice versa. The spheres also 

contained the curvature information which was computed from the folded cortices. 

This curvature information was smoothed along the surface to provide spatially 

extended gradient information driving intercortex alignment. This minimised the mean 

squared differences between the curvature of a source and a target sphere. The 

reconstructed cortices were aligned using curvature information of the cortex, 

reflecting the gyral and sulcal folding pattern. Fischl, Sereno & Dale (1999) have 

shown that this method has been shown to reduce anatomical variability.  

Voxel-wise regressions between CT and AQ were computed for every participant.  

Multiple comparisons were controlled for using cluster-based threshold estimation. 

The computation of minimum cluster threshold was accomplished via Monte Carlo 

simulation. After 1000 iterations, the minimal cluster size threshold that yielded a 

cluster-level false positive of 5% was applied to the statistical map (p<0.05, minimal 

cluster size = 1.5 cm). Moreover, the range of cortical thickness was limited to up to 7 

mm and anything above was regarded as artefact (Jones et al., 2000).
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2.4 Results 

Making use of the semi-automatic, surface-based cortical thickness analysis (CTA) 

tools in Brainvoyager, we computed the CT in 91 healthy adults. The whole-brain 

voxel-wise correlation showed positive correlations between CT and AQ scores in the 

left temporo-occipital junction (r = .323, p=.0018), left precentral sulcus (r = .336, 

p=.0011), left posterior cingulate (r = .364 p=.0004), right precentral sucus (r=.306, 

p=.00032), and right precentral gyrus (r= .355, p=.0006). No negative correlations 

were found.  

 
Figure 2.1  Whole brain correlation of cortical thickness and AQ. In yellow are the clusters corrected for multiple 

comparisons by cluster size threshold estimation to determine minimum cluster sizes for each contrast, based on 

a significance of p<0.05. Clusters were defined based on those that survived cluster-size threshold of 1.5mm. 

Clusters are projected on a surface reconstructed from the average curvature patterns from all participants and 

Colin’s brain.  
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Figure 2. 2 Correlation plots of AQ scores 

and mean cortical thickness measured of the 

vertices in each of the five brain areas in 

which cortical thickness was found to be 

correlated to AQ scores.  
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2.5 Discussion 

Making use of the semi-automatic and surface-based CTA tools in Brainvoyager, we 

examined the relationship between CT and autistic traits, measured by AQ, in 91 

healthy adults. The whole-brain analysis revealed positive correlations between CT 

and AQ scores in areas previously reported to have atypical structure in ASD, 

including the left temporo-occipital junction, left posterior cingulate, right precentral 

gyrus and bilateral precentral sulcus. These findings suggest that the prevalence of 

autistic traits in a typical population can be associated with thickening of cortical 

regions. Interestingly, this study did not reveal an association between higher AQ 

scores and cortical thinning.  

The current study supports previous findings associating higher AQ scores with areas 

of larger GM volume, particularly in the right posterior cingulate (Geurts et al., 2013). 

However, the majority of studies investigating the relationship between AQ and brain 

structure show that higher AQ scores are linked to a thinner cortex or smaller GM 

volume (Kosaka et al., 2010;  Geurts et al., 2013; Gebauer et al., 2015), a relationship 

we fail to show in this study.   

In the same sample of participants, von dem Hagen et al. (2011) previously revealed 

AQ to be related to GM and WM volume, as well as BOLD responses. Using VBM, 

the authors found that AQ and GM volume correlated in the left superior frontal 

sulcus, but not in areas associated with social cognition and mentalising, such as the 

pSTS, temporal parietal junction/angular gyrus and medial prefrontal sulcus, as they 

had previously predicted. Although the current study did not find correlations between 

AQ and CT directly in those areas, it found AQ correlates with CT in two adjacent 

areas; the tempoccipital area and the posterior cingulate. Furthermore von dem Hagen 

et al. (2011) showed that AQ correlated with the degree of cortical deactivation in an 

area neighbouring the pSTS, and that higher AQ scores were correlated with lower 

volumes of WM in the pSTS. The pSTS is an area commonly associated with 

structural (Scheel et al., 2011; Greimel et al., 2013; Doyle-Thomas et al., 2013; 

Barnea-Goraly et al ., 2004) and functional (Gusnard & Raichle, 2001; Buckner et al., 

2008) differences in ASD.  
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Temporo-occipital area/ Angular gyrus  

An area between the occipital and temporal cortex revealed a correlation between AQ 

scores and CT. This temporo-occipital area is located right next to the angular gyrus, 

which is associated with shifting of attention (Gottlieb, 2007), a characteristic that the 

AQ measures. Furthermore, the angular gyrus has been suggested to be involved in 

multisensory integration of audio and visual information (Ramachandran, Azoulai, 

Stone, Srinivasan, & Bijoy, 2005), which people with ASD have been shown to have 

deficits in (e.g., Chapters 3 and 5; Smith & Bennetto, 2007). Moreover, our results are 

supported by previous literature suggesting an increased GM volume and CT in 

individuals with ASD in areas of the temporo-occipital/inferior parietial lobule 

(Waiter et al., 2004; Doyle-Thomas et al., 2013 Ecker et al, 2013). However, other 

research has shown decreased CT and GM volume in the temporo-occipital/ inferior 

parietal gyrus (Chung et al., 2005; Wallace et al., 2010 ; Hadjikhani et al, 2006). 

Posterior cingulate  

The CTA revealed that the CT in the posterior cingulate (Brodmann area 23) was 

correlated with AQ scores. The posterior cingulate has been associated with social 

information processing, such as the processing of emotionally salient stimuli 

(Maddock & Buonocore, 1997; Maddock, Garrett, Buonocore, 2003). Impairments in 

social skills are a common characteristic in ASD and are also measured by the AQ. 

Thus, finding CT of the posterior cingulate to correlate with AQ scores could be 

linked to a social processing difficulty. Moreover, studies have shown that the 

abnormalities in cingulate responses during interpersonal interaction correlate with the 

severity of autistic symptoms (Chiu et al., 2008). Using Positron Emission 

Tomography (PET), Haznedar et al. (2014) found decreased metabolism in both the 

anterior and posterior cingulate gyri in ASD. Taken together, the our results of AQ 

scores correlating with CT in the posterior cingulate is supported by research 

associating this area with social information processing, as well as observed abnormal 

activation levels in ASD. In close agreement with our findings are studies showing CT 

and GM volume increases in ASD in the posterior cingulate (Hyde et al., 2010; Doyle-

Thomas et al., 2013). Contradictory to our findings, Ecker et al. (2010) found 

decreased GM volume in the posterior cingulate gyrus. 

Precentral gyrus & sulcus 
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We found a positive correlation between AQ and CT in areas of the precentral gyrus 

and sulcus. The precentral gryrus and sulcus are part of the primary motor cortex. 

Motor impairments associated with ASD are commonly observed in infants (Brian et 

al., 2008) and persist throughout childhood and adulthood (Hallett et al., 1993; Freitag 

et al., 2007). Motor abnormalities in ASD are also shown to be heritable and part of 

the broader ASD phenotype. More precisely, early motor delays are more commonly 

observed in infant siblings of children with ASD than in infants without ASD siblings 

(Bhat et al., 2012). Although the AQ does not tap into motor deficits, individuals with 

higher autistic traits might be more likely to have more motor deficits, which could 

potentially explain our results. Moreover, looking at the ASD literature, these areas 

have been found to have increased CT or GM volume in adults with ASD, compared 

to typically developed adults (Ecker et al., 2010, Rojas et al., 2006; Doyle- Thomas et 

al., 2013). However, contradictory to our findings are results showing decreased CT 

and GM volume in the precentral gyrus in individuals with ASD (Ecker et al., 2010; 

Hyde et al., 2010; Hadjikhani, Joseph, Snyder & Tager-Flusberg, 2006). 

Studies investigating GM volume and CT in participants with ASD or their 

relationship with AQ scores show heterogeneous results. This heterogeneity of results 

across studies investigating cortical morphology may be due to factors such as: a 

variety of algorithms and techniques being used to compute CT and GM volume; 

differences in MRI image resolution across studies; MRI sequences (e.g., MPRAGE 

sequence versus ADNI sequence), as well as, sample heterogeneity. Compared to 

MPRAGE, ADNI sequences provide an improved contrast between GM and WM, and 

therefore improve the segmentation process (Jack et al., 2009). Studies have since 

investigated what underlies this heterogeneity by looking at the different techniques 

used to measure cortical morphology.  For example, Hazlett et al. (2011) examined 

GM volume, CT and surface area (SA) in ASD and suggested that increased GM 

volume might be associated with increased SA rather than CT. Moreover, Raznahan et 

al. (2010), in a cross-sectional study in ASD, reported a altered neurodevelopmental 

trajectories for GM volume and CT, but not SA. These results were supported in a 

recent study by Ecker et al. (2013) which investigated GM volume, SA, and CT, as 

well as their relationship in a large sample of men with ASD and well matched 

typically developed controls. These results suggest that GM volume is made of SA 

and CT, which are measurements associated with different developmental pathways. 
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These pathways are likely to be controlled by different underlying neurobiological 

mechanisms. 

Moreover, heterogeneity in ASD samples is an important discussion point in all 

studies investigating ASD.  However, more specifically, sample heterogeneity due to 

differences in diagnostic methods, participants’ ages IQ and sex are also likely to 

contribute to the heterogeneity of cortical morphology results (Anagnostou & Taylor, 

2011). In particular, IQ has been found to correlate with CT (Narr et al., 2007; Choi et 

al., 2008) and age has been linked with GM volume (Osipowicz, Bosenbark & 

Patrick, 2015) and CT (Zielinski et al., 2014). A study by Sowell et al. (2007) found 

sex differences in CT across their sample, a difference also reported in the AQ 

literature (Baron-Cohen et al., 2014; Ruzich et al., 2015). Therefore, future 

experiments studying the association of AQ scores and structural differences in the 

general population should control for age, IQ and sex differences in order to better 

isolate this specific relationship.  Moreover, using only ADNI sequence would 

improve the segmentation process.   

The total AQ has been shown to have good test-retest reliability, as well as good 

internal consistency (Baron-Cohen et al., 2001). Moreover, the AQ has been reported 

to have suitably high sensitivity and specificity in individuals referred for diagnosis 

(Austin, 2005; Woodbury-Smith, Robinson, Wheelwright & Baron-Cohen, 2005). 

However, it needs to be mentioned that the AQ is not the only measure of autistic 

traits. For example, the Broad Autism Phenotype Questionnaire (BAPQ) was 

developed by Hurley, Losh, Parlier, Reznick and Piven (2007), while the adult Social 

Responsiveness Scale (SRS) was originally developed by Constantino and Todd 

(2005). A study by Brooke, Hopwood, Wainer and Donnellan (2011) compared these 

three self-report measures of autistic traits and showed that the BAPQ and SRS clearly 

demonstrated sex differences and had better internal consistency than the AQ.  

Furthermore, Gregory and Plaisted-Grant (2013) recently suggested that using AQ 

scores as a substitution for ASD participants requires unverified assumptions about 

high-AQ scoring individuals and their relationship to individuals with an ASD. 

Further, research has not fully explained the endophenotypes related to ASD, and thus 

the AQ can only function as an approximation of these. The researchers make an 

important point, which should be considered in all AQ research.  
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Conclusion 

In conclusion, the present findings provide further evidence that the autistic traits 

(measured by the AQ) and CT are correlated in the left temporo-occipital junction, left 

posterior cingulate, right precentral gyrus and bilateral precentral sulcus in a typical 

population. These areas have previously been associated with functions often impaired 

in ASD, such as social processing, attention switching and motor skills. Additionally, 

these areas have previously been related to have structural and functional brain 

differences in ASD. This supports our findings that autistic traits of individuals are 

reflected in the brain structure in a typical population. Moreover, the discrepancy 

between the results by von dem Hagen et al., (2011) and our results reveals that GM 

volume and CT results are not necessarily comparable. Furthermore, our results 

suggest that CT measurements are more sensitive to cortical grey matter differences 

than GM volume measurements.   
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3 Psychophysical investigations of audiovisual processing differences 

in Autism Spectrum Disorder measured using Simultaneity and 

Temporal Order Judgements 

 

3.1 Abstract  

 

The ability to integrate auditory and visual information is crucial to everyday life, and 

results are mixed regarding how Autism Spectrum Disorder (ASD) influences 

audiovisual integration.  To investigate this question, we examined the Temporal 

Integration Window (TIW), which indicates how precisely sight and sound need to be 

temporally aligned so that a unitary audiovisual event can be perceived. 26 adult 

males with ASD and 26 age and IQ-matched typically developed males were 

presented with flash-beep (BF), point-light drummer, and face-voice (FV) displays 

with varying degrees of asynchrony and asked to make Synchrony Judgements (SJ) 

and Temporal Order Judgements (TOJ).  Analysis of the data included fitting 

Gaussian functions, as well as using an Independent Channels Model (ICM) to fit the 

data (Garcia-Perez & Alcala-Quintana, 2012). Gaussian curve fitting for SJs showed 

that the ASD group had a wider TIW, but for TOJ no group effect was found. The 

ICM supported these results, while model parameters indicated that the wider TIW for 

SJs in the ASD group, compared to the TD group, was not due to sensory processing 

at the unisensory level, but rather due to decreased temporal resolution at a decisional 

level of combining sensory information. Furthermore, when performing TOJ the ICM 

revealed a smaller Point of Subjective Simultaneity (PSS; closer to physical 

synchrony) in the ASD group than in the TD group.  
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3.2 Introduction  

Autism Spectrum Disorder (ASD) is a neurodevelopmental condition characterised by 

a variety of deficits in social communication and interaction, as well as repetitive 

patterns of behaviour, interests and activities (American Psychiatric Association, 

2013). Recent reports show that 1 in 88 children in USA have ASD (Centers for 

Disease Control and Prevention, 2012), revealing the pressing need to understand this 

condition better. In addition to the aforementioned features of autism, scientific and 

clinical research using questionnaire and sensory discrimination methods has 

repeatedly described differences in sensory processing between ASD and typically 

developing (TD) children (Lane, Young, Baker, & Angley, 2010). Robertson & 

Simmons (2013) revealed a strong correlation between autistic traits and sensory 

sensitivities in the general population. Yet, only recently the relevance of these 

sensory impairments as diagnostic criteria of ASD has been recognised as reflected in 

their inclusion in the DSM-V.  This highlights the importance of developing sensory 

processing interventions.  

 

The recent scientific interest in ASD sensory perception and behaviour has coincided 

with a shift in cognitive neuroscience to try to explain human perception and 

behaviour by examining  multisensory perception, rather than each of the senses 

separately (Love, Pollick & Petrini, 2012).  The ability to behave appropriately in the 

environment and to conduct everyday tasks relies on the brain’s ability to decide 

which sensory information should be combined and which should be kept separated. 

Combining multiple sensory cues can reduce uncertainty and enhance our ability to 

make better estimates of the situation (Ernst & Banks, 2002). For example, when 

crossing a road we are most likely using both sight and sound to estimate the position 

of approaching cars. Similarly, in a crowded and noisy environment, we can better 

understand another person’s speech by looking at his/her face and lip movements. 

Accumulating evidence highlights that in ASD the efficiency gained from processing 

multiple sensory signals as a single percept could be lost, resulting in less efficient 

sensory processing overall. For example, people with ASD perceive audiovisual 

illusions such as the McGurk effect (McGurk & MacDoland, 1976) less often than 

their TD controls (de Gelder et al., 1991; Irwin et al., 2011; Mongolli et al., 2008), 
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benefit less from information from an additional sensory modality (Smith & Bennetto, 

2007), rely more on one sensory modality (Stevenson et al., 2014), and show less 

effective neural integration during audiovisual tasks (Brandwein et al., 2013). 

Interestingly, Foxe et al. (2015) recently showed that multisensory processing 

differences ameliorate in teenage years.  

These findings are in line with the temporal binding hypothesis of ASD (Brock, 

Brown, Boucher & Rippon, 2002). This theory is based on the idea originally 

formulated by Frith (1989), termed as weak central coherence, that individuals with 

ASD mostly focus on local rather than global aspects of information. That is, 

individuals with ASD perceive the sensory information in isolation (e.g. a voice) 

rather than as a meaningful whole (e.g. a person speaking). Different internal and 

external factors can determine whether two sensory cues would be combined in a 

meaningful whole. Meanwhile, the temporal binding hypothesis of ASD proposes that 

the deficits in global processing are linked to impairments in temporal processing. In 

other words, individuals with ASD cannot exploit the temporal correspondence of 

different sensory inputs to the same extent as TD individuals. This claim is supported 

by recent evidences showing decreased sensitivity to audio-visual asynchrony for 

individuals with ASD (Bebko, Weiss, Demark & Gomez, 2006; Foss Feig et al., 2010; 

Kwakye, Foss-Feig, Cascio, Stone & Wallace, 2011; de Boer-Schellekens, Eussen & 

JeanVroomen, 2013; Stevenson et al., 2014). Sensitivity to asynchrony has commonly 

been measured using video clips of simple beeps and flashes, complex audiovisual 

human actions and audiovisual speech (de Boer-Schellekens, Eussen & JeanVroomen, 

2013; Stevenson et at., 2014). Participants are presented with these stimuli at different 

stimulus onset synchronies (SOAs) and are asked to make Synchrony Judgements (SJ) 

(Grossman, Schneps & Tager-Flusberg, 2009; Stevenson et at., 2014) or Temporal 

Order Judgement (TOJ) (e.g., de Boer-Schellekens, Eussen & JeanVroomen, 2013). In 

SJs, participants are asked to judge the synchrony between the audio and the visual 

information, whereas in TOJs they are asked to determine whether the auditory or the 

visual information came first. 

Unisensory temporal processing differences in ASD have also been found in  audio 

and vision (Kwakye et al., 2011; Szelag, Kowalska, Galkowski & Poppel, 2004). 

Szelag et al. (2004) showed that children with ASD had deficits in reproducing the 

durations of both auditory and visual unisensory stimuli. Moreover, Williams at al. 
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(2004) found that when controlling for unisensory processing abnormalities, the 

audiovisual processing differences are eliminated.  Conversely, Stevenson et al. (2014) 

showed that audiovisual temporal processing differences were not due to unisensory 

processing differences.  

Thus far, most studies show that children and adolescents with ASD have a wider 

audiovisual temporal integration window (TIW), which implies that they are less 

sensitive to audiovisual asynchrony than their age-gender-IQ-matched controls. 

However, it is unclear whether this reduced sensitivity in ASD persists later in life. 

One study included a few young adults up to the age of 24 in their sample (de Boer-

Schellekens, Eussen & Vroomen, 2013). Studies have shown that adolescents and 

adults with ASD often develop compensatory strategies and eliminate behavioural 

differences in perceptual tasks (McKay et al., 2012; Fox et al., 2015). Thus it is 

essential to investigate whether the lower audiovisual sensitivity still persists in adults 

with ASD. It is also of importance to understand how audiovisual temporal integration 

differs in ASD, and therefore we included two of the most commonly used tasks, TOJ 

and SJ, as well as different audiovisual stimuli, ranging from simple beep and flashes, 

complex human action to complex speech. Due to the inherent task-related differences 

between SJs and TOJs (Love et al., 2013; Love et al., in preparation; Binder, 2015), 

these are a useful mean to examine the reasons behind the audiovisual temporal 

binding differences in ASD. If a wider TIW in ASD is due to difficulties in processing 

of global information (i.e., difficulties in combining the audio and the visual cues), 

then one would expect to see a more pronounced performance difference between 

ASD and TD in SJs compared to TOJs. This is because SJs require estimation of the 

temporal correspondence of the audio and visual cue, and thus depend on more global 

level processing (considering the stimulation as a whole).  TOJs, however, could in 

principle be performed by focusing on only one sensory cue to detect whether it came 

first or not, thus depending on more local level processing (i.e., considering only the 

sound).  

To investigate the underlying perceptual processes of temporal audiovisual integration 

in ASD, the study is taking advantage of the Independent Channels Model (ICM) 

(Garcia-Perez & Alcala-Quintana, 2012), which provides estimates of sensitivity to 

asynchrony in SJs and TOJs across a range of stimuli, as well as their estimates of 

unisensory and decisional factors needed to make those judgements. 
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3.3 Methods  

 

3.3.1 Participants 

 

 Twenty-six high-functioning adults with Autism Spectrum Disorder (aged between 18 

and 40) and 26 age-, sex- and IQ-matched control participants (aged between 18 and 

39) took part in the study (Table 3.1). All participants in the ASD group reported to 

have a diagnosis of having an ASD according to DSM-IV criteria from a qualified 

clinician. All were native English speakers, had normal or corrected to normal vision 

and reported no hearing difficulties. The Autism Quotient (AQ), a 50 item autism 

traits questionnaire developed by Baron-Cohen, Wheelwright, Skinner, Martin and 

Clubley (2001), with the cut off score for Asperger’s being 26, supported the 

diagnoses of the ASD group (M= 36.64, SD = 8.80) and reinforced the assumption 

that no-one in the TD group had an ASD (M=12.57, SD= 3.70). The participants were 

matched pair-wise on age (t(50)=.448, p=.656) and group-wise on full scale IQ (FSIQ) 

(t (50)-.557, p=.580) as measured using the Wechsler Abbreviated Scale of 

Intelligence (WASI) (Wechsler, 1999).  

 

The experimental procedures were approved by the School of Psychology at the 

University of Glasgow and also the Greater Glasgow and Clyde National Health 

Service ethics board. 

Group Age   FSIQ  

Mean SD  Mean SD 

ASD 

Control 

26.62 

25.81 

7.01 

5.93 

 117.54 

119.08 

11.14 

8.63 

Table 3.1 Mean and Standard Deviation of the ages and Full Scale IQs of the ASD 

and TD group separately. 
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3.3.2 Stimuli 

Three stimulus types were used: beep-flash (BF), point-light-drumming (PLD) and 

face-voice (FV). These three different stimuli were used because they varied in the 

amount of social information and complexity. While the BF stimuli are very simple 

and do not have a strong prior (formed through experience) and do not contain social 

information, FV speech stimuli are much more complex and are based on prior social 

experience and situations. PLD stimuli, in contrast, are similar to BF in the way of 

presentation (white dots on a black background), while representing a more complex 

human action. In other words, they nicely collocate themselves for complexity and 

level of social information between BF and PLD. For more detailed descriptions of 

these stimuli see Love et al. (2013).  

For the BF stimuli, the beep was a pure tone with 2000 Hz and 84 dB mean intensity, 

and the flash was a white dot with a luminance of 85 cd/m2 presented on a black 

background with a luminance of 0.12 cd/m2 (see Figure 3.1 for an illustration). The 

size of the white dot (with a visual angle of the diameter being 4.4 degrees) was of the 

same size as the of the drummer and the speaker’s mouth in the PLD and FV displays, 

respectively. To produce the BF audiovisual movies (60 Hz), the pure tone and white 

 

Figure 3.1 The top panel shows the visual information participants were 

presented with. The bottom panel shows the auditory waveform for each 

type of stimulus.  The beep-flash (BF) stimulus consisted of a flash of a 

white dot on a black background and a beep. Point-light-drumming (PLD) 

shows a movie frame and the waveform drumbeat. The outlines of the 

drum and drummer are for illustrative purposes only.  In the Face-voice 

(FV) stimulus a movie frame is shown and the waveform represents the 

word “tomorrow”. Please note that the images are not to scale, the area of 

the point-light-drummer and the white flash dot are approximately the 

same size as the area of the mouth in FV.  
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dot were imported in Adobe Premiere 1.5. The duration was cut to 33 ms with a 

Stimulus Onset Asynchrony (SOA) level of  0 ms. The audio and visual timelines 

were separated in 4 frame increments to create 11 SOA levels: 5 audio-leading (-333, -

267, -200, -133, -67 ms), 5 video-leading ( +333, +267, +200, +133, +67 ms) and 1 

synchronous. In the ten asynchronous conditions, the space between the beep and the 

flash was filled with a black screen and no sound. The synchronous condition was 33 

ms long. The duration of the asynchronous conditions increased with increasing SOA 

such that 67, 133, 200, 267, 333 ms SOA conditions were 100, 166, 233, 300, 366 ms 

long, respectively.  

The PLD displays have been used and described previously by Love et al. (2013), 

Petrini, Holt & Pollick (2010), Petrini et al. (2009) and Petrini, Russell and Pollick 

(2009). The stimuli were dynamic audiovisual displays (60 Hz) of a point-light 

drummer (Figure 3.1) drumming a swing groove at 120 beats per minute with an 

accent on the second beat. The image of the drummer covered a visual angle of 4.8 

degrees width and 2.8 degrees height. All PLD stimuli were cut from a 15 s long 

original recording and contained 9 audio and visual impacts (Petrini et al., 2009). The 

audio and visual information of the longer drumming sequence were first separated in 

time by each SOA level (333, 267, 200, 133, 67, 0 ms), and then the stimuli sequence 

was cut from that. This enabled the creation of equally long asynchronous stimuli (3 

seconds) and made it possible to have an audio and video sequence at the beginning 

and end at all SOAs.  

The FV stimuli were dynamic audiovisual displays (25 Hz) showing a native English 

male saying the word ‘‘tomorrow’’. The visual speech stimulus contained the full face 

and covered an approximate visual angle of 12.7 by 18.9 degrees (Figure 3.1), and the 

mouth region had a visual angle of approximately 3.2 by 2.5 degrees. The 

asynchronous conditions were produced by separating the audio and visual streams 

along the movie timeline using a method similar to that described by Vatakis and 

Spence (2006). This separation created gaps at the beginning and end of the movie 

timeline and these were filled with the first and last frame of the auditory or the visual 

stream in order to have a non-speaking still face image. Previous research (e.g., Van 

Wassenhove, Grant & Poeppel, 2007; Stevenson, Altieri, Kim, Pisoni & James, 2010) 

looking at speech displays used a wider range of SOA levels than that of the BF and 

PLD displays described above. Therefore, a wider range of SOAs was used for the FV 
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displays. Just as in the BF and PLD displays, ten asynchronous versions were 

produced for the FV, but the audio stream was shifted to either begin before the video 

stream (-400, -320, -240, -160, -80 ms) or after (+400, +320, +240, +160, +80 ms), in 

80 ms (2 frames) increments. The synchronous condition was 1.6s long, and similar to 

the BF displays, the durations of FV displays became longer with increasing SOA 

levels, with the 400ms SOA condition lasting 2 seconds.  

Part of this study’s aim was to see whether audiovisual integration in ASD is 

dependent on the type of stimulus presented. These stimuli were chosen as they 

represent a variety of the types of stimuli generally used in audiovisual synchrony 

perception research. The stimuli chosen also ranged in complexity: the BF is a simpler 

stimulus than PLD, containing a point-light representation of the natural motion and 

FV, which contains the audiovisual information of a natural video recording of the 

talking human face, and can be described as the most complex. The complexity of a 

stimulus has been shown to cause differences in PSS and TIW (e.g. Vatakis & Spence, 

2006a; Petrini et al., 2009; Arrighi, Alais & Burr 2006).  

3.3.3 Apparatus and Procedure 

Stimuli were presented via an Apple Macintosh MacPro 3.1 desktop computer running 

OS 10.5 and an NVIDIA GeForce 8800GT video card. The visual cues were displayed 

on a 21-inch ViewSonic Graphics Series G220f CRT monitor running at 1024 X 768 

screen resolution and 60Hz refresh rate. Auditory cues were presented through high 

quality headphones (Bayerdynamic DT770). Presentation was achieved using 

MATLAB 2007b (MATHWORKS Inc., Natick, MA) and the Psychophysics Toolbox 

(PTB3) extensions (Brainard, 1989; Pelli, 1997). The experiment was split into 3 sub-

experiments, one for each stimulus type. The order of these was pseudo randomised 

for each participant, with an attempt to have a similar number of the six possible order 

of stimuli presented. The order BF, FV, PLD and FV, PLD and BF were completed 

each by 5 participants in each group, the other 4 possible orderings of sub-experiments 

were each completed by 4 participants in each group. The participants were allowed 

breaks between the sub-experiments and all in all the experiment took a minimum of 1 

hour and 15 minutes with BF taking ~15 min, PLD taking ~ 25 min and FV taking 

~20 min. 
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Each sub-experiment presented one stimulus type and consisted of 24 blocks: half of 

the blocks were SJ blocks and the other half were TOJ and they were presented in a 

randomised order. After each sub-experiment participants completed a debrief 

questionnaire, which asked them to rate the difficulty of the two tasks by circling one 

of five answers ranging from easy to very difficult. More specifically participants 

were asked: “Please rate how difficult you found the Synchrony Judgement task. 

Please circle your choice”, and “Please rate how difficult you found the Temporal 

Order Judgement task. Please circle your choice”, with the choices ranging from: 1, 

easy; 2, not very difficult; 3, somewhat difficult; 4, difficult; 5, very difficult. In case 

participants gave the two tasks the same difficulty rating, the questionnaire also 

included a forced choice question: “Which task did you find more difficult?”. 

The experiments took place in a quiet and dimly lit room. The viewing distance from 

the monitor displaying the stimuli was approximately 90 cm. At the start of the 

experiment, the participants read through the instructions and before each sub-

experiment they had the chance to complete 3 practice trials of SJs and TOJs and ask 

any questions to clarify the experiment. The experimenter then left the room and the 

participants began the experiment by pressing any key. Task instructions, telling the 

participants whether the block that followed was a SJ or a TOJ block, appeared on 

screen for 4 seconds for every block. Within a block there were 11 trials: one 

presentation of each SOA level of the current stimulus type. Participants could only 

make a response once they had watched the entire stimulus. Therefore participants 

could base their SJs and TOJs on the entire stimulus duration. After each stimulus the 

current task question and possible responses were displayed on screen until the 

participant responded, which triggered the next trial. During SJ blocks participants 

were asked to press ‘1’ on the keyboard when they believed the audio and visual cues 

were synchronous and ‘2’ if they perceived them as being asynchronous.  During 

blocks of TOJ they were asked to press ‘1’ if they perceived the video first and ‘2’ if 

they believed the audio came first. Feedback was never given. Participants were 

presented with 11 trials per SOA level for each combination of task and stimulus type. 

This is a similar number of trials used in previous research (Vatakis & Spence, 2006 a 

b) and Petrini et al. (2010) showed that results are comparable when 10 or 20 trials are 

used per SOA level. 
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3.4 Results 

In the current study, a group of participants diagnosed with ASD (N=26) and their age, 

sex and IQ- matched TD controls (N=26) made either SJs or TOJs, in separate blocks, 

to three different audiovisual display types, ranging from simple beep-flash stimuli, 

biological motion stimuli and speech stimuli (Figure 3.1) that were presented in 

separate experimental runs. Furthermore, this study  used traditional Gaussian fits as 

well as an adapted Independent Channels Model (ICM) by Garcia-Perez and Alcala-

Quintana (2012) to fit the response data and provide estimates of PSS and TIW width 

as well as parameters describing unisensory and decisional factors.  

3.4.1 Fitting Gaussian and cumulative Gaussian functions to the response data   

The data of all combinations for tasks (SJ, TOJ) and stimulus (BF, PLD, FV) from 

each participant were separately fitted with a psychometric function. For SJs, a 

Gaussian probability density function was fitted to the proportion of synchronous 

responses at each SOA level, while for TOJs a cumulative Gaussian distribution 

function was fitted to the proportion of video first responses. The TIW width and PSS 

obtained from Gaussian fits will be referred to as TIWGF width and PSSGF. 

 

Mixed-effects analysis of variance (ANOVA) tests were conducted on mean TIWGF 

width and PSSGF data (Table 3. 2, Figure 3.2) independently for SJs and TOJs. 

Significant main and interaction effects were identified at the p<0.05 level, using 

Greehouse-Geisser sphericity correction when appropriate. The TIWGF width is 

derived from the standard deviation of fitted functions, and therefore measures the 

  SJ    TOJ    

  BF PLD FV  BF PLD FV  

ASD        

 N 26 26 25 24 10 21 

 Excluded (%) 0 0 3.85 7.69 61.54 19.23 

 Mean TIWGF (ms) 
[s.e.m] 

174.13 [9.57] 160.11 [9.62] 209.21 [12.26] 146.61 [17.75] 249.92 [88.99] 313.30 [42.58] 

 Mean PSSGF (ms) 

[s.e.m] 

49.03 [8.88] 54.76 [6.26] -13.37 [16.85] -48.58 [15.92] -60.13 [19.03] -120.48 [39.59] 

TD        

 N 26 26 26 25 8 24 

 Excluded (%) 0 0 0 3.85 69.23 7.69 

 Mean TIWGF (ms) 

[s.e.m] 

152.77 [7.95] 128.44 [5.94] 171.56 [8.12] 112.38 [10.74] 192.31 [54.82] 236.83 [17.98] 

 Mean PSSGF (ms) 
[s.e.m] 

49.31 [7.65] 51.52 [4.77] 1.64 [11.09] -35.39[12.40] -39.23 [36.31] -77.72 [15.47] 

 

Table 3.2 ASD= autism spectrum disorder, TD= typical developed, TIWGF= temporal integration window, PSSGF= point of subjective 

simultaneity, N= number of participants included in the analysis, s.e.m= standard error of mean 
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sensitivity of task responses to changes in SOA, i.e., narrow TIWGFs represent higher 

sensitivity to deviation from perceived audiovisual synchrony. Examining the 

individual fitted data indicated that some participants could not successfully make 

TOJs for BF, PLD and FV and one ASD participant could not successfully do SJs for 

FV. R2 was calculated to indicate the goodness-of-fit between data and the fitted 

function. R2 values below 0.5 were regarded as indicating that participants were 

unable to achieve a task/stimulus combination (e.g., SJ/FV, TOJ/PLD etc.). This 

criterion was applied to the data of each participant and task/stimulus combination 

separately, and each data set with R2 below 0.5 was excluded from the group analysis 

(for similar exclusion criteria see: Love et al., 2013; Petrini et al., 2010; Boenke, 

Deliano & Ohl, 2009; Zampini, Shore & Spence, 2003 a b).  
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A 2 (ASD, TD) x 3 (BF, PLD, FV) mixed-effects ANOVA was run on TIWGF widths 

from the SJ tasks (Figure 3.2a). The ANOVA revealed a main effect of group (F(1, 

49)= 8.38, p=.006 η2p= .146) and a main effect of stimulus (F(1.78, 87.61)=23.20, p< 

.001, η2p= .529), but no group by stimulus interaction (F(1.7,87)=.977, p=.372, 

η2p=.020). Mauchly's Test of Sphericity indicated that the assumption of Sphericity 

were violated (χ2(2) = 6.06, p = .048.), thus the degrees of freedom were adjusted 

using Greenhouse-Geisser adjustments.  For the SJ task, the ASD group had a wider 

TIWGF (M= 180.82) in general than the control group (M=150.93). Post-hoc 

Bonferroni corrected t-tests revealed that FV TIWGF (M= 190.39) was significantly 

wider than BF and PLD TIWGF (M= 162.46, p = .002 M= 144.76, p<.001, 

respectively) and BF TIW was significantly wider than PLD TIWGF (-p =.015).  

A 2 (ASD, TD) x 3 (BF, PLD, FV) mixed-effects ANOVA on PSSGF revealed a main 

effect of stimulus (F(1.60, 78.23)=25.38, p<.001, η2p=.34), but no significant main 

effect of group (F (1,49)=.20, p=.66, η2p=.004) or interaction effect 

(F(1.60,78.23)=.594, p=.518, η2p=.012). Post-hoc Bonferroni corrected t-tests showed 

that PSS for BF (M=48.12) and PLD (M=53.99) did not differ, but that the PSSGF for 

both displays was significantly greater than that of FV (M=-5.87, both p<.001). Two-

tailed one-sample t-tests were run to show whether the mean PSS values for each 

display type were different from zero, i.e., physical synchrony.  The one-sample t-tests 

showed that the mean PSS for BF and PLD were significantly different from zero 

(both p<.001), while the PSS for FV was not different from zero (p=.569) 

As TOJ on PLD displays lead to a high proportion of participants being excluded 

(61.54 % of ASD and 69.23% of TD participants), this condition was analysed 

separately. A Mann-Whitney U test was performed in the TOJ PLD data as the 

Shapiro-Wilk test revealed that the TIW width data was not normally distributed for 

the ASD group (W(10)=.800, p=.005). This showed no group difference, U=39.00, p= 

.929. An independent t-test did not reveal any PSS difference in ASD and TD for the 

PLD stimulus (t(16)=-.54, p=.597). Due to the high exclusion rate for TOJ PLD, the 

means shown in Figure 3.2 a and b need to be viewed with caution, as they are likely 

to be a biased representation of the group averages.   

A 2 (ASD, TD) x 2 (BF, FV) mixed-effects ANOVA on an TIWGF width (Figure 3.2 a) 

obtained from TOJs revealed no main effect of group, F(1,41)=2.69, p=.109, 

Figure 3.2 
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η2p=.062, no interaction effect, F(1,41)=.699, p=408, η2p=.017 but a main effect of 

stimulus, F(1,41)=49.33, p<.001, η2p=.546, with only the TIWGF width being smaller 

for BF (M=124.58) than for FV (M=268.81).  For PSSGF (Figure 3.2 b) the 2 x 2 

ANOVA revealed no main effect of group, F(1,41)=.89, p=.351, η2p=.022, no 

interaction effect, F(1,41)=.932, p=.340 η2p=.022, but a main effect of stimulus, 

F(1,41)=6.74, p=.013, η2p=.141, with BF (M=-47.98) having a less negative PSSGF 

than FV (M=-96.82).  

3.4.2 Fitting an adapted independent channels model to the response data 

Fitting Gaussian functions to SJ and TOJ response data is argued to be not the best 

option, since they are symmetric and smooth, whereas an individual’s proportion of 

synchronous responses in SJ are known to generally be asymmetric. Similarly, Video 

First responses of an individual in TOJ often show a pronounced plateau midway 

along the range of SOAs. Once the data averaged across individuals, these 

asymmetries and irregularities are likely to be averaged out, however, information 

might be lost. Garcia-Perez & Alcala-Quintana (2012) adopted the Independent 

Channels Model (ICM) to enable a more flexible to fit to the response data of SJ and 

TOJ.  

Therefore, SJ and TOJ data were also fitted to using ICM, model-based psychometric 

functions. The data of SJ and TOJ were fitted jointly to the model as well as 

separately. The ICM provides estimates of sigma and theta, where sigma is the 

distance between the 15.87% and the 84.13% points, so half of this value would be the 

standard deviation if a cumulative Gaussian would be fitted. Theta is the 50% point on 

the psychometric function for “audio first” judgements if the observer had infinite 

resolution. Therefore, sigma and theta are somewhat comparable to the TIW width 

and PSS outcome measures we obtained through the psychophysical fits, respectively. 

So, for simplicity, we will refer to them as TIWICM width and PSSICM. The ICM also 

provides parameters related to sensory and decisional factors of audiovisual 

processing.  

Delta is the onset, Lambda is the rate parameter and Tau is the processing delay of the 

corresponding sensory information. Lambda Audio (A), Lambda Visual (V) and Tau 

describe the arrival latency in SJ and TOJ tasks, and Delta is the resolution parameter  

which limits the observers’ ability to detect small differences in arrival latencies. TOJ 
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included an additional response bias parameter called Xi, taking into account the 

tendency of participants to respond “Audio First” or “Video First” more often.  

3.4.2.1 Joint fit of SJ and TOJ data 

Examination of individuals’ data for each stimulus indicated that, for some 

participants, the data could not be successfully fitted to the model. The exclusion 

criterion was a significant result of the Chi-square test (i.e., p<.05), as this indicated 

that the model had been rejected. In those cases, visual inspection also clearly showed 

a bad fit (for an example see Figure 3.5). These cases were excluded from the group 

analysis (see Table 3.3 for exclusion rates).  

 

  SJTOJ    

  BF PLD FV  

ASD     

 N 25 25 25 

 Excluded (%) 3.85 3.85 3.85 

 Mean TIWICM (ms) 

[s.e.m] 

187.12 [22.92] 121.43 [16.38] 191.16 [22.36] 

 Mean PSSICM (ms) 

[s.e.m] 

60.93 [25.59]  51.67 [4.95] -16.17 [15.95] 

TD     

 N 26 24 25 

 Excluded (%) 0 7.69 3.85 

 Mean TIWICM (ms) 

[s.e.m] 

154.39 [19.49] 81.42 [7.03] 160.37 [12.98] 

 Mean PSSICM (ms) 

[s.e.m] 

 36.42 [18.51] 48.05 [4.92] 1.49 [8.50] 

 

Table 3.3 ASD= autism spectrum disorder, TD= typical developed, N= number of 

participants included in the analysis, s.e.m= standard error of mean 

 

 

 

Figure 3.3 Model of timing judgments. a Exponential distributions for the arrival latency of a visual stimulus 

(red curve) presented at time 0 and an auditory stimulus (blue curve) presented at time Δt 0 = 50 ms. Parameters 

as indicated in the inset. b Bilateral exponential distribution of arrival-time differences and cutpoints on the 

decision space (vertical lines, at D = ±δ with δ = 60), determining the probability of each judgment (taken from 

Garcia-Perez & Alcala-Quintana, 2012) 
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A 2 (ASD, TD) x 3 (BF, PLD, FV) mixed-effects ANOVA on TIWICM (see Figure 3.4 

a) showed a main effect of stimulus, F(2,90)= 14.37, p < .001, η2p=.242) a marginally 

significant main effect of group F(1,45)= 3.55, p= .066, η2p=.073, with ASD (M= 

168.04) having a wider TIWICM than TD (M=132.44), but no interaction 

(F(2,90)=.210, p=811, η2p=.0050. The Bonferroni corrected pair-wise comparisons 

showed that TIWICM of BF (M=174.61) and FV (M=174.18) were comparable and 

that they were both significantly wider than that of PLD (M=101.92; both p<.001).  

PSSICM data (see Figure 3.4 b) showed a main effect of stimulus, F(1.40, 63.16)= 9.01, 

p< .001, η2p=.167, but no main effect of group, F(1,45)= 0.048, p= .83, η2p=.001 and 

no interaction (F(2,90)=1.14, p=.326, η2p=. 025). Bonferroni adjusted pairwise 

comparisons revealed that the PSSICM for BF (M=45.84) and PLD (M=49.61) were 

similar, but that both were significantly larger than FV (M=-9.79), p=.015, p<.001, 

respectively.  Two-tailed one-sample t-tests revealed that the mean PSSICM obtained 

from BF and PLD were significantly different from zero (both p< 0.01), while the 

PSSICM of FV was not (p=.420). 
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3.4.2.2 Fitting SJ and TOJ data separately  

The ICM was also fitted separately to SJ and TOJ responses to see how each task 

influences audiovisual integration in people with ASD and their controls. We excluded 

individual data for each stimulus and task combination when the significant Chi-

square test (i.e., p<.05) indicated that the data could not be successfully fitted to the 

model. In those cases, visual inspection also clearly showed a bad fit (for an example 

see Figure 3.5). We also excluded cases with impossibly wide TIW and big PSS (see 

Table 3.4 for detail). These cases were excluded from the group analysis.  
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A 2 (ASD, TD) x 3 (BF, PLD, FV) mixed-effects ANOVA of TIWICM obtained from 

SJ responses revealed a marginally significant main effect of TIWICM width for group, 

F (1, 44)=3.82, p=.054, η2p=.082 and significant main effect for stimulus, F (2, 88)= 

16.56, p<.001, η2p=.273 but no interaction, F(2,88)=.468, p=.628, , η2p = .011. 

Bonferroni corrected post-hoc t-tests revealed that TIWICM width did not differ for BF 

(M=133.37) and FV (M=158.83) but that TIWICM for both stimuli was wider than for 

PLD (M=88.47), for both p<.001 (see Figure 3.6 and Table 3.4). 

A 2 (ASD, TD) x 3 (BF, PLD, FV) mixed-effects ANOVA on PSSICM revealed no 

main effect of group, F (1, 44) = .049, p=.826, η2p=.001 nor was there an interaction, 

F(2,88)=.684, p=.507, η2p =.015. However a main effect of stimulus was found, F 

(1.58, 69.71) = 28.97, p< .001, η2p=.397, where the PSSICM of BF (M= 37.49) and 

PLD (M= 50.15) were not significantly different from each other (p= .171) but both 

differed significantly from FV PSSICM (M= -12.97), p< .001. Two-tailed one-sample t-

tests showed that PSSICM of BF and PLD were significantly different from zero (both 

p< 0.001), while the PSSICM of FV did not show a difference (p=.193). 

  SJ    TOJ   

  BF PLD FV  BF PLD FV 

ASD        

 N 25 25 23 20 17 22 

 Excluded (%) 3.85 3.85 11.54 23.10 34.62 15.38 

 Mean TIWICM (ms) 
[s.e.m] 

147.91 [12.20] 108.86 [15.95] 164.44 [18.00] 125.88 [21.74] 100.60 [28.28] 139.76 [22.01] 

 Mean PSSICM (ms) 

[s.e.m] 

32.84 [11.81] 54.43 [4.91] -20.01 [14.85] 16.40 [18.40] 48.50 [22.67] -65.17 [27.99] 

TD        

 N 25 25 26 25 17 23 

 Excluded (%) 3.85 3.85 0 3.85 34.62 11.54 

 Mean TIWICM (ms) 

[s.e.m] 

115.31[9.33] 79.767 [15.95] 150.78 [12.87] 146.69 [14.01] 134.94 [23.89] 135.68 [21.97] 

 Mean PSSICM (ms) 

[s.e.m] 

34.76 [6.68] 47.12 [4.93] -3.01 [8.58] 83.72 [20.37] 100.29 [47.37] .633 [17.96] 

 

Table 3.4 ASD= autism spectrum disorder, TD= typical developed, TIWICM= temporal integration window, PSSICM= point of 

subjective simultaneity, N= number of participants included in the analysis, s.e.m= standard error of mean 

 

Figure 3.5 Example of unsuccessful Independent Channels model (ICM) fits of an individual’s SJ and TOJ data when presented 

with FV stimuli.  
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A 2 (ASD, TD) x 3 (BF, PLD, FV) mixed-effects ANOVA on TIWICM computed from 

TOJ responses fitted using the model revealed neither a main effect of stimulus, F (2, 

42) =.261, p=.771, η2p=.012, group, F (1, 21) =.04, p=.842, η2p=.002, nor an 

interaction, F(2,42)=.533, p=.591, η2p =.025. However, PSSICM revealed main effects 

of group, F (1, 21) =4.83, p=.039, η2p=1.87, and stimulus, F(1.59, 33.37)=5.207, 

p=.010, η2p= .199, but no interaction F(2,42)=.419, p=.660, η2p =.020. PSS in ASD 

(M=.784) was smaller than in TD (M=69.50). Contrasts of the different stimulus 

conditions showed that PSSICM of BF (M= 48.90) and PLD (M= 84.19) were not 

significantly different from each other (p= 1.00) but both differed significantly from 

FV PSSICM (M= -27.67), p= .017, p=.033, respectively. Again, two-tailed one-sample 

t-tests showed that PSSICM of BF and PLD were significantly different from zero (both 

p< 0.01), while the PSSICM of FV only showed a marginal difference (p=0.71).  
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3.4.2.3 Estimated unisensory and decisional factors 

 

2 (ASD, TD) x 3 (BF, PLD, FV) mixed-effects ANOVAs were used to look at the 

estimated parameters describing unisensory and decisional factors for SJs. Audio 

lambda (λa), which estimated the processing rate of the auditory cue, showed no main 

effect of group (F(1,38)=1.17, p = .287, η2p= .03) stimulus (F(2, 76) =.829, p = .44, 

η2p= .021), or interaction F(2,76)=.401, p=.671, η2p =.010. Visual lambda (λv) 

estimated the visual cue processing rate and showed no main effect of group, 

F(1,36)=.133, p = .718, η2p= .004 or interaction, F(2,72)=1.42, p=.249, η2p =.038, but 

a significant main effect of stimulus (F(2,72)=4.12, p< .05, η2p= .103, with FV (M= 

.056) being smaller than PLD (M= .135), p= .018, and both being comparable to BF 

(M= .118). Tau (τ) estimated the arrival time differences between auditory and visual 

cues, with τ < 0 indicating faster auditory and τ > 0 indicating faster visual processing. 

There was no main effect of group, F(1,45)=.014, p = .908, η2p= .001, or interaction, 

F(2,88)=.684, p=.507, η2p =.015, but there was a significant main effect of stimulus, 

 Group ICM 

parameters 

SJ    TOJ   

   BF PLD FV  BF PLD FV 

 ASD        

  λa (ms) 

[s.e.m] 

.095 
[.136] 

.099 
[.125] 

.074 
[.102] 

.115 
[.137] 

.215 
[.143] 

.127 
[.146] 

  λv (ms) 
[s.e.m] 

.110 

[.129] 

.108 

[.137] 

.078 

[.127] 

.164 

[.135] 

.128 

[.138] 

.133 

[.151] 

  τ (ms) 
[s.e.m] 

-42.59 
[91.39] 

-54.825 
[39.43] 

37.12 
[88.17] 

-30.72 
[91.56] 

-17.74 
[99.08] 

47.60 
[100.77] 

  δ (ms) 
[s.e.m] 

199.6 

[49.04] 

199.82 

[55.55] 

210.45 

[77.23] 

160.18 

[63.7] 

236.87 

[89.46] 

161.09 

[81.76] 

   Xi (ms) 
[s.e.m] 

- - - .685 

[.213] 

.714 

[.247] 

.488 

[.306] 

 TD        

  λa (ms) 
[s.e.m] 

.096 

[.122] 

.146 

[.142] 

.107 

[.124] 

.083 

[.121] 

.163 

[.155] 

.165 

[.140] 

  λv (ms) 
[s.e.m] 

.125 

[.138] 

.161 

[.140] 

.034 

[.066] 

.073 

[.099] 

.117 

[.138] 

.133 

[.149] 

  τ (ms) 
[s.e.m] 

-36.05 

[61.18] 

-46.63 

[40.09] 

17.47 

[73.95] 

-88.47 

[140.95] 

-1447.09 

[5837.38] 

-116.99 

[334.45] 

  δ (ms) 
[s.e.m] 

174.28 

[53.97] 

169.71 

[39.00] 

170.02 

[46.35] 

202.07 

[101.30] 

2268 

[5671.88] 

341.10 

[305.26] 

  Xi (ms) 
[s.e.m] 
 

- - - .685 

[.312] 

.694 

[.178] 

.613 

[.197] 

Table 3.5 The means (ms) and standard error of mean (s.e.m) of ICM parameters (λa, λv, τ, δ, Xi) for 

both groups (ASD, TD), both tasks (SJ, TOJ) and stimulus types (BF, PLD, FV). ICM= Independent 

Channels model, ASD= autism spectrum disorder, TD= typical developed, SJ= Synchrony 

Judgements, TOJ = Temporal order Judgements,  λa = auditory lambda, λv = visual lambda, τ = tau, 

δ=delta.  
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F(1.61,72.62)=21.37, p <.001, η2p= .322, where τ of BF (M=-39.32) and PLD (M=-

50.68) did not differ and indicate that the audio cue was processed faster than the 

visual cue. However τ of BF and PLD both significantly differed from FV (M= 27.30) 

where the visual cue was processed faster. Delta (δ) is the resolution parameter 

determining the ability to discriminate small differences in arrival latency and we 

found a significant main effect of group, F(1,45)=6.13, p =.017, η2p= .12, but not a 

main effect of stimulus, F(2,90)=.229, p = .795, η2p= .005 or interaction, F(2, 90)= 

.470, p= .626, η2p= .010. 

2 (ASD, TD) x 3 (BF, PLD, FV) mixed-effects ANOVAs for parameter estimates of 

TOJ showed no main effects of λa, λv, τ and δ  for group (F(1, 21)=.165, p = 689, η2p= 

.008; F(1, 21)=1.15, p = .296, η2p= .052; F(1, 21)=.788, p = .385, η2p= .036; F(1, 

21)=1.602, p = .219, η2p= .071, stimulus (F(2,42)=2.65, p=.083, η2p=.112;  

F(2,42)=.037, p=.971, η2p=.003; F(1.01,21.14)=.543, p=.470, η2p=.025; 

F(1.01,21.11)=1.30, p=.267, η2p=.058) or interactions (F(2, 42)= .723, p= .491, η2p= 

.033; F(2, 42)= .722, p= .492, η2p= .033; F(1.01, 21.14)= .505, p= .486, η2p= .023; 

F(1.01, 21.11)= 1.18, p= .303, η2p= .051). TOJ included an additional response bias 

parameter called Xi, and again no group differences were found, F(1, 21)=.254, p = 

.619, η2p= .012, or interaction, F(2, 42)= .700, p= .502, η2p= .032, but found a 

marginal main effect of stimulus F(2,42)=3.17, p=.052, η2p=.131, with Xi for FV 

(M=.551) being significantly smaller than for PLD (M=.704), p=0.45, but neither 

differed from BF (M=.685).  

3.4.3 Difficulty ratings of Judgements and Stimuli 

Wilcoxon signed-rank tests on the difficulty ratings of each task (SJ, TOJ) and 

stimulus (BF, PLD, FV) combination showed that the participants found TOJs more 

difficult across all stimulus types (BF: Z=-3.137, p= .02; PLD: Z=-5.796, p< .001; FV: 

Z=-3.491, p<.001).  

Freidman Tests showed that the difficulty of the SJ task differed depending on 

stimulus: χ2(2) = 28.36, p < .001. Mann-Whitney U tests revealed that the difficulty 

ratings of the ASD and TD group did not differ in any of the task/stimulus 

combinations (BFSJ: U = 312.5, p = .614; BFTOJ: U = 313, p = .633; PLDSJ: U = 

323, p = .752; PLDTOJ: U = 267, p = .172; FVSJ: U = 272.5, p = .205; FVTOJ: U = 

291.5, p = .356).  
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3.5 Discussion 

To investigate the underlying processes of reduced sensitivity to audiovisual 

asynchrony observed in ASD (e.g., Stevenson et al., 2014,  de Boer-Schellekens et al., 

2013), the way the ASD and TD group performed on SJ and TOJ tasks was compared 

on a diverse range of stimulus types.  We used Gaussian and cumulative Gaussian 

curves as well as an ICM (Garcia-Perez & Alcala-Quintana, 2012) to fit the response 

data to estimate TIW width and PSS in the two participant groups.   

The Gaussian fits showed that for SJs, the ASD group's TIW width was wider 

compared to that of the TD group. However, the TOJs data revealed comparable TIW 

width of the two groups. In both SJs and TOJs, the TIW width differed across the 

types of stimuli shown. For SJs, FV had a wider TIW than PLD, which in turn had a 

wider TIW than BF. For TOJs, FV had a larger TIW than BF, but due to high 

exclusion rates PLD was not compared. PSS estimated from both SJ and TOJ showed 

no differences between the two groups, but revealed stimulus differences with SJ's 

PSS for BF and PLD being larger than that of FV, and TOJ's PSS for BF being larger 

than for FV. 

In contrast to the more traditional Gaussian curve fits, the ICM used in this study gave 

the flexibility to fit complex asymmetric shapes and thus was able to fit asymmetric 

TIWs.  This is of interest because it has been shown that individuals are better at 

detecting audio-leading asynchrony in SJ, but video-leading asynchrony in TOJ (Love 

at al., 2013). Fitting the ICM largely confirmed the results obtained from the Gaussian 

fits. By fitting the response data of SJ and TOJ together using the ICM, a wider TIW 

was found in the ASD group than in the TD group supporting the Gaussian fit results. 

The TIW width also differed across stimuli, with FV and BF having wider TIW than 

PLD, partly supporting the Gaussian fit results. PSS showed no difference between the 

groups, but showed differences between the stimuli with PSS for BF and PLD being 

larger than for FV, replicating the Gaussian fit results. 

Fitting the ICM separately to SJ responses revealed a marginally wider TIW in the 

ASD than the TD group, and showed a wider TIW for FV and BF than for PLD, 

largely supporting the Gaussian fits. Computing TIW fitting the ICM to TOJ responses 

revealed no differences between the groups or stimuli (this could be explained by the 

high participant exclusion rate due to participants being unable to do TOJ on PLDs). 
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PSS from SJs showed no difference between the groups, but PSS differed across the 

stimuli, with the PSS of BF and PLD differing form from FV. PSS from TOJ, however, 

revealed a smaller PSS for ASD than for TD participants. This is a novel finding, 

which has not been shown by the Gaussian fitting method. PSS also varied across 

stimuli, with the PSS of BF and PLD being lager than that of FV.  

Looking at the estimated parameters describing unisensory and decisional factors for 

SJs, the processing rate of the auditory cue, audio lambda (λa), was comparable across 

the two groups and all stimulus types. Similarly, visual lambda (λv) estimated the 

processing rate of the visual cue was the same between the groups, but differed across 

but stimuli. Tau (τ ), the arrival time differences between auditory and visual cues, was 

the same across the two groups, but differed across stimulus types. For BF and PLD, 

tau indicated that the audio cue was processed faster than the visual cue, whereas, for 

FV, the visual cue was processed faster. Delta (δ), the resolution parameter 

determining the ability to discriminate small differences in arrival latency, was larger 

for the ASD group, indicating that they are less able to discriminate between small 

differences in arrival latency. This is consistent with a wider TIW in the ASD group. 

Delta did not change across the range of stimuli used. The parameter of TOJ (audio 

lambda, visual lambda, tau and delta) were estimated to be the same across the 

experimental groups and stimuli used. The response bias parameter of TOJ, Xi, found 

no group differences, but showed a marginal difference across stimulus.  

Previous research looked at audiovisual integration in ASD using SJs or TOJs and 

fitted either linear functions to their response data (de Boer-Schellekens et al., 2013), 

two different psychometric sigmoid functions were fitted to allow for some 

asymmetry of the data (Stevenson et al., 2014) or simply compared the ASD group 

performance of each SOA to that of the controls, without modelling the data 

(Grossman, Schneps & Tager-Flusberg, 2009). Instead the current current study 

investigated both SJ and TOJ tasks by also fitting a flexible ICM to the participant's 

responses, not assuming symmetry of the data.  

Fitting Gaussian curves and ICMs revealed a wider and marginally wider, 

respectively, TIW in ASD, compared to their TD controls when doing SJs. These 

findings are in line with Stevenson et at. (2014), who found a marginally wider TIW 

across their types of stimuli used, but their significant group x stimulus interaction 
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revealed that only the TIW of their complex FV stimulus was wider in ASD and not 

for simpler non-social stimuli. However, our findings, as well as those of Stevenson et 

al., (2014) are contrary to Grossman, Schneps and Tager-Flusberg’s (2009) findings 

showing that children and young adults had equal TIW width when performing SJs on 

FV stimuli. A reason for finding different results to Grossman, Schneps and Tager-

Flusberg (2009) could be the different nature of their stimuli, using meaningful 

phrases with quite big SOA intervals (ranging from 120ms to 500ms). 

Our study found no group differences for TIW width in TOJs, a finding that is in 

opposition with previous results showing that ASD adolescents performing TOJs have 

a wider TIW than their TD controls (de Boer-Schellekens et al., 2013). Furthermore, 

the ICM revealed that the PSS in the ASD group is smaller than in the TD group, 

whereas de Boer-Schellekens et al. (2013) found no group differences for PSS. This 

differential finding could be explained by the fact that different fitting methods were 

used. de Boer-Schellekens et al. (2013) used linear fits on their data to estimate the 

PSS, whereas we used the ICM, which preserved the asymmetry and irregularities of 

the response data. Therefore, the ICM could be a fitting method allowed for a PSS 

estimate that is more sensitive at measuring this asynchronous position along the 

SOAs. 

The discrepancies between the finding by Schellekens et al. (2013) and our current 

results could be explained by the fact that they tested adolescents and a few young 

adults, whereas we tested adults with ASD (18-40 years of age). Adults with ASD 

have previously been shown to develop compensatory strategies in tasks that children 

with ASD are deficient in (McKay et al., 2013). Therefore, we could argue that our 

adult sample has developed compensatory strategies to do TOJ, which lead to equal 

behavioural performance between ASD and TD participants.  Furthermore, de Boer-

Schellekens et al.'s (2013) sample, with 16 participants in each group, was relatively 

small. It needs to be noted that the equal TIW width between the groups found in our 

study could also partially be due to the high exclusion rates, in particular for PLD 

TOJ, as well as the large within group variability within the groups.  

The two methods we used to fit the response data of SJs and TOJs showed that for SJs 

the participants with ASD had a wider TIW than the TD participants, whereas for 

TOJs TIW width was comparable across the two participant groups. The different 
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cognitive processes required for SJs and TOJs can help us understand the underlying 

processes of why temporal audiovisual integration differs in ASD. As proposed in the 

introduction, the ASD group having a wider TIW in SJs, but not TOJs, suggests that 

this difference is due to difficulties in combining the audio and the visual cues. SJs 

require to estimate the temporal correspondence of the audio and visual cue and thus 

depends on more global level processing (i.e., considering the stimulation as a whole), 

whereas TOJs could in principle be performed by focusing on only one sensory cue to 

detect whether it came first or not, thus depending on more local level processing (i.e., 

considering only the sound).  Therefore, audiovisual integration difficulties in ASD 

are likely to be due to difficulties in processing global information in line with the 

hypotheses of central coherence deficit and temporal binding deficit in ASD. 

The results support previous research showing that audiovisual temporal processing is 

not just effected in higher order social stimuli, but is also effected in simpler low level 

stimuli such as beeps and flashes (Foss-Feig et al., 2010; Kwakye et al., 2011; de 

Boer-Schellekens et al., 2013; Stevenson et al., 2014). In contrast, Stevenson et al. 

(2014) also found a group x stimulus interaction, only showing a significant group 

difference in their speech stimulus, but not in their simple or complex non-speech 

stimuli.  

Interestingly, the ICM model explained the TIW width differences between the two 

groups in SJs by the resolution parameter Delta (δ), which measured the ability to 

discriminate small differences in arrival latency, and was larger for the ASD group, 

indicating that they are less able to discriminate between small differences in arrival 

latency. This is consistent with a wider TIW in the ASD group. The finding that 

audiovisual temporal processing differences cannot be explained by unisensory 

processing parameters supports previous findings by Stevenson et al. (2014), showing 

no group differences in either their audio or visual only TOJ tasks. However, these 

results are conflicting with studies showing unisensory integration differences in ASD 

(e.g., Kwakye et al., 2011; Williams at al. (2004).  

The current study suggests that adults with ASD are not as good at detecting 

audiovisual asynchrony and that this difficulty is likely to be due to the less sensitive 

decisional process and not to unisensory temporal processing differences. These 

results are encouraging for potential interventions to improve sensory processing in 
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ASD, especially because it has been shown that the TIW width becomes smaller 

through training (Powers et al., 2009; Stevenson et al., 2013), and those with the 

widest TIWs are shown to improve the most after training. Our results would suggest 

that this training should be done in the multisensory domain, rather than in unisensory 

domains. Following up on Stevenson et al.’s (2014) results demonstrating the link 

between decreased sensitivity to audiovisual asynchrony, and the weaker percepts of 

the McGurk effect, it would be of interest to further explore the link between 

sensitivity to audiovisual asynchrony and speech perception and comprehension, as 

well as looking at how training on multisensory TIW width would translate into 

everyday multisensory speech processing and comprehension. Furthermore, future 

longitudinal studies could investigate the developmental trajectory of audiovisual 

temporal processing in ASD. Although behavioural evidence is of great importance, 

there is a need to understand the neural correlate of these multisensory integration 

deficits in ASD revealed in this study. Thus far there has been little research 

investigating the neural underpinnings of the differences in audiovisual integration in 

ASD. Chapter 4 will investigate audiovisual, audio and visual processing in ASD 

using fMRI. Moreover, to our knowledge, no fMRI research is published looking at 

audiovisual temporal processing in ASD during SJ. This will be done in Chapter 5. 

Conclusion  

This study investigated audiovisual integration in ASD using SJ and TOJ as well as 

different data fitting methods. More specifically, the analysis of the data included 

fitting Gaussian functions as well as using an ICM to fit the data (Garcia-Perez & 

Alcala-Quintana, 2012). Gaussian curve fitting for SJs showed that the ASD group 

had a wider TIW, but for TOJ no group effect was found. The ICM supported these 

results and model parameters indicated that the wider TIW for SJs in the ASD group 

was not due to sensory processing at the unisensory level, but rather due to decreased 

temporal resolution at a decisional level of combining sensory information. 

Furthermore, when performing TOJ, the ICM revealed a smaller PSS (closer to 

physical synchrony) in the ASD group than in the TD group. These behavioural 

results raise the importance of investigating the neural underpinnings of the 

differences in audiovisual integration in ASD.  

  



79 
 

4 An fMRI investigation of the audiovisual, audio and visual 

processing in Autism Spectrum Disorder 

 
4.1 Abstract  

The ability to integrate auditory and visual information is crucial to everyday life. 

Behavioural results have predominantly shown that individuals with Autism Spectrum 

Disorder (ASD) have deficits in audiovisual integration. These findings have recently 

been supported by electroencephalography (EEG) studies (Brandwein et al., 2015). 

Using functional magnetic resonance imaging (fMRI), we investigated audiovisual, 

auditory and visual processing in ASD of simple, beep-flash (BF) displays and 

complex, social face-voice (FV) displays. During a block design experiment, we 

measured the BOLD signal when 13 adults with ASD and 13 typically developed 

(TD) age-, sex- and IQ- matched adults were presented with audiovisual, audio and 

visual information of BF and FV displays. Our analyses revealed that processing of 

audiovisual as well as unisensory auditory and visual stimulus conditions, in both the 

BF and FV displays, was associated with reduced activation in ASD. Audiovisual, 

auditory and visual conditions of FV stimuli revealed reduced activation in ASD in 

regions of the frontal cortex, while BF stimuli revealed reduced activation in the 

lingual gyri. In the inferior parietal gyrus we found different sensory conditions of BF 

to modulate the activation levels differently in ASD than in TD. Conjunction analyses 

revealed smaller regions of the superior temporal cortex (STC) in ASD to be 

audiovisual sensitive. Against our predictions, the STC did not reveal any activation 

differences, per se, between the two groups. However, a superior frontal area was 

shown to be sensitive to audiovisual face-voice stimuli in the TD group, but not in the 

ASD group. Overall, this study indicated differences in brain activity for audiovisual, 

auditory and visual processing of social and non-social stimuli in individuals with 

ASD compared to TD individuals.  These results contrast previous behavioural 

findings (Chapter 3), suggesting deficient audiovisual integration, yet intact auditory 

and visual processing in ASD.   
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4.2 Introduction  

Autism Spectrum Disorder (ASD) is a neurodevelopmental condition described by 

deficits in social communication and interaction, as well as repetitive patterns of 

behaviour, interests and activities (American Psychiatric Association, 2013). 

Differences in sensory processing of ASD, compared to typically developed (TD) 

individuals, has been reported across the different sensory modalities, such as 

audition, vision, taste, smell, vestibular and proprioception (Lane et al., 2015; Ludlow 

et al., 2014; Conner, 2012; Simmons et al., 2009). Moreover, a strong correlation 

between autistic traits and sensory sensitivities in the general population has also been 

found (Robertson & Simmons, 2013). The relevance of these sensory differences has 

recently been recognised and included as diagnostic criteria in the DSM-V. In fact, 

researchers have started to stress the importance of understanding to what degree 

sensory sensitivities in individuals with ASD contribute to their social and 

communication impairments. For example, multisensory processing differences have 

been proposed to cascade down to cause communication impairments (Brandwein et 

al., 2015). Similarly, acts of apparent non-compliance, reluctance, lack of interest, as 

well as aggression, might not be voluntary, and could be secondary to an individual’s 

particular sensory processing and movement profile (Donnellan, Hill & Leary, 2013). 

This highlights the importance of understanding the neural correlates of these sensory 

processing differences better, and potentially developing sensory processing 

interventions.  

Interest in multisensory integration in autism has gained increasing recognition as we 

further appreciate the importance of integrating information from different senses in 

everyday life.  It has been shown that the combination of multiple sensory cues can 

reduce uncertainty and enhance the ability to make better estimates of the situation 

(Ernst & Banks, 2002). For example, in a crowded and noisy environment looking at a 

person’s face and lip movements enables us to better understand what the person is 

telling us.  

Audiovisual processing in TD individuals 

Using functional magnetic resonance imaging (fMRI), brain regions involved in 

typical audiovisual integration of simple synchronous displays have been well 

researched (e.g., Calvert, Campbell & Brammer, 2000; Werner & Noppeney, 2010; 
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Love, Latinus & Pollick, 2011; Watson et al., 2014). Several neuroimaging studies in 

adults have begun to identify important brain regions in a network underlying 

audiovisual simultaneity perception. These include: thalamus (Love, Latinus & 

Pollick, 2011), hippocampus (Watson et al., 2014), the insula (Calvert, Hansen, 

Iversen, & Brammer, 2001), inferior parietal lobule (Calvert et al., 2001; Dhamala et 

al., 2007), superior colliculus (Calvert et al., 2001; Dhamala et al., 2007), posterior 

superior temporal sulcus (Calvert, Campbell, & Brammer, 2000; Calvert et al., 2001; 

Dhamala et al., 2007; Beauchamp, Yasar, Frye, & Ro, 2008; Werner & Noppeney, 

2010, Steveson & James, 2009; Watson et al., 2014), and unisensory cortices 

(Noesselt et al., 2007). Moreover, evidence suggests that the Superior Temporal 

Cortex (STC) has specialist areas for face-voice speech integration (Stevenson et al., 

2011; Watson et al., 2014), as well as distinct regions utilised for processing temporal-

synchrony (Stevenson et al., 2011). These findings point towards the idea that the STC 

is a neuronal centre, made up of different regions that underlie a range of low- and 

high-level multisensory integration processes. 

Audiovisual processing in ASD  

Research showed that processing multiple sensory signals as a single percept is not as 

beneficial in ASD as in TD individuals. For instance, people with ASD perceive 

audiovisual illusions such as the McGurk effect (McGurk & MacDoland, 1976) less 

often than their TD controls (de Gelder et al., 1991; Irwin et al., 2011; Mongolli et al., 

2008), often benefiting less from an additional sensory modality (Smith & Bennetto, 

2007) and relying more on one sensory modality (Stevenson et al., 2014).  

Electroencephalography (EEG) studies recording high-density brain activity have 

shown that the neural integration of audiovisual information is atypical in children 

with ASD (Magnee et al., 2009; Russo et al., 2010; Brandwein et al., 2013, 2015). It 

has also recently been shown that children with ASD are not as effective at paying 

attention to a relevant unisensory stream when presented with competing multisensory 

information (Murphy et al., 2014).  Moreover, using fMRI it has been shown that 

adolescents with ASD use different cortical areas when processing audiovisual 

emotion stimuli compared to TD adolescents (Doyle-Thomas et al., 2013).  More 

specifically, in this study, brain activation in participants was measured when making 

emotional judgements of audiovisual displays. Activation patterns revealed that the 
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ASD group employed parietal and frontal cortices, whereas the TD group recruited 

frontal and temporal cortices during this task. It was suggested that the absence of 

integrative emotional networks in ASD might cause the recruitment of the 

parietofrontal network as a compensatory result. Similarly higher activation patterns 

were shown in a pilot study by Loveland et al. (2008), who showed that, during 

emotional congruency tasks, TD participants had more activation compared to the 

ASD participants in the STC, orbitofrontal cortex, posterior cingulate, 

parahippocampus and occipital regions (left fusiform gyrus, and bilateral lingual gyrus 

extending into the left cuneus). However, since both studies (Doyle-Thomas et al., 

2013; Loveland et al., 2008) employed emotional stimuli and asked the participants to 

make emotion judgements, it is likely that these studies also reflect the underlying 

neural correlates of emotion processing, and not audiovisual processing itself.  

Unisensory auditory and visual processing in ASD 

Differences in unisensory auditory (Conner, 2012) and visual (Simmons et al., 2009) 

processing have been frequently reported.  Face processing in ASD has been reported 

to exhibit hypo activations in the face processing network, including regions such as 

the fusiform face area, occipital face area,  pSTS, as well as frontal regions (Pierce, 

Haist, Sedaghat, & Courchesne, 2004;  Pierce & Redcay, 2008; Scherf et al., 2010; 

Scherf et al., 2015). During object processing tasks, the ASD group revealed hyper-

activation in the precuneus (Sherf et al., 2015), while others have found no group 

differences in processing objects (Humphreys, Hasson, Avidan, Minshew, 

& Behrmann, 2008).  A similar pattern of findings was revealed when looking at 

auditory processing of voices and non-vocal sounds.  Individuals with ASD failed to 

activate STS voice-selective regions in response to vocal sounds, while they showed 

typical activation patterns in response to non-vocal sounds (Gervais et al, 2004). 

These findings suggest abnormal cortical processing of socially relevant auditory and 

visual information in autism. 

The behavioural results in Chapter 3, on audiovisual integration and synchrony 

perception, made use of the Independent Channels Model (ICM) by Garcia-Perez and 

Alcala-Quintana (2012) to estimate the unisensory, as well as decisional aspects of 

synchrony perception tasks. The results point towards no unisensory processing 

differences between the ASD and the TD group. Instead, the study revealed 

http://www.sciencedirect.com/science/article/pii/S2213158214001673#bb0305
http://www.sciencedirect.com/science/article/pii/S2213158214001673#bb0370
http://www.ncbi.nlm.nih.gov/pubmed/?term=Humphreys%2520K%255Bauth%255D
http://www.ncbi.nlm.nih.gov/pubmed/?term=Hasson%2520U%255Bauth%255D
http://www.ncbi.nlm.nih.gov/pubmed/?term=Avidan%2520G%255Bauth%255D
http://www.ncbi.nlm.nih.gov/pubmed/?term=Minshew%2520N%255Bauth%255D
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underlying decisional deficits in ASD. However, other studies investigating 

audiovisual processing in ASD have revealed that these results can be attributed to 

processing deficits at a unisensory level (Williams et al., 2004).  

As shown by typical audiovisual processing, the STC appears to be an important 

neural centre, which includes different regions that underlie a range of low- and high-

level multisensory integration processes. Within the STC, the posterior STS has been 

found to have structural grey matter (GM) differences in ASD (Scheel et al., 2011; 

Greimel et al., 2013; Doyle-Thomas et al., 2013; Hyde et al., 2010), as well as white 

matter abnormalities (Barnea-Goraly et al ., 2004) and atypical functional activations 

(Buckner et al., 2008). These atypicalities of the STS in ASD have been proposed to 

be the underlying cause of the common aetiology for audiovisual temporal processing 

deficits observed in ASD and other developmental conditions.  

This chapter describes a block design experiment which measured the BOLD signal 

when participants were presented with audiovisual information, audio information and 

visual information of beep-flash (BF) and face-voice (FV) displays. Whole-brain 

analyses were run to explore how activation levels were influenced by the different 

sensory modalities across the experimental groups (ASD and TD).  Further 

conjunction analyses of (AV> A) ∩ (AV> V) were preformed to establish regions 

sensitive to audiovisual processing separately in the ASD and the TD groups.  A 

conjunction analysis or max-criterion was chosen, as it has previously been shown to 

be an appropriate criterion to establish areas sensitive to audiovisual information 

(Kreifelts et al., 2010; Szycik et al., 2008; Love, Pollick, & Latinus, 2011; Watson et 

al., 2014). 

4.3 Methods 

4.3. 1 Participants 

Thirteen high-functioning adults with Autism Spectrum Disorders (aged between 21 

and 41) and 13 age-, sex- and IQ-matched control participants (aged between 21 and 

41) took part in this study (Table 4.1). All participants in the ASD group reported to 

have a diagnosis of having an ASD according to DSM-IV criteria from a qualified 

clinician. All were native English speakers, had normal or corrected to normal vision 

and reported no hearing difficulties. The Autism Quotient (AQ), a 50 item autism 

traits questionnaire by Baron-Cohen, Wheelwright, Skinner, Martin and Clubley 
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(2001), with the cut off score for Asperger’s being 26, supported the diagnoses of the 

ASD group (M= 37.54, SD = 6.89), and reinforced the assumption that no-one in the 

TD group had ASD (M=12.31, SD= 4.09). The participants were matched pair-wise 

on age (t (12)=.82, p=.42) and group-wise on full scale IQ (FSIQ) (t (12)=.51, p=.62), 

as measured using the Wechsler Abbreviated Scale of Intelligence (WASI) (Wechsler, 

1999). The experimental procedures were approved by the School of Psychology at 

the University of Glasgow and also the Greater Glasgow and Clyde National Health 

Service ethics board. 

 

 

 

 
4. 3. 2 Stimuli  

During the experiment, participants were presented with blocks of synchronous 

audiovisual (AV) displays, as well as audio only (A) and visual only (V) displays. Two 

different display types were used: non-social BF displays and complex social FV 

displays (see Figure 4.1). 

Previously recorded synchronous videos used in Chapter 3 and by Love et al. (2013) 

were used to create the videos for both fMRI experiments. The videos were in 

QuickTime file format (.mov) and were uploaded into Adobe Premiere Pro CC 2014 

(8.0.1) to manipulate their levels of asynchrony. All videos were created to be the 

same duration, irrespective of their sensory modality (AV, A,V). In order to present the 

videos using Presentation 14.9 designed by NeuroBehavioral Systems (NBS), the 

newly created videos were exported in an uncompressed AVI format and then 

compressed in VirtualDub 1.10.4 to minimise quality loss.  

All BF videos were 816 ms long with a frame rate of 60 frames per second. The flash 

was a white dot (luminance: 85 cd/m2; visual angle of the diameter: 4.4degrees) on 

black background, while the beep was a pure tone at 2000 Hz and 84 dB mean 

Group Age   FSIQ  

Mean SD  Mean SD 

ASD 

TD 

30.54 

29.46 

7.42 

5.34 

 119.92 

118.23 

10.13 

6.46 

Table 4.1 Mean and Standard Deviation (SD) of the ages and Full Scale IQs (FSIQ) of the autism spectrum 

disorder (ASD) and typically developed (TD)  group separately. 
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intensity. In the synchronous AV condition, the flash and the beep started at 400 ms. In 

the V condition, only the flash was presented at 400ms, and in the A condition only 

the beep was presented at 400ms. During the A presentation, a black screen was 

presented.  

The FV videos were 1920 milliseconds long, with a frame rate of 25 frames per 

second. The video was of a man saying the word “Tomorrow”. The visual angle of the 

visual speech cue was approximately 12.7 and 18.2 degrees and the mouth region 

covered about 3.2 by 2.5 degrees of visual angle. This made the mouth region 

approximately the same size as the flash in the BF videos.  Before and after the word 

was spoken, a still image of the first and the last frame of the video was shown and 

faded in at 120 ms and faded out at 1840 ms. 

  

 

4. 3. 3. Design  

This experiment aimed to investigate activation differences between the ASD and TD 

group when perceiving displays of different modalities: AV, A and V.  In both the BF 

and the FV runs, the participants were presented with blocks of three sensory 

                                 

Figure 4. 1 The top panel shows the visual information 

participants were presented with. The bottom panel shows 

the auditory waveform for each type of stimulus.  The 

beep-flash (BF) stimulus consisted of a flash of a white dot 

on a black background and a beep. In the face-voice (FV) 

stimulus a movie frame is shown and the waveform 

represents the word “tomorrow”. Please note that the 

images are not to scale, the area of the white flash dot is 

approximately the same size as the area of the mouth in FV.  
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modalities (AV, A, V), during which the BOLD signal was measured in the fMRI 

scanner.  In the BF run, participants were presented with blocks of BF, beep only and 

flash only displays. In the FV run, participants were presented with blocks of FV, face 

only and voice only displays. There was one run of BF and one of FV displays, both 

containing 21 blocks (seven of each of the 3 sensory modalities). The order of the 

blocks was pseudo-randomised: each block was always preceded and followed by a 

block from a different stimulus condition (e.g., a block of A could never be preceded 

or followed by any other block of A). Two different pseudo-random sequences were 

created and each of the two sequences were shown to half of the participants in both 

groups (TD, ASD). The order of the BF and FV runs was counterbalanced to remove 

any possible order effects. The BF runs were 376 seconds long. Each individual block 

lasted about 11 seconds (containing 14 repetitions of BF displays), while the FV runs 

were 368 seconds long, with each block lasting about 11 seconds (containing 7 

repetitions of FV displays). In all runs, each block was followed by 4 seconds during 

which a black screen was shown. Participants were also presented with a black screen 

for 20 seconds at the start of the each run and 16 seconds at the end of each run.  

4. 3. 4. Procedure  

Each participant was instructed to pay close attention to the stimuli presented. 

Participants were shown either the BF run or the FV run first in a counterbalanced 

order to remove any possible order effects. During both experiments, participants were 

presented with blocks of audiovisual information, audio information and visual 

information. Participants were not asked to perform an active task. Together, the 2 

experiments took about 14 minutes to complete. All of the MRI and fMRI data 

collection was performed at the Centre for Cognitive Neuroimaging (CCNi) at the 

University of Glasgow, UK. Participants were walked through the scanner safety 

checklist to ensure that they were safe to be scanned. Before entering the scanner, 

participants were told what stimuli they were going to be presented with and we 

checked whether they understood the task instructions. All participants provided 

informed written consent. In the scanner, participants were shown how to use the 

emergency buzzer in case they felt uncomfortable and wanted to stop the experiment. 

Participants were made comfortable in the scanner and were given the emergency 

button. If needed, the participants vision was corrected using the Nordic Neurolabs 

Visualsystem goggles until participants were able to clearly see the stimuli and 
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instructions. Once participants were comfortable, they were moved into the scanner 

and all subsequent communication took place from the control room via an intercom 

system. The instructions were repeated for each run and participants’ comfort was 

checked.  Stimuli were presented using Presentation 14.9 designed by 

NeuroBehavioral Systems (NBS), via electrostatic earphones (NordicNeuroLab, 

Norway) at a sound pressure level of 80 dB. In between scans, we checked that 

participants found the sound pressure level comfortable and loud enough considering 

the scanner noise. After the study, everyone was reimbursed for their time and 

transportation 

4. 3. 5 Data acquisition parameters  

A Siemens 3T Tim Trio MRI scanner was used to acquire sagittal T1 weighted 

anatomical images and T2 weighted functional images.  

4. 3. 5. 1 Functional data 

Functional T2 weighted images were acquired covering the whole brain (slices = 32, 

dimension = 210 x 210 mm, voxel size resolution = 3 x 3 x 3 mm) for each of the 188 

and 184 volumes of the BF and FV sub-experiments., using a 32-channel head coil 

and an echoplanar imaging (EPI) sequence (interleaved, TR = 2 seconds, TE = 30 ms, 

Flip Angle = 90°) with online motion correction. The first 2 volumes of each 

functional run comprised ‘dummy’ gradient and radio frequency pulses, which 

permitted for steady state magnetisation. During these volumes no stimuli were 

presented and no fMRI data was collected. Preprocessing and analysis used the 

motion corrected (moco) series output by the Siemens system.  

4. 3. 5. 2 Structural data 

At the end of each fMRI session a high-resolution T1-weighted structural image was 

collected in 192 axial slices and isotropic voxels (resolution: 1 mm x 1mm x 1 mm; 

dimensions: 256 x 256 mm, TR = 1900 msec, TE = 2.92 msec, time to 

inversion = 900 msec, FA = 9°). The run time was 10 minutes. 

4. 3. 6 fMRI Preprocessing 

BrainVoyager QX version 2.8 was used to preprocess and analyse all stages of the 

fMRI data. The first two functional volumes were excluded to allow for signal 
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stabilisation. Structural scans were homogeneity corrected and transformed into 

Talairach space (Talairach & Tournoux 1988) using BrainVoyager QX 

2.8 (BrainInnovation, Maastricht, the Netherlands). Functional runs were slice scan 

time corrected, 3D motion corrected (using trilinear/sinc interpolation) and temporally 

high-pass filtered at 3 cycles across each run. The functional runs were coregistered to 

the 1 × 1 × 1 triliniar-interpolated anatomical maps scans and transformed into 

talairach space. A Gaussian 6mm spatial filter was applied to the 4D volumes in order 

to improve the signal to noise ratio for group analysis by overcoming differences in 

intersubjective localisation.  

4. 3. 7. 1 Whole-Brain general linear model (GLM) 

For both the BF and FV experiments, a second-level, multi-subject, random effects 

GLM was computed. For both experiments a 2 (group: ASD, TD) x 3 (sensory 

modality: AV, A, V) mixed-measures ANOVA was run with group as the between-

subject factor and sensory modality as the within-subject factor.  To account for 

multiple comparisons, the volume maps were set at a voxel-level uncorrected 

threshold of p < 0.001 and the cluster size threshold estimation (Worsley, Evans, 

Marrett & Neelin, 1992) was used to control for minimum cluster sizes for each 

contrast, based on a criterion of p <0.05.  A Monte Carlo simulation of 1000 iterations 

estimated cluster-level false-positive rates. The regions were defined based on those 

that survived cluster-size threshold estimation, and, where regions covered excessively 

large areas, effort was made to ensure regions conformed to anatomical boundaries.  

This method is commonly used to control for multiple comparisons.  

4. 3. 7. 2 Conjunction analyses  

A series of random-effects conjunction analyses were performed in order to identify 

regions in which audiovisual integration took place when presented with a simple 

flash and beep stimulus (BF) and a more complex face-voice stimulus (FV).  Each 

audiovisual condition was contrasted against each of the corresponding unisensory 

(audio, visual) conditions. Thus, for the BF conjunction analyses run in the ASD and 

the TD group, separately: beep-flash was contrasted to beep only and beep-flash was 

contrasted to flash only (i. e., (BF > B) ∩ (BF > F); the ‘max rule’, Beauchamp, 2005; 

Love, Pollick, & Latinus, 2011). Multisensory audiovisual voxels had to be 

significantly active in both contrasts. Similarly for the FV conjunction analyses of the 



89 
 

ASD and the TD group: face-voice was contrasted to voice only and face only 

(FV > F) ∩ (FV > V). These analyses localised regions showing a higher BOLD 

response to audiovisual stimuli, as compared to both visual only and audio only 

stimuli. As before, the significance levels were set to p < 0.001 and the cluster 

threshold estimation account for multiple comparisons.  

4. 4 Results 

 

4. 4. 1 fMRI activation data 

4. 4. 1. 1 Whole-brain GLM of beep-flash displays 

For the BF displays, a 2 (group: ASD, TD) x 3 (sensory modality: AV, A, V) REX 

GLM revealed a significant main effect of group bilaterally in the lingual gyrus, a 

main effect of sensory modality in bilateral superior temporal gyrus, middle occipital 

lobule, occipital lobe, and precuneus. In addition, a significant interaction between 

group and sensory modality was found in the right inferior parietal lobule.  

The main effect of group found in the lingual gyri revealed a reduction of activation of 

the ASD group, compared to the TD group across all sensory modalities (Figure 4. 2, 

Table 4.2). The interaction between group and sensory modality in right inferior 

parietal lobule revealed that here the ASD group showed more activation for AV and A 

than for V, whereas the TD group showed more activation for AV and V than for A 

(Figure 4.3, Table 4.2). In the result and discussion section, we focus on activation 

differences between ASD and TD individuals, as well as interaction effects of group 

performance and stimulus type. Stimulus differences will not be discussed. 
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Table 4. 2 BF experiment:  clusters of activation from a 2 × 3 ANOVA with ‘experimental group’ as a between-

participants factor and ‘sensory modality’ as a within-participants factor. Legend: BA — Brodmann's area  

*activation reached across both hemispheres 

Anatomical region Hemisphere 

 

Talairach coordinate of 

peak voxel (x, y, z) 

Number 

of voxels F-value P-value  BA 

       

Group (ASD, TD)     

Lingual gyrus, Left -15, -67,  1 128 22.68 0.00008 18 

Lingual gyrus Right 18, -64, -8 90 24.02 0.00005 19 

Group (ASD, TD) × Sensory modality (AV, A, V)     

Inferior parietal lobule Right 63, -22, 25 109 9.96 0.00024 40 

Sensory modality (AV, A, V)     

Superior temporal gyrus Right 39, -22, 7 23123 56.57 0.00001 13 

Inferior temporal gyrus Right 42, -64, 1 9947 46.79 0.00001 37 

Occipital lobe Left* -12, -67, 7 50568 50.24 0.00001 30 

Precuneus Right* 3, -49, 43 5313 13.48 0.00002 7 

Inferior temporal gyrus Left -42, -67, 1 7162 38.69 0.00001 37 

Superior temporal gyrus Left -39, -25, 7 25750 75.87 0.00001 13 

  

Figure 4. 2 fMRI activation data: Clusters of activation for which the difference between the brain responses to the three beep-

flash stimulus conditions (sensory modality: audiovisual, audio  and visual) and the two groups of participants (ASD and TD 

individuals). Coronal and sagittal slices show activation foci at two locations (defined by x y z Talairach coordinates). The 

average contrast estimates (beta weights) and relative standard errors are shown in histograms for ASD (red) and TD (blue) at 

each stimulus condition: audiovisual (PSS), audio (A) and visual (V). a) right lingual gyrus b) left lingual gyrus are clusters of 

activation for which the brain responses differed between two groups of participants when presented with beep-flash stimuli of 

all three sensory modalities.  
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4. 4. 1. 2 Whole-brain GLM of face-voice displays 

For the FV displays, a 2 (group: ASD, TD) x 3 (sensory modality: AV, A, V) REX 

ANOVA revealed a significant main effect of group in the right inferior frontal gyrus 

and superior frontal gyrus, a main effect of sensory modality in bilateral superior 

parietal lobule, occipital lobe, right superior temporal gyrus, caudate, thalamus and 

culmen, but no significant interaction between group and sensory modality. 

The main effect of group in both the inferior and superior frontal gyrus revealed a 

reduction of activation in the ASD group, compared to the TD group across all sensory 

modalities (Figure 4. 4, Table 4. 3). 

  

 

Figure 4. 3 fMRI activation data: in the right inferior parietal lobule we found a cluster of activation for which the brain responses 

revealed an interaction between the three beep-flash stimulus conditions (sensory modality: audiovisual, audio, visual) and the 

two groups of participants (ASD and TD individuals). Coronal and sagittal slices show the activation focus at one location 

(defined by x y z Talairach coordinates). The average contrasts estimates (beta weights) and are shown in the histogram for the 

ASD (red) and TD (blue) at each stimulus condition: audiovisual, audio, visual. The brackets and * indicate where the pairwise 

comparisons found significant differences (p<0.05) between the conditions. The black brackets indicate significant differences 

between the conditions across the groups, the red brackets show significant differences between the stimulus conditions in the 

ASD group and blue brackets indicate significant differences between the stimulus conditions in the TD group.   

*

**

*
*

x = 63, y = -22, z = 25
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Table 4. 3 Experiment 1 FV clusters of activation from a 2 × 3 ANOVA with ‘experimental group’ as a 

between-participants factor and ‘sensory modality’ as a within-participants factor. Legend: BA — Brodmann's 

area 

*activation reached across both hemispheres 

Anatomical region Hemisphere 

 

Talairach coordinate of 

peak voxel (x, y, z) 

Number 

of voxels F-value P-value  BA 

       

Experimental group (ASD, TD)     

Middle frontal gyrus Right 42, 38, 13 868 27.48 0.00002 46 

Superior frontal gyrus Right 21, 5, 61 443 31.43 0.00001 6 

Sensory modality (AV, A, V)     

Superior temporal gyrus Right 63, -16, 7 23972 95.27 0.00001 22 

Cuneus/ Occipital lobe Right* 12, -101, 4 137300 461.88 0.00001 18 

Caudate Right 21, -40, 16 4974 34.81 0.00001 - 

Thalamus Right 21, -25, 1 3359 115.3 0.00001 - 

Superior parietal lobule  Right 21, -46, 61 5491 21.83 0.00001 7 

Culmen Right 6, -37, -23 2013 19.73 0.00001 - 

Superior parietal lobule Left -18, -49, 58 5608 24.80 0.00001 7 

 

 

Figure 4. 4 Experiment 1a fMRI activation data: Clusters of activation for which the difference between the brain responses 

to the three face-voice stimulus conditions (sensory modality: audiovisual, audio  and visual) and the two groups of 

participants (ASD and TD individuals). Coronal and sagittal slices show activation foci at two locations (defined by x y z 

Talairach coordinates). The average contrast estimates (beta weights) and relative standard errors are shown in histograms 

for ASD (red) and TD (blue) at each stimulus condition: audiovisual (PSS), audio (A) and visual (V). a) right middle frontal 

gyrus and b) superior frontal gyrus  are clusters of activation for which the brain responses differed  between two groups of 

participants when presented with face-voice stimuli of all three sensory modalities.  

a)                       y= 42, x= 38, z= 13

b)                          y= 21, x= 5, z= 61
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4. 4. 2 Conjunction analyses 

The conjunction analyses of BF and FV (AV> A) ∩ (AV> V) were performed for both 

experimental groups (ASD and TD) separately, as well as used to compare them 

across the experimental groups.   

4. 4. 2. 1 Conjunction analyses of beep-flash displays 

The RFX conjunction analysis for BF stimuli revealed two clusters of voxels in the 

right and left superior temporal gyrus in both the ASD and the TD group (Figure 4. 5, 

Table 4. 4).  Comparing the two contrasts between the two groups revealed no 

activation differences revealing different audiovisual BF sensitivity compared to audio 

beep and visual flash only conditions.   

Table 4. 4 Conjunction analysis of  BF stimuli. For the ASD group and the TD group clusters of activation for 

(AV> A) ∩ (AV> V) are shown. Legend: BA — Brodmann's area 

Experimental 

group 

Anatomical 

region Hemisphere 

 

Talairach 

coordinate of peak 

voxel (x, y, z) 

Number 

of 

voxels t-value P-value  BA 

        
ASD        

 

Superior 

temporal gyrus Right 60, -7, 1 6278 7.06 0.00001 22 

 Superior 

temporal gyrus Left -54,  -19, 10 4848 6.37 0.00003 41 

TD        

 

Superior 

temporal gyrus Right 63,  -19, 10 11493 9.62 0.00001 42 

 

Superior 

temporal gyrus left -48,  -19,  7 11878 11.11 0.00001 22 
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4. 4. 2. 2 Conjunction analyses of face-voice displays 

Similarly, the RFX conjunction analysis for FV stimuli revealed two clusters of voxels 

in the right and left superior temporal gyrus in both the ASD and the TD group 

(Figure 4. 5, Table 4. 5). 

Table 4. 5 Conjunction anlalysis  of  FV stimuli. For the ASD group and the TD group clusters of activation for 

(AV> A) ∩ (AV> V) are shown. Legend: BA — Brodmann's area 

Experimental 

group 

Anatomical 

region Hemisphere 

 

Talairach 

coordinate of peak 

voxel (x, y, z) 

Number 

of 

voxels t-value P-value  BA 

        

ASD        

 

Superior 

temporal gyrus  Right 53, -18, 5 5519 6.66 0.00001 22 

 Superior 

temporal gyrus 

Left -51, -19, 8 

3669 5.96 0.00003 41 

TD        

 

Superior 

temporal gyrus Right 58,  -20, 1 11957 10.21 0.00001 42 

 

Superior 

temporal gyrus left -56,  -20,  7 12700 11.07 0.00001 41 

 
 

Figure 4. 5 fMRI activation data: Conjunction analysis of (audiovisual > audio) ∩ (audiovisual > visual) to define 

integrative audiovisual regions separately for  a) ASD group and b) TD group for beep-flash stimuli. Coronal and sagittal 

slices show activation foci at two locations (defined by x y z Talairach coordinates).  The clusters of activation sensitive to 

audiovisual integration are in the bilateral superior temporal sulcus. for both groups of participants (ASD, TD).  

a)              x= 60, y= -7, z = -1                                                                 x = -54, y = -10, x = 10 

b) x= 63, y =-19, z =  10                                                             x = -48, y = -19, z = 7 
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Figure 4.6 fMRI activation data: Conjunction analysis of  (audiovisual > audio) ∩ (audiovisual > visual) to define integrative 

audiovisual regions separately for  a) the ASD group and b) the TD group for face-voice stimuli. Coronal and sagittal slices 

show activation foci at two locations (defined by x y z Talairach coordinates).  The clusters of activation sensitive to 

audiovisual integration are bilaterally in the superior temporal sulcus for both groups of participants (ASD, TD).  

a)     x = 53, y = -18, z= 5                                                                 x= -51, y = -19, z =8   

b)     x = 58, y = -20, z= 1                                                               x= -56, y = -20, z =7   
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The ASD and TD group both showed audiovisual integration sensitive areas in the 

STS bilaterally when presented with BF and FV stimuli.  However, in both the BF and 

FV contrasts, the two activation maps showed that the ASD group’s distributions of 

the two clusters contained less voxels with a statistically significant conjunction than 

the TD group. For BF in the ASD group 11, 126 anatomical voxels (1mm3; out of a 

total of 1,562,139 anatomic voxels) were found to be activated more in response to 

audiovisual information than audio and visual information alone. In the TD group, 

more than double the amount of anatomical voxels, 23,371, were found to be more 

responsive to more audiovisual information. This difference was significant (p < .01) 

according to the Chi-squared test of equality of proportions. Similarly, for FV in the 

ASD group, we found 9188 anatomical voxels activated more to audiovisual FV 

stimuli than to audio and visual stimuli alone, whereas, in the TD group, the 

audiovisual sensitive clusters were larger with 24657 anatomical voxels. This 

difference was significant (p < .01) according to the Chi-squared test of equality of 

proportions. 

4. 4. 2. 3 Between groups conjunction analyses  

Comparing the BF and FV conjunction contrasts between the two groups revealed an 

activation difference for FV in the superior frontal gyrus, showing that in this region 

the ASD group was less active for audiovisual FV information as defined by (AV> A) 

∩ (AV> V) compared to the TD group (Figure 4. 7, Table 4. 6). We did not find group 

differences for BF.   

 

 

 

Table 4. 6 Conjunction analysis  of  FV stimuli, comparing regions sensitive to audiovisual displays defined 

by (AV> A) ∩ (AV> V) across the two experimental groups (ASD and TD)  Legend: BA — Brodmann's area 

Anatomical region Hemisphere 

 

Talairach 

coordinate of peak 

voxel (x, y, z) 

Number 

of voxels t-value P-value  BA 

       

Superior frontal gyrus  Left -21, 32, 52 659 -5.08 0.00003 8 
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4. 5 Discussion  

In this study we used fMRI to investigate audiovisual, unisensory auditory and visual 

processing of simple beep-flash, as well as complex and social face-voice displays, in 

13 participants with ASD and 13 TD controls. Our results showed cortical activation 

differences not only in audiovisual conditions, but also in unisensory audio and visual 

conditions. This suggests that individuals with ASD generally process sensory 

information differently than TD individuals.  Specifically, when presented with simple 

BF displays of all sensory modalities (AV, A, V), the ASD group exhibited a reduced 

activation compared to the TD group in the lingual gyri. Additionally, a significant 

interaction between group and sensory modality was found in right inferior parietal 

lobule, revealing that the ASD group showed more activation for AV and A than for V, 

whereas the TD group showed more activation for AV and V than for A. These 

findings are contradictory to the idea that only the cortical processing of socially 

relevant auditory and visual information is abnormal in ASD (Gervais et al, 

2004;  Humphreys, et al., 2008). However, a more generalised sensory processing 

deficit in ASD is in agreement with our behavioural findings in Chapter 3, which 

suggested that people with ASD had reduced sensitivity to audiovisual asynchronies 

across a range of social and non-social displays.  For FV displays of all sensory 

modalities (AV, A, V), we observed reduced activations in the ASD group compared to 

the TD group in the right middle frontal gyrus and superior frontal gyrus. While it is 

surprising that we did not reveal any audiovisual specific activation differences, these 

 
Figure 4. 7 Experiment 1 fMRI activation data: Conjunction analysis of (audiovisual > audio) ∩ (audiovisual > visual) 

to define integrative audiovisual regions compared across experimental group (ASD, TD) for face-voice stimuli. Coronal 

and sagittal slices show the activation focus of the location (defined by x y z Talairach coordinates).  The cluster of 

activation sensitive to audiovisual integration is in the left superior frontal gyrus TD individuals but not in ASD.  

x = -19, y = 28, z = 55

http://www.ncbi.nlm.nih.gov/pubmed/?term=Humphreys%2520K%255Bauth%255D
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findings are consistent with audiovisual and visual face processing research revealing 

reduced activation in frontal regions in ASD (Pierce et al., 2004; Doyle-Thomas et al., 

2013). These findings are in agreement with the results by Williams et al., (2004), 

which showed that when audio and visual task difficulties were controlled, children 

with ASD performed no differently on the audiovisual task compared to the controls. 

However, our results in this study are not in agreement with behavioural findings by 

Stevenson et al., (2014) and Chapter 3, which suggest intact audio and visual 

processing in ASD.  

The conjunction analyses of BF and FV (AV> A) ∩ (AV> V) for both the ASD and the 

TD group revealed that the bilateral STG were key to audiovisual integration. 

Although conjunction analyses for the TD and ASD groups revealed the same regions, 

for both BF and FV the activated regions in the ASD group were significantly smaller 

compared to the regions in the TD group.  Our findings are consistent with other 

research showing reduced activation in the STS when presented with voices and as 

well as audiovisual face-voice displays (Gervais et al, 2004; Doyle-Thomas et al., 

2013). Moreover, this finding also suggests an audiovisual specific deficit activation 

in the STG, which might be revealed more clearly in future studies comprised of 

larger sample sizes. Comparing audiovisual integration areas between the ASD and 

TD group revealed that, for audiovisual FV displays, the superior frontal gyrus was 

less activated in the ASD group than in the TD group. This finding is consistent with 

previous research showing reduced activation to audiovisual face-voice displays in 

frontal areas (Doyle-Thomas et al., 2013).  

Lingual gyrus  

The current study found a reduction of activation of the ASD group compared to the 

TD group across all sensory modalities of BF stimuli in the lingual gyri. Interestingly, 

previous research has found the left lingual gurus to be activated less in ASD when 

performing visuospatial and linguistic reasoning tasks (Sahyoun et al., 2009). 

However, others have found increased activation of the lingual gyri in ASD during 

word categorisation tasks (Gaffrey et al., 2007). Structural differences in the lingual 

gyrus in ASD have also been reported. More specifically, grey matter (GM) and 

cortical thickness (CT) increases have been found in both lingual gyri in ASD (Ecker 

et al., 2010; Hyde et al., 2010), whereas, more recently, Ecker et al. (2013) found CT 

increases in regions of the right lingual gyrus in ASD. In typical participants, research 
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has also shown that the lingual gyri and lateral occipital cortices are more sensitive to 

audiovisual stimuli, compared to unisensory stimuli (Vander Wyk et al. 2010; Calvert 

et al. 2001; Stevenson & James 2009). Furthermore, Petrini et al. (2011) used fMRI to 

examine brain activity of people watching audiovisual point-light drumming, and 

showed that when there was a natural covariation between sound intensity and 

velocity of the drumming strike, the lingual gyrus was more activated compared to 

displays in which this natural covariation was eliminated.  

Inferior parietal lobule 

For BF stimuli, we found that in ASD the right inferior parietal lobule was more 

activated during AV and A stimulation than in V stimulation, while in the TD group, 

it was more activated for AV and V than for A. Thus the AV stimuli activated this area 

comparably across groups, but the unisensory conditions lead to different activation 

patterns. Although the inferior parietal lobule has previously been shown to have 

atypical activation patterns in ASD visual processing (Huble, et al., 2003), these 

findings contradict the finding by Doyle-Thomas et al. (2013), showing that during 

audiovisual emotional matching tasks people with ASD relied more on areas of the 

parietal lobe including the middle parietal lobule and precuneus. Li, Xue, Ellmore, 

Frye and Wong (2014) used diffusion tensor imaging (DTI) to show stronger local 

connectivity in ASD in inferior parietal regions including the BA 40. The right 

inferior parietal lobule is also an area commonly associated with grey matter and 

cortical thickness differences in ASD (Ecker et al., 2010; Hyde et al, 2010; Wallace et 

al., 2010; Hadjikhani et al., 2006; Doyle-Thomas et al., 2013), which can be linked to 

atypical activation.  

The importance of the inferior parietal lobule in the integration of audiovisual 

information has been also been demonstrated (Calvert et al., 2000, 2001; Dhamala et 

al., 2007). Although, for speech perception, the left inferior parietal lobule has often 

been shown to be involved in audiovisual speech perception (Miller & D'Esposito, 

2005; van Wassenhove, Nusbaum & Small, 2007; Szycik, Tausche & Münte, 2008), 

the right inferior parietal lobule might also play a specific role in both unimodal and 

multimodal event order judgments (Snyder & Chatterjee, 2004; Battelli, Pascual-

Leone & Cavanagh, 2007), and has been suggested to contribute to the perception of 

synchrony between events across sensory modalities. 
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Premotor BA 6 

The ASD group showed reduced activation in Brodmann area 6 in the superior frontal 

gyrus when observing FV stimuli of different modalities. Interestingly, the area lies 

within the premotor cortex, an area which has previously been associated with 

audiovisual perception. Neuroimaging studies have shown that areas like the premotor 

cortex are not only involved in speech production, but also help speech perception 

(Meister, Wilson, Deblieck, Wu & Iacoboni, 2007). It has also been suggested to 

facilitate speech perception by mapping unimodal and multimodal sensory features 

onto articulatory speech gestures (Callan, Jones, & Callan, 2014). Similarly, the 

superior precentral cortex has been found to be involved in audiovisual sentence 

processing (Capek et al., 2004).  Interestingly, speech perception in ASD has been 

shown to be atypical. For example, in ASD speech perception has been shown to be 

less influenced by a talking face than in TD peers (de Gelder et al., 1991; Irwin et al.,  

2011; Mongolli et al., 2008). The premotor cortex has also been activated by 

execution, as well as observation of execution of action (a mirror neuron system 

property) (Callen et al., 2004; Mashal, Solodkin, Dick, Chen & Small, 2012). People 

with ASD have been frequently shown to have an executive functioning deficit (e.g., 

Liss, et al. 2001). Intriguingly, in ASD, increases of CT in the superior temporal gyrus 

were found (Waiter et al., 2004, McAlonan et al., 2002, Ecker et al, 2013), whereas 

reductions of GM volume in ASD were found by McAlonan et al. (2002).  

Dorsolateral prefrontal cortex BA 8 and BA 46 

Comparing the FV conjunction contrasts between the two groups revealed that for an 

area in the superior frontal gyrus, BA 8, the ASD group was less active during 

audiovisual FV displays as defined by (AV> A) ∩ (AV> V), compared to the TD 

group. Area BA 46 in the middle frontal gyrus revealed a reduction of activation in the 

ASD group, compared to the TD group across all sensory modalities of FV displays. 

These results are in line with Doyle-Thomas et al.’s (2013) results, which also 

revealed reduced activation in ASD in the middle frontal gyrus during audiovisual 

tasks of emotion matching. However, Loveland et al., (2008) in their pilot study, 

revealed a higher activation in the right middle frontal gyrus in their ASD participants 

compared to their controls. The BA 8 and BA 46 are both part of the dorsolateral 
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prefrontal cortex (DLPFC). In distinction to the activation pattern we found in BA 46 

(reduced activation during stimuli of all modalities), a study recently showed that 

people with ASD have greater activation in the DLPFC when attending to faces and 

houses (Herrington, Riley, Grupe & Schultz, 2015). In BA 8, we found a similar trend 

of increased activation to our face stimulus in the ASD group. Moreover, more 

extensive connectivity in ASD between the thalamus and the middle frontal regions 

has been found (Mizuno, Villalobos, Davies, Dahl & Müller, 2006). Furthermore, 

evidence that DLPFC is activated in typical audiovisual processing in sentence 

processing and temporal order judgements (Capek et al., 2004; Adhikari, Goshorn, 

Lamichhane & Dhamala, 2013) supports the discovery of BA 8 being an audiovisual 

integration area in the TD group. Evidence from structural studies, revealing GM 

volume and CT increases and decreases in ASD in the right inferior frontal cortex, 

also support the notion of atypical cortical activation in those areas (Ecker et al., 2010; 

Hyde et al, 2010; Hadjikhani et al., 2006; Doyle-Thomas et al., 2013; Ecker et al, 

2013). 

Conclusion  

The results of the current study reveal that audiovisual and unisensory auditory and 

visual processing of both social face-voice and simple beep-flash stimuli are 

associated with reduced activation in ASD. Audiovisual, auditory and visual 

conditions of human face-voice stimuli revealed reduced activation in ASD 

participants compared to TD participants in regions of the frontal cortex, while beep-

flash stimuli revealed reduced activation in the lingual gyri. The inferior parietal gyrus 

revealed that its activation was modulated differently by the different sensory stimulus 

conditions of visual-flash stimuli in ASD and TD participants. Specifically, we found 

increased activation in audiovisual and auditory conditions compared to the visual 

condition in individuals with ASD, while TD controls showed increased activation in 

audiovisual and visual conditions compared to the auditory condition. Although 

smaller regions of the STC were found in ASD to be sensitive to audiovisual stimuli 

as computed by conjunction analyses, against our predictions, we did not find any 

activation differences, per se, of the STC between the two groups. However, a 

superior frontal area was shown to be sensitive to audiovisual face-voice stimuli in the 

TD group, but not in the ASD group. Overall, this study has indicated that brain 
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activity, prompted by audiovisual, auditory and visual processing of social and non-

social stimuli, is different in people with ASD compared to TD.  

  These results are in contrast to previous behavioural findings (Chapter 3), which 

suggested deficient audiovisual integration, while auditory and visual processing is 

intact.  The current results reveal the need for further investigations to explain the 

relationship between our results and those found in Chapter 3. Chapter 5 will look 

more specifically at the neural correlates of Synchrony Judgements in ASD and TD 

participants.  
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5 fMRI investigation of audiovisual temporal processing in Autism 

Spectrum Disorder using Synchrony Judgements  

 

5.1 Abstract  

The integration of information from different senses is important in everyday life. In 

Autism Spectrum Disorder (ASD), behavioural results have shown deficits in 

audiovisual integration. This view also been supported by electroencephalography 

(EEG) studies (Brandwein et al., 2015). Using functional magnetic resonance imaging 

(fMRI), we investigated audiovisual temporal processing in ASD. In 13 adult males 

with ASD and 13 age-, sex-, and IQ-matched typically developed (TD) controls, we 

investigated temporal asynchrony of audio and visual information in simple beep-flash 

(BF) displays, as well as complex and social face-voice (FV) displays.  Blood 

oxygenation level dependent (BOLD) signals were measured while the ASD and TD 

participants were asked to make synchrony judgements (SJ) on audiovisual displays of 

different levels of asynchrony: the participants’ point of subjective simultaneity (PSS), 

audio leading visual information (audio first), visual leading audio information (visual 

first). Whereas no effect of group was found with BF displays, increased putamen 

activation was observed in ASD participants compared to TD participants when 

making SJs on FV displays. Investigating SJ on audiovisual displays in the bilateral 

superior temporal gyrus (STG), an area involved in audiovisual integration (see 

Chapter 4), we found no group differences or interaction between group and levels of 

audiovisual asynchrony. The investigation of different levels of asynchrony revealed a 

complex pattern of results, indicating a network of areas more involved in processing 

PSS than audio first and visual first, as well as areas responding differently to audio 

first compared to video first. These activation differences between audio first and 

video first stimuli in different brain areas are constant with the view that audio leading 

and visual leading stimuli are processed differently.   

5.2 Introduction  

Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder characterised by 

the DSM-V as deficits in social communication and interaction, as well as repetitive 

patterns of behaviour, interests and activities (American Psychiatric Association, 

2013). Differences in sensory processing in ASD compared to typically developed 
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(TD) individuals has been reported across the different sensory modalities (Lane et al., 

2015, Ludlow et al., 2014, Simmons et al., 2009). Recently, Robertson and Simmons 

(2013) demonstrated a strong correlation between autistic traits in the general 

population and sensory sensitivities. The relevance of these sensory differences has 

recently been recognised and included as diagnostic criteria in the DSM-V. In fact, 

researchers have started to stress the importance of understanding to what degree 

sensory anomalies in individuals with ASD contribute to their social and 

communication impairments. For example, multisensory processing differences have 

been proposed to cascade down to causing communication impairments (Brandwein et 

al., 2015) or acts of apparent non-compliance, reluctance, lack of interest and 

aggression (Donnellan, Hill & Leary, 2013). This highlights the importance of better 

understanding the neural correlates of these sensory processing differences and 

potentially developing sensory processing interventions.  

 

The ability to integrate auditory and visual information is crucial to everyday life. The 

combination of multiple sensory cues reduces uncertainty and enables us to make 

better estimates of situations (Ernst & Banks, 2002). For example, in a crowded and 

noisy environment, looking at a person’s face and lip movements enables us to better 

understand what a person is telling us. Moreover, to interact appropriately with the 

environment, the multisensory integration process needs a degree of specificity to 

combine only the information that belongs together and keep other information apart.  

To make a judgement of whether audio and visual information belongs together, the 

temporal correspondence of the two incoming cues need to be considered. When 

looking at the temporal aspect of audiovisual integration, it has been shown that 

individuals integrate incoming audio and visual information, and perceive them as one 

unitary event, even if they are hundred milliseconds or more apart; this is called the 

temporal integration window (TIW; as seen in Chapter 3; Hairston et al., 2005; Love 

et al., 2013; Petrini et al., 2009a,b; Stevenson & Wallace, 2013; Stevenson et al., 

2014; van Wassenhove et al., 2007; van Eijk et al., 2008). Usually the participants are 

shown audiovisual stimulus pairs with varying stimulus onset asynchronies (SOAs) 

between the audio and visual information. As shown and discussed in Chapter 3, the 

TIW can be measured by Synchrony Judgements (SJ) and Temporal Order 

Judgements (TOJ), which are likely to tap into different perceptual mechanisms 

(Love, et al., 2013; Love et al., in preparation). The width of the TIW varies from 



105 
 

participant to participant (Stevenson, Zemtsov, & Wallace, 2012), as well as across 

people’s life span. The TIW has been shown to be wider in childhood, becomes 

narrower in late adolescence (Hillock et al., 2011; Hillock-Dunn and Wallace, 2012a), 

and becomes wider again in late adulthood (Chan, Pianta & McKendrick, 2014a). 

 

Temporal audiovisual processing in TD individuals 

 

In Chapter 4 we showed the importance of the superior temporal gyrus (STG) in 

audiovisual integration, however, when temporal processing aspects are introduced, 

the role of the STG is less clear (Miller & D’Esposito, 2005; Stevenson et al., 2010; 

Stevenson, VanDerKlok, Pisoni, & James, 2011; Stevenson, Mullin, Wallace & 

Steeves, 2013; Love, 2011). These studies have specifically looked at audiovisual 

synchrony judgements (SJ) which ask participants to judge whether audiovisual 

stimuli, presented at a range of different levels of asynchrony, are in synch or out of 

synch.  A network of regions responding more to synchronous than asynchronous 

speech, including right mSTG, bilateral superior colliculus, fusiform gyrus, lateral 

occipital cortex, and extrastriate visual cortex, has been found (Stevenson et al., 

2010). Similarly, Love (2011) examined participants’ brain activation during 

synchrony judgment tasks on synchronous and asynchronous audiovisual speech 

displays. Similarly to Stevenson et al., 2010, he showed an asynchrony network and a 

synchrony network, but only for perceptually (audio preceding visual information by 

about 90 ms) defined synchrony and not when it was physically (SOA = 0) defined 

synchronous speech. He also distinguished two regions of the superior temporal cortex 

(STC): a middle region of STC, responding to synchronous speech, and a posterior 

region, responding to asynchronous speech.  

Furthermore, Love et al. (in preparation) compared the neural mechanism underlying 

SJs with temporal order judgement tasks (TOJs), which act as another popular task 

used to assess people's sensitivity to asynchrony. Using audiovisual drumming 

displays at different levels of asynchrony (audio first, video first) and synchrony 

[physically synchronous, participant’s point of subjective simultaneity (PSS)], their 

results showed that the two judgements use different brain areas. The middle occipital 

cortex was found to show sustained activation during SJ and deactivated during TOJ, 

whereas transient activation was greater in TOJ than in SJ in regions of the left middle 
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occipital, middle frontal, precuneus and medial superior frontal lobe. This can be 

taken as evidence that the SJ and TOJ measure different aspects of audiovisual 

synchrony perception. A recent repetitive transcranial magnetic stimulation (rTMS) 

study by Stevenson et al. (2013) revealed that stimulation prior to making SJs on 

beep-flash stimuli of the multisensory region (STS) caused an overall widening of the 

TIW (increased tolerance for visual-leading stimuli). Furthermore, stimulation of 

auditory (Hechl’s gyrus) and visual (striate cortex) regions caused a broadening within 

the audio first stimuli and video first stimuli, respectively. The broadening of the TIW, 

to the more ecologically valid visual first stimuli with STS disruption, advocates that 

audiovisual temporal processing in STS reflects learned environmental information.  

Audiovisual processing in ASD  

From behavioural research we know that for individuals with ASD, processing 

multiple sensory signals as a single percept is not obtained as frequently as for TD 

individuals. For instance, people with ASD perceive audiovisual illusions such as the 

McGurk effect (McGurk & MacDoland, 1976) less often than their TD controls (de 

Gelder et al., 1991; Irwin et al., 2011; Mongolli et al., 2008); often benefiting less 

from an additional sensory modality (Smith & Bennetto, 2007) and relying more on 

one sensory modality (Stevenson et al., 2014).  

Electroencephalography (EEG) studies recording high-density brain activity have 

shown that the neural integration of audiovisual information is deficient in children 

with ASD (Magnee et al., 2009; Russo et al., 2010; Brandwein et al., 2013, 2015).  

Moreover, using fMRI, it has been shown that adolescents with ASD use different 

cortical areas when processing audiovisual emotion stimuli compared to TD 

adolescents (Doyle-Thomas et al., 2013).  The activation patterns revealed that the 

ASD group employed more parietal and frontal cortices, whereas the TD group 

recruited frontal and temporal cortices during this task. It was suggested that the 

absence of integrative emotional networks in ASD might cause the recruitment of the 

parietofrontal network as a compensatory result. Similarly higher activation patterns 

were shown in a pilot study which asked participants to make emotional congruency 

judgements (Loveland et al., 2008). Moreover, Chapter 4 revealed people with ASD 

exhibit reduced activation when presented with audiovisual, unisensory auditory and 

visual simple beep-flash, and social face-voice stimuli. Audiovisual, auditory and 
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visual conditions of face-voice stimuli revealed reduced activation in ASD in regions 

of the frontal cortex, while beep-flash stimuli revealed reduced activation in the 

lingual gyri. Activation levels in the inferior parietal gyrus revealed an interaction 

between the multisensory and sensory stimulations and experimental group. While the 

conjunction analyses highlighted the STG to be significantly involved in audiovisual 

integration in both groups, the ASD group revealed smaller regions of the STG to be 

audiovisual sensitive compared to the controls. Interestingly, a superior frontal area 

was shown to be sensitive to audiovisual face-voice stimuli in the TD group, but not in 

the ASD group. Overall, this study suggests that the processing of audiovisual, 

auditory and visually presented social and non-social stimuli are different in people 

with ASD compared to TD people.    

Temporal audiovisual processing in ASD  

Thus far the literature on multisensory processing in ASD has concentrated on 

behavioural responses to demonstrate audiovisual temporal processing differences. 

Commonly, the TIW is shown to be wider in ASD (Chapter 3, Stevenson et al., 2014; 

de Boer-Schellekens, Eussen & JeanVroomen, 2013). The sensitivity to asynchrony 

has been measured using video clips of simple beeps and flashes, complex audiovisual 

human actions and audiovisual speech (Chapter 3; de Boer-Schellekens, Eussen & 

JeanVroomen, 2013; Grossman, Schneps & Tager-Flusberg, 2009; Stevenson et at., 

2014), as well as using different tasks: SJs (Chapter 3; Grossman, Schneps & Tager-

Flusberg, 2009; Stevenson et at., 2014) or TOJs (Chapter 3; de Boer-Schellekens, 

Eussen & JeanVroomen, 2013).  

Although behavioural evidence is of great importance, it is crucial to obtain a deeper 

understanding of the processes underlying the differences in audiovisual integration in 

ASD. Thus far there has been little research investigating the neural underpinnings of 

the differences in audiovisual integration in ASD. While Chapter 4 highlights that 

even basic fMRI research investigating audiovisual, audio and visual processing in 

ASD is lacking, investigating audiovisual temporal processing during SJ tasks would 

enable us to reveal the neural correlates underlying the observed behavioural 

differences. Moreover, behavioural similarities do not always mean that the 

underlying brain processes are the same, since compensatory mechanisms might have 
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been developed (McKay et al., 2013). Therefore it is important to investigate what 

neural substrates underlie these audiovisual processing differences.  

Looking at the behavioural results in Chapter 3 and the fMRI research on audiovisual 

integration and synchrony perception, we can postulate how a widened TIW might be 

reflected in the underlying neural correlates that serve the integration of audiovisual 

information. As we have shown in Chapter 4, the STG is clearly an important neural 

centre of multisensory integration processes. In ASD, structural differences within the 

STG and posterior STS are a common finding within the grey matter (Scheel et al., 

2011; Greimel et al., 2013; Doyle-Thomas et al., 2013; Hyde et al., 2010) and white 

matter (Barnea-Goraly et al ., 2004). Additionally, functional activation differences of 

the STG in ASD have been commonly observed (Gusnard & Raichle, 2001; Buckner 

et al., 2008). These atypicalities of the STG in ASD have been proposed to be the 

underlying cause of the common aetiology for audiovisual temporal processing 

deficits observed in ASD and other developmental conditions (Stevenson et al., 2014; 

Wallace & Stevenson, 2014).  

To our knowledge, no study to date has investigated audiovisual temporal processing 

in ASD using neuroimaging techniques. Therefore we used fMRI to investigate the 

underlying neural correlates of audiovisual temporal integration in ASD when making 

SJs on simple beep-flash (BF) and more complex and social face-voice (FV) displays. 

Thus the current experiment measured BOLD signals while participants were asked to 

make SJ on audiovisual BF and FV displays which were: perceptually synchronous to 

the individual participant (PSS; previously collected in Chapter 3), asynchronous with 

audio leading visual information (audio first; AF) and visual leading the auditory 

information (video first; VF).  A whole-brain analysis was run to establish whether 

ASD and TD individuals recruit the same areas when processing audiovisual displays 

of different levels of asynchrony. The regions established through the conjunction 

analysis in Chapter 4 were also used to create masks of regions sensitive to 

audiovisual integration to see whether we would find any group differences, 

specifically in those areas, when processing audiovisual displays of different 

asynchronies.  Moreover, the masks are of the STG, and therefore will allow us to 

investigate the predictions from other research that atypicalities of the STG in ASD 

could be an underlying cause of audiovisual temporal processing deficits observed in 

ASD. 
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5.3 Methods 

5.3. 1 Participants 

The participants in this study had also taken part in Chapter 4. Thirteen high-

functioning adult males with ASD (aged between 21 and 41) and 13 age-, sex- and IQ-

matched control participants (aged between 21 and 41) took part in this fMRI study 

(Table 5. 1). All participants in the ASD group reported to have a diagnosis of having 

an ASD according to DSM-IV criteria from a qualified clinician. All were native 

English speakers, had normal or corrected to normal vision and reported no hearing 

difficulties. The Autism Quotient (AQ), a 50 item autism traits questionnaire by 

Baron-Cohen, Wheelwright et al. (2001), supported the diagnoses of the ASD group 

(M= 37.54, SD = 6.89) and reinforced the assumption that no-one in the TD group had 

ASD (M=12.31, SD= 4.09). The participants were matched pair-wise on age (t (12) 

=.82, p=.42) and group-wise on full scale IQ (FSIQ) (t (12) =.51, p=.62) as measured 

using the Wechsler Abbreviated Scale of Intelligence (WASI) (Wechsler, 1999). The 

experimental procedures were approved by the School of Psychology at the University 

of Glasgow and also the Greater Glasgow and Clyde National Health Service ethics 

board. 

 

5. 3. 2 Stimuli  

Participants were presented with AV displays showing the participants’ subjectively 

perceived level of synchrony (PSS), asynchrony with audio first (AF) in which audio 

information precedes visual information, and visual first (VF) in which visual 

information precedes audio information.  Similar to the experiment in Chapter 4, this 

experiment also contained non-social BF displays and complex social FV displays 

(Figure 5. 1). The timings for the PSS displays were obtained from the previous 

behavioural experiment described in Chapter 3 (see Table 5. 2). We used the 

individual PSS estimates from the Independent Channels Model (ICM) fit, as this 

fitting procedure takes asynchronies and variabilities of the response data (Garcia-

Group Age   FSIQ  

Mean SD  Mean SD 

ASD 

TD 

30.54 

29.46 

7.42 

5.34 

 119.92 

118.23 

10.13 

6.46 

Table 5. 1 Mean and Standard Deviation (SD) of the ages and Full Scale IQs (FSIQ) of the  autism 

spectrum disorder (ASD) and typically developed (TD)  group separately. 
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Perez & Alcala-Quintana, 2012). The PSS obtained from BF and FV revealed no 

group differences, t(24)=0.56, p= .58 and t(24) = 0.84, p=.41, respectively.  

 

                                 

Figure 5. 1 The top panel shows the visual information 

participants were presented with. The bottom panel shows 

the auditory waveform for each type of stimulus.  The 

beep-flash (BF) stimulus consisted of a flash of a white dot 

on a black background and a beep. In the face-voice (FV) 

stimulus a movie frame is shown and the waveform 

represents the word “tomorrow”. Please note that the 

images are not to scale, the area of the white flash dot is 

approximately the same size as the area of the mouth in FV.  

 

 

 

 

 

ASD participants PSS (ms) TD    

participants 

PSS (ms) 

 BF FV  BF FV  

1 2.1 -89.79 1 9.62 -6.94 

2 108.12 82.47 2 27.37 42.74 

3 22.69 18 3 25.36 11.38 

4 47.84 44.85 4 23.95 48.93 

5 -29.29 -51.47 5 19.12 -50.46 

6 154.44 13.99 6 25.37 50.26 

7 -29.79 12.31 7 74.77 -68.04 

8 51.48 46.8 8 53.14 9.01 

9 78.59 -81.7 9 43.19 53.14 

10 -5.72 43.44 10 -0.83 9.73 

11 44.82 -25.41 11 40.43 -19.59 

12 61.92 -15.99 12 57.66 23.76 

13 63.27 -55.52 13 56.38 38.19 

Mean 43.88 -4.46 Mean 35.04 10.93 

38.68 SD  53.05 53.75 SD 21.46 

Table 5. 2 shows each participant’s perceived level of synchrony when presented with BF and FB audiovisual 

stimuli. A positive value indicated that the participant’s PSS was when audio information was leading visual 

information, whereas a positive PSS indicated that the participant’s PSS was when the visual information was 

leading the audio information.  ASD = Autism Spectrum Disorder, TD = typically developed, PSS = point of 

subjective synchrony (PSS) as measured by the Independent Channels model in Chapter 3, BF= beep-flash, 

FV = face-voice, SD = standard deviation  
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All videos were created to be the same duration, irrespective of their degree of 

asynchrony (PSS, AF, VF). For BF, all videos were 816 ms long with a frame rate of 

60 frames per second. The flash was a white dot (luminance: 85 cd/m2; visual angle of 

the diameter: 4.4 degrees) on a black background, while the beep was a pure tone at 

2000 Hz and 84 dB mean intensity. In the synchronous condition, the flash and the 

beep started at 400 ms, while in the asynchronous conditions and the participants’ 

individual PSS, the flash always started at 400 ms and the beep was shifted to be 

presented either before (for audio leading) or after the flash (for video leading). In the 

asynchronous videos, the beep was presented 333ms before or after the flash.  The 

PSS videos were individually created for each participant. See Table 5.2 for more 

details.  

The FV videos were 1920 milliseconds long, with a frame rate of 25 frames per 

second. The video was of a man saying the word “Tomorrow”. The visual angle of the 

visual speech cue was approximately 12.7 and 18.2 degrees and the mouth region 

covered about 3.2 by 2.5 degrees of the visual angle. This made the mouth region 

approximately the same size as the flash in the BF videos.  The voice was shifted to 

come either before or after the lips moved. Before and after the word was spoken, a 

still image of the first and the last frame of the video was used to fill the gap that the 

shifting of the audio stream created. These still images faded in at 120 ms and faded 

out at 1840 ms. In the asynchronous videos, the audio stream was presented 400 ms 

before or after the video stream. The videos had a black background that matched the 

screen background to minimise the predictability of the cues. In neither of the movies 

was the sound clipped at the beginning or the end.  

 

5. 3. 3 Design  

Two event-related fMRI experiments aimed to examine activation differences while 

making SJs of AV displays at different levels of asynchrony: participants’ PSS, AF and 

VF. The sequence of the stimuli presented in the event-related fMRI study was 

optimised for detecting signals between event types using the Genetic Algorithm (GA) 

developed by Wager and Nichols (2003). The one-back counterbalancing of the 

optimal sequences was checked and shown to be well counterbalanced. The GA has 

been shown to optimise contrast efficiency of event-related designs compared to 

randomised, fully counterbalanced and m-sequence (maximum length shift-register 
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sequence) designs (Wager & Nichols, 2003; Kao, Mandal, Lazar & Stufken, 2009). It 

is also less strenuous than going through all possible permutations of designs to find 

the ones with maximum efficiency. The GA for each run was set up to generate 

100000 iterations of 1000 designs, each with a maximum running time set to 12 hours. 

Temporal jitter of the inter stimulus intervals (ISI) was also introduced to the design in 

order to further maximise the efficiency of the design.   

We ran the GA four times and used the four most efficient sequences for the BF and 

FV experiments. Each participant was shown the same two sequences (one for each 

run) for both experiments. The two runs of each experiment were always shown 

together, however the order of presentation was counterbalanced. The order in which 

the BF and the FV experiments were presented was also counterbalanced.  

Furthermore, half of the participants of each group (ASD, TD) were presented with 

the sequences one and two, whereas the other half of the participants were presented 

with sequences three and four.  

Each run contained 22 stimulus displays for each of the 3 conditions (PSS, AF and 

VF). The lengths of the ISIs were on average 5.3 seconds (ranging from 5-15 seconds) 

for the BF experiment, and 4.3 seconds (ranging from 4-14 seconds) for the FV 

experiment. During the ISIs, participants were presented with a black background. 

The stimulus length was 816 ms for the BF displays and 1920 ms for the FV displays. 

In total, each BF run was 444 seconds long, with 20 seconds rest before and 16 

seconds rest after each run. The FV runs were 448 seconds long, with 20 seconds rest 

at the beginning and 16 seconds rest at the end.   

5. 3. 4  Procedure  

For BF and FV experiments, participants were presented with two runs of audiovisual 

displays. The order of the experiments was counterbalanced, and so were the runs 

within each experiment. Each experiment contained audiovisual displays of three 

different levels of asynchrony (PSS, AF, VF). The participants were instructed to make 

SJs and thus were asked to judge whether the audio and visual information in the 

displays were in synch or out of synch. This was a forced choice task and participants 

responded by pressing one of two buttons. The buttons corresponding to the “in 

synch” and “out of synch” responses were counterbalanced. Overall this study took 

about 35 minutes to complete. In the same way as in Chapter 4, the participants 
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walked through the scanner safety checklist to ensure that they were safe to be 

scanned. Before entering the scanner we explained the task to the participants and 

allowed them to ask any questions. All participants provided informed written 

consent. If needed, the participants vision was corrected using the Nordic Neurolabs 

Visualsystem goggles until participants were able to clearly see the stimuli and 

instructions.  Stimuli were presented using Presentation 14.9 designed by 

NeuroBehavioral Systems (NBS), via electrostatic earphones (NordicNeuroLab, 

Norway) at a sound pressure level of 80 dB. In between scans we checked that 

participants found the sound pressure level comfortable and loud enough considering 

the scanner noise. After the study, everyone was reimbursed for their time and 

transportation.  

5. 3. 5 Data acquisition parameters  

A Siemens 3T Tim Trio MRI scanner was used to acquire sagittal T1 weighted 

anatomical images and T2 weighted functional images.  

5. 3. 5. 1 Functional data 

Functional T2 weighted images were acquired (interleaved, TR= 2 seconds, TE = 

30ms, Flip angle = 90°). We collected 32 slices for each of 222 and 224 volumes for 

the BF and FV sub-experiment, respectively, at a resolution of 3mm x 3mm x 3mm 

voxel size resolution and dimensions 210 x 210 mm per image with online motion 

correction. The first 2 volumes of each functional run comprised ‘dummy’ gradient 

and radio frequency pulses, which permitted for steady state magnetisation. During 

these volumes no stimuli were presented and no fMRI data was collected. The data 

sets used for the analysis were the motion corrected (moco) series output by the 

Siemens system. 

5. 3. 5. 2 Structural data 

The high-resolution T1-weighted structural images collected were the same as in 

Chapter 4 and comprised of 192 axial slices and isotropic voxels (resolution: 1 mm x 

1mm x 1 mm; dimensions: 256 x 256 mm, TR = 1900 msec, TE = 2.92 msec, time to 

inversion = 900 msec, FA = 9°). The run time was 10 minutes.  

5. 3. 6 fMRI Preprocessing 
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BrainVoyager QX version 2.8 was used to preprocess and analyse all stages of the 

fMRI data. The first two functional volumes were excluded to allow for signal 

stabilisation. The preprocessed (homogeneity corrected and in Talairach space) 

structural scans from Chapter 4 were used. Functional runs were slice scan time 

corrected, 3D motion corrected (using trilinear/sinc interpolation) and temporally 

high-pass filtered at 4 cycles across each run. The functional runs were coregistered to 

the 1 × 1 × 1 triliniar-interpolated anatomical maps scans and transformed into 

Talairach space. A Gaussian 6mm spatial filter was applied to the 4D volumes in order 

to improve the signal to noise ratio for group analysis by overcoming differences in 

intersubjective localisation.  

5. 3. 7 Analyses 

A random-effects general linear model (RFX GLM) was used to compute first-level 

statistics on the z-normalised BOLD signal for each individual. Using the GLM, 

parameter estimates for each condition were calculated for each voxel within the 

brain. The first level analysis results were then entered into the second-level random-

effects analyses to account for variability between subjects and to allow 

generalisations at a population level. 

5. 3. 7. 1 Whole-Brain GLM  

For both BF and FV experiments, a 2 (group: ASD, TD) × 3 (level of asynchrony: 

PSS, AF, VF) RFX GLM was run, with group as the between-subjects factor and level 

of asynchrony as the within-subject factor. Cluster size threshold estimation was used 

to control for multiple comparisons. 

5. 3. 7. 2 Audiovisual synchrony analysis restricted to audiovisual integration regions 

We performed 2 (group: ASD, TD) × 3 (level of asynchrony: PSS, AF, VF) RFX GLM 

on the beta values from the first order statistical analysis, restricted to only those 

voxels that were found to be significantly more active in the audiovisual conditions 

than the audio and visual only conditions, as revealed by the conjunction analyses in 

Chapter 4. These voxels were used to create masks to restrict analysis to only regions 

sensitive to audiovisual integration. Four separate masks were created from the results 

of the conjunction analyses: one for each group (ASD and TD) as well as for the 

different display types (BF and FV).  The audiovisual sensitive regions were defined 
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by the max-criterion, as it has previously been shown to be an appropriate criterion to 

establish regions sensitive to audiovisual information (Kreifelts et al., 2010; Szycik et 

al., 2008; Love, Pollick, & Latinus, 2011; Watson et al., 2014). Applying the mask 

greatly reduced the number of voxels that were entered into the GLM compared to the 

unconstrincted whole-brain analysis. This provided sufficient power to run a REX 

GLM and be able to apply the results to the wider population.  
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5. 4 Results 

5. 4. 1. Whole-brain GLM of BF displays 

For BF displays, a 2 (group: ASD, TD) x 3 (level of asynchrony: PSS, AF, VF) RFX 

GLM revealed a significant main effect of level of asynchrony in supramarginal gyrus 

(bilaterally), left medial frontal gyrus, left precentral gyrus and the right middle 

temporal gyrus, but no main of group or interaction between group and level of 

asynchrony (Figure 5. 2, Table 5. 3). The left middle frontal gyrus revealed reduced 

activation when perceiving PSS displays compared to AF and VF (Figure 5.2 a). 

Similarly, we found that the PSS led to reduced activation compared VF in the 

precentral gyrus (Figure 5. 2 b). The putamen responded most to the AF condition, 

compared to PSS and VF (Figure 5. 2 c). Lastly, the bilateral supramarginal gyri 

showed reduced activation in the PSS condition compared to AF (Figure 5.2 d and e).  

Table 5. 3 Experiment 2a BF clusters of activation from a 2 × 3 ANOVA with ‘experimental group’ as a between-

participants factor and ‘level of asynchrony’ as a within-participants factor. Legend: BA — Brodmann's area  

Anatomical region Hemisphere 

 

Talairach coordinate of 

peak voxel  (x, y, z) 

Number 

of 

voxels F-value P-value  BA 

       

Level of asynchrony  (PSS, AF, VF)     

Supramarginal gyrus Right 48, -46, 31 540 12.13 0.00005 40 

Putamen Right 27, -10, 4 178 10.10 0.00022 - 

Precentral gyrus Left -36, -1, 34 520 11.77 0.00007 6 

Middle frontal gyrus Left -48, 47, 10 278 15.87 0.00001 10 

Supramarginal gyrus Left -54, -55, 31 302 12.37 0.00005 40 
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Figure 5.2 Beep-flash experiment fMRI activation data: Clusters of activation for which the brain responses, 

collapsed across groups (ASD, TD), differed across the three beep-flash stimulus conditions: point of subjective 

simultaneity, audio first and visual first. Sagittal and coronal slices show activation foci at locations defined by x y 

z Talairach coordinates. The average contrast estimates (beta weights) and relative standard errors are shown in the 

histograms. The brackets and * indicate where the pairwise comparisons found significant differences (p<0.05) 

between the conditions. Point of subjective simultaneity (PSS), audio first (AF), visual first (VF). a) middle frontal 

gyrus, b) precentral gyrus, c) putamen, d) right supramarginal gyrus, e) left supramarginal gyrus 
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5. 4. 2  Whole-brain GLM of FV displays 

For FV displays, a 2 (group: ASD, TD) x 3 (level of asynchrony: PSS, AF, VF) RFX 

GLM revealed a significant main of group in the right putamen (Figure 5.3, Table 

5.4).  A significant main effect of level of asynchrony was found in the bilateral 

precentral, gyrus, cingulate gyrus, right transverse temporal gyrus, angular gyrus, 

inferior frontal gyrus, superior frontal, insular and left caudate, declive, middle 

temporal gyrus (Figure 5. 4, Table 5.4). However, we did not find an interaction 

between group and level of asynchrony. 

The main effect of group in the putamen revealed an increased activation in the ASD 

group compared to the TD group, across all levels of asynchrony (Figure 5.3).  

The main effect of asynchrony in the right inferior frontal gyrus (Figure 5.4 a) 

revealed that conditions PSS and AF elicited stronger activation than VF. The right 

superior frontal gyrus (Figure 5.4 b) responded more to the PSS condition than to AF.  

The precentral gyri (Figure 5.4 c and d) responded more to conditions PSS and VF 

than to AF. The right superior temporal gyrus (Figure 5.4 e) only revealed a difference 

in activation between AF and VF, with a higher activation for VF. In the left, declive 

(Figure 5.4 f) activation was higher for PSS compared to AF and VF. The right insular 

revealed a stronger activation to VF and to AF (Figure 5.4 g). The cingulate gyri l) and 

the right precuneus (Figure 5.4 h, i and l) elicited stronger activation to PSS and VF 

than for AF. Increased activation to the AF and VF conditions, compared to PSS, were 

found in the left caudate (Figure 5.4 j), while the right angular gyrus revealed 

increased activation to the PSS condition (Figure 5.4 k). Lastly, the left middle 

temporal gyrus revealed higher activation to PSS than to AF (Figure 5.4 m). 
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Table 5. 4 Experiment 2b FV clusters of activation from a 2 × 3 ANOVA with ‘experimental group’ as a 

between-participants factor and ‘level of asynchrony’ as a within-participants factor. Legend: BA — 

Brodmann's area  

Anatomical region Hemisphere 

 

Talairach 

coordinate of peak 

voxel (x, y, z) 

Number 

of voxels F-value P-value  BA 

       

Group (ASD, TD)     

Putamen Right 27, -1, 10 181 21.81 0.00010 - 

Level of asynchrony (PSS, AF, VF)     

Superior temporal gyrus Right 57,  -22, 10 239 9.79 0.00027 41 

Precentral gyrus Right 51,  -10,  40 1476 14.69 0.00001 4 

Angular gyrus Right 46,  -67, 31 668 11.74 0.00007 39 

Inferior frontal gyrus Right 42,  47,  1 924 12.34 0.00005 10 

Insular Right 39, -31, 13 178 11.94 0.00006 10 

Superior frontal gyrus Right 18,  26,  55 507 10.72 0.00014 6 

Cingulate gyrus  Right 6,  -43,  31 861 12.66 0.00004 31 

Precuneus Right 3,  -61,  25 152 10.05 0.00023 31 

Cingulate gyrus Left -3,  -28,  34 359 10.61 0.00015 31 

Caudate Left -12,  -25,  22 245 11.49 0.00008 - 

Declive Left -33, -70, -20 153 10.05 0.00023 - 

Middle temporal gyrus  Left -45, -61, 28 279 9.78 0.00027 39 

Precentral gyrus Left -51, -13,  43 1569 14.93 0.00001 3 

  

 
Figure 5. 3 Face-voice experiment fMRI activation data: Cluster of activation in the right putamen for which the difference 

between the brain responses to the three stimulus conditions (point of subjective simultaneity, audio first and visual first) 

varied across the two groups of participants (individuals with ASD and TD individuals). Sagittal and coronal slices show 

an activation focus at a location defined by x y z Talairach coordinates. The average contrast estimates (beta weights) and 

relative standard errors are shown in the histograms. The ASD group is depicted in red and TD group in blue at each 

stimulus condition: point of subjective simultaneity (PSS), audio first (AF) and visual first (VF). 

x = 27, y = -1, z = 10
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e)  x = 57, y = -22, z =10 

a)  x = 42, y = 47, z = 1 
b)  x = 18, y = 26, z = 55   

d)  x = -51, y = -13, z = 43

h)  x = -3,  y = -28,  z = 34    

l)  x = 3, y = -61, z = 25  

f)  x = -51, y = -13,  z = 43 

m)  x = -45, y = -61, z = 28 

c)  x = 51, y = -10, z = 40 

j)  x = -12, y = -25, z = 22   

g)  x = 39, y = -31, z = 13      

k)  x = 46, y = -67, z = 31   
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Figure 5. 4 Face-voice experiment fMRI activation data: Clusters of activation for which the brain responses, 

collapsed across groups (ASD, TD), differed across the three face-voice stimulus conditions: point of subjective 

simultaneity, audio first and visual first. Sagittal and coronal slices show activation foci at locations defined by x y z 

Talairach coordinates. The average contrast estimates (beta weights) and relative standard errors are shown in the 

histograms. The brackets and * indicate where the pairwise comparisons found significant differences (p<0.05) 

between the conditions. Point of subjective simultaneity (PSS), audio first (AF), visual first (VF). a) right inferior 

frontal gyrus, b) right superior frontal gyrus, c) right  precentral, d) left precentral gyrus), e) right superior temporal 

gyrus, f) left declive,  g) right insular, h) left cingulate gyrus,  i) right cingulate gyrus, j) left caudate, k) right angular 

gyrus,  l)  right precuneus, m) middle temporal gyrus.  
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5. 4. 3 Audiovisual synchrony analyses restricted to Conjunction Regions 

In Chapter 4 audiovisual integration regions were defined (by (AV> A) ∩ (AV> V)) 

for both experimental groups (ASD and TD) and for both stimulus types (BF and FV). 

These regions were created into masks to restrict the analyses investigating how 

activations to the three levels of asynchrony (PSS, AF, VF) differed between the 

experimental groups (ASD and TD). For BF, this restricted analysis revealed no 

significant main effect of group, level of asynchrony and no significant interaction. 

Similarly, for FV, no significant main effect or interaction was found, but the main 

effect of level of asynchrony revealed an area in the STG, the Heschl gyrus, which had 

previously been found by the whole-brain analysis. 

 

5. 5 Discussion 

In the present study, we investigated audiovisual temporal processing in ASD by 

asking ASD and TD participants to make SJs when presented with audiovisual BF and 

FV stimuli at different levels of asynchrony (the participants subjective point of 

simultaneity, audio first, video first). For BF displays, we did not find any difference 

in activation patterns between the two groups. However, we revealed that the levels of 

asynchrony modulated activation in the supramarginal gyrus (bilaterally), left medial 

frontal gyrus, left precentral gyrus and the right middle temporal gyrus. Similarly, for 

FV displays, the activation patterns were similar across the two groups, except for an 

area within the putamen, which revealed increased activation in the ASD group 

compared to the TD group. However, levels of asynchrony modulated activation of the 

bilateral precentral, gyrus, cingulate gyrus, right STG, angular gyrus, middle frontal 

gyrus, superior frontal, insular and left caudate, declive and middle temporal gyrus. 

Analyses restricted to only STG regions, which were shown to be sensitive to 

audiovisual integration in Chapter 4, showed no group differences across the levels of 

asynchrony. 

While the activation patterns to SJ on BF displays were comparable across the ASD 

and TD participants, increased activation of the ASD group during SJ of FV displays 

was found in the right putamen. This is a very interesting result and can be linked to 

other literature. Von Saldern and Noppeney (2013) have demonstrated the importance 

of the putamen for integrating auditory and visual motion information when 
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performing motion discrimination tasks. Additionally, Watson et al. (2015) pointed out 

the putamen’s heteromodal processing functions. In ASD, abnormal activity has been 

demonstrated in the striatum, of which the lateral parts correspond to the putamen, 

during social processing (Delmonte et al., 2012) and reward processing tasks 

(Delmonte et al., 2012). Moreover, DTI research reports decreased white matter 

connectivity between the striatum and prefrontal cortex in ASD, compared with TD 

individuals (Langen et al., 2012). The putamen has been found to have increased as 

well as decreased GM volume in ASD (Sato et al, 2014; Ecker et al., 2010). Sato et al. 

(2014) hypothesised that the increased volume of the putamen found in high-

functioning adults with ASD might reflect structural or histological abnormalities of 

the putamen, and therefore could be the underlying cause of symptoms such as 

repetitive and stereotyped behaviours and impaired social interactions. Altogether, this 

data suggests that the abnormal structure and function of the putamen in ASD could 

be the underlying cause audiovisual integration deficits, as well as the diagnostic 

characteristics of ASD. Therefore, it would be of particular interest to investigate 

activation in the putamen relates to severity if diagnostic deficits in ASD.  

Moreover, the putamen is known to be sensitive to temporal structure of sensory 

signals, especially auditory signals (Grahn & Rowe, 2009; 2013). Studies on experts 

have shown that people who are good at a task show less activation than novices in 

task specific brain regions (e.g., Petrini et al., 2011). Thus, these two results taken 

together suggest that extra activation of the putamen in ASD indicates that people with 

ASD are working harder to reflect the temporal structure of the displays. This 

explanation would be consistent with the results showing that individuals with ASD 

are less sensitive at detecting asynchrony between audio and visual information than 

TD individuals (Chapter 3). 

Moreover, the lack of group difference of SJ on BF displays could suggest that 

audiovisual asynchrony detection of audiovisual displays might be more deficient in 

speech than non-speech. This is merely a speculation, as the two display types (BF 

and FV) are fundamentally different, and we cannot draw any solid conclusions from 

these findings.  However, these findings would not be consistent with our previous 

behavioural SJ results, showing a marginally wider TIW in ASD across a range of 

different audiovisual displays, including BF and FV. Other behavioural results, 
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however, support this speculation, as they suggest speech-specific deficit in 

audiovisual temporal processing in ASD (Stevenson et al., 2014). A possible 

explanation of the differential activation patterns across display types is that the 

perceptual system is more tolerant to asynchrony as the complexity of the audiovisual 

displays increase (Love et al., 2013), and therefore SJs are harder to make when 

displays are more complex. Furthermore, the speech-specific activation differences in 

audiovisual SJ tasks could also underlie extended speech processing in ASD (Cardy et 

al., 2005).  

A complex pattern of activation was revealed when studying the levels of asynchrony 

when participants made SJs. We propose that our findings shed light onto the 

asymmetry of the TIW. The asynchrony between the left and right sides of the TIW 

has commonly been observed in behavioural data (Miller & D’Esposito 2005; van 

Wassenhove, et al., 2007; Vroomen & Keetels, 2010; Stevenson & Wallace, 2013). 

The asymmetry is driven by the right side (containing conditions in which visual 

stimuli precede audio stimuli) being wider than the left side. Thus participants are 

much more likely to perceive visual first trials as synchronous when compared with 

audio first. This asymmetry has been argued to have ecological validity, since, in 

natural surroundings, visual stimulus energy from an audiovisual event will always 

reach the retina prior to auditory energy reaching the cochlea (Stevenson & Wallace, 

2013). Therefore, the TIW might reflect the natural temporal statistics of stimuli 

within our environment. Additionally, there are considerable timing differences of the 

transduction processes and neural conduction of incoming audio and visual 

information (Lamb & Pugh, 1992; Lennie, 1981). As such, the PSS is also often where 

visual information is leading audio information in SJ tasks (Roach, Heron, Whitaker, 

& McGraw, 2011). 

While a few fMRI studies have investigated activation differences between 

synchronous and asynchronous audiovisual displays (Stevenson et al, 2010; Lewis & 

Noppeney, 2010; Love, 2011), to our knowledge, none have compared the activation 

patterns elicited by perceivable AV displays compared to perceived VA. Interestingly, 

for BF, none of the audiovisual temporal asynchrony sensitive areas (middle frontal 

gyrus, precentral gyrus, putamen, bilateral supramarginal gyri) were found to elicit 

more activation during the PSS condition than the asynchronous conditions. This is a 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3891950/#B29
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3891950/#B29
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3711231/#R24
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3795069/#R40
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3795069/#R41
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3795069/#R66
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3795069/#R66
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contradictory finding to the results by Lewis and Noppeney (2010), which reported 

greater activation to their physical synchronous condition, compared to their 

asynchronous conditions of non-speech displays. A possible explanation for the 

discrepancies in these findings are the different neural networks involved in 

processing physical synchronous stimuli, compared to perceptually defined 

synchronous stimuli (Love, 2011). Moreover, for BF, the putamen responded most to 

the AF condition, compared to PSS and VF, a further finding that might underlie the 

asynchronous TIW.  

In our FV results, we find an even more complex pattern of activations across the 

different levels of asynchrony. Firstly, in a majority of regions, the PSS condition 

elicited a stronger response than AF (left middle temporal gyrus, right superior frontal 

gyrus, precentral gyri, the cingulate gyri & right precuneus), VF (right inferior frontal 

gyrus) or both conditions (left declive & right angular gyrus). Only the left caudate 

revealed decreased activation to PSS compared to AF and VF conditions. 

Furthermore, differential activation between AF and VF conditions revealed that only 

the right inferior frontal gyrus responded more to AF than VF conditions, while the 

precentral gyri, cingulate gyri, right precuneus, Heschl gyrus in the right STG and 

right insula responded more to VF than to AF conditions. These findings might be the 

underlying reason of the observed asynchrony of the TIW. Moreover, the findings of 

higher activation to VF than to AF conditions is in agreement with study by Perrodin,  

Kayser, Logothetis and Petkov (2015), which recently showed that natural 

asynchronous (visual leading) dynamic face-voice stimuli regulate network 

oscillations and neuronal excitability in the voice-sensitive cortex of macaques, 

located in the anterior part of the temporal gyrus. Although Love (2011) looked at a 

range of different asynchronous displays and made different contrasts, some of our 

results are in agreement with his. Moreover, he defined the posterior right STC as a 

neural correlate. This reflects the common finding that people are better detecting 

asynchrony in audio-leading stimuli, and is a result that our findings could be in 

agreement with. However, further investigation is needed to fully explore the neural 

correlates of the observed asymmetry in AF and VF conditions.  

 

  

http://www.ncbi.nlm.nih.gov/pubmed/?term=Perrodin%2520C%255Bauth%255D
http://www.ncbi.nlm.nih.gov/pubmed/?term=Kayser%2520C%255Bauth%255D
http://www.ncbi.nlm.nih.gov/pubmed/?term=Kayser%2520C%255Bauth%255D
http://www.ncbi.nlm.nih.gov/pubmed/?term=Logothetis%2520NK%255Bauth%255D
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Conclusion  

This study measured BOLD signals while ASD and TD participants made SJ on 

audiovisual displays of different levels of asynchrony: PSS, AF and VF. While the 

activations related to SJ on BF displays were comparable across the ASD and TD 

participants, SJ on FV displays revealed increased putamen activation in ASD 

participants. This finding supports research suggesting that audiovisual asynchrony 

detection of audiovisual displays might be less effective in speech than non-speech. 

However, since the display types (BF and FV) are fundamentally different, this result 

remains somewhat speculative. Furthermore, the increased putamen activation in ASD 

for SJ on FV displays is potentially significant given its fundamental role in sensitivity 

to temporal structure of sensory signals (Grahn & Rowe, 2009; 2013). Studies on 

experts show that people who are good at a task show less activation than novices 

(e.g., Petrini et al., 2011).  We therefore suggest that extra activation of the putamen 

reflects that people with ASD try harder to reflect the temporal structure of the 

displays. This explanation is also consistent with the wider TIW found in ASD shown 

in Chapter 3.  Additionally, the investigation of different levels of asynchrony 

revealed a complex pattern of results, indicating a network of areas more involved in 

processing PSS than AF and FV, as well as areas responding differently to VF 

compared to AF. These activation differences between audio first and video first in 

different brain areas are in agreement with the view that AF and VF are processed 

differently.  

 

  



126 
 

6. General Discussion  

Conclusions from experimental results  

There are four key conclusions to be drawn from this Ph.D. thesis: 

1. Autistic traits correlate with cortical thickness (CT) measurements in areas 

associated with atypical activation in autism spectrum disorder (ASD) 

(Chapter 2). 

2. Compared to typically developed (TD) individuals, individuals with ASD have 

a marginally wider temporal integration window (TIW) when making 

synchrony judgements (SJs), while the TIW estimated from temporal order 

judgements (TOJs) is of similar width in both groups. A model-based approach 

indicates that this widening of the TIW in SJs is due to decreased temporal 

resolution at a decisional level in ASD (Chapter 3). 

3. Audiovisual, audio and visual processing of simple beep-flash (BF) and more 

complex face-voice (FV) displays mainly revealed a reduction of activation in 

brain areas in the ASD group compared to the TD group (Chapter 4). 

4. SJ of audiovisual FV displays are underpinned by greater activation in the 

putamen in the ASD group compared to the TD group (Chapter 5).  

5. SJ of audiovisual BF and FV displays reveal a complex pattern of activations 

providing evidence for a potential neural basis of the commonly reported 

asymmetry of the TIW, which reflects the enhanced ability to detect 

asynchrony during audio leading asynchronous displays (Chapter 5).   

The results provide new insights into autistic traits and ASD and the underlying 

behavioural, as well as functional and structural brain abnormalities. While 

Chapter 2 showed how the structure of CT is associated with autistic traits in the 

general population, Chapters 3, 4 and 5 helped further our understanding of the 

basis of audiovisual integration differences in ASD, utilising psychophysical as 

well as functional magnetic resonance imaging (fMRI) methods.  

 

6.1 Conclusion 1 from Chapter 2 

The objective of Chapter 2 was to investigate the relationship between cortical 

thickness (CT) and autistic traits as measured by the Autism Spectrum Quotient 

questionnaire (AQ). Traits of ASD, such as social communication and interaction 
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deficits, as well as repetitive patterns of behaviour, interests and activities, are thought 

to be present in the typical population, and the AQ was developed to assess the 

prevalence of these autistic traits in the general population. Von dem Hagen et al 

(2011) showed that AQ is associated with white matter (WM) and grey matter (GM) 

volume using voxel-based-morphometry (VBM), but found no GM differences in 

areas associated with social cognition. However, research shows that VBM potentially 

conflates information about morphology, size and position (Ashburner & Friston, 

2001), while CTA is less susceptible to positional variance and provides a more direct 

index of cortical morphology (Kim et al., 2005; Jiao et al., 2010). Therefore, the 

current study made use of the semi-automatic, surface-based CTA tools in 

Brainvoyager to further investigate the relationship between CT and AQ in the same 

sample previously investigated by von dem Hagen et al. (2011).  

A whole-brain analysis was employed, which revealed positive correlations between 

CT and AQ in the left temporo-occipital junction, left posterior cingulate, right 

precentral gyrus and bilateral precentral sulcus, areas previously associated with 

structural and functional differences in ASD. Our findings were supported by previous 

research showing that these areas are often associated with functions impaired in 

ASD, such as social processing, attention switching or motor skills. Additionally, 

these areas have been related to structural and functional activation abnormalities in 

ASD. Our findings provide further evidence that the autistic traits (measured by the 

AQ) and CT are correlated in the general population.   

Moreover, the discrepancy between our results and those by von dem Hagen et al. 

(2011) provides further evidence that results of CT measures and GM volume 

measures are not necessarily comparable. This is a commonly found observation, and 

research investigated the cause for the heterogeneity of cortical morphology estimates. 

Hazlett et al. (2011) examined GM volume, CT and surface area (SA) in ASD and 

suggested that increased GM volume might be associated with increased SA rather 

than CT. Moreover, Raznahan et al. (2010), in a cross-sectional study in ASD, 

reported altered neurodevelopmental trajectories for GM volume and CT, but not SA. 

These results were supported in a recent study by Ecker et al. (2013) which 

investigated GM volume, SA, and CT, as well as their relationship in a large sample of 

men with ASD and well matched typically developed controls. These results suggest 

that GM volume measurements are derived from measurements of SA and CT, which 
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are measurements associated with different developmental pathways. These pathways 

are likely to be controlled by different underlying neurobiological mechanisms. 

Therefore, CT is a more direct measure of cortical morphology than GM volume. Our 

results also suggest that CT measurements might be more sensitive to differences in 

cortical morphology than GM volume measurements.  Similar conclusions have been 

drawn from studies measuring CT as well as GM volume in the same population 

(Hyde et al., 2007).  

6.2 Conclusion 2 from Chapter 3 

The main aim of Chapter 3 was to examine audiovisual temporal integration in ASD 

using different stimulus types, tasks and data fitting methods. The ability to integrate 

auditory and visual information is crucial to everyday life, but results in the literature 

are mixed regarding how individuals with ASD integrate audiovisual information.  To 

investigate this question, we examined the TIW, which indicates how precisely sight 

and sound need to be temporally aligned so that a unitary audiovisual event can be 

perceived. A total of 26 adult males with ASD and 26 age-and IQ-matched TD males 

were presented with BF, point-light drummer (PLD), and FV displays at 11 values of 

stimulus onset asynchrony (SOA), as well as synchrony, while participants were 

making SJs and TOJs.   

Analysis of the data included fitting Gaussian functions as well as fitting an 

Independent Channels Model (ICM) (Garcia-Perez & Alcala-Quintana, 2012; Garcia-

Perez & Alcala-Quintana, 2013). The ICM was used to fit the response data from SJ 

and TOJ in a more flexible manner than the Gaussian function fits, allowing for 

individual asymmetries and irregularities in the data. Gaussian curve fitting for SJs 

showed that the ASD group had a wider TIW, but no group effect was found for TOJ. 

Possible differences in cognitive processes required for SJs and TOJs can help us 

understand the underlying processes of why temporal audiovisual integration differs in 

ASD. The finding that the ASD group had a wider TIW in SJs, but not TOJs, suggests 

that this difference is due to difficulties in combining the audio and the visual cues. 

SJs require one to estimate the temporal correspondence of the audio and visual 

information, and thus depend on more global levels of processing (i.e., considering the 

stimulation as a whole), whereas TOJs could, in principle, be performed by focusing 

on only one sensory cue to detect whether it came first or not, thus depending on more 
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local level processing (i.e., considering only the sound).  Therefore, audiovisual 

integration difficulties in ASD are likely to be due to difficulties in processing global 

information. This is in line with the hypotheses of a central coherence deficit or 

temporal binding deficit in ASD (Brock et al., 2002).  

The ICM supported these results and model parameters indicated that the wider TIW 

for SJs in the ASD group was not due to unisensory processing, but rather due to 

decreased temporal resolution at a decisional level of combining the sensory 

information. The results of the wider TIW for SJ is largely in agreement with 

Stevenson et al. (2014), who showed a wider TIW for SJ in ASD, but no unisensory 

processing differences in ASD.  While our results showed a wider TIW across all 

stimulus types, and thus suggest generalised deficit, Stevenson et al. (2014) did not 

find wider TIWs for non-speech displays, suggesting a speech-specific audiovisual 

temporal processing deficit. However, other research supports our findings by 

showing audiovisual temporal integration differences in ASD when presented with 

simple beep and flash stimuli (e.g., Foss-Feig et al., 2010; Kwakye et al., 201).  

Furthermore, when modelling TOJ, the ICM revealed a smaller Point of Subjective 

Simultaneity (PSS; closer to physical synchrony) in the ASD group than in the TD 

group. This result is in disagreement with the findings by de Boer-Schellekens et al., 

(2013), which revealed no PSS differences between the ASD and TD group. This 

discrepancy between the findings could be due to the different fitting methods being 

employed to estimate PSS. Their null finding could also be explained by the PSS 

being highly variable across participants and due to their small sample size.  

These results are encouraging for potential interventions to improve sensory 

processing in ASD, especially because it has been shown that the TIW width becomes 

smaller through training (Powers et al., 2009; Stevenson et al., 2013). It would also be 

of importance to further explore the link between sensitivity to audiovisual 

asynchrony and speech perception and comprehension, as well as looking at how 

training on multisensory TIW width would translate into everyday multisensory 

speech processing and comprehension. Moreover, our behavioural results motivate the 

use of fMRI to aid us in understanding the underlying differences in audiovisual 

integration in ASD. Thus far there has been little research investigating the neural 

underpinnings of the differences in audiovisual integration in ASD.  
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6.3 Conclusion 3 from Chapter 4 

Our behavioural results in Chapter 3 revealed that individuals with ASD have deficits 

in audiovisual integration. Subsequently, our aim of Chapter 4 was to investigate 

whether these audiovisual integration deficits in ASD would be reflected in neural 

activation patterns. The existence of such differences have recently been supported by 

electroencephalography (EEG) studies (Brandwein et al., 2015). Using fMRI we 

investigated audiovisual, auditory and visual processing in ASD of simple BF displays 

and complex, social FV displays. During a block design experiment, we measured the 

BOLD signal while 13 adults with ASD and 13 typically developed (TD) age-, sex- 

and IQ- matched adults were presented with audiovisual, audio and visual information 

of BF and FV displays.  

The results revealed that audiovisual, unisensory auditory and visual processing of 

both social FV and simple BF stimuli are mostly associated with reduced activation in 

ASD. Audiovisual, auditory and visual conditions of human FV stimuli revealed 

reduced activation in ASD participants, compared to TD participants in regions of the 

frontal cortex. This finding is generally constant with results by Doyle-Thomas et al. 

(2013), while BF stimuli revealed reduced levels of activation in the lingual gyri. An 

interaction between group and sensory modality condition of BF stimuli revealed that 

the activation of the inferior parietal gyrus was differentially modulated by the 

different sensory modalities in ASD and TD participants. In detail, we found increased 

activation in audiovisual and auditory conditions compared to the visual condition in 

individuals with ASD, while TD controls showed increased activation in audiovisual 

and visual conditions compared to the auditory condition. Taking the results of FV and 

BF together, we show that not only cortical processing of socially relevant 

audiovisual, auditory and visual information is abnormal in ASD, but that sensory 

processing defects could be more generalised, including simple non-social 

information. This finding is in agreement with our behavioural findings in Chapter 3.   

Furthermore, the conjunction analyses testing for regions sensitive to audiovisual 

integration discovered the STC in both groups and for both display types. The 

importance of the STC in audiovisual integration is supported by other studies in the 

literature (e.g., Stevenson & James, 2009; Watson et al., 2014). Interestingly, the 

activated regions in ASD were smaller than those in TD individuals, which is 
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consistent with the literature showing reduced activation in STG during audiovisual 

emotional FV matching tasks (Doyle-Thomas et al., 2013), as well as structural 

abnormalities (Ecker et al., 2010; Hyde et al, 2010). However, against our predictions, 

we did not find any activation differences, per se, of the STC between the two groups. 

Instead, a superior frontal area was shown to be sensitive to audiovisual FV stimuli in 

the TD group, but not in the ASD group. This finding is in agreement with previous 

studies looking at audiovisual emotional matching tasks (Doyle-Thomas et al., 2013; 

Loveland et al., 2008). Overall, this study indicated that audiovisual, auditory and 

visual processing of social and non-social stimuli led to different activation patterns in 

individuals with ASD compared to TD individuals. These results are mostly in support 

of the recent EEG findings showing neural markers of auditory processing and 

multisensory integration to be correlated with severity of autistic symptoms 

(Brandwein et al., 2015). However, correlation was found between the neural markers 

of auditory and multisensory processing against clinical measures of visual and 

auditory sensitivities. Overall, this data supports the idea that abnormal multisensory 

and unisensory processing contributes to autism symptoms. In future experiments it 

would be interesting to investigate the relationship between our activation levels to 

audiovisual, audio and visual stimulation and the severity of autistic symptoms. 

Furthermore, it would be a good idea to control for clinical measures of auditory and 

visual sensitivities, or investigate whether our activation results could be related to 

sensory sensitives.   

Moreover, compensatory processing mechanisms in adults with ASD have been 

previously found. For example, McKay et al., 2013 revealed that adults with ASD 

used different brain networks when given biological motion tasks, while no 

behavioural differences were observed. Thus, finding abnormal activation patterns to 

audiovisual, audio, visual stimuli in this chapter, but only finding deficits in 

audiovisual integration while auditory and visual processing was intact in our 

behavioural chapter (Chapter 3), suggests the possibility that our adults with ASD 

have developed compensatory strategies for audio and visual processing that are only 

revealed by abnormal levels of activation in ASD. Therefore, it is important to 

investigate neural substrates of audio and visual perception in ASD further.  
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6.4 Conclusion 4 and 5 from Chapter 5 

The aim of this study was to further investigate audiovisual temporal processing in 

ASD. This was based on the behavioural findings in Chapter 3 showing that 

individuals with ASD are less sensitive to audiovisual asynchronies when making SJ. 

Using functional magnetic resonance imaging (fMRI), we investigated audiovisual 

temporal processing in ASD. In 13 adult males with ASD and 13 age-, sex-, and IQ-

matched typically developed (TD) controls, we investigated temporal asynchrony of 

audio and visual information in simple BF displays, as well as complex and social FV 

displays.  The study measured BOLD signals while the ASD and TD participants 

made SJ on the aforementioned audiovisual displays of different levels of asynchrony: 

the participants’ PSS, audio leading visual information (audio first), visual leading 

audio information (visual first).  

While no activation differences between the groups were found in SJ on BF displays, 

SJ on FV displays revealed increased putamen activation in ASD participants 

compared to TD participants. This finding supports research suggesting that deficits of 

audiovisual asynchrony detection of non- speech stimuli might be less affected in 

ASD than for speech stimuli (Stevenson et al., 2014). However, this interpretation is 

not in line with our results from Chapters 3 and 4. In these Chapters we report atypical 

performance and activation levels in individuals with ASD across non-social and 

social conditions, which provide evidence of a more generalised sensory processing 

deficit. Importantly, it needs to be mentioned that our display types (BF and FV) not 

only differ in their social content, but are fundamentally different in their visual, 

auditory and temporal characteristics, which are all aspects that could influence the 

results. Therefore, this result remains somewhat speculative, and should be further 

researched using highly controlled stimuli.  

Furthermore, the increased activation levels of the ASD group in the putamen during 

SJs of FV displays is of potential significance given its fundamental role in sensory 

processing and the detection of temporal beat structure (Grahn & Rowe, 2009; 2013). 

Studies on experts have shown that people who have extensive experience with a task 

show less activation than novices (Petrini, et al., 2011). Taken together these findings 

suggest that extra activation of the putamen reflects that individuals with ASD recruit 

more resources to determine the temporal structure of the displays. This explanation is 
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also consistent with the wider TIW found in ASD (Chapter 3).  Therefore, we 

conjecture that the higher activation found with ASD in the putamen is a reflection of 

the audiovisual temporal integration deficit observed in SJ.  

The second aim of this experiment was to investigate the neural correlates of the often 

observed asymmetry of the TIW, which shows that people are better at detecting 

audiovisual asynchrony in audio first conditions (e.g., van Wassenhove et al., 2007; 

Stevenson & Wallace, 2013). Therefore, we investigated activation patterns that were 

elicited in response to the different levels of asynchrony (PSS, audio first, video first).  

We revealed a complex pattern of results indicating a network of areas more involved 

in the perception of PSS than audio-first and visual-first displays, as well as areas 

responding differently to audio-first compared to video-first. The activation 

differences between audio-first and video-first conditions are in agreement with the 

view that audio-first and visual-first are processed differently. This is new fMRI 

evidence for a potential neural basis of the well-defined behavioural result of the 

asymmetry of the TIW. We did not measure the asymmetry of our behavioural data in 

Chapter 3, and therefore cannot conclude on these results. However, this could be 

further investigated by measuring the activation responses while making SJ across a 

wider range of SOAs, similar to the study by Love (2011). 

6.5 Linking results of all chapters together 

The results provide new insights into autistic traits and ASD, and the underlying 

behavioural as well as functional and structural brain abnormalities. Chapter 2 showed 

how the structure of CT is associated with autistic traits in the general population. 

Chapters 3, 4 and 5 helped us further our understanding of the basis of audiovisual 

integration differences in ASD, utilising psychophysical as well as functional 

magnetic resonance imaging (fMRI) methods. Chapter 3 showed that the TIW is 

wider in ASD when making SJ, but not when making TOJ, and that this widening was 

due to a decreased temporal resolution at a decisional level of combining the sensory 

information, and not due to deficits in sensory processing. Overall, Chapter 4 showed 

evidence that audiovisual, auditory and visual processing of social and non-social 

stimuli led to different activation patterns in individuals with ASD, compared to TD 

individuals. The finding that both social and non-social displays led to different 

activation patterns in ASD was in agreement with our behavioural findings in Chapter 
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3, which showed that individuals with ASD were less sensitive to asynchrony across 

all stimulus types (including social and non-social). However, audiovisual, visual and 

audio processing elicited different activations in ASD, which differed from the results 

of the Chapter 3, in which the ICM predicted no unisensory processing differences in 

ASD. Chapter 5 looked more specifically at the neural correlates of SJs in ASD and 

TD participants. While making audiovisual SJs on FV stimuli increased activation 

levels in the putamen were found in individuals with ASD compared to the TD 

controls.. Since novice versus expert studies indicate that increased activation can 

potentially reflect inefficient performance (Petrini et al., 2011), these findings can be 

taken in agreement with the results of Chapters 3 and 4. Chapter 2 provided evidence 

of anatomical differences associated with the autistic traits and motivated a closer 

consideration of anatomical brain differences. However, Chapters 3, 4 and 5 were not 

linked to these anatomical abnormalities because the areas in which we found CT to 

correlate with autistic traits did not correspond to areas associated with abnormal 

activation patterns in ASD elicited by our sensory stimulation. 

6.6 Limitations of the research 

It must be acknowledged that there are some limitations to the conclusions of the 

current thesis.  One limitation of the research presented in this Ph.D. thesis is that we 

were not able to confirm the ASD diagnoses of our participants, other than obtaining 

their AQ scores. The gold-standard method used is a combination of the Autism 

Diagnostic Interview- Revised (ADI-R) and the Autism Diagnostic Observation 

Schedule (ADOS) (see Simmons et al., 2009, for a brief description). However, these 

diagnostic techniques for adults are currently being debated (Matson & Neal, 2009). 

Performing these diagnostic assessments would have greatly increased the recruitment 

difficulties, as well as putting constraints on other resources, such as limited funding 

available. However, participants have provided us with diagnostic information. 

Moreover, the ASD group’s mean AQ score (M= 36.64, SD = 8.80) was well above 

the cut off score (26/50) for Asperger’s, and therefore supporting the diagnoses of 

individuals in the ASD. Furthermore, parents or life partners were asked to complete a 

demographics questionnaire indicating the diagnoses received by their child or 

partner.  

http://www.sciencedirect.com/science/article/pii/S1053811911009268#bb0325
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Secondly, we were unable to collect IQ scores for the participants in Chapter 2. 

Interestingly, Hoekstra et al. (2010) has previous discovered a modest negative 

correlation between autistic traits and IQ (r= –.27), however this was mainly driven by 

communication problems and it was emphasised that autistic traits and IQ are mostly 

unrelated. Furthermore, IQ has been found to correlate with CT (Narr et al., 2007; 

Choi et al., 2008).  However, the participants were recruited through the University of 

Cambridge subject pool, and thus were likely to mainly be students with average or 

above average IQ. Furthermore, our CT did not control for age and gender, which 

again are characteristicsthat are linked to CT differences (Zielinski et al., 2014; Sowell 

et al. (2007). Moreover, the sex differences are also found in mean AQ (Baron-Cohen 

et al., 2014; Ruzich et al., 2015). Therefore, future experiments studying the 

association of AQ scores and structural differences in the general population CT 

should control for age, IQ and sex differences in order to better isolate this specific 

relationship between AQ and CT. Heterogeneity in ASD samples in general is an 

important discussion point and is likely to be the underlying factor of frequently 

reported inconstant results in ASD research.  Therefore, Chapters 3 and 4 only 

investigated homogenous groups with ASD and TD participants being matched on 

age, IQ and gender. In fact, we only included men in our sample.   

6.7 Is AQ, the best measure of autistic traits?  

The total AQ has been shown to have good test-retest reliability as well as good 

internal consistency (Baron-Cohen et al., 2001). Moreover, the AQ has been reported 

to have suitably high sensitivity and specificity in individuals referred for diagnosis 

(Woodbury-Smith, Robinson, Wheelwright, Baron-Cohen, 2005). Therefore, the AQ is 

a sensitive measure of autistic traits in the general population. Consistent with genetic 

evidence showing that ASD is heritable, AQ scores have been shown to be heritable 

within families (Hoekstra, Bartels, Verweij & Boomsma, 2007). Additionally, the AQ 

scores predict performance on tasks commonly associated with superior performance 

in individuals with ASD (Almeida et al., 2010), while also predicting performance on 

tasks that are impaired in ASD (Baron-Cohen et al., 2001; Wyer, et al., 2012). 

However, it needs to be mentioned that the AQ is not the only measure of autistic 

traits. For example, the Broad Autism Phenotype Questionnaire (BAPQ) was 

developed by Hurley, Losh, Parlier, Reznick and Piven (2007), while the adult Social 

Responsiveness Scale (SRS) was originally developed by Constantino and Todd 
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(2005). A study by Brooke, Hopwood, Wainer and Donnellan (2011) compared these 

three self-report measures of autistic traits and showed that the BAPQ and SRS clearly 

demonstrated sex differences and had better internal consistency than the AQ. 

Moreover, in this study, the BABQ was the only measure to show normal distributions 

of its total score as well as sub-scores. Generally the SRS and BAPQ were shown to 

have better criterion variability.   

Furthermore, Gregory and Plaisted-Grant (2013) investigated whether the similarity in 

performance by high-AQ individuals and people diagnosed with ASD actually reflects 

the same underlying perceptual processes. The authors administered two visual search 

tasks to a large sample of TD individuals, as well as assessed individuals using the 

AQ.  The results suggested that using AQ scores as a substitution for ASD requires 

unverified assumptions about high-AQ scoring individuals and their relationship to 

individuals with an ASD. Furthermore, research has not fully explained the 

endophenotypes related to ASD, and thus the AQ can only function as an 

approximation of these.  However, when no individuals with ASD are available, the 

AQ enables researchers to study healthy individuals who have been scored for AQ 

instead.  However, it is important to bear in mind that this might come at a scientific 

cost.  

6.8 Implications of findings of audiovisual processing differences   

The multisensory integration differences that we reveal in Chapters 3, 4 and 5 could 

have cascading effects in the early development of social communication skills. For 

example, early language learning in TD children involves integrating incoming audio 

(speech sounds) and visual (lip movements) information (Teinonen et al., 2008). The 

benefit that people typically get from such multisensory inputs during speech 

perception has been shown to be considerably impaired in children with ASD (Foxe et 

al. 2013; Stevenson et al. 2014). Similarly, social communication could also be 

impacted by impaired multisensory integration through the misinterpretation of non-

linguistic social cues such as facial expressions, and changes in prosody of the speech 

signals are needed to interpret a speaker’s emotion and intention (Ethofer et al., 2006). 

Furthermore, our behavioural results in Chapter 3, looking at the audiovisual temporal 

processing, could suggest that individuals with ASD rely more on integrating 

redundant sensory information, as their integration system seems less precise at 
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detecting asynchrony between incoming audio and visual information. This could lead 

to falsely integrating information together that does not belong together. In social 

situations this can lead to misinterpretation of social cues.  Additionally, Brandwein et 

al. (2015) suggested that these deficits of precisely integrating audiovisual information 

could underlie existing deficits observed in ASD, such as the feeling of ‘sensory 

overload’.  This is in agreement with Molholm et al. (2004), who suggested that the 

integration of multisensory information is crucial to group together the information 

that comes in through the separate sensory systems. Moreover, the feeling of ‘sensory 

overload’ can lead to withdrawal and defensive behaviours (Brandwein et al., 2015). 

Similarly, Donnellan, Hill & Leary (2013) proposed that acts of apparent non-

compliance, reluctance, lack of interest as well as aggression might not be voluntary, 

and could be secondary to an individual’s particular sensory processing differences.  

6.9 Future experiments  

I believe the work described in this thesis provides a springboard for furtherresearch. 

For example, it would be interesting to run similar experiments as those in Chapters 3, 

4 and 5, and measure ASD symptom severity across participants, correlating symptom 

severity with measures of TIW and PSS. To my current knowledge, there are no 

published studies looking at the relationship between the severity of symptoms in 

ASD or autistic traits in the general population, and performance on SJ and TOJ tasks. 

Moreover, it would be interesting to regress symptom severity against functional 

activations elicited through multisensory and unisensory information, as well as 

through making SJ on multisensory displays. This would give us a better 

understanding of how multisensory deficits in ASD are related to actual symptoms in 

ASD.  

As mentioned previously, there has been very little fMRI research investigating 

audiovisual integrating in ASD. Our results in Chapter 4 suggest that atypical 

activation levels in response to audiovisual and unisensory stimulation are not unique 

to social speech stimuli, but are also present in BF displays. Conversely, Chapter 5 

revealed only activation differences in our speech displays. This result might mislead 

people into thinking that this is evidence for a speech specific audiovisual integration 

deficit. However, as mentioned before, these displays had some fundamental 

differences that could potentially be the cause for not finding group differences in our 

BF condition. Therefore, it would be interesting to investigate the specificity of the 
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audiovisual integration deficit in ASD using highly controlled stimuli, such as 

ensuring that displays have the same luminance, display size, similar complexity, 

similar length and similar sound features. Furthermore, our behaviour results from the 

ICM revealed that the TOJ resulted in PSS differences between the ASD and the TD 

group. Therefore it would be interesting to explore this difference further and 

investigate whether neural correlates reflect those differences in PSS.  

Wallace and Stevenson (2014) propose that using approaches from perceptual 

plasticity (Powers et al., 2009, Powers et al., 2012, Stevenson et al., 2013) to provide 

training in multisensory perception could be utilised to improve unisensory and 

multisensory temporal acuity. Successful training can narrow the width of individuals 

TIW (Powers et al., 2009; Stevenson et al., 2013). Similarly, Petrini et al., (2011) 

showed that the TIW is narrower in people with musical expertise (such as 

professional drummers), and that this performance difference is clearly reflected in 

activation levels of the brain of audiovisual temporal perception. Similarly, simple 

training on audiovisual temporal integration tasks, like the SJ, have been shown to be 

translated into the neural correlates of audiovisual temporal processing (Powers et al., 

2012). The most promising result of these studies is that individuals with the widest 

TIW are the ones that benefit the most from training (i.e., showed the most significant 

changes of TIW width) (Powers et al., 2009; Stevenson et al., 2013). Therefore, it is 

likely that people with ASD, or other populations with audiovisual temporal 

processing difficulties such as dyslexia and Schizophrenia, would benefit from 

training. Moreover, the implications of such training could be researched to see 

whether the training translates into more general changes in multisensory integration, 

beyond the task that they are trained in. In the near future, it would be fascinating to 

see how long these training effects last. Furthermore, research would need to be 

extended to show whether such training would lead to improvements of real life 

functions, such as social skills, communication as well as hypo and hyper-sensory 

processing.  

6.10 General Conclusion 

Overall, this thesis aids our understanding of how individuals with ASD process 

audiovisual information, as well as how cortical structure is related to autistic traits in 

the general population.  To achieve this understanding, structural and functional 

http://www.sciencedirect.com/science/article/pii/S0028393214002681#bib222
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magnetic resonance imaging (fMRI), as well as psychophysical techniques, were 

employed.  Our results showed evidence of cortical thickness differences associated 

with the autistic traits. 

We showed that individuals with ASD are less sensitive at detecting asynchronies 

between sight and sound when making synchrony judgements. Further fMRI analyses 

revealed that audiovisual, audio and visual processing of simple non-social and social 

displays elicit mainly a reduction of activation in brain areas in individuals with ASD 

compared to the TD individuals. Moreover, synchrony judgements of audiovisual 

social displays were underpinned by greater activation in the putamen in individuals 

with ASD compared to TD individuals. Lastly, we found that synchrony judgements 

of audiovisual displays revealed a complex pattern of activations, providing evidence 

for a potential neural basis of the commonly reported asymmetry of the temporal 

integration window.  
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