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Abstract

The main objective of the research work presented in this thesis is the de-

velopment of a single aerodynamic CFD code for the analysis of complex

turbulent flow unsteady aerodynamics such as those encountered in hor-

izontal and vertical axis wind turbines. The finite volume parallel CFD

Optimized Structured multi-block Algorithm (COSA) research code solves

the Navier-Stokes equations on structured multi-block grids and models tur-

bulence effects with Menter’s shear stress transport turbulence model. The

novel algorithmic contribution of this research is the successful development

of a Harmonic Balance (HB) solver which can reduce the run-time required

to compute nonlinear periodic flow fields with respect to the conventional

time-domain (TD) approach. The thesis also presents a semi-implicit in-

tegration based on LU factorisation and a successfully LAPACK libraries

integration to massively improve the computational efficiency of the integra-

tion of the HB RANS equations and the turbulence model of Menter. The

main computational results of this research are for two low-speed renewable

energy applications. The former application is a turbulent unsteady flow

analysis of a Vertical Axis Wind Turbine (VAWT) working in a low-speed

turbulent regime for a wide range of operating conditions. The test case is

first solved using the COSA TD turbulent solver to analyse and discuss in

great detail the unsteady aerodynamic phenomena occurring in all regimes

of this complex device. During the turbine rotation there is a generation

of blade vortex shedding and wakes all around the rotor which interacts

with the blades itself on the returning side. The most important features

of the investigated devices were captured with CFD. In addition, a series of

investigations have been conducted to analyse the effects of computational

domain refinement, number of time steps per revolution and distance of

the farfield boundary from the rotor centre on prediction accuracy. The



solution of the turbulent flow solver is validated by comparing torque and

power coefficients with experimental data and numerical solutions obtained

with a state-of-the-art time-domain of commercial package regularly used

by the industry and the Academia worldwide. A detailed selection of results

is presented, dealing with the various investigated issues. Afterwards, the

COSA HB turbulent solver is used to solve the problem and compare the

HB resolution and speed-ups with the TD results. The main motivation

for analysing this problem is to highlight the predictive capabilities and the

numerical robustness of the developed turbulent HB flow solver for complex

realistic problems with a strong nonlinearity and to shed more light on the

complex physics of this renewable energy device. The latter application re-

gards the turbulent unsteady flow analysis of Horizontal Axis Wind Turbine

(HAWT) blade sections in yawed wind regime. The TD and HB turbulent

flow analysis of a 164 m-diameter wind turbine rotor is performed. CFD

represents an accurate design tool to get a better understanding of the phys-

ical behaviour of the flow field past wind turbine rotors and the importance

of accurate design is increased as the machines tend to become larger. A

study at 30% and at 85% blade section is carried out, allowing the analysis

of the unsteady forces acting on two different blade sections. The aim of

these analyses is to assess the computational benefits achievable by using

the HB method for a common nonlinear flow problem and also to further

demonstrate the predictive capabilities of the developed CFD system. The

turbulent HB solutions highlight that is possible to obtain an accurate anal-

ysis as its TD counterparts can do. Moreover, the results highlight that the

turbulent HB solver can compute the hysteresis force cycles of the turbine

blade more than 10 times faster than the TD approach. The purpose of

proving the turbulent COSA HB capabilities for studying the flow field of

wind turbines rotor has been fully achieved and this research represent one

of the first turbulent HB RANS applications to the analysis of periodic

horizontal axis wind turbine flows, and the first application to vertical axis

wind turbine flows.

Keywords: Reynolds-Average Navier-Stokes equations, harmonic balance,

horizontal axis wind turbine, vertical axis wind turbine.
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Chapter 1

Introduction

1.1 Renewable energy

Renewable energy is the term used to describe any energy resource that is naturally

regenerated over a short time scale and derived directly from the sun (such as thermal

and photovoltaic), indirectly from the sun (such as wind, hydropower, and photosyn-

thetic energy stored in biomass), or from other natural movements and mechanisms

of the environment (such as geothermal and tidal energy). Throughout history, these

sources have been harnessed and used to provide energy. Today’s technological ad-

vancements have developed more efficient means of harnessing and using renewable

energy sources, and these sources are gaining increasing popularity. They offer alter-

natives to nonrenewable energy sources such as oil, coal and natural gas. Existing

renewable energy installations are making significant contributions to energy supply,

and research activities are demonstrating the far-reaching impact that a greater reliance

on renewable energy sources could have. Renewable energy provided an estimated 19%

of global final energy consumption in 2013, and continued to grow strongly in 2014 and

2015 [9]. Of this total share, traditional biomass, which currently is used primarily

for cooking and heating in remote and rural areas of developing countries, accounted

for about 9%, and modern renewables (geothermal, solar, hydropower, wind, biofuels,

etc.) increased their share to approximately 10%. Modern renewable energy is being

used increasingly in four distinct areas: power generation, heating and cooling, trans-

port fuels, and rural/off-grid energy services. The breakdown of modern renewables,

as a share of total final energy use in 2013, was as follows: hydropower generated an

1



1.1 Renewable energy

estimated 3.8%; other renewable power sources comprised 1.2%; heat energy accounted

for approximately 4.2%; and transport biofuels provided about 0.8% (See Fig. 1.1).

During the years 2009 through 2013, installed capacity as well as output of most

renewable energy technologies grew at rapid rates, particularly in the power sector

(Fig. 1.2). Over this period, solar photovoltaics (PV) experienced the fastest capacity

growth rates of any energy technology, while wind saw the largest power capacity added

of any renewable technology. In Europe, a growing number of countries has reduced

financial support renewables at a rate that exceeds the decline in technology costs.

Such actions have been driven, in part, by the ongoing economic crisis in some member

states, by related electricity over-capacity, and by rising competition with fossil fuels.

Policy uncertainty has increased the cost of capital making it more difficult to finance

projects.

Figure 1.1: Estimated Renewable Energy Share of Global Final Energy Consumption,

2012 [9]

Overall, renewables saw a number of significant and positive developments during

the last years. At the moment, wind power is increasing more quickly into Africa and

Latin America and solar thermal power into Middle East and North Africa region and

to South Africa. The solar PV continues to spread in the world, with most capacity

on-grid but also significant increases in off-grid markets in developing countries. Such

developments highlight that renewables are no longer dependent upon a small number

of countries. United Kingdom produces more than 20% of its electricity from onshore

and offshore wind farms, biomass power stations and hydropower systems [8]. To meet
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Figure 1.2: Average Annual Growth Rates of Renewable Energy Capacity and Biofuels

Production, End-20082013 [9]

its EU goals, electricity generation from renewable sources needs to increase to above

30% by 2020. An increasing number of countries is aiding integration through im-

provements in grid management practices, system flexibility, and modifying existing

grid infrastructure. Renewables have been aided by continuing progress in technolo-

gies, falling prices, and innovations. These developments are making renewable energy

cheaper than new fossil and nuclear installations under many circumstances, and so

more affordable for a broader range of consumers in many countries. In addition, there

is increasing awareness of renewable energy technologies, and their potential to help

meet rapidly rising energy demand, while also creating jobs, accelerating economic

development, reducing local air pollution, and reducing carbon emissions. Moreover,

renewable energy can expand access to modern energy services in developing countries,

both rapidly and cost effectively. To achieve a variety of energy security and sustain-

ability goals, growing numbers of cities, states, and regions around the world are trying

to transition to a higher percentage renewable energy in individual sectors or economy-

wide, and many have already achieved their targets. Many renewable industries saw

a rapid increase in worldwide demand for construction and engineering, consulting,

equipment maintenance, and operations services. Innovative financing mechanisms,

such as crowd funding and risk-guarantee schemes, continued to expand and spread

across China, Europe, and the United States.
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1.2 Wind energy

Harnessing the energy of wind is one of the cleanest and most sustainable ways to

generate electricity. Wind energy has been used for millennia for several applications.

The use of wind energy to generate electricity on a commercial scale became possible

only in the 1970s as a result of technical advances and government support [51]. Dif-

ferent wind energy technologies are available across a range of applications, but the

largest contribution on energy production come from large grid-connected horizontal

axis wind turbines, deployed either on land (“onshore”) or in sea- or freshwater (“off-

shore”). Wind energy offers significant potential for near-term (2020) and long-term

(2050). The wind power capacity installed by the end of 2009 satisfied roughly 1.8%

of worldwide electricity demand, and the contribution could grow to in excess of 20%

by 2050. Moreover, though average wind speeds vary considerably by location, ample

technical potential exists in most regions of the world to enable significant wind energy

deployment. In some areas with good wind resources, the cost of wind energy is al-

ready competitive with current energy market prices. However, in most regions of the

world, policy measures are still required to ensure rapid deployment. Wind energy is

the fastest growing source of electricity in the world, thanks to its many benefits and

significantly reduced costs.

1.2.1 History of wind power

From the sailing ships of the ancient Greeks, to the grain mills of pre-industrial Holland,

to the latest high-tech wind turbines rising over the Minnesota prairie, humans have

used the power of the wind for many years [6]. In the United States, first applications

on wind energy were developed between 1870 and 1930, when thousands of farmers

across the country used wind to pump water. Small electric wind turbines were used

in rural areas and prototypes of larger machines were built in the 1940s. In Europe,

Denmark was the first country to use the wind for generation of electricity. The Danes

were using a 23 m diameter wind turbine in 1890. By 1910, several hundred units with

capacities of 5 to 25 kW were in operation in Denmark. In the following years, in all the

world, were built larger wind turbines. The largest one was a 1250 kW machine and it

was built before the late 1970’s. The concept of this machine started in 1934 when an

engineer, Palmer C. Putnam, began to look at wind electric generators to reduce the
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cost of electricity. The Smith-Putnam machine had two blades rotor with a diameter of

53 m and a tower length of 34 m. The blade pitch (the angle at which the blade passes

through the air) was adjustable to maintain a constant rotor speed of 28.7 r/min. The

rotor turned an AC synchronous generator that produced 1250 kW of electrical power.

The project was very successful from a technical point of view but the economics did

not justify building more machines at that time because appeared too expensive (more

Smith-Putnam machines could be built for 190$/installed kW ). Oil and coal fired

generation could be bought in 1945 for 125$/installed kW . This difference was too

large to justify the production of new machines, so the project was stopped. Anyway,

the technical results of the Smith-Putnam wind turbine caused the engineer Percy H.

Thomas, to spend many years in a detailed analysis of wind power electric generation.

Thomas used economic data from the Smith-Putnam machine and concluded that even

larger machines were necessary for economic viability. He designed two large machines,

one was 6500 kW and the other was 7500 kW in size. Thomas estimated the capital

costs for his machine at 75$ per installed kW but the low investment was not enough

to capture the investors interest and the project was later cancelled. Several countries

continued research on wind energy for a longer period of time. Denmark built their

Gedser wind turbine in 1957. This machine produced 200 kW in a 15 m/s wind. It

was connected to the Danish public power system and produced approximately 400,000

kWh per year. The installation cost of this system was approximately 250$/kW .

Dr. Ulrich Hutter of Germany built a 100 kW machine in 1957. It reached its rated

power output at a substantially lower wind speed compared with the Danish machine

mentioned earlier. This machine used lightweight, 35 m diameter fiberglass blades

with a simple pipe tower. The blade pitch would change at higher wind speeds to

keep the propeller angular velocity constant. Dr. Hutter obtained over 4000 hours

of full rated power operation over the next 11 years, a substantial amount for an

experimental machine. This allowed important contributions to the design of larger

wind turbines to be made. After a period of stagnation, the interest in wind power

reborn. Research by the U.S. Department of Energy (DOE) in the 1970s focused on

large turbine designs, with funding going to major aerospace manufacturers. While the

2- and 3-MW machines proved mostly unsuccessful at the time, they provided basic

research on blade design and engineering principles. The modern wind era began in

California in the 1980s. Between 1981 and 1986 were installed 15,000 medium-sized
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turbines. Pushed by the high cost of fossil fuels, a moratorium on nuclear power, and

concern about environmental degradation, the state provided tax incentives to promote

wind power. These, combined with federal tax incentives, helped the wind industry

take off. In the early 1990s, improvements in technology resulting in increased turbine

reliability and lower costs of production provided another boost for wind development.

In Europe, wind has had more consistent long-term support. As a result, European

countries are currently capable of meeting more of their electricity demands through

wind power with much less land area and resource potential. Denmark, for example,

already meets about 30 percent of its electricity demand from wind power. Wind

generation also accounts for about 17 percent of the national power needs in Portugal,

13 percent in Ireland, and 11 percent in Germany [6].

1.2.2 The wind resource

The wind speed frequency distribution plays a significant role in the power generation

cost. The power output of a wind turbine depends from the cube of wind speed.

Therefore, higher-speed winds are more easily and inexpensively captured. Wind speeds

are divided into seven classes [68], the first class is the lowest speed and the last is the

highest. Wind turbines operate between cut-in and cut-out speed. If the wind is lower

than cut-in speed, the turbines will not be able to turn, and if higher than cut-out,

they shut down to avoid being damaged. Wind speeds in classes three (6.7 - 7.4 m/s)

and above are typically needed to economically generate power. Ideally, a wind turbine

should be matched to the speed and frequency of the resource to maximize power

production. Several factors can affect wind speed, for example wind speed increases as

the height from the ground increases. If wind speed at 10 meters off the ground is 7

m/s, it will be about 10 m/s at a height of 100 m. Thus, in order to generate more

power, the rotors of the newest wind turbines can reach heights up to 130 m.

But the wind does not blow consistently all the time. The “capacity factor” is the

term used to describe the actual mean power a turbine actually produces over a period

of time divided by the amount of power it could have produced if it had run at its

full rated capacity over that time period. A more precise measurement of output is

the “specific yield” which measures the annual energy output per square meter of area

swept by the turbine blades as they rotate. Overall, wind turbines capture between

20% and 40% of the energy in the wind. So at a site with average wind speeds of 7
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m/s, a typical turbine will produce about 1,100 kWh per square meter of area per year.

If the turbine has blades that are 50 m long, for a total swept area of 7,854 m2, the

power output will be about 8,600,000 kWh for the year. Increasing the blade length,

the swept area increases and a significant effect on the amount of power output of the

wind turbine can be achieved.

1.2.3 Estimation of potential wind resource

The global technical potential for wind energy is related to the status of the tech-

nology and assumptions made regarding other constraints to wind energy develop-

ment. However, several global wind resource assessments have demonstrated that the

world’s technical potential exceeds current global electricity production [51]. Accord-

ing to some estimates, the technical potential for onshore wind energy is 180 EJ/yr

(50,000 TWh/yr). Other estimates of the global technical potential for wind energy

that consider relatively more development constraints range from a low of 70 EJ/yr

(19,400 TWh/yr) (onshore only) to a high of 450 EJ/yr (125,000 TWh/yr) (on- and

near-shore) [51]. This range corresponds to about one to six times global electricity

production, and may understate the technical potential due to several of the studies

relying on outdated assumptions and the exclusion of offshore wind energy. Estimates

of the technical potential for offshore wind energy alone range from 15 EJ/yr to 130

EJ/yr (4,000 to 37,000 TWh/yr). Global climate change may alter the geographic

distribution and the annual variability of the wind resource and the quality of the wind

resource. Moreover, the occurrence of extreme weather events may impact wind tur-

bine design and operation. Research to date suggests that it is unlikely that multi-year

annual mean wind speeds will change during the present century even if research in

this field is nascent and additional study is warranted.

The process to generate electricity from the wind requires the conversion of the

kinetic energy of moving air into electrical energy, and the engineering challenge for

the wind energy industry is to design cost-effective wind turbines and power plants

to perform this conversion. There are several wind turbine configurations, but com-

mercially available turbines are primarily horizontal axis machines with three blades

positioned upwind of the tower. In order to reduce the cost of wind energy, typical wind

turbine sizes have grown significantly (Fig. 1.3), with the largest fraction of onshore

wind turbines installed from 2012 to 2015 having a rated capacity of 3 to 5 MW . These
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onshore wind turbines typically stand on 100- to 130-m towers, with rotors diameter

of 80 to 130 m. Commercial machines with larger rotor diameters and tower heights

are under development. Offshore wind energy technology is less mature than onshore

due to higher investment costs. However, considerable interest in offshore wind energy

exists in many countries. The main motivations to develop offshore wind energy are to

provide access to additional wind resources in areas where onshore wind energy devel-

opment is constrained by limited technical potential, the ability to use higher-quality

wind resources located at sea and even larger wind turbines, and the ability to build

larger power plants than onshore. As experience is gained, water depths are expected

to increase and more exposed locations with higher winds will be utilised. Wind energy

technology specifically for offshore applications may become more prevalent as the off-

shore market expands, and it is expected that larger turbines in the 5 to 10 MW range

may come to dominate this segment.

Figure 1.3: Growth in size of typical commercial wind turbines

1.2.4 Global origins

The original source of the energy contained in the Earth’s wind resource is the sun.

Global winds are caused by pressure differences across the Earth’s surface due to the

irregular heating of the earth by solar radiation which is greater at the equator than

at the poles. The variation in incoming energy sets up convective cells in the lower
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layers of the atmosphere [95]. In a simple flow model, air rises at the equator and sinks

at the poles. This circulation of the air that results from irregular heating is greatly

influenced by the effects of the rotation of the earth (at a speed of about 1670 km/h at

the equator, decreasing to zero at the poles) [95]. In addition, seasonal variations in the

distribution of solar energy produce variations in the circulation. The spatial variations

in heat transfer to the atmosphere create variations in the atmospheric pressure field

that cause air to move from high to low pressure. The pressure gradient force in the

vertical direction is usually cancelled by the downward gravitational force. Thus, the

winds blow predominantly in the horizontal plane, responding to horizontal pressure

gradients. In addition to the pressure gradient and gravitational forces, inertia of the

air, the Earth’s rotation, and friction with the Earth’s surface (resulting in turbulence),

affect the atmospheric winds. The influence of each of these forces on atmospheric wind

systems differs depending on the scale of motion considered. The variability of the wind

varies geographically and temporally, so it persists over a wide range of scales, both

in space and time. The importance of this is amplified by the cubic relationship to

available energy. On a large scale, spatial variability describes the fact that there

are several climatic regions in the world. These regions are characterised by different

latitude, which affects the amount of insolation [32]. Within each climatic region, there

is a great variation on a smaller scale, caused by proportions of land and sea, size of land

masses and presence of mountains or plains for example. Also the type of vegetation

have a significant influence because its effects on the absorption or reflection of solar

radiation affect surface temperatures and humidity. More locally, the topography has

a major effect on the wind climate. More wind is experienced on the tops of hills and

mountains than in sheltered valleys. More locally still, wind velocities are significantly

reduced by obstacles such as trees or buildings.

At a given location, temporal variability on a large scale means that the amount

of wind may vary from one year to the next, with even larger scale variations over

periods of decades or more. These long-term variations are not well understood, and

may compromise the accuracy of predictions of the economic viability of particular

wind-farm projects. On time-scales shorter than a year, seasonal variations are much

more predictable, but often not more than a few days ahead [32]. These variations are

associated with the passage of weather systems. On these time-scales, the predictability

of the wind is important for integrating large amounts of wind power into the electricity
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network, to allow the other generating plant supplying the network to be organized

appropriately.

1.2.5 Statistical distribution of wind speed

Wind speed is a stochastic quantity. The most common density function used to rep-

resent wind speed is Weibull, whose probability density function pd(V∞) is:

pd(V∞) = (ε/z)(V∞/z)
ε−1e−(V∞/z)ε , V∞ > 0 (1.1)

where V∞ is the wind speed, ε is the shape factor, and z is the scale factor. As the

names suggest, ε determines the shape of the curve and z determines the scale of the

curve. (Fig. 1.4)

Figure 1.4: Weibull probability density function for z = 8 m/s [114]

As a convention when speaking about Weibull density function, wind speed V∞ is the

10-min average. In a wind measurement campaign, for each 10-min interval the average

wind speed and standard deviation are recorded. The Weibull probability density

function is a model that represents the 10-min average wind speed. This assumes

that over the 10-min interval the wind conditions are stationary. However, not all

wind measurements are at 10-min intervals, therefore, it is important to mention the

time interval when a reference is made to wind speed density function. Instead of a

probability density function that represents the fraction of time wind speed is at V∞,
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it is sometimes customary to speak in terms of hours in a year. That is, pd(V∞) is

multiplied by 8760 (number of hours in a year) (see Fig. 1.5). For instance, the area

under the curve between 5 and 10 m/s represents the total number of hours in a year the

wind speed is likely to be in that wind speed range. An example of Weibull distribution

in terms of number of hours is seen in Fig. 1.5.

Figure 1.5: The Weibull probability density function expressed in hours per year [114]

Note that the Weibull distribution is defined only for positive value of wind speed.

The other properties of the Weibull for different value of ε are:

• ε = 1, the Weibull distribution becomes an exponential distribution.

• ε = 2, the Weibull distribution becomes a Rayleigh distribution (Fig. 1.6).

• ε > 3, the Weibull distribution approaches a Gaussian distribution.

Empirically, it has been observed that wind speed in most locations is a Weibull dis-

tribution. Furthermore, the value of ε is approximately 2 for most wind sites. In order

to understand the impact of statistical distribution of wind speed on power generation,

consider the impact on power density. Power density is defined as:

PD =
Power

Area
=

1

2
ρV 3
∞

[
W

m2

]
(1.2)
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Figure 1.6: Weibull probability density function for ε = 2 and different values of z [114]

If the statistical distribution of wind is ignored and it is assumed that there is no

variation in wind speed, then the annual power density is incorrectly computed. How-

ever, if the energy density is computed correctly while taking into account probability

density of wind speed, then the annual power density numbers are very different.

PD =

∫ ∞
0

1

2
ρV 3
∞pd(V∞)dV∞ (1.3)

where pd(V∞) is the Weibull probability density function in Eq. (1.1).

1.3 Wind turbine

A wind turbine is a device that converts kinetic energy from the wind into electrical

power. The smallest turbines are used for applications such as battery charging for

auxiliary power for boats or caravans or to power traffic warning signs. Slightly larger

turbines can be used for making contributions to a domestic power supply while selling

unused power back to the utility supplier via the electrical grid. Arrays of large turbines,

known as wind farms, are becoming an increasingly important source of renewable

energy and are used by many countries as part of a strategy to reduce their reliance on

fossil fuels. Wind turbines can be classified in a first approximation according to their

rotor axis orientation and the type of aerodynamic forces used to take energy from

wind.
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1.3.1 Horizontal axis wind turbines

Horizontal axis wind turbines (HAWTs), such as those shown in Fig. 1.7, are the most

common type of wind turbines in use today. In fact all grid connected commercial wind

turbines are today designed with propeller-type rotors mounted on a horizontal axis on

the top of a tower. In contrast to the mode of operation of the vertical axis turbines,

the horizontal axis turbines need to be aligned with the direction of the wind, thereby

allowing the wind to flow parallel to the axis of rotation.

Figure 1.7: Three-bladed upwind turbines [7]

A first HAWT distinction is made between upwind and downwind rotors. Upwind

rotors face the wind in front of the vertical tower and have the advantage to avoid

the tower shadow effect. This type of rotors need a yaw mechanism to keep the rotor

axis aligned with the direction of the wind. Downwind rotors counterpart are placed

on the lee side of the tower. A great disadvantage in this design is the fluctuations in

the wind power due to the rotor passing through the wind shade of the tower which

gives rise to more fatigue loads. Theoretically, downwind rotors can work without a

yaw mechanism, the rotor and the nacelle can follow the wind passively [95]. This may,

however, induce to a power cables twist when the rotor has been yawing passively in

the same direction for a long time. For large wind turbines, it is rather difficult to use
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slip rings or mechanical collectors to avoid this problem. The vast majority of wind

turbines in operation today have upwind rotors.

The three-bladed concept is the most common concept for modern wind turbines

[49]. A turbine with an upwind rotor, an asynchronous generator and an active yaw

system is usually referred to as the Danish concept. Relative to the three-bladed rotor,

the two and one-bladed concepts have the advantage of representing a possible saving

in relation to the cost and weight of the rotor. However, the use of fewer rotor blades

implies that a higher rotational speed or a larger chord is needed to yield the same

energy output as a three-bladed turbine of a similar size. The use of one or two

blades will also result in more fluctuating loads because of the variation of the inertia,

depending on the blades being in horizontal or vertical position and on the variation

of wind speed when the blade is pointing upward and downward. Therefore, the two

and one-bladed concepts usually have so-called teetering hubs, implying that they have

the rotor hinged to the main shaft. This design allows the rotor to teeter in order to

eliminate some of the unbalanced loads. One-bladed wind turbines are less widespread

than two-bladed turbines. This is due to the fact that they, in addition to a higher

rotational speed, more noise and visual intrusion problems, need a counterweight to

balance the rotor blade.

Figure 1.8: Example of multi blades wind turbines

Wind turbines are designed to produce electricity as cheaply as possible. For this

purpose, wind turbines are designed to yield a rated power output at wind speeds

around 13 m/s. In case of stronger winds, it is necessary to waste part of the excess

energy to avoid damage on the wind turbine. Thus, the wind turbine needs a power

control which is divided into two regimes with different concepts:
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• power optimisation for low wind speeds

• power limitation for high wind speeds

These regimes are separated by the wind speed at which the rated power output is

achieved, typically about 13 m/s. Basically, there are three approaches to power con-

trol:

• stall control

• pitch control

• active stall control

Stall-controlled wind turbines have their rotor blades at a fixed angle. The stall phe-

nomenon is used to limit the power output when the wind speed becomes too high.

This is achieved by designing the geometry of the rotor blade in such a way that flow

separation is created on the downwind side of the blade when the wind speed exceeds

some chosen critical value. Stall control of wind turbines requires correct trimming of

the rotor blades and correct setting of the blade angle relative to the rotor plane. A

drawback of this method is the lower efficiency at low wind speeds. Pitch-controlled

wind turbines have blades that can be pitched out of the wind to an angle where the

blade chord is parallel to the wind direction [106]. When the power output becomes too

high, the blades are pitched slightly out of the wind to reduce the produced power. The

blades are pitched back again once the wind speed drops. To optimise the power out-

put at all wind speeds, the pitch control requires a design that ensures that the blades

are pitched at the exact angle required. Pitch control of wind turbines is only used in

conjunction with variable rotor speed. An advantage of this type of control is that the

mean value of the power output is kept close to the rated power of the generator at

high wind speeds. A disadvantage is the complexity due to the pitch mechanism and

high power fluctuations at high wind speeds. Active stall-controlled turbines resemble

pitch-controlled turbines by having pitchable blades [150]. At low wind speeds, active

stall turbines will operate like pitch-controlled turbines. At high wind speeds, they will

pitch the blades in the opposite direction of what a pitch-controlled turbine would do

and force the blades into stall. This enables a rather accurate control of the power
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output, and makes it possible to run the turbine at the rated power at all high wind

speeds.

A constant rotor speed has the same rotational speed while the wind turbine is

generating energy; they do not need power electronics to adapt to grid frequency which

makes them cheaper. A stall-regulated wind turbine falls into this category as it main-

tains constant RPM once the rated rotational speed is achieved. A variable speed

rotor tries to achieve the optimum rotational speed for each wind speed, maintaining

constant the optimum tip speed ratio will ensure optimum efficiency at different air-

speeds. From a structural point of view, letting the rotor change its speed reduces the

load supported by the wind turbine in presence of gusts or sudden starts.

A wind turbine tower is the main structure which supports rotor, power transmis-

sion and control systems. A successful structural design of the tower should ensure

efficient, safe and economic design of the whole wind turbine system. It should provide

easy access for maintenance of the rotor components and sub-components, and easy

transportation and installation. Moreover, the tower raises the wind turbine so that its

blades safely clear the ground and it can reach the stronger winds at higher altitude.

There are many types of wind towers on the market today. They vary in size and

structure and are designed to support wind turbines of different size and output.

• Guyed tower: a guyed tower is one which is held in place with guy wires. The

tower itself is often just a long steel pole. There are usually three or four guy

lines which run from the top of the tower to the ground and hold the tower in

place. Guyed towers are often the cheapest type of wind tower and are often an

excellent choice for a small residential scale wind turbine.

• Guyed tilt-up tower: this is a type of guyed tower which has a pivot joint at

the base of the tower so one can easily raise the tower initially or lower it to do

maintenance on the turbine later. As with all guyed towers, one needs to have a

large space for the guy wires and for the tower.

• Freestanding lattice tower: this type of tower is made of steel or aluminium lattice

work. Because this type of tower cannot be laid down it will usually include a

built-in ladder so that someone can climb the tower to do maintenance on the

turbine. The latticed frame includes many structural supports and so is usually

extremely sturdy and holds up well in high winds. Latticed towers have the
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advantage that they take up less space but usually cost more than guyed towers

because they use more steel [42].

• Freestanding tubular tower: this tower is constructed as a large tube. On most

of the larger towers of this type there is a ladder inside of the tube so that

a worker can climb the tower to do maintenance on the turbine. Most large

commercial scale turbines use this design. As the commercial wind industry has

grown, tubular towers for turbines in the 3 MW to 5 MW range have become

quite large and tall.

• Floating tower: a floating wind tower is an offshore wind turbine mounted on

a floating structure. In most cases the wind turbines are held in place by wires

or chains attached to weights on the ocean floor. One advantage of mounting

turbines at sea is that the wind is strong and not disrupted by any terrain features.

1.3.2 Vertical axis wind turbines

Vertical axis wind turbines (VAWTs) have been developed in parallel with HAWTs,

but with less financial support and less interest. The engineer S.J. Savonius invented

the Savonius turbine in 1922, (see left of Fig. 1.10) [112]. In 1931, Georges Darrieus

patented his idea to have a VAWT with straight blades, (see middle and right Fig. 1.10)

[46].

During the 1970s and 1980s vertical axis machines came back into focus when both

Canada and the United States built several prototypes of Darrieus turbines. The pro-

totypes proved to be quite efficient and reliable [112]. According to a report from

Sandia National Laboratories in the USA, the VAWTs fell victims to the poor wind

energy market in the USA [58]. In the 1980s the American company FloWind com-

mercialised the Darrieus turbine and built several wind farms with Darrieus turbines

[136]. The machines worked efficiently but had problems with fatigue of the blades,

which were designed to flex [111]. The Eole, a 96 m tall Darrieus turbine built in 1986,

was the largest VAWT ever built with a rated maximum power of 3.8 MW [41]. The

machine was shut down in 1993 due to failure of the bottom bearing. The straight-

bladed VAWT was also an invention included in the Darrieus patent [46]. This turbine

is usually referred to as the straight-bladed Darrieus turbine or the H-rotor, but has

also been called giromill or cycloturbine (different concepts of the same invention) (see
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1.3 Wind turbine

Figure 1.9: Example of vertical axis wind turbine [10]

right Fig. 1.10). In the United Kingdom, the H-rotor was investigated by a research

team led by Peter Musgrove [112,107,103]. The biggest H-rotor built in the UK was a

500 kW machine, which was designed in 1989 [97]. In the 1990s, the German company

Heidelberg Motor GmbH worked with development of H-rotors and they built several

300 kW prototypes [148].

VAWTs may have either drag-driven or lift-driven rotors. The Savonius rotor is

the most common drag-driven VAWT. It has been used for water pumping and other

high-torque applications. An advantage of Savonius rotor turbines is that they can be

relatively inexpensive to build. In practice, being a drag-driven machine, they have

intrinsically low power coefficients. In addition, they have a solidity approaching 1.0,

so they are very heavy relative to the power that they produce. When VAWT have

been used for electrical power generation they have nearly always used lift-driven rotors
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1.3 Wind turbine

Figure 1.10: Savonius rotor (left), Darrieus turbine (middle) and H-rotor (right) [124]

(Darrieus rotor type). Some rotors with straight blades have incorporated a pitching

mechanism, but most lift-driven vertical axis turbines have fixed pitch blades. Thus,

power limitation at high winds is accomplished by stalling.

Compared to HAWT, the vertical rotational axis of a VAWT allows the generator

to be located at the bottom of the tower. This makes installation, operation and

maintenance much easier. The tower can be lighter since the nacelle is excluded, which

reduces structural loads and problems with erecting the tower [30]. The generator

design can be focused on efficiency, cost and minimising maintenance, as the size of the

generator is not a problem. The control system can also be located at ground level to

facilitate access [123]. Direct drive here denotes a solution where the turbine is directly

connected to the rotor of the generator. By using a direct drive generator, the gearbox

is excluded from the system. A gearbox is often associated with breakdown and need

of maintenance [22]. Furthermore, a direct drive system is much more efficient than

a generator with a gearbox, since the gearbox is a source of losses comparable to the

losses in the generator. The overall system, when excluding a gearbox, is simpler and it

is easier to install. Since a direct drive machine is more bulky and has a larger diameter

than a generator that includes a gearbox [57], the advantage of using a vertical axis

turbine is that the generator is placed on the ground and the size is not an issue.

Other differences between HAWT and VAWT is that the blades of a HAWT have

to be self-supporting since they are only attached at the root while the blades of an

VAWT are supported by radial arms, which usually are attached to the centre of the

blades. However, the arms add extra structure and mass to the turbine. The blades of

a H-rotor, for example, are much easier to manufacture than the blades of a HAWT.
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The blades of the latter have different shape along the length of the blade and the

blades might also be twisted. The blade area is often larger for an H-rotor than for a

HAWT with the same rated power. Mass production of H-rotor blades would imply

low production costs since their shape makes them easy to fabricate in large numbers

compared to HAWTs [30]. The VAWTs are normally placed on top of a high tower,

just as the HAWT, in order to reach higher and less turbulent winds. Guy wires could

be used to support the shaft of a turbine since it gives a more robust construction.

The blade of a HAWT is subject to a gravity-induced reversing stress at the root of

the blade, which is not the case for VAWT blades [102, 128]. This is believed to

be the main limitation for increasing the size for HAWTs. Furthermore, HAWTs have

relatively constant torque over the rotor period of revolution. VAWTs have an inherent

torque ripple [30]. The torque ripple is caused by the continuously changing angle of

attack between the blades and the apparent wind. The torque ripple can affect the

fatigue life of the drive train components as well as the output power quality [119].

By increasing the number of blades to three or more, the torque ripple is decreased

substantially [13]. Furthermore, the problem with torque ripple is decreased when the

turbine is operated at variable speed. The aerodynamic forces on the blades caused by

the changing angle of attack will also cause a cyclic aerodynamic stress on the blades.

The trend in wind power development is the increasing of the size of the turbines.

Steven Peace, director of the company Eurowind Developments Ltd., believes in multi-

megawatt VAWTs [111, 96], which was suggested by Musgrove 20 years ago [107]. They

both claim that HAWTs have reached their maximum size and that the size will not

be of economic benefit anymore. The reason for this is the cyclically reversing gravity

loads on the blades, which increases with an increasing turbine size. For VAWTs there

are no such limit and therefore VAWTs are a good replacement for the HAWTs as the

size of the turbines are expected to continue increasing. On the other hand, Riegler

finds the biggest value in small VAWTs [120]. He claims that HAWTs are so economical

they might be hard to beat when it comes to big turbines, but that small VAWTs can

play their role in areas where HAWTs do not work that well for example in mountain

areas or in regions with extremely strong and gusty winds, for instance roof tops.
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1.4 Wind turbine aerodynamics

Wind turbine power production depends on the interaction between the rotor and the

wind. As reported before, the wind may be considered to be a combination of the

mean wind and turbulent fluctuations about that mean flow. Periodic aerodynamic

forces caused by wind shear, off-axis winds, and randomly fluctuating forces induced

by turbulence and dynamic effects are the source of fatigue loads and are a factor

in the peak loads experienced by a wind turbine. Horizontal and vertical axis wind

turbine designs use aerofoils to transform the kinetic energy in the wind into useful

energy. The classical analysis of the wind turbine was originally developed by Betz

and Glauert [60] in the 1930s. Subsequently, the theory was expanded and adapted for

solution by digital computers [156, 157, 47].

1.4.1 Horizontal axis machines

A simple model, generally attributed to Betz, can be used to determine the power from

an ideal turbine rotor, the thrust of the wind on the ideal rotor, and the effect of the

rotor operation on the local wind field. The analysis assumes a control volume, in which

the control volume boundaries are the surface of a stream tube and two cross-sections

of the stream tube. The only flow is across the ends of the stream tube. The turbine

is represented by a uniform “actuator disc” which creates a discontinuity of pressure

in the stream tube of air flowing through it. Assuming that the affected mass of air

remains separate from the air which does not pass through the rotor disc and does not

slow down, a boundary surface can be drawn containing the affected air mass, and this

boundary can be extended upstream as well as downstream forming a long stream-tube.

No air flows across the boundary and so the mass flow rate of the air flowing along the

stream-tube will be the same for all stream-wise positions along the stream-tube. Since

fluid compressibility effects can be ignored due to the low air speed, the cross-sectional

area of the stream-tube must expand to accommodate the slower moving air (Fig. 1.11).

Although kinetic energy is extracted from the airflow, a sudden step change in velocity

is neither possible nor desirable because of the enormous accelerations and forces this

would require. Pressure energy can be extracted in a step-like manner, however, and all

wind turbines, whatever their design, operate in this way. The presence of the turbine

causes the approaching air, upstream, to gradually slow down so that when the air
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Figure 1.11: Energy extracting stream-tube of a wind turbine [32].

arrives at the rotor disc its velocity is already lower than the freestream wind speed.

The stream-tube expands as a result of the deceleration and, because no work has yet

been done on or by the air, its static pressure rises to absorb the decrease in kinetic

energy. As the air passes through the rotor disc, there is a drop in static pressure

such that, on leaving, the air is below the atmospheric pressure level. The air then

proceeds downstream with reduced speed and static pressure. Far downstream, the

static pressure will return to the atmospheric level. The rise in static pressure is at the

expense of the kinetic energy and so causes a further deceleration of the wind. Thus,

between the far upstream and far downstream conditions, no change in static pressure

exists but there is a reduction in kinetic energy. According to Betz’s law, no turbine

can capture more than 59.3% of the kinetic energy in wind (see Appendix A for details).

Modern large wind turbines achieve peak values of power coefficient Cp between 0.45

and 0.50 [32] about between 75% and 85% of the theoretically possible maximum.

The HAWT blades use aerofoils to develop mechanical power. The width and the

length of the blade are functions of the desired aerodynamic performance, the maximum

desired rotor power and the assumed aerofoil properties. From blade element analysis

[78] it is possible to express the forces acting on the blade as function of lift and drag

coefficients and the angle of attack. Generally, lift and drag coefficients of an aerofoil are

generated by the pressure variations over the aerofoil surface and the friction between

the air and the aerofoil. Dividing the blade into Nbe elements (with radial length dR),

one can represents the forces on a specific section, which are characteristics of the
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aerofoil shape of the blade. As shown from Fig. 1.12, incremental lift dFL is the force

perpendicular to the direction of a relative wind W and incremental drag force dFD is

parallel to the direction of a relative wind [78].

Figure 1.12: Forces acting on a blade section of HAWT [95]

Lift and drag can be split into components parallel and perpendicular to the direc-

tion of freestream wind speed V∞(1−a) (where a is the induction factor defined as the

fractional decrease in wind velocity between the freestream and the rotor plane) to give

the incremental force dFN and dFT . dFN is the force normal to the rotor plane and

contributes to the thrust, while dFT is tangential to the rotor plane and creates useful

torque. Other important parameters showed in Fig. 1.12, are the pitch angle β, which

is the angle between the chord line of the blade and the plane of rotation, the angle

of attack α between the chord line of the blade and the relative wind or the effective

direction of air flow and φ that is the angle of the relative wind. The blade section

velocity at distance R from the hub is ΩR, where Ω is the angular velocity.

1.4.2 Vertical axis machines

By the nature of the aerodynamics of the rotor of VAWTs, the structural loads on the

blades vary greatly during the rotation. Such loads contribute to high fatigue damage,

and require that the blades and joints themselves have a very long cycle life. In addition,
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the vertical axis turbines do not lend themselves to being supported by a separate, tall

tower. This means that a large fraction of the rotor tends to be located close to the

ground in a region of relatively low wind. Productivity may then be less than that of

a horizontal axis machine of equivalent rated power, but on a taller tower.

Taking into account a straight-blade Darrieus rotor, a single blade of this machine

is illustrated in Fig. 1.13. In the figure the blade is shown rotating in the counter-

clockwise direction, and the wind is seen impinging on the rotor from left to right. As

is typical in VAWT, the aerofoil is symmetric. The blade is oriented so that the chord

line is perpendicular to the radius of the circle of rotation. The radius R defining the

angular position of the blade forms an angle of θ with the wind direction. As shown in

Figure 1.13: Schematic view of a vertical axis wind turbine [95]

Fig. 1.13, V∞ denotes the absolute wind velocity vector which is defined as the vector

sum of the relative velocity and the entrainment velocity ΩR. The entrainment velocity

vector due to the rotation is tangential to the circle of rotation, and thus parallel to

the chord line of the aerofoil. The velocity vector V∞(1− a) denotes the wind velocity

near the blade. An induction factor, a, accounts for the deceleration in the wind as

it passes through the rotor. By Pythagoras’s Theorem, one can find the wind velocity

relative to the blade element (W ). It is illustrates in Fig. 1.14 and it is defined as:

W 2 = {ΩR+ (1− a)V∞ sin(θ)}2 + {(1− a)V∞ cos(θ)}2 (1.4)

Equation (1.4) can be rewritten as:

W

V∞
=

√
{λ+ (1− a) sin(θ)}2 + {(1− a) cos(θ)}2 (1.5)
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Figure 1.14: Velocity triangles of a VAWT blade section.

where:

λ =
ΩR

V∞
(1.6)

The symbol λ denotes the tip speed ratio. Note that at high λ, the second term under

the square root becomes small, so that:

W

V∞
≈ λ+ (1− a) sin(θ) (1.7)

The λ is of vital importance in the design of wind turbine generators. If the rotor of

the wind turbine turns too slowly, most of the wind will pass undisturbed through the

gap between the rotor blades. Alternatively if the rotor turns too quickly, the blurring

blades will appear like a solid wall to the wind. Therefore, wind turbines are designed

with optimal tip speed ratios to extract as much power out of the wind as possible.

Different types of turbine have completely different optimal tip speed ratio values, for

example a Darrieus wind turbine which generates aerodynamic lift has an high λ, but

a Savonius wind turbine which is also a VAWT but drag driven, has a λ less than 1.

Since the chord is perpendicular to the radius of the circle, an angle of attack (α)

is defined as:

α = tan−1

[
(1− a) cos(θ)

λ+ (1− a) sin(θ)

]
(1.8)

The VAWTs have an inherent unsteady aerodynamic behaviour due to the variation of

angle of attack with azimuthal position. The maximum values of α during a complete

revolution decrease as the λ increases. The phenomenon of dynamic stall is then an

intrinsic effect of the operation of VAWTs at low λ, having a significant impact on
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power production. More details on vertical axis machines aerodynamics are reported

in Chapter 5 .

1.5 Navier-Stokes analysis of periodic wind turbine flows

Periodic wind turbine flow problems are often represented as nonlinear dynamical sys-

tems. The complexity of the unsteady aerodynamics of wind turbine devices make

them too intricate to solve analytically, so they must be analysed experimentally or

using Computational Fluid Dynamics (CFD) through numerical simulations.

CFD is based on the Navier-Stokes (NS) equations which are the fundamental gov-

erning equations of fluid dynamics: continuity, momentum and energy equations. Most

NS CFD analyses of wind turbines aerodynamics are based on the so-called Reynolds

Averaged Navier-Stokes (RANS) approach, whereby the time-dependent NS equations

are averaged on the time- and length-scales of turbulence. This yields the RANS

equations, a system of partial differential equations (PDEs) formally similar to the

steady NS equations, and differing from them primarily because of the presence of the

Reynolds stresses, accounting in an averaged manner for the effects of turbulence. Dif-

ferent approaches exist for calculating the components of the Reynolds stress tensor,

the tensor required for the local calculation of the components of the “turbulent” stress

vector. The most widely used turbulence closure approach consists of assuming that the

Reynolds stress tensor depends linearly on the strain tensor through a space-dependent

scalar called turbulent or eddy viscosity, and solving one or two additional PDEs yield-

ing the eddy viscosity. Popular examples include the k − ω Shear Stress Model (SST)

[101] requiring the solution of two additional equations for the turbulence closure, and

the one equation Spalart−Allmaras model [138].

The traditional approach for solving nonlinear dynamical systems begins with a

spatial discretisation of the governing equations, followed by a temporal discretisation.

In case of time-periodic flows the solution is time-marched from an initial state until

a user-given final time. A drawback of using time-marching methods for time-periodic

problems is that they include a transient response in the solution. So, time marching

approach can become inefficient when several periods have to be simulated before a fully

developed periodic solution is achieved. In order to reach the periodic solution in a short

time and accelerate the wind turbine unsteady flow analysis, the harmonic balance
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(HB) technology can be applied. It is a frequency-domain (FD) method introduced

by Hall et. al [65] who first showed the run-time reduction compared to the time-

domain approach, for the case of turbomachinery flows. This technology has also been

applied to the prediction of the periodic flow associated with flutter and forced response

of turbomachinery blades [140, 149], and various vibratory motion modes of aircraft

configurations [44, 130, 158]. For this type of applications, the HB NS approach for

the calculation of periodic flows can lead to a reduction of the wallclock time varying

between one and two orders of magnitude with respect to conventional TD NS analyses.

In this thesis the HB approach was used for the first time on wind energy applica-

tions and has been demonstrated that the HB approach is a computationally efficient

alternative to time marching method [36].

1.6 Motivation, objectives and overview of the thesis

The main topics of the research work reported in this thesis were to develop, assess

and validate a novel frequency-domain method and modelling technology to improve

the computational efficiency of the RANS model-based analysis of unsteady complex

systems, where fluids play a significant role. Moreover the work aimed to demonstrate

the accuracy and the effectiveness of the developed technologies by using the new RANS

framework to investigate turbulent unsteady flow past horizontal and vertical axis wind

turbines rotors.

The objectives associated to the algorithmic work concerned the development of a

turbulent RANS SST harmonic balance solver for the rapid solution of periodic flows,

the integration of LAPACK libraries to massively improve the computational efficiency

of a semi-implicit approach to the integration of the HB RANS equations [36] and the

assessment of the RANS-based analysis of wind turbines periodic flows achieved by

using the harmonic balance rather than the conventional time-domain approach.

The thesis presents several elements of novelty like a high dimensional harmonic

balance approach to solve several turbulent unsteady flows past some renewable en-

ergy devices like horizontal axis wind turbine sections in yawed wind condition and

vertical-axis wind turbines for a wide range of tip speed ratios, highlighting a very

good agreement with time-domain results. On the modelling side, the thesis reports

some important parametric analysis on the numerical set-up like the sensibility to the
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farfield boundary distance, sensibility to mesh and temporal refinement and sensibility

to the characteristic turbulent variables of the SST turbulence model.

Chapter 2 gives an explanation on wind turbines unsteady environment like dynamic

stall, atmospheric turbulence, wind shear, misalignment of the rotor to the incoming

wind, tower shadow and wake/blade interactions. The Chapter 3 reports in great de-

tail the time-domain formulation of the compressible RANS and SST turbulence model

equations and the cell-centred finite volume space discretisation. It shows the iterative

solver used to solve iteratively the steady and time-domain RANS equations and it also

mentioned the methods used for the space discretisation of the convective fluxes, the

diffusive fluxes and the source terms of the SST turbulence model. Chapter 4 presents

the classical formulation of the harmonic balance method for finding the periodic so-

lution of systems of ordinary differential equations, and the so-called high-dimensional

formulation of the harmonic balance method, which is a variant of the former formula-

tion better suited to the numerical solution of the Navier-Stokes equations. The chapter

also reports a description of the optimisation performed on the point-implicit numerical

integration of the HB RANS and SST equations, incorporating the lower-upper factori-

sation of the LAPACK package in the considered CFD solver. Chapter 5 focuses on the

time-domain analysis of a Darrieus rotor, including the computational set-up, the space

and time-refinement sensitivity analyses, assessment of the sensitivity of the computed

solution varying farfield boundary distances and validation of the predictive flow capa-

bilities of the CFD research code used in this thesis. A detailed aerodynamic analysis

is reported to show the behaviour of a VAWTs in all operating conditions (from low to

high tip speed ratios). Time-domain analyses on a HAWT in yawed wind conditions

is reported in Chapter 6 . Two different aerodynamics analyses are shown for inboard

and outboard blade sections of a 164 m diameter machine in terms of unsteady forces

acting on the blades. An explanation of the yawed wind modelling and the computa-

tional set-up is also reported. Chapter 7 presents the HB acceleration of wind turbines

unsteady flows analyses for vertical and horizontal axis wind machines, showing the

flow predictive capabilities of the HB approach, the accuracy and the computational

performances. The main motivation of these analyses is to assess the computational

benefits achievable by using the HB solution of the RANS and SST equations rather

than the conventional TD solution, and also to further demonstrate the predictive ca-
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pabilities of the developed CFD system. The conclusions of the thesis and future work

are provided in Chapter 8 .

1.7 Conclusion

An overview of the existing renewable energy installations and the contribution to

the global energy supply has been presented in this chapter. Today, wind power is

the fastest growing source and the most economically competitive energy compared to

other renewables because the cost of wind turbines is getting cheaper thanks to the

technology advancement and government incentives. Typical wind turbines used to

generate electricity are horizontal axis rotors with three blades mounted on a tubular

tower. The installation of VAWTs is increasing rapidly thanks to the several advantages

over HAWTs for wind energy capture. The aerodynamic design of these machines is

a challenging task, since reliable quantitative estimates and sound understanding of

the aforementioned unsteady aerodynamic phenomena is required to obtain the power

output as a function of the wind and turbine speeds. A discussion on the different

types of horizontal and vertical axis wind turbines, control systems, rotor towers and

blades aerodynamics has been reported.
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Chapter 2

Wind turbine unsteady flows

2.1 Unsteadiness in horizontal axis machines

There are several unsteady aerodynamic phenomena which have a large impact on

HAWTs operation. The turbulent wind conditions cause rapid changes in speed and

direction over the rotor disc. These changes cause blade vibrations, fluctuating aerody-

namic forces and material fatigue. Additionally, the effects of tower shadow, dynamic

stall and yawed wind, change turbine operation in unexpected ways. Several experimen-

tal measurements performed in wind tunnels and several studies based on analytical

models and CFD approaches have been done during the years. An overview of the

research works on horizontal axis machines is reported in the next subsections.

2.1.1 Tower shadow

Tower shadow is a phenomenon that occurs in downwind rotors (Fig. 2.1). It refers to

the wind speed deficit behind a tower caused by the tower obstruction. The blades will

encounter the tower shadow once per revolution, causing a rapid drop in power and

vibrations in the turbine structure. As can be expected a downwind turbine rotor will

give larger and more fluctuating tower interferences than its upwind counterpart. Many

studies [64, 92, 59] over the recent years have tried to describe the tower shadow impact

on the blade fatigue loading. They have considered several tower geometries and used

several approaches like wake models, CFD simulations and model scale experiments.

Reiso et al. [118] conducted an experiment run in the wind tunnel at the Norwegian

University of Science and Technology to determine the wind forces that act on a rotor
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Figure 2.1: Upwind rotor (left), downwind rotor (right)

mounted on the downwind side of the tower. The experiment was carried out using both

a model for a tubular and truss tower (Fig. 2.2). The towers were scaled down from

Figure 2.2: Tubular and truss tower (left and right, respectively).
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the NREL Offshore 5-MW Reference Turbine [80]. Both scaled tower heights were 762

mm. Both towers were placed at a distance from the measuring-point corresponding to

the distance between the tower and rotor plane (the rotor turbine was not considered in

the experiment). Measurements referred to a freestream wind speed equal to 11.4 m/s

and freestream turbulence level in the tunnel of 0.4%. A hot-wire anemometer was used

to measure the mean and turbulent wind velocity at the centreline behind the tower,

and at several positions on the right side of the tower (see Fig. 2.3). The truss tower

Figure 2.3: Measurement points behind the towers in the rotor plane. D = 2.5 cm is

tubular tower diameter [118]

was tested in two positions, 0 degrees and 45 degrees towards the wind direction. From

the experimental results, the largest mean velocity deficit behind the towers was found

at the centreline of the tubular tower, showing a minimum wind velocity of 4.6 m/s.

The truss tower showed multiple velocity deficits, originating from the different truss

members across the tower region, but smaller compared to the tubular tower. These

deficits behind the towers corresponded to a reduction of the freestream wind velocity

of the 60%, 44% and 31% for the tubular tower, truss at 45o and truss at 0o angle

towers respectively. This conclusion highlight that truss tower results advantageous for

downwind rotor configuration.
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Hagen et al. [64] presented a study on numerical analysis of turbulent flow past two

dimensional (2D) cross sections of both a monopile and a truss tower. Moreover, the

tower shadow models of Powles [113], Blevins [28] and Schlichting [126] were compared

with numerical results. The numerical model was implemented in the commercial

software ANSYS FLUENT. An approximation adopted was the bidimensionality of the

model. The truss tower was represented by four main cylinders and an intersection

between the main cylinders was represented by eight additional smaller cylinders. For

the monopile, the geometry was represented as a single cylinder. In both cases the

computational domain was rectangular. The top and bottom side of the domain were

implemented with periodic boundaries while the outflow boundary was implemented

with the reference pressure of one atmosphere. The inflow boundary was implemented

with a freestream velocity of 12 m/s, which represented a typical rated wind speed

for offshore wind turbines. The turbulence parameters were specified by turbulence

intensity of 10% and length scale of 1 m. Using the RANS coupled to the k − ω SST

turbulence model, the CFD approach was able to reproduce the main properties of the

flow regime and the results were in excellent accordance with the literature [152]. The

comparison of the three steady parametric wake models results (Powles [113], Blevins

[28] and Schlichtings [126]) with the CFD results, highlighted that the velocity profile

behind the monopile tower was predicted fairly well from all three wake models, but

they did not predict very well the velocity profiles behind the truss tower. The deficit

of the steady wake models to accurately predict the flow behind truss towers was due

to the fact that those models do not account for the interacting effects between the

truss tower members. A tower shadow model able to predict all features of a flow field

behind a multi-member tower is difficult to realise because their simplifications try

to generalise a complex flow situation, for example when several wakes from different

members interact to each other, thus the CFD is a good approach to accurately predict

the tower shadow effect.

As seen from the study of Reiso et al. [118], the tower shadow effect and the cyclic

fatigue loading on the downwind rotor could be reduced using a truss tower instead

of the traditional tubular tower. Moreover, according to Long and Moe [92], a truss

tower can save up to 50% of the material compared to a tubular tower. This estimate

is for an upwind rotor configuration. For a downwind rotor configuration the material

savings could be even more if the blades are specially designed.
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2.1.2 Dynamic stall

The components of a wind turbine, such as generators and blades, are frequently sub-

jected to variable dynamic loading. A source of fatigue derives from the cyclic load due

to the blade weight, that affects the turbines during their entire life. Another source of

fatigue is related to aerodynamic unsteadiness that vary all the time like dynamic stall.

Dynamic stall is a nonlinear aerodynamic effect that occurs when the angle of attack

(AoA) exceeds the static stall limit, and when the AoA keeps changing. Such effect at

the blade surface is not easy to predict and affect turbine operations. A dynamic stall

model is necessary to predict peak and fatigue loads on the blade. If the dynamic stall

affect smaller regions of the blade, the latter can achieve a longer operational life with

less maintenance operations. Currently, the impulsive loading introduced by dynamic

stall aerodynamic models can amplify, or have little effect on the resulting structural

loads [121]. Fully appreciate the three-dimensional aerodynamic response of a turbine

rotor is very complex. One needs to consider multiple effects like blade geometry, pitch,

turbine architecture, wind magnitude and local angle of attack. For downwind turbines

there are additional complexity like tower shadow effect which occurs when the wake

from the tower intersects the rotor plane downstream. As the blade crosses the tower

shadow, the wake velocity deficit change the value of the AoA until the blade moves

out of the wake. This variation of the AoA due to the tower shadow effect can also

induce dynamic stall events [121].

Choudhry et al. [43] proposed an analytical model in order to relate rapidly chang-

ing of wind speeds and directions to the dynamic variations in blade section angle of

attack. The model validation using the HAWT described by Schreck et al. [127] was

also reported in [43]. The case study used for the prediction of dynamic stall occur-

rence along a wind turbine blade was performed using a theoretical wind turbine with

a rotor diameter of 15 m, a tower height of 10 m, a constant chord length of 3 m and

a rotational speed of 30 RPM . Two types of blade aerofoils were considered, S809

and NACA0012. Using ambient wind conditions as wind speed, yaw angle and rates of

change of these parameters as input of the analytical model, the authors observed that

the model was able to predict the regions of the wind turbine blade affected by dynamic

stall. The authors observed that the aerofoil type had a large effect on dynamic stall,

indeed, the NACA0012 aerofoil was more resistant to dynamic stall compared to the
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S809 aerofoil. In other words, considering the same input wind conditions, it was ob-

served that approximately 90% of the S809 blade was affected by dynamic stall against

70% of the blade for the NACA0012.

2.1.3 Yawed wind

A wind turbine in operation will not always experience wind perpendicular to the rotor

plane. It is impossible to have a wind turbine axis permanently aligned toward the wind

direction, and hence, the flow is often yawed. Without any yaw control, the turbines

would constantly operate in large yaw errors (Fig. 2.4).

Figure 2.4: HAWT in yaw condition [91]

Under these conditions the power extracted from the wind decreases. To avoid this

phenomenon the wind turbines have a yaw control which tracks the direction of the

wind and rotates the nacelle to achieve the realignment. Even if controlling action

is not instantaneous, both large and small HAWTs rarely operates in large yaw, and

therefore are not likely to experience too much dynamic stall due to yaw, except in cases

when the yaw control system is faulty. Several research works have been performed to

investigate the flow around the blades of a HAWT operating in yawed condition [48,
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147] .

An investigation of the performance characteristics and near wake of a three-bladed

upwind rotor type in yawed condition was proposed by Adaramola et al. [12]. The

experiments were performed in a low-speed wind tunnel. The turbine rotor had a blade

chord length of 82 mm at the rotor root and 26 mm at the tip, the rotor diameter

was 900 mm and its height on the ground plane was 820 mm. The performance

measurements were conducted for various yaw angles (δ), freestream wind speed of

about 10 m/s, and for λ from 0 to 12. From the performance characteristics of the

turbine in yawed condition was shown that the effects of yaw angle on the performance

were quite large. The power coefficient at non-yawed condition (when the wind is

perpendicular to the rotor plane of the turbine, δ = 0o) was similar to the expected

power curve characteristics for the wind turbine considered. Increasing the yaw angle

(δ > 0o) the maximum achievable power coefficient reduced as reduced the total swept

area and less power was extracted from the wind. The maximum λ for which positive

power was obtained, was about 11.6 for the wind turbine examined for δ = 0o and this

value decreased as the yaw angle increased. The power loss was found about 4% when

the yaw angle was less than 10o, and over 30% when the yaw angle was greater than

30o. The effect of yaw on the torque coefficient was also analysed in [12]. The torque

was measured directly on the rotor shaft and the authors highlighted that increasing

the yaw angle, there was a general reduction in the total torque coefficient of the wind

turbine.

2.1.4 Wind shear

HAWT are also influenced by periodical loads due to wind shear. These loads could

cause fatigue of the blades [95]. The friction of the moving air masses against the

Earth’s surface decelerates the wind speed from a constant value at great altitude to

zero at ground (Boundary Layer Effect) [67]. Wind shear effect is important for modern

wind turbine machines because with the increasing of the turbine size (some rotors of

8 MW HAWT can reach a diameter of 160 m), the rotor plane is affected by different

wind speeds at different heights (see Fig. 2.5). The wind shear effect is described by

the shear exponent s obtained from the assumption of a power law profile:

Vh2 = Vh1

(
h2

h1

)s
(2.1)
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Figure 2.5: Example of wind shear for s = 0.25 [11]

where Vh2 is the wind speed at height h2 and Vh1 is the wind speed at height h1.

Usually the wind velocity Vh1 is the speed measured at 10 m above the ground. The

wind shear exponent s varies with the characteristics of the terrain, assuming values

that vary from 0.1 for the open water case to 0.30 for terrains with hills and mountains.

Wind turbine power performance is affected by wind shear. The assumption that

the wind velocity at hub height is representative of the entire swept area, leads to incon-

sistencies in power curve measurements. This is true especially for large wind turbines,

as shown in Elliott et al. [55] and Sumner et al. [141]. Some studies showed that the

power production decreases with increasing shear. One of those is the study presented

by Honrubia et al. [70]. To evaluate the influence of wind shear on wind turbine

performance, the authors conducted wind speed measurements at different heights. In

the past, wind data were measured and evaluated from a meteorological point of view

[67], but they did not provide much detailed informations about wind shear. So, the

wind speed at hub height was the input parameter for power curve assessment. This

approach could be adopted for smaller wind turbines, but for modern multi-MW ma-

chines the wind speed at hub height is not sufficient to estimate accurately the power

curve. The investigation proposed by Honrubia [70] considered a multimegawatt wind

turbine (for confidentiality reasons, the authors did not show informations regarding

the physical parameters of the turbine). After a wind speed measurement at height

that varies between lower and higher rotor tip, an equivalent wind speed was computed
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weighing the wind speed recorded at different heights over the rotor swept area ac-

cording to the area covered by each measurement point. A relatively large variation in

terms of power curve was observed between the power computed using the equivalent

wind speed which accounts the shear effect and the power computed using the wind

speed measured only at hub height. The results showed that the power curve obtained

accounting the wind shear was slightly lower than the one obtained considering the

wind speed at the hub height and this difference increased with the increasing of the

shear exponents s.

2.2 Unsteadiness in vertical axis machines

The unsteady aerodynamics phenomena which characterise VAWTs make these devices

extremely attractive to be analysed. Effects such as dynamic stall and blade/wake inter-

actions occur during the operation of these machines. During the recent years, several

analyses of VAWT aerodynamics are based on RANS CFD approach [94, 122]. Danao

et al. [45] used the incompressible solver of FLUENT for the 2D investigation into

the effects of wind fluctuations on the time-dependent power output of a three-blade

Darrieus turbine. A transitional k−ω SST model was used for the turbulence closure.

The validation study reported in the article highlighted a very good agreement be-

tween RANS results and flow measurements obtained with particle image velocimetry.

The same computational set-up was used by Biswas et al. [24] to assess the effects of

twisted trailing edges on the aerodynamic performance of a two-blade Darrieus rotor

with NACA0012 aerofoils in low-Reynolds number flows. An overview of aerodynamic

influences impacting vertical axis wind turbine operation is reported in the next sub-

sections.

2.2.1 Blade rotation

From the λ equation (λ = Ω · R/V∞) one can easily compute the rotational speed Ω

(R is the rotor radius and V∞ is the freestream wind velocity). For a constant V∞ the

rotational speed increases with the increase of the λ.

Cao et al. [40] performed a numerical analysis to investigate the influence of the

rotational speed on the aerodynamic performance of a VAWT. Two dimensional CFD

simulations were carried out using FLUENT. The turbine analysed was a three blades
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H-type VAWT with aerofoil blade section of NACA0018, chord length of 0.1 m and

diameter of 0.9 m. The computational grid was composed by sliding interface, thus,

an internal region around the rotor was able to rotate and an external region was

fixed (see Fig. 2.6). Three different working conditions were simulated according to

Figure 2.6: 2D computational grid of an H-type VAWT [40]

different rotational speeds: 50, 100 and 150 RPM . Wake velocity distributions behind

the rotor and turbulent kinetic energy distributions were analysed. From the analyses

results the authors showed that different rotational speeds affect mainly the rotor wakes

generated during the turbine operation. Higher rotational speed corresponded to the

larger reduction of the wake’s velocity which restored gradually away from the rotor.

In addition it was observed a larger turbulent kinetic energy near the trailing edge of

the blades, for the highest rotational speeds. It indicates that a high level of turbulence

due to complex unsteady behaviour of the turbine is generated for 150 RPM and the

distribution of turbulent kinetic energy behind the rotor decreased with the decreasing

of the rotational speed.

The tip speed ratio is an important parameter for wind turbine. The optimum λ

depends on the number of blades of wind turbine rotor. A lower number of blades is

characteristic of wind turbine that needs to run faster to extract maximum power from

the wind. If the λ is too low, the wind turbine will tend to slow and/or stall. If the

λ is too high, the turbine will spin very fast through turbulent air, power will not be

optimally extracted from the wind, and the wind turbine will be highly stressed. A

study conducted by Raciti Castelli et al. [115] showed the variation of the maximum

power coefficient depending from the number of blades and the angular speeds. The
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numerical analysis in [115] was conducted to analyse the behaviour of a three, four and

five bladed Darreius VAWT. The tested model had a rotor diameter of 1.03 m, chord

length of 0.0858 m and the aerofoil blade section NACA0025. A rectangular domain

was used with an inlet boundary condition on the left side with a constant velocity

profile of 9 m/s, an outlet boundary on the right side with pressure outlet setting and

two symmetry boundary conditions on the top and bottom side. The authors showed

that taking as reference the power coefficient of a three-bladed configuration, a 5%

performance decreases for the four-bladed, and a 15% performance decreases for the

five-bladed configuration. In addition, they showed that the value of the λ to achieve

the maximum power coefficient increases with the decreasing of the number of blades.

A similar analysis was performed for a Savonius type VAWT by Mohmoud et al. [93].

2.2.2 Dynamic stall

The phenomenon of dynamic stall in a VAWT is a characteristic effect of the operation

of a VAWT. The variation of AoA of the blade during the rotor revolution, can exceeds

the aerofoil’s stalling angle and lead to a stalled flow on the blade. This is particularly

important at low tip speed ratios because the performance are highly important for the

start-up behaviour.

The dynamic stall analysis of a 2D model of the middle section of a single bladed

VAWT was presented by Ferreira et al. [131]. The geometry of the model was a 2D

representation of a single blade Darrieus turbine tested in a wind tunnel in a previous

work of Ferreira [132]. The rotor was characterised by a NACA0015 aerofoil blade

with chord of 0.05 m and diameter of 0.4 m. The authors decided to use a single blade

turbine to reduce the flow complexity, reducing the amount of wake/blades interactions

inside the rotor space. The 2D simulations were performed for λ = 2 with a frestream

wind speed of 7.5 m/s. In this work four different turbulence models were used, two

URANS (S − A [138] and k − ε [154]) and two large eddy models (Detached Eddy

Simulation (DES) and Large Eddy Simulation (LES)). The simulations results were

validated against the experimental measurements [132] for λ = 2. The results demon-

strate the influence of different turbulence models on the accuracy of the prediction of

dynamic stall development on a VAWT. The comparison of the vorticity contours near

the aerofoil between numerical and experimental results highlighted that the S−A and

k − ε models underestimate the generation of vorticity at the leading edge and they
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did not predict very well the roll-up of the trailing edge shed vorticity. Using LES, the

results showed an improvement, even if the location of the vorticity shed at the leading

edge covers a larger area than what was observed in the experimental results. The

authors found the results closest to experiments using DES which was able to predict

the generation and shedding of vorticity. Although LES and DES models presented a

better flow resolution, their disadvantage was the higher computational cost, due to

the required very high spatial and temporal resolution with respect to the URANS

approaches. So, this still severely hinders the use of LES and DES technologies for

large scale VAWT parametric investigations and design. DES model, as implemented

in FLUENT [16], use an hybrid method of LES and URANS, where the wall region is

modelled with a URANS model and the outer region with LES. But also in this case,

the design process became too computationally expensive. In addition, in the paper

of Ferreira [131], it was performed the VAWT validation for a very low λ, where the

dynamic stall is very common. If one considers a complete design process of a wind

turbine, a wide range of tip speed ratios is considered, and for higher λ the RANS ap-

proach based on one- and two-equation turbulence models yields acceptable accuracy

(assessed by comparisons with experimental data) with a much lower computational

cost than large eddy models.

In order to understand the physics involved during dynamic stall, Nobile et al. [109]

presented a 2D analysis of a Darrieus wind turbine. The rotor was characterised by

three blades and a central mast. The aerofoil blade analysed was a NACA0018. The

numerical simulations were performed by the CFD software ANSYS CFX 12.0. The

authors analysed three turbulence models: k− ε model, the standard k− ω model and

the SST (Shear Stress Transport) model. The simulations were performed for several

λ and validated against experimental measurements available in literature. The results

highlighted a strong instability due to dynamic stall, particularly for low tip speed

ratios. In addition, the authors observed the development of upstream wakes that

after crossing the rotor interacted with the downstream blades. Also the presence of

a central mast generated wakes that affected the flow downstream. Several hysteresis

loops reported in [109] show the development of the dynamic stall. Moreover, from

the comparison between the three turbulence models used, they observed that the SST

method showed a good agreement with the experimental data obtained by Ferreira et

al. [134] and Wang et al. [151] than the k − ω and k − ε model. The SST turbulence
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model was able to accurately predict the generation of vortices at the leading and

trailing edges respectively. (Fig. 2.7).

Figure 2.7: Vorticity field for azimuth angle θ = 120o for the three turbulence model

analysed [109]

2.2.3 Blade/wake interaction

The complexity of a VAWT results in blade/vortex interaction at the downwind passage

of the blade between the blade and the shed vorticity that is generated at the upwind

passage.

A 2D CFD computation of a single-bladed VAWT turbine using a NACA0015 aero-

foil was performed by Allet et al. [14]. A turbulent solver based on a stream function-

vorticity formulation was used with two turbulence models. The authors observed that

even if the amplitudes of the oscillations of the AoA on the blade was significantly

smaller when the turbine operated at high λ, the interactions between the blade and

their own wake, influenced more greatly the aerodynamic loading on the blade with

respect to lower λ. It happened because at higher λ, the wake developed by the blade

convected downstream relatively slowly if compared to the rotational speed of the rotor,

so each blade crossed its own wake in each subsequent revolution. The interaction be-

tween blade and wake is considered one of the most important problem in the numerical

modelling of the aerodynamics of VAWTs because these interactions are very difficult

to simulate with a good accuracy. Using a CFD approach, to correctly modelled the
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wake inside the entire rotor diameter a finer computational mesh is needed in order to

avoid numerical dissipation.

A three-dimensional numerical analysis of a Darrieus rotor was proposed by Scheurich

et al. [125]. The VAWT investigated was a two straight blades rotor, with NACA0012

aerofoil section, chord length of 9.14 cm and operating at λ = 5. This turbine rotor was

studied experimentally in [139], where the variation of the blade loads with azimuth

angle was measured. The rotor aerodynamic performance and wake dynamics reported

in [125], were simulated using a particular Vorticity Transport Model (VTM) [31]. An

important feature of the VTM was its ability to predict quite well the evolution of the

turbine wake. The VTM allowed to use a grid with different level of cells density in

order to reduce the computational cost of the simulations. Thus, in a rectangular com-

putational domain adopted, coarser grids were used moving from the turbine centre to

the outflow boundary. Normal and tangential forces acting on the blades were predicted

for an aerofoil section at the mid-span of the blades and showed a good agreement with

experimental measurements reported in [139]. However, the authors highlighted some

discrepancies when the blades were immediately downstream of the rotor. In this re-

gion blade/wake interactions occurred and a significant effect on the distribution of

aerodynamic loading on the blades was observed. The discrepancies caused by these

interactions, generated oscillations of the angle of attack beyond the static stall leading

to dynamic stall near the blades. So, the authors showed that also for λ = 5 considered

in this study, the effects of dynamic stall (that should be considered to be small for

that λ due to smaller variation of the AoA) induced by the blade/wake interaction was

still evident.

2.3 Conclusion

A literature review of some important research works on wind turbine unsteady flows

has been presented. The studies have showed the analysis of unsteadiness affecting

horizontal and vertical axis wind turbines, like tower shadow, dynamic stall, yawed

wind condition, wind shear and blade/wake interaction, using analytical models, ex-

perimental measurement and CFD approaches. The research works reported in the

chapter have highlighted several aspects of the analysis of wind turbines and they have

demonstrated that the CFD RANS approach coupled to a k − ω SST model is able to
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reproduce the main properties of the flow regime in a reasonable computational time

and the results are in good accordance with the literature. It has also been shown that

although LES and DES models presented a better flow resolution, their disadvantage

is the higher computational cost, due to the required very high spatial and temporal

resolution with respect to the RANS approaches. This severely hinders the use of LES

and DES technologies for HAWT and VAWT parametric investigations and design.
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Chapter 3

Numerical solution of steady and

time-domain Reynolds-averaged

Navier-Stokes equations

Computational Fluid Dynamics (CFD) is the technique that studies systems involving

fluid flow, heat transfer and phenomena like chemical reaction by means of numerical

simulation. The technique is very powerful and can be applied to a large number of

applications.

In the wind energy field, this technique has become increasingly important. Several

advantages are achieved by a CFD approach:

• CFD is faster and cheaper than traditional approaches based on physical model

tests. An assessment of different solutions can be done in the early phase of the

design process, in order to fit with the requested tasks.

• Full-size analyses are hard to perform for large systems, like modern horizontal

axis wind turbines. CFD studies are a favourable choice since they provide more

reliable results than BEM-based aerodynamic and aeroelastic analyses.

• An important quality of CFD are the detailed solutions allowed by the recent

techniques, even for time-dependent flows and complex systems.

• Algorithmic improvements enable a much faster solution, which is needed for

using CFD for complex realistic problems. Modelling improvements, such as

better turbulence modelling, are instead needed for getting more reliable results.
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3.1 Navier-Stokes equations

In this chapter, the formulation of the Navier-Stokes equations is reported. In

addition, a complete description of the compressible density-based structured multi-

block finite volume CFD code used in this research has been reported, like the two-

equations k−ω shear stress transport turbulence model by Menter to take into account

the turbulence effects, the space discretisation method and the integration method used

to solve steady and time-domain flow problems.

3.1 Navier-Stokes equations

The milestones of computational fluid dynamics are the fundamental governing equa-

tions of fluid dynamics: the mass, momentum and energy equations [69]. They are the

mathematical statements of three fundamental physical principles upon which all of

fluid dynamics is based:

• the total mass of any system is conserved, so it is neither created nor destroyed,

the system is closed from any external transfers of matter;

• the variation of momentum is caused by the overall force acting on a mass element.

It derives from Newton’s second law (F = ma). In 2D problems, the momentum

conservation results in two scalar equations, one for each direction.

• the total energy of a system remains constant over time. It corresponds to the

first law of thermodynamics.

In fluid dynamics, the expression Navier − Stokes equations refers to a system of

Npde nonlinear partial differential equations (PDEs) obtained by imposing the governing

equations over a control volume (CV ). The CV is an imaginary surface enclosing a

volume of interest. Once the CV and its boundary are established, the various forms of

energy crossing the boundary with the fluid can be treated with NS equations to solve

fluid problems. The NS equations can be written in the differential form if applied at

a point or in the integral form if applied to an extended region. Consider a general

flow field as represented by the streamlines of Fig. 3.1. Let us imagine a closed volume

drawn within a finite region of the flow. This volume defines a control volume, V , and

a control surface, S, is defined as the closed surface which bounds the volume. The

figure also depicts a surface element dS and its normal unit vector n. In 2D problems
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V is a surface and S is a curve. The mass element dm is enclosed by an infinitesimal

volume dV and it is equal to ρdV where ρ is the density.

Figure 3.1: Fixed Control Volume

Figure 3.2: Moving Control Volume

The CV may be fixed in space with the fluid moving through it (Fig. 3.1), or it

may be moving with the fluid (Fig. 3.2) such that the same fluid particles are always

inside it. In either case, the CV is a reasonably large finite region of the flow. The

expression of the integral form of the NS equations that one directly obtain applying

the fundamental physical principles to a finite CV depends on whether this CV is fixed

or not.

3.1.1 Continuity equation

Consider the model of a finite control volume fixed in space, as sketched in Fig. 3.1.

In this case it is said that the “Eulerian approach” is used. At a point on the control

surface, let u denote the flow velocity vector and dS the elemental surface. Also let
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dV be an infinitesimal volume inside the finite control volume. Applied to this control

volume, our fundamental physical principle that mass is conserved means that the net

mass flow out of CV through surface S is equal to the time rate of change of mass

inside the CV . The continuity equation can be expressed as:∮
S
ρ(u · n)dS = − ∂

∂t

∫
V
ρdV (3.1)

Note that by convention, n always points in a direction out of the control volume.

Hence, when u also points out of the CV (as shown in Fig. 3.1), the product ρ(u ·n)dS

is positive and the mass flow is physically leaving the control volume. In turn, when n

points into the control volume, ρ(u · n)dS is negative and the mass flow is physically

entering the CV .

3.1.2 Momentum equation

The momentum equation is based on Newton’s second law. This can be expressed as:

d

dt
(mV ) = F (3.2)

The left hand side of the Eq. (3.2) represents the rate of change of the flow momentum

in the CV and it can be written as:

d

dt
(mV ) =

∂

∂t

∫
V
ρudV +

∮
S
ρu(u · n)dS (3.3)

where ∂
∂t

∫
V ρudV is the time rate of change due to unsteady flow fluctuation of the

momentum of fluid in the elemental volume dV at any instant inside the CV , while∮
S ρu(u ·n)dS is the net flow of momentum through S. The right hand side of Eq. (3.2)

is the summation of all surface forces (shear and pressure forces) acting on the CV .

The shear stresses are defined by the following equation:∮
S
τ · ndS (3.4)

where τ denotes the molecular stress tensor. This tensor depends on the divergence

of the flow velocity vector u and the strain rate tensor S. For a Newtonian fluid, the

expression of stress tensor is:

τij = 2µ

[
Sij −

1

3

∂uk
∂xk

δij

]
, Sij =

1

2

[
∂ui
∂xj

+
∂uj
∂xi

]
(3.5)
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3.1 Navier-Stokes equations

where µ is the molecular dynamic viscosity, ui(j) are the Cartesian components of the

flow velocity vector u, δij is the Kronecker Delta Function and xi(j) are the components

of the position vector x. The total pressure force over the entire control surface is

expressed as:

−
∮
S
pndS (3.6)

where the negative sign indicates that the force is in the direction opposite to dS.

Hence, the momentum conservation equation is defined as:

∂

∂t

∫
V
ρudV +

∮
S
ρu(u · n)dS = −

∮
S
pndS +

∮
S
τ · ndS (3.7)

3.1.3 Energy equation

The law of conservation of energy states that “energy can neither be created nor de-

stroyed, it can only change its form”. Consider the CV shown in Fig. 3.1 as the

thermodynamic system. Any form of energy to the system, changes the amount of

total energy, which is the sum of the internal energy (equal to the sum of the amount

of heat added to the system and the work done on the system from the surrounding)

and the kinetic energy of the system. The expression of the conservation of energy in

integral form is:

∂

∂t

∫
V
ρEdV +

∮
S
ρE(u · n)dS =

∮
S

(τ · u) · ndS −
∮
S
p(u · n)dS −

∮
S
q · ndS (3.8)

The left hand side of Eq. (3.8) is the sum of the rate of change of the internal energy

and the net rate of flow of total energy across control surface. The total energy E is

expressed as:

E = e+
uiui

2
(3.9)

The right hand side of Eq. (3.8) is the sum of the amount of heat added to the CV

and the work done on the CV . The term
∮
S(τ ·u) ·ndS represents the work done on the

fluid across the surface by the shear stress τ on the control surface. The second term

on the right hand side is the work done on the fluid passing through dS with velocity

u by the pressure force −pdS. The term −
∮
S q ·ndS is the rate of heat energy transfer

through the control volume.
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3.1 Navier-Stokes equations

3.1.4 Eulerian formulation of the Navier-Stokes equations

Grouping the governing equations exposed in the preceding subsections, the 2D NS

equations can be defined as:

∂

∂t

(∫
V

ÛdV

)
+

∮
S

(Φ̂c − Φ̂d)dS = 0 (3.10)

The array Û is the array of the conservative flow variable and it is defined as:

Û =


ρ

ρux

ρuy

ρE


The generalised convective flux vector Φ̂c is:

Φ̂c = Êcnx + F̂cny (3.11)

where Êc and F̂c are the x− and y− components of Φ̂c and are respectively:

Êc =


ρux

ρu2
x + p

ρuxuy

ρuxH

 , F̂c =


ρuy

ρuyux

ρu2
y + p

ρuyH


The symbol p denotes the static pressure and the symbol H denotes the total enthalpy

per unit mass, the expression of which is:

H = h+
uiui

2
, h = cpT, H = E +

p

ρ
(3.12)

The generalised diffusive flux vector Φ̂d is:

Φ̂d = Êdnx + F̂dny (3.13)

where Êd and F̂d are the x− and y− components of Φ̂d and are respectively:

Êd =


0

τxx

τxy

uxτxx + uyτxy − qx

 , F̂d =


0

τxy

τyy

uxτxy + uyτyy − qy



50



3.2 Turbulence modelling

The scalars qx and qy are the Cartesian components of the heat flux vector q = −kT∇T ,

where kT is the thermal conductivity and T is the static temperature. The scalars τxx,

τxy and τyy are the Cartesian components of the stress tensor τ .

In cases with moving bodies involved, the Eulerian formulation has to be gener-

alised to include body motion. The so-called Arbitrary Lagrangian Eulerian (ALE)

formulation allows to the CV to move with a speed different from that of the fluid. De-

noting by V (t) a time-varying control volume and with S(t) a time-varying boundary,

the ALE integral form of the 2D NS equations is defined as:

∂

∂t

(∫
V (t)

ÛdV

)
+

∮
S(t)

(Φ̂c − Φ̂d)dS = 0 (3.14)

The generalised diffusive flux vector Φ̂d is unchanged in the ALE formulation. The

generalised convective flux vector Φ̂c is instead defined as:

Φ̂c = Êcnx + F̂cny − vbÛ (3.15)

The vector vb is the velocity of the boundary S and the flux term −vbÛ is its contribu-

tion to the overall flux balance, which is nonzero only in the case of unsteady problems

with moving boundaries.

3.2 Turbulence modelling

For 2D laminar flows the number of PDEs is equal to 4 because the momentum equation

has only two scalar components. In the case of turbulent flows, the effects of turbulence

are often taken into account by averaging the NS equations on the time-scales of tur-

bulence. This process leads to the so-called Reynolds-averaged NavierStokes (RANS)

equations and the appearance in these equations of the Reynolds stress tensor. Making

use of the Boussinesq approximation [25], this tensor depends mainly on the product

of the strain rate tensor and a turbulent or eddy viscosity. Boussinesq approximation

states that the momentum transfer caused by turbulent eddies can be modelled with

an eddy viscosity. The Boussinesq assumption assumes that the Reynolds stress ten-

sor, τFij , is proportional to the mean strain rate tensor S∗ij , and can be written in the

following way:

τFij = 2µT

(
S∗ij −

1

3

∂ũk
∂xk

δij

)
− 2

3
ρkδij (3.16)
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3.2 Turbulence modelling

where µT is the turbulent eddy viscosity, ρ is the density and δij is the Kronecker Delta

Function.

In this research, to take into account the turbulence effect, the two-equations k −
ω shear stress transport (SST) turbulence model by Menter were used [101]. It is

a two-equation eddy-viscosity model. The eddy viscosity is computed from the two

transported variables (turbulent kinetic energy (k) and specific dissipation rate (ω)) in

each cell of the grid to represent the turbulent properties of the flow. For this reason,

the simulations of two-dimensional turbulent flows presented in this thesis require the

solution of a system of six PDEs, namely four RANS PDEs, one PDE describing the

convection, diffusion, creation and destruction of the turbulent kinetic energy k and

one describing the evolution of the specific dissipation rate ω. The k − ω SST model

is an extension of the original k − ω model introduced by Wilcox [155] (Appendix B).

The shear stress transport (SST) formulation combines the use of a k − ω formulation

and the k− ε model [79]. This combination is preferred because the k− ω formulation

is fairly accurate in the boundary layers, while the k − ε formulation is good on the

farfield boundaries because it is less sensitive to the freestream turbulence data and

enhance the behaviour in adverse pressure gradients and separating flow.

3.2.1 Menter’s shear stress transport model

The basic equations of Menter [101] for the turbulent kinetic energy k and the specific

dissipation ω are:

∂

∂t
(ρk) +

∂

∂xj
(ρujk) = τFij

∂ui
∂xj
− β∗ρωk +

∂

∂xj

[
(µ+ σkµT )

∂k

∂xj

]
(3.17)

∂

∂t
(ρω) +

∂

∂xj
(ρujω) =

γρ

µT
τFij

∂ui
∂xj
− βρω2 +

∂

∂xj

[
(µ+ σωµT )

∂ω

∂xj

]
+ CDω (3.18)

The turbulent eddy viscosity is computed from:

µT =
α1ρk

max(α1ω, Ω̂F2)
(3.19)

where α1 is a constant, Ω̂ is the modulus of the vorticity, F2 (Eq. (3.20)) is a function

of k, ω, the molecular kinematic viscosity ν and the distance from the wall d.

F2 = tanh(arg2
2) (3.20)
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3.2 Turbulence modelling

arg2 = max

(
2
√
k

β∗ωd
,

500µ

ρωd2

)
(3.21)

In the Eq. (3.17) and (3.18), one can see the production terms of k and ω:

Pk = τFij
∂ui
∂xj

, Pω =
γρ

µT
τFij

∂ui
∂xj

(3.22)

which can be written in the form:

Pk = µTPd −
2

3
(∇ · u)ρk (3.23)

Pω = γρPd −
γρ

µT

2

3
(∇ · u)ρk (3.24)

where Pd = 2
(
S∗ − 1

3∇ · u
)
∇u and S∗ = 1

2(∇ · u +∇ · u′). The destruction terms of

the k and ω are defined as:

Dk = β∗ρωk, Dω = βρω2 (3.25)

Only in the ω equation, there is an additional cross-diffusion term CDω defined as:

CDω = 2ρ(1− F1)σω2
1

ω

∂k

∂xj

∂ω

∂xj
(3.26)

where the function F1 is:

F1 = tanh(arg4
1) (3.27)

arg1 = min

[
max

( √
k

β∗ωd
,

500µ

ρωd2

)
,

4ρσω2k

CDωd2

]
(3.28)

All production, destruction and cross-diffusion terms form the so-called source term

S and they can be summarised as follow:

Sk = µTPd −
2

3
(∇ · u)ρk −Dk (3.29)

Sω = γρPd −
2

3
(∇ · u)

γρk

νT
−Dω + CDω (3.30)

where νT is the turbulent kinematic viscosity and the variables σk, σω, γ, β∗ and β are

weighted averages of the constants of the standard k−ω model [155] and constants of the

standard k− ε model [79] with weights F1 and (1−F1), respectively. The symbol σω2 is

a constant of the standard k−ε model and the function F1 shown by Eq. (3.27) depends

on the local values of k, ω, ν, ρ, d, ∇k and ∇ω. It can be shown that the production

term Pd is always positive. Thus the source term Sk of the k-equation has a term
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3.2 Turbulence modelling

which is always positive (production term proportional to Pd), a term which is always

negative (destruction term Dk) and a term which is positive or negative depending on

the sign of ∇·u. Similarly to Sk, the source term Sω of the ω equation also has a term

which is always positive (production term proportional to Pd), a term which is always

negative (destruction term Dω), and a term which is positive or negative depending on

the sign of ∇ · u. The source term Sω, however, features an additional cross-diffusion

term CDω which can be positive or negative. The identification of positive and negative

source terms is very important when using a semi-implicit multigrid integration of the

equations of turbulence, due to the different numerical treatment to be adopted for

positive and negative source terms [89, 87].

The terms ∂
∂xj

[
(µ+ σkµT ) ∂k∂xj

]
and ∂

∂xj

[
(µ+ σωµT ) ∂ω∂xj

]
are instead the diffusion

term of k (Eq. (3.17)) and ω (Eq. (3.18)). To complete the definition of the SST model,

the turbulent coefficients have to be specified. In the SST model there are two sets of

coefficients which are combined using the blending function Φ = F1Φ1 + (1 − F1)Φ2.

The sets of coefficients are defined in the Eq. (3.31) and Eq. (3.32)

set1 : [β1 σk1 σω1 γ1] = [0.0750 0.85 0.500 0.55317] (3.31)

set2 : [β2 σk2 σω2 γ2] = [0.0828 1.00 0.856 0.44035] (3.32)

The equations used to calculate the coefficients γ1 and γ2 are:

γ1 =
β1

β∗
− σω1k

2
1√

β∗
, γ2 =

β2

β∗
− σω2k

2
1√

β∗
(3.33)

Other coefficients used in the SST model are β∗ = 0.09, k1 = 0.41 and α1 = 0.31.

The actual implementation of the source terms reported in Eq. (3.29) and (3.30),

however, is often slightly different from these nominal definitions due to some numerical

issues. As reported in a paper on the SST turbulence model of Menter [100], it is

suggested to limit the production term Pk to eliminate the occurrence of spikes in the

eddy viscosity due to numerical “wiggles” in the strain rate tensor, and to eliminate

the unphysical build-up of eddy viscosity in the stagnation region of an aerofoil. The

proposed limited value of the k production term is:

P̃k = min(Pk, lk ·Dk) (3.34)
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3.3 Time-domain formulation of the governing equations

with lk = 20. Several research and commercial codes extend the same limiter to the ω

production term, adopting a limited value of:

Pω =
γρ

µT
P̃k (3.35)

Although for relatively simple problems, the use of these limiters has a negligible impact

on the computed solution [100], in this thesis has been found that the solutions of highly

unsteady flow problems obtained by using the unlimited definitions of Pk and Pω, and

those obtained with limiters of the same type as those defined by Eq. (3.34) and (3.35)

differ significantly.

3.3 Time-domain formulation of the governing equations

Time-dependent engineering problems can be treated using RANS which incorpo-

rates time-derivatives that take into account the variations in time associated to non-

stationary flows. So, in this case one can use the so-called Unsteady Reynolds Av-

erage Navier-Stokes (URANS) equations. Given a moving control volume V (t) with

time-dependent boundary S(t), the Arbitrary Lagrangian-Eulerian integral form of the

system of the time-dependent RANS equations coupled to the two transport equation

of the SST turbulence model are expressed as:

∂

∂t

∫
V (t)

ÛdV +

∮
S(t)

(Φ̂c − Φ̂d)dS −
∫
V (t)

ŜdV = 0 (3.36)

The array Û of the conservative flow variables ρ, ux, uy, E, k and ω is defined as:

Û =



ρ

ρux

ρuy

ρE

ρk

ρω


The generalised convective flux vector Φ̂c is defined as:

Φ̂c = Êcnx + F̂cny − vbÛ (3.37)
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3.3 Time-domain formulation of the governing equations

where Êc and F̂c are the x− and y− components of Φ̂c and are respectively:

Êc =



ρux

ρu2
x + p

ρuxuy

ρuxH

ρuxk

ρuxω


, F̂c =



ρuy

ρuyux

ρu2
y + p

ρuyH

ρuyk

ρuyω


The vector vb is the velocity of the boundary S, and −vbÛ is the flux term as seen in

the preceding sections. The symbol p denotes the static pressure and the total enthalpy

per unit mass H is defined by Eq. (3.12). The expression of the generalised diffusive

flux vector Φ̂d is:

Φ̂d = Êdnx + F̂dny (3.38)

where the x− and y− components of Φ̂d are respectively:

Êd =



0

τxx

τxy

uxτxx + uyτxy + (µ+ σkµT )∂k∂x − qx
(µ+ σkµT )∂k∂x

(µ+ σωµT )∂ω∂x



F̂d =



0

τxy

τyy

uxτxy + uyτyy + (µ+ σkµT )∂k∂y − qy
(µ+ σkµT )∂k∂y

(µ+ σωµT )∂ω∂y


where µ is the dynamic viscosity, µT is the turbulent viscosity defined by Eq. (3.19) and

the variables σk and σω are weighted averages of the constants of the standard k − ω
model. The scalars qx and qy are the Cartesian components of the heat flux vector and

the scalars τxx, τxy and τyy are the Cartesian components of the stress tensor τ , as seen
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3.4 Space-discretisation

before. The symbol Ŝ into Eq. (3.36) is the source term defined as:

Ŝ =



0

0

0

0

Sk

Sω


where Sk and Sω are defined by Eq. (3.29) and (3.30).

In this thesis, the CFD research code used to solve the RANS equations and the

Menter’s k−ω SST turbulent model [101] is called COSA. It is a compressible density-

based structured multi-block finite volume code featuring a steady flow solver, a time-

domain (TD) solver for the solution of general unsteady problems [38], and a harmonic

balance solver (see Chapter 4 ) for the rapid solution of periodic flows [36]. The COSA

development started in 2008 [2] and year after year its features have increased, achieving

the implementation of novel advanced farfield boundary conditions (BCs) [33], a novel

unsteady low-speed preconditioner [34, 39] to enable the CFD analysis of very low-

speed flows as well as flows featuring both high- and low-speed regions, an HB solver

for the rapid analysis of unsteady periodic flows [36], a LAPACK libraries integration

to massively improved the computational efficiency of a semi-implicit approach to the

integration of the HB RANS equations and a robust and accurate turbulence Shear

Stress Transport (SST) model of Menter [38].

3.4 Space-discretisation

The RANS system and the two PDEs of the SST turbulence model have to be solved

numerically. Solving them analytically is possible only in a few cases. Numerical

solution of PDEs requires representing the continuous nature of the governing equations

in a discrete form. A key step for the discretisation process is the subdivision of

the domain into cells or elements (computational grid or mesh). The fundamental

classifications of meshes are based upon the connectivity of a mesh or on the type of

elements present.
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3.4 Space-discretisation

• Structured meshes: they are characterised by regular connectivity that can be

expressed as a two or three dimensional array. This restricts the element choices

to quadrilaterals in 2D or hexahedra in 3D (Fig. 3.3). The vertices of the inter-

sections define the grid vertices. Since the intersections can be easily numbered

using a progressive sequence in each direction, the neighbours of each vertex, the

edges sharing a common vertex and the volumes sharing a common vertex can

be immediately defined, given the intrinsic topology of the structured meshes.

Structured meshes are typically easier to compute with but may require more

elements or worse-shaped elements.

• Unstructured meshes: they are characterised by irregular connectivity (Fig. 3.3).

In 2D problems, they are usually (not always) made up of triangles, whereas in

3D problems, they are made up of tetrahedral. Unstructured meshes lack the

inherent topology required to easily identify the neighbours of a given grid node,

the edges sharing a common vertex and the volumes sharing a common vertex.

These characteristics increase the complexity of unstructured CFD codes, such as

the calculation of the convective fluxes. The typical motivation for accepting this

kind of additional complexity of unstructured CFD codes is the ease by which

unstructured grids can handle geometric complexities.

• Hybrid meshes: they are a mesh that contains structured portions and unstruc-

tured portions (Fig. 3.3).

Figure 3.3: Example of structured (left), unstructured (center) and hybrid grid (right)

The research code COSA can handle 2D and 3D structured grids. In a structured

grid the cells are arranged in an i× j (2D case) or i× j × k (3D case) array where i, j,

58



3.4 Space-discretisation

and k are known as the grid’s dimensions. The term structured refers to the structure

provided to the cells organization within that array such that a cell’s neighbours are

known implicitly. In other words, for a 2D case, the point at (i, j) has neighbours at

(i+1, j), (i-1, j), (i, j+1) and (i, j-1) (Fig. 3.4). This structure contrasts with an

unstructured mesh in which a connectivity table has to be maintained and queried to

find any point’s neighbours.

Figure 3.4: This schematic illustrates the mapping of a physical domain to a computa-

tional domain.

In fact, structure is the source of one of the benefits of structured grids in terms of

computational performance, such as the calculation of the convective fluxes is simpler.

Finding neighbours directly (via the structure) is much faster and uses less memory

than having to look them up in a table. The use of structured grids implies that the

distribution of boundary points has been performed in a manner such that dimensions

(number of grid points) of opposite boundaries are identical. Domains (surface grids)

will have four boundaries (edges) and blocks (volume grids) will have six boundaries

(faces) [145, 82, 146]. Generating a computational grid requires the use of a grid gener-

ator which takes as input some information regarding the geometry of the boundaries

of the physical domain, the geometry of any solid bodies inside the domain, minimum

distances from selected wall boundaries, stretching factors, etc. Doing a good mesh is

very important to have a good solution quality. Necessary conditions are that the mesh

density should be high enough to capture all relevant flow features, the grid adjacent

to the solid wall should be fine enough to resolve the boundary layer flow, the lines

ending on wall boundaries need to be as orthogonal as possible to such boundaries, the

59
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grid lines must be as smooth as possible (i.e. their first derivatives should not have

discontinuities) and all elements should be well shaped. One can make very simple

grids using only one block, but for complex geometries it is impossible to have a good

quality mesh using a single block grid. This problem, however, is easily overcome by

using multi-block grids which offer better computational efficiency and more flexibil-

ity. Multi-block means that the grid topology can be made from multiple connected

structured blocks. It gives to the user flexibility in the mesh design so that the highest

quality can be achieved.

Once the computational grid has been generated, the governing equations must be

expressed in discrete form at each point in the grid by using a particular discretisation

approach like finite difference method (FDM), finite element method (FEM) or finite

volume method (FVM).

3.4.1 Finite volume approach

The FVM is the technique used in the research code COSA [34, 38, 35, 74] by which the

integral formulation of the conservation laws is discretised directly on the computational

domain subdivided into a number of CVs. By the direct discretisation is possible to

ensure that the basic quantities like mass, momentum and energy will also remain

conserved at the discrete level. The local conservativity concerns also the numerical

fluxes which are conserved from one discretisation cell to its neighbour. The FVM

can handle any type of meshes, but the following analysis will refer only to structured

grid configuration, in agreement with the code features. The discretisation of the

convective fluxes of both the RANS and the SST equations is based on Van Leer’s second

order Monotone Upstream centred extrapolations (MUSCL) and Roe’s flux difference

splitting. The second order discretisation of all diffusive fluxes and the source terms is

instead based on central finite-differencing [38].

As shown in the previous sections, the integral form of RANS and SST equations

is defined by Eq. (3.39). Using the finite volume method to discretise the conservation

laws, one needs to solve Eq. (3.39) in each control volume defined by the mesh.

∂

∂t

∫
V

ÛdV +

∮
S

(Φ̂c − Φ̂d)dS −
∫
V

ŜdV = 0 (3.39)

The term ∂
∂t

∫
V ÛdV and

∫
V ŜdV require the integration over the CV and the term∮

S(Φ̂c − Φ̂d)dS represent the flux on the CV boundaries which can be replaced by the
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sum of the fluxes over each face of the CV . Applying the FVM, Eq. (3.39) can be

written in the discrete form as:

∂

∂t
(ÛcellVcell) +

∑
(Φ̂c − Φ̂d)cellS − ŜcellVcell = 0 (3.40)

which can be viewed as a set of conservation laws applied to the control volumes. The

first terms on the left hand side is the time variation of the averaged Û in each cell.

It requires the calculation of the cells volume Vcell that in the cell-centred scheme can

be computed using the coordinates of each cell vertices (see Fig. 3.5). In this scheme

the unknown flow field refers to the centre of the cells and the CV s match the cells

themselves.

Figure 3.5: Cell-centred scheme. A grid cell highlighted with red dashed line

The second term on the left hand side of Eq. (3.40) represent the flux terms refers

to all the external sides of the cell. The two-dimensional analytical expression of the

convective fluxes through a cell face of area dS, can be derived from Eq. (3.36) and

defined as:

Φ̂c = (Φ̂c,f · n)dS = (Êcnx + F̂cny)dS (3.41)

where nx and ny are, respectively, the x- and y- components of unit vector n. To

calculate the fluxes Φ̂c, the flow state Û has to be extrapolated from the cell centres

to the left and right sides of the CV faces. Considering a flow state Ûi of a i− th cell

of the grid, the MUSCL extrapolation [86] approximates the convective flux from the
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3.4 Space-discretisation

left and right, with a combination of backward and forward extrapolations using only

the informations from one side of the flux. The flow state on the interface i+ 1
2 can be

written as:

ÛL
i+ 1

2

= Ûi +
Ûi − Ûi−1

2
(3.42)

ÛR
i+ 1

2

= Ûi+1 −
Ûi+2 − Ûi+1

2
(3.43)

Such approximation forms the basis of the linear upwind method. To avoid disconti-

nuities or sharp changes in the solution, flux limiters have been applied to Eq. (3.42)

and (3.43). After calculating the flow state Û at the cell faces, the convective fluxes

described by Eq. (3.41) can be computed using the flux difference splitting method

[104] as defined by Eq. (3.44):

Φ̂c =
1

2

[
Φ̂c,f (ÛL) + Φ̂c,f (ÛR)− |ku|δÛ

]
(3.44)

where the subscript f denote the face fluxes and the superscript L and R denote flow

states extrapolated from the left and right side of the considered grid cell. The term

|ku|δÛ represent the numerical dissipation and depends on the flow state discontinuity

across the cell face. δÛ is defined as the difference between the flow state on the right

side and on the left side, while kU represent the generalised flux Jacobian evaluated at

the considered face defined as:

kU =
∂Φ̂c

∂Û
=

(
∂Êc

∂Û
nx +

∂F̂c

∂Û
ny

)
(3.45)

where the terms ∂Êc
∂Û

and ∂F̂c
∂Û

denote the flux Jacobian in the x- and y- fluxes respec-

tively.

Regarding the discretisation of the diffusive fluxes Φ̂d, one needs to consider the

flux balance of the viscous stresses on a CV on area S:∮
S
τ̂ · ndS (3.46)

The discretisation of the net flux of the viscous stress on the boundary of a cell (i, j) is

given by the sum of the fluxes through the i and j surfaces, so the x- and y- components

of the flux of the viscous stress are written as:

[(τ̂xxnx + τ̂xyny)∆S]i+ 1
2
,j + [(τ̂xxnx + τ̂xyny)∆S]i,j+ 1

2
+

[(τ̂xxnx + τ̂xyny)∆S]i− 1
2
,j + [(τ̂xxnx + τ̂xyny)∆S]i,j− 1

2

(3.47)
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3.5 Solution of steady problems

[(τ̂xynx + τ̂yyny)∆S]i+ 1
2
,j + [(τ̂xynx + τ̂yyny)∆S]i,j+ 1

2
+

[(τ̂xynx + τ̂yyny)∆S]i− 1
2
,j + [(τ̂xynx + τ̂yyny)∆S]i,j− 1

2

(3.48)

where τ̂xx, τ̂xy and τ̂yy are the components of the stress tensor which are computed on

the four faces on the CV .

3.5 Solution of steady problems

In this research, the steady RANS and the two-turbulence equations are treated as a

single set of strongly coupled equations and solved iteratively with the same four-stage

Runge-Kutta (RK) smoother. Multigrid (MG) technique is adopted to achieve a faster

convergence. For steady problems the time-derivative appearing in Eq. (3.36) vanishes,

and space-discretising all remaining terms on a computational grid consisting of Ncell

finite volumes leads to a system of nonlinear algebraic equations of the form:

R̂Φ(Q̂) = 0 (3.49)

The entries of the array Q̂ are the unknown flow variables at the Ncell cell centres, and

the array Q̂ is made up of Ncell subarrays each of which stores the Npde flow unknowns

at a particular cell center. The length of Q̂ is therefore (Npde × Ncell). The array

R̂Φ stores the cell residuals, and its structure is the same as that of Q̂. For each cell,

the Npde residuals are obtained by adding the convective fluxes and the diffusive fluxes

through all its faces, and, for the k and ω residuals, by also adding the associated source

terms evaluated at the cell center, and given respectively by Eq. (3.29) and (3.30).

In COSA, the RANS and SST equations are solved with a time-marching algorithm

using the so-called fully coupled approach [89, 87, 54], whereby the mean flow and the

turbulence equations are solved simultaneously in the iterative process. This integration

approach leads to significantly faster convergence rates than the loosely coupled method

[88, 85], where the mean flow and turbulence equations are solved separately and often

with different methods. The unknown flow vector Q̂ is computed by solving iteratively

Eq. (3.49). A fictitious time-derivative (∂Q̂/∂τ) premultiplied by the cell volumes is

added to the System (3.49), and it is then discretised with a four-stage Runge-Kutta

scheme [21, 77, 135]. The numerical solution is thus marched in pseudo-time until the

steady state is achieved. The convergence rate is enhanced by means of local time-

stepping (LTS), variable-coefficient central implicit residual smoothing (IRS) [76, 26,
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3.5 Solution of steady problems

142, 27] and a full-approximation scheme (FAS) multigrid (MG) [50, 153] algorithm.

The explicit RK iteration to solve RANS and k − ω SST equations is defined as:

Ŵ0 = Q̂l

Ŵm = Ŵ0 − αm∆τV −1LIRS [R̂Φ(Ŵm−1) + fMG]

Q̂l+1 = Ŵm

(3.50)

where ∆τ is the local pseudo-time-step, l is the RK cycle counter, m is the RK stage

index, and αm is the mth RK coefficient. LIRS denotes the IRS operator, and fMG is

the MG forcing function. The diagonal matrix V stores the volumes of the grid cells

and it is a block-diagonal matrix of size (Ncell×Ncell) with each block being an identity

matrix of size (Npde ×Npde) multiplied by the volume of the cell the block refers to.

When solving turbulent problems using a two-equation turbulence model, however,

this explicit integration method has a very poor convergence rate, due to the operator

stiffness caused by the large negative source terms of the turbulence model, such as

−Dk, −Dω and, when the velocity divergence is positive, −∇ · u. To alleviate this

problem, a semi-implicit integration strategy is adopted [89], whereby the negative

source terms of the turbulence equations are treated implicitly within each RK stage.

Adopting this approach, the semi-implicit turbulent smoother reads:

Ŵ0 = Q̂l

(I + αm∆τA)Ŵm =

Ŵ0 + αm∆τAŴm−1 − αm∆τV −1LIRS [R̂Φ(Ŵm−1) + fMG]

Q̂l+1 = Ŵm

(3.51)

The matrix A is block-diagonal and has size (Ncell×Ncell). The only nonzero elements

of each (Npde × Npde) block Ai on the diagonal of A are those of the bottom right

(2 × 2) partition, and this occurrence results in the coupling of the update process of

the turbulent variables. The matrix A is defined as:

Ai(5 : 6, 5 : 6) = ASST =

 (∆+ + β∗ω) β∗k

γ∆+

νT
2βω

 (3.52)
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3.5 Solution of steady problems

in which ∆+ = max(0, 2
3∇ · u), all variables are evaluated at the RK stage m− 1, and

the subscript i identifies the grid cell the matrix block refers to. The cross-diffusion

term CDω can also be positive or negative depending on the local flow conditions, and

therefore, when negative, it could be treated like ∆+ in the semi-implicit integration.

However, the treatment of the CDω term, introduce additional complexity in the al-

gorithm design and a lower efficiency. For this reason, the integration of COSA treats

the term CDω explicitly regardless of its sign. It should be noted that this term is

absent in the standard k − ω model (see Appendix B). Another difference between the

semi-implicit integration of the standard k − ω model and that of the SST model is

that, in the former case, ρω can be updated independently of ρk. This is however not

possible in the SST case, since ASST (2, 1) is not zero. Hence, a (2×2) matrix inversion

is required at each grid cell to update ρk and ρω. The different turbulent variables

update of the k − ω and SST models occurs because the expression of the turbulent

viscosity of the former model is obtained by setting F2 = 0 in Eq. (3.19). This operation

results in the relationship k/νT = ω, which can be used to remove the dependence of

the equation for updating ρω on k. By performing this substitution, the bottom right

partition of each block of A becomes:

Ai(5 : 6, 5 : 6) = Ak−ω =

 (∆+ + β∗ω) β∗k

0 γ∆+ + 2βω

 (3.53)

In general, when using the SST turbulence model, one would adopt Eq. (3.52) rather

than Eq. (3.53). Numerical experiments, however, reveal that the results computed

with either approach present fairly small differences for low-speed flows, such as those

analysed in this thesis. For this reason all the results presented in this thesis are based

on Eq. (3.53).

The turbulent COSA code adopts the strongly coupled integration method also

for computing time-dependent problems, whereby the explicit multigrid integration is

used to solve the unsteady RANS (URANS) equations coupled to the SST turbulence

model. For such time-dependent problems, the turbulent multigrid solver also features

a point-implicit treatment of certain terms arising from the discretisation of the physical

time-derivatives. This approach is an extension of the stabilisation process reported by

Melson et al. [99], and it enables the use of fairly high Courant Friedrichs Lewy (CFL)
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3.6 Solution of time-dependent problems

numbers, thus significantly reducing the number of multigrid cycles required to achieve

a user-given reduction of the flow residuals.

3.6 Solution of time-dependent problems

General time-dependent flow problems are solved using the so-called dual-time-stepping

(DTS) approach. The physical time-derivative of System (3.36) is discretised with a sec-

ond order backward finite-difference. At each new physical time-level n+ 1, the sought

flow solution is computed by solving the set of nonlinear algebraic equations result-

ing from the space- and time-discretisation of System (3.36) with the same integration

method used for steady problems. The RK smoother (3.51) is used for computing the

sought flow solution Q̂n+1 by solving the system of algebraic equations:

V
∂Q̂n+1

∂τ
+ R̂g(Q̂

n+1) = 0 (3.54)

where

R̂g(Q̂
n+1) =

3Q̂n+1 − 4Q̂n + Q̂n−1

2∆t
V + R̂Φ(Q̂n+1) = 0 (3.55)

In the Eq. (3.55), R̂g denotes the residual vector which also includes the source terms

associated with the discretisation of the physical time-derivative ∂Û/∂t of Eq. (3.36),

and ∆t indicates the user-given physical time-step. Also for time-dependent problems

with moving bodies, the matrix V is independent of the physical time-level because in

this study only rigid-body grid motion is considered.

The Eq. (3.54) represent a system of size (Npde ×Ncell) ordinary differential equa-

tions and the flow state at time n + 1 (Q̂n+1) is the unknown. Q̂n+1 is calculated

by discretising the fictitious time-derivative using the RK scheme and marching the

equations in pseudo-time until a steady state is achieved. Using the dual time stepping

approach to the integration of time-dependent problem [75, 37], once the flow solution

at the physical time-level n+1 has been computed, the array Q̂n is copied to Q̂n−1 and

the array Q̂n+1 is copied to Q̂n and the iterative process computes the new solution at

new time-level. This procedure may become unstable when the physical time-step ∆t

is much smaller than the pseudo-time-step ∆τ as reported in [18, 99].

The study solved the stability problem by treating implicitly the Q̂n+1 term of the

physical time-derivative within the RK integration process. This strategy has also been
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3.7 Conclusion

implemented in the CFD code COSA for the fully coupled integration of the RANS

and SST equations. The TD counterpart of the turbulent steady smoother (3.51) is:

Ŵ0 = Q̂l

[I + αm(βTDI + ∆τA)] Ŵm =

Ŵ0 + αm(βTDI + ∆τA)Ŵm−1 − αm∆τV −1LIRS [R̂g(Ŵ
m−1) + fMG]

Q̂l+1 = Ŵm

(3.56)

where βTD = 1.5∆τ/∆t, and Q̂l is shorthand for Q̂n+1
l . The matrix multiplying Ŵm

in Algorithm (3.56) is block-diagonal with Ncell blocks. In each (Npde×Npde) block the

top left (4× 4) partition is proportional to the identity matrix through the coefficient

(1+αmβTD), the bottom right (2×2) partition is given by the sum of the (2×2) identity

matrix multiplied by (1+αmβTD) and a non-diagonal (2×2) matrix given by Eq. (3.52)

or Eq. (3.53), depending on whether the exact or approximate update of (ρω) is used,

and all other entries are zero. Similarly to the case of the integration of the steady

equations, this structure of the matrix premultiplying Ŵm results in the coupling of

the update process of the turbulent variables, whereas it still enables the four mean flow

variables to be updated without any actual matrix inversion. Due to the fact that the

Q̂n+1 term arising from the backward finite-difference of the physical time-derivative

is evaluated at stage m, Algorithm (3.56) is said to be based a point-implicit Runge-

Kutta (PIRK) integration of the time-dependent mean flow and turbulence equations.

The standard fully explicit Runge-Kutta (FERK) integration method is retrieved by

setting βTD = 0 in this algorithm. Several numerical tests [38] have highlighted that

the turbulent PIRK integration significantly improves the stability of the fully coupled

integration, enabling stable pseudo-time-marching with larger CFL numbers than with

the standard FERK integration. This yields significant reductions of run-times, due

to the reduction of the overall number of MG cycles required to achieve a user-given

reduction of the flow residuals.

3.7 Conclusion

The CFD research code COSA uses a time-marching method to solve time-dependent

engineering flow problems. The fundamental governing equations of fluid dynamics
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coupled to the SST turbulence model of Menter have been presented in this chapter.

The finite volume discretisation method used to represent the continuous nature of the

governing equations in a discrete form and the integration method to solve the system

of nonlinear algebric equations obtained from the discretisation approach have also

been described. Moreover, an important approximation to the integration of the SST

equations has been implemented and discussed. A drawback of using time-marching

methods for solving periodic flow problems is the presence of a transient response in

the solution, so, they become inefficient when several periods have to be simulated

before a fully developed periodic solution is achieved. In order to reach the periodic

solution in a shorter computational time, a frequency-domain CFD approach has been

implemented and the details are presented in the Chapter 4 .
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Chapter 4

Numerical solution of Harmonic

Balance Navier-Stokes equations

At present, the most of time-periodic flow problems are solved using traditional time-

marching approaches where the flow solution is computed by solving the set of nonlinear

algebraic equations resulting from the space- and time-discretisation of System (3.36)

and time-marched from an initial state until a user-given final time. The downside to

using time-marching methods for time-periodic problems is that they include a transient

response in the solution. So, they become inefficient when several periods have to

be simulated before a fully developed periodic solution is achieved. In many cases,

only the steady-state solution is desired. In order to reach the periodic solution in

a short time, the harmonic balance (HB) technology can be applied (Fig. 4.1). It is

a nonlinear frequency-domain (FD) method computationally more efficient than time

marching methods for unsteady flow problems, where the output response is periodic

in time and described by one or more ordinary differential equations (ODE). Any

computational cost associated with a transient response is completely avoided. The

HB solution is represented as a truncated Fourier series retaining a user given number

of complex harmonics, and the given time-domain problem is reformulated and solved

in the frequency-domain using the solution approximation provided by the truncated

Fourier series. The HB NS technology for the solution of unsteady periodic flows is

one of the most promising FD NS methods. It was first introduced by Hall et al.

[65], who first showed the run-time reduction compared to the TD approach, for the

case of turbomachinery flows. In this thesis the HB approach was applied for the first
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Figure 4.1: Time marching method against HB approach.

time to turbulent wind turbine aerodynamics and has been demonstrated that it can

reduce the run-time of a CFD simulation by one or more order of magnitude with

respect to the case in which the conventional TD is used. The CFD code COSA adopts

the high dimensional harmonic balance (HDHB) formulation, which differs from the

implementation of the classical HB. In this chapter it is provided the general definition

of the HB solution process of a system of three ODEs. It is discussed to highlight the

differences between the two mathematical HB implementations. A comparison of these

two methods is provided and the HDHB formulation of the URANS and the turbulence

model equations is presented.

4.1 Harmonic balance method

The harmonic balance method has been used for many years to analyse the behaviour

of harmonic ordinary differential equations. The technique assumes that the solution
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4.1 Harmonic balance method

may be represented as a truncated Fourier series with a predetermined number of har-

monics. This form of the solution is substituted into the governing equations and after

algebraic manipulations it is possible to collect the coefficients of every harmonic. The

first formal presentation of the HB method is usually accredited to Kryloff and Bo-

goliuboff in the 1940s [83]. Throughout the years, many variants of HB technology

have emerged. As a result, the technique has been applied to myriad of problems in

several fields, especially nonlinear circuit analysis [17, 108] and nonlinear dynamics

[23, 81, 98, 63]. A harmonic balance approach for modelling unsteady nonlinear flows

in turbomachinery was proposed in 2002 by Hall et al. [65]. The analysis exploits

the fact that many unsteady flows in turbomachinery are periodic in time. The au-

thors represented the unsteady flow conservation variables by a Fourier series in time

with spatially varying coefficients. This leads to a harmonic balance form of the Navier-

Stokes equations, which can be solved efficiently as a system of coupled steady problems

using conventional CFD methods. They found that increasing the terms of the Fourier

series (harmonics), the solution improves. Inserting the Fourier representations into

the original equations, yields a system of coupled partial differential equations and the

unknowns are the Fourier coefficients. McMullen et al. [98] used a HB approach, in-

volving a nonlinear frequency-domain method to investigate the flow around a cylinder

and a pitching aerofoil. Also Ekici and Hall [53] developed a variant of the HB method

that uses a mixed TD/FD approach to compute the unsteady aerodynamic response of

multistage turbomachines to blade vibration and wake interaction.

Recently, a new formulation of the HB method has been developed by Thomas

et al. [143] for deterministic dynamical system. The approach was suitable for high

dimensional dynamical systems and for this characteristic was denoted as high dimen-

sional harmonic balance (HDHB). In the HDHB approach the flow field variables are

discretised in time and solved at (2NH + 1) equally spaced time-domain snapshots over

the period instead of solving the Fourier coefficients directly. Working in terms of time-

domain sub-time level solution variables avoids the harmonic balancing of the Fourier

coefficient solution variables of the classical HB method. This makes the HDHB method

very easy to formulate within the framework of an existing time marching nonlinear

solver. The HB technology has also been applied to several studies [144, 62, 19, 66]

like those to predict various vibratory motion modes of aircraft configurations [44, 130,
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158] and to predict periodic flows associated with turbomachinery unsteady flows and

aeroelasticity [140, 149].

On wind energy applications, a preliminary demonstration of the use of HB NS

technology for yawed HAWT flows was reported in [34], which showed that also for this

problem type, the wallclock time required for accurately predicting the time-dependent

blade loads in laminar flow conditions is about 10 times smaller than that of the time-

grid-independent TD analysis. This thesis presents the implementation and the success-

ful application of a compressible turbulent HB NS solver to the prediction of HAWT

flows in yaw condition [36] and also to the strongly nonlinear periodic flow problem

associated with the aerodynamics of vertical axis wind turbines.

This is the first reported study on the use of the turbulent HB RANS technology for

turbulent unsteady HAWT and VAWT aerodynamics. On the algorithmic and numer-

ical sides, further elements of novelty are the extension of the fully coupled integration

approach to the HB framework, the design and the implementation of a point-implicit

approach to the integration of the turbulent HB equations enabling the use of a fewer

MG cycles than the fully explicit approach to achieve solution convergence and the in-

troduction of an approximation yielding a significant cost reduction of the fully coupled

integration of the HB RANS and SST equations with negligible effects on the solution

accuracy. Furthermore, it has been demonstrated that the wallclock time required to

predict an unsteady flow solution using COSA HB solver depends from the particular

test case and the operating condition analysed. For strongly nonlinear problems like

VAWT, the HB wallclock time required to predict the unsteady flow solutions is about

5 times smaller than the TD analysis (see Chapter 7 ). In this case, COSA allows the

user to use an efficient hybrid parallelisation that adopts a combination of MPI libraries

to communicate between nodes and openMP libraries for communication inside each

shared memory node, to take back the HB wallclock time to a factor of 10.

4.2 Harmonic balance integration of ODE system

The System (4.1) is an example of first order nonlinear system of ordinary differential

equations. The unknowns of this system are denoted by x, y, z and F denotes the
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forcing term. 
ẋ = y − z3 + 1 + Fsin(ωt)

ẏ = 0.1z + 1− y · z

ż = 2x− z2 + 0.5

(4.1)

The System (4.1) represents in a simplified manner the structure of the governing equa-

tions implemented in a RANS code making use of differential two-equation turbulence

models for the turbulent closure. The first equation can represent the RANS equations,

the second and third equations can represent the k and ω equations of the turbulence

model. Appendix C reports the Matlab script developed to solve the system of ODEs

using the explicit and implicit method adopted by COSA as well as the Runge-Kutta

time marching and the Matlab function FSOLVE. The aim of studying this system is

to highlight the differences between the HB and HDHB integration.

4.2.1 Classical harmonic balance

For the derivation of the standard HB method, one begins by considering the solution

of the System (4.1) to be of the form of a truncated Fourier series expansion:

x(t) = x̂0 +

NH∑
n=1

(x̂2n−1 cos(nωt) + x̂2n sin(nωt)) (4.2)

y(t) = ŷ0 +

NH∑
n=1

(ŷ2n−1 cos(nωt) + ŷ2n sin(nωt)) (4.3)

z(t) = ẑ0 +

NH∑
n=1

(ẑ2n−1 cos(nωt) + ẑ2n sin(nωt)) (4.4)

where ω is the known fundamental frequency of oscillation, x̂0, ŷ0 and ẑ0 are the

mean values of the sought periodic solutions, x̂2n−1, x̂2n, ŷ2n−1, ŷ2n, ẑ2n−1 and ẑ2n for

(n = 1, 2, ..., NH) are the real and imaginary parts of the NH complex harmonics of each

unknown complex harmonic component and NH is the number of complex harmonics

used in the truncated Fourier series expansion.

In the case of the ODE equations of the system considered, it is needed also the

expression of the first time-derivative terms:

ẋ(t) =

NH∑
n=1

(−nωx̂2n−1 sin(nωt) + nωx̂2n cos(nωt)) (4.5)
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ẏ(t) =

NH∑
n=1

(−nωŷ2n−1 sin(nωt) + nωŷ2n cos(nωt)) (4.6)

ż(t) =

NH∑
n=1

(−nωẑ2n−1 sin(nωt) + nωẑ2n cos(nωt)) (4.7)

Considering the first ODE of the System (4.1), also the cubic nonlinear term must

be expressed as truncated Fourier series:

(z(t))3 = r̂0 +

NH∑
n=1

(r̂2n−1 cos(nωt) + r̂2n sin(nωt)) (4.8)

where r̂0, r̂2n−1 and r̂2n are the mean value, the real part of the nth complex har-

monic and the imaginary part of the nth complex harmonic of the nonlinear cubic term

respectively. The expressions of r̂0, r̂2n−1 and r̂2n are expressed as:

r̂0 =
1

2π

∫ 2π

0

(
ẑ0 +

NH∑
n=1

(ẑ2n−1 cos(nt) + ẑ2n sin(nt))

)3

dt (4.9)

r̂2n−1 =
1

π

∫ 2π

0

(
ẑ0 +

NH∑
n=1

(ẑ2n−1 cos(nt) + ẑ2n sin(nt))

)3

cos(nt) dt (4.10)

r̂2n =
1

π

∫ 2π

0

(
ẑ0 +

NH∑
n=1

(ẑ2n−1 cos(nt) + ẑ2n sin(nt))

)3

sin(nt) dt (4.11)

Similar expressions can be defined for the nonlinear terms in the second and third

equation of the System (4.1). The coefficients defined by Eq. (4.9), (4.10) and (4.11)

are functions of the unknown coefficients ẑn. Substituting the expressions (4.3), (4.5),

and (4.8) into the first equation of System (4.1) and collecting terms associated with

each harmonic cos(nωt) and sin(nωt) with n = 0, 1, 2, ..., NH yield (2NH + 1) algebraic

equations for Fourier coefficients x̂n, ŷn and ẑn (n = 0, 1, 2, ..., NH). Applying the same

procedure for the second and third equation, each ODE is transformed into (2NH + 1)

algebraic equations that yields the harmonic components of the truncated Fourier series

representation of the sought periodic solutions.

The resulting system of algebraic equations can be written in vector form as:
(ωA)Q̂x − Q̂y + R̂z3 = Ĉ + F Ĥ

(ωA)Q̂y − 0.1Q̂z + R̂yz = Ĉ

(ωA)Q̂z − 2Q̂x + R̂z2 = 0.5Ĉ

(4.12)
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where the arrays Q̂x, Q̂y and Q̂z are the unknowns arrays of length (2NH + 1) defined

as:

Q̂x =



x̂0

x̂1

x̂2

...

x̂2NH


, Q̂y =



ŷ0

ŷ1

ŷ2

...

ŷ2NH


, Q̂z =



ẑ0

ẑ1

ẑ2

...

ẑ2NH


The entries of the arrays R̂z3 , R̂yz and R̂z2 are the coefficients of the Fourier expansion

of the nonlinear terms and have length (2NH + 1). They are defined as:

R̂z3 =



r̂0z3

r̂1z3

r̂2z3

...

r̂2NHz3


, R̂yz =



r̂0yz

r̂1yz

r̂2yz

...

r̂2NHyz


, R̂z2 =



r̂0z2

r̂1z2

r̂2z2

...

r̂2NHz2


The arrays Ĥ and Ĉ of length (2NH + 1) are expressed as:

Ĥ =



0

0

1
...

0


, Ĉ =



1

0

0
...

0


and the matrix A that is a block structure where only the diagonal blocks hold non-zero

entries are expressed as:

A =



0

J1

J2

· · ·

JNH


, Jn = n

 0 1

−1 0

 , n = 1, 2, ..., NH

The block (1, 1) of matrix A is a scalar 0, all the other diagonal blocks are 2× 2. The

overall dimension of matrix A is (2NH + 1)× (2NH + 1).
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4.2 Harmonic balance integration of ODE system

Solving System (4.12) requires analytical expressions of the nonlinear functions r̂iz3 ,

r̂iyz and r̂iz2 (i = 0, 1, 2, ..., 2NH) in terms of the variables ŷi and ẑi (i = 0, 1, 2, ..., 2NH).

When the nonlinearity in the governing equations is not a simple polynomial function

of the solution variable, the expression of the nonlinear terms can be very complex

to compute and the standard HB approach become difficult to use. In this cases, the

problem can be avoided by using the so-called High Dimensional Harmonic Balance

HDHB method.

4.2.2 High dimensional harmonic balance

The HDHB approach can be easily used for all the models that present more complex

nonlinearities, like RANS equations augmented with PDEs of turbulence models. The

main reason for using the HDHB procedure is to avoid the derivation of the nonlin-

ear terms. Considering the System (4.1), the simplification introduced by the HDHB

method is to replace the (2NH + 1)Q̂x, (2NH + 1)Q̂y and (2NH + 1)Q̂z unknowns

corresponding to the mean value, the real and imaginary parts of the retained complex

NH Fourier harmonics with (2NH + 1) equally spaced time-domain snapshots of the

sought periodic solution. This change simplifies the derivation of the HB equations to

be solved. The HDHB procedure for the System (4.1) is outlined in the following.

The (2NH + 1) harmonic balance Fourier coefficient of the solution variables of Q̂x,

Q̂y and Q̂z are related to the time-domain solution at (2NH+1) equally spaced sub-time

levels Q̃x, Q̃y and Q̃z over a period of oscillation via a constant Fourier transformation

matrix E.

Q̂x = EQ̃x (4.13)

Q̂y = EQ̃y (4.14)

Q̂z = EQ̃z (4.15)

where

Q̃x =



x(t0)

x(t1)

x(t2)
...

x(t2NH )


, Q̃y =



y(t0)

y(t1)

y(t2)
...

y(t2NH )


, Q̃z =



z(t0)

z(t1)

z(t2)
...

z(t2NH )



76



4.2 Harmonic balance integration of ODE system

Q̂x =



x̂0

x̂1

x̂2

...

x̂2NH


, Q̂y =



ŷ0

ŷ1

ŷ2

...

ŷ2NH


, Q̂z =



ẑ0

ẑ1

ẑ2

...

ẑ2NH


with ti defined as:

ti =
i

(2NH + 1)

2π

ω
, i = 0, 1, · · · , 2NH (4.16)

and the transformation matrix E expressed as:

E =
2

2NH + 1



1/2 1/2 · · · 1/2

cos t0 cos t1 · · · cos t2NH

sin t0 sin t1 · · · sin t2NH

cos 2t0 cos 2t1 · · · cos 2t2NH

sin 2t0 sin 2t1 · · · sin 2t2NH
...

...
...

cosNHt0 cosNHt1 · · · cosNHt2NH

sinNHt0 sinNHt1 · · · sinNHt2NH


Furthermore, the time-domain solutions at (2NH+1) equally spaced sub-time levels

can be expressed in term of the harmonic balance Fourier coefficients solution using

the inverse of the Fourier transformation matrix as:

Q̃x = E−1Q̂x (4.17)

Q̃y = E−1Q̂y (4.18)

Q̃z = E−1Q̂z (4.19)

where the inverse of matrix E is defined as:

E−1 =


1 cos t0 sin t0 · · · cosNHt0 sinNHt0

1 cos t1 sin t1 · · · cosNHt1 sinNHt1
...

...
...

...
...

1 cos t2NH sin t2NH · · · cosNHt2NH sinNHt2NH


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4.2 Harmonic balance integration of ODE system

Similarly to what done for the unknowns variables, for the arrays R̂z3 , R̂yz, R̂z2 ,

Ĥ and Ĉ one has:

R̂z3 = ER̃z3 (4.20)

R̂yz = ER̃yz (4.21)

R̂z2 = ER̃z2 (4.22)

Ĥ = EH̃ (4.23)

Ĉ = EC̃ (4.24)

where

R̃z3 =


z(t0)3

z(t1)3

...

z(t2NH )3

 , R̃yz =


yz(t0)

yz(t1)
...

yz(t2NH )

 , R̃z2 =


z(t0)2

z(t1)2

...

z(t2NH )2



H̃ =


sin t0

sin t1
...

sin t2NH

 , C̃ =


1

1
...

1


Inserting Eqs. (4.13), (4.14), (4.15), (4.20), (4.21) (4.22), (4.23) and (4.24) into the

classical HB formulation of the System (4.1), System (4.12) can be rewritten as:
(ωA)EQ̃x − EQ̃y + ER̃z3 = EC̃ + FEH̃

(ωA)EQ̃y − 0.1EQ̃z + ER̃yz = EC̃

(ωA)EQ̃z − 2EQ̃x + ER̃z2 = 0.5EC̃

(4.25)

Multiplying both sides of each equation of System (4.25) by E−1 gives:
(ωD)Q̃x − Q̃y + R̃z3 = C̃ + F H̃

(ωD)Q̃y − 0.1Q̃z + R̃yz = C̃

(ωD)Q̃z − 2Q̃x + R̃z2 = 0.5C̃

(4.26)

where D = E−1AE. The System (4.26) is referred to as the HDHB solution system. It

does not require complicated analytical transformations such as those needed for the
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4.2 Harmonic balance integration of ODE system

construction of r̂iz3 , r̂iyz and r̂iz2 terms of System (4.12) and it is relatively easy to

implement into an existing time marching code. This feature is very important when

applying the HB approach to solve complex system of equations such as those obtained

from the discretisation of the RANS equations and the PDEs of differential turbulence

model. For the linear terms, the HDHB method produces the same result as the HB

method does. Therefore, the source of any difference is related to the nonlinear terms.

As can be seen by the System (4.26), the nonlinear term of the first (2NH+1) equations

is:

R̃z3 =



(
| E−1Q̂z |1

)3(
| E−1Q̂z |2

)3

...(
| E−1Q̂z |2NH+1

)3


≡
(
E−1Q̂z

)3
(4.27)

Here a vector’s cubic power is defined as the vector of the cubic power of each compo-

nent. With Eqs. (4.27), (4.17) and (4.18), the first (2NH+1) equations of System (4.26)

becomes:

(ωD)E−1Q̂x − E−1Q̂y + (E−1Q̂z)
3 = E−1Ĉ + FE−1Ĥ (4.28)

Multiplying both sides of Eq. (4.28) by E yields the equivalent of the first (2NH + 1)

equations of System (4.26) in the frequency-domain:

(ωA)Q̂x − Q̂y + E(E−1Q̂z)
3 = Ĉ + F Ĥ (4.29)

From (4.12) and (4.29), the difference between the HB and HDHB system is really the

difference between R̂z3 , whose elements are defined by Eq. (4.9), (4.10) and (4.11) for

the HB approach, and E(E−1Q̂z)
3 for the HDHB approach. The same behaviour can

be shown for the other two nonlinear terms.

However, when NH approaches to infinity, the solutions are essentially identical,

therefore, HB and HDHB methods are asymptotically equivalent [90]. A further ex-

ample on the difference between these two approaches is reported in [90] where the

Duffing’s oscillator is used.
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4.3 HDHB formulation of turbulent Navier-Stokes equations

4.3 HDHB formulation of turbulent Navier-Stokes equa-

tions

The space discretisation of time-dependent RANS and SST turbulence equations leads

to a system of ODEs with size equal to the number of cells of the physical domain times

the number of partial differential equations (Ncell ×Npde). The application of the HB

approach gives a system of nonlinear algebraic equations of size [Npde×Ncell×(2NH+1)]

where the number of harmonics NH is a user-given parameter. Denoting by û and ĥ

the volume and surface integral of Eq. (3.36) respectively, it is possible to define both

variables by means of the following truncated Fourier series:

û(t) = û0 +

NH∑
l=1

(û2l−1 cos(lωt) + û2l sin(lωt)) (4.30)

ĥ(t) = ĥ0 +

NH∑
l=1

(
ĥ2l−1 cos(lωt) + ĥ2l sin(lωt)

)
(4.31)

All arrays in Eq. (4.30) and (4.31) have length Npde = 6. Inserting both equations

into Eq. (3.36) and balancing harmonics with the same order, give a system of [Npde×
(2NH + 1)] equations, defined as:

ωAû + ĥ = 0 (4.32)

where ω is the fundamental frequency of the sought periodic flow field. The matrix A

and the arrays û and ĥ are defined as:

A =



0 0 0 · · · 0

0 J1 0 · · · 0

0 0 J2 · · · 0

· · · · · · · · · · · · · · ·

0 0 0 · · · JNH


Jl = INeqs ⊗ l

 0 1

−1 0



û =


û′0

û′1

· · ·

û′2NH

 , ĥ =


ĥ′0

ĥ′1

· · ·

ĥ′2NH


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4.3 HDHB formulation of turbulent Navier-Stokes equations

where l = 1, 2, ..., NH , the symbol ⊗ denotes the Kronecker tensor product, INeqs

denotes the identity matrix of size (Npde)
2 and blocks Jl have size (2Npde)

2. As shown

for the system example reported in the preceding subsections, the analytical derivation

of the equations of the system in Eq. (4.32) can become extremely complex. For this

reason the HDHB formulation has been applied and it was obtained by reconstructing

the Fourier coefficients of the volume integral û of the conservation variables and the

surface integral ĥ of the fluxes, from the knowledge of the temporal behaviour of u(t)

and h(t) at (2NH + 1) equally spaced snapshots over one period.

Defining the arrays ũ and h̃ as:

ũ =


u(t0)′

u(t1)′

· · ·

u(t2NH )′

 h̃ =


h(t0)′

h(t1)′

· · ·

h(t2NH )′


and using the Fourier transformation matrix E, one can easily obtain the system:

ωDũ + h̃ = 0 (4.33)

where D = E−1AE is the [Neqs ×Neqs] matrix with [Neqs = Npde × (2NH + 1)].

The integral definition of ũ and h̃ can be substituted into Eq. (4.33) to obtain the

HDHB formulation of the RANS and SST equations used by COSA:

ωD

(∫
V (t)

ÛHdV

)
+

∮
St

(Φ̂cH − Φ̂dH ) · dS =

∫
Vt

ŜHdV (4.34)

The symbol ÛH denotes the unknown array made up of (2NH + 1) equally spaced flow

field snapshots and it is defined as:

ÛH =


Û(t0)′

Û(t1)′

· · ·

Û(t2NH )′


The subarray structure of Φ̂cH , Φ̂dH and ŜH is similar to that of ÛH . From now on,

the acronym HB to refer to the HDHB implementation adopted by COSA will be used.

81



4.4 Semi-implicit integration based on LU factorisation

4.4 Semi-implicit integration based on LU factorisation

At the differential level, the only difference between System (3.36) and System (4.34) is

that the physical time-derivative of the former system is replaced by a volumetric source

term proportional to ω in the latter. The set of nonlinear algebraic equations resulting

from the space discretisation of the harmonic balance RANS and SST equations (Sys-

tem (4.34)) can thus be solved with the same four-stage RK smoother used for steady

problems described in Chapter 3 . A fictitious time-derivative dQ̂H
dτ pre-multiplied by

the cell volumes is added to the system giving a system of ODEs defined as:

dQ̂H

dτ
+ V −1

H R̂gH(Q̂H) = 0 (4.35)

where

R̂gH(Q̂H) = ωVHDHQ̂H + R̂ΦH(Q̂H) (4.36)

The flow solution array Q̂H is made up of Ncell sets of (2NH + 1) flow states,

with each state referring to the physical times defined by Eq. (4.16). Therefore, Q̂H =

[Q̂′1 Q̂′2 · · · Q̂′Ncell ]
′, where Q̂i, with i = 1, Ncell, is an array of length [Npde×(2NH+1)].

The first Npde elements of Q̂i contain the flow state at t = t0, the next Npde elements

contain the flow state at t = t1, and the last Npde elements contain the flow state at

t = t2NH+1. The arrays R̂gH and R̂ΦH have the same structure of Q̂H . The (2NH + 1)

states of a subarray (R̂Φ)i contain the cell residuals associated with the convective

fluxes, the diffusive fluxes and the turbulent source terms at the physical times defined

by Eq. (4.16). The residual subarray (R̂g)i is the sum of the residuals R̂ΦH and the

source term ωViDQ̂i, where Vi is the product of the volume of the ith grid cell and

INeqs , the identity matrix of size (Neqs × Neqs) with Neqs = [Npde × (2NH + 1)]. The

diagonal matrix VH is a block-diagonal matrix with blocks given by the matrices Vi

defined above, and the block-diagonal matrix DH is defined as DH = INcell ⊗D.

It has been verified that the use of the nonturbulent counterpart of the smoother

(3.51) for solving the HB equations describing some periodic Euler and laminar flows

results in numerical instabilities of the solver that prevent its convergence, unless very

low CFL numbers are used. It has been found that the fully explicit Runge-Kutta

(FERK) HB solver may become unstable also for solving some turbulent unsteady

problems. Therefore, a stabilised point-implicit HB smoother adopted in [34] was

extended to the turbulent case, and used to improve the numerical stability of the
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turbulent HB MG solver. The fundamental step of the stabilisation process requires

treating implicitly the source term of Eq. (4.36) and requires to treat implicitly some

negative source terms of the turbulence equations within each RK stage. This approach,

said to be based a point-implicit Runge-Kutta integration, has been applied for the HB

solver and it is similar to that adopted by Liu and Zheng [89] for solving the standard

k − ω equations.

The HB semi-discrete form of k and ω equations can be written as:

∂

∂t
(ρk)H + ωDH(ρk)H +Rk((ρk)H , (ρω)H) = 0 (4.37)

∂

∂t
(ρω)H + ωDH(ρω)H +Rω((ρk)H , (ρω)H) = 0 (4.38)

The symbol Rk denotes the residual of the k equation, defined as:

Rk((ρk)H , (ρω)H) =
1

VH
(CkH −DkH )− SkH (4.39)

where CkH , DkH and SkH are the discrete forms of the convective flux term, diffusive

term and source term of the k equation, respectively. Their expression is:

CkH =

4∑
is=1

[(ρkun) ·∆S]is (4.40)

DkH =
4∑

is=1

[(µ+ σkµT )∇k ·∆S]is (4.41)

SkH = µtPd −
2

3
(∇ · u)(ρk)H −

β∗

ρ
(ρω)H(ρk)H (4.42)

In Eq. (4.42), the term µtPd is the major contributor to the production of k and it is

always positive, the term −2
3(∇·u)(ρk)H gives a minor contribution to production and

can be either positive or negative, and −β∗

ρ (ρω)H(ρk)H is the dissipation term and it

is always negative.

The residual for the ω equation is instead defined as:

Rω((ρk)H , (ρω)H) =
1

VH
(CωH −DωH )− SωH (4.43)

and CωH , DωH and SωH denote, respectively, the discrete forms of the convective flux,

diffusive flux and the source term of the ω equation. They can be expressed as:

CωH =

4∑
is=1

[(ρωun) ·∆S]is (4.44)
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DωH =
4∑

is=1

[(µ+ σωµT )∇ω ·∆S]is (4.45)

SωH = γρPd − γ
2

3
(∇ · u)(ρω)H −

β

ρ
(ρω)2

H (4.46)

As explained for Eq. (4.42), in Eq. (4.46) there is the term γρPd which is the major

contributor to the production of ω and it is always positive, the term −γ 2
3(∇·u)(ρω)H

that can be positive or negative and provides minor contribution to the production

of ω and −β
ρ (ρω)2

H which is the dissipation term and it is always negative. The two

negative terms which appear in the source terms of k and ω annihilate the two turbulent

variables. Larger are these terms and faster is the decay of k and ω. The explicit

formulation for the k and ω equations used at each stage of the RK scheme can be

modified to treat part of SkH and SωH implicitly, improving the convergence rate of the

turbulent equations. Defining:

∆+ = max

(
0,

2

3
∇ · u

)
(4.47)

the negative contributions of the source terms in the k and ω equations can be moved

to the LHS of Eq. (4.37) and (4.38) to form a semi-implicit formulation. So Eq. (4.37)

can be written as:

∂
∂t(ρk)H + ωDH(ρk)H + 1

VH
(CkH −DkH )− µtPd+

∆+(ρk)H + ∆−(ρk)H + β∗

ρ (ρω)H(ρk)H = 0
(4.48)

where ∆− = 2
3∇·u−∆+. The general RK step with implicit treatment can be defined

as:

(ρk)mH−(ρk)0H
αm∆τH

+ ωDH(ρk)mH + 1
VH

(CkH −DkH )m−1 − (µtPd)
m−1 + (∆+(ρk)H)m

+(∆+(ρk)H)m−1 − (∆+(ρk)H)m−1 + (∆−(ρk)H)m−1

+
[
β∗

ρ (ρω)H(ρk)H

]m
+
[
β∗

ρ (ρω)H(ρk)H

]m−1
−
[
β∗

ρ (ρω)H(ρk)H

]m−1
= 0

(4.49)

where the superscript m is the RK stage. Equation (4.49) can be written as:(
1

αm∆τH
+ ∆+ + ωDH

)
(ρk)mH −

(ρk)0H
αm∆τH

− (∆+(ρk)H)m−1)

+β∗

ρ

[
(ρω)mH(ρk)mH − (ρω)m−1

H (ρk)m−1
H

]
= −Rm−1

k

(4.50)

The term Rm−1
k denote the complete cell residual array of (ρk)H . Equation (4.50)

the approximations (∆+)m ≈ (∆+)m−1 and 1/ρm ≈ 1/ρm−1 have been used. Equa-

tion (4.50) can now be linearised by setting:

(δρk)H = (ρk)mH − (ρk)m−1
H (4.51)
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(δρω)H = (ρω)mH − (ρω)m−1
H (4.52)

then:

(ρω)mH(ρk)mH ≈
[
(ρω)m−1

H + (δρω)H
] [

(ρk)m−1
H + (δρk)H

]
≈ (ρω)m−1

H (ρk)m−1
H + (ρω)m−1

H (δρk)H + (ρk)m−1
H (δρω)H

(4.53)

Inserting the expression (4.53) into Eq. (4.50), the update equation for ρk is:[
1

αm∆τH
+ ∆+ + β∗

ρ (ρω)m−1
H + ωDH

]
(ρk)mH −

(ρk)0H
αm∆τH

− (∆+(ρk)H)m−1)

−β∗

ρ (ρω)m−1
H (ρk)m−1

H + β∗

ρ (ρk)m−1
H (δρω)H = −Rm−1

k

(4.54)

which can be written as:[
1 + (∆+ + β∗(ω)m−1

H )αm∆τH + αmω∆τHDH

]
(ρk)mH =

αm∆τH
[
−β∗(k)m−1

H (δρω)H + β∗(ω)m−1
H (ρk)m−1

H + (∆+(ρk)H)m−1
]

+(ρk)0
H − αm∆τHR

m−1
k

(4.55)

Note that the LHS of Eq. (4.55) is made up of the sum of two matrices, the first one is a

diagonal matrix I +αm∆τH(∆+ +β∗(ω)m−1
H ) of size (2NH + 1)2 and an antisymmetric

matrix αmω∆τHDH with the same size.

Using the same procedure for ω, Eq. (4.38) can be written as:

∂
∂t(ρω)H + ωDH(ρω)H + 1

VH
(CωH −DωH )− γα∗ρPd

+γ∆+(ρω)H + γ∆−(ρω)H + β
ρ (ρω)2

H = 0
(4.56)

The general RK step with implicit treatment for updating ω can be defined as:

(ρω)mH−(ρω)0H
αm∆τH

+ ωDH(ρω)mH + 1
VH

(CωH −DωH )m−1 − γα∗(ρPd)m−1

+γ(∆+(ρω)H)m + γ(∆+(ρω)H)m−1 − γ(∆+(ρω)H)m−1

+γ(∆−(ρω)H)m−1 +
[
β
ρ (ρω)2

H

]m
+
[
β
ρ (ρω)2

H

]m−1
−
[
β
ρ (ρω)2

H

]m−1
= 0

(4.57)

Equation (4.57) can be written as:(
1

αm∆τH
+ γ∆+ + ωDH

)
(ρω)mH −

(ρω)0H
αm∆τH

− γ(∆+(ρω)H)m−1)

+β
ρ

[
((ρω)2

H)m − ((ρω)2
H)m−1

]
= −Rm−1

ω

(4.58)

where Rm−1
ω denotes the complete cell residual array of (ρω)H .

Using the same approximation used for k, to linearise the Eq. (4.58) one needs to

define:

(δρω)H = (ρω)mH − (ρω)m−1
H (4.59)
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then:

(ρω)mH(ρω)mH ≈
[
(ρω)m−1

H + (δρω)H
] [

(ρω)m−1
H + (δρω)H

]
≈ (ρω)m−1

H (ρω)m−1
H + 2(ρω)m−1

H (δρω)H
(4.60)

Inserting expression (4.60) into Eq. (4.58), yields:(
1

αm∆τH
+ γ∆+ + 2β(ω)m−1

H + ωDH

)
(ρω)mH −

(ρω)0H
αm∆τH

−γ(∆+(ρω)H)m−1 − 2β(ω)m−1
H (ρω)m−1

H = −Rm−1
ω

(4.61)

which can be written as:[
1 + αm∆τH(γ∆+ + 2β(ω)m−1

H ) + αmω∆τHDH

]
(ρω)mH =

αm∆τH
[
γ(∆+(ρω)H)m−1 + 2β(ω)m−1

H (ρω)m−1
H

]
+ (ρω)0

H − αm∆τHR
m−1
ω

(4.62)

Using the semi-implicit integration for (ρk)H and (ρω)H , the update of (ρk)H de-

pends on the new value of (ρω)H . So, one needs to update (ρω)H first and (ρk)H

thereafter. By doing so, one obtains the following HB-counterpart of the turbulent TD

smoother (3.56):

Ŵ0
H = (Q̂H)l

[I + αm(βHDH + ∆τHAH)] Ŵm
H = Ŵ0

H +

αm(βHDH + ∆τHAH)Ŵm−1
H − αm∆τHV

−1
H LIRS,H [R̂gH(Ŵm−1

H ) + fMG,H ]

(Q̂H)l+1 = Ŵm
H

(4.63)

where the Ncell subarrays of ∆τH have length (2NH + 1). Each subarray contain the

local time-steps for the (2NH + 1) flow states. One also has βH = ω∆τH . The array of

the HB MG forcing term has the same structure of Q̂H . The matrix AH can be viewed

as a (Ncell ×Ncell) block-diagonal matrix. Each block AH,i, of size [Neqs ×Neqs] with

Neqs = [Npde × (2NH + 1)], also has a block-diagonal structure. Its (2NH + 1) nonzero

[Npde×Npde]-blocks provide the matrices Ai’s for the flow states referring to the times

defined by Eq. (4.16). This formulation include the acceleration techniques IRS and

MG adopted by COSA. The HB IRS operator has the same block structure of AH . The

use of the turbulent PIRK HB smoother (4.63) enables the use of significantly larger

CFL numbers than the use of its FERK counterpart. For test cases affected by the

aforementioned numerical instability, the stabilised smoother can use CFL numbers of
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4.4 Semi-implicit integration based on LU factorisation

up to 4, whereas CFL numbers have to be limited to values very low when using the

standard non-stabilised smoother. Moreover, the higher stability of this PIRK relative

to that of the FERK iteration increases significantly with NH .

Using the approximation provided by Eq. (3.53) for updating (ρk)H and (ρω)H , the

structure of the matrix premultiplying Ŵm
H at the second line of Algorithm (4.63) is

such that, for each grid cell, the update of the [Npde×(2NH+1)] unknowns requires the

inversion of a single [(2NH + 1)× (2NH + 1)]-sub-block of [I +αm(βHDH + ∆τHAH)].

Such overhead results in the computational cost of the HB analysis growing linearly

with NH . Despite this feature, the computational cost of the HB analysis remains

competitive with that of the TD counterpart. If the exact update of the turbulent

variables provided by Eq. (3.52) was used, the computational cost of the turbulent

PIRK smoother would be higher than the cost incurred by using Eq. (3.53). In the

former case, in fact, the update of the four RANS cell variables would require the

inversion of a [(2NH+1)×(2NH+1)]-matrix as in latter case, but the update of the two

SST variables would require the additional inversion of a [2(2NH + 1) × 2(2NH + 1)]-

matrix, because of the equation coupling due to all entries of ASST being not zero.

However, numerical experiments showed that the results computed with either approach

presented no differences for low speed flow problems. For this reason, for updating the

harmonics of the SST turbulence variables with the turbulent PIRK HB smoother,

Eq. (3.53) has been used. In addition using Eq. (3.53) it yields a significant reduction

of the computational cost.

The update of the [Npde × (2NH + 1)] unknowns, for each grid cell, requires the

inversion of a single [(2NH + 1)× (2NH + 1)]-sub-block of [I +αm(βHDH + ∆τHAH)].

After that, the inverted matrix [I + αm(βHDH + ∆τHAH)]−1 must be multiplied by

the RHS of the equation at the second line of Algorithm (4.63). To solve the system in

an efficient way, LAPACK libraries integration has been successfully implemented to

massively improve the computational efficiency of the PIRK approach to the integra-

tion of the HB RANS equations and the turbulence model of Menter [38]. LAPACK

(Linear Algebra PACKage) [3] is a software library for numerical linear algebra. It pro-

vides routines for solving systems of equations, eigenvalue problems, and singular value

decomposition. It also includes routines to implement the associated matrix factoriza-

tions such as LU , QR, Cholesky and Schur decomposition. Denoting by B the matrix
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[I + αm(βHDH + ∆τHAH)] and by C the RHS of the second line of Algorithm (4.63),

the latter can be simplified as:

B ·W = C (4.64)

The System (4.64) needs to be solved in two steps:

• LU factorisation of the matrix to be inverted, B. It is based on the algorithm of

Gaussian elimination and performed by a specific LAPACK library.

B = L ·U (4.65)

• a second LAPACK library uses the LU factorisation to solve easily the system:

L ·U ·W = C (4.66)

The overhead due to the inverted matrix results in the computational cost of the HB

analysis growing linearly with NH . Despite this feature, the computational cost of the

HB analysis remains competitive with that of the TD approach (see Appendix D for

LAPACK routines details).

4.5 Hybrid parallelisation

For complex problems, computational resources used by a CFD simulations can be very

large, particularly when the user uses meshes with millions of cells. To reduce the run-

times of each simulation, it is possible to make use of parallel computing. The research

code COSA has been parallelised by EPCC Centre during the last years [74, 72, 73] and

now it can run simulations in a faster way, using thousands of cores. The parallelisation

approach adopted in COSA is the so-called hybrid or mixed-mode parallelisation, which

combines a distributed parallel computing using Message Passaging Interface (MPI)

libraries [4] and shared memory parallelisations using the OpenMP shared memory

libraries [5], allowing the access to a large number of processors and large amount

of memory than the one available using either approaches separately. The general

structure of COSA HB solver can be defined as:

f o r i b = 1 : N block
f o r i h = 1 : ( 2N H+1)

f o r j c e l l = 1 : N ce l l , j
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f o r i c e l l = 1 : N ce l l , i
I n s t r u c t i o n s to perform

end
end

end
end

where Nblock is the number of blocks in the computational domain, NH is the user-

given number of harmonics, and Ncell,i and Ncell,j are the number of cells in the i and

j directions of the current block, respectively.

There are many other works which demonstrates parallel implementations of NS

solvers [105, 56]. The key feature of the MPI parallelisation is the computational

domain decomposition into two or more discrete blocks as the computation performed

on a particular block is independent from those performed on all other blocks, and

therefore can be processed in parallel. Thus, the MPI parallelisation is explicitly linked

to the loop over blocks, so, during the code execution it distributes one or more blocks

to a single processor. This approach cannot provide much benefits for simulations with

small number of blocks. Regarding the OpenMP parallelisation, it takes independent

instructions of a loop and distribute them to a group of threads that perform these sets

of operations in parallel. Since each of the threads can access shared data, it is possible

to parallelise any loop with no structural change to the code. However, this approach

imposes an overhead for each loop because some operations are needed to set up the

threads that will execute the parallelisation. The OpenMP parallelisation has been

set-up over the harmonic loop. So, the hybrid code aims to combine the flexibility of

the OpenMP solutions with the performance of the MPI solution. Since the OpenMP

parallelisation is performed on the harmonic loop, the HB solver can further reduce the

run-time of each simulation because it can use more computational resources (cores) in

compared to TD technology which uses only the MPI parallelisation over the blocks. In

the TD approach, the harmonics loop is not execute (NH = 0) so it can not parallelise

over the harmonics (OpenMP is not used in this case).

4.6 Conclusion

A frequency-domain CFD method suitable to solve periodic flow problems has been pre-

sented. The aim of using a frequency-domain approach is to reduce the computational
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cost with respect to time-marching method. The classical HB and HDHB methods

have been considered and the differences between these approaches are reported in this

chapter. Due to the strong nonlinearity of the governing equations and thanks to the

relatively simpler implementation of the HDHB formulation in an existing CFD code,

the HDHB approach has been implemented in COSA and the formulation of the NS

equations and SST turbulence model has been shown. In addition a semi-implicit vari-

ant of the HDHB MG solver has been implemented and discussed. In strongly nonlinear

problems requiring the use of many complex harmonics for an adequate resolution of

the periodic flow field, this variant enables the use of substantially higher CFL numbers,

leading to a further significant reductions of the run-time of the turbulent harmonic

balance analysis.
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Chapter 5

Time-domain analysis of vertical

axis wind turbines

The operating conditions of VAWTs are intrinsically highly unsteady at all wind speeds,

due to the periodic variation (every rotor revolution) of the modulus and the direction

of the relative velocity perceived by the blades [110, 29], and also the interactions be-

tween the wakes shed by the blades travelling in the upwind region of the rotor and

the blades crossing the downwind region of the rotor. These complex unsteady flow

patterns are further complicated by the occurrence of dynamic stall [52, 133] over a

significant portion of the entire turbine operating range [134]. For all these reasons,

the aerodynamic design of these machines is a challenging task, since reliable quantita-

tive estimates and sound understanding of the aforementioned unsteady aerodynamic

phenomena is required to obtain the power output as a function of the wind and tur-

bine speeds. The use of experimental testing to support VAWT design is still a costly

route, and its outcomes can also be affected by uncertainty, due to both finite error

margins of the adopted measurement techniques and possibly inaccurate wind tunnel

measured data correction, and also the difficulty of reproducing in wind tunnels all the

(non-dimensional) parameters characterising open air operation. Navier-Stokes CFD

analyses offers an additional cost-effective, versatile and accurate means to improve the

understanding of VAWT unsteady aerodynamics and thus achieve higher-performance

and more cost effective Darrieus turbine design. In this chapter it has been presented

a complete flow analysis of a Darrieus rotor presented in [117]. An accurate sensitiv-

ity analysis to the mesh refinement, temporal refinement and distance of the farfield
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5.1 Darrieus rotor

boundaries from the rotor has been performed to better understand the physical and

numerical uncertainties of the RANS simulations of Darrieus rotor. For validation

purpose, the comparison between the results obtained by the density-based structured

multi-block COSA research code and the results obtained by the pressure-based un-

structured solver of FLUENT has been shown. Experimental measurements of the

three dimensional (3D) model of the reference Darrieus turbine with a slightly different

configuration, have been compared with a new 2D model of FLUENT consistent with

the 3D model and a new comparison has been reported. In addition, a detailed aero-

dynamic analyses for low and high λ are presented to explain the operating behaviour

of a Darrieus wind turbine.

5.1 Darrieus rotor

The turbine rotor selected for the analyses is a 3-blade H-Darrieus (see Fig. 5.1) and

its main characteristics are reported in Table 5.1. The rotor characteristics match the

wind turbine proposed by Raciti Castelli et al. [116, 117]. In the 2D CFD simulations

the rotor shaft has been neglected.

Blades number (Nb) 3

Blades shape Straight

Blades aerofoil NACA0021

Radius (R) [m] 0.5150

Chord (c) [m] 0.0858

c/R ratio 0.166

Solidity (σ) 0.249

Blade connections 0.25 c

Table 5.1: Main features of the H-rotor Darrieus turbine analysed.
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Figure 5.1: Darrieus rotor model layout [116]

5.2 Computational set-up

The numerical simulations performed refer to a turbine operating in open field con-

ditions. The freestream wind speed (V∞) is 9 m/s in all simulations. The Reynolds

number used to perform these simulations is defined by Eq. (5.1)

Re =
ρ · (ΩR) · c

µ
(5.1)

where:

- ρ is the air density

- Ω is the rotational speed

- R is the rotor radius

- c is the chord

- µ is the dynamic viscosity

93



5.3 Sensitivity analyses

The λ has been varied from 2.40 to 4.04 (revolution speed that goes from 400 RPM

to 675 RPM). For these two values of λ (λ = Ω ·R/V∞), the relative angular velocity

and Reynolds numbers are reported in the Table 5.2. For λ = 2.88 is obtained the

maximum power extraction.

min max

tip speed ratio (λ) 2.40 4.04

Angular velocity (Ω) 41.9 rad/s 70.7 rad/s

Reynolds (Re) 126,746 213,866

Table 5.2: Computational set-up Darrieus rotor

For unsteady problems with moving bodies, COSA solves the governing equations

in the absolute frame of reference using an arbitrary Lagrangian-Eulerian formulation

and body-fitted grids. In the case of Darrieus rotors this implies that the entire compu-

tational grid, from the rotor center to the farfield boundary, rotates with the rotor. All

structured multi-block grids used for the COSA TD analyses of the selected Darrieus

rotor have a circular farfield boundary centred at the rotor axis, and they extend from

the rotor center to the farfield boundary, featuring a high clustering level in the region

around and between the blades.

5.3 Sensitivity analyses

A series of parametric analyses aiming at assessing the sensitivity of the computed

solution to:

• the distance of the farfield boundary from the rotor center,

• the level of mesh refinement,

• the size of the physical time-step,

• wall boundary condition and freestream turbulent data.

have been carried out for several tip speed ratios, and their outcomes are reported in

the following subsections. To conduct all the analyses, three sets of grids have been
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used. The three sets are characterised by different farfield distance from the centre of

rotation. The first set is composed by two grids with farfield placed at 40 diameters

D from the rotational axis, the second one by two grids with farfield placed at 80 D,

and the third sets is composed by two grids with farfield placed at 120 D. All grids are

made up of two subdomains: the circular region of radius 3.5 D containing the three

blades and the annular region with inner radius of 3.5 D and outer radius depending

from the farfield distance (see Fig. 5.2). The identification of two distinct sub-domains

is irrelevant for the COSA analyses since the entire grid moves with the rotor, but

it is introduced in view of the cross-comparison between COSA results and FLUENT

results in the section Validation. The two grids of each sets, characterised by different

number of quadrilateral cells, are denoted by M and C to indicate medium and coarse

cells density, respectively. These two grids in each sets have been taken into account

to demonstrate the independence from the space refinement. The Table 5.3 shows the

density of each mesh.

40 D 80 D 120 D

Medium mesh (M) 2,457,600 2,734,080 2,918,400

Coarse mesh (C) 614,400 683,520 729,600

Table 5.3: Number of cells of each computational grids.

The grids with farfield at 80 D and 40 D were obtained by removing from grid

with farfield at 120 D all cells at radii larger than 80 D and 40 D, respectively. For

each sets of grids, the coarse mesh has been generated removing every second line in

both directions from the respective medium mesh. Furthermore, the region with radius

3.5 D of all medium meshes has the same cells density, the same nodes distribution

around the aerofoils and nodes distribution in the normal direction to the aerofoils.

As a consequence, also all the coarse meshes have the same inner regions but the cells

density is reduced by a factor of 4. A schematic view of the COSA physical domain is

depicted in Fig. 5.2. The number of mesh intervals along the aerofoils in the medium

meshes is equal to 896 and in the coarse grid it was obtained dividing the number of

mesh intervals of medium grid by a factor of 2. The distance dw of the first grid points

off the aerofoil surface from the surface itself is about 5 ×10−5c in the medium grids.
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Figure 5.2: Physical domain of the COSA simulations.

To obtain the distance dw in coarse grids, one needs to multiply 5 ×10−5c by a factor

of 2. The nondimensional minimum distance from the wall is defined as:

y+ =
(uτdw)

νw
(5.2)

where uτ is the friction velocity and νw is the kinematic viscosity at the wall. In all

the simulations reported below, the maximum value of y+ was always smaller than 1.

Fig. 5.3 (a) shows a view of the grid around the rotor and Fig. 5.3 (b) shows an enlarged

view of the grid around the aerofoil adopted.

Many comparisons presented in the next subsections have been performed in term

of torque coefficient (CT ). Its expression is:

CT =
T

1
2ρ∞RAV

2
∞

(5.3)

where T is the shaft torque, R is the rotor radius and A = D ·h is the rotor swept area

(in 2D simulations h = 1). Similarly to what done in many research works [15, 122],

the global convergence of each simulation was monitored by considering the difference

between the mean values of CT over two subsequent revolutions normalised by the

mean value over the second period of the pair. In all simulations, the periodicity error

threshold was set to 0.1%. The required number of revolutions is not a priori known,

and it depends on the rotating speed of the turbine: in all the analyses, it varied

between 20 and 30 revolutions, depending on the λ.
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(a) (b)

Figure 5.3: Computational grid M120 around the rotor (a) and an enlarged view of grid

M120 in the aerofoil area (b). (Every forth grid line in both directions is plotted for clarity)

5.3.1 Distance to the farfield boundary analysis

To assess the solution sensitivity to the distance of the farfield boundary from the rotor

center, the three coarse grids were considered. The calculations were performed for λ

2.88 and 3.30 using 720 time steps per revolution. The curves of the periodic torque

coefficient of a single blade obtained with grids C-40D, C-80D and C-120D are reported

in Fig. 5.4 and highlight some differences between C-40D and C-80D results, whereas

C-80D and C-120D are superimposed. Nevertheless it has been decided to use the grids

with farfield at 120 D for all the simulations reported below because for smaller λ a

farfield at 80 rotor diameters may be insufficient to avoid solution accuracy losses due

to spurious reflections from the farfield boundary.

5.3.2 Space-refinement analysis

To assess the solution sensitivity to mesh refinement, some analyses for λ equal to

2.40, 2.64 and 2.88 using medium and coarse grids with farfield at 120 D have been

conducted. The curves of the periodic torque coefficient of a single blade over one

revolution computed with the two grids and using a physical time step equal to 0.25

degrees (i.e. performing 1440 physical time steps per revolution) are reported in Fig. 5.5.

The angular position θ = 0o corresponds to the aerofoil chord being parallel to the

freestream wind and the aerofoil moving against the wind, whereas θ = 180o corresponds

to the chord being parallel to the wind but the aerofoil travelling in the same direction
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(a) λ = 2.88 (b) λ = 3.30

Figure 5.4: Solution sensitivity to the distance of farfield boundary (N=720).

(a) λ = 2.40 (b) λ = 2.64

(c) λ = 2.88

Figure 5.5: Solution sensitivity to mesh refinement.
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of the wind. Negligible differences are observed between C-120D and M-120D solutions

for λ = 2.64 and λ = 2.88 demonstrating that mesh C-120D is grid independent for these

two λ. Fig. 5.5 highlights that with the increase of the λ the differences between coarse

and medium results decrease because the flow past the rotor presents lower complexity

like vortices and wake/blade interactions. So, mesh C-120D, featuring 729,600 cells

has been used for the following analyses for λ ≥ 2.64. Relatively larger differences are

observed for λ = 2.40. For this λ, it would be useful compared mesh M-120D solution

with a solution obtained by a finer mesh with farfield at 120 D (F-120D), but four times

more dense. Due to the higher computational resources required, F-120D has not been

run. Thus, for λ = 2.40, mesh M-120D has been selected for the following analysis.

5.3.3 Time-refinement analysis

The solution sensitivity to the step size was assessed by computing the torque profile

using the grid C-120D for λ equal to 2.64, 2.88 and 3.30. The time step size, ∆t, has

been defined according to the following equation:

∆t =
1

N

2π

Ω
(5.4)

where N is the number of physical time steps per revolution. The results of Fig. 5.6

highlight that for λ = 2.88 a time step corresponding to 0.5 degree (N = 720) rotation

is sufficient to obtain a solution independent of further reductions of the time step.

The same behaviour has been found for λ = 3.30, so for λ ≥ 2.88, all simulations have

been performed using 720 time steps per revolution. For λ = 2.64 one can see that a

time step of 0.5o is not sufficient, so a time step equal to 0.25o (N = 1440) rotation

has been considered to obtain a solution fairly independent of further reductions of the

time step. For this reason, for λ ≤ 2.64 all simulations have been done using 1440 time

steps per period.

The temporal refinement analysis was also performed in terms of pressure coefficient

cp and skin friction coefficient cf . These coefficients are defined by Eq. (5.5) and (5.6)

respectively.

cp =
pw − p∞
1
2ρ∞V

2
∞

(5.5)

cf =

∣∣∣∣∣ τw
1
2ρ∞V

2
∞

∣∣∣∣∣ (5.6)

99



5.3 Sensitivity analyses

(a) λ = 2.64 (b) λ = 2.88

(c) λ = 3.30

Figure 5.6: Torque coefficient sensitivity to temporal refinement (grid C-120D).
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(a) θ = 0o (b) θ = 90o (c) θ = 180o

Figure 5.7: cp and cf sensitivity to temporal refinement, for λ = 2.64.

Fig. 5.7 and Fig. 5.8 show the comparisons of cp and cf for λ = 2.64 and λ = 2.88 in

three different positions over the period. The variable xa/c along the x-axis of all plots

is the axial position along the aerofoil normalised by the chord. The analyses were

performed also for more λ. All the results confirm that for λ = 2.64, a time step equal

to 0.25o rotation (N = 1440) has been necessary to obtain a solution fairly independent

of further reductions of the time step, whereas for λ = 2.88 is sufficient a time step

equal to 0.5o rotation (N = 720).

The relatively high values of cp and cf are related to the absolute wind velocity

V∞ which appears at the denominator of Eq. (5.5) and (5.6). Smaller cp and cf values

would be obtained if the relative wind velocity perceived by the blade had been used.

Relative wind velocity depends from the λ and from θ and it is bigger than V∞ for all

azimuth angles and for all λ analysed (see Fig. 5.24).

5.3.4 Wall BC and freestream turbulent data

When using the SST model of Menter [101] (similarly to using the k−ω model of Wilcox

[155]), one has the option of using two alternative wall boundary conditions (BCs) for

the specific dissipation rate ω: either Wilcox’s rough wall BC, which is based on the

actual viscous stress at the wall [155], or Menter’s approximation to Wilcox’s rough
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(a) θ = 0o (b) θ = 90o (c) θ = 180o

Figure 5.8: cp and cf sensitivity to temporal refinement, for λ = 2.88.

wall BC for the case of a smooth wall, which does not use the actual viscous stress at

the wall. All results of previous subsections have used Menter’s BC. In order to confirm

the equivalence of Menter’s BC and Wilcox’s BC a C-120D analysis for λ = 2.88 was

repeated using Wilcox’s wall BC and 720 steps per revolution. The torque coefficient

obtained with Menter’s and Wilcox’s BC were compared and it confirms the equivalence

of these two conditions, given the no differences between the two curves. Menter’s BC

was used for all COSA analyses reported in the remainder of this research, as this

resulted in slightly higher numerical stability of the simulations.

Regarding the set-up of farfield turbulent data to simulate the Darrieus wind tur-

bine in open field conditions, the characteristic turbulence intensity (I) and turbulence

length scale (lT ) have been considered. The turbulence intensity is defined as:

I =
u′

uavg
(5.7)

where u′ is the root-mean-square of the velocity fluctuations, and uavg is the mean

flow velocity. A turbulence intensity of 1% or less is generally considered low and

turbulence intensities greater than 10% are considered high [16]. In this research, I =

5% has been used to simulate the open field condition. The turbulence length scale

is instead a physical quantity related to the size of the large eddies that contain the
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energy in turbulent flows. An approximate relationship between lT and the physical

size of the obstacle is lT = 0.07 ·L, where L is the characteristic length of the obstacle.

In this case, the Darrieus rotor diameter is ≈ 1 m, so the turbulent length scale was

set to 0.07 m. In COSA, I and lT are not given directly, but the user needs to give I2

and the turbulent viscosity ratio (µT /µ). The turbulent viscosity ratio is defined as:

µT /µ =
ρ · k
ω · µ

(5.8)

where k = 3
2I

2V 2
∞ is the turbulent kinetic energy and ω is the specific dissipation

rate. The equation which provides the relationship between ω and the characteristic

length lT is defined as ω = k1/2

C
1/4
µ lT

where Cµ = 0.09 is a constant. A disadvantage of

the two-equations turbulence ω based models is the excessive generation of turbulent

energy. For this reason, COSA allows the users to apply some production limiters to

avoid non-physical values of turbulent kinetic energy and specific dissipation rate. A

calculation has been performed to analyse the production limiters effect. The result

has been analysed in term of torque coefficient. The analysis for λ = 2.88 with grid

C-120D and 720 time steps per period is shown in Fig. 5.9. The figure shows that using

the production limiters, the CT solution is changed significantly. The CT without using

limiters is lower for most of the period highlighting an higher level of turbulent intensity

with respect to the case with limiters. The higher level of turbulence is related to wind

that fluctuates rapidly and in this situation the turbine is subjected to larger loads on

the blades and minor performance. In this VAWT analysis, production limiters have

been used in all simulations.

5.4 Integral performance parameters

The results presented in this section aim at defining the Darrieus rotor performance in

terms of CT and power coefficient (Cp) at different λ, starting from λ = 2.40 up to λ

= 4.04, and constant freestream velocity V∞ = 9 m/s. In order to explain the torque

coefficient behaviour, it is possible to consider the azimuthal variation of the torque

contribution exerted by blade 1 for all the λ analysed (Fig. 5.10). Starting from θ =

0o, for all λ the torque contribution is negative: in this condition the actual angle of

attack (α) is almost equal to zero (the blade velocity is about parallel to the absolute

wind velocity) so that lift is negligible and drag dominates. In order to estimate the
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Figure 5.9: Torque coefficient sensitivity to the application of limiters (λ=2.88, C-120D).

Figure 5.10: Torque contribution exerted by blade 1 vs. azimuth position.

variation of α with respect to the azimuth angle θ, the following simplified relation

(without the velocity induction) can be used:

α = tan−1

(
sin(θ)

cos(θ) + λ

)
(5.9)

The variation of α with θ during the rotation causes an inherent unsteady aerody-

namic behaviour which characterises the Darrieus rotor. The variation of α along the

entire rotor revolution for different λ is shown in Fig. 5.11. One can see that for θ = 0o,

α = 0o. The angle of attack increases until its maximum value for θ = 110o. After

that, α decreases to reach again 0o at θ = 180o. In the second half of the period, the
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5.4 Integral performance parameters

behaviour of α is identical but with opposite signs. In addition, α decrease passing from

lower to higher λ values, because of the raising influence of blade entrainment speed

(ΩR). Fig. 5.10 shows that the higher contribution of torque is observed when the

Figure 5.11: Angle of attack vs. azimuth angle.

blade is upstream. Indeed, the peak of the CT occurs for θ between 0o and 180o. When

the blade is downstream (θ between 180o and 360o), it interacts with wakes produced

by the blade upwind. λ = 2.88 gives the maximum power coefficient as a result of a

balance between a high positive torque contribution on the upstream side and a minor

negative torque contribution on the downwind. For λ < 2.88, the positive CT area

between θ = 0o and 180o become smaller due to the higher angle of attack that falls

the aerofoil in stall condition. For λ = 3.30 the dynamic stall decreases and, as shown

in the section Aerodynamic analysis, only a small pocket of stalled flow is observed near

the trailing edge for θ between 90o and 150o. For λ = 4.04, the flow is mainly attached

to the blade during the rotation, but the torque contribution decreases because lower

α produces a lower lift.

The total torque computed by all the rotor blades is plotted versus θ for all λ in

Fig. 5.12. Since the Darrieus rotor analysed in this research is composed of three blades,

the torque coefficient should have a periodicity equal to 120o. Actually, this expected

behaviour is satisfied at all tip speed ratios except for λ = 2.40 where one can see some

differences in the three peaks region. This behaviour is due to the higher interactions

between the vortices and the blades, that happens for this λ. Moreover, the behaviour
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Figure 5.12: Rotor torque contribution vs. azimuth position.

of the pressure and viscous component of the torque has been analysed and two separate

plots for λ = 2.64 and λ = 2.88 have been presented in the Fig. 5.13. The two plots

show a similar behaviour, the pressure component of the torque is higher than the total

torque. It decreases when one adds the viscous contribution that is negative for all the

period.

Another important parameter considered in this thesis is the power coefficient Cp.

It is expressed as the ratio of power extracted by the turbine to the total available in

the wind stream. The Cp is defined as:

Cp =
P

1
2ρ∞AV

3
∞

(5.10)

where P = T ·Ω is the shaft power, T is the torque and Ω is the angular velocity. The

power curve for all the λ analysed using the time-domain approach of COSA is shown

in Fig. 5.14. It shows the peak of the curve for λ = 2.88. In the next section Validation,

the power curve, will be compared with the CFD solution obtained by FLUENT.

5.5 Validation

In this thesis, a comparison between the results obtained by COSA and by the com-

mercial code ANSYS FLUENT [16] has been conducted.

The commercial code FLUENT was used in a two-dimensional form to solve the

time dependent URANS equations in pressure-based formulation. Some researchers
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(a) λ = 2.64 (b) λ = 2.88

Figure 5.13: Pressure and viscous contribution of the torque.

Figure 5.14: Power coefficient vs λ.

have recently presented [20] the assessment and validation of the main settings for the

CFD simulation of Darrieus wind turbines using FLUENT, and have verified them by

means of experimental data [20] of a rotor very similar to that investigated in the present

case study. On this basis, the same numerical settings were used also in the present

study, although a proper checks on the domain size, the spatial and the temporal

discretisation have been done. Turbulence closure is achieved by means of Menter’s

shear stress transport (SST) model derived from the k − ω two-equation formulation

[101]. The second order upwind scheme was used for the spatial discretisation of the

whole set of RANS and turbulence equations, as well as the bounded second order for
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time differencing to obtain a good resolution [15, 71]. The physical domain used in

FLUENT is split into two subdomains:

• a circular zone containing the turbine, rotating with the same angular velocity of

the rotor,

• a rectangular fixed outer zone, determining the overall domain extent

The two regions communicate by means of a sliding interface. This solution is a

common practice in this type of unsteady simulations [15, 122]. The domain was here

extended in the downstream direction for a complete development of the wake. For

the definition of the rotor geometry, only the three blades were taken into account,

neglecting the presence of supporting spokes and the shaft. Fig. 5.15 shows the sim-

ulation domain, where all the boundary distances are given as a function of the rotor

diameter (D). An unstructured mesh made up of triangular elements was used for the

discretisation of the core flow region, except for the blade boundary layer region where

a structured O-grid was generated to accurately resolve the entire boundary layer. The

Figure 5.15: Physical domain of FLUENT simulations.

rotating domain, containing the three blades, is characterised by a periodical repetition

of a 120o mesh sector, where elements are progressively coarsened with the distance

from the blade. The mesh is refined in the wake region of each blade due to the higher

complexity of the flow field downstream the trailing edge. The sliding interface (red
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(a) (b)

Figure 5.16: Computational rotating domain adopted by FLUENT simulations (a) and

an enlarged view in the aerofoil leading edge area (b).

colored in Fig. 5.16 (a)) guarantees the conservation of conservative variables all of the

quantities between the stationary and the rotating domains. The extrusion of quadri-

lateral elements for the discretisation of the boundary layer is clearly distinguishable

in Fig. 5.16 (b) for the blade leading edge. The chosen mesh topology requires a grid-

clustering ensuring a smaller spacing between the nodes in the area around the leading

and trailing edges, i.e. the regions experiencing the highest gradients.

To assess the solution sensitivity to mesh refinement, two different levels of refine-

ment of the mesh focusing on the number of grid nodes on the aerofoil and the cells

density in the rotation subdomain have been conducted. This is a crucial requirement

for the determination of both the angle of attack of the incoming flow on the blade and

the boundary layer evolution from the leading edge to the trailing edge. The sensitivity

analyses were performed for λ equal to 2.64, 2.88 and 3.30. The coarse CFLUENT grid is

characterised by 760 nodes around the aerofoil surface, a rotating subdomain consisting

of about 6.5 × 105 elements and a stationary subdomain consisting of about 2.0 × 105

elements. A velocity-inlet boundary condition is imposed at the inlet section, which is

placed 40 rotor diameters upwind of the rotating axis. The ambient pressure condition

is imposed at the outlet boundary, 100 rotor diameters downwind, while a symmetry

condition is defined for the lateral boundaries at a distance of 30 rotor diameters. The

fine FFLUENT grid, instead, has an aerofoil resolution increased to about 1400 nodes,

a rotating subdomain of about 1.2 × 106 elements and a computational domain width

was extended by placing the lateral boundaries at a distance of 50 rotor diameters
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from the rotating axis in order to avoid spurious reflections at the boundaries. The

dimensions of the domains were selected on the basis of sensitivity analyses reported

in [20]. The first element height was chosen so as to guarantee that the y+ values at

the grid nodes of the first grid line off the blade surface, for both grids, did not exceed

the limit of the SST turbulence model, i.e. y+ ≈ 1.

Fig. 5.17 highlights that for λ equal to 2.88 and 3.30, coarse and fine meshes give

identical solutions. For this reason, CFLUENT grid has been used to conduct all the

simulations for λ ≥ 2.88. For λ equal to 2.64, FFLUENT solution is fairly different from

CFLUENT and in according with the sensitivity analyses reported in [20], FFLUENT is

independent from further mesh refinement. Thus, for λ ≤ 2.64, FFLUENT has been

used for the following analyses.

The sensitivity to the temporal refinement settings was assessed through a specific

combined time step sensitivity on a similar case study [20]. From FLUENT calculations,

to obtain a solution independent from further reductions of time steps, 0.25 degrees

and 0.125 degrees rotation have been used for CFLUENT and FFLUENT respectively.

The subplots of Fig. 5.18 show the comparison between the torque coefficient com-

puted by COSA and FLUENT for λ equal to 2.64, 2.88, 3.30 and 4.04. Fig. 5.18

highlights a good agreement for all λ considered. As written above, COSA results are

obtained using medium grid for λ = 2.40 and coarse grid for λ ≥ 2.64, while FLUENT

results are obtained using coarse grid for λ ≥ 2.88 and fine grid for λ ≤ 2.64. Inspec-

tion of COSA and FLUENT profiles highlight that larger differences are shown for λ

= 2.64. These differences between the two predictions occur from 90 degrees (aerofoil

approach to its maximum α) to 240 degrees of the period (aerofoil just outside the

wake interaction region). Similar behaviour was verified for λ = 2.40. Increasing the

λ, the differences become smaller and can be neglected for the highest λ. For λ = 2.64

and 3.30, Fig. 5.18 shows another curve which refers to the FLUENT simulation using

the circular grid generated for COSA analyses with farfield placed at 120 D. In this

case, the region with radius of 3.5 D from the centre has been used as rotating circular

subdomain. These simulations have been performed to check if the small differences

observed between COSA and FLUENT were dependent on the grid. However the fact

that FLUENT using the rectangular domain (labeled FLUENT) and FLUENT using

the circular domain (labeled FLUENT 120D) show very similar profiles enables one to
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(a) λ = 2.64 (b) λ = 2.88

(c) λ = 3.30

Figure 5.17: FLUENT solution sensitivity to mesh refinement (C and F indicate coarse

and fine mesh, respectively).
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(a) λ = 2.64 (b) λ = 2.88

(c) λ = 3.30 (d) λ = 4.04

Figure 5.18: Comparison COSA - FLUENT for several λ.

rule out that the small differences between COSA and FLUENT profiles are caused by

the use of different grids.

In this research, also the comparison between COSA and FLUENT cp and cf profiles

at the rotor angular positions and of 0o, 33o, 66o, 99o, 186o and 240o have been analysed.

Fig. 5.19 and 5.20 report the cp and cf profiles for λ = 3.30. The agreement between

the two sets of results is good in all cases. The cp subplots at the first four angular

positions highlight the expected increment of the blade load due to the increment of the

angle of attack from 0o to 99o. After 99o the cp decreases as the blade load decreases.

The same behaviour is observed for all tip speed ratios analysed. Concurrently, the

separation on the blade side facing the rotor axis grows significantly, as indicated by

the forward motion of the cf cusp from about 90% of the chord at θ = 0o to about 50%
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(a) θ = 0o (b) θ = 33o (c) θ = 66o

(d) θ = 99o (e) θ = 186o (f) θ = 240o

Figure 5.19: Blade pressure coefficient predicted by the COSA and FLUENT simulations

for several angular positions (λ = 3.30).

of the chord at θ = 99o. All cf subplots also show a secondary cusp very close to the

trailing edge, which corresponds to the reattachment point of the flow.

In terms of power coefficient it is possible to compare the estimates of the 2D

simulations performed by COSA and FLUENT. The comparison is reported in Fig. 5.21

and it highlights a very good agreement for all λ. The Darrieus wind turbine analysed

in this research was also tested in Bovisa’s low turbulence wind tunnel (Milan) [1].

The main features of the 3D turbine tested in the wind tunnel are those reported in

Table 5.1 except for the blade connections to the radial arms which is different from the

CFD models and it is equal to 0.50 c. In this case, new computational grids with the

same characteristics of CFLUENT and FFLUENT have been generated. The grids are

suitable to the new blades connection point and new simulations have been run using the

solver of FLUENT. The results have been compared with experimental measurements

reported in [117] in terms of Cp. The comparison between 2D and 3D configurations is

plotted in Fig. 5.22. The data are comparable as expressed by Eq. (5.10). The swept

area A at the denominator is equal to the product of h (turbine height) and D (turbine

diameter). For the 3D case, the output torque is related to the finite length h of the
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(a) θ = 0o (b) θ = 33o (c) θ = 66o

(d) θ = 99o (e) θ = 186o (f) θ = 240o

Figure 5.20: Blade skin friction coefficient predicted by the COSA and FLUENT simu-

lations for several angular positions (λ = 3.30).

Figure 5.21: Comparison of power coefficients between COSA (2D) and FLUENT (2D)

(wind turbine geometry with blades connections at 0.25 c).

blade, so one needs to divide the power by turbine length. For the 2D case, instead,

the output power is related to a fictitious length of 1 so a division for h = 1 is required.

The 2D CFD estimates by FLUENT are in good agreement with the experimental data
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for all λ.

Figure 5.22: Comparison of power coefficients between FLUENT (2D) and experimental

measurements (3D) (wind turbine geometry with blades connections at 0.50 c).

5.6 Aerodynamic analysis

As written previously, the Darrieus rotor is characterised by an unsteady aerodynamic

behaviour due to the variation of the angle of attack with the angular position. Fig. 5.23

shows a sketch of all forces acting on the rotor. The velocity triangles show how the

Figure 5.23: Aerodynamic forces acting on a Darrieus rotor.
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direction and the amplitude of the relative wind speed W vary with the angular position

of the blades. In Fig. 5.24, the W non-dimensionalised with respect to V∞, is plotted

against θ.

Figure 5.24: Relative velocity vs. azimuth angle.

The normal force (FN ) and tangential force (FT ) to the aerofoil chord can be ex-

pressed as:

FN = L · cos(α) +D · sin(α) (5.11)

FT = L · sin(α)−D · cos(α) (5.12)

L and D are, respectively, lift and drag forces on the aerofoil. The tangential force

is considered positive when directed forward along the turbine rotate direction. The

normal and tangential forces acting on a blade can be written in terms of the sectional

non-dimensional normal force (CFN ) and sectional non-dimensional tangential force

(CFT ) defined by Eq. (5.13).

CFN =
FN

1
2ρAV

2
∞
, CFT =

FT
1
2ρAV

2
∞

(5.13)

Fig. 5.25 shows the behaviour of the CFT (subplot (a)) and the CFN (subplot (b)) over

the period. Fig. 5.25 (a) highlights a very similar behaviour of the CFT with respect to

the torque coefficient CT plotted in Fig. 5.10. For all λ, CFN starts from values close

to zero and reaches its maximum value with negative sign when the blade passing on

the upstream side (about at θ = 90o). In this position the blade is perpendicular to

116



5.6 Aerodynamic analysis

(a) CFT
(b) CFN

Figure 5.25: Tangential and normal force contributions exerted by blade 1 vs. azimuth

position.

the absolute wind direction. After 90o it reaches values close to zero for the angular

position of 180o. Between 180o and 240o some oscillations are observed also in CFN

curves, especially for lower tip speed ratios, that represent the downwind region affected

by wake/blade interactions.

In order to investigate the unsteady aerodynamics of the considered Darrieus rotor,

a detailed analysis of the flow field for several λ has been carried out. The entire

range of turbine operation has been divided in two regions denoting with low λ the

operating conditions lower than 2.88 (λ which gives the maximum Cp) and with high

λ the operating conditions greater or equal than 2.88.

5.6.1 Low tip speed ratio aerodynamics

In the preceding section, a full analysis of the Darrieus wind turbine in term of torque

and power coefficient has been presented. In order to have a visualisation of the flow

field in and around the rotor for low λ, the normalised vorticity (Ω̂) contours for λ =

2.40 and λ = 2.64 have been used and reported in Fig. 5.26. The vorticity is a vector

field Ω̂ defined as the curl of the velocity vector v̂. The vorticity of a two-dimensional

flow is always perpendicular to the plane of the flow, so Ω̂ vector is parallel to the z

axis, and can be expressed as:

Ω̂ =

(
∂

∂x
,
∂

∂y
,
∂

∂z

)
× (vx, vy, 0) =

(
∂vy
∂x
− ∂vx

∂y

)
ẑ (5.14)
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(a) λ = 2.40 (b) λ = 2.64

Figure 5.26: Normalized vorticity contours past the rotor predicted by COSA simulations.

The normalised vorticity plotted in the figures has been obtained normalising the di-

mensional vorticity by the ratio between the freestream sound speed and the aerofoil

chord.

For λ = 2.40 (Fig. 5.26 (a)) and λ = 2.64 (Fig. 5.26 (b)) one can see the flow

separation near the blade on upwind side (θ = 120o) and vortices which are generated

as a consequence of the stalled flow. These blades vortex shedding, crossing the rotor,

interact with the blade itself on the returning side (from θ = 180o to θ = 270o). The

vorticity of λ = 2.40 highlights a larger flow complexity than λ = 2.64 due to the stalled

condition of the aerofoil induced by the higher angle of attack.

Stall condition and flow separation of blade 1 (which is the blade that start the

rotor revolution on the top and goes against the wind), are emphasised in Fig. 5.27

for λ = 2.40, for several angular positions. It depicts the COSA flow streamlines and

Mach contours in the aerofoil region. One can see that the separation starts when

θ = 60o (α ≈ −17o) and increases going to θ = 90o. In this angular position, there

is a secondary smaller recirculation very close to the trailing edge which rotates in

the opposite direction comparing with the first one. Fig. 5.27 (e) demonstrate the

presence of the stall which appears to be even stronger than θ = 90o and the secondary

recirculation has a comparable size with the first one. After θ = 120o, the relative angle

of attack starts to decrease and it approaches to θ = 150o where the recirculations move
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near the trailing edge of the aerofoil and they leave the blade. The vortex shedding

will cross the rotor and it will impact on the blade itself on the downstream. The low

wind speed is mainly characterised by the development of vortices that will interact

with the blades. The generation of those vortices can generate other problems such as

vibrations, noise and reduction of fatigue life of the blades.

5.6.2 High tip speed ratio aerodynamics

Going from λ = 2.88 to λ = 4.04 (Fig. 5.28), there appears to be a gradual reduction

of the vortex shedding. For λ = 4.04 the flow appears to be completely attached to

the blade during the entire rotation and only very long wakes are present around the

rotor. The wakes/blade interactions still occur as shown by Fig. 5.28 (c).

As done for λ = 2.40 in Low tip speed ratio aerodynamics subsection, Fig. 5.29

shows the streamlines and Mach contours for λ = 3.30 and θ equal to 0o, 30o, 60o, 90o,

120o and 150o. One can see that the level of the stalled flow is lower than λ = 2.40

and the recirculation that appears at 60o increases its size going to 90o and 120o. The

secondary vortex on the trailing edge that rotates in opposite direction with respect to

the first vortex, is even smaller than that occurs for λ = 2.40 case. Approaching to 150o

the circulation, that appears near the trailing edge, starts to decrease and no vortex

shedding occurs since the main trailing edge vortex is still attached to the aerofoil, and

thereafter the amount of stall decreases as a result of the rapid reduction of the angle

of attack.

5.7 Conclusion

A detailed time-domain CFD analysis of a Darrieus wind turbine has been presented.

On the modelling side, the chapter reports some important parametric analysis on the

numerical set-up like the sensibility to the farfield boundary distance, sensibility to

mesh and temporal refinement and sensibility to the characteristic turbulent variables

of the SST turbulence model. The analysis also showed a comparison with results

obtained by a commercial CFD code. In addition, the aerodynamics analyses of the

considered wind turbine highlighted an higher level of flow nonlinearity, particularly

for lower λ, characterised by stalled flow near the blades, vortices that pass through

the rotor and interactions between vortices and blades. Mach contour plots, vorticity
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(a) θ = 0o, α = 0o (b) θ = 30o, α = −8o

(c) θ = 60o, α = −17o (d) θ = 90o, α = −23o

(e) θ = 120o, α = −25o (f) θ = 150o, α = −19o

Figure 5.27: Streamlines and Mach contours in the aerofoil region obtained with COSA

simulations (λ = 2.40).
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(a) λ = 2.88 (b) λ = 3.30

(c) λ = 4.04

Figure 5.28: Normalized vorticity contours past the rotor predicted by COSA simulations.
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(a) θ = 0o, α = 0o (b) θ = 30o, α = −6o

(c) θ = 60o, α = −13o (d) θ = 90o, α = −17o

(e) θ = 120o, α = −17o (f) θ = 150o, α = −11o

Figure 5.29: Streamlines and Mach contours in the aerofoil region obtained with COSA

simulations (λ = 3.30).
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contour plots and streamlines showed these unsteady effects which occur during normal

VAWT working condition.
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Chapter 6

Time-domain analysis of

horizontal axis wind turbines

The aeromechanical design of HAWTs is a complex multidisciplinary task that requires

consideration of a large number of operating regimes due to the extreme variability of

the environmental conditions on time scales ranging from seconds (i.e. wind gusts) to

months (i.e. seasonal wind variations). As seen for VAWTs analysis, also for HAWT,

the use of high-fidelity computational aerodynamics tools such as NS solvers in an

integrated aeromechanical analysis and design system has the potential to accurately

predict the behaviour of new HAWT configurations and their extreme off-design op-

erating conditions. Several outstanding examples of the predictive capabilities of NS

solvers for HAWT aerodynamics have been published [61, 84, 137]. Yawed wind regime

which occurs when the freestream wind velocity is not orthogonal to the turbine rotor,

is one for which the underlying assumptions of BEMT-based systems are particularly

weak, and a more reliable analysis of which would therefore benefit from the use of

unsteady NS solvers. A complete 2D TD NS analysis of yawed flow past the blades

of a 8 MW HAWT rotor is presented in this chapter. The blade sections at 30% and

85% have been considered to study the forces acting on the blade and the flow details

during the entire rotor revolution.
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(a) front view (b) top view

Figure 6.1: Schematic views of HAWT in yawed wind.

6.1 Yawed wind modelling

The details of the HAWT analyses and the kinematic model are reported below. The

periodic flow regime experienced by the aerofoils of a HAWT blade in yawed wind

depends on the freestream wind speed V∞, the turbine rotational speed Ω, the angle δ

between V∞ and the normal to the rotor plane (yaw angle), the chord c of the aerofoil

and its distance R from the rotational axis. Fig. 6.1 respectively depicts the front

and top views of a HAWT in yawed wind, and highlight some of the aforementioned

parameters. The circumferential position of a blade is defined by the angle θ = Ωt,

which is taken to be zero when the blade is vertical and descending (position A).

Fig. 6.2 reports the velocity triangles associated with a blade aerofoil at distance

R from the rotational axis for the positions labeled A to D in the Fig. 6.1 (a). The

modulus of the axial velocity component, |V∞ cos(δ)|, and that of the entrainment

velocity, |Ω× R|, are the same in all four triangles. The velocity W i and the angle φi

(i = A,B,C,D) denote respectively the wind velocity and inflow angle observed by the

considered blade section, and both parameters vary with θ. Each velocity triangle is

contained in the plane tangent to the cylinder of radius R centred on the rotational axis,

and it therefore neglects radial (i.e. along the blade axis) velocity components. The

magnitude of the discarded radial component varies with θ: no component is discarded
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6.1 Yawed wind modelling

Figure 6.2: Velocity triangles of HAWT blade section for position labeled A to D.

when the blade is vertical (positions A and C), as the entire vector V∞ is contained in

the tangent plane; the entire radial component V∞ sin(δ) is instead neglected when the

blade is horizontal (positions B and D), as the radial component of V∞ is orthogonal

to the tangent plane.

Given the above, the axial and circumferential components of the farfield wind

velocity perceived by a blade section are respectively:

WX = V∞ cos(δ), Wθ = ΩR− V∞ sin(δ) cos(Ωt) (6.1)

which define a time-dependent velocity vector W . The angle formed by W and the

rotor plane is:

φ = arctan(WX/Wθ) (6.2)

The 2D simulation of the unsteady flow past the blade aerofoil of the HAWT in

yawed wind could be performed by using a motionless domain and enforcing the time-

dependent farfield velocity defined by Eq. (6.1). To simplify the code development work

associated with designing, testing and implementing reliable time-dependent farfield

boundary conditions, however, the alternative choice of using a moving-domain simu-

lation with steady farfield conditions and suitably defined grid motion has been made.

The modulus W∞ and the orientation φ∞ of the time-independent freestream are ob-

tained by discarding the time-dependent term of Wθ, and their expressions are respec-

tively:

W∞ =
√

(V∞ cos δ)2 + (ΩR)2 (6.3)
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φ∞ = arctan [(V∞ cos δ)/(ΩR)] (6.4)

In the moving-domain simulations, the aerofoil and the grid experience a horizontal

sinusoidal motion with time-dependent displacement h(t) defined by:

h(t) = h0 sin(Ωt), h0 = V∞ sin δ/Ω (6.5)

A typical HAWT aerofoil twisted by an angle γp is depicted in the left sketch of Fig. 6.3

along with an indication of the harmonic motion. The right plot provides a represen-

tation of Eq. (6.5), and the four positions A to D correspond to those labeled with the

same symbols in Fig. 6.1 and 6.2.

Figure 6.3: Harmonic motion of HAWT blade section corresponding to yawed inflow.

6.2 Computational set-up

The selected turbine is a 8 MW HAWT for off-shore application and the main charac-

teristics are reported in Table 6.1. The rotor speed of 12 RPM corresponds to a value

Blades number (Nb) 3

Rotor radius (R) [m] 82

Rotor speed [RPM ] 12.0

Swept area (A) [m2] 21,124

Max. chord (c) [m] 5.4

Table 6.1: Main features of the analysed rotor.
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of Ω of about 1.26 rad/s. The freestream wind velocity V∞ is 13 m/s, and a yaw angle

δ of 45o is assumed. In this research, the blade sections at 30% rotor radius (inboard

blade) and at 85% rotor radius (outboard blade) have been simulated. The details of

each blade section are summarised in the Table 6.2 (a) and (b). The Reynolds number

radius (R) [m] 24.6

chord (c) [m] 5.225

twist angle (γp) 10.44o

aerofoil type DU-W-350LM

(a) section 30%

radius (R) [m] 69.7

chord (c) [m] 2.822

twist angle (γp) 1.36o

aerofoil type NACA64-618

(b) section 85%

Table 6.2: Rotor details in the two blade sections considered.

used to perform these two simulations is defined by Eq. (6.6)

Re =
ρ ·W∞ · c

µ
(6.6)

where:

- ρ is the standard density of 1.22 kg/m3

- W∞ is the relative freestream velocity

- c is the chord

- µ is the dynamic viscosity at standard temperature of 288 K

The reduced frequency K = Ωc/W∞ has been computed using the rotational speed

Ω, the chord and the relative freestream velocity W∞ defined by Eq. (6.3). The

freestream Mach number M∞ has been computed by the ratio between W∞ and the

speed of sound. The value of α∞ between the relative freestream and the chord is ob-

tained by subtracting the twist γp to the inflow angle φ∞ obtained from Eq. (6.4). The

computational parameters adopted in the 2D simulations at section 30% and 85% of

the blade radius are summarised in Table 6.3. In the unsteady simulations, the whole

grid undergoes a sinusoidal motion defined by Eq. (6.5), with amplitude h0 defined in

Table 6.3. All TD simulations have been performed using the MG solver with 3 grid

levels and CFL ramping with final CFL number equal to 4.
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Reynolds (Re) 1.15 · 107

Mach number (M∞) 0.095

reduced freq. (K) 0.203

inflow angle (φ∞) 16.56o

relative AoA (α∞) 6.12o

motion amplitude (h0) 1.4 c

(a) section 30%

Reynolds (Re) 1.70 · 107

Mach number (M∞) 0.259

reduced freq. (K) 0.040

inflow angle (φ∞) 5.99o

relative AoA (α∞) 4.63o

motion amplitude (h0) 2.59 c

(b) section 85%

Table 6.3: Computational parameters adopted to simulate the two blade sections consid-

ered.

6.3 Sensitivity analysis

A parametric analysis aiming at assessing the sensitivity of the computed solution to

the size of the physical time-step has been carried. To conduct all the analyses for both

blade sections, two reference grids have been used. They are characterised by different

aerofoils to simulate. Both meshes are C-grids type (Fig. 6.4) with farfield boundary

placed at about 50 chords from the aerofoil. The grids are identical in terms of number

of cells, mesh intervals along the aerofoil, intervals in the grid cut and in the normal-like

direction. The details of both grids are summarised in the Table 6.4

grid type n. of cells int. along the airf. int. grid cut int. normal-like dir.

C-grid 524,288 512 256 512

Table 6.4: Details of grids used to simulate 30% and 85% blade sections of an 8 MW

HAWT.

The distance dw of the first grid points off the aerofoil surface from the surface

itself was set about 1 · 10−6c. The nondimensional minimum distance from the wall

y+ was smaller than 1 in all simulations. All TD simulations have been run until the

maximum Cx, Cy and C ′m differences over two consecutive oscillation cycles became

less than 0.1% of their maxima over the latter cycle of the cycle pair. These coefficients
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Figure 6.4: C-grid type adopted for the analyses of both HAWT blade sections. For

visual clarity, only every second line of both grid line sets is plotted.

are defined respectively as:

Cx =
Fx

0.5ρ∞W 2
∞c

, Cy =
Fy

0.5ρ∞W 2
∞c

, C ′m =
M

0.5ρ∞W 2
∞c

2
(6.7)

where the horizontal force per unit blade length Fx is the tangential force component

that results in useful torque; the vertical force per unit blade length Fy is the axial

force component that results in rotor thrust; the pitching moment M per unit blade

length results in a torsional load on the blade.

In all simulations, the aerofoils and the whole grids are inclined by the respective

twist angle γp on the horizontal direction. Fig. 6.5 provides an enlarged view of the

coarse grids in the aerofoil region.

6.3.1 Time-refinement analysis

The temporal refinement analysis has been conducted for both blade sections. The

results are compared in terms of conventional lift Cl, drag Cd and pitching moment Cm

coefficients. This second set of forces is defined as:

Cl =
L

0.5ρ∞W 2c
, Cd =

D

0.5ρ∞W 2c
, Cm =

M

0.5ρ∞W 2c2
(6.8)

130



6.3 Sensitivity analysis

(a) section 30% (b) section 85%

Figure 6.5: Grids view in the aerofoil region.

where W 2 = W 2
X +W 2

θ is the time-dependent dynamic head. The direction of the lift

force per unit blade length L, and that of the drag force per unit blade length D also

vary during the rotor revolution, as they depend on the inclination of the vector W

on the rotor plane. The curves of the Cl, Cd and Cm force coefficients over one rotor

revolution computed by the reference grids have been analysed. A time-step study

was performed for the section at 30%, to determine the minimal time-resolution of

the TD analysis required to obtain a solution independent of further reductions of the

physical time-step. Four TD simulations have been performed using 256, 128, 64, and

32 physical time-steps per period and they are denoted by TD 256, TD 128, TD 64

and TD 32, respectively. The Cl, Cd and Cm force coefficients over one rotor revolution

are depicted in the three subplots of Fig. 6.6. The variable along the x-axis of these

subplots is the percentage time of a period T .

These results show that at least 64 intervals per period are required to achieve lift

and drag predictions independent of further increments of the time resolution, whereas

at least 128 intervals per period are required for a time-grid independent estimate of

the pitching moment. Thus, TD 128 simulation is therefore taken as the reference TD

result for the blade section 30%.

The minimal time-resolution of the TD analysis for section at 85% has been per-

formed using four TD simulations with the same number of time steps per period used

for section 30%. The Cl, Cd and Cm force coefficients are shown in Fig. 6.7. These

results show that for lift, drag and pitching moment there are negligible differences
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(a) Cl (b) Cd

(c) Cm

Figure 6.6: Sensitivity to temporal refinement for section 30%. The x-axis indicates the

percentage time of a period T.
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(a) Cl (b) Cd

(c) Cm

Figure 6.7: Sensitivity to temporal refinement for section 85%. The x-axis indicates the

percentage time of a period T.
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between TD 64, 128 and 256, whereas some relatively larger differences are shown be-

tween TD 32 and the other TD results. Thus, TD 64 is taken as reference TD result

for the following analysis of section 85%.

6.4 Aerodynamic analysis

Detailed aerodynamic analyses of the blade aerofoil at section 30% and 85%, of the

rotating 8 MW HAWT blade in yawed wind are considered in this section. The results

are presented in terms of conventional lift, drag and pitching moment coefficients. In

addition, vorticity contours are presented to highlight flow details past the aerofoil at

position 0%, 25%, 50% and 75% of the rotor revolution.

6.4.1 Inboard blade

Fig. 6.8 reports the Cl, Cd and Cm solutions for section 30% obtained with the reference

grid and 128 time steps per period and the value of the angle α∞ between the time-

dependent freestream velocity W defined by Eq. (6.1) and the chord over one period.

In general, the angle α = φ − γp, which is determined by the yawed flow conditions

upstream of the turbine, differs from the local AoA, which defines the flow direction

close to the blade, due to the blade-bound vorticity. The analyses do not take into

account this difference, but this omission is believed not to alter the main conclusions

of the analyses below. The local AoA could be easily determined by postprocessing the

computed velocity field as proposed in [129]. Moreover, the three subplots of Fig. 6.8

shows that α has its maximum at the beginning of the period, when h(0) = 0 and the

blade is at θ = 0o (position A in the sketch of Fig. 6.1 (a)), and it decreases to its

minimum at 50% of the period. When h(0.5T ) = 0 again and the blade is at θ = 180o

(position C in the sketch of Fig. 6.1 (a)). In the first half of the period, the blade

sweeps a 180o-sector starting from the vertical position above the hub and moving in

the counterclockwise direction indicated in the sketch of Fig. 6.1 (a). As the blade

moves from its lowest to its highest vertical position in the second half of the period,

the angle α increases from its minimum to its maximum.

Fig. 6.8 (a) highlights that the lift force coefficient is fairly non-hysteretic whereas

Fig. 6.8 (b) shows a peak of Cd shortly before the end of the period. This occurrence

breaks the symmetry of the Cd curve with respect to the t/T = 0.5 axis, and denotes
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(a) Cl (b) Cd

(c) Cm

Figure 6.8: Time-evolution of force coefficients of 30% blade section.

the existence of a hysteretic loop, quite pronounced for the highest values of α. The

existence of the Cd hysteresis loop denotes a significant level of flow nonlinearity. This

is likely to be due to a flow reversal at the trailing edge (TE) on the suction side (SS)

when the blade approaches its highest vertical position, and the relatively high value of

the reduced frequency at the considered radius. Also the pitching moment coefficient

curve highlights a pronounced hysteretic loop like the drag coefficient. It should be

noted that the dynamic head and the relative flow direction used to compute the Cl,

Cd and Cm coefficients vary during the period, and therefore they do not provide a

direct measure of the sectional aerodynamic loads.

The four subplots of Fig. 6.9 depict the TD 128 contours of the flow vorticity Ω̂ and

the streamlines past the blade section when the aerofoil is at 0, 25, 50 and 75 percent of
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the revolution cycle. The subplots referring to the 0% position confirms the existence

of a pocket of stalled flow in the trailing edge region when the blade is at its highest

position. Inspection of the four subplots also reveals that the 0% position is also that

in which the section experiences the thickest SS boundary layer, as highlighted by the

large amount of vorticity on the SS relative to the other three positions. It is also noted

that the variation of the direction of the oncoming flow visible in the four subplots is

consistent with the variation of the direction of the velocity vector W observed in the

four velocity triangles of Fig. 6.2.

6.4.2 Outboard blade

The outboard blade section analysed highlights that lift, drag and pitching moment

coefficient are fairly non-hysteretic. This behaviour shows a very small level of flow

nonlinearity with respect to the inboard blade case. Fig. 6.10 (a), (b) and (c) report

the curves of Cl, Cd, Cm and the value of the angle α∞. The angle α has its maximum

at the beginning of the period, when θ = 0o and it decreases to its minimum at 50%

of the period as it has shown for the previous blade section analysed. For section 85%,

the variation of the amplitude of α is quite smaller in comparison to the 30% section.

The lift coefficient (Fig. 6.10 (a)) shows a peak at the beginning of the period and it

appears to be symmetric about the axis t/T = 0.5. The variation between its minimum

and maximum values is about 6 times smaller with respect to the Cl value obtained at

section 30% counterpart. Also the drag coefficient and the pitching moment coefficient

curves (Fig. 6.10 (b) and (c)) report the same symmetric behaviour which does not

denote the existence of a hysteretic loop. The reduction of the level of nonlinear flow

at section 85% is linked to value of the reduced frequency K reported in the section

Computational set-up. K is a parameter that defines the degree of unsteadiness of the

problem, and one can see that it decreases going from the inboard to the outboard

section of the blade. At section 85%, K = 0.04 is about 5 times smaller than the value

at section 30% and as expected the aerofoil does not present complicate phenomena

like stall and separation.

The four subplots of Fig. 6.11 depict the TD 64 contours of the flow vorticity and

the streamlines past the blade section when the aerofoil is at 0, 25, 50 and 75 percent of

the revolution cycle. All subplots show no stalled flow in the TE region of the aerofoil.
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(a) A: 0% (b) B: 25%

(c) C: 50% (d) D: 75%

Figure 6.9: Strealines and vorticity contours at four positions of the revolution cycle

(section 30%).
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(a) Cl (b) Cd

(c) Cm

Figure 6.10: Time-evolution of force coefficients of 85% blade section.
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Also when the blade is at its highest position (A in Fig. 6.1), α is not too high to induce

the stall and the flow appears to be completely attached to the blade.

6.5 Conclusion

The chapter reports a 2D time-domain analysis of two blade sections of an off-shore

multi-megawatt horizontal axis wind turbine working in yawed wind condition. The

forces acting on the blade sections at 30% (inboard blade) and 85% (outboard blade),

and the flow details during the entire rotor revolution have been studied. An aerody-

namic analysis in terms of conventional lift, drag and pitching moment coefficients has

highlighted, for the inboard blade, the existence of hysteretic loops of drag and pitching

moment coefficient which denotes a significant level of flow nonlinearity. It is confirmed

from the vorticity analysis, where a pocket of stalled flow near the trailing edge for the

highest values of α is visible. Conversely, the flow analysis at outboard blade section

shows that forces coefficients are non-hysteretic and no stalled flow occurs during the

blades rotation.
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(a) A: 0% (b) B: 25%

(c) C: 50% (d) D: 75%

Figure 6.11: Strealines and vorticity contours at four positions of the revolution cycle

(section 85%).
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Chapter 7

Harmonic Balance acceleration of

wind turbine unsteady flow

analysis

This chapter presents the turbulent results of COSA HB solver to predict the yawed

wind periodic loads acting on multimegawatt HAWT blade section geometries and

to predict the flow past the rotor of a Darrieus wind turbine for several operating

conditions. Several spectral refinement analyses have been conducted for each test

case to find the correct number of complex harmonics which reproduces accurately the

respective TD solutions. HB speed-ups and MG overheads will highlight the advantage

of using COSA HB solver to study engineering problems more than 10 times faster

than its TD counterpart.

7.1 HB analysis of HAWT

The HB analysis of the HAWT has been performed at 30% and 85% blade sections

as done for the TD analysis counterpart and it has been conducted to determine the

minimum number of harmonics to reproduce the TD solutions in terms of horizontal

force coefficient, vertical force coefficient and constant-head pitching moment coefficient

defined by Eq. (6.7). In addition, to assess in greater detail the differences between the

TD and HB analyses, the blade static pressure cp and the blade skin friction coefficient

cf have also been compared. The analysis of each blade section is followed by the HB
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speed-ups calculations which highlight the HB efficiency with respect to the traditional

TD approach.

7.1.1 Spectral refinement of inboard blade

The spectral refinement analysis has been performed first for the blade section at 30%.

To determine the minimum number of harmonics required to resolve the time-dependent

problem at hand with the HB solver achieving a time-resolution comparable to that of

the TD, five HB calculations have been performed. These five simulations use values of

NH of 1, 2, 3, 4 and 5 and they are denoted by the acronym HB followed by the value

of NH .

The hysteresis cycles of Cx, Cy and C ′m force coefficients computed by the five HB

analyses are compared with the TD 128 results obtained from the refinement assessment

of the respective section and are plotted against α in the three subplots of Fig. 7.1.

These results show that at least 5 complex harmonics are required to achieve a resolution

of the force coefficients comparable to that of the TD 128 simulation, since the HB 5

force loops is superimposed to the TD curves of all three force coefficients, whereas HB

4 shows little discrepancies for highest values of α. Lower number of harmonics present

discrepancies more evident for the entire range of the angle α. The noticeable size of the

hysteresis loops of Fig. 7.1 also highlights that the level of nonlinearity of the periodic

flow field caused by the yawed wind condition requires the use of nonlinear frequency-

domain CFD. The use of linear CFD is likely to yield insufficiently accurate estimates

of the time-dependent loads required for reliable fatigue and aeroelastic analysis and

design of the HAWT blades. It is also observed that Cx, Cy and C ′m coefficients point

to periodic variations of the contribution of this section, to the rotor thrust, torque and

blade torsional loads of about ± 22%, ± 15% and ± 40% respectively. The variation of

the coefficients is computed with respect to their mean value and one can see that C ′m

points to a significant contribution of this section to the blade torsional loads caused

by the yawed wind regime.

The real and imaginary parts of the first harmonic component of pressure coefficient

cp computed by the TD and the five HB analyses are plotted in Fig. 7.2. In both

cases, the x-axis reports the axial position along the aerofoil normalized by the chord.

The imaginary part of cp confirms that 5 harmonics are necessary to resolve the flow

unsteadiness with the HB analysis, whereas the real part of cp does not show large
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(a) Cx (b) Cy

(c) C ′
m

Figure 7.1: Hysteresis force loops of 30% blade section.
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(a) cp real part (b) cp imaginary part

(c) cf real part (d) cf imaginary part

Figure 7.2: Pressure coefficient (cp) and skin friction coefficient (cf ) of 30% blade section.

differences, showing that HB 2 result is sufficient to achieve the TD accuracy. The

real and imaginary part of the first harmonic component of skin-friction coefficient cf

computed by the TD and the five HB analyses are reported in the subplot (c) and (d)

of Fig. 7.2. One can see the same behaviour observed for the cp results. An adequate

HB resolution of the imaginary part of cf requires NH = 5, while the resolution on the

real part of cf needs at least 2 harmonics. For both cp and cf , only the comparison of

the first harmonic components are shown because they give the biggest contribution.

7.1.2 Spectral refinement of outboard blade

The spectral refinement analysis performed at section 30%, has been done also for

section 85%. Five HB simulations have been run to determine the minimum number
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of harmonics required to resolve the flow problem using the HB solver. These five

simulations used values of NH of 1, 2, 3, 4 and 5.

The hysteresis cycles of Cx, Cy and C ′m force coefficients computed by the five HB

analyses are compared with the TD 64 results obtained from the refinement assessment

of section 85% and are plotted against α in the three subplots of Fig. 7.3. These results

show that at least 3 complex harmonics are required to achieve a resolution of the force

coefficients comparable to that of the TD 64 simulation, since HB 3, 4 and 5 force

loops are superimposed to the TD curves of Cx and C ′m, whereas HB 2 and 1 differ

very little. The Cy plot highlights that HB 2 is sufficient to reproduce the TD result,

but HB 3 was selected as reference for this blade section analysis since 3 harmonics

are required to accurately reproduce Cx and C ′m force coefficients. The size of the

hysteresis loops of Fig. 7.3 highlight that the level of nonlinearity of the periodic flow

field is decreased with the decreasing of the reduced frequency, consistently with the

conclusions deducted form the TD analysis in Chapter 6 . It is also observed that the

Cx, Cy and C ′m loops, point to periodic variations of the coefficients, computed with

respect to their mean value of about ± 3%, ± 15% and ± 20% respectively, highlighting

a smaller hysteresis cycles of thrust and blade torsional loads caused by the yawed wind

regime on this blade section.

The real and imaginary part of the cp computed by the TD analysis and the five

HB analyses are plotted in Fig. 7.4. The real and imaginary part of cp confirm that

3 harmonics are sufficient to resolve the flow unsteadiness with the HB solver even if

HB 2 solution does not show large differences. The real and imaginary part of the cf

reported in the subplot (c) and (d) of Fig. 7.4 show the same behaviour observed for

the cp results. An adequate HB resolution of the real and imaginary part of cf requires

NH = 3.

7.1.3 HB speed-ups and MG overheads

The HB analyses performed for blade section at 30% have been run for 15,000 MG iter-

ations, since this was the minimum value required for the convergence of all harmonics

of all force components for all five HB analyses. Each physical time-step of the TD 128

analysis has instead used 2,000 MG iterations, as this value has been sufficient for the

convergence of all force components. In order to reduce the periodicity error below the
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(a) Cx (b) Cy

(c) C ′
m

Figure 7.3: Hysteresis force loops of 85% blade section.
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(a) cp real part (b) cp imaginary part

(c) cf real part (d) cf imaginary part

Figure 7.4: Pressure coefficient (cp) and skin friction coefficient (cf ) of 85% blade section.
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0.1% threshold, eight revolutions had to be simulated starting from a freestream initial

condition.

The convergence histories of the five HB analyses and that of the TD 128 simulation

are reported in Fig. 7.5. The variable on the x-axis is the number of MG iterations.

For the HB analyses, the variable ∆lr on the y-axis is the logarithm in base 10 of

the normalised RMS of all cell-residuals of the four RANS equations of the 2NH + 1

snapshots. Each RMS curve is normalised by the RMS value at the first MG iteration.

For the TD 128 analysis, the variable ∆lr on the y-axis is instead the logarithm in

base 10 of the RMS of all cell-residuals of the four RANS equations of the 128 physical

times of the last period. An interesting feature is that the convergence histories of all

HB analyses are fairly close to each other. Some differences are only observed between

HB 1 curve on one hand, and the other four HB curves on the other. This occurrence

appears to confirm that the periodic flow nonlinearity is dominated by the first two

harmonics: the contribution of the progressively smaller higher-frequency harmonics of

the HB 3, HB 4 and HB 5 analyses does not affect significantly the spectrum of the

linearised operator associated with the integration of these HB set-ups with respect to

that associated with the HB 2 set-up. Fig. 7.5 also reports the convergence history of

the steady problem obtained from the HB set-up by only turning-off the grid motion.

The curve of the steady residual history does not differ substantially from those of

the HB analyses, and this points to the fact that the level of flow unsteadiness in the

problem at hand is not very high.

Figure 7.5: Convergence hystories of TD, HB and steady analyses for 30% blade section.

148



7.1 HB analysis of HAWT

When one solves the HB equations, the CPU-time of one HB MG iteration increases

superlinearly with NH . This implies that the cost of a HB NH simulation with a given

number of MG cycles is higher than (2NH + 1) times the cost of the steady simulation

using the same number of MG cycles. This overhead is due to the calculation of the HB

source term ωVHDHQH appearing in Eq. (4.36), and is proportional to (2NH + 1)2.

Such an overhead can be quantified by taking the ratio of the measured CPU-time

of one MG iteration of the HB NH analysis and that of one MG cycle of the steady

analysis, and dividing such a ratio by (2NH + 1). The variable CMG thus obtained is

reported in the second row of Table 7.1. It is seen that the overhead for the calculation

of the HB source term with the HB 5 analysis makes the average CPU-time of the

portion of one HB MG cycle for calculating one HB snapshot about 74% higher than

that of one steady MG cycle. The sixth column of Table 7.1 reports CMG for the TD

simulation. The small overhead of 2% is that required for the calculation of the source

term 1.5Qn+1/∆t appearing in Eq. (3.55). The HB speed-up parameter, defined as

the ratio of the wallclock time of the TD 128 simulation and the HB analysis for the

five values of NH is reported in the third row of Table 7.1. It is seen that the HB 5

analysis allows a very accurate estimate of the time-dependent loads associated with

the considered yawed condition to be obtained more than 7 times faster than TD 128

analysis.

Table 7.1: Acceleration factors of HB analyses with respect to TD analysis for the 30%

blade section.

HB 1 HB 2 HB 3 HB 4 HB 5 TD 128 steady

CMG 1.21 1.38 1.52 1.60 1.74 1.02 1.00

speed-up 38.4 20.3 13.1 9.7 7.3 1.00

For section 85%, 12,000 MG iterations was the minimum value required for the con-

vergence of all harmonics of all force components for all five HB analyses. For the TD 64

analysis counterpart has instead used 3,000 MG iterations for each physical time-step.

In order to reduce the periodicity error below the 0.1% threshold, seven revolutions had

to be simulated starting from a freestream initial condition. The convergence histories
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7.2 HB analysis of VAWT

of the five HB analyses and that of the TD 64 simulation have a similar behaviour like

that observed for section 30%. Table 7.2 reports the CMG (second row) and the HB

speed-up (third row) obtained from the section 85% simulations. In this case the CMG

for the TD analysis refers to TD 64 simulation. The overhead for the calculation of the

HB source term with the HB 3 analysis (which is taken as reference for this section),

makes the average CPU-time of the portion of one HB MG cycle for calculating one

HB snapshot about 38% higher than that of one steady MG cycle. It is seen that the

HB 3 analysis gives an accurate estimate of the TD resolutions more than 10 times

faster than the TD 64 analysis.

Table 7.2: Acceleration factors of HB analyses with respect to time-domain analysis for

the 30% blade section.

HB 1 HB 2 HB 3 HB 4 HB 5 TD 64 steady

CMG 1.22 1.38 1.51 1.63 1.73 1.02 1.00

speed-up 31.2 16.6 10.8 7.8 6.00 1.00

In the Table 7.1 and 7.2 can be viewed that the cells of the speed-ups corresponding

to the steady calculations are empty because the speed-ups are measured between two

approaches which allow to get a periodic solution. The steady calculations do not allow

it and for this reason they do not represent a term of comparison with respect to HB

and TD approaches.

7.2 HB analysis of VAWT

The HB analysis of the VAWT problem has been performed for two different λ. Several

HB simulations have been done to find the minimum number of harmonics to reproduce

the TD solutions in term of tangential force, normal force and torque coefficients defined

by Eq. (7.11). Moreover, a comparison of cp and cf has been performed to study in

greater detail the differences between the TD and HB analyses and it is shown in the

next subsection. The HB VAWT analyses for each λ is followed by the HB speed-

ups calculations which highlight the efficiency of the HB approach with respect to TD

counterpart, also for strongly non-linear problems.
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7.2.1 Spectral refinement

The spectral refinement analysis of the VAWT problem, has been performed for two

operating conditions. λ = 2.88 and λ = 3.30 have been selected. To determine the

minimum number of harmonics to achieve a solution comparable to that of the TD,

for λ = 2.88, four HB simulations have been performed. These four simulations use

values of NH of 8, 16, 32 and 64. The tangential force coefficient CFT , normal force

coefficient CFN and the torque coefficient CT of an entire rotor revolution computed

by the four HB analyses, are plotted against θ and are compared with the TD 720

solution. The HB results are denoted by the acronym HB followed by the value of NH .

The results of CFT , CFN and CT reported in the subplots of Fig. 7.6 show that the

solutions using 32 complex harmonics are not exactly superimposed to the TD result

but they can be chosen as reference because they achieve a similar resolution to the

TD 720 simulation during the entire upwind area and HB 64 results does not improve

too much the accuracy. In the downwind region the interaction with wakes increases

and achieving the same TD accuracy is more difficult because the periodic flow has the

highest nonlinearity. HB 8 and the HB 16 results present large discrepancies and they

are not sufficient to achieve a good solution.

One can see several oscillations in the HB 32 and HB 64 solutions of all force

coefficients. They appear in the upwind region, between the peak and θ = 180o, where

the blade is going to move in the same direction of the wind freestream and the relative

wind velocity to the blade decreases until to reach its minimum value at θ = 180o. The

convergence histories of the four HB analyses for λ = 2.88 are reported in Fig. 7.7.

The variable on the x-axis is the number of MG iterations and the variable ∆lr on the

y-axis is the logarithm in base 10 of the normalised RMS of all cell-residuals of the four

RANS equations of the (2NH + 1) snapshots. Each RMS curve is normalised by the

RMS value at the first MG iteration. Fig. 7.7 shows a small convergence rate for all

HB analyses. The residuals convergence decreases only two order of magnitude. The

difference between the level of the residuals convergence between VAWT and HAWT

highlights the different flow complexity. For higher nonlinear problems like VAWT,

the HB approach can become unstable as in this case. As a consequence, also the

convergence of forces does not achieve a constant solution, even if a large number of

MG iterations is used. Taking as reference the calculation HB 32, the convergence of
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(a) CFT (b) CFN

(c) CT

Figure 7.6: Spectral refinement analysis of blade 1 for λ = 2.88.
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Figure 7.7: Convergence hystories of HB analyses for λ = 2.88.

CT in a few snapshots has been plotted in Fig. 7.8. It shows that several oscillations

affect the complete CT convergence. Very similar behaviour has been found for the

convergences of tangential and normal force coefficients. The snapshots reported in

Fig. 7.8 correspond to θ equal to 30o, 90o, 150o and 240o, respectively. Has been verified

Figure 7.8: CT convergence in four different snapshots of HB 32 analyses for λ = 2.88.

that similar oscillations occur also in the forces convergence obtained for different λ for

the same reason.

The spectral refinement analysis for λ = 3.30 have been performed in the same way.

Using the same set of NH , the simulation with 32 complex harmonics has been selected
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(a) CFT
(b) CFN

(c) CT

Figure 7.9: Spectral refinement analysis of blade 1 for λ = 3.30.

as reference for the same reasons explained for λ = 2.88. The CFT , CFN and CT defined

by Eq. (5.13) and Eq. (5.3), have been used for the comparison with the TD 720 results

obtained from the sensitivity analysis of the respective λ. The force coefficients of an

entire rotor revolution computed by the four HB analyses and one TD solution are

reported in the subplots of Fig. 7.9. Also in this case, the results of CFT , CFN and CT

show that the solutions using 32 complex harmonics is not exactly superimposed to the

TD solution but the HB 64 does not improve the accuracy, so HB 32 can be chosen as

reference. HB 8 and HB 16 results are too far from the TD solution so they cannot be

considered as the optimal results. Also for λ = 3.30, the HB solutions present several

oscillations in the region between θ = 90o and θ = 180o.

The real and imaginary parts of cp and cf were computed for both λ analysed,
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(a) cp real part (b) cp imaginary part

(c) cf real part (d) cf imaginary part

Figure 7.10: Pressure coefficient (cp) and skin friction coefficient (cf ) for λ = 3.30.

but only the solutions for λ = 3.30 are reported in Fig. 7.10 because the results of λ

= 2.88 present a similar behaviour. The subplots in Fig. 7.10 confirm that 32 com-

plex harmonics are necessary to have a sufficient accuracy to reproduce the cp and cf

coefficients obtained with the TD solver.

However a further comparison between TD and HB analyses has been done in terms

of power coefficient Cp. After the choice of HB 32 as a reference number of complex

harmonics to reproduce the TD results, one HB 32 simulation for each VAWT operating

condition analysed has been performed. In this way, it is possible to reproduce the entire

power curve and compare that with the TD power curve which has been validated

with experimental data and compared with FLUENT solution in Chapter 5 . Fig. 7.11

reports the comparison between HB and TD power curves for all operating conditions
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of the Darrieus wind turbine chosen. The comparison shows little differences between

the two curves so the HB solver can be used successfully also for strong non-linear

problem like VAWT.

Figure 7.11: Comparison between HB and TD power curves.

7.2.2 HB speed-ups and MG overheads

All HB analyses for λ = 2.88 and λ = 3.30 have been run for 8,000 MG iterations,

since this was the minimum value required for the convergence of all harmonics of all

force components. For each physical time-step of both TD 720 calculations, it has been

used 200 MG iterations as this value has been sufficient for the convergence of all forces

and residuals. In order to reduce the periodicity error below the 0.1%, for the two λ

analysed, COSA required approximately thirty revolutions starting from a freestream

initial condition. The number of periods required to achieve a periodic solution using

the TD solver depends on the λ. For lower tip speed ratios about forty revolutions

are required to achieve a periodicity error close to 0.1%. The HB overhead and the

HB speed-ups parameter computed with respect to the wallclock time of the TD 720

simulations, for λ equal to 2.88 and 3.30 for all NH values are reported in Table 7.3

and Table 7.4.

It is seen that the HB 32 analysis allows an estimate of the time-dependent solution

4.5 times faster than TD counterpart. Also in the Table 7.3 and 7.4 the speed-ups
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Table 7.3: Acceleration factors of HB analyses with respect to TD analysis for λ = 2.88.

HB 8 HB 16 HB 32 HB 64 TD 720 steady

CMG 1.41 1.70 1.89 2.16 1.02 1.00

speed-up 22.92 9.88 4.50 1.97 1.00

Table 7.4: Acceleration factors of HB analyses with respect to TD analysis for λ = 3.30.

HB 8 HB 16 HB 32 HB 64 TD 720 steady

CMG 1.41 1.69 1.88 2.15 1.02 1.00

speed-up 22.91 9.86 4.51 1.97 1.00

corresponding to the steady calculations are empty because the steady calculations do

not represent a term of comparison for the HB and TD approaches.

7.3 Conclusion

As shown in the preceding sections, COSA HB approach was applied to two differ-

ent non linear periodic flow problems and for the first time to study VAWT rotors.

The results reported in this chapter have shown that COSA HB solver can lead to a

substantial reduction of the computational cost with respect to the TD counterpart.

In particular, the effectiveness of the developed technology has been demonstrated by

using the 2D HB to determine the periodic aerodynamic loads acting on two blade

sections of a 164 m-diameter HAWT rotor in yawed wind conditions. Presented results

highlight that the turbulent HB solver can compute the calculation 10 times faster with

respect to its TD counterpart. The HB approach was also used for strong non linear

problems like VAWT. In this case, the HB speed-ups is lower than that obtained for

HAWT case, but it can be increased again to one order of magnitude using the hybrid

parallelisation implemented in COSA and presented in Chapter 4 , which allows the

CFD code to use more computational resources with respect to TD technology which
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use only the MPI parallelisation. From the point of view of the accuracy, the HB so-

lutions of the HAWT application does not show differences between the reference HB

and TD results, highlighting a very good agreement also in terms of pressure coefficient

and skin friction coefficient. The HB results of the VAWT test case, instead, show

larger discrepancies in term of tangential force, normal force and torque coefficients,

even using a large number of complex harmonics. But, for engineering applications

the HB solution is still acceptable because it follows the trend of the TD result and

the power coefficient computed considering the mean value of the torque coefficient

presents negligible differences compared with the power coefficient obtained by the TD

approach.
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Chapter 8

Conclusions

The numerical models underlying the implementation of a novel turbulent HB com-

pressible solver of the RANS equations coupled to Menter’s SST turbulence model have

been presented. The computational benefits achievable by using the Harmonic Balance

solver have been successfully demonstrated analysing the complex flow behaviour of

wind energy devices like horizontal and vertical axis wind turbines.

8.1 HAWT conclusions

An accurate flow analysis of typical inboard and outboard blade sections of a 8 MW

HAWT in yawed wind regime has been presented. The comparative assessment of

the turbulent HB and TD MG solvers in terms of time-accuracy and computational

performance highlights that the former solver yields the sought periodic flow with an

accuracy comparable to that of the time-grid independent solution of the latter solver.

The comparative assessment is based on the analysis of the unsteady flow field past the

30% and 85% blade sections of a 164 m-diameter HAWT rotor in a 45o 13 m/s yawed

wind. Significant hysteresis cycles of all forces acting on the blade section at 30% are

observed, with variations of the axial, tangential force and blade torsional load coeffi-

cients of about 22%, 15% and 40% of their mean values, respectively. For the section

at 85% blade length, it is also observed that the variations of the axial force, tangential

force and blade torsional load loops point to periodic variations of about 3%, 15% and

20% of their mean values, respectively, highlighting a smaller hysteresis cycles of thrust

and blade torsional loads caused by the yawed wind regime on this blade section. Due
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8.2 VAWT conclusions

to the use of 2D simulations, these estimates do not account for aerodynamic effects

associated with the omitted radial velocity components. This may affect the estimates

above, but it is unlikely to significantly modify the physical findings of this study. The

HB solutions at section 30% show that the HB approach provides a solution compa-

rable to that obtained by the TD counterparts, using 5 complex harmonics. In this

case the HB solver is more than 7 times faster than TD. On the other side, the results

of section 85%, needs only 3 complex harmonics requiring 1/10 of the run-time of the

corresponding TD simulation. These results demonstrate the HB efficiency for solving

the turbulent periodic flow past the HAWT blades.

8.2 VAWT conclusions

The capabilities of the compressible density-based RANS/SST COSA have been also

applied to predict the turbulent unsteady flow past the rotor of a vertical axis wind

turbine rotor. The results of a 2D unsteady flow analyses were proposed for a classical

NACA0021 three-bladed Darrieus rotor. Solution sensitivity analyses to crucial param-

eters, such as spatial and temporal grid refinement and distance of the farfield boundary

from the rotor have been presented. Flow field characteristics were investigated for a

wide range of operating conditions allowing a comparison between rotor operation at

design and off-design tip speed ratios. Vorticity magnitude contours have been used as

an effective means for depicting the flow structures generated during the turbine oper-

ating conditions and to investigate the wakes interactions between rotor blades. The

2D turbulent solutions have also been validated by comparing torque profile, power co-

efficients and small-scale flow detail (blade pressure and viscous stress) with numerical

solutions obtained by the state-of-the-art TD FLUENT showing an excellent agree-

ment for all λ analysed. This is a remarkable outcome, given the substantial differences

of the COSA and FLUENT approaches, such as a significantly different formulation

of the governing equations (pressure based in FLUENT and density-based in COSA)

and the use of a sliding surface approach with stationary and rotating subdomains in

FLUENT, and the use of the arbitrary Lagrangian-Eulerian approach over the entire

physical domain in COSA. In addition, experimental measurements of the 3D model

of the reference Darrieus turbine with blades connections at 0.5 c, have been compared

with a consistent 2D model of FLUENT showing a good agreement also in this case.
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8.3 Future work

The use of the HB method for VAWT has been innovative since it was the first appli-

cation on this type of renewable energy device characterised by a strong nonlinearity.

It has been shown that the COSA HB solver needs 32 or more complex harmonics to

reach a solution comparable to the TD. The accuracy of the HB 32 solution in terms

of torque coefficient is not accurate as for the HAWT test case, but from the point of

view of engineering problems it is acceptable since it does not give large differences in

terms of power coefficient. Furthermore, the speed-ups computed accounting the com-

putational costs of HB 32 and TD simulations, is about 4.5 which is not very high, but

it can be increased by means of hybrid parallelisation to about 8 using two OpenMP

threads for each MPI process.

8.3 Future work

Future extensions of this work include the demonstration of the 2D turbulent flow ca-

pabilities of COSA HB solver for more applications like helicopter rotor flows, propfan

engines open rotor flows, vibrating aircraft wings, etc. On the computational side, a

further improvement of the HB performances, can be achieved using the fast Fourier

transforms to compute the harmonic balance source term. In addition, the three di-

mensional extension of COSA has been developed in the recent months, so the demon-

stration of the 3D turbulent flow capabilities is another future task. A substantially

larger reduction of computational times is expected also for the 3D turbulent flows. In

these circumstances the benefits of using the HB technology could be even higher.
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Chapter 9

Appendices

9.1 A) Betz’s law

The Betz model used to calculate the maximum power that can be extracted from the

wind assumes a control volume in which the control volume boundaries are the surface

of a stream tube and two cross-sections of the stream tube. The turbine is represented

by a uniform “actuator disc” which creates a discontinuity of pressure in the stream

tube of air flowing through it. A schematic view of the actuator disc model can be

seen in the Fig. 9.1. Applying the conservation of linear momentum to the control

Figure 9.1: Actuator disc model of a wind turbine; V , mean air velocity; 1, 2, 3, and 4

indicate locations

volume enclosing the whole system, one can find the net force on the contents of the

control volume. That force is equal and opposite to the thrust, T , which is the force

exerted by the wind on the turbine. From the conservation of linear momentum for a
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9.1 A) Betz’s law

one-dimensional, incompressible, time-invariant flow, the thrust is equal and opposite

to the rate of change of momentum of the air stream:

T = V1(ρAV )1 − V4(ρAV )4 (9.1)

where ρ is the air density, A is the cross-sectional area, V is the air velocity, and the

subscripts indicate values at numbered cross-sections in Fig. 9.1. For steady state flow,

(ρAV )1 = (ρAV )4 = ṁ, where ṁ is the mass flow rate. Therefore:

T = ṁ(V1 − V4) (9.2)

The thrust is positive so the velocity behind the rotor, V4, is less than the free stream

velocity, V1. No work is done on either side of the turbine rotor. Thus the Bernoulli’s

equation, which expresses the conservation of energy for an incompressible fluid, can

be used in the two control volumes on either side of the actuator disc. In the stream

tube upstream of the disc:

p1 +
1

2
ρV 2

1 = p2 +
1

2
ρV 2

2 (9.3)

In the stream tube downstream of the disc:

p3 +
1

2
ρV 2

3 = p4 +
1

2
ρV 2

4 (9.4)

where it is assumed that the far upstream and far downstream pressures are equal

(p1 = p4) and that the velocity across the disc remains the same (V2 = V3). The thrust

can also be expressed as the net sum of the forces on each side of the actuator disc:

T = A2(p2 − p3) (9.5)

If one solves for (p2 − p3) using Eq. (9.3) and (9.4) and substitutes that into Eq. (9.5),

one obtains:

T =
1

2
ρA2(V 2

1 − V 2
4 ) (9.6)

Equating the thrust values from Eq. (9.2) and (9.6) and recognizing that the mass flow

rate is also ρA2V2, one obtains:

V2 =
V1 + V4

2
(9.7)

Thus, the wind velocity at the rotor plane, using this simple model, is the average

of the upstream and downstream wind speeds. If one defines the axial induction factor,
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9.1 A) Betz’s law

a, as the fractional decrease in wind velocity between the free stream and the rotor

plane, then

a =
V1 − V2

V1
(9.8)

V2 = V1(1− a) (9.9)

V4 = V1(1− 2a) (9.10)

The quantity V1a is often referred to as the induced velocity at the rotor, in which case

the velocity of the wind at the rotor is a combination of the free stream velocity and

the induced wind velocity. As the axial induction factor increases from 0, the wind

speed behind the rotor slows more and more. If a = 1/2, the wind has slowed to zero

velocity behind the rotor and this simple theory is no longer applicable. The output

power P , is equal to the thrust times the velocity at the disc:

P =
1

2
ρA2(V 2

1 − V 2
4 )V2 =

1

2
ρA2V2(V1 + V4)(V1 − V4) (9.11)

Substituting for V2 and V4 from Eq. (9.9) and (9.10) gives:

P =
1

2
ρAV 34a(1− a)2 (9.12)

where the control volume area at the rotor, A2, is replaced by A, the rotor area, and

the free stream velocity V1 is replaced by V . Wind turbine rotor performance is usually

characterised by its power coefficient, Cp:

Cp =
P

1/2ρV 3A
=

Rotor power

Power in the wind
(9.13)

The non-dimensional power coefficient represents the fraction of the power in the wind

that is extracted by the rotor. For Eq. (9.12), the power coefficient is:

Cp = 4a(1− a)2 (9.14)

The maximum theoretically possible rotor power coefficient Cp is determined by taking

the derivative of the power coefficient (Eq. (9.14)) with respect to a and setting it equal

to zero, yielding a = 1/3. Thus:

Cp,max = 16/27 = 0.5926 (9.15)

when a=1/3. For this case, the flow through the disc corresponds to a stream tube

with an upstream cross-sectional area of 2/3 the disc area that expands to twice the
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disc area downstream. This result indicates that, if an ideal rotor were designed and

operated such that the wind speed at the rotor were 2/3 of the free stream wind speed,

then it would be operating at the point of maximum power production. Furthermore,

given the basic laws of physics, this is the maximum power possible. In practice, some

effects like rotation of the wake behind the rotor, non-zero aerodynamic drag and tip

losses, lead to a decrease in the maximum achievable Cp. From Eq. (9.6), (9.9) and

(9.10), the axial thrust on the disc is:

T =
1

2
ρAV 2 [4a(1− a)] (9.16)

Similarly to the power, the thrust on a wind turbine can be characterised by a non-

dimensional thrust coefficient:

CT =
T

1/2ρV 2A
=

Thrust force

Dynamic force
(9.17)

From Eq. (9.16), the thrust coefficient for an ideal wind turbine is equal to 4a(1− a).

CT has a maximum of 1.0 when a = 0.5 and the downstream velocity is zero. At

maximum power output (a = 1/3), CT has a value of 8/9. A graph of the power and

thrust coefficients for an ideal Betz turbine and the non-dimensionalised downstream

wind speed are illustrated in Fig. 9.2. V is the velocity of undisturbed air, V4 is the air

velocity behind the rotor, Cp is the power coefficient and CT is the thrust coefficient.

Figure 9.2: Operating parameters for a Betz turbine
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9.2 B) k − ω turbulence model of Wilcox

9.2 B) k − ω turbulence model of Wilcox

The k − ω model is one of the most commonly used turbulence models. It is a two

equations model, that means, it includes two extra transport equations to represent the

turbulent properties of the flow. This allows to account for history effects like convection

and diffusion of turbulent energy. The first transported variable is turbulent kinetic

energy, k, that determines the energy in the turbulence. The second is the specific

dissipation, ω that is the variable that determines the scale of the turbulence. The

basic equations of the version of the k− ω turbulence model reported by Wilcox [155],

are:

∂

∂t
(ρk) +

∂

∂xj
(ρujk) = τFij

∂ui
∂xj
− β∗ρωk +

∂

∂xj

[
(µ+ σkµT )

∂k

∂xj

]
(9.18)

∂

∂t
(ρω) +

∂

∂xj
(ρujω) =

γρ

µT
τFij

∂ui
∂xj
− βρω2 +

∂

∂xj

[
(µ+ σωµT )

∂ω

∂xj

]
(9.19)

and the turbulent eddy viscosity is computed from:

µT =
ρk

ω
(9.20)

In the Eq. (9.18) and (9.19), one can see the production terms of k and ω:

Pk = τFij
∂ui
∂xj

, Pω =
γρ

µT
τFij

∂ui
∂xj

(9.21)

and the destruction terms of the k and ω:

Dk = β∗ρωk, Dω = βρω2 (9.22)

The production terms can be also written in the form:

Pk = µTPd −
2

3
(∇ · u)ρk (9.23)

Pω = γρPd −
γρ

µT

2

3
(∇ · u)ρk (9.24)

where Pd = 2
(
S∗ − 1

3∇ · u
)
∇u and S∗ = 1

2(∇ · u+∇ · u′).
The production and the destruction terms of each variable are the so called source

terms. So the source terms of k has a production term µTPd that is always positive, a

term which depends from ∇·u that can be positive or negative depending on the sign of

∇·u and a destruction term Dk which is always negative. The source term of ω-equation
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also has a term which is always positive (production term proportional to Pd), a term

which is positive or negative depending on the sign of ∇ · u and a destruction term

Dω which is always negative. The identification of positive and negative source terms

is very important, due to the different numerical treatment that can be adopted for

positive and negative source terms that improve the convergence rate of the solution.

The value of the constant appearing in the k − ω equations are:

set1 : [β β∗ γ σk σω] = [0.075 0.090 0.555 0.500 0.500] (9.25)

9.3 C) Integration methods

Several integration methods as Runge-Kutta, Matlab function FSOLVE, COSA FERK

and COSA SIRK, have been implemented in a Matlab code to solve the system of

nonlinear ODEs (9.26) presented in Chapter 4 and used to demonstrate the differences

between the classical HB integration and the HDHB integration.
ẋ = y − z3 + 1 + Fsin(ωt)

ẏ = 0.1z + 1− y · z

ż = 2x− z2 + 0.5

(9.26)

The main script is defined as follow. The variable nharms define the number of complex

harmonics to be used to solve accurately the problem with HB methods.

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% I n t e g r a t i o n methods
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

[ f0 , omega ,T, npde ] = getprop mysys ;

t o l e r = 1d−14;
nharms = 8 ;

% TD Runge−Kutta i n t e g r a t i o n
h i s t =’no ’ ; nper iod = 20 ; i n t p e r p e r i o d = 128 ;
t s t a r t = 0 ; t end = nper iod ∗T;
ntime = nper iod ∗ i n t p e r p e r i o d ;
d e l t a t = ( t end−t s t a r t )/ ntime ;
y0 (1)=0; y0 (2)=0; y0 (3)=0;
[ t rk , y rk ] = urk ( f0 , omega , t s t a r t , . . .

t end , y0 , h i s t , de l ta t , ntime ) ;
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% HB i n t e g r a t i o n with COSA FERK s o l v e r
uH0 = ze ro s ( npde∗(1+2∗nharms ) , 1 ) ;
ncyc l e =1500;
[ uH ferk , rms hb fe rk ] = hb f e rk ( nharms , . . .

npde , f0 , omega , uH0 , de l ta t , ncyc l e ) ;

% HB i n t e g r a t i o n with COSA SIRK s o l v e r
uH0 = ze ro s ( npde∗(1+2∗nharms ) , 1 ) ;
ncyc l e =1500;
[ uH sirk , rms hb s i rk ] = h b s i r k ( nharms , . . .

npde , f0 , omega , uH0 , de l ta t , ncyc l e ) ;

% HB i n t e g r a t i o n with FSOLVE
uH0 = uH ferk ;
[ uH, fun , e x f l a g ] = f s o l v e (@(uH) mysys hdhb (uH, omega , . . .
f0 , nharms ) ,uH0 , opt imset ( ’ TolFun ’ , t o l e r , . . .
’ MaxFunEvals ’ , 1 e10 ) ) ;

The RK function is defined as:

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% Performs ncyc l e i t e r a t i o n s o f 4−s tep RK i n t e g r a t i o n
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

f unc t i on [ t , y ] = urk ( f0 , omega , t s t a r t , t end , y0 , . . .
h i s t , de l ta , ncyc l e )

nstep = 4 ;
a l f a = [1/2 1/2 1 1 ] ;
beta = [1/6 1/3 1/3 1 / 6 ] ;
gamma = [ 0 1/2 1/2 1 ] ;
t (1 ) = t s t a r t ;
y ( 1 , : ) = y0 ;

f o r i c =1: ncyc l e
t ( i c +1) = t s t a r t + i c ∗ d e l t a ;
y o ld = y ( ic , : ) ’ ;
y new = y ( ic , : ) ’ ;
r e s2 = ze ro s ( s i z e (y , 2 ) , 1 ) ;
f o r ns =1: nstep

t l o c = t ( i c ) + de l t a ∗gamma( ns ) ;
r e s1 = mysys res ( t l o c , y new , f0 , omega ) ;
r e s2 =re s2 + beta ( ns )∗ r e s1 ;
i f ns==nstep ; r e s1=re s2 ; end ;

168



9.3 C) Integration methods

y new = y o ld + d e l t a ∗ a l f a ( ns )∗ r e s1 ;
end
y ( i c +1 , : ) = y new ’ ;
rms = norm ( [ r e s1 ] ) / s q r t ( l ength ( y ) ) ;
i f strcmp ( h i s t , ’ yes ’ )

f p r i n t f ( f i d , ’%4.0 f %13.10 f \n ’ , i c , l og10 ( rms ) ) ;
i f rms < t o l e r ; break ; end ;

end
end

t = t ’ ;

The function HB SIRK represent the semi-implict RK method described in the

Chapter 4 of this thesis.

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% func t i on HB SIRK
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

f unc t i on [ y hb rk , rms hb ] = . . .
h b s i r k (nh , npde , f0 , omega , y0 , de l ta t , ncyc l e )

nstage = 4 ;
a l f a = [1/4 1/3 1/2 1 ] ;
y = y0 ;

D = d HB( npde , nh , omega ) ;

f o r i c =1: ncyc l e
y o ld = y ;
f o r ns =1: nstage

r e s1 = mysys hdhb (y , omega , f0 , nh ) ;

rhs3 (1 : 2∗ nh+1 ,1) = ( y o ld ( 3 : npde : npde ∗(2∗nh+1)))+ . . .
d e l t a t ∗ a l f a ( ns )∗ ( omega∗D∗y ( 3 : npde : npde ∗(2∗nh+1))− . . .
r e s 1 ( 3 : npde : npde ∗(2∗nh +1)) ) ;
hbstb ( 1 : 2∗ nh+1 ,1:2∗nh+1) = ( eye (2∗nh+1) + . . .
d e l t a t ∗ a l f a ( ns )∗omega∗D) ;
ome ( 1 : 2∗ nh+1) = hbstb \ rhs3 ;
y ( 3 : npde : npde ∗(2∗nh+1)) = ome ;

rhs2 (1 : 2∗ nh+1 ,1) = ( y o ld ( 2 : npde : npde ∗(2∗nh+1)))+ . . .
d e l t a t ∗ a l f a ( ns )∗ ( omega∗D∗y ( 2 : npde : npde ∗(2∗nh+1))− . . .
r e s 1 ( 2 : npde : npde ∗(2∗nh +1)) ) ;
hbstb ( 1 : 2∗ nh+1 ,1:2∗nh+1) = ( eye (2∗nh+1) + . . .
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d e l t a t ∗ a l f a ( ns )∗omega∗D) ;
k ( 1 : 2∗ nh+1) = hbstb \ rhs2 ;
y ( 2 : npde : npde ∗(2∗nh+1)) = k ;

rhs1 (1 : 2∗ nh+1 ,1) = ( y o ld ( 1 : npde : npde ∗(2∗nh+1)))+ . . .
d e l t a t ∗ a l f a ( ns )∗ ( omega∗D∗y ( 1 : npde : npde ∗(2∗nh+1))− . . .
r e s 1 ( 1 : npde : npde ∗(2∗nh +1)) ) ;
hbstb ( 1 : 2∗ nh+1 ,1:2∗nh+1) = ( eye (2∗nh+1) + . . .
d e l t a t ∗ a l f a ( ns )∗omega∗D) ;
u1 ( 1 : 2∗ nh+1) = hbstb \ rhs1 ;
y ( 1 : npde : npde ∗(2∗nh+1)) = u1 ;

end
rms hb ( i c ) = norm ( [ r e s1 ] ) / s q r t ( (2∗nh+1)∗npde ) ;

end

y hb rk = y ;

In the HB SIRK function is called another function dHB that compute the matrix

D which appears in the HDHB approach.

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% Matrix D
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

f unc t i on D = d HB( npde , nh , omega )

dt = 2∗ pi /omega /(2∗nh+1);
t = ( 0 : dt : 2∗nh∗dt ) ;
harms = ( 1 : nh ) ’ ;
E( 1 , 1 : 2∗ nh+1) = 0.5∗ ones (1 ,2∗nh+1);
E( 2 : 2 : 2 ∗ nh , 1 : 2 ∗ nh+1) = cos ( omega∗kron ( harms , t ) ) ;
E( 3 : 2 : 2 ∗ nh+1 ,1:2∗nh+1) = s i n ( omega∗kron ( harms , t ) ) ;
E = 2/(2∗nh+1)∗E;

Ei ( 1 : 2∗ nh+1 ,1) = ones (1 ,2∗nh +1) ’ ;
Ei ( 1 : 2∗ nh +1 ,2 :2 :2∗nh) = cos ( omega∗kron ( harms , t ) ) ’ ;
Ei ( 1 : 2∗ nh +1 ,3 :2 :2∗nh+1)= s i n ( omega∗kron ( harms , t ) ) ’ ;

A( 2 : 2∗ nh+1 ,2:2∗nh+1) = kron ( diag ( 1 : nh ) , [ 0 1 ; −1 0 ] ) ;
D = Ei∗A∗E;
end
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(a) (b)

(c)

Figure 9.3: Solutions of the system.

The solutions of System (9.26) are shown in the subplots of Fig. 9.3 (a), (b) and (c).

The subplots report a sinusoidal curve that is the forcing term which appears in the first

equation of the system. The others four curves are superimposed. They represent the

solutions using the Runge-Kutta time marching, the Matlab function FSOLVE, COSA

FERK and COSA SIRK methods. The figures highlight that 8 complex harmonics are

needed to achieve an accurate solution.

9.4 D) LAPACK routines speed-up

LAPACK (Linear Algebra PACKage) [3] is a software library for numerical linear al-

gebra. It provides routines for solving systems of linear equations and linear least

squares, eigenvalue problems, and singular value decomposition. It also includes rou-
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tines to implement the associated matrix factorisations such as LU, QR, Cholesky and

Schur decomposition. LAPACK was originally written in FORTRAN 77, but moved to

Fortran 90. Subroutines in LAPACK have a characteristic naming convention which

makes the identifiers short but rather obscure. This was necessary as the first Fortran

standards only supported identifiers up to six characters long, so the names had to be

shortened to fit into this limit. A LAPACK subroutine name is in the form pmmaaa,

where:

- p is a one-letter code denoting the type of numerical constants used. S, D stand for

real floating point arithmetic respectively in single and double precision, while C

and Z stand for complex arithmetic with respectively single and double precision.

The newer version LAPACK95 use generic subroutines in order to overcome the

need to explicitly specify the data type.

- mm is a two-letter code denoting the kind of matrix expected by the algorithm. The

codes for the different kind of matrices are reported below; the actual data are

stored in a different format depending on the specific kind; e.g., when the code

DI is given, the subroutine expects a vector of length n containing the elements

on the diagonal, while when the code GE is given, the subroutine expects an nn

array containing the entries of the matrix.

- aaa is a one- to three-letter code describing the actual algorithm implemented in the

subroutine, e.g. SV denotes a subroutine to solve linear system, while R denotes

a rank-1 update.

For example, the subroutine to solve a linear system with a general (non-structured)

matrix using real double-precision arithmetic is called DGESV.

The LAPACK routines that were used in the CFD code, are:

- DGETRF that computes an LU factorization of a general M -by-N matrix A

using partial pivoting with row interchanges. The factorization has the form:

A = P · L · U (9.27)

where P is a permutation matrix, L is lower triangular with unit diagonal elements

and U is upper triangular matrix.
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(a) serial code (b) parallel code

Figure 9.4: CPU-time comparison using COSA HB solver with NH = 7.

- DGETRS that solves a system of linear equations

A ·X = B (9.28)

with a generalN -by-N matrixA using the LU factorization computed by DGETRF.

With the integration of the subroutines LAPACK inside COSA HB solver, was ob-

served a significant speed-up. The reduction of the computational cost, varies between

35% and 70%. The figures show the CPU time of the HB solver with NH = 7, to

compute 1500 MG cycles using a test case characterised by inviscid flow over a single

steady aerofoil NACA0012, with angle of attack equal to 5o and Mach = 0.1 (Fig. 9.4

(a) and (b)) and the CPU time of the HB solver with NH = 5, to compute 400 MG

cycles using a different test case characterised by turbulent flow over a single steady

aerofoil NACA0012, with angle of attack equal to 9o, Mach = 0.22 and Reynolds =

50,000 (Fig. 9.5 (a) and (b)). For the first test case, serial and parallel version of COSA

using 2 MPI processes have been run. For the second case serial and parallel version of

COSA using 16 MPI processes have been performed. All cases highlight a significant

reduction of the computational cost when LAPACK routines are used.
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(a) serial code (b) parallel code

Figure 9.5: CPU-time comparison using COSA HB solver with NH = 5.
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