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I 

Abstract 

Ultrasonic cutting technology has been introduced for surgical applications since the 

1950s. Ultrasonic bone cutting applies high frequency mechanical vibration of a blade 

tuned at a specific frequency to make incision on human hard tissues. It offers 

advantages such as improved safety, smooth and precise cutting. To facilitate the 

design of high performance surgical ultrasonic bone cutting blades, this thesis is 

devoted to the modelling and designing of ultrasonic blades with an attempt to better 

understand the dynamic characteristics of blade and improve the conventional design 

method. 

A non-coupled vibration analytical model which deals with four modes of vibration, 

including longitudinal oscillation, flexural bending, lateral bending, and torsional 

vibration of ultrasonic blades, was proposed based on one-dimensional theories. The 

model allows the estimation of the modal parameters of a blade without establishing a 

3D model. The experimental study of this model using a uniform beam and a 

sectional ultrasonic blade showed that the model predicted the modal frequencies of 

these structures with satisfactory accuracy. This suggested that the analytical model 

can be used as an alternative method to FEA in the characterisation of ultrasonic 

blades. 

Two coupled models, a parametric vibration model and a longitudinal-bending 

coupled vibration model, were proposed to study the coupled vibration of ultrasonic 

blades. The parametric vibration model formulated the coupled vibration using a 

lumped mass beam. This enabled the investigation of interaction between the 

vibration modes based on a simple one-dimensional structure. However, this model 

resulted in governing equations of considerable complexity, which were considered to 

be more suitable for the purpose of theoretical study instead of performance 

prediction. In addition, a longitudinal-bending coupled model was proposed in this 

study with an attempt to understand a type of coupled vibration that is commonly 

observed in ultrasonic blades of beam-like profile. The model was established by 

introducing an extra rotation moment in the one-dimensional bending equation. Two 

numerical iteration approaches, with their implementation and error analysis detailed, 

were proposed to solve this model. 



II 

An optimal design method was proposed in this study with an aim to improve the 

conventional design process of ultrasonic blades by applying mathematical algorithms 

instead of the designers' experience and intuition to optimise the design. The method 

was introduced based on the concept of performance indicators that measure specific 

physical characteristics of a blade using mathematical functions. Four kinds of 

indicators, the frequency based, gain based, displacement based and stress based 

indicators, which evaluate the main dynamic characteristics of ultrasonic blades, were 

detailed in this study. The process of the optimal design method consists of three 

major stages: formulation, optimisation and verification. The concept of the proposed 

method is to maximise the blade performance through the optimisation of the 

performance indicators. This can improve the quality of design by making sure the 

most desired characteristics are achieved in the blade. A software toolkit was 

developed using the Abaqus script interface and Python language in order to apply 

this method in the design of ultrasonic blades. 

Five ultrasonic bone cutting blades with different types of cutting edges were 

designed using either the conventional or the optimal design method. These blades 

were subjected to ultrasonic cutting tests under various cutting conditions. Ultrasonic 

cutting performed on biomechanical samples, ovine femur and rat bones showed that 

the blades were capable of making incisions on bones without the requirement of 

large applied force. Positive linear correlation between the applied force and the 

cutting speed was found in the ultrasonic cutting carried out under static applied force, 

and positive linear relationship between the applied force and the surface temperature 

was observed in the ultrasonic cutting carried out under sliding motion. The presence 

of elevated temperatures in the cutting tests suggested that the blades require the 

application of cooling in ultrasonic bone cutting. The study confirmed that the 

proposed optimal design method was an effective design approach. The blades were 

designed with expected vibration characteristics and satisfactory cutting performance. 
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Chapter 1 
Introduction 

1.1 Introduction 

Ultrasonic cutting applies the vibration of a blade (or blades) tuned at the frequency 

range of 20-100kHz in the cutting process. This technology provides a way of cutting 

materials for various industrial and medical applications. It offers a number of 

advantages, including enhanced accuracy and smooth operation, over the traditional 

cutting methods [1-3]. Food processing is among the applications where ultrasonic 

cutting technology has been well established.  The introduction of ultrasonic vibration 

improves the cutting quality and efficiency significantly, especially for fragile and 

sticky foodstuffs [4, 5]. The use of ultrasonic cutting has also increased rapidly in 

surgery applications [6, 7]. It has been a widely accepted procedure in dentistry, 

where a number of commercial products are available [8, 9]. Clinical applications 

have shown that this technology improves the cutting precision and reduces the risk of 

tissue injury [2, 7, 10]. However, for surgical applications where deep incisions in 

hard tissues are required, it could still be a challenge to apply ultrasonic cutting in 

surgery operations due to the difficulty of cutting and the risk of thermal damage [8, 

11-13]. To overcome this, the blade should be carefully designed in a way that 

enhances the cutting performance while reducing the temperature of cutting. As the 

blade performance relies closely on the dynamic behaviour of the blade, it is 

necessary to model and characterise the vibration of the blade during its design 

process in order to obtain a satisfactory design for a specific surgical application [1, 

14, 15]. 

This thesis is devoted to the study of modelling and design strategies of ultrasonic 

bone cutting blades used for surgery procedures. The research is based on the analysis 

of dynamic characteristics and experimental tests of ultrasonic blades. The main aims 

of the study are as follows: 

(1) Investigate analytical approaches of modelling the vibration characteristics, 

such as modal frequencies and mode shapes, of typical ultrasonic bone cutting 

blades. 

(2) Model the coupled vibration of blades of slender shape.  
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(3) Provide a strategy to optimise the performance of a design based on the 

analysis of dynamic characteristics. 

(4) Design ultrasonic bone cutting blades and verify the proposed strategies. 

1.2 Ultrasound and Power Ultrasonics 

1.2.1 The Field of Ultrasonics 

Ultrasound is the term used for sound waves with a frequency greater than the limit of 

human hearing. It is essentially high frequency mechanical vibration travelling 

through fluids or solids. The lower frequency limit of ultrasound technology is usually 

18-20kHz and the upper limit can be as high as gigahertz. The application and 

investigation of ultrasound is referred to as Ultrasonics, which is a branch of acoustics 

studying the generation and use of high frequency inaudible acoustic. 

The field of Ultrasonics is broad, covering a large number of diverse topics such as 

medicine, underwater sound, chemical, electrical, and other engineering applications. 

In terms of the intensity of the soundwave applied, ultrasonics may be divided into 

two broad categories: low intensity ultrasonics and high intensity ultrasonics [16]. 

Due to the diversity of applications, it is difficult to define a clear cut limit between 

high and low intensity ultrasonics. Nevertheless, the sound wave intensity in low 

intensity applications, depending on the medium, is usually 0.1-1 W/cm2 [17, 18].  

The low intensity sound wave usually does not change the physical characteristics of 

the material or medium in the application. Typical examples of such applications 

include non-destructive testing and ultrasonic imagine. As the intensity levels are low, 

the power levels applied in the transducers are often low, typically in the range of 

milliwatt [16]. 

High intensity ultrasonics, on the other hand, usually applies ultrasound of 

considerably high intensity, from several to hundreds of watts per square centimetres. 

In accordance with the intensity value of sound wave, the power levels applied in the 

ultrasonic transducers can be in the range of tens, hundreds or even thousands of watts. 

Therefore this field is also referred to as high power ultrasonics in this thesis. The 

sound wave in such applications is typically applied with an aim to induce physical 

actions (such as cleaning or mechanical movement), or cause permanent physical, 

biological or chemical properties changes in the material or medium [16, 17]. This 
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technology was introduced after World War II and has found applications in 

numerous areas in industry and health care [19-24]. Typical applications of high 

intensity ultrasonics in industry include ultrasonic welding [25], cleaning [26], 

soldering [27] and machining [28], where the processing is done more effectively 

compared to conventional methods as a result of the ultrasonic vibration [16]. Another 

rapidly developing area in high intensity ultrasonics are medical applications, such as 

ultrasonic bone cutting [2, 13, 29], soft tissue cutting [6, 30], drug delivery [18], and 

High-Intensity Focused Ultrasound (HIFU) [31]. Applications such as ultrasonic 

cutting and welding utilizes waves with frequencies in the low end of ultrasound, 

usually between 18kHz to 100kHz [3, 22, 32]. Whereas for applications such as HIFU, 

the frequency of the sound wave may be above 1MHz [31]. 

1.2.2 Early History of Ultrasound 

The fundamental science of vibration was formulated during the 17th century as a 

result of the contribution made by numerous researchers including Giovanni Battista 

Benedetti, Galileo Galilei, Isaac Newton, Joseph Sauveur [33]. By the end of the 17th 

century, scientists were able to predict the vibration frequencies of a string and study 

the sound waves in the air. However, the concept of the existence of sound with 

frequency above the hearing limit of human was unheralded in the literature. An 

important advancement was seen in 1794, when the Italian priest and physiologist 

Lazzaro Spallanzani provided experimental evidence for the first time in history that 

non-audible sound exists in the nature. He found that blinded bats were able to 

navigate themselves around obstacles in the dark. The work led him to conclude that 

the bats used sound waves instead of sight to direct the flight [20, 34]. 

By the 1800s, people had accepted the concept that there exists sound waves which 

are outside the frequency range of human hearing but may be detected by some 

animals. In the 1830s, Frence physicist Félix Savart constructed an acoustical device 

known as Savart wheel to investigate the thresholds of human audibility. The device 

used a spinning toothed wheel and a card to produce sound of up to 24kHz. This was 

considered the first time in history that ultrasound was generated using an artificial 

way. Meanwhile, whistles using the stream of air flow to produce high frequency 

sound waves made their appearance during the 1800s. The most well known design 

among them was the Galton's whistle invented by English scientist Francis Galton in 
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1876 [20]. The whistle was capable of generating ultrasound that is inaudible to 

human being but can be detected by animals such as cats and small dogs. This 

invention is often regarded as the birth of ultrasonics. 

The major breakthrough in ultrasonics came in 1880, when French physicists Pierre 

Curie and his brother Jacques Curie discovered the piezoelectric effect in certain 

crystals such as quartz and Rochelle salt (sodium potassium tartrate tetrahydrate). The 

Curie brothers observed that the crystals generated electric potential when being 

compressed. Later on physicist Gabriel Lippman mathematically deduced that the 

reverse effect of establishing a mechanical stress in such material could be achieved 

by applying a voltage on the material. The theory was quickly verified experimentally 

by the Curie brothers. Thus, it was then possible to sense and generate high frequency 

ultrasound using the piezoelectric and anti-piezoelectric effect, which spurred the 

research and development of ultrasonics [20]. 

The earliest technological application of ultrasonics was the underwater sonar 

detection systems. During World War I, in particular after the sinking of the Titanic, 

there was strong desire to develop underwater navigation system. An early design of 

echo sonar was patented by English metereologist Lewis Richardson, and the first 

working sonar was built by Reginald Fessenden, a Canadian born American engineer, 

in the U.S. in 1914. The Fessenden sonar used a moving-coil electromagnetic 

oscillator to emit and sense sound waves underwater. It was capable of detecting an 

iceberg two miles away but could not resolve the direction precisely [20]. Yet the 

most important contribution made for the ultrasonic sonar system was accredited to 

eminent French physicist Paul Langevin. Shortly after the outbreak of World War I, a 

young Russian engineer, Constantin Chilowsky, proposed a submarine detection 

device inspired by Richardson's patent and Fessenden's sonar. The proposal was 

forwarded to Langevin, who replaced the magnetic transducer in the original proposal 

with an improved solution. The idea of using anti-piezoelectric effect to generate 

ultrasound was discarded at first but was resurrected after the improvement of crystal 

preparation and the availability of advanced electrical components. Langevin 

conceived a new kind of transducer design, referred to as the Langevin transducer, 

which adopted the steel-quartz-steel sandwich structure. This design considerably 

enhanced the radiated energy of the transducer and improved the performance of 
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ultrasonic echo ranging devices. Langevin's work was considered to be a milestone of 

modern science of ultrasonics. 

After World War I, research on ultrasonics flourished. In addition to underwater 

detection, applications of ultrasound had extended to physical therapy and industry. 

Meanwhile, people started to observe the biological effects and the destructive 

capability of high intensity ultrasound. During Langevin's first tests of his new 

transducers, small fish were found killed by the sound wave. Among those who 

witnessed this phenomenon was the famous American physicist Robert W. Wood. 

Wood recorded in his notes that the high intensity ultrasound caused millions of tiny 

air bubbles in the water and killed fish swimming into the sound beam [35]. After 

returning to the U.S in 1918, Wood collaborated with American scientist Alfred L. 

Loomis to study whether Langevin's work would offer a wider scope for the research 

in biology, physics and chemistry. They used a high power ultrasonic transducer to 

investigate the effects of high intensity ultrasound in various conditions, which 

resulted in a series of exciting findings. In 1927, they published a paper reporting their 

observation of experiments [36]. The effects include: radiation pressures of notably 

large magnitude, causing burning of wood with oscillating rods, drilling and etching 

through glass, internal heating of solids and liquids, formation of fogs, destruction of 

unicellular organisms and blood cells, killing or causing harm to fish, frogs and mice. 

Among these, the significant phenomenon closely related to ultrasonic cutting was 

that the energy transmitted through an oscillating rod was capable of achieving 

incision in considerably hard materials. 

Wood and Loomis' work in 1927 was regarded as a landmark in power ultrasonics. 

Before 1927, few publications were identified on power ultrasonics. However, during 

1927-1939, at least 150 papers were released, addressing dispersion, emulsification, 

coagulating action, chemical and biological effects of high intensity ultrasound [20]. 

These studies led to a number of proposals to apply high power ultrasound in medical 

and industrial applications. During the same time, research on other aspects of 

ultrasonics flourished as well. Bibliographic listing of studies on the physics and 

engineering applications of ultrasonics reached more than 6,000 by the mid 1950s 

[19]. Ultrasonics had become an extensively deployed technology in applications 

including drilling, welding, sterilization, degreasing and medical therapy. 
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1.2.3 Effects of High Power Ultrasound 

The application of power ultrasonics relies on various effects of high power 

ultrasound to change the properties of the material. For ultrasonic bone cutting, 

although the details of the cutting mechanism remains unclear due to the complexity 

of material properties and the interaction between the bone and the tool, the cutting 

action was considered to be achieved by a combination of effects including cavitation, 

thermal and direct mechanical actions [6]. 

Cavitation is a phenomenon associated with intense oscillating acoustic field in liquid, 

where cavitation bubbles are generated, expand and collapse. These cavitation 

bubbles exhibit complex dynamic behaviour, including shock waves and acoustic 

emissions, jet-like ejection, high pressure and high temperature [37]. It is observed 

that the behaviour of the cavitation bubbles is sensitive to the characteristics of 

biomaterial [38]. The cavitation may induce considerable mechanical effects due to its 

violent nature and the large energy density in the collapsing cavitation bubbles. This 

phenomenon can contribute to the removal of material during ultrasonic cutting. 

Thermal effect is another significant phenomenon found in high power ultrasonic 

applications. The contact friction between the surface of ultrasonic tools and the 

material is an important cause responsible for the generation of heat. In addition, other 

effects such as cavitation and deformation of material are also sources of heat 

generation. The thermal effect results in temperature rising during ultrasonic cutting, 

which could cause damage in the material. Cardoni et al. [12] illustrated that it is 

possible to reduce the cutting temperature by improving the profile of ultrasonic 

blades. Apart from that, optimisation of cutting parameters, such as cutting speed and 

applied force, could bring down the cutting temperature in certain applications [39]. 

In addition, direct mechanical actions are also substantially responsible for the 

removal of material in ultrasonic cutting. When high frequency oscillating blades 

contact with the cutting material, the fast moving tool tips cause direct impact and 

shear force, resulting in cracking, fragmentation and other effects [30, 40-44]. It is 

reported that the cutting mechanism varies between different kinds of material 

depending on their structure and properties. Shear force, pressure wave components 

and acoustic streaming are considered to be the phenomena predominantly related to 

ultrasonic vibration in the cutting of soft tissues [6, 30, 41]. For hard tissue and brittle 
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material, the cutting process may be partly ascribed to fracture or crack propagation 

induced by the mechanical impact. Smith et al. [44] proposed that the cutting 

mechanism in friable materials is essentially controlled crack propagation associated 

with the vibration mode of the ultrasonic blade. This assumption inspired the 

development of an FE model with an aim to better understand the cutting process. A 

similar concept was adopted by MacBeath [39] to investigate the cutting process of 

bone. These studies provided useful information to optimise the critical vibration 

parameters of ultrasonic cutting. 

1.3 Industry Applications of High Power Ultrasonics 

High power ultrasonics has been used in a wide variety of industrial applications and 

medical procedures. Established applications of power ultrasonics in industry include 

ultrasonic cleaning, metal/plastic welding, chemical processing, metal/plastic forming 

and ultrasonic machining [45]. With the advancement of technologies, more 

applications, such as food/tissue cutting, ultrasonic motor and ultrasonic levitation, 

have emerged. 

1.3.1 Ultrasonic Cleaning 

Ultrasonic cleaning, which dates back to the 1940s, is one of the earliest applications 

of power ultrasonics that is available commercially [20, 45]. The classic definition of 

ultrasonic cleaning is the application of high intensity ultrasound to facilitate the 

removal of foreign loosely held contaminants on the surface of items such as industry 

components and jewellery. It is one of the most efficient non-abrasive cleaning 

method which can remove complex contaminants without damaging the surface of the 

workpiece or compromising the integrity [26]. Figure 1.1 illustrates a basic setup of 

an ultrasonic cleaner. The workpiece to be processed is placed in a tank filled with 

cleaning liquid. Ultrasonic transducers are fixed outside the vessel or are attached to a 

diaphragm that contacts with the liquid, which enables the transmission of high 

intensity ultrasound from the transducers into the liquid. During cleaning process, the 

contaminants on the surface of the workpiece can be removed under combined effects 

induced by the sound wave, such as cavitation and micro-streaming [26]. 
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Figure 1.1 Ultrasonic Cleaning 

1.3.2 Metal/Plastic Welding 

Ultrasonic welding can be applied to metal or plastic. For metal, the application is a 

solid-state joining process that utilises high frequency shear vibration under 

longitudinal pressure to bond metal sheets or plates together. By applying high power 

ultrasonic vibration in the welding processing, the energy delivered to the metal is 

capable of causing macroslip and microslip in the material to join the surface layers of 

the metal. This technology has been used in the industry to join electrical contacts or 

fabricate products such as heat exchangers [21, 22, 25]. 

On the other hand, ultrasonic plastic welding utilises the combined effects of 

mechanical vibration, pressure and thermal energy, usually generated by ultrasonic 

vibration of up to 90kHz in frequency, to melt and join the plastic at the designated 

point. The process has been used in numerous applications, such as toy manufacturing, 

to replace glue or mechanical fasteners [21, 25]. 

1.3.3 Ultrasonic Assisted Machining 

Ultrasonic assisted machining applies ultrasonic vibration on conventional machining 

process with an attempt to improve the quality of machining. Babitsky et al. [46, 47] 

reported the application of imposed ultrasonic vibration in the machining of aviation 

materials. On the basis of a conventional turning machine, high frequency mechanical 

oscillation (20kHz) in the feed direction was imposed on the cutting tool through an 

ultrasonic transducer and an auto-resonant control system. By machining two nickel-

based alloys used in modern aviation industry, Inconel-718 and C263, it is shown that 
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the surface quality was enhanced significantly as a result of the ultrasonic vibration. 

Comparing to the conventional cutting approach, the presented method achieved a 

roughness improvement of up to 40%. In a later study, Jin and Murakawa [32] 

proposed an improved design for the ultrasonic cutting tools to avoid tool chipping in 

such applications. By manufacturing the tools with high rigidity material and 

improving the shape of the cutting edge, it is expected that the tool life can be 

prolonged considerably. 

Kim and Choi [48] investigated the micro-surface machining of optical plastics using 

an ultrasonically excited cutting tool. It is reported that when the depth of cutting was 

less than 2.7µm, ultrasonic cutting was capable of achieving ductile cut surface on 

optical parts with improvements in both waviness and roughness of the machining. 

This suggested that the ultrasonic cutting could be used as an alternative method to 

conventional grinding and polishing in the manufacture of high precision optical 

components. 

1.3.4 Ultrasonic Cutting 

Ultrasonic cutting is an established application of ultrasound in industry. This 

technology can be used to process material such as food, metal, glass and plastics. 

Although ultrasonic cutting may be conducted with the aid of abrasive, this section 

reviews only those applications that rely on the direct contact between a blade 

vibrating ultrasonically and the workpiece to achieve incision. 

(1) Ultrasonic Food Cutting 

Ultrasonic cutting has been used commercially in the food production industry to 

facilitate the preparation of large volume of food such as pastries, confectionery and 

cheese. For goods which are brittle and contain layers of different consistencies, they 

are often difficult to cut by conventional approaches such as guillotine or rotating saw, 

as the material may collapse or crumble during the process. In addition, for the sticky 

products, such as confectionery, the cutting tools used in the conventional methods 

are more likely to be smeared by food adhering, which increases the possibility of 

cutting jams and halting of production [49]. 



10 

Ultrasonic food processing utilises a blade oscillating ultrasonically instead of a 

conventional knife to process the food. Conventionally, to avoid the shattering and 

deformation of food, specialised processing such as freezing is usually needed prior to 

the cutting of products, which reduces processing efficiency and increases costs. Such 

a procedure, however, is not required in ultrasonic cutting [49]. In addition, this 

technology provides unique advantages, including prevention of food adherence on 

tool surface and reduction of product waste [4], in the processing of products that are 

conventionally difficult to cut, such as sticky confectionary. As a result, the 

application of ultrasonic cutting technology, either on a large scale automatic 

production line or on a single machine, can facilitate the production and reduce the 

maintenance costs [5]. 

In terms of the way the vibration is applied during the cutting, the processing can be 

classified into two types: the guillotine and the slitter, where the ultrasonic excitation 

is applied parallel and perpendicular to the direction of cutting respectively, as 

illustrated in Figure 1.2. In the guillotine type cutting, the blade tip is used as the 

cutting edge, where the vibration amplitude is usually evenly distributed along the 

blade width. On the other hand, in the slitter type cutting, the edges on the sides of the 

blade are used for cutting, where vibration amplitude is non-uniformly distributed 

along the edge. This could result in difference in cutting effect along the excitation 

direction and should therefore be taken into consideration in blade design [49]. The 

selection of these cutting methods should be determined according to the design of 

machine and the properties of the food product [5]. For example, for crumble products 

which may be more vulnerable to vertical forces, the slitter type cutting could be a 

preferred option. In either application, the introduction of high frequency vibration 

results in low frictional surface and enhanced cutting performance, which improves 

the quality of processing by avoiding adhering and damage of food [50]. This method 

is capable of making clean incision even for sticky products. 
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a) Guillotine Type                                           b) Slitter Type 

Figure 1.2 Ultrasonic Food Cutting 

In view of the advantages of incorporating ultrasonic vibration in food processing, 

numerous studies have been devoted to the characterisation of cutting performance 

and the design of ultrasonic food cutting devices. Schneider et al. [51] overviewed the 

process of ultrasonic food cutting. The investigation confirmed that the introduction 

of high frequency mechanical vibration resulted in low friction on the blade surface 

which reduced the so called "adhesion conditioned shearing" and tool fouling. In 

addition, reduction of separation force was reported causing by concentration of local 

energy around the cutting zone. In a later study, the energy consumption during 

ultrasonic food cutting was investigated by Schneider et al [52]. It showed that 

excitation of higher frequency resulted in increased power demand, which may also 

result in loss of quality in food. Apart from this, cutting of non-porous food rich in 

water and fat required less energy than porous food. Other factors such as absorption 

properties of the products and coupling conditions of the cutting were also responsible 

for the energy consumption. Similar work was done by Arnold et al. [3] where a 

guillotine type ultrasonic blade tuned at 40kHz with an amplitude of 12µm was used 

to cut different cheese varieties. The investigation showed that increasing vibration 

amplitude in the blade had a positive effect on the improvement of cutting quality. 

However, the improvement was less significant if the ultrasonic excitation was at a 

high level. Also the role the composition of cheese played during the processing was 

of considerable importance to the quality of cutting. An inverse relationship was 

observed between the requirement of energy and the ratio of moisture/solids-non-fat. 

Schneider and Arnold's work illustrated that to maximize the performance of an 
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ultrasonic cutting system, it is necessary to take into account various factors, such as 

cutting parameters and properties of the material, in the design of ultrasonic tools. 

McCulloch [53] studied the design of ultrasonic food cutting devices. A method of 

modelling the interaction between the ultrasonic blade and the cutting material was 

proposed based on finite element analysis, providing a way to understand the 

mechanism of the cutting process. The key techniques of this method included 

incorporating thermo-mechanical finite element models in the analysis and extracting 

the properties of food material experimentally. The study suggested that it is possible 

to estimate the optimal cutting parameters during the design process of ultrasonic food 

cutting blades, which allows the user to further improve the performance of ultrasonic 

cutting systems. 

(2) Other Application of Ultrasonic Cutting 

In addition, applications of ultrasonic cutting have been reported in the processing of 

wood, metal and plastics. Sinn et al. [54] applied an ultrasonic apparatus in the cutting 

of wood. A wedge shape cutting knife was mounted on a device tuned longitudinally 

at 20kHz. This apparatus was used to machine the softwood and hardwood in both dry 

and wet conditions. It is reported that considerably reduced cutting force, up to 50% 

lower than the conventional method, was achieve in the tests with vibration amplitude 

of only 8µm. This was considered to be caused by the reduction of contact friction 

between the surfaces of the knife and the wood. An attempt to cut stacked paper using 

a longitudinally excited ultrasonic guillotine was made by Deibel et al [55]. Vibration 

parallel to the direction of cutting was imposed on the cutting knife by an ultrasonic 

transducer. The cutting process was simulated by a dynamic model, which provided 

an insight into the key parameters of cutting, including the contact ratio, compression 

ratio and dynamic force. The results were confirmed by experiments, concluding that 

the dynamic forces introduced by the ultrasonic vibration resulted in more effective 

cutting. 

Babitsky et al. [46, 47] reported the application of imposed ultrasonic vibration in the 

machining of aviation materials. On the basis of a conventional turning machine, high 

frequency mechanical oscillation (20kHz) in the feed direction was imposed on the 

cutting tool through an ultrasonic transducer and an auto-resonant control system. By 
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machining two nickel-based alloys used in modern aviation industry, Inconel-718 and 

C263, it is shown that the surface quality was enhanced significantly as a result of the 

ultrasonic vibration. Comparing to the conventional cutting approach, the presented 

method achieved a roughness improvement of up to 40%. In a later study, Jin and 

Murakawa [32] proposed an improved design for the ultrasonic cutting tools to avoid 

tool chipping in such applications. By manufacturing the tools with high rigidity 

material and improving the shape of the cutting edge, it is expected that the tool life 

can be prolonged considerably. 

Kim and Choi [48] investigated the micro-surface machining of optical plastics using 

an ultrasonically excited cutting tool. It is reported that when the depth of cutting was 

less than 2.7µm, ultrasonic cutting was capable of achieving ductile cut surface on 

optical parts with improvements in both waviness and roughness of the machining. 

This suggested that the ultrasonic cutting could be used as an alternative method to 

conventional grinding and polishing in the manufacture of high precision optical 

components. 

1.4 Bone Cutting in Surgery 

Applications of high power ultrasonics have also emerged in medical applications. 

Among them is ultrasonic bone cutting. The cutting of human hard tissues such as 

bones is an important operation in surgery, especially in osteotomy. However, it can 

be a challenge for surgeons to perform precise and safe operation due to the hardness 

of the tissues. 

1.4.1 Structure of Bone 

Bones are in fact complicated composite materials consist of various kinds of tissues, 

including crystals of mineral and protein. This provides both strength and resilience 

so that the skeleton can absorb impact without breaking. The structure and 

composition of a bone depends on numerous factors such as physiological function, 

skeletal site, age and sex of the body [56]. Figure 1.3 illustrates the structure of a 

human long bone. In the simplest form, the bone can be regarded as made up of two 

layers. The outer layer is a dense and rigid tissue referred to as compact or cortical 

bone. This layer is hard and provides adequate strength for the bone to withstand 

forces. For an adult human body, the compact bone accounts for 80% of the skeleton. 
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As a result of its hardness, considerable difficulties may be encountered when cutting 

this tissue. Beneath the outer layer is the spongy tissue referred to as cancellous or 

trabecular bone. The cancellous bone is less dense and has lower strength than the 

compact bone. Thereby this layer is less difficult to cut than the outer layer.  

 

Figure 1.3 Structure of Bone [58] 

1.4.2 Heat Generation and Thermal Damage of Bone 

In operations such as bone cutting and drilling, heat generation can be caused by 

friction between the tool and tissue and shearing of the material [59]. For 

conventional osteotomy such as bone drilling, the factors influence the heat 

generation include the speed of cutting/drilling [60, 61],  applied force [62, 63], 

irrigation [64, 65], and design of the cutting device [66]. To reduce the generation of 

excessive heat during the operation, methods of cooling the cutting tool are usually 

required [67]. For ultrasonic bone cutting, the heat generation can be affected by the 

frequency and amplitude of vibration [68], applied force [69], and design of the 

cutting profile [12]. In addition, heat induction can also increase as the duration of 

cutting process is increased [65, 70]. 

For either spongy or compact bone, if the tissue is subjected to elevated temperature 

during the cutting process, irreparable thermal damage or necrosis may occur in the 

bone, which can cause negative effects for the operation and prolong the recovery 

time for the patient [71]. The highest temperature the bone tissues can suffer depends 

on the condition of the bone and the duration of heating. Generally, bone necrosis is 

most likely to occur at a temperature threshold of 50°C-70°C. Lundskog [11] showed 

that cellular necrosis can occur if bone is exposed at 50°C for longer than 30 seconds. 
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Study conducted by Mortiz and Henrique [72] observed immediate damage in 

epithelial cells exposed to a temperature of 70°C. Although it may be acceptable for 

the bone to suffer higher temperature if it is only exposed to elevated temperatures for 

a very short period of time [11, 59], it is suggested 55°C can be used as a threshold 

[71] as this temperature would be sufficient for a bone to suffer serious damage if the 

tissue is exposed to the heat for longer than 30-60 seconds. 

1.4.3 Conventional Bone Cutting Instruments 

Conventionally, bones are cut by hand operated tools such as bone pliers, chisels and 

saws, as well as by electrically or pneumatically driven devices, such as electric bone 

saws, as illustrated in Figure 1.4. The hand operated bone cutters that are still being 

used today can be dated back to the 17th or 18th century, most of which were initially 

inspired by the tools used in wood industry [13]. One of the main disadvantages of 

these cutters is that they require the operator to exert considerable physical effort to 

perform cutting on hard bones. This not only introduces difficulties for the operation 

but also increases the hazard of causing damage to the surrounding soft tissues. 

Nevertheless, such tools have been used by surgeons for centuries and they were 

satisfactory equipments when osteotomy was limited to amputations [13]. 

      

Figure 1.4 Bone Cutting Tools 

Powered bone cutting tools, such as electrical bone saws, take advantage of high 

speed mechanical motion, either rotary, reciprocal or oscillatory movements, to 

achieve deep incisions in bone. These tools can reduce the physical effort of surgeons 

in bone cutting and increase the speed of cutting. However, the fast movement of the 
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mechanical components in such tools can cause vibration and noise in the operation, 

introducing inconvenience for surgeons to perform precise incision. 

1.4.4 Ultrasonic Bone Cutting Technology 

(1) Features of Ultrasonic Bone Cutting Technology 

Ultrasonic cutting technology has been introduced for surgical applications since the 

1950s. Ultrasonic bone cutting applies high frequency mechanical vibration of a blade 

tuned at a specific frequency to make incision on hard tissues. The main advantages 

of this technology are as follows [9, 73-75]: 

(1) Low bleeding. The basic mechanism of coagulation in ultrasonic cutting is 

regarded to be the denaturation of protein under the combined effects of 

frictional heat and ultrasonic energy [76-78], which seals the vessels around 

the cutting site and reduce bleeding [79]. Both the cutting and coagulation 

processes may be controlled by altering the vibration parameters of the 

ultrasonic cutting devices [78]. 

(2) Smooth and precise cutting. Limited vibration amplitude (normally less than 

200µm) and low cutting force allows the operator to control the cutting 

procedure precisely [2, 13]. 

(3) Selectively cutting and reduced risk of soft tissue damage. The effect of 

ultrasonic cutting varies between different kinds of tissues [6]. Taking 

advantage of this, ultrasonic cutting devices can further benefit from the 

capability of selectively cutting. Beziat et al. [10], Yaman and Suer [80], and 

Labanca et al.[7] showed in surgical operation cases that the ultrasonic devices 

designed for mineralised tissue cutting were capable of making incisions in 

hard tissues effectively while leaving surrounding soft tissues intact. A worst 

case scenario study was reported by Schaeren et al.[81], where nerve tissue 

was exposed to prolonged and direct contact with an ultrasonic bone cutting 

device. It showed that the cutting device did not dissect the soft tissue, and the 

structural and functional damage induced in the tissue was limited. The 

application of such devices may minimise the injury of soft tissues in 

osteotomy. 



17 

The ultrasonic bone cutting devices can have similar structure as the tools used in 

ultrasonic food cutting. However they are usually designed with additional features, 

such as functions of irrigation, to meet the requirements of medical procedures. 

(2) Research and Development 

The earliest attempts of applying ultrasonic technology in the cutting of human hard 

tissues were made in dentistry. In 1953, Catuna [74] reported the application of 

ultrasound in the preparation of tooth cavities for restoration. Initially, industrial 

devices, such as impact grinders, were used to generate ultrasonic vibration and 

complete the operation. After a series of successful experiments, specialised apparatus 

were designed as a new type of surgical tools [73]. However, these ultrasonic devices, 

compared to conventional electrical or pneumatic powered dental units, were 

cumbersome and expensive. As a result, although the ultrasonic technology was 

considered to be of numerous advantages, including reduced tissue heating, low 

applied pressure during operation, and improved patient experience [73-75], its 

commercialisation in surgical application was limited in the 1950s. 

Nevertheless, the possibility of using ultrasonic vibration in the cutting of bone 

continued to be explored. Zinner [82] suggested an improved ultrasonic instrument, 

equipped with a scaling tip in its probe-like design, to be applied together with water 

coolant for the removal of teeth plaque and calculus in dentistry. Vang patented a 

surgical scalpel device in 1955 which used longitudinal vibration of 6kHz-12kHz to 

cut biological materials [83]. Although the working frequency of this device was 

below the ultrasonic range, Vang's design demonstrated the concept of using high 

frequency mechanical vibration to facilitate surgical procedures. This invention was 

later improved by Shaefer in 1958, replacing the initial solenoid-magnet transducer 

design with a piezo-electric assembly [13]. Sawyer further improved Vang's design in 

1974 and filed a patent for an electrical ultrasonic knife [13]. 

The first ultrasonic bone cutting device used for bone surgery was designed by 

Loschilov [24], referred to as URSK-7N. It utilised the effect of magnetostriction to 

convert electrical excitation into ultrasonic vibration at the frequency range 25kHz-

30kHz. An ultrasonic booster (horn) was used to amplify the mechanical vibration, 

generating output of 50µm. To facilitate cutting in different surgical procedures, end 
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effectors of various shapes, such as scalpel or saw, could be fitted as required. After 

completing a large number of clinical operations with this apparatus in 1969-1971, 

Volkov [24] concluded that it simplified the orthopaedic operations by enabling the 

surgeons to perform precision cutting of just two centimetres in size. 

Mararow [84] and McFall et al. [85] conducted animal based studies in order to 

compare the performance of pneumatic and electric powered burs and saws to an 

ultrasonic cutting apparatus. The studies confirmed that the ultrasonic device could 

improve the precision of cutting and reduce the possibility of soft tissue damage. 

Although both Mararow and McFall reported that slower rate of healing was found on 

the incisions made by the ultrasonic device, the sites healed normally within the 

period of the experiments. McFall also commented that the introduction of saline 

during the cutting process could reduce the time of healing. In a later study, Horton et 

al. [86] investigated the cutting capability of an ultrasonic instrument which used the 

chisel-like action to remove bone material. Incisions on dog alveolar bone were made 

in a clinical procedure using both the ultrasonic apparatus and a conventional rotary 

bur. Post-operation histological observation of the bone suggested that the ultrasonic 

instrument resulted in rougher cutting surface than the rotary bur. However higher 

healing rate was found in the case of ultrasonic cutting. Similarly, comparison 

between an ultrasonic saw and an oscillating saw was done by Aro et al. [43], stating 

that smoother and more precise incision was achieved in the ultrasonic cutting. Based 

on the dog experiments, Horton et al. [29] evaluated the ultrasonic instruments in 

surgical applications including teeth removal and osseous management in periodontal 

therapy. Positive conclusions were drawn towards the application of the ultrasonic 

technology. In addition to the improved control and enhanced cutting precision, 

ultrasonic cutting was found to be without postoperative sequelae and of minimal 

discomfort. Horton and Aro's work suggested that the ultrasonic apparatus were most 

useful in the cutting of small bones. Nevertheless, a series of disadvantages with the 

ultrasonic devices were reported, including inconvenience in the operation due to the 

size of the apparatus and the need to configure the optimal operation frequency. Apart 

from that, the application of ultrasonic technology did not improve the operation time 

as the cutting efficiency of the ultrasonic chisel and saw was slightly lower than 

conventional tools. 
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Khambay and Walmsley [87, 88] developed an ultrasonic bone chisel which had a 

similar design as Horton's apparatus [86]. The device used a straight cutting tip 

shaped as a chisel and tuned longitudinally in order to allow the tool to take full 

advantage of the ultrasonic vibration. It was designed to perform bone cutting which 

was generally completed by conventional tools such as rotary drills or burs. The in-

vitro tests showed that the ultrasonic chisel achieved a cutting rate of 26-110mm/min 

while the rotary bur was capable of achieving a higher rate of 48-185mm/min. 

Though the cutting efficiency was lower than conventional tools, the ultrasonic chisel 

only required a longitudinal force of 1.48-3.22N to be exerted during cutting, 

allowing operation performing in a comfortable and precise way. 

More recently, a large number of commercial ultrasonic surgical cutting devices have 

become available, most of which are used for dentistry and osteotomy [39]. These 

products are currently produced by companies such as Mectron (Italy), Resista (Italy), 

BTI (Spain), Satelec (France), Electro Medical Systems (Switzerland) and NSK 

(Japan). Mectron s.p.a manufactures piezoelectric bone cutting devices, which are 

referred to as the PIEZOSURGERY® products and are claimed to be one of the best 

commercial bone cutting apparatus [39]. Figure 1.5 illustrates a product designed for 

dental surgeries. This device consists of a control unit and a handpiece attached with a 

changeable tool tip [39]. Longitudinal ultrasonic oscillation is generated and 

transmitted to the tool tip, allowing the operator to perform cutting on bone. As 

illustrated in Figure 1.5(b), a number of tool tips, designed with various shapes, are 

available for different purposes of cutting, which enable the application of this device 

for different types of oral operations, such as scaling, osteotomy and restoration. 

                      

                                  a) Device                                                      b) Tool Tips 

Figure 1.5 Commercial Ultrasonic Cutting Device  
and Tool Tip (Mectron, Micropiezo S [39]) 
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According to the product documents, the bone cutting tools operate at 25kHz-29kHz, 

with a displacement of 60-210µm amplitude at the cutting tip. Compared to other 

similar apparatus designed in the earlier years [86], these products are equipped with a 

hand-piece of reduced size and advanced configuration, which simplifies their 

operation and allows the performing of precise cutting. In addition, a solution for 

cooling and debris removing is offered, using a pneumatic pump to jet physiological 

sodium chloride to the ultrasonic cutting site. These features significantly enhance the 

performance of the products. 

Despite the popular application of ultrasonic technology in dentistry procedures, 

challenges still exist in ultrasonic cutting when it is required to make deep incisions 

safely in large bones such as femur [39], one of which is the occurrence of high 

cutting temperature. Although cooling is usually applied during the cutting procedure, 

it is desired to design the ultrasonic cutting devices in a way that minimises the 

generation of heat while delivering satisfactory cutting performance. MacBeath [39] 

detailed the design process of ultrasonic blades based on FEA and EMA. FE models 

were used to evaluate the performance of a cutting blade as well as investigate the 

relationship between the applied load, cutting speed and the material. The results of 

the FEA were used to modify the geometry of the cutting tip with an attempt to lower 

the possibility of heat generation. MacBeath's work showed that a carefully designed 

blade geometry could reduce the cutting temperature in applications. In addition, it is 

possible to further enhance the ultrasonic cutting performance by optimising the 

cutting parameters including the cutting speed and applied load. 

1.5 Design and Characterisation of Ultrasonic Cutting Blades 

This section introduces the methods and techniques used in the design and 

characterisation of ultrasonic cutting blades. This thesis focuses on the ultrasonic 

surgical cutting devices that are intended to achieve cutting in bone while minimising 

damage in the surrounding soft tissues. The research on relevant ultrasonic 

components such as horns will also be reviewed in this section. 

1.5.1 Ultrasonic Cutting System 

Figure 1.6 illustrates a typical ultrasonic cutting system consisting of an ultrasonic 

generator, a transducer, a horn and an ultrasonic blade. The ultrasonic generator is 
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essentially a signal amplifier which outputs high power electrical excitation. This 

output is converted by the ultrasonic transducer into mechanical vibration. High 

power ultrasonic transducers are designed to output high power mechanical vibration 

at specified frequency. The excitation of such transducer is usually sharply tuned to 

the resonant frequency of the transducer in order to maximise its effect [91]. However, 

the resonance of the transducer is also affected by external factors such as the attached 

blade and applied load. The resonant frequency may be shifted during the cutting 

process as a result of the change of working conditions. For this reason, ultrasonic 

generators are usually equipped with automatic resonant control or frequency tracking 

system, which ensures the transducer be driven appropriately at its optimal working 

condition. 

 

Figure 1.6 Ultrasonic System, Acoustic Unit 

Ultrasonic blade is the working part of the acoustic unit. As it contacts with the 

cutting material directly and performs cutting, the performance of the whole cutting 

system is greatly determined by the characteristics of the blade. Unless specified 

otherwise, the ultrasonic cutting studied in this thesis is performed by ultrasonic 

blades excited longitudinally at the half wave-length mode. Generally, a properly 

designed ultrasonic blade should satisfy the following basic requirements: 

(1) The blade should be tuned at the correct frequency of the desired mode. 

Otherwise it may prevent the ultrasonic generator from driving the transducer 

properly. 

(2) The blade must have adequate strength to withstand the stress caused by high 

frequency deformation and the applied force during the cutting process. 

(3) In high power ultrasonic cutting, the required vibration amplitude at the cutting 

interface of a blade is usually larger than the output of the transducer [39]. 
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Hence it is necessary to design the blade with appropriate gain in order to 

amplify the vibration. 

(4) The profile of the blade should be designed in a way that facilitates the cutting 

operation. 

The design of an ultrasonic blade is a precise procedure involving thorough 

investigation of the characteristics and optimisation of critical dynamic parameters of 

the blade without compromising the performance and reliability. It used to be a time 

consuming and expensive process, where a blade was designed, manufactured and 

subjected to a series of fine tuning procedures before it was ready for operation and 

further tests. This try-and-test process relied heavily on experience and estimation. 

The blade would have to be redesigned if it fails to meet the requirements. 

From the latter half of last century, with the advancement of techniques including 

finite element analysis (FEA) and experimental modal analysis (EMA), the design 

process of ultrasonic blades evolved into a more efficient and accurate procedure. 

FEA allows the designer to precisely examine the vibration characteristics of an 

ultrasonic blade without manufacturing a physical prototype. On the other hand, EMA 

enables accurate measurement of the actual modal parameters of a blade. These 

techniques significantly facilitate the design of modern ultrasonic blades. 

1.5.2 Modelling and Analysis 

As an ultrasonic blade relies on high frequency mechanical vibration to achieve 

cutting, modelling and analysing its vibration characteristics are crucial in the design 

process. FEA is one of the most commonly used approaches to perform such analysis, 

and EMA is an experimental method to estimate the actual modal behaviour of an 

ultrasonic blade. Apart from them, analytical method can also be used to characterise 

the dynamic behaviour of ultrasonic blades. These methods enable the designers to 

evaluate the performance of an ultrasonic blade and make appropriate modification to 

improve the design. 

(1) Finite Element Analysis 

FEA is a numerical process that uses discrete elements to model an engineering 

system and obtain the approximation solutions of the analysis. The basic concept of 
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this method is to divide the structure into a collection of simple geometry, disjoint and 

non-overlapping elements. Each element is applied with a set of governing equations 

to simulate their responses in the real world problem. The elements are connected by 

applying appropriate boundary conditions, which resulted in a set of simultaneous 

algebraic equations. The solution of the whole system can then be obtained by 

numerically solving these equations. 

Widely application of FEA in engineering has been enabled by the rapid advance of 

computer technology. High precision vibration and structure analysis can now be 

performed using FEA, allowing engineers to thoroughly evaluate and optimise their 

designs before prototyping and testing. This improves the design quality and reduces 

the cost of development. Commercial general purpose FEA packages, such as Abaqus 

and Ansys, are available on the market. With these software tools, FEA can be used in 

the design of ultrasonic devices to analyse their vibration modes and evaluate the 

material stress. Unless otherwise specified, the FEA carried out in this research is 

completed using the commercial multi-disciplinary package Abaqus V6.11-2. 

(2) Experimental Verification 

In addition to analysis, it is also important to verify the simulation and estimate the 

actual characteristics of an ultrasonic device during the design process. This can be 

done by EMA, which is a powerful tool capable of revealing the inherent modal 

behaviour of a mechanical system experimentally. EMA made its appearance decades 

ago and has now been widely used in industry to investigate the dynamic behaviour of 

structures such as aircraft wings, bridges and precision mechanical components. 

EMA is based on the concept that the vibration responses of a linear time invariant 

dynamic system can be represented as the combination of a set of harmonic motions 

referred to as the natural modes of vibration. The theory of EMA is established on the 

basis of the dynamic system model comprising stiffness, mass and damping properties. 

By taking into account the spatial distributions of these parameters, the dynamic 

behaviour of the structure can be described in terms of a set of normal partial 

differential equations, which can be reconstructed through the measurement of 

relationships between the excitation and the vibration responses at specific locations. 
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The relationship is usually a complex mathematical function known as frequency 

response function (FRF). 

The experimental practice of EMA involves measuring the FRFs of a structure using 

appropriate approaches and deriving the modal model. For ultrasonic components, the 

FRFs are usually obtained under excitation of white noise (random signal), shock 

(impact testing), sine sweep or burst chirp. In this study, white noise is used as it 

requires relatively short testing time while providing adequate energy to excite the 

vibration modes. The vibration responses of the structure can be measured by a laser-

vibrometer, which is capable of making non-contact measurements for small 

amplitude vibration. The modal parameters, including natural frequencies and mode 

shapes, can be extracted based on the obtained FRFs using method of curve fitting. 

They provide an insight into the actual dynamic characteristics of the structure and 

enable the designer to evaluate whether the expected performance is obtained. 

(3) Analytical Modelling 

In addition to FEA, it is also possible to model the ultrasonic blades using other 

methods such as analytical models. Analytical modelling has been demonstrated to be 

an effective method in the design of ultrasonic horns [92-94]. This method treats a 

horn or other ultrasonic device as a one-dimensional structure of variable cross-

section, which enables the application of one-dimensional theories to study the 

vibration characteristics of the horn. As suggested by the name, the one-dimensional 

theories are mainly used for the structure that has one dimension significantly larger 

than others. This feature allows the structure to be modelled using functions with a 

single variable [95, 96]. Figure 1.7 illustrates a rod with non-constant circular cross-

sections, where the axial length of the rod is significantly larger than the diameters. 

Using one-dimensional modelling, this structure can be represented by functions that 

describe the properties of its cross-section, such as diameter D(z), cross-section area 

S(z), and moment of inertia I(z). Based on these functions, the dynamic behaviour of 

the structure can be formulated with respected to z, only one variable. 
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Figure 1.7 Representation of One-dimensional Structure 

According to the type of load and vibration, the structure can be treated as a bar, a 

beam or a shaft which deals with the longitudinal, bending and torsional vibration 

respectively. This provides a simple but feasible solution to model an ultrasonic blade 

in an analytical way. For certain types of profile, such as constant cross-section and 

tapered structure, closed form solutions of the model can be obtained. However, this 

may not be possible when the shape of the structure is complex. Instead, numerical 

methods can be used to compute the numerical solutions. 

An advantage of the analytical modelling is that it does not require a 3D model to be 

generated and meshed before the calculation, which enables the application of this 

method in the case where detailed 3D models are not available or not necessary for 

analysis. Also it is expected that the one-dimensional analytical models can be 

computed in a faster way than 3D finite element models. Therefore it can be 

implemented as a fast estimation approach for applications which deal with the 

computation of a large number of ultrasonic blade designs. Moreover, comparing with 

general purpose FEA, the analytical method can be more flexible when introducing 

special non-linear vibration mechanisms in the modelling. Chapter 3 and Chapter 4 of 

this thesis will apply analytical models to study the vibration characteristics of 

ultrasonic blades. 

1.5.3 Design of Ultrasonic Components 

Ultrasonic concentrators or horns are important components in power ultrasonic 

systems. For a longitudinally resonated ultrasonic cutting blade, a tapered or stepped 

half-wavelength horn is usually an essential part of its design. The earliest studies of 

half-wavelength horns were published in the 1950s. Balamuth [97] investigated the 

design of ultrasonic horns (referred to as "mechanical impedance transformers") based 

on theoretical analysis of the structure. The paper concluded that stepped horns could 

achieve better performance than exponentially tapered horns in terms of mechanical 



26 

impedance transformation. However, as the lateral deformation was ignored in the 

theory, it is necessary to keep the diameter of cross-section area less than a quarter 

wavelength in order to obtain accurate prediction. Similar work was reported by 

Merkulov [92]. Analytical and experimental analysis of various types of tapered horns 

were presented. It was shown that significantly larger gain could be achieved on 

catenoidal horns. However, the amplification was restricted by the strain limit of the 

horn material. In a later study, Merkulov and Kharitonov [93] investigated complex 

horns of multiple sections. It was demonstrated that such a design was capable of 

achieving considerably higher gain than the simple tapered shape. Due to the 

complexity of the profile, although the proposed analytical method predicted the gain 

of horns with satisfactory accuracy, differences between the theoretical and 

experimental resonant frequency were expected. 

The above studies put forward "general" design strategies which compute the 

characteristics of a horn, such as resonant frequency or material stress, based on a 

given design. Their design process was established on a trial basis by repeating the 

design procedures until all characteristics meet the desired requirements. Alternatively, 

Eisner and Seager [98] presented another strategy which initially considered the 

required vibrational characteristics of a horn by constructing a wave function, from 

which the shape of the horn was derived at the following design stages. 

The importance of incorporating appropriate boundary conditions in the mathematical 

model of a horn was pointed out by Jakubowski [99]. This paper introduced the 

concept of mechanical impedance and applied it to formulate the boundary conditions. 

The case study of an exponential horn and a cylindrical bar illustrated that by 

including the load conditions in the calculation, the transducer-horn system were 

designed more efficiently. Amza and Drimer [100] studied the design and 

construction of an ultrasonic horn by considering the mechanical force field in the 

structure. Amza investigated the choice of material for the horn manufacturing. It was 

shown that good results could be obtained using material such as titanium, dur-

aluminium alloy, tool carbon steel, austenitic non-corrosive steel, Monel metal and 

grade carbon steel. To reduce the deviation between the prediction and the actual 

tuned frequency, a length correction factor was introduced during the calculation of 

vibration modes, which altered the vibration distribution and position of nodal points 
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in the solution. However, the physical meaning of the factor may be unclear in some 

cases. 

In addition to the stepped and tapered horns, another type of horn called a block horn 

is used for ultrasonic process such as plastic welding. Such horns can have a wide 

cross-sectional area. At least one dimension of the output face is of similar size as the 

wavelength of ultrasound. Block horns are more efficient when distributing the 

ultrasonic energy over a wide area. Shoh [21] discussed the application of block horns 

which were first commercially used during the 1970s. However, the design of horns 

was not detailed in this paper. Derks [101] presented design strategies for block horns 

with an aim to optimise their performance by achieving uniform amplitude at the 

output surface. Several strategies, including avoiding the presence of other modes 

around the tuned frequency and incorporation of slots, were suggested. 

Research on rectangular block horns used for plastic welding was reported by Adachi 

et al [102]. Vibration modes of horns with different slots were analysed by the finite 

element method. Adachi discussed the influence of the slot dimensions on the 

uniformity of output amplitude. A set of design rules was put forward with an attempt 

to achieve a flat longitudinal amplitude distribution at the output surface. Although a 

satisfactory design was obtained in the case studied, a more general design process 

was desired. In a later study, Adachi and Ueha [103] presented a novel design 

approach referred to as the method of wave-trapped horns. This technique modified 

the vibration mode by adding elastic components attached at the input face of the horn. 

The length of these components was adjusted until satisfactory uniformity of output 

amplitude was obtained. This method, however, may not be applicable for large horns 

as the improvements could be overwhelmed by effects of the lateral dimension. 

O'Shea [104] investigated the design of block horns using finite element analysis and  

showed that effective design of such ultrasonic components would not be possible 

without the identification of their modal parameters such as modal frequencies and 

mode shapes. In addition, Koike and Ueha [105] illustrated that the performance of 

the ultrasonic transducers/components could be studied through transient vibration 

analysis. Rather than taking into account the horn only, Koike investigated the full 

transducer-horn assembly using FEM and Newmark-β method. The paper concluded 

that the main cause of fracture in unloaded tools could not be ascribed to transient 
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stress. Chapman and Lucas [106] presented the resonant frequency analysis of a thick 

cylindrical horn tuned in a radial mode. A combination of FEA, electronic speckle 

pattern interferometry (ESPI) and EMA was used to measure the horn's modal 

characteristics. This allowed the horn to be redesigned in a way that avoids the 

appearance of non-operational modes in the neighbourhood of the working frequency, 

reducing the occurrence of modal coupling behaviour. The study illustrated an 

example of design practise of ultrasonic components by applying advanced measuring 

techniques to validate finite element models. Cardoni [14] studied the dynamic 

characteristics of ultrasonic cutting devices, including half-wavelength and one-

wavelength blades. It was demonstrated again that the EMA verified FE models, 

which enabled thorough stress and deformation inspection of ultrasonic devices, were 

of great importance in the design process. Cardoni also suggested that it is necessary 

to avoid bending vibration in order to improve the overall performance of the device. 

Ultrasonic devices may be designed in a more complex form where multiple 

components are tuned as one assembly and are driven by the same ultrasonic 

transducer. This increases the efficiency of processing by allowing multiple 

operations, such as welding of multiple spots, to be completed simultaneously in one 

action. Apart from that, it simplifies the system setup and reduces the running cost by 

using only one set of driving and control circuits. However, such devices are 

characterised by complex modal behaviour, which is difficult to predict, and lower 

reliability. Rawson [49] discussed the application of multi-blade cutting systems in 

the food industry. It was illustrated that this kind of apparatus was capable of 

improving both the efficiency and quality of food processing. Cardoni [1, 14] detailed 

the design of a novel multi-blade ultrasonic cutting device. The study showed that 

complicated modal interaction behaviour could occur in the blade-horn assembly. The 

response of the excitation depended not merely on the vibration characteristics of the 

horn but on all attached blades as well. The study showed that the phenomenon of 

modal interaction and combination resonance could be improved by introducing slots 

and castellation in the horn design. However, it is difficult to obtain a set of general 

design rules for such types of ultrasonic devices. 
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1.5.4 Design of Ultrasonic Blades 

Generally, the conventional design process of an ultrasonic blade includes three main 

parts: initial design, modelling and analysis, and blade tests [14, 39, 53]. Figure 1.8 

illustrates the typical steps involving in the design process. 

 

Figure 1.8 Conventional Design Process of Ultrasonic Blades 
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(1) Initial Design 

The starting point of the design process is an initial design concept, which is usually 

conceived according to the requirements of the application. In this stage, the basic 

features of the blade, such as the material, the type/shape of the blade, location of the 

cutting edge (e.g. on the tip of the blade for guillotine cutting or, on the sides of the 

blade for other types of cutting), and shape of cutting edge (with/without serration, 

sharp/blunt), are decided by considering the function of the blade and other design 

requirements. 

The size, especially the length, of the blade can be estimated by taking into account 

the wavelength of ultrasound [14, 39, 53]. According to vibration and acoustic 

theories [95, 107, 108], for a uniform rod, the ultrasound wavelength in the material 

can be obtained by 

1

2

E

f



                                                         (1.1) 

where λ is the wavelength of ultrasound, f  is vibration frequency, ρ is material density 

and E is Young's modulus. To enable properly excitation and achieve satisfactory 

vibration characteristics, an ultrasonic blade is usually design to be a half-wavelength 

or one-wavelength resonant structure [14, 39, 53]. Eq. (1.1) provides a simple way to 

estimate the rough length of the blade. For a half-wavelength blade, the length is 

approximately λ/2 and for a one-wavelength blade this is λ. Based on this information, 

a draft design can be produced. 

(2) Modelling and Analysis 

In the next stage, the draft design is modelled, analysed and refined with an aim to 

achieve the desired characteristics. The main analyses include modal analysis and 

stress analysis, which are usually performed using FEA. The basic objective is to 

make sure the design is resonant at the correct frequency without exceeding the 

tolerable stress. In addition, other analysis or simulation can also be carried out in this 

stage to study other characteristics of the design, such as heat generation and cutting 

effect. 
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The analysis will be followed by appropriate modification of the design and the 

design-analysis-modification cycle will be repeated a number of times until a 

satisfactory design is obtained. In the conventional design method, the modification is 

done by the designer based on the information obtained from the analysis, which is a 

job heavily relying on the designer's experience and intuition. It may take a number of 

trials before a satisfactory design is found. However, this may not be the best 

optimised design as it is difficult to examine all feasible solutions in the design 

process. 

(3) Blade Tests 

As some degree of discrepancy is usually expected between the analysis and the real 

world problem, prototyping and testing are essential after a satisfactory design is 

obtained. The tests verify the actual performance of the blade, and provide useful 

information for analysis correction and design improvement. The characteristics of 

the blade that are difficult to model and analyse can also be studied in the tests. 

EMA is a powerful approach to estimate the vibration characteristics of an ultrasonic 

blade experimentally. By identifying the vibration modes and their modal frequencies, 

EMA can be used to examine whether the blade can work stably in ultrasonic cutting. 

Cutting test is the way to evaluate the overall performance of the blade, where the 

prototype will be excited in normal working condition and perform cutting on test 

samples. The design process will complete if the blade exhibits the expected 

characteristics and meets the design requirements, otherwise appropriate 

improvements have to be made and the design process will restart. 

1.5.5 The Method of Optimal Design 

The proposal of the concept of optimisation can be dated back to as early as the days 

of Newton, Lagrange, and Cauchy [109]. However, it was not widely applied in 

engineering until World War II. This was partly due to the complexity of practical 

design problems and the limitation of calculation approaches up to that time. With the 

rapid advancement in computer technology, a large number of numerical optimisation 

algorithms emerged after the 1950s, which enabled the implementation and 

application of the optimal method in different kinds of realistic engineering problems. 
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Based on this advancement, optimal design is now an effective method in research 

and industry product development. The distinct characteristic of the optimisation 

method is that it uses mathematical algorithms in the design process to maximise the 

desired benefits and obtain the "best" design. Depending on the application and 

requirements, the "best" can mean that the system has the minimum energy 

consumption, largest output or lowest material stress. As the optimal design applies 

optimisation algorithms rather than the designers' experience or intuition to update the 

trial designs, the design can be done in a more reliable and effective way. 

According to the nature of the problem, optimal design can be implemented using 

various procedures. However, the following basic stages are usually necessary for all 

applications [110-112]: 

(1) Formulation of the design problem. In order to apply the relevant mathematical 

approaches in a real world case, the design problem must be represented in a 

mathematical way and be formulated into an optimisation problem. Generally, this 

can be done by constructing one or more objective functions to describe the goal 

of optimisation and defining the appropriate constraints to assign design 

requirements. 

(2) Evaluation of the design. This is to compute the characteristics of the design and 

check the relevant performance according to the design requirements. Only those 

competent designs will be kept and updated for later stages. 

(3) Updating the design using optimisation algorithms. Updated designs are 

generated by the optimisation algorithm in order to evaluate the improvement of 

the adjustment and search for better solutions. The design process is terminated 

when the optimal design is obtained or when other stop criteria are met. 

The concept of optimal design can be applied in the design of ultrasonic blades. As 

optimisation algorithms enable the examination of a considerably large number of 

feasible designs, it is expected that the optimal design method can result in better 

design quality than the conventional design method. However, the main challenge of 

its application is how to formulate the problem of ultrasonic blade design in an 

appropriately way so that the optimisation can be implemented effectively. To study 

this issue, Chapter 5 and Chapter 6 will be devoted to the proposal, implementation 

and application of the optimal design method for ultrasonic bone cutting blades. 
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1.6 Summary of Work 

Ultrasonic cutting offers a number of advantages over the traditional cutting methods 

for surgical bone cutting. As this technology relies on high frequency mechanical 

vibration of an ultrasonic blade to achieve cutting on bone, modelling and analysing 

the dynamic characteristics is crucial in the design of high performance ultrasonic 

surgical bone cutting blades. This thesis focuses on ultrasonic bone cutting devices 

that are intended to make incisions in bones with minimum damage on surrounding 

soft tissues. The study is devoted to the analytical modelling of the dynamic 

characteristics of ultrasonic blades and the proposal of an optimal blade design 

method. 

This thesis formulates ultrasonic blades as one-dimensional structures, and studies 

both non-coupled vibration and coupled vibration of blades using one-dimensional 

theories. For non-coupled vibration, the modelling is based on the assumption that no 

interaction occurs between different modes of vibration. Therefore the blade can be 

characterised by studying its operation under a single mode of vibration using 

longitudinal, bending and torsional theories respectively. This study details the 

derivation of the analytical model and shows that the proposed method can be used as 

an alternative approach to FEA in the characteristics prediction of ultrasonic blades. 

Modelling coupled vibration is also discussed in this thesis. Two models, a parametric 

vibration model and a longitudinal-bending coupled vibration model, are proposed 

based on the one-dimensional theories by introducing mechanism of interaction 

between different modes of vibration. 

The proposal, implementation and application of an optimal design method are 

discussed. The optimal design method is proposed as an improvement of the 

conventional design method based on the introduction of blade performance 

indicators. Four types of performance indicators are defined in this study, which 

enable the evaluation of main vibration characteristics of ultrasonic blades. The 

concept of the proposed method is to maximise the blade performance through the 

optimisation of the performance indicators. This can improve the quality of design by 

making sure the most desired characteristics are achieved in the blade. 
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Five ultrasonic blades with different cutting edges are designed in this study using 

either the conventional or the optimal design method. Tests of the blades suggest that 

satisfactory design with expected vibration characteristics can be obtained using the 

optimal design method, and the improvement of cutting performance can be further 

carried out based on the optimised design by incorporating the cutting edges that fit 

the most for a specific application. Ultrasonic cutting performed on biomechanical 

samples, ovine femur and rat bones shows that the blades are capable of making 

incisions on bones without the requirement of large applied force. Positive linear 

correlation between the applied force and the cutting speed is found in the ultrasonic 

cutting carried out under static applied force, and positive linear relationship between 

the applied force and the surface temperature is observed in the ultrasonic cutting 

carried out under sliding motion. The study confirms that the blades are designed with 

expected characteristics and satisfactory cutting performance. 
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Chapter 2 
Analytical Modelling of Ultrasonic Blades 
Operating in a Single Mode of Vibration 

2.1 Introduction 

Ultrasonic bone cutting relies on direct contact between a vibrating blade and the hard 

tissues to make incisions. Investigations have shown that the cutting performance of 

an ultrasonic blade is closely related to its dynamic characteristics [14, 39]. Modal 

parameters, including the natural frequencies and mode shapes, are among the most 

basic and important characteristics. For an ultrasonic blade to be properly fabricated, 

it is essential to inspect these parameters during the design process. 

2.1.1 Characterising Vibration Parameters and One-Dimensional Theories 

Finite element analysis (FEA) is a versatile and flexible method widely used during 

the development of ultrasonic devices to characterise the vibration parameters. 

Cardoni [14] applied FEA to investigate how the design of ultrasonic blades can 

determine their dynamic behaviour. Suggestions of design improvement were drawn 

based on the characterisation of modal frequencies, gain and stress. In later studies by 

McCulloch [53] and MacBeath [39], FEA was employed as the main tool in the 

design of ultrasonic food and bone cutting blades. Attempts were made to enhance the 

quality of analysis by improving the FE models and incorporating advanced material 

properties. Amin [113] calculated the tuned frequencies of horns using FEA whereby 

an optimisation procedure was proposed to design such devices. Zhang [114] applied 

FEA in the design of a micro-drill where longitudinal ultrasonic vibration is 

superimposed to assist the drilling process. This enabled the modelling of the flute 

type structure for precise eigenfrequency extraction. Applications were also presented 

by Lucas [42] and Alam [115] where the ultrasonic devices were modelled and 

analysed by FEA.  

Although FEA offers an effective and flexible way to study the behaviour of 

ultrasonic blades, there may be limitations with this method in certain applications. 

Creation and meshing of 3D models are usually essential tasks of FEA in the design 
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of ultrasonic blade. However, these jobs can be time consuming in the early or 

conceptual stage of the design process where a detailed 3D model is not yet available 

or is unnecessary [14, 39, 53]. Instead, it may be more convenient to apply a 

simplified but fast method to estimate the critical parameters. Apart from that, as FEA 

is usually performed using commercial software packages, it can be difficult to 

introduce special coupling or non-linear effects in the analysis. In this case, an 

alternative solution can be modelling and investigating an ultrasonic blade 

analytically. 

Taking into account the fact that the shape of a blade is usually slender and symmetric, 

it is possible to approximate it with a one-dimensional structure of variable cross-

section as introduced in Section 1.5.2. According to vibration theories and previous 

studies, the longitudinal, bending (including bending along both the width and 

thickness directions) and torsional vibration are the basic modes of vibration that are 

most commonly observed in blades, horns or other ultrasonic components [14, 39, 53, 

95, 107, 108]. For this reason, the modelling in this chapter will be conducted in terms 

of the modes of vibration using one-dimensional theories. The following sub-sections 

will review the relevant applications of one-dimensional theories presented in the 

literature. 

2.1.2 Modelling of Longitudinal Vibration 

The tuned frequency and other modal parameters of longitudinal vibration can be 

calculated by treating the structure as a rod subjected to deformation along its 

longitudinal or axial direction. For special cases, such as a structure with uniform, 

linear or exponential cross-section area, the modal frequencies can be obtained 

directly by solving the governing equations of longitudinal vibration [92, 95, 96, 107, 

116] which as a rule is the motion used for ultrasonic cutting. This can sometimes be 

facilitated by transforming the equation of motion into another analytical solvable 

representation [117]. Eisenberger [118] studied the exact solution of modal 

frequencies for variable cross-section bars. The function of the cross-section area was 

represented by polynomial variations and power series, which allowed the general 

solution of the dynamic axial stiffness and natural frequencies to be obtained. In 

theory, the method can be used to calculate all kinds of non-uniform bars as long as 

the cross-section area function is represented to the desired accuracy. However, its 
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implementation could be impractical or inconvenient for cases of complex non-

uniformity. Instead of treating the structure as a whole body, some problems can be 

simplified using sectional representation. Li [119] discussed the exact solutions of the 

governing equations of longitudinal vibration using multiple sectional stepped non-

uniform rods. The solution presented in the study was also applicable for other 

structures with a similar profile. However, for structures of complex shape, a closed 

form solution is usually difficult to obtain. Alternatively, numerical approaches can be 

applied to solve the vibration equations [92]. Merkulov [93] modelled complex 

ultrasonic horns by dividing them into two or several simple sections whereby the 

modal parameters of the whole component were obtained through a set of differential 

equations. However, this method concentrated on horns with circular cross-sections 

only. Also, the profile of the sections must be restricted to a few specified cases; 

otherwise difficulties may be encountered when solving the equations. 

2.1.3 Modelling of Bending Vibration 

Using a similar concept, an ultrasonic blade or horn can be modelled as a beam in 

order to investigate its bending vibration. Due to causes such as manufacturing 

imperfection and non-linear behaviour, bending oscillation can exhibit even when a 

blade is excited longitudinally. However, unlike the longitudinal vibration, the 

bending motion is usually undesired in slender ultrasonic blades to avoid excessive 

stress. According to the classic Euler–Bernoulli beam theory, the governing equation 

of an ideal beam is a fourth order partial differential equation, which does not take 

into account the effects of rotary inertia and shear force. However, the ignored effects 

may become significant as the frequency of vibration is increased. In this case, the 

improved theories, such as the Timoshenko theory, would be more suitable [95, 96, 

107, 116]. 

For certain simple tapered beams, closed form solutions of the bending vibration can 

be obtained. Ece [120] and Naguleswaran [121] computed the analytical solutions for 

beams with linear or exponential cross-section area. However, the approaches were 

not directly applicable for ultrasonic blades due to the complexity of the profile. In 

cases where exact analytical solutions are impossible to find, numerical methods can 

be applied. Tong [122] approximated a non-uniform and non-homogeneous beam 

using a number of uniform and homogeneous stepped beams. This method is flexible 
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when modelling complex structures. It should be treated as a numerical approach 

when a large number of stepped beams are used.  

2.1.4 Modelling of Torsional Vibration 

Ultrasonic blades or horns can be treated as a shaft structure when investigating their 

torsional vibration. The equation of motion in its simplest form can be obtained by 

considering the torsion of a uniform rod with a round cross-section [95, 107]. For 

other cases where non-circular cross-sections exist, it is necessary to introduce a 

correction factor in the equation in order to take into account the effects of distortion 

and warp during the torsion [123, 124]. Eisenberger [125, 126] presented an analytical 

method which was capable of obtaining exact form solutions of natural frequencies 

and dynamic stiffness matrix for torsional bars with variable cross-sections. Vet [127, 

128] investigated the fundamental torsional vibration of beams with rectangular cross-

sections and without boundary constraints using the Rayleigh-Ritz method. The 

kinetic distribution and potential energy of an elastic system was employed to 

determine the fundamental frequency of vibration. It showed that this was an effective 

method with good accuracy as long as an appropriate displacement function with 

adequate computing precision was used. Kulkarni [129] applied the Reissner method 

to determine the natural frequencies of torsional beams tapered in thickness and 

breadth. The procedure considered only the first two torsional modes based on a 

Reissner function. Results of satisfactory accuracy were obtained at fairly low 

computing costs. Augustyn [130] presented the equations of torsional motions for 

beams which had different types of cross-sections and boundary conditions, such as 

those with thin wall and rectangular cross-sections. These equations can be used as 

the analytical description of a number of structures widely used in practical 

applications. However, the study did not discuss the relevant solutions of the 

equations. Elwany [131] modelled the torsional vibration of a beam with rectangular 

cross-section in order to conduct optimisation in the design process. Some reasonable 

assumptions about deformation and stress were made, which enabled the application 

of the one-dimensional torsion theory. This method was of sufficient precision in the 

analysis of the dynamic characteristics of interest. Numerical solution and 

experimental results showed that the approach was effective in both modal frequency 

calculation and design optimisation. 
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The above studies show that it is a feasible solution to use one-dimensional theories to 

model and inspect the vibration of ultrasonic blades. The longitudinal, bending and 

torsional motion of a blade can be characterised by the relevant vibration theories 

respectively. This offers an alternative approach to extract the critical dynamic 

parameters of an ultrasonic blade during the design process. 

2.2 One-Dimensional Theories and Vibration Equations 

This section will present the fundamentals of the one-dimensional theories, which 

includes the vibration theories of the longitudinal, bending and torsional motion of a 

slender beam. It is assumed that these modes of vibration are independent of each 

other without the presence of any coupling effects. For each type of motion, the 

governing equation of vibration can be derived from a basic structure using one-

dimensional theory. The concept of the modelling of an ultrasonic blade is to extend 

these governing equations so that the factor of variable cross-sections is taken into 

account. Thus, providing the shape of a blade is appropriately defined in termed of its 

cross-sections, the governing equations will be applicable to characterise the vibration 

of the blade. 

2.2.1 Theory of Longitudinal Vibration 

Figure 2.1(a) illustrates a bar vibrating along the longitudinal direction. It is assumed 

that the stress is uniformly distributed along the cross-section  which remains flat in 

the deformation [92]. This is a satisfactory approximation when the vibration 

wavelength is considerably larger than the width of the beam [96]. As only the 

longitudinal vibration is studied in this theory, the motion is modelled with respect to 

( , )w z t , the displacement parallel to the longitudinal direction (axis Z), neglecting any 

other contributing components of the deformation. 
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a) Longitudinal Vibration 
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b) An Element of the Beam 

Figure 2.1  Longitudinal Vibration of a Beam 

To obtain the governing equation of longitudinal vibration, a small beam element as 

illustrated in Figure 2.1(b) is considered. According to the stress analysis, the forces 

exerted on the faces of the element are obtained as [96] 

1 ( ) ( , )F S z z t                                                          (2.1) 

 and  

2

( ) ( , )
[ ( ) d ][ ( , ) d ]

S z z t
F S z z z t z

z z




 
  

 
                                 (2.2) 

where ( )S z  is the cross-section area and 

( , )
( , )

w z t
z t E

z






                                                     (2.3) 

is the stress on the cross-section, E is the modulus of elasticity, t is time. According to 

Newton's second law of motion, one obtains 

2

2 1 2

( , )
( ) d

w z t
F F S z z

t



 


                                             (2.4) 

where   is the mass density of the material. By substituting Eq. (2.1) and (2.2) into 

Eq. (2.4) and, neglecting the infinitesimal of higher order, the governing equation of 

longitudinal vibration can be obtained in the following form 
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2

2

( , ) ( ) ( , )
[ ( ) ]

w z t S z w z t
S z

z z E t

  


  
                                   (2.5) 

It should be emphasised that this equation has already been taken into account the 

non-uniform shape of the beam by treating the cross-section area as a function. 

Eq. (2.5) can be solved using the method of separation of variables by considering the 

harmonic vibration as 

( , ) ( )[ cos( ) sin( )]w z t W z A t B t                                   (2.6) 

where A and B are two constant vibration parameters,   is the circular frequency and 

( )W z  is a time independent function known as the mode shape function [95, 96, 107, 

116]. Substituting Eq. (2.6) into (2.5) yields 

2( )
[ ( ) ( )] ( ) 0

S z
S z W z W z

E

 
                                       (2.7) 

where prime denotes differentiation with respect to z. Eq. (2.7) is referred to as the 

equation of longitudinal mode shape function, where ( )W z  is an unknown function. 

As Eq. (2.7) is a second order differential equation, it is necessary to define two 

boundary conditions in order to obtain particular solutions. For the case of a half-

wavelength ultrasonic blade, the free-free boundary conditions can be applied, which 

simulates the longitudinal tuning condition of the blade. In this case, the boundary 

conditions are given as of the form [95, 96, 107, 116] 

(0) 0W                                                            (2.8) 

( ) 0W L 
                                                         (2.9) 

In order to satisfy Eq. (2.7)-(2.9),   must be certain values known as the modal 

frequencies. Assigning one of such values for   in Eq. (2.7) will result in a group of 

general solutions for ( )W z . These solutions are the associated mode shape functions 

of  , which are of similar form according to the theory of second order differential 

equations. Without losing generality, a particular solution obtained under a 

normalised input condition 

(0) 1W                                                          (2.10) 

(0) 0W                                                          (2.11) 
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is defined as the normalised mode shape function of the associate  . Thus the modal 

frequencies and the normalised mode shape functions can be used to characterise the 

longitudinal vibration of the ultrasonic blade. 

 

2.2.2 Theory of Bending Vibration 

u

z






   

Mb

Mb+dMb

dMa

dq

dz  

a) Bending Vibration                                      b) A Small Element of the Beam 

Figure 2.2 Bending Vibration of a Beam 

In order to model the bending vibration of ultrasonic blades, an improved one-

dimensional bending theory is presented. Figure 2.2(a) illustrates a beam in bending 

along its thickness direction, where   is the rotate angle and ( , )u z t  is the 

displacement along the axis of Y. For a small element of the beam as illustrated in 

Figure 2.2(b), according to the Euler–Bernoulli beam theory, the bending moment on 

its cross-section is given by 

2

2

( , )
( )b x

u z t
M EI z

z





                                             (2.12) 

where ( )xI z  is the second moment of area to the axis of X. The inertia load on the 

element, which is associated with the translatory motion, is written as 

2

2

( , )
d ( ) d

u z t
q S z z

t






                                            (2.13) 

The classic Euler–Bernoulli beam theory does not take into account the effects of 

shear force and rotary inertia. However, for a beam with a relatively large cross-

section, these effects may become significant when the structure is performing high 

frequency vibration [95, 96, 107, 116]. Nevertheless, to simplify the problem, this 
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study only considers the influence of the rotary inertia. In this case, the moment of 

rotary inertia on the element is given as [96]: 

3

2

( , )
d ( ) da x

u z t
M I z z

z t





 
                                           (2.14) 

The moments and load in Eq. (2.12)-(2.14) must be balanced, yielding 

2 2

2 2

d d
d d d 0

d d
b aM z M z q

z z
                                         (2.15) 

Therefore, 

2 2 3 2

2 2 2 2

d ( , ) d ( , ) ( , )
[ ( ) ] [ ( ) ] ( ) 0

d d
x x

u z t u z t u z t
EI z I z S z

z z z z t t
 

  
  

   
       (2.16) 

which is the governing equation of bending vibration. This equation has taken into 

account the case of non-uniform cross-sections by including the cross-section area and 

moment of area as functions. 

To investigate the mode shapes and modal frequencies of the vibration, the method of 

separation of variables was applied to Eq. (2.16) [95, 96, 107, 116]. Defining the 

harmonic vibration as of the form 

( , ) ( )[ cos( ) sin( )]u z t U z A t B t                                     (2.17) 

where A and B are constant parameters of oscillation,   is the circular frequency and 

( )U z  is a time independent function known as the mode shape function, and 

substituting Eq. (2.17) into Eq. (2.16) yields 

2 2[ ( ) ( )] [ ( ) ( )] ( ) ( ) 0x xEI z U z I z U z S z U z                      (2.18) 

which is referred to as the equation of bending mode shape function. To further 

investigate its solution, it is necessary to define appropriate boundary conditions for 

Eq. (2.18). Although the ultrasonic blade is attached to the transducer, taking into 

account the fact that the amplitude of bending is relatively small, it is acceptable to 

apply free-free boundary conditions in this case, which simplifies the problem by 

ignoring the details of the attachment. According to the bending theory [95, 96, 107, 

116], these boundary conditions are represented as of the form 

(0) 0U   ,    (0) 0U                                     (2.19), (2.20) 
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( ) 0U L  ,    ( ) 0U L                                   (2.21), (2.22) 

Similar to the case of longitudinal vibration, to satisfy Eq. (2.18)-(2.22),   must be 

certain values known as modal frequencies. The general solutions of ( )U z  for a given 

modal frequency are the associated mode shape functions. Particularly, the solution 

obtained from a normalised input condition 

(0) 1U  ,     (0) 0U                                     (2.23), (2.24) 

( ) 0U L  ,    ( ) 0U L     (2.25), (2.26) 

is defined as the normalised mode shape under the relevant modal frequency. The 

modal frequencies and the normalised mode shape functions are used to characterise 

the bending vibration of the ultrasonic blade. 

Though the above equations were derived for the bending motion along the thickness 

direction of the beam, they are also applicable for bending along the breadth of the 

structure. Equations of the same form can be obtained by treating the breadth as the 

"thickness" of the beam, resulting in ( )xI z  being replaced by ( )yI z , the second 

moment of area to the Y axis. However, a larger error should normally be expected in 

this case as the bending theory is of high accuracy only when the "thickness" is 

considerably smaller than the length of the beam. 

2.2.3 Theory of Torsional Vibration 

( , )z t

           

( , )T z t
( d , )T z z t

 

a) Torsional Vibration                          b) A Small Element of the Beam 

Figure 2.3 Torsional Vibration of a Beam 

In addition to the longitudinal and bending theories, one-dimensional torsion theory 

was used to model the torsional vibration of an ultrasonic blade. Figure 2.3(a) 

illustrates a beam undertaking torsional motion, where ( , )z t  is the torsion angle. For 

a small section on the beam, as illustrated in Figure 2.3(b), the torsion moment on the 

two planes of the element can be written as 
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( , )
( , ) ( )z

z t
T z t GJ z

z





                                                 (2.27) 

2

2

( ) ( , ) ( , )
( d , ) [ ( ) d ]( d )z

z

J z z t z t
T z z t G J z z z

z z z

   
   

  
                  (2.28) 

where G is the shear modulus, ( )zJ z  is the effective polar area moment for the cross-

section, which has already taken into account the effect of distortion and warp for 

non-circular cross-sections. 

The inertia force of rotation on the element is given by 

2

2

( , )
d ( ) ( )a z

z t
M z I z

t








                                           (2.29) 

where ( )zI z  is the second moment of area to the axis of Z. As this force is balanced 

by the torsion moments in Eq. (2.27) and (2.28), one obtains 

( d , ) ( , ) d ( )daT z z t T z t M z z                                       (2.30) 

Therefore, applying Eq. (2.27)-(2.29) yields 

2

2

( )( , ) ( , )
[ ( ) ] z

z

I zz t z t
J z

z z G t

   


  
                             (2.31) 

This is the governing equation of pure torsional vibration, which is essentially of 

similar form as the case of longitudinal vibration. Defining the harmonic vibration  

( , ) ( )[ cos( ) sin( )]z t z A t B t                                          (2.32) 

in the same way as Eq. (2.6), where ( )z  is the torsional shape function, and 

applying the method of separation of variables, Eq. (53) becomes 

2 ( )
[ ( ) ( )] ( ) 0z

z

I z
J z z z

G


                                  (2.33) 

This is the equation for the torsional shape function. As a special case, for the uniform 

beam where ( )z zJ z J  and ( )z zI z I  are constants, Eq. (2.33) can be simplified as 

2

( ) ( ) 0z

z

I
z z

GJ


                                                 (2.34) 

To further investigate the solution of Eq. (2.33), the free-free boundary condition is 

applied for this case. It is worth noting that this is also a simplified condition as the 
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blade is attached to the transducer rather than free at both ends. The boundary 

condition is given as follows according to the theory of rotation [95, 96, 107, 116] 

(0) 0                                                          (2.35) 

( ) 0L                                                          (2.36) 

In order to satisfy Eq. (2.34)-(2.36),   must be certain values known as modal 

frequencies. The general solutions of ( )z  for a given modal frequency are the 

associated mode shape functions. Particularly, the solution obtained from a 

normalised input condition 

(0) 1                                                          (2.37) 

( ) 0L                                                         (2.38) 

 is defined as the normalised mode shape under the relevant modal frequency. The 

modal frequencies and the normalised mode shape functions are used to characterise 

the torsional vibration of the ultrasonic blade. 

2.3 Modelling of Ultrasonic Blades 

2.3.1 Shape Parameters and Shape Functions 

In real world applications, the shape of an ultrasonic blade is usually more complex 

than a uniform or tapered beam. To facilitate the analysis, a feasible solution is 

dividing the blade into sections of simple shape [93]. Figure 2.4 illustrates a typical 

case where a blade is represented as a sectional structure consisting of two cylinders 

(section a and c), a cone (section b), a tapered beam with cut-rounded cross-section 

(section d), and a uniform beam (section e). This type of profile is widely used in the 

design of ultrasonic cutting blades for both industry and surgical applications [14, 39, 

53]. 
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Figure 2.4 Sectional Blade 

In terms of blade geometry, the solutions of the governing equations, Eq (2.5), (2.16) 

and (2.31), are determined by ( )S z , ( )xI z , ( )yI z , ( )zI z  and ( )zJ z . These functions 

are referred to as the shape functions of the blade. They are properties of the cross-

section with respect to the axial coordinate z. 

The shape functions can be computed based on the blade profile according to the 

shape of the cross-section. Three kinds of cross-sections exist in the sectional blade in 

Figure 2.4: rectangular, rounded and cut-rounded, which are associated with the 

uniform section, cylinder/cone, and tapered section, respectively. Figure 2.5 illustrates 

the shape of these cross-sections, where ( )h z  is the thickness of the blade at position z 

and D(z) is the width/diameter of the cross-section. 

                       

a) Rectangular                            b) Rounded                         c) Cut-Rounded 

Figure 2.5 Shape of Cross-section 

( )S z , ( )xI z , ( )yI z  and ( )zI z  can be computed directly according to their definition. 

The following equations were presented without detailing the intermediate derivation. 
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For Rectangular Cross-Section: 

 ( ) ( ) ( )S z D z h z                                                                          (2.39) 

2 31
( ) d d ( ) ( )

12
x

A

I z y x y D z h z                                                 (2.40) 

2 31
( ) d d ( ) ( )

12
y

A

I z x x y D z h z                                                 (2.41) 

2 2 3 31 1
( ) d d ( ) ( ) ( ) ( )

12 12
z

A

I z x y x y D z h z D z h z                    (2.42) 

For Rounded Cross-Section: 

21
( ) ( )

4
S z D z                                                                           (2.43) 

2 4( ) d d ( )
64

x

A

I z y x y D z


                                                         (2.44) 

2 4( ) d d ( )
64

y

A

I z x x y D z


                                                         (2.45) 

2 2 4( ) d d ( )
32

z

A

I z x y x y D z


                                                   (2.46) 

For Cut-Rounded Cross-Section: 

2 2 11 1 ( )
( ) ( ) ( ) ( ) ( )sin

2 2 ( )

h z
S z h z D z h z D z

D z
                               (2.47) 

3 2 2 4 1

2 2 2

1 1 ( )
( ) ( ) ( ) ( ) [ ( ) sin

16 32 ( )

( ) ( ) ( ) ( ) ]

x

h z
I z h z D z h z D z

D z

D z h z D z h z

  
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                    (2.48) 

2 2 3/2 4 1

2 2 2

1 1 ( )
( ) ( )[ ( ) ( ) ] [ ( ) sin

48 32 ( )

( ) ( ) ( ) ( ) ]

y

h z
I z h z D z h z D z

D z

D z h z D z h z

  
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                 (2.49) 

3 2 2 2

2 3/2 4 1

1 1
( ) ( ) ( ) ( ) ( )[ ( )

16 48
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16 ( )

zI z h z D z h z h z D z

h z
h z D z

D z


  
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                              (2.50) 
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( )zJ z , the effective polar area moment of cross-section, can be computed based on 

the Saint Venant’s torsion theory using the method of Prandtl stress function [107, 

123, 124]. 

2 2   

0   

Figure 2.6 Prandtl Function 

As illustrated in Figure 2.6, the Prandtl stress function is defined as G    where 

2 2  (In the cross section area)                                     (2.51) 

0  (On the boundary)                                               (2.52) 

and ( )zJ z  is obtained by 

2 d dz

A

J x y                                                          (2.53) 

As a special case, for rounded cross-sections, one obtains 

2 2 4( ) ( ) +y d d ( )
32

z z

A

J z I z x x y D z


                                (2.54) 

For other types of cross-section, ( )zJ z  can be calculated by numerical integration of 

Eq. (2.53). 

2.3.2 Finite Difference Method 

For a multi-sectional ultrasonic blade as illustrated in Figure 2.4, the representation of 

its shape functions can be of considerable complexity. It is therefore usually 

impractical to find exact form solutions for the governing equations. Instead, solutions 

of numerical form would be a feasible option. In terms of the governing equation Eq. 

(2.7), (2.18) and (2.33), numerical methods are already available to solve such types 

of differential equations. They can be can be classified into two main categories 

which either attempts to obtain solution values at a finite number of nodes or to find 
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the coefficients of a number of basic functions that are the series expansions of the 

desired solution [132-134]. 

The finite difference method is a widely used numerical approach that belongs to the 

first category. It was applied in this study to derive the dynamic model of ultrasonic 

blades through the governing equations. The basic concept of this method is to 

approximate a differential equation by replacing the derivatives with difference 

operators which are represented as the sums and differences of a group of function 

values at discrete points (usually uniformly spaced). This will finally convert a 

differential problem into a set of algebraic equations that can be conveniently handled 

by a computer. 

To find the appropriate difference approximations for Eq (2.7), (2.18) and (2.33), a 

function f(x) was expanded as a Taylor Series: 

2 3
4( ) ( ) ( ) ( ) ( ) ( )

2 6

h h
f x h f x hf x f x f x O h                         (2.55) 

2 3
4( ) ( ) ( ) ( ) ( ) ( )

2 6

h h
f x h f x hf x f x f x O h                         (2.56) 

where h is a positive spatial step. 

Therefore one obtains 

21
( ) [ ( ) ( )] ( )

2
f x f x h f x h O h

h
                                     (2.57) 

2

2

1
( ) [ ( ) 2 ( ) ( )] ( )f x f x h f x f x h O h

h
                         (2.58) 

Similarly, by further expanding the function into more terms, derivatives of higher 

order can be obtained as of the form 

2

3

1
( ) [ ( 2 ) 2 ( ) 2 ( ) ( 2 )] ( )

2
f x f x h f x h f x h f x h O h

h
               (2.59) 

2

4

1
( ) [ ( 2 ) 4 ( ) 2 ( ) 4 ( ) ( 2 )] ( )f x f x h f x h f x f x h f x h O h

h
                

 (2.60) 
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Eq. (2.57)-(2.60) can be denoted as follows 

( ) ( )
( ) [ ( )]

2

f x h f x h
f x D f x

h

  
                                                          (2.61) 

2

2
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f x h f x f x h
f x D f x

h

   
                                            (2.62) 
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f x h f x h f x h f x h
f x D f x

h

      
               (2.63) 

4

4

( 2 ) 4 ( ) 2 ( ) 4 ( ) ( 2 )
( ) [ ( )]

f x h f x h f x f x h f x h
f x D f x

h

       
    (2.64) 

These are the difference operators that will be used in the following derivation. Due to 

their symmetric representation, they are referred to as the central difference 

approximations. It can be proved that the approximation is of second order accuracy 

[132-134]. 

2.3.3 Modelling of Longitudinal and Torsional Vibration 

This sub-section will model the modal frequency and mode shape problem for 

longitudinal and torsional vibration of ultrasonic blades based on Eq. (2.7) and (2.33). 

By applying the finite difference method, the operators presented in Eq. (2.61) and 

(2.62), will be used to discretise the differential equations as well as compute the 

modal frequencies and mode shapes. As Eq. (2.7) and (2.33) are essentially second 

order differential equations of the same form, they can be processed using the same 

approach. Thus only the derivation of the longitudinal vibration will be detailed in this 

study. 

2.3.3.1 Finite Difference Equation 

To obtain the finite difference approximation for the equation of the longitudinal 

mode shape function ( Eq. (2.7) ), one may define iW  as the discretised solution of 

( )W z  at the point of iz  

( )i iW W z                                                       (2.65) 

and define iS  as 

( )i iS S z                                                        (2.66) 
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where 

iz ih  for 0,1,i m                                   (2.67) 

/h L m                                                       (2.68) 

L is the total length of the beam, m is the number of intervals. This suggests that a 

total of m+1 nodes uniformly distributed along the axis of the blade will be considered 

in the investigation. 

Discretising ( ) ( )S z W z  at the mid-point between 1iz   and iz  yields 

1
1/2 1/2 1/2( ) ( ) ( )i i

i i i

W W
S z W z S

h


  


                                   (2.69) 

and 

1
1/2 1/2 1/2( ) ( ) ( )i i

i i i

W W
S z W z S

h


  


                                   (2.70) 

Therefore 

1 1
1/2 1/2

1/2 1 1/2 1/2 1/2 12

1
[ ( ) ( )] [ ( ) ( )]

1
                     [ ( ) ]

i i i i
i i i i

i i i i i i i

W W W W
S z W z S S

h h h

S W S S W S W
h

 
 

     

 
  

   



                 (2.71) 

Applying Eq. (2.71) into Eq. (2.7), one may obtain the discretised form of the 

governing equation as 

2

1/2 1 1/2 1/2 1/2 12

1
[ ( ) ] 0i

i i i i i i i i

S
S W S S W S W W

h E


            (2.72) 

or written as 

1 1 0 1 1 0i i i
i i iK W K W K W                   (2.73) 

where 

1 1/2
i

iK ES                                                                  (2.74) 

2 2
0 1/2 1/2
i

i i iK S h ES ES                                       (2.75) 

1 1/2
i

iK ES                                                                   (2.76) 
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By assigning 0,1,i m   for Eq. (2.73), a set of algebraic equations for iW  can be 

obtained and written in matrix form as 

1

0 0 0
01 0 1

1 1 1
11 0 1

1 0 1

1

ˆ ˆ 0K

m m m
m

m

W

WK K K

WK K K

WK K K

W











 
                     
  

  
H W               (2.77) 

This is the finite difference approximation of the longitudinal vibration problem, 

where W0, W1, … , Wm depict the shape of the longitudinal deformation. The terms 

such as 0
1K , W-1 and Wm+1 were introduced for the convenience of mathematical 

derivation. They are the properties of the virtual nodes extended outside the actual 

structure. 

2.3.3.2 Modal Frequency Problem 

In addition to Eq. (2.77), two more equations can be obtained from the boundary 

conditions. Based on Eq. (2.8) and (2.9), one can discretise the boundary conditions as 

1 1

1
( ) 0

2
W W

h
                                          (2.78) 

1 1

1
( ) 0

2
m mW W

h
                                                (2.79) 

which can be written in matrix form as 

1

0

1

3

1

1 0 1 0 0
ˆ ˆ 00 0 1 0 1 a

m

m

m

W

W

W

W

W







 
 
 

   
    
    

 
 
  

 

 


H W                          (2.80) 

Assembling Eq. (2.80) into (2.77) yields 

ˆ ˆ 0L H W                                                           (2.81) 
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where  

ˆ
ˆ

ˆ
a

L

K

 
  
  

H
H

H
                                                       (2.82) 

is a m+3 by m+3 matrix. In fact, Eq. (2.81) is a collection of a set of homogeneous 

linear equations. For non-zero solutions, the determinant of ˆ
LH  must be zero. Taking 

into account the fact that ˆ
LH  is a function of  , this yields 

ˆDet[ ( )] 0L  H                                               (2.83) 

According to the vibration theory, the solutions of Eq. (2.83) are the modal 

frequencies of the longitudinal vibration [95, 96, 107, 116, 135]. Usually, it is not 

necessary to compute all the solutions for Eq. (2.83). Instead, one may apply a 

bisection method to search for the modal frequencies in the frequency range of 

interest. 

2.3.3.3 Mode Shape Function Problem 

On the basis of the solutions of Eq. (2.83), to calculate the associated mode shape 

function for a particular modal frequency, the normalised conditions of Eq. (2.10) and 

(2.11) were considered. Using a similar method, these equations can be discretised as 

0 1W                                                                (2.84) 

1 1

1
( ) 0

2
W W

h
                                               (2.85) 

or can be written in matrix form as 

1

0

1

3

1

1 0 1 0 0
1

0 1 0 0 0
0

m

m

m

W

W

W

W

W







 
 
 

               
 
 
  

 

 


                             (2.86) 

Assembling Eq. (2.86) into (2.77) yields 

ˆ ˆ ˆ
WH W B                                                     (2.87) 
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where  

0 0 0
1 0 1

1 1 1
1 0 1

1 0 1 ( 3) ( 3)

1 0 1

0 1

ˆ
W

m m m

m m

K K K
H

K K K

K K K





   

 
 
 
 

  
 
 
 
  

  

                  (2.88) 

 
( 3) 1

ˆ 1 0 0 0
T

m
B

 
                                       (2.89) 

It is straightforward to prove that, for the structure of interest in this study, ˆ
WH  is an 

m+3 by m+3 non-singular matrix. Therefore,  

1ˆ ˆ ˆ
WW H B                                                    (2.90) 

where Ŵ  is obtained as the discrete representation of the longitudinal mode shape 

function ( )W z . 

2.3.4 Modelling of Bending Vibration 

2.3.4.1 Finite Difference Equation 

A similar technique can be applied for Eq. (2.18) to study the bending modal 

behaviour of a blade. Due to the increased order of the differential equation, the 

difference operator of the fourth order derivative was applied in this case. 

Define  ( 0,1, 2, , )iU i m   as the discretised solution of ( )U z  at node iz  

( )i iU U z                                                       (2.91) 

and define 
ixI  as 

( )
ix x iI I z                                                       (2.92) 

where 

iz ih  for 0,1,i m                                    (2.93) 

/h L m                                                         (2.94) 
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Discretising ( ) ( )xEI z U z  at iz  yields 

1 12
( ) ( ) ( 2 )ix

x i i i

EI
EI z U z U U U

h
 

                               (2.95) 

Discretising [ ( ) ( )]xEI z U z   at iz  yields 

1 1

1 1 1 1 1 1

2 1 1 1 1 22 2 2 2

2 1 1 24

[ ( ) ( )]

1
[ ( 2 ) 2 ( 2 ) ( 2 )]

       [ 2( ) ( 4 ) 2( ) ]

i i i

i i i i i i i i

x

x x x

i i i i i i i i i

x i x i i x x x i x x i x i

EI z U z

EI EI EI
U U U U U U U U U

h h h h

E
I U I Ix U I I I U I I U I U

h

 

     

     

   

 

        

        



(2.96) 

Discretising 2[ ( ) ( )]xI z U z    at iz  yields 

1/2 1/2 1/2 1/2

2
2

1 12
[ ( ) ( )] [ ( ) ]

i i i ix x i x x i x iI z U z I U I I U I U
h




    
             (2.97) 

By applying Eq. (2.95)-(2.97) into Eq. (2.18), one obtains 

1 1 1 1 1

1 1/2 1/2 1/2 1/2

2 1 14

2
2

2 1 12

[ 2( ) ( 4 ) 2( )

           ] [ ( ) ] 0

i i i i i i i i

i i i i i

x i x x i x x x i x x i

x i x i x x i x i i i

E
I U I I U I I I U I I U

h

I U I U I I U I U S U
h




    

    

  

  

      

      

     

(2.98) 

which can be simplified as 

2 2 1 1 0 1 1 2 2 0i i i i i
i i i i iK U K U K U K U K U                                (2.99) 

where 

12 i

i
xK EI
                                                                                             (2.100) 

1 1/2

2
1 1 1

2 2( 2 2 ) ( )
i i i

i i i
a b

x x x

K K K

EI EI h I



 
 

   

   
                                               (2.101) 

1 1 1/2 1/2

2
0 0 0

2 2 2 4( 4 ) ( )
i i i i i

i i i
a b

x x x x x i

K K K

EI EI EI h I h I h S



   
   

 

      
       (2.102) 

1 1/2

2
1 1 1

2 2( 2 2 ) ( )
i i i

i i i
a b

x x x

K K K

EI EI h I



 
 

 

   
                                              (2.103) 
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12 i

i
xK EI


                                                                                           (2.104) 

By assigning 0,1,i m   for Eq. (2.99), a set of algebraic equations for iU  can be 

obtained and written in matrix form as 

2

1

0 0 0 0 0
02 1 0 1 2

1 1 1 1 1
12 1 0 1 2

2 1 0 1 2

1

2

ˆ ˆ 0K

m m m m m
m

m

m

U

U

UK K K K K

UK K K K K

UK K K K K

U

U





 

 

 





 
 
 
  
  
    
  
  

    
 
 
  

    
H U         (2.105) 

Eq. (2.105) is the difference approximation of the bending vibration problem. Similar 

to the case of longitudinal vibration, U0, U1, … , Um depict the shape of the bending 

deformation. The terms such as 0
2K , U-2 and Um+2 were introduced for the 

convenience of mathematical derivation. They are the properties of the virtual nodes 

extended outside the actual structure.  

2.3.4.2 Modal Frequency Problem 

In addition to Eq. (2.105), four more equations can be obtained from the boundary 

conditions. Considering Eq. (2.19)-(2.22), one may discretise the boundary conditions 

as 

1 0 12

1
(0) ( 2 ) 0U U U U

h


                                            (2.106) 

2 1 1 23

1
(0) ( 2 2 ) 0

2
U U U U U

h
 

                               (2.107) 

1 12

1
( ) ( 2 ) 0m m mU L U U U

h
 

                                      (2.108) 

2 1 1 23

1
( ) ( 2 2 ) 0

2
m m m mU L U U U U

h
   

                    (2.109) 

which can be written in matrix form as 
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2

1

0

1
5

2

0 1 2 1

1 2 0 2 1
ˆ ˆ 01 2 1 0

1 2 0 2 1

a

m
m

m

U

U

U

U

U










 
   

      
   

  
    

   
  





H U         (2.110) 

Assembling Eq. (2.110) into (2.105) yields 

ˆ ˆ 0B H U                                                      (2.111) 

where  

ˆ
ˆ

ˆ
a

B

K

 
  
  

H
H

H
                                                  (2.112) 

is a m+5 by m+5 matrix. It can be seen that Eq. (2.111) is a collection of a set of 

homogeneous linear equations, for non-zero solutions, the determinant of ˆ
BH  must be 

zero. Taking into account the fact that ˆ
BH  is a function of  , this yields 

ˆDet[ ( )] 0B  H                                               (2.113) 

Similar to the longitudinal vibration problem, the solutions of Eq. (2.113) are the 

modal frequencies of the bending vibration. The modal frequencies can be searched 

using a bisection method in the frequency range of interest. 

2.3.4.3 Mode Shape Function Problem 

On the basis of the solutions of Eq. (2.113), to calculate the associated mode shape 

function for a particular modal frequency, the normalised input condition given by Eq. 

(2.23)-(2.26) was considered. Similar to the problem of modal frequency, the 

discretised form of these equations was obtained as 

0 1U                                                                     (2.114) 

2 1 1 22 2 0U U U U                                          (2.115) 

1 12 0m m mU U U                                               (2.116) 

2 1 1 22 2 0m m m mU U U U                                  (2.117) 
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They can be written in matrix form as 

2

1

0

1
5

2

0 0 1
1

0 1 2 1
0ˆ ˆ

1 2 1 0
0

1 2 0 2 1
0

b

m
m

m

U

U

U

U

U










 
  

       
        
       

   
  





H U           (2.118) 

Assembling Eq. (2.118) into (2.111) yields 

ˆ ˆ ˆ
U H U B                                                        (2.119) 

where 

ˆ
ˆ

ˆ
b

U

K

 
  
  

H
H

H
                                                    (2.120) 

5

ˆ 1 0 0 0

T

m

 
  
  




B                                         (2.121) 

It is not difficult to prove that, for the structure of interest in this study, ˆ
UH  is an m+5 

by m+5 non-singular matrix. Therefore,  

1ˆ ˆ ˆ
U
U H B                                                     (2.122) 

where Û  is obtained as the discrete representation of the bending mode shape 

function ( )U z . 

The above approaches were presented for flexural bending vibration along the 

thickness of the blade. However, they are also applicable for bending motion along 

the breadth of the blade as long as the moment of area 
ixI  is replaced by 

iyI , where 

( )
iy y iI I z                                                    (2.123) 

The model obtained in this case will be of the same form as the bending vibration 

along the thickness direction. 
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2.4 Case Study and Results 

The preceding sections modelled the modal behaviour of ultrasonic blades using one 

dimensional theory and finite difference method. To investigate the application of the 

proposed model, two cases, a uniform beam and an ultrasonic cutting blade, will be 

studied in this section. The case study will concentrate on the computing of the modal 

frequencies and the associated mode shapes of the structure. Only the longitudinal 

vibration and the bending motion along the thickness of the beam/blade will be 

investigated in this study. However, similar processes can also be performed for the 

case of torsional vibration and bending motion along the breadth of the beam/blade. 

2.4.1 Case Study of a Uniform Beam 

The uniform beam investigated in this study is illustrated in Figure 2.7. This was a 

prismatic beam made of titanium alloy. The dimensions of the beam and the 

properties of the material are detailed in Table 2.1 and Table 2.2 respectively. 

( , )z t

 

Figure 2.7 Profile of the Uniform Beam 

Length  
(L / mm) 

Width 
(A / mm) 

Height 
(B / mm) 

70.5 7.0 2.0 

Table 2.1 Dimensions of the Uniform Beam 

Material 
Mass Density 
 (kg/m3) 

Young’s Modulus 
E (GPa) 

Shear Modulus 
G (GPa) 

Poisson’s Rate 
  

Ti90Al6V4 4.42 103 110 41.4 0.33 

Table 2.2 Material Properties 

As the beam was of constant cross-section, the shape functions ( )S z  and ( )xI z  were 

both constants, which can be calculated by Eq. (2.39) and (2.40). As a result, the 
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coefficients presented in Eq. (2.73)-(2.76) would all be constants. To ensure accurate 

solutions are obtained at acceptable computing cost, the step length of the difference 

operators ( h in Eq. (2.61)-(2.63) ) was chosen to be 1/500 of the total length of the 

beam, which resulted in the following parameters: 

5
1 7.7 10iK                                                           (2.124) 

9 2
0 4.2078 10 14iK                                        (2.125) 

5
1 7.7 10iK        (for i=0, 1, …, m)                       (2.126) 

By substituting these parameters into Eq. (2.77), Eq. (2.82) and (2.88), ˆ
LH  and ˆ

WH , 

the key matrices for computing modal frequencies and shape functions can be 

assembled. A similar process was implemented for the case of bending vibration to 

obtain ˆ
BH  and ˆ

UH  from Eq. (2.100)-(2.120). 

On the basis of ˆ
LH  and ˆ

BH , the modal frequencies of the uniform beam were 

computed by searching the roots of Eq. (2.83) and (2.113). This was conveniently 

done by performing a numerical bisectional search in the frequency range of 0.5-

50kHz. Matlab 2008b was used to code the equations and carry out the calculation. 

The main Matlab script is showed in Appendix A.2. 

To compare the results of the analytical modelling, finite element analysis of the 

uniform beam was also carried out. The FEA was conducted using the commercial 

package Abaqus 6.11 to calculate the modal frequencies and mode shapes for the 

same structure under the same conditions, as illustrated in Figure 2.8. The settings and 

relevant parameters of the FEA is showed in Table 2.3. 

Item Setting 

Analysis Step Natural Frequency Extraction 

Frequency Range 0.5kHz-50kHz 

Number of Elements 2982 

Material Ti90Al6V4, Isotropic 

Table 2.3 Setting of Finite Element Analysis 
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Figure 2.8 Finite Element Analysis of Uniform Beam 

In addition, to verify these results experimentally, a beam was manufactured. As 

illustrated in Figure 2.9, the main part of this beam was designed to be the same size 

as detailed in Table 2.1. However, in order to attach the beam to the transducer, a 

small end terminal and a screw was introduced in the structure, which were carefully 

designed with an attempt to reduce their influence on the modal behaviour of the 

beam. This beam was excited by an ultrasonic transducer and subjected to 

experimental modal analysis (EMA) where its actual modal frequencies and mode 

shapes were extracted. The EMA results provided a reference for the solutions of the 

analytical model and the finite element method. 

 

a) Manufactured Uniform Beam 

 

Main Part

Screw

End Terminal  

b) Structure of the Uniform Beam 

Figure 2.9 Manufactured Uniform Beam 
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The experimental setup of EMA is illustrated in Figure 2.10. The beam was attached 

to a transducer clamped by a holder in front of a 3D laser vibrometer. The transducer 

was driven by the control system with amplified random white noise. To reduce non-

linear dynamic behaviour of the beam in EMA, the output of the transducer was 

significantly lower than the normal level in ultrasonic cutting, only around 0.5μm in 

amplitude. The vibration responses of the beam was measured using a 3D laser 

vibrometer by pointing the laser at specific grid locations on the beam surface ( Figure 

2.10(b) ). Vibration displacement components on each grid point were measured 

simultaneously along three orthogonal directions: longitudinal (axis z), thickness (axis 

y) and width (axis x), and were used to calculate frequency response functions (FRFs). 

A total of 135 points were measured on the beam, generating 405 FRFs. These FRFs 

contained the necessary information for the reconstruction of the shape of vibration 

modes and extraction of the associated modal parameters. 

 

Laser 
Vibrometer

Beam

Control 
System y

z

x

 

a) Experimental Setup 

 

b) Measure Points on the Beam 

Figure 2.10 Experimental Modal Analysis 

The modal frequencies and the associated mode shape functions obtained using the 

proposed analytical model are shown in Table 2.4(labelled as "AM"), where Ln and 

Bn denote the nth order longitudinal and bending mode, respectively. The mode shape 

functions were computed using Eq. (2.87) and (2.119) by substituting   for particular 

modal frequencies. Table 2.4 also lists the solutions obtained by the finite element 
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analysis (labelled as FEA) and the experimental results obtained in EMA (labelled as 

EMA). 

Table 2.4 shows that both the AM and FEA predicted the first longitudinal modal 

frequency accurately. The frequency difference of L1 mode was only 0.28% between 

the AM and EMA. For bending vibration, results of high accuracy were obtained in 

AM for low order modes such as B3 and B4, where the difference between the 

prediction and the experimental results was below 3.0%. However, larger differences, 

up to 6.2%, between AM and EMA was found in high order bending modes. Taking 

into account the fact that notably high differences up to 3.5% were also observed 

between FEA and EMA, this error may be partly ascribed to the introduction of the 

screw and end platform on the beam, which inevitably affects the dynamic behaviour 

of the beam. In addition, another important source of the error can be the method itself. 

As discussed in Section 4.2.2, Eq. (2.15) neglected the effect of shear deformation as 

a simplicity, which may cause increased computing errors for the cases of high order 

deformation [95, 96, 107, 116]. For all modes, the average difference was 3.6% in the 

case of AM and 2.4% in the case of FEA. Therefore, it is considered that AM 

predicted the modal frequencies of the beam with satisfactory accuracy, although its 

error was slightly larger than FEA. 
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 Mode Mode Shape* 

Frequency 

kHz 

Difference 

AM(FEA)/EMA 

 

 

L1 

EMA 

 

35.4 --  

 AM 
 

35.3 0.1kHz (0.28%)  

 
FEA 

 
35.3 0.1kHz (0.28%)  

 

B3 

EMA 
 

5.70 --  

 AM 
 

5.60 0.10kHz (1.8%)  

 
FEA 

 
5.59 0.11kHz (1.9%)  

 

B4 

EMA 
 

10.6 --  

 AM 
 

10.9 0.3kHz (2.8%)  

 
FEA 

 
10.9 0.3kHz (2.8%)  

 

B5 

EMA 

 

17.2 --  

 
AM 

 
18.0 0.8kHz (4.7%)  

 
FEA 

 
17.8 0.6kHz (3.5%)  

 

B6 

EMA 
 

25.6 --  

 AM 
 

26.9 1.3kHz (5.1%)  

 
FEA 

 
26.3 0.7kHz (2.7%)  

 

B7 

EMA 
 

35.8 --  

 AM 
 

37.4 1.6kHz (4.5%)  

 
FEA 

 
36.3 0.5kHz (1.4%)  

 

B8 

EMA 
 

46.7 --  

 AM 
 

49.6 2.9kHz (6.2%)  

 
FEA 

 
47.6 0.9kHz (1.9%)  

*AM for analytical model, FEA for finite element method and EMA for experimental model analysis results. 

Table 2.4 Modal Frequencies and Mode Shapes of Uniform Beams 
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2.4.2 Case Study of an Ultrasonic Blade 

A more complex case, an ultrasonic cutting blade, was considered in the second case 

study. This was a tool designed for bone cutting surgeries. As shown in Figure 2.11, it 

was a three-sectional structure as shown in Figure 2.4 except that the tip of the blade 

was rounded. Due to the insignificant change of the profile, the influence of the 

rounded tip was ignored in the analysis. 

  

Figure 2.11 Shape of the Blade 

The profile of the blade model was established using the sectional representation as 

detailed in section 2.3.1. The main job was to calculate the shape functions of the 

structure, including the area of cross-section S(z) and the moment of area Ix(z). This 

was done in Matlab script according to Eq. (2.39)-(2.50). The code of the Matlab 

program is enclosed in Appendix A.2. Figure 2.12 plots the obtained shape functions. 

Due to the presence of steps in the blade profile, the shape functions and their 

derivatives are essentially discontinuous. To reduce the potential errors introduced by 

this feature, the shape functions were smoothed around the steps. 
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a) Cross-Section Area  

 

   b) Moment of Area 

Figure 2.12 Functions of Cross-section Area and Moment of Area 

As the shape functions were not constants, the parameters in matrix ˆ
LH , ˆ

WH , ˆ
BH  

and ˆ
UH  were also not constants. In spite of this, these matrices can be constructed in 

a similar way as shown in the case of uniform beam. The longitudinal and bending 

modes in the range 0.5-50kHz were calculated and the obtained results are illustrated 

in Table 2.5. As a comparison, Table 2.5 also shows the results of FEA for the same 

structure, which was obtained using similar settings as detailed in the case of the 

uniform beam. 

In addition, to verify these results experimentally, a manufactured blade, which is 

illustrated in Figure 2.13, was tested. The blade was excited by an ultrasonic 

transducer and subjected to EMA using the same setup as in the case of the uniform 

beam. A total of 130 points were measured on the blade, as showed in Figure 2.14.  
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The actual modal frequencies and mode shapes of the blade were extracted, and the 

obtained results are shown in Table 2.5 as the comparison to AM and FEA. 

 

Figure 2.13 Manufactured Blade 

 

Figure 2.14 Measured Points in EMA 

The blade was designed to be tuned at 35kHz. Table 2.5 shows that the actual 

frequency of the first longitudinal mode was 34.5kHz, which was within the tolerance 

of the frequency error. Therefore, although the AM prediction was closer to the 

experimental results than the FEA, the longitudinal frequency calculated by AM was 

slightly lower than expected. A possible source of error can be the complexity of the 

blade profile. According to the assumption of the theory, the stress is uniformly 

distributed along the cross-section and the vibration wave front lies in a plane along 

the whole structure. This assumption is a good approximation for slender beams with 

slightly tapered shapes [92, 93]. However, for an ultrasonic blade of complicated 

profile, the significant change of the blade outline and the appearance of steps can 

introduce excessive error and reduce the accuracy of prediction. 

For bending modes, the differences between AM and EMA varied between 1.4% and 

8%, and the differences between FEA and EMA varied between 1.6% and 7.9%. The 

average difference for all modes was 4.4% for AM and 4.2% for FEA, which was 

larger than the case of uniform beam but was considered to be satisfactory when 

taking account of the increased complexity of the blade profile. Therefore this case 

study showed that AM can be used as an alternative method to FEA in the calculation 

of modal frequencies for ultrasonic blades. 
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 Mode Mode Shape* 
Frequency 

kHz 

Difference 

AM/FEA 

AM(FEA)/EMA 

 

 

L1 

EMA 

 

34.5 --  

 
AM 

 

34.2 0.3kHz (0.87%)  

 
FEA 

 
34.9 0.4kHz (1.2%)  

 

B3 

EMA 
 

9.64 --  

 
AM 

 
9.05 0.59kHz (6.1%)  

 
FEA 

 
8.89 0.75kHz (7.9%)  

 

B4 

EMA 
 

16.0 --  

 
AM 

 
15.2 0.8kHz (5%)  

 
FEA 

 
15.0 1.0kHz (6.3%)  

 

B5 

EMA 21.2 --  

 
AM 

 

22.9 1.7kHz (8.0%)  

 
FEA 

 
22.3 1.1kHz (5.2%)  

 

7B 

EMA 

 

30.6 --  

 
AM 

 

32.2 1.6kHz (5.2%)  

 
FEA 

 
31.1 0.5kHz (1.6%)  

 

8B 

EMA 

 

42.2 --  

 
AM 

 

42.8 0.6kHz (1.4%)  

 
FEA 

 
41.0 1.2kHz (2.8%)  

*AM for analytical model, FEA for finite element analysis and EMA for experimental model analysis 
results. 

Table 2.5 Modal Frequencies and Mode Shapes of the Ultrasonic Blade 
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2.5 Summary 

This chapter studied the analytical modelling of ultrasonic blades. Four modes of 

vibration, classified as longitudinal vibration, flexural bending, lateral bending, and 

torsional vibration, were considered in the modelling. It is assumed that a blade 

operates without the presence of coupling effects between different modes of 

vibration. Thus the motion of the structure can be studied with respect to the nature of 

vibration. In view of the slender profile of ultrasonic blades, the study applied one-

dimensional vibration theories in the modelling. An advantage of this method is that it 

only requires shape functions of a single variable instead of 3D models to define the 

blade, enabling a straightforward and concise way of modelling. 

In the presented model, the vibration of an ultrasonic blade was represented in the 

form of second and fourth order partial differential equations. This was later 

formulated into a natural modal frequency problem and a mode shape function 

problem using finite difference method. Both problems were arranged in matrix form 

where the modal frequencies can be obtained through a searching process and the 

mode shape problem can be dealt with using general linear equation solving 

techniques. 

This analytical modelling method (referred to as AM) was further investigated 

through case studies of two structures, a uniform beam and an ultrasonic cutting blade. 

AM was used to calculate the longitudinal and bending modal frequencies and the 

associated mode shapes in both cases. To verify the results, prototypes of a beam and 

a blade were tested. Their modal parameters were extracted experimentally using 

EMA. 

For the uniform beam, AM predicted the tuned frequency (first longitudinal modal 

frequency) accurately with a frequency difference of 0.28%. Larger frequency 

differences were observed in the prediction of bending vibration, especially for high 

order bending modes. This can be, to a certain extent, ascribed to the simplification of 

the theory that neglects the effects of the shear deformation in bending. 

The second case concentrated on an ultrasonic blade, aiming to study the application 

of AM to a structure of complex profile. A slightly larger frequency difference was 

found in the prediction of the longitudinal mode, where the modal frequency was 
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lower than expected. The assumption of the uniformly distributed stress in the one-

dimensional theory was regarded to be partly responsible for the error as it may not be 

a satisfactory approximation for the stress condition in a structure with steps and 

significant profile change. 

The average frequency difference between AM and EMA was 3.6% in the case of 

uniform beam and 4.4% in the case of ultrasonic blade. This showed that AM is 

capable of predicting modal frequencies with satisfactory accuracy for both 

longitudinal and bending modes, even in the case where the structure is of complex 

profile. It is therefore considered that AM can be used as an alternative method to 

study the modal behaviour of ultrasonic blades. As AM does not require a 3D model 

to be constructed and meshed before the analysis, it can be used for quick 

performance estimation in the early stage of the design process, where a detailed 

design is not yet available. The calculation of a one-dimensional analytical model can 

be implemented faster than a 3D FE model. Thereby it can be more efficient to use 

AM instead of FEA for the characteristics evaluation when dealing with a large 

number of blade designs. 
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Chapter 3 
Analytical Modelling of Ultrasonic Blades 

Operating in Coupled Vibration 

3.1 Introduction 

Chapter 2 investigated the analytical modelling of ultrasonic blades, where it is 

assumed that vibrations of different modes are independent of each other and no 

interaction occurs between them during excitation. However, evidence shows that 

ultrasonic blades and other ultrasonic devices are often characterised by complicated 

dynamic phenomena including multiple responses of excitation and interaction 

between the vibration modes [14, 160]. For a longitudinally excited blade, this means 

bending or torsional vibration may also exhibit coupling with the working mode. This 

can bring about excessive vibration in the structure, causing energy to leak from the 

tuned mode to other modes [14]. The immediate consequences are increased stress in 

the material and reduced energy in the working mode. In view of this, it is worth 

studying this phenomenon by taking into account more than one mode of vibration in 

the modelling of ultrasonic blades. This chapter is therefore devoted to further 

extending the analytical models in Chapter 2 by introducing vibration interaction 

effects for ultrasonic blades in an appropriate way. 

3.1.1 Coupled Vibration in Ultrasonic System and Beam-Like Structures 

A study of coupled vibration in ultrasonic systems can be found in Cardoni et al [14, 

161], where the combined resonances and modal coupling phenomena were 

investigated for single-blade and multi-blade cutting systems. The research was done 

using finite element analysis and experimental investigation. Based on the 

experimental results, a number of approaches, such as introducing slots in the horns 

and altering the location of the connecting studs, were suggested in order to reduce the 

negative effects of the modal interactions. In addition, it is reported that measurement 

of the responses and mathematical models of beam-like structures could be used to 

characterise the modal interactions of ultrasonic cutting systems. 
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Gallego-Juárez [162] investigated the nonlinearity and modal interaction phenomenon 

in high power ultrasonic transducers experimentally. The work focused on the 

ultrasonic stepped plate transducers that can be used for fluid processing. To enhance 

the performance, both longitudinal and flexural vibration was used in the transducers 

by incorporating a special plate in the structure. However, the complexity of this 

design makes it difficult to avoid interactions between the operation mode and 

untuned modes. Significant coupled vibration and exchange of energy between the 

modes were observed, which was unlikely to be predicted by linear analysis methods. 

In addition to the ultrasonic systems, more general research objects are simple 

structures such as beams and rods. Nayfeh [163, 164] investigated the non-linear 

oscillation in a number of structures including beams and rods. It showed that under 

specific boundary condition and excitation, the steady state motion did not exist for 

certain values of the dynamic parameters. Instead, the phenomenon of continual 

energy exchange between the longitudinal and transverse vibration was expected for 

such a circumstance. This behaviour was reported again in Nayfeh [165] where the 

vibration energy was transferred from high frequency modes to low frequency modes 

in a flexural beam. The phenomenon was caused by motions modulated periodically 

and chaotically under certain conditions and was considered to have great potential 

danger in some structures as the response of the low frequency mode could be 

considerably larger than the directly excited high frequency mode. 

Mukhopadhyay [166, 167] investigated a thin beam subjected to longitudinal 

excitation with an attempt to study its lateral and torsional vibration. The dynamics of 

the beam was represented by a set of coupled equations of Mathieu type. A key factor 

of the analysis was to take into account the initial built-in deflections in the structure. 

The initial deflection would introduce a forced term in the governing equation, 

resulting in effects of both parametric and forced excitation. This theory was in 

agreement with experimental results. However, significant non-linear phenomenon 

with high bending/torsional amplitude and limit cycle was reported in two instability 

regions, which could not be explained by the analysis based on linear theories. 
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3.1.2 Parametric and Auto-Parametric Vibration of Beam-Like Systems 

Research has shown that complex multi-modal behaviour and coupling can be 

generated in relatively simple structures such as cantilever beams or rods by the 

phenomenon of parametric vibration. The terminology parametric vibration is used to 

describe cases where the excitation acts as a time varying modification of system 

parameters. This differs from forced vibration in that the alteration of the parameters 

can drive the system in addition to the excitation.  

In the work of Cartmell [168], it is illustrated that more than one resonance could be 

excited simultaneously in a structure under an external excitation of a single 

frequency. It is also reported that a weaker type of coupling could impose 

considerable influence on a stronger type of coupling. The study was extended in later 

research [169], where a simple cantilever beam with a lumped end mass was excited 

in the stiff direction by a harmonic excitation at the base. The governing equations of 

this system were derived by applying the Lagrange's formulation on the system 

kinetic and potential energy functions. The work highlighted the conceptualisation of 

such problems by demonstrating the application of classical engineering theories in 

the modelling. Forehand [170] re-examined the work and confirmed that the key 

stages in the derivation of Cartmell's work were correct. The system investigated by 

Cartmell and Forehand is a typical case where both forced and parametric vibration 

occurs. Another feature of such structures is coupling of vibration between the 

longitudinal, lateral and torsion motion. 

Cartmell's work was further extended by Ibrahim [171], where analytical, numerical 

and experimental investigation of the deterministic and stochastic response was 

conducted on an inextensible cantilever beam. The bending and torsional modes were 

cross-coupled through carefully applied excitation and inertia nonlinearities. It 

showed that nonlinear interaction occurred in the form of energy exchange. In certain 

conditions, the bending mode vibrated not merely at its own modal frequency but at 

frequency components close to the torsional modal frequency as well. In addition, a 

similar phenomenon was also found in the torsional vibration. It was reported that the 

level and bandwidth of the excitation was responsible for the generation of various 

types of responses. 
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Su [172] applied this theory for a flexible composite structure, which consists of a 

glass epoxy beam bonded with two pieces of pre-strained shape memory alloy (SMA). 

This structure was subjected to combined bending-torsional motions as well as the 

recovery force generated by the activation of the SMA. It showed that by 

investigating the natural frequencies and mode shapes of the beam, the theory can be 

used to study the influence that the SMA strip exerted on the structure. 

A modified version of the lumped mass beam theory was presented by Oguamanam 

[173]. In his work, a mathematical model was proposed to investigate the modal 

behaviour and orthogonality condition of a cantilevered Euler-Bernoulli beam. The 

beam was characterised by an attached end mass with an offset between the gravity 

centre and the attachment. As a result of this special feature, the structure could 

experience both torsional vibration and planar bending. However, little attention was 

given to the effect of longitudinal deformation. 

In addition, Bux [174, 175] studied a system with coupled beams and suggested that a 

considerable non-linear modal interaction effect may be introduced in such systems as 

a result of the so called autoparametric vibration. Under certain internal resonance 

conditions, the normal linear excited modes could be absorbed by the modes 

indirectly excited. A significant feature of these indirectly excited modes is that they 

may exhibit substantially large non-synchronous responses. The presence of high 

order non-linear coupling terms in the analytical model and the existence of internal 

resonance effects between the modes were regarded to be responsible for the 

occurrence of violent non-synchronous bending and torsional vibration. A later study 

by Warminski [176] investigated a similar system both theoretically and 

experimentally. It confirmed that the nonlinear terms caused by the coupled structure 

could result in a number of unexpected responses. However, as the theory involved 

two beams coupled at right angles, it is unlikely to be directly applied for the case of 

ultrasonic blades. 

3.1.3 Other Research on the Coupled Vibration of Beam-Like Systems 

Silva [177, 178] formulated the nonlinear dynamics of inextensional beams that are 

experiencing torsional vibration and flexural oscillation along two principal directions. 

A set of governing differential equations were developed with an aim to retain the 
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contributions of the nonlinear curvature and nonlinear inertia. Nonlineaities of up to 

third order were included in the equations and the coupling effects of the flexural-

torsional oscillations were incorporated by introducing three Euler angles. This was 

illustrated to be an effective model by a case study of forced vibration. However, as 

the theory was developed based on beams of inextension, the effects of longitudinal 

vibration is not possible to be incorporated. 

A study on transverse and longitudinal vibration coupling was presented by Scurtu 

[179], where an automotive belt was modelled for the nonlinear coupling behaviour. 

The belt was excited longitudinally at one end and clamped at the other end, which 

allowed the coupled oscillation between the longitudinal and transverse modes to take 

place. The system was modelled based on a set of beam assumptions and solved by 

the Analog Equation Method whereby two coupled hyperbolic nonlinear differential 

equations were reduced to two linear uncoupled equations. A stable and predictable 

beating phenomenon was found in the transverse vibration, which was considered to 

be the result of an internal resonance caused by the periodic energy transfer between 

the transverse vibration and the longitudinal excitation. Jang [180] applied spectral 

element analysis to model the axial-bending-shear coupled vibration of composite 

laminated beams loaded axially. The study was conducted based on Timoshenko 

beams and the first order shear deformation theory. The model took into account the 

effect of axial-bending coupling and was claimed to be of high accuracy and 

computational efficiency. 

In addition, Krawczuk [181] modelled the coupled bending and longitudinal forced 

vibration of a Timoshenko cantilever beam with a crack. The crack was introduced as 

a one-edge, non-propagating and closing transverse notch. The problem was modelled 

by the finite element method and formulated by the harmonic balance method. It 

showed that the response of the structure was predominantly decided by the location 

and depth of the crack as well as the frequency of the longitudinal excitation. Similar 

work was also done by Darpe [182] and Papadopoulos [183]. In their studies, the 

coupling between the longitudinal and bending vibration was introduced as a result of 

the presence of the crack. The relevant effects, however, would not occur in the case 

of non-cracked beams. 
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O'Reilly [184] applied a one-dimensional model to study the coupled lateral and 

longitudinal vibration of a rectangular parallelepiped. The method was developed 

based on Green and Naghdi's work [158, 159, 185-188] on rod theory. O'Reilly 

modelled the rod/beam using a directed curve, where a set of deformable vector fields 

were associated with the material points. An advantage of this method was its ability 

to model lateral contraction and expansion of the rod-like structure. Although the 

study concentrated on the relationship between the shape of the cross-section and the 

response of the structure, the presented method could be further extended to 

investigate the coupled behaviour between the longitudinal and the lateral vibration. 

3.2 A Model for Parametric Excited Cantilever Beams 

As discussed in Chapter 2, taking into account the slender profile of ultrasonic blades, 

it is possible to approximate a blade using a one-dimensional beam. A uniform beam 

would be a relatively rough approximation for an ultrasonic blade. In spite of this, in 

view of its geometric simplicity, the investigation of such a structure is a good way to 

understand the coupled vibration of ultrasonic blades. Therefore this study will extend 

Cartmell's work [169] on the parametric vibration of beams with an attempt to apply 

this theory to ultrasonic systems. 

3.2.1 Assumptions and Representation of the Problem 

The representation of the problem is illustrated in Figure 3.1, where a beam with a 

lumped end mass m0 is used to represent the structure of an ultrasonic blade. As 

shown in Figure 3.1(a), an orthogonal frame X-Y-Z is established at the bottom of the 

beam with Z corresponding to the longitudinal direction. The bending, lateral, 

longitudinal displacement and the torsional angle of the beam on position z is denoted 

by u , v , w  and  , respectively. The beam is subjected to a vertical periodic 

excitation P(t), and exhibits combined bending and torsional motion under a slight 

initial bending displacement and twist angle, as illustrated in Figure 3.1(b). 
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 a) Beam and Orthogonal Frame                           b) Vibration Motion 

Figure 3.1 The Representation of the Problem 

The coupling motion between the bending and torsional vibration was the main 

concern in several studies [169-172], where the longitudinal displacement w was 

regarded as the axial drop under the combined bending and torsional movement [171]. 

For this reason, these studies [169-172] represented u  and   by the mode shapes and 

modal co-ordinates. However, in this chapter, the longitudinal displacement was 

considered to be of significant value due to the external excitation. Therefore instead 

of representing u  and   directly, w  and   were assumed to be of the form as 

1 01( , ) ( ) ( )w z t f z w t                                                (3.1) 

and 

1 01( , ) ( ) ( )z t g z t  .                                               (3.2) 

where 1( )f z  and 1( )g z  are the mode shape functions, and 01( )w t  and 01( )t  are the 

modal co-ordinates. Only the first longitudinal and torsion modes were considered in 

this research, however, additional modes can be included if complicated modal 

behaviour is of interest. 
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a) Displacements and Curvatures                                       b) Euler Angles 

Figure 3.2 Component displacement and Euler angles 

On the basis of Eq. (3.1) and (3.2), the other two displacements, u  and v ,  can be 

represented through w  and   by taking into account the geometry restrictions. To do 

this, the curvatures were used to reveal the relationship between the displacements. 

Figure 3.2(a) shows an element taken from the beam, where the curvatures about the 

axis of X, Y and Z are denoted as 1 , 2  and  , respectively. According to the 

derivation in reference [169], the following equations were obtained 

1 sin cos cos                                                      (3.3) 

2 sin cos cos                                                      (3.4) 

sin                                                                        (3.5) 

where the prime denotes differentiation with respect to s the linear displacement along 

the deformed axis OZ'. 

The link between the Euler angles and the elemental component displacements is 

illustrated in Figure 3.2(b), where angle   is the torsional co-ordinate.   and   are 

expected to be expressed in terms of the component displacements. Assuming ds is 

sufficiently short, one may obtain 

d du u s                                                             (3.6) 

  d dv v s                                                             (3.7) 

  d dw w s                                                           (3.8) 
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By referring to the analysis in reference [169], the representation of the curvatures can 

be written as 

1 u v                                                             (3.9) 

2 v u                                                           (3.10) 

v u                                                             (3.11) 

Since v  is extremely small compared to the length of the beam, it is reasonable to 

state that 

1 0                                                               (3.12) 

Therefore, 

v u                                                              (3.13) 

and  

         2
2 (1 )u                                                      (3.14) 

By integrating Eq. (3.13) twice, the expression for the lateral displacement can be 

obtained as 

0
( , ) ( )v t z u dz


                                                (3.15) 

On the other hand, as shown in reference [169], the relationship between u  and w  

can be written as 

2

0

1
( , )

2
w t u dz


                                                   (3.16) 

Substituting Eq. (3.1)-(3.2) into Eq. (3.15)-(3.16) yields, 

01 1 1 010 0
( , ) 2 d ( ) 2 ( )d ( ) ( )u t w z w t f z z B w t

 
                           (3.17) 

1 1
01 01 2 01 010

1

( ) ( )
( , ) ( ) ( ) ( ) d ( ) ( ) ( )

2 ( )

f z g z
v t t w t z z B t w t

f z


    


  


          (3.18) 

01
1 3 01

1

( )
( ) ( ) ( )

2 2 ( )

w tw
u f z B z w t

w f z

      


                               (3.19) 
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where 

1 10
( ) 2 ( )dB f z z


                                                       (3.20) 

1 1
2 0

1

( ) ( )
( ) ( ) d

2 ( )

f z g z
B z z

f z


 


 


                                    (3.21) 

1
3

1

( )
( )

2 ( )

f z
B z

f z


 


                                                       (3.22) 

3.2.2 System Energy and Equation of Motion 

Based on the above analysis, the equations of motion can be derived by means of 

Lagrangian dynamics. By taking into account the motion along different axes [169], 

the total system kinetic energy can be obtained as 

2 2 2 2
0 0 0 01 0 01

1 1
[ ( ) ]

2 2
T m u v P w I                                         (3.23) 

where the dot denotes differentiation with respect to time. Substituting Eq. (3.17) and 

(3.18) into Eq. (3.23) yields, 

2
201

01 02 01 01 02 01 01 01

01

2
2 2 2 201

02 01 0 0 01 0 01 0 01

01

( )1
( ) ( ) ( ) ( ) ( )

4 ( )

( )1 1 1 1
( )

4 ( ) 2 2 2

w t
T B B t w t B t t w t

w t

w t
B t m P m Pw m w I

w t

  

 

  

    

   

    

        (3.24) 

where 

2
01 0 1

1
( )

2
B m B L                                                   (3.25) 

2
02 0 2

1
( )

2
B m B L                                                   (3.26) 

In addition, the total system potential energy can be obtained by adding together the 

potential energy induced in the bending, longitudinal and torsional deformation. 

Therefore, 
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2 2 2

0 0 0

2 2 2
3 01 1 01 01 010 0 0

2 2
03 01 04 01 05 01

1 1
d d d                                                    

2 2

1 1
   = ( ) ( )d [ ( ) ( )] d [ ( ) ( )] d

2 2

   ( ) ( ) (

L L L

y

L L L

y

U EI u z Ew z cGJ z

EI B z w t z E f z w t z cGJ g z t z

B w t B w t B t







    

  

  

  

  
)

      

 (3.27) 

where 

2
03 30

1
( )d

2

L

yB EI B z z                                           (3.28) 

2
04 10

1
( )d

2

L

B Ef z z                                               (3.29) 

2
05 010

( )d
L

B cGJg z z                                             (3.30) 

In Eq. (3.23)-(3.30), m0 is the mass of the lumped mass, P is the displacement of the 

excitation applied in the longitudinal direction, 0I  is the moment of inertia of the 

beam about the Z-axis, E is the Young’s modulus, EIy is the flexural rigidity about the 

Y-axis, GJ is the torsional rigidity about the Z-axis, c is a non-circular section torsion 

constant and the dot denotes differentiation with respect to t. 

According to the theory of Lagrangian dynamics, the governing equations of the 

system can be obtained by implementing Eq. (3.24) and (3.27) within Lagrange’s 

equation which is of the form 

d
( ) 0

d i i i

T T U

t q q q

  
  

  
                                             (3.31) 

where iq  are generalised co-ordinates which are specified as 01w  and 01  in this case. 

This yields the following equations: 

2 2
01 01 01 01 01 02 01 01 01

2 2 2
02 01 01 01 01 02 01 01 02 01 01 01

2 2 3
03 0 01 0 01 01 04 01

2 ( ) ( ) ( ) 4 ( ) ( ) ( )

4 ( ) ( ) ( ) ( ) ( ) ( ) 2 ( ) ( ) ( )

(4 4 ) ( ) 4 ( ) 8 ( ) 0

B w t w t B w t B t t w t

B t t w t w t B t w t B t w t w t

B m P w t m w w t B w t

 

   

 

  

    

 

   

 

         

(3.32) 
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and  

2
02 01 01 02 01 01 01 0 01 01

2
02 01 01 01 02 01 01 05 01 01

4 ( ) ( ) 4 ( ) ( ) ( ) 2 ( )

2 ( ) ( ) ( ) ( ) ( ) 4 ( ) ( ) 0

B t w t B t w t w t I w t

B t w t w t B t w t B t w t

  

  

 

   

  

 
              

(3.33) 

Eq. (3.32) and (3.33) are the equations of motion for the studied beam system, which 

are high order non-linear differential equations with respect to the modal 

displacement/angle 01w  and 01 . These equations can be used with Eq. (3.1), (3.2), 

(3.17) and (3.18) to investigate the dynamic behaviour of the beam. 

3.2.3 Discussion 

A parametric excited beam was modelled in this section with an attempt to investigate 

the application of the theory to ultrasonic blades. This study extended the work in 

reference [169] by considering a clamped beam with a lumped mass. The motion of 

the beam was studied in a three-dimensional orthogonal frame plus a degree of torsion, 

which allows the coupled effect between vibrations of different axes to be considered. 

The beam was assumed to perform coupled bending and torsional vibration under the 

applied excitation as a result of its slender shape and the effect of the lumped end 

mass. This behaviour was modelled by taking into account the geometry restrictions 

of the structure, such as the relationship between the curvatures and displacements, as 

detailed in Eq. (3.3)-(3.22). The equations of motion were obtained by means of 

Lagrangian dynamics and presented as second order non-linear differential equations 

with respect to the generalised co-ordinates, as illustrated in Eq. (3.32) and (3.33). 

Together with the relationship defined by Eq. (3.1), (3.2), (3.17) and (3.18), these 

equations can provide insights into the dynamic behaviour of the system. 

The study in this thesis extended the work of Cartmell [168-170] by reconsidering the 

motion of the lumped cantilever beam under a longitudinal excitation, which 

modelled the parametric vibration and modal coupling behaviour using a system of 

relatively simple structure. The original form of the parametric excited cantilever 

beam theory was theoretically and experimentally verified in Cartmell [168] and 

Ibrahim [171]. Cartmell [168] applied perturbation analyses on the analytical model, 

which showed the existence of steady state form responses of the combination 
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resonances. This was further confirmed by experimental verification. For excitation 

magnitude of medium level, in which case the modal responses of the structure are 

neither nonstationary nor non-stable, the theoretical predictions were in satisfactory 

agreement with the experimental results. Ibrahim [171] used Monte Carlo simulation 

to estimate response statistics of the cantilever beam. This technique successfully 

revealed that the type of response, deterministic or random, is primary determined by 

the level and bandwidth of the excitation. Together with the experimental 

measurement, Ibrahim’s work showed that the parametric excited cantilever beam 

theory is effective and can be applied to the study of non-linear behaviour of such 

structure. Although further theoretical study on Eq. (3.32) and (3.33) were not carried 

out in this thesis, it is expected that similar techniques presented in Cartmell [168] and 

Ibrahim’s [171] work can be applied in the proposed model to study the vibration of 

ultrasonic blades. 

3.3 A Model for Longitudinal-Bending Coupled Vibration 

For a longitudinally excited ultrasonic blade, due to the slender profile and non-linear 

behaviour, it is commonly observed that bending oscillation along the thickness of the 

blade exhibits simultaneously with the longitudinal vibration. Figure 3.3 shows a 

vibration model of a blade obtained from experimental modal analysis, where 

significant coupled longitudinal and bending vibration was found under a longitudinal 

excitation. 

 

Figure 3.3 Coupled Longitudinal and Bending Vibration 

Such behaviour may cause negative effects on the blade as the bending vibration can 

increase the material stress and the possibility of structure failure. In view of this, this 

section will be devoted to the modelling of the coupling effects between the 

longitudinal and bending vibration in ultrasonic blades. 
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3.3.1 Basic Assumptions and Coupled Dynamic Equation 

In this study, an ultrasonic blade is approximated using a beam subjected to 

longitudinal and bending oscillation simultaneously. This enables the vibration 

modelling based on the one-dimensional theories detailed in Chapter 2. The EMA 

data collected in this study suggested that, for the longitudinally excited blades, the 

motion along the length of the blade is normally notably stronger than the bending 

vibration. Therefore, the longitudinal vibration can be considered as independent by 

ignoring the influence of the bending vibration. Thus it is only necessary to model the 

behaviour of the bending motion, which simplifies the problem significantly. 

 

a) Deformed Structure 

dM M

dV V

u

z





V

( , )P z t

( , ) dP z t P

dz
M

 

 b) Axial Force and Bending Moment 

Figure 3.4 Structure with Coupled Bending and Longitudinal Vibration 

A beam performing longitudinal and bending vibration simultaneously is shown in 

Figure 3.4(a). To investigate the bending motion under this condition, an element was 

taken from the structure. Load analysis of this element suggested that it suffers 

bending moment and axial forces at the same time, as illustrated in Figure 3.4(b), 

where M is the bending moment, V is the shear force on the cross section, P is the 

axial force resulting from longitudinal deformation. In this case, when the beam bends, 

due to the rotation of the element, an extra moment is introduced as a result of the 

axial force [95, 107], which is of the form 

d ( , ) dc

u
M P z t z

z





                                              (3.34) 
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Based on the analysis detailed in Section 3.2.2, the governing equation of the bending 

vibration was obtained by incorporating this extra moment into Eq. (3.16), which 

yields: 

2 2 3 2

2 2 2 2

d ( , ) d ( , ) ( , ) ( , )
[ ( ) ] [ ( ) ] ( ) ( , ) 0

d d
x x

u z t u z t u z t u z t
EI z I z S z P z t

z z z z t t z
 

   
   

    
     

(3.35) 

As it is assumed that the longitudinal vibration is independent, the axial force is 

regarded to be caused by the longitudinal deformation, therefore one obtains 

( , )
( , ) ( , ) ( ) ( )

w z t
P z t z t S z ES z

z



 


    (3.36) 

where the longitudinal displacement ( , )w z t  can be obtained by the method introduced 

in Section 2.3.3. 

Eq. (3.35) is a fourth order partial differential equation. By comparing it to Eq. (3.16), 

it can be seen that the extra moment is introduced as a coupled term between the 

longitudinal and bending motion in the governing equation. Due to the presence of 

( , )P z t , Eq. (3.35) is in fact a parametric dynamic system, where the time-variable 

moment introduced in Eq. (3.34) acts as a parametric excitation. 

3.3.2 Finite Difference Method and Solution 

Eq. (3.35) can be solved numerically using the finite difference method. Taking into 

account the partial differential feature of this equation, a two-dimensional finite 

difference method was applied. This method used a similar concept as that introduced 

in Section 2.3.2 to discretise the derivatives. However, instead of involving only one 

spatial variable, the computing was conducted at instances of equal interval as well as 

at uniformly distributed nodes of the structure. To detail this, Eq. (3.35) was 

discretised at position iz  and time jt  by defining 

, ( , )i j i ju u z t                                                      (3.37) 

where 

0 ( 0,1, , )iz z ih i m                                               (3.38) 
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0 ( 0,1,2, )jt t jk j                                               (3.39) 

k  is the time interval and, 

/h L m                                                         (3.40) 

 is a positive step length. The length of the structure is L and the total number of the 

nodes is m+1. t0 and z0 are the initial time and the starting position, respectively, 

which are specified according to the application. 

By performing similar operations as detailed in Section 2.3.2, Eq. (3.60) and Eq. (3.61) 

can be extended to approximate the partial derivatives: 

( , ) ( , )
( , ) [ ( , )]

2
z

f z h t f z h t
f z t D f z t

z h

   
 


                               (3.41) 

2
2

2 2

( , ) 2 ( , ) ( , )
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f z h t f z t f z h t
f z t D f z t

z h
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 
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            (3.42) 
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f z t D f z t

t k
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 
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 


            (3.44) 

These operators can be used to discretise Eq. (3.35) by replacing the derivatives with 

the respective difference representation: 

1 1
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Therefore Eq. (3.35) can be discretised as 

1 1, 1 0 , 1 1 1, 1
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(3.49) 

Where 
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Eq. (3.49) is the difference equation that models the coupled longitudinal-bending 

vibration in an ultrasonic blade. For given indices i and j, Figure 3.5 illustrates how 

the adjacent points are involved in Eq. (3.49). The points are introduced into the 

equation due to the presence of the four terms in the left side of Eq. (3.35). To better 

demonstrate this, the terms on the left side of Eq. (3.35), from left to right, are named 

the 4th order term, the rotational term, the translational term and the coupled term, 

respectively, as labelled in Figure 3.5 by different colours. This form of figure is 

referred to as the stencil of the equation. It shows that a total of 11 points are involved 

in the differencing and the method is therefore named the 11-point stencil method. 

T
im

e

 

Figure 3.5 Stencial of Difference Equation 
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To find out the solution of Eq. (3.49), one may define the bending state vector as of 

the form 

-2, -1, 0, 1, , 1, 2,[ , , , , , , , ]T
j j j j j m j m j m ju u u u u u u  U                      (3.61) 

where 0, 1, ,, ,j j m ju u u  are the node displacements of the structure representing the 

bending shape of the beam at instant tj. In addition, 2, ju , 1, ju , 1,m ju   and 2,m ju   are 

displacements of virtual nodes outside the structure, which are introduced to facilitate 

the mathematical derivation. 

Applying 0,1, 2, ,i m  , into Eq. (3.49) yields m+1 equations, which can be written 

in matrix form as 

1
1

j

a j a
j




 
  
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H U R

U
                                             (3.62) 
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H                                 (3.64) 

Ha is a singular matrix of m+1 by m+5.  

In addition, four more equations were obtained by investigating the boundary 

conditions. Similar to the case in Chapter 2, taking into account the fact that the 

bending vibration is essentially of small amplitude, the “free-free” boundary condition 

was applied by rewriting Eq. (3.23)-(3.26) as 
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2

2

0

( , ) 0
z

u z t
z







     (3.65) 

3

3

0

( , ) 0
z

u z t
z







     (3.66) 

2

2
( , ) 0

z L

u z t
z







     (3.67) 

3

3
( , ) 0

z L

u z t
z







     (3.68) 

By applying Eq. (3.42)-(3.44) into Eq. (3.65)-(3.68) and let 1jt t  , the finite 

difference form of boundary conditions can be obtained as follows, 

1, 1 0, 1 1, 12

1
( 2 ) 0j j ju u u

h
                                                      (3.69) 

2, 1 1, 1 1, 1 2, 13

1
( 2 2 ) 0

2
j j j ju u u u

h
                                         (3.70) 

1, 1 , 1 1, 12

1
( 2 ) 0m j m j m ju u u

h
                                                 (3.71) 

2, 1 1, 1 1, 1 2, 13

1
( 2 2 ) 0

2
m j m j m j m ju u u u

h
                                (3.72) 

This can be written in matrix form as: 

2, 1

1, 1

0, 1 1

5 2, 1

0 1 2 1 0 0 0

1 2 0 2 1 0 0

00 0 0 1 2 1 0

0 0 1 2 0 2 1

j

j

j b j

m m j

u

u

u

u

 

 

 

  

  
      
    
  

    
    










H U          (3.73) 

Assembling Eq. (3.73) into Eq. (3.62) yields 

1
1

j

j
j




 
  

 

U
HU R

U
                                                   (3.74) 

where 

a

b

 
  
 

P
H

P
                                                        (3.75) 



92 

a 
  
 0

R
R                                                        (3.76) 

For the beam structure considered in this study, it is straightforward to prove that H is 

a 5m   by 5m   non-singular matrix and R is a 5m   by 2( 5)m   matrix. Therefore 

the inverse matrix of H exists and one obtains 

1
1

1 1

j j

j R
j j




 

   
    

   

U U
U H R H

U U
                                   (3.77) 

where 1
R

H H R  is called the iteration matrix. This means that by giving the 

bending state vectors of the current and previous moment, which is Uj and Uj-1 

respectively, the state of the next moment (Uj+1) can be iterated using Eq. (3.77). This 

process can be repeated to compute a series of state vectors until the desired instant is 

reached. 

3.3.3 High Order Finite Difference Method (27-Point Stencil) and Solution 

This section will present an alternative method to process Eq. (3.35). The main feature 

of the method is the application of higher order difference operators in the 

approximation of partial differential equations. It is expected to further improve Eq. 

(3.77) by reducing the truncation error and enhancing the accuracy of computing. 

To illustrate the method, Eq. (3.35) was rewritten in terms of derivatives as the 

following form 

4 3 2

4,0 3,0 2,04 3 2

4 3 2

2,2 1,2 0,22 2 2 2

( , ) ( , ) ( , )
( ) ( ) [ ( ) ( , )]

( , ) ( , ) ( , )
( ) ( ) 0

u z t u z t u z t
K z K z K z P z t

z z z

u z t u z t u z t
K K z K z

z t z t t

  
   

  

  
  

    

    

   (3.78) 

where 

4,0 ( ) ( )xK z EI z                                                (3.79) 

3,0 ( ) 2 ( )xK z EI z                                              (3.80) 

2,0 ( ) ( )xK z EI z                                                (3.81) 

2,2 ( ) ( )xK z I z                                              (3.82) 
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1,2 ( ) ( )xK z I z                                                (3.83) 

0,2 ( ) ( )K z S z                                                (3.84) 

Instead of replacing the derivatives using Eq. (3.41)-(3.44), this method approximated 

Eq. (3.78) using the following high order difference operators [135, 189] 

1
[ ( , )] [ ( 2 , ) 8 ( , ) 8 ( , ) ( 2 , )]

12
D f z t f z h t f z h t f z h t f z h t

z h


        


        

(3.85) 

2

2 2

1
[ ( , )] [ ( 2 , ) 16 ( , )

12

30 ( , ) 16 ( , ) ( 2 , )]

D f z t f z h t f z h t
z h

f z t f z h t f z h t


    



    

                      (3.86) 

3

3 3

1
[ ( , )] [ ( 3 , ) 8 ( 2 , ) 13 ( , )

8

13 ( , ) 8 ( 2 , ) ( 3 , )]

D f z t f z h t f z h t f z h t
z h

f z h t f z h t f z h t


      



     

               (3.87) 

4

4 4

1
[ ( , )] [ ( 3 , ) 12 ( 2 , ) 39 ( , )

6

56 ( , ) 39 ( , ) 12 ( 2 , ) ( 3 , )]

D f z t f z h t f z h t f z h t
z h

f z t f z h t f z h t f z h t


      



      

   (3.88) 

2

2 2

1
[ ( , )] [ ( , 2 ) 16 ( , )

12

30 ( , ) 16 ( , ) ( , 2 )]

D f z t f z t k f z t k
t k

f z t f z t k f z t k


    



    

                     (3.89) 

These operators were obtained by means of undetermined coefficient and Taylor 

series expansion (see Appendix). With a computing stencil involving more points, 

they are expected to offer higher accuracy in the calculation [189]. On the basis of Eq. 

(3.85)-(3.89), the operators for the mixed partial derivatives can be obtained by 

applying the difference operation to each variable [189]. Therefore one obtains 

4

2 1 0 1 22 2 2

1
( , ) ( 16 30 16 )

12
f z t a a a a a

z t k
 


     

 
                 (3.90) 

where 

2

1
[ ( 2 , ) 16 ( , )

12

30 ( , ) 16 ( , ) ( 2 , )]

na f z h t n f z h t n
h

f z t n f z h t n f z h t n

      

       

            (3.91) 
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and 

3

2 1 0 1 22 2

1
( , ) ( 16 30 16 )

12
f z t b b b b b

z t k
 


     

 
                  (3.92) 

where 

1
[ ( 2 , ) 8 ( , )

12

8 ( , ) ( 2 , )]

nb f z h t n f z h t n
h

f z h t n f z h t n

      

     

                       (3.93) 

To illustrate the representation of the derivation, the displacement of a node on the 

beam is denoted as 

, ( , )i j i ju u z t                                                   (3.94) 

where zi and tj have the same definition as detailed in Eq. (3.39)-(3.40). By applying 

Eq. (3.85)-(3.93) into Eq. (3.78), the difference representation of Eq. (3.35) can be 

obtained as of the form 

27
, ,

27
1

0i j i j
n n

n

F u


                                              (3.95) 

This yields a computational stencil of 27 points. Figure 3.6 illustrates the computing 

stencil of Eq. (3.95). To facilitate the discussion of the problem, the points in the 

stencil are labeled as 1 to 27. ,i j
nu  is denoted as an alias of u(z,t) for the n-th point in 

this stencil, and ,i j
n  is the associated coefficient of ,i j

nu . By referring to Figure 3.6, 

the relationships such as ,
1 2, 2
i j

i ju u   , ,
14 ,
i j

i ju u , 1,
1 1, 2
i j

i ju u
   and 1,

14 1,
i j

i ju u
  can 

be obtained. 

T
im

e

 

Figure 3.6 27-Points Stencil 
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Defining the bending state vector Uj using the same way as detailed in Eq. (3.61), one 

may apply 1,2, , 1i m   into Eq. (3.95), which yields m-1 equations. By arranging 

like terms and rewriting the equations with respect to index j, the resultant equations 

can be represented in matrix form as 

1

2 1 2 3 4
1

2

[ | | | ]

j

j

a j a a a a
j

j








 
 
 
 
 
  

U

U
Q U M M M M

U

U

                                 (3.96) 

where 

1, 1, 1, 1, 1,
1 2 3 4 5

2, 2, 2, 2, 2,
1 2 3 4 5

1, 1, 1, 1, 1,
1 2 3 4 5

0

0

j j j j j

j j j j j

a

m j m j m j m j m j

    

    

        

 
 
   
 
  

    
Q                (3.97) 

1, 1, 1, 1, 1,
6 7 8 9 10

2, 2, 2, 2, 2,
6 7 8 9 10

1

1, 1, 1, 1, 1,
6 7 8 9 10

0

0

j j j j j

j j j j j

a

m j m j m j m j m j

    

    

        

 
 
   
 
  

    
M                (3.98) 

1, 1, 1, 1, 1, 1, 1,
11 12 13 14 15 16 17

2, 2, 2, 2, 2, 2, 2,
11 12 13 14 15 16 17

2

1, 1, 1, 1, 1, 1, 1,
11 12 13 14 15 16 17

j j j j j j j

j j j j j j j

a

m j m j m j m j m j m j m j

      

      

            

 
 
   
 
  

      
M       (3.99) 

1, 1, 1, 1, 1,
18 19 20 21 22

2, 2, 2, 2, 2,
18 19 20 21 22

3

1, 1, 1, 1, 1,
18 19 20 21 22

0

0

j j j j j

j j j j j

a

m j m j m j m j m j

    

    

        

 
 
   
 
  

    
M                (3.100) 

1, 1, 1, 1, 1,
23 24 25 26 27

2, 2, 2, 2, 2,
23 24 25 26 27

4

1, 1, 1, 1, 1,
23 24 25 26 27

0

0

j j j j j

j j j j j

a

m j m j m j m j m j

    

    

        

 
 
   
 
  

    
M                (3.101) 
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Four additional equations can be found from the boundary conditions defined by Eq. 

(3.65)-(3.68). Using the method of undetermined coefficient (see Appendix), the 

difference representation of these boundary conditions can be obtained as 

2, 1, 0, 1, 2,16 30 16 0j j j j ju u u u u                                                    (3.102) 

2, 1, 0, 1, 2, 3, 4,8 35 48 29 8 0j j j j j j ju u u u u u u                                (3.103) 

2, 1, , 1, 2,16 30 16 0m j m j m j m j m ju u u u u                                           (3.104) 

4, 3, 2, 1, , 1, 2,8 29 48 35 8 0m j m j m j m j m j m j m ju u u u u u u                   (3.105) 

These equations were given in a form that avoids the presence of terms such as 3, ju  

and 3,m ju  . By replacing j with j+2, Eq. (3.102)-(3.105) can be written as matrix form 

that can be conveniently incorporated into Eq. (3.96) 

2 2

5

1 16 30 16 1 0 0 0 0

1 8 35 48 29 8 1 0 0

00 0 0 0 1 16 30 16 1

0 0 1 8 29 48 35 8 1

j b j

m

 



   
     

    
 

   
 










U Q U     (3.106) 

In addition, two more equations can be obtained by considering the cases of 0i   and 

i m . To avoid the appearance of -3, ju  and 3,m ju  , Eq. (3.35) was not discretised by 

Eq. (3.95). Instead, two modified operators, which use the computing stencil 

illustrated in Figure 3.7and Figure 3.8 respectively, were applied. 
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Figure 3.7 Stencil for Case of i=0 

 

Figure 3.8 Stencil for Case of i=m 

By defining the notations in the same way as Eq. (3.95), the difference equations can 

be obtain as follows: 

For i=0 

28
0, 0,

1

ˆ 0j j
n n

n

u


                                              (3.107) 

For i=m 

28
, ,

1

ˆ 0m j m j
n n

n

u


                                             (3.108) 
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where 0,ˆ j
n  and ,ˆ m j

n  are the coefficients of the respective variables. Again, Eq. (3.107) 

and (3.108) can be placed together and be written in the matrix form as 

1

2 1 2 3 4
1

2

[ | | | ]

j

j

c j c c c c
j

j








 
 
 
 
 
  

U

U
Q U M M M M

U

U

                               (3.109) 

where 

0, 0, 0, 0, 0,
1 2 3 4 5

, , , , ,
1 2 3 4 5

ˆ ˆ ˆ ˆ ˆj j j j j

c m j m j m j m j m j

    

    

 
  
  

Q              (3.110) 

0, 0, 0, 0, 0,
6 7 8 9 10

1 , , , , ,
6 7 8 9 10

ˆ ˆ ˆ ˆ ˆj j j j j

c m j m j m j m j m j

    

    

 
  
  

M             (3.111) 

0, 0, 0, 0, 0, 0, 0, 0,
11 12 13 14 15 16 17 18

2 , , , , , , , ,
11 12 13 14 15 16 17 18

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆj j j j j j j j

c m j m j m j m j m j m j m j m j

       

       

 
  
  

M  

(3.112) 

0, 0, 0, 0, 0,
19 20 21 22 23

3 , , , , ,
19 20 21 22 23

ˆ ˆ ˆ ˆ ˆj j j j j

c m j m j m j m j m j

    

    

 
  
  

M             (3.113) 

0, 0, 0, 0, 0,
24 25 26 27 28

4 , , , , ,
24 25 26 27 28

ˆ ˆ ˆ ˆ ˆj j j j j

c m j m j m j m j m j

    

    

 
  
  

M             (3.114) 

 

Combining Eq. (3.96), (3.106) and (3.109) yields 

1

2
1

2

j

j

j
j

j








 
 
 
 
 
  

U

U
QU M

U

U

                                             (3.115) 

where 

a

c

b

 
   
  

Q

Q Q

Q

                                                     (3.116) 
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1 2 3 4

1 2 3 4c c c c

 
 

  
  0 0 0 0

M M M M

M M M M M                                        (3.117) 

For the structure considered in this study, it is not difficult to prove that Q is a 5m   

by 5m   non-singular matrix and M is a m+5 by 4m+20 matrix. Therefore the inverse 

matrix of Q exists and one obtains 

1 1

1
2

1 1

2 2

j j

j j

j R
j j

j j

 




 

 

   
   
    
   
   
      

U U

U U
U Q M Q

U U

U U

                                    (3.118) 

where 1
R

Q Q M  is a matrix of m+5 by 4m+20 called the iteration matrix. Providing 

the bending state vectors of the earlier moments (Uj+1, Uj, Uj-1 and Uj-2) are known, 

the state of the next moment (Uj+2) can be iterated using Eq. (3.118). Therefore 

Eq.(3.118) provides a way to solve the governing equation and compute the coupled 

bending vibration of a blade from an initial state. 

3.3.4 Error Analysis and Comparison of the Finite Difference Methods 

In the finite difference method, truncation error is introduced when the difference 

operators are used to replace the derivatives. The error can propagate to other steps of 

the computing and accumulate as the calculation is carried on. This means for Eq. 

(3.77) and (3.118), the iteration may not converge to the desired results. To evaluate 

this issue, this sub-section will conduct the error analysis for the 11-point and 27-

point stencil method presented in Section 3.3.2 and Section 3.3.3 respectively. 

The basic concept of the error analysis is to expand the finite difference representation 

using Taylor series and compare it with the original differential expression [135]. To 

apply this, one may consider the following two-dimensional Taylor expansion: 

2

( , )

1 1 1 1 1
( , ) ( ) ( , ) ( ) ( , )

2!

1 1 1
( ) ( , )

( 1)!
n

f x x y y

f x y x y f x y x y f x y
x y x y

x y f x y
n x y

    

        
   

    
  





       

(3.119) 
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Let ( , )f z t u  and expand it to the fourth order at the vicinity of ( , )i jz t , this yields: 

(1,0) (0,1) 2 (2,0) (1,1) 2 (0,2)
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(3.120) 

where zi and tj have the same definition as detailed in Eq. (3.37)-(3.39). ˆ
kf  is the 

function of the kth term in the right side of  Eq. (3.120) and k  is the associated 

coefficient of ˆ
kf . 

To investigate the truncation error of the 11-point stencil method, rewriting Eq. (3.35) 

as 
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and Eq. (3.49) as 
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(3.122) 

where un is an alias of u(z,t) for the n-th point in the right side of (3.122) and an is the 

associated coefficient of un. Therefore nu  can be expressed in terms of iz , jt , h and k 

as follows 

( , )n i ju u z z t t                                                (3.123) 
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where 2 , ,0, , 2z h h h h     and ,0,t k k   . As an example, for point 10, one 

obtains 

10 ( , )i ju u z h t k                                               (3.124) 

By expanding Eq. (3.123) using Eq. (3.120) and substitute it into Eq. (3.122), one 

obtains  

11 15 15 11 15

11
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                            (3.125) 

where p  is the coefficient of ˆ
kf . 

The truncation error of the 11-point stencil method can be obtained by comparing the 

expanded difference equation with the original differential equation. Therefore 
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            (3.126) 

This means the truncation error is of 2 2( )O k h . Eq. (3.126) also suggests that the 

magnitude of the truncation error depends on a number of factors, especially h the 

spatial step and k the time interval. It is possible to reduce the truncation error to an 

acceptable degree by adopting sufficiently small h and k for the iteration. However, 

this is achieved at the cost of increased computing expense. 

Using the same approach, one may obtain the truncation error for the 27-point stencil 

method as: 

4
2 4 4

27 27 4
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                             (3.127) 

which suggests the truncation error is substantially reduced to be 2 4( )O k h . 

Comparing this to the case of the 11-point stencil method, it suggests that higher 

accuracy can be achieved by the 27-point stencil method for the same value of k and h. 

This is in agreement with the purpose of the introduction of the high order difference 

method. 
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3.3.5 Case Study 

To demonstrate the application of the proposed longitudinal-bending vibration model, 

a case study is presented in this section. The same uniform beam as detailed in 

Section 2.4.1 was used to study the interaction between longitudinal and bending 

vibration. In the analysis, the beam was subjected to forced vibration at its first 

longitudinal frequency (35.3kHz, Table 2.4) under a longitudinal excitation of 40µm 

in amplitude, which is a typical level of excitation for ultrasonic cutting blades. 

Attention was placed at the B7 mode illustrated in Figure 2.4 as it is the bending mode 

closest to the excitation frequency. It is assumed that the beam undergoes an initial 

bending of 2µm in amplitude, which is of low level comparing to the longitudinal 

excitation, as illustrated in Figure 3.9. The introduction of this initial bending allows 

the investigation of how the bending develops over time with the presence of 

longitudinal vibration. The conditions and settings of the analysis are summarised in 

Table 3.1.  

u

z

 

Figure 3.9 Excitation and Initial Bending 

Setting Value 

Longitudinal Vibration Amplitude 20µm 

Initial Bending Amplitude 2µm 

Excitation Frequency 35.3kHz 

Spatial Step (h) 0.34mm 

Interactive Time Step (k) 0.2µs 

Table 3.1 Conditions and Settings of Analysis 

The analysis was carried out using Matlab 2008b with the main script enclosed in 

Appendix A.3. The results of the calculation are illustrated in Figure 3.10-Figure 3.12. 

Figure 3.10(a) and Figure 3.10(b) plots the bending shape of the beam, obtained 

without and with the presence of longitudinal vibration respectively, against time. It 

shows that when longitudinal vibration is absent, the initial bending resulted in 

bending vibration of constant magnitude. However, when longitudinal excitation is 

applied, the magnitude of bending increases over time. Figure 3.11 illustrates the 



103 

displacement at the end point of the beam, and Figure 3.12 compares the bending 

shape of the beam at t=0ms, t=0.187ms and t=0.374ms, at which moments the beam 

bends at the largest magnitude. It confirms that the beam is subjected to larger 

bending deformation with the presence of longitudinal motion. The maximum 

magnitude of the displacement of the end point reaches 4.2µm comparing to just 2.7 

µm at the initial moment. This implies the beam can suffer higher stress as a result of 

the coupled vibration. 

 
a) Without Longitudinal Vibration 

 

 
   b) With Longitudinal Vibration 

Figure 3.10 Amplitude of Bending over Time 
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Figure 3.11 Displacement of End Point  
(with Longitudinal Vibration) 

 

Figure 3.12 Overlay of Bending Shape 

3.3.6 Discussion 

Longitudinal-bending coupled vibration of ultrasonic blades was studied in this 

section based on the one-dimensional beam theory. As the bending vibration was 

considered to be insignificant compared to the longitudinal motion, the influence of 

bending on the longitudinal vibration was ignored and coupled behaviour was only 

modelled for the bending vibration. 

By taking into account the axial force associated with the longitudinal deformation 

and the deformed profile of the structure, the coupled effect was assumed to result 

from an extra rotation moment introduced by the axial force. This rotation moment 

can act as a parametric excitation for the bending vibration. However, the factor of 

damping was not taken into account in this model, which means there is no 

mechanism to damp the bending vibration and this may lead to improperly large 

oscillation in the computation. It should also be noted that the loading condition is not 

considered in the model either. The structure is free to vibrate without contacting 



105 

other object. Therefore, it is expected that the proposed method may not be applicable 

for modelling coupled vibration in cutting process. 

Nevertheless, the model simplified the problem by concentrating only on the 

longitudinal and bending vibration and keeping the longitudinal vibration independent 

of the effects of coupling. This provided an insight into a most commonly observed 

coupling phenomenon in this type of blade while allowing the problem to be modelled 

in a relatively simple and solvable form. However, it is noteworthy that this simplicity 

may be inapplicable if the bending or torsional vibration becomes significant. 

The generated governing equation for bending vibration was a fourth order non-linear 

partial differential equation. Two approaches, the 11-point and 27-point stencil 

method, were proposed based on the finite difference method to solve this equation 

using an iteration process. Both calculate the bending state vector of the next moment 

on the basis of the known vectors of the earlier moments. Error analysis of these 

methods suggested that the accuracy of the iteration depends on the value of the 

spatial step h and the time interval k, which must be sufficiently small in order to 

make sure the truncation error stays within an acceptable limit in the iteration. An 

improved accuracy was found in the 27-point stencil method in that it exhibits a 

truncation error of 2 4( )O k h  instead of 2 2( )O k h  in the 11-point stencil method. 

Therefore, the 27-point stencil method can be used in the case where faster 

convergence is required, or further reducing h and k to improve the accuracy is 

ineffective. However, comparison of Eq. (3.118) and Eq. (3.77) showed that this is 

achieved at the cost of increased computing complexity as the 27-point stencil 

requires substantially more state vectors (four vectors rather than two in the 11-point 

stencil) to be involved in the iteration. 

The case study of a uniform beam showed that the proposed model can be used to 

study the interaction between the longitudinal and bending vibration. The computation 

suggested increased bending magnitude, which can result in higher stress in the 

structure, under the influence of longitudinal excitation. It is expected that similar 

approach can also be used in the study of coupled vibration for ultrasonic blades. 

However, this study did not take into account the issues such as damping, the stable 

region of vibration, and convergence of the calculation. Further research on these 
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issues would be essential in order to apply this model in the design and optimisation 

of ultrasonic blades. 

In addition, although the results of the case study were not experimentally verified in 

this study, it is suggested that the coupled vibration may be further experimentally 

studied by investigating the actual amplitude change in terms of time using a similar 

setup as experimental modal analysis. With accurate laser vibrometer and high speed 

signal acquisition devices, real-time vibration velocity on the blade surface can be 

sampled and recorded. It is expected that extracting the change of vibration amplitude 

in time domain would enable the comparison of theoretical prediction and real-world 

phenomenon.  

3.4 Summary 

This chapter presented two models for the coupled vibration of ultrasonic blades. The 

first model is a lumped mass beam system that exhibits parametric vibration. It 

models the motion of the beam in a four degree of freedom system using a one-

dimensional structure. Due to its slender shape and the effect of the lumped end mass, 

the beam was able to perform coupled bending and torsional motion under a 

longitudinal excitation. The interaction of these motions was investigated by taking 

into account the geometry restrictions of the structure, including the relationship 

between the curvatures and displacements. This was further used to derive the 

governing equations of vibration by means of Lagrangian dynamics. The resulting 

equations were presented in the form of second order non-linear differential equations 

with respect to the generalised co-ordinates. 

This model provides an approach to investigate the parametric vibration and modal 

coupling behaviour using a system of relatively simple structure. However, taking into 

account the complexity of the obtained governing equations, it is unlikely to find 

closed form solutions for the analysis. In addition, due to the geometry difference 

between a beam with lumped mass and a structure of tapered profile, difficulties may 

arise when determining the necessary parameters for the model. Therefore it is more 

appropriate to use this model for the purpose of theoretical study instead of 

performance prediction. 
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The second model concentrated on the longitudinal-bending coupled vibration. This 

provided an insight into the coupling phenomenon commonly observed in this type of 

blade while allowing the problem to be modelled in a relatively straightforward form. 

Taking into account the fact that the longitudinal motion is normally much stronger 

than the bending vibration, the problem can be further simplified by ignoring the 

effects that the bending motion exerts on the longitudinal vibration. Thus it is only 

necessary to model the motion of bending, as the longitudinal vibration would be free 

from coupling effects. Under this assumption, the governing equation of bending was 

obtained by introducing an extra rotation moment on the basis of the one dimensional 

beam theory. 

This model resulted in a fourth order time dependent partial differential equation, 

which is essentially a parametric vibration system. Two approaches, referred to as the 

11-point and 27-point stencil method, were proposed based on the finite difference 

method to solve this equation. These methods use an iteration process in the 

calculation to compute the future bending state based on the known vibration states. 

The error analysis confirmed that for both methods, it is possible to keep the 

truncation error within an acceptable limit by adopting sufficiently small value for h, 

the spatial step, and k, the computing time interval. However, the 27-point stencil has 

an improved accuracy over the 11-point stencil, though its iteration equation is of a 

more complicated form. 

This method provides a way to investigate the bending motion of an ultrasonic blade 

under the presence of longitudinal vibration. Further work is recommended to study 

the issues such as damping, the stable region of vibration, and convergence of the 

calculation. 
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Chapter 4 
Blade Performance Indicators and  

Optimal Design Method 

4.1 Introduction 

Chapter 2 and Chapter 3 discussed the modelling of vibration behaviour of ultrasonic 

blades. In addition to the understanding of blade dynamic characteristics, it is also 

important to adopt appropriate design process when designing high performance 

ultrasonic blades [14, 39, 53]. 

Conventionally, the design process starts with an initial design or a design concept. 

The design is analysed and adjusted repeatedly until a satisfactory solution is obtained. 

Since there are no general methods on how to make modifications or improvements to 

the design, it relies on the designer's experience, intuition and other information 

obtained from trial designs to complete the task. Therefore, a massive amount of work 

has been devoted to the investigation of design strategies, such as ways to decrease 

excessive vibration, reduce material stress and avoid high cutting temperature. These 

strategies can improve the design quality and enhance the performance of the blade. 

However, they do not guarantee a "best" design to be obtained. Better solutions may 

exist but are not explored in the design process. For these reasons, this chapter will be 

devoted to the proposal of an improved design method by adopting optimisation in the 

design process. 

4.1.1 The Conventional Method and Design Strategies 

As introduced in Section 1.5.4, the conventional design process of ultrasonic blades 

includes initial design, modelling and analysis, and blade tests. To propose a new 

design method, the design strategies, which are used in the conventional design 

process to improve design quality, are reviewed. Cardoni et al. [1, 14, 212] discussed 

the design issues of ultrasonic blades, particularly for those with multiple components 

and complex geometries. Three strategies were proposed to reduce the stress level at 

the failure location of the blade, which include: 

(1) Proper design of blade profile; 
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(2) Detuning of the block horn and blades to move the longitudinal node away 

from the highest stress section; 

(3) Redesign of the block horn to eliminate the effects of blade flexural 

vibrations in the longitudinal cutting mode.  

These techniques were successfully applied in the design of multi-blade ultrasonic 

food cutting systems. McCulloch [53] designed different ultrasonic food cutting 

blades that had the same profile but were tuned at different frequencies. A large rate 

of change in the cross-section area was applied as a strategy to achieve an increased 

gain. This was done by adopting two symmetric circular curves in the blade geometry. 

MacBeath [39] demonstrated the application of a radial profile in the design of 

ultrasonic bone cutting blades, which has a gain exceeding ten. The stress limit of the 

material was considered as a factor that restricted the blade gain to be further 

increased. However, the blade profile introduced in the study was found to be 

unsuitable for deep cutting. An ultrasonic chisel for bone cutting was investigated by 

Khambay [87, 88]. The device was designed with a straight cutting tip shaped as a 

chisel, which resulted in a chiselling effect when excited longitudinally. This helps to 

remove bone debris in surgical applications. The unique design of the chisel shape 

was a key factor in achieving satisfactory cutting performance. 

The design techniques developed in the study of other ultrasonic components such as 

cylindrical horns are also useful for ultrasonic blades as these components exhibit 

similar behaviour in terms of dynamic characteristics. Cardoni et al [213] studied the 

approaches to enhance the vibration performance of ultrasonic block horns. Slotting 

was incorporated in the horn design and was configured according to different 

applications to achieve good uniformity of vibration amplitude as well as avoid the 

modal participation of non-tuned modes. Rani [214] compared the dynamic 

performance of ultrasonic plastic welding horns of different profiles, including 

cylindrical, Gaussian, catenoidal, stepped and Bézier shape. The stepped and Bézier 

horns were found to have larger gain but suffered from higher material stress. The 

Bézier profile was considered to be a better solution as a result of its smooth shape. 

Other design techniques developed for ultrasonic devices are not dealt with 

exhaustively here. In spite of this, the desire of improving the design method itself 

was raised as these strategies are only applicable for certain cases and rely heavily on 
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the designers' skills. There is a lack of a general method to produce better design 

solutions while reducing the need of designers' experience. In view of this, the 

concept of optimal design was introduced in the design of ultrasonic blades. Unlike 

the conventional approach, the design is updated by mathematical algorithms in the 

optimal design method. This bypasses the application of different empirical design 

techniques and offers a more robust way to complete the task. 

4.1.2 The Application of Optimisation in the Design of Ultrasonic Devices 

The basic procedures in general optimal design methods include formulation of the 

design problem, evaluation of the design, and updating the design using optimisation 

algorithms, as detailed in Section 1.5.5. Being powerful tools for research and product 

development, the concept of optimal design and the relevant algorithms have already 

been applied in the design of ultrasonic devices, including horns and transducers. 

Derks [101] presented the optimisation of a rectangular ultrasonic horn using both 

experimental approaches and FEA. The study attempted to design a horn that achieves 

the best uniformity of vibration amplitude across its large output face. In the 

experimental approach, the size of the slots on the horn was adjusted in order to find 

the best performance for the whole system. However, the success of this method was 

strongly dependent on the first estimation of the overall size of the horn. The 

application of FEA improved the efficiency of optimisation by eliminating the need to 

alter and test the horn repeatedly. Nevertheless, no optimisation algorithm was applied 

to improve the design process. As this method considered a horn of specific shape, it 

was not applicable to other types of horns or ultrasonic blades. Wang [215, 216] 

developed a method to design ultrasonic horns using an optimisation scheme and FEA. 

The work was devoted to the design of a horn of Bézier profile that optimises two 

objects: first, minimising the difference between the horn's first longitudinal modal 

frequency and the transducer's working frequency; second, maximising the gain of the 

horn. This was done by a genetic algorithm that solves multi-objective problems in a 

single optimisation. An evolution process was incorporated in the algorithm which 

adjusted the parameters of the Bézier curve in each generation to obtain offspring of 

improved performance from the current population. FEA was used during the 

optimisation to compute the modal frequency and displacement distribution of the 

horn. It is reported that a horn obtained by this method was 71% higher in gain than 
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the traditional catenoidal horn of the same length and diameters of the end surfaces. 

However, other characteristics of the horn, such as the non-longitudinal modes and 

stress of material, were not taken into account in the optimisation process. Roşca [217] 

studied a mathematical optimisation procedure for ultrasonic horns based on the 

differential equation of wave propagation, which took into consideration the contact 

stiffness between the horn and the attached tool . The study presented a family of horn 

designs that have the maximum cross section at their nodal points. However, as the 

solution was obtained by an analytical method, this procedure was only applicable for 

horns with a specific profile. Amin [113] designed a double-conical shaped horn for 

ultrasonic machining by adapting an empirical optimisation procedure to maximise its 

gain. The procedure adjusted the end diameters and the length of different sections 

gradually in order to achieve an increased gain as well as low effective stress. The 

resultant horn was found to exhibit considerably higher gain than those designed 

using the conventional method. However, the method did not detail the variables and 

restrictions involved, and so the obtained design could be a solution optimised locally. 

Deibel [218] applied genetic algorithms and simplex method to optimise the shape of 

an ultrasonic horn used for ultrasonic assisted machining. Selected geometry 

parameters of the horn were altered during the optimisation in order to search for the 

desired shape. The global fitness function, or the optimising goal, was represented by 

the weighted sum of a number of sub-objective functions that evaluate different 

characteristics, including the vibration at the mounting point and target frequency of 

the horn. The proposed method applied both genetic algorithms and the simplex 

method in the optimal searching, where the former was used in the global searching 

and the latter in the local searching. As a result, a usable solution was found according 

to the application specifications. However, the way that the global fitness function 

was constructed raised the need to determine appropriate penalty factors for the 

relevant sub-fitness functions. These factors have a direct influence on the 

optimisation effect and the convergence of algorithm. They may introduce 

inconvenience as the proper weights could be difficult to determine in some 

applications. 

The application of optimisation methods was also reported in the design of ultrasonic 

transducers. Fu [219] formulated the design of a Langevin transducer as a constrained 

multi-objective optimisation problem with the aim of maximising the output 
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amplitude while minimising the electric power consumption. This was achieved by 

applying the transfer matrix method to model the transducer structure. However, 

because of the involvement of conflicting objectives, it is impossible to optimise all 

objectives at the same time. To solve this problem, three Pareto-based multi-objective 

evolutionary algorithms, including the multi-objective genetic algorithm, elitist non-

dominated sorting genetic algorithm and improved strength Pareto evolutionary 

algorithm, were introduced. The proposed procedure allowed the designer to obtain a 

preferred solution. However, additional information such as weight vectors must be 

considered when selecting the optimal result in the final stage. Although a design 

example was discussed in the study, the obtained solution was not verified by 

experiments. Heikkola [220] applied an interactive multi-objective optimisation 

method known as NIMBUS in the design of a high power ultrasonic transducer. This 

algorithm classified the objective functions in up to five classes:  

(1) To be improved; 

(2) To be improved until a certain aspiration level is reached; 

(3) Currently acceptable; 

(4) Allowed to be impaired until a certain upper bound is met; 

(5) Freely changeable. 

This allowed a new optimal problem to be generated in each iteration during the 

optimisation [221, 222]. It is reported that the method was capable of solving non-

differentiable, multi-objective, optimal problems and offered the ability to obtain a 

best compromise between several conflicting objectives. According to the design 

preference, three optimisation goals were raised with a decreasing importance: 

resonating at the correct frequency, minimising the acoustic pressure at transducer 

front and reducing the vibration at the casing attachment. The numerical simulation of 

a design problem demonstrated that this method improved the design process and 

resulted in a better solution than the conventional unoptimised approaches. Porto [223] 

adopted the genetic algorithm to optimise the shape of an ultrasonic transducer used 

for surgical applications. The presented work attempted to achieve the maximum 

transducer output by adjusting eleven geometric parameters. The genetic algorithm 

was used to conduct global and local searching in the optimisation process, which 

produced a solution in less than 5000 function evaluations. A similar study was 

conducted by Murphy [224] with a pseudo-gradient optimal method, based on an 

analytical transducer model. Almost the same results were reported but a lower 
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number of simulations was required by the genetic algorithm. However, neither of 

these studies included the consideration of stress in the optimisation, nor did they 

verify the resultant transducer designs experimentally. 

The above research shows that it is a feasible approach to apply optimisation methods 

in the design of ultrasonic devices. This means it is possible to find an optimal design 

solution without manually applying specific design strategies. However, the 

optimisation of ultrasonic cutting blades was barely mentioned in the literature. As 

ultrasonic blades have their unique design requirements, especially in terms of 

geometry and dynamic performance, it is necessary to take their characteristics into 

account when investigating the application of optimal methods. In view of this, this 

study will be devoted to the proposal of an optimal design process for ultrasonic bone 

cutting blades. Instead of focusing on how to adjust the structure of an ultrasonic 

blade, this study will concentrate on the methods of evaluating and comparing the 

performance of different designs, which will enable the introduction of searching 

procedures and optimisation algorithms in the design process. 

4.2 Blade Performance Indicators 

4.2.1 The Concept of Performance Indicators 

In order to apply the optimal design method in real world applications, the design 

problem must be formulated in a form that allows the optimisation algorithms to be 

incorporated. In the proposed method, it is done based on the introduction of 

performance indicators. The so called "performance indicator" is a value or a function 

that measures specific physical characteristics of a design in the form of mathematical 

representations. It serves as a bridge between the real world design problem and the 

mathematical algorithms. 

How to select and construct the appropriate performance indicators is a major concern 

in this research as the indicators have a direct impact on the quality of optimisation. 

Two basic principles are followed in this study. The first one is that the indicators 

should be defined in a way that can be conveniently computed. This suggests that the 

calculation of an indicator must be both feasible and cost acceptable. As the indicators 

are usually computed frequently in the design process, those with ambiguous 

implementation definition or expensive computing costs would be either unrealizable 
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or impractical to use. The second principle is that the indicators should have clear 

physical meaning in order to reflect the performance of interest. This facilitates the 

formulation of the design problem by allowing the objective functions and constraints 

to be constructed in a straightforward way. 

In fact, the concept of performance indicators shares similar ideas to the 

fitness/objective functions in that all of them attempt to quantify certain physical 

characteristics of a design using mathematical representations. Therefore, the relevant 

objective functions presented in the literature and their design targets will be reviewed 

before detailing the proposal of indicators. 

One essential requirement of the design for most power ultrasonic components is to 

make sure the design is tuned at correct resonant frequency. To apply this condition in 

the optimisation, Fu [218] constructed the following function: 
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where f is the fitness function, Rf is the weight factor that reflects the importance of 

this condition, ωs is the resonant frequency of the current design, and ωt is the desired 

resonant frequency. This function was summed up with other sub-objective functions 

in the global objective function. As a consequence, when the global objective function 

was minimised, f would be forced to be a sufficiently low value, making sure that ωs 

is close enough to ωt. On the other hand, this goal may also be achieved by treating 

the resonant frequency as an individual objective function and using multi-objective 

algorithms, such as a Pareto-based method, in the optimisation [219, 220]. 

The output amplitude is another design target of high priority as it is directly related to 

the work that can be delivered by an ultrasonic component. Sometimes this target is 

evaluated using the gain of the component, which is the vibration amplifying factor 

between the input and output interface of the component. Maximum output or gain 

was regarded in a number of studies as the main optimisation goal in order to obtain 

the highest performance [113, 215, 216, 220, 223]. This was usually handled directly 

as a separate fitness function by multi-objective algorithms. However, large output 

amplitude is often achieved at the price of high stress, which may lead to the failure of 

the ultrasonic component [14, 39]. 
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Low vibration amplitude or deformed displacement at certain positions of an 

ultrasonic component, such as the mounting point, can be a design objective as well. It 

is particularly important for transducers and horns of certain types as this allows them 

to be attached or mounted appropriately [218, 220]. This condition was represented by 

Deibel and Wegener [218] using the average displacement of the grid points at the 

specific location: 

1
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i

f u
N

                                                            (4.2) 

where f is the fitness function, N is the number of grid points at the position, uzi is the 

nodal displacement along the z direction (or another direction of interest). This target, 

however, was regarded as less important in some applications comparing to other 

conditions such as the resonant frequency [220]. 

Objectives such as material stress, power consumption and acoustic pressure, were 

taken into account in other studies [101, 219, 220]. By introducing the appropriate 

objectives in the design process, the designers will be able to control the optimisation 

so that design solutions with the desired performance can be generated by the 

optimisation algorithms. 

Taking into account the features of ultrasonic cutting blades, this study puts forward 

four kinds of performance indictors: frequency based, gain based, displacement based 

and stress based indicators. They are classified according to their physical nature and 

are expected to provide the essential information on the vibration characteristics of an 

ultrasonic blade. To better illustrate the definition and the application of these 

indicators, an ultrasonic blade excited longitudinally will be used as the example for 

demonstration, as shown in Figure 4.1. Four kinds of vibration, the lateral bending 

(bending along the width/breadth of the blade, denoted as BX), flexural bending 

(bending along the thickness of the blade, denoted as BY), longitudinal motion 

(denoted as L) and torsional vibration (denoted as T), will be considered as they are 

the most common motions presenting in an ultrasonic blade of this kind. Although the 

proposed indicators are initially constructed for ultrasonic blades, they are also 

applicable for other types of ultrasonic devices such as horns and transducers. 
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Figure 4.1 Ultrasonic Blade 

4.2.2 Frequency Based Indicators 

This kind of indicator is called modal distance. They are derived from the modal 

frequencies of an ultrasonic blade and are defined as the frequency difference between 

the working mode and the nearest undesired modes: 

t 0min{ }M f f                                                  (4.3) 

where M is the modal distance, ft is the modal frequency of the undesired modes, f0 is 

the working mode. 

According to the nature of the undesired modes, there are five types of modal distance, 

as illustrated in Table 4.1. MA is the general form of modal distance, which is defined 

as the minimum frequency difference between the working mode and the other modes. 

In addition, the indicator can be defined in terms of the distance between the working 

mode and a certain type of mode. As shown in Table 4.1, MX is named BX modal 

distance, which is the frequency difference between the working mode and the nearest 

BX bending mode. MY, ML and MT are defined in a similar way. 

The example in Figure 4.2 demonstrates the physical meaning of the defined 

indicators. This figure is the sum of the amplitude of frequency response functions 

(FRFs) obtained in the experimental modal analysis of an ultrasonic blade. The 

vibration modes were found at the peaks of the curve and were named using letters 

which indicate their nature of vibration and a number of order. Different types of 

modal distance are illustrated in the figure, which clearly shows how far the relevant 

modes are separated from the working mode. It is an empirical experience that modal 

coupling behaviour is most likely to occur when two modal frequencies are too close 

to each other [14]. Thus these indicators suggest the possibility at which the working 
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mode might be affected by other modes. To avoid undesired modal coupling 

behaviour, constraints should be applied for these indicators to ensure the vibration 

modes are well separated in frequency. 

Indicator Name Definition 

MA Modal Distance Frequency difference between the working 
mode and the nearest mode. 

MX BX Modal Distance Frequency difference between the working 
mode and the nearest BX bending mode. 

MY BY Modal Distance Frequency difference between the working 
mode and the nearest BY bending mode. 

ML Longitudinal 
Modal Distance 

Frequency difference between the working 
mode and the nearest longitudinal mode. 

MT Torsional 
Modal Distance 

Frequency difference between the working 
mode and the nearest torsional mode. 

Table 4.1 Frequency Based Indicators 
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Figure 4.2 Modal Distance Indicators 
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4.2.3 Gain Based Indicators 

The gain is the amplifying factor of a blade with respect to its excitation. Normally, 

higher gain means larger vibration output can be obtained for the same input condition. 

Therefore the gain is one of the most commonly optimised goals in the design of 

ultrasonic devices for performance enhancement. 

The concept of gain is extended in this study by defining the indicator under different 

excitation conditions. As illustrated in Table 4.2, four types of gains are defined, 

namely GX, GY, GL and GT. GX is defined as gain of BX bending motion. This indicator 

is computed based on the FEA simulation where a normalised oscillating excitation is 

applied at the input face of the blade base. This input, as illustrated as IN in Table 4.2, 

vibrates along the width direction at the working frequency of the blade, which 

excites lateral (BX) bending in the blade. The value of GX is obtained by dividing the 

displacement amplitude of the blade tip by the amplitude of the input, as shown in Eq. 

(4.4) 

/out inG A A                                                       (4.4) 

where G is the gain, Aout is the displacement amplitude at the blade tip and Ain is the 

amplitude of the input, as illustrated in Table 4.2.  GY, GL and GT are defined in a 

similar way. GY and GL is computed by applying an input along the thickness and 

longitudinal direction respectively, and GT is computed by applying a torsional input 

at the blade base. These gains are the vibration characteristics of an ultrasonic blade, 

which indicate how the blade responds to a specific type of excitation. If the blade is 

regarded as a structure where non-linear effects of vibration are ignored, the gains are 

independent of the input. 

GL is the most import one among the proposed gains as it is closely related to the 

cutting performance of the blade. Under the same input condition, GL determines how 

much longitudinal vibration can be delivered at the blade tip to perform ultrasonic 

cutting. The value range of this indicator should be determined according to the 

output amplitude of the transducer and the required vibration amplitude of cutting. 

Usually, higher GL, which results in enhanced cutting by boosting the output of the 

transducer, is preferred. However, the maximum value of this indicator is restricted by 

the material strength as larger gain also brings about higher stress in material [14, 39]. 
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Indicator Name Definition 

GX 
Gain of BX 
bending. 

 

GY 
Gain of BY 
bending. 

 

GL 
Gain of 

longitudinal 
motion. 

 

GT 
Gain of 

torsional 
motion. 

 

Table 4.2 Gain Based Indicators 

On the other hand, although a blade is expected to perform longitudinal vibration only, 

bending and torsional vibration may be excited as a result of non-linear effects, which 

is usually unwanted in ultrasonic cutting. GX, GY, and GL suggest how the blade 

responds to these non-working motions in specific excitation conditions. A large 

value of the gain implies an increased possibility of the presence of the undesired 

motion. To reduce the potential negative influence, GX, GY, and GL should be kept 

within an acceptable limit. 

4.2.4 Displacement Based Indicators 

The gain based indicators deal with only one mode of vibration at a time. In the 

computing of a gain, the applied input is a single component excitation, which makes 

the blade perform forced bending, longitudinal or torsional vibration in the simulation 

without the involvement of coupling between different modes of vibration. This may 

be insufficient when it is desired to evaluate the performance of an ultrasonic blade in 

complex vibration condition where two or more vibration modes present 

simultaneously. 

In ultrasonic cutting, a blade is usually excited longitudinally by a transducer. 

However, in real world applications, even though only longitudinal input is applied on 

the blade, other modes of vibration including bending and torsion may also present 

due to reasons such as vibration coupling and modal interaction [14]. Such 
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phenomenon can not be duplicated in the simulation if only longitudinal excitation is 

applied, as the input induces longitudinal response only. Instead, it can be simulated 

using a multi-component input. As illustrated in Table 4.3, an excitation with four 

components INX, INY, INL and INT, can be applied at the base of the blade in the 

simulation. These input components are associated with the excitation of lateral 

bending, flexural bending, longitudinal and torsional vibration, respectively. The input 

forces the blade to vibrate in a way that involves four modes of vibration 

simultaneously. Four indicators, namely AX, AY, AL and AT, are proposed by taking 

into account the responses of the blade in this condition, which are essentially the 

displacement/torsion amplitude of the blade tip, as illustrated in Table 4.3. 

 Input / 
Indicator 

Definition Illustration 

INX 

INY 

INL 

INT 

Input components that are 
associated with the 
excitation of lateral bending, 
flexural bending, 
longitudinal and torsional 
vibration respectively. 

 

AX 
Displacement amplitude of 
the blade tip along width 
direction. 

 
 

 

AY 
Displacement amplitude of 
the blade tip along thickness 
direction. 

AL 
Displacement amplitude of 
the blade tip along 
longitudinal direction. 

AT 
Amplitude of the torsion 
angle of blade tip. 

Table 4.3 Displacement Based Indicators 

It should be noted that the multi-component input applied in the computation is not 

the direct simulation of an actual excitation in real world cutting applications. Instead, 

it is applied in a way which introduces multiple modes of vibration in the analysis so 

that coupled vibration or other specific working condition can be simulated. The 

proposed indicators thereby provide an overview of how the blade behaves in the 

specified vibration condition. As the values of these indicators are dependent on the 

magnitude of the input, the input components INX, INY, INL and INT should be 
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carefully selected so that the desired working condition is simulated in the computing. 

For a properly designed ultrasonic blade, it is desired that AX, AY and AT, which are the 

responses of the unwanted modes, are minimised in order to reduce the negative 

effects of the unwanted vibration. 

4.2.5 Stress Based Indicators 

Stress is another major concern in ultrasonic blade design. For cutting blades excited 

ultrasonically, the material stress caused by high frequency deformation can be 

significantly larger than that caused by the applied cutting force. To avoid blade 

failure, stress should be kept within the safe limit of material during operation. This 

can be evaluated using the von Mises criterion, which ascribes the occurrence of 

material failure to the distortion energy caused by deformation [225]. An equivalent 

stress called “von Mises stress” is derived and defined as the combination of the 

principle stresses: 

2 2 2
1 2 2 3 3 2

1
( ) ( ) ( )

2
v                                             (4.5) 

where v  is the von Mises stress, 1 , 2  and 3  are the principle stresses. Failure is 

considered to take place when this stress exceeds the strength limit of the material. 

This criterion is widely used to investigate the strength safety of ductile materials such 

as metals. 

To evaluate the strength of an ultrasonic blade, five indicators referred to as SA, SX, SY, 

SL and ST are proposed based on the von Mises stress, as shown in Table 4.4. SA is 

defined as the maximum von Mises stress found in the blade under a multi-component 

excitation. Similarl to the case in displacement based indicators, the multi-component 

input is applied for the purpose of inducing multiple modes of vibration in the 

computing rather than simulating the actual excitation in real-world applications. Thus 

SA suggests how much stress the material suffers when the blade is performing 

coupled vibration. SX, SY, SL and ST are defined as the maximum von Mises stress of 

the blade under an oscillating excitation, which is applied along the direction of width, 

thickness, longitude and torsion respectively. They indicate the stress condition of the 

blade vibrating in a single mode of vibration (lateral bending, flexural bending, 
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longitudinal or torsional vibration). Among the indicators, SA and SL are especially 

useful as an ultrasonic blade is normally excited longitudinally. SL can be used to 

evaluate the blade stress according to the excitation output of the transducer. This can 

be further extended using SA, which deals with not only longitudinal excitation but 

also the coupled vibration caused by non-linear dynamic behaviour of the blade, 

providing the multi-component input is applied in a way that induces the desired 

coupled vibration condition. For all stress based indicators, it is desired to minimise 

their values in the design process in order to avoid material failure and improve blade 

strength. 

Indicator Definition Illustration 

SA 

Maximum von Mises stress 
under an input with four 
components INX, INY, INL and 
INT. 

 

SX 
Maximum von Mises stress 
under an input along the width 
direction of the blade. 

IN

Maximum Value

 

SY 
Maximum von Mises stress 
under an input along the 
thickness direction of the blade. 

 

SL 

Maximum von Mises stress 
under an input along the 
longitudinal direction of the 
blade. 

IN

Maximum Value

 

ST 
Maximum von Mises stress 
under a torsional input. 

 

Table 4.4 Stress Based Indicators 
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4.2.6 Including Cutting Objects in the Analysis 

The above indicators consider only the behaviour of the ultrasonic blade, which 

allows their evaluation using relatively simple methods. However, due to the lack of 

information regarding the interaction between the blade and the cutting objects (bone 

or tissue), it would not be possible to evaluate the performance related to the cutting 

process or working conditions of the blade. To improve this and construct other types 

of performance indicators, the calculation can be extended to include the cutting 

objects in the modelling. It is expected that this can improve the quality of simulation, 

and enable the computation of frictional heat and temperature raise during cutting. 

Indicators, such as heat generation indicators and cutting efficiency indicators, can be 

constructed using similar concepts as proposed in this chapter. 

4.2.7 Summary 

The indicators introduced in Section 4.2.2 - 4.2.5 provide a means to characterise the 

performance of an ultrasonic blade. They can be used to construct the objective or 

fitness functions, whereby the design problem can be formulated. The main features 

of these indicators are summarised again in Table 4.5. 

According to their nature, the indicators are classified as "large value preferred" and 

"low value preferred". All types of modal distance, gains (except gains of the working 

mode), and output displacement of the working mode are indicators belonging to the 

former class. The other indicators belong to the latter class. This feature should be 

included in the objective functions and constraints in order to make sure the 

optimisation is conducted properly. 

The dependency of an indicator affects its computation. For those independent of the 

input, the indicators can be conveniently obtained by applying a normalised excitation 

(if required). However, for the indicators dependent on the input, the excitation should 

be applied in a way that induces the desired vibration condition. 

These indicators evaluate the main dynamic characteristics of an ultrasonic blade. 

They enable the mathematical algorithms to compare and optimise the performance of 

ultrasonic blades in the design process. Although the characteristics such as heat 

generation or cutting efficiency, were not dealt with in this study, it is possible to 
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construct other types of performance indicators using similar principles to evaluate 

more features of ultrasonic blades. 

Table 4.5 Summary of Indicators 

 

4.3 Optimisation Algorithms 

The introduced performance indicators work as a bridge between the real world 

problem and the optimisation, based on which an ultrasonic blade design problem can 

be formulated into a mathematical optimisation using a set of selected indicators. 

Thus the optimisation can be solved by algorithms that are already available for 

various optimisation problems. The optimisation algorithms widely used in 

engineering problems include the simplex method, genetic algorithm, simulated 

annealing algorithm and multi-objective optimisation. 

Nature Indicator Definition 
Value Preference  
and Constraints 

Input of Computing 

Modal 
Distance 

MA 

Frequency distance 
between the working 

mode and other 
modes. 

Large. Independent of input. 

MX 

MY 

ML 

MT 

Gain 

GX 
The factor of 

amplitude 
amplification for a 
specific mode of 

vibration. 

Non-working modes: 
Low. 

 
Working mode: 

Large. 

Independent of input. 
GY 

GL 

GT 

Output 
Displa-
cement 

AX 

Displacement of the 
blade tip under a multi-

component input. 

Non-working modes: 
Low. 

 
Working mode: 

Large. 

Multi-component 
input. 

AY 

AL 

AT 

Stress 

SA 
Maximum stress 
under a multi-

component input. 

Low. 
Must be within the 

material strength limit. 

Multi-component 
input. 

SX 

Maximum stress 
under a single 

component input. 

Single component 
input. 

SY 

SL 

ST 
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4.3.1 Exhaustive Search and Graphic Method 

Exhaustive search, sometimes known as brute-force enumeration, is one of the oldest 

approaches to solve optimisation problems. The concept of this method is simple: 

generate and test all possible configurations in the optimisation space where the 

desired solutions locate, and this will guarantee that the optimal solutions are found 

[226]. This concept is straightforward and results in very general algorithms that can 

be effectively applied to a large number of small scale optimisation problems. 

However, the amount of computing required by exhaustive search increases 

dramatically as the complexity of problem is increasing. It is usually not feasible to 

implement this algorithm for large scale optimisation as the calculation time would be 

unbearable. 

If there are only two design variable to be optimised, it is possible to solve the 

optimisation graphically [110]. This method plots all the constraint functions in 

contour figures, which can be used to identify a set of feasible designs. Then the 

objective function is drawn based on these feasible designs and the optimal design can 

be obtained by inspecting the function values visually. One of the advantages of the 

graphic method is that the graphical representation of the constraints and objective 

function allows the designer to have an impression of the performance of different 

designs in the optimisation space. This may help the designers to improve the original 

design concepts. 

4.3.2 Linear Programming Problem and Simplex Method 

A linear programming problem (LP) is an optimisation problem with linear cost and 

constraint functions in its design parameters [110]. Some engineering design problems 

can be formulated as this kind, although most of the real world cases are in fact non-

linear. Moreover, one of the most important approaches to solve a non-linear 

optimisation is to transfer it into one or more LP problems or apply LP algorithms in 

the local searching of solutions [218]. 

A standard LP problem can be represented as follows 

1 1 2 2 n nf c x c x c x                                                 (4.6) 
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 which finds the variables xi (i=1 to n) to minimise the objective function subject to 

the equality constraints 

11 1 12 2 1 1

21 1 22 2 2 2

1 1 2 2

n n

n n

m m mn n m

a x a x a x b

a x a x a x b

a x a x a x b

   

   

   





   



                                       (4.7) 

and non-negativity constraints 

0, 1 tojx j n                                                    (4.8) 

where n and m are positive integers, 0 ( 1 to )ib i m  , ci and aij are known constants. 

Alternatively, Eq. (4.6) to (4.8) can be expressed in matrix form as: 

Tmin{ | , 0} c x Ax b x                                              (4.9) 

where 0b , c and b are constant vectors, A is a matrix. 

The LP problem was proved to be convex, which means if a local minimum solution 

exists, it is also the global one. Based on this property, the LP problem can be solved 

conveniently by the simplex algorithm. The basic idea of this method is to continually 

proceed from one basic feasible solution to another in a way that reduces the objective 

function until the minimum value is obtained. This algorithm is briefly stated by the 

following procedures: 

(1) Represent the LP problem to the standard form, which allows the algorithm to 

be conducted in a consistent way. 

(2) Initiate the algorithm by generating a basic feasible solution, which satisfies all 

constraints and has no more non-zero variables than the number of constraints. 

(3) Construct a simplex table and determine the basic variables and pivot row. 

(4) Check the optimality of the solution by scanning the values of the variables. If 

all non-zero entries in the non-basic variables are non-negative, an optimal 

solution is obtained and the algorithm is terminated. 

(5) Determine which non-basic variables should be updated as basic variables and 

recalculate the new pivot row. 

(6) Repeat step (4) to (5) until an optimal solution is obtained. 
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A number of mature software packages or programs, such as the optimisation toolbox 

of Matlab, are already available to implement the simplex algorithm and solve LP 

problems. However, as this algorithm requires linear objective functions and 

constraints, for those applications with little preliminary information about the nature 

of their objective functions it is necessary to apply a more general approach to solve 

the optimisation. 

4.3.3 Genetic Algorithm 

A genetic algorithm is a kind of stochastic search optimisation method which comes 

from the idea of biological evolution that includes genetics and natural selection [110]. 

The basic techniques of this algorithm simulate the principle found in the evolution 

processes of natural systems known as "survival of the fittest". 

The algorithm begins with a set of initial designs and then repeatedly produces 

generations randomly within the allowable region. Each generation contains a 

population of different solution which are assigned a fitness value or a penalty 

function as a criterion to compare their performance. During the evolution, fitter 

designs are selected and kept in the successive generation in order to bring the 

population evolving towards the maximum/minimum value. Eventually, the optimal 

solution is expected to be found after a sufficiently large number of iterations. 

The algorithm duplicates a number of concepts in the natural system: 

Individual: In the design problem, this refers to a specific design, which can be 

evaluated by the fitness function to examine its performance. 

Population and Generation: The population is a group of potential design solutions 

in the current iteration process. At each iteration, the algorithm conducts a number 

of manipulations on the current population in order to generate a new population. 

The successive population is called a new generation. 

Diversity: This is the measure of the average distance between the individuals of a 

population. Like biological diversity, a proper value of diversity is essential to the 

evolution process as it allows the algorithm to search a larger region of the 

solution space. 

Parents and Children: The parents are certain individuals selected from the current 

population to create individuals for the next generation. The created individuals 
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are referred to as children. To push forward the evolution, parents with larger 

fitness value, which means they are designs with better performance, are more 

likely to be selected. 

Based on the above concepts, the implementation of the genetic algorithm is very 

similar to the natural evolution process. The following procedures are the basic steps 

that should be included in a genetic algorithm applied for the design of ultrasonic 

blades. 

(1) Generation of Initial Population: As the first step of the algorithm, a certain 

number of potential designs are generated using a random algorithm as the initial 

population. 

(2) Determine the Fitness of the Population: This is to evaluate the performance of 

each individual/design in the population using the indicators proposed in Section 

4.2. 

(3) Selection of Population: This operation resembles "survival of the fittest" in nature. 

It finds the individuals with the best performance in the current population and 

passes them to the next generation (survive). 

(4) Crossover: This operation allows a pair of individuals in the current population to 

combine their "genes" in order to create offspring for the next generation. The 

selection of parents for crossover and the combination of their genes are 

performed by a random operator carefully designed for the application. 

(5) Mutation: In order to maintain a good diversity of the population and avoid 

premature convergence, the mechanism of mutation is introduced, which allows a 

random change of the gene for a portion of new individuals. From the point of 

calculation, this results in random walking in the searching space which helps the 

algorithm to converge towards the optimal solution. 

(6) Stop Criterion: The algorithm stops when certain conditions are satisfied, such as 

the number of generations reaches a specific value, the computation time exceeds 

the limit, the fitness function finds a sufficiently small/large value. 

One advantage of this algorithm is that it uses only objective function values in the 

optimisation and requires no detail of the nature of the function. This enables it to 

solve complex cases, such as discontinuous or non-differentiable, making it an 

extremely general method that can be applied to virtually all kinds of problems [110, 
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227]. In addition, the algorithm is robust, which offers excellent performance against 

the change of inputs and presence of noise.  

However, there are inevitably limitations of the genetic algorithm. A major drawback 

is that the method requires a large amount of computation in order to obtain a 

satisfactory solution. This problem becomes even worse if it takes a considerable time 

to evaluate the performance of every single individual in the evolution process. In 

addition, the computational scale of the algorithm increases dramatically as the 

number of search variables is increased. This makes it unsuitable to be used for design 

problems of large scale. 

4.3.4 Simulated Annealing Algorithm 

Simulated annealing is another random search technique widely used in optimisation 

and artificial intelligence to find the global maxima/minima. This algorithm is 

motivated by the interesting physical phenomenon of annealing where a crystalline 

solid is able to achieve the most regular and defect free crystal status if it is carefully 

and slowly cooled. During this process, the solid is turned from a high energy state 

into a lowest energy configuration. By applying a set of "controlled cooling" 

operations, the simulated annealing algorithm simulates this phenomenon with an 

attempt to provide a general search method for optimisation. 

Similar to the genetic algorithm, the simulated annealing requires no prior information 

about the objective function, which makes it extremely versatile, and it can be applied 

to almost any kind of problem including highly non-linear, discontinuous or non-

differentiable ones. This is very important for the design of ultrasonic blades as the 

relationship between the blade performance and the design parameters is usually non-

linear and difficult to know beforehand. One major advantage of this algorithm is its 

ability to avoid being trapped by local maxima/minima. Given sufficient computing 

time, the algorithm is able to find the global optimum with a carefully selected 

cooling rate. 

In order to apply the simulated annealing algorithm to the design of ultrasonic blades, 

some basic elements must be included in the method: 

(1) The performance measure of different designs or representation of objective 

functions. This can be done based on the indicators introduced in Section 4.2. 
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(2) An operator which changes a feasible solution randomly. This simulates the 

physical phenomenon of particle/atom movement in solids. 

(3) A cooling schedule that turns the concept of annealing into an application. 

(4) A temperature variable used as a parameter of the searching process. 

Simulated annealing is in fact a concept of searching for the optimal solution. The 

implementation of the method is highly dependent on the application itself. For blade 

design applications, the following steps can be used to perform the algorithm : 

(1) Generate a random trial solution based on a distribution function Fd which 

depends on the current "temperature". 

(2) Check the performance (objective function) of the new solution. The new 

solution will replace the current one if it is found to be better. Otherwise, it can 

still be accepted with a probability given by an acceptance function Fc. As a 

general case, its probability of acceptance can be defined in the form of: 

1

1 exp( )
max( )
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p
f f

T






                                      (4.10) 

where p is the acceptance probability,  fn and fc are the values of the objective 

function of the new and old solution respectively. max(T) is the maximum 

temperature experienced so far. 

(3) Reduce the current temperature according to an annealing function Fa and 

keep a record of the best solution that has been obtained. The "cooling rate" 

must be selected properly as it is a parameter of great importance to the quality 

of the final solution. 

(4) Repeat the above procedures until the average change of objective functions is 

sufficiently small or the computing time reaches a predefined limit. 

The main drawbacks of this method are the implementation and the computing costs. 

In order to achieve good performance, the procedure has to be tailored by defining 

appropriate Fd, Fc and Fa for a specific application. This makes it difficult to use a 

general purpose program to solve all cases encountered. In addition, similar to the 

case in genetic algorithm, simulated annealing is also a stochastic searching algorithm. 

Thus it requires a large amount of calculations in order to obtain a solution of 

satisfactory precision. This may result in expensive computational costs when it takes 
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a considerable period of time to evaluate the performance of one design. In this case, a 

trade-off between the quality of the solution and the cost of computing must be made. 

4.3.5 Multi-objective Optimisation 

The above algorithms take into account only one optimisation goal. However, in 

practical design applications, it is often desired to optimise two or more objectives 

simultaneously by considering multiple objective functions. Such cases are called 

multi-objective or vector optimisation problems. 

A major challenge of such type of problem is that some objectives may be conflicting 

due to the physical constraints or limitations of the design problem. For example, 

increasing the gain of the blade often results in higher material stress as a result of the 

increased deformation. This means that maximising the gain and minimising the stress 

are conflicting objectives. It is therefore unlikely to find a single solution that 

optimises all the objective functions simultaneously in such cases. Compromises 

between different goals must be made in order to obtain a feasible solution. 

One method to solve the multi-objective problem is to convert it into a single 

objective optimisation by combining different goals into one global objective function 

using a weighted sum: 

i i
i

U w f                                                         (4.11) 

where U is the global objective function, fi is a single sub-objective function and wi is 

the weight that reflects the importance of the associated objective in the global goal. 

The new optimisation problem can subsequently be solved using the well developed 

single objective algorithms. However, there are a number of significant disadvantages 

with this solution: 

(1) The sub-objective functions are often constructed to reflect different aspects of 

the nature of the design. As a result, it can be ambiguous to compare their 

values or sum them. 

(2) The determination of the weight of the sub-objective functions relies heavily 

on the designer's experience and preference. 

(3) It is difficult to control the optimisation process of an individual goal as the 

computing is performed on the global objective function. 
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(4) There is often a lack of a clear mechanism to make a trade-off between 

conflicting goals. 

Therefore optimisation methods dealing with multiple objectives directly are 

developed. The predominant theory is the Pareto optimality [110], which introduces 

the concept of optimal solution set, namely the Pareto optimal set. The solutions in 

this set are considered to be optimal in the sense that no other feasible designs exist 

that improves at least one objective function without deteriorating the others. This 

means instead of a single solution, the optimisation produces a number of designs that 

are equally optimal. 

As a general and versatile method, the genetic algorithm introduced in Section 4.3.3 

can be extended to a new algorithm called a multi-objective genetic algorithm, which 

provides an effective approach to solve the multi-objective optimisation as it does not 

require any preliminary information about the nature of the problem. This algorithm 

has been reported to be applied in the design of ultrasonic horns and transducers 

successfully [215, 216, 219, 223]. Similar to the single objective genetic algorithm, 

the multi-objective genetic algorithm shares concepts in solution searching. The main 

operations that are included in the algorithm are: initialisation of population, 

reproduction of offspring and replacing the individual. However, due to the multi-

objective nature of this algorithm, the definition of its fitness function and the genetic 

operations, including the selection, crossover and mutation, must be adapted in a way 

that incorporates the concept of the Pareto optimality and handles objective vectors.  

 

4.4 Proposal of an Optimal Design Method 

Based on the performance indicators and the optimisation algorithms, an optimal 

design method is proposed for ultrasonic bone cutting blades. This method aims to 

improve the conventional design process by reducing the need for designers' 

experience and enabling the "best" solution to be obtained. As illustrated in Figure 4.3, 

the proposed design process is divided into three major stages: formulation, 

optimisation and verification. This is significantly different from the conventional 

design method in that the stages of formulation and optimisation are introduced. 
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4.4.1 Formulation of the Problem 

The first stage is the formulation of the design problem. As the optimal method uses 

algorithms to update the design, the blade design problem must be represented as an 

optimisation problem in order to solve it using mathematical approaches. This is done 

based on the design concept through three procedures: representing the blade 

geometry in terms of parameters, constructing the objective functions, and 

determining the constraints of indicators, as illustrated in Figure 4.3. 

 

4.4.1.1 Geometry Parameters and Parameter Space 

The design process begins with the design concept. The general and essential 

information about the blade, such as the requirements of the performance, the overall 

size, shape of the blade, and the selection of material, is proposed in this step. This 

sets the basis for the formulation of the problem. 

According to such information, the geometry parameters are selected for the blade. 

They are a group of arguments that shape the profile of the design. Representing the 

blade in terms of parameters allows the algorithm to update the design by varying the 

value of these parameters. This means that the mechanical problem of blade design 

can be treated as a mathematical process that determines the value of a set of 

geometry parameters so that the performance of the blade is optimised in terms of the 

indicators. However, it may not be necessary to involve all the geometry parameters 

in the optimisation process. Those parameters that are required to be determined by 

the optimisation algorithm are referred to as adjustable parameters. They determine 

how the algorithm interacts with the design process. The multi-dimensional space 

formed by all the adjustable parameters is called the parameter space. Usually it is a 

space with boundaries set by the scope of the parameters. This defines a zone where 

the optimisation searching will be conducted. 
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Figure 4.3 The Optimal Design Method 
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To illustrate this, the example of a three section blade mentioned in Chapter 2 is 

shown again in Figure 4.4. This blade is defined by 8 geometry parameters: H1, H2, D1, 

D2, La, Lb, Lc and Ld. By assigning different values for these parameters, various 

designs can be obtained. Figure 4.5 shows two examples which are significantly 

different designs at a glance. They, however, are produced by assigning different 

values for the same set of geometry parameters. 

 

Figure 4.4 Geometry Parameters 

       

a) Small Lb, Large Lc                                                    b)Large Lb, small Lc 

Figure 4.5 Blade Shape and Parameters 

If all parameters in Figure 4.4 are treated as adjustable parameters, the searching will 

be carried out in a parameter space of eight dimensions, which can introduce 

considerable computing costs for the optimisation. In fact, it may not be necessary to 

deal with such a complex space as some parameters can be determined prior to the 

optimisation by other means, which reduces the number of adjustable variables and 

simplifies the problem. 
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4.4.1.2 Objectives and Constraints 

Based on the parameterisation of the blade profile, the goal of the design can be 

represented by objective functions which take into account the performance 

preference of the blade. This can be done using the performance indicators proposed 

in Section 4.2. 

By treating the adjustable geometry parameters as the arguments, an indicator can be 

used directly as an objective function, as shown in Eq. (4.12) 

1 2 ( , , , )k k a a aNf g x x x                                                 (4.12) 

where fk is the objective function, gk is an indicator, 1 2, , ,a a aNx x x  are the adjustable 

geometry parameters. The target of the optimisation is to minimise/maximise the 

value of the objective function by varying the adjustable parameters. More than one 

indicator can be used to construct multiple objective functions for different design 

goals. These objective functions can be dealt with using the method of weighted sum 

global function and single objective optimisation algorithms, as introduced in Section 

4.3.5. Alternatively, it is possible to process the objectives simultaneously using 

multiple objective optimisation algorithms. 

In addition to the goal of design, the other design requirements, such as the strength 

and the tuned frequency of the blade, are formulated as the constraints. The 

introduction of constraints imposes physical restrictions on the blade design. This 

filters out the incompetent designs and makes sure all the generated solutions exhibit 

the desired characteristics. 

Generally, a constraint is represented as an allowable range of an indicator, as 

illustrated in Eq. (4.13) 

min 1 2 max( , , , )k a a aNa g x x x a                                        (4.13) 

where amin and amax are the lower and upper limits respectively. This introduces 

boundaries in the searching space to avoid unfeasible solutions. As a special case, 

when amin=amax, the constraint becomes an equal condition: 

1 2 fix( , , , )k a a aNg x x x a                                            (4.14) 

which forces the optimisation to be conducted on a multi-dimensional surface. 
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4.4.2 Optimisation 

Optimisation is the main part of the design process, which applies an optimisation 

algorithm to modify and update the blade profile until a satisfactory solution is 

obtained. As illustrated in Figure 4.3, whichever algorithm is used in the optimisation, 

the process consists of the following four basic steps: 

(1) Compute the indicators: This step computes the performance indicators for 

the current design. It is usually the most time consuming procedure in the 

optimisation as most of the calculation is conducted based on finite element 

analysis which may take a considerable period of time to complete. 

(2) Apply the constraints: This operation is sometimes integrated into the 

optimisation algorithm. Thorough checking of the performance of the design is 

conducted according to the constraint inequations/equations introduced in the 

formulation stage. A design will be discarded if it fails to comply with any 

constraint, making sure only the qualified ones are considered in the 

optimisation. 

(3) Check the stop criteria: The optimisation terminates when the stop criteria is 

met. This is usually triggered when an optimal design/design set is obtained. 

However, the process can also be terminated when there is a timeout in the 

calculation or searching. Inappropriate formulation of the problem or the 

application of unsuitable algorithms may result in the optimisation to be 

terminated before satisfactory solutions are obtained. 

(4) Update the current design: This is the core step of the design process where 

the optimisation algorithm is introduced. The current design will be submitted 

for the optimisation algorithm to be updated if it satisfies the constraints and 

triggers no stop criteria. The newly generated design will be subjected to the 

above process again until the optimisation is terminated. 

4.4.3 Blade Verification 

If one or more satisfactory blade designs are obtained by the optimisation process, the 

prototypes can be manufactured and tested. The verification stage in the optimal 

method is similar to that in the conventional design method. Experimental modal 

analysis or other tests will be conducted to examine the working frequency and the 

relevant modal behaviour of the blade. The actual value of the performance indicators 
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will be measured and compared with their predictions to make sure the expected 

characteristics are obtained. 

The overall performance of the blade will be examined in cutting tests, where a 

prototype is excited at full power and used in the cutting of bone samples or other test 

materials. Its performance can be investigated by measuring the cutting parameters 

such as cutting speed and temperature under various working conditions. The whole 

design process is completed if satisfactory results are obtained. Otherwise either the 

manufacturing, optimisation algorithm or the blade concept has to be reviewed and 

the design process will be restarted again. 

4.4.4 Implementation and Programming 

4.4.4.1 Software and Programming Environment 

To implement the proposed optimal design method, a software toolkit was developed 

in this research based on Abaqus and Python language. Abaqus (version 6.11) is a 

commercial general purpose FEA package, which provides a scripting interface to 

access its functions and data. The scripting interface uses an extension of Python 

language to act as an application programming interface (API) , as illustrated in 

Figure 4.6. It allows the user to use a command script to communicate with the 

software kernel and perform complex tasks such as creating models, conducting 

calculations and processing results. This enables the designer to automate repetitive 

jobs, perform a parametric study or interact with the output in a convenient way. 

The script is one or more plain ASCII files containing a sequence of Python 

commands to perform certain tasks. In the application, it is submitted to a Python 

interpreter embedded in Abaqus to invoke the internal functions. This facilitates the 

programming and extends the scripting function by adopting the features provided by 

Python language. Being an object-oriented programming language created in the late 

1980s, Python is now widely used in a number of fields such as web and internet 

development, scientific and numerical computing, and education. Its characteristics 

such as its high level programming ability, dynamic characteristic, automatic memory 

management and tidy syntax enable the user to make the most of the Abaqus scripting 

interface. 
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Figure 4.6 Abaqus Scripting Interface  

 

4.4.4.2 Software Development and Modules 

The optimal design toolkit was developed using an IDE (Integrated Development 

Environment) provided within Abaqus/CAE, referred to as Abaqus PDE. This IDE 

provides the necessary functions, such as text editing and keyword highlighting, for 

script development. A screenshot of the working development environment is 

illustrated in Figure 4.8. When debugging the code, the built-in Python interpreter of 

Abaqus was invoked to execute the program from within Abaqus/CAE. 
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Figure 4.7 Screenshot of the Development Environment 

The optimal design toolkit was structured in an object-oriented way that consists of 

several modules of different functions. It is a script library serving as an add-on 

function for Abaqus, which offers the necessary functions for the process of the 

optimal design. The toolkit includes four top level modules: model generation 

modules, analysis module, indicator extraction module and optimisation/automatic 

design module, as illustrated in Figure 4.8. These modules are implemented using 7 

main files and a number of sub-files, as shown in Table 4.6. The model generation 

modules are mainly implemented in 4 files: BladeBase.py, BladeMid.py, BladeTip.py 

and BladeDesign.py. The analysis and indicator extraction module is mainly 

implemented in BladeAnalysis.py. The optimisation module is implemented in 

UtilityModule.py. Each module contains the essential functions that interact with 

Abaqus and perform the relevant calculation. Figure 4.9 shows the interaction 

between the modules and Abaqus. Selected codes of the modules are showed in 

Appendix A.4. 
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Figure 4.8 Modules of the Optimal Design Package 

File Description 

BladeBase.py 
Provide functions to create and mesh the base 
section of a blade. 

BladeMid.py 
Provide functions to create and mesh the middle 
section of a blade. 

BladeTip.py 
Provide functions to create and mesh the tip 
section of a blade. 

BladeDesign.py 
Implement functions including defining blade 
geometry, assembling, and creating datum set for 
post-analysis processing.  

BladeAnalysis.py 
Provide functions to perform FEA, process output 
file and implement post-analysis calculation. 

FileProcess.py 
Provides functions relevant to the processing of 
input and output files. 

UtilityModule.py Implement the functions of optimal design. 

Table 4.6 Main Files of the Optimal Design Library 

As illustrated in Figure 4.8, the model generation module includes four sub-modules: 

blade tip, mid and base generation modules, and assembly generation module. The 

modules accept the inputs and settings given by the user and interact with 
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Abaqus/CAE to generate the finite element model of the blade. The blade tip/mid/base 

generation modules are capable of creating and meshing the relevant parts of the blade 

automatically. These parts are then used by the assembly generation module to 

produce a full analysis model. To facilitate the application of these modules, an 

Abaqus plug-in is developed, providing a GUI to invoke the relevant functions. The 

interface of the plug-in is illustrated in Figure 4.10. This plug-in allows the user to 

define parameters for the blade and analysis. The model and codes generated by the 

plug-in can be directed used for the following optimisation process. 

 

Figure 4.9 Interaction between Modules and Abaqus 

 

Figure 4.10 GUI of Abaqus Plug-in 
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The analysis module is used to perform the required finite element analysis based on 

the FE model generated by the model generation module. It provides functions to 

define the input and load conditions of the simulation. It also offers commands to 

invoke the appropriate Abaqus functions to carry out the calculation. The obtained 

FEA results would be stored in a .odb file (output database) and processed by the 

indicator extraction module which unfolds the useful information, such as the 

displacement of the nodes, the frequency of the modes, from the database. Such 

information will be used to compute the required indicators using methods introduced 

in Section 4.2. 

After the indicators are obtained, the optimisation and automatic design module can 

be applied to perform the optimisation. The module plays a vital role in the design as 

it controls and directs the calculation process by adjusting the geometry parameters 

and initiating the finite element analysis. This allows the optimal design to be 

performed in an automatic way. To improve the flexibility of the program and allow 

different algorithms to be applied conveniently, this module does not include the 

implementation of a specific optimisation algorithm. Instead, it offers an interface to 

embed the algorithm into the application. This strategy improves the extensibility and 

enables a wider range of application of the toolkit. 

4.5 Summary 

This chapter presented an optimal design method for ultrasonic cutting blades, which 

applies optimisation algorithms instead of designer's experience or intuition to update 

the blade design during design process. 

The method is proposed based on the introduction of performance indicators. By 

representing the physical characteristics of an ultrasonic blade as values or 

mathematical functions, the indicators act as a bridge between the real world problem 

and the mathematical algorithms. Four kinds of indicators: the frequency based, gain 

based, displacement based and stress based indicators, are proposed and classified 

according to their nature. These indicators reflect the dynamic performance of an 

ultrasonic blade from various aspects. Although they do not cover characteristics such 

as heat generation and cutting efficiency, other types of indicators can be constructed 

using similar concepts as introduced in this chapter. 
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The target of the optimal design process is to maximise the blade performance 

represented in the form of indicators. There are already a number of optimisation 

algorithms available for different kinds of problems, such as the simplex algorithm, 

genetic and simulated annealing algorithm. Regardless of the algorithm applied, the 

process of the optimisation consists of three major stages: formulation, optimisation 

and verification. 

In the formulation stage, a blade design is represented by a group of geometry 

parameters that define the profile of the blade, which enables the algorithm to 

evaluate the blade performance and update the design conveniently. The design 

requirements are formulated as optimisation objectives and constraints. This can be 

done using a group of carefully selected indicators to construct the appropriate 

objective functions and constraint inequations/equations. 

In the optimisation stage, the algorithm evaluates and checks the performance of the 

designs, discarding those failing to comply with the problem constraints. New designs 

are generated and the optimal searching is conducted using optimisation algorithms. 

The procedure is repeated until the stop criteria are met. 

Verification of the design is carried out if a satisfactory design is obtained. The blade 

will be manufactured and subjected to tests to verify its dynamic characteristics and 

cutting performance. The whole design process is finished if satisfactory performance 

is obtained. Otherwise either the manufacturing of the blade, optimisation method or 

the design concept has to be reviewed. 

A software toolkit was developed in order to implement the proposed method and 

apply it in real design cases. The toolkit was developed based on the Abaqus script 

interface using Python language. It consists of a number of software modules that are 

capable of generating the blade model, extracting the performance indicators and 

conducting the optimisation searching. However, to improve the flexibility of the 

program and allow different algorithms to be applied conveniently, the toolkit did not 

implement specific optimisation algorithms. Instead, it offers an interface to embed 

the algorithm in a later stage of the application. 

The proposed method and the developed toolkit introduce a new approach to design 

ultrasonic cutting blades. Although they were initially proposed for ultrasonic blades, 
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they can be further extended for the design of other ultrasonic devices. In the next 

chapter, the application of the optimal method will be demonstrated by design cases. 
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Chapter 5 
Design of Ultrasonic Cutting 

Blades and Experiments 

5.1 Introduction 

The design methods for ultrasonic cutting blades were detailed in Chapter 1 and 

Chapter 4. The conventional method is an iterative design process terminated 

explicitly with one useable solution. On the other hand, the optimal method finds the 

design that offers the most desired performance. To demonstrate the application of 

both methods and highlight the advantages of the optimal method, design examples of 

ultrasonic bone cutting blades and the experimental tests of these blades are presented 

in this chapter. 

As this research focused on the design of ultrasonic blades, the optimality of the blade 

excitation parameters for specific cutting applications would not be discussed. Instead, 

the excitation requirements of the blades were determined based on previous research 

and the specification of the ultrasonic generators used in the tests. 

In terms of tuned frequency, all blades designed in this study are required to work 

with an existing ultrasonic generator, which is designed to drive ultrasonic cutting 

blades at 35kHz. Previous work by Cardoni [14] and MacBeath [39] has shown that 

under this operation frequency, good cutting performance can be obtained for a 

relatively small cutting device. As the ultrasonic generator allows a frequency 

tolerance of ±1.0kHz, the blades should be resonant at their first longitudinal mode at 

35.0±1.0kHz to ensure proper excitation in cutting process. The blades are expected 

capable of delivering vibration amplitude of 15-60μm at the blade tip, a typical level 

of vibration for ultrasonic cutting devices [15].  

In terms of general cutting performance, the blades are designed as surgical bone 

cutting tools that are capable of make incisions of at least 5mm deep in human bones 

such as femur. This would allow the blades to cut through the cortical bone in a 

typical human femur [247]. To facilitate the cutting operation, the blades should be 

capable of penetrating into a bone axially or cutting laterally. Hence they should be 
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designed with appropriate cutting edges with adequate mechanical strength to 

withstand the stress caused by material deformation. Although the blades presented in 

this study are not intended to be applied in practical surgeries at this stage, the 

techniques developed will be of great use in the design of ultrasonic surgical cutting 

tools. 

5.2 Blade Designed Using Conventional Method 

5.2.1 Blade I: Blade with Sharp Cutting Edge 

Blade I was designed to perform ultrasonic cutting on large bones, with the intention 

of testing on ovine femur bone. The cutting edge, which refers to the cutting surface 

of the blade that contacts the bone directly, was considered to be of great importance 

in the blade design due to its significant influence on ultrasonic cutting performance. 

Like non-ultrasonic blades, as sharpening the cut edge reduces the contact area 

between the blade and bone, sharp cutting edge is expected to enhance cutting by 

increasing the contact stress. Blade I adopted a sharp cutting profile which is similar 

to the design of ultrasonic bone cutting and food cutting blades in previous research 

[14, 39, 53]. As illustrated in Figure 5.1, the thickness of the blade is 0.8mm, and the 

angle of the cutting edge is 60°. The blade was sharpened on the sides and front of the 

tip, aiming to enable the application of the blade in a flexible way where either the 

edges or the tip could be involved in the cutting. 

Cutting Edge

0.8 mm

7mm

60° 

        

 a) Profile of the Cutting Edge                 b) Shape of the Cutting Part 

Figure 5.1 Profile and Shape of the Sharp Cutting Edge 
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5.2.1.1 Blade Design and Analysis 

(1) Geometry and Shape 

Blade I was designed by following the conventional design process detailed in Section 

1.5.4. In the initial design, the length and size of the blade was estimated using Eq. 1.1, 

and then a more detailed shape was derived from previous ultrasonic blades that were 

designed for food processing or bone cutting [14, 39]. Although the blade was a single 

component machined from one block of metal, in order to facilitate the discussion, the 

profile of the blade is divided into three sections: the cutting tip, middle section and 

the base, as illustrated in Figure 5.2(a). The cutting tip was the thin part with constant 

thickness and sharp cutting edge, which was over 10mm in length. According to 

previous research [39], this was expected to be capable of achieving the required 

cutting effect. The middle section was the tapered part of the blade between the 

cutting tip and the base. Its length was adjusted during the design to tune the blade at 

the correct frequency. The base section included a cone and a cylinder. A threaded 

hole was drilled in the end of the cylinder in order to screw the blade onto a 

transducer, as shown in Figure 5.2(b). As a result of the tapered shape, this section 

functioned as a horn, which amplifies the excitation inputted from the end of the blade. 

The profile of the blade and the main dimensions are illustrated in Figure 5.2(c). 

Cutting Tip

Base

Middle 
Section

           

a) Blade Sections                        b) Blade with Transducer 

14mm

69mm
 

c) Profile and Dimensions of the Blade 

Figure 5.2 Shape of the Blade 
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Titanium alloy Ti90Al6V4 was used as the blade material. It is one of the most 

commonly used titanium alloys, which has a mechanical composition of 90% titanium, 

6% aluminium and 4% vanadium. Its mechanical properties are shown in Table 5.1. 

This alloy has good corrosion resistance and excellent biocompatibility [248], 

enabling it to be safely used for surgical tools. In addition, its hardness and low 

density allows relatively light tools to be made with adequate strength. Another 

significant advantage of titanium alloy is its low internal mechanical losses under 

ultrasonic vibration [249, 250]. This means that ultrasonic tools can work more 

efficiently and are less likely to heat up. All these characteristics make titanium alloy 

an excellent material for ultrasonic cutting tools. 

Property Value Property Value 

Density 4.42 103 kg/m3 Izod Impact Strength  20 J/m  

Young’s Modulus 110 GPa 
Thermal 

Conductivity 
5.8 W/m∙K (@ 23 C ) 

Poisson’s Rate 0.33 Tensile Strength 895 MPa 

Fatigue Limit 
448MPa 
(107 Cycle) 

Coefficient of 
Thermal Expansion 

68.0 10 K-1 

 (@20-100 C ) 

Table 5.1 Properties of Ti90Al6V4 

The final geometry of the blade was designed by taking into account the cutting 

requirements. As illustrated in Figure 5.3, the size of the cutting tip was decided 

according to the required depth of incision and the overall size of blade. For the base 

section, mechanical assembly and blade gain were the main concern. Sufficient space 

must be allowed in order to incorporate a threaded stud for transducer attachment. In 

addition, to achieve adequate blade gain and deliver sufficient displacement amplitude 

at the cutting tip, the diameter of the cylinder and the length of the cone were adjusted. 

Once the geometry of the base section and the cutting tip had been determined, the 

length of the middle section was adjusted to tune the blade at the correct frequency. 

These procedures were repeated to modify the profile of the blade until a satisfactory 

design was obtained. 
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Figure 5.3 Design Procedure 

 

(2) Modal Analysis 

FEA was conducted during the design phase to characterise the modal frequencies and 

mode shapes of the blade. This was carried out using commercial software Abaqus 

version 6.11. As an essential part of the analysis, a finite element model was created 

for the blade. Generally, the accuracy of FEA is improved by refining the mesh. A 

meshing study was carried out to ensure all predicted modes and modal frequencies in 

the frequency range of interest were converged. This led to a model with around 

20000 elements, as illustrated in Figure 5.4. This mesh also offered a good balance 

between analysis accuracy and computing time. 

 

 Figure 5.4 Finite Element Model of the Blade 

The analysis characterised the blade by extracting the modal frequencies and mode 

shapes. The function of natural frequency extraction in Abaqus was applied to 

compute the vibration modes between 0.5-80 kHz. As only the blade was considered 

in FEA, free-free end condition was applied, which simplified the analysis by 

avoiding the need of additional boundary conditions. The first longitudinal mode, 

which is the working mode that is excited during ultrasonic cutting, was the main 
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concern in the analysis. In addition, those modes with close modal frequencies to the 

working mode were also given special attention. 

Table 5.2 shows the mode shapes and modal frequencies obtained by FEA. Four types 

of modes were identified in the results. The modes were named using characters and 

numbers, where the characters indicate the type of mode: L for longitudinal, T for 

torsional, BY for flexural bending in the thickness direction and BX for lateral bending 

in the width direction. The number indicates the order in which a mode appears in a 

specific type of vibration. 

 

Mode Mode Shape f / kHz Mode Mode Shape f / kHz 

BY1 
 

1.02 BY2 
 

4.12 

BX1 
 

5.81 T1 
 

6.68 

BY3 
 

8.98 BY4 
 

15.0 

BX2 
 

16.3 T2 
 

18.3 

BY5 
 

22.3 T3 
 

27.8 

BX3 
 

30.6 BY6 
 

31.1 

L1 
 

34.9 T4 
 

37.8 

BY7 
 

41.0 T5 
 

47.6 

BX4 
 

49.3 BY8 
 

52.0 

T6 
 

58.8 BY9 
 

63.9 

BX5 
 

69.1 T7 
 

70.2 

L2 
 

70.2 BY10 
 

76.8 

Table 5.2 Results of FEA (Mode Shapes and Modal Frequencies) 

By investigating the shapes of the modes in Table 5.2, it is found that notably larger 

deformation appeared in the section of cutting tip where the blade was significantly 

thinner. L1 mode, the working mode, was predicted at 34.9kHz, which was within an 
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acceptable range of the tuning requirements. In addition to the longitudinal vibration, 

bending and torsional modes were identified. The frequency differences between 

these modes and the L1 mode were no less than 3.1kHz. According to the experience 

of previous studies, it is considered that the working mode was appropriately 

frequency-separated from other undesired modes. 

It is noteworthy that the results shown in Table 5.2 are for the blade only. The effects 

of the attached transducer were not included in the analysis. However, as the blade 

and the transducer are in fact working together as an assembly in ultrasonic cutting, 

the actual vibration characteristics of the system are determined by both the blade and 

the transducer. In this design stage, the analysis was simplified by considering the 

blade only and ignoring the transducer involved modes in FEA.  

(3) Displacement and Stress Analysis 

To study the behaviour of the blade subjected to ultrasonic excitation, the deformed 

displacement and the material stress of the L1 mode was investigated. Figure 5.5 plots 

the amplitude of the deformed longitudinal displacement along the blade central line, 

which was obtained from the FE modal analysis. This normalised displacement 

distribution shows how the blade deforms in the working mode. The maximum 

displacement is observed on the tip of the blade and one nodal point was found at the 

illustrated position. By dividing the displacement at position 1 (blade tip) to that at 

position 0 (blade base), the gain of the blade was obtained to be 11, a sufficiently 

large value that would enable adequate amplitude to be achieved on the cutting edge. 

 

Figure 5.5 Amplitude of Longitudinal Displacement 
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The material stress was another major concern in the blade design. When subjecting 

to ultrasonic excitation, the internal stress caused by the high frequency vibration is 

significantly larger than that introduced by the external applied force. In view of this, 

the applied force was ignored in the stress analysis. As illustrated in Figure 5.6, a 

blade under excitation was simulated by introducing a periodic displacement at the 

base of the blade model, which resulted in forced vibration at the working frequency. 

Taking into account the fact that the vibration outputted by an ultrasonic transducer is 

typically 5-10µm (amplitude) in cutting applications, an excitation of 10µm, which is 

the largest value expected, was applied in the analysis to simulate the vibration input 

of the blade. 

Excitation

 

Figure 5.6 Model for Stress Analysis 

The Mises stress was used to evaluate the strength of the blade. This is an equivalent 

tensile stress derived from the Von Mises yielding criterion. The Von Mises criterion 

is a widely used method for estimating the yielding of isotropic ductile material, such 

as metal, subjected to loading conditions. According to this theory, failure occurs 

when the distortion energy in the material exceeds a certain value [225]. This means 

that in order to prevent blade failure, the associate Mises stress should stay below the 

material tensile strength. 

Figure 5.7 shows the Mises stress obtained by FEA. To better illustrate the stress 

distribution, Figure 5.8 plots the normalised stress distribution along the blade centre 

line. The results suggest that high stress presents around the region which connects 

the cutting tip and the middle section. As a consequence this area was considered to 

be a weak part of the blade. The maximum stress was found on the cutting edge with a 

value of 352MPa, lower than the material tensile strength (895MPa, Table 5.1). This 

implies that the blade may have adequate strength according to the Von Mises 

criterion. However, in view of the high frequency periodic deformation experienced in 

the blade, there is a potential risk of metal fatigue failure. Therefore, fatigue limit, 

which is the highest stress a material can withstand for a given number of cycles 
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without failure, is used instead of tensile strength to evaluate the blade strength. 

Usually, fatigue limit is applied in low frequency working condition. However, taking 

into account the fact that ultrasonic fatigue testing, which applies ultrasonic vibration 

to reduce test time in the experiment, is also a means of obtaining fatigue limit [251, 

252], the application of fatigue limit in ultrasonic vibration was considered to be 

acceptable in this study. Therefore an improved criterion was applied to evaluate the 

strength of ultrasonic blades, which uses the fatigue limit of 107 cycles as the material 

strength limit. In this case, Blade I has a safety factor of 1.3 under this criterion. As 

the stress analysis was carried out under an input of the largest expected value, the 

blade was considered to be safe in strength but would be safer used under a lower 

excitation level. 
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Figure 5.7 Mises Stress in Blade 
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Figure 5.8 Normalised Stress Distribution, Mises Stress 
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5.2.1.2 Tests and Experiments 

Based on the design and the preceding analysis, Blade I was manufactured, as shown 

in Figure 5.9. It was fabricated from a block of titanium alloy using a CNC machine. 

Due to the hardness of the material, a slow machine speed and extra cooling was 

applied to avoid the presence of high machining temperature which could alter the 

material property and result in changes of dynamic characteristics of the blade. To 

study the actual performance of the blade, Blade I was subjected to three tests: 

impedance analysis, experimental modal analysis and ultrasonic cutting tests. 

 

Figure 5.9 Manufactured Blade 

(1) Impedance Analysis 

An ultrasonic blade relies on the output of a piezoelectric transducer, which converts 

sinusoidal electrical excitation into mechanical vibration, to perform ultrasonic cutting. 

To do this efficiently, the transducer is driven at its resonant frequency (where the 

lowest impedance presents) by an ultrasonic generator. This frequency, on the other 

hand, can be shifted according to the load of the transducer. For the case where an 

ultrasonic blade is attached, the resonant frequency of the transducer becomes very 

close to the tuned frequency of the blade. Therefore it is possible to verify whether an 

ultrasonic blade is tuned properly by measuring the resonance of the transducer. This 

can be done through impedance analysis that measures the electrical impedance of a 

piezoelectric transducer which is attached to the ultrasonic blade. 

In the test, Blade I was attached to an ultrasonic transducer connecting to an 

impedance analyser (Agilent 4294A) which is capable of performing precise 

impedance analysis in a broad frequency range (40Hz-110MHz). The analyser drove 

the transducer with a small test signal (50mV amplitude) and calculated the 
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impedance through the applied voltage and the consumed current. An impedance 

curve was obtained by sweeping the test signal from 20kHz to 45kHz with a step of 

50Hz. For comparison, an additional test was performed for the same transducer 

without Blade I attached. 

Figure 5.10(a) plots the impedance obtained from the transducer alone (without Blade 

I), showing a resonance at 35.2kHz where the lowest impedance and a zero phase 

angle exhibited. It implies that the transducer is a pure resistance at this frequency. 

Figure 5.10(b) illustrates the case where the blade is attached. An additional 

resonance presents at 27.5kHz as a result of the involvement of the blade in the 

dynamic system. This resonance was not studied as the ultrasonic generator is not 

expected to drive around its frequency. Instead, attention was placed at the main 

resonance around the working frequency. It shows that the blade is tuned at 34.5kHz, 

0.5kHz away from the expected excitation frequency (35kHz). This is acceptable as 

the ultrasonic generator allows a frequency tolerance of ±1kHz. Therefore the 

impedance analysis concluded that Blade I was properly tuned and ready for further 

tests. 

        
a) Transducer Alone               b) Transducer with Blade I Attached 

Figure 5.10 Result of Impedance Analysis 

(2) Experiment Modal Analysis 

Experimental modal analysis (EMA) was conducted to further characterise the 

dynamic behaviour of Blade I. The experimental setup was the same as detailed in 

Section 2.4.1. A total of 130 points were measured on the blade, as shown in Figure 

5.11, which resulted in 390 FRFs. These FRFs contained the necessary information 
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for the reconstruction of the shape of vibration modes and extraction of the associated 

modal parameters. 

    

Figure 5.11 Measure Points on Blade 

Figure 5.12 plots the overlaid magnitude of all FRFs obtained in the EMA test. 

According to the theory of experimental modal analysis [254], the peaks of the curves 

are the modal responses. Comparing Figure 5.10 with Figure 5.12 shows that, due to 

the increased number of measurement and higher frequency resolution (1Hz in EMA), 

more information on the blade responses can be obtained in EMA. The modal 

frequencies and mode shapes were extracted from the FRFs using a commercial 

software, ME'Scope. Table 5.3 shows the obtained modal frequencies and the 

associated mode shapes. For comparison, the relevant results computed by FEA are 

also presented in the same table, where the predicted modal frequencies are the FEA 

results obtained independently of EMA and the adjusted values are calculated by an 

FE model improved according to the EMA results. For each mode, the difference of 

modal frequency was calculated by comparing the FEA result to the EMA result. 

 

Figure 5.12 Overlay of FRFs 

As shown in Table 5.3, seven modes were found in the 20-45kHz frequency range by 

EMA. The working mode L1 was observed at 34.5kHz, the same frequency as the 



158 

resonance found by impedance analysis. Although the EMA aimed to investigate the 

modes of the ultrasonic blade, as the transducer was also involved in the vibration, the 

EMA results were in fact the modes of the blade-transducer system. Therefore, it is 

expected that there is some degree of discrepancy between the results of EMA and 

FEA which considered only the blade in the analysis. 

 

Mode Mode Shape (EMA/FEA) 
Frequency / kHz 

Difference 
(FEA vs EMA)* 

Predicted Adjusted 

 

BY5  
EMA: 21.2 

P: 1.1kHz (5.2%) 

A: 0.7kHz (3.3%) 

 

 

 
22.3 21.9 

 

 

T3 
 

EMA: 27. 1 
P: 0.7kHz (2.6%) 

A: 0.4kHz (1.5%) 

 

 

 
27.8  27.5  

 

 

BY6  
EMA: 30.6 P: 0.5kHz (1.6%) 

A: 0.1kHz 
(0.33%) 

 

 

 
31.1 30.7 

 

 

L1  
EMA: 34.5 

P: 0.4kHz (1.2%) 

A: Adjusted Value 

 

 

 
34.9 34.5 

 

 

T4  
EMA: 37.1 

P: 0.7kHz (1.9%) 

A: 0.3kHz (0.8%) 

 

 

 
37.8 37.4 

 

 

BY7  
EMA: 42.2 

P: 1.2kHz (2.8%) 

A: 1.6kHz (3.8%) 

 

 

 
41.0 40.6 

 

 

Table 5.3 Results of EMA and Comparison with FEA 

Overall, the FEA results were in good agreement with EMA. For all modes, the 

average difference of modal frequencies between the predicted FEA and EMA was 

2.2%. The working mode L1 was predicted with a difference of 1.2% (0.4kHz). As 

the ultrasonic generator, which provides high power periodic driving current for 

vibration excitation, can accommodate a frequency shift of ±1.0kHz around the 

nominate excitation frequency (35.0kHz), it is considered that the difference between 
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FEA and EMA was acceptable. The actual tuned frequency of the blade (34.5kHz) is 

within the frequency tolerance (35.0±1.0kHz), suggesting that the blade can be 

excited for cutting properly. A higher difference, 5.2% was seen for BY5 mode, which 

may be partly ascribed to the ignorance of transducer in the analysis. Also, the 

difference between the analysis and experimental results could be caused by other 

factors such as alteration of material properties and imperfection of manufacturing. 

By adjusting the FE model using the EMA data (mainly adjusting the Young’s 

Modulus of the material), the FEA results were improved, where the average 

difference of modal frequencies reduced to 1.6%. Nevertheless, not all the modes 

predicted in Table 5.2 were found in this test. As the blade was excited by the 

transducer longitudinally at low power level, the responses of some modes could be 

buried in signal noise, preventing the modes from being extracted in EMA. 

In conclusion, the EMA revealed the modal behaviour of Blade I and provided 

information for FEA improvement. Taking into account the fact that good agreement 

was obtained between the FEA, especially the adjusted FEA, and EMA, Blade I was 

considered to be properly designed and manufactured with the expected dynamic 

characteristics. 

(3) Ultrasonic Cutting Tests 

To test the cutting performance of Blade I, ultrasonic cutting was carried out using the 

fabricated blade. The tests were conducted on two kinds of material: a biomechanical 

test sample and ovine femur. 

Cutting of Biomechanical Test Sample 

In this test, a biomechanical test sample made of polyurethane foam was cut. This 

material was a commercial product of Sawbones® Pacific Research Laboratories, Inc. 

It is often used as an alternative test medium for human cortical bones due to its 

consistency and similarity in mechanical properties. Table 5.4 shows the main 

material properties of the biomechanical material, and selected properties of bones 

from ovine, rat and human. It should be noted that as bones are complex anisotropic 

material, the value of the listed properties may differ from case to case depending on 

the testing model and conditions of the tissue [256-259]. 
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Properties 

Material 

Biomechanical 
Material [255] 

(Solid Rigid Foam)  

Ovine Femur 
(Cortical Bone) 

Rat Bone  
Human Bone [256] 

(Cortical Bone) 

Density (g/cm3) 0.64 

2.15-2.26  

(Tissue Density 
[257]) 

1.36 - 2.44  

(Tissue Density 
[258]) 

1.9 (Typical 
Tissue Density)  

Compressive 
Strength (MPa) 

31 - 139.50 ± 19.14 [258] 133-295 

Compressive 
 Modulus (MPa) 

759 - - - 

Tensile 
Strength (MPa) 

19 
13-147  

(Ultimate [259]) 
- 

92-188  
(Ultimate) 

Tensile  
Modulus (MPa) 

1000 - - - 

Ultimate Tensile 
Load (N) 

- - 30±15 [259] - 

Table 5.4 Material Properties of Biomechanical Material and Bones 

Figure 5.13 illustrates the test sample and the devices used in the experiment, 

including a transducer and a high power ultrasonic generator that drives the transducer. 

Blade I was screwed on the transducer and excited to produce vibration of around 

55µm amplitude at the blade tip. This enabled the delivery of sufficient power for 

cutting while keeping the material stress in a safe level. The ultrasonic cutting was 

operated by holding the transducer by hand, performing incisions using both the sharp 

blade tip and the sharp cutting edge. 

Blade and 
Transducer

Generator

Biomechanical 
Sample

 

Figure 5.13 Ultrasonic Devices and Cutting Sample 

A thermal camera was used to measure the temperature on the sample during the 

cutting process. To conduct calibrated measurements, the emissivity of the 
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biomechanical material was determined. This is a parameter ranging from 0 to 1, 

which indicates the ability of a material surface to emit energy through radiation. It 

was obtained by comparing the biomechanical sample to a black electrical tape with 

known emissivity of 0.99. As illustrated in Figure 5.14(a), the tape was attached to a 

sample block and heated evenly to a stable temperature (around 50 ºC as 

recommended). The emissivity of the sample was obtained to be 0.98 by comparing 

the thermal reading between the tape and the sample surface, as shown in Figure 

5.14(b). 

      

a) Heater and Calibration Sample                                b) Thermal Image 

Figure 5.14 Calibration of Material Emisivity 

Figure 5.15(a) illustrates the cutting test and Figure 5.15(b) shows a thermal picture 

taken during the test. The measurement provided an insight into the temperature on 

the sample, although the cutting site inside the sample could not be observed directly. 

As shown in Figure 5.15(b), generation of heat was observed around the blade tip. A 

temperature of over 60 ºC was measured around this area most of the time during 

cutting. The maximum temperature reached as high as 108 ºC, which would be 

unacceptable in bone cutting. The sample was inspected after cutting, showing an 

incision with no signs of burning, as illustrated in Figure 5.15(c). Benefiting from the 

ultrasonic vibration, a smooth cut was achieved with low cutting force. 
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Blade

Sample

Blade Tip

 

a) Cutting of Biomechanical Material        b) Measurement of Surface Temperature 

 

b) Cut on Sample 

Figure 5.15 Cutting Test, Biomechanical Material 

Cutting of Ovine Femur 

An ovine femur was cut in the second test. As shown in Figure 5.16, the bone 

measures around 15cm in length and 5cm in width in the femur body. The bone was 

preserved in freezing conditions and was defrosted before cutting. To compare 

different cutting techniques, ultrasonic cutting was first carried out manually and then 

performed using a test rig. In both tests, the blade was excited using the same power 

configuration as that in the cutting of the biomechanical sample. 

In the first test, the bone was cut in a natural way by holding the transducer and 

cutting smoothly by hand. Using this technique, mainly the sharp cutting edge was 

involved in the cutting. The ultrasonic cutting was performed with an applied force 

and a gentle slicing motion that removed away the cutting debris. The blade was kept 

contacting with the bone until an incision of around 3mm deep was achieved. No 

extra cooling approach was applied for the cutting. As it may take over 20 seconds to 
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make an incision on the bone, the heat generated in the cutting could be sufficient to 

cause burning of the bone. This was confirmed by investigating the bone after cutting. 

Figure 5.17(a) shows the cuts made on the bone. The notable signs of bone burning 

around the incisions suggested the presence of high temperature in the cutting. In spite 

of this, Blade I worked stably in the cutting test. The blade was capable of achieving 

incisions deeper than 5mm on the bone, which means the ovine femur could be 

truncated using this blade. 

 

Figure 5.16 Sheep Femur 

More information on the cutting temperature was revealed by the thermal pictures 

taken during cutting. It can be seen from Figure 5.17(b) that heat accumulated at the 

cutting site and the surface temperatures reached over 90 ºC. The heat continued to 

build up as the ultrasonic cutting was carried on, causing the bone exposing to 

elevated temperatures for a long period of time, which would be undesired in bone 

cutting surgery as it can cause irreparable thermal damage or necrosis [11, 72, 260, 

261]. It is therefore necessary to applying appropriate cooling for this blade in 

surgical applications. It is also noted that the way of performing the cut substantially 

accounts for the occurrence of excessive cutting temperature. The temperature was 

found to decrease as cutting was slowed down or a lower force was applied. Such 

actions could reduce friction and allow more time for heat dissipation.  

The experiment was also conducted on a test rig to study the ultrasonic cutting under a 

slicing motion of constant speed. Figure 5.18 illustrates the test rig, where the blade 

was attached on a transducer fixed vertically. The bone to be cut was clamped firmly 

on a holder driven by a motor. When the test began, it was moved towards the 

ultrasonically excited blade, causing an incision be made on the surface. In this case, 

the cutting was performed by the blade tip under a slicing motion perpendicular to the 

longitudinal excitation. To make sure the cutting force was within an acceptable limit, 
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the moving speed of bone was set at 0.2m/s and the cutting depth was restricted to 

2mm by carefully adjusting the vertical position of the blade. 

      

Blade Tip

Bone

 

a) Incisions and Bone                                b) Surface Temperature 

Figure 5.17 Ultrasonic Bone Cutting, Manually Performed 

Test Rig

Bone
Blade

Moving Direction
 

Figure 5.18 Test Rig and Bone Sample 

The thermal image illustrates that the temperature around the blade tip reached over 

100°C during cutting, as shown in Figure 5.19(a). However this area quickly cooled 

down to well below 50°C as the blade moved away from the cutting site. The femur 

was examined after cutting. As shown in Figure 5.19(b), the cut can be clearly seen 

and there was no accumulating debris around the incision. Some slight discolouration 

rather than signs of burning were noted, suggesting that heat damage was more 

limited in this case. By comparing the thermal images of this test to those of the 

manual cutting test, it is showed that the slicing motion avoided heat accumulation as 
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the cutting site was moving on the bone. Thereby the bone was allowed to cool down 

before burning occurs. 

Cutting Tip

   

a) Surface Temperature  

Cut

 

b) Cut on Sample 

Figure 5.19 Ultrasonic Bone Cutting, Test Rig 

As a conclusion, the ultrasonic cutting tests showed that Blade I was designed with 

the required cutting performance. The blade worked stably under high power 

ultrasonic excitation and performed ultrasonic cutting on the biomechanical test 

sample and ovine femur. Incisions can be achieved either using the sharp cutting edge 

or the sharp cutting tip. This confirmed that the blade was properly tuned and had 

adequate strength to withstand the stress in cutting, as predicted in the modal analysis 

and stress analysis. By taking into account the results of the impedance analysis, EMA 

and cutting tests, it is showed that using the conventional design process, a proper 

design of ultrasonic blade can be obtained by analysing the modal behaviour and 

stress of the blade. 
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Although the heat generation of ultrasonic cutting was not considered in the blade 

design, the cutting temperature was investigated in the ultrasonic cutting tests, which 

showed that the temperature in the material was affected by how the cutting was 

performed. The manual cutting test of ovine femur illustrated that the accumulated 

heat at the cutting site could lead to high temperature and bone burning. However, by 

introducing slicing motion in the cutting carried out on the test rig, bone burning was 

avoided as the cutting site was allowed to cool down. Nevertheless, taking into 

account the occurrence of high cutting temperature and the potential danger of heat 

damage, Blade I was considered not suitable for surgical applications without the 

application of cooling. 

5.2.2 Blade II: Blade with Serrated Cutting Edge 

Section 5.2.1 showed that Blade I was properly designed and performed ultrasonic 

cutting effectively. However, there was a need to further improve the cutting 

performance by altering the shape of the cutting edge. As a feasible solution, serrated 

cutting profile have been widely used in orthopaedic cutting [23, 24, 39]. Figure 5.20 

illustrates a simplified version of the interaction between the serrations and the 

material during ultrasonic cutting. When ultrasonic vibration is applied, all serrations 

move at small amplitude but high velocity, causing large impact on their tips when 

they contact with the workpiece. This enhances cutting by increasing friction and 

facilitating debris removal. 

 

Figure 5.20 Serrated Cutting Edge 
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5.2.2.1 Blade Design and Analysis 

(1) Geometry and Shape 

Blade II was designed with serrated cutting edges by following the same design 

process as Blade I. The main dimensions of the blade and the shape of the serrations 

are shown in Figure 5.21. The new blade resembled Blade I in terms of profile but 

was fabricated with a larger width in order to incorporate the serrations on both sides. 

With a cutting edge measuring up to 20mm in length, the blade was designed mainly 

to perform lateral cutting using the serrated edges. 

             
0.8 mm

0.8 mm

1 mm

 

a) Blade Outline                                     b) Shape of Serrations 

76 mm

14mm

 

c) Dimensions of the Blade 

Figure 5.21 Blade II with Serrated Cutting Edges 

(2) Modal Analysis 

Modal analysis was conducted to study the blade modes between 0.5-50kHz using the 

same method as that in Blade I. Similarly, bending, torsional and longitudinal modes 

were found and were named using the same way as detailed in Section 5.2.1.1, as 

illustrated in Table 5.5 (modes with modal frequencies lower than 10kHz are not 

listed in the table). The non-working modes were well separated from the working 

mode L1 with a frequency separation of 3.4kHz. In addition, apart from the bending 

modes identified previously, more complex bending mode shapes were observed 

above 40kHz. They were named BCn, where n is a number indicating the appearance 

order of the mode. As bending occurs along both thickness and width direction, which 
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causes more complex distortion of material, these modes were identified as the 

combinations of lateral (bending along the width direction) and flexural (bending 

along the thickness direction) bending modes. Nevertheless, as they were far from the 

tuned frequency, these modes were considered having little influence on the working 

mode. 

Mode Modal Shape f / kHz Mode Modal Shape f / kHz 

T2 
 

10.7 BY5 
 

11.6 

T3 
 

16.9 BY6 
 

17.1 

BX3 
 

17.8 BY7 
 

23.7 

T4 
 

24.4 T5 
 

30.8 

BY8 
 

30.9 BX4 
 

31.5 

L1 
 

35.0 T6 
 

38.4 

BY9 
 

38.9 *BC1 
 

41.9 

*BC2 
 

45.5 T7 
 

46.3 

*BC3 
 

48.7 BX5 
 

49.2 

*Complex bending mode. 

Table 5.5 Results of FEA (Mode Shapes and Modal Frequencies) 

(3) Displacement and Stress Analysis 

Based on the modal analysis, the normalised deformed displacement of the L1 mode 

and the stress distribution under excitation was computed. Figure 5.22 plots the 

deformed displacement along the central line of the blade. For Blade II, the gain was 

obtained to be 12. 
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Figure 5.22 Normalised Displacement 

Using the same analysis technique as that in the design of Blade I, the strength of 

Blade II was evaluated by applying a 10μm (amplitude) periodic displacement at the 

blade base. The resultant Mises stress was computed and illustrated in Figure 5.23. Its 

normalised stress distribution along the blade central line is shown in Figure 5.24. 

One peak was identified in the stress curve. Detailed investigation showed that the 

maximum Mises stress was as high as 514MPa, locating at the first serration next to 

the middle section. Though the maximum stress was lower than the material tensile 

limit (Table 5.1, 895MPa), it exceeded the fatigue strength (Table 5.1, 448MPa). 

According to the criterion introduced in Section 5.2.1.1, this suggested that the blade 

could be at risk of material fatigue. It may not have adequate strength to withstand the 

stress under high power ultrasonic excitation. 

 

Figure 5.23 Stress in Blade II 
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Figure 5.24 Normalised Stress Distribution 

5.2.2.2 Tests and Experiments 

Although the serrated blade was considered to be an unsafe design, it was 

manufactured to verify the preceding analysis experimentally. The fabricated blade is 

shown in Figure 5.25. Similarly, impedance analysis and EMA were conducted to test 

the blade using the same experimental setup as Blade I. 

 

Figure 5.25 Manufactured Blade 

(1) Impedance Analysis 

Figure 5.26 illustrates the result of the impedance analysis. Similar to the case of 

Blade I, two resonances were observed in the impedance curve. The main resonance 

associated with the working mode was found at 35.1kHz. 

 



171 

 

Figure 5.26 Result of Impedance Analysis 

(2) Experiment Modal Analysis 

EMA was carried out to characterise the modal behaviour of Blade II. A total of 130 

points were measured on the blade, generating 390 FRFs. Figure 5.27 plots the 

overlaid FRFs, which shows a least 7 peaks in these curves. Further investigation 

extracted 5 clear modes from these FRFs. Table 5.6 illustrates the comparison of the 

EMA and FEA results, where the latter were the predicted results obtained using an 

FE model that was not adjusted according to EMA. Overall, the average frequency 

difference between FEA and EMA was 3.6%, which was slightly higher than the case 

of Blade I but was still satisfactory. The working mode L1 was predicted precisely 

with a difference of 0.1kHz(0.28%). For other modes, the differences were slightly 

larger. Mode BY7 was predicted with the largest frequency difference, 1.3kHz(5.2%). 

Mode T4, BX4 and BY9 were predicted with differences of 1.1kHz(4.3%), 

1.4kHz(4.7%) and 1.5kHz(3.7%), respectively. The increased difference in this case 

may be partly ascribed to by the introduction of serrations, which resulted in higher 

complexity of blade geometry. Thereby it can be more difficult to predict high order 

vibration modes accurately. Nevertheless, as the working mode was precisely 

predicted and the average difference was satisfactory, it is considered that the FEA 

results were in good agreement with EMA and Blade II was properly manufactured. 
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Figure 5.27 Overlay of Transfer Functions, Magnitude 

 
Mode Mode Shape (EMA/FEA) 

Frequency  
 kHz 

Difference 
(FEA vs EMA) 

 

BY7 
 

EMA: 25.0 
1.3kHz 

(5.2%) 

 

 

 
FEA: 23.7 

 

 

T4 
 

EMA: 25.5 
1.1kHz 

(4.3%) 

 

 

 
FEA: 24.4 

 

 

BX4 
 

EMA: 30.1 
1.4kHz 

(4.7%) 

 

 

 
FEA: 31.5 

 

 

L1 
 

EMA: 35.1 
0.1kHz 

0.28% 

 

 

 
FEA: 35.0 

 

 

BY9  
EMA: 40.4 

1.5kHz 

(3.7%) 

 

 

 
FEA: 38.9 

 

Table 5.6 Results of EMA and Comparison with FEA 

(3) Blade Failure 

As discussed in the stress analysis, it was concluded that Blade II was designed with 

inadequate strength to withstand the stress in ultrasonic cutting. However, this 
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problem could not be revealed by impedance analysis or EMA where the blade was 

excited using significantly lower power than normal cutting applications in order to 

reduce the influence of non-linear effects and avoid material heating up. The material 

stress in such conditions was well below the safe limit. 

However, when the blade was used in ultrasonic cutting, where the excitation can be 

10 times larger than that in EMA, the stress reached a significantly higher level. As 

expected, a crack was observed when the blade was subjected to excitation for a short 

period of time. It propagated quickly under ultrasonic vibration and led to the entire 

cutting tip breaking off, as illustrated in Figure 5.28. Careful inspection of the blade 

condition revealed a clear broken edge, suggesting the occurrence of metal fatigue 

failure [262, 263]. The initial crack occurred very close to where the maximum stress 

was predicted in Figure 5.23. This test confirmed that the FEA was correct and the 

applied stress criterion was effective. An ultrasonic blade designed with insufficient 

strength could be vulnerable to fatigue failure as a result of the high frequency 

periodic deformation. The study suggested that to make sure an ultrasonic blade 

works safely during cutting, the maximum stress should be kept below the fatigue 

limit. 

 

Figure 5.28 Broken Blade 

5.2.3 Summary 

The design and test of two ultrasonic blades were presented in Section 5.2. Blade I 

and Blade II were designed with sharp and serrated cutting edges respectively. They 

were both designed using the conventional method introduced in Section 1.5.4. EMA 

verified FEA was applied in the study to make sure the blades were designed with the 

expected vibration characteristics. 
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Modal behaviour was a major concern in the design. Both blades were expected to be 

tuned at the correct frequency with adequate frequency separation from non-working 

modes. This was achieved by analysing the modal parameters and adjusting the blade 

geometry in the design process. It was confirmed by experiments that both blades 

were tuned correctly and exhibited satisfactory modal behaviour. Good agreement 

between FEA and EMA suggested that the blades were properly fabricated. 

Material stress was also taking into account in the design. To avoid material failure 

under ultrasonic vibration, von Mises stress was computed and fatigue strength was 

applied as a safety criterion. Comparison of the case of Blade I and Blade II 

highlighted the failure by material fatigue and demonstrated the application of the 

criterion. The maximum stress in both blades was within the material yield strength. 

However, it was below the fatigue strength limit in Blade I whereas above the limit in 

Blade II. As a result, Blade I worked properly in ultrasonic cutting tests while Blade II 

failed as predicted. This suggested that instead of using the tensile strength as the 

material limit, a more conservative criterion taking into account the fatigue strength 

should be applied to evaluate the safety of ultrasonic blades. 

Blade I performed ultrasonic cutting on biomechanical material and ovine femur. The 

blade worked stably and incisions were made effectively in the tests, confirming that 

the blade was properly designed with the required cutting performance. Temperature 

of the biomechanical sample around the cutting site was measured by a thermal 

camera, showing high temperature during the cutting process. When cutting the ovine 

femur manually, the heat accumulated during ultrasonic cutting caused notable 

burning of the bone. This should be prevented in surgical applications as it could 

cause necrosis or other injury in bone. However, in the cutting carried out on the test 

rig, bone burning was avoided as the heat accumulation was significantly reduced by 

the slicing motion. As a conclusion, the blade was considered not suitable to be used 

in surgical applications without the application of cooling. 

It is demonstrated in the design of both blades that on the basis of the FEA and 

experimental verification, ultrasonic blades with satisfactory performance can be 

obtained by following the conventional design process. However, the design process 

can not guarantee that the resultant blades are the best optimised. Other better 
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solutions may exist but are not examined in the design. It is expected that the optimal 

design method proposed in this study offers a way to overcome this drawback. 

5.3 Blade Designed Using Optimal Method 

In this section, an ultrasonic blade will be designed using the optimal method detailed 

in Chapter 4, which applies mathematical algorithms to update the blade design and 

find the most desired design. This will be done on the basis of the proposed blade 

performance indicators, which enable the algorithm to measure and compare the 

performance of a design during the design process. This section will also investigate 

the influence of the shape of the cutting edges on ultrasonic cutting based on the 

obtained blades. 

5.3.1 Blade III: Blade Shape and Geometry Parameters 

Blade III was designed using the optimal method. The profile of the blade was defined 

by geometry parameters as discussed in Section 4.4.1.1. Figure 5.29 and Table 5.7 

illustrate the profile of the blade and the geometry parameters used in this case. This 

three-sectional style profile provided a flexible and effective solution for the design of 

ultrasonic blades. The main features of the blade geometry were determined by eight 

geometry parameters, which also determined the main dynamic characteristics of the 

blade, such as the gain and tuned frequency. Additional parameters were defined to 

incorporate more details, such as the serrated cutting edge, in the geometry. They 

were of less importance to the blade performance and are therefore not shown in 

Figure 5.29 and Table 5.7. 

It is not necessary to adjust all the geometry parameters in the design of Blade III. As 

discussed in Section 4.4.1, more adjustable parameters means higher dimensions of 

optimisation space and considerably increased computing time. In fact, most of the 

parameters in this case can be determined by other means to simplify the problem. 

Among them, the width of the blade (D2), the thickness of the middle section (H1), the 

thickness and the length of the cutting tip (H2 and Ld) can be determined based on the 

application requirements and previous design experience, as detailed in Table 5.7. La 

was regarded as a parameter with less influence on the critical dynamic characteristics 

of the blade. To further simplify the problem without compromising the flexibility of 

design, a pre-defined value was assigned to La. As a consequence, it was only 
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necessary to adjust three parameters D1, Lb and Lc in the optimisation. This would not 

change the nature of the optimal design but could reduce the complexity of the 

problem significantly. 

 
a) Blade Profile 

 

b) Geometry Parameters 

Figure 5.29 Blade Profile and Geometry Parameters 

Symbol Parameter Value 

*D1 Large diameter of the blade base. Adjustable variable. Ranging 
between D2 and the diameter of the 
transducer output terminal. 

D2 Small diameter of the blade base, equal to 
the width of the blade. 

Determined by the requirements of 
the application. 

H1 Large thickness of the middle section. Determined according to D2. 

H2 Thickness of the cutting tip, equal to the 
small thickness of the middle section. 

Determined by the requirements of 
the application. 

La Length of the cylinder part in the blade base. Pre-defined. 

*Lb Length of the cone part in the blade base. Adjustable variable. 

*Lc Length of the middle section. Adjustable variable. 

Ld Length of the cutting tip, including the 
rounded tip. 

Determined by the requirements of 
the application. 

*Adjustable variable 

Table 5.7 Blade Geometry Parameters 
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In addition, the value scope of the adjustable parameters was determined by 

estimating the geometry limit of the blade. As Blade III was designed to be a half 

wavelength blade, the approximate overall length of the blade, estimated using Eq 1.1, 

was used as the upper limit of Lb and Lc. The value scope of D1 was determined by 

considering the attachment of the blade. D1 is expected to be larger than the blade 

width and smaller than the diameter of the output face of the transducer. Thus, a 

bounded three-dimensional optimisation space can be fully defined for this design 

problem. 

5.3.2 Blade Performance Indicators 

As presented in Chapter 5, the optimal design method relies on indicators to evaluate 

the performance of a design. Six indicators selected from Table 4.5 were used in this 

case, including the modal distance (MA), maximum stress (SA), and the gains of the 

blade (GA, GX, GY, GT), as illustrated in Table 5.8. These indicators provided insights 

into the main characteristics affecting the dynamic performance of the blade. 

(1) Modal Distance 

As illustrated in Table 5.8 and explained in Chapter 4, the modal distance (MA) is a 

measure indicating how the working mode is frequency separated from the other 

modes. It provides information on the possibility of the occurrence of modal coupling. 

A preferred design should have adequate modal distance so that the blade can work 

stably at the working mode with limited influence from other non-working modes. 

This idea is illustrated in Figure 5.30, where two examples of FRFs are shown. The 

peaks of the FRFs are associated with the presence of vibration modes. It is assumed 

that the peaks may overlap when the modal distance is smaller than the peak width, in 

which case modal coupling could occur. Figure 5.30(a) shows a case where the 

working mode is well separated from an adjacent mode. As a contrast, Figure 5.30(b) 

illustrates a case where the working mode may be influenced as the modes are 

overlapping their peaks. Thus based on this principle, the modal distance should be at 

least greater than the peak width of the working mode. 
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Indicator Name Definition and Value Preference 

MA Modal Distance The lowest frequency difference between 
the working mode (L1) and non-working 
modes. 

Indication for the possibility of the 
occurrence of modal coupling. 

High 

SA Maximum Stress The maximum Mises stress in the blade 
under a multi-component excitation. 

Indication for blade strength. 

Low 

Must be lower than the 
material fatigue limit. 

GA (GL) Gain of Blade The factor by which the amplitude of the 
longitudinal excitation is increased at the 
tip of the blade. 

Indication for excitation amplification. 

High 

Adequate value to achieve 
efficient cutting. 

GX Gain of Lateral 
Bending 

The factor by which the amplitude of the 
lateral bending (bending along the width 
of the blade) at blade base is increased at 
the tip of the blade. 

Indication for amplification of undesired 
vibration. 

Low 

GY Gain of Flexural 
Bending 

The factor by which the amplitude of the 
flexural bending (bending along the 
thickness of the blade) at blade base is 
increased at the tip of the blade. 

Indication for amplification of undesired 
vibration. 

Low 

GT Gain of Torsion The factor by which the amplitude of 
torsion at blade base is increased at the tip 
of the blade. 

Indication for amplification of undesired 
vibration. 

Low 

Table 5.8 Performance Indicators 

    

a) Adequate Modal Distance                                    b) Inadequate Modal Distance 

Figure 5.30 Modal Distance and Mode Coupling 
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To determine the lower limit of modal distance for this study, the case of Blade I was 

reviewed. The amplitude of a FRF obtained in the EMA of Blade I is illustrated in 

Figure 5.31. It shows the response of the blade tip in the longitudinal direction around 

the tuned frequency. The peak of the FRF was associated with the working mode of 

the blade (first longitudinal mode). The width was measured around the peak base at 

1/10 of the height, which was 405Hz, as shown in Figure 5.31. This is a convenient 

way to appropriately  evaluated the peak width for a sharp peak [8]. It is necessary to 

apply allowance when using the width as the limit of the modal distance as peak width 

varies between different designs. Also, giving consideration to the existence of 

difference between the computing and actual modal frequencies, extra allowance was 

applied and 2kHz was used as the minimum modal distance. Although, this restriction 

may not guarantee the avoidance of coupling behaviour in all cases, it provided a 

simple and feasible solution to quickly filter out unqualified designs in optimisation. 

 

Figure 5.31 FRF and Width of the Peak  
(Blade I, Tip, Longitudinal Direction) 

(2) Maximum Stress 

The maximum stress (SA) was used as the indication of blade strength. It was 

calculated by applying a multi-component input and using the method detailed in 

Section 4.2.5. Four vibration components were included in the input: INL for the 

longitudinal input, INX for the input in the width direction, INY for the input in the 

thickness direction, and INT for the torsional input. The values of these components 

are shown in Table 5.9. INL was applied with the largest transducer output that was 
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allowed for this type of blade, which in this case was 10µm. INX, INY, and INT were 

0.5µm, 0.5µm and 10-4rad, respectively, which were not intended to simulate the 

actual transducer output and their values were not associated with physical excitations. 

Instead, they were applied in a way just to introduce significant non-longitudinal 

vibration in the analysis. This simulated an extreme working condition where the 

blade was subjected to large excitation and coupled vibration. The obtained SA is 

therefore the largest stress the blade may suffer. It is expected that a blade will have 

adequate strength to withstand the ultrasonic excitation in normal operating conditions 

if it stands the stress in such extreme conditions. To determine the lower limit of SA, 

the stress criterion proposed in Section 5.2.1.1 was applied with a safety factor of 1.3. 

The successful design of Blade I showed that a blade with adequate strength can be 

achieved under this criterion. Thereby, by reviewing the case of Blade I, 350MPa was 

used as the lower limit of SA. 

 

Figure 5.32 Input for Stress Analysis 

Input Amplitude 

INX 0.5 µm 

INY 0.5 µm 

INZ 10 µm 

INT 10-4 rad 

Table 5.9 Input for Stress Analysis 

(3) Gains of Blade 

The gains indicate the responses of the blade subjected to different excitations. As 

illustrated in Table 5.8, four types of gains were considered in this study. GA (GL) was 



181 

the gain of the blade, which was defined as the factor by which the amplitude of the 

longitudinal excitation at the base is increased at the tip of the blade. It was calculated 

through the displacement of the blade under a normalised longitudinal excitation 

using the method detailed in Section 4.2.3. As ultrasonic cutting normally requires 

vibration amplitude of minimum 30µm and the vibration output of a transducer is 

typically 5-10µm, the gain of an ultrasonic blade should be at least 3 in order to 

achieve sufficient output at the cutting tip. In this study, it is expected that the blade 

has a gain greater than 5. Larger gain is preferred but it may be achieved at the price 

of higher material stress. 

The gains of non-working motions, GX, GY and GT, were also considered in the 

optimisation. They indicate how the blade responds to unwanted vibrations, which 

may be caused by coupled vibration or non-linear behaviour. The definition and 

computing method of these indicators were detailed in Table 5.8 and Section 4.2.3. To 

reduce the presence of undesired motions, such gains should be controlled below an 

acceptable level. A study of the ultrasonic blades designed in previous research [14, 

39, 53] showed that their GX is 5-13, GY is 9-21, and GT is 11-30. Therefore middle 

values 10, 15 and 25 were used as the limits for GX, GY and GT, respectively. It is 

expected that this can impose restrictions on undesired vibration while allowing the 

comparison of adequate number of designs in the optimisation. 

(4) Constraints and Optimal Target 

Unlike the conventional design method, the optimal design was conducted in terms of 

constraints and an optimisation target (objective function) based on the selected 

indicators. A qualified design was expected to meet all the design requirements 

formulated as indicator constraints. This took into account the desired blade 

performance and was determined according to the goal of the design. 

Table 5.10 illustrates the constraints and the optimisation target applied in this study, 

which include: 

 the modal frequency of the first longitudinal mode (f) that must be at the correct 

frequency to make sure the blade could be properly excited; 

 the modal distance that should be larger than 2kHz to avoid modal coupling 

behaviour; 



182 

 the maximum stress (SA) that must be less than a fatigue limit of 350MPa to 

achieve sufficient strength; 

 the gain of the blade (GA) which should be greater than 5 to ensure delivering 

adequate vibration amplitude for cutting; 

 the non-longitudinal gains of the blade (GX, GY, GT) that should be lower than 

their upper limits to reduce the presence of undesired vibration. 

These constraints would filter out those unqualified designs, ensuring the optimisation 

process to be conducted correctly. 

Moreover, to obtain a final design from the qualified candidates, a single optimisation 

target was applied with an aim to minimise the maximum stress (SA). This attempted 

to generate a blade with the highest strength, which would enable the blade to not 

only withstand high power ultrasonic excitation and cutting forces, but also work 

reliably in surgical applications. 

Indicator/ 
Parameter 

Constraints Remark 

f = 35  0.5kHz Ensure proper excitation. 

MA > 2kHz Avoid modal coupling. 

*SA < 350MPa Ensure adequate blade strength. 

GA (GL)  5 Enable adequate cutting amplitude. 

GX < 10 Reduce undesired vibration. 

GY < 15 Reduce undesired vibration. 

GT < 25 Reduce undesired vibration. 

*Optimisation target (objective function). 

Table 5.10 Constraints of Indicators/Parameters 

5.3.3 Calculation and Result Discussion 

With the constraints and optimisation target defined, the optimal design was ready to 

be conducted using the method introduced in Chapter 6. In order to illustrate the 

intermediate results between the steps and better demonstrate the concept of optimal 

design, this case study applied a procedure slightly different from Figure 4.3. Instead 

of processing one design at a time and discarding the unqualified designs, the 

procedure used an exhaustive algorithm to evaluate all the designs in the optimisation 

space, keeping and plotting the obtained results. However, the two procedures are 

completely equivalent in terms of their functions. 
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As illustrated in Figure 5.33, the first step of the optimisation was to obtain the tuned 

surface in the optimisation space formed by the adjustable parameters (D1, Lb and Lc). 

The optimisation space was a three dimensional space representing all the possible 

designs, where each point was mapped to a specified blade. However, not all the 

points in this space result in blades tuned at the correct working frequency. In fact, 

there were only two independent parameters when the tuned frequency was applied as 

a constraint. Consequently, the correctly tuned blades were located only on a specific 

surface called the "Tuned Surface" which could be found through a bisection 

searching. Figure 5.34 illustrates the obtained tuned surface, on which are the designs 

with a working frequency of 35kHz. These designs were referred to as the tuned 

designs. This simplified the calculation of the following steps as it is only necessary to 

compute the indicators for the tuned designs. 

 

Figure 5.33 Calculation Procedure 

 

Figure 5.34 Optimisation Space and Tuned Surface 

Based on the tuned surface, the value of the indicators was computed. To facilitate the 

process, Lb and D1 were chosen as independent parameters, which would vary with a 
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step increment of 1mm. As the optimisation was carried out using an exhaustive and 

graphic approach, the step size did not affect the convergence of computing. Further 

reducing the step increment could improve the resolution of optimisation. However, 

this would be achieved at the price of dramatically increased amount of computing. 

The step size used in this study provided a good balance between the optimisation 

resolution and computing expense. 

Figure 5.35 illustrates the modal distance (MA) obtained over the tuned surface, which 

was plotted with respect to Lb and D1. MA was found to vary between 30Hz to 

3.91kHz. According to the constraints of the indicator, a qualified design should have 

a modal distance greater than 2kHz. This filtered out 37.2% of the tuned designs with 

inadequate frequency separation between the working and non-working modes. The 

qualified designs were located in the regions with red and yellow colour. 

 

Figure 5.35 Modal Distance (MA) 

The maximum Mises stress (SA) is illustrated in Figure 5.36 in a similar way. Peaks 

were observed in this figure, suggesting that significantly high stress values were 

predicted. As the maximum SA allowed in the optimisation was 350MPa, 31.4% of the 

tuned designs were disqualified due to their stress exceeding the material fatigue limit. 

The designs with low stress level were located in the regions in light and dark blue. 

Most of them were in the large flat area in the centre and a narrow region near the 

edge of Lb=10. 
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Figure 5.36 Maximum (Mises) Stress (SA) 

In addition, the gains of the blade (GA, GX, GY, GT) are shown in Figure 5.37(a)-(d). 

Figure 5.37(a) illustrates the obtained GA. The minimum gain of the tuned designs 

was 2 and the maximum was 10.5. There were 32.4% designs with a longitudinal gain 

lower than 5, which were located in the dark blue region in Figure 5.37(a). These 

designs were undesired as they could not deliver sufficient vibration output at the 

cutting tip. Figure 5.37(b) illustrates the gain in the lateral bending direction (GX), 

which was a gain of non-working vibration. To reduce unwanted vibration, the 

maximum GX allowed for a blade was 10. This restriction filtered out 9.1% tuned 

designs in the optimisation, which were located around the red region in Figure 

5.37(b). The gain in the flexural bending direction (GY) and torsion (GT) were plotted 

in a similar way, as shown in Figure 5.37(c) and Figure 5.37(d) respectively. The 

constraints of GY and GT filtered out 24% and 42.3% of the tuned designs, 

respectively. 
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a) Gain of Blade (GA)                                               b) Gain of Lateral Bending (GX) 

 

c) Gain of Flexural Bending (GY)                                       d) Gain of Torsion (GT) 

Figure 5.37 Gains of Blade 

Based on the indicators, the qualified candidate designs were obtained by applying all 

the constraints summarised in Table 5.10. Figure 5.38 plots these designs by marking 

the designs with dots and superimposing them on the value of the maximum stress 

(SA). By comparing Figure 5.38 with Figure 5.35-Figure 5.37, it can be seen that the 

qualified candidates avoided the regions that are of high stress and high non-

longitudinal gains. On this basis, the optimal design was obtained by applying the 

optimisation target: the lowest SA. It was found at D1=14, Lb= 36, as illustrated by the 

red dot in Figure 5.38. The details of its indicators are shown in Table 5.11. By 

comparing to Table 5.10, it is confirmed that this design met all the constraints and 

had a stress value of only 201MPa. 
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Figure 5.38 Qualified and Optimal Design  
(Superimposing on Values of SA) 

Parameter 
/ Indicator 

Value 
Parameter 
/ Indicator 

Value 

Lc 30mm GA 5.1 

Lb 36mm GX 5.5 

D1 14mm GY 11 

MA 3.6kHz GT 21 

SA 201MPa f 35kHz 

Table 5.11 Parameters and Indicators of the Optimal Design 

The geometry of the optimal design is shown in Figure 5.39. Further analysis was 

conducted to verify the performance of this solution. Similarly to Blade I and Blade II, 

modal analysis and stress analysis was carried out using the FE method. Table 5.12 

illustrates the result of the modal analysis. It confirmed that the first longitudinal 

mode was correctly tuned at 35kHz with a distance of 3.6kHz to the adjacent mode. 

The normalised displacement of the working mode obtained along the central line of 

the blade is illustrated in Figure 5.40. The gain of the blade was found to be 5.1, the 

same value of GA, as presented in Table 5.11. 
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Figure 5.39 Model of the Optimal Design 

Mode Mode Shape f / kHz Mode Mode Shape f / kHz 

T1 
 

11.4 BY4 
 

12.4 

BX3 
 

14.6 BY5 
 

20.2 

T2 
 

24.4 BX4 
 

26.7 

BY6 
 

29.8 T3 
 

31.4 

L1 
 

35.0 BY7 
 

40.0 

T4 
 

44.1 BX5 
 

41.5 

Table 5.12 Results of Modal Analysis 

The stress analysis was conducted using the same multi-component excitation as 

discussed in Section 5.3.2. In addition to longitudinal vibration, bending and torsional 

vibration was deliberately introduced in the analysis to simulate an extreme working 

condition, where multiple modes of vibration presence in the blade simultaneously. 

The result of the stress analysis is shown in Figure 5.41 and the normalised stress 

distribution along the blade central line is illustrated in Figure 5.42. As a result of the 

coupled vibration, more than one peaks were observed in the stress curve, as 

illustrated in Figure 5.42. The maximum Mises stress was found to be 204MPa, 

locating at a serration of the cutting edge. This value was in agreement with indicator 

SA obtained in the optimisation. Further investigation of the stress distribution showed 

that the maximum stress was significantly larger than the stress in other regions of the 

blade due to the stress concentration effect. However, the blade was considered to be 

of sufficient strength as the maximum stress was well within the allowable limit 
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(350MPa, Table 5.10). As the results of both modal and stress analysis were in 

agreement with the outcome of the optimal method, it is confirmed that the proposed 

design process evaluated the characteristics of the blade appropriately. 

 

Figure 5.40 Normalised Displacement 
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Figure 5.41 Stress Distribution (Under Multi-Component Excitation) 
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Figure 5.42 Normalised Stress Distribution (Under Multi-Component Excitation) 
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5.3.4 Experimental Verification 

5.3.4.1 Impedance Analysis 

To experimentally verify and test the performance of the optimal solution, the 

obtained design (Blade III) was manufactured using a CNC machine and is shown in 

Figure 5.43. Blade III was subjected to impedance analysis using the same 

experimental setup as that in the case of Blade I. Figure 5.44 plots the results of the 

impedance analysis, showing that the main resonance frequency was 34.5kHz. This 

suggests that the blade was tuned correctly. The slight difference (0.5kHz) between 

the experiment and the FEA was acceptable in this study. 

 

Figure 5.43 Manufactured Blade 

 

Figure 5.44 Result of Impedance Analysis 
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5.3.4.2 Experimental Modal Analysis 

EMA was carried out to characterise the modal behaviour of Blade III using the same 

approach as detailed in Section 5.2.1.2. A total of 150 grid points were located on the 

blade, as illustrated in Figure 5.45. 450 FRFs were obtained, which are overlaid and 

plotted in Figure 5.46. The main peak indicates the presence of the first longitudinal 

mode around 35kHz. Further analysis extracted the modal frequencies and mode 

shapes, which are detailed in Table 5.13. 

 

Figure 5.45 EMA Grid Points on Blade III (Serrations not Shown) 

Longitudinal, bending and torsional modes were measured. They were named using 

the same way as presented for Blade I. A coupled mode, named T4BY7, was observed. 

Carefully investigation showed that this was a combined mode involving two modes, 

T4 and BY7. 

 

Figure 5.46 Result of Impedance Analysis 

The results of EMA were compared to the predictions of FEA (without correction 

using EMA). As illustrated in Table 5.13, good agreement was found between FEA 

and EMA. The difference of modal frequency between the FEA and EMA were lower 

than 5% in all cases except for BY7. The average difference for all modes was 2.8%, 

which suggested that the blade exhibited the expected characteristics. The combined 
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mode T4BY7 could not be predicted by FEA as the analysis did not take into account 

the non-linear behaviour of the blade. However, comparing its modal frequency to T4 

mode showed that, due to the coupled vibration, a frequency difference of 

3.0kHz(6.4%) was observed. As this mode was far away from L1, its influence on the 

working mode could be ignored. For the working mode L1, the difference between 

EMA and FEA was 0.5kHz(1.4%), which confirmed that the blade was properly tuned 

at the correct frequency. 

 
Mode Modal Shape (EMA/FEA) 

Frequency 
 / kHz 

Difference 
(FEA vs EMA) 

 

 

BY5  
EMA: 19.9 

0.3kHz 

(1.5%) 

 

 
FEA: 20.2 

 

 

T2 
 

EMA: 25.2 
0.8 kHz 

(3.2%) 

 

 
FEA: 24.4 

 

 

BX4 
 

EMA: 27.7 
1.0 kHz 

(3.6%) 

 

 
FEA: 26.7 

 

 

BY6 
 

EMA: 31.2 
1.4 kHz 

(4.5%) 

 

 
FEA: 29.8 

 

 

L1* 
 

EMA: 34.5 
0.5 kHz 
(1.4%) 

 

 
FEA: 35.0 

 

 

BY7 
 

EMA: 37.8 
2.2 kHz 
(5.8%) 

 

 
FEA: 40.0 

 

 

T4BY7 
(Coupled mode) 

 
EMA: 47.1 

3.0 kHz ** 
(6.4%)** 

 

 
T4 FEA: 44.1 

 

 

BX5  
EMA: 42.5 

1.0 kHz 
(2.3%) 

 

 
FEA: 41.5 

 

*Working mode. 
**Difference between T4 FEA and EMA. 

Table 5.13 Results of EMA and Comparison with FEA 
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It is obtained from Table 5.13 that the actual modal distance (MA) is 3.3kHz, which is 

closed to the theoretical value (3.6kHz in Table 5.11) and is greater than the restricted 

limit (2kHz as discussed in Section 5.3.2). The true value of the blade gain (GA) was 

obtained by dividing the measured vibration amplitude at the blade tip to that at the 

base, which was found to be 5.2, a value sufficiently closed to the expected gain (5.1 

in Table 5.11). This shows that the blade performance was appropriately evaluated by 

the optimal method. However, due to the difficulty of measurement and the input, the 

actual value of the other gain indicators, including GX, GY and GT, were not obtained 

in this study. Moreover, as there was no easy way to measure the maximum stress in 

the blade, it was not possible to verify the optimality of this design. Nevertheless, 

taking into account the good agreement between the analysis prediction and 

experimental results, it is considered that the proposed optimal method produced the 

required design effectively. 

5.3.5 Ultrasonic Cutting Test 

The optimal method used in the design of Blade III focused on the dynamic behaviour 

of ultrasonic blades. The cutting performance, however, was not directly optimised in 

the design process. Taking into account the features of an ultrasonic bone cutting 

blade, it is considered that, under the same condition, the cutting performance of a 

blade is closely related to the design of the blade tip, including the shape of the cutting 

edge. To study this issue, two more ultrasonic blades were derived from Blade III and 

tested. 

These new blades, Blade IV and Blade V, were fabricated using the same design as 

Blade III except that different types of cutting edges were incorporated. As illustrated 

in Figure 5.47, Blade IV was manufactured with a sharp cutting edge and Blade V 

was fabricated with a blunt cutting edge. Similar to the case of Blade I, the sharp edge 

is inspired by non-ultrasonic cutting tools, which take advantage of the reduced 

contact area and increased contact stress to improve cutting. The blunt edge, however, 

is easier to manufacture than the sharp and serrated edges. It requires less 

maintenance as the wearing has less influence on the shape of the edge. Also, 

comparing to serrated edges, the simplicity of the blunt edge can simplify the 

sterilisation procedures. Therefore, it is worth to investigate the cutting performance 

of this type of cutting edge. 
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As only insignificant changes were made on the blade profile, Blade IV and Blade V 

exhibited similar dynamic characteristics as Blade III, except an even lower maximum 

stress (SA), 184MPa for Blade IV (sharp) and 177MPa for Blade V (blunt), was found 

by FEA. Therefore, as long as the same excitation configuration is applied, the cutting 

tests of these blades can be regarded as carried out under same vibration conditions. 

Thus the difference of cutting performance between the blades can be ascribed to the 

different design of their cutting edges. 

Blunt Sharp Serrated

Blade V Blade IV Blade III

        

Blunt Sharp

Serrated

 
a) Manufactured Blades                                   b) Shape of the Cutting Tip 

Figure 5.47 Manufactured blades 

5.3.5.1 Test I: Ultrasonic Cutting of Biomechanical Samples under Static Load 

Cutting temperature is the main concern in bone cutting. To reduce the possibility of 

necrosis in surgery, the temperature on the bone should be kept within a safe level 

during cutting. There are various factors influencing cutting temperature, such as the 

shape of the cutting edge, contact force and angle of cutting. To study this issue, Test 

I was conducted on a test rig to perform ultrasonic cutting on biomechanical samples 

under static loading. 

Figure 5.48 and Figure 5.49 illustrate the test rig, where the ultrasonic blade was 

attached to a transducer fixed on a platform sliding freely on a rail. The platform was 

pulled by a weight through a string and a pulley to bring the blade in contact with the 

cutting sample. Providing the friction of the rail and the pulley was carefully balanced 

by a pre-load weight, the force applied on the blade can be controlled accurately by 

loading the correct amount of weight, allowing ultrasonic cutting to be performed 

under a specific constant load. 
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Figure 5.48 Experimental Setup 

Sample

Transducer

Blade

 

Figure 5.49 Test Rig 

In addition, to conduct the ultrasonic cutting using different cutting angles, the 

transducer could be adjusted to form a certain angle between the blade and the 

direction of the applied force. As shown in Figure 5.50, three angle settings were 

applied in this study. Figure 5.50(a) illustrates the axial cut setting, where the blade 

was placed with its longitudinal axis parallel to the direction of the applied force. In 

this case, cutting would be performed by the blade tip, enabling the blade to penetrate 

into the sample. The second setting was the angle cut, as illustrated in Figure 5.50(b), 

where the blade was placed at an angle of 45° to the applied force. This allowed both 

the tip and the cutting edge to be involved in cutting. The third setting was the side cut 

as illustrated in Figure 5.50(c), where the blade was placed perpendicular to the 

applied force. This allowed the cutting edge to contact with the sample and perform 

cutting. These settings simulated typical ways in which the blade would be used in 

cutting applications. 
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To obtain the cutting temperature on the sample, a thermocouple and a thermal 

camera were used in the experiment. The thermocouple was applied to measure the 

temperature inside the sample. As illustrated in Figure 5.51, the thermocouple was 

placed inside a small hole drilled in the sample, measuring temperature inside the 

sample. In the testing, the blade cut into the sample and passed just below the 

thermocouple, which enabled the measurement of temperature around the cutting site. 

Taking into account factors such as heat conduction in the material and friction 

between the thermocouple and the sample, the temperature obtained in this way was 

subject to errors. Nevertheless, it did provide an insight into heat generation in 

ultrasonic bone cutting. The maximum temperature measured by the thermocouple 

during cutting was recorded and referred to as the internal temperature. 

              

   

a) Axial Cut                                b) Angle Cut                                c) Side Cut 

Figure 5.50 Cutting Angles 

       

a) Placement of Thermocouple                                            b) Picture of Test 

Figure 5.51 Measurement of Temperature Inside the Sample 



197 

In addition to the thermocouple, a thermal camera was used to measure the 

temperature on the sample surface around the cutting site, as illustrated in Figure 5.48. 

As the surface is not the location where cutting took place, this temperature was not 

the real cutting temperature either. It simply provided another way to investigate the 

temperature of the sample. The maximum temperature observed by the thermal 

cameral during cutting was recorded and referred to as the surface temperature. 

Solid
Foam

Cellular
Foam

Laminated
Foam

Solid Layer

Cellular 
Base

 

Figure 5.52 Biomechanical Test Sample 

To ensure the material properties were consistent in the tests, biomechanical materials 

were used instead of real bones as the test samples. They are products of Pacific 

Research Laboratories, Inc. (Sawbones®). Three types of biomechanical materials, 

solid foam, cellular foam and laminated foam, were used to simulate different types of 

bones encountered in surgical cutting. These materials are illustrated in Figure 5.52 

and their mechanical properties are listed in Table 5.14. The solid foam material is 

made of rigid polyurethane foam. It has physical strength properties similar to human 

cortical (compact) bones. The cellular foam is an inner cancellous material, which has 

lower density and strength than the solid foam material, and resembles trabecular 

(spongy) bones. The laminated foam material consists of two layers. It is made by 

laminating a thin solid foam layer (2mm) on the cellular foam base. This simulates the 

outer cortical layer and inner trabecular bone. It should be noted that although the 

biomechanical materials resemble bones in strength properties, they can not offer 

exactly the same features as real bones. For example, it melts and burns easily at high 

cutting temperatures in a different way to bones. 
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Material 
Density 

(g/cm3) 

Compressive 
 

Tensile 
 

Shear 

Strength 

(MPa) 

Modulus 

(MPa) 

 Strength 

(MPa) 

Modulus 

(MPa) 

 Strength 

(MPa) 

Modulus 

(MPa) 

Cellular Foam 0.32 8.4 210  5.6 284  4.3 49 

Solid Foam 0.64 31 759  19 1000  11 130 

Laminated Foam 2mm Solid Foam Layer + 48mm Cellular Foam Base 

Table 5.14 Mechanical Properties of Biomechanical Material [255] 

Blade V (blunt) was used to perform ultrasonic cutting on the solid, cellular and 

laminated foam. For each kind of sample, the cutting was conducted in three ways, 

axial cut, angle cut and side cut, where the samples were cut with varying applied 

force ( 1N(excluding solid foam and side cut of cellular foam), 2N, 4N, 6N, 8N and 

10N ). In each test, an incision to a depth of 15mm was made. Both the surface and 

internal temperature were measured and the total cutting time was recorded. The 

cutting speed was calculated based on the depth of incision and the total cutting time. 

Each type of test was repeated three times using the same cutting settings with the 

average and error recorded in the plotted data. The results of the tests are illustrated in 

Figure 5.53, Figure 5.54 and Figure 5.55, which plot the cutting speed, surface 

temperature and internal temperature against the applied force, respectively. 

The errors of the data were evaluated using standard deviation and relative error. The 

standard deviation of the data was computed using the following equation 
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where   is the standard deviation, ix  is the data obtained under the same cutting 

force and cutting material, m is the number of tests for the specific force and material, 

x  is the mean of data, which 
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The average standard deviation was calculated by averaging the standard deviation of 

different cutting settings, as shown in Eq. (5.3) 
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where k  is the standard deviation for a specific cutting setting and n is the number of 

tests. The maximum standard deviation max  is the largest value of these standard 

deviations. Both   and max  were used to evaluate the overall error of the tests. 

Based on the standard deviation, the relative error was obtained by 

100%re
x


                                                           (5.4) 

The average relative error was calculated using a similar way to   

1

1 n

r rk
k

e e
n 

                                                          (5.5) 

and the maximum relative error maxre  is the largest value of the relative errors. re  and 

maxre  were also used to evaluate the overall error of the tests. 

The cutting speed was illustrated in Figure 5.53 and the standard deviation and 

relative error of the speed data were shown in Table 5.15. The cutting speed can be 

influenced by factors including friction between the sample and blade, and debris 

accumulation around the cutting site. Such influence may introduce higher error in the 

measurement when the cutting speed is low, especially when the applied force is also 

low. The average standard deviation in this test was 0.047mm/s, and the maximum 

relative error was 31.6%, observed in the case of axial cut, laminated foam, 1N 

applied force. This was also the case where the lowest cutting speed, 0.28mm/s, was 

seen. Nevertheless, for the tests with cutting speed greater than 1mm/s the error was 

lower than 8%, and the average error of all tests was 7.0%. This suggests that the data 

was appropriately measured and the errors were within acceptable limit. 

It is observed in Figure 5.53 that for the same test sample and cutting angle, the 

cutting speed increased as the applied force was increasing. The correlation 

coefficient, which evaluates the degree of linear relationship between two variables 

using a value ranging from -1 to 1, was computed for the cutting speed and the 

applied force. As illustrated in Table 5.16, the correlation coefficients were greater 

than 0.9 in all cases, suggesting that there is a significant linear correlation between 

the applied force and the speed of cutting. Therefore, a linear model 

v=aF+b                                                           (5.6) 
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was used to characterise the relationship between these two variables, where v is the 

cutting speed (mm/s), F is the applied force (N), a and b are the parameters of the 

model. Taking account of the fact that the influence of measurement errors became 

significant when the applied force was low, this model was not intended to be applied 

for the case where F is relatively closed to zero. 

 

 

a) Axial Cut                              b) Angle Cut                                 c) Side Cut 

Figure 5.53 Cutting Speed 

 
Standard Deviation Relative Error 

Average Maximum  Average  Maximum  

Cutting Speed 0.047mm/s 0.11mm/s 7.0% 31.6% 

Surface Temperature 9.5°C 41.6°C  7.7% 17.8%  

Internal Temperature 16.1°C 35.5°C 9.2% 23.8% 

Table 5.15 Standard Deviation and Relative Error 

The parameters of the model were estimated using the method of least squares and 

their values are shown in Table 5.16. Parameter a, which is the increase rate of the 

cutting speed and is associated with the slope of the plot, was of interest. As the 

material strength is the highest in solid foam and the lowest in cellular foam, for the 

same cutting angle and applied force, the largest cutting speed was seen in the cellular 

foam and the lowest speed was seen in the solid foam. The influence of the material 

strength on the cutting speed can also be observed from parameter a, whose value, for 

the same cutting angle, was the largest in the cellular foam and the smallest in the 
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solid foam. The influence of the cutting angle on the cutting speed, however, was not 

identified from the data. For solid foam, parameter a was the largest in the case of 

side cut. However, for cellular foam, the largest value was found in angle cut, and for 

laminated foam, this was in axial cut. Therefore, no conclusion was drawn for the 

relationship between the cutting angle and the cutting speed. 

Cutting Setting Correlation 
Coefficient 

Model Parameter 

Angle Material a b 

Axial Cut 

Solid 0.939 0.0415 0.205 

Cellular 0.959 0.256 0.381 

Laminated 0.990 0.196 0.102 

Angle Cut 

Solid 0.945 0.049 0.190 

Cellular 0.997 0.276 0.0436 

Laminated 0.989 0.126 0.176 

Side Cut 

Solid 0.963 0.0608 0.0760 

Cellular 0.986 0.212 0.0245 

Laminated 0.997 0.125 0.122 

Table 5.16 Correlation Coefficients and Model Parameters 

Figure 5.54 and Figure 5.55 plot the surface and internal temperature against the 

applied force, respectively. The factors affecting the measurement of temperature 

include the position of the thermocouple, heat conduction in the material and the 

condition of heat dissipation. As the internal temperature was measured by a 

thermocouple placing closed to the cutting site, it can be subjected to higher error than 

the surface temperature. As shown in Table 5.15, the average standard deviation of 

the surface and internal temperature data was 9.5°C and 16.1°C, respectively, and the 

average relative error of the surface and internal temperature was 7.7% and 9.2%, 

respectively. To further illustrate the change of temperature in the material, Figure 

5.56 plots the internal temperature, measured in axial cut, solid foam under 6N 

applied force, with respect to the cutting time and cutting depth. It shows that the 

temperature remained almost unchanged at the first 18 seconds before rising rapidly. 

The temperature continued to increase after the cutting stopped at 15mm cutting depth, 

and its maximum value was seen at around 40 seconds. The lag between cutting and 

temperature measurement is considered to be mainly caused by the time required in 

heat conduction in the material. 
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The correlation coefficients between the temperature and the applied force were 

computed and illustrated in Table 5.17. Both positive and negative coefficients were 

seen, of which the absolute value varies between 0.0285 to 0.913. This suggested that 

a linear relationship was not identified between the temperature and the applied force. 

For each cutting setting, the temperatures obtained under different applied force were 

averaged with an attempt to compare the overall surface and internal temperature 

between different cutting angles and cutting samples. As shown in Table 5.17, the 

lowest and highest average temperature was 97°C and 288°C respectively, which was 

observed in the cases of angle cut cellular foam, and side cut solid foam, respectively. 

For either type of material, the average temperature in the case of side cut was higher 

than axial cut and angle cut. It implied that the side cut may be a less favourable 

option when attempting to minimise the cutting temperature. This may be partly 

ascribed to the non-uniformly distributed vibration amplitude along the cutting edge. 

As illustrated in Figure 5.40, according to the longitudinal deformed mode shape of 

the blade, the maximum vibration amplitude appears at the tip of the blade. The 

amplitude decreases quickly along the cutting edge. In the side cut setting, the 

difference in vibration amplitude may result in difference in cutting effect and 

increased heat accumulation at the cutting site. Nevertheless, taking into account the 

fact that the average temperatures were above 100°C in most cases, the blade was 

considered not suitable for bone cutting without the application of cooling. 

 

 

a) Axial Cut                               b) Angle Cut                                 c) Side Cut 

Figure 5.54 Surface Temperature 
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a) Axial Cut                                b) Angle Cut                            c) Side Cut 

Figure 5.55 Internal Temperature 

Cutting Setting Correlation Coefficient 
Average  

Temperature (°C) 

Angle Material Surface Internal Surface Internal 

Axial Cut 

Solid -0.392 -0.274 154 141 

Cellular -0.672 -0.367 171 133 

Laminated -0.575 -0.851 234 127 

Angle Cut 

Solid -0.795 0.0284 106 137 

Cellular -0.581 -0.768 97 126 

Laminated -0.913 -0.701 116 141 

Side Cut 

Solid -0.880 -0.213 288 188 

Cellular 0.722 -0.661 260 140 

Laminated -0.832 -0.288 248 163 

Table 5.17 Correlation Coefficients and Average Temperature 

 

 

a) Axial Cut                                      b) Angle Cut 

Figure 5.56 Internal Temperature vs Cutting Depth & Time 
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5.3.5.2 Test II: Ultrasonic Cutting of Biomechanical Samples under Slide Motion 

A sliding motion was introduced in Test II. The test used a rig which resembled the 

one in Test I except that it was assembled with a sliding holder driven by an electrical 

motor, as illustrated in Figure 5.57 and Figure 5.58. In this test, the cutting sample 

was fixed on the sliding holder with a load applied on the blade in the same way as 

Test I. During ultrasonic cutting, instead of allowing the blade to cut into the sample 

freely, the sample was moved at a constant speed, resulting in an incision on its 

surface. This was a movement more similar to the motion repeated in normal cutting. 

Benefiting from sliding, Test II avoided the problems of debris accumulating at the 

cut site. 

 

Figure 5.57 Test Rig 
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Figure 5.58 Experimental Setup 

Ultrasonic cutting was performed in two ways, perpendicular cut and angle cut, as 

illustrated in Figure 5.59. Figure 5.59(a) shows the setting for perpendicular cut, 

where the blade was placed perpendicular to the sliding direction, allowing only the 

blade tip to be involved in cutting. Figure 5.59(b) illustrates the setting for angle cut, 

where the blade was placed at an angle of 30° to the sample surface, enabling the 

involvement of the cutting edge in ultrasonic cutting. Particularly, for the serrated 

blade, this means the serrations could be used in the tests. In either way, the force was 

applied perpendicular to the sample surface. 

All three blades, blunt, sharp and serrated, were used to cut the solid and cellular foam 

biomechanical materials in the test. The blades were excited by the same transducer at 

the same power setting which resulted in a vibration amplitude of 40µm at the blade 

tip. Ultrasonic cutting was performed under a constant applied force and a sliding 

motion of 0.9mm/s, which simulated the condition of a typical cutting action in 

surgical operations. Details of the cutting settings are shown in Table 5.18. 
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a) Perpendicular Cut                                           b) Angle Cut 

Figure 5.59 Cutting Setting 

Item Value / Remark 

Cutting Sample Biomechanical Material, Solid Foam and Cellular Foam 

Cutting Blade Blade III (serrated), Blade IV (sharp) and Blade V (blunt) 

Cutting Style Perpendicular Cutting, 30° Angle Cutting 

Applied Force 1N, 2N, 4N, 6N, 8N, 10N 

Sliding Speed 0.9mm/s 

Sliding Distance 65mm 

Table 5.18 Cutting Settings 

The incisions made by different blades under different cutting settings are illustrated 

in Figure 5.60. The depth of the incisions varied between 0.3mm-2.5mm. The depth 

achieved in cellular foam was significantly higher than their counterparts in solid 

foam, and for both materials, cutting depth increased with force. In the cases of angle 

cuts, where serrations could be involved in the cutting, incisions were notably deeper 

than those cut by the other blades, suggesting that improved cutting performance was 

achieved by the serrated blade. This was also confirmed by repeating the ultrasonic 

cutting manually, which again saw enhanced cutting effects using the serrated blade. 
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Figure 5.60 Incisions under Different Cutting Settings 
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Similar to Test I, the temperature around the cutting site was measured by a thermal 

camera focusing on the cutting spot, as shown in Figure 5.57 and Figure 5.61. As the 

cutting depth was low comparing to the size of the blade, the blade tip, which 

contacted with the sample in cutting, was visible to the thermal camera. Also as the 

sliding motion avoided debris accumulation in cutting, there was less chance that the 

view of the cutting site was blocked by the debris. Therefore it is expected that Test II 

allowed an improved temperature measurement for ultrasonic cutting. The maximum 

temperature measured around the cutting site was recorded for each test and was 

referred to as the surface temperature. 

 

Figure 5.61 Cutting Temperature Measurement 

The surface temperatures obtained for different cutting settings are illustrated in 

Figure 5.62. Each cutting test was repeated five times with the same settings. The 

maximum and average standard deviation of the temperature data for all tests was 

9.5°C and 2.8°C, respectively, and the relative error was 1.2%-3.8%, which showed 

that the measurement errors were lower than the case of Test I. 

The highest surface temperature observed in the cutting was 159°C, and the lowest 

was 62°C. Figure 5.62 illustrates that under the same cutting setting, the temperature 

increased as the applied was increasing. The correlation coefficient between the 

temperature and the applied force was calculated and shown in Table 5.19. The 

coefficients were greater than 0.9 in all tests, except for the case of angle cut 

performed by sharp blade on cellular foam, where the coefficient was 0.871. This 

suggested a significant positive linear correlation between the applied force and the 

surface temperature. Therefore, a linear model 
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T=aF+b                                                         (5.7) 

was used to characterise the relationship between these two variables, where T is the 

surface temperature (°C), F is the applied force (N), a and b are parameters of the 

model. Parameter a and b were estimated using the method of least squares and their 

values are shown in Table 5.19. Parameter a is associated with the increase rate of 

temperature. Among the tests, both the largest increase rate and the lowest increase 

rate were achieved by the serrated blade. The former was 9.00°C/N, which was seen in 

the case of perpendicular cut on solid foam, and the latter was just 2.11°C/N, which 

was seen in the case of angle cut on solid foam. For all cutting settings, the 

temperature exceeded 80°C when the applied force was greater than 2N. This is a high 

temperature that could cause thermal damage in bone. For this reason, it is considered 

that all of the blades require the application of cooling in surgical bone cutting. 

 

 

Figure 5.62 Cutting Temperature 
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Cutting Setting Correlation 
Coefficient 

Model Parameter 

Angle/Material Blade a b 

Perpendicular 
Solid Foam 

Blunt 0.909 2.76 93.0 

Sharp 0.949 2.77 126.1 

Serrated 0.980 9.00 67.8 

Perpendicular 
Cellular Foam 

Blunt 0.928 3.36 102.1 

Sharp 0.925 4.17 115.6 

Serrated 0.934 2.85 118.3 

Angle Cut 
Solid Foam 

Blunt 0.919 5.00 99.2 

Sharp 0.955 3.69 98.8 

Serrated 0.913 2.11 103.3 

Angle Cut 
Cellular Foam 

Blunt 0.922 4.23 102.3 

Sharp 0.871 5.02 106.6 

Serrated 0.930 3.96 88.7 

Table 5.19 Correlation Coefficients and Model Parameters 

5.3.5.3 Test III: Ultrasonic Bone Cutting Test 

Test I and Test II investigated the blade performance using biomechanical samples. 

Due to the nature of the material, the samples could not fully replicate the properties 

and reveal the behaviour of real bones in cutting tests. In view of this, Test III was 

conducted on fresh animal bones. For the reason of sample availability, cutting was 

performed on bones taken from rat legs, which were freshly prepared a few hours 

before the experiment. All three blades shown in Figure 5.47 were used in the cutting 

tests. 

         
a) Cutting without Cooling                             b) Cutting with Cooling 

Figure 5.63 Ultrasonic Cutting of Rat Bones 
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As illustrated in Figure 5.63, a rat bone was clamped in a holder and ultrasonic cutting 

was performed manually. All the blades were excited using the same power setting as 

in Test II. To compare the cutting effects, tests were carried out in two ways: without 

cooling and with cooling. Figure 5.63(b) illustrates applying cooling during cutting. 

Water at room temperature was guided by a pipe and ejected directly at the cutting 

site. This also helped to wash away the debris generated at the cutting site. 

          
a) Without Cooling                                            b) With Cooling 

 

c) Cross Profile of Sample Cut with Cooling 

Figure 5.64 Bone Samples after Cutting 

All of the blades performed ultrasonic cutting smoothly and effectively with very low 

force required. Enhanced cutting performance was found in the serrated blade. The 

cutting was faster yet as smooth as other blades. For all blades, some smoke was 

emitted when no cooling was applied during cutting, indicating high cutting 

temperatures. The bones were inspected after cutting, which showed notable burning 

around the incision. Figure 5.64(a) illustrates the condition of the bone cut by the 

blunt blade. It clearly shows the occurrence of heat damage on the bone that should be 

avoided in surgical applications. 

This problem was improved significantly when cooling was applied. The coolant 

eliminated the smoke, resulting in a clean and smooth cut with no sign of burning, as 



212 

shown in Figure 5.64(b) and Figure 5.64(c). This was observed in the case of all 

blades. The temperature of the bone was measured by a thermal camera during the 

cutting. Figure 5.65 shows thermal image from a test using the serrated blade. When 

no cooling was applied, the cutting temperature reached over 100°C, as illustrated in 

Figure 5.65(a). However, when cooling was applied, as shown in Figure 5.65(b), the 

temperature at the cutting site was kept around room temperature. Similar results were 

observed in the case of the blunt and sharp blades. This test confirmed that the 

fabricated blades were able to deliver satisfactory cutting performance as long as 

cooling was applied. 

           

a) Without Cooling                                                 b) With Cooling 

Figure 5.65 Temperature Measurement (Serrated Blade) 

5.3.6 Summary 

Section 5.3 presented the application of the optimal design method and the tests of 

three ultrasonic blades. The optimal method was applied to design a serrated blade 

with an attempt to deliver a solution aimed at low material stress, adequate modal 

distance and blade gain. Based on the performance indicators introduced in Chapter 5, 

the optimisation was carried out using an exhaustive algorithm and a graphic method. 

The designs in the optimisation space were evaluated, and the disqualified designs 

were filtered out. The optimal design, Blade III, was obtained by applying the optimal 

target, which selected the design with the lowest stress. 

The obtained solution was considered to be the optimal result in terms of the defined 

performance. However, the optimal target and constraints concerned in this study only 

focused on the dynamic characteristics of a blade. Other performance indicators such 
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as heat generation and cutting efficiency were not taken into account in the 

optimisation. 

Blade III was manufactured and tested. Although it was not possible to verify all the 

indicators and the optimality of the design, due to the limitation of measurement, 

impedance analysis and EMA confirmed that the blade exhibited the expected modal 

behaviour. The blade was tuned correctly with sufficient gain and the working mode 

was appropriately frequency separated from other undesired modes. It worked stably 

and performed ultrasonic cutting effectively. This showed that the blade was 

successfully designed using the optimal design method. 

Two more blades (Blade IV and Blade V) were fabricated by replacing the serrations 

of Blade III with sharp and blunt edges respectively, aiming to compare the influence 

of the cutting edges. The tests conducted using these blades are summarised in Table 

5.20. 

 Cutting Blades Remark 

Test I Blade V 
Ultrasonic cutting of biomechanical samples under 
static load. 

Test II Blade III, IV and V 
Ultrasonic cutting of biomechanical samples under 
sliding motion. 

Test III Blade III, IV and V Ultrasonic cutting of rat leg bones. 

Table 5.20 Ultrasonic Cutting Tests 

Test I showed that there is a positive linear correlation between the applied force and 

the cutting speed under the same cutting angle and on the same cutting sample. A 

linear model was applied to characterise this relationship and the model parameters 

were evaluated using the test data. The test confirmed that under the same cutting 

angle and applied force, the highest cutting speed was achieved in cellular foam, 

where the material strength is low, and the lowest speed was seen in solid foam, 

where the material strength is high. However, no conclusion was drawn for the 

relationship between the cutting angle and the cutting speed. Test I also measured the 

temperature around the cutting site using a thermocouple and a thermal camera. 
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Average temperatures of over 100°C were seen in most tests, which suggested that the 

blade is not suitable for bone cutting without the application of cooling. 

Test II introduced sliding motion in ultrasonic cutting. Notably deeper incisions were 

made by the serrated blade under the same cutting setting, which showed that the 

serrations enhanced the cutting performance. Measurement of the temperature around 

the cutting site identified a positive linear correlation between the applied force and 

the surface temperature under the same cutting settings, which was characterised 

using a linear model. For all blades, temperatures over 80°C were observed when the 

applied force was larger than 2N. This suggested that all three blades require the 

application of cooling in ultrasonic bone cutting. 

The cutting performance of the blades was further tested in Test III using fresh rat 

bones. All blades achieved effective cutting in the tests without the requirement of 

large applied force. The tests confirmed again that the serrations enhanced the cutting. 

For all blades, although high temperature and notable burning were seen on the bone 

when no cooling was applied, the cutting was satisfactory when cooling was applied. 

This showed that the blades were designed with the desired performance. 

5.4 Discussion 

This chapter presented the design and tests of five ultrasonic bone cutting blades, 

among which Blade I and Blade II were designed using the conventional method, 

Blade III was designed using the proposed optimal method, and Blade IV and Blade V 

were fabricated based on the design of Blade III by incorporating cutting edges of 

different shapes. Table 5.21 summarised the basic information of these blades. 

 Cutting Edge Design Method 

Blade I Sharp Conventional 

Blade II Serrated Conventional 

Blade III Serrated Optimal 

Blade IV Sharp Same profile as Blade III 

Blade V Blunt Same profile as Blade III. 

Table 5.21 Ultrasonic Blades 



215 

The design of Blade I and Blade II showed that evaluating the dynamic and vibration 

characteristics of an ultrasonic blade is of great importance in the design process. The 

characteristics concerned in this study include vibration modes, gain and stress, which 

were also the basis of the concept of performance indicators in the optimal design 

method. The vibration modes, especially the working mode, determine whether a 

blade can be excited properly for ultrasonic cutting, and were investigated in the 

design using EMA verified FEA. As both Blade I and Blade II were designed using 

the conventional method, it relied on the designer to adjust the working mode to the 

correct frequency by modifying the blade profile repeatedly. The frequency separation 

between the working mode and non-working modes was given consideration in the 

design. It is expected that the influence of the non-working modes on the working 

mode can be minimised by allowing sufficient frequency separation between the 

working and non-working modes. The EMA and cutting tests of Blade I showed that 

this strategy was effective. No modal interaction was observed for the working mode 

in EMA and the blade worked stably in ultrasonic cutting. 

Stress analysis was another important part of the design, whose aim was to ensure the 

blade has adequate strength to work reliably in ultrasonic cutting. As an ultrasonic 

blade is subjected to high frequency periodic deformation in cutting, material fatigue 

was considered more likely to cause blade failure. For this reason, this study proposed 

a strength criterion based on the material fatigue limit. Although it is more 

conservative than the criterion using the tensile strength, the successful cutting tests of 

Blade I and the failure of Blade II suggested that it is an effective criterion. 

As Blade I and Blade II were designed using the conventional design process, the 

main job of the design was to adjust the characteristics of the blade by modifying its 

geometry, especially the lengths of the blade sections, until a satisfactory design is 

obtained. This is a procedure heavily relying on the designer's experience and 

intuition. Also it was a challenge to optimise the modal frequencies and minimise the 

blade stress at the same time. This demonstrated that there is a need to further 

improve the conventional design method. 

Blade III was designed using the proposed optimal design method. The introduction 

of blade performance indicators and the implementation of the optimal design method 

are major contributions of this study. The performance indicators are the basis of the 
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optimal design method as they serve as the bridge between the real world problem and 

the mathematical algorithm. Three types of performance indicators, the modal 

distance, maximum stress and gains, were used. They were considered to be capable 

of evaluating the main vibration characteristics of Blade III as their basic principles 

are similar to the analysis method applied in the design of Blade I and Blade II. The 

optimisation constraints and the objective function represented using the performance 

indicators are in fact a mathematical abstraction of a blade design concept. This study 

demonstrated that formulating the design problem of an ultrasonic blade using this 

abstraction allows the optimisation algorithms to implement the design process in a 

way that reflects the designer's expectations and requirements. 

The basic principle of the design of Blade III was to maximise the overall 

performance of the blade through the optimisation of vibration characteristics 

measured in terms of performance indicators. This was implemented using a process 

including evaluating indicators, filtering out disqualified designs and selecting the 

optimal candidate. The optimisation was carried out on the basis of three adjustable 

geometry parameters using an exhaustive algorithm. However, it is possible to extend 

this by including more adjustable geometry parameters to improve the flexibility of 

design, and applying other optimisation algorithms to increase computing efficiency. 

The calculation of indicators is the most time consuming procedure in the optimal 

design process. As a large number of designs are examined in the optimisation, 

performing thorough analysis on every single design can require a considerable 

amount of time. Although in the case of Blade III all performance indicators were 

calculated using FEA, it is also possible to compute the tuned frequency, modal 

distance and gains, using the analytical model introduced in Chapter 3, which is faster 

than FEA as its calculation is based on a one-dimension model instead of a 3D 

meshed FE model. Using the analytical model to quickly filter out disqualified 

designs before performing detailed FEA can be a feasible solution to reduce the total 

computing time without compromising the accuracy of analysis, especially when the 

searching space of optimisation is large. 

Although the cutting performance of Blade III was not directly optimised in the 

design process, it was studied by comparing the cutting effects between different 

cutting edges. Three types of cutting edges, blunt, sharp and serrated, were studied. 
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The tests of Blade IV and Blade V showed that altering the cutting edges did not 

result in significant changes in the blade vibration characteristics. This suggested that, 

on the basis of the optimised design, the optimisation of the cutting performance can 

be further carried out by selecting the cutting edges that fit the most for a specific 

application. Cutting tests using biomechanical samples and fresh rat bones showed 

that enhanced cutting was achieved by the serrated blade. However, as cutting debris 

can adhere to the serrations, the serrated cutting edge may bring about difficulties for 

post-surgery sterilisation. This disadvantage is less significant in blunt and sharp 

blades. The blunt blades can further benefit from low maintenance requirements as the 

wearing has less influence on the shape of its cutting edges. 

This study showed that the proposed optimal design method is an effective approach 

to design ultrasonic bone cutting blades. Comparing with the conventional design 

method, this method can improve the quality of design as it applies performance 

indicators and optimisation algorithms rather than the designer's experience and 

intuition in the design process, which makes it possible to find the solution with the 

most desired performance from a large number of candidate designs. Defining the 

right performance indicators and applying appropriate constraints according to the 

design requirements are crucial to the optimisation. The performance indicators 

proposed in this study were demonstrated to be effective, although they focused only 

on the dynamic characteristics of an ultrasonic blade. However, using similar 

principles, other types of performance indicators can be constructed to evaluate other 

characteristics of interest. Moreover, although the optimal design method is proposed 

for ultrasonic blades, it is also applicable for other ultrasonic devices, such as horns 

and dies, as long as appropriate performance indicators are applied. 
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Chapter 6 
Conclusions and Further Work 

The research carried out within this thesis focused on the modelling and design of 

ultrasonic bone cutting blades. The aim of the modelling was to better understand the 

dynamic characteristics of ultrasonic blades and provide useful information for the 

design and application of ultrasonic bone cutting devices. The thesis proposed a non-

coupled analytical model, two coupled analytical models and an optimal design 

method. Five ultrasonic blades were designed, manufactured and tested. The advances 

and innovations made during the research are summarised in the following sections. 

6.1 Conclusions 

6.1.1 Analytical Modelling of Ultrasonic Blades 

(1) Modelling of Non-coupled Vibration 

Four modes of vibration in ultrasonic blades, including longitudinal oscillation, 

flexural bending, lateral bending, and torsional vibration, were modelled based on 

non-coupled one-dimensional theories. It is assumed that these modes of vibration are 

independent of each other and no interaction occurs between them, which enabled 

vibration modelling with respect to each mode of vibration. Based on the one-

dimensional theories, the profile of the ultrasonic blade was represented using shape 

functions with a single variable, allowing a straightforward and concise way of 

vibration study. The obtained models were second order partial differential equations 

for longitudinal and torsional vibration, and fourth order partial differential equations 

for flexural and lateral bending vibration. They were further formulated into a natural 

modal frequency problem and a mode shape function problem using finite difference 

method, which can be used to characterise the modal behaviour of an ultrasonic blade. 

Through the case study of a uniform beam and an ultrasonic cutting blade, it is 

showed that this analytical modelling method (referred to as AM) was able to predict 

the longitudinal and bending modal frequencies with satisfactory accuracy. The 

average difference of modal frequencies between AM and EMA was 3.6% in the case 

of uniform beam and 4.4% in the case of ultrasonic blade, which suggested that AM 
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can be used as an alternative method to FEA to compute the modal frequencies of 

ultrasonic blades. As AM applies a one-dimensional model in the calculation, AM can 

be used for quick performance estimation in the early stage of the design process 

without constructing and meshing a 3D FE model. It can also be used to reduce the 

computing time for applications dealing with a large number of designs. 

(2) Modelling of Coupled Vibration 

Two models, a parametric vibration model and a longitudinal-bending coupled 

vibration model, were proposed to investigate the coupled vibration of ultrasonic 

blades. The parametric vibration model formulated the motion of a lumped mass beam 

in a four degree of freedom space using a one-dimensional structure. Such a system 

was able to exhibit coupled bending and torsional motion under a longitudinal 

excitation as a result of its slender shape and the effect of the lumped end mass. The 

interaction mechanism between these motions was obtained through the geometry 

restrictions of the structure, such as the relationship between the curvatures and 

displacements, whereby the governing equations of vibration were derived by means 

of Lagrangian dynamics. Although the parametric vibration and modal coupling 

behaviour was formulated using a system of relatively simple structure, this model 

resulted in governing equations of considerable complexity for which closed form 

solutions are unlikely to be obtained. Apart from that, due to the geometry difference 

between a beam with lumped mass and a structure of tapered profile, difficulties may 

arise when determining the necessary parameters for the model. For this reason, it is 

more appropriate to use this model for the purposes of theoretical study instead of 

performance prediction. 

In addition, the longitudinal-bending coupled model was proposed with an attempt to 

understand a type of coupled vibration that is commonly observed in ultrasonic blades 

of beam-like profile. Similar to the non-coupled vibration models, the application of 

one-dimensional theories allowed a relatively straightforward form of modelling. 

Based on the assumption that the longitudinal motion is normally much stronger than 

the bending vibration, the coupled vibration problem was simplified by ignoring the 

effects that bending exerts on the longitudinal motion. As a result, the longitudinal 

motion was free from coupling and the bending vibration was modelled by 
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introducing an extra rotation moment. This resulted in a fourth order time-dependent 

partial differential equation, which is in effect a parametric vibration system. 

The model can be solved using two numerical iteration approaches, namely the 11-

point and 27-point stencil method respectively. The error analysis confirmed that for 

both methods, it is possible to keep the truncation error within an acceptable range by 

applying proper calculation parameters, including the spatial step and the computing 

time interval. The 27-point stencil has an improved accuracy over the 11-point stencil, 

though its iteration equation is of more complicated form. The case study of a uniform 

beam showed that the proposed model provides an approach to study the interaction 

between the longitudinal and bending vibration in ultrasonic blades. 

6.1.2 Proposal of the Optimal Design Method 

An optimal design method was proposed to improve the conventional design process 

of ultrasonic blades. The basic concept of this method was to use mathematical 

algorithms instead of designers' experience and intuition to update and optimise blade 

designs during the design process. This can improve the design quality by making 

sure the most desired characteristics are achieved. The main innovation of this method 

is the introduction of blade performance indicators, which bridges the real world 

design problem and the mathematical algorithms. Four kinds of indicators were 

defined in this study: the frequency based, gain based, displacement based and stress 

based indicators, which were classified according to their nature. They characterise 

the typical dynamic features that are of interest in the design of ultrasonic blades. 

Apart from them, it is possible to define other types of performance indicators using 

the concepts proposed in this study. 

The process of the optimal design method is to maximise the blade performance 

through the optimisation of the performance indicators. This can be done in three 

major stages: formulation, optimisation and verification. The implementation of the 

method was detailed based on the proposed indicators. A software toolkit which 

enabled the application of the method in design applications was developed using 

Abaqus script interface and Python language, which offers functions including blade 

model generating, indicator computing and extracting, and optimisation control. 

Specific optimisation algorithms were not implemented in this toolkit. Instead, an 
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interface was provided to allow algorithm embedding in a later stage of the 

application. 

6.1.3 Design of Ultrasonic Bone Cutting Blades 

Five ultrasonic bone cutting blades were designed in this thesis. Blade I and Blade II 

were designed using the conventional method, Blade III was designed using the 

optimal design method, Blade IV and Blade V were made based on the same design 

of Blade III by incorporating different cutting edges. 

The modal behaviour and material stress were major concerns in the designing of 

Blade I and Blade II, which were investigated using EMA verified FEA. The 

impedance analysis and EMA showed that both blades were designed with the 

expected vibration characteristics. Blade I worked stably and Blade II failed in the 

cutting test as predicted due to insufficient strength. Cutting tests of Blade I confirmed 

that the blade was capable of performing ultrasonic cutting on biomechanical material 

and ovine femur. Clear incisions were made on both materials. However, high 

temperature was measured at the cutting site and burning was observed in the incision 

of ovine femur, which implied that Blade I was not suitable for use in surgical 

applications without the application of cooling. This study suggested that the modal 

analysis and the stress criterion applied in the design were effective, and a satisfactory 

blade design can be achieved by making sure the desired dynamic characteristics are 

obtained.  

The optimal design method proposed in this research was applied to design Blade III 

with an attempt to deliver a solution aimed at low material stress, adequate modal 

distance and blade gain. Six performance indicators were used to evaluate the 

dynamic characteristics of the blade, and the optimisation was carried out using an 

exhaustive algorithm and a graphic method. The impedance analysis and EMA 

showed that the blade exhibited the expected modal behaviour. The blade was tuned 

correctly with sufficient gain and modal distance. It worked stably and performed 

ultrasonic cutting effectively. Although it was not possible to verify all indicators and 

the optimality of the design, due to the limitation of measurement, the case of Blade 

III confirmed that ultrasonic blades with satisfactory performance can be designed 

effectively using the proposed optimal design method. 
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Blade IV and Blade V were fabricated based on the same design of Blade III by 

replacing the serrations with sharp and blunt edges respectively, which enabled the 

comparison of cutting performance between different cutting edges. The tests of 

Blade IV and Blade V showed only insignificant changes in the vibration 

characteristics of the blades, suggesting that the optimisation of cutting performance 

can be further carried out on the basis of an optimised design by selecting the cutting 

edges that fit the most for a specific application. 

Blade III, Blade IV and Blade V were subjected to ultrasonic cutting tests. The tests 

performed under static load showed that there is a positive linear correlation between 

the applied force and the cutting speed under the same cutting angle and cutting 

sample, which was characterised using a linear model. Although no conclusion was 

drawn for the relationship between the cutting angle and the cutting speed, the tests 

confirmed that under the same cutting settings higher cutting speed can be achieved in 

lower strength material. In terms of cutting temperature, average internal and surface 

temperatures over 100°C were measured in most tests. 

The depths of incisions made by different cutting edges under the same cutting 

settings were compared in the ultrasonic cutting tests performed under sliding motion, 

which showed that enhanced cutting performance was achieved by the serrated blade. 

A positive linear correlation between the applied force and the surface temperature 

around the cutting site was identified and characterised using a linear model. For all 

blades, temperatures over 80°C were observed when the applied force was larger than 

2N, which suggested that these blades require the application of cooling in ultrasonic 

bone cutting. 

Ultrasonic cutting tests performed on fresh rat bones confirmed again that the 

serrations enhanced the cutting effects. However, as cutting debris can adhere to the 

serrations, the serrated edges may bring about difficulties for post-surgical 

sterilisation. For all three blades, although high temperature and notable burning were 

seen on the bone when no cooling was applied, the incisions were clear and 

satisfactory cutting was achieved when cooling was applied. As a conclusion, the tests 

showed that these blades were successfully designed with the expected performance. 
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6.2 Further Work 

The following recommendations are suggested to further expand the work of this 

thesis. 

(1) Application of the Non-coupled Analytical Model 

Although the non-coupled analytical model was proposed and studied using the case 

of a uniform beam and an ultrasonic blade, the model was not applied in the design 

process of ultrasonic blades. However, it is possible to use this model as a fast 

predictor in either the conventional or the optimal design method. In addition, more 

works are needed to further study the accuracy of this model, especially when 

modelling ultrasonic devices with complex profile. 

(2) Improving the Longitudinal-Bending Coupled Analytical Model 

The longitudinal-bending coupled analytical model ignored the coupling effects of the 

longitudinal vibration by assuming that the longitudinal vibration is significantly 

stronger than the bending motion. Although this simplified the derivation, it may not 

be a satisfactory approximation in certain cases. An option to improve this is to take 

into account the coupling effects in both longitudinal and bending vibration. In 

addition, to apply this model for design applications, more research is needed to 

address the problems such as determination of the initial bending state, incorporation 

of damping, and convergence of the calculation. 

(3) Research of Performance Indicators 

The performance indicators proposed in this thesis focused only on the main dynamic 

characteristics of ultrasonic blades. However, it is usually of great interest to 

understand and optimise other performance in the design process of a blade, such as 

heat generation and cutting efficiency. Therefore, more research can be addressed on 

constructing other types of performance indicators to enable more control over the 

blade performance in the design. 

(4) Optimisation of Ultrasonic Blades 

This study demonstrated the effectiveness of the optimal design method through the 

design and tests of an ultrasonic blade. The design was a simplified case where only 
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three free geometry parameters were considered, which allowed the application of an 

exhaustive algorithm and a graphic method to demonstrate the optimisation. For more 

complicated design problem, it is recommended to increase the number of free 

geometry parameters to allow more flexibility of design and apply appropriate 

optimisation algorithms to improve the efficiency of computing. In addition, although 

the method was proposed for ultrasonic cutting blades, the optimal design method can 

be further extended for the design of other ultrasonic devices, such as horns and 

transducers, by formulating the design concept properly and applying the appropriate 

performance indicators. 

(5) Incorporating Bone in Modelling 

This research focused on the behaviour of ultrasonic blade only. However, as 

ultrasonic bone cutting is a complex process involving both the blade and bone, 

modelling the blade only would not provide sufficient information for the 

optimisation of the entire cutting process and cutting effects. Therefore it is suggested 

that the bone can be incorporated in the analysis in future research. This would enable 

the calculation of heat generation and cutting efficiency through simulation, and also 

allow the optimisation of the blade design with respect to the whole cutting system 

and specific surgical application. 

(6) Cooling and Irrigation 

As suggested in the cutting experiments, for practical surgical applications, the 

ultrasonic blades should be working with the application of appropriate cooling. One 

possible solution would be integrating irrigation system in the blade design, for 

example adopting a design with built-in irrigation guide and nozzle. Further research 

can be devoted to the design of such irrigation facility inside the blade, and study the 

influence of the introduced structure on the blade vibration. 
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Appendix 

A.1 Undetermined Coefficient Method 

The method of undetermined coefficient can be used to derive the finite difference 

approximation for a differential expression based on a set of given points [135]. The 

basic idea of this method is to assign an undetermined coefficient for each term of the 

difference approximation. Using Taylor series to expand these terms, these 

coefficients can be determined by comparing the similar items to the original 

differential expression. 

Suppose f'(x) is approximated based on f(x+2h), f(x+h), f(x), f(x-h), and f(x-2h), of the 

form 

1 2 3 4 5( ) ( 2 ) ( ) ( ) ( ) ( 2 )D f a f x h a f x h a f x a f x h a f x h                  (7.1) 

Expanding each term in the right side of Eq. (7.1) using Taylor series yields 

2 3 4 51 1 1
( ) ( ) ( ) ( ) ( ) ( ) ( )

2 6 24
f x h f x hf x h f x h f x h f x O h                  (7.2) 

2 3 4 51 1 1
( ) ( ) ( ) ( ) ( ) ( ) ( )

2 6 24
f x h f x hf x h f x h f x h f x O h                   (7.3) 
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f x h f x hf x h f x h f x h f x O h                  (7.4) 

2 3 4 54 2
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By applying Eq. (7.2)-(7.5) into Eq. (7.1) one obtains 
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2 3
1 2 3 4 5 1 2 3 4 5

4 5
1 2 3 4 5

( ) ( ) ( ) (2 2 ) ( )

1 1 4 1 1 4
(4 4 ) ( ) ( ) ( )

2 2 3 6 6 3

2 1 1 2
( ) ( ) ( )
3 24 24 3

D f a a a a a f x a a a a a hf x

a a a a a h f x a a a a a h f x

a a a a a h f x O h

         

          
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(7.6) 

To use Eq. (7.6) as an approximate of f'(x), the following equations should be satisfied 

1 2 3 4 5 0a a a a a                                                          (7.7) 
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1 2 3 4 5(2 2 ) 1a a a a a h                                                    (7.8) 
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Therefore Eq. (7.1) can be written as 

1
( ) [ ( 2 ) 8 ( ) 8 ( ) ( 2 )]

12
D f f x h f x h f x h f x h

h
                     (7.13) 

From Eq. (7.6) it can be seen that the truncation error of this approximation is of 

5( )O h . Similarly, it is also possible to use other sets of points to approximate other 

derivatives or differential expressions. 
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A.2 Selected Matlab Script for One Dimensional Analytical 
Modelling 

% This function calculates the moment inertia vector of 
the structure 
function Ia=XMomentInertia(x) 

h=Thickness(x); 
Ia=x; 
[a,b]=size(x); 
 
pi=3.1415926545; 
% Geometric parameters La, Lb, Lc, Ld, Le, h1, h2, D1, 
D2 defined 
 
for j=1:a 
    for i=1:b 
        if x(j,i)>C 
            Ia(j,i)=h(j,i)^3*sqrt(D2^2-

h(j,i)^2)/16+(D2^4*asin(h(j,i)/D2)-
D2^2*h(j,i)*sqrt(D2^2-h(j,i)^2))/32; 

        else 
            Ia(j,i)=pi*h(j,i)^4/64; 
        end 
    end 
end 

 

% This function calculates the cross section area vector 
of the structure 
function S=CrossSecArea(x) 

h=Thickness(x); 
S=x; 
[a,b]=size(x); 
 
pi=3.1415926545; 
% Geometric parameters La, Lb, Lc, Ld, Le, h1, h2, D1, 

D2 defined 
 
for j=1:a 
    for i=1:b 
        if x(j,i)>C 
            S(j,i)=abs((h(j,i)*sqrt(D2*D2-

h(j,i)*h(j,i))+D2*D2*asin(h(j,i)/D2)))/2; 
        else 
            S(j,i)=pi*h(j,i)*h(j,i)/4; 
        end 
    end 
end 
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% This function is used to search for the modal frequency 
of the bending modes 
function F=FindBModalFreq(Ix, Sa, Ea, den, L, fmin, fmax, 
fstep, N, lBC, rBC) 
 

if N<1 
    return 
end 
 
MSize=N+5; 
A=sparse(MSize,MSize); 
B=sparse(MSize,MSize); 
 
h=L/N; 
h2=L*L/(N*N); 
pi2=3.1415926545*2; 
Ia=@(k)Ix((k)*h); 
S=@(k)Sa((k)*h); 
 
Kn2a=@(k)Ea*Ia(k-1); 
Kn1a=@(k)-2*Ea*(Ia(k-1)+Ia(k)); 
Kn1b=@(k)den*h2*Ia(k-0.5); 
Koa=@(k)Ea*(Ia(k-1)+4*Ia(k)+Ia(k+1)); 
Kob=@(k)-den*h2*(Ia(k-0.5)+Ia(k+0.5)+h2*S(k)); 
Kp1a=@(k)-2*Ea*(Ia(k)+Ia(k+1)); 
Kp1b=@(k)den*h2*Ia(k+0.5); 
Kp2a=@(k)Ea*Ia(k+1); 
 
if strcmp(lBC,'Free') 
    A(1,2)=1; 
    A(1,3)=-2; 
    A(1,4)=1; 
    A(2,1)=-1; 
    A(2,2)=2; 
    A(2,4)=-2; 
    A(2,5)=1; 
elseif strcmp(lBC,'Hinged') 
    A(1,3)=1; 
    A(2,2)=1; 
    A(2,3)=-2; 
    A(2,4)=1; 
elseif strcmp(lBC,'Float') 
    A(1,2)=-1; 
    A(1,4)=1; 
    A(2,2)=1; 
    A(2,3)=-2; 
    A(2,4)=1; 
elseif strcmp(lBC,'Clamped') 
    A(1,3)=1; 
    A(2,2)=-1; 
    A(2,4)=1; 
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else 
    disp('Left Boundary Condition Error!'); 
    return; 
end 
 
if strcmp(rBC,'Free') 
    A(MSize,MSize)=1; 
    A(MSize,MSize-1)=-2; 
    A(MSize,MSize-3)=2; 
    A(MSize,MSize-4)=-1; 
    A(MSize-1,MSize-1)=1; 
    A(MSize-1,MSize-2)=-2; 
    A(MSize-1,MSize-3)=1; 
elseif strcmp(rBC,'Hinged') 
    A(MSize,MSize-1)=1; 
    A(MSize,MSize-2)=-2; 
    A(MSize,MSize-3)=1; 
    A(MSize-1,MSize-2)=1; 
elseif strcmp(rBC,'Float') 
    A(MSize,MSize-1)=1; 
    A(MSize,MSize-2)=-2; 
    A(MSize,MSize-3)=1; 
    A(MSize-1,MSize-1)=1; 
    A(MSize-1,MSize-3)=-1; 
elseif strcmp(rBC,'Clamped') 
    A(MSize,MSize-1)=1; 
    A(MSize,MSize-3)=-1; 
    A(MSize-1,MSize-2)=1; 
else 
    disp('Right Boundary Condition Error!'); 
    return; 
end 
 
for i=0:N 
    j=i+3; 
    A(j,j-2)=Kn2a(i); 
    A(j,j-1)=Kn1a(i); 
    A(j,j)=Koa(i); 
    A(j,j+1)=Kp1a(i); 
    A(j,j+2)=Kp2a(i); 
     
    B(j,j-1)=Kn1b(i); 
    B(j,j)=Kob(i); 
    B(j,j+1)=Kp1b(i); 
end 
 
w1=(fmin*pi2)^2;    %start frequency 
w2=(fmax*pi2)^2;    %end frequency 
ws=(fstep*pi2)^2;    %frequency step 
 
H=@(x)Msign(A+x*B); 
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F=[]; 
k=0; 
for w=w1:ws:w2-ws 
    disp(['-->Searching at 

',num2str(sqrt(w)/pi2,'%d')]); 
    if (H(w)*H(w+ws)>0)      %No root here 
        continue; 
    end 
    f=fzero(H,[w,w+ws]); 
    k=k+1; 
    F(k,1)=sqrt(f)/pi2; 
end 
 
 
 

% This function is used to search for the modal frequency 
of the longitudinal modes 
function F=FindLModalFreq(Sa, Ea, den, L, fmin, fmax, 
fstep, N) 
 

F=[]; 
 
if N<1 
    return 
end 
 
A=sparse(N+1,N+1); 
B=sparse(N+1,N+1); 
h=L/N; 
pi2=3.1415926545*2; 
k=0; 
 
A(1,1)=-2*Ea; 
A(1,2)=2*Ea; 
A(N+1,N+1)=-2*Ea; 
A(N+1,N)=2*Ea; 
B(1,1)=den*h*h; 
B(N+1,N+1)=den*h*h; 
 
for i=1:N-1   %index of W 
    j=i+1;    %index of matrix position 
    A(j,j-1)=Ea*Sa((i-0.5)*h); 
    A(j,j)=-Ea*Sa((i+0.5)*h)-Ea*Sa((i-0.5)*h); 
    A(j,j+1)=Ea*Sa((i+0.5)*h); 
end 
 
for i=1:N-1   %index of W 
    j=i+1;    %index of matrix position 
    B(j,j)=den*Sa(i*h)*((L^2)/(N^2)); 
end 
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w1=(fmin*pi2)^2;    %start frequency 
w2=(fmax*pi2)^2;    %end frequency 
ws=(fstep*pi2)^2;    %frequency step 
 
H=@(x)Msign(A+x*B); 
 
F=[]; 
k=0; 
for w=w1:ws:w2-ws 
    disp(['-->Searching at 

',num2str(sqrt(w)/pi2,'%d')]); 
    if (H(w)*H(w+ws)>0)      %No root here 
        continue; 
    end 
    f=fzero(H,[w,w+ws]); 
    k=k+1; 
    F(k,1)=sqrt(f)/pi2; 
end 

 
 
function [Y,lBy,rBy]=GetBModeShape(freq, Ix, Sa, Ea, den, 
L, N, lBC, rBC) 

%Returns the modal displacements of the given 
frequencies 

%Y is the displacement within the body, each row 
reprecent a shape to the  

%frequencies in freq. 
%lBy is the left boundary displacement 
%rBy is the left boundary displacement 
%[lBy,Y,rBy] gives the displacement of the whole 

structure 
 
if N<1 
    return 
end 
 
h=L/N; 
h2=L*L/(N*N); 
pi2=3.1415926545*2; 
Ia=@(k)Ix((k)*h); 
S=@(k)Sa((k)*h); 
 
w2=(freq.*pi2).^2; 
l=length(w2);   %Number of frequencies 
MSize=N+5; 
A=sparse(MSize,MSize); 
B=sparse(MSize,MSize); 
Y=zeros(l,N+1); 
lBy=zeros(l,2); 
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rBy=lBy; 
 
Kn2a=@(k)Ea*Ia(k-1); 
Kn1a=@(k)-2*Ea*(Ia(k-1)+Ia(k)); 
Kn1b=@(k)den*h2*Ia(k-0.5); 
Koa=@(k)Ea*(Ia(k-1)+4*Ia(k)+Ia(k+1)); 
Kob=@(k)-den*h2*(Ia(k-0.5)+Ia(k+0.5)+h2*S(k)); 
Kp1a=@(k)-2*Ea*(Ia(k)+Ia(k+1)); 
Kp1b=@(k)den*h2*Ia(k+0.5); 
Kp2a=@(k)Ea*Ia(k+1); 
 
if strcmp(lBC,'Free') 
    A(1,3)=1; 
    A(2,2)=1; 
    A(2,3)=-2; 
    A(2,4)=1; 
elseif strcmp(lBC,'Hinged') 
    A(1,2)=-1; 
    A(1,4)=1; 
    A(2,3)=1; 
elseif strcmp(lBC,'Float') 
    A(1,3)=1; 
    A(2,2)=-1; 
    A(2,4)=1; 
elseif strcmp(lBC,'Clamped') 
    A(1,2)=1; 
    A(1,3)=-2; 
    A(1,4)=1; 
    A(2,3)=1; 
else 
    disp('Left Boundary Condition Error!'); 
    return; 
end 
 
if strcmp(rBC,'Free') 
    A(MSize,MSize)=1; 
    A(MSize,MSize-1)=-2; 
    A(MSize,MSize-3)=2; 
    A(MSize,MSize-4)=-1; 
    A(MSize-1,MSize-1)=1; 
    A(MSize-1,MSize-2)=-2; 
    A(MSize-1,MSize-3)=1; 
elseif strcmp(rBC,'Hinged') 
    A(MSize,MSize-1)=1; 
    A(MSize,MSize-2)=-2; 
    A(MSize,MSize-3)=1; 
    A(MSize-1,MSize-2)=1; 
elseif strcmp(rBC,'Float') 
    A(MSize,MSize-1)=1; 
    A(MSize,MSize-2)=-2; 
    A(MSize,MSize-3)=1; 
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    A(MSize-1,MSize-1)=1; 
    A(MSize-1,MSize-3)=-1; 
elseif strcmp(rBC,'Clamped') 
    A(MSize,MSize-1)=1; 
    A(MSize,MSize-3)=-1; 
    A(MSize-1,MSize-2)=1; 
else 
    disp('Right Boundary Condition Error!'); 
    return; 
end 
 
for i=0:N 
    j=i+3; 
    A(j,j-2)=Kn2a(i); 
    A(j,j-1)=Kn1a(i); 
    A(j,j)=Koa(i); 
    A(j,j+1)=Kp1a(i); 
    A(j,j+2)=Kp2a(i); 
     
    B(j,j-1)=Kn1b(i); 
    B(j,j)=Kob(i); 
    B(j,j+1)=Kp1b(i); 
end 
 
J=zeros(MSize,1); 
J(1,1)=1; 
for k=1:l 
    H=A+w2(k)*B; 
    [l,u,p]=lu(H); 
    H=SolveLU(l,u,p,J); 
    Y(k,:)=H(3:MSize-2,1)'; 
    lBy(k,:)=H(1:2,1)'; 
    rBy(k,:)=H(MSize-1:MSize,1)'; 
end 

 
 
 
% This function calculates the mode shape for a given 
longitudinal modal frequency 
function Y=GetLModeShape(freq,Sa, Ea, den, L, N) 

 
h=L/N; 
p=den*L^2/N^2; 
pi2=3.1415926545*2; 
f=(freq.*pi2).^2; 
l=length(f); 
Y=zeros(l,N+1); 
for k=1:l 
    Y(k,1)=1; 
    Y(k,2)=1-p*f(k)/2/Ea; 
    for i=3:N+1 
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        Y(k,i)=-Sa((i-1.5)*h)/Sa((i-0.5)*h)*Y(k,i-2)... 
            -(p*f(k)*Sa((i-1)*h)/Sa((i-0.5)*h)/Ea-1-

Sa((i-1.5)*h)/Sa((i-0.5)*h))*Y(k,i-1); 
    end 
end 
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A.3 Selected Matlab Script for Longitudinal-Bending Coupled 
Analytical Modelling 

function [Y,time_vec]=CoupledBending(y_n1, y_0, Ix, Sa, 
Ea, den, L, Pa, t0, expand, dt, lBC, rBC, msg) 
%When msg='y' or 'Y', show the calculation process. 
%Y will retain maximum Maximum_Num time frames, other 
frames will be discarded. 
Maximum_Num=3000;           %maximum time frames 
  
N=length(y_0)-5; 
MSize=N+5; 
Ha=sparse(N+5,2*MSize); 
Hb=Ha; 
Ca=sparse(N+5,N+5); 
  
h=L/N; 
h2=L*L/(N*N); 
h4=h2*h2; 
dt2=dt*dt; 
pi2=3.1415926545*2; 
Ia=@(k)Ix((k)*h); 
S=@(k)Sa((k)*h); 
  
Cn1=@(k)den/(h2*dt2)*Ia(k-0.5); 
Co=@(k)-den/(h2*dt2)*(Ia(k+0.5)+Ia(k-0.5))-den*S(k)/dt2; 
Cp1=@(k)den/(h2*dt2)*Ia(k+0.5); 
  
An2=@(k)Ea/h4*Ia(k-1); 
An1=@(k)-2*Ea/h4*(Ia(k-1)+Ia(k))+2*den/(h2*dt2)*Ia(k-0.5); 
Ao=@(k)Ea/h4*(Ia(k-1)+4*Ia(k)+Ia(k+1))-
2*den/(h2*dt2)*(Ia(k+0.5)+Ia(k-0.5))-2*den*Sa(k)/dt2; 
Ap1=@(k)-2*Ea/h4*(Ia(k)+Ia(k+1))+2*den/(h2*dt2)*Ia(k+0.5); 
Ap2=@(k)Ea/h4*Ia(k+1); 
  
Bn1=@(k)-den/(h2*dt2)*Ia(k-0.5); 
Bo=@(k)den/(h2*dt2)*(Ia(k+0.5)+Ia(k-0.5))+den*S(k)/dt2; 
Bp1=@(k)-den/(h2*dt2)*Ia(k+0.5); 
  
%Main Matrix 
for i=1:N+1 
    Ha(i,i)=An2(i-1); 
    Ha(i,i+1)=An1(i-1); 
    Ha(i,i+2)=Ao(i-1); 
    Ha(i,i+3)=Ap1(i-1); 
    Ha(i,i+4)=Ap2(i-1); 
     
    Ha(i,i+N+6)=Bn1(i-1); 
    Ha(i,i+N+7)=Bo(i-1); 
    Ha(i,i+N+8)=Bp1(i-1); 
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    Hb(i,i+1)=1/h2; 
    Hb(i,i+2)=-2/h2; 
    Hb(i,i+3)=1/h2; 
     
    Ca(i,i+1)=Cn1(i-1); 
    Ca(i,i+2)=Co(i-1); 
    Ca(i,i+3)=Cp1(i-1); 
end 
  
pBC=Cn1(0);         %This is a factor to scale the 

boundary condition in order to 
facilitate the computing                   
Theoratically the value of this 
factor will not change the result. 

 
%Boundary Conditions 
if strcmp(lBC,'Clamped')    
    i=N+2;          %Zero order partial derivative equals 

zero [0 0 1 0 0] 
    Ca(i,3)=pBC; 
    i=N+3;          %First order partial derivative 

equals zero [-1 8 0 -8 1] 
    Ca(i,2)=pBC; 
    Ca(i,4)=-pBC; 
else                %Default free boundary condition 
    i=N+2;          %Second order partial derivative 

equals zero [0 1 -2 1 0] 
    Ca(i,2)=pBC; 
    Ca(i,3)=-2*pBC; 
    Ca(i,4)=pBC; 
    i=N+3;          %Third order partial derivative 

equals zero [-1 2 0 -2 1] 
    Ca(i,1)=-pBC; 
    Ca(i,2)=2*pBC; 
    Ca(i,4)=-2*pBC; 
    Ca(i,5)=pBC; 
end 
  
if strcmp(rBC,'Clamped')    
    i=N+2;          %Zero order partial derivative equals 

zero [0 0 1 0 0] 
    Ca(i,MSize-2)=pBC; 
    i=N+3;          %First order partial derivative 

equals zero [-1 8 0 -8 1] 
    Ca(i,MSize-3)=pBC; 
    Ca(i,MSize-1)=-pBC; 
else                %Default free boundary condition 
    i=N+4;          %Second order partial derivative 

equals zero [0 1 -2 1 0] 
    Ca(i,MSize-1)=pBC; 
    Ca(i,MSize-2)=-2*pBC; 
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    Ca(i,MSize-3)=pBC; 
    i=N+5;          %Third order partial derivative 

equals zero [-1 2 0 -2 1] 
    Ca(i,MSize)=pBC; 
    Ca(i,MSize-1)=-2*pBC; 
    Ca(i,MSize-3)=2*pBC; 
    Ca(i,MSize-4)=-pBC; 
end 
  
step_num=expand/dt; 
if step_num>Maximum_Num 
    rec_dt=expand/Maximum_Num; 
else 
    rec_dt=dt; 
end 
  
yp=y_n1; 
yc=y_0; 
rec_t=t0+rec_dt; 
Y=[]; 
time_vec=[]; 
a=0; 
for t=t0:dt:t0+expand 
    H_Pa=diag(sparse(Pa(t))); 
    H_q=Ha+H_Pa*Hb; 
    if strcmp(lBC,'Clamped') 
        Hk=Ca(2:MSize,2:MSize)\H_q(2:MSize,:); 
        Ya=[yc;yp]; 
        Yb=[0;Hk*Ya]; 
        yp=yc; 
        yc=Yb; 
    else 
        Hk=Ca\H_q; 
        Ya=[yc;yp]; 
        Yb=Hk*Ya; 
        yp=yc; 
        yc=Yb; 
    end 
     
    if t>=rec_t 
       rec_t=rec_t+rec_dt; 
       a=a+1; 
       Y=[Y,Yb]; 
       time_vec=[time_vec,t]; 
       if msg=='Y' || msg=='y' 
           
disp([num2str(t),'/',num2str(t0+expand),' :',num2str(a)]); 
       end 
    end 
end 
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A.4 Selected Python Script of Optimal Design Toolkit 

def CreatAssembly(model, *parts, **flip): 
    if not parts: return () 
    num=len(parts) 
 
    axis_flip=flip.get('axis_flip', [OFF]*num) 
    face_flip=flip.get('face_flip', [OFF]*num) 
    base_align=flip.get('base_align', None)     
#Determine whether the first part put lastly so that the 
second will start at z=0, useful when tran is included 
     
    assembly=model.rootAssembly 
    instance=[] 
     
    n=1                              #Order of Name 
    i=1 if base_align else 0    #Index of part 
    if i<num: 
        p0=assembly.Instance(name='Part-'+str(n), 
part=parts[i], dependent=ON) 
        instance.append(p0) 
     
    for p in parts[i+1:]: 
        n=n+1 
        i=i+1 
        p1=assembly.Instance(name='Part-'+str(n), part=p, 
dependent=ON) 
        instance.append(p1) 
         
        aflip=axis_flip[i] 
        fflip=face_flip[i] 
        _tieParts(model, assembly, p0, p1, aflip, fflip) 
         
        p0=p1 
     
    if base_align: 
        p0=assembly.Instance(name='Part-0', part=parts[0], 
dependent=ON) 
        if not instance: return [p0] 
        #Move current instance to the back of the assm 
        p1=instance[0] 
        f=p0.part.features['FrontCentralPoint'] 
        a0=p0.datums[f.id].pointOn 
        f=p1.part.features['BaseCentralPoint'] 
        a1=p1.datums[f.id].pointOn 
        vec=[b1-b0 for b0, b1 in zip(a0, a1)] 
        assembly.translate(instanceList=('Part-0', ), 
vector=vec) 
        _tieParts(model, assembly, p0, p1, axis_flip[1], 
face_flip[1]) 
        instance=[p0]+instance 
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    return instance 
 
 
def CreatBlade(model, blade_section, blade_para, 
with_tran=None,  tran_section=''): 
 
    global Transducer 
    global TranDimension 
     
    if not tran_section: 
        tran_section=blade_section 
     
    size=blade_para['_Dimension_'](blade_para) 
    Lx=size[0] 
    Ly=size[1] 
    Lz=size[2] 
     
    W=max(with_tran.Dimension[0], Lx) if with_tran else 
Lx 
    H=max(with_tran.Dimension[1], Ly) if with_tran else 
Ly 
    L=with_tran.Dimension[2]+Lz if with_tran else Lz 
     
    #Generate Parts 
    map=blade_para['_ParaMapping_'] 
    para=[m(blade_para) for m in map] 
    parts=blade_para['_Parts_'] 
    components=[p(model=model, section=blade_section, **a) 
for p, a in zip(parts, para)] 
     
    if with_tran: 
        tran=with_tran.CreatPart(model=model, 
section=tran_section, name='Transducer') 
        allcomponents=[tran]+components 
    else: 
        allcomponents=components 
     
    instances=CreatAssembly(model, *allcomponents, 
base_align='Y') if with_tran else CreatAssembly(model, 
*allcomponents) 
    myAssembly=model.rootAssembly 
    tolerance=1e-5 
 
##Define Node Sets 
    #Central Nodes 
    nodes=[] 
    for ins in instances: 
        n=ins.nodes 
        n=n.getByBoundingBox(xMin=-tolerance, yMin=-
tolerance, zMin=-L-tolerance,  
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xMax=tolerance, yMax=tolerance, zMax=L+tolerance) 
        nodes=nodes+n if nodes else n 
    if nodes: myAssembly.Set(nodes=nodes, 
name='CentralLine') 
         
    #Nodes on Central Plane 
    nodes=[] 
    for ins in instances: 
        n=ins.nodes 
        n=n.getByBoundingBox(xMin=-W-tolerance, yMin=-
tolerance, zMin=-L-tolerance,  
                                                            
xMax=W+tolerance, yMax=tolerance, zMax=L+tolerance) 
        nodes=nodes+n if nodes else n 
    if nodes: myAssembly.Set(nodes=nodes, 
name='CentralPlane') 
     
    #Nodes on Vertical Central Plane 
    nodes=[] 
    for ins in instances: 
        n=ins.nodes 
        n=n.getByBoundingBox(xMin=-tolerance, yMin=-H-
tolerance, zMin=-L-tolerance,  
                                                            
xMax=tolerance, yMax=H+tolerance, zMax=L+tolerance) 
        nodes=nodes+n if nodes else n 
    if nodes: myAssembly.Set(nodes=nodes, 
name='VCentralPlane') 
     
    #Nodes on Base 
    nodes=[] 
    p=instances[1:] if with_tran else instances 
    for ins in p: 
        n=ins.nodes 
        n=n.getByBoundingBox(xMin=-W-tolerance, yMin=-H-
tolerance, zMin=-tolerance,  
                                                            
xMax=W+tolerance, yMax=H+tolerance, zMax=tolerance) 
        nodes=nodes+n if nodes else n 
    if nodes: myAssembly.Set(nodes=nodes, 
name='BaseTerminal') 
     
    #Nodes of all parts, not include transducer 
    nodes=[] 
    p=instances[1:] if with_tran else instances 
    for ins in p: 
        n=ins.nodes 
        nodes=nodes+n if nodes else n 
    if nodes: myAssembly.Set(nodes=nodes, name='Parts') 
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    #Nodes on transducer output surface 
    if with_tran: 
        n=instances[0].nodes 
        nodes=n.getByBoundingBox(xMin=-
with_tran.Dimension[0]-tolerance, yMin=-
with_tran.Dimension[1]-tolerance, zMin=-tolerance,  
                                                            
xMax=with_tran.Dimension[0]+tolerance, 
yMax=with_tran.Dimension[1]+tolerance, zMax=tolerance) 
        if nodes: myAssembly.Set(nodes=nodes, 
name='TranOutput') 
     
    num=len(parts) 
    extension=blade_para.get('_PartsExtension_', None)      
#Run Extension Program (for each parts), if provided 
    if extension: 
        for i, ext in enumerate(extension): 
            if i>=num: break 
            if ext: 
                s='Part-'+str(i+1) 
                ext(model=model, section=blade_section, 
part=components[i], instance=myAssembly.instances[s],  
                    assembly=myAssembly, 
part_para=para[i], blade_para=blade_para) 
 
    extension=blade_para.get('_AssmExtension_', None)      
#Run Extension Program (for assembly), if provided 
    if extension: 
        extension(model=model, assembly=myAssembly, 
blade_para=blade_para) 
 
    return myAssembly 
 

 

def StressAnalysis(blade_para, input, frequency, 
tran_material=None, with_tran=None,  
                                submit='Y', wait='Y', 
model_name='Blade', job_name='StressAnalysis', 
step_name='StressAnalysis'): 
 
    if isinstance(frequency, dict): 
        min_freq=frequency['Low'] 
        max_freq=frequency['High'] 
        nPoints=frequency['nPoints'] 
    else: 
        min_freq=frequency 
        max_freq=frequency 
        nPoints=2 
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    if max_freq<min_freq: 
        a=max_freq 
        max_freq=min_freq 
        min_freq=a 
     
    Prototype(blade_para=blade_para, 
tran_material=tran_material, with_tran=with_tran, 
model_name=model_name) 
     
    myModel = mdb.models[model_name] 
    myAssembly=myModel.rootAssembly 
    #Step and boundary conditions 
    myModel.SteadyStateDirectStep(name=step_name, 
previous='Initial',  
                                                            
frequencyRange=((min_freq, max_freq, nPoints , 1.0), )) 
 
    #Boundary Condition (Input) 
 
    if 'T' in input or 'XT' in input or 'YT' in input:    
#Torsion 
        
points=myModel.rootAssembly.sets['BaseTerminal'].nodes 
        n=0 
        for p in points: 
            n=n+1 
            x, y, z=p.coordinates 
            R=sqrt(x*x+y*y) 
             
            At=2*R*sin(input.get('T', 0)/2)   #Torsion 
angle 
            Ay=2*y*sin(input.get('YT', 0)/2)     #Flip 
angle on Y 
            Ax=2*x*sin(input.get('XT', 0)/2)     #Flip 
angle on X 
             
            u1t=y*At/R if R else 0 
            u2t=-x*At/R if R else 0 
            u3y=y*Ay/y if y else 0 
            u2y=-z*Ay/y if y else 0 
            u1x=z*Ax/x if x else 0 
            u3x=-x*Ax/x if x else 0 
             
            u1d=input.get('X', 0) 
            u2d=input.get('Y', 0) 
            u3d=input.get('Z', 0) 
             
            u1=u1t+u1x+u1d if 'T' in input or 'XT' in 
input or 'X' in input else UNSET 



243 

            u2=u2t+u2y+u2d if 'T' in input or 'YT' in 
input or 'Y' in input else UNSET 
            u3=u3x+u3y+u3d if 'XT' in input or 'YT' in 
input or 'Z' in input else UNSET 
 
            a=mesh.MeshNodeArray((p, )) 
            region=regionToolset.Region(nodes=a) 
            
myModel.DisplacementBC(name='InputDisplacement'+str(n), 
createStepName=step_name,  
                        region=region, u1=u1, u2=u2, 
u3=u3, ur1=UNSET, ur2=UNSET,  
                        ur3=UNSET, amplitude=UNSET, 
fixed=OFF, distributionType=UNIFORM,  
                        fieldName='', localCsys=None) 
                         
    else: 
        region=myAssembly.sets['BaseTerminal'] 
        u1=input.get('X', UNSET) 
        u2=input.get('Y', UNSET) 
        u3=input.get('Z', UNSET) 
        myModel.DisplacementBC(name='InputDisplacement', 
createStepName=step_name,  
                        region=region, u1=u1, u2=u2, 
u3=u3, ur1=UNSET, ur2=UNSET,  
                        ur3=UNSET, amplitude=UNSET, 
fixed=OFF, distributionType=UNIFORM,  
                        fieldName='', localCsys=None) 
     
    #Job 
    myJob=mdb.Job(name=job_name, model=model_name, 
description='', type=ANALYSIS,  
        atTime=None, waitMinutes=0, waitHours=0, 
queue=None, memory=40,  
        memoryUnits=PERCENTAGE, 
getMemoryFromAnalysis=True,  
        explicitPrecision=SINGLE, 
nodalOutputPrecision=SINGLE, echoPrint=OFF,  
        modelPrint=OFF, contactPrint=OFF, 
historyPrint=OFF, userSubroutine='',  
        scratch='', multiprocessingMode=DEFAULT, 
numCpus=1, numGPUs=0) 
 
   #Submit and Analysis 
    if submit: 
        myJob.submit(consistencyChecking=OFF) 
        print (job_name+' has been submitted.') 
        if wait: 
            print ('Waiting for job to be completed...') 
            myJob.waitForCompletion() 
    else: 
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        myJob.writeInput(consistencyChecking=OFF) 
        print (job_name+'.inp has been created but not 
submitted.') 
     
    res=dict(Job=myJob, Inp=job_name+'.inp', 
Step=step_name, Name=job_name) 
    if submit and wait:      #If result is obtained, the 
return value contains job path 
        res['Path']=job_name+'.odb' 
         
    return res         #Return the name of the job, which 
can be used to open the database 
 

 

def GetModalDistance(target_mode, odb_path=None, 
step_name='ModalAnalysis', mode=[], type=''): 
    if not mode: 
        if isinstance(odb_path, dict):  #Unpack 
            odb=session.openOdb(name='myOdb', 
path=odb_path['Path'], readOnly=True) 
            step_name=odb_path['Step'] 
        elif isinstance(odb_path, str):     #Use file 
path 
            odb=session.openOdb(name='myOdb', 
path=odb_path, readOnly=True) 
        else:   #Object itself 
            odb=odb_path 
        mode=TraitModes(odb_path, step_name) 
     
    mode.sort() 
    for m in mode: 
        if m[1]==target_mode: 
            f=m[0] 
            break 
    else: 
        return None 
     
    fm=None 
    for m in mode: 
        if m[1]==target_mode: continue 
        if (not type or type==m[1][-1]) and m[1]!='Base': 
            a=m[0]-f 
            fm=a if fm==None else a if abs(a)<abs(fm) 
else fm 
     
    return fm 
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def PerformanceIndicators(indicators, blade_para, 
input={}, para_comb=[], frequency=-1, data_path='', 
msg_path='',   
                          para_info=None, file_info=None, 
print_head='Y', transducer=None, tran_material={}, 
job_name='Indicators',  
                          MD_target='', MDT_target='', 
min_freq=500, max_freq=80000): 
    if isinstance(para_comb, str):   #Read from file 
        para=ReadSection(path=para_comb, 
name='Parameters') 
        blade_para.update(para) 
        para_comb=ReadSection(path=para_comb, 
name='DataBlock') 
 
    all_ind=('MD', 'XMD', 'YMD', 'ZMD', 'TMD', 'MD-T', 
'XMD-T', 'YMD-T', 'ZMD-T', 'TMD-T', 'XMPS', 'Lx', 'YMPS', 
'Ly', 'ZMPS','Lz',  
              'TMPS','Lt', 'MPS', 'Lm', 'Gx', 'Gy', 'Gz', 
'Gt', 'Ax', 'Ay', 'Az', 'At', 'Mode', 'Mode-T')    #All 
possible indicators 
     
    ind_names=[a for a in all_ind if a in indicators]     
#The indicator to be abstracted 
    ind_set=set(ind_names) 
     
    if msg_path: open(msg_path, 'w').close() 
    if data_path: open(data_path, 'w').close() 
     
    if msg_path:            #Message file showing the 
progress 
        MsgPrintL('Get Performance Indicators Start\n', 
path=msg_path) 
 
    if data_path: 
        if print_head:          #Write into data file 
            WriteSection('Start', path=data_path) 
            WriteSection('Information', file_info, 
path=data_path) 
            WriteSection('Parameters', blade_para, 
para_info, path=data_path)    #File head, blade 
parameters 
            WriteSection('Input', input, path=data_path) 
            WriteSection('DataBlock', path=data_path) 
            p=para_comb[0]+ind_names if para_comb else 
ind_names 
            DataPrintL(*p, sep='\t', prefix='# ', 
path=data_path) 
     
    work_dir=os.getcwd() 
    N=len(para_comb)-1 if para_comb else 1 
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    Na=len(para_comb[0]) if para_comb else 0   #Number of 
changeable parameters 
    n=0 
    while n<N: 
        n=n+1 
         
        para=blade_para.copy()         
        if para_comb and msg_path: 
            t=time.localtime() 
            a='-->'+time.strftime('%Y.%m.%d %H:%M:%S', t) 
            MsgPrintL(a, path=msg_path) 
            MsgPrintL('Calculating ', str(n)+' / '+str(N), 
' ... ', path=msg_path) 
            for k, a in enumerate(para_comb[0]):     
#Pack and change varables 
                para[a]=para_comb[n][k] 
         
        jobs=_submitJobs(work_dir=work_dir, 
ind_set=ind_set, para=para, frequency=frequency, 
msg_path=msg_path,  
                                        input=input, 
tran=transducer, tran_material=tran_material, 
job_name=job_name, min_freq=min_freq, max_freq=max_freq) 
                                         
        _waitForJobs(work_dir=work_dir, jobs=jobs) 
         
        ind_val=_abstIndicators(work_dir=work_dir, 
job_name=job_name, indicators=ind_set, 
MD_target=MD_target, MDT_target=MDT_target) 
         
        #Print result to file 
        if para_comb and data_path: 
            p=para_comb[n][0:Na]+[ind_val[a] for a in 
ind_names] 
            DataPrintL(*p, sep='\t', path=data_path) 
             
        if para_comb and msg_path: 
            MsgPrintL('Calculation ', str(n)+' / '+str(N), 
' completed.\n', path=msg_path) 
 
    if para_comb and msg_path: 
        MsgPrintL('All Calculation Completed 
Sucessfully!\n', path=msg_path) 
     
    if para_comb and data_path and print_head: 
        DataPrintL('##End', path=data_path) 
    
    if not para_comb: 
        return ind_val 
     
    return 
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