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Abstract 

Telomeres are DNA-protein complexes which cap the ends of eukaryotic linear 

chromosomes. In normal somatic cells telomeres shorten and become 

dysfunctional during ageing due to the DNA end replication problem. This leads 

to activation of signalling pathways that lead to cellular senescence and 

apoptosis. However, cancer cells typically bypass this barrier to immortalisation 

in order to proliferate indefinitely. Therefore enhancing our understanding of 

telomere dysfunction and pathways involved in regulation of the process is 

essential. However, the pathways involved are highly complex and involve 

interaction between a wide range of biological processes. Therefore 

understanding how telomerase dysfunction is regulated is a challenging task and 

requires a systems biology approach. In this study I have developed a novel 

methodology for visualisation and analysis of gene lists focusing on the network 

level rather than individual or small lists of genes. Application of this 

methodology to an expression data set and a gene methylation data set allowed 

me to enhance my understanding of the biology underlying a senescence 

inducing drug and the process of immortalisation respectively. I then used the 

methodology to compare the effect of genetic background on induction of 

telomere uncapping. Telomere uncapping was induced in HCT116 WT, p21-/- and 

p53-/- cells using a viral vector expressing a mutant variant of hTR, the 

telomerase RNA template. p21-/- cells showed enhanced sensitivity to telomere 

uncapping. Analysis of a candidate pathway, Mismatch Repair, revealed a role 

for the process in response to telomere uncapping and that induction of the 

pathway was p21 dependent. The methodology was then applied to analysis of 

the telomerase inhibitor GRN163L and synergistic effects of hypoglycaemia with 

this drug.  HCT116 cells were resistant to GRN163L treatment. However, under 

hypoglycaemic conditions the dose required for ablation of telomerase activity 

was reduced significantly and telomere shortening was enhanced. Overall this 

new methodology has allowed our group and collaborators to identify new 

biology and improve our understanding of processes regulating telomere 

dysfunction.  
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Chapter 1: Introduction 

1.1. Telomere structure and function 

As DNA replicates the telomere shortens with each replication cycle due to the 

end replication problem (Harley et al., 1990). In order to counter this problem 

mammals have evolved a nucleoprotein structure at the ends of their 

chromosomes, called telomeres, which prevent this shortening from reaching 

regions of DNA vital to cell survival and also to prevent recognition of the 

telomeres as DNA damage by endogenous proteins (de Lange, 2010). There are 

two main components to the telomere: the telomeric DNA repeat structure 

which is a series of TTAGGG repeats generated by the Telomerase enzyme and 

the multi-subunit protein complex which protects it called Shelterin. 

1.1.1. Telomeric DNA 

The DNA at chromosome ends in human cells consists of 5–15 kb of telomeric 

TTAGGG repeat. The length of the telomeres varies between species. For 

example mice telomere can range from 25-40kb (Blackburn, 2001; Palm and de 

Lange, 2008). The majority of these repeats are double-stranded but the very 

end of each chromosome is made up of a single-stranded 3′ overhang which can 

vary from 50-500bp in mammals. This single stranded sequence is key in 

formation of a t-loop structure where telomere ends can fold back on 

themselves (Makarov et al., 1997; Palm and de Lange, 2008). The size of the 

loops appears to be variable as loops ranging from 1 – 25kb have been observed. 

However, end processing seems to be a controlled process where the 5’ and 3’ 

sequences may be differentially regulated. In human telomeres the 5’ end is 

homogeneous, where most telomeres have the sequence AATCCCAATC-5’, whilst 

the 3’ end can be more variable (Sfeir et al., 2005). The overall length of the 

telomeric DNA is also regulated and the protein structure which coats the 

telomeric DNA plays a role in this process. Telomeres are regulated by a 

negative feedback loop which blocks the action of telomerase. As telomeres 

become too long the telomerase pathway is inhibited. When telomeres are short 

this control is relaxed and telomerase may restore its length. This seems to be 
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regulated by the amount of Shelterin complex bound to the telomeres, which 

increases as telomeres become longer and have a greater probability of 

inhibiting telomerase (Smogorzewska and de Lange, 2004). 

 

Figure 1.1. The structure of human telomeric DNA. 

(A) Human chromosomes end in an array of TTAGGG repeats that varies in length. Proximal to the 

telomeric repeats is a segment of degenerate repeats and subtelomeric repetitive elements. The 

telomere terminus contains a long G-strand overhang. (B) Schematic of the t-loop structure, a 

lariat-like configuration that arises by strand invasion of the telomeric 3’ G-overhang into the 

upstream telomeric double-stranded DNA forming an internal D-loop. The size of the loop is 

variable. 

 

In addition to the T-loop formation, the high G content of the telomeres enables 

G-quadruplexes to form in the single stranded regions. The G-quadruplex 

structures play an important regulatory role at the telomeres and are implicated 

in telomere protection, suppression of recombination and inhibition of 

telomerase extension (Lipps and Rhodes, 2009). They have been shown to have 

an inhibitory effect on telomere elongation in vitro (Zahler et al., 1991). 

Supporting this is evidence that G-quadruplex formation at the 3’ end of 

telomeres prevents telomerase accessibility to the telomere (Tang et al., 2008). 

These G-quad structures also have inhibitory roles against other enzymes, such 

as helicases BLM and other RecQ family helicases (Liu et al., 2010). Unravelling 

of these structures is also important. It is thought that end processing enzymes 
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such as telomerase require a free single stranded 3’ telomere end. It was 

demonstrated that telomere G-quadruplex unwinding, telomerase extension of 

the telomere and alternative lengthening of telomere (ALT) mechanism need a 

3’ tail of 6, 8 and 12nt respectively (Wang et al., 2011b). Formation of G-

quadruplexes also appears to be directly regulated. It has been shown that the 

yeast telomerase subunit Estp1 is able to form G-quadruplex structures in single 

stranded telomeric G-rich DNA (Tong et al., 2011; Zhang et al., 2010). Further to 

this Est1p mutants lead to disrupted G-quadruplex formation, telomere 

shortening and cellular senescence suggesting that G-quadruplexes are essential 

in telomere protection (Zhang et al., 2010). Overall, it is understood that these 

G-quadruplex structures are important in the regulation of multiple enzymes at 

the telomeres thereby regulating telomere length and integrity and may be an 

interesting drug target for ageing and cancer therapies. It also suggests that G-

quadruplexes may play an important role in regulation of telomere dysfunction 

detection and signalling within the cell. 

1.1.2. Shelterin and accessory proteins 

Shelterin is made up of 6 core subunits: TRF1, TRF2, POT1, TIN2, TPP1 and Rap1. 

TRF1 and TRF2 bind the double strand repeat sequence and provide specificity 

to the telomeres. POT1 binds single strand repeats and interacts with TRF2 

(Yang et al., 2005). Interconnecting these proteins are TIN2, TPP1 and Rap1. 

TRF2 and POT1 are essential in hiding the telomeric DNA from detection by ATM 

and ATR. TRF2 facilitates the formation of the t-loop structure which protects 

the double stranded component of telomeres from detection by ATM whilst POT1 

protects against detection by ATR by outcompeting RPA in the single strand 

region (de Lange, 2010). There are also a number of non Shelterin proteins with 

important roles at the telomeres. Traditionally, the Shelterin proteins have been 

distinguished by a number of criteria. They are most abundant at telomeres 

without accumulating elsewhere. Their primary functions are specific to 

telomeres and they are present at the telomeres throughout the cell cycle (de 

Lange, 2005). While recent findings that many of the Shelterin proteins have 

extra-telomeric functions bring this definition of Shelterin into question, non-

Shelterin proteins fail to meet some or all of these criteria. Attempts to find 
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additional key Shelterin components using mass-spectroscopy techniques have 

yet to be successful. This suggests that we have a fairly complete view of the 

essential proteins in the Shelterin complex (Liu et al., 2004; O'Connor et al., 

2004; Ye et al., 2004). 

The core Shelterin proteins act as a platform allowing for recruitment of various 

proteins from a diverse range of pathways. The complexity of regulatory 

pathways involved in telomere maintenance was highlighted by a study looking 

at interaction partners of the core Shelterin proteins where over 300 proteins 

were identified (Lee et al., 2011). While some accessory proteins and complexes 

have known roles, most of the accessory proteins identified require further 

characterisation. Some of these proteins also appear to have roles essential to 

telomere function. For example, BLM helicases have been implicated in t-loop 

formation (Opresko et al., 2004). Another example is the CST complex which is 

essential in telomere replication and regulation of telomerase activity at the 

telomeres (Wu et al., 2012). CST is composed of three RPA-like proteins, CTC1, 

STN1 and TEN1 and has been shown to be a terminator of telomerase activity. It 

does this by binding the 3’ single stranded telomeric DNA and displacing 

telomerase when the overhang reaches a specific length (Chen and Lingner, 

2013; Chen et al., 2012a). 
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Figure 1.2. The Core Shelterin Subunits and CST complex at telomeres. 

(A) The six-member Shelterin complex and its specific interactions. (B) The end-binding CST 

trimeric complex. (C) Telomeres in a closed T-loop configuration. Most Shelterin components are 

found interacting with double-stranded telomeric DNA and TPP1/POT1 that are found associated 

with the 3’ G-overhang and D-loop. This configuration inhibits the access of telomerase, the 

checkpoint kinases ATM and ATR to telomeres and prevents NHEJ and HDR at telomeres. (D) The 

orchestrated actions of Shelterin and CST to regulate telomerase access, which promotes telomere 

elongation. At the telomere ends, telomerase can be recruited by the TPP1/POT1 interaction. The 

telomere extension by telomerase is terminated when the CST complex binds to the newly 

synthesized, single-stranded 3’ G-overhang (protruding 3’ single-strand). The CST complex inhibits 

the binding of RPA to telomeres due to CST higher affinity for single-stranded G-rich DNA. 
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There has been much work done to study the canonical role of the Shelterin 

proteins and their function at the telomeres. However, there is also increasing 

evidence of extra-telomeric functions for many of the Shelterin components. 

While we may have a strong understanding of their function at telomeres our 

knowledge of their role elsewhere in the cell is still incomplete. TIN2, TPP1 and 

POT1 have all been shown to localize in the cytoplasm (Chen et al., 2007). TIN2 

also has mitochondrial localisation signals which can target it to the 

mitochondria and RNAi knockdown of TIN2 led to enhanced oxygen consumption 

and ATP synthesis, suggesting a role for the protein in metabolic regulation 

(Chen et al., 2012b). TRF2 has also been implicated in regulation of neuronal 

genes influencing neural tumour and stem cell differentiation (Zhang et al., 

2008). In addition, TRF2 has been found to play a role in homologous 

recombination (HR) outside of the telomere (Bradshaw et al., 2005; Mao et al., 

2007).  Deregulation of a number of genes was also associated with RAP1 

deletion in mice, preferentially affecting genes in subtelomeric regions 

(Martinez et al., 2010). Furthermore, RAP1 was shown to complex with IKKs (IκB 

kinases) in the cytoplasm and regulate NF-κB activation thereby affecting 

regulation of genes targeted by NF-κB (Teo et al., 2010).  Genome-wide ChIP-seq 

identified a range of interstitial telomeric sequences (ITSs) to which TRF2 and 

RAP1 can bind (Yang et al., 2011). This finding for TRF2 was confirmed in 

another study which also found TRF1 to have a role at these sites (Simonet et 

al., 2011). As some of these sites are proximal to genes this may implicate RAP1, 

TRF1 and TRF2 in regulation of transcription. Overall, a number of non-telomeric 

functions for most of the Shelterin proteins have been uncovered indicating that 

they may play a wider role in regulation of biological processes than previously 

thought. Further study is needed to uncover possible roles for the Shelterin 

protein that may occur as a result of being displaced from the telomere during 

telomere dysfunction. 

1.1.3. Chromatin structure at the telomeres 

Telomeres themselves also have a specific chromatin structure and this has been 

found to be important in regulation of telomeric length. Whilst the telomere 

itself is coated in the Shelterin complex, nucleosomes are also present (Lejnine 
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et al., 1995). The subtelomeric regions also contain methylated DNA and H3K9 

and H3K20 methylated nucleosomes. Loss of methyltransferase activity in these 

regions has been associated with abnormally long telomeres in mouse models 

null for Suv39h1 and Suv39h2 (Garcia-Cao et al., 2004). Sirt6 H3K9 deacetylase 

was also found to target the telomere and depletion of Sirt6 leads to telomere 

dysfunction and subsequent senescent phenotype. These findings suggest that 

telomere length and structure are also regulated by subtelomeric chromatin 

structure (Michishita et al., 2008). 

Interactions between Shelterin and telomeric nucleosomes are not well 

understood, although recent findings suggest TRF2 binding increases nucleosomal 

spacing in a cell-cycle dependent fashion (Galati et al., 2012). A recent study 

investigated changes in histone biosynthesis as a result of replicative 

senescence. O’Sullivan et al found that human fibroblasts treated with 

bleomycin or cultured to replicative senescence demonstrated p53 independent 

downregulation of histones H3 and H4 (O'Sullivan et al., 2010). They propose 

that this removes the capacity of proliferating cells to restore their original 

chromatin structure, post replication, leading to a build-up of abnormal 

chromatin which reinforces the DDR signal eventually leading to senescence. 

Notably, expression of telomerase was sufficient to prevent accumulation of 

global chromatin reorganisation indicating that chromatin effects initiated at 

telomeres are capable of amplification throughout the nucleus. 

1.1.4. Telomerase 

Telomerase is an RNA containing reverse transcriptase made up of two main 

components, hTERT (catalytic component) and hTR (RNA component), both of 

which are required for telomerase activity and both have highly complex 

regulatory networks (Bilsland et al., 2009; Lafferty-Whyte et al., 2009). There 

are also the accessory proteins dyskerin, NOP10, NHP2 and GAR1 which when 

mutated can lead to a number of telomerase deficiency diseases such as 

Dyskeratosis Congenita (DKC). The main function of Telomerase is to add 

telomeric repeats to the end of chromosomes and is recruited by Shelterin 

(Blackburn and Collins, 2011; Nandakumar and Cech, 2013; Palm and de Lange, 
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2008). Once at the telomere the single stranded region can be utilised by 

Telomerase as a primer which binds to the RNA template (Cech, 2004). Synthesis 

of telomeric can then begin and continue, following repositioning of the 3’ end 

(Greider, 1991). 

hTR is the RNA component of the telomerase enzyme. Although the size and 

sequence is not highly conserved between species the four main functional 

features are. The four functional features are: the template for reverse 

transcription, the pseudoknot domain, a stem-loop which interacts with TERT 

and a 3’ element required for RNA stability (Theimer and Feigon, 2006). The 

human TR (hTR) is 451nt long and contains all of the features mentioned (Zhang 

et al., 2011). The 3’ stabilizing element is an H/ACA domain made up of two 

hairpins connected by a short single-stranded stretch, the H-box, and a terminal 

ACA region (Egan and Collins, 2012; Mitchell et al., 1999). The cofactors 

dyskerin, NOP10, NHP2 and GAR1 associate with the H/ACA domain to form the 

H/ACA complex which is essential for accumulation, enzymatic activity and 

correct localisation of telomerase (Kiss et al., 2010). The importance of the 

H/ACA complex is highlighted by telomerase deficiency diseases associated with 

mutations in these factors (Armanios and Blackburn, 2012). 

The hTERT protein contains four key functional domains:- the telomerase N-

terminal (TEN) domain; TR-binding domain (TRBD); reverse transcriptase domain 

(RT) and C-terminal extension (CTE) (Blackburn and Collins, 2011). The TEN 

domain is involved in recruitment of telomerase to the telomeres and in 

catalysis of telomeric repeat synthesis (Jurczyluk et al., 2011; Robart and 

Collins, 2011; Schmidt et al., 2014; Wu and Collins, 2014). The TRBD and reverse 

transcriptase domain are involved in association with hTR (Lai et al., 2001). The 

active site of the enzyme is made up by the reverse transcriptase domain and 

CTE. The reverse transcriptase domain of hTERT demonstrates homology with 

the reverse transcriptase domains of retrotransposon and retroviral reverse 

transcriptases (Lingner et al., 1997; Nakamura et al., 1997). 
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Figure 1.3. Telomerase and associated subunits. 

(A) Secondary structure of the hTR. The pseudoknot and CR4/CR5 domains interact with hTERT. 

The template for telomeric repeat synthesis is indicated. Two copies of the H/ACA complex, each 

composed of dyskerin, NHP2, NOP10, and GAR1, associate with the H/ACA domain of hTR to 

stabilize the RNA in the nucleus.TCAB1 interacts with the CAB box to facilitate telomerase 

localization to Cajal bodies. (B) hTERT contains four functional domains. The telomerase N-

terminal (TEN) domain participates in catalysis and drives telomerase localization to telomeres. 

The TR-binding domain (TRBD) interacts with hTR. The reverse transcriptase (RT) and C-terminal 

extension (CTE) form the catalytic core of telomerase. (C) Fully assembled and catalytically active 

telomerase enzyme. 

  



19 

 

Telomerase is highly regulated and implicated in oncogenesis and other diseases. 

For example, the hTERT promoter is controlled by a complex transcriptional 

network (Bilsland et al., 2009). Recently promoter mutations have been 

identified which affect expression levels of hTERT in cancers, highlighting the 

importance of telomerase in oncogenesis (Horn et al., 2013; Huang et al., 2013). 

They have also have been shown to be the most frequent mutation in some 

cancer types (Heidenreich et al., 2014). These mutations were associated with 

increased hTERT expression, telomerase activity and telomere length (Borah et 

al., 2015). While increased telomerase activity can be oncogenic, deficiencies in 

telomerase activity can also lead to diseases such as Dyskeratosis Congenita 

(DKC) (Armanios and Blackburn, 2012). 

1.1.5. Telomere Structure and Cancer 

Linear eukaryotic chromosomes are complex structures which pose multiple 

issues to cells that need to be regulated in order to maintain proliferative 

capacity and genome integrity. Due to the end replication problem, telomeres 

shorten with each replication cycle which, over time, can lead to loss of genetic 

information (Harley et al., 1990). This progressive shortening can also lead to 

Shelterin becoming displaced from the telomeres, resulting in the telomeric DNA 

becoming exposed to endogenous DNA damage recognition proteins. In normal 

cells, this leads to activation of DNA damage signalling response through 

induction of tumor suppressors p53 and p16, eventually causing senescence or 

apoptosis (d'Adda di Fagagna, 2008). This is an important tumour suppressor 

mechanism in normal cells as it prevents the growth of potentially cancerous 

cells. However, it is also a double edged sword and can be a source of genomic 

instability leading to oncogenesis (Shay and Wright, 2011). As telomere ends 

become exposed they can form chromosomal fusions which can then lead to 

breakage-fusion-bridge cycles in cells that escape senescence or apoptosis (van 

Steensel et al., 1998).  

In cancer cells telomere structure can appear relatively normal whilst being 

regulated very differently. For example, while normal cells experience 

progressive shortening of the telomeres, cancer cells often demonstrate 
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maintenance of telomere length due to reactivation of telomerase (Degerman et 

al., 2010). As a result, the telomere structure is maintained, telomeres do not 

reach critical length and therefore do not activate DNA damage response 

associated with short telomeres, allowing indefinite proliferation. Alternatively, 

cancers can also demonstrate highly unstable telomeres, where the normal 

structure is compromised, but still proliferate (Chin et al., 2004; Rudolph et al., 

2001). This is typically due to some form of interference in the downstream 

signalling pathways that usually lead to cellular arrest in normal cells. For 

example, it has been shown in yeast that by severing the DNA damage signalling 

pathway, cells can continue to divide despite having dysfunctional telomeres 

(Carneiro et al., 2010). 

1.2. Causes and outcome of telomere dysfunction 

Telomeres are usually bound and protected from recognition as DNA damage by 

Shelterin (de Lange, 2010). However, critically short telomeres fail to recruit 

functional Shelterin complexes, becoming exposed and initiating a DNA damage 

response which in turn leads to activation of various downstream signalling 

processes, leading to cellular arrest (senescence) or apoptosis. In normal cells, 

telomeres progressively shorten, due in part to the end-replication problem, 

eventually leading to replicative senescence, which can be accelerated by 

oxidative damage and other events (Cairney et al., 2012). This shortening can be 

blocked by the telomerase enzyme which extends telomeres by adding TTAGGG 

repeats to the ends of DNA (Collins and Mitchell, 2002). In normal tissue 

homeostasis telomerase activity is restricted to highly proliferating tissues 

(Wright et al., 1996). However cancer cells that have escaped senescence 

typically demonstrate reactivation of telomerase (Shay and Wright, 2011). 

The reverse transcriptase and RNA components of telomerase (hTERT and hTR) 

are both required for telomerase activity and both have highly complex 

regulatory networks (Bilsland et al., 2009; Lafferty-Whyte et al., 2010b). For 

example, inhibition or mutation of hTR has been shown to induce telomere 

shortening and decrease telomerase activity (Feng et al., 1995). Telomeres can 

also be elongated via the alternative lengthening of telomeres (ALT) pathway, 



21 

 

which lengthens telomeres via a HR (Homologous recombination) mechanism 

(Brault and Autexier, 2011; Lafferty-Whyte et al., 2009). However, this 

mechanism is suppressed in most cells by proteins such as TRF2 (Celli et al., 

2006). 

1.2.1. DNA Damage Response and the Cell Cycle 

The focus here will be on telomere shortening induced senescence, also known 

as replicative senescence However, stimuli which induce senescence are still 

being discovered and the mechanisms involved are extensively characterised 

(Campisi and d'Adda di Fagagna, 2007; Collado et al., 2007; Salama et al., 2014). 

Senescence is a form of irreversible proliferative arrest in which cells exit the 

cell cycle, entering G0, and is typically associated with prolonged arrest of the 

cell cycle with a G1 DNA content (Buttitta and Edgar, 2007). Senescence 

inducing stimuli signal through multiple pathways, often activating p53, which 

all essentially converge on the activation of cycling-dependent kinase (CDK) 

inhibitors p21, p15, p21 and p27. CDK-cyclin complex inhibition results in arrest 

of proliferation and the crucial senescence inducing component is hypo-

phosphorylated Rb (Chicas et al., 2010). 

Telomeres essentially act as molecular clocks keeping track of the replicative 

history of primary cells (Harley et al., 1990). Telomeres shorten during 

consecutive cell divisions and eventually reach critical length where the 

telomeric structure becomes compromised. This results in a type of senescence 

known as replicative senescence. As telomeres become critically short they are 

sensed by cells as a type of DNA damage and trigger a DNA-damage response 

(DDR). This DDR is mediated by ATM, ATR, CHK1 and CHK2 which phosphorylate 

and activate cell cycle proteins such as p53. This leads to expression of p21 

which can inhibit CDK-cyclin complexes such as those involving CDK2 (Campisi 

and d'Adda di Fagagna, 2007). Replicative senescence has also been linked to 

two crucial tumour suppressors, p16 and ARF, which are encoded by the CDKN2A 

locus (also known as INK4A and ARF). p16 has been shown to be an inhibitor of 

CDK4 and CDK6 whilst ARF regulated p53 stability through inactivation of E3 
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ubiquitin protein ligase MDM2 which degrades p53 (Gil and Peters, 2006; Kim and 

Sharpless, 2006). 

Senescence is a key barrier to cancer progression. Oncogenic signalling flux 

increases during the early stages of tumorigenesis until it reaches a threshold 

that activates the key tumour suppression pathways p16 and p53. This leads to 

inhibition of the cell cycle, causing cells to enter senescence, which prevents 

the expansion of precancerous cells. Indeed, senescence is detectable in benign 

tumours (Collado et al., 2007) and it has been demonstrated that cells which 

undergo damage-induced senescence can be removed by immune-mediated 

clearance (Hoenicke and Zender, 2012; Kang et al., 2011; Xue et al., 2007). This 

is due to a combination of direct detection of senescent cells by T helper cells 

(Kang et al., 2011) and by recruitment of inflammatory phagocytic cells (Xue et 

al., 2007), which are probably attracted by senescence associated secretory 

protein (SASP) factors. (Campisi, 2013; Kuilman and Peeper, 2009). The 

effectiveness of pro-senescent therapies has also been demonstrated in 

malignant tumours. It has been shown that activation of p53 in hepatocellular 

carcinomas and sarcomas induces senescence. This is then followed by tumour 

cell elimination (Ventura et al., 2007; Xue et al., 2007). 

Over the past decade research has demonstrated that senescence can play both 

beneficial and detrimental roles (Munoz-Espin and Serrano, 2014). Transient 

induction of senescence can lead to the elimination of damaged cells. However, 

persistent senescence or the inability to clear senescent cells can lead to 

detrimental effects. The general purpose of senescence is to clear unwanted 

cells which can provide a similar role as apoptosis which is also important in 

elimination of damaged cells. Both of these mechanisms are particularly 

relevant in cancer and ageing: processes which are both associated with the 

accumulation of severe cellular damage. Therefore, senescence is an essential 

barrier to cancer progression and to senescent cells which accumulate with 

ageing. 

Various stresses on the telomere eventually lead to degradation of the telomere 

structure leaving the telomeric DNA exposed. Exposure of the telomere ends can 
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be tumorigenic as telomeres can be highly fusogenic leading to chromosome end 

to end fusions and thus further damage to genomic DNA (van Steensel et al., 

1998). However critically shortened or uncapped telomeres are also recognised 

as DNA damage by the processes outlined above and DDR foci have been shown 

to co-localise with telomeric DNA in senescent cells when telomeres become 

sufficiently shortened. These “telomere dysfunction induced foci” have been 

found to contain a variety of DDR proteins such as ATM and H2AX (d'Adda di 

Fagagna et al., 2003; Takai et al., 2003). 

Signalling of these pathways varies depending on the method of induction. For 

example, it was recently proposed that oncogene induced senescence (OIS) can 

cause hyper-replication and accumulation of DNA damage leading to a robust 

DDR via that ATR pathway (Di Micco et al., 2006) whereas replicative senescence 

typically operates via the ATM pathway (Herbig et al., 2004). Similarly, the 

checkpoint at which arrest is enforced appears to vary and can occur at various 

points within the cell cycle. Recently TRF2/POT1 inhibition was shown to cause 

arrest at the G2/M checkpoint via the ATM/ATR pathway (Thanasoula et al., 

2012a). An earlier review also suggested that checkpoint activation could vary 

depending on the severity or type of damage response where the G1/S 

checkpoint may be more sensitive to exposed DNA ends than the G2/M 

checkpoint (d'Adda di Fagagna, 2008). It has also been demonstrated in yeast 

that telomere detection can be avoided by breaking the signalling pathway 

through prevention of the chromatin alterations required for stable recruitment 

of damage signalling factors (Carneiro et al., 2010). 
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Figure 1.4. ATM/ATR regulation of the G1/S checkpoint. 

Green, red, or gray arrows represent positive, negative, or unspecified effects, respectively. Arrow 

labels denote interaction types where B = binding, Cn = competition, TR = transcriptional 

regulation, P = phosphorylation, and CM = covalent modification. 

 

1.2.2. Chromatin regulation 

The senescent phenotype involves changes in many biological processes and 

widespread gene expression changes so it is unsurprising that chromatin 

remodelling plays a role. Substantial remodelling occurs around key regulators in 

a variety of senescence pathways (Dimauro and David, 2009). Accumulation of 

genomic damage and specific areas of hypermethylation have been linked with 

ageing and may be a precursor to cellular senescence (DePinho, 2000; Oakes et 

al., 2003). Development of heterochromatin, as directed by pRb, has also been 

associated with induction of senescence as key proliferative genes become 
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suppressed such as E2F target genes which promote cell-cycle entry and 

proliferation (Narita et al., 2003). 

A number of specific histone remodelling activities play roles in senescence. For 

example, downregulation of histone methyltransferase EZH2 during senescence 

causes de-repression of the INK4A locus containing the promoter of the 

senescence inducer p16 (Bracken et al., 2007). Other histone demethylases, such 

as Jhdm1b, have also been found to prevent senescence via downregulation of 

the p53/pRb pathway (He et al., 2008). Similarly, global changes in acetylation 

are associated with senescence, with inhibition of histone deacetylases with 

sodium butyrate and trichostatin A, leading to senescent phenotype in primary 

human fibroblasts (Ogryzko et al., 1996). 

Senescence associated heterochromatin foci (SAHF) have been proposed as a 

new senescence marker and occur as a result of telomere dysfunction. These are 

manifest as DAPI foci each containing a single tightly condensed chromosome, 

co-localised with various chaperones and heterochromatin marks including 

heterochromatin proteins 1, H3K9me3, HMGA1 and A2 and the macroH2A histone 

variants, but excluding H3K4me3 and H3K9Ac (Narita et al., 2003; Zhang et al., 

2007; Zhang et al., 2005). SAHF were originally proposed to assemble specifically 

on E2F dependent promoters, dependent on pRb and HIRA/anti-silencing factor 

(ASF1a)/histone H3, thereby silencing key cell-cycle regulators (Narita et al., 

2003; Zhang et al., 2007; Zhang et al., 2005). Recently, histone demethylase 

Jarid1b was also shown to associate with several E2F dependent cell cycle 

promoters in a pRb dependent manner in senescent mouse embryonic fibroblasts 

(MEFs), which correlates with decreased expression and loss of H3K4-me3 

(Nijwening et al., 2011). Although SAHF are not readily formed in MEFs (Kennedy 

et al., 2010), overexpression of Jarid1a in human fibroblasts was sufficient to 

result in pRb dependent silencing of E2F target genes, along with global loss of 

H3K4Me3, cell cycle arrest, and induction of senescence markers including SAHF 

(Chicas et al., 2012). 

However, a recent study examining assembly of SAHF in 3 normal cell strains 

under a range of senescence induction triggers concluded that they are not 
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required for senescence and form in a cell type and trigger dependent fashion, 

correlated with induction of p16. In particular, Ras induced senescence appears 

to promote robust SAHF responses in a range of cell types whereas other triggers 

showed cell-specific results and SAHF were not detected in tumour sections 

(Kosar et al., 2011). Similar results were observed by the d'Adda di Fagagna 

group. However, that group also observed that heterochromatin is not a de facto 

barrier to proliferation, since cells induced to bypass oncogene induced 

senescence by ATM or p53 knockdown retain SAHF-like heterochromatin, though 

lose H3K9Me3 marks at E2F target genes and fail to suppress these. Interestingly, 

SAHF may also act to constrain damage signalling, thereby promoting cell 

longevity during senescence (Di Micco et al., 2011). 

1.2.3. Senescence associated secretory phenotype 

Senescent cells have also been found to display a secretory signature known as 

Senescence associated secretory phenotype (SASP) which has been found to be 

irreversible once established (Coppe et al., 2010). SASP reinforces the 

phenotype of senescent cells but paradoxically can be oncogenic to normally 

proliferating cells (Young and Narita, 2009). It was recently reported that 

treatment of fibroblasts with histone deacetylase inhibitors promotes SASP in 

the absence of DNA damage, indicating the likelihood of a close link to 

chromatin regulation in senescent cells (Pazolli et al., 2012). Moreover, co-

inoculation of treated fibroblasts with luciferase expressing HaCaT cells in 

NOD/SCID mice promoted tumour formation. While the SASP has been shown to 

be a double edged sword, promoting oncogenesis whilst reinforcing senescence, 

there have been other indicators of the anti-tumour activity of SASP due to the 

link it has to clearance of senescent cells in vivo via induction of inflammatory 

cytokines which activate the innate immune response (Xue et al., 2007). p16 

induced senescence does not produce a normal SASP whereas p53 has been 

found to restrain the SASP and is thought to be a tumour suppressor mechanism 

via suppression of the pro-tumorigenic/pro-inflammatory microenvironment 

which the SASP creates (Coppe et al., 2008).  
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However, it was reported in other studies that persistent DNA damage is 

required for SASP, with temporal alterations evident in the composition of 

damage signalling foci in senescent cells. Sites of active repair following mild 

DNA damage are rapidly resolved, while more severe damage gives rise to 

persistent foci apparently lacking DNA synthesis but containing active p53 and 

Chk2, stabilised by H2AX and associated with nuclear Promyelocytic Leukemia 

(PML) bodies. These have been termed DNA-SCARS (DNA segments with 

chromatin alterations reinforcing senescence) (Rodier et al., 2009; Rodier et al., 

2011). DNA-SCARS were required both for the growth arrest in senescent cells 

and for delayed secretion of IL-6 and IL-8, although viral oncogene expression 

could decouple growth arrest. 

A number of soluble factors are associated with SASP such as interleukins, 

inflammatory cytokines and growth factors which mediate a diverse range of 

signalling activities. IL-6 is an example of a key SASP molecule which has been 

found to reinforce the senescent phenotype whilst promoting tumourigenesis in 

nearby cells suggesting that the oncogenic effect of SASP is an unintended side 

effect (Young and Narita, 2009). One initiated SASP is self-reinforcing which 

leads to irreversible expression of the phenotype. For example, CXCR-2 binding 

chemokines were found to be expressed as a result of OIS resulting in a self-

amplifying secretory network which reinforces growth arrest (Acosta et al., 

2008). Extracellular proteases are also linked to SASP via regulation of other 

SASP proteins. A number of MMPs (matrix metalloproteinases) were upregulated 

in human fibroblasts undergoing stress-induced premature senescence and may 

regulate the SASP via direct interaction with other SASP molecules such as 

chemokines (Liu and Hornsby, 2007; Van Den Steen et al., 2003). 

SASP has also been associated with telomere dysfunction and replicative 

senescence. As mentioned, persistent DNA damage signalling has been shown to 

lead to SASP. Telomere dysfunction induction of persistent DDR is a major cause 

of cellular senescence (d'Adda di Fagagna et al., 2003). Senescent cells activate 

production of reactive oxygen species (ROS) and secrete SASP associated pro-

inflammatory peptides (Coppe et al., 2010; Passos et al., 2010). In senescent 

fibroblasts and in oncogene-induced senescence, SASP is closely controlled 



28 

 

through signalling by NF-κβ (Chien et al., 2011; Freund et al., 2011). Both 

senescence-associated ROS and NF-κβ driven pro-inflammatory cytokines, such 

as IL-6 and IL-8, contribute to feedback loops that stabilise oncogene or stress-

induced senescence (Acosta et al., 2008; Kuilman et al., 2008). SASP has been 

shown to be a self-reinforcing senescence mechanism, however exactly how 

SASP may feedback to enhance telomere dysfunction is not well understood. 

Recently, Jurk et al demonstrated that low level chronic inflammation induced 

in a mouse model led to premature ageing. They found that telomere-

dysfunctional senescent cells accumulated in nfkb1-/- cells and that this 

accumulation could be blocked by anti-inflammatory or antioxidant treatment. 

This was shown to be caused by ROS-mediated exacerbation of telomere 

dysfunction leading to cellular senescence.  

While SASP in the context of cancer has not been specifically linked to induction 

of telomere dysfunction, several SMS factors are linked with ageing and 

replicative senescence. For example, IL-6 (Hong et al., 2007), GRO1 (Himi et al., 

1997), PAI1 (Goldstein et al., 1994) and TGFβ (Carrieri et al., 2004) all increase 

with age and appear to be involved in induction of cellular senescence. This 

suggests that SASP is also associated with the ageing process in an autocrine, 

paracrine and possibly endocrine fashion. As these increase with age, they are 

implicated in a role in telomere dysfunction and replicative senescence. 

However, the exact feedback mechanisms by which SASP may feedback directly 

to the telomeres is not well understood but may be important in the wider 

context of regulation of telomere dysfunction. 

1.2.4. Pathways involved are complex and a systems 

view is required for understanding 

These genes involved in regulation of the interconnected subsystems outlined 

above constitute a substantial part of the senectome and typical response to 

telomere dysfunction, although other processes are also involved. Glycolytic flux 

appears to play a role in regulation of senescence in MEFs, likely by influencing 

cellular ROS levels (Kondoh et al., 2005). Widespread cytoskeletal changes are 

also involved (Wang and Jang, 2009). All these findings point to the complexity 
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of telomere dysfunction induced signalling and a requirement for diverse sub-

systems to cooperate in senescence decision making. Hence, although sentinels 

such as p53 and pRb clearly are critical, global signal integration is likely to be 

at least as important in determining the overall phenotype. Indeed, in some 

cases core effectors seem able to be bypassed. Deficiency of Skp2, a component 

of the SCF-Skp2 E3 ubiquitin ligase, co-operates with deficiency of Pten to 

promote senescence independently of p53 and DNA damage (Lin et al., 2010). 

Furthermore, although senescent cells are arrested, ongoing signalling still is a 

key feature. Computational analysis of the expression of DNA damage or 

secretory senescence genes in public data sets, demonstrated that a DNA 

damage signalling spike precedes the onset of increased inflammatory signalling 

in mesenchymal stem cell senescence (Lafferty-Whyte et al., 2010a). The 

Campisi group also reported that senescence associated secretion of 

inflammatory factors IL-6 and IL-8 follows delayed kinetics and requires the 

onset of persistent DNA damage signalling in several model systems (Rodier et 

al., 2009; Rodier et al., 2011). Other temporally regulated adaptations in 

senescence include transient co-localisation of HP1 proteins and the histone 

chaperone HIRA with PML bodies preceding SAHF formation (Zhang et al., 2007; 

Zhang et al., 2005), paracrine effects of the secretory response itself and 

widespread changes in metabolism such as increased autophagy (Singh et al., 

2012). 

Thus, the senectome is complex but also is dynamically regulated, suggesting 

the need for a high level of coordination. A recent proteomics study of ERK 

pathway dynamics in PC12 cell differentiation concluded that cell fate 

determination in that system relies on distributed control rather than a master 

switch (von Kriegsheim et al., 2009). The possible benefits of distributed control 

in irreversible decision making include temporal control of commitment, noise 

reduction, and a high degree of signal integration. These are likely to be key 

requirements for many other cell fate decisions presumably including senescence 

(Bar-Yam et al., 2009). Indeed, the existence of stochastic senescence inducer 

signals in normal cells, at least in culture, suggests a substantial requirement for 

noise filtration and/or gating to ensure faithful senescence responses only when 
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the severity of insult is commensurate with irreversible arrest (Lawless et al., 

2012; Martin-Ruiz et al., 2004; Passos et al., 2007). 

1.3. Why is understanding Telomere Dysfunction 

signalling important? 

Although first described over 50 years ago (Hayflick and Moorhead, 1961), there 

is substantially renewed recent interest in mechanistic regulation of senescence 

as a result of recognition that tumour cells also undergo senescence-like arrest 

responses to various genotoxic stimuli including chemotherapeutic agents 

(“accelerated senescence”) (Cairney et al., 2012). Hence, there is considerable 

interest in the potential for developing senescence-targeted cancer 

therapeutics. This broad goal implies the need for a systems-level view of the 

regulation of telomere dysfunction. A number of markers have been linked with 

senescence, which occurs as a result of telomere dysfunction, such as elevated 

p21 and p16 levels, the senescence associated secretory phenotype (SASP), 

senescence associated beta-galactosidase (SA-Gal) staining, senescence 

associated heterochromatin foci (SAHF) and changes in morphology where 

senescent cells become flat and enlarged in vitro. Beyond these relatively well 

defined markers however, it is also clear that senescence involves an extremely 

broad range of biological processes from telomere homeostasis, DNA damage and 

inflammatory signalling to chromatin regulation and metabolism (Capparelli et 

al., 2012; Rai and Adams, 2012). Though some key pathways have been 

characterised and provide interesting targets for drug discovery, the complexity 

of their interactions is not well defined and neither, as yet, is the complete set 

of gene targets able to elicit or modulate accelerated senescence responses. 

Thus, target discovery remains a goal to be framed not only in context of known 

sentinels such as the core p53/pRb pathways, but with a view to the global 

regulation of telomere dysfunction. 
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1.3.1. Oncogenesis, Replicative Immortality and 

Cancer progression 

In the normal setting, telomere dysfunction is caused by telomere attrition 

(Harley et al., 1990) which typically leads to senescence or apoptosis and is one 

of the key barriers which limits the proliferation potential of cancerous cells 

(Prieur and Peeper, 2008). However, most tumours are reliant on the ability to 

proliferate indefinitely and have managed to overcome the barrier of telomere 

dysfunction (Durant, 2012). This is thought to occur mainly via two mechanisms: 

maintenance of the telomere itself or by blocking and/or rerouting the signalling 

pathway. One method is the re-expression of the telomerase subunits, hTERT 

and hTR, leading to maintenance or reconstitution of telomere length 

(Degerman et al., 2010). Increased telomerase activity has been demonstrated in 

a range of cancers resulting in maintenance of telomere length, therefore 

bypassing telomere attrition leading to immortality (Shay and Wright, 1996). 

Maintenance of telomere length can also occur via activation of the ALT 

mechanism, alternate lengthening of telomeres, which maintains telomere 

length via a homologous recombination based mechanism (Lafferty-Whyte et al., 

2009). In other cases the cells continue to proliferate even though their 

telomeres are dysfunctional. One example is by creating a block in the DNA 

damage signalling pathway preventing activation of downstream processes which 

would typically lead to cell death or arrest of the cell cycle (Carneiro et al., 

2010). 

Many pro-senescence therapeutic options are currently in development, such as 

the telomerase inhibitor GRN163L (Nardella et al., 2011). It is hoped that 

reestablishment of normal telomere dysfunction signalling in tumours, both early 

stage and advanced, will be an effective method of tumour reduction in cancer 

patients. There is also evidence that senescent cells are cleared by the immune 

system and this could be promising in the regression of established tumours via 

pro senescence therapy (Kang et al., 2011). However, the full mechanism of 

action, and/or signalling cascades, of many therapies targeted at the telomere is 

not fully understood and a clearer understanding of the underlying biology is 

essential if these are to be developed further. 
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1.3.2. Telomere dysfunction related diseases 

Telomere production, regulation and associated signalling pathways include a 

range of biological processes. As such, there are many possible points of failure 

in telomere biology that can lead to a range of disease phenotypes. Mutations in 

many of the key functional proteins involved in telomere and telomerase 

regulation have been identified and are associated with a range of genetic 

diseases (Armanios and Blackburn, 2012; Holohan et al., 2014). These disorders 

often share symptoms and mechanisms and evidence suggests that they are 

points along a spectrum of disease. However, new causes of these disorders are 

continually being discovered and progress in clinical understanding of these 

“telomeropathies” has also renewed interest in the understanding of telomere 

biology. 

Most of the telomerase enzyme components have been associated with telomere 

maintenance diseases. The first diseases associated with defective telomere 

maintenance, namely Dyskeratosis Congenita (DKC), were associated with 

mutations in the telomerase enzyme (Heiss et al., 1998). Mutations in TERT and 

TERC (Armanios et al., 2005; Vulliamy et al., 2001; Yamaguchi et al., 2005), 

Dyskerin (Heiss et al., 1998), NOP10 (Walne et al., 2007), NHP2 (Vulliamy et al., 

2008), and TCAB1 (Zhong et al., 2011) have been detected in families with 

telomeropathies. Identification of Shelterin mutations has been more 

challenging. Attempts at generating mutations in Shelterin components tend to 

be embryonic lethal in mice models (Beier et al., 2012; Tejera et al., 2010). 

However, mutations in TIN2 have been identified in humans which manifest as a 

severe DKC disease phenotype and have early onset (Sasa et al., 2012; Savage et 

al., 2008; Vulliamy et al., 2012).  

There have also been mutations found in other elements of telomere regulatory 

pathways. The t-loop must be dissociated during the DNA replication process and 

this is handled by RTEL1 or other helicases. When RTEL1 is absent SLX4 nuclease 

excises the t-loop resulting in rapid telomere shortening (Vannier et al., 2012). 

RTEL1 mutations have also been associated with a clinically severe form of DKC 

known as Hoyeraal-Hreidarsson syndrome (HHS) (Ballew et al., 2013). Associated 
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with t-loop formation is the 3’ overhang. Apollo, an interstrand cross-link repair 

nuclease is recruited by TRF2 to the telomere and is implicated in the telomere 

replication process (Chen et al., 2008). Depletion of Apollo, disruption of its 

nuclease activity or removing its ability to interact with TRF2 leads to loss in the 

3’ overhang (Wu et al., 2012). Alternate splicing of Apollo, resulting in an 

aberrant form of the protein, has been associated in a patient with HHS 

suggesting that other mutations in Apollo may be responsible for other 

telomeropathies (Touzot et al., 2010). Other mutations which result in defective 

telomere replication have also been identified. The CST complex plays a key role 

in resolution of stalled replication forks during telomeric DNA replication and C-

strand fill-in after telomerase activity during DNA replication. Mutations in 

CTC1, a component of the CST complex, have been associated with Coats Plus 

syndrome which is another severe and rare telomeropathy (Anderson et al., 

2012).  

Understanding the underlying biology that leads to oncogenesis, cancer 

progression and telomere associated diseases is essential. While there are many 

therapies under development targeting telomeres and telomerase in cancer 

(Yaswen et al., 2015), current therapy for telomere associated diseases such as 

DKC relies on organ or bone marrow transplants (Isoda et al., 2013; Young, 

2012). Therefore further study of telomere dysfunction in cancer models and 

mutations which lead to telomeropathies is essential. Through further 

investigation of telomere biology we should be able to characterise key 

regulatory and signalling pathways and enable identification of targets for 

further therapeutic development. 
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1.4. Aims and Objectives 

Telomere biology and regulation of telomere dysfunction is a highly complex 

process involving many biological pathways and signalling processes. It is known 

that telomere regulation is involved in oncogenesis and a range of telomere 

associated diseases. The overall goal of this project is to improve our 

understanding of telomere biology, its importance in cancer and disease and 

build a picture of the overall biological landscape in the context of telomere 

dysfunction. This will be achieved through a novel microarray visualisation and 

analysis strategy focusing on network-based analysis rather than gene-based 

analysis. Gene-based analysis tends to produce lists of genes or single genes 

which may have biological significance in a particular pathway. Many databases 

and tools help to verify a posteriori whether genes known to co-operate in a 

biological pathway are found in a list of selected genes. Basic statistical analysis 

then enables determination of whether a pathway is over-represented in the list, 

and whether it is over or under-activated. However, I would argue that 

introducing information on biological pathways at this point in the analysis 

process sacrifices statistical power to the simplicity of the approach. For 

example, a small but coherent difference in the expression of multiple or all 

genes in a pathway should be more significant than a larger difference occurring 

in unrelated genes. Therefore I propose that utilisation of a priori pathway 

knowledge during gene expression analysis is a more effective and simple 

approach to analysis of lists of genes. By taking a network focused approach it is 

possible to simplify the biological interpretation of microarray data and identify 

biological processes for further investigation. 

First a new methodology will be developed in order to better visualise and 

interpret data comprised of gene lists followed by validation using test data sets 

(Chapter 3). Next the methodology will be used on a new data set to investigate 

the role that specific genetic lesions have in the regulation of telomere 

dysfunction induced by telomere uncapping and to identify candidate pathways 

for further analysis (Chapter 4). Then a candidate pathway (DNA Mismatch 

Repair) will be further characterised and specific mechanisms of action 

investigated (Chapter 5). Finally the methodology will then be used to 
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characterise alternative methods of telomere dysfunction and the synergistic 

effects of telomerase inhibition and hypoglycaemia, an environmental telomere 

dysfunction trigger identified by our group (Chapter 6).   
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Chapter 2: Materials and Methods 

2.1. Materials 

2.1.1. Viruses 

Adenovirus Ad-hTRmut was supplied by Qbiogene and generated using the 

AdEasy system (He et al., 1998). Ad-hTRmut  is based on AU5-hTer  (template: 5’ 

UAUAUAUAUAA) described by Kim et al. where the WT template (5’ 

CUAACCCUAAC) was modified by site directed mutagenesis (Kim et al., 2001).  

All vectors were amplified on 293 cells and purified and quantified using BD 

Bioscience AdenoX virus purification and rapid titre kits according to the 

manufacturer’s instructions. 

2.1.2. Plasmids 

Reporter pGL3-hTERT contains the firefly luciferase gene from pGL3 (Promega) 

driven by the hTERT promoter. 

Reporter pLightSwitch-cMyc was supplied by SwitchGear genomics (S719321) and 

contains the firefly luciferase gene driven by the cMyc promoter. 

2.1.3. Antibodies 

Table 2.1. List of Antibodies. 

Antibody Supplier Cat. Number 

Anti-TRF2 mouse monoclonal IgG Abcam ab13579 

Anti-CDK2 rabbit monoclonal IgG Cell Signaling Technology 2546 

Anti-MSH2  rabbit polyclonal IgG Abcam ab16833 

Anti-MSH6 rabbit monoclonal IgG Abcam ab92471 

Anti-MLH1 rabbit monoclonal IgG Abcam ab92312 

Anti-ERK rabbit polyclonal IgG Santa Cruz Biotechnology sc-93 

Anti-rabbit IgG, HRP-lined Cell Signaling Technology 7074 

Anti-mouse IgG, HRP-lined Cell Signaling Technology 7076 
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2.1.4. Oligonucleotides 

2.1.4.1. qPCR Primers 

Table 2.2. List of qPCR Primers 

Primer Sequence Supplier 

Telomere 
Forward 

5'-CGGTTTGTTTGGGTTT 
GGGTTTGGGTTTGGGTTTGGGTT 

Sigma 

Telomere 
Reverse 

5'-
GGCTTGCCTTACCCTTACCCTTACCCTTACCCT
TACCCT 

Sigma 

hTERT Forward 5'-CTGCTGCGCACGTGGGAAGC Integrated DNA 
Technologies 

hTERT Reverse 5'-GGACACCTGGCGGAAGGAG Integrated DNA 
Technologies 

hTR Forward 5'-CTAACCCTAACTGAGAAGGGCGTA Sigma 

hTR Reverse 5'-GGCGAACGGGCCAGCAGCTGACATT Sigma 

p21 Forward 5'-GCTTCATGCCAGCTACTTCC Sigma 

p21 Reverse 5'-AGGTGAGGGGACTCCAAAGT Sigma 

p300 Forward 5'-ACAAATACTGCTCCAAGCTC Sigma 

p300 Reverse 5'-TAATAAGGGCATCACGCGG Sigma 

GAPDH Forward 5'-ACCACAGTCCATGCCATCAC Sigma 

GAPDH Reverse 5'-TCCACCACCCTGTTGCTGTA Sigma 

 

2.1.4.2. siRNA 

siRNA for target genes MLH1, MSH2 or Non-targeting were all SMARTpool: ON-

TARGETplus supplied  by Dharmacon.  
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2.2. Methods 

2.2.1. Tissue Culture 

Human cell lines HCT116 WT, HCT116 p21-/- and HCT116 p53-/- (colon carcinoma) 

were maintained in RPMI1640 supplemented with 10% fetal bovine serum (FBS), 

1x L-Glutamine and incubated in 5% CO2. p21-/- and p53-/- are both derived from 

HCT116 WT and are homozygous knockouts for p21 and p53 respectively. Glucose 

restriction experiments were carried out by Dr Alan Bilsland using glucose free 

RPMI1640 supplemented with 10% FBS. 

2.2.2. Long term culture with telomerase inhibitor 

GRN163L 

Cells were seeded into T75 flasks at 5x10^4 cells/flask on day 0. GRN163L and 

controls were added 3h post seeding to a final concentration of 5µM. Cultures 

were retreated on day 4. On day 7 the cultures were trypsinised, counted and 

reseeded at 5x10^4 cells/flask. 3h post seeding the cultures were treated with 

GRN163L and controls to a final concentration of 5µM. Cell counting was carried 

out manually using a haemocytometer. Treatment and counting schedule was 

then maintained at the same frequency over the time course. Three 

independent cultures were maintained for each cell line. 

2.2.3. xCELLigence: Real-time growth analysis 

System was blanked by adding 50 ul media to all wells of a 96-well E plate 

(Roche) prior to seeding. Cells were then seeded at 1000 cells per well. The viral 

titration of 5000ifu/cell was added 24 hours later. The system was set to record 

cell index every 6 hours for 5 days post infection. Three biological replicates 

were performed for each cell line with 3 technical replicates in each biological 

replicate. 
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2.2.4. Senescence Associated β Gal 

5x10^5 cells were seeded 24 hours into T75 flasks prior to treatments. Cells 

were exposed to Ad-hTRmut at the IC50 determined for each cell line (Figure 

4.1C) for 2 or 5 days prior to reseeding in 6 well plates at 5x10^4 cells per well 

followed by staining for SA β Gal. For long term culture with GRN163L, cells 

were seeded into 6 well plates at time of reseeding during the cumulative 

population doubling experiment. The SA β Gal method described by Dimri et al. 

was followed (Dimri et al., 1995). Three biological replicates were performed for 

each cell line with 3 technical replicates in each biological replicate. 

2.2.5. MTT viability assay 

Cells were seeded in triplicate 96-well plates 24 hours prior to treatments at 

1000 cells per well. Cells were exposed to a titration of virus for 5 days prior to 

MTT assay. MTT reduction assays were performed using Softmax Pro 4.6 software 

(Molecular Devices Ltd.). For the siRNA experiments cells were transfected 24 

hours post seeding with 30nM ON-TARGETplus SMARTpool siRNA (Dharmacon) 

using Lipofectamine2000 (Life Technologies) at a ratio of 1µl LF2000 per 3pmol 

siRNA. 24 hours post transfection cells were exposed to Ad-hTRmut at the IC50 

determined for each cell line (Figure 4.1C) for 5 days prior to MTT assay. Three 

biological replicates were performed for each cell line with 3 technical 

replicates in each biological replicate. 

2.2.6. ChIP and Telomere qPCR 

Cells were seeded into T75 flasks at 5x10^5 cells per flask and then treated 24h 

later with Ad-hTRmut at the IC50 determined for each cell line (Figure 4.1C). 

After 2 days treated or untreated cells were crosslinked in 1% formaldehyde at 

room temperature with mild agitation. After 15 min, 0.125 M glycine was added 

and the cultures were agitated for another 5 min. Adherent cells were scraped 

off of the culture dishes with cold PBS and pelleted at 1500 rpm for 4 minutes. 

Cells were washed in cold PBS and re-suspended in lysis buffer 1% SDS, 10 mM 

EDTA, 50 mM Tris (pH 8.0). The cells were lysed on ice and then sonicated to 

shear the chromosomal DNA. Lysates were pre-cleared with salmon 
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sperm/Agarose A protein slurry (Millipore) for thirty min and the TRF2 antibody 

was added to the lysate plus IP dilution buffer (0.01% SDS, 1.1% Triton X-100, 1.2 

mM EDTA, 16.7 mM Tris [pH 8.0], 167 mM NaCl), and the tubes were rotated 

overnight at 4°C. Salmon sperm/Agarose A protein slurry was then added to the 

tubes for two hours, centrifuged and then liquid was aspirated. The beads were 

washed with successive solutions of low salt wash buffer (0.1% SDS, 1% Triton-

X100, 2 mM EDTA, 20 mM Tris [pH 8.0] and 150 mM NaCl), high salt wash buffer 

(0.1% SDS, 1% Triton X-100, 2 mM EDTA, 20 mM Tris [pH 8.0], 500 mM NaCl), 

LiCl2 wash buffer (250 mM LiCl2, 1% NP-40, 1% sodium deoxycholate, 1 mM EDTA 

and 10 mM Tris [pH 8.0]) and TE. Protein complexes were eluted off of the beads 

with a 1% SDS/TE solution at 65° and de-crosslinked at 65°C. After de-

crosslinking, 2 μl of RNAse (0.5 mg/mL) was added to each sample and incubated 

for 1 hour at 37°C. Phenol:Chloroform:Isoamyl Alcohol (Sigma) was added to 

each sample and inverted for 2 minutes. Samples were then spun down and top 

layer transferred to a fresh tube. DNA was then precipitated by adding 100% 

ethanol and pelleted by centrifugation for 10 minutes at 13,000 rpm. Pellets 

were then washed in 70% ethanol. The resulting DNA pellets were re-suspended 

in deionised water. Telomeric DNA was then quantified by qPCR using the 

method described by Panero et al. using Telomere Forward and Telomere 

Reverse primers (Panero et al., 2015). 

2.2.7. Western Blotting 

Cells were seeded in 6 well plates at 5x10^5 cells per well 24 hours prior to 

treatments. Protein was extracted by lysing the cells in CHAPS lysis buffer on ice 

for 20 minutes followed by centrifugation and transfer of supernatant to a fresh 

tube (Millipore). Protein concentrations were estimated at OD595 using the 

BioRad protein assay (BioRad Laboratories Ltd, Hemel Hempstead, UK). 15µg 

protein per lane was then run on a 4-12% Bis-Tris Gel (Life Technologies) at 200V 

for 45 minutes. Proteins were transferred to a nitrocellulose membrane by 

electroblotting at 20V for 1 hour. Membranes were incubated in blocking 

solution (5% Marvel/PBS-0.2% Tween) overnight at 4ºC. Membranes were then 

incubated with primary antibody (in blocking solution) for 2 hours at room 

temperature, washed 3 times for 10 minutes in PBS-T, incubated with 
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appropriate secondary antibody (in blocking solution) for 1 hour at room 

temperature and then washed 3 times in PBS-T. Detection was carried out by 

applying ECL (GE Healthcare) to the membrane and then imaged with a G:Box 

system (Syngene). Three biological replicates were performed for each cell line 

with 1 technical replicates in each biological replicate. Representative blots 

were chosen for presentation in the appropriate results sections. 

2.2.8. Microarray analysis and gene list generation 

2.2.8.1. GeneSpring array data handling and GeneGo process 

network analysis  

Cells were seeded in 6 well plates 24 hours prior to treatments. RNA was 

isolated with the NucleoSpin II Total RNA Isolation kit (Machery-Nagel) according 

to manufacturer’s instructions and RNA concentration quantified by NanoDrop. 

RNA samples were labelled using the One-Color Microarray-Based Gene 

Expression Analysis Low Input Quick Amp Labelling kit and hybridised to Agilent 

Whole Human Genome (4x44K) arrays according to the manufacturer’s 

instructions. All experiments were performed in triplicate (biological replicates) 

with a single array per biological replicate. Prior to further analysis the quality 

control data for each array was assessed as per the manufacturer’s instructions. 

Only arrays which passed all quality control metrics were taken forward. Where 

arrays failed, additional biological replicates were performed as required. Data 

was extracted using Agilent Feature Extraction software version 8.1 (Agilent 

Technologies) and imported into GeneSpring GX 7.3.1 (Agilent Technologies) for 

normalisation and statistical analysis. Intra-array normalisation was carried out 

using the 75th percentile for each microarray. Prior to further analysis the 

quality of the biological replicates was assessed by principal component analysis. 

Of the experiments performed none had to be rejected and repeated. Significant 

differences in expression between control and treated cells were determined 

using a paired t-test and Benjamini and Hochberg false discovery rate multiple 

testing correction of 5%. IDs with a p<0.005 were selected for further analysis. 

The lists produced were all within the range of 500-1000 total IDs. The filtered 

ID lists were analysed by the MetaCore (Thomson Reuters) process networks 

algorithm. The process networks algorithm looks for IDs in the provided list and 
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matches them against an ontology of biological process networks within 

MetaCore, returning the most significant networks. The list of process networks 

were then exported to Tableau 8 (Tableau Software) for further visualisation and 

analysis. This process is detailed in Chapter 3. 

2.2.8.2. MetaCore network building 

p21, MSH2 and MSH6 were entered as a manual list in the MetaCore “build 

network from list” section. The Auto expand network building algorithm was 

then run under default settings (50 network nodes and “use canonical pathways” 

selected). 

2.2.8.3. Validation of microarray data 

Initial validation of microarray data was achieved through assessment of the 

individual array quality control metrics described in the manufacturer’s 

instructions. Arrays which did not meet these quality control metrics would be 

rejected. However, in the experiments performed within this thesis all arrays 

passed this quality control step. This was followed by assessment of the sets of 

biological replicates in GeneSpring through principal component analysis. At this 

step outliers would be rejected, however no sets of biological replicates had 

outliers significant enough to be rejected within the experiments described in 

this thesis. During in silico analysis, enriched networks were determined through 

process network ontology analysis (PNO) which is based on a curated database of 

networks within GeneGo (Chapter 3). In order to further validate the networks 

identified a network building approach was also applied to each data set. This 

approach used the default stepwise network building algorithm in GeneGo which 

looks for direct interactions between genes in the list provided. This was used to 

confirm that the networks identified through the ontology analysis were in 

concordance with those identified through a secondary network building 

approach. Once specific networks were identified for further experimental 

investigation validation was performed. Specifically, a number of key mRNA 

expression changes were verified by qPCR. Further to this, the protein levels 

were also assessed via Western Blotting. Methodology used to perform this 

validation is described in this methods chapter. 
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2.2.9. TeloTAGGG Telomere Length Assay 

Cell pellets were obtained during the long term culture at cell reseeding cycles. 

DNA was then extracted using the QIAamp DNA Mini Kit (Qiagen) as in the 

manufacturer’s instructions. Sharon Burns carried out the TeloTAGGG assay for 

telomere length as in the manufacturer’s instructions. 1 µg genomic DNA from 

cell pellets was digested with HinfI/RsaI. Digestion products were separated by 

gel electrophoresis alongside DIG-labelled molecular weight markers and blotted 

onto positively charged nylon membrane (Roche Diagnostics). Membranes were 

UV cross-linked, baked at 120°C and washed in 2xSSC solution. Hybridisation of 

the DIG-labelled telomeric probe was performed using buffers and probe 

provided. Finally, membranes were washed, probed with alkaline phosphatase 

conjugated anti-DIG and exposed to the CDP-star substrate. All Blots were 

imaged using the G:Box system (Syngene).  

2.2.10. qPCR expression analysis 

Cells were seeded into T75 flasks at 5x10^5 cells per flask and then treated with 

virus 24 hours later. Samples for RNA extraction were taken 2 and 5 days post 

infection and RNA was isolated with the NucleoSpin II Total RNA Isolation kit 

(Machery-Nagel) according to manufacturer’s instructions. cDNA was produced 

using 1ug input RNA with the GeneAmp RNA PCR Core Kit (Applied Biosystems). 

Q-PCR was performed using DNA Engine Opticon 2 equipment and software 

(BioRad). SYBR green was used as fluorophore (ThermoFisher). Optical read 

temperatures were optimised to exclude primer dimers. 

2.2.11. Luciferase promoter assay 

Cells were seeded into 96 well plates at 1000 cells per well then transfected 24 

hours later with 250ng pGL3-hTERT or pLightSwitch-cMyc reporter plasmid with 

superfect at a ratio of 2.5:1 superfect:DNA. Virus was added 3 hours post 

transfection at the IC50 determined for each cell line (Figure 4.1C). The cells 

were incubated for 48 hours and then luciferase activity was determined using 

luciferase assay reagents according to the manufacturer’s instructions 
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(Promega). Three biological replicates were performed for each cell line with 3 

technical replicates in each biological replicate. 

2.2.12. TRAP assay for telomerase activity 

The TRAPeze XL kit was used for TRAP assay according to the manufacturer’s 

instructions (Millipore). Cell pellets were lysed in CHAPS lysis buffer and protein 

concentrations estimated by Bio-Rad assay (BioRad). 0.5 µg protein was mixed 

with TRAPeze reaction mix containing TS primer, fluorescein labelled RP primer, 

control template and sulforhodamine labelled control K2 primer. Each assay 

included no-telomerase, no-Taq, and heat- treated controls. Extension products 

were generated at 30°C followed by Q-PCR detection using Chromo4 equipment 

and software (BioRad). Total product generated was measured against TR8 

standards and normalised to the ROX internal control. Three biological replicates 

were performed for each cell line with 1 technical replicates in each biological 

replicate. 

2.2.13. Statistical Analysis 

For statistical analysis, unpaired, two-tailed Student’s t-tests were used and 

carried out in Microsoft Excel. P values of <0.05 were considered significant. 
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Chapter 3: A novel methodology for visualisation 
and analysis of data sets comprised of gene lists 

3.1. Introduction 

Traditionally, research approaches in biology focus on one or a few genes at a 

time. However, due to advances in various technologies such as expression 

microarrays and bioinformatics analysis techniques it is possible to 

simultaneously measure genome-wide changes under various biological 

conditions and timeframes. This results in the generation of large gene lists and 

vast total data sets of which interpretation and visualisation is still a challenging 

task. Fortunately, over the last few decades there have also been advances in 

the bioinformatics methods and public databases used to interrogate these data 

sets making it possible to draw conclusions and identify relevant biology. Many 

enrichment tools have been developed in order to assist in this process in order 

to address the problem is analysing such large data sets. For example, in 2008 

Huang et al. carried out a review of 68 of these enrichment tools, highlighting 

how quickly the field has grown and the diversity of tools available in assisting 

investigators in analysing their data sets (Huang da et al., 2009). 

However, although enrichment analysis approaches and tools have developed 

significantly over the years, visualization and interpretation of these large data 

sets is still a challenging task. Although tools are available to visualise individual 

data sets or small groups of data it is still challenging to efficiently compare a 

wider range of data sets and query them in a sensible manner. A wide range of 

software tools have also been developed to assist in visualization. However, 

while some are fairly mature, such as molecular graphics (O'Donoghue et al., 

2010b) others are less so, such as visualisation of genomes (Nielsen et al., 2010). 

Also, as software has advanced so has the hardware, to the point at which many 

bioinformatics analysis techniques can be carried out with a standard personal 

computer making it an accessible and useful option for many investigators. 

Integration of a variety of visualization tools is a desirable goal for investigators 

working with large data sets. Modern visualization tools, such as Jalview, are 

often integrated with remote databases that allow for visualizations that 
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integrate data from multiple sources (Waterhouse et al., 2009). In addition, 

many of these tools are designed in order to integrate directly with other 

visualization and analysis tools. For example, it is possible to visualise multiple 

sequence alignments whilst comparing the corresponding three dimensional 

structures (O'Donoghue et al., 2010b; Procter et al., 2010) or of a network with 

corresponding heat maps, profile plots or phylogenetic trees and dendrograms 

(Gehlenborg et al., 2010). However, many of these integrated visualizations are 

limited in their ability to compare multiple data sets efficiently and easily. 

As our lab generated array data, it became essential to manage these data in a 

way which allowed for multiple data sets to be easily retrieved and compared so 

that meaningful analysis could be made. Traditional microarray expression 

analysis often focuses on identifying small subsets of genes which may play a 

role in a specific biological process (Huang da et al., 2009). However, this 

approach is limited in that the genes identified may not be directly connected in 

any kind of pathway. We desired a method which allowed for identification of 

specific pathways within our data sets, rather than simply lists of genes. 

Previous work within our group has been to utilise MetaCore, a database and 

software package for analysis of gene lists, in order to analyse our data sets 

(Bilsland et al., 2009; Ekins et al., 2006). In order to develop our analysis 

methods further my approach has been to use an existing functional ontology 

analysis available within MetaCore, called the process network ontology (or PNO) 

followed by a novel visualisation and analysis method. This has allowed us to 

extract meaningful conclusions primarily from microarray expression data but 

also from other gene list sources. The process network ontology is made up of 

169 networks covering 23 top-level biological processes shown in Table 3.1, such 

as Cell Cycle and DNA damage, which are curated and updated based on current 

literature. The goal was to develop a workflow and visualisation process that 

would enable accurate and time efficient comparisons of experimental array 

data within our database as a whole. It was also desired that the methodology 

could be flexible in order to be adapted to other data sets involving large lists of 

genes. 
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3.2. Results 

3.2.1. Novel expression analysis methodology enables 
identification of specific pathways within data sets 

In order to maintain consistency between data sets so that comparative analysis 

could be made, a workflow was developed for data handling and analysis shown 

in Figure 3.1. For internal data sets, expression data was generated using the 

Agilent 44k whole genome microarray platform in triplicate. The data generated 

was then taken into GeneSpring GX12 for data normalisation, quality control and 

statistical analysis. This produced filtered gene lists based on a significant p 

value (such as p<0.05) and optionally, fold change, for further analysis. External 

data could be integrated at this point; in the case of raw data, or directly into 

the next step of analysis. The novel analysis workflow could then be performed 

from this point on. First the gene list is processed in MetaCore where functional 

enrichment analysis is performed on the list comparing it against the process 

network ontology (or PNO). This analysis returns a list of 169 networks, covering 

23 top-level biological processes shown in Table 3.1, ordered by p value. This list 

is then entered into a database along with all other PNO data generated. After 

this point data is visualised in Tableau, a software package that allows real time 

visualisation of database information in a variety of graphical formats. During 

visualisation, differentially enriched biological processes and networks are 

identified which can be further investigated. The data can also be further 

processed into a clustering diagram to directly quantify the similarity between 

different data sets. 
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Figure 3.1. Novel workflow for gene list analysis focusing on network and pathway 

identification. 
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Processes Number of process 

networks 

Apoptosis and survival 10 

Autophagy 1 

Blood coagulation 1 

Cell adhesion 12 

Cell cycle 11 

Chemotaxis 1 

Cytoskeleton remodelling 6 

Development 20 

DNA damage 5 

Immune response 10 

Inflammation 21 

Muscle contraction 2 

Neurophysiological process 11 

Proliferation 3 

Protein folding 4 

Proteolysis 4 

Regulation of metabolism 1 

Reproduction 10 

Response to hypoxia and 

oxidative stress 

2 

Signal transduction 17 

Transcription 4 

Translation 5 

Transport 8 

Table 3.1 MetaCore process network ontology. 

Each process consists of a set of curated signalling networks which are based on current literature 

and updated quarterly. 
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Shown in Figure 3.2 is a more detailed diagram of the visualisation process 

where three HCT116 isogenic cell lines (Cell line A: WT, Cell line B: 21-/- and Cell 

line C: p53-/-) are being compared after induction of telomere dysfunction by 

comparing hTRmut treated samples with mock infected samples. Figure 3.2A 

demonstrates the top-level profile view generated in Tableau. Red rectangles 

are networks where p<0.05 indicating significance while light green to dark 

green are the range from p>0.05 to p = 1. At this stage it is possible to include 

additional data sets in the comparison as desired. For example, if there was a 

time course carried out it would be possible to compare time points for a single 

cell line, compare a single time point for multiple cell lines (as shown here) or 

any combination desired within the interface. This makes is quick and efficient 

to bring together multiple data sets for interpretation and analysis. Once a 

comparison is chosen it is then possible to “zoom” further in to the data set in 

multiple steps. The first step is shown in Figure 3.2B. In this example the Cell 

cycle top-level process was identified as having a number of differentially 

enriched processes between the different cell lines. Further assessment, with 

the specific network names shown, revealed that Cell Line A demonstrated 

enrichment for almost all of the networks available for cell cycle, Cell Line B 

had fewer enriched networks but did share two with Cell Line A, and Cell Line C 

only showed enrichment in a single network which was not enriched in the other 

two cell lines. The next step of increasing resolution on the data is shown in 

Figure 3.2C which shows the cell cycle core network. At this point it is possible 

to assess specific expression changes within the network and identify possible 

signalling pathways for further investigation. Finally, shown in Figure 3.2D, the 

approach of clustering responses based on significance of overlap in affected 

process network profiles was adopted and implemented by Dr Alan Bilsland. The 

number of significant process networks affected in each column in Figure 3.2A 

and the number shared in each pairwise comparison were used to generate 

cumulative hypergeometric probabilities for each pair, which was used as an 

unweighted average distance metric. This allows the level of similarity between 

profiles to be quantified and visualised in a clustering diagram. 
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Figure 3.2. Visualisation and analysis of MetaCore process network ontology profiles. 

(A) Process network profile of all 169 networks comparing three isogenic  HCT116 cell lines after 

induction of telomere dysfunction in a heatmap format. Significant process networks (p<0.05) are 

indicated as red in the heat map. (B) Subset view showing all the process networks in the top level 

biological process cell cycle. (C) Cell cycle core as an example of an individual process network as 

output of the methodology. (D) Clustering of process network profiles on cumulative 

hypergeometric probability of pairwise overlap. 
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3.2.2. Characterisation of mechanism of action of a novel 
senescence inducing drug 

This work was carried out in collaboration with Dr Alan Bilsland, University of 

Glasgow and published in Neoplasia (Bilsland et al., 2015). 

One of the major aims of the methodology was to allow for convenient and 

meaningful comparisons between different data sets within the database. In 

order to test my workflow model I worked with Dr Alan Bilsland to assist him in 

screening of senescence inducing drugs. Dr Alan Bilsland carried out a novel 

screening approach using neural network based learning algorithms to screen a 

large database of drugs for potential senescence inducing targets. Dr Bilsland 

reasoned that identification of enriched libraries would be beneficial before 

initiating a screening campaign and that virtual screening might identify such an 

enriched set. Bilsland et al built profiles of differentially affected biological 

process networks from expression data obtained under induced telomere 

dysfunction conditions in colorectal cancer cells and matched them to a panel of 

17 protein targets with confirmatory screening data in PubChem. They then 

trained a neural network using 3517 compounds, identified as active or inactive, 

against these targets. The resulting classification model was used to screen a 

virtual library of ~2M lead-like compounds. One hundred and forty-seven virtual 

hits were acquired for validation in growth inhibition and senescence-associated 

β-galactosidase assays. Among the found hits, a benzimidazolone compound, CB-

20903630, had low micromolar IC50 for growth inhibition of HCT116 cells and 

selectively induced senescence-associated β-galactosidase activity in the entire 

treated cell population without cytotoxicity or apoptosis induction. Growth 

suppression was mediated by G1 blockade involving increased p21 expression and 

suppressed cyclin B1, CDK1, and CDC25C. In addition, the compound inhibited 

growth of multicellular spheroids and caused severe retardation of population 

kinetics in long-term treatments. 

During the screen a novel compound was identified, CB-2090363, which induced 

SA-βGal staining in HCT116 cells and reduced cell viability over a short time 

course indicating senescence induction. CB-20903630 contains a kinase hinge-
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binding motif (Liao, 2007), suggesting that the compound may target a cell-cycle 

related kinase. Expression profiles were previously generated of IMR90 

fibroblasts treated with 13 well-characterised kinase inhibitors shown in Table 

3.2 which induce heterochromatin foci. Most of this inhibitor panel mediate 

effects on the cell cycle in cancer cell lines and induce both apoptosis and 

senescence responses. Dr Alan Bilsland provided me with the expression profile 

dataset which I then compared using the PNO analysis method in order to 

identify affected biological pathways which may then inform on the mechanism 

of action of the compound (Figure 3.3A). These expression profiles were also 

compared against a “target profile” which was produced by confirmatory 

PubChem compound screens identified against a panel of 17 protein targets 

suitable to build a “senescence-like” profile. The heatmap demonstrates that a 

number of the compounds share similarity with the target profile with 

specifically enriched networks in Cell Cycle and DNA Damage response which 

would be expected under senescence. To then identify any similarity of the 

compound CB-2093630 to any of these kinases the compound was included in the 

previous analysis and a clustering diagram was produced using the 

hypergeometric analysis method. The resulting diagram is shown in Figure 3.3B 

and demonstrates that the profile for CB-2093630 clustered away from the 

kinases in the panel. This could indicate a mechanism of action for this 

compound which is not strongly dependent on the primary targets of the other 

inhibitors. In the group of kinase inhibitors with which CB-20903630 was being 

compared, cell cycle pathways, cell adhesion, and developmental and 

cytoskeletal processes were affected. Two AKT inhibitors (AKTV and AKTVIII) 

were also present in the analysis, alongside two PI3K inhibitors (PI103 and 

GDC0941). AKTV/GDC0941 clustered together and adhesion, inflammation, 

development, and proteolysis processes are strongly represented in this group. 

MAPK inhibitor MK2A clustered with Src-family inhibitor SU6656 and with 

AuroraII, primarily affecting DNA damage, cell cycle, and apoptosis processes. 

The CB-20903630 process network profile clustered away from all others, 

possibly indicating that the compound mechanism affects different pathways in 

normal versus cancer cells. Inflammatory processes were also highly represented 

in CB-20903630 treated cells. However, CB-20903630 treated cells also scored 

highly in a range of development and proteolysis processes shared by the 
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PI3K/AKT agents, making the observed profile more similar to these. Thus, 

different pathways may be affected by the compound in normal versus cancer 

cells and this analysis methodology allowed for identification of a range of 

potential pathways for further research. Overall the pathways identified were in 

concordance with pathways one would expect to find enriched in response to 

senescence inducing stimuli.  
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Figure 3.3. Comparison of novel senescence inducer CB-2090363 against a range of kinase 

inhibitors. 

(A) MetaCore process network ontology analysis of selected kinase inhibitor compounds listed in 

Table 3.2. 3 independent RNA samples from DMSO versus compound treated cells were profiled 

on Agilent whole genome expression arrays. (B) Hypergeometric analysis of Figure 3.3A 

quantifying the similarity between the process network profiles including CB-209003630 treated 

cells.  
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Compound Class Targets Millipore 

# 

EGFR 4,6-dianilinopyrimidine EGFR 324674 

MK2A p-amidophenol MAPKAPK2a 475863 

PDGFR bis (1H-2-indolyl)-1-

methanone 

PDGFR/Flt-3 521230 

ZM1 Quinazoline Aurora A/B 189410 

JNKIX Thienylnaphthamide JNK2/3 420136 

AKTVIII Quinoxaline AKT1/2 124018 

PI103 Pyridinylfuranopyrimidine DNA-

PK/PI3K/mTOR 

528100 

CDK2IV Purine CDK2 < 

CDK1/4/5/7 

238804 

GDC0941 Thienopyrimidine PI3K 509226 

AKTV Tricyclic nucleoside AKT1/2/3 124038 

AuroraII Anilinoquinazoline Aurora A/B 189404 

RhoKIV Glycyl-

isoquinolinesulfonamide 

ROCK 555554 

SU6656 Indolinone Src/Fyn/Yes/Lyn 572635 

Table 3.2. Signal transduction inhibitors used in process network profile clustering. 
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3.2.3. Identification of pathways involved in the immortalisation 
process in T cells 

This work was carried out in collaboration with Dr Sofie Degerman, Umeå 

University and published in Neoplasia (Degerman et al., 2014). 

While the primary intent of the methodology was for analysis of expression data 

it was realised that it could be applied to most data sets involving lists of genes. 

In order to test this I collaborated with Dr Sofie Degerman and her group to 

assist in analysis of an alternative data set involving lists of differentially 

methylated genes. In this example methylation changes during the 

immortalisation process were analysed by comparing methylation state of cell 

lines over a time course during which growth crisis was bypassed. Over the time 

course, lists of genes which were differentially methylated were generated 

which could be compared and analysed by PNO analysis. The differential 

methylation (δ) was defined as the largest change between post- and pre-crisis 

samples in the cell cultures. CpG-sites with a δ greater than 0.4 or less than      

-0.4, were classified as differentially methylated (DM-CpG). Degerman et al 

investigated a model of spontaneous immortalization of T-cells to explore the 

role of genome-wide methylation in the immortalization process at different 

time points pre-crisis and post-crisis using high-resolution arrays. Degerman et 

all demonstrated that over time in culture there is an overall accumulation of 

methylation alterations, with preferential increased methylation close to 

transcription start sites (TSSs), islands, and shore regions. Methylation and gene 

expression alterations did not correlate for the majority of genes, but for the 

fraction that correlate, gain of methylation close to TSS was associated with 

decreased gene expression. Interestingly, the pattern of CpG site methylation 

observed in immortal T-cell cultures was similar to clinical T-cell acute 

lymphoblastic leukemia (T-ALL) samples classified as CpG island methylator 

phenotype positive (CIMP+). Degerman et all analysed data from 10 diagnostic 

pediatric T-ALL samples (7 CIMP+ and 3CIMP−) with two independently 

immortalised T-cell cultures (S3R and S4) using traditional array analysis 

clustering methods. Hierarchical clustering of the cell cultures and leukemias 

separated the CpGs into three clusters; cluster 1 in which de novo methylated 

CpGs in the immortal cells overlapped with methylated CpGs in CIMP+ T-ALL 
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diagnostic samples; CpGs in cluster 2 were de novo methylated in immortal cell 

cultures but less methylated in leukemia, and cluster 3 demethylated in 

immortal cell cultures but methylated in leukemia. Further to this they 

identified that there was a significant overrepresentation of Polycomb target 

genes (PCTGs) compared to random methylation in all clusters. However, the 

overrepresentation was most evident in cluster1 where 51% of the CpG sites 

were located in in PCTGs compared to 23%and 21% respectively, in clusters 2 and 

3. Furthermore, the majority (62%) of the shared CpG sites in immortal cell 

cultures and CIMP+ leukemias were located in CpG islands.  

Dr Degerman provided me with their list of differentially methylated genes from 

cluster 1 for further analysis in order to identify pathways for further 

investigation. Shown in Figure 3.4A is the initial profile generated by comparing 

PCTGs  (Lee et al., 2006), two independently immortalised T cell cultures S3R 

and S4 over at post crisis time points and CpG island methylator phenotype 

negative or positive cell lines (CIMP- or CIMP+). This initial comparison 

highlighted a number of overlapping biological processes and shared networks 

between profiles. The process networks of highest relevance were cell adhesion, 

cytoskeletal remodelling, development, and signal transduction processes 

(Figure 3.4B). Interestingly, a large set of genes in the Wnt signalling pathway 

became methylated during immortalization of cell cultures and in diagnostic 

CIMP positive leukaemia (Figure 3.4C). Overall the methodology allowed for 

novel comparison of gene lists produced from methylation data and provided 

candidate pathways for further analysis which may be involved in the 

immortalisation process.  
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Figure 3.4. Metacore process network ontology analysis of cellular processes affected by 

methylation. 

(A) MetaCore process network ontology analysis of differentially methylated CpG sites between 

post-crisis T cell cultures (S3R and S4) and CpG island methylator phenotype negative or positive 

cell lines (CIMP- or CIMP+). CIMP- (n=3) and CIMP+ (n=7) samples were grouped in the analysis 

whereas each time point are shown in for the cell cultures. Significant process (p<0.05) is indicated 

in red in the heat map. (B) The most highly enriched processes identified in the process network 

analysis. (C) WNT signaling genes representing a candidate process with many affected genes 

across all of the cell lines. The red thermometers represents 1) Polycomb target genes (PCTGs) 2) 

Shared CpG sites post crisis T cell cultures/CIMP+ T-ALL. 
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3.3. Discussion 

3.3.1. Novel methodology allows for discovery of new 
biology 

Traditional methodology typically identifies single genes or sets of genes for 

further investigation. It is then possible to verify a posteriori whether genes 

known to co-operate in a biological pathway are found in a list of selected 

genes. Basic statistical analysis then enables determination of whether a 

pathway is over-represented in the list, and whether it is over or under-

activated. However, I would argue that introducing information on biological 

pathways at this point in the analysis process sacrifices statistical power to the 

simplicity of the approach. For example, a small but coherent difference in the 

expression of multiple or all genes in a pathway should be more significant than 

a larger difference occurring in unrelated genes. Therefore I propose that 

utilisation of a priori pathway knowledge during gene expression analysis is a 

more effective and simple approach to analysis of lists of genes.  By using a 

network based ontology for analysis of our data sets it has been possible to 

identify specific pathways and signalling processes for further investigation in 

order to reveal new biology in an area of study. Another advantage of the 

methodology employed is that it expands on the base functionality of the 

MetaCore functional ontology enrichment by improving on visualisation of the 

data and the ability to compare multiple data sets in a clustering format. Within 

MetaCore, comparative analysis has to be re-run for any comparison that is being 

made. However, our method allows for multiple sets of data to be visualised in 

real time within Tableau software. This was demonstrated in two different data 

sets. Firstly with gene lists generated from gene expression microarray data and 

secondly from gene lists generated from methylation array data. In both cases 

the methodology allowed for comparison, visualisation and analysis of the gene 

lists in order to identify specific networks of interest for further study and to 

come to meaningful conclusions about the biology involved in each case.  

In the first example, the methodology allowed a novel senescence inducing 

compound to be compared with a range of kinase inhibitors with which it was 

thought may share a mechanism of action. Using traditional methodology, Dr 
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Bilsland would have been able to cluster the expression profiles for each of the 

kinase inhibitors and produce a similar clustering diagram as shown in Figure 

3.3B. However, this would have been based on clustering lists of genes rather 

than by clustering on networks of genes. Therefore, in order to identify 

mechanisms of action from such a data set further analysis would be required. 

By using a network focused approach this is simplified, as the data set 

intrinsically identifies networks of interest for further study.  Indeed, clustering 

during the PNO analysis method revealed that while many of the kinases in the 

panel did show similarity the drug compound of interest appeared to cluster 

away from the other kinases indicating that it may induce senescence through an 

alternative mechanism. In addition, specific networks were identified within the 

clusters for further analysis. For example, CB-20903630 treated cells scored 

highly in inflammation, development and proteolysis processes, some of which 

were unique to the CB-20903630 treated cell profile and could be a direction for 

further study. 

In the second example, the methodology was demonstrated to be flexible and 

applicable to gene lists generated from a different methodology. Using a 

traditional array analysis methodology, Degerman et al were able to identify 2 

clusters of genes within their data set and demonstrate regions of overlap 

between the cell lines examined in their study. They were also able to 

demonstrate at this stage a link between the immortalisation process and 

polycomb target genes (PCTGs). However, at this stage specific biological 

processes were not identified for further study or as a potential explanation for 

the results obtained. PNO analysis revealed that two spontaneously immortalised 

T cell lines had significant overlap in enriched networks with PCTGs and CIMP+ 

or CIMP- cell lines and enabled identification of specific biological processes that 

may be involved in the immortalisation process and be specifically associated 

with changes in methylation status of the cells. This analysis also suggested that 

genes which become methylated during the immortalisation process may be 

specific and that the processes affected by methylation are consistent across T 

cell lines. These shared processes were involved in cell adhesion, cytoskeleton 

remodeling, development and signal transduction. Of special notice was a high 

number of methylation altered genes in the Wnt signaling pathways. The reason 
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for this is unclear but indicates selectivity in the methylation targets. In addition 

the analysis helped to reveal that targets of the polycomb may be important in 

the immortalisation process and be preferentially methylated as a result. As 

methylation and the immortalisation process is not a well characterised area of 

research I could not confirm if the pathways identified were in concordance with 

current theory. However, the traditional methodology identified that there was 

51% of the CpGs in cluster 1 were PCTGs. Using the PNO method this remained 

consistent and at the network level there was a large amount of overlap 

between the PCTG list of networks and the list of networks generated for the 

S3R, S4, CIMP+ and CIMP- lists. Therefore, the methodology appears to produce 

results consistent with traditional methodology whilst providing specific 

information about biological networks which may be of value for future 

research. 

3.3.2. Areas for further development 

One weakness of the method used was that there were some bottlenecks in the 

workflow to steps which required manual handling of the data. The list of 

process network profiles generated in MetaCore had to be manually exported 

then parsed by an excel template to produce a formatted list which could be 

entered into a database before it could be queried and visualised in Tableau. 

The process, though relatively simple, could be rather time intensive, depending 

on the number of lists being processed. MetaCore now has a developer site 

where users can query their data directly via an application program interface 

(API). In theory, one could upload data to MetaCore and then query the data via 

the API automatically, removing the need to export manually, thus increasing 

the efficiency of the process while also reducing chances for user error. Also, in 

order to carry out the hypergeometric analysis and generate clustering diagrams 

the heat maps had to be compared by hand. They could then be run through a 

MATLAB script, produced by Dr Alan Bilsland, in order to generate the clustering 

diagrams. This step could also be automated in order to further streamline the 

process. 

Another limitation is in the ability to easily query public data bases for 

information, particularly for sourcing external data sets. There are many public 
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databases available which contain sets of expression data with which automated 

data retrieval could be implemented. Examples for public array databases 

include the Gene Expression Omnibus (GEO) and ArrayExpress (Barrett and 

Edgar, 2006a; Parkinson et al., 2007). There are also a range of other public 

databases for different data sets which may be compatible with our current 

database and complement the gene expression data set, such as protein-protein 

interaction data from the IntAct database (Hermjakob et al., 2004). However, 

whilst databases such as GEO are accessible and can be interacted with by non-

specialists thanks to web based tools and applications, the process still would 

require manual input into the database (Barrett and Edgar, 2006b). Similar to 

using API with MetaCore, many services have methods from which their 

databases can be queried automatically. GEO offers programmatic access to its 

database. Theoretically, it would be possible to develop a tool which could 

extract information, parse the data generated and incorporate it into our 

database in an automated fashion. 
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Chapter 4: Regulation of telomere dysfunction is 
influenced by genetic background 

4.1. Introduction 

Telomeres are regulated and affected by a wide range of biological processes, 

ranging from DNA damage signalling to metabolism and oxidative stress. Due to 

the many signalling routes engaged by the telomeres, under normal conditions it 

is challenging to experimentally identify key processes. Single mutations within 

the signalling pathways can lead to very different phenotypic outcomes. For 

example, yeast cells lacking taz1 (TRF1 and TRF2 human orthologue) are unable 

to recruit Crb253BP1 and do not initiate a DNA damage response after induction of 

telomere dysfunction (Carneiro et al., 2010).  However, by comparing the 

outcomes of specific mutations it is possible to further understand the complex 

processes that are engaged as a result of telomere dysfunction.  

Ad-hTRmut is an adenovirus construct which allows for expression of a mutant 

variant of hTR, the RNA template component of telomerase enzyme (Kim et al., 

2001; Mahalingam et al., 2011). When hTRmut is expressed in cells positive for 

telomerase activity it becomes incorporated into the telomerase enzyme and 

leads to the incorporation of mutations into the telomeric sequence. As the 

Shelterin proteins bind specific telomeric sequences this prevents these proteins 

from binding and protecting the telomeres. In turn this leads to telomere 

uncapping. Unprotected telomeres are exposed to endogenous DNA damage 

detection proteins and lead to signalling of many biological pathways, typically 

leading to cell cycle arrest (senescence) and/or apoptosis (Palm and de Lange, 

2008). However, when specific genetic lesions are present this can lead to 

alterations in the signalling and resulting regulatory responses to telomere 

uncapping. For example, p21 and p53 are known to play key roles in DNA 

damage signalling and cell cycle progression in response to telomere dysfunction 

(Salama et al., 2014). By using cell lines without these key genes and studying 

these changes in signalling it is possible to gain a better understanding of how 

telomere dysfunction is regulated in cancer cell lines. The aim of this chapter is 

to characterise the outcome of telomere dysfunction in isogenic cell lines 



65 

 

(HCT116 WT, p21-/- or p53-/-) after induction of telomere uncapping. This 

chapter will also identify specific pathways involved in telomere dysfunction for 

further analysis. 

4.2. Results 

4.2.1. Loss of p21 enhances sensitivity to telomere 
uncapping 

In order to characterise the effect of specific genetic lesions on the outcome of 

telomere uncapping, a panel of isogenic HCT116 cell lines were chosen: WT 

(Wild Type), p53-/- and p21-/-. The initial approach was to study the growth 

phenotype of these cell lines to identify any immediate differences in response 

to the induction of telomere dysfunction. First, the real time growth rate of the 

cells was measured using the xCELLigence platform (Roche) over a 144 hour 

period (Figure 4.1A). 5000 ifu/cell of Ad-hTRmut was added to the cells 24h post 

seeding and fold change in cell index from the 6h time point was measured. 

Variability in sensitivity to telomere uncapping by Ad-hTRmut can be seen across 

HCT116 p21-/-, p53-/- and WT cells. WT, p53-/- and p21-/- peaked at 14, 11 and 3 

fold increase in cell index respectively. However, the cell lines reached their 

peaks at different time points. WT and p53-/- both peaked at ~110 hours whereas 

p21-/- peaked earlier at ~90 hours. Overall, p53-/- and p21-/- cells were more 

sensitive to rapid telomere uncapping than WT. p21-/- cells demonstrated the 

greatest sensitivity with the lowest peak in growth over the time frame, slowest 

rate of growth and earliest peak in growth indicating that p21-/- cells are 

affected more quickly by telomere uncapping. 

A common outcome of telomere dysfunction is cellular senescence. To 

characterise the senescent population of cells after induction of telomere 

dysfunction an SA β Gal assay was carried out. This assay measures β-

galactosidase levels which is a senescence marker. Cells were treated with Ad-

hTRmut at the IC50 shown in Figure 4.1C. As shown in Figure 4.1B, there was no 

change in the senescent population of cells relative to mock infected cells in any 

of the lines at day 2 post treatment with Ad-hTRmut. However, by day 5 the 

senescent population had increased 7 fold in WT and p53-/- and 5 fold in p21-/- 
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cells. This may suggest weakened or delayed senescence signalling in p21-/- cells 

in response to telomere dysfunction triggered by Ad-hTRmut relative to the 

other lines. 

To further investigate the growth phenotype of the cells an MTT viability assay 

was carried out. In the MTT assay in Figure 4.1C this range of sensitivity was also 

observed. All cell lines responded to Ad-hTRmut in a dose dependent manner 

and WT, p53-/- and p21-/-had an IC50 of ~4800, ~3000 and ~420 ifu/cell 

respectively.  In order to confirm that the effects seen could be attributed to 

telomere uncapping a ChIP assay was performed for TRF2, a known Shelterin 

component binding to telomeric DNA. Day 2 post treatment with 5000 ifu/cell 

Ad-hTRmut, it was found that TRF2 binding to telomeric sequence was reduced 

significantly in all cell lines (Figure 4.1D).  
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Figure 4.1. Growth of cell lines after treatment with telomere dysfunction triggers. 

(A) HCT116 cell lines treated with 5000 ifu/cell of Ad-hTRmut over a short time course starting  at 

24 post seeding. (B) Senescent phenotype of HCT116 cell lines after treatment with Ad-hTRmut 

detected by SA B Gal staining. (C) MTT viability assay of cell lines treated with Ad-hTRmut. Cells 

seeded at 1000 cells/well prior to treatment with viral titration 24h later. MTT assay carried out at 5 

days post treatment. Four-parameter dose-response curves were and IC50 values were calculated 

in GraphPad Prism. (D) ChIP for TRF2 followed by qPCR for telomeric sequences represented as 

a % relative to the total input to the ChIP. (B, D ) p values were calculated by student t-test (*: 

p<0.05, ns: p>0.05). 
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4.2.2. Specific process network profiles are 
associated with each genetic background 

As the p21-/- background was found to be sensitive to telomere uncapping it was 

important to identify possible biological pathways responsible for the difference 

in sensitivity between the genetic backgrounds. Cell lines were treated with Ad-

hTRmut followed by microarray analysis on Agilent Whole Human Genome 

(4x44K) arrays. Intra-array normalisation was carried out using the 75th 

percentile for each microarray. Significant differences in expression between 

control and treated cells were determined using a paired t-test and Benjamini 

and Hochberg false discovery rate multiple testing correction of 5%. IDs with a 

p<0.005 were selected for further analysis. The filtered gene lists were then 

analysed by the process network enrichment analysis methodology (or PNO) 

described in Chapter 3. 

Figure 4.2A shows the overall profile of process networks in the HCT116 lines 

after Ad-hTRmut induced telomere dysfunction, demonstrating a number of 

uniquely significant networks in each cell line across a range of biological 

processes, whilst Figure 4.2B shows a subset of this profile after further 

filtration to remove processes with few significant networks across the cell lines. 

WT cells were found to have unique enrichment in cell cycle and DNA damage 

response process networks. p21-/- had enrichment in cell adhesion networks and 

p53-/- had enrichment in apoptosis and survival associated networks. In order to 

further quantify the similarity in the expression profiles a hypergeometric 

analysis of the process network profile was carried out (Figure 4.2C).  This 

analysis revealed that the WT and p21-/- profiles clustered together whilst the 

p53-/- profile was on its own branch. This suggests that while the p21-/- is more 

sensitive to telomere uncapping there is still enrichment in many similar 

networks to the WT cell lines. However, the p53-/- line has a different profile to 

the other two lines suggesting activation of different pathways in response to 

telomere dysfunction.  

Further analysis of the networks from the profile in Figure 4.1A highlighted a 

number of candidate pathways. WT appears to activate a typical DNA damage 

response. This is highlighted by down regulation of cell cycle components 
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downstream of the DNA damage signalling components ATM/ATR and Chk1/Chk2 

such as Cyclins A, B1, B2 and E.  p53-/- cells did not demonstrate significant 

changes in cell cycle networks but did demonstrate up regulation of death 

domain receptors and caspases within apoptotic signalling processes, suggesting 

apoptosis as a method of cell death. p21-/- cells demonstrated expression 

changes within a range of cell adhesion networks and did not show down 

regulation in spindle and centromere formation associated genes which were 

down regulated in other backgrounds.  

If additional time was available, further experiments would have been 

performed to assess the status of the cell lines, i.e. whether the cell lines were 

being driven towards senescence or apoptosis. For example, in the p53-/- cell 

line there was enrichment in apoptosis associated pathways, however this was 

not explored further. It could have been useful to assess the apoptosis status of 

p53-/- after induction of telomere dysfunction via flow cytometry. However, the 

focus was on identification of pathways for further analysis and apoptosis was 

not investigated further. 
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Figure 4.2. Process network enrichment analysis after treatment of HCT116 cell lines with 

Ad-hTRmut. 

(A) Profile view of all three lines post treatment where red rectangles are networks where p <0.05. 

(B) Profile view after filtering out processes with few/no significant networks. (C) Hypergeometric 

analysis of figure A quantifying the similarity between the process network profiles. 
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4.2.3. p21 is required for Cell Cycle and Mismatch 
Repair regulation 

The previous results suggested that Cell Cycle and DNA Damage processes are 

enriched in the WT background but not in p53-/- or p21-/- backgrounds. To further 

investigate this, specific networks were chosen for further analysis.  Figure 4.3A 

shows the full network for the cell cycle core process network. In the WT 

background (data shown) p21 was upregulated and a number of cyclins were 

down regulated indicating possible shut down of the cell cycle. However, in the 

p21-/- and p53-/- backgrounds there were no changes in cyclin expression levels. 

As a proxy, Cdk2 protein levels were also measured (Figure 4.3B). Cdk2 protein 

levels were reduced in the p21-/- background at day 2 and day 5 but not in the 

WT and p53-/- backgrounds. This could indicate a p21 independent form of cell 

cycle arrest in the p21-/- background whilst the WT and p53-/- cells showed no 

changed in cdk2 protein levels but appeared to down regulate cyclins in a p21 

dependent manner. Further to this, there was also a drop in expression of 

centromere and spindle formation associated genes in the WT background but 

not in the p53-/- and p21-/- lines. 
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Figure 4.3. Candidate process network: Cell cycle core. 

(A) Cell cycle core process network with WT expression data 2 days post hTRmut treatment. * 

Down regulation of cyclins suggests shut down of the cell cycle in response to telomere 

dysfunction, ** Down regulation of centromere and spindle formation associated genes.  (B) 

Western blot for Cdk2 with ERK loading controll in all cell lines after 2 or 5 days hTRmut treatment. 

U = Untreated, T = Treated. 
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Within the DNA Damage process the mismatch repair process network was 

enriched in the WT background but not in p53-/- or p21-/-. Figure 4.4A shows the 

full network for the mismatch repair process network. In the WT background 

(data shown) it can be seen that key MutSα components MSH2 and MSH6 are 

down regulated. This change was absent in the p53-/- and p21-/- backgrounds. To 

further investigate this MSH2, MSH6 and MLH1 were measured at the protein 

level after Ad-hTRmut treatment (Figure 4.4B). Although MLH1 showed no 

expression changes it was included as it plays an important role in mismatch 

recognition by the MutSα complex. MSH2 and MSH6 were down regulated in the 

p21-/- background after treatment but not the other two lines (although the 

signal for 53-/- in MSH2 was poor). MLH1 was unchanged in all lines. This 

indicates that in the WT background a drop in expression at day 2 does not have 

an immediate effect on the protein level by day 2 or day 5 whilst in the p21neg 

background there appears to be loss of the MutSα complex after treatment with 

hTRmut. This may indicate a role for p21 in the stability of the MutSα complex 

and implicates the mismatch repair pathway in regulation of telomere 

dysfunction. The role of the mismatch repair pathway is further investigated in 

Chapter 5. 
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Figure 4.4. Candidate process network: Mismatch Repair. 

A. Mismatch repair process network with WT expression data 2 days post hTRmut treatment. * 

Down regulation of MutS alpha complex components in WT which were unchanged in p21neg and 

p53neg backgrounds. B. Western blot for MSH6, MSH2 and MLH1 with ERK loading control in all 

cell lines after 2 or 5 days hTRmut treatment. U = Untreated, T = Treated. 
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4.2.4. Transient upregulation of hTERT may be 
associated with resistance to telomere dysfunction 

It was also hypothesised that differences in sensitivity between the cell lines 

may be due to differences in telomerase regulation. A pilot experiment was 

carried out using a hTERT-luciferase reporter plasmid to measure hTERT 

promoter activity in response to Ad-hTRmut (Figure 4.5A). hTERT promoter 

activity was increased 4 fold in the WT background after 2 days of Ad-hTRmut 

treatment but was not significantly up regulated in the other cell lines. WT was 

found to be significantly upregulated when directly compared with the p21-/- and 

p53-/- (p<0.05) whereas there was no significant different when comparing p21-/- 

with p53-/- (p>0.05).  In order to investigate this further hTERT mRNA expression 

levels were directly measured by qPCR 2 or 5 days after hTRmut treatment 

(Figure 4.5B). At day 2, hTERT mRNA had decreased significantly in the WT and 

p53-/- backgrounds but was unchanged in p21-/-. By day 5, hTERT mRNA levels 

were elevated 4 and 2 fold in WT and p53-/- lines respectively. In p21-/- cells 

hTERT appeared to be elevated by day 5, however the result was not significant. 

At day 5, WT was found to be significantly upregulated when directly compared 

with the p21-/- and p53-/- (p<0.05) whereas there was no significant different 

when comparing p21-/- with p53-/- (p>0.05). This indicates that telomere 

uncapping induces hTERT expression in WT and p53-/- backgrounds and p21-/- 

may be deficient in this response. 

Changes in expression of the RNA component of telomerase, hTR, can also lead 

to changes in telomerase activity (Feng et al., 1995). Therefore hTR expression 

levels after Ad-hTRmut treatment was also measured (Figure 4.5C). However, 

there were no significant changes in expression in hTR in any of the cell lines at 

either time point. Therefore, any role of telomerase is likely to be linked to 

hTERT rather than hTR. The next logical step was to assay telomerase activity in 

response to telomere uncapping (Figure 4.5D). Telomerase activity was 

measured by TRAP assay after Ad-hTRmut treatment of HCT116 cell lines. At day 

2, WT cells had significant upregulation of telomerase activity, however the 

effect was very small with only a 1.2 fold increase in activity. p53-/- and p21-/- 

did not show any change in telomerase activity at Day 2. However, by Day 5 

telomerase activity had decreased significantly in all cell lines, dropping to 0.6 
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fold in WT and p53-/- and  to 0.4 fold in p21-/-.  These results indicate that hTERT 

up regulation may be involved in regulation of telomere dysfunction 

independently of telomerase activity and that this effect is p21 dependent. 

 

Figure 4.5. Telomerase regulation in response to Ad-hTRmut treatment. 

(A) Luciferase assay for hTERT promoter activity 2 days after hTRmut treatment represented as 

fold change relative to control. (B) qPCR measurement of hTERT mRNA after hTRmut treatment 

represented as fold change relative to control. (C) qPCR measurement of hTR mRNA after hTRmut 

treatment represented as fold change relative to control. (D) TRAP assay for telomerase activity 

after hTRmut treatment represented as fold change relative to control. (A,B,C and D) p values were 

calculated by student t-test (*: p<0.05, ns: p>0.05). 
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4.3. Discussion 

4.3.1. Genetic background affects sensitivity to 
telomere uncapping 

p21 and p53 are key in tumour suppression and are points of convergence in the 

DNA damage response pathway along with p16/pRB (Salama et al., 2014). 

Severing of the DNA damage signalling pathway has been previously shown in 

taz1 deficient yeast which are unable to initiate a telomere dysfunction induced 

DNA damage response (Carneiro et al., 2010). Therefore it was thought that  

p21-/- and p53-/- cell lines may be resistant to telomere dysfunction due to 

inability to signal dysfunctional telomeres. Indeed, PNO analysis revealed that 

p21 and p53 deficient cell lines had no enrichment in DNA damage response 

pathways indicating deficiency in DNA damage signalling. However, induction of 

rapid telomere uncapping by Ad-hTRmut had a clear difference in rate of growth 

reduction in the WT, p21-/- and p53-/- backgrounds. This was first shown through 

a real time growth assay and corroborated with a secondary MTT viability assay 

which found p21-/- cells to be particularly sensitive to telomere uncapping. 

Further to this, analysis of the senescence phenotype highlighted that p21-/- 

cells had less SA β Gal staining relative to WT and p53-/- cells after induction of 

telomere dysfunction. p21-/- cells did have a significant increase in senescent, 

however the difference may indicate an alternate route to cell death in a 

population p21-/- of the cells. 

p53 deficiency did not seem to affect the cells response to telomere dysfunction 

as p53-/- cells had an almost identical growth phenotype to the WT cells. p53 

independent senescence has been previously observed. It has been shown that 

p16Ink4a may play a role in senescence induction in p53 deficient cells and that 

senescence could be bypassed by ablation of p16Ink4a (Jacobs and de Lange, 

2004). p21 has also been shown to be regulated independently of p53 by Chk2 

(Aliouat-Denis et al., 2005). Therefore in the p53-/- cell line p53 deficiency may 

be compensated for by other pathways such as the p16/pRB senescence pathway 

or p21 up regulation by other mechanisms bypassing p53 entirely. PNO analysis 

revealed up regulation of apoptosis associated genes which were not changed in 
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the WT background as further evidence of rerouted signalling in the absence of 

p53. 

In addition to the increased sensitivity to uncapping, p21-/- cells also 

demonstrated an inability to down regulate spindle and centromere formation 

genes which may point to cell death via another mechanism. Telomere 

uncapping has been linked to mitotic stress. While this was initially linked to 

p53, it appears to be reliant on the p53/p21 pathway indicating that p21 is a key 

effector of the mechanism (Thanasoula et al., 2010; Thanasoula et al., 2012b). 

Therefore it seems likely that in p21-/- progression through the cell cycle occurs 

uninhibited. This could lead to mitotic stress in the cells and therefore mitotic 

catastrophe as a mechanism of cell death which does not occur in the other 

backgrounds. 

After induction of telomere dysfunction with Ad-hTRmut, hTERT expression was 

transiently down regulated 2 days post treatment and was subsequently up 

regulated by day 5 in the WT and p53-/- backgrounds. However, this did not 

correspond with a change in telomerase activity in any of the cell lines. 

However, hTERT has been shown to have roles independent of telomerase. For 

example, it has recently been shown to have anti-apoptotic effects in cells 

under oxidative stress (Kida et al., 2013). It is possible that hTERT is able to 

mask the telomere in some way in the WT background leading to a disruption in 

the typical signalling response. Reduced hTERT up regulation in p53-/- and p21-/- 

backgrounds could play a role in their sensitivity if this is the case, particularly 

in p21-/- which demonstrated no hTERT up regulation. Therefore, hTERT may 

also play a wider regulatory role than previously thought in the context of 

telomere dysfunction and warrants further investigation. 
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Chapter 5: Mismatch Repair and Telomere 
dysfunction 

5.1. Introduction 

During DNA synthesis, polymerases usually operate with very high accuracy. 

While they do have a low error rate they are not perfect and during replication 

some sequences can cause slippage, such as sequences with high repetition, 

which can increase the error rate (Jun et al., 2006). The mismatch repair (MMR) 

system primarily operates as a system which can detect lesions caused by DNA 

polymerase slippage and then remove the error. DNA polymerase can then 

reattempt DNA synthesis and correct the error (Jun et al., 2006). The MMR 

system can recognise small loops within DNA, which occur due to mismatched 

base pairs or by insertion/deletion loops (IDLs), and repair them (Harfe and 

Jinks-Robertson, 2000; Hsieh, 2001; Kolodner and Marsischky, 1999; Michailidi et 

al., 2012). The MMR system is essential in DNA homeostasis. Loss of this repair 

mechanism leads to a 100-1000 fold increase in DNA replication error rate 

leading to increased disposition to cancer (Burgart, 2005; Jascur and Boland, 

2006; Vilar and Gruber, 2010). Also the MMR system has been implicated in 

telomere function and aging (Conde-Perezprina et al., 2012). 

The MMR system is a highly conserved system from bacteria to humans and 

involves excision and resynthesis of DNA. The process can be divided into four 

steps. First, the mismatch is recognised in the DNA by MutS proteins. Second, 

enzymes are recruited to the lesion which can repair the mismatched DNA. 

Third, the mismatched base/bases are excised. Finally the DNA is resynthesized 

by DNA polymerase (Jun et al., 2006). In eukaryotes, recognition of DNA lesions 

is accomplished by two heterodimers composed of MSH proteins (MutS 

homologs), MutSα (MSH2-MSH6) and MutSβ (MSH2-MSH3). While the core MMR 

proteins are highly conserved, eukaryotic MMR also incorporates a number of 

accessory proteins with critical roles which vary depending on the nature of 

mismatch being repaired (Kunkel and Erie, 2005). MutSα primarily recognises 

single base-base and IDL mismatches whilst MutSβ is responsible for recognition 

of IDLs containing short stretches of nucleotides (McCulloch et al., 2003). After a 
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lesion is detected MutLα (MutL homolog) is recruited (MLH1-PMS2 heterodimer in 

humans) and is used to repair a wide variety of mismatches whilst greatly 

enhancing the efficiency of mismatch recognition by MutS complexes after 

binding (Vaish and Mittal, 2002). The MutS complexes have also been found to 

interact with proliferating cell nuclear antigen (PCNA) which plays a role in 

discriminating between strands in the DNA duplex and correctly positioning the 

MMR system at the mismatches base(s) (Flores-Rozas et al., 2000; Kunkel and 

Erie, 2005; Lau and Kolodner, 2003; Vaish and Mittal, 2002). After recognition 

the mismatched base is excised by ExoI which is aided through physical 

interactions with MutS and MutL complexes (Tran et al., 2001). PCNA is also 

known to interact with ExoI and to aid in the excision process and eventual DNA 

resynthesis (Kunkel and Erie, 2005).    

Although the primary role of the MMR system is to repair DNA mismatches during 

replication, the system has implicated roles in a number of other biological 

processes and signalling cascades. MMR has been found to play an important role 

in meiotic and mitotic recombination, DNA damage signalling and various aspects 

of DNA metabolism (Jiricny, 2006). The MMR system does appear to have a 

regulatory role at the telomere outside of mismatch repair, however the 

specifics are not yet clear. Previously MMR deficiency was shown to increase 

survival and have anti-ageing effects in telomerase negative models, negating 

the effects of critically short telomeres in either PMS2 (MutL complex) or MSH2 

(MutSα complex) deficient mice (Martinez et al., 2009; Siegl-Cachedenier et al., 

2007). However, more recently in a number of telomerase positive tumour 

derived cell lines, MMR deficiency was shown to increase the rate of telomere 

shortening indicating that the MMR system is also required to maintain telomere 

integrity (Mendez-Bermudez and Royle, 2011). It could be that differences in 

telomere status have a significant effect on the outcome of MMR deficiency and 

therefore further characterisation of the pathway in the context of telomere 

dysfunction is required. 

In Chapter 4 a number of candidate pathways which may be important in 

regulation of telomere dysfunction were identified including the mismatch repair 

pathway. WT cells engaged the MMR pathway whilst p21 and p53 negative cells 
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did not. It was hypothesised that mismatch repair may either play a role in 

mediating telomere damage after uncapping of the telomeres by Ad-hTRmut or 

that the mismatch repair pathway may have a role in signalling leading to 

regulation of other pathways. Therefore, it was desirable to further investigate 

the mismatch repair pathway and characterise its role in telomere regulation 

and response to telomere uncapping. 

5.2. Results 

5.2.1. MSH2 plays a role in mediating telomere 
dysfunction 

In Chapter 4 key components of the MutSα complex, MSH2 and MSH6, were down 

regulated at the protein level in the p21-/- background after induction of 

telomere dysfunction by Ad-hTRmut but were unchanged in the WT background. 

However, in all backgrounds MSH2 and MSH6 were down regulated at the mRNA 

level. Therefore, further investigation was required to understand these 

conflicting results. In order to investigate whether the mismatch repair process 

was essential to regulation of telomere dysfunction key components, MLH1 and 

MSH2, were knocked down by RNAi followed by 2 days of Ad-hTRmut treatment. 

PNO analysis was then carried out to determine the effects of interruption of the 

mismatch repair pathway.  Figure 5.2A demonstrates the full profile of process 

networks comparing WT, p21-/-, p53-/- and WT+MSH2 siRNA profiles. After 

telomere uncapping WT had significant enrichment of specific DNA damage 

process networks whilst p21-/- and p53-/- cells did not. This is indicative of a DNA 

damage response to telomere uncapping in WT cells which is absent in p21-/- and 

p53-/- cell lines. Knockdown of MSH2 in WT cells prior to Ad-hTRmut treatment 

resulted in a shift in process network profile with apparent similarity to p21-/- 

cells after Ad-hTRmut treatment with shared networks in cell adhesion and 

cytoskeleton remodelling. These co-treated cells did not demonstrate 

enrichment of DNA damage pathways indicating that MSH2 may be involved in 

the DNA damage signalling process. 

The visual interpretation of the process network profile was quantitatively 

confirmed by a clustering analysis based on hypergeometric probability of 
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overlap in the profiles (Figure 5.1B). Clustering revealed that the WT process 

network profile shifts to be more similar to p21-/- after Ad-hTRmut treatments. 

This indicates that p21-/- cells may be deficient in mismatch repair activity in 

response to telomere dysfunction. To further assess the effect of mismatch 

repair interruption on cell viability an MTT assay was carried out. HCT116 cell 

lines were transfected with siRNA for MLH1 or MSH2 followed by 2 days of Ad-

hTRmut treatment.  Figure 5.1C demonstrates cell viability after knockdown of 

MMR targets followed by Ad-hTRmut treatment. In all lines sensitivity to 

telomere uncapping was enhanced relative to scrambled siRNA control after 

knockdown of both MLH1 and MSH2, indicating that MMR activity may be 

important in response to telomere dysfunction. 
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Figure 5.1. Knockdown of MSH2 in HCT116 WT enhances sensitivity to telomere uncapping. 

(A) Process network enrichment profile comparing WT, p21neg, p53neg and WT+MSH2 siRNA 

using same array data as in figure 4.2. (B) Hypergeometric analysis of the profile in A. (C) MTT 

viability assay of HCT116 lines after knockdown of either MLH1 or MSH2 followed by 2 days of 

hTRmut treatment. Control is hTRmut treatment only. P values were calculated using student t-test 

(*: p>0.05). 
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5.2.2. p21 and p53 are involved in a MutSα regulatory 
network 

In order to further investigate regulatory networks linking p21 to regulation of 

the MutSα complex network building was carried out in MetaCore. p21, MSH2 and 

MSH6 were entered as a manual list in the MetaCore “build network from list” 

section. The Auto expand network building algorithm was then run under default 

settings (50 network nodes and “use canonical pathways” selected). This 

algorithm then builds a network using the input list as a starting point and tries 

to connect entities in the list in 2 or less steps based on known interactions in 

the literature. The network was then reduced to only include nodes which were 

connected to all other nodes in the network in 2 steps or less. This resulted in 

the network shown in Figure 5.2A. The network produced includes p53, p21, 

cMyc and the MutSα complex (which contains MSH2 and MSH6) with a range of 

known interactions. p21 is shown in a reciprocal deactivating interaction with 

cMyc. However, it also reciprocally activates p300 which in turn induces 

transcription of cMyc, p53 and MutSα. Also, cMyc and p53 both induce expression 

of MutSα whilst p53 also induces expression of p21. The result appears to be a 

pair of positive feedback loops initiated by activation of p300 by p21. In the WT 

background the network is uninterrupted leading to expression of cMyc and the 

MutSα complex. In the p53-/- background the p21, p300, p53 loop would be 

interrupted however the p21, p300 activating loop would still be present, 

allowing for downstream activation of cMyc and MutSα. In the p21-/- background, 

if p21 is central to the signalling cascade, then neither of the loops would be 

activated resulting in reduced cMyc and MutSα expression. 

To confirm whether telomere uncapping by Ad-hTRmut does indeed involve 

regulation of c-Myc expression and whether this is differentially affected in p21-

/- and p53-/- backgrounds, each cell line was transfected with a c-Myc promoter 

luciferase reporter vector. 24h post-transfection, cells were infected with Ad-

hTRMut and incubated for an additional 48h prior to harvest and luciferase assay 

(Figure 5.2B). It was found that cMyc is upregulated in all of the cell lines 

following Ad-hTRmut treatment. However, genetic background did affect the 

level of this upregulation with the p21-/- demonstrating a 2 fold increase in cMyc 

promoter activity whilst the WT and p53-/- demonstrated up to 8 and 4 fold 
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increases respectively. This supports the pathway presented in figure 5.2A in 

which WT has full activation of the pathway, p53-/- is only partially interrupted 

and p21-/- would be largely ablated. 

In order to validate this model focus was directed to WT and p21-/- cell lines. The 

cell lines were treated with either Ad-hTRmut, MSH2 siRNA transfection or a co-

treatment where cells were treated with Ad-hTRmut after MSH2 siRNA 

transfection followed by qPCR measurement of p21 or p300 mRNA levels (Figure 

5.2C).  At day 2 Ad-hTRmut treatment p300 expression greatly increased in both 

cell lines. In WT this was followed by increased p21 expression by day 5 of 

treatment which was not present in the p21-/- background as expected. siRNA 

knockdown of MSH2 followed by Ad-hTRmut treatment ablated expression of 

both p300 and p21 in WT and p300 in the p21-/- cells. These results indicate that 

MSH2 is required for downstream activation of p300 followed by p21 after 

telomere uncapping. 
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Figure 5.2. Network building and validation reveals an interaction between p21, p53, p300, 

cMyc and the MutSα complex. 

(A) Network resulting from seed nodes p21, MSH2 and MSH6. The network is a subset highlighting 

interactions between 5 specific genes (B) cMyc promoter luciferase reporter activity after 2 days of 

hTRmut treatment in HCT116 lines. (C) qPCR expression analysis of p21 and p300 in WT and 

p21-/- cells after Ad-hTRmut treatment at day 2, Ad-hTRmut treatment at day 5, MSH2 siRNA only 

and Ad-hTRmut/MSH2 siRNA co-treatment.  
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5.3. Discussion 

In the process network analysis the Mismatch Repair process was found to be 

significantly enriched in WT background but not the p53 or p21-/-. Further 

investigation was needed to understand what role the mismatch repair process 

plays in regulation telomere dysfunction. MutSα components MSH2 and MSH6 

were absent after Ad-hTRmut treatment in the p21-/- background. In addition, 

knockdown of MSH2 and MLH1 resulted in enhanced sensitivity to telomere 

uncapping in all genetic backgrounds whilst MSH2 knockdown also caused a shift 

in the overall WT expression profile. Furthermore, a regulatory link between 

p21, p53, cMyc, p300 and the MutSα complex was suggested via network building 

in MetaCore. This network revealed two positive feedback loops which can both 

be initiated by p21 and result in the activation of the MutSα complex. Further 

expression analysis of the pathway indicated that p300 expression increased 

followed by p21 expression at a later timepoint, whilst MSH2 knockdown ablated 

these expression changes completely. Together, these findings suggest a role for 

the mismatch repair process in response to telomere dysfunction and that p300 

may play a central role in regulation of the overall signalling pathway.  

In addition to the results shown here, at the protein level, p21 has been shown 

to inhibit the cMyc-Max formation (Kitaura et al., 2000). It has also been shown 

that Max can bind to the MSH2 protein, though the function of this is unclear 

(Mac Partlin et al., 2003). One possibility is that Max helps with stabilisation of 

the MSH2 protein and that in the p21-/- background this does not occur, as Max 

will be bound by cMyc instead. Therefore, in the WT background MSH2 is 

stabilised which may explain the persistence of MSH2 protein even when the 

expression level was reduced. Also, MSH2 and MSH6 have been shown to be 

degraded by the ubiquitin-proteasome pathway in a cell type dependent manner 

which could account for the reduction in MSH2 and MSH6 levels in the p21-/- 

background after treatment (Hernandez-Pigeon et al., 2004).   

Another route to cell death in the p21-/- background could be an inability to slow 

its cell cycle in response to telomere dysfunction. It was found that the WT cell 

line had down regulation of central cell cycle genes such as the cyclins which 
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regulate progression through the cell cycle whereas the p21-/- background 

demonstrated no expression changes in these genes. Also p21 is known to 

negatively regulate the cell cycle via inhibition of CDK/Cyclin complexes (Harper 

et al., 1993). It is possible that in the p21-/- background damage accumulates 

and inability to slow the cell cycle and mount a DNA damage response, including 

the mismatch repair pathway, causes the p21-/- cells to progress through the cell 

cycle unchecked and die rapidly due to accumulation of DNA damage such as 

telomeric fusions. This could lead cell death through an alternative mechanism 

such as mitotic catastrophe which has been associated with telomere 

dysfunction (Hampel et al., 2013). 

Overall there is evidence that p21 is required for activation of the mismatch 

repair pathway and this pathway is essential in cellular response to telomere 

dysfunction. The data presented here suggests that this occurs through a 

regulatory process that occurs at both the transcriptional and protein levels. At 

the transcriptional stage, p21 appears to interact with p300 which induces both 

cMyc and MSH2 expression (Wang et al., 2011a; Wang et al., 2007) whilst cMyc 

protein also reinforces MSH2 expression (Menssen and Hermeking, 2002). At the 

protein level, p21 interacts with cMyc, inhibiting the formation of cMyc-Max 

complex. This may lead to cMyc protein being free to further induce MSH2 

expression whilst enabling Max to bind MSH2 protein, potentially in a stabilising 

role. I hypothesise that p21 is required for signalling and further activation of 

the mismatch repair pathway in response to telomere dysfunction and that 

cellular survival is mediated as a result of this process. 

The model presented above offers a number of opportunities for further 

investigation. It is worth noting that p21 is not a common mutation associated 

with oncogenesis. However, p21 is involved in a wide range of biological 

processes and has been shown to be involved in regulation of the cell cycle, 

regulation of gene transcription, modulation of apoptosis and DNA repair (Abbas 

and Dutta, 2009) which will all have clinical relevance. The model outlined here 

indicates that p21 may be central to the regulation of mismatch repair in 

response to telomere dysfunction. Therefore, clinically, it may be relevant to 

assess the p21 status of a cancer prior to use of telomere based therapeutic 
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strategies. However, further work is required to validate this model. Firstly, the 

interactions outlined here require further experimental validation. In particular 

the interaction between p21, p300 and MutSalpha. p300 is known to be a 

transcriptional activator of p21 (Abbas and Dutta, 2009) however its role in 

activation of mismatch repair pathways in response to telomere dysfunction is 

not well characterised. Experimental demonstration of the binding of p300 to 

the MSH2 promoter would confirm whether MSH2 is a transcriptional target of 

p300. Also, the link between p21 and mismatch repair requires further proof. 

One method could be to knock out p21 in the WT cell line and then induce 

telomere dysfunction. If mismatch repair is activated via p21 in response to 

telomere dysfunction then we would expect to see loss of regulation of 

mismatch repair when p21 is knocked down. As p300 is central to the model, 

knockdown of p300 would be expected to have the same outcome. In addition, 

the function and role of mismatch repair during telomere dysfunction is not 

clear. First, I would like to be able to demonstrate that proteins such as MSH2 

become localised to the telomeres. This would inform whether MSH2 has a direct 

effect at the telomere. This could be coupled with a mismatch repair deficient 

model cell line. If mismatch repair is required to alleviate stress during telomere 

dysfunction then one would expect ablation of MSH2 to have a similar affect as 

p21 and/or p300 knockdown. The method of death after induction of telomere 

dysfunction was also not fully explored. It was hypothesised that p21-/- cells may 

reach cell death through another mechanism. Given the opportunity, 

experiments to assess the apoptosis and senescence status of the cells would be 

performed after knockdown of MSH2. It may be that ablation of mismatch repair 

causes a shift from cellular senescence to apoptosis, or vice versa, after 

induction of telomere dysfunction. In addition, assays could be performed to 

investigate the cell cycle stage at which these cells are dying or ceasing to 

proliferate. It was thought that p21-/- cells were not slowing their cell cycle and 

that a build-up of damage was occurring. This could be assayed by flow 

cytometry to determine if there is a shift in cell cycle status compared to the 

WT. In addition, it could be informative to look for other forms of DNA 

aberration such as chromosomal fusions which may occur if the cell cycle 

continues inhibited when uncapped telomeres are present. 
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Chapter 6: The effects of telomerase inhibition 
can be enhanced by hypoglycaemia 

6.1. Introduction 

In Chapters 4 and 5 we used Ad-hTRmut as a trigger which rapidly induces 

telomere dysfunction by uncapping the telomeres. This leads to a reduced rate 

of cell growth, reduced viability and induces senescence. However, under 

natural settings the telomeres shorten slowly as a result of the end replication 

problem during cell division. This can also be accelerated by oxidative damage 

and other events (Cairney et al., 2012). In order to model this method of 

telomere shortening the telomerase inhibitor GRN163L (Imetelstat) was 

introduced. GRN163L is a lipid-conjugated 13-mer oligonucleotide sequence that 

is complementary to and binds with high affinity to the RNA template of 

telomerase, thereby directly inhibiting telomerase activity. The compound has a 

proprietary thio-phosphoramidate backbone, which is designed to provide 

resistance to the effect of cellular nucleases, thus conferring improved stability 

in plasma and tissues, as well as significantly improved binding affinity to its 

target. The lipid group also allows the compound to permeate cellular 

membranes. The tissue half-life of GRN163L, or the time it takes for the 

concentration or amount of GRN163L to be reduced by half, in bone marrow, 

spleen, liver and tumour has been estimated to be 41 hours in humans, based on 

data from animal studies and clinical trials. Inhibition of telomerase by GRN163L 

in proliferating cells leads to telomere shortening and eventually replicative 

senescence. However, there are also environmental factors which can lead to 

telomere shortening. For example, work within our lab identified hypoglycaemia 

to be a negative regulator of telomerase activity which also led to telomere 

shortening. In addition to this, glucose restriction has been shown to enhance 

the effects of a telomerase inhibitor in breast cancer and reduce the lifespan of 

telomere dysfunctional mice (Missios et al., 2014; Wardi et al., 2014). 

In order to improve our understanding of telomere dysfunction it is important to 

compare a range of triggers. Just as genetic background resulted in different 

pathways being activated in Chapter 4, different triggers may induce different 
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signalling processes and downstream pathways. Characterising these pathways 

will help us understand how cancers can repair or tolerate telomere dysfunction 

and also mechanisms of oncogenesis. The aim of this chapter is to investigate 

the effects of alternative telomere dysfunction triggers and synergistic effects 

between them. The first objective was to investigate the phenotypic effect of 

telomerase inhibition by GRN163L. The next objective was to compare the 

effects of telomerase inhibition with telomere uncapping using the PNO analysis 

method.  Finally the effects of telomerase inhibition under hypoglycaemic 

conditions were investigated in order to identify possible pathways and 

mechanisms by which the cells could be sensitised to telomerase inhibition. 
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6.2. Results 

6.2.1. HCT116 cell lines are resistant to telomerase 
inhibition 

In order to investigate the effects of telomerase inhibition, a long term culture 

was set up with HCT116 WT and p21-/- cells cultured in media containing 5 µM 

GRN163L or Mismatch control. Cells were counted and reseeded on Monday and 

Friday each week. 3h post seeding the cells were treated with either GRN163L or 

Mismatch control. Cells were also re-treated every Wednesday with fresh media 

containing GRN163 or Mismatch control. Over the time course, long term 

telomerase inhibition caused a very mild reduction in cumulative population 

doublings of the cell lines (Figure 6.1A). By Day 245, GRN163L treated WT cells 

were reduced by 20 population doublings relative to mismatch control while p21-

/- cells demonstrated mildly increased sensitivity and were reduced by 35 

population doublings at the same time point. However, in both cases the 

cultures continued to grow after over 250 days of sustained telomerase 

inhibition.  

In order to identify a cause for the reduction in population doublings the 

senescent population of cells was measured by SA β Gal assay (Figure 6.1B). 

After long term telomerase inhibition by GRN163L, both WT and p21-/- cells 

demonstrated an increase in SA β Gal stained cells. In WT the population of 

senescent cells in GRN163L treated cultures ranged from 2 fold to 5 fold over the 

control while in p21-/- the population of senescent cells ranged from 5 fold to 9 

fold over the control. This contrasted with Ad-hTRmut induced telomere 

dysfunction (Chapter 4) where the p21-/- cells demonstrated a decreased SA β 

Gal staining relative to WT cells after telomere uncapping. This may indicate 

differences in regulatory mechanisms between cell lines depending on the 

method of inducing telomere dysfunction. To confirm that the effects seen were 

due to telomerase inhibition telomerase activity over the time course was 

measured by a TRAP assay and telomere length was measured by telomere 

restriction fragment southern blot (Figure 6.1C and Figure 6.1D). Telomere 

restriction fragment southern blot was carried out by Sharon Burns, University of 

Glasgow. In both cell lines telomerase activity was reduced to below 10% after 
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GRN163L treatment. In addition, by day 185, telomere shortening had occurred 

in both WT and p21-/- backgrounds. Therefore, this indicates that Telomerase 

was inhibited over the time course resulting in telomere shortening. However, it 

is not clear if the effects on cell doubling rate were due to telomeres reaching 

critical length.  

  

Figure 6.1. Long term treatment of HCT116 WT and HCT116 p21-/-  with telomerase inhibitor 

GRN163L. 

(A) Cumulative population doublings of HCT116 cell lines during weekly treatments with 5uM 

GRN163L over a long time course. (B) Senescent phenotype of HCT116 cell lines after treatment 

with GRN163L detected by SA B Gal staining. (C) TRAP assay for telomerase activity as a 

percentage of control over the time course. (D) Telomere restriction fragment southern blot for 

telomere length at day 7 or day 184 post GRN163L treatment in WT and p21
-/-

 lines where 

Mismatch is the control. 
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6.2.2. Specific process network profiles are 
associated with telomere uncapping and telomerase 
inhibition 

In order to identify possible pathways responsible for the different effects 

caused by different dysfunction triggers, PNO analysis was performed comparing 

WT cells after long term telomerase inhibition or telomere uncapping with Ad-

hTRmut treatments. Figure 6.2A shows the full process network profile for WT 

after Day 7 or Day 280 GRN163L treatment and Day 2 of Ad-hTRmut treatment. It 

can be seen that the profile after day 7 of telomere shortening had very few 

significantly enriched networks indicating few expression changes by this time 

point however by day 280 a large number of networks had become significant. 

By the early time point after Ad-hTRmut treatment there were also a number of 

significantly enriched networks however these were in different biological 

processes than those altered after day 280 of GRN163L treatment.  

Figure 6.2B shows a filtered subset of the overall process network profile where 

biological processes which had no significant process networks have been 

excluded. GRN163L treatment resulted in enrichment of process networks in Cell 

adhesion, Immune Response, Inflammation, Proliferation and Reproduction. 

However, Ad-hTRmut treatment resulted in enrichment of Cell cycle and DNA 

damage process networks. Also, GRN163L treatment required an extended 

treatment period before changes in expression were seen. However, Ad-hTRmut 

caused a rapid response with expression changes seen only 2 days post treatment 

which is indicative of the rapid uncapping nature of the model. Although 

GRN163L appeared to cause a population of cells in each culture to become 

senescent, inhibited telomerase and induced telomere shortening the compound 

failed to reduce the growth rate of the cultures significantly. In addition, under 

prolonged treatment  the resulting profile did not resemble that of Ad-hTRmut 

treated cells indicating that the compound is not achieving its expected 

mechanism of action which would be eventual telomere uncapping due to 

telomere attrition.  

  



95 

 

 

Figure 6.2. Process network profile analysis after either GRN163L or hTRmut treatments in 

HCT116 WT cells. 

(A) Full process network profile of HCT116 WT cells 7 or 280 days post GRN163L treatment and 

day 2 post Ad-hTRmut treatment where red rectangles are networks where p <0.05. Ad-hTRmut 

treated samples were the same as in previous figures. (B) Filtered profile view where insignificant 

networks have been excluded. 
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6.2.3. Hypoglycaemia sensitises HCT116 WT cells to 
GRN163L 

This work was carried out in collaboration with Dr Alan Bilsland, University of 

Glasgow. The experiments in Figures 6.3B, C and D were carried out by Dr Alan 

Bilsland. 

After comparing the effects of independent dysfunction triggers and finding the 

effects of telomerase inhibition to be weak and unable to produce a strong 

phenotype in the HCT116 cell lines we sought out ways to enhance the effects of 

telomerase inhibition. Our laboratory has recently demonstrated that 

hypoglycaemia reduces telomerase activity and induces telomere shortening. 

Therefore it was hypothesised that the effects of GRN163L could be enhanced by 

treating cells under glucose restricted conditions. Figure 6.3A shows telomerase 

activity in HCT116 cells after titration of GRN163L or Mismatch control measured 

2 days post treatment under physiological conditions. GRN163L inhibited 

telomerase in the 1-10 µM range and at concentrations below 1 µM had little to 

no effect on telomerase activity. 

In order to characterise the effects of Hypoglycaemia on telomerase activity 

HCT116 WT cells were cultured at a range of Glucose concentrations (Figure 

6.3B). It was found that culturing HCT116 WT cells in media containing 1 mM 

Glucose or less, reduced telomerase activity by up to 50%. To assess the effect 

of GRN16L under hypoglycaemic conditions a long term culture was set up in 

Glucose free media using 200 nM GRN163L (Figure 6.3C). 200 nM was chosen as 

telomerase was not inhibited at this concentration under physiological glucose 

conditions. Under hypoglycaemic conditions, GRN163L strongly inhibited 

telomerase activity when compared to hypoglycaemic control suggesting that 

hypoglycaemia sensitises the cells to telomerase inhibition. In addition, hypoxia 

did not significantly reduce the growth rate of HCT116 WT cells (Data not 

shown). 

To further characterise the extent of this sensitisation, telomere length was 

measured after treatment under hypoglycaemic conditions. In Figure 6.3D it can 

be seen that by day 77, hypoglycemia had caused a mild shortening of the 
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telomeres. In samples treated with 200 nM GRN163L under hypoglycaemic 

conditions this shortening effect was enhanced indicating that hypoglycaemia 

enhances the telomere shortening effect of GRN163L. 

 

 

Figure 6.3. Telomerase activity and telomere length after GRN163L treatment in HCT116 cell 

lines under physiological or hypoglycaemic conditions. 

(A) TRAP assay after titration of GRN163L in HCT116 cells 2 days post treatment under 

physiological conditions. (B) TRAP assay for telomerase activity as a percentage of control over 

the time course. (C) TRAP assay for telomerase activity as a percentage of control over the time 

course in HCT116 WT after 200nM GRN163L treatments under hypoglycaemic conditions. (D) 

Telomere restriction fragment southern blot for telomere length at day 21, 70 and 77 post 

GRN163L or control treatments in HCT116 WT cell line. 
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To further characterise the processes affected after telomerase inhibition under 

hypoglycaemic conditions PNO analysis was performed. HCT116 WT cells treated 

with GRN163L under physiological conditions were compared with those treated 

under hypoglycaemic conditions and also with HCT116 WT cells treated with Ad-

hTRmut to uncap the telomeres. Figure 6.4A shows the full process network 

profile while Figure 6.4B shows a filtered version of the profile. Under both 

physiological and hypoglycaemic conditions there were few significant networks 

by day 7, post treatment. However, under physiological conditions it wasn’t until 

day 280 that many significant processes emerged, whilst under hypoglycaemic 

conditions there were many significant networks by day 84. Interestingly, there 

was little overlap in the profiles between physiological GRN163L samples and 

hypoglycaemic GRN163L samples. However, the hypoglycaemic GRN163L samples 

overlapped significantly with the hTRmut treated samples. This visual 

interpretation was confirmed by hypergeometric analysis as shown in Figure 

6.4C. These results suggest that hypoglycaemia causes a shift in molecular 

response to telomerase inhibition, resulting in activation of similar pathways to 

those involved in rapid telomere uncapping, specifically DNA damage and Cell 

Cycle pathways. 
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Figure 6.4. Process network analysis comparing different telomere dysfunction triggers. 

(A) Full process network profile of HCT116 WT cells 7 or 280 days post GRN163L treatment, 7 or 

84 days post GRN163L + hypo treatment and day 2 post hTRmut treatment where red rectangles 

are networks where p <0.05 (B) Filtered profile view where insignificant networks have been 

excluded. (C) Hypergeometric analysis of the process network profile. 
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6.3. Discussion 

6.3.1. HCT116 cell lines are sensitive to telomere 
uncapping but resistant to telomerase inhibition 

Induction of rapid telomere uncapping by Ad-hTRmut had a clear difference in 

rate of growth reduction in the WT, p21-/- and p53-/- backgrounds as shown in 

Chapter 4. In contrast, telomerase inhibition by GRN163L only had a mildly 

stronger effect on growth of the p21-/- cells relative to WT over a long time 

course. Further to this, analysis of the senescence phenotype after treatment 

with both triggers highlighted that after rapid induction of telomere dysfunction 

p21-/- cells had less SA β Gal staining relative to WT cells. However, after long 

term telomerase inhibition the SA β Gal staining was greater in p21-/- cells. 

Despite this apparent increase in senescent p21-/- cells the cultures continued to 

grow past day 250 of culture suggesting that a significant population of cells 

were resistant to the effects of telomerase inhibition. Also, although cell 

adhesion pathways were implicated after GRN163L treatment and anti-adhesive 

effects have been shown in the past this effect was not observed in any of the 

cultures (Jackson et al., 2007). Cells were given appropriate time to adhere to 

the plates before treatment and throughout the time course adhesion to the 

culture flasks did not appear to be an issue or cause the differences in 

population doublings observed.  

Despite the inability of telomerase inhibition by GRN163L to cause a reduction in 

growth, a number of pathways did show significant expression changes over the 

time course. Outcomes of telomere shortening may be due to changes in 

telomere state rather than reaching critical length (Karlseder et al., 2002). 

Therefore, by simply disrupting telomere regulation by telomerase inhibition it 

may be possible to activate anti proliferative pathways. However, this was not 

observed in the HCT116 cell lines as they continued to grow for a sustained 

period of time even during ablation of telomerase activity. This suggests that 

changes in expression are likely to be compensating for telomerase inhibition 

rather than initiating processes which would lead to senescence or apoptosis. 

Therefore, this would implicate pathways enriched in response to GRN163L 

treatment across the time course such as Inflammation and Immune response 
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process networks. While this may be another route to resisting telomere 

dysfunction, this profile may also be indicative of off target effects or early 

indicators toxicity which may be a result of using relatively high concentrations 

of GRN163L (5uM). Therefore a sensitisation method was desired which may 

reduce the concentration of GRN163L required to inhibit telomerase activity to a 

sub-toxic level. 

The drug and mutant have different outcomes, likely due to their mechanism of 

action. AdhTRmuts rapid response observed in the lines is likely due to rapid 

induction of DNA damage signalling pathways as a result of uncapping of the 

telomeres. This was reflected in the pathways which became enriched in 

response such as Cell cycle and DNA damage associated networks, whereas 

GRN163L causes shortening at a rate relative to the proliferation rate of the 

cells. Due to this, not all cells are at equal telomere length at all times. 

Therefore, not all cells will have an identical response which was represented in 

the continued proliferation of the cells in culture despite continued GRN163L 

treatment. It was noted that GRN163L caused enrichment of inflammation and 

immune response pathways. Also, there was a population of senescent cells 

observed. This could indicate that SASP pathways are being activated and this 

enrichment is reflective of senescence associated secretory phenotype. 

However, it did not appear to be enough to cause collapse of the entire culture, 

and cells continued to proliferate. However, the drug does lead to a senescent 

population of cells over time, indicating that the telomeres are reaching critical 

length. ChIP was performed for TRF2 after induction of telomere uncapping by 

AdhTRmut. It may have been useful to perform this experiment after treatment 

with GRN163L to assess whether shelterin was being disrupted, which would be 

the case if the telomeres were reaching critical length. Further to this, if 

shelterin was disrupted one would expect to see induction of DNA damage 

signalling responses. In the WT line there was enrichment in DNA damage 

response pathways in response to telomere uncapping by AdhTRmut but not by 

GRN163L treatment. However, treatment under hypoglyceaemic conditions did 

result in enrichment in DNA damage response pathways. This warrants further 

investigation and assays to look for DNA damage foci and chromosomal fusions 

would be suitable steps to take to further characterise the effects of telomere 
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uncapping and telomere inhibition under physiological and hypoglycaemic 

conditions. 

6.3.2. Hypoglycaemia sensitises HCT116 cells to 
telomerase inhibition and alters regulatory pathways 

Our lab identified hypoglycaemia as an environmental telomere dysfunction 

trigger which reduces telomerase activity and induces telomere shortening. In 

addition, glucose restriction has been shown to sensitise breast cancer cells to 

telomerase inhibition by another compound whilst glucose substitution in 

telomere dysfunction mice results in increased lifespan (Missios et al., 2014; 

Wardi et al., 2014).  Indeed we found that glucose restriction was able to 

sensitise a telomerase inhibition resistant cell line, HCT116 WT, by reducing the 

drug concentration required for effective telomerase inhibition. This also 

appeared to enhance the rate of telomere shortening. Further investigation 

revealed that a hypoglycaemic environment caused a shift in expression profile 

in HCT116 WT cells when treated with GRN163L resembling telomere uncapping 

by Ad-hTRmut. Part of this shift could have been due to reduced toxicity at a 

lower concentration of GRN163L as inflammatory and immune response 

pathways were no longer being enriched.  However, the shift towards 

enrichment of DNA damage and Cell Cycle pathways was not accompanied by 

any reduction in growth rate of the cells and would require further study. One 

possibility is that normal glucose metabolism is required for maintenance of the 

telomeres and sustaining telomere integrity. Therefore, under telomerase 

inhibition and under glucose restriction there is a shift in balance towards 

cellular senescence. This could indicate that glucose restriction causes changes 

in the regulatory pathways or signalling responses to telomere dysfunction by 

telomere shortening.  

It may also be possible that the HCT116 line is resistant to telomerase inhibition 

as other cell lines have demonstrated significantly reduced lifespans under 

GRN163L treatment (Burchett et al., 2014). Nonetheless, being able to sensitise 

previously unresponsive lines is a desirable outcome for further development of 

the compound as a therapeutic. This could be achieved through co-treatment 

with existing drugs such as Metformin, used in treatment of type 2 diabetes, 
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which suppresses glucose production by the liver. An alternative method could 

be to inhibit glucose metabolism in another way. This has been investigated 

previously but not from the angle of telomerase inhibition as a co-treatment 

option (Munoz-Pinedo et al., 2003). 

Both hypo and hyperglycaemia have been implicated in regulation of both 

telomeres and telomerase. Hypoglycaemia has been associated with reduced 

telomerase activity (Wardi et al., 2014). In addition, a recent in vitro study has 

shown that inhibition of hTERT expression in muscle cells cause a reduction in 

basal glucose uptake, whereas overexpression of TERT significantly increased 

their glucose uptake. This effect of hTERT occurs outside the nucleus through 

direct interaction of hTERT with glucose transporters and therefore Telomerase 

and telomere regulation appears to be directly linked to glucose metabolism 

(Shaheen et al., 2014). It also appears that the mitochondrial electron transport 

chain function is altered during hypoglycaemia due to the decreased availability 

of reducing equivalents resulting in increased production of reactive oxygen 

species (ROS) by mitochondria under hypoglycaemic conditions (McGowan et al., 

2006).  Furthermore, reducing glucose may then push cells into alternative 

metabolic routes, such as lactate metabolism which produces more ROS. Overall, 

hypoglycaemia reduces telomerase activity whilst increasing oxidative stress on 

the telomeres and enhances telomere shortening. 

Hyperglycaemia increases ROS from the mitochondrial electron transport chain. 

In addition, increased glucose auto-oxidation, activation of the polyol pathway 

and protein kinase C pathway, and production of advanced glycation end 

products also play roles in increasing the level of oxidative stress (Araki and 

Nishikawa, 2010).  Such exacerbated oxidative stress accelerates the shortening 

of telomeres, (Jennings et al., 2000). Mouse models which are maintained on a 

high caloric intake, incorporating glucose, demonstrate increased ROS levels in 

adipose tissues (Minamino et al., 2009). Furthermore, it has been observed in 

humans that type 2 diabetes mellitus (T2DM) patients show a reduction of β-cell 

mass in the pancreas  (Sakuraba et al., 2002). Moreover, in a mouse model 

maintained on a diabetogenic diet it was demonstrated that β-cells significantly 

declined after 12 months and that this was due to accelerated cellular 
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senescence and apoptosis (Sone and Kagawa, 2005).  It has also been 

demonstrated that glycaemic control reduced telomere shortening in the 

leukocytes of patients with both T1DM and T2DM (Uziel et al., 2007). This was 

corroborated in another similar study in patients with T2DM who has used agents 

to maintain their glucose levels demonstrated longer telomeres in β-cells than 

those who did not (Tamura et al., 2014). Therefore hyperglycaemia also appears 

to increase telomere shortening through oxidative stress. Overall, metabolism is 

a growing field of research in cancer and therapeutic options. From the 

perspective of telomeres however, the role of metabolism is not well 

understood. Telomeres are sensitive to oxidative stress, and both hyper and 

hypoglycaemia appears to increase ROS levels within cells, which may be the 

mechanism by which impaired glucose metabolism enhances sensitivity to 

telomere dysfunction. 

6.3.3. Clinical opportunities with GRN163L 

Telomerase expression is a common trait in malignant cancers and therefore is 

an enticing therapeutic target. However, specific ablation of telomerase has not 

proven as effective as expected. All of the HCT116 isogenic lines continued to 

proliferate beyond 280 days of continued GRN163L treatment. Sensitisation was 

achieved through treatment under hypoglycaemic conditions but not to the 

degree that proliferation was halted entirely. However, this is still encouraging 

and demonstrates that further investigation is required with respect to 

telomerase inhibition and a number of challenges remain to be solved to further 

develop telomerase inhibition as a therapeutic strategy. One issue with GRN163L 

is with the half-life of the drug in human tissues. The tissue half-life of 

GRN163L, or the time it takes for the concentration or amount of GRN163L to be 

reduced by half, in bone marrow, spleen, liver and tumour has been estimated 

to be 41 hours in humans, based on data from animal studies and clinical trials. 

By day 280 of treatment a number of inflammation and immune response 

pathways demonstrated enrichment and therefore, toxicity and chronic 

inflammation could be a concern given the high dose required to ablate 

telomerase activity in human cells. Therefore, sensitisation options such as a 

hypoglycaemic environment may be desirable in order to reduce these effects 
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while maintaining a desired level of telomerase inhibition. Indeed, 

hypoglycaemia did significantly reduce the required dose of GRN163L to reduce 

telomerase activity to below 10% of the activity in untreated cells. Therefore 

one approach in the clinic may be to co-treat with Metformin, which reduces 

glucose production in the liver, or to treat under dietary conditions in which 

glucose intake is restricted. Other co-treatment options may also be of value. It 

has been demonstrated that telomerase inhibition can enhance chemosensitivity 

of tumours (Wardi et al., 2014). Therefore from a clinical perspective, 

telomerase inhibition may be worth further investigation, as a co-treatment 

option with current therapeutics. 

Another challenge is in the timing of GRN163L treatment. Due to the latent 

effect of the drug, ideally, treatments would occur as early as possible in order 

for the telomeres to shorten to the point where proliferation arrest occurs. One 

thought is that combining chemotherapy with telomerase therapy would be 

predicted to both shorten telomeres and reduce tumour burden. Even if rare 

cancer stem cells are quiescent, eventually they will have to proliferate to 

maintain the growth of the tumour. The presence of a non-toxic or minimally 

toxic dose of a telomerase inhibitor should then affect the telomerase-positive 

cancer stem cells and eventually lead to apoptosis. Another issue is that 

GRN163L relies on cells replicating their DNA in order for telomeres to shorten in 

the absence of telomerase activity, and therefore the tumours must be 

proliferative. However, at a late stage, allowing tumours to continue to 

proliferate could put patients at risk. Therefore, early stage treatment would be 

the ideal time to treat with a telomerase inhibitor while the tumour mass is not 

yet at a high risk to the patient.  
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Chapter 7: Further overall Discussion 

7.1. Telomere biology and pathways of interest 

As discussed previously, during development of the PNO analysis method I was 

able to apply the method to data sets supplied by Dr Bilsland and Dr Degerman 

and take analysis of their data sets beyond traditional analysis approaches. In 

particular, where traditional approaches would have required further analysis in 

order to identify pathways of interest my novel approach simplified the process 

and enabled identification of pathways as a standard data output. After 

validating the viability of the methodology in these two studies I was then able 

to use the method to analyse my own data sets and explore telomere biology 

further. Prior to array analysis, it was identified that isogenic background led to 

differences in phenotype and expression profile to two different telomere 

dysfunction triggers. It was identified that p21 was central to sensitivity to 

telomere dysfunction, and that loss of p21 sensitised cells to both telomere 

uncapping and telomere shortening via telomerase inhibition, demonstrating 

reduced cell growth and increased senescent cell population. Through PNO 

analysis it was identified that p21-/- cells demonstrated a reduction in regulation 

of DNA damage response pathways. Further to this, p21-/- cells were unable to 

down regulate spindle and centromere formation genes which may suggest cell 

death through another mechanism, such as mitotic catastrophe. During this 

analysis mismatch repair was also identified as a network of interest and further 

study. 

Analysis of the mismatch repair pathway revealed that p21-/- cells were also 

unable to engage this pathway. Western blotting revealed that WT cells 

maintained MutSα levels whereas this was reduced in the p21-/- cell line after 

induction of telomere uncapping. In addition, siRNA mediated knockdown of, 

MSH2, a component of MutSα, caused the phenotype of the WT to shift and 

resemble the p21-/- cell line. This was demonstrated both in the senescent 

phenotypic response to telomere uncapping but also in the shift in expression 

profile and enrichment of networks observed in the associated PNO analysis. 

Therefore it was identified that p21 appears to be central to regulation of 
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telomere dysfunction through a regulatory mechanism involving the mismatch 

repair pathway. 

These findings presented a number of opportunities. Firstly, they demonstrated 

the strength in the methodology used and the ability to identify pathways for 

further research. Secondly, they presented mismatch repair and association of 

the process with telomere dysfunction as an area for further study. The work 

performed did however have a number of weaknesses. One of the major 

weaknesses was in the range of phenotypes analysed. Growth rate and 

senescence were evaluated in response to telomere dysfunction. However, an 

obvious next step would have been to evaluate apoptosis after induction of 

telomere uncapping in the isogenic cell lines which was not performed. In 

addition, it would have been valuable to evaluate the stage at which the 

different cell lines stalled in the cell cycle, as this may have informed the route 

to cell death as mitotic catastrophe was hypothesised as a possible route in p21-

/- cell lines. It would have also been of value to look at the DNA damage 

response and to evaluate the predominant forms of DNA damage in the isogenic 

cell lines. For example, it would have been useful to look at DNA damage foci, 

accumulation of γH2AX and for chromosomal fusions. This would have informed 

as to the DNA damage status of the cells, as it was postulated that p21-/- may 

have been deficient in maintenance of DNA damage leading to cell death. The 

Shelterin status of the cells was also not fully established. It was determined 

that TRF2 was reduced at telomeres after induction of telomere dysfunction, 

however, the other Shelterin components were not evaluated. With respect to 

mismatch repair, the exact interactions were also not evaluated. It would have 

been useful to identify where MSH2 was localising within the cells. For example, 

MSH2 may have played a direct role at telomeres or may have had a secondary 

signalling role.  

7.2. Clinical relevance of targeting telomeres 

Telomeres are an interesting clinical target in cancer treatment due to 

activation of telomerase being a common method of bypassing the 

immortalisation barrier by continued maintenance of telomere length. 
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Therefore, evaluation of the telomerase inhibitor GRN163L was of interest. 

Comparison against telomere uncapping by Ad-hTRmut revealed both differences 

in senescent and growth phenotypic response and expression profile to different 

telomere dysfunction triggers, indicating that the method of inducing telomere 

dysfunction has varied biological consequences. However, of interest was the 

ability to sensitise cells to telomere dysfunction through introduction of the 

environmental trigger of hypoglycaemia. Telomerase therapies have had varied 

results in the clinic. GRN163L in particular has demonstrated a wide range of 

efficacies in different cell lines. In our hands, GRN163L was not effective in 

reducing the growth rate of HCT116 cell lines independently. However, it was 

revealed that hypoglycaemia enabled sensitisation of HCT116 cell lines to 

telomerase inhibition. This was exciting as it may point towards co-treatments 

or treatments with existing cancer treatment modalities as a path forward for 

targeting telomerase during cancer treatment. 

However, the work done here is merely a starting point. Further work is required 

to determine the effectiveness of co-treatments with telomerase inhibition. In 

the work done here further phenotypic analysis would have been beneficial. For 

example, the apoptosis status of the cell lines was not evaluated. This may have 

helped differentiate the effects of telomerase inhibition under physiological 

conditions with telomerase inhibition under hypoglycaemic conditions. In 

addition, introduction of hypoglycaemia was only evaluated through glucose 

restriction in cell culture through changed media conditions, i.e. use of glucose 

free media. However, a number of glucose metabolism mediating compounds are 

available, such as metformin. It could have been beneficial to evaluate other 

methods of glucose restriction which may have been clinically applicable to 

further establish the effectiveness of glucose restriction on telomerase activity. 

7.3. Conclusion 

Telomere dysfunction is complex and involves interaction between a wide range 

of biological processes. Bypass of telomere dysfunction is essential in 

oncogenesis and the immortalisation process and enhancing our understanding of 

telomere dysfunction is essential (Prieur and Peeper, 2008). Due to the range of 

signalling interactions involved a systems biology approach is required in order 
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to characterise the biological pathways involved in telomere dysfunction. 

However, systems biology itself is a continually developing field with its own set 

of challenges. Management, visualisation and interpretation of large data sets is 

still a difficult problem and although the field has made great strides there is 

still room for improvement (O'Donoghue et al., 2010a). 

During this project I developed a novel methodology and workflow for analysis of 

data sets comprised of gene lists. Most traditional approaches focus on 

identification of small sets of genes that may or may not be in a pathway. 

However, the advantage of my novel approach is that it allows for identification 

of biological networks leading to immediate identification of pathways and 

direct characterisation of new biology. The effectiveness of this approach was 

demonstrated in two separate collaborations. In the first collaboration with Dr 

Alan Bilsland I was able to assist in the identification of putative mechanisms of 

action for a novel senescence inducing compound. This was achieved by 

comparing expression data across a panel of kinase inhibitors with which the 

compound was suggested to share a mechanism of action. The result was 

confirmation that the compound operated through an alternative mechanism to 

the other compounds in the panel. Furthermore, the results helped to direct 

investigation of the mechanism of action. The flexibility of the approach was 

then highlighted in the second collaboration with Dr Sofie Degerman and her 

group at Umeå University. During this collaboration an alternative data set 

comparing differentially methylated genes in a range of T cell lines over a time 

course (Degerman et al., 2014), the analysis I performed assisted in 

identification of biology associated with the immortalisation process and the role 

played by methylation. 

Further to use of the methodology to assist in collaborative efforts was its 

application to data sets within our own laboratory group. The primary aim of this 

study was to characterise telomere dysfunction regulatory pathways and identify 

previously unknown biology in the process. In the first instance this was achieved 

through use of the methodology to analyse the effect of genetic background on 

regulation of telomere dysfunction. Comparison of HCT116 WT, p21-/- and p53-/- 

cell lines response to telomere uncapping by Ad-hTRmut revealed p21 to be 
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essential in response to telomere uncapping. p21-/- cells demonstrated enhanced 

sensitivity to telomere uncapping and through the PNO analysis method 

Mismatch Repair was identified as a candidate process which may be involved in 

regulation of telomere dysfunction. Further validation of the mismatch repair 

pathway indeed confirmed it to have a role in managing sensitivity to telomere 

dysfunction and p21 appeared to be essential in induction of components of 

mismatch repair pathway in response to telomere uncapping. 

In addition to investigating the role of genetic background in telomere 

dysfunction the method was used to investigate the effects of the telomerase 

inhibitor GRN163L and the synergistic effects of telomerase inhibition during 

hypoglycaemia. GRN163L on its own was unable to reduce the growth rate of 

HCT116 cell lines over a long treatment period. Long term treatment did result 

in enrichment in a number of process networks. However, the processes affected 

were not traditionally associated with outcomes of telomere dysfunction 

indicating that the compound was not achieving its expected mechanism of 

action. Hypoglycaemia was found by our group to reduce telomerase activity and 

cause telomere shortening. It was also demonstrated to enhance the effects of a 

telomerase inhibitor by another group (Wardi et al., 2014). Therefore, we 

decided to investigate the synergistic effects of treating GRN163L cells under 

hypoglycaemic conditions. Indeed, we found that hypoglycaemia significantly 

reduced the required concentration of the compound for effective telomerase 

inhibition and mildly increased the rate of telomere shortening over a small time 

scale. So while recent telomerase inhibitors have not been successful in the 

clinic, the options available for telomerase targeted therapy are not yet 

exhausted. 

Overall I feel that this new methodology is an excellent method of 

complementing existing methods of analysing gene lists and has contributed to 

the identification of new biology in a range of projects.  
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Abstract
Cellular senescence is a barrier to tumorigenesis in normal cells, and tumor cells undergo senescence responses
to genotoxic stimuli, which is a potential target phenotype for cancer therapy. However, in this setting, mixed-
mode responses are common with apoptosis the dominant effect. Hence, more selective senescence inducers
are required. Here we report a machine learning–based in silico screen to identify potential senescence agonists.
We built profiles of differentially affected biological process networks from expression data obtained under
induced telomere dysfunction conditions in colorectal cancer cells and matched these to a panel of 17 protein
targets with confirmatory screening data in PubChem. We trained a neural network using 3517 compounds
identified as active or inactive against these targets. The resulting classification model was used to screen a virtual
library of ~2M lead-like compounds. One hundred and forty-seven virtual hits were acquired for validation in
growth inhibition and senescence-associated β-galactosidase assays. Among the found hits, a benzimidazolone
compound, CB-20903630, had low micromolar IC50 for growth inhibition of HCT116 cells and selectively induced
senescence-associated β-galactosidase activity in the entire treated cell population without cytotoxicity or
apoptosis induction. Growth suppression was mediated by G1 blockade involving increased p21 expression and
suppressed cyclin B1, CDK1, and CDC25C. In addition, the compound inhibited growth of multicellular spheroids
and caused severe retardation of population kinetics in long-term treatments. Preliminary structure-activity and
structure clustering analyses are reported, and expression analysis of CB-20903630 against other cell cycle
suppressor compounds suggested a PI3K/AKT-inhibitor–like profile in normal cells, with different pathways
affected in cancer cells.
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Introduction
Cellular senescence in normal cells is an irreversible cell cycle arrest
which is involved in cellular aging and tissue maintenance, and
which is induced by critically shortened telomeres at the end of
replicative lifespan. Oxidative damage and oncogene activation
accelerate both telomere shortening and senescence induction [1].
Therefore, senescence is considered to be a barrier to tumorigenesis
which cancer cells must bypass to acquire a transformed phenotype
[2,3].
Many cancer cells retain the capacity to undergo senescence-like

growth arrest in response to agents including chemotherapeutics and
ionizing radiation in addition to many targeted agents [4]. Hence,
despite inactivation of some key pathways, many tumor cells retain
the ability to exit the cell cycle under appropriate treatments. Thus,
latent senescence signaling may persist in tumors [5].
There is substantial interest in senescence induction as a

therapeutic outcome in cancer. However, senescence involves
multiple processes including telomere homeostasis, DNA damage
and inflammatory signaling, chromatin regulation, and metabolism
[6,7]. Interaction of these with the diverse mutational backgrounds of
cancer cells adds further complexity in attempting to define the best
targets for therapeutic intervention. It seems likely that a spectrum of
senescence-like responses is possible in cancer cells depending on
induction agent and signaling environment [8,9].
Given limitations in current knowledge, phenotypic screening is

attractive both for compound and pathway discovery focused on
senescence [10–12]. Suitable phenotypic markers for assay develop-
ment include p21 and p16 levels, the senescence-associated secretory
phenotype, senescence-associated β-galactosidase (SA-β-gal) staining,
senescence-associated heterochromatin foci, and altered morphology
[1]. However, although many agents elicit senescence, responses
obtained are often restricted to subsets of cells, with apoptotic cell
death dominant [13].
To evaluate senescence induction as an anticancer modality will

require identification of senescence agonists which are substantially
more selective than currently available tools [14]. Without detailed
knowledge of targets, the screening challenge is not simply
identification of compounds which can cause senescence; rather,
stratification of the most selective compounds among many expected
partial actives is critical. Identification of enriched libraries would be
beneficial before initiating a screening campaign. We reasoned that
virtual screening might identify such an enriched set.
Ligand-based virtual screening is of increasing interest in the

construction of activity models, ranging from well-defined target
binding studies [15] to more complex scenarios such as modeling of
experimental microsomal stability results [16], and a wide variety of
platforms and datasets are now available [17]. Another major goal is to
identify new compounds with activity against a given target based on
feature recognition [18].
In either case, abstraction of chemical structure information into a

set of numerical descriptors is critical. These must provide detailed
representation of the chemical and property space for a given
compound set [19]. An assumption is that a relation can be made
between these “fingerprints” and a classifier (active/inactive) or
known quantity such as IC50. Machine learning methods such as
neural networks [18,20] or support vector machines [21,22] provide a
powerful approach. Feature recognition rules are learned from a
training set with known activity; trained models are then simulated
against a new compound set of unknown activity.

Here we report a virtual screen using an artificial neural network
ensemble trained by the scaled conjugate gradient descent method
[23] using compounds identified from pooled PubChem screens
[24,25] against a panel of senescence-related targets. Targets were
selected by matching available screens to cellular “process networks
profiles” obtained by functional enrichment analysis of expression data
in colorectal cancer cells with induced telomere dysfunction. The
trained ensemble was used to classify a library of around 2M lead-like
compounds, leading to identification of a benzimidazolone compound
with lowmicromolar IC50 which selectively induces G1 blockade and
SA-β-gal without causing apoptosis. Preliminary structure/activity
relationships (SARs) and clustering studies are reported.

Results

Identification of a Senescence-Associated Protein Target Panel
Ad-hTR-mut is an adenoviral vector harboring mutant telomere

template sequence [2,26]. Telomerase-dependent reverse transcription
in cancer cells incorporatesmutant sequence in the telomeres of infected
cells, causing rapid telomere damage signaling. This provides a highly
selective way to induce telomere dysfunction and cellular senescence.

To identify pathways associated with telomere dysfunction and
senescence, we performed expression profiling and pathway analysis
[27–29] on HCT116 colorectal cancer cells infected with Ad-hTR-mut
or treated in long-term culture with telomerase inhibitor GRN163L
[30,31]. “Process network profiles” were generated by pathway
enrichment analysis against 169 curated networks from the MetaCore
database [27] covering 23 top-level processes (Supplementary Table S1).
Heat maps were generated based on significance of each network to
visualize overall significance of each process (Figure 1A and Supplemen-
tary Figure S1). The most significant enrichments of differentially
expressed genes in response to telomere targeting agents were on
networks involved in DNA damage, cell cycle, and protein folding.

We hypothesized that targets involved in these telomere
dysfunction processes would be good candidate targets for senescence
induction. We therefore sought to identify a target group with known
involvement in these processes and for which confirmatory
(dose-response) screening results were available within the PubChem
bioassay database [24,25]. In searching available screens, we identified
17 candidate protein targets with relevance to these processes and
with associated confirmatory screens (Table 1).

Enrichment analysis on this target list confirmed close involvement
of the panel in the same process networks identified as significantly
affected by telomere targeting (Figure 1A and Supplementary Figure
S1). We also performed shortest-paths analysis of the target panel in
MetaCore to determine functional relations between these targets
(Figure 1B). These targets participate in a closely connected direct
interactions network, indicating the close interplay between diverse
processes in senescence regulation.

Development of a Senescence-Targeted Virtual Screen
The overall neural network optimization workflow is shown in

Supplementary Figure S2. To develop the classifier, compound sets
associated with each identified PubChem bioassay were merged into
active and inactive pools (Table 1). As classification models can be
affected by an initial unbalance in the data, we aimed at retaining
similar compound numbers in each list. Similarity filters were applied
to reduce the size of very large inactive lists using ChemOffice. The
pooled lists were cleaned, duplicates were removed, and a molecular
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weight filter was applied (150 b MW b 700). The actives and
inactives were then merged to generate the training set, and duplicates
arising after the merge were excluded. The more balanced training set
contained 3924 compounds of which 1859 were active against the
targets panel and 2065 were inactive.

For each compound, 2780 descriptors were generated. These
included 729 1D/2D descriptors, 880 PubChem fingerprints and
1024 CDK extended fingerprints obtained using PaDel, and 147
pharmacophore fingerprints obtained using PowerMV [32,33]. An
initial parameter scan was performed on this training set to identify
the classifier performance when learning rule and neuron number
were varied (Supplementary Figure S3). The best initial parameter set

(20 neurons, 1 hidden layer, with learning by scaled conjugate
descent) gave 73.8% classification accuracy with Cohen’s κ = 0.51
[34] in 10-fold cross-validation. To improve the performance, we
excluded the compounds that were most consistently misclassified
under these parameters (Mean Square Error N 0.4 excluded). A total
of 3536 compounds were retained, and a features selection protocol
(see methods) was performed on the descriptor set for these. Nineteen
compounds were not correctly recognized by the feature selection
software and were excluded.

We retained 495 descriptors for the final 3517 compound set.
Principal component analysis on these descriptors is shown in
Figure 1C, illustrating good overlap between the active and inactive

Figure 1. Development of a senescence-targeted virtual screen. (A) Expression microarray data from colorectal cancer cells were used to
generate process network profiles of induced telomere dysfunction. Top scoring processes are shown. The complete profile is given in
Supplementary Figure S1. Processes in red scored as significant. Numbers in each cell are the hypergeometric P value for each gene list
against each process network. The main processes affected were matched to targets involved in those processes for which confirmatory
screens were available in PubChem. (B) Interactions in the senescence-associated target panel network identified by direct-interactions
network building in GeneGo. (C) Diversity of the 3517-compound training set. Principal component analysis was performed on the 495
selected chemical descriptors, and projections on the first three principal components were visualized in Matlab. Actives are shown in
blue; inactives are shown in red. (D) Structure of the trained networks. A 10-network ensemble was used for the virtual screen.
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Table 1. Selected PubChem Bioassay Target Panel and Associated Compounds Identified as Relevant to Telomere-Dysfunction Process Network Profiles Generated in HCT116 Cells

Target PubChem AID Actives Inactives Description

p21 N/A 29 29 In-house screening data. Luciferase assay for activation of p21 promoter activity; inactives 50%-85% similarity with actives.
p53 624305 296 405 Confirmatory luciferase assay for activation of p53-dependent synthetic promoter reporter.
WEE1 1410 39 147 Increased WEE1-luciferase fusion gene activity; inactives 65% similarity to actives.
INCENP 473665 8 0 Small series of aurora inhibitors based on modification of an existing clinical candidate.
IL8 651758 38 88 Time-resolved FRET assay (IF) for IL8 secretion from cells; inactives 65% similarity to actives.
ATM 493192 41 36 Confirmatory ELISA for phosphorylation of ATM target protein.
MTORC1 2668 49 0 Confirmatory cell-based IF assay for phospho-rpS6.
HSP90 712 91 173 Confirmatory FP assay for HSP90 binding.
DNMT1 602386 179 21 Confirmatory fluorescein-labeled DNA oligomethylation assay.
BLM 2585 83 55 Confirmatory fluorescence quench DNA unwinding assay.
MDM2 1394 41 159 Confirmatory MDM2-luc autoubiquitination assay.
RECQL1 2708 173 321 Confirmatory fluorescence quench DNA unwinding assay.
SENP1 651697 117 60 Confirmatory kinetic FRET assay for SENP protease inhibition.
VDR 602201 159 115 Confirmatory FP assay for interaction of VDR and coregulator peptide.
EIF4E 855 77 486 Confirmatory TR-FRET for association of EIF4E/EIF4G.
RAD54 651657 394 63 Confirmatory fluorescent HR assay.
JMJD2A 488840 43 0 Confirmatory dissociation enhanced lanthanide fluorescence assay.

WEE1, homologue of S.Pombe Wee1; INCENP, Inner Centromere Protein; IL8, Interleukin 8; ATM, Ataxia Telangiectasia Mutated; MTORC1, Mammalian Target of Rapamycin Complex 1; HSP90, Heat Shock
Protein (90kDa);DNMT1,DNAMethyl Transferase 1; BLM,BloomSyndrome;MDM2,MouseDoubleMinute 2 homologue; RECQL1, E.Coli RecQLike helicase 1; SENP1, Sentrin Specific Protease familymember
1; VDR, Vitamin D Receptor; EIF4E, Eukaryotic Translation Initiation Factor 4E; RAD54, homologue of S.Cerevisiae Rad54; JMJD2A, Jumanji Domain containing protein 2A; FRET, Fluorescence Resonance Energy
Transfer; IF, immunofluorescence; ELISA, Enzyme Linked Immuno-Sorbent Assay; rpS6, Small Ribosomal Protein 6; FP, Fluorescence Polarization; TR-FRET, Time Resolved FRET;HR,Homologous Recombination.

Figure 2. Performance of the network ensemble and virtual screening results. (A) Receiver operating characteristic plot of the
performance of 1 of the 10 networks in the trained ensemble showing results for each output neuron. One neuron each classified active
or inactive compounds. (B) Summed confusion matrix for the 10-network classifier. Numbers represent total compound number and
percentage of the training set falling in each quadrant as classified across all networks. Cohen’s κ = 0.65 for the ensemble. (C) Principal
component analysis of filtered virtual screening hits (total set in blue) and compounds selected after clustering on 3D pharmacophores
(red). Principal component analysis was performed in Matlab on 3D pharmacophores extracted using Canvas.
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chemical spaces. Parameter scanning was again performed on this data
with 10-fold cross-validation. Best accuracy (Supplementary Figure
S4) was obtained with 2-layer networks having 20 neurons in the
hidden layer with 2 output neurons (Figure 1D) trained by scaled
conjugate gradient descent [23]. We finally selected an ensemble of
10 networks trained using the optimal parameter, compound, and
descriptor sets. A representative receiver operating characteristic plot
for one of these is shown in Figure 2A. The high area under the curve
of each output neuron indicates excellent classification of both active
and inactive compounds. The overall sensitivity and specificity of the
entire panel were 83.1% and 82.4%, respectively, for the “hit” output
neuron (Figure 2B). Overall accuracy was 82.7%, and Cohen’s κ =
0.65 indicated very good classification performance [35].

We used the trained ensemble to screen 2,086,587 structures with
weighting for specificity by application of a cutoff of 0.95 on the active
output neuron and 0.05 on the inactive output neuron, resulting in
17,278 virtual hits. To prioritize these, in silico physicochemical and
ADMET filters were applied (Supplementary Table S2). A total of
4929 compounds remained after filtering, and these were clustered on
3D pharmacophore fingerprints. A final set of 147 for cell-based
screening was obtained by sampling from these clusters (Figure 2C;
SMILES structures are given in Supplementary File 1).

Identification of a Highly Selective Benzimidazolone
SA-β-gal Inducer

The 147 compounds we r e f i r s t t e s t ed in MTT
(3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide)
cell viability assays in HCT116 cells at 100 μM. Ninety-two
compounds showed at least 1.5-fold growth inhibition and were
taken into dose-response treatments (Supplementary Figure S4). Sixty
of the 92 compounds showed confirmed growth inhibition with IC50
b 100 μM (Figure 3A), and the top 50 of these with N60% growth
suppression at 100 μM were tested in a fluorometric SA-β-gal assay.
Each compound was tested initially at a single dose determined from
the MTT results to be the minimum concentration which achieved
maximum inhibition within the range tested. For example, this was
3.7 μM for compound EM10 and 33.3 μM for EM100 (Figure 3A,
top two rows).

The fluorometric SA-β-gal results are given in Figure 3B. In our
hands, the fluorometric assay has log-linear relation with the
proportion of HCT116 cells staining positive for SA-β-gal in the
standard staining assay in the range up to ~25% positive cells at
~1.5-fold fluorescence induction (Supplementary Figure S6). We
therefore imposed a cutoff of two-fold induction of signal relative to
untreated cells. Fifteen compounds achieved greater than two-fold
induction and were tested in colorimetric SA-β-gal staining
dose responses.

The most potent effects were observed in both assays with EM100.
SA-β-gal induction closely mirrored the inhibition of growth by
MTT for this compound (MTT IC50, 9.6 μM; SA-β-gal EC50, 8.3
μM) (Figure 3D). EM100 is the ChemBridge compound 20903630
(Figure 3C, hereafter referred to as CB-20903630). Interestingly, at
high concentration (33.3 μM), the compound was able to elicit
detectable SA-β-gal staining in almost all cells against a background of
extremely low (b1%) staining in untreated control cells (Figure 3E).
Furthermore, staining in the entire population was achieved without
observable loss of attachment, suggesting little or no cell death.
Therefore, CB-20903630 appeared highly selective in inducing a key
senescence marker.

Structure-Activity and Cell Cycle Inhibition Effects of
Compound CB-20903630

To test preliminary SAR around CB-20903630, we searched
commercial vendor libraries, identifying close structural analogues
with a range of lipophilicities and functionalities, and obtained 10
structurally related analogues (Figure 4A). There were few commer-
cially available analogues which maintained the 4-methyl-6-cyclobutyl
motif present in CB-20903630, so we instead focused on analogues
retaining the benzimidazolone motif.

Within this set (compounds 101-110), we found a range of MTT
growth inhibition activities, with compound 101, containing the
1,2,4-triazine naphthyl group, possessing a respectable IC50 of 7.1
μM, in line with CB-20903630. Reassuringly, additional changes on
this portion of the molecules were also tolerated, with both saturated
(compounds 103 and 108) and unsaturated (compound 107) being
tolerated. In addition, the presence of basic (compound 109) and
neutral (compounds 102-106, 108, and 110) functionality indicates
that there is potential to further optimize this series.

Because CB-20903630 remained among the best of the set tested,
its identity and purity (N95%) were confirmed at resupply. We then
investigated its effects on cell-cycle effectors involved in mediating
arrest during senescence. HCT116 cells were treated for 48 hours in
the presence of DMSO or 10 μM CB-20903630. Cells were
harvested for Western blotting of cyclin B1, p21, CDK1, and
CDC25C (Figure 4B). Cyclin B1, CDK1, and expression of the short
isoform of CDC25C were all downregulated by CB-20903630
treatment, whereas levels of p21 were elevated (Figure 4B).

To confirm the cell cycle effects of the compound, we performed
propidium iodide FACS analysis in treated HCT116 cells.
Forty-eight–hour treatments at 20 μM were found to produce
more robust effects than 10 μM, so we retained this dose for further
growth-related assays. As shown in Figure 4C, CB-20903630
promoted a two-fold increase in G1 DNA content with a
concomitant reduction in S-phase. Notably, there was no observed
increase in the sub-G1 signal, suggesting that the compound does not
significantly promote apoptosis and growth inhibition is primarily
mediated through a G1 block.

We next compared growth inhibition of HCT116 with the
isogenic deletion variants HCT116-p53−/− and HCT116-p21−/−

(Figure 4D). The parental and the p53 deleted lines showed similar
profiles, suggesting that p53 is not essential for cell cycle arrest by the
compound. However, an approximately 1.5-fold reduction in
sensitivity was observed in the p21 deleted cells. Hence, p21 but
not p53 appears to play a role in the compound activity, in line with
Figure 4B.

To confirm selectivity, we tested CB-20903630 in the M30
Apoptosense assay which measures an apoptotic neo-epitope of
cleaved cytokeratin 18. CB-20903630 at 20 μM did not significantly
increase cleaved CK18. However, the cytotoxic agent etoposide
caused a 1.8-fold increase (Figure 4E, P b .01). Thus, CB-20903630
did not appear to induce substantial levels of apoptosis under these
conditions in HCT116 cells.

Accelerated senescence is associated with an inflammatory
phenotype characterized by secretion of a range of cytokines [6,7].
To investigate the inflammatory response of HCT116 cells, control
or treated cell supernatants were tested in a multiplex assay analyzing
the levels of 10 proinflammatory cytokines. Levels of most cytokines
were low (Supplementary Figure S7) with the exception of IL8
(Figure 4F). CB-20903630 did not induce a proinflammatory
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signature. Indeed, the only significant change was reduction in IL8
levels. Hence, despite its cell cycle effects, CB-20903630 did not
induce the “senescence-associated secretory phenotype.”

We next treated HCT116 cells continuously with DMSO or
20 μM CB-20903630 twice weekly for 1 month to determine
cumulative population doublings with weekly counting (Figure 5A).

Figure 3. Cell-based screening results and identification of CB-20903630. (A) MTT cell growth inhibition results for compounds showing
confirmed dose-dependent inhibition with IC50 b 100 μM. Heat maps were visualized in Tableau desktop. Numbers in each cell represent
mean fold of control for each concentration of compound. Mean ± SEM of three experiments. (B) Fluorometric SA-β-gal on the 50 most
potent MTT hits. Results are fold of vehicle-treated control. Two-fold activation of fluorescent signal was chosen as cutoff. Mean ± SEM
of two experiments. (C) Structure of CB-20903630. The structure was confirmed by nuclear magnetic resonance, and purity was N95% by
liquid chromatography. (D) Growth inhibition and SA-β-gal population-staining dose responses for CB-20903630. To clarify the shared
dose response, data shown for SA-β-gal are unstained cells at each dose (1 minus SA-β-gal positive). Mean ± SEM of three experiments
(MTT) or two experiments (SA-β-gal). (E) Representative micrographs showing SA-β-gal staining in untreated HCT116 cells or cells treated
at 33.3 μM.
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Control cells had undergone 33 population doublings by the end of
treatment. In contrast, treated cell growth was severely retarded, and
the cells underwent only 10.7 population doublings in total.
Therefore, CB-20903630 treatment produced sustained inhibition
of population growth.

We also examined CB-20903630 effects in an HCT116 spheroid
model developed by adjustment to serum-free culture. Suspension
cells were seeded for 5 days in the absence of treatment to allow
initiation of multicellular spheroids, then swapped into 20 μM
CB-20903630 or control medium (treatment day 0, Figure 5B), and
cultured for a further 4 days. Treatment was repeated after 2 days.
Compound was not removed between treatments.

Control spheroids significantly increased in volume in this period,
whereas treated spheroids remained small (Figure 5B, right panels).
Quantification of microscopic area of 50 individual spheroids in each

condition showed a 3.5-fold difference (Figure 5C). Interestingly,
following second treatment, many single cells were observed in
treated flasks but not controls. In addition, treated spheroids were
fewer in number and less tightly aggregated. It is possible that cell
death pathways predominate under altered attachment.

Expression Profiling and Pathway Analysis of
CB-20903630 Activity

To investigate themechanismof action ofCB-20903630,we performed
microarray analysis using cDNA from cells treated for 48 hours with
DMSO or 10 μM CB-20903630. We identified differentially expressed
transcript IDs with greater than three-fold intensity change (p b 0.05)
between control and treated cells. Modeling in MetaCore [28] generated a
network of known direct interactions among the differentially expressed
genes. All direct interactions with cluster size ≥2 were included (Figure 6A).

Figure 4. Structure-activity for the benzimidazolone scaffold and cell cycle effects of CB-20903630. (A) MTT SAR analysis of commercially
available related analogues identified in the Chembridge catalogue. Mean IC50 of three experiments is shown. (B) Western blotting
analysis of cell cycle effects in CB-20903630–treated HCT116 cells. Representative blots are shown. The experiment was performed
twice. (C) Propidium iodide FACS analysis of cell cycle phase in control or treated cells. A representative histogram is shown. The
experiment was performed three times. (D) MTT growth inhibition CB-20903630 dose-response in HCT116 or p53−/− and p21−/−

isogenic variants. Mean ± SEM of three experiments. (E) Apoptosense CK18 assay of CB-20903630 or etoposide treatment in HCT116
cells. Mean± SEM of three experiments (significance assessed by ANOVA: ns, not significant, **P b .01). (F) Suppression of IL-8 levels by
CB-20903630 in HCT116 cells. Mean ± SEM of three experiments (significance assessed by ANOVA: **P b .01).
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Several transcription factors associated with development and
proliferation were affected, including upregulation of Fra-2, DBP,
and C/EBP, whereas E2F2, Gli-1, MEIS2, PBX, and Sox4 were
downregulated. Interestingly, a number of secreted and membrane
proteins were also downregulated including CCL19, vasohibin 2,
semaphorins, fibulin-5, MMP9, BMP4, and ephrin A. These results
suggest that the compound may regulate a secretory program distinct
from the inflammatory markers investigated above. Clock genes
PER1 and PER3 were also differentially regulated, in line with a
previous study which found clock gene repression in vascular smooth
muscle cells undergoing telomere-dependent senescence [36]. Process
enrichment indicated that CB-20903630 promotes differential
expression on inflammatory and developmental signaling networks
as suggested by the model (Figure 6B).
CB-20903630 contains a kinase hinge-binding motif [37],

indicating that the compound may target a cell cycle–related kinase.
We generated expression profiles of IMR90 fibroblasts treated with
13 well-characterized kinase inhibitors (Supplementary Table S3)
most of which induce a senescence-associated heterochromatin foci–
like phenotype [49] and apoptosis and/or cell cycle responses. This
data set represents a range of senescence effects induced by different
pathway-specific agents in cells with an intact senescence response.
To compare the effects of CB-20903630, we also treated IMR90

with the compound and compared both HCT116 and IMR90
profiles with the other inhibitors. Responses were clustered on
significance of overlap in affected MetaCore process networks.
Numbers of significant process networks under each inhibitor
treatment were used to generate hypergeometric probabilities for
each pairwise comparison, which we used as an unweighted average
distance metric (Figure 6C).
EGFR inhibitor clustered with JNKIX. Cell cycle pathways, cell

adhesion, and developmental and cytoskeletal processes were affected
by this group. Two AKT inhibitors (AKTV and AKTVIII) are
present in the analysis, alongside two PI3K inhibitors (PI103 and
GDC0941). AKTV/GDC0941 clustered and the CB-20903630
process network profile in IMR90 cells also clustered in this group.
Adhesion, inflammation, development, and proteolysis processes are
strongly represented in this group. The AKTVIII profile was also
close to these in the analysis, whereas the other PI3K inhibitor PI103

was more closely related to the PDGFR inhibitor; both of these had
very large process network profiles (52 and 59 networks affected,
respectively). MAPK inhibitor MK2A clustered with Src-family
inhibitor SU6656 and with AuroraII, primarily affecting DNA
damage, cell cycle, and apoptosis processes.

The CB-20903630 process network profile in HCT116 clustered
away from all others, possibly indicating that the compound
mechanism affects different pathways in normal versus cancer cells.
The profile in IMR90 appears to suggest similarity with agents
targeting the PI3K/AKT pathway. CB-20903630 profiles in IMR90
and HCT116 were partially overlapping because five of the eight
processes scoring as significant in HCT116 cells were also significant
in IMR90 cells (Figure 6, A and B, and Supplementary Figures S8
and S9). Inflammatory processes were also highly represented in
IMR90. However, IMR90 cells also scored highly in a range of
development and proteolysis processes shared by the PI3K/AKT
agents, making the observed profile more similar to these. Thus,
different pathways may be affected by the compound in normal
versus cancer cells.

To determine whether CB-20903630 is structurally related to existing
kinase inhibitors, we performed clustering analysis on 3D pharmaco-
phores comparing CB-20903630 alongside 527 known kinase inhibitors
using a self-organizing map (Figure 6D). CB-20903630 loaded with 15
other compounds on a neuron which did not cluster strongly with
neighbors. Examination of the structures showed prevalence of JNK2/3,
VEGFR2, and GSK3 inhibitors (Supplementary File 2). However,
CB-20903630 had little 2D similarity with these. Together, our results
suggest that CB-20903630 is a selective cell cycle inhibitor which appears
to be structurally novel.

Discussion
Cellular immortality is a hallmark of cancer and a near-universal
cancer target. However, recent clinical results suggest that telomerase
may prove a more refractory target than had been hoped in solid
tumors [38]. Multiple pathways regulate telomerase, and a variety of
backup mechanisms may exist facilitating escape from inhibition
[28,39]. On the other hand, strong interest in senescence induction as
an alternative target to reverse limitless replicative potential of cancer
cells has also emerged in recent years.

Figure 5. Long-term growth effects of repeat treatment with CB-20903630 and inhibition of multicellular spheroid growth. (A) HCT116
cells weremaintained in culture and treated twice-weekly with CB-20903630 or vehicle. Cell numbers were counted weekly for calculation
of cumulative population doublings. Mean ± SEM of three experiments. (B) HCT116 cells were adapted to serum-free conditions to
generate a suspension line which grows as multicellular spheroids. Small spheroids were allowed to form in culture medium for 5 days
then treated twice with CB-20903630 or vehicle. Representative micrographs obtained during the treatment period are shown. (C)
Quantitation of mean area of 50 treated or control spheroids after 4 days of treatment with CB-20903630. Significance of population
difference was assessed by Wilcoxon rank sum test (**P b .001).
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We began with a strategy to match training compound sets to
the expression profile of telomere dysfunction. We identified a
target panel, optimized a neural network ensemble, and screened a

2M-compound virtual library. Virtual hits were prioritized based
on ADMET filters and pharmacophore clustering to identify a
cell-based screening set, resulting in identification of

Figure 6. Microarray and structural analysis of CB-20903630. (A) Direct interactions network of differentially expressed genes in HCT116
cells treated with 10 μMCB-20903630. RNA samples fromDMSO versus compound-treated cells were profiled on Agilent whole genome
expression arrays. Differentially expressed gene lists were analyzed inMetaCore by the direct interactions algorithm to obtain the network
model. Green and red arrows indicate known activating or inhibitory interactions between entities, respectively. Red and blue circles
indicate upregulation and downregulation of expression relative to vehicle treatment, respectively. (B) Significant differentially affected
GeneGo process networks under CB-20903630 treatment in HCT116 cells obtained by enrichment analysis of differentially affected genes.
(C) Clustering of process network profiles with cumulative hypergeometric probability of pairwise overlap as the unweighted distance
metric. (D) SOM structural clustering of CB-20903630 and known kinase inhibitors (see Materials and Methods section for source of
comparator structures) after 200 training cycles. (Upper panel) Compound loadings: CB-20903630 and 15 other compounds loaded on the
highlighted neuron in the upper panel. Numbers indicate number of compounds on each neuron. (Lower panel) Visualization of neighbor
weights: the CB-20903630 neuron is not strongly clustered with its neighbors (darker bands indicate larger distances).
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CB-20903630. The compound promotes SA-β-gal in the majority
of HCT116 cells and modulates cell cycle targets p21, cyclin B1,
CDC25C, and CDK1, causing a G1 blockade without observable
induction of cell death.
Preliminary SAR indicates scope for enhancement of

CB-20903630 activity. However, relatively few close commercial
analogues were found to be available, and we have therefore not
exhaustively investigated this aspect and focused instead on the
activity of CB-20903630. The growth inhibition effect appears to be
in part dependent on p21 but not p53 based on sensitivities of
isogenic HCT116 variants. In long-term treatments, the compound
severely repressed population doubling times and strongly repressed
growth in a multicellular spheroid model. The target of
CB-20903630 is unknown. However, expression and structural
clustering analysis suggest that the effects of the compound in normal
cells have similarity with agents targeting the PI3K/AKT pathway,
whereas in cancer cells, the effects diverged from other well
characterized cell cycle inhibitors.
Virtual screening has previously been used for the identification of

ligands for single targets [40]. In one recent example, the compound
6,6”-biapigenin was identified as a novel inhibitor of the NEDD8
activating enzyme (NAE) which is required for NEDDylation of a
wide range of cellular targets. A previously identified NAE inhibitor
showed broad activity against cancer cell lines, and the authors used
molecular docking against a quaternary complex comprising the NAE
subunits APPBP1 and UBA3 as well as its NEDD8 and ATP
substrates to identify the new compound which showed low
micromolar activity in Caco-2 cells [41]. Multitarget approaches
such as that described here have not been widely investigated,
although a recent study reported use of combinatorial support vector
machine classifiers to identify dual-specificity ligands for a range of
kinase pairs [42]. Furthermore, “inverse docking” in which individual
compounds are docked against target panels has been suggested as a
potentially powerful tool for compound repositioning strategies to
complement existing pipelines in the pharmaceutical industry [43].
Our results suggest that virtual screening focused on target panels may
also provide a useful approach for the identification of phenotype-
focused libraries.
Ultimately, development of senescence therapeutics will require

greater understanding of the regulation of senescence signaling
networks. CB-20903630 is an interesting tool compound which
appears to be a highly selective cell cycle inhibitor. The compound
may therefore be a useful probe to identify new candidate markers
and mechanisms associated with senescence and cell cycle responses.
However, broad knowledge of the scaffold types that are able to
regulate senescence pathways will also be required to identify a range
of selective agents. In this paper, we identified a kinase-like scaffold by
restricting our training set and library to “drug-like” chemical space.
However, other regions of chemical space might also be worthy of
consideration, such as natural product libraries or novel organome-
tallic agents [44,45]. As in the current report, virtual screening might
also provide an extremely useful tool to probe these novel library types
in future studies.

Materials and Methods

Training Library Assembly and Neural Network Optimization
Training compounds were identified in confirmatory PubChem

bioassay entries reported in Table 1 or from in-house data in the case

of p21. All neural network optimization on neuron number, number
of hidden layers, and training rule was performed using the Matlab
neural network toolbox (Mathworks, Natick, MA). Ten-fold cross-
validation was performed on each parameter set. The overall
optimization workflow is shown in Supplementary Figure S2.
Chemical descriptor sets were obtained using PaDEL Descriptor
[33] and PowerMV [32].

Highly correlated descriptors and those with a variance of 0
were excluded, and the smaller representative set of descriptors
was chosen using the Feature Selection option of the Canvas
program [46,47] (Canvas, version 2.0; Schrödinger, LLC, New
York, NY). 3D Pharmacophore fingerprints were also calculated
in Canvas and ADME/Tox properties (Supplementary Table S2)
in QikProp (QikProp, version 4.0; Schrödinger, LLC, New York,
NY, 2014).

Cell Lines and Compounds
The cells used were HCT116 colorectal cancer cells, their p53 and

p21 deleted isogenic derivatives, and IMR90 fibroblasts. One hundred
forty-seven virtual hits were selected based on the clustering analysis
using 3D pharmacophore fingerprints. Compounds were initially
sourced through E-Molecules (Stevenage, UK). CB-20903630 resup-
ply and related analogues were obtained fromChemBridge (San Diego,
CA). Structure was confirmed by nuclear magnetic resonance, and
purity was confirmed by liquid chromatography/mass spectrometry. All
other signal transduction inhibitors reported were obtained from
Millipore (Supplementary Table S3). GRN163L was kindly provided
by the Geron Corporation (Menlo Park, CA).

MTT, Fluorescent SA-β-gal, and M30 Assays
For MTT assay, cells were treated twice over 48 hours with

compounds and then incubated for a further 3 days before MTT
assay (MTT supplied by Sigma, Dorset, UK). MTT reduction assays
were performed using Softmax Pro software (Molecular Devices Ltd.,
Wokingham, UK). All experiments were repeated three times. Heat
maps were generated in Tableau Desktop (Tableau Software, Seattle,
WA). Fluorescent SA-β-gal assays were performed using the 96-well
kit by Cell Biolabs (San Diego, CA). Cells were seeded overnight
before 48-hour compound treatments. Five micrograms of protein
was incubated in duplicate with assay buffer for 3 hours. Fluorescence
was measured using a Safire plate reader (Tecan Group, Männedorf,
Switzerland). All experiments were repeated twice. In colorimetric
SA-β-gal staining assays, cells were fixed in gluteraldehyde and stained
in the dark overnight with X-gal at pH 6. At least 500 cells in 5
random fields were counted for microscopic evaluation of proportions
of stained cells in any treatment condition.

For M30 assay, cells were seeded in triplicate wells of 96-well plates
overnight before addition of compound. Cells were treated for 2 days
with compounds or vehicle then harvested. ELISA was performed on
supernatants according the manufacturer’s instructions (VLVbio,
Nacka, Sweden) with quantification using Softmax Pro software
(Molecular Devices Ltd., Wokingham, UK). Experiments were
repeated three times.

Western Blotting
Twenty micrograms of protein was separated by SDS-PAGE,

blotted onto polyvinylidene difluoride (Millipore, Watford, UK), and
blocked overnight in PBS-T containing 5% nonfat dried milk.
Antibodies were cyclin B1 (4135), p21 (2946), CDK1 (9112), and
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CDC25C (4688), all obtained from New England Biolabs UK
(Hitchin, UK). Primary antibodies were detected with HRP-
conjugated secondary. HRP was detected using ECL detection
reagents (Amersham Pharmacia, Buckinghamshire, UK). Experi-
ments were performed at least twice.

FACS Analysis
Treated cells were fixed in 70% ethanol and stained with 0.05

mg/ml of propidium iodide solution containing 1 mg/ml of RNAse
A (both obtained from Life Technologies, Paisley, UK) and 0.3%
Tween-20 (Sigma, Dorset, UK). FACS was performed on a
FACSverse instrument (BD Biosciences, Oxford, UK). Experi-
ments were performed three times.

Microarray Processing
RNA was labeled and amplified using the one-color microarray

gene expression analysis protocol (Agilent Technologies, Santa Clara,
CA), hybridized to Agilent whole human genome 4 × 44k Agilent
whole human genome microarrays, and incubated for 17 hours at
60°C in a hybridization oven. Arrays were washed on a magnetic
stirrer using Agilent wash buffers. Slides were scanned on an Agilent
microarray scanner at 5-μm resolution, photomultiplier tube (PMT)
gain at 100% and 10%. The extended dynamic range setting was
corrected for saturation. Kinase inhibitor treatments in IMR90 were
performed twice. CB-20903630 treatment of HCT116 was
performed three times, but in IMR90 cells, only two independent
experiments were performed because of compound availability. The
data set has been submitted to the Gene Expression Omnibus with
accession number GSE72621.

Microarray Data Analysis
Microarray data were extracted using Agilent Feature Extraction

software (Agilent Technologies, Santa Clara, CA). All array data
were analyzed in GeneSpring for normalization and statistical
analysis (Agilent Technologies, Santa Clara, CA). Intraarray
normalization was carried out using the 75th percentile for each
microarray. Significant differences in expression between control
and treated cells were determined using unpaired t test. IDs with
greater than three-fold intensity change, P b .05, were selected for
further analysis.

Process Profiles, Network Modeling, and Structural Clustering
Differentially expressed genes were analyzed in MetaCore

(Thomson Reuters, New York, NY) using enrichment analysis by
GeneGo process networks [27]. Probability of overlap was scored for
each gene list tested against all process networks in the MetaCore
database. Network analyses were performed using the GeneGo direct
interactions algorithm [29]. For process network clustering, cumu-
lative hypergeometric probability of pairwise overlap between process
network profiles was calculated. Dendrograms were generated from
the matrix of pairwise probabilities for all comparisons using
unweighted average distances in Matlab (Mathworks, Natick, MA).

For structural clustering, 3D pharmacophores were calculated in
Canvas. Included structures were CB-20903630 and 527 kinase
inhibitors pooled from the Millipore Inhibitor Select 384-well panel
(#539743) and from the GSK Published Kinase Inhibitor Set [48].
The finger prints were clustered on a 10 × 10 self-organizing map in
Matlab using 200 training iterations. Compounds loading with
CB-20903630 are given in Supplementary File 2.

Statistical Analysis
All statistical analyses were performed in Microsoft Excel or Matlab.
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Immortalization of T-Cells Is
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of T-Cell Leukemias1,2,3

Sofie Degerman*,4, Mattias Landfors*,¶,4,
Jan Konrad Siwicki†, John Revie§,
Magnus Borssén*, Emma Evelönn*, Erik Forestier*,
Krystyna H. Chrzanowska‡, Patrik Rydén¶,#,
W. Nicol Keith§ and Göran Roos*

*Department of Medical Biosciences, Umeå University,
SE-90185 Umeå, Sweden; †Department of Immunology,
Maria Sklodowska-CurieMemorial Cancer Centre and Institute
ofOncology, 02-781Warsaw, Poland; ‡DepartmentofMedical
Genetics, Children’s Memorial Health Institute, 04-730
Warsaw, Poland; §Wolfson Wohl Cancer Research Centre,
Institute of Cancer Sciences, University of Glasgow, Glasgow
G61 1QH, UK; ¶Department of Mathematics and
Mathematical Statistics, Umeå University, SE-90185 Umeå,
Sweden; #Computational Life Science Cluster, Umeå
University, SE-90185 Umeå, Sweden

Abstract
We have previously described gene expression changes during spontaneous immortalization of T-cells, thereby
identifying cellular processes important for cell growth crisis escape and unlimited proliferation. Here, we analyze the
samemodel to investigate the role of genome-widemethylation in the immortalization process at different time points
pre-crisis and post-crisis using high-resolution arrays. We show that over time in culture there is an overall
accumulation of methylation alterations, with preferential increased methylation close to transcription start sites
(TSSs), islands, and shore regions. Methylation and gene expression alterations did not correlate for the majority of
genes, but for the fraction that correlated, gain of methylation close to TSS was associated with decreased gene
expression. Interestingly, the pattern of CpG sitemethylation observed in immortal T-cell cultureswas similar to clinical
T-cell acute lymphoblastic leukemia (T-ALL) samples classified as CpG island methylator phenotype positive. These
sites were highly overrepresented by polycomb target genes and involved in developmental, cell adhesion, and cell
signaling processes. The presence of non-random methylation events in in vitro immortalized T-cell cultures and
diagnostic T-ALL samples indicates altered methylation of CpG sites with a possible role in malignant hematopoiesis.

Neoplasia (2014) 16, 606–615

Introduction
Cellular immortalization is a multistep process and a major step in
cancer development. Senescence checkpoint bypass and acquisition of

indefinite replicative capacity in cell cultures have been associated
with pathways affecting cell cycle progression, DNA damage,
oxidative stress responses, and cytoskeletal organization, as well as
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interferon-, insulin growth factor–, and MAP kinase–related
pathways [1]. Published data on cellular processes involved in
immortalization have essentially been generated from fibroblasts and
endothelial and epithelial cells, whereas less is known for lymphoid cells
[1–4]. A common feature of immortalized cells is activation of telomerase
through up-regulation of human Telomerase Reverse Transcriptase
(hTERT), the expression of which is regulated by a multitude of factors
includingmodifiers of the chromatin structure [5–7].We have previously
shown that impaired DNA damage response and deregulated cell
senescence control together with activation of telomerase were coupled
to T-cell immortalization [8]. In vitro immortalization of mammary
epithelial cells has been associated with stepwise DNA methylation
alterations [3], and in the present study, we have analyzed methylation
alterations during this process in primary T-cell cultures and in relation
to diagnostic T-cell acute lymphoblastic leukemia (T-ALL) samples.
Epigenetic processes involve DNA methylation and histone modifi-

cations, which can participate in gene regulation without altering the
DNA sequence. DNA methylation frequently occurs on a cytosine
followed by a guanine (CpG sites) [9]. Many CpG-enriched regions
(CpG islands) are located in promoters and methylation of such CpG
islands represents one major transcriptional control mechanism [4].
Abnormal DNA methylation is a hallmark of cancer development and
might lead to silencing of tumor suppressor genes and/or activation of
oncogenes [9–11]. Specific CpG islands are commonly methylated in
malignancies and themethylation pattern seems to be tumor type specific
[3,9,11–15]. Epigenetic repression of the INK4a/ARF locus, encoding
the tumor suppressors p16INK4a and p14ARF, is a frequent event during
immortalization of fibroblasts and epithelial cells [2,16,17]. In addition,
hypomethylation of intragenic regions may result in derepression of
transposable elements contributing to genomic instability [9].
Analysis of the impact of DNA methylation on processes relevant

for cellular immortalization in vitro is complicated due to the fact that
successive methylation changes may occur by time and number of
population doublings (PDs). Long-term culture of fibroblasts and
mesenchymal stromal cells is associated with specific senescence-
associated DNA methylation changes [18]. In mesenchymal stromal
cells, overexpression of TERT or immortalization with a doxycycline-
inducible system (TERT and SV40-TAg) resulted in telomere extension
but did not prevent senescence-associatedDNAmethylation [19]. It was
also noted that methylation patterns were maintained throughout both
long-term culture and aging but with highly significant differences
at specific CpG sites [20]. However, for hematopoietic cells in vitro
data are conflicting and limited to Epstein Barr Virus (EBV)-
transformed lymphoblastoid B cell lines [21,22].
In the present study, genome-wide promoter-associatedmethylationwas

analyzed during spontaneous immortalization of T-cell cultures established
from patients with Nijmegen breakage syndrome (NBS) and a healthy
individual, using high-density arrays. A significant number of CpG site
alterations throughout immortalization were shared with pediatric T-ALL
suggesting a clinical relevance of these methylation changes.

Materials and Methods

T-cell Cultures and Culture Conditions
The studied T-cell cultures were established at the Sklodowska-Curie

Memorial Cancer Center in Warsaw, Poland, and at Umeå University
in Umeå, Sweden, using mitogen-initiated, Interleukin-2 (IL-2)–
dependent cultures without genetic manipulations, as previously
described [8,23,24]. The spontaneously immortalized T-cell lines

(S3R, S4, and S9) were established from peripheral blood mononuclear
cells derived from patients with NBS homozygous for the 657del5
mutation of the NBS1 gene [8,23]. T-cell lines (L4 and L5) and their
parental population (L2) as well as the primary T lymphoblast culture S1/
PHAwere derived from normal spleen [24]. The primary T-lymphoblast
culture P7/R2 was derived from peripheral blood mononuclear cells of a
healthy donor and was generated after initial 24-hour activation with
20 μg/ml Wheat Germ Agglutinin (WGA), followed by culture in
standard medium without mitogen for the next 5 days and thereafter
propagation in 20U/ml of rIL-2 for 14 PDs. All cultures weremaintained
in standard medium [RPMI 1640, 10-12% fetal calf serum, 50 μg/ml
gentamicin (Sigma-Aldrich, St Louis,MO)] supplemented with 20U/ml
rIL-2 (R&D Systems, Minneapolis, MN), in 5% CO2 at 37°C. An
approval from the Ethical Council in Warsaw, Poland, was obtained
before collection of the NBS blood samples and the patients’ guardians
provided informed consent.

Cell cultures were grouped accordingly: primary with limited life-span
in vitro (P7/R2 14 PDs, S1/PHA 2 PDs), pre-immortal (S3R 17 PDs, S4
12/18/48 PDs, S9 10 PDs, L2 5 PDs), and immortal (S3R 27/76/192
PDs, S4 68/223 PDs, S9 104 PDs, L4 195 PDs, L5 157 PDs). Pre-
immortal and immortal T-cell cultures were separated by a period of
growth crisis, in S3R at 21 to 25 PDs and in S4 at 62 to 67 PDs, but with
no clear growth crisis period in cultures S9, L4, or L5.

T-ALL Samples
Diagnostic bone marrow samples from 43 pediatric T-ALL patients

collected at the University Hospital in Umeå, Sweden, have been
previously analyzed by the HumMeth27K (n = 43) andHumMeth450K
(n = 10) Illumina methylation arrays (Illumina, San Diego, CA) and
classified regarding CpG island methylator phenotype (CIMP) status
[25]. Methylation array data from the HumMeth27K array was
downloaded from the National Center for Biotechnology Information
(NCBI) Gene Expression Omnibus (GEO) database, GSE42079, and
data from the HumMeth450K array has been deposited to the GEO
database, GSE56070. The Regional Ethics Committee approved the
study, and the patients and/or their guardians provided informed consent.

DNA Preparation
DNA was prepared with the Nucleon BACC2 kit (Amersham

Biosciensces AB, Uppsala, Sweden) and DNA purity and concentration
were determined by spectrophotometry (NanoDrop; Thermo Scientific,
Wilmington, DE).

Genome-Wide CpG Site Methylation Profiling
The cell cultures were analyzed at different stages during

immortalization using a high-density array covering 485,577 CpG
sites (HumMeth450K, Illumina). The included CpG sites are located
in different genomic regions, but the main focus is promoter-
associated regions and CpG islands. The array definition of genomic
regions and the relations to CpG islands are shown in Supplementary
Figure S1. A methylated control sample (Human HCT116 DKO
methylated DNA; Zymo Research, Irvine, CA, USA) enzymatically
methylated on all cytosines by M.SssI methyltransferase and a non-
methylated (b5%) control double knocked out for DNA methyltrans-
ferases (DNMT1−/− and DNMT3B−/−; HumanHCT116DKO non-
methylated DNA; Zymo Research) were included. For each sample,
500 ng of DNA was bisulfite converted with the EZ-96 DNA
Methylation-Gold Kit (Zymo Research) according to the manufacturer’s
manual. Two hundred nanograms of bisulfite-converted DNA was
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applied to each array, which was handled according to the Illumina
provided protocol and scanned with an iScan SQ instrument (Illumina).
The fluorescence intensities were extracted using theMethylationmodule
(1.9.0) in the Genome Studio software (V2011.1).

Pre-Processing of Methylation Array Data
CpGs on the X and Y chromosomes were omitted from the analysis to

avoid gender-related methylation biases. In addition, CpG sites lacking
observations due to less than or equal three reported beads/array or CpG
sites with low detection P value (N .05) were excluded. Likewise, CpG
sites located at or close to a (10-bp) single nucleotide polymorphism
(SNP) as well as CpG sites located in intergenic regions were excluded. All
filtration steps are shown in Supplementary Figure S2. The methylation
levels for the remaining 330,354 CpG sites were determined by
calculating the ratio (i.e., the β value) between the fluorescent intensity
from the methylated alleles and the total intensity, as defined in the
Genome Studio software (Illumina). The β value ranges in theory from 0,
corresponding to completely unmethylatedDNA, to 1, representing fully
methylatedDNA.To compensate for the two different bead types used in
theHumMeth450K array, theβ values were normalized using the BMIQ
method [26,27].

The methylation array data have been deposited to the NCBI GEO
database, GSE56070.

Verification of Methylation Array Data by Pyrosequencing
DNA samples were sent to the Genome Centre Queen Mary,

University of London for targeted pyrosequencing on a selection of
genomic regions overlapping with specific CpGs in the methylation array,
including TAL1 (cg19797376), KLF4 (cg07309102), HOXD8
(cg15520279), and TWIST1 (cg24446548). Pyrosequencing was
performed according to the manufacturer’s protocol by bisulfite treatment
ofDNA (EZDNAMethylation; ZymoResearch), followed by polymerase
chain reaction (PCR) amplification and pyrosequencing using PyroMark
Gold Q96 Reagents (Qiagen, Sollentuna, Sweden) in the PSQ 96MA
instrument with PSQ 96MA software V2.1 (Qiagen). The following set of
primers were used: TAL1_F: ATGGGGGTTAGAGAGAGAATGA;
TAL1_R:ACCTCCTCAACCAAATCTC; TAL1_seq: GGGGGATTT
TAAGGT; HOXD8_F: AGTGATAGTAGTAGTAAGTGGGATT
GAT; HOXD8_R: AACAACCCCCCCACAAACCCC; HOXD8_seq:
GTTTTGTATTTGGAGTATAG; KLF4_F: AGGTTGTAGAGAAG
GAAGTTATAAGTAAG; KLF4_R: CAACAACCTCCCCCACCAC
TAT; KLF4_seq: ATACCCCCAAATAAAACTAACTAC; TWIST1_F:
GGAGGTATAAGAGTTTTTAAGTTTGTAG; TWIST1_R:
ACACCCCCCCAAACCTCCTA; TWIST1_seq: AGAGTTTT
TAAGTTTGTAGTT.

RNA Preparation and Pre-Processing of Gene
Expression Data

Total RNA was isolated using TRIzol reagent (Invitrogen,
Stockholm, Sweden) according to the manufacturer’s protocol.
The RNA quality was analyzed in a 2100 Bioanalyzer (Agilent
Technologies, Santa Clara, CA) and RNA integrity number was N9 in
all samples. In brief, 200 ng of total RNA was used for cRNA
production by the Illumina TotalPrep RNA amplification kit (Ambion
Inc, St Austin, TX) according to the provided protocol. The biotin-
labeled cRNAwas purified and the quality was evaluated using the RNA
6000 pico kit in the 2100 Bioanalyzer (Agilent Technologies).

A total of 750 ng of biotinylated cRNA was hybridized to the
human HT12 Illumina Beadchip gene expression array (Illumina)

according to the manufacturer’s protocol and scanned using the
Illumina Bead Array Reader (Illumina). Illumina Genome Studio
software (V2011.1) with gene expression module (1.9.0) was used
for data extraction and normalization using the rank invariant
normalization. Selected parts of the gene expression array data have
been previously published [8]. Gene expression array data have been
deposited to the NCBI GEO database, GSE56070.

Quantitative Reverse Transcription–PCR Analysis
cDNA was prepared by reverse transcription (RT) of 500 ng

of total RNA with the Superscript II Reverse Transcriptase kit
(Invitrogen) together with random hexamers (Applied Biosystems, Inc,
Foster City, CA) andRNasin (Promega,Nacka, Sweden) according to the
manufacturer’s instructions (Invitrogen).

Expression levels of selected genes were determined by quantitative
PCR in duplicates and a standard curve was included in each assay to
monitor PCR efficiency. The following genes were analyzed byTaqMan
assays on demand according to the manufacturer’s protocol using the
TaqMan Universal PCR Mastermix in the ABI PRISM 7900HT
Instrument (Applied Biosystems, Inc): TATA-binding protein gene
(TBP) (Hs99999910_m1), BMI1 polycomb ringfinger oncogene (BMI1)
(Hs00180411_m1) , Chr omobo x h omo l o g 2 (CBX2 )
(Hs01034268_m1), chromobox homolog 7 (CBX7) (Hs00545603_s1),
Enhancer of Zeste homolog 2 (EZH2) (Hs01016789_m1), and supressor
of Zeste 12 (SUZ12) (Hs00248742_m1). Relative mRNA levels were
normalized to a housekeeping TBP gene and fold change was calculated
by the 2−ΔΔCt method using P7/R2 and S1/PHA as primary mortal
T-cell culture references [28].

Bioinformatic and Statistical Analyses
Downstream analyses of the methylation and gene expression array

data were performed using R (v2.15.0). The CpG sites were matched
to genes on the expression array according to their RefSeq accessions.
Gene annotations from both gene expression and methylation arrays
were matched to the hg19 assembly (NCBI) and their annotations
were updated. Genes with discontinued accessions or non-consistent
annotations were excluded from further analysis. In the downstream
analysis, the normalized β values and the log2-transformed normalized
signal intensities were used as measures of methylation and gene
expression levels, respectively.

The primary T-lymphoblast culture P7/R2 was used as a universal
reference and the methylation pattern for each time point of the two cell
cultures was analyzed in relation to P7/R2 (Figure 1). The CpG sites were
classified as de novo altered CpGs if the difference in β values was greater
than 0.4 (gain of methylation) or less than −0.4 (loss of methylation).
Although the methylation of the P7/R2 cell line was highly correlated with
the pre-crisis samples in each cell line, it was excluded from further analysis
of differential methylation and expression in the S3R and S4 cell cultures.

For each CpG site, the alteration between post-crisis and pre-crisis
samples was measured with the maximum differences in methylation
(δβ). CpG sites with an δβ greater than 0.4 or less than −0.4 were
classified as differentially methylated (DM-CpG). For gene expres-
sion, genes expressed at background level were censored to the largest
of the 95th percentiles of the negative controls across the arrays. The
alteration between post-crisis and pre-crisis samples was then
measured with the maximum differences in log2-transformed
censored intensities (M). Genes with an M value greater than log2
(1.7) or less than − log2(1.7), corresponding to a fold change of 1.7
and expressed above background level were classified as differentially
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expressed genes (DEG). Further details of the analysis can be found in
Supplementary Figure S2. Differently methylated gene (DMG) and
DEG found in both cell cultures (DMG/DEG) were selected for
further analysis (Figure 2). The significance of the overlaps between
the two cell cultures was determined using the chi-square test.
The significance of the overlap between DMG and DEG (Figure 2)

and distributions of downregulated genes among methylated and
demethylated genes (Table 2) were evaluated using a permutation-based
test. While keeping the gene-CpG structure intact, the gene expression
profiles were randomly assigned to genes 2000 times. Thus, the
distributions under the null hypothesis of independence between
methylation and gene expression and P values for the size of the overlap
and the distribution of downregulated genes were obtained.
To analyze common methylation patterns between the two T-cell

cultures and T-ALL samples, hierarchical clustering with Euclidean
distance matrix using the Ward method [29] was performed and
visualized in a heat map. Publicly available sorted T-cells (CD3+) and
hematopoietic stem cells (CD34+CD38−) from healthy donors were
used as controls. The methylation data from the sorted cells were
previously published by the Cancer Genome Atlas Research Network
[30] and were downloaded from theNCBIGEO database, GSE49618.
The polycomb target gene (PCTG) lists from Lee et al. [31] were

compared with the genes with common methylation changes between
T-ALL samples and T-cell cultures. We hypothesized that the
proportion of PCTGs in the list of shared changed CpG sites was
larger than expected by chance and we tested our hypothesis using a
binominal test. The systems biology tool Metacore from GeneGo Inc

(St Joseph, MI) was used to identify networks and processes of
possible relevance for immortalization.

Results

Quality Control and Reproducibility of Methylation
Array Data

The quality of each individual array was evaluated with the built-in
controls, i.e., bisulfite conversion, staining, negative controls, hybrid-
ization, and specificity. A replicate sample was included in the
HumMeth450K array to assess inter-assay reproducibility (R2 =
0.989). Selected genomic regions for TAL1 (cg19797376), KLF4
(cg07309102), TWIST1 (cg24446548), and HOXD8 (cg15520279)
were separately analyzed by pyrosequencing at increasing PDs in the
S3R and S4 cell cultures and compared with CpG site data from the
HumMeth450K array, showing a strong correlation between the
methods (Supplementary Figure S3).

DNA Methylation Alterations during T-Cell Immortalization
Genome-wide promoter methylation status was determined by the

HumMeth450K array at different stages during spontaneous
immortalization of the two human T-cell cultures, S3R and S4.
Both cultures experienced a growth crisis period, between 21 and 25
PDs (93 days) in S3R and between 62 and 67 PDs (45 days) in S4.
After pre-processing of the array data, as detailed in the Materials and
Methods section and in Supplementary Figure S2, 330,354 CpG sites
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remained for analysis. The methylation status of these CpGs were
analyzed at increasing PDs and compared with a primary stimulated
T-cell culture (P7/R2). Both the S3R and S4 cultures showed an
accumulation of de novo altered CpG sites with increasing PDs
(Figure 1, A and B). The most pronounced change was observed in
cultures escaping from the growth crisis period (S3R 27 PDs and S4
68 PDs; Figure 1, A and B). However, the growth crisis period lasted
for a long period of time and when analyzing methylation changes in
relation to days in culture the rate of changes appeared rather constant
(Figure 1, C and D). The fraction of de novo methylated sites was, in
S3R, 0.3% at 17 PDs (pre-crisis) and 5% at 192 PDs (post-crisis)
and, in S4, 0.1% at 12 PDs (pre-crisis) and 13% at 223 PDs (post-
crisis) of all CpG sites analyzed and in relation to the primary
stimulated T-cell culture (P7/R2). Loss of methylation was less

common in S4 in comparison to the S3R culture, in which gain and
loss of methylation were equally common (Figure 1, A–D).
Next, by filtering for shared DM-CpG sites (demethylated or

methylated) between the cultures pre-crisis versus post-crisis, a
significantly larger overlap (P b .001) than expected by random
was observed. This overlap consisted of 17,465 DM-CpGs with
potential importance for immortalization (Figure 2). By focusing on
these DM-CpGs, it was further shown that the unmethylated CpG
sites close to transcription start sites (TSSs) (TSS200/exon 1) and
CpG islands (islands/shores) were preferentially and gradually
methylated during the process (Table 1 and Supplementary Figure
S4). Demethylation was observed in methylated regions far away from
CpG islands, here titled “open sea” and “shelf” (Table 1 and
Supplementary Figure S4).

DM-CpG

S3R S3R

S4 S4

DEG

noisserpxEeneGnoitalyhteM

27317 CpG

33885 CpG

2367 genes

1275 genes

17465 CpG
(6596genes)

1790 genes

DMG/DEG
624 genes¤* *

Figure 2. Commonly DM-CpG sites and differentially expressed genes in immortal T-cell cultures. (A) The DM-CpG sites (δβ N 0.4 or b−0.4)
and theDMG (fold change±1.7) pre-crisis versuspost-crisis in theS3R andS4 cell cultureswere combined in Venndiagrams. The commonly
DM-CpG sites (17,465 CpGs representing 6596 genes) andDEG (1790 genes) are highlighted in the figure aswell as the combinedDMG/DEG
list (624 genes). There was a significantly higher proportion of common DM-CpG and DEG than expected by random (*P b .001) in the
immortal cultures. In contrast, the number of genes that were both DMG and DEG was significantly smaller than expected (¤P b .001).

Table 1. Preferential Methylation in CpG Islands and Regions around TSS

Average methylation (average β) of the commonly differently methylated 17,465 CpG sites for the respective genomic region and CpG island location is shown at increasing PDs. The colors represent
a scale from unmethylated (green) to fully methylated (red) as shown in the figure.
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Genomic Distribution of Coinciding DM-CpG Sites and
Differently Expressed Genes
In addition to the DM-CpGs, a significant overlap (P b .001) of

1790 differently expressed genes (DEG) either upregulated or
downregulated pre-crisis versus post-crisis was identified, indicating
shared pathways for immortalization (Figure 2). A gene with at least
one DM-CpG was defined as a DMG. The DMG and the DEG lists
were combined and an overlap of 624 genes both differentially
methylated and differentially expressed was identified (DMG/DEG).
The DMG/DEG list was analyzed for associations to methylation
in different genomic regions. A significant overrepresentation of
downregulated genes was observed when methylation occurred close
to TSS (P b .001; Table 2). In contrast, decreased methylation
within the gene body region was associated with decreased expression
(P b .001; Table 2). However, the DMG/DEG overlap was
significantly lower than expected by random (P b .001), indicating
that the majority of methylation alterations have little or no effect on
gene expression levels (Figure 2).

Functional Analysis of Shared DM-CpGs in
Immortal T-Cell Cultures and T-Cell Leukemia

To identify methylation alterations of potential importance for
both in vitro T-cell immortalization and in vivo malignancy, we
applied data from 10 diagnostic pediatric T-ALL samples (7 CIMP+
and 3 CIMP−) on a heat map showing the 17,465 commonly
altered CpGs in the immortal S3R and S4 T-cell cultures
(Figures 2 and 3A). Sorted cells from healthy donors were used
as controls [30]. CD34+/CD38− hematopoietic stem cells represented
immature T-cells andCD3+ representedmature T-cells. Immature and
mature T-cells showed similar methylation profiles as pre-immortal cell
cultures regarding the CpG sites that were commonly altered during the
immortalization process (Figure 3A).
Hierarchical clustering of the cell cultures and leukemias separated

the CpGs into three clusters; cluster 1 in which de novo methylated
CpGs in the immortal cells overlapped with methylated CpGs in
CIMP+ T-ALL diagnostic samples. CpGs in cluster 2 were de novo
methylated in immortal cell cultures but less methylated in leukemia,
and cluster 3 demethylated in immortal cell cultures but methylated
in leukemia (Figure 3A). Bioinformatic analysis revealed a significant
overrepresentation (P b .001) of PCTGs [31] compared to random
methylation (Figure 3A) in all clusters, but the overrepresentation was
most evident in cluster 1 where 51% of the CpG sites were located in
PCTGs compared to 23% and 21%, respectively, in clusters 2 and 3.
Furthermore, the majority (62%) of the shared CpG sites in immortal
cell cultures and CIMP+ leukemias were located in CpG islands.

To verify the overlap in altered genes in immortal T-cell cultures
and CIMP+ T-ALL, data from 43 diagnostic T-ALL samples
analyzed on the HumMeth27K array as well as three additional cell
cultures derived from one patient with NBS and one healthy
individual were included; 1478 CpG sites of the 17,465 shared DM-
CpGs (Figure 2) were present in the HumMeth27K array. Cell
cultures and leukemias were clustered, and CpGs sorted in the three
clusters were identified in Figure 3A. All immortal cell cultures
showed similar alterations and cluster 1 was commonly methylated in
immortal cell cultures and CIMP+ leukemias (Figure 3B).

To further investigate the cellular pathways commonly altered in
immortal cell cultures and leukemia, the list of shared DM-CpGs in
cluster 1 (Figure 3A) was applied to Metacore process network
analysis (Figure 4, A–C). The resulting P values were compared at
increasing PDs in cell cultures, in grouped CIMP+ (n = 7) and
CIMP− (n = 3) leukemias, and the list of PCTGs [31] (Figure 4, A
and B). This comparison allowed assessment of the number of
alterations for each individual process network with corrections for
pathway and gene list sizes. The process networks of highest relevance
were cell adhesion, cytoskeletal remodeling, development, and signal
transduction processes (Figure 4B). Interestingly, a large set of genes in
theWnt signaling pathway became methylated during immortalization
of cell cultures and in diagnostic CIMP-positive leukemias (Figure 4C).

To identify potentially deregulated components/pathways in the
methylation and chromatin modifying machinery during immortal-
ization, we analyzed gene expression of DNA methyltransferases
(DNMT1, DNMT3A, and DNMT3B) and polycomb repressive
complex 1 (PRC1) and PRC2 genes in the S3R and S4 cell cultures.
PRC1/2 was significantly changed regarding the EZH2 (S3R, S4),
BMI1 (S4), PCGF2 (S3R, S4), CBX2 (S3R, S4), and CBX6 (S3R,
S4) genes, all showing up-regulation. In contrast, decreased levels of
CBX4 (S3R) and CBX7 (S3R, S4) were recorded. In S3R, DNMT1
remained stable throughout the culture, whereas DNMT3A and
DNMT3B decreased (Supplementary Figure S5). In contrast, S4
showed increased expression of DNMT1 and stable expression of
DNMT3A and 3B (Supplementary Figure S5).

Discussion

Here, we have shown that spontaneous immortalization of T-cell
cultures was associated with common DNA methylation alterations
found to be shared at a high frequency with CIMP+ T-ALL
diagnostic samples, indicating that the in vitro established methyl-
ation alterations might be relevant in the clinical setting.

In our study, two IL-2–dependent T-cell cultures were analyzed
with a high-density genome-wide methylation array at several time
points, from primary culture, over a growth crisis period, and until
clonal immortal cell cultures emerged (approximately 350-400 days).
We have previously shown that the initial polyclonal cultures
gradually became monoclonal indicating a continuous loss of cells
likely due to the senescence program [8,23]. Methylation changes
were recorded in pre-immortal S4 cells already before the growth
crisis period, which might have contributed to senescence bypass/
growth crisis escape. The accumulation of methylation alterations was
rather constant when analyzing changes against days in culture. In
contrast, when analyzed in relation to PDs, the changes appeared
more stepwise. Stepwise methylation changes have been recorded
during immortalization of human mammary epithelial cell cultures in
which a “stasis” (stress-induced senescence barrier) and a “telomere
dysfunction” (i.e., crisis) barrier were identified [3,32]. The

Table 2. Decreased Gene Expression Was Associated with Increased Methylation around TSS and
Decreased Methylation in Gene Body

Genomic Region Methylated Demethylated

TSS1500 61* 52
TSS200 70*** 50
5′UTR 68*** 53
First exon 60 0***1

Body 58 69***
3′UTR 64 79***

The percentage of downregulated genes in gene regions that were methylated/demethylated
is shown. For the significance based on permutation of gene expression probes, expected percentage
of downregulated genes is 50% to 51% in all categories. The level of significance is represented by
*P b .05, **P b .01, and ***P b .001; 1 denotes categories with less than five observations.
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immortalized human mammary epithelial cells were experimentally
achieved and thereby not comparable to the spontaneously
immortalized T-cells analyzed in the present study.

Both T-cell cultures studied showed an accumulation of de novo
altered CpG sites during immortalization, with similar levels of gain
and loss of methylation for S3R while culture S4 was dominated by
gain of methylated CpG sites. Interestingly, the two cultures shared a
large fraction of DM-CpG sites between pre-crisis and post-crisis
cells. For these sites, a preferential gain of methylation in CpG islands
and CpG sites located close to TSS was observed, whereas loss of
methylation preferentially occurred in gene body regions and at sites
located far away from CpG islands (“open sea”). Genomic regions
close to TSS are known to contain a high density of CpG islands,
whereas the gene body has a lower density, explaining the overlapping
results of genomic regions and CpG island relations [9]. The
chromosomal distribution of the methylation alterations paralleled

the distribution of CpG sites on the array, and methylation alterations
therefore appeared as a genome-wide phenomenon (data not shown).

The collected findings of common and non-random methylation
changes in the immortalized T-cells indicate a functional meaning.
One question was to what extent the methylation pattern was coupled
to gene expression. To answer this question, we combined methylation
data with our previously published gene expression array data [8].
Methylation and gene expression did not correlate for the majority of
genes, indicating that many methylation alterations did not relate to
gene expression. However, we could identify genes with strong negative
or positive correlation to methylation status. The direction of the
correlation seemed to depend on where in the promoter region the
methylation occurred. Generally, silenced gene expression was
significantly associated with increased methylation close to TSS and
loss of methylation in the gene body region. However, increased
methylation within the gene bodywas observed as well andmight reflect

Cluster 1
CGI: 62%
OS: 10%
PCTGs: 51%

Cluster 3
CGI: 2%
OS: 70%
PCTGs: 21%

Cluster 2
CGI: 51%
OS: 18%
PCTGs: 23%

CD34+/CD38- Hematopoietic stem cells
CD3+ Mature T-cells
Pre-immortal cell cultures
Immortal cell cultures
CIMP- T-ALL
CIMP+ T-ALL

Pre-immortal cell cultures
Immortal cell cultures
CIMP- T-ALL
CIMP+ T-ALL

Cluster 1

Cluster 3

Cluster 2

A B

Figure 3. Shared methylation alterations in immortal T-cell cultures and diagnostic CIMP+ T-ALL samples. (A) Methylation
HumMeth450K array data for the commonly altered 17,465 CpGs in T-cell cultures visualized in a heat map together with 10 diagnostic
T-ALL samples. Separated CD34+/CD38− (hematopoietic stem cells, n= 3) and CD3+ (mature T-cells, n= 3) cells from healthy donors
were included as controls. The CpG sites were separated into three distinct clusters. The percentage of CpG sites located within
CpG islands (CGI) and open sea (OS) regions in each cluster is displayed as well as the percentage of PCTGs in each cluster defined by
Lee et al. [31]. The diagnostic T-ALL sample CIMP status is shown in the figure as well as the pre-immortal or post-immortal status of the
cell cultures. (B) Verification of shared altered CpG sites in immortal cell cultures and in CIMP+ T-ALL leukemias by HumMeth27K array
analysis; 1478 CpGs of the 17,465 CpGs commonly altered CpG sites in immortal S3R and S4 cultures were present in the 27K array and
used to verify data in a larger number of T-ALL samples and in three additional cell cultures derived from one patient with NBS (S9) and
one healthy individual (L4 and L5).
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the presence of enhancers or regulatory regions as recently suggested by
Varley et al. [33].
To identify methylation alterations of potential importance for

both in vitro T-cell immortalization and in vivo malignancy, we

applied data from diagnostic pediatric T-ALL samples to the analysis.
T-ALL originates from precursor cells in the bone marrow, whereas
our T-cell culture models are derived from mature peripheral blood
lymphocytes. However, the methylation profiles of the CpG sites that

Figure 4. Ontology analysis of common cellular processes affected by methylation. Metacore process network analysis of the shared 8255
CpG sites (cluster 1; Figure 3A) between post-crisis T-cell cultures and diagnostic CIMP+T-ALL (A). CIMP− (n=3) and CIMP+ (n=7) T-ALL
samplesweregrouped in the analysis,whereas each timepoint is shown for the cell cultures. A significant process (P b .05) is indicated in red
in the heat map. (B and C) The top processes in the Metacore process network analysis are shown as well as the WNT signaling genes
representing aprocesswithmany affectedgenes. The red thermometers represents (1) polycomb target genes and (2) shared8255CpGsites
in post-crisis T-cell cultures/CIMP+ T-ALL.
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were differently methylated during the immortalization process were
comparable between immature and mature cells from healthy donors
and pre-immortal cell cultures and confirm our T-cell culture model
as suitable for comparable analysis with T-ALL.

We have recently identified methylation alterations within T-ALL
samples separating them into subgroups (CIMP+/CIMP−) with
different prognosis [25]. Interestingly, a substantial fraction of the
altered CpG sites observed in the T-cell cultures had similar
methylation profiles in the CIMP+ T-ALL samples. This common-
ality indicates that the in vitro established methylation changes were
relevant also in the clinical setting. The affected CpG sites were not
unbiased regarding the function of associated genes since differential
methylation of PCTGs was overrepresented. Furthermore, bioinfor-
matic analyses showed a pattern of overlapping networks among the
affected genes in post-crisis T-cell cultures, CIMP+ leukemias, and
the PCTG list [31]. These shared processes were involved in cell
adhesion, cytoskeleton remodeling, development, and signal trans-
duction. Of special notice was a high number of methylation altered
genes in the Wnt signaling pathways. The reason for this is unclear
but indicates selectivity in the methylation targets.

Gene expression alterations of DNA methyltransferases (DNMT1,
DNMT3A, and DNMT3B) as well as subunits in the PRC1/2 were
observed in both cultures suggesting a functional role for the observed
methylation changes during the immortalization process. Previous
observations have shown that different DNAmethylation changes typical
for cancer cellsmay evolve from senescence-related alterations triggered by
different stimuli [34] and alteredDNAmethylation acquired in senescent
cells can be retained when these cells bypass senescence [35].

The three spontaneously immortalized cell cultures, S3R, S4, and S9,
were derived from individuals diagnosed with NBS with increased risk
of leukemia due to DNA repair deficiency. However, the patients were
not diagnosed with any malignancy at the time when the cultures were
established. The observed methylation alterations in the immortal
NBS-derived T-cell cultures overlapped with T-cell cultures derived
from a healthy individual (L4 and L5) indicating general accumulated
methylation alterations during the immortalization process.

In conclusion, our analysis identified a high number of commonly
methylated CpG sites in immortalized T-cell cultures and diagnostic
CIMP+ T-ALL samples with potential significance for malignant
transformation. Whether CIMP+ and CIMP− leukemias represent
subtypes with different routes for transformation has to be further
investigated. One alterative hypothesis is that CIMP+ and CIMP−
leukemias reflect cells with diverse replicative histories, where CIMP+
leukemias might have undergone a large number of replication rounds
and thereby demonstrate DNA methylation pattern similar to long-
term cultured T-cells. These issues have to be further evaluated to
better understand the relevance of methylation during immortaliza-
tion and the development of hematological malignancies.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.neo.2014.07.001.
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