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Abstrat

The oniseness onjeture is a longstanding notion in omputer siene that

programming languages with more built-in operators, that is more expressive

languages with larger semantis, produe smaller programs on average. Chaitin

de�nes the related onept of an elegant program suh that there is no smaller

program in some language whih, when run, produes the same output.

This thesis investigates the oniseness onjeture in an empirial manner.

In�uened by the onept of elegant programs, we investigate several models of

omputation, and implement a set of funtions in eah programming model. The

programming models are Turing Mahines, λ-Calulus, SKI, RASP, RASP2, and
RASP3. The information ontent of the programs and models are measured as

haraters. They are ompared to investigate hypotheses relating to how the

mean program size hanges as the size of the semantis hange, and how the

relationship of mean program sizes between two models ompares to that between

the sizes of their semantis.

We show that the amount of information present in models of the same

paradigm, or model family, is a good indiation of relative expressivity and aver-

age program size. Models that ontain more information in their semantis have

smaller average programs for the set of tested funtions. In ontrast, the rela-

tive expressiveness of models from di�ering paradigms, is not indiated by their

relative information ontents.

RASP and Turing Mahines have been implemented as Field Programmable

Gate Array (FPGA) iruits to investigate hardware analogues of the hypotheses

above. Namely that the amount of information in the semantis for a model

diretly in�uenes the size of the orresponding iruit, and that the relationship

of mean iruit sizes between models is omparable to the relationship of mean

program sizes.

We show that the number of omponents in the iruits that realise the se-

mantis and programs of the models orrelates with the information required to

implement the semantis and program of a model. However, the number of om-

ponents to implement a program in a iruit for one model does not relate to the

number of omponents implementing the same program in another model. This

is in ontrast to the more abstrat implementations of the programs.

Information is a omputational resoure and therefore follows the rules of

Blum's axioms. These axioms and the speedup theorem are used to obtain an

alternate proof of the undeidability of elegane.

This work is a step towards unifying the formal notion of expressiveness with

the notion of algorithmi information theory and exposes a number of interesting

researh diretions. A start has been made on integrating the results of the thesis

with the formal framework for the expressiveness of programming languages.
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Chapter 1

Introdution

What is the result of adding together the numbers 5 and 8?

Nearly all tasks are not fully spei�ed. When a task is given to a person or a

mahine, it is presented based on knowledge of the abilities of the assignee. If the

assignee is versed in all pertinent aspets of a task, then they require no other

information. If not, then they may need more spei� instrutions in order to

arry out the task.

Examine the problem above. If one an read English, an ount above 10,

and knows how to perform addition, then one an obtain the orret answer: 13.

If there is a gap in one's knowledge, one might have to learn how to read English,

how to ount above 10, or how to add two numbers together.

Not knowing English is an enoding problem. One does not have the ability to

parse an English sentene into one's own internal representation

1

, but one might

be able to parse the same problem in a di�erent enoding: 5+8. If one is literate

in Russian, a Cyrilli representation might be preferable to the English version:

�×òî òàêîåðåçóëüòàò ñëîæåíèÿ ÷èñëà 5 è 8?�

2

Not knowing how to add, or how the numerals behave above the number 10

requires some instrution in mathematis � the person doing the addition has to

be told how to add. Assuming that the assignee an ount up to 10 on their

�ngers, they an be instruted in how addition works by having them represent,

say two on the left hand and three on the right. For eah �nger they lower

1

However knowledge is represented in the mind.

2

Courtesy of Google Translate.
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on the left, a �nger raises on the right. This is an algorithm for addition, and

with enough examples an be generalised for any numbers as long as the assignee

knows how to ount up to them.

The point is: for any task to be ompleted, the assignee must have knowledge

of how to perform the task and subtasks, and knowledge of the behaviour and

e�ets of their ations upon the environment whih ontains the task. From the

high level spei�ation, down to the lowest level mehanial attributes of the

assignee, eah aspet of the above knowledges must be spei�ed. The ompletion

of a task is a ulmination of ombining the various piees of knowledge to ahieve

the e�et of a task.

When we disuss ourselves, or something to whih we have asribed anthro-

pomorphi traits, we say that these knowledges are either �learned� or �impli-

it/inherent�. Knowing how to tap something with a pen three times uses learned

knowledge of how to hold a pen, how to ount to three, what onstitutes a `tap'

and so on. It also uses �impliit� knowledge of sending nerve impulses to ontrat

musles to manipulate the pen.

Construting ontologies and taxonomies for knowledges and ations for living

reatures is an extraordinary undertaking owing to their omplexity, but suh

lassi�ations for formal systems ould be possible. Programming languages,

whih enapsulate the traits of some formal mathematial model, have a spe-

i�ed enoding (syntax), and a set of pre-de�ned funtions whih represent the

knowledge of the language. The language initially �knows� how to perform these

funtions beause the designer has deided that it should. The de�nitions of these

funtions, and algorithms to perform them, are de�ned in the semantis of the

language as impliit information.

If a program is written in the language for a omputational model A, and it

is not in the orret enoding, or using funtions not de�ned in the semantis,

then A annot ompute this partiular program. One would have to reformulate

the program to use only the enoding and the funtions de�ned in the semantis.

If the programmer insists on a di�erent enoding or the use of of some unde�ned

funtion; then either the semantis of A has to be hanged, or a program written

in A to de�ne the missing funtions/translate the enodings. The omputational
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Chapter 1. Introdution

model A requires more information.

There are many models like A. While a lot of them an alulate the same

set of funtions, they all have a mixture of di�erent enodings and pre-de�ned

funtions. The full mathematial desription of these enodings and funtions

onstitute the semantis of the model. Some models may have very large seman-

tis with lots of pre-de�ned funtions, and some may have very small semantis

with few funtions. If the size of the semantis of a omputational model is taken

into aount when the program is measured, then we an ask whih omputational

models require the least information to fully speify and ompute a funtion.

1.1 Motivation

This thesis is an investigation into how the distribution of information in a om-

putational model a�ets the sizes of programs written in that model. If the

semantis of omputational models are spei�ed in a onsistent manner (Setion

3.4), and programs are written for eah model in their respetive enodings, then

measurements of the size of semantis and programs an be taken. These mea-

surements an be ompared with the sizes of semantis and programs in other

models to look for a relationship between semantis size and program size.

There is a high level intuition in Computer Siene that languages whih are

more expressive (Setion 2.5) have more pre-de�ned funtions and thus larger

semantis. Languages with larger semantis therefore produe smaller programs

than languages with smaller semantis.

If this intuition holds true, then what is the nature of the relationship be-

tween the size of semantis and the size of programs? Can the relationship be

generalised, or is it spei� to eah model? Additionally, questions an be asked

about how the internal and external representations a�et semanti and program

sizes. This thesis is a preliminary investigation into these questions.

1.2 Investigation Overview

This investigation is onduted as an empirial study to ompare multiple models

of omputation of varying paradigms. There are four models: the Turing Mahine
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(TM, Setion 2.3.1.1), the SKI ombinator alulus (Setion 2.3.2.2), the Ran-

dom Aess Stored Program mahine (RASP, Setion 2.3.1.2), and the λ-alulus

(Setion 2.3.2.1).

Eah of these models varies in how expressive they are (Setion 2.5), so the

mehanisms behind eah one need to be formalised. This is done by writing down

the semantis of eah model using a ommon formalism. In this ase, Strutured

Operational Semantis (SOS, Setion 2.4.1) is used. In doing this, a baseline is

established from whih measurements of the information ontent of models and

programs an be performed.

A set of funtions is implemented sampling from both the primitive and the

partial reursive funtions (Setion 4.1). This set overs problems as simple as

addition up to more ompliated funtions like sorting a list and the universal

mahines. The results are presented and an analysis is performed.

There are shortomings with the idea of measuring information at the semanti

level. Even though the semantis are all spei�ed in SOS, the question of how the

funtions whih are pre-de�ned in SOS an be de�ned in another baseline an be

asked. This further begs the question of how the funtions of that baseline ould

be de�ned (Setion 5.1). In an attempt to address this, the RASP and Turing

models are redued to the hardware level using Field Programmable Gate Arrays

(FPGA, Setion 5) whih are on�gurable hips that an simulate the models at

the logi gate level.

1.3 Hypotheses

As an empirial investigation, hypotheses are �rst formulated as a guide. These

hypotheses are preliminary at this time, and shall be revised in the ontext of

the literature review (Setion 3.1).

Some notion of the size of a program or semantis is required. Information

and algorithmi theory de�ne the size of a piee of information as the number

of haraters required to write it down (Setion 2.2). This is a useful de�nition

whih we adopt.

The information to ompute a funtion in a model is split into the information
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ontent of the semantis, and the information ontent of the program omputes

the funtion. These information values ombined onstitute the Total Information

of the funtion.

De�nition 1 (Semanti Information). Semanti information (SI) for a model is

the size of the semantis of that model in haraters.

De�nition 2 (Program Information). Program Information (PI) is the size of a

program in haraters.

De�nition 3 (Total Information). Total Information (TI) is SI + PI.

It is expeted that a model with more SI produes programs with less PI

for the same funtions in omparison to models with less SI. The intuition is

that larger semantis are a onsequene of de�ning more operators or onstruts

for a language or model. Sensibly de�ned operators ease the burden on the

programmer, thus allowing them to write programs using less haraters and

therefore less PI.

Hypothesis 1P (Semanti Information). For two Turing Complete models (Se-

tion 2.1.2), if model A has more semanti information than model B, the average

size of programs written for model A will be lower than the average for model B.

For example, it is believed that a high level funtional language is less of

a hore to program in than assembler. The high level of abstration a�orded

by the funtional language allows the author of some program to fous their

e�orts on programming to the spei�ation, rather than the minutiae of using the

model. Conversely, writing the same program in assembler often requires that

the programmer know what the layout of the registers are and their ontents at

any one time. Not only does the programmer have to solve the problem, but they

have to manage resoures intelligently, or risk bugs whih break the program but

do not diretly relate to how the programmer has solved the problem.

Extensionality is when a program is evaluated on its external e�ets rather

than its internal struture. Two programs are the same in an extensional sense

if they produe the same output for the the same inputs. The opposite of this is

intensionality, whih evaluates programs on how they ompute something.
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When applied to the same task, the extensionality of the funtional program

+ semantis is equivalent to that of the assembler program + semantis. The

semantis of the funtional language are more ompliated than those of the

assembler, so its expeted that the funtional program will be appreiably smaller

than the assembly program.

As the omplexity of programs (Setion 3.1.2) inreases, so does their min-

imum size. If the SI hypothesis (1P) is orret, then this size inrease will be

more marked in languages with small semantis as opposed to languages with

larger semantis. It is hypothesised that smaller models and simpler programs

will ontain less TI than simple programs in omplex models. However as the

size and omplexity of the set of programs grows, the average TI of the omplex

models will be lower than that of the simple models.

Hypothesis 2P (Total Information). As the size and omplexity of a program

inreases, the average total information of an implementation in a model with

large semantis dereases relative to the total information of an implementation

in a model with small semantis.

Analogous hypotheses for FPGAs an be stated:

Hypothesis 3P (Semanti Ciruit Size). A Model A with a larger set of seman-

tis than model B will produe a larger iruit when onverted into a hardware

representation.

Hypothesis 4P (Total Ciruit Sizes). The average total iruit size (semantis

+ programs) of a more expressive model will be lower than that of a less expressive

model.

These hypotheses will be expanded in Setion 3.1 whih evaluates and re�nes

the hypotheses in the ontext of the literature survey.

1.4 Contributions

This work makes the following ontributions:
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Empirial Comparison of Program Sizes in Computational Models For

eah model of omputation onsidered in this thesis, semantis are de�ned in

a ommon representation (Setion 3.4) using Strutured Operational Semantis

(SOS). This representation is measured in the aepted information theoreti

metri of haraters (Setion 2.2.1) and produes a representative set of funtions

whih are as elegant (Setion 2.2.2) and stylistially onsistent as possible. The

programs are measured and these measurements are analysed (Chapter 6). The

analysis shows:

• In the same model paradigm, models with large semantis tend to produe

smaller programs than models with small semantis (Setions 6.2.2 and

6.2.3) [19℄.

• When omparing models from di�ering paradigms, semanti size is not a

reliable indiator of relative program size (Setion 6.2.8).

• The information levels of the simpler models (e.g. SKI alulus and Turing

mahines) exhibit di�ering trends in the TI required to ompute the set

of hosen funtions, ompared to more omplex models (the RASPs and

λ-alulus). For the set of funtions in this thesis, the simpler models have

a signi�ant inrease in required information when the universal mahines

for the RASP and TM are inluded (Setion 6.4).

• The enoding of the input to a funtion an drastially a�et the size of

the program to alulate the funtion (Setion 6.6). Proposals are made to

inorporate the information of enoding funtions and input growths to the

broader �eld of Algorithmi Information Theory.

FPGA Realisation of RASP and Turing Mahines Comparisons founded

on a harater-based information theoreti enoding arry some problems as there

is no aount of the semantis of the SOS formalism in whih the model semantis

are de�ned (Setion 5.1). Suh impliitly de�ned operators in SOS may be used

in the semantis of one model, but not in another. Furthermore, there may

be onsisteny of the models within the on�nes of these information theoreti

omparisons, but no guarantee that this onsisteny holds in another mode of

omparison.
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The mathematial models of the semantis an be physially grounded by

translating the SOS of the models into a spei�ation language for eletroni

iruits suh as VHDL. This spei�ation is synthesised into a iruit shemati

suitable for implementation on a Field Programmable Gate Array (Chapter 5).

These implementations provide a onrete omparison of the number of eletroni

omponents required to implement the semantis and programs of the models.

The analysis shows:

• FPGA realisations are orrelated with the TIs of the models. The TI an

be used as an indiator of the number of omponents required to implement

the semantis and program (Setion 6.3) [19℄.

• FPGA realisations are a poor indiator of relative expressiveness. One

annot determine the expressiveness of the TM vs the RASP using the

number of omponents of an FPGA implementation (Setion 6.3.3).

Alternative proof of the undeidability of Elegane Chaitin's proof of the

undeidability of elegane is based on the operation of programs. An alternative

proof is obtained via proving that the information to alulate a funtion in some

model is a Blum omplexity measure (Setion 3.1.1). For a Blum omplexity

measure, there exists a funtion where the information for a program and input

an always be redued for almost all inputs (Speed-up Theorem, [5℄).

Universal RASPs In the ourse of this investigation, a number of programs

drawing from the sets of primitive and partial reursive funtion have been writ-

ten. One of these programs is the universal RASP mahine, a program whih

takes the de�nition of a RASP and runs it aording to the semanti rules of

the RASP model (Setion 4.4.2). A RASP mahine, Turing mahine, λ-alulus

expression, and SKI ombinator expression have all been written whih perform

this funtion. A suitably enoded RASP given as input to these programs will

return the RASP in a halting state (if one exists) whih is idential the halting

state of the same mahine exeuted aording to the RASP semantis.

RASP Busy Beavers The Busy Beaver problem is that of �nding a Turing

Mahine of a given size that runs for the longest number of steps, and/or prints the
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most symbols before halting [73℄. A variant of this problem had been developed

for the �nite RASP mahine and an upper bound on the highest number of

instrutions exeuted, and the highest number of outputs, has been disovered

for 23 by brute foring all possible mahines (Setion A.3.1). Subsequent lasses

have also been investigated and lower bounds established through the use of

seeded and non-seeded parallel geneti algorithms (Setion A.3.2) [18℄.

1.5 Struture

This struture of this thesis is as follows: Chapter 2 is a survey of the literature,

overing the history of omputability, information theory, elegane, expressiveness

and the models whih are used.

Chapters 3, 4, 5, and 6 takle the rux of the entral question. Chapter 3 lays

out the semantis of the models in Strutural Operational Semantis, disusses the

metris and riteria whih are used to gauge the written programs, and overs

the method used in the investigation. Chapter 4 presents the programs from

whih omparisons are drawn and details their algorithms. Chapter 5 sets out

the rationale and implementation of physially grounding the TM and RASP

mahines using FPGAs.

Chapter 6 provides a detailed analysis of the measured programs, semantis

and iruits. By ombining, ontrasting and evaluating them in multiple on-

texts, insight is gained into the shape of the information landsape and how the

information ontents of models relate to eah other.

Chapter 7 re�ets on the investigation as a whole and onludes it. The

hapter disusses partiular topis of interest whih may provide further insight

into the results desribed herein. It proposes extensions to this work and explores

ideas of information for omputation.

1.6 Publiations

The publiations whih have resulted from this work are:

• �Brute Fore is not Ignorane�, Joseph Davidson and Greg Mihaelson, The
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Informal Proeedings of Computability in Europe 2013, Milan, Italy.

• �Elegane, Meanings and Mahines�, Joseph Davidson and Greg Mihaelson,

Computability, 2015 (aepted subjet to revision).
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Literature Review

This hapter outlines the literature behind this thesis in order to prepare us to

understand the results that are to ome. Figure 2.1 shows relationships between

relevant topis in omputer siene. Eah arrow shows the in�uene of one topi

on another. This does not show all the relationships beause in reality, the

omputability bubble in�uenes almost all the other topis and should have a lot

more arrows. Computability is where we start.

2.1 Computability

In the broadest sense, a funtion is omputable if it an be translated into some

kind of formal representation whih is then exeuted on a model of omputation.

There are aveats to this, suh as the model needs to preditably stop (halt) one

the omputation is �nished. In omputer siene, omputability is the disipline

of determining if a funtion is omputable [86℄.

2.1.1 Hilbert and Gödel

In 1900 the German mathematiian David Hilbert had a dream. He atually had

23 dreams, eah of whih was a single problem that he believed was a important

question for mathematis to address in the oming entury [37℄. At the time of

writing, 11 are fully resolved, 7 are partially (or ontroversially) resolved, 4 are

unresolved and one (the 4th)is thought to be stated too vaguely for any work to

take plae [31℄.
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Kolmogorov-

Chaitin Complexity

Kolmogorov 1965

Chaitin 1966-69

Completeness

Inompleteness

Gödel 1929-31

Computability

Turing 1936

Churh 1936

Expressiveness

Felleisen 1990

Information Theory

Shannon 1948

Algorithmi

Information Theory

Kolmogorov 1965

Chaitin 1966-69

Solomono� 1964

Elegane

Chaitin 1999

This work

Davidson,

Mihaelson 2014

Chaitin's

Formulation

Chaitin 1974

Figure 2.1: Overview of topis related to this thesis.

Of these problems, we fous on the seond one. Hilbert wanted to formalise all

of mathematis suh that if someone were to write a mathematial statement in

this formal system; �it shall be possible to establish the orretness of the solution

by means of a �nite number of steps based upon a �nite number of hypotheses

whih are implied in the statement of the problem and whih must always be

exatly formulated.� [37℄

To put it in a more modern vernaular, Hilbert wanted a omputer program

whih ould take any set of axioms (a statement taken to be �self evident�) and

formulae provided by the user, and return a proof of the formulae starting from

those axioms. This mehanisation of mathematis would allow us to formulate

any unresolved question (suh as the twin primes onjeture [107℄), a set of basi

axioms (suh as the Peano or ZFC axioms [101℄) and eventually get an answer.

To do this however, needs a formal system whih is is omplete (able to express all

possible mathematial formulae) and onsistent (there are no two true formulae

that ontradit eah other).

In 1931, Kurt Gödel proved that this was an impossible dream. The In-

ompleteness Theorems assert that even a simple formal system ould express a

formula whih was the negation of itself [28℄. He did this by onstruting the
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mathematial equivalent of the English sentene �This statement is false� using

a sheme known as Gödel numbering or Gödelisation [64℄.

Gödel numbering is a method of mapping some �nite alphabet to the natural

numbers. As an example, say there are 3 symbols in an alphabet {(, ), x} and

the sentenes (x), ()x, and x() need to be numbered. A mapping of natural

numbers to the individual letters is �rst de�ned, say {( 7→ 1, ) 7→ 2, x 7→ 3}. Then

the numberings are onstruted with are taken to preserve the struture of the

formulae. The natural numbers from this alphabet an be onatenated together

(x) = 132, but an alphabet of more than 9 symbols would present a problem. If

y = 11, is 12113 = ()yx or = ()((x?

The fundamental theorem of arithmeti is an observation by Eulid that every

natural (non-negative) number has a unique prime fatorisation [24℄. Take the

number 523345 for instane:

523345 = 3× 17× 47× 131

Sine we know that all prime numbers have only themselves and 1 as divisors, it

is lear to see that we annot substitute any other numbers for the fators above

so it must be unique.

Prime fatorisations are used to resolve the issue above. A number is on-

struted by using the prime numbers as position indiators for the formula with

the exponents of the prime numbers indiating whih harater is in that position.

For example:

(x) = 21 × 33 × 52 = 1350

()x = 21 × 32 × 53 = 2250

x() = 23 × 31 × 52 = 600

If y = 11, the two sentenes ()yx and ()((x are as follows:

()yx = 21 × 32 × 511 × 73 = 301, 464, 843, 750

()((x = 21 × 32 × 51 × 71 × 113 = 838, 530

These are all unique, and so Gödel provided a mathematially straightforward

method of mapping sentenes to the natural numbers. Gödel uses this method
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to not only map mathematial formulae of his hosen system, but also all meta-

mathematial formulae. Doing this, he ould substitute meta-mathematial as-

sertions into his regular formulae whih allowed him to onstrut a self-referential

formula whih stated its own negation.

The tehnial details of this are omplex [64℄, but the impliations are broad

and deep aross all �elds of the mathematial sienes. Gödel essentially disov-

ered the existene of problems that annot be solved. To try to solve these will

obtain a paradox. These problems are known as unomputable, or undeidable.

Gödel's numbering tehnique has appliations outside of his proof. An enu-

meration of programs is a size ordering using the alphabet of the programming

language. Beause any data drawn from a �nite alphabet an be enumerated,

there exists a Gödel numbering funtion whih an enumerate all programs writ-

ten in some language. The proofs and proof outlines in Setions 2.2.2, 7.3.1, and

A.2 rely on this.

2.1.2 Churh and Turing

In 1936, The Amerian logiian Alonzo Churh and British mathematiian Alan

Turing were both onerned with the notion of what an algorithm is and how

to formalise it. Churh devised an abstrat substitution system known as the

λ-alulus [11℄ (Setion 2.3.2.1) while Turing reated a set of hypothetial ma-

hines [95℄ (Setion 2.3.1.1).

Despite looking and operating in ompletely di�erent manners, it an be

shown that these two models of omputation are equivalent. This means that

every funtion that we an write in the λ alulus has a orresponding funtion

in Turing mahines. The most straightforward proof of this lies in the power of

universal mahines.

At its most basi level, a universal mahine UX is a mahine that will run

any program whih is written in some model X . For instane, Turing's seminal

paper introdues the UTM, a Turing mahine that takes as inputs on its tape,

a desription of another TM M and some input tape for M , say T . The UTM

then exeutes the mahine M against the tape T . In essene, Turing wrote an

interpreter for Turing Mahines in the language of Turing Mahines.
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Universal mahines an be made to prove that the λ-alulus is equivalent to

the TM model. Sine we know that a universal mahine for TMs an be written

and that equivalent models an represent the same funtions, let us assume we

an write a UTM U in the λ-alulus. This is a λ term that takes a mahine and

tape enoded as λ terms and exeutes the mahine on the tape.

Consider a hypothetial program P that an be written in the TM but not

in the λ-alulus. The existene of a UTM λ term means that any TM an be

enoded as a λ expression and then exeuted aording the the rules of TMs. So

if U an be written, then a TM program inexpressible in the λ-alulus suh as

P annot exist.

Implementing a UTM in the λ-alulus is fairly straightforward [96℄ (Setion

4.4.1.3), so we know that the λ-alulus an express all funtions that a TM an.

To show that the TM an express all the funtions of the λ-alulus, the onverse

needs to be onstruted. Writing a TM to evaluate any arbitrary λ expression

is also ahievable [96℄ so we an state with on�dene that the λ alulus and

Turing Mahine omputational models are equivalent.

This equivalene forms the basis of Churh's (later the Churh-Turing) the-

sis. This states that any funtion that an be omputed is λ-de�nable, and by

extension an be omputed by the λ-alulus and Turing Mahines [97℄. Many

other models of omputation have been shown to be CT onformant suh as Tag

systems [72℄, Markov algorithms [57℄, RAM mahines [63℄, and RASP Mahines

(Setion 2.3.1.2).

The formalisation of this notion of omputability ended a hapter of a searh

that started with Hilbert. It allows for an immediate and intuitive notion that

if a problem is omputable by a Turing mahine, then it is omputable in other

models of omputation equivalent in power to a Turing mahine. If model A

is equivalent in power to a Turing mahine, then one an use Gödelisation to

translate a TM enoding into an enoding suitable for A. A model equivalent in

power to Turing mahines is said to be universal.
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2.1.2.1 Universal Mahines

A universal Turing mahine is a Turing mahine that an simulate any universal

system. The mahines presented here follow a narrower de�nition in that they

simulate the Turing mahine model of omputation. Eah mahine uses an in-

ternal TM representation that ould be onsidered to be natural in that there

is a lear mapping between the tuples of the mahine to be simulated and the

data/expression whih is meant to represent the mahine.

A mahine is said to be universal if it simulates any universal system. Uni-

versal Turing mahines an also be strong, semi-weak, or weakly universal. The

tape of a a weakly universal mahine has an in�nitely repeated word (a string

of symbols) extending to the left of the input mahine (semi-weak), or a word

extending to the left and another word extending o� to the right (weak). In these

mahines, the tape is not a passive and initially informationless medium whih

is merely read from or written to, but is an ative part of the information of the

system. Strong universal mahines do not have these repeated patterns, and the

unbounded tape is always initially blank.

The universality of a mahine does not make any guarantees about whih

universal system is simulated. One of the smallest strong universal mahines

is from Rogohzin. It is a four state, six symbol UTM of 22 tuples and it is

not urrently known if there is a smaller mahine [77℄. Universal though it is,

Rogohzins mahine does not diretly simulate TMs. It simulates another universal

model of omputation known as 2-tag systems. In aordane with the Churh-

Turing Thesis, any arbitrary TM an be transformed a 2-tag system, but the

proess to do so is quite involved [66℄.

The universal mahines measured in this thesis (Setion 4.4) are so-alled

�diret simulation� mahines. These mahines simulate the universal mahine

UX of the model X by running a suitably enoded program for X using the

semanti rules (Setions 2.4 and 3.3.1) of X . The mahine UX an be written in

any omputational model as long as that model is as omputationally powerful

as the model X .
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2.2 Information and Algorithmi Theories

Shannon �rst investigated the �eld of information theory in 1948 [83℄. His work

not only onerned the engineering required to transmit a message, but also the

ontext of the message between the transmitter and reeiver. This dual approah

allowed him to also investigate enoding shemes for the English language as well

as engineering aspets suh as bandwidth and signal to noise ratios.

When transmitting information between two parties there are a number of

assumptions made about the message. In the most general sense, we assume that

both the sender and reeiver have the same semantis with whih to interpret the

message. A natural example is the assumption of a ommon language between

the sender and reeiver.

This `expeted ontext' has impliations for enoding and ompressing infor-

mation. As an example, we an examine the following senario: Suppose that

every day at the same time you get an email. That email an ontain one of

two di�erent messages: �There has been an earthquake in the last 24 hours.�

or �There has not been an earthquake in the last 24 hours.�. While eah mes-

sage is several words long, they ontain surprisingly little information. Sine the

message only states whether there has been an earthquake, with no onern to

loation/magnitude/damage et, we ould replae the entire sentene with a �0�

for no earthquake and �1� for an earthquake, with no information being lost.

The English language an be e�iently enoded by assigning a ode to repre-

sent eah letter. The length of the ode is dependent on how frequently the letter

will appear in a piee of text. In the English language, the letter �E� is the most

ommon, then �T�, �A�, and so forth

1

down to �Q� and �Z� whih are the least

ommon [53℄.

A standard method of applying these variable length odes is Hu�man enod-

ing [41℄ whih onstruts a binary tree sorted by the letter frequenies. So for

any given English text (with notable exeptions suh as lipograms or onstrained

writings [104℄), we an transmit the text in the most e�ient way assuming that

the frequenies used to onstrut the enoding are orret.

1

The preise order an vary aording to the texts studied, for instane, A and T are so very

lose to eah other frequeny-wise that some studies swap their position.
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A natural onsequene of the study of information theory is the idea of om-

pression. If the author of the message an reognise the essential information

whih the message onveys, then they an write a brief message with only that

information. Hu�man enoding an ompress text on a omputer further by as-

signing a variable length ode to every n bits (traditionally 8) whih represent a

single harater.

2.2.1 Kolmogorov-Chaitin Complexity

Kolmogorov-Chaitin Complexity [47, 10℄ is the measure of randomness in a string.

For a string s, the funtion KCL(s) returns the size of the most minimal, also

known as �elegant�, program in language L whih will output s when run. The

idea is that if s has some struture, then there will exist a omputer program whih

is smaller than the length of s. If s is truly random, then KCL(s) ≥ size(s) sine

the only way to express s will be to write it out. For example the string s:

s = xyzxyzxyzxyzxyzxyzxyzxyzxyzxyz

has a regular struture whih onsists of the repeated morpheme �xyz� 10

times. Writing a sentene like �xyz 10 times� is shorter than writing the string

out in full. The information of the string is ompressed into fewer haraters

without any loss of information so KCL(s) = 12. In ontrast the string:

s′ = ss783hsh23sh24156ejflau356hqndgph03jaxfwhg0aqfhrfsry

has no disernible struture. So to onvey all of the information in the string,

it needs to be written out in full. KCL(s
′) ≥ 52. If there is no struture to a

string, and all that the resultant program an do is just print the string as above,

then it is inompressible. The above funtion an be generalised. KCL(s|x) is the

funtion whih returns the size of the most minimal program in L whih returns

the string s when run with the input x.

The invariane theorem for Kolmogorov-Chaitin omplexity states that for a

string s, the language we use LU and an ideal language LI (in whih KC(s) is
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the most minimal for any L), there exists an overhead c suh that:

∀s : KCLI(s) ≤ KCLU(s) + c

This is to say that to translate from one language to another requires a onstant

size program whih performs the task. So the Kolmogorov-Chaitin omplexity

for any arbitrary string in some language is some onstant c haraters from the

ideal size.

2.2.2 Elegane

Chaitin de�nes an elegant program p for the output/string s in language L as

the shortest program written in L whih outputs s. In other words, there is no

smaller program (fewer haraters) whih an be written in L whih outputs s:

KCL(s) = size(p)

We annot in general deide if a program p is elegant [10℄:

Theorem 1 (Undeidability of Elegane (Chaitin)). In general, it annot be

determined that a program p is an elegant program for the output s over a ertain

threshold of size.

Proof. Assume there exists an `elegant tester' program ET whih takes a program

P as input and returns true if P is an elegant program and false otherwise.

Consider the program B whih takes a number n and enumerates (via some

Gödel numbering method) all possible programs Pn whih are longer than n.

For eah program in Pn, B runs ET against it until ET returns true. One an

elegant program K has been found, B runs K.

If size(n) is the size of n enoded as an input of B, onsider the ase of B

with n > size(B) + size(n) + 1 so that any Pn generated is greater in size than

B with n. There are an in�nite number of elegant programs, so ET will state

that one (K) is elegant. However B runs K and therefore returns the result of

K. The ombined sizes of B and n are lower than the size of K, so the funtion

ET annot do what it is assumed it an do.

31



Chapter 2. Literature Review

The elegane of programs an only be proven up to a ertain size (size(B) +

size(n)), so elegane is undeidable in general. This formulation of elegane only

refers to programs returning a singular output s, a so-alled �onstant� funtion.

However, for any given language L there may exist some programs whih are of

a size below that of B and perform some general funtion suh as addition. In

other words, there may exist an elegant formulation p suh that for an input x

and output y in a funtion F :

KCL(y|x) = size(p) + size(x) + size(y)

for all x and y in F . Setion 3.1 proves that suh a funtion annot exist, and

Setion 6.6 gives a onrete example of programs whih exhibit the ontradition

obtained.

Despite these hallenges, the onept of elegant programs has been drawn on

as inspiration for omparisons. Elegane itself annot be diretly ompared aross

languages beause the semantis of languages are not inluded in the de�nition.

The semantis of a language a�et how easily arbitrary algorithms an be realised

(expressiveness, Setion 2.5), so we an question how the elegane of a set of

funtions realised in language A ompares to the elegane of the funtion in

language B with a di�erent level of expressivity.

2.2.3 Other Measures of Complexity

Software Siene, more olloquially known as Halsteads Complexity measures,

is a �eld whih attempts to haraterise aspets of algorithms and programs in

order to assess the di�ulty of implementation, approximate length of a program,

and even the time to implement suh programs [34℄.

Halsteads model and others (like Cylomati Complexity [61℄) are built on a

series of mathematial formulae. These formulae use ounting metris of the pro-

gram like number of unique variables, number of unique operands, total variable

ourrenes, and total operand ourrenes. The formulae then purport that the

omplexity of the program an be alulated with respet to how easy it is to

implement and understand in an arbitrary language.
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If suh a system of formulae were to exist, it would be very useful. However,

suh omplexity metris tend to fall short of their laims when subjeted to

theoretial and empirial srutiny [85, 84℄. It is hard to aept that nebulous

onepts suh as the omplexity of a program, and how easy it is to understand

and write an be asribed to these metris. So muh depends on a programmer's

style and skill.

Software metris are an attrative idea, but their present immaturity and

lak of rigour does not make them a suitable haraterisation of the information

ontained in a program over a more simple metri suh as the number of haraters

or bytes.

2.3 Models of Computation

A model of omputation is an abstrat formal system onsisting of a set of op-

erators, a grammar for forming statements and a semantis whih evaluates the

operators of the model in a onsistent manner. Models have an assoiated lan-

guage that is the result of ombining the operators with the grammar. We shall

use the terms �language� and �model� synonymously.

For a model to be onsidered Turing Complete, it must be apable of repre-

senting a UTM as desribed in 2.1.2. All of the models in this setion are Turing

Complete, and their respetive UTMs are desribed in Setion 4.4.

2.3.1 Imperative/Proedural Languages

Imperative models of omputation have a struture muh like a reipe. A program

is a list of instrutions whih are exeuted in a sequential fashion.

Figure 2.2 shows a small imperative program whih uses the proedure add()

three times. The �ow of ontrol starts at the top of themain() proedure. Vari-

able x is assigned with a all to add(4,3), in whih the �ow of ontrol `jumps'

into the add() proedure, and then `jumps' bak one the addition has been per-

formed. Variable y is then assigned with another all to add(2,7). With x = 7

and y = 9, the �nal all to add() �nishes the program returning the value 16.

Imperative languages are typially easy to follow, but writing a program an
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i n t main ( ){

i n t x = add ( 4 , 3 ) ;

i n t y = add ( 2 , 7 ) ;

r e turn add (x , y ) ;

}

i n t add ( i n t x , i n t y ){

return x + y ;

}

Figure 2.2: A ode snippet of a proedural program.

require that the programmer interat signi�antly with the underlying mahine,

espeially in an older language like C or C++. Tasks like alloating and ini-

tialising memory may not be handled by the semantis of simpler imperative

languages. This puts more stress on details whih are not diretly related to the

problem.

Programming languages are either pure or impure. Funtional languages are

distinguished from imperative languages by exhibiting purity in the entirety of

the language, or in a signi�ant part. One of the important aspets of purity is

referential transpareny. A funtion, or sub-program is referentially transparent

if the funtion an be replaed with its return value without a�eting the rest of

the program.

In other words, the funtion does not hange any global state of the abstrat

mahine running the program. In Figure 2.2, the add() funtion is referentially

transparent. The alls in main() of add(4,3) and add(2,7) an be replaed

with 7 and 9 respetively without a�eting the rest of the program.

Consider a global variable t, whih is a variable that an be aessed and used

by any part of a program. If the add() funtion is Figure 2.2 were to hange t

when alled, then the funtion would lose referential transpareny, beause the

hanging of t is a side e�et. The add() funtion does not just return a value, it

hanges the global state of the program.

Modern funtional languages often requires that the programmer spei�es

only whih strutures are used and how they are used to solve the problem. The

semantis of the funtional language ditate how this more abstrat solution is

to be implemented on the inherently stateful underlying mahine without muh,
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if any, intervention from the programmer.

2.3.1.1 Turing Mahines

The Turing mahine (TM) is a model of omputation introdued by Alan Tur-

ing [95℄. Turing mahines ome in many variations, but the most ommon on-

sists of a state mahine with a read/write head positioned over a tape made up

of ells. Eah ell an hold a single symbol and an be overwritten as many times

as needed. The tape is unbounded in both diretion, so additional ells may be

added as required.

The mahine has a read/write head that an read a symbol from and write a

symbol to a single ell of the tape. It an also move the tape one square to the

left or one square to the right.

At any given moment, a TM an be in one of a number of states. A partiular

state and symbol pair informs the mahine what to do next aording to the

symbol table. The symbol table is a funtion:

ST : STATE× SYMBOL 7→ STATE × SYMBOL×DIRECTION

whih takes the urrent state of the mahine: stateold and the symbol urrently

under the head: symbolold. It returns a new state to transist to: statenew, symbol

to write: symbolnew, and diretion in whih to shift the tape: dir.

〈stateold, symbolold〉 7→ 〈statenew, symbolnew, dir〉

It is possible that the funtion ST does not return a result for the urrent

state and symbol pair. In this ase, we have not de�ned what the mahine should

do next, so it just halts. As a onvention in this thesis, Turing mahines will

start in state 1, the read/write head is initially positioned over the left hand side

of our tape input (if not expliitly de�ned to be elsewhere), and a transition to

state 0 halts the mahine. The mahine will also halt if it enounters an unde-

�ned state/symbol pair. There is no distintion between halting by `legitimately'

transisting to zero, or enountering an unde�ned state/symbol pair.
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Consider a simple mahine to invert a sequene. This sequene is de�ned as

a string of either `1' or `0' ended with two instanes of `1' in a row. For instane

�1010100010011� is a sequene. A mahine to invert this sequene will start at

the left hand side of the sequene and proeed by overwriting any 1s with 0s and

0s with 1s. It will halt when the mahine reads the seond `1' in a row. The

symbol table for this mahine is:

〈1, 0〉 7→ 〈1, 1, R〉

〈1, 1〉 7→ 〈2, 0, R〉

〈2, 0〉 7→ 〈1, 1, R〉

〈2, 1〉 7→ 〈0, 0, R〉

This symbol table onsists of four transitions, two for eah state. Every time a

`0' is read, the mahine transists to state 1. If the mahine is in state 1 and it

reads a `1', it will transist to state 2. Reading another `1' while in state 2 will

halt the mahine by transiting to state 0.

2.3.1.2 The Random Aess Stored Program Mahine

The Random Aess Stored Program (RASP) mahine [23, 16, 36℄ is a register

mahine with a Von Neumann memory arhiteture [32℄. A register mahine an

intuitively be thought of as a omputer proessor with a set of registers to hold

both the program and data.

A Random Aess Mahine (RAM) is a register mahine with two sets of

registers, one set ontains the program, and another set ontains the data. The

program an read and write to the data registers, but annot write to the program

registers [78℄. This establishes a boundary between program and data whih

emulates a �traditional� idea of programming suh that this memory model is

supported by most mainstream languages by default.

In general, the RASP model makes no distintion between program and data

whih are ombined into a single register spae. It is therefore oneivable that

instrutions an be onsidered as data and vie versa.

The RASP mahine was oneived by Elgot and Robinson [23℄ as an attempt

to introdue the notion of an extensible model whih an be disussed from a
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semanti viewpoint. They de�ne a RASP as an ordered sextuple:

P = 〈A,B, b0, Ko, h
1, h2〉

The �rst four items are desribed below:

• A and B are possibly in�nite, overlapping, or oiniding sets of addresses

and words respetively.

• b0 ∈ B is the empty word.

• Ko ⊆ K is the set of ontent funtions suh that k(a) = b, where k ∈ Ko,

a ∈ A, and b ∈ B

For eah k ∈ K, every a ∈ A suh that k(a) 6= b0 is part of a set known as

the support of k. Finally every k with a �nite support is a member of the set Kf .

Ko is a subset of K and is �nitely supported if Ko = Kf .

Let Σ = K × A and Σo = Ko × A be sets of mahine states. The funtion

h1 : Σo × B 7→ Ko exeutes a word in B to obtain a new ontent funtion. The

funtion h2 : Σo×B 7→ A exeutes a word in B to obtain the next address. These

mappings an be ombined into h : Σo×B 7→ Σo suh that given a mahine state

and word to exeute, the mahine derives both the next ontent funtion (via h1
)

and next address(h2
) whih is the new state:

• h1 : Σo ×B 7→ Ko exeutes a word to obtain a new ontent funtion.

• h2 : Σo ×B 7→ A exeutes a word to obtain a new address.

Elgot and Robinson's �rst order and set theoreti treatment of the RASP

desribes the implementation of general reursive funtions and introdues the

idea of language extensions termed de�nitional extensions. It is lear that they

intended to use the RASP model as a basis for the implementation of semantis of

programming languages and studying how the addition of new de�nitions would

a�et the languages. This initial treatment of semantis in�uened the develop-

ment of PL/I [55℄ and (by means of the Vienna De�nition Language) SOS [71℄.

However, using the RASP mahine to speify these semantis never really gained

tration.

The RASP has been used to study omputational omplexity. Cook, Rekhow

and Hartmanis [16, 36℄ have investigated the time omplexity of self modifying
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programs relative to �xed ones. Hartmanis disovered that RASPs have the

potential to be faster than a RAM or Turing mahine due to this self modi�ation.

Hartmanis de�nes a RASP as a pair 〈M, I〉 of a mahine M and set of in-

strutions I. M ontains two speial registers; an instrution ounter (IC), and

the aumulator (AC). These two registers are at the beginning of the memory,

and the rest of the memory onsists of an unbounded sequene of registers. Eah

register an hold an arbitrarily sized but �nite binary sequene.

Register # Content

. . . . . .

R5 1

R6 5

. . . . . .

Figure 2.3: Indiretion, aessing the address stored in R6: <<6>>=<5>= 1

The ontents of a register Rn is denoted <n>, similarly <IC> and <AC>

refer to the ontents of the instrution ounter and aumulator. Indiretion is

indiated with <<n>> whih is explained in Figure 2.3.

There are 7 instrutions in the instrution set I, some of whih an take

di�erent types of parameters. For example the ADD instrution an add a natural

number to the aumulator, but it ould also add the ontents of another register

to <AC>, or even the ontents of the address held in some other register. Eah

register in this model holds a single instrution + data and after an instrution

(exept HALT) is exeuted, <IC> is inremented for the next register. The

instrutions I of Hartmanis are explained in Table 2.1.

The instrution set is at �rst quite appealing, but the minutiae of implementa-

tion would prove to be quite �niky. Consider for example the ase of instrutions

taking one of several types of input, we see that we would either have to devise

an enoding sheme that indiates if the parameter to funtions are diret or

indiret, or we would have to split the instrutions out into speial ases (i.e

ADD, ADDi, ADDd for the ases of n, <n>, and <<n>>). Furthermore, sine a

register holds both the instrution and data, there is no lear way to hange one

or the other so that the mahine an self modify. If there exists some Gödelesque

enoding for eah 〈instruction, data〉 pair, we would have to load the ontents of

that register and arefully edit it to hange either the instrution, or the data.
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Name Meaning

TRA n,
TRA <n>

Transfer ontrol to register n or <n>
respetively. i.e.<IC>= n or <IC>=
<n>.

TRZ n,
TRZ <n>

If <AC>= 0, transfer ontrol to regis-

ter n or <n> respetively.

STO n,
STO <n>

Store <AC> in register n or register

<n> respetively.

CLA n,
CLA <n>,
CLA <<n>>

The values n, <n> or <<n>> respe-

tively are stored in AC. The ontents

of Rn and <Rn> are not altered.

ADD n,
ADD <n>,
ADD <<n>>

<AC > is replaed by <AC > + n,
<AC> + <n>, or <AC> + <<n>>
respetively.

SUB n,
SUB <n>,
SUB <<n>>

<AC > is replaed by <AC > − n,
<AC> − <n>, or <AC> − <<n>>
respetively.

HALT The mahine stops and no further in-

strutions are exeuted.

Table 2.1: Instrutions of Hartmanis

These issues lead us to believe that Hartmanis was de�ning his RASP as more

of a RAM mahine, where the data is simply appended to the end of the program

and where the program does not atually modify itself, but does modify the

same piee of memory whih holds the program and data. This implementation

is formally ongruent to the spei�ation of Elgot and Robinson, but is not as

interesting as a RASP whih an modify its own program.

In ontrast to the above, the model used in this thesis is predominately �nite

through the restrition of sets A and B. RASP sizes are spei�ed in terms of

�n-bits� and an n-bit RASP has 2n registers, eah of whih an hold a single

natural number up to 2n−1
. The registers themselves are numbered in the range

0 to 2n−1
.

Registers, 0, 1 and 2 have spei� funtions whih are used to keep trak of

the state of the mahine. Register 0 is the Program Counter (PC, analogous to

the IC) whih points to the urrent register being exeuted. Register 1 is the

Instrution Register (IR) where the ontents of the address in the PC is opied

for deoding and exeution, Register 2 is the Aumulator (ACC, analogous to

the AC) upon whih all of the arithmeti instrutions operate. When a RASP
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Natural Command E�et

0 HALT Halt the mahine.

1 INC M[ACC℄ ← M[ACC℄+1

2 DEC M[ACC℄←M[ACC℄-1

3 LOAD x M[ACC℄← x
4 STO x M[x℄←M[ACC℄

5 JGZ x IF M[ACC℄ > 0 THEN M[PC℄ ← x
6 OUT Output the urrent value of the aumulator.

7 CPY x M[ACC℄ ← M[x℄

Figure 2.4: The e�ets of eah instrution on a RASP mahine M

mahine is parsed by the semantis (Setion 3.4.2), the PC, IR, and ACC are

initialised to 3,0,0 whih an be thought of setting the IR and ACC to 0, while

the PC points to the �rst instrution of the program.

There are 8 instrutions in the RASP mahine with eah instrution mapped

to a natural number. Figure 2.4 shows the e�ets of eah instrution on a RASP

mahine M, where M[y℄ is the value stored in address y of the mahine. This

instrution set borrows from Cook and Rekhow's de�nition in [16℄, but has

some notable di�erenes:

• No negative numbers.

• Finite number of registers and the size of a number whih an be stored.

• INC and DEC rather than ADD/SUB.

• No READ for external input.

• Expliit CPY instrution for indiretion.

In the event of an over- or under�ow due to the exeution of INC and DEC

statements or the inrementing of the PC, the mahine will arry on as normal.

An over�ow will set the the a�eted register bak to 0 and an under�ow will set

it to 2n − 1. If the mahine attempts to deode and exeute a natural number

that is not in the range 0-7, the mahine will halt.

The RASP mahines of this thesis operate aording to the feth exeute

yle shown in Algorithm 1. If a mahine were to exeute the LOAD instrution

it would �rst opy the instrution from the memory address pointed to by the

PC into the IR. Deoding the LOAD would prompt an inrement of the PC

and a further feth of the parameter into the IR. One this has been done, the

LOAD ommand will be fully exeuted by setting the ACC to the value whih
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while not halted do

M[IR℄ ← M[M[PC℄℄;

if M[IR℄ > 7 then

Halt;

end

if instrution requires a parameter then

M[PC℄ ← M[PC℄+1;

M[IR℄ ← M[M[PC℄℄;

end

Exeute instrution;

if last exeuted instrution was not a suessful jump then

M[PC℄ ← M[PC℄+1;

end

end

Algorithm 1: RASP Feth-Exeute yle.

Instr Data I Label

3 :PC

0 :IR

0 :ACC

STO 'here :here

INC

JGZ 'here

Figure 2.5: An example of a RASP that will self modify in order to halt.

is urrently held by the IR. The mahine inrements the PC again and ontinues

on to the next instrution.

The most prominent feature of the RASP is the ability to self modify and

hange the running program. Figure 2.5 shows an example of a mahine whih

does this. RASP mahines are displayed using this form to make them readable.

A RASP mahine whih is to be exeuted by the semantis is expressed as a

linear array of natural numbers. For example the above mahine (ignoring the

initial values for the PC, IR, and ACC) is: 4,3,1,6,3. Eah number represents an

instrution, piee of data, or both. And while ompat, this form is di�ult for

a reader to parse. This thesis will primarily deal with the more readable form as

shown in Figure 2.5.

Labels ome in two forms: instrution labels and data labels. These labels are

pre�xed with a `:' and a `;' respetively and are used as pseudo-variables/omments

and refer to the memory address of the instrution or data to whih it is attahed.

Labels an be referred to by a pre�xed ' whih should be read as �the memory
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address of the labelled information in the mahine�. The mahine in Figure 2.5

uses a label �:here� to refer to the address holding the STO instrution. This

address is 3, so when �STO 'here� is exeuted, the mahine really exeutes �STO

3�.

The �rst ation of the mahine in Figure 2.5 is to store the ontents of the

ACC at address 2 (0) in register 3, overwriting the STO ommand. Then the

mahine inrements the ACC, hanging it to 1, and jumps bak to register 3 due

to the ACC being greater than 0. At register 3, the instrution 0 is deoded and

exeuted and the mahine halts.

While the 〈instrution,data〉 pairs and labels are used as representations in this

thesis to aid of understanding, the RASPs are measured in the omma delimited

form: 3, 0, 0 . . . as desribed in Setion 3.3.1.

Realling the anonial de�nition of Elgot and Robinson above, we now map

the RASP of this thesis on to that de�nition. The sets A and B of an n-bit

RASP mahine are: A = B = {0, . . . , 2n − 1} and the empty word b0 is the

HALT instrution, or 0.

Beause of the strit o-inidene A and B, the set of ontent funtions K,

for these RASPs is slightly di�erent from the original de�nition. The onepts of

ontent funtions, states, and the state transition funtions h1
and h2

are mixed

up in this de�nition. For the RASPs of this thesis, the state of the memory

provides all the information required to obtain the next state. Thus a state is

not a ombination of K × A, but is just the ontent funtion k ∈ K. If K

represents every possible mapping of A 7→ B, the set Ko is the set of states that

the mahine running a partiular program an be in. We an see that the Σ term

is not required to desribe the state, as it will be σ = 〈k, k(0)〉 for every k.

This has a knok-on e�et for h. Given a RASP state, a feth determines the

next instrution to be exeuted. In doing so, the state of the mahine is set to an

intermediate state (as the IR hanges). Exeution then hanges the state again

as it applies the instrution in the IR to the mahine.

We an oere the feth exeute yle in terms of h and σ, but an rewrite all
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of the funtions in terms of k:

h(σ, b) = 〈h1(σ, b), h2(σ, b)〉

= 〈h1(〈k, k(0)〉, k(k(0))), h2(〈k, k(0)〉, k(k(0)))〉

A better alternative for the funtions h1
and h2

is a single funtion f : K 7→ K

whih takes a state k, and evaluates using the feth-exeute to produe k′
. The

updated expression for an n-bit variant of our RASP (taking HALT as 0) is

therefore:

P = 〈A : {0 . . . 2n − 1}, 0, Ko, f〉

The spei�s of the funtion f are desribed by the semantis of the RASP

mahine whih are explored in detail in Setion 3.4.2.

2.3.1.3 Variations of the RASP

While the RASP is perfetly usable as a model of omputation, addition and sub-

tration are laborious proesses. If there are multiple ase of addition/subtration

in a large program, enapsulating add/sub in a pseudo-funtion and alling this

funtion when required an save time and spae.

The alling is performed by opying the data and the return address into

the relevant memory, jumping to the �rst instrution in this funtion and then

retrieving the �nal value one the funtion returns.

Figure 2.6 shows an example of a reusable addition funtion. The �rst blok

of instrutions store the numbers 6 and 5 in the seond blok, store where the

funtion should jump bak to and jump to the start of the addition funtion. The

addition funtion itself adds the two parameters together and jumps bak to the

indiated loation one Param1 is zero.

This approah works reasonably well for moderately sized programs, but for

very large programs with many suh alls it would be preferable to also implement

an exeution stak whih an generalise the funtion all.

We an iterate on the basi RASP in two di�erent ways by replaing INC and

DEC with ADD x and SUB x. Table 2.2 states the e�ets of the new instrutions.

RASP2 will use ADD x and SUB x, where x is a value, suh that ADD 3 will add

the value of 3 to the aumulator. RASP3 will also use ADD x and SUB x, but
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Instr Data I Label D Label

LOAD 6

STO 'Param1

LOAD 5

STO 'Param2

LOAD 'retAddress

STO 'returnAddr

JGZ 'AddStart

CPY 'Param2 :retAddress

HALT

LOAD 0 :AddStart ;Param1

JGZ 'add

LOAD 1

JGZ 0 ;returnAddr

DEC :add

STO 'Param1

LOAD 0 ;Param2

INC

STO 'Param2

LOAD 1

JGZ 'AddStart

Figure 2.6: An example of a RASP pseudo funtion and alling ode

Integer Command RASP2 RASP3

1 ADD x M[ACC℄←M[ACC℄+x M[ACC℄←M[ACC℄+M[x℄
2 SUB x M[ACC℄←M[ACC℄-x M[ACC℄←M[ACC℄-M[x℄

Table 2.2: The ADD and SUB instrutions for a RASP2/3 mahine M
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f a  t o r i a l 0 = 1

f a  t o r i a l n = n ∗ f a  t o r i a l (n−1)

Figure 2.7: A Haskell program for omputing fatorials.

the x is a memory address where the value is held. ADD 3 is akin to ADD M[3℄

whih adds the ontents of the memory at address 3 to the aumulator. In doing

this, we eliminate the requirement for a generalised funtion for addition in the

RASP programs. This means that a RASP2 or 3 program will be signi�antly

shorter than a RASP program whih performs additions.

2.3.2 Funtional Language

Informally, funtional languages put the onus on speifying a problem rather that

the minutiae of solving it [100℄. Programs written in a funtional language tend

to resemble mathematial formulae rather than the `reipe' of instrutions of an

imperative language.

For instane, the mathematial de�nition of the fatorial funtion is:

fact(n) =







n = 0 : 1

n > 0 : n× fact(n− 1)

This is a reursive funtion. fat(n) will all itself until n = 0 and then the

resulting produt will ombine n× n− 1× n− 2× . . .× 1 to return the answer.

Figure 2.7 shows the de�nition of the fatorial funtion in Haskell, a funtional

programming language [40℄. There are many di�erent ways to express this fun-

tion in Haskell, inluding using an if/then/else struture � similar to what you

might �nd in an imperative language, or using a fold funtion over a list of 1 to n,

but this method (pattern mathing) aptures the simpliity of the mathematial

de�nition.

Funtional languages are often more abstrat than imperative ones. Modern

funtional language implementations proess a number of aspets of a users pro-

gram like alloating memories, performing pattern mathing, and determining the

�ow of ontrol. The automated handling of these tasks eases the burden on the

programmer and redues areas in whih bugs an our [42℄. Requiring the pro-
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grammer to only mathematially speify the problem an lead to more (Chaitin)

elegant programs ompared to imperative languages, whih require muh more

interation with the mahine. This abstration omes at a ost however. The

automation of interation with the underlying mahine are ontained in the se-

mantis of the language making them larger than their imperative ounterparts.

2.3.2.1 λ-Calulus

The λ-alulus was devised by Churh [12, 11℄ and is a model of omputability

that relies on substitution and abstration. The abstrat syntax for this language

is:

E := λv.E|(E E)|v

v ∈ {a . . . z}+

The alulus is made up of λ terms generated from this grammar whih are

evaluated via some evaluation strategy. Evaluation is performed by substituting

expressions and values in for variables, also known as β-redution, eah of whih

is a omputation step. As an example, onsider a very simple λ term:

(λx.xxy)P

This term onsists of a λ term (λx.xxy) and an atom P (whih ould potentially

be another λ term). We say that the variable x in the term is bound by the λ, and

that the variable y is free. A step of β redution will replae all ourrenes of x

in the term with the atom P , but leave the y as it is. There are two ourrenes

of x in the body of the expression, so we remove the λx. and replae eah (newly

freed) x with P . This is a single step of β redution and results in the term PPy.

Consider:

(λx.λy.y)PQ

This λ term has two bound variables: x and y, and two atoms: P and Q.

The �rst step of β redution replaes all ourrenes of x with P . There are no

ourrenes of x, so P is e�etively �deleted� from the expression giving:
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(λy.y)Q

We then exeute the next redution to obtain Q. When performing β re-

dution, we substitute for the very leftmost bound variable �rst. If there is

no expression with whih to substitute for the leftmost bound variable, then the

sub-expressions are evaluated. This is known as normal order/leftmost outermost

evaluation and an expression whih annot be further evaluated is in normal form.

There do exist other evaluation strategies like appliative order/leftmost in-

nermost, where a term suh as (λx.(λa.a)(λb.b)x)(λy.y) redues (λa.a)(λb.b) �rst,

and redution to weak head normal form, where evaluation stops when the left-

most abstration does not have an available redution ((λx.(λa.a)(λb.b)x) in weak

head normal form). However full normal order redution is the only redution

strategy onsidered in this thesis.

The term (λx.x) is known as the identity funtion whih takes a single argu-

ment and returns it. (λx.λy.x) and (λx.λy.y) are known as the true and false

funtions. They both take two arguments and true returns the �rst argument

while false returns the seond:

TRUE A B ≡ (λx.λy.x)A B

⇒β (λy.A)B

⇒β A

FALSE A B ≡ (λx.λy.y)A B

⇒β (λy.y)B

⇒β B

They an also be though of as the selet �rst and selet seond funtions.

Appliation is left-assoiative, so the redution of a λ term (ABC) proeeds

with A applied to B, then the result applied to C. The fully braketed notation

is ((AB)C), but we omit the extra ones for brevity. Brakets inside an expression

denote the appliation order if not left-assoiative as desribed above.

The natural numbers in the λ-alulus an be represented by the �Churh

numerals� [11℄, whih are higher order funtions (HOFs). HOFs take another

funtion as an argument or return some funtion as an output. While every
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lambda term with an abstration is a HOF, the Churh numerals are a partiularly

good example of the higher order property.

Churh numerals are funtions whih take two λ terms. A number n applies

the �rst argument n times to the seond one.

ZERO ≡ λf.λx.x

ONE ≡ λf.λx.fx

TWO ≡ λf.λx.f(fx)

THREE ≡ λf.λx.f(f(fx))

n ≡ λf.λx.fnx

Churh numerals an be ombined using other λ terms to produe the arith-

meti funtions. The suessor funtion s() adds one to a number n:

s(n) = n+ 1

The implementation of s() in the λ-alulus adds an extra `f' to the left of a

numeral n to obtain n+ 1:

SUCC ZERO ≡ (λn.λf.λx.f(nfx))(λf.λx.x)

⇒β (λf.λx.f((λf.λx.x)fx)

⇒β (λf.λx.f((λx.x)x)

⇒β (λf.λx.fx)

≡ ONE

Using SUCC, numerals an be de�ned in terms of other numerals:

TWO ≡ (SUCC ONE) ≡ (SUCC ZERO)

n ≡ SUCC

n
ZERO

The opposite of the suessor s() is the predeessor p():

p(n) =







0 : n = 0

x : n = (s(x))
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The predeessor funtion derements a natural number n if n > 0 otherwise it will

return 0: (λn.λf.λx.n(λg.λh.h(gf))(λu.x)(λi.i)). Given a numeral, the funtion

replaes the variable n and then applies the sub-expressions (λg.λh.h(gf)) and

(λu.x) to the numeral.

If the numeral is zero, the �rst of the terms is deleted leaving (λf.λx.(λt.t)(λu.x)(λu.u)).

This is redued, bearing in mind that ABC is ((AB)C), to (λf.λu.u).

A non-zero numeral N produes N opies of the �rst term and proeeds to

apply the seond term to the �rst, and removes the third term. The (g f) stru-

ture keeps the (λu.x) lose to the rear of the expression. Observe the appliation

of PRED to TWO:

PRED TWO ≡ (λn.λf.λx.n(λg.λh.h(gf))(λu.x)(λi.i))(λf.λx.f(fx))

⇒β (λf.λx.(λf.λx.f(fx))(λg.λh.h(gf))(λu.x)(λi.i))

⇒β (λf.λx.(λx.(λg.λh.h(gf))((λg.λh.h(gf))x))(λu.x)(λi.i))

⇒β (λf.λx.(λg.λh.h(gf))((λg.λh.h(gf))(λu.x))(λi.i))

⇒β (λf.λx.(λh.h(((λg.λh.h(gf))(λu.x))f))(λi.i))

⇒β (λf.λx.((λi.i)(((λg.λh.h(gf))(λu.x))f)))

⇒β (λf.λx.(λg.λh.h(gf))(λu.x)f)

⇒β (λf.λx.(λh.h((λu.x)f))f)

⇒β (λf.λx.(f((λu.x)f)))

⇒β (λf.λx.(f(x)))

≡ ONE

Note that lines 6-9 have the sub-expression ((λu.x)f) lose to the end of the

term. The �nal redution applies the f to (λu.x) to eliminate it and therefore

derement the numeral.

PRED is more omplex than the suessor funtion beause it ontains redun-

dant lauses whih do not a�et the ZERO term, but subtrat an `f' from any

numeral whih is not zero. The subtrative funtions whih make use of PRED

are therefore larger than the additive funtions whih use SUCC.

The addition funtion nominally adds two numbers x and y together by re-

ursively derementing x to zero while inrementing y:
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add(x, y) =







y : x = 0

add(p(x), s(y)) : x 6= 0

Addition in the λ-alulus with Churh numerals does not follow this reursive

de�nition however, as the higher order nature of the Churh numerals an add n

and m by applying SUCC m times to n:

ADD TWO ONE ≡ (λm.λn.m SUCC n)TWO ONE

⇒∗
β TWO SUCC ONE

⇒∗
β SUCC(SUCC(ONE))

⇒∗
β THREE

We an test for ZERO:

iszero(x) =







1 : x = 0

0 : x 6= 0

ISZERO ONE ≡ (λn.n(λx.(λa.λb.b))(λa.λb.a)) ONE

⇒β (λf.λx.fx)(λx.(λa.λb.b))(λa.λb.a)

⇒∗
β (λx.(λx.(λa.λb.b))x)(λa.λb.a)

⇒β (λx.(λa.λb.b))(λa.λb.a)

⇒β (λa.λb.b)

ISZERO ZERO ≡ (λn.n(λx.(λa.λb.b))(λa.λb.a)) ZERO

⇒β (λf.λx.x)(λx.(λa.λb.b))(λa.λb.a)

⇒∗
β (λx.x)(λa.λb.a)

⇒β (λa.λb.a)

The resulting funtion from ISZERO is either TRUE ≡ (λx.λy.x) or FALSE ≡

(λx.λy.y). Both funtions take two arguments and TRUE returns the �rst, while

FALSE returns the seond.

The HOF properties of Churh numerals an be leveraged to reate suint

`additive' funtions (addition, multipliation, exponentiation). Conversely, sub-

trative funtions (subtration, division, square root) are large in omparison to
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their additive ounterparts beause the predeessor funtion (PRED) applied to

ZERO is still ZERO and PRED has to take this into aount.

Lists are onstruted pairwise. They are nested lambda expressions for pairs

with the innermost pair inluding an end marker. This end marker will allow an

expression to test for it so that we know when we reah the end of the list.

PAIR ≡ λx.λy.λz.zxy

NIL ≡ λx.λa.λb.a

HEAD ≡ (λp.p(λa.λb.a))

TAIL ≡ (λp.p(λa.λb.b))

NULL ≡ (λp.p(λq.λr.(λa.λb.b)))

Here, NIL is the end marker and NULL is a test for that marker whih returns

TRUE if it is applied to NIL and FALSE if it is applied to PAIR. Additionally,

HEAD returns the �rst element of the list and TAIL returns everything exept

for the �rst element. A three element list an be onstruted with the expression

(PAIR A (PAIR B (PAIR C NIL))).

Other logial onnetives an be onstruted to make use of the TRUE and

FALSE expressions:

AND ≡ λp.λq.pqp

OR ≡ λp.λq.ppq

NOT ≡ λp.λa.λb.pba

The �xed point ombinator Y ≡ (λf.(λx.f(xx))(λx.f(xx))), is a λ term with

an unusual property. Given an argument term k, (Y k) will redue to k(Y k) in

some number of redution steps. If left unheked, the redutions will ontinue

forever: (Yk) = k(k(. . . (Y k) . . .)). Essentially, what Y does is opy the funtion

k to the front of the expression and apply k to (Y k).

(Y k) ⇒β (λf.(λx.f(xx))(λx.f(xx)))k

⇒β (λx.k(xx))(λx.k(xx))

⇒β k((λx.k(xx))(λx.k(xx)))

⇒β . . .

The use of Y is the general method of implementing reursive funtions. The
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opying behaviour of Y allows k to aept a opy of itself as a parameter. If k

is a reursive funtion, then a `all' to k will begin with a opy of k being made

whih is to be passed into the funtion itself. Consider the DIV funtion from

Setion 4.2.5:

Y(λg.λq.λa.λb.LTa b(PAIR q a)(g(SUCC q)(SUB a b)b))ZERO

The initial redution is the appliation of the �xed point ombinator to the ex-

pression, produing DIV(Y DIV)ZERO. The abstration g moves the (Y DIV)

into the leading DIV whih ompletes the reursive all.

Two λ expressions are equivalent if they have the same e�et. This is a

property known as extensionality where we are only about how the term in-

terats with other terms, rather than how the inside of the term is evaluated

(intentionality). Working out if two arbitrary terms are equivalent is generally

unomputable [12℄. But we have tools, known as α and η (and β redution if the

terms are not in a normal form) onversion, whih we an use to onvert similar

terms to test for equivalene.

Consider the two terms A = (λp.(λa.λq.a)p) and B = (λa.λb.a). These two

terms ould possibly be equivalent, but we have to use both α and η onversion

to make sure. A term (λx.Mx)T , where there are no free ourrenes of x in

M , will always redue to MT for all M and all T . The abstration over x is

super�uous as it neither dupliates, nor moves T in any way. The abstration

over p in λ expression A an therefore be removed suh that A = (λa.λq.a).

We may naïvely believe that two terms abstrating over di�erent names an-

not be equivalent. This is where renaming or α onversion is alled for. Renaming

the variables in a term is the proess of hanging the name of the bound vari-

able and the name of every variable whih is bound by that λ. The expression

(λx.x((λx.xx)x)x) binds the variable x in two di�erent expressions. The inner

expression binds x twie, and the outer binds x three times.

This expression is also hard to read. So we an rename either (or both)

abstrations to something di�erent. (λy.y((λx.xx)y)y) is a little bit easier to

read, lears up any possible ambiguities and maintains the intentionality of the

term.
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Ix ≡ x
Kxy ≡ x
Sxyz ≡ xz(yz)

(a) E�ets of ombinators

I ≡ λx.x
K ≡ λx.λy.x
S ≡ λx.λy.λz.xz(yz)

(b) Combinator λ terms

Figure 2.8: Combinator e�ets and orresponding λ terms

Applying this proedure to terms A and B, we rename the bound q in A to

math the b in B. Thereby showing that A = B = (λa.λb.a).

2.3.2.2 SKI Combinator Calulus

Combinatorial logi is a simple funtional model of omputation developed by

Shön�nkel in 1924 [79℄ and independently re-disovered by Curry in 1927 [82℄.

The SKI ombinator alulus onsists of three titular ombinators: S, K and

I. The I ombinator is the identity ombinator. For any x, whih ould be

another ombinator or braketed expression, Ix is x. The K ombinator takes

two arguments, x and y, and returns x whih is just like the TRUE funtion from

above. The S ombinator takes three arguments and reorders them: Sxyz =

xz(yz). Figure 2.8 lists the three prinipal ombinators of the alulus and the

λ-alulus expressions whih orrespond to them.

The SKI ombinators have simple λ-alulus ounterparts as shown above.

Interestingly, these three ombinators are Turing Complete. This an be shown

via a proess known as braket abstration[98, 17, 94℄ whih �eliminates� bound

variables by replaing the abstration mehanisms with ombinators to opy and

position parameters.

In this thesis, the SKI expressions for the tested set of funtions (Chapter

4) are obtained via braket abstration of λ-alulus terms. There are multiple

methods of braket abstration available [98℄ and a reent version by Tromp [94℄

is an e�ort to redue the size of the resultant ombination as muh as possible.

Braket abstration is a proess whih onverts λ-alulus terms into SKI

terms. It was �rst oined by Curry with his abstration rules [17℄. These rules
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work well for expressions with a single variable to be abstrated, but the resultant

SKI expression grows in size quadratially with the number of variables in the

term.

Turner notied this and reated his own algorithm [98℄ whih uses new om-

binators to parse out partiular patterns of nested expressions to redue the size

of the resulting term. However this method uses ombinators other than the

standard S, K, and I.

Tromp has devised a braket abstration algorithm whih produes suint

ombinations without the use of ombinators other than S, K and I [94℄. Tromp's

rules are applied in dereasing order as follows:

1.)λx.(SKM) ≡ SK [for all M ℄

2.)λx.M ≡ KM [x /∈M ]

3.)λx.x ≡ I

4.)λx.(Mx) ≡ M [x /∈M ]

5.)λx.(xMx) ≡ λx.(SSKxM)

6.)λx.(M(NL)) ≡ λx.(S(λx.M)NL)[M,N are ombinators]

7.)λx.((MN)L) ≡ λx.(SM(λx.L)N)[M,L are ombinators]

8.)λx.((ML)(NL)) ≡ λx(SMNL)[M,N are ombinators]

9.)λx.(MN) ≡ S(λx.M)(λx.N)

Rules 2, 3, 4, and 9 are borrowed from Curry's original algorithm. Muh like

Turner's new ombinators, the extra rules fous on un-nesting abstrated expres-

sions (rules 6, 7, and 8). Rule 1 takes advantage of the fat that SKMT =⇒ T

so we are saving time and spae by getting rid of M . Rule 5 avoids the introdu-

tion of a term of the form II. This braket abstration algorithm is the one we

use to produe SKI ombinations from λ terms.

With this abstration method in mind, we an de�ne numerals and funtions

like those of the λ alulus:

54



Chapter 2. Literature Review

ZERO ≡ KI

ONE ≡ I

TWO ≡ S(S(KS)K)I

THREE ≡ S(S(KS)K)(S(S(KS)K)I)

OR ≡ SII

NOT ≡ S(SI(K(KI)))(KK)

TRUE ≡ K

FALSE ≡ KI

AND ≡ SSK

These ombinations an be tested for the desired behaviour. For example, a

Churh numeral n takes two funtions, f and x, as parameters and returns the

result of f applied to x n times:

(TWO f x) ≡ S(S(KS)K)Ifx

⇒S S(KS)Kf(If)x

⇒S KSf(Kf)(If)x

⇒K S(Kf)(If)x

⇒S Kfx(Ifx)

⇒K f(Ifx)

⇒I f(fx)

Tromp has on�rmed that the most elegant Y ombinator (via brute fore

searh [94℄) for SKI orresponds to the λ-alulus expression (λx.λy.yx)(λy.λx.y(xyx))

and is SSK(S(K(SS(S(SSK))))K) via an exhaustive searh. When obtaining

a SKI expression from a λ term, this ombinator will �rst be substituted for any

ourrene of Y before braket abstration takes plae.

2.4 Semantis

A program written for a omputational model M is a string of haraters gen-

erated from set of grammatial rules [63℄. The semantis of M are a set of

rules whih desribe the operations of M . When semantis are applied to a pro-

gram and input (typially thought of as �running the program with input i�),

the semanti rules of M are exeuted against the data i in aordane with the

program [26℄.

Semantis an be spei�ed in any formal system whih is powerful enough to
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T (h) = sy
δ(st, sy) = 〈st′, sy′, d〉

d = L
T ′(h) = sy′

h′ = h− 1

E(st, T, h) =⇒ E(st′, T ′, h′)

Figure 2.9: Semantis for the TM on a left shift.

express the operations of the language. Elgot and Robinson used �rst order logi

and set theory to initially speify the RASP [23℄, a methodology whih helped

inspire the Vienna De�nition Language and Strutured Operational Semantis

(SOS) [71℄.

There are many di�erent semanti formalisms. Eah formalism tends to fous

on a partiular aspet of models:

• SOS are onerned about how an operation is performed.

• Denotational Semantis explore the e�et of an operation [80℄.

• Axiomati Semantis are often used to prove properties of the model [38℄.

Given the various speialities of these semanti systems, it is often required to

implement a model in multiple semanti formalisms in order to fully reason about

the models properties.

2.4.1 Strutured Operational Semantis

Strutured operational semantis de�ne an abstrat mahine that an exeute a

program written for the model. SOS is a mathematial programming language

in whih we de�ne a universal mahine for the model [70℄. The semanti rules for

the models are often (and will be in this thesis) represented as:

Premises

Conlusions

where the onlusions are satis�ed if and only if all of the premises are. The

spei�ation of models in this thesis have a set of state variables de�ned where

some or all of the variables hange aording to the semanti rules de�ned.
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Figure 2.9 shows a semanti rule for the Turing Mahine (TM). The variables

for a TM are; the urrent state of the TM (st), the urrent tape (T ), and the

position of the read/write head on the tape (h). These are all arguments to the

E (evaluation) funtion shown in the onlusion of the rule. If E is exeuted,

then the state of the mahine, tape and head position will all be a�eted.

There are �ve premises for this rule. These premises are a mixture of preon-

ditions (statements whih must hold before the hanges in the onlusion) and

postonditions (statements whih must hold after the hanges).

The �rst three lines are preonditions: On the tape T at position h there is

the symbol sy. In the symbol table δ there is an entry for the urrent state st

and read symbol sy. The diretion d in the mathed entry is a left shift L.

The next two lines are postonditions: The new tape T ′
has the symbol sy′

at position h, and the new head h′
is the predeessor of the previous head. If a

TM makes a state transition whih inludes a left shift, then all of these pre- and

postonditions will be met and E will have been exeuted.

Say there are two rules; rule A has three premises and rule B has four. If the

model mathes all of the onditions of rules A and B, whih rule is followed? In

a situation suh as this, we exeute the rule whih has the most premises. The

full semantis for eah model are presented in Setion 3.4.

2.4.1.1 Parsing

Strutured Operational Semantis typially does not deal with the parsing of

programs [70℄. The assumption being that only well formed statements whih an

be determined from the abstrat syntax provided in the semantis are exeuted

and that any whole or part expression is syntatially valid in the ontext of the

rule.

This is a perfetly reasonable approah to take. Usually the parsing of the

program takes a seondary role to the exeution of the rules in that program.

Assuming that the language an be parsed (after all, why would you write me-

hanial semantis for a language that annot be parsed) allows one to fous on

the rules rather than speifying a parser.

However an even handling of all possible models requires that expressions and

57



Chapter 2. Literature Review

programs are �rst parsed before exeution. Consider the array-like desription

of the RASP mahine and the string like desription of the λ-alulus. The

RASP has an intuitive mapping of one number to one register that is easy to

manipulate. In ontrast reduing a λ expression in the string form is hard beause

we would have to iteratively shift parts of the expression around to make room

for substitution and so forth.

It is muh easier to parse a λ term into a tree struture and perform graph

redution (Setion 3.4.3) on it whih simpli�es the proess of redution to moving

nodes in a tree rather than shu�ing haraters. This transformation of the ex-

ternal representation to the internal representation needs to be spei�ed though

and that spei�ation is part of the semantis.

The parsers are spei�ed along with the semantis of the models in Setion

3.4. The RASP and TM parsers are relatively suint in omparison to the SKI

and λ-alulus parsers, as they failitate a less extreme transformation between

representations.

2.5 Expressiveness

Asserting that one languages is �more expressive� than another is a problemati

proposition. Intuitively, we believe that a language A, whih satis�es the Churh-

Turing thesis, is more expressive than language B whih does not. This makes

sense, beause we an then de�ne a program p whih an be written in A, but

not B. In other words p an be expressed in A, but annot be expressed in B.

As neat as this de�nition is, it is too narrow to be very useful. As we saw

earlier, Turing mahines an ompute any funtion that an be omputed. The C

programming language [45℄ is one of the most widely used languages in the world.

One of its primary appliations is in the development of operating systems [4℄

and an be onsidered the lingua frana of imperative languages. C programs

use keywords, variables and strutured logi bloks in order to make the program

understandable for those versed in the syntax.

We would like to draw a distintion between the languages of C and TMs, and

our intuition is to say that C is more expressive given the wider range of operators
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i n t i ;

f o r ( i =0; i <10; i++){

X;

}

i n t i = 0 ;

whi l e ( i <10){

X;

i++;

}

Figure 2.10: A while loop and for loop operating in the same manner

and more �exible management of data. However if we onstrain ourselves to

omparing expressiveness solely on the basis of the omputational power of the

language, then both languages have the same expressive power. Both TMs and

C are Turing Complete so this mode of omparison is not as helpful. We need to

expand the de�nition to aommodate the distintions above.

2.5.1 Formalisations

Elgot and Robinson [23℄ spared a paragraph to muse over the omparison of pro-

gramming languages by implementing them with RASP mahines whih would

result in a fully de�ned set of semantis to use as a baseline for language om-

parison. Landin �rst onsidered the question of what we ould ompare in a

language [52℄. He began to lassify some programming onstruts as essential

and some as �syntati sugar�.

Figure 2.10 onsiders the for loop versus the while loop. Either of these

looping onstruts an be disarded without any e�et on the omputational

power of the language. A similar example for higher order funtional languages is

the let onstrut whih is a binding of a value to some variable in some expression

and is equivalent to a funtion all.

In logi, Kleene identi�ed the notion of eliminable onstruts [46℄. Coupled

with the informal idea of a `ore' language [90, 75℄, Troelstra [93℄ de�ned the idea

of a onservative extension S ′
of a formal system S as a superset of the logial

expressions of S drawn from a riher set of operators. This extension allows S ′

to express more formulae and theorems than S, but if we were to restrit the

expressions of S ′
to use only operators of S, then we would have exatly the

formulae and expressions of S.

An extension may add omputational power suh that an extension S ′
om-
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putes stritly more funtions than the original language S. It may also be termed

a de�nitional extension if there exists a mapping φ : S ′ 7→ S whih maps all

expressions from the language of S ′
to that of S. A de�nitional extension does

not inrease the power of the formal system, sine every expression in S ′
using

the new operators an be expressed by S with its base set of operators.

2.5.2 Formalising Expressiveness

Felleisen has put substantial e�ort into expanding the above into a formal frame-

work [25℄. He starts by equating formal systems to programming languages and

de�ning reiproal de�nitions for onservative extensions and restritions of pro-

gramming languages. The following formulation is taken from [25℄.

De�nition 4 (Programming Language). A programming language L onsists of:

• a set of L-phrases, whih is a set of terms freely generated from a grammar.

The omponents of a phrase are from set of funtion symbols F1, F2, . . . with

arities a1, a2, . . .;

• a set of L-programs whih is a non-empty reursive subset of L-phrases;

• a semantis evalL whih is a prediate on the set of L-programs. If evalL(P )

holds for some program P , then P terminates.

De�nition 5 (Conservative Extension/Restrition). A language L′
is a onser-

vative extension of L if:

• the funtions of L are a proper subset of those of L′
, with the di�erene

being {F1, F2, . . .};

• the sets of L-phrases and L-programs are proper subsets of their L′
oun-

terparts where there are no phrases or programs that ontain the extra L′

funtions {F1, F2, . . .};

• evalL is a proper subset of evalL′
and for all L-programs P , evalL(P ) holds

if and only if evalL′(P ) holds.

The onverse is a onservative restrition.

Complementing the work of Kleene, for any extension to a Turing Complete

language L, the extra funtions introdued in L′
an be expressed by the basi

funtions of L. These are known as eliminable onstruts.
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De�nition 6 (Eliminable Construts). Let L′
be a onservative extension to L

where the funtions of are de�ned as L′ = L ∪ {F1, . . . , Fn}. The extra operators

F1, . . . , Fn are eliminable if there exists a mapping φ from L′
-phrases to L-phrases

suh that:

• φ(p) is an L-program for all L′
-programs p;

• φ(F (a1, . . . , an)) = F (φ(a1), . . . , φ(an)) for all operators F of L (φ is ho-

momorphi in L);

• evalL′(p) holds if and only if evalL(φ(p)) holds for all L
′
-programs p.

It an also be said that L an express the failities of L′
. Finding whih

onstruts are eliminable is ahieved by showing operational equivalene between

L-phrases. Felleisen de�nes a program ontext as an L-phrase or program whih

has a `slot' in whih we insert the L-phrase to be tested. Two L-phrases, x and

y an be shown to be equivalent if and only if for every program ontext C,

evalL(C(x)) = evalL(C(y)).

These program ontexts an be thought of as individual tests, or as satisfying

assignments in a proof. If two programs give idential results for eah ontext (or

satisfy a proof), then we an be sure that the two programs ompute the same

funtion.

The above de�nitions apture the intuitive notion of expressivity. However

Felleisen wishes to impose a striter de�nition where the mapping φ preserves

program struture.

De�nition 7 (Maro Eliminability). As in de�nition 6 above, L′
is a onservative

extension to L. The extra funtions of L′
, {F1, . . . , Fn} are maro eliminable if

they are eliminable and the mapping φ ful�l the extra onstraint:

• for eah a-ary funtion F ∈ {F1, . . . , Fn}, there exists an a-ary syntati

abstration A over L suh that φ(F (e1, . . . , ea)) = A(φ(e1), . . . , φ(ea))

Maro expressibility de�nes the intuition that we would have by introduing

an ADD funtion to the RASP. The RASP an express addition using JGZ, INC

and DEC amongst others, so φ would swap out ases of the addition funtion

with the appropriate L-phrase to satisfy the syntati abstration A. Maro
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expressibility has theorems for ontexts and operational equivalenes as above.

Setion 7.3.1 disusses how the work of this thesis an be viewed in the ontext

of this framework.

2.5.3 The Coniseness Conjeture

Felleisen onludes by asking if a language L is Turing Complete, what is the

advantage of programming in an extended language L′
? The advantage of the

extra onstruts of L′
is to save programmer e�ort. As the size of an L-program

inreases, a pattern of L-phrases emerge where we frequently use these phrases

to emulate the funtionality of a more expressive language.

For example, addition in the RASP is a relatively large, if unompliated

proedure. A program that uses a lot of addition would have a single instane

of the proedure, and would all it when neessary. Calling a proedure in the

RASP is a proess of �xing values and return loations in the proedure body, then

jumping to the beginning. This has a distint struture of the kind that Felleisen

disusses. A more expressive language with an addition funtion removes the

need for these strutures.

Felleisen artiulates the Coniseness Conjeture where sensible use of the

additional funtions in more expressive languages results in fewer �programming

patterns� than the equivalent programs in less expressive languages. This informal

onjeture is a link between the ideas of elegane and expressiveness.

2.6 Conlusion

After reviewing the literature, it is onluded that Felleisens Coniseness Con-

jeture (Setion 2.5.3) is a useful statement of the question whih is investigated

by the work herein. We disuss di�erent metris of information suh as Software

Siene (Setion 2.2.3) and Kolmogorov-Chaitin omplexity (Setions 2.2.1 and

2.2.2). Due to reservations over the theories underlying Software Siene, the

haraters/bytes metri of Shannon et al. will be adopted.

Felleisen has studied matters relating to the expressiveness of programming

languages (Setion 2.5.2), and has skethed a formal framework. A language is
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at least as expressive as another if the former an express all the faulties of the

latter, within the parameters of Felleisens expressivity framework.

Expressivity in Felleisens framework is tied to the notion of onservative ex-

tensions. Suh extensions will ontain more information in the semanti of the

extended language than in the base language. This tentatively suggests that there

is a onnetion between the expressivity of semantis, and their size. In an ideal

ase, we an imagine that this is true, there may exist a ounterexample however.

The hypotheses in Setion 1.3 make very general statements as to the rela-

tionship between the programs and semantis. In light of the literature here, it

would be bene�ial to revise these to take into aount some notion of elegane

and expressivity. This shall be done in Setion 3.1.

63



Chapter 3

Preliminaries

This hapter revisits the hypotheses to re�ne them aording to the literature

surveyed and lays out the measures and methodologies for the primary investiga-

tion. It inludes a disussion of the metris we adopt, semanti representations

of the TM, RASPs, SKI ombinators, and the λ-alulus. Also presented are the

formats of the semantis and programs whih we measure in order to determine

their levels of information.

3.1 Hypotheses Revisited

We revisit the hypotheses originally stated in Setion 1.3 in the light of the ontext

provided by the literature. Chaitin's formulation of elegane is onerned with

�nding the shortest program to produe output o. For every possible output o

and language l, the elegant program de�nition overs only programs whih when

run with no input, output o.

Chaitin's elegane is of little use for the `pratial' programs whih we wish

to measure. Our programs ompute some funtion given an input. The output is

thus based on that input. However it is not unreasonable to expet that Chaitin's

de�nition an be extended to inlude suh pratial programs.

3.1.1 Blums Axioms

Blums axioms [6℄ de�ne measures of omputational omplexity. An abstrat

measure of the performane of a model of omputation (e.g. number of steps,
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memory used) is a omplexity measure if it satis�es his axioms:

De�nition 8 (Blums axioms for measures of performane). For any model of

omputation M , there exists a Gödel numbering φ whih enumerates all mahines

of M suh that for any i ∈ N, φi(x) is a mahine running with the input x.

Let Φ denote an ordered subset of the mahines of model M . Φ is a sequene

of performane measure funtions for φ if and only if:

• φi(x) is de�ned ↔ Φi(x) is de�ned

• There exists a funtion R suh that:

R(i, x, y) =







1 if Φi(x) = y

0 if not

So φ is a sequene of all possible funtions, while Φ is the sequene of halting

funtions. An input x has a unique Φ beause the halting behaviour of some

funtions hange depending on input.

Two anonial examples of Blum omplexity measures are spae and time.

Using time as a measure, Φi(x) runs the (halting) funtion φi(x) and returns the

number of steps that it took (for a sensible de�nition of �step�). The funtion

R(i, x, y) takes the number of the funtion to exeute i, an input x, and a guess

at step ount y. It returns 1 if the guess was orret and 0 otherwise.

Blum goes on to de�ne the speed-up theorem [5℄ whih states: There exists a

funtion f with the property that for every index i for f , there exists an index j

for f suh that:

Φi(n) > Φj(n)
Φj(n)

Whih is to say that in any ordering of partial reursive funtions there exists

a funtion where the Blum omplexity measure (a measure of omplexity that

ful�ls Blums axioms) for that funtion an be improved to an exponential degree.

It seems natural that we an extend the de�nition of Chaitin's elegane to

inlude programs whih alulate a spei� funtion. For any funtion f and

language l, a program p is elegant if p is written in l, there is no smaller program
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written in l whih performs the funtion of p, and:

∀(x 7→ y) ∈ f : p(x) 7→ y

This is enouraging as it implies that for very simple funtions, there may

oneivably exist programs with a size below the undeidability threshold whih

we an be assured are elegant. However, if we were to inlude programs whih

take input, then the input size also has to be onsidered when determining if a

program is elegant or not. A measurement of a program taking aount the size

of the programs input makes it a Blum omplexity measure.

Chaitin's proof (Setion 2.2.2) determines that elegane is undeidable for

funtions over a ertain size. The proof below asserts the existene of funtions

where no elegant haraterisation an be found for in�nitely many inputs.

There is a subtle di�erene in the nature of the programs disussed in eah

proof. Chaitin's original proof onerns his formulation of elegant programs.

These programs are very onstrained in that they return a spei� output when

run.

The programs referred to in this new proof are more general in that their out-

put is onditional on their input. While Chaitin's elegant programs are onstant

funtions, these possibly elegant programs are not neessarily onstant. Extend-

ing elegane to inlude these funtions requires a new proof of the unomputability

of elegane for them.

Theorem 2 (Undeidability of Elegane). Deiding the elegane of program to

ompute a non-onstant funtion f is unomputable.

Proof. This new proof proeeds by showing that Φ is a Blum omplexity measure.

Given the ordering φ where funtion φi(n) is a funtion to ompute f with input

n, Φi(n) = k is a funtion whih determines the size of the program i and its input

n. The funtion Φi(n) is de�ned if and only if φi(n) is de�ned as you annot work

out the information required to ompute a non-halting funtion, whih satis�es

the �rst ondition of the axiom.

The seond ondition is satis�ed by the existene of R suh that R(i, x, y) = 1

if Φi(x) = y and 0 if not. It returns 1 if f(x) an be alulated in exatly y
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haraters.

Sine information is a Blum omplexity measure, the speed-up theorem ap-

plies. This means that in the ordering φ there exists a funtion f whih, for any

program φi, there exists a program φj where the information required to ompute

f(n) follows:

Φi(n) > Φj(n)
Φj(n)

for almost all n. This implies that there is no singular elegant program for

omputing the funtion f , onluding the proof.

The problem here is down to input enoding. As a onrete example, say

there exist two TMs whih perform addition, where M1 uses a unary enoding

for its input, andM2 uses binary. TMM1 is exatly the unary addition mahine in

Setion 4.2.1, and one an imagine that M2 is slightly larger by (say) c haraters:

size(M1) + c = size(M2)

Considering only the size of the program, as in the ase of Chaitin's elegane, we

ould say that M1 is more elegant than M2. However, when size of inputs are

onsidered, the information omplexity of M1 with an input i will be lower than

the information omplexity of M2 with i

size(M1) + i < size(M2) + log2(i) : i < log2(i) + c

size(M1) + i = size(M2) + log2(i) : i = log2(i) + c

size(M1) + i > size(M2) + log2(i) : i > log2(i) + c

In the in�nite limit, the growth rate of the input enoding is what asymptotially

determines the elegane of a given funtion in some language. Unfortunately,

it seems that the amount of information required to alulate a funtion f is a

onsequene of how elegantly one an enode the inputs of f . Setion 6.6 gives

another onrete example of this enoding phenomenon with the universal TMs.
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3.1.2 The Semanti Information and Total Information Hy-

potheses

Expliitly invoking elegane as a neessary attribute of the programs whih the

hypotheses range over is folly. The undeidability results mean that there an be

no formal assurane of the elegane of the programs measured.

A similar ase is present with input sizes. For eah model and program the

realisation with the slowest input growth rate is the most elegant for in�nitely

many inputs. This redues the problem of elegane to one of �nding a method

whih produes the most elegant enoding of the inputs.

These problems pull fous away from the entral question: How does the

amount of information in the semantis a�et the amount of information required

to de�ne a program? In the interest of fair omparisons, it is important to de�ne

notions of how small we an reasonably expet programs to be, and the e�ort

expended on the enodings of program inputs.

Consider the breadth of possible enodings for some piee of data d. Depend-

ing on how large the alphabet for language l is, there is a sliding sale of the

density of the possible enoding el(d):

De�nition 9 (Natural, Sparse, Dense Enodings). An input enoding e(d) is

natural if there is an approximately 1:1 ratio between the tokens of the unenoded

input and tokens of the enoded input. Where n > 1, a sparser enoding has

a 1:n ratio between the unenoded and enoded inputs (many enoded tokens to

represent one unenoded token). A denser enoding has an n:1 ratio the unenoded

and enoded inputs (one enoded token to many unenoded tokens).

The exat nature of a token depends on the language of the input of the

models. For instane, a token for the TM would be a single symbol. Tokens in

the RASP are single numbers of k haraters. A token for the SKI would be

a single ombinator, and tokens for the λ-alulus may be single terms suh as

individual numerals, or strutural terms like PAIR, NIL, et.

Natural enodings are approximately a 1:1 ratio of enoded to unenoded

input beause the alphabets in question may not permit an exat 1:1 relationship.

There is a sliding sale of how natural the enodings are and those with ratios
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losest to the 1:1 relationship are the �most natural�.

Every model has an enoding method whih an be deemed natural relative

to its own input language, but it may not be onsidered natural relative to the

language of another model. These enodings imply rates of input size growth

and are examined more thoroughly in Setion 6.5. The set of programs whih are

used to evaluate the hypotheses operate over natural input enodings.

Informally, programs are written to be as �elegant as possible� while admitting

natural enodings of data as inputs. To di�erentiate these from elegant programs,

we all them suint.

The Semanti Information (SI) hypothesis states that a model with more

semanti information will produe more elegant (now suint) programs than

a model with less semanti information. Considering the extreme ases of a 3rd

generation language (Java, Haskell) versus assembler, we an imagine that this

holds. But a more nuaned example whih does not onform an be onstruted

as follows.

Consider a onservative extension to the RASP; RASPX. RASPX has an

extra instrution, LOOP. The LOOP instrution derements the PC so that a

RASPX mahine enountering LOOP immediately enters an in�nite loop. As a

onservative extension, RASPX has a larger set of semantis, but no program

an exeute the LOOP funtion and terminate. This is a diret ounterexample

to our hypothesis, so we need to make it more spei�.

A program p utilises some semanti information i if p invokes some operator

de�ned in the semantis whih depends diretly or indiretly on i:

Hypothesis 1 (Semanti Information). For two Turing Complete models; if

model A has more semanti information (larger semantis) than model B, the

average size of suint programs (where at least one program utilises the extra

semanti information) written for model A will be lower than the average for

model B.

We should onsider the `sope' of this hypothesis. The seletion of models in

this investigation aptures the following:

• Extensions to a model
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• Comparisons aross models in the same paradigm

• Comparisons aross paradigms

Hypothesis 1 is very strong beause it makes a general statement onerning

information over the entire spae (all three sopes) of models and programs.

While the models of omputation presented in Chapter 2 are all di�erent, some

of them share features with eah other beyond their Turing ompleteness. This

allows us to split this strong hypothesis into sub-hypotheses suh that the strong

hypothesis is satis�ed i� the three sub-hypotheses all hold.

The RASPs all share a signi�ant portion of their semantis. The semanti

rules whih guide their evaluation in the form of the feth-exeute yle are iden-

tial, with portions of the instrution set distinguishing the models from eah

other. These models are said to be in the same family. While eah model has

unique instrutions whih e�et di�erent hanges on the state and ontents of the

memory, the rules whih govern the struture remain onstant (e.g. the feth-

exeute yle, bounded size and ontents, arbitrarily rewritable and exeutable

memory loations).

Models whih share some aspets with eah other, but not as far as diretly

sharing evaluation methods, an be lassi�ed in the same paradigm. In this thesis

there is the imperative paradigm, oupied by the RASPs and TM, and the fun-

tional paradigm whih ontains SKI and λ-alulus. The RASP and TM have

a global state and their underlying struture is a linear array of numbers/sym-

bols. The λ-alulus and SKI both use graph redution for evaluation (Setion

3.4.3) and have no state. Figure 3.1 shows the models grouped into families and

paradigms.

We propose three weaker hypotheses whih range over the sopes of family,

paradigm and aross paradigms. This approah will allow us to apply the SI

hypothesis and disover where the hypothesis holds, even if the strong hypothesis

does not hold in general. �A programs� are de�ned as suint programs written

for model A.

Hypothesis 1a (Semanti Information within family). For two Turing Complete

models A and B in the same family. If A has more semanti information than

B, the average size of A programs will be lower than the average for B programs.
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Figure 3.1: Paradigmal relationships

Hypothesis 1b (Semanti Information within paradigm). For two Turing Com-

plete models A and B in the same paradigm. If A has more semanti information

than B, the average size of A programs will be lower than the average for B pro-

grams.

Hypothesis 1 (Semanti Information aross paradigms). For two Turing Com-

plete models A and B in di�erent paradigms. If A has more semanti information

than B, the average size of A programs will be lower than the average for B pro-

grams.

The sizes of the semantis are stated in Setion 3.5. Knowledge of these

sizes and of the above sub-hypotheses, we an predit what would happen if the

hypotheses are orret:

Predition 1.1 (Program Sizes: RASP). The semanti sizes of the three RASP

models (measured in haraters, Setion 3.3.1) follow the relation RASP <

RASP2 < RASP3. It is predited that the average suint program sizes follow

the relation RASP3 < RASP2 < RASP .

Predition 1.2 (RASP vs TM). The RASP semantis are larger than those of

the TM. It is predited that suint RASP programs are smaller than suint

TM programs on average.

Predition 1.3 (λ-alulus vs SKI). The λ-alulus semantis are larger than

the SKI semantis. It is predited that suint λ-alulus programs are smaller

than suint SKI programs on average.
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Predition 1.4 (Aross Paradigms). If model A of paradigm X has larger se-

mantis than model B of paradigm Y , it is predited that suint program in

model A are smaller than suint program in model B on average.

Predition 1.1 relates to Hypothesis 1a. Preditions 1.2 and 1.3 support Hy-

pothesis 1b, and predition 1.4 supports 1.

The Total Information (TI) hypothesis onjetures that as omplexity of pro-

grams that we measure inreases, the average TI of more omplex models will

eventually derease to below that of simpler models. We again reformulate the

hypothesis to inlude the neessary stipulation of suint programs.

The statement of �Complex models� realls Setion 2.6 where it is tentatively

established that there is a onnetion between the expressivity of a model and

the size of its semantis. If this onnetion is well founded, we will observe

that the more expressive models whih produe smaller programs will have larger

semantis.

The omplexity of a funtion an be de�ned in many ways. Intuitively division

is a more omplex funtion than addition and a universal mahine is more omplex

than division. Atually lassifying these funtions hierarhially is a surprisingly

thorny proposition. One approah is time and spae omplexity where the om-

plexity funtion is determined by the number of steps or tape ells required for

omputation relative to the size of the input.

This haraterisation feels unsatisfatory (espeially in the ontext of Blum's

speed-up theorem). One alternative is to rely on the arithmetial hierarhy [46,

76℄, whih lassi�es funtions on their halting and output behaviour. While the

arithmetial hierarhy separates addition and division from universal mahines,

there is too little nuane to di�erentiate between the addition and division fun-

tions.

Another alternative is to provide a de�nition in terms of elegant programs.

A funtion a is more omplex than funtion b in some language l if the elegant

program to alulate a is smaller than the elegant program to alulate b. This

makes sense beause we believe that funtion deemed �more omplex� would have

a higher minimum requirement of information. This intuition is not objetive

though, as some models may be inherently suited towards some alulations rather
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than others. Any elegant omparison of the omplexity of a funtion is made

relative to the language l.

The notion of the �omplexity� of a funtion is based on intuition, omputabil-

ity, and omputational omplexity. There is no de�nitive ranking of funtions

aording to their omplexity, so we have to rely on this notion to guide us.

When this thesis disusses the omplexity of a funtion, it refers to the size of

the suint program to represent the funtion.

Hypothesis 2 (Total Information). For two Turing Complete models X and Y ,

where X has more semanti information than Y ; As the size and omplexity of a

program inreases, the average total information (TI) of a suint implementa-

tion in X will derease relative to the total information of a suint implemen-

tation in Y .

To illustrate this hypothesis, onsider the RASP family. For simple funtions

(say arithmeti), we predit that the TI for the RASP mahine be lower than the

TI of the RASP2 or RASP3. This is beause the redution in program size for

the RASP2/3 does not outweigh the extra information in the semantis of the

RASP2 and RASP3. However as the tested funtions inrease in omplexity (say

the universal mahines), we expet to see the TI averages for the RASP2 and

RASP3 drop relative to the TI averages for the RASP. With a su�iently large

and diverse set of funtions ontaining programs whih utilise the extra semanti

information of the RASP2 and RASP3, we should see the TI follow the relation

RASP3<RASP2<RASP.

This reformulation of the total information hypothesis is also strong, not un-

like the semanti information hypothesis above. We an again split this into

three sub-hypotheses with preditions for eah analogous to the struture of the

SI hypothesis above:

Hypothesis 2a (Total Information within family). For two Turing Complete

models A and B, where A and B are in the same family and A has larger se-

mantis; as a program grows in size and omplexity, the average TI to realise

the program suintly in A will derease relative to the average TI to realise the

program suintly in B.

73



Chapter 3. Preliminaries

Hypothesis 2b (Total Information within paradigm). For two Turing Complete

models A and B, where A is in the same paradigm as B and has larger semantis;

as a program grows in size and omplexity, the average TI to realise the program

suintly in A will derease relative to the average TI to realise the program

suintly in B.

Hypothesis 2 (Total Information aross paradigms). For two Turing Complete

models A and B, where A is in a di�erent paradigm from B and has larger

semantis; as a program grows in size and omplexity, the average TI to realise

the program suintly in A will redue relative to the average TI to realise the

program suintly in B.

Again using the information from Setion 3.5, we make a variety of preditions

of what will happen if the sub-hypotheses above hold:

Predition 2.1 (Total Information: RASPs). As the size and omplexity of a set

of programs inreases, it is predited that the average TI of suint implementa-

tions of the programs in the RASP3 will redue relative to the TI of the RASP2

whih in turn will redue relative to the TI of the RASP.

Predition 2.2 (Total Information: RASP vs TM). As the size and omplexity

of a set of programs inreases, it is predited that the average TI of suint

implementations of the programs in the RASP will redue relative to the TI of

suint implementations in the TM.

Predition 2.3 (Total Information: λ-alulus vs SKI). As the size and omplex-

ity of a set of programs inreases, it is predited that the average TI of suint

implementations of the programs in the λ-alulus will redue relative to the av-

erage TI of suint implementations in the SKI alulus.

Predition 2.4 (Total Information: Aross paradigms). If model A of paradigm

X has larger semantis than model B of paradigm Y ; as the size and omplexity

of a set of programs inreases, it is predited that the average TI of suint im-

plementations of the programs in model A will redue relative to than the average

TI of suint implementations in model B.
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3.1.3 The Semanti Ciruit and Total Ciruit Hypotheses

In this thesis, we also translate the semantis for the RASP and Turing mahines

into the VHSIC Hardware Desription Language (VHDL). This is then ompiled

down to a series of eletroni omponents of a Field Programmable Gate Array

(FPGA), and the number of omponents required to implement the various ma-

hines are ounted. A iruit A is said to be larger than iruit B if the ombined

total of Look-up tables, slie registers, and �ip-�ops (Chapter 5) in A is higher

than the total for B. We hypothesise that the more semanti information in a

model, the larger the iruit to exeute the semantis:

Hypothesis 3 (Semanti Ciruit sizes). Consider two models A and B. If model

A has larger semantis than model B, the FPGA iruit whih implements the

semantis of A will be larger than the FPGA iruit for B.

Hypothesis 3a (Semanti Ciruit sizes within family). For two models A and

B in the same family. If A has larger semantis than B, then the iruit whih

implements the semantis of A will be larger than the iruit to realise B.

Hypothesis 3b (Semanti Ciruit sizes within paradigm). For two models A

and B in the same paradigm. If A has larger semantis than B, then the iruit

whih implements the semantis of A will be larger than the iruit to realise B.

Predition 3.1 (RASP semantis order). The three RASP models have semanti

sizes measured aording to the relation RASP < RASP2 < RASP3 (Setion

3.5). It is predited that the iruit sizes follow this relation.

Predition 3.2 (RASP vs TM). The RASP has larger semantis than the TM,

therefore the iruit for the TM semantis is predited to be smaller than the

iruit for the RASP semantis.

Preditions 3.1 and 3.2 support sub-hypotheses 3a and 3b respetively. Sim-

ilar to the TI hypothesis, we have a Total Ciruit (TC) size hypothesis whih

attempts to predit sizes of the total implementation (omponents for program

+ omponents for semantis) of the RASP and TM. The programs whih are

mapped to FPGA iruits will be the same programs as those whih are used to

evaluate Hypotheses 1 and 2 above.
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Hypothesis 4 (Total Ciruit sizes). For two models A and B, where the iruit

implementation of the semantis of A is larger than the iruit for the semantis

of B; as a funtion grows in omplexity, the average total implementation size of

a suint realisation of the funtion in model A will redue relative to the average

for model B.

Hypothesis 4a (Total Ciruit sizes within family). For two models A and B in

the same family; if the semantis of A are larger than the semantis of B, then

as a program grows in size and omplexity, the average total implementation size

of the program in model A will redue relative to the average for model B.

Hypothesis 4b (Total Ciruit sizes within paradigm). For two models A and B

in the same paradigm; if the semantis of A are larger than the semantis of B,

then as a program grows in size and omplexity, the average total implementation

size of the program in model A will redue relative to the average in model B.

Predition 4.1 (RASP total iruit size). As the size and omplexity of a pro-

gram inreases, it is predited that that the average total implementation size for

the RASP3 will redue relative to the total implementation size for the RASP2

whih, in turn, will also redue relative to that of the RASP.

Predition 4.2 (RASP vs TM). As the size and omplexity of a program in-

reases, it is predited that the average total implementation size of the RASP

will redue relative to the average total implementation size of the TM.

3.1.4 Hypotheses Summary

The hypotheses and orresponding preditions are be summarised below:

1. Strong SI hypothesis

1a. SI within family hypothesis

1.1. Program Sizes (RASP) predition

1b. SI within paradigm hypothesis

1.2. SI RASP vs TM predition

1.3. λ-alulus vs SKI predition
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1. SI aross paradigms hypothesis

1.4. Aross paradigms predition

2. Strong TI hypothesis

2a. TI within family hypothesis

2.1. TI for RASPs

2b. TI within paradigm hypothesis

2.2. TI RASP vs TM

2.3. TI λ-alulus vs SKI

2. TI aross paradigms hypothesis

2.4. TI aross paradigms predition

3. Strong SC hypothesis

3a. SC within family hypothesis

3.1. SC for RASPs

3b. SC within paradigm hypothesis

3.2. SC RASP vs TM

4. Strong TC hypothesis

4a. TC within family hypothesis

4.1. TC for RASPs

4b. TC within paradigm hypothesis

4.2. TC RASP vs TM

3.2 Comparison Metris

There are two prime andidates for information omparison metris; bytes and

haraters. Both have their advantages and disadvantages.

The haraters whih most programming languages use to express ommands

(the basi exeution harater set) are represented as 7 bit ASCII [44, 43℄. Sine

the basi exeution harater set is all that is needed to write programs, the

handling of haraters outwith the set are typially a funtion of the ompiler

and assorted programming tools.
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Our models also draw exlusively from 7 bit ASCII, save the λ-alulus whih

requires `λ's. The semantis additionally use logial prediates ∀, ∃ as well as the

onnetives; ∧, ∨ and =⇒ .

The prediates and onnetives represent more omplex ideas than a numeral

or single letter so it seems appropriate to assign more bytes (under the UTF-8

sheme [92℄ it is two bytes eah) suh haraters. In this way we aknowledge

that ∀ ontains more information than a numeral.

Charater sets are de�ned not on the information required to represent an idea,

but rather the frequeny with whih a harater is used in omputer appliations.

The addition and subtration operators are also more omplex ideas than a single

numeral, but are represented in ASCII as one byte. Do we add a byte to all

ourrenes of + and − to make our omparison fair?

If we do this we start reating our own harater set. So the only way our

measurements would be demonstrable is if we measured them on a omputer

implementing our harater set. Even if we did aept that we should use a single

byte for add and subtrat, and 2 bytes for other funtions, the measurements we

make are still wholly dependent on the standards implemented by the mahine

on whih we measure. Our measurements ould oneivably hange from one

mahine to the next.

The use of haraters as a metri is established by Solomono� [87, 88℄, Kol-

mogorov [47℄ and Chaitin [9℄. Charater metris are independent of the referene

mahine and are solely dependent on the input format of the model whih is spe-

i�ed by the semantis. This is more suited to our needs so it will be the adopted

metri for the rest of this investigation.

3.3 Formats

Irrespetive of the metri hoie, the aim is to write programs and semantis in

a way to eonomise on the amount of information whih is supplied. The �rst

and foremost method to minimise this information is in the hoie of algorithm

used to ompute the funtions, favouring brevity over any time or (utilised) spae

onerns. But how the programs and semantis are themselves presented should
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also be onsidered.

3.3.1 Semantis

As the formalism from whih everything is measured, a SOS an be enoded

in whihever way is onvenient and it is assumed that an `SOS mahine' an

interpret this enoding and translate it to the orret orresponding SOS rules

for exeution. To do this, ommon funtionality is split out and in-lined into

the appropriate rules. Reverse Polish Notation is also employed to shorten the

expressions by removing the brakets whih denote funtion appliation.

�ukasiewis [56℄ developed Polish (`pre�x') notation for sentential logi and

we adopt the reversed notation here to remove the brakets on funtion alls.

Reverse Polish notation (RPN or `post�x' notation) is a mathematial represen-

tation whih typographially arranges funtions after their parameters [35℄. As

an example, the expression (3 − 4)× 5 (remembering the order of operations) is

3 4 − 5×.

This expression is exeuted using a stak. First, the values three and then

four are pushed onto the stak. When the subtration operator is read, the top

two elements of the stak are popped (sine subtration is a binary operator)

the operation is applied and the result is pushed bak on top of the stak. The

intermediate expression is −1 5×, and with the -1 already on the stak, the 5

is pushed, then both are popped to be multiplied together and the result (-5) is

pushed bak on top of the stak.

The advantage of Polish notation is that it obviates the need for braketed

expressions. Spei� examples of its usage are given in Setion 3.4.

3.3.2 Turing Mahines

A Turing mahine is a olletion of quintuples 〈stold, syold, stnew, synew, dir〉 whih

denote: the urrent state, the urrent symbol on the tape, the new state, the

new symbol, and the diretion in whih to move the head. Figure 3.2 shows the

Turing mahine for addition. The symbol table for this TM onsists of 5 lines

of 9 haraters eah (45). The tape (101) is two unary numbers separated by a

single symbol `0', whih we de�ne in the symbol table as a blank.
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1,1,1,1,R

1,0,2,1,R

2,1,2,1,R

2,0,3,0,L

3,1,0,0,R

101

Figure 3.2: The `raw' Turing mahine for addition with an input of 1+1

Our onvention is that a TM will start over the leftmost symbol on the tape

unless there is a aret (^) in whih ase the head will be over the symbol to the

right of it. For example, the tape 1^011 will start the mahine with the head

over the `0'.

3.3.3 RASP mahines

An n-bit RASP mahine is a 2n − 3 size array of naturals. This is represented

and ounted as a omma separated list of numbers. For instane the program

LOAD 1;LOAD 2;HALT would be represented as the sequene 3, 1, 3, 2, 0.

A aveat for the RASP mahine is that the displayed array is exatly 2n − 3

in length. For all programs that are less than 2n − 3 instrutions long, the extra

room is `padded out' with HALT instrutions.

3.3.4 λ-alulus

A term in the λ alulus is strutured as follows; λs are not grouped, so an

expression with multiple λs would be of the form λx.λy.e. The expression is

parsed in a left assoiative manner, so brakets are used for disambiguation. An

expression (((λx.x)y)z) is written (λx.x)yz without any loss of meaning.

We measure λ terms by their expressions as above. For instane, the number

of haraters in the term ONE (λf.λx.f x) is 9, inluding the spae to separate

the f and x variables.

We an ompress omplex λ funtions by pushing repeated terms into ab-

strations. To illustrate we begin with a term ready to be applied, say to linearly

searh a list (Setion 4.3.2):

SEARCH ≡ Y (λa.λb.λc.NULL c ONE (EQ(HEAD c)b)FALSE(SUCC(a b(TAIL c))))
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HEAD and TAIL are the expressions (λp.p TRUE) and (λp.p FALSE) respe-

tively, so they are substituted into the main term:

Y (λa.λb.λc.NULL c ONE (EQ((λp.p TRUE)c)b)FALSE

(SUCC(a b((λp.p FALSE)c))))

EQ tests for the equality of two numbers, returning TRUE if equal and FALSE

otherwise, and this an again be substituted into the main term. NULL is also

replaed with its orresponding expression:

Y (λa.λb.λc.(λp.p(λx.λy.FALSE))c ONE (((λm.λn.n PRED m(λx.FALSE) . . .

TRUE(m PRED n(λx.FALSE)TRUE)(n PRED m(λx.FALSE) . . .

TRUE)))((λp.p TRUE)c)b)FALSE(SUCC(a b((λp.p FALSE)c))))

With these names fully substituted with their orresponding terms, there are

three ourrenes of PRED, six ourrenes of FALSE, and four ourrenes of

TRUE. Sine abstration in the λ alulus enables argument dupliation and

plaement wherever it is desired in the body of an expression, repeated our-

renes an be abstrated out. First, PRED is abstrated by binding a new variable

k and applying that binding to PRED:

(λk.Y (λa.λb.λc.(λp.p(λx.λy.FALSE))c ONE (((λm.λn.n k m(λx.FALSE) . . .

TRUE(m k n(λx.FALSE)TRUE)(n k m(λx.FALSE) . . .

TRUE)))((λp.p TRUE)c)b)FALSE(SUCC(a b((λp.p FALSE)c)))))PRED

Then the same is done for TRUE (t) and FALSE (g):

(λg.λt.λk.Y (λa.λb.λc.(λp.p(λx.λy.g))c ONE

(((λm.λn.n k m(λx.g)t(m k n(λx.g)t)(nkm(λx.g)t)))((λp.p t)c)b)

g(SUCC(a b((λp.p g)c)))))FALSE TRUE PRED

Abstrating out some term from an expression entails adding three haraters

to the start of the expression and one harater per ourrene in the body. In

exhange, we an remove all but one of the ourrenes of the term whih is

moved to the end of the expression.
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This method of reduing the size of expressions requires that we make some

pre-redutions when applying this expression in order to obtain. This involves

more omputation overhead in the lassi time/spae trade-o�, but we do not

are about run times. The measured λ programs have all had this ompression

method applied to them where possible.

3.3.5 SKI ombinators

A term in the SKI ombinator alulus is expressed as a string of S,K,I haraters

as well as the left and right parentheses. Unlike the λ-alulus, SKI terms do

not require spaes. For example, the term for two is S(S(KS)K)I whih is 10

haraters long.

Muh like how the λ alulus has α and η onversion to transform super�ially

di�erent terms into a ommon simple term, we an struturally deompose SKI

alulus expressions into equivalent and shorter terms.

For the Churh numerals, we an alternatively represent any non prime num-

ber as the produt of f fators. This trik multipliatively ombines the fatori-

sation into a `full' numeral when something is applied to it. The generalised form

is thus:

4 = S(K TWO)TWO

8 = S(K(S(K TWO) TWO)) TWO

16 = S(K(S(K(S(K TWO) TWO)) TWO)) TWO

n = S(Kf−1)fatorf

Comparing the fatorised form of 4 to the (SUCC

n
ZERO) form saves 4 hara-

ters:

SUCC(SUCC(SUCC(SUCC ZERO)))

S(S(KS)K)(S(S(KS)K)(S(S(KS)K)I))

S(K TWO)TWO

S(K(S(S(KS)K)I))(S(S(KS)K)I)

The appliation of funtions to the fatorised numeral redues (with more steps)

to the orret and expeted form, for example:
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S(K TWO)TWOfx ≡ . . .

⇒S K(S(S(KS)K)I)f(S(S(KS)K)If)x

⇒K S(S(KS)K)I(S(S(KS)K)If)x

⇒S . . .

⇒ Kf(I(S(S(KS)K)If)x)(If(I(S(S(KS)K)If)x))

⇒K f(If(I(S(S(KS)K)If)x))

⇒I . . .

⇒ f(f(Kfx(Ifx)))

⇒K f(f(f(Ifx)))

⇒I f(f(f(fx)))

When representing a number as a produt of its fators, we wish to use more

fators of smaller numbers rather than less fators of larger numbers. The reason

for this is that to add another fator the overhead is: S(K . . .) of 4 haraters

whereas the distane between n > 1 and SUCC n is 11 haraters. If we an-

not diretly fator a number, suh as with a prime, then we fator a non-prime

neighbour and apply SUCC to it.

Unlike the λ-alulus, abstration in SKI is information intensive as eah level

of nesting in a SKI expression requires ombinators to `push' a passed expression

down to where it should be. The strategy of maximal abstration outlined above

for the λ alulus is detrimental to the size of the resulting SKI expression. We

therefore onvert λ expressions to SKI via braket abstration without performing

the extra abstration detailed in Setion 3.3.4, preferring instead to normalise as

muh of the expression as possible before onversion.

3.4 Semantis

Our models of omputation transform their inputs into outputs by following the

rules of their semantis. If a program is a desription of what is to be done, the

semantis are how it is done. The semantis of a model ombine the aspets of a

model �understanding� the input program (parsing) and performing the funtions
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of the model (evaluation).

The semantis for eah model manipulate disrete strutures for eah term.

This is the internal representation of the input. The program formats above are

presented in an external representation whih may not neessarily diretly re�et

the internal representation.

The external representations of the SKI and λ-alulus do not diretly trans-

late into the internal representation, so we require semantis whih perform lexial

parsing via pattern mathing. To provide an even-handed analysis, we also de�ne

parsers for the RASP and TM whih have very similar internal and external repre-

sentations. The full semantis for eah model in the RPN notation are presented

in Appendix D.

3.4.1 Turing Mahines

There are multiple ways to formally de�ne Turing mahines:

〈Q, δ,Σ,Γ, q0, qa, qr〉 (3.1)

〈Q, δ,Γ, γ, q0, qh〉 (3.2)

〈Q, δ,Σ,Γ, q0〉 (3.3)

where Q is the set of states, Σ whih is the input alphabet, Γ is the tape alphabet

(whih symbols an be read from or written to the tape), δ is the transition

funtion Q× Γ 7→ Q× Γ× {L,R}, q0 ∈ Q is the initial state, qa ∈ Q and qr ∈ Q

are aepting and rejeting states respetively, qh is the halt state, and γ is the

blank symbol.

De�nitions 3.1, 3.2, and 3.3 are from [86, 78, 32℄ respetively. Further heks

of soures [74, 3, 39, 50, 15, 49℄ show that the TM is broadly de�ned as the above

with minor varianes. Eah de�nition varies in the details, but all are equivalent

in power.

We an ombine parts of these de�nitions with our onventions to produe

a de�nition for the TM whih is di�erent from those above, but is still Turing

omplete. Our onventions are 1.) Eah TM starts in state 1, and 2.) A TM

halts if it transists to state 0 OR there is not a transition in δ for the urrent
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st : Q
sy : Γ
h : Z

d : {L,R}
T : Z 7→ Γ

δ : Q× Γ 7→ Q× Γ× d
Pδ : (Γ ∪Q ∪ d ∪ {, })+ 7→ δ

PT , PNT : (Γ+ ∪ {^})× Z 7→ T

Figure 3.3: Type de�nitions for the variables and funtions of the TM

state/symbol pair.

To de�ne our own mahines, we need a set of states and a set of transition

funtions: Q and δ. We also need a tape alphabet Γ, but we would like to permit

the use of the blank symbol on the input tape so we exlude Σ, opting instead to

expliitly state the blank symbol itself as γ. Our starting state is always going

to be 1, so individual mahine de�nitions do not need to speify it. Similarly, we

an de�ne the halt state as a state with no exiting transitions. We wind up with

a de�nition of a TM onforming to our onvention as:

〈Q, δ,Γ, γ〉

We now proeed to translate this de�nition into Strutured Operational Se-

mantis.

Every TM has a tape T , the symbol table δ, the urrent state st and a

head position h. T is a unary funtion whih takes an integer and returns the

symbol at that position on the tape. The symbol T (0) is de�ned as either the

leftmost symbol of the input, or immediately to the right of the aret (^) in a

TM de�nition. Our initial tape funtion is T0.

The symbol table δ : Q × Γ 7→ Q × Γ × {L,R} is a funtion whih takes a

state and symbol pair and returns a triple of state, symbol and shift diretion.

The type de�nitions for the TM are in Figure 3.3.

Before we exeute the TM, we �rst have to populate δ and T0. The `raw' TM

is an expression e ∈ (Γ ∪Q∪ d∪ {, })+ where + is �One or more� analogous to ∗

whih is the Kleene Closure [39℄. The symbol table parsing rules supplied by the
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e =⇒ st, sy, st′, sy′, d e′

Pδ(e) =⇒ {〈st, sy〉 7→ 〈st′, sy′, d〉} ∪ Pδ(e′)

(a) Parsing a rule into δ

Pδ(e) =⇒ {}

(b) Default rule

Figure 3.4: Parsing a raw symbol table e into the internal representation δ

f =⇒ f1^gf2
g ∈ Γ

PT (f, 0) = PNT (f1,−1) ∪ {0 7→ g} ∪ PT (f2, 1)

(a) Finding ^, if it exists

f =⇒ gf1
g ∈ Γ

PT (f, n) = {n 7→ g} ∪ PT (f1, n + 1)

(b) Parsing symbols after the ^

PT (f, n) = {}

() No symbol to parse after

f =⇒ f1g
g ∈ Γ

PNT (f, n) = {n 7→ g} ∪ PNT (f1, n− 1)

(d) Parsing symbols before the ^

PNT (f, n) = {}

(e) No symbol to parse before

Figure 3.5: Parsing a raw tape into the internal representation T

funtion Pδ are shown in Figure 3.4.

Similarly the `raw' tape is an expression f ∈ Γ+∪{^}. The funtion PT parses

f into the initial tape T0 and is shown in Figure 3.5. The funtions δ and T are

onstruted reursively by the union of eah mapping of input to output. The

initial state of a TM ready to be exeuted is therefore:

st0 = 1

h0 = 0

T0 = PT (f)

δ = Pδ(e)

The urrent state, head position and tape all hange during the evaluation

of the mahine while none of the TM exeution rules hange δ. The funtion

E : Q× (Z 7→ Γ)× Z 7→ (Z 7→ Γ) exeutes a TM:
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T (h) = sy
δ(st, sy) = 〈st′, sy′, d〉

d = L
T ′(h) = sy′

h′ = h− 1

E(st, T, h) =⇒ E(st′, T ′, h′)

(a) Left shift

T (h) = sy
δ(st, sy) = 〈st′, sy′, d〉

d = R
T ′(h) = sy′

h′ = h + 1

E(st, T, h) =⇒ E(st′, T ′, h′)

(b) Right shift

T (h) = sy
δ(st, sy) 6= 〈st′, sy′, d〉

E(st, T, h) =⇒ T

() Halting

Figure 3.6: The rules for exeuting the TM; left shift, right shift, and halt

Tend = E(st0, T0, h0)

The Turing mahine onsists of three rules; a rule for shifting left, one for

shifting right, and one for no de�ned state and symbol pair. Figure 3.6 shows

the rules for running a TM. The mahine halts when there is not a de�ned state

and symbol pair in δ. As desribed earlier, this is a transition to state 0, but this

onvention is not enfored by the semantis, any state without a transition for

the urrent symbol will do.

To minimise the size of these semanti rules, we an in-line the T funtions

into the δ funtion. Doing this eliminates the need for the sy variable whih saves

us more haraters. We an also in-line the d = R/L lines too, but have to keep

the d variable for the third rule unless we do R/L variations for that too. The

shift right rule is now:

δ(st, T (h)) = 〈st′, T ′(h), R〉

E(st, T, h) =⇒ E(st′, T ′, h+ 1)

More methods to redue the size are to remove the `primed' variables and

rede�ne st to just s. If we de�ne i = h + 1, t : Q and U : Z 7→ Γ we an redue

all identi�ers to single haraters:

δ(s, T (h)) = 〈t, U(h), R〉

E(s, T, i) =⇒ E(t, U, h+ 1)
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Using RPN, we an remove the brakets for funtion alls transforming the

line δ(s, T (h)) = 〈t, U(h), R〉 into the less readable shTδ〈thUR〉 = whih saves

us 6 haraters The TM semantis transformed in this way total 335 haraters

in size.

3.4.2 RASP Mahines

The de�nition of a RASP as presented by Elgot and Robinson (Setion 2.3.1.2)

provides a framework for the abstrat operation of the mahine, but is very

general. There are a few examples of instrutions that ould be de�ned (suh

as the mahines of Cook [16℄ and Hartmanis [36℄), but the details of a mahine

are generally left up to the designer.

Due to the extensible nature of the RASP family presented herein, the seman-

tis have been split into model semantis for the semantis of parsing an the F-E

yle, and language semantis whih desribe the operation of the instrutions.

This distintion is made beause the RASP2 and RASP3 (Setions 3.4.2.1 and

3.4.2.2) iterations on the RASP where the instrutions whih are exeuted have

hanged, but the underlying feth-exeute yle remains onstant.

A RASP mahine is a pair 〈S,X〉 of a mahine S ∈ Ko and an output vetor

X . The registers of S are numbered from 0, and registers 0, 1, and 2 are the PC,

IR and ACC respetively. The vetor X is written to by the OUT ommand and

is initially empty. For an n-bit mahine, there is a set G = {0 . . . 2n − 1} of the

possible integers representable by the mahine. There is also a set I ⊂ G whih

represents the non-halting instrutions of the mahine.

The RASP mahines for the primary investigation in this thesis will have

a �xed instrution set mapping of {0 7→ HALT, 1 7→ INC, 2 7→ DEC, 3 7→

LOAD, 4 7→ STO, 5 7→ OUT, 6 7→ JGZ, 7 7→ CPY }. The mapping is enfored

by the semantis, but hanges to the mappings a�et the total number of steps

a mahine an make before halting. Appendix A investigates how the properties

of RASPs hange when the instrution set mapping hanges.

The type de�nitions for the RASP are shown in Figure 3.7. To aid the un-

derstanding of the semantis, we also de�ne mappings for the addresses PC, IR,

and ACC to the natural numbers and do the same for the instrutions.
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S : N 7→ N INC = 1
X : N DEC = 2
G : {0 . . . 2n − 1} LOAD = 3
I ⊆ G STO = 4
# : S 7→ N JGZ = 5
A : S ×X 7→ (S ×X) OUT = 6
P : (G ∪ {, })+ × N 7→ S CPY = 7
E : S ×X 7→ S ×X HALT = 0
PC_INC(S) = mod(S(PC) + 1,#S) PC = 0
S0 = {0 7→ 3, 1 7→ 0, 2 7→ 0} IR = 1
X0 = {} ACC = 2

Figure 3.7: De�nitions required for the RASP.

e =⇒ g, e1
g ∈ G

P (e, n) =⇒ {n 7→ e} ∪ P (e1, n + 1)

(a) Parsing a natural number out of e

P (e, n) =⇒ {}

(b) Default rule.

Figure 3.8: Parsing the external representation e

The initial mahine and output vetor are S0 and X0. S0 is primed with the

initial values of the PC IR and ACC (3,0,0), and the external representation of

the RASP to be exeuted is e ∈ (G∪{, })+ whih is a 2n−3 sequene of integers.

The funtion P parses the mahine into our internal representation (Figure 3.8).

This readies the RASP for evaluation by the funtion E:

〈Sfinal, Xfinal〉 = E(S0 ∪ P (e, 3), X0)

Figure 3.9 shows the two rules of the RASP model semantis. If the instrution

under the program ounter is in I, then that orresponding instrution is applied

to the mahine S. If it isn't, the number is opied to the IR and the mahine

stops. If a numeral is indeed a RASP operation, the funtion A applies what is

in the IR of S ′
to S ′

and X .

The language semantis for the RASP are 10 rules for the 7 non halting
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S(S(PC)) ∈ I
S ′(PC) = PC_INC(S)
S ′(IR) = S(S(PC))
〈S ′′, X ′〉 = A(S ′, X)

E(S,X) =⇒ E(S ′′, X ′)

S(S(PC)) /∈ I
S ′(IR) = S(S(PC))

E(S,X) =⇒ 〈S ′, X〉

Figure 3.9: The rules for the F-E yle of the RASP

S(IR) = INC
S ′(ACC) = mod(S(ACC) + 1,#S)

A(S,X) =⇒ 〈S ′, X〉

(a) The INC instrution

S(IR) = DEC
S ′(ACC) = mod(S(ACC)− 1,#S)

A(S,X) =⇒ 〈S ′, X〉

(b) The DEC instrution

Figure 3.10: The semantis for INC and DEC

instrutions. Figure 3.10 shows the semantis for the INC and DEC instrutions.

Figure 3.11 displays the rules for the LOAD, OUT and CPY instrutions. These

instrutions have a single semanti rule, and those that require a parameter load

it into the IR and all the PC_INC funtion again to move the PC to the next

instrution.

Figures 3.12 and 3.13 show the semanti rules for the STO and JGZ instru-

tions. STO requires three rules to handle speial ases. One ase is that of the

PC where storing the ontents of the ACC to the PC onstitutes a jump with

a post-STO inrement. The seond ase deals with storing the ACC in the IR,

whih means that the IR equal to the ACC, rather than the destination address.

The third ase is the general ase for addresses > 1. The two rules for JGZ de�ne

the ases for jumping and not jumping.

The semantis for INC are redued to a suint form through �rst substitut-

ing bak the integers for PC, INC, IR et. We de�ne additional terms for S and

X to prevent the need for primed variants and replae the modulo funtion with

the ommonly used in�x symbol %. The intermediate semantis are:

S(0) = 1

K(2) = (S(2) + 1)%#S

A(S,X) =⇒ 〈S ′, X〉

Using RPN again, we an onvert the lines into a more onise form. The
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S(IR) = LOAD
S ′(IR) = S ′(ACC) = S(S(PC))

S ′(PC) = PC_INC(S)

A(S,X) =⇒ 〈S ′, X〉

(a) The LOAD instrution

S(IR) = OUT
X ′ = X ∪ {S(ACC)}

A(S,X) =⇒ 〈S,X ′〉

(b) The OUT instrution

S(IR) = CPY
S ′(IR) = S(S(PC))
S ′(ACC) = S(S ′(IR))
S ′(PC) = PC_INC(S)

A(S,X) =⇒ 〈S ′, X〉

() The CPY instrution.

Figure 3.11: The semantis for LOAD, OUT, and CPY

S(IR) = STO
S ′(IR) = S(S(PC)) = 0

S ′(PC) = S(ACC)
S ′′(IR) = 0

S ′′(PC) = PC_INC(S ′)

A(S,X) =⇒ 〈S ′′, X〉

(a) Storing the PC

S(IR) = STO
S(S(PC)) = 1

S ′(IR) = S(ACC)
S ′(PC) = PC_INC(S)

A(S,X) =⇒ 〈S ′, X〉

(b) Storing in the IR

S(IR) = STO
S ′(IR) = S(S(PC))

S ′(IR) > 1
S ′(S ′(IR)) = S(ACC)
S ′(PC) = PC_INC(S)

A(S,X) =⇒ 〈S ′, X〉

() Storing elsewhere

Figure 3.12: The semantis for storing in the PC, IR, and elsewhere

S(IR) = JGZ
S ′(IR) = S(S(PC))

S(ACC) = 0
S ′(PC) = PC_INC(S)

A(S,X) =⇒ 〈S ′, X〉

(a) JGZ when S(ACC) = 0

S(IR) = JGZ
S(ACC) > 0

S ′(IR) = S ′(PC) = S(S(PC))

A(S,X) =⇒ 〈S ′, X〉

(b) JGZ when S(ACC) > 0

Figure 3.13: The JGZ instrution
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S(IR) = ADD
S ′(IR) = S(S(PC))

S ′(ACC) = mod(S(ACC) + S ′(IR),#S)
S ′(PC) = PC_INC(S)

A(S,X) =⇒ 〈S ′, X〉

(a) The ADD instrution

S(IR) = SUB
S ′(IR) = S(S(PC))

S ′(ACC) = mod(S(ACC)− S ′(IR),#S)
S ′(PC) = PC_INC(S)

A(S,X) =⇒ 〈S ′, X〉

(b) The SUB instrution

Figure 3.14: The ADD and SUB instrutions for the RASP2.

line K(2) = (S(2) + 1)%#S beomes 2K2S1 + S#% =. The semantis in this

onise form total 228 haraters for the model semantis and 328 haraters for

the language semantis. The full RPN expressions of the semantis are stated in

Appendix D.

3.4.2.1 RASP2

The RASP2 uses the same model semantis and largely the same language se-

mantis as the basi RASP. The di�erene lies the removal of the INC and DEC

rules and replaing them with ADD and SUB. Figure 3.14 shows the ADD and

SUB instrutions.

These semanti rules are redued aording to the proedure laid out above

and the RASP2 semantis are measured as 228 haraters for the model semantis

� the same as for the RASP � and 357 haraters for the language semantis.

3.4.2.2 RASP3

As with the RASP2, the RASP3 semantis have their own ADD and SUB in-

strutions presented in Figure 3.15. The RASP3 semantis have sizes of 228 and

359.
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S(IR) = ADD
S ′(IR) = S(S(PC))

S ′(ACC) = mod(S(ACC) + S(S ′(IR)),#S)
S ′(PC) = PC_INC(S)

A(S,X) =⇒ 〈S ′, X〉

(a) The ADD instrution

S(IR) = SUB
S ′(IR) = S(S(PC))

S ′(ACC) = mod(S(ACC)− S(S ′(IR)),#S)
S ′(PC) = PC_INC(S)

A(S,X) =⇒ 〈S ′, X〉

(b) The SUB instrution

Figure 3.15: The ADD and SUB instrutions for the RASP3.

3.4.3 λ-alulus

Unlike the variane in the RASP and TM de�nitions, the λ-alulus tends to

have a onstant de�nition in the literature [12, 46, 25℄. At its ore, the redution

and onversion rules β, α, η do not hange. Rather, the variation arises from the

redution strategy (i.e. normal or appliative order). A λ term E is onstruted

from the grammar:

E := λv.E|(E E)|v

v ∈ {a . . . z}+

As explained in Setion 2.3.2.1, the three main rules of the λ-alulus are

β redution, α onversion and η onversion. `Exeution' of a term is via the

substitution mehanism β redution, while α and η onversion are used to tidy,

�nd equalities between terms, and resolve ambiguities.

Traditional semantis of the λ-alulus assume that a reader/interpreter of

the semantis an substitute expressions in situ, expanding or ontrating the

original expression as desired. But this property of expanding or ontrating

expressions is quite abstrat and an be problemati to implement from a me-

hanial perspetive. As the RASP and TM semantis above are represented at a

resolution where we manipulate individual symbols/numbers/disrete strutures,
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it behoves us to represent the λ-alulus in a manner where we also manipulate

suh strutures.

We an represent a term as a TM tape, one harater per ell of the tape

as normal. When a substitution is made, we erase the symbol whih is to be

replaed and repeatedly shu�e the rest of the term to the right in order to make

a spae large enough. We then opy the term in, repeat the proess for any more

variables, then erase the term from the right, the abstration at the far left and

lose up the brakets.

This is a poorly disguised TM. Furthermore, this `string evaluation' method

is tedious to speify, and we suspet that it would take many semanti rules to

explain the proess, not inluding the parsing and renaming rules.

We observe that the braketed nature of λ expressions allows us to represent

them as trees. If we do this, evaluation beomes a ase of shu�ing sub-trees

around until the expression is in normal form, if a normal form exists. This

method of representation and evaluation is alled Graph Redution [102, 68℄.

Figure 3.16 shows how we ould parse the expression (λa.λb.b a)(λx.x). Pars-

ing begins by reognising the appliation of (λa.λb.b a) to (λx.x) This forms an

�APP� node whih signi�es an appliation. The right side has an abstration

(�ABS�) over x and the single variable. The left side parses two abstrations,

then parses the appliation of a to b. While it is not expliitly shown here, the

appliation rule mathes the expression from the right hand side. So if we had a

third expression (say X), the �rst math would be rule (e) with e1(X) and would

form an APP node with X on the right and the struture of 3.16 on the left.

So how do we parse an expression into this tree? The external representation

is assumed to be a λ expression with unique variable names. Brakets are inluded

only for disambiguation and expressions are left assoiative. The tree nodes are

de�ned as T :

T = {z, TL, TR}

z = ABS|APP |v

v ∈ {a . . . z}+ \ {∅}

An ABS node denotes an abstration, APP an appliation, and v a variable.

The variables v are drawn from a ditionary formed by the Kleene losure over

94



Chapter 3. Preliminaries

Figure 3.16: The parsing of a λ expression. Leaf nodes are formed by appliation

of rule 3.17b.

the alphabet, exluding the empty string. Figure 3.17 shows the �ve rules to

onstrut a tree from a λ expression, Troot = parse(e).

The parsing pattern mathes from the right, rather than from the left. This

is beause a LHS parsed expression will derive a right assoiative tree.

The resulting tree struture with the root Troot enables the reursive evaluation

of any given λ term. In the traditional semantis, a substitution is represented by

the notationM [x/F ]. Colloquially, we say that all free ourrenes of the variable

x in the expression M are replaed by the expression F . If F is a variable itself,

we must ensure that the name is not bound in M prior to substitution. If F is

bound, then we �rst rename it before we substitute it in.

We de�ne a funtion E to evaluate from Troot. The funtion detets where a

redution an be made, heks if there are any name on�its with the variables,

renames if neessary, and substitutes the sub-expression on the right into the

sub-expression on the left.

Figure 3.18 shows the rules for β reduing an expression. The dot syntax (.)

denotes an indiretion whih referenes a an element of a tree node. For example

T.TL.z is a referene to the value of z in the left hild of the node T .

Evaluation proeeds from the root. If a node T is an APP node and the

node diretly to its left, TL is an ABS node then all ourrenes of nodes named

with the variable T.TL.TL.z in the branh T.TL.TR are replaed with T.TR (Figure
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e =⇒ λv.e1
parse(e) =⇒ {ABS, parse(v)parse(e1)}

(a) Parsing an abstration

e =⇒ v

parse(e) =⇒ {v, ∅, ∅}

(b) Parsing a variable

e =⇒ e1v

parse(e) =⇒ {APP, parse(e1), parse(v)}

() Applying an expression to a variable

e =⇒ (e1)

parse(e) =⇒ parse(e1)

(d) Stripping parentheses

e =⇒ e1(e2)

parse(e) =⇒ {APP, parse(e1), parse(e2)}

(e) Applying an expression to another

Figure 3.17: Rules for parsing a λ expression into a tree

T.z = APP
T.TL.z = ABS

T.TR.z /∈ Bv(T.TL.TR)

E(T ) =⇒ S(T.TL.TR, T.TR, T.TL.TL.z);E(Troot)

(a) Applying a substitution where the name of the RHS is not bound on the LHS

T.z = APP
T.TL.z = ABS

BT = Bv(T.TL.TR)
T.TR.z ∈ BT

z′ /∈ BT

E(T ) =⇒ S(Rn(T.TL.TR, z′, T.TR.z), T.TR, T.TL.TL.z);E(Troot)

(b) Applying a substitution where the name of the RHS is bound on the LHS

E(T ) =⇒ {T.z, E(T.TL), E(T.TR)}

() Moving down the tree

T = ∅

E(T ) =⇒ ∅

(d) Terminating evaluation at the leaves

Figure 3.18: Determining where a substitution should be made
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T.z = ABS

Bv(T ) =⇒ {T.TL.z} ∪Bv(T.TR)

(a) Adding a bound variable to the set

T.z = APP

Bv(T ) =⇒ Bv(T.TL) ∪ Bv(T.TR)

(b) Reursing down the tree

Bv(T ) =⇒ ∅

() Default rule terminating the funtion

Figure 3.19: The funtion to determine the bound variables of a sub-expression

3.22a).

The funtion S(a, b, c) is the substitution funtion. Given a branh of the

tree to substitute into a, an expression to substitute b, and the variable whih we

want to be substituted c, we traverse the tree heking to see if the leaf nodes

have the same value for z as c. If they are, we replae that leaf node with a opy

of the expression b (Figure 3.22b). If the variable c is rebound at some point in

the tree (i.e. is to the left of an ABS node) then the substitution is terminated.

One a substitution has �nished, the new tree is re-evaluated from the root until

no more substitutions an be made.

If b is itself a variable, we have to hek that the name of b is not bound

in the sub-expression. Consider the expression (λx.(λf.λx.f(fx))x). We redue

this expression by substituting the rightmost x for the bound variable f in the

inner expression. If we do this without any renaming the expression will beome

(λx.(λx.x(xx))). The two substituted xs are now bound by the inner abstration.

This is alled variable apture.

To avoid this, we obtain a list of the bound variables of the sub-expression

into whih we are substituting (Figure 3.19). If b is not in this list, we substitute

as normal (Figure 3.18a). If it is, we rename the variables in the sub-expression

to something other than b (Figures 3.18b and 3.20) before substitution.

This method of evaluation aims for full evaluation via normal order redution.

The term (λa.λb.ba)(λx.x) will redue to the normal form (λb.b(λx.x)) where the

evaluation will halt.

It has been a onsious hoie to redue a term to full normal form rather

than weak head normal form (WHNF). Where normal form is an expression with
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T.z = k

Rn(T, v′, k) =⇒ {v′, ∅, ∅}

(a) Rule for renaming a variable

T = ∅

Rn(T, v′, k) =⇒ ∅

(b) Rule for terminating at the leaves

Rn(T, v′, k) =⇒ {T.z, Rn(T.L, v′, k), Rn(T.R, v′, k)}

() Default rule for moving down the tree

Figure 3.20: The renaming rules

S(T, TP , j) =⇒ {T.z, S(TL, TP , j), S(TL, TP , j)}

(a) Moving down the tree

T.z = j

S(T, TP , j) =⇒ TP

(b) Replaing the node T with TP

T = ∅

S(T, TP , j) =⇒ ∅

() Terminating substitution at the leaves

T.z = ABS
T.TL.z = j

S(T, TP , j) =⇒ T

(d) Terminating a substitution when enountering a re-binding of the variable j

Figure 3.21: The substitution rules to replae bound variables with another ex-

pression.

(a) Before substitution. Applying rule 3.18a (b) After substitution

Figure 3.22: Appliation and substitution
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no more redutions, an expression in WHNF is one with no redution for the

leftmost abstration. There may be redexes in sub-expressions, but the WHNF

strategy redues only the leftmost outermost redex.

Adopting a WHNF strategy an redue the number of semanti rules in the

semantis. If we take it as a onvention that all bound and free variables have

unique names, we an redue a term to WHNF [68℄ without the need for renam-

ing. Consider the expression (λt.tt)(λf.λx.fx) with all initially unique variables.

A single redution step will produe (λf.λx.fx)(λf.λx.fx) and another will pro-

due the WHNF (λx.(λf.λx.fx)x). At this point a variable name has been du-

pliated, but the term is still unambiguous as to whih variables are bound by

eah abstration.

If we want a full normal form, we an ontinue to redue the expression by

substituting the rightmost x bound by the leftmost abstration into the sub-

expression for f produing (λx.(λx.xx)). This is variable apture, and shows

that enforing unique variable names in the initial term is not su�ient enough

to prevent suh variable apture. At the time of substitution, the mahine has to

hek if there are unique

These semantis whih stritly redue to normal form do not onfer extra

omputational power over WHNF, but the extra rules relax the onvention of

variable uniqueness. This in turn means that we are not onstrited to ≤ 26

unique single symbol bindings before needing to add more symbols to the variable

names.

The λ-alulus semantis are markedly di�erent from the semantis of the

RASPs and TM. The semantis fous on evaluation in the form of graph redu-

tion and eshew semanti rules for a partiular expressions. The λ expressions

disussed thus far: ONE, PAIR, SUCC, et. have no speial rules as far as the se-

mantis are onerned. These semantis have no �language semantis� omponent

as the the RASPs do. The λ-alulus semantis are 515 haraters in size.

3.4.4 SKI ombinator alulus

The SKI formalism revolves around the three ombinators S, K, and I. We an

represent any omputable term in this formalism [17, 79℄. Expressions are stru-
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e =⇒ (e1)

P (e) =⇒ P (e1)

(a) Stripping brakets

e =⇒ e1(e2)

P (e) =⇒ {A, (P (e1), P (e2)}

(b) Appliation of an expression to another

e =⇒ e1z

P (e) =⇒ {A, P (e1), P (z)}

() Appliation to a variable/ombinator

e =⇒ z

P (e) =⇒ {z, ∅, ∅}

(d) Parsing a variable or ombinator

Figure 3.23: The parsing rules for SKI

tured similarly to the λ-alulus, and an be therefore be parsed into a tree and

evaluated using graph redution [99℄. The evaluation of a SKI term is again via

normal order.

A SKI term E is generated from the grammar:

E := (EE)|z

z := S|K|I

where E is a non terminal symbol, and S, K, I are terminal symbols.

Like a λ-alulus expression, we parse E into a tree struture T similar to our

λ-alulus tree struture above:

T = {z, TL, TR}

z = S|K|I|A

The parsing proeeds similarly to the λ-alulus minus the rules for parsing

an abstration. Figure 3.23 shows these rules.

The parsing of the SKI expression S(KI)I(KII) is shown in Figure 3.24. As

with the λ semantis, appliation is mathed from the right hand side of the

expression. Eah leaf node in a SKI tree is a ombinator or variable.

Evaluation of SKI terms requires that we look ahead for ombinators and

expressions beause a ombinator will not evaluate if it does not have enough

arguments (e.g SII ≡ SII). Figure 3.25 shows the redution rules for S, K and

I.

To evaluate the identity funtion from a node T , we hek to see that the left

branh is an I (Figure 3.26). The redution returns the right branh of T . As

with the λ semantis, we re-evaluate from the root of the tree Troot after eah
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Figure 3.24: The tree of a parsed SKI expression

substitution.

The evaluation of K requires that the leftmost branh terminates with a K.

The K ombinator ignores its seond argument and returns the �rst (Figure 3.27).

The S ombinator requires 3 arguments. The leftmost branh three levels

down should be an S and it should have 3 expressions to the right of eah appli-

ation node on eah level. The result of this redution is a tree whih applies e1

to e3 (j), e2 to e3 (g), and j to g.

As a form of hybrid between the singular fous on graph redution (λ-alulus)

and semanti rules for partiular instrutions (RASPs). The SKI semantis eval-

uate expressions in a graph redution manner, but the partiular redution is

informed by the ombinator read. The semantis for the SKI are the smallest at

291 haraters.

3.5 Semanti Sizes

Measuring the semantis of our models yields Table 3.1. The Turing mahine

is the simplest imperative model, and an abstrat mahine to interpret and run

a TM is onsequently small. The RASP Figures are split into model+language

semantis so that the di�erene in their instrution sets an be quikly seen.

RASP RASP2 RASP3 TM SKI λ-alulus

228+328 228+357 228+359 335 291 515

Table 3.1: The semanti sizes for the models
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T.v = A

R(T ) =⇒ {A,R(TL), R(TR)}

(a) Moving down the tree

T.z = A
T.TL.z = I

R(T ) =⇒ T.TR;R(Troot)

(b) The I rule

T.z = A
T.TL.TL.z = K

R(T ) =⇒ T.TL.TR;R(Troot)

() The K rule

T = ∅

R(T ) =⇒ T

(d) The terminating rule

T.z = A
T.TL.TL.TL.v = S
T.TL.TL.TR = e1
T.TL.TR = e2
T.TR = e3

R(T ) =⇒ {A, {A, e1, e3}, {A, e2, e3}};R(Troot)

(e) The S rule

Figure 3.25: SKI redution rules

Figure 3.26: I redution

Figure 3.27: K redution

Figure 3.28: S redution
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Interestingly, the semantis for the λ-alulus are more omparable in size to

the RASP rather than the traditional omparison to the Turing mahine. In the

next hapter we shall see what e�et this has on program size and Chapter 6

will disuss how the omparative sizes of these semantis relate to the sizes of

programs.
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Arithmeti, List and Universal

Programs

This hapter overs the implementation and measurement of programs whih have

been seleted to benhmark the models. The onepts of primitive and partial

reursion are introdued, the funtions listed, and realisations of these funtions

explained in eah model.

To strive for an equitable omparison, the programs featured to ompute

these funtion are both suint and operate over natural enodings of the fun-

tion input. There are programs whih ompute a funtion using less program

information, but use sparser input enodings. Setion 6.6 gives an example of

suh a mahine, and Setion 6.5 details the growth rates of natural inputs for

eah program and model.

For the sake of brevity, not all all funtions are explained in depth for eah

individual model � the RASPs and λ-alulus/SKI are often grouped as they use

the same algorithm. The full programs for eah model and funtion are presented

in Appendix B.

4.1 Primitive and Partial Reursion

The de�nition of the primitive reursive (PR) funtions starts with the natural

number 0, the suessor funtion, the projetion funtion and indution [63℄.

The suessor funtion adds 1 to a natural number n, thus obtaining the next
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number in the sequene:

s(n) = n+ 1

From that we an derive the predeessor funtion, whih given n + 1 returns

n:

p(n) =







0 : z(n) = 1

x : n = (s(x))

The predeessor funtion requires a test for zero z:

z(n) =







1 : n = 0

0 : n > 0

The omposition and projetion funtions pak and unpak tuples of variables.

The base form of the PR funtions has a restrition on the number of variables

whih a funtion an operate over. While a funtion an operate over any number

of onstants, PR indution an only be performed on a single variable. So if T is

a PR funtion then the de�nition of T (1, f) is permissible, but T (x, f) (where x

and f are two natural numbers hanged by T ) is not.

However it seems appropriate that if variable x of T is the result of another

PR funtion L, then the indutive de�nition of x is `handled' by the de�nition

of L. Intuitively, the omposition of PR funtions should also result in a PR

funtion. Kleene [46℄ treats this matter in a formal manner, explaining the role

of omposition and projetion. In the funtion de�nitions whih follow, we shall

be using standard mathematial notation rather than `strit PR' formulations

whih make use of omposition and projetion.

All primitive reursive funtions are total. That is they are de�ned on all

inputs in their domain. There exists total funtions whih are not primitive

reursive however [7℄.

The partial reursive funtions are de�ned with the inlusion of the µ operator.

Also known as theminimisation, or unbounded searh operator, µ is used to searh

for the smallest natural number whih satis�es some funtion. Where the PR

funtions reurses downwards towards zero, µ reurses upwards and may never

return a result. Say there was a TM R, and we want to �nd out the number

of steps R will make before halting: n = µ(R). The minimisation operator µ is

105



Chapter 4. Arithmeti, List and Universal Programs

paired with a UTM and runs R a step at a time until R reahes some de�ned

halting state. However R ould loop forever in whih ase µ will never return a

value [63, 20, 46℄.

The funtions whih form the omparison set are a mixture of primitive and

partial reursive funtion. The set of primitive reursive funtions inlude arith-

meti operations: addition, subtration, equality, multipliation, division, and

exponentiation. And operations on lists: list membership, linear searh, reversal

via onstruting a new list, reversal via swapping elements in plae, and bubble

sorting. The partial reursive funtions are the universal Turing and universal

RASP mahines.

This funtion set aims to represent a reasonable spread of operations suh

that a wide range of arbitrary programs makes use of one or more of these fun-

tions. Many of the implementations are drawn from the literature, espeially

implementations of the arithmeti funtions and UTM in the TM and λ-alulus.

The list reversal and searh funtions in the λ-alulus have also been drawn from

the literature. The other funtions have been hand onstruted and ontinuously

re�ned by the author.

The arithmeti funtions are hierarhial in nature where the funtions on level

n make use of the funtions on level n − 1. These arithmeti funtions operate

over pairs of data, while the list funtions operate over a �nite list of ontiguous

data and demonstrate several ommon funtions like searh and sort. The two

reversal funtions highlight how di�erenes in the intensionality of two programs

to ompute the same funtion a�ets the program information. Where possible,

the de�nitions and programs presented here are drawn from the literature.

4.2 The Arithmeti Funtions

The arithmeti funtions are a hierarhy de�ned over the natural numbers. The

base funtions are the suessor and predeessor funtions whih are de�ned

above. Eah subsequent level in the hierarhy is de�ned by multiple appliation

of the funtions in the levels below. Addition is iterated suessor, multipliation

is iterated addition, and so on. These funtions are all primitive reursive and
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01(R) 2(R)
1->0 0->1

1

Figure 4.1: The state diagram for the addition TM

are therefore guaranteed to halt.

Eah funtion here is detailed and the programs/expressions in all of the

models are desribed. Many of the RASPs and SKI alulus programs behave

similarly to other RASPs or λ-alulus expressions and so may not be detailed

to avoid needless repetition.

4.2.1 Addition

The de�nition of the funtion add is:

add(x, y) =







y : x = 0

add(p(x), s(y)) : x 6= 0

4.2.1.1 Turing Mahine

Figure 4.1 shows a state diagram of the mahine. The TM starts in state 1,

and follows the edges of the transitions. If a transition is labelled with a single

symbol, the TM will write that symbol bak. Transitions of the form x→ y will

overwrite x with y. The diretion that the mahine will shift is annotated as `L'

or `R' on the states.

The initial tape for the addition Turing mahine ontains the numbers x and

y insribed in unary with a single spae between them. The head of the mahine

begins over the far left symbol of x. It replaes this symbol with a blank and

shifts right until it reahes the spae between x and y. One this spae has been

found, the TM �lls it in and halts.
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Instr Data I Label D Label

LOAD 3 :addStart ;x

JGZ 'adding

HALT

DEC :adding

STO 'x

LOAD 4 ;y

INC

STO 'y

LOAD 1

JGZ 'addStart

Figure 4.2: The RASP program for addition.

Instr Data

LOAD x
ADD y

Figure 4.3: RASP2 adding x and y.

Instr Data I Label

LOAD x
ADD 'label

y :label

Figure 4.4: RASP3 adding x and y.

4.2.1.2 RASP

The RASP performs addition by looping over x, derementing it and inrementing

y until x is zero before halting. Figure 4.2 adds the numbers 3 and 4 together to

produe 7.

4.2.1.3 RASP2/3

The RASP2 and RASP3 semantis have pre-de�ned ADD and SUB instrutions

so all that they have to do is invoke these instrutions. Tables 4.3 and 4.4 show

very onise programs to add two numbers together.

4.2.1.4 λ-alulus

Addition in the λ-alulus exploits the higher order funtionality of the Churh

numerals. Where SUCC ≡ (λn.λf.λx.f(nfx)), addition is λx.λy.x SUCC y. Fig-

ure 4.5 shows the redution with the numbers 3 and 1.

4.2.1.5 SKI

The SKI expression for addition is very similar to the λ expression beause the SKI

expression is derived from λ expression via braket abstration (Setion 2.3.2.2).
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ADD THREE ONE ⇒∗
β THREE SUCC ONE

≡ λf.λx.f(f(fx)) SUCC ONE

⇒∗
β SUCC(SUCC(SUCC ONE))

⇒β λf.λx.f(SUCC(SUCC ONE)fx)
⇒β λf.λx.f((λj.λh.j(SUCC ONE jh))fx)
⇒∗

β λf.λx.f(f(SUCC ONE fx))
⇒β λf.λx.f(f((λj.λh.j(ONE jh))fx))
⇒∗

β λf.λx.f(f(f(λa.λb.ab)fx))
⇒β λf.λx.f(f(f(fx)))
≡ FOUR

Figure 4.5: Addition of the Churh numerals 3 and 1.

The suessor funtion is de�ned as S(S(KS)K) and prepends the expression to

any natural number to reate the suessor. The full expression for addition is

SI(K(S(S(KS)K))) whih operates exatly as the above λ expression.

4.2.2 Subtration

The �proper� form of subtration returns x − y if x >= y; otherwise it returns

zero:

sub(x, y) =



















x : y = 0

0 : x = 0

sub(p(x), p(y)) : y 6= 0 ∧ x 6= 0

4.2.2.1 TM

The initial tape of the TM is arranged with x followed by y in unary, separated by

a single blank symbol. The TM traverses to the far right side of y and replaes

the rightmost `1' with a blank. It then moves to the far left and replaes the

leftmost `1' from x.

If the mahine enounters two onseutive blanks when moving right, it halts

immediately sine y has been depleted. If it enounters onseutive blanks when

moving left, x has been depleted, so it shifts right again and erases the rest of y

before halting.
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Instr Data I Label D Label

LOAD y :subStart ;y

JGZ 'subbing

HALT

SUB 1 :subbing

STO 'y

LOAD x ;x

JGZ 'subbing2

HALT

SUB 1 :subbing2

STO 'x

LOAD 1

JGZ 'subStart

Figure 4.6: RASP2 properly subtrating x and y

4.2.2.2 RASP

Subtrating y from x in the RASP involves repeatedly derementing both values

until one of them reahes zero. The program to do this is almost exatly the same

as the subtration program in Figure 4.6, with the exeption that the �SUB 1�

instrutions are replaed with �DEC�.

4.2.2.3 RASP 2/3

The SUB funtions for the RASP2 and 3 do not onform to the rules of proper

subtration beause they pay no heed to the under�ow of registers. This means

that SUBbing y from x diretly will not return 0 in the event of y > x, whih

makes the SUB instrution unsuitable for the task of proper subtration.

The basis of subtration is to derement x and y in turn until one of them

reahes zero. Figure 4.6 shows the RASP2 program to do this. It is not hard to

de�ne an analogous mahine in the RASP3. The lak of a DEC instrution for the

RASP2 and 3 means that the derementing of x and y requires two instrutions

rather than just one.

Before the derement y, it is tested for zero. If y is zero the program halts,

otherwise it is deremented and x is tested for zero. If x is greater than zero,

the mahine derements it and loops to derement y again. The result of the

subtration is held in the register for x.
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0

1(R)

2(R)
1->0

7(R)
0

1

3(R)
0

1

4(L)
0

5(L)
1->0

9(L)

0
1

6(L)

0

0

1

0

8(R)

1->0
0->1

1->0

0

10(L)

1->0

0->1

1->0

Figure 4.7: The TM to alulate equality of x and y.

4.2.2.4 λ-alulus and SKI

The PRED funtion for the SKI and λ-alulus has the same de�nition as the

predeessor funtion p(). So any appliation of ZERO to PRED will result in

ZERO as a matter of ourse. This means that any y an be subtrated from

a smaller x using PRED and the result will be zero. The SUB expression is

therefore:

SUB ≡ (λa.λb.b PRED a)

whih is evaluated muh like the expression for addition above.

4.2.3 Equality

Equality on the naturals reursively derements x and y until one or both reah

zero. A return value of 1 (true) is returned if they are both zero, and 0 (false) is

returned if they are not both zero at the same time:

eq(x, y) =



















1 : x = 0 ∧ y = 0

0 : (x = 0 ∧ y 6= 0) ∨ (x 6= 0 ∧ y = 0)

eq(p(x), p(y)) : otherwise

4.2.3.1 TM

The Turing Mahine to ompute equality begins with the numbers x and y in-

sribed on a tape in unary with a single blank spae between them and the head
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Instr Data I Label D Label

LOAD 6 ;num1

SUB 6 ;num2

JGZ 'out

HALT

LOAD 1 :out

(a) The RASP2 program for 6 =? 6

Instr Data I Label D Label

LOAD 6 ;num1

SUB 'num2

JGZ 'out

HALT

LOAD 1 :out

HALT

5 :num2

(b) The RASP3 program for 6 =? 5

Figure 4.8: RASP2/3 programs for equality

over the far left of x. The mahine (Figure 4.7) begins by removing the far

left digits of x and the far right digits of y one at a time to preserve the spae

in-between x and y.

If the mahine removes a digit from x and �nds there are no more digits in

y, it moves bak over x eliminating the remaining digits before halting. If the

mahine �nds that there are no more digits in x, it moves aross to y. If there are

digits in y, it removes them and halts with a blank tape. If there are no digits in

x and y, it hanges a 0 to a 1 and halts.

4.2.3.2 RASP Mahines

In the above equation, two numbers are equal if they are both zero after the

same number of predeessor operations. The RASP repeatedly derements x and

y until x is zero. At that point y is heked for zero. If it is, the two numbers

are equal, 1 is loaded into the ACC and the mahine halts. If not, zero is loaded

and the mahine halts.

The RASP2 and 3 just subtrat y from x. If the answer is 0, the mahines

halt with a 1 in the ACC. If not, they halt with zero (Figure 4.8).

4.2.3.3 λ-alulus and SKI

Rather than outputting the numerals 1 and 0, the λ-alulus and SKI use the

terms TRUE and FALSE (Setion 2.3.2.1) respetively. The LEQ expression tests

if one number is less than or equal to another. The EQ expression is a onjuntion

of LEQ x y and LEQ y x. It tests if m is less than or equal to n and then if n is

less than or equal to m. If both expressions are true, then m = n:
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LEQ ≡ λm.λn.n PRED m(λx.FALSE)TRUE

EQ ≡ (λm.λn.AND(LEQ m n)(LEQ n m))

4.2.4 Multipliation

Multipliation is iterated addition:

mul(x, y) =







0 : x = 0 ∨ y = 0

add(x,mul(x, p(y)) : x 6= 0 ∧ y 6= 0

4.2.4.1 TM

Multipliation in the TM uses a tape of x and y written in unary with a single

spae between them like the other programs seen thus far. It �rst removes the

leftmost digit of x and makes a opy of y on the right hand side of the tape,

leaving a gap of a single blank between y and its opy.

One a opy has been made, the TM removes another digit from x and opies

y again, plaing it next to the previous opy. This ontinues until all of x is

depleted, at whih point the mahine moves right to erase y before halting with

x× y on the tape.

4.2.4.2 RASP Mahines

Multipliation of two numbers in the RASP is repeated addition. The multiplier

(y) is initially tested for zero. If it is zero, the mahine halts. The mahine tests

the multipliand (x) for zero and then derements it, storing the new multipliand.

A opy is made of the multiplier and the opy is added to a �runningTotal�

register whih is initialised as zero. The program loops and and ontinues until

the value for x is 0. The result of the program is held in the �runningTotal�

register and holds the value of (x× y)%2n (Figure 4.9) where n is the number of

RASP bits. The RASP2 and RASP3 use the same looping mehanism, but use

their respetive ADD funtions to inrease �runningTotal�.
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Instr Data I Label D Label

CPY 'multiplier

JGZ 'return

HALT

LOAD 5 :return ;multipliand

JGZ 'mul_start

HALT

DEC :mul_start

STO 'multipliand

LOAD 5 ;multiplier

STO 'tmp

LOAD 0 :loop ;tmp

JGZ 'add

LOAD 1

JGZ 'return

DEC :add

STO 'tmp

LOAD 0 ;runningTotal

INC

STO 'runningTotal

LOAD 1

JGZ 'loop

Figure 4.9: The RASP program to multiply 5 and 5

4.2.4.3 λ-alulus

Unlike the RASP and TM, multipliation in the λ-alulus is not iterated addi-

tion whih is a deviation from the de�nition above. Rather than iteration, the

expression (λm.λn.λf.m(n f)) ombines two Churh numerals m and n by re-

ating m opies of (n f). In these expressions, n is applied to the free variable f

and the resulting expressions are applied to eah other.

The intermediate step of applying the f ensures that the subsequent applia-

tions of the numerals to eah other would be substituted for the seond argument
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MULT TWO TWO ≡ (λm.λn.λf.m(n f)) TWO TWO

⇒β (λn.λf.TWO(n f))TWO

⇒β λf.TWO(TWO f)

⇒∗
β λf.λx.(λa.λb.a(a b)f)((λa.λb.a(a b)f)x)

⇒β λf.λx.(λb.f(f b)((λa.λb.a(a b)f)x))

⇒β λf.λx.f(f((λa.λb.a(a b)f)x))

⇒β λf.λx.f(f(λb.f(f b)x))

⇒β λf.λx.f(f(f(f x)))

≡ FOUR

4.2.4.4 SKI

The SKI term for multipliation is striking in its simpliity and is the shortest

term of all the funtions: S(KS)K. Multipliation works by reating a new

number through applying a multiplier to a multipliand so that we get x opies

of y. The term prevents the appliation of x to y by means of the leading S and

K whih hold the term in normal form until something an be applied to the new

number.

MULT TWO THREE ≡ S(KS)K(S(S(KS)K)I)(S(S(KS)K)(S(S(KS)K)I))

⇒S KS(S(S(KS)K)I)(K(S(S(KS)K)I))(S(S(KS)K)

(S(S(KS)K)I))

⇒K S(K(S(S(KS)K)I))(S(S(KS)K)(S(S(KS)K)I))

⇒S S(K TWO)THREE

This expression for six is shorter than the expression for six obtained by

repeatedly �nding the suessor of zero. This behaviour inspired the fatorisation

method desribed in Setion 3.3.5.
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Figure 4.10: The TM to divide x by y

4.2.5 Division

Integer division returns a pair of a quotient and a remainder. The divisor is

repeatedly subtrated until x < y. The number of times this is aomplished is

ounted, and the remainder is whatever is left of x after this repeated subtration

of y:

div(x, y) = 〈quot(x, y), rem(x, y)〉

quot(x, y) =



















0 : x < y

0 : y = 0

s(quot(sub(x, y), y)) : otherwise

rem(x, y) =



















0 : y = 0

sub(y, x) : x < y

rem(sub(x, y), y) : otherwise

4.2.5.1 TM

TM division starts with y followed by x on the tape separated by a blank (note

the swapping of the two numbers). The mahine �rst tries to mark y symbols of

x. If it an do this (i.e y ≤ x) then it moves to the left of y and prints a `1'. It

then repeats the proess until there are no more symbols left in x to mark.

If y divides x perfetly, then both x and y are eliminated from the list to leave

the quotient. If it does not, then the mahine eliminates x and the remaining

unmarked y symbols to leave the quotient and remainder on the tape separated

by a `0' (Figure 4.10).
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Instr Data I Label D Label

LOAD y :start ;y

JGZ 'divStart

HALT

STO 'tmp :divStart

LOAD x ;x

STO 'remainder

LOAD 0 :loop ;tmp

JGZ 'sub

LOAD 1

JGZ 'return

DEC :sub

STO 'tmp

CPY 'x

JGZ 'nl

HALT

DEC :nl

STO 'x

LOAD 1

JGZ 'loop

LOAD 0 :return ;quotient

INC

STO 'quotient

JGZ 'start

0 :remainder

Figure 4.11: RASP2 dividing x by y.

4.2.5.2 RASP Mahines

Figure 4.11 shows the RASP mahine to perform integer division. The RASP �rst

heks that y isn't zero. It then opies the value x to the remainder register and

attempts to subtrat y from x. If it sueeds, the quotient value is inremented

and the program jumps bak to the start. If it annot fully subtrat y from x,

the program halts immediately and the quotient and remainder an be found in

the memory at the labelled loations.

The RASP2 and 3 operate almost exatly as the RASP does. Sine the SUB

instrution does not onform to the rules of proper subtration, the mahine an

not know if x < y through diretly subtrating. Therefore the mahines have to

use �SUB 1� and annot take advantage of their potential.
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4.2.5.3 λ-alulus and SKI

Division in the λ-alulus and SKI is the �rst reursive funtion in the set of

arithmeti funtions de�ned by means of the Y ombinator:

Y(λg.λq.λa.λb.LTa b(PAIR q a)(g(SUCC q)(SUB a b)b))ZERO

The initial ZERO is the quotient of the division. If a (x) is less than b (y) this

quotient is returned paired with x.Eah reursive all tests if x < y. If not, the

funtion is alled again with an inremented quotient and x− y as the new value

for x.

4.2.6 Exponentiation

Exponentiation is repeated appliation of the multipliation funtion:

exp(x, y) =







1 : y = 0

mult(x, exp(x, p(y))) : y 6= 0

4.2.6.1 TM

The TM is initialised with a tape of y, x, and f whih is a single 1. Eah term is

separated by a single spae. The TM heks o� one of the digits of y and proeeds

to multiply x by f to reate a new number to the right of f .

One the multipliation has been ompleted, the urrent f is erased and the

result of the multipliation; x× f assumes the role of f . The mahine ontinues

by erasing another digit of y and repeating the proess with x and the new f .

This proeeds until there are no more digits in y at whih time the mahine halts.

The output tape ontains x and f (whih is the results of xy
) with one or more

blank symbols between them.

4.2.6.2 RASP Mahines

RASP exponentiation is a loop added to the multipliation program. The expo-

nent is initially heked for zero. If it is, the mahine halts and the return value

defaults to 1. Otherwise, the power is deremented and the urrent total (f) is
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multiplied by x.

One this is done, the program jumps to the start of the program, tests and

derements the power, ontinuing until the power is 0. For the RASP2 and 3,

exponentiation is multipliation inside another loop and is written as expeted.

4.2.6.3 λ-alulus and SKI

The λ-alulus and SKI again leverage the higher order funtionality of the

Churh numerals. Exponentiation applies one Churh numeral to another. In

the ase of xy
, x is applied to y:

EXP x y ≡ (λa.λb.ba)TWO THREE

⇒∗
β THREE TWO

⇒β λx.TWO(TWO(TWO x))

⇒β λx.λf.TWO(TWO x(TWO(TWO x)f)

⇒β λx.λf.(λa.TWO x(TWO xa))((λa.TWO x(TWO xa))x)

⇒β λx.λf.TWO x(TWO x((λa.TWO x(TWO xa))x))

⇒β λx.λf.(λa.x(xa))((λa.x(xa))((λa.(λb.x(xb))((λb.x(xb))x))x))

⇒β λx.λf.x(x((λa.x(xa))((λa.(λb.x(xb))((λb.x(xb))x))x)))

⇒β λx.λf.x(x(x(x((λa.(λb.x(xb))((λb.x(xb))x))x))))

⇒β λx.λf.x(x(x(x((λa.x(xa))((λa.x(xa))x)))))

⇒β λx.λf.x(x(x(x(x(x((λa.x(xa))x))))))

⇒β λx.λf.x(x(x(x(x(x(x(xf)))))))

The EXP funtion ould be de�ned as the identity and omputed as (λx.x)yx.

However a funtion onstruted in this manner only requires a single argument

and if two were supplied, both were Churh numerals, and happened to be sup-

plied in the orret order, only then will the �orret answer� be alulated. This

behaviour is more an aidental side e�et of the identity funtion and evaluation

method given the orret onditions than any kind of alulated onstrution.

119



Chapter 4. Arithmeti, List and Universal Programs

The SKI expression is very similar. Given two numerals A and B:

EXP A B ≡ S(K(SI))KAB

⇒S K(SI)A(KA)B

⇒K SI(KA)B

⇒S IB(KAB)

⇒I B(KAB)

⇒K BA

4.3 Funtions on a List

As opposed to the arithmeti funtions above whih operate on two disrete piees

of data, the list funtions operate on a list struture. For our purposes, a list is

a struture of zero or more elements whih are onneted in a linear fashion.

Lists are often delimited to separate elements (like in the TM) and may have end

markers (SKI and λ-alulus; NIL).

Common reursive de�nitions making use of lists use four base funtions. The

`head' funtion returns the �rst member of a list, the `tail' funtion returns the list

without the �rst element, and `[℄' is the empty list. Like the arithmeti funtions,

the list funtions are primitive reursive.

4.3.1 List Membership

The list membership funtion returns true if an element is in the list and false

otherwise. It an be de�ned thus:

mem(x, list) =



















true : eq(x, head(list))

false : mem(x, [])

mem(x, tail(list)) : otherwise

4.3.1.1 TM

The list on the tape for the membership TM is a sequene of binary numbers

separated `*' symbols and bookended by the end list symbol `E'. The target to

be searhed for is prepended by a `T', and the symbol to the left of it is 0 if the
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Figure 4.12: The TM to deide membership of a list.

target number has not been found and 1 if it has. An initial tape is of the form:

0T 〈x〉 ∗ 〈data1〉 ∗ 〈data2〉 ∗ . . . E

Figure 4.12 shows the state mahine for the membership TM. The TM searhes

for the target, x by marking o� a harater in the target, shifting to the urrent

data range being heked and attempting to mark o� the same harater in the

same position. If it an, the mahine ontinues to try and mark o� all the

haraters in the target. If the urrent data doesn't math the target, the mahine

marks o� all the data in the range, resets the target and tries again.

The `found value' is at the far left of the tape, after the `T'. The mahine

halts with 0 = false and 1 = true. If the mahine does not �nd the target in the

list before reahing the end of the list it halts. If the mahine mathes all of the

symbols in the target with the symbols in one of the the data bloks, it moves

bak to the start and overwrites the `found value' with a 1 before halting.

121



Chapter 4. Arithmeti, List and Universal Programs

4.3.1.2 RASP Mahines

A RASP list is de�ned at the end of the program memory and is a ontiguous

array of elements with one element per address. Labels are de�ned on the start

and end addresses of the list so that the mahine knows the size and bounds.

The RASP programs to determine membership start with the �rst element of

the list, omparing it to the target. If the element is equal to the target, it loads

a 1 into the ACC and halts. If not, the address to be ompared is inremented

and tested against the end of the list.

If the urrent address is still a part of the list, the mahine loops and tests

the element in the address against the target. If the address is past the end of

the list, a 0 is loaded into the aumulator and the mahine halts.

The RASP2 and 3 use their subtration instrutions to work out if the target

is equal to the urrent element whereas the RASP has an equality funtion de�ned

in the memory whih it uses repeatedly.

4.3.1.3 λ-alulus and SKI

Lists in the λ-alulus and SKI are expressions made of of nested pairs terminated

with the NIL expression:

(PAIR A(PAIR B(PAIR . . . (PAIR Z NIL) . . .)))

This funtion searhes through a list of numbers for a spei� one:

MEM ≡ Y(λa.λb.λc.NULL b FALSE(EQ(HEAD b)c TRUE(a(TAIL b)c)))

This funtion initially tests the list to see if it is NIL. If it is, the end of the list

has been reahed and the target has not been found. FALSE is returned. If it is

not NIL, the head of the list (b) is tested to see if it is equal to the target (c). If

it is, then TRUE. If not, the funtion reurses to test the rest of the list.
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4.3.2 Linear Searh

The linear searh of a list for an element x returns either the position of an

element or the size of the list + 1:

search(x, list) =



















0 : x = head(list)

1 : list = []

s(search(x, tail(list))) : x 6= head(list) ∧ list 6= []

4.3.2.1 TM

The TM tape of a searhable list is a set of 〈address, data〉 pairs. Eah pair is

strutured as: #address ∗ data# where the `#' separates the pairs and `∗' is an

internal delimiter. The tape of this mahine is strutured as:

E〈ReturnAddress〉T 〈target〉#〈addr1〉 ∗ 〈data1〉# . . . E

Initially, the �ReturnAddress� portion of the tape is empty, and the �target�

portion ontains the data whih the list is to be searhed for.

To loate the target, the TM searhes the list as in the membership TM. If the

urrent in datax is the target, the mahine opies the address of that loation to

the �ReturnAddress� between the `E' and `T' symbols before halting. If the TM

reahes the far right of the list without �nding the target, it returns to the return

address and replaes the symbols with asterisks (∗) to signify that the target is

not a member of the list.

4.3.2.2 RASP Mahines

The linear searh RASP mahines operate as the membership RASPs exept that

they halt with the address of the found element in the aumulator. If the list

does not ontain the target, the RASP inrements the �nal address of the list

and halts with it in the aumulator.
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Y (S(K(S(K(S(S(KS)(S(K(S(K(S(K(SS(K(K(KI)))))(S(S(NULL) . . .
(K ONE)))))(S(S(K EQUAL))(HEAD))))ZERO)))) . . .
(S(K(S(K(SUCC)))))))(S(K(S(K(SS(K(TAIL))))K))))

Figure 4.13: The SKI term with only the abstration ombinators shown.

4.3.2.3 λ-alulus and SKI

The abstrat λ-alulus/SKI term to searh a list is:

SEARCH T L ≡ (NULL L ONE (EQ (HEAD L) T) ZERO

(SUCC SEARCH T (TAIL L)))

In the SKI, the reursive SEARCH all is a�orded by the use of the Y ombinator

whih is SSK(S(K(SS(S(SSK))))K). For the opy of SEARCH, and those of

L and T, a series of S and K ombinators draw the L and T arguments into the

body of the funtion.

Figure 4.13 shows the term with all of the ombinators to move terms into

the expression. This overhead is typial of SKI terms that have been obtained

through braket abstration; a term an blow-up in size through the number and

ourrenes of abstrated values.

The expression �rst tests if it is the last element of the list � whih is NIL.

If it is, the expression returns ONE. If the urrent element is the target, the

expression returns ZERO. If the urrent element in not NIL and is not the same

as the target, the expression returns the suessor of a reursive all to itself. The

expression suessively inrements until it �nds the target or end of the list to

either return the position of the target, or the size of the list+1.

4.3.3 Reversing a List

Funtionally reversing a list involves building a new list from the old one. Eah

reursive all adds a new outer element until the end of the input list is reahed.

rev(l) = revh(l, []) =







revh(tail(l), pair(head(l), x)) : revh(l, x)

x : revh([], x)
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4.3.3.1 TM

The list struture for this TM onsists of binary words separated by the symbol

`∗', bookended at the left with the `E' symbol, and the right with `#'. The

mahine starts at the far right side of the tape with the head positioned over the

`#' symbol.

It operates by moving left until it reahes an asterisk. The number to the

right of the asterisk is opied to the left hand side of the `#'. One the number

has been opied, it is delimited with a `$' symbol and the proess repeats. When

the TM enounters the `E' at the far left of the list, it opies the number to the

far right of the new list and halts. The TM halts with the initial list to left of

the `#', and the reversed list to the right (Figure 4.14).

4.3.3.2 RASP Mahines

A RASP mahine to reverse a list is initialised with the program at the beginning

of the memory, and the list to be reversed at the end. The mahine will �nish

with a new list appended to the end of the memory. In light of this, it is bene�ial

to make sure that the mahine is initialised with enough free memory to hold a

new list without overwriting previous data.

Figure 4.15 shows the RASP mahine. The loation to start writing the new

list is �rst obtained by loading the address of the end of the list and inrementing

twie as to reate a gap between the new and old list. The program proeeds by

opying the value at the end of the old list to the �rst value in the new list.

After eah opy the old list pointer is ompared to the start of the list to see

if they are equal. If they are, the mahine halts. If not, the new list pointer is

inremented, the old list pointer is deremented and another opy is made.

4.3.3.3 λ-alulus and SKI

Reversal of a list in the SKI and λ-alulus reurses through an input list and

builds an output list from those elements:

REV ≡ Y(λg.λa.λl.NULL l a(g(PAIR(HEAD l)a)(TAIL l)))NIL
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Figure 4.14: TM to reverse a list
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Instr Data I Label D Label

LOAD 'listEnd

STO 'pyPointer

INC

INC

STO 'writePointer

LOAD 0 :main ;writePointer

STO 'writeSTO

LOAD 0 ;pyPointer

STO 'pyLOC

CPY 0 ;pyLOC

STO 0 ;writeSTO

CPY 'writePointer

INC

STO 'writePointer

CPY 'pyPointer

STO 'tmp1

LOAD 'listStart

STO 'tmp2

LOAD 0 :loop ;tmp1

DEC

STO 'tmp1

LOAD 0 ;tmp2

DEC

STO 'tmp2

JGZ 'loop

CPY 'tmp1

JGZ 'deWritePointer

HALT

CPY 'pyPointer :deWritePointer

DEC

STO 'pyPointer

JGZ 'main

0 :listStart

10 :listEnd

Figure 4.15: The RASP mahine to reverse a list by reating a new list.
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If the input list in not NIL, the expression makes a reursive all with the

tail of the input list and a pair of the head of the input list with the urrent

onstrution of the output list. The NIL term at the end of the expression is

the initial output list whih gets paired up with the elements of the input list.

One the expression �nds the NIL term at the end of the input list, it returns the

urrently onstruted output list.

4.3.4 Statefully Reversing a List

Statefully reversing a list mutates the input list by swapping the elements, rather

than reursively traversing the input list to reate a new one as above. We

maintain two pointers to the list, x and y, initialised to the �rst and last elements.

At eah step, if x < y then the elements are swapped, and x is inremented while

y is deremented.

stateRev(list) = stateRevh(list, 0, p(length(list)))

stateRevh(list, x, y) =







stateRevh(swap(tail(list), xy), s(x), p(y)) : x < y

list : x ≥ y

length(l) =







0 : length([])

s(length(tail(l)) : otherwise

nth(x, l) =







head(l) : nth(0, l)

nth(p(x), l) : otherwise

swap(x, y, l) = substitute(x, nth(i, l); substitute(i, nth(x, l), l))

substitute(x, i, l) =







pair(i, tail(l)) : x = 0

pair(head(l), substitute(p(x), i, tail(l))) : otherwise

4.3.4.1 TM

The TM tape to reverse a list statefully is an `E' bounded, `∗' delimited list of

binary numbers:

E ∗ 〈data1〉 ∗ 〈data2 ∗ data3 ∗ . . . E

The mahine operates by opying the �rst element to empty spae at the far

right of the tape. The head then moves to the right hand side and �nds the �rst

number whih has not been moved. It opies this number into the previously
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vaated spae and then moves the �rst number into the newly vaated spae.

If there are an odd number of elements in the list, upon enountering the �nal

element it opies the ontents to the far right. It will then detet that there is

no mathing element to replae the �rst element with, and so it opies the value

bak to its original plae before halting.

4.3.4.2 RASP Mahines

The RASP mahine to statefully reverse a list maintains two pointers. One is

initialised to the �rst element of the list, and the other is initialised to the last

element. The program proeeds by swithing the two elements, inrementing the

�rst pointer, and derementing the seond one.

After this, the mahine ompares the two pointers. If the front pointer is

a memory address lower than the rear, it loops again to swap the next pair of

elements. If the value of the front pointer is greater than or equal to the rear,

then the two pointers are either pointing at the same element, or have rossed.

In either of these ases, the mahine halts.

4.3.4.3 λ-alulus and SKI

The stateful reverse is a ompliated operation whih the λ-alulus and SKI are

not at all suited to:

λx.(Y (λa.λb.λc.λd.LT b c(a(SUCC b)(PRED c)(SWAP b c d))d))

ZERO(PRED (LENGTH x))x

where LENGTH obtains the length of a list and SWAP swithes the positions of

two elements in a list. The expression operates on the list by maintaining pointers

to the beginning and end of the list to swap the elements in a pairwise fashion.

It �rst obtains the length of the list, tests to see if the front pointer is lower

than the rear one, and swaps the values if this is the ase. It reurses on the list

and inrements the front pointer, while derementing the rear one.

This proeeds until the front pointer is greater than or equal to the rear

pointer, signifying that they are either pointing to the same element (the list has

an odd number of elements) or that they have rossed eah other (the list has
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11(L)
0->Z

13(L)

1->Z
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Z->A
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*
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A
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16(L)
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*
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0

1

0
1
*

20(R)
A

B

*

Figure 4.16: Stateful reversal TM
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an even number of elements). The funtion halts with the list and its reversed

elements.

The omplexity of the stateful reverse is mostly in the SWAP and SUBST

funtions:

SWAP ≡ λa.λb.λc.SUBST a(NTH bc)(SUBST b(NTH bc)c)

SUBST ≡ Y (λa.λb.λc.λd.ISZERO b(PAIR c(TAIL d))

(PAIR(HEADd)(a(PRED b)c(TAIL d))))

SUBST reurses through the list until it �nds the loation it requires, it then

substitutes the urrent list member with the new list member. SWAP applies

SUBST twie to the list to swap both members of the list.

4.3.5 Bubble Sort

The bubble sort algorithm ommenes by omparing the value at the start of the

list v with its neighbour on the right n. If the value is greater than its neighbour,

the two values are swapped. It ontinues by omparing v to its new neighbour

n1, swapping as appropriate until it reahes the end of the list, or a neighbour is

greater than v.

One a value has been `bubbled' to its appropriate position, the algorithm

goes bak to the start of the list and bubbles up another value. If the algorithm

ompares eah value to its neighbours without making a swap, the list is sorted

and the program terminates.

sort(list) = sorth(list, false, 0, 1)

sorth(l, f, x, y) =











































sorth(swap(l, x, y), T, s(x), s(y)) : y ≤ p(len(l))

∧nth(x, l) > nth(y, l)

sorth(l, f, s(x), s(y)) : y ≤ p(len(l))

sorth(l, F, 0, 1) : y > p(len(l)) ∧ f = T

l : y > p(len(l)) ∧ f = F
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4.3.5.1 TM

The tape of the TM to perform the bubble sort is again a `∗' delimited list of

binary numbers. The tape is bookended on the left and right using `#' symbols.

The mahine �rst marks the left hand delimiter of the element whih is being

bubbled. It then ompares the urrent numeral to the one on its right. If the

urrent numeral is greater than its neighbour the mahine swaps the numerals in

the style of the stateful reverse. The marker is moved one element to the right

and the yle repeats.

If an element is not greater than its neighbour, it is in position and the mahine

skips over the element to sort its neighbour to the right. If an element being

onsidered is at the far right of the list, the mahine traverses to the far left of

the list to restart the proess. A single symbol past the left hand marker of the

tape indiates whether a swap has been made in eah left-to-right transversal. If

the mahine ompletes a full left to right traversal without a swap being made,

the list is sorted and the mahine halts.

4.3.5.2 RASP Mahines

Instr Data I Label D Label

LOAD 'listStart :start

STO 'pointer1

ADD 1

STO 'pointer2

LOAD 0

STO '�ag

LOAD 0 :mpPointers ;pointer1

STO 'p1ref

CPY 0 ;p1ref

STO 'mp1

LOAD 0 ;pointer2

STO 'p2ref

CPY 0 ;p2ref
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Instr Data I Label D Label

STO 'mp2

LOAD 'inPointers

STO 'mpOther

STO 'equal1

LOAD 'swap

STO 'mp1Greater

LOAD 0 :mpStart ;mp2

SUB 1

STO 'mp2

JGZ 'mp1de

CPY 'mp1

SUB 1

JGZ 0 ;mp1Greater

LOAD 1

JGZ 0 ;equal1

LOAD 0 :mp1de ;mp1

SUB 1

STO 'mp1

JGZ 'mpStart

LOAD 1

JGZ 0 ;mpOther

CPY 'pointer1 :inPointers

ADD 1

STO 'pointer1

CPY 'pointer2

STO 'p2sub

LOAD 'listend

SUB 0 ;p2sub

JGZ 'returnToIn

LOAD 0 ;�ag

JGZ 'start
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Instr Data I Label D Label

HALT

CPY 'pointer2 :returnToIn

ADD 1

STO 'pointer2

JGZ 'mpPointers

CPY 'pointer2 :swap

STO 'p2SwpRef

STO 'p2WriteRef

CPY 0 ;p2SwpRef

STO 'swp

CPY 'pointer1

STO 'p1SwpRef

STO 'p1WriteRef

CPY 0 ;p1SwpRef

STO 0 ;p2WriteRef

LOAD 0 ;swp

STO 0 ;p1WriteRef

LOAD 1

STO '�ag

JGZ 'inPointers

7 :listStart

3 :listend

Table 4.1: The RASP2 bubble sort

The RASP mahines maintain two pointers: v and n = v + 1. The pointer

v is initialised to the start of the list, and n is the next element.The mahine

ompares the value in register v with the value in n. If M [v] is greater than

M [n], the mahine swaps the values and swithes a �ag to indiate that a swap

has been made.

Both pointers are inremented, and the swaps ontinue until n is pointing to

the last element in the list. At this point the mahine heks to see if a swap has

134



Chapter 4. Arithmeti, List and Universal Programs

been made in this transversal. If a swap has not been made, the mahine halts

with a sorted list.

If a swap has ourred, the mahine resets v, n and the �ag to their initial

values and loops until it an traverse the list without making a swap. Table 4.1

shows the RASP2 implementation.

4.3.5.3 λ-alulus and SKI

The bubble sort expression in the λ-alulus and SKI is:

Y (λa.λb.λc.λd.λe.LEQ d(PRED(LEN e))(LT(NTH d e)(NTH c e)(a TRUE

(SUCC c)(SUCC d)((λa.λb.λc.SUBST a(NTH b c)(SUBST b(NTH a c)c))c d e))

(a b(SUCC c)(SUCC d)e))(b(a FALSE ZERO ONE e)e))FALSE ZERO ONE

The �ve parameters to this expression are: the expression itself for reursive

alls (a), the swap �ag (b), the pointer v (c), the pointer n = v + 1 (d), and the

list to be sorted (e). If n is less than the predeessor of the length of the list

(realling that these lists are terminated with a NIL element), the elements at

positions v and n are ompared. If a swap is required, the elements are swapped

and a reursive all is made with inremented pointers and the swap variable as

TRUE.

If n points at the end of the list and there has been a swap (b ≡ TRUE), a

reursive all is made with the pointers reset and the swap variable as FALSE:

(b(a FALSE ZERO ONE e)e). Otherwise, the urrent (sorted) list is returned.

Elements are swapped via the SUBST expression explained previously.

4.4 Universal Mahines

This thesis onsiders only the �diret simulation� mahines. These are mahines

that atually simulate mahines in some suitable enoding. For example, there

are numerous hoies for whih UTM to use. Neary [65℄ has demonstrated diret

simulation mahines of: (3,11) whih is 3 states and 11 tuples with 32 tuples,

(6,6) with 32 tuples, (5,7) with 33 tuples, (7,5) with 33 tuples, and (8,4) with

30 tuples. The obvious hoie for a onise UTM is the (8,4) mahine, but the
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enoding of the input is very onvoluted (Setion 6.6), thus the intentionality

of Neary's mahine does not math well with the intentionality of the UTM

realisations in the RASPs, λ-alulus and SKI. So another mahine is onsidered

whih is both a diret simulation UTM, and has a more natural input enoding.

4.4.1 Universal Turing Mahines

4.4.1.1 TM

The UTM adopted is the diret simulation TM from Minsky [63℄. The ini-

tial tape of the UTM is arranged as [w][st1][sy][M ] whih is a right unbounded

tape, with the urrent state, the urrent symbol under the head, and the sym-

bol table following respetively. The symbol table is arranged in quintuples of

stx, syx, sty, syy, D.The states are binary numbers, symbols are either 1 or 0, and

the diretion D is either 0 or 1 to indiate a left or right shift.

The symbol table is terminated with the symbol Y , and the tape is of the

form:

. . . 00000M000Y 〈st1〉〈sy under M〉X〈st1, sy1, stp, syp, D〉X . . .X . . . Y 0

The symbol M on the tape is the simulated head of the mahine. The spae

between the �rst Y and the �rst X from the left ontains the urrent state and

symbol pair whih is used to searh the symbol table for the orret tuple. The

algorithm of the mahine operates by searhing the start of eah tuple in the

symbol table for the state and symbol ombination held between the �rst `Y' and

`X' from the left. This is a searh to �nd the tuple whih orresponds to the

urrent state and urrent symbol. If a tuple mathing these is not found, then

the mahine halts.

One a mathing tuple has been found, the new state is opied into the spae

between `Y' and `X', the simulated tape head is replaed by the new symbol, the

head is moved left or right, and the new urrent symbol is printed next to the

new urrent state. Figure 4.17 shows the TM.
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Figure 4.17: Minsky's UTM
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4.4.1.2 RASPs

The TM simulator in RASP simulates an arbitrary (m,n) Turing mahine, subjet

to the limitations of the size of the RASP memory. The mahine is organised

with the program at the start of the memory, followed by the symbol table of

the mahine, and �nally a right-in�nite tape struture at the end. The mahine

maintains variables suh as the urrent head position and urrent state. The

initial head position is de�ned as the far left of the tape and the initial state is 1.

The symbol table format for the RASP is of the form:

. . . , 〈So〉, 〈Syo〉, 〈Sn〉, 〈Syn〉, 〈D〉, 〈Si〉, . . . , 0 . . .

whih is the state and symbol read, followed by the new state, new symbol and

diretion. The �nal tuple in the table is followed by a single zero. The tape of

the TM then extends from the end of the symbol table to the end of the memory.

The mahine maintains a label to the start of the tape, and a variable of where

the read/write head is.

Evaluation of a TM symbol table and tape, opies the urrent state and symbol

under the head to a searhing routine. This routine traverses the symbol table

linearly until either both the symbol and state are found, of the end of the table

is reahed.

If the end of the table is reahed, the mahine halts, otherwise it replaes

the urrent state with the new state, writes the new symbol to the tape over the

old symbol, and either inreases the head position variable for a right shift, or

dereases it for a left shift.

Searhing for the orret tuple in the symbol table involves using an equality

funtion to test that the urrent state and urrent symbol are equal to the tuple

state and symbol. If they are, variables for the new state, new symbol, diretion,

and searh suess are written to and the searh jumps bak to the main loop.

If the state or symbol do not math the urrent tuple, the mahine either adds

5 or 4 respetively to �nd the next tuple in the table. If the mahine tries to

ompare the urrent state to zero then it has reahed the end of the symbol table

and halts.
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The mahine exeutes the simulated TM until its urrent state and symbol

pair is not in the symbol table, or it transits to state 0.

4.4.1.3 λ-alulus and SKI

The TM tape is a list of numbers, eah number represents a symbol. The symbol

table is a list of 5-tuples in the form stx, syx, sty, syy, D. This is a list of 5 element

lists:

TAPE ≡ (PAIR ONE(PAIR ONE(PAIR ZERO(PAIR ONE(. . .NIL)))))

SYTABLE ≡ PAIR(PAIR ONE(PAIR ZERO(PAIR ONE(PAIR ONE

(PAIR ONE NIL)))))(. . .NIL)(PAIR(PAIR . . .NIL)))

The term to evaluate a TM symbol table and tape requires four parameter;

the urrent state, the urrent head position, the symbol table and the tape:

Y(λa.λs.λh.λta.λtp.NULL(TABLES s(NTH h tp)ta)tp

(a(HEAD(TABLES s(NTH h tp)ta))(ISZERO(HEAD(TAIL(TAIL

(TABLES s(NTH h tp)ta))))(PRED h)(SUCC h))ta(SUBST h(HEAD

(TAIL(TABLES s(NTH h tp)ta)))tp)))

A searh is performed on the symbol table for the urrent state and urrent

symbol (extrated from the element at the head position of the tape) pair. Failure

to �nd this pair results in the return of the tape as evaluation ends.

One the tuple to math the urrent state and symbol have been found, a

reursive all is made where the urrent state is replaed, the tape at element h

is replaed with the new symbol, and the head position is either deremented if

the �fth element of the tuple is ZERO, and inremented otherwise. The funtion

to searh through the table is:

TABLES ≡ Y(λa.λst.λsy.λtab.NOT(NULL tab)(AND

(EQ st(HEAD(HEAD tab)))(EQ sy(HEAD(TAIL(HEAD tab))))

(TAIL(TAIL(HEAD tab)))(a st sy(tailtab)))NIL)

This expression searhes the table by testing the passed in state and symbol

against the �rst two elements of the urrent tuple. If these math, a triple of the
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Figure 4.18: A 3 bit RASP arranged on a TM tape.

next state, symbol and diretion is returned. No math prompts a reursive all

with the tail of the table. If the funtion does not �nd a mathing tuple in the

table, it returns NIL whih prompts the expression to halt.

4.4.2 Universal RASP Mahines

The Universal RASP (URASP) an simulate an arbitrary RASP mahine. As

with the UTM, all of the universal RASPs are diret simulation mahines.

4.4.2.1 URASP in TM

Consider a 3 bit RASP mahine. The mahine is initially expressed on a TM tape

as depited in �gure 4.18. The memory of the mahine is bounded by the PC

marker (#P) at the far left and the end marker (E#) at the far right. There are

also four letters whih mark the three usual registers (P,I, and X) in the mahine

and the one seondary IR (S).

With the exeption of the P and S registers, the memory of the mahine is

laid in (address, data) pairs: #〈address〉 ∗ 〈data〉#. For the IR and ACC, there

are the haraters `I' and `X' whih at as markers to redue the required number

of states in the mahine. Both address and data are expressed as little endian

binary numbers.

Algorithm 2 shows the how the TM operates the feth-exeute yle. The

mahine starts with the head positioned on the seond # from the left (bold in

the above diagram). From there, it attempts to pattern math the value in the

PC (011) with the addresses in the mahine. If it sueeds, the orresponding

data value is opied into the �rst and seond `I' and `S' instrution registers. If

the pattern mathing fails, then the PC must be pointing at itself and therefore

the `P blok' is opied to the `S' and `I' bloks.

One the opy has been made, the RHS bit of `S' is tested. There are four

instrutions whih take a parameter and four that do not.
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while not halted do

Find address in P;

if address not found then

Copy P to S;

end

else

Copy data in P's address to S;

end

Copy data in S to I;

if Least signi�ant bit of S is 1 then

Inrement P;

Find address in P;

if address not found then

Copy P to I;

end

else

Copy data in P's address to I;

end

end

Deode and Exeute S;

end

Algorithm 2: The Feth Exeute yle of the RASP in TM

• 000: OUT

• 010: HALT

• 100: INC

• 110: DEC

• 001: LOAD

• 011: STO

• 101: JGZ

• 111: CPY

If the least signi�ant bit is a 0, the rest of the instrution is deoded and

exeuted. If the �rst bit is a 1, the PC is inremented and another searh happens.

One this is done, the data is opied to the `I blok' only. The instrution is

deoded from the value in `S' and exeuted. These instrutions a�et the memory

layout of the mahine to the degrees desribed in Setion 2.3.1.2.

There are several repeated funtions in the operation of the feth exeute yle.

Finding addresses, opying data from one register to another, and housekeeping

operations like resetting the tape an be performed more than one per yle. To

failitate reuse of suh funtions, eah time the TM performs a task in Algorithm

2 it enters a swithing state whih prints or reads a symbol immediately to the

left of `#P'. The symbol informs the mahine whih task it is to omplete next

in the feth-exeute yle.

All of the RASP instrutions, exept for OUT make hanges whih a�et only
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Instr Data I Label

DEC :InrementInstrution

JGZ 'DerementInstrution

CPY 'ACC_P

INC

STO 'x

. . . . . . . . .

DEC :DerementInstrution

JGZ 'LoadInstrution

CPY 'ACC_P

JGZ 'd

. . . . . . . . .

Figure 4.19: Deoder of the universal RASP

the mahine. The TM exeutes an ourrene of OUT by opying the ontents

of the `X' blok (ACC) to the far right hand side of the tape, past the `E#',

separating ourrenes with a `*'.

4.4.2.2 RASPs

The universal RASP mahine simulates the exeution of another RASP via per-

forming the feth-exeute yle. The URASP keeps trak of the loations of the

simulated PC, IR, and ACC as well as the size of the the mahine and an `o�set'

whih is the memory address of the PC of the simulated mahine.

Exeution of the feth exeute yle involves adding the o�set to the ontents

of the PC and using that to opy the ontents of the addressed register to the

IR. The IR is deoded by repeatedly derementing the number ontained in the

simulated IR until it equals zero. After eah derement a test is made for zero

and if the number is zero, the orresponding instrution is exeuted (Figure 4.19).

Otherwise the mahine derements and retests. If the IR instrution is zero, or

the instrution in the simulated IR is not in the range 0�7, then the mahine

halts.

One the orret instrution has been found, the mahine uses the o�set to

enat the e�ets of the instrution against the memory of the simulated mahine

as desribed in Setion 2.3.1.2. If the exeuted instrution is not a HALT, the

simulator inrements the PC of the simulated mahine and jumps bak to feth

and exeute the next instrution.
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The total size of the mahine is known to the simulator. When any inrements

or derements take plae, the simulator heks that the hange in the register will

not over- or under�ow. If it will, the register is set to either zero or the maximum

permissible value.

4.4.2.3 λ-alulus and SKI

RASP mahines are represented in the λ-alulus and SKI as a pair of; a list of

2n elements to represent the mahine, and an initially empty list to represent the

output vetor. The element at position x of the mahine list holds the ontents

of register x.

The expression to evaluate the RASP mahine is of the form:

Y(λa.λm.λo.〈INC〉(〈DEC〉(〈LOAD〉(〈STO〉(. . . (〈HALT〉) . . .)))))

The sub-expressions ompare the numeral in the fethed mahine to ONE to

SEVEN and exeute the relevant instrution aording to the numeral in memory.

The sub-expressions for the INC, DEC, and LOAD instrution are as follows:

INC ≡ EQ(NTH ONE(FET m))ONE(a(INCA ZERO(INCA TWO(FET m)))o)

DEC ≡ EQ(NTH ONE(FET m))TWO(a(INCA ZERO(DEC(FET m)))o)

LOAD ≡ EQ(NTH ONE(FET m))THREE(a(INCA ZERO(LOAD(FET m)))o)

These are all struturally similar. The FET expression opies the value in the

register pointed to by the ontents of register zero into register one. It is this value

whih is deoded via omparison with a suitable numeral. If the numerals are not

equal, the simulator ompares it with the next numeral in the list, up to seven.

A numeral larger than that is not a non-halting instrution, so the simulator will

halt by returning a pair of the urrent mahine and the OUT vetor.

One it has been determined whih instrution to exeute, a reursive all (via

the Y ombinator and the variable a) is made with the mahine whih has had

a feth, the instrution, and a PC inrement applied to it. The INCA funtion

inrements the value of the spei�ed address modulo the mahine size. The

spei� funtions for fething, inrementing and exeuting RASP instrutions
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are:

FET ≡ λm.SUBST ONE(NTH(NTH ZERO m)m)m

INCA ≡ λa.λm.(EQ(PRED(LENGTH m))(NTH a m))

(SUBST a ZERO m)(SUBST a(SUCC(NTH a m))m)

DEC ≡ λa.λm.(EQ(NTH a m)ZERO)(SUBST a

(PRED(LENGTH m))m)(SUBST a(PRED(NTH a m))m)

LOAD ≡ λm.SUBST TWO(NTH ONE(FET(INCA

ZERO m)))(FET(INCA ZERO m))

STO ≡ λm.SUBST(NTH ONE(FET(INCA ZERO m)))

(NTH TWO m)(FET(INCA ZERO m))

CPY ≡ λm.SUBST TWO(NTH(NTH ONE(FET(INCA

ZERO m)))(FET(INCA ZERO m)))(FET(INCA ZERO m))

OUT ≡ λm.λo.(PAIR(NTH TWO m)o)

JGZ ≡ λm.(EQ(NTH TWO(FET(INCA ZERO m))))ZERO)

(FET(INCA ZERO m))(DEC ZERO(SUBST ZERO

(NTH ONE(FET(INCA ZERO m)))(FET(INCA ZERO m))))

The INCA funtion inrements the value of the spei�ed address modulo the

mahine size. Passing the expression ZERO as a parameter inrements the PC

of the mahine, and passing TWO inrements the ACC.

4.5 Results

Table 4.2 presents the number of haraters required to implement the above

funtions in eah model. On �rst glane, the RASP2 and RASP3 appear to re-

quire less haraters than the RASP, whih requires less than the TM on average.

Figure 4.20 plots the information amounts.

The harater ounts for the imperative models follow a somewhat smooth

urve (the equality funtion notwithstanding) as the pereived omplexity of mea-

sured funtions inreases. In ontrast, the λ-alulus and SKI harater ounts

exhibit no suh urve. Additive funtions, where the input numerals are om-

bined together, are muh smaller in omparison to the subtrative funtions:
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subtration, equality, and division.

This is due to the higher order funtionality of the Churh numerals. As

funtions, the numerals (or parts thereof) an be applied to eah other diretly

to reate larger numbers, whih is exhibited by the multipliation and expo-

nentiation funtions. Subtrative funtions operate by reursively derementing

numerals, muh like the RASPs. However, derementing a numeral in the λ-

alulus and SKI is a muh more program information ostly operation than in

the RASPs whih have de�ned semantis and this auses a shism between the

measurements of the additive funtions and those of the subtrative ones.

4.6 Conlusion

This hapter has presented the tehnial details of the programs whih are mea-

sured in eah of the models. The funtions whih the programs are written for an

be separated into three lasses: Arithmeti (Setion 4.2), List (Setion 4.3), and

Universal (Setion 4.4). The arithmeti and list funtions are primitive reursive

and the universal funtions are partial reursive (Setion 4.1).
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RASP RASP2 RASP3 TM SKI λ-Calulus
Addition 58 9 25 29 16 27

Subtration 59 59 61 149 113 46

Equality 57 26 27 179 208 117

Multipliation 126 59 60 223 8 15

Division 131 131 134 281 565 229

Exponentiation 132 129 131 450 11 9

List Membership 271 129 131 379 362 208

Linear Searh 281 132 135 779 385 236

List Reversal 140 135 137 499 190 134

Stateful List Rev 273 273 277 1049 1397 460

Bubble Sort 557 549 297 1611 1903 550

Universal TM 613 571 574 1270 2593 584

Universal RASP 1239 1209 1231 14414 9554 1084

Semantis Size 556 585 587 335 291 515

Table 4.2: Number of haraters to implement eah program

Most of these explanations of the programs in this hapter have been fairly

abstrat to failitate understanding. The measurements in Table 4.2 are taken

of the programs in the format desribed in Setion 3.3. The full olletion of

programs in the formats measured above are presented in Appendix B. Chapter

6 analyses the measurements to on�rm or ontradit the hypotheses stated in

Chapter 3.

One aspet of the programs in this investigation whih has not been hitherto

disussed is that of funtional equivalene. With the exeption of the λ-alulus

and SKI, assuming that the braket abstration algorithm is orret, we annot

be urrently assured that the di�erent realisations of eah funtion are all exten-

sionally equivalent. This equivalene is important for any formal assertion of the

nature of the relationships.

Suh formal statements are not provided in this thesis, and there is no as-

sertion that these programs are equivalent. Deriving suh equivalenes are high

on the list of further work and essential to any e�ort whih seeks to generalise

these results. Setion 7.3.2 onsiders how equivalenes an be drawn between the

programs here via indution over enoding funtions.
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Ciruit Information

In this hapter, we detail the design and implementation of the RASP and TM on

a Field Programmable Gate Array (FPGA). Where the SOS is a �mathematial

baseline�, the FPGA implementations at as a physial baseline and we an equate

the required information by measuring the iruit sizes.

5.1 In�nite Regress

Using operational semantis as a baseline from whih to measure the information

in our models is an approximation.

When we think of the total information in a system, we onsider some ax-

iomati ideal from from whih we build the theorems used to onstrut models of

omputation. We an view operational semantis as a baseline axiomati system.

Taking suh a baseline makes the assumption that all of the axioms (the

natural numbers, sets, universal and existential quanti�ers) are required by every

model to some degree. This assumption e�etively sets the information ontent

of eah model to a +m, where a is the information of the axioms and m is the

information of the model de�nition. However, not all of our models use the same

axioms.

We impliitly use the natural numbers, set membership, set indiretion and

logial onnetives among others. Some of these are used by all of the models,

suh as set membership, but some are not. The TM and RASP models impliitly

use the natural numbers, but the SKI and λ aluli do not require them. Similarly,
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the TM and RASP do not use indiretion of subsets, whereas SKI and λ alulus

make heavy use of it to graph redue expressions.

In this thesis, we largely aept that these inauraies are inherent in our

implementation (muh in the same way that we aept that we annot obtain

elegant programs). But we an explore how to mitigate or even eliminate these

inauraies.

First, we ould keep SOS as a baseline and use it to formalise itself. SOS an

be thought of as a highly abstrat Turing omplete programming language, so we

ould use it to write a universal mahine for SOS.

On the surfae, this is an attrative proposition. It de�nes those SOS stru-

tures and operations (as mentioned above) whih we use impliitly. And we an

attribute some value for their information ontent. This value an be added to

the information �gures for the models depending on how the models use the

operations.

Implementing our SOS baseline in SOS still requires implied information

though. It is impossible to use a model of omputation A to implement an-

other model B without using some impliit information from A. Adding another

model C to implement A merely hanges the origin of the implied and unde�ned

information. Rather than it oming from A, it now stems from C.

Using other models to implement C leads to a spiralling in�nite regress of

implementation where we keep on reimplementing our baseline formalism in the

hope that we redue the amount of implied information. In reality, we are just

pushing the origin of the implied information bak to the `�rst' formalism in the

hain.

Gödel built his meta mathematial onstruts from pure mathematis [28, 64℄.

Elgot and Robinson initially spei�ed the RASP using �rst order logi [23℄. We

ould follow in these examples by building own formalism, onstruted from the

basi axioms of set theory and logi, to desribe our models.

Starting from these axioms, we ould systematially de�ne the underlying

onepts for eah model suh as natural numbers and therefore determine the

information ontent of onept. A formalism onstruted as suh gives us �ner

ontrol over what information is implied in the de�nitions of our models. This
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then gives us a more aurate aount of the total information. Implementing

this is high on the list of future work, and is explored further in Setion 7.3.5.

This rest of this hapter deals with implementation through reduing the

models to a physial baseline. We desribe the semantis of our models in the

language of FPGA omponents and onnetions. These omponents are subse-

quently de�ned by transistors, loks and small setions of RAM.

5.2 Bakground

VHSIC Hardware Desription Language (VHDL) is a strongly typed hardware

desription language developed in the 1980s in ollaboration with the US De-

partment of Defene as a method of doumenting the behaviour of Appliation

Spei� Integrated Ciruits (ASICs). The language was spei�ed, implemented,

and standardised in the period of 1986 to 1988 [1℄. As with most languages, it has

been expanded and re-standardised over the years, resulting in 5 other versions

of the language up to 2008 with VHDL 4.0 [2℄.

Though originally designed to desribe ASICs, VHDL, along with other hard-

ware desription languages like Verilog HDL [14℄, has been adopted as one of

the primary tools for speifying the behaviour of FPGAs. Indeed, any language

whih an aurately enapsulate the operations of a given piee of iruitry an

be used for either purpose.

Programmable logi is a small setion of the semiondutor market and ad-

dresses the need for integrated iruits (ICs) that an be reprogrammed as a

requirement or for appliation where a small number of ICs are needed. Pro-

grammable logi is faster than software running on a general purpose mahine,

but is also muh heaper than designing and fabriating ASICs whih often require

lean rooms and so forth for prodution. An FPGA board treads the line between

speed and a�ordability, providing a programmable fabri and often external IO,

sometimes with a supplementary general purpose CPU to provide a hardware/-

software interonnet. Suh devies are known as System on a Chip [106℄.
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5.2.1 Arhiteture and Components

An FPGA is essentially a `on�gurable hip'. Rather than onverting an HDL

spei�ation into something akin to assembly ode � as how a regular PC pro-

essor would operate � the spei�ation is �synthesised� into a Register Transfer

Logi (RTL, [33℄) diagram. This diagram expresses the high level HDL logi as

an eletronis diagram, with omponents like gates, �ip-�ops, multiplexers and

so forth.

An FPGA is split into bloks and slies (depending on the terminology of the

manufaturer). These bloks/slies have transistors arranged in disrete stru-

tures (suh as the above gates, �ip-�ops et). At on�guration time, the on-

�guration tool for the board �maps� the RTL gates to a omponent or set of

omponents in a slie or blok, and ativates routes between them so that signals

an be transferred between these mapped omponents.

This results in a hip that physially performs the task spei�ed by the HDL

and RTL, though it may not neessarily have any resemblane to the shemati, as

the omponents in the FPGA may need to be onstruted as the lowest ommon

denominator in order to provide the most usability. For instane a RAM `blok'

may be onstruted by many �ip-�ops aross multiple bloks/slies rather than

having all of the �ip-�ops physially lose together.

5.2.1.1 Zedboard

In this thesis, we use the Zedboard

1

, an FPGA board aimed at hobbyists and

eduation. It features the Xilinx Zynq-7000 SoC whih sports a Xilinx series 7

programmable logi fabri along with an ARM ortex-A9 proessor [106℄.

The series 7 PL fabri [105℄ onsists of Con�gurable Logi Bloks (CLBs).

Eah CLB is split into two slies, where eah slie ontains 4 look up tables

(LUTs), 8 �ip �ops (FF), 3 multiplexers (MUX), and a 4 bit arry hain whih

an be ombined with other hains to implement arithmeti.

Eah LUT in a slie an aept up to six bits to implement arbitrary funtions.

The LUTs in a slie an be ombined using MUXs to produe funtions up to 7

and 8 bits wide. LUTs an also be hained with LUTs in other slies to implement

1

http://www.zedboard.org
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Figure 5.1: A diagrammati view of two mapped slies (red and blue boxes). The

Cyan onnetions are those whih will be used by the FPGA when it exeutes.

Grey are not mapped and green onnetions are omponent I/O.

funtions with more than 8 bits.

For storage, eah slie has 8 elements (olletively known as �slie registers�),

The registers an be paired with an LUT to reate up to 4 �ip �ops, with eah

�ip �op able to be either edge or level sensitive. These �ip �ops an be hained

with those in other slies to reate larger volatile memories.

A speialised slie type: SLICEM, ontains omponents for distributed mem-

ories and shift registers. The distributed memory elements an be ombined with

LUTs to form a 256 bit RAM element, whih an naturally be ombined with

other slies. The majority of slies on the FPGA are SLICEL, whih do not have

these types of memory elements.

The FPGA also ontains a number of 36K blok RAMs. The RAMs an be

deomposed into 2×18K, 4×9K, 9×4K and so on down to 72×512B. The Zynq-

7020 ontains 106,400 slie registers, 53,200 LUTs, and 140 36K blok RAMs for

a total of 13,300 slies and 6650 CLBs.

5.3 Implementations

Broadly, the TM and RASP in VDHL are both omposed of 3 omponents:

• Control � The state mahine and tape read/write/shift mehanis for the

TM, and feth-deode-exeute mehanis for the RASP.
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Figure 5.2: The top level RTL shemati of the RASP mahine.

• Memory � The tape for the TM, and the RAM for the RASP.

• Mahine � Links both the memory and ontrol modules together.

Figures 5.2 and 5.3 are top level RTL diagrams of the RASP and Turing

mahines. The omponents are loked by an osillator present on the board

whih oordinates the memory and ontrol omponents. The ontrol performs

some ation when the lok tiks up to 1 (also known as rising edge) and the

memory does something when the lok tiks to 0 (falling edge).

The memories for the mahines operate in the same manner. They are binary

arrays of a �xed size whih are written to and read from depending on the �ag

and aess values in the ontrol state. Figure 5.4 shows the RTL shemati,

here utilising a blok RAM, for the memory omponent. The TM �avour of the

omponent is very muh the same.

Eah blok in both mahines also ontain output signals. The memory om-

ponent has a read/write signal whih goes high if the memory is being written

to and low if it is read from. The ontrol omponent both has an output signal

(for the OUT ommand) and a halted signal whih goes high one the mahine

is deemed to have halted. In pratie, these signals are wired up to LEDs on the

Zedboard.
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Figure 5.3: The top level RTL shemati of the Turing mahine.

Figure 5.4: The RTL shemati of the RASP memory.
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i f r i s ing_edge (  l k ) then

ase f ethCounter i s −−S ta r t ou ter f e t  h

. . .

when "010" => −−Write S(S(PC)) to S(IR)

addres s <= "001" ;

datain <= dataout ;

wFlag <= ' 1 ' ;

 u r r e n t I n s t r <= dataout ;

fethCounter := fethCounter +1;

when "011" =>

ase  u r r e n t I n s t r i s

when "000" => −− HALT ode

ase exeuteCounter i s

. . .

end ase

when "001" => −− INC ode

ase exeuteCounter i s

. . .

end ase

. . .

end ase

when "101" =>

. . . −− Inrement PC

f ethCounter := "000" ; −− r e s e t to "000"

end ase

end i f

Figure 5.5: The VHDL skeleton for the RASP ontrol

5.3.1 RASP

It is in the ontrol omponent where we see a distintion between models. The

ontrol is written as a �nite state mahine. In the RASP, there is a feth ounter

and an exeute ounter. Realling the FE yle, the feth ounter steps the

mahine through the reads and writes whih move the urrent instrution in the

pointed to memory into the IR. After the exeute ounter deodes and exeutes

the instrution, the feth ounter inrements the PC and resets itself to 0, so that

the proess an start over in the next lok yle.

One an instrution has been fethed into the IR, the exeute ounter takes

over and steps the mahine though the ations required to suessfully exeute

the urrent instrution. One the instrution has been exeuted, the exeute

ounter inrements the instrution ounter and resets itself.
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Figure 5.5 shows the trunated ode of the state mahine of the RASP and

Figure 5.6 depits the gates of the RASP ontrol in their entirety.

5.3.2 TM

In ontrast with the RASP, the Turing mahine uses a single ounter to read the

tape, searh the symbol table, and write the new symbol to the tape. As with

the RASP simulation of the TM, the symbol table searh is more information

intensive than the TM SOS would suggest. Figure 5.7 shows the ontrolling state

mahine for the TM. There exists VHDL primitives for looping over �nite data

strutures whih are used in the searh funtion.

Figure 5.8 shows the RTL diagram for the addition TM. The area surrounded

by the dark blue square is mainly state information whih informs the ontrol

what should be done. Additionally the ontroller for the blok outputs are on-

tained here. The yan lines are the output of the �ip �op whih holds the ounter.

The symbol table for the TM is paked into the ontrol omponent as ROM.

This is re�eted in the RTL by the pattern and onnetions of AND gates, XOR

gates and MUXes (yellow box in Figure 5.8). These pathways are ativated when

the ontrol needs to read from the symbol table.

Sine AND and XOR gates do not atually exist on the FPGA, there is a

disonnet between the logial (RTL) mapping and the physial (tehnologial)

mapping performed by the VHDL ompiler. Sine we desire that the minimal

amount of area is used, the FPGA mapping algorithm endeavours to redue the

number of utilised LUTs as muh as possible. It therefore paks the symbol table

into another RAM blok on�gured for read only behaviour.

The rest of the logi in the tehnology shemati is implemented by LUT+FF

pairings. Figure 5.9 shows a small setion of the tehnology shemati for the

addition TM. Both RAM18 bloks for the tape and symbol table are present and

we an see a handful of the LUT and FFs utilised in the implementation.
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Figure 5.6: The RTL shemati of the RASP ontrol. The memory shemati is in the top left for sale.
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i f r i s ing_edge (  l k ) then

ase ounter i s

when "000" =>

. . . −− Ret r i e ve Symbol

when "001" =>

. . . −− I f the s t a t e i s 0 , s top

when "010" =>

for i in symbolTable 'RANGE loop

i f symbolTable ( i ) . stateR = ur r en tS ta t e and

symbolTable ( i ) . symbolR = symbolOut then

. . . −− Loop over symbol t a b l e

. . . −− f o r s t a t e / symbol pa i r

end i f ;

end loop ;

ounter <= ounter +1;

when "011" =>

i f found = '1 ' then

. . . −− Write new symbol to tape

else

. . . −− Set s t a t e to 0

end i f ;

when "100" =>

wFlag <= ' 0 ' ;

i f ( symbolTable ( var ) . d i r = '1 ' ) then

hPos <= hPos + 1 ; −− Right

else

hPos <= hPos − 1 ; −− Le f t

end i f ;

ounter <= "000" ;

when others =>

end ase ;

Figure 5.7: The VHDL skeleton for the TM ontrol.
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Figure 5.8: The RTL shemati of the TM ontrol. The dark blue square ontains the typially onstant strutures of the TM. The yan

onnetions are the output of the ounter �ip �op.
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Figure 5.9: A part of the tehnology shemati of the addition TM with an input tape.
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Slie Reg LUTs FFs RAMB18

Addition 28 66 28 3

Subtration 28 66 28 3

Equality 28 66 28 3

Multipliation 32 74 32 3

Division 32 74 32 3

Exponentiation 32 74 32 3

List Membership 37 81 37 2

Linear Searh 37 81 37 2

Reverse List 32 74 32 3

Stateful Rev List 37 81 37 2

Bubble Sort 41 90 41 2

Universal TM 41 89 41 2

Universal RASP 46 92 45 2

Table 5.1: Components for RASP implementations

5.4 Results

Eah program for the RASPs and TM were translated into VHDL (Appendix C),

ompiled and mapped to the Zedboard. The ompiler option spei�ed a minimal

area strategy, with maximal logi optimisation and ompression. This strategy

attempts to minimise the amount of LUTs required to implement the logi of the

mahines, sometimes preferring to pak logi into blok RAMs.

This ompilation was made from a `program only' perspetive, therefore the

tape for the TM was minimal in size (1 ell). Compliated inputs for the RASP

(lists) were also trunated and the number of bits seleted so that the entirety of

the program �ts in memory, exluding any inputs. The VHDL programs desribed

in this hapter whih produe the data here are shown in full in Appendix C.

Tables 5.1, 5.2, 5.3, and 5.4 show the raw �gures and geometri means of the

mapping results. We analyse this data with respet to the SOS and program

ounts in Chapter 6, but we brie�y omment on the data here.

We �rst notie that the �gures for the RASP mahines are `stepped'. Whih

is to say that if two separate programs require the same number of bits, then the

reorded FPGA utilisation �gures are exatly the same.

The RAMB18 numbers for the RASP mahines are initially puzzling. Our

intuition is that we would only require the one blok of RAM, to hold our program,

but for some mahines three bloks are utilised and some other have two. One of
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Slie Reg LUTs FFs RAMB18

Addition 21 51 21 3

Subtration 28 70 28 3

Equality 24 60 24 3

Multipliation 28 70 28 3

Division 32 79 32 3

Exponentiation 32 79 32 3

List Membership 32 79 32 3

Linear Searh 32 79 32 3

Reverse List 32 79 32 3

Stateful Rev List 37 86 37 2

Bubble Sort 41 96 41 2

Universal TM 41 96 41 2

Universal RASP 45 108 45 2

Table 5.2: Components for RASP2 implementation

Slie Reg LUTs FFs RAMB18

Addition 25 70 25 3

Subtration 29 78 29 3

Equality 25 70 25 3

Multipliation 29 78 29 3

Division 33 91 33 3

Exponentiation 33 91 33 3

List Membership 33 91 33 3

Linear Searh 33 91 33 3

Reverse List 33 91 33 3

Stateful Rev List 38 102 38 2

Bubble Sort 38 102 38 2

Universal TM 42 112 42 2

Universal RASP 46 123 46 2

Table 5.3: Components for RASP3 implementations
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Slie Reg LUTs FFs RAMB18 Tuples

Addition 14 13 14 1 3

Subtration 15 13 15 1 15

Equality 16 16 16 1 18

Multipliation 19 20 19 1 22

Division 19 22 19 1 27

Exponentiation 20 30 20 1 41

List Membership 22 44 22 1 38

Linear Searh 22 49 22 1 73

Reverse List 23 32 23 1 50

Stateful Rev List 23 80 23 1 94

Bubble Sort 24 150 24 1 140

Universal TM 23 195 23 1 113

Universal RASP 19 1019 18 1 1111

Table 5.4: Components for TM implementations

the extra blok RAMs is to hold state information for the ontrol, but what of

the third one?

On inspetion of the tehnologial shematis, mahines with a third RAM

wire the output of this RAM diretly to the ontrolOut signal whih is triggered

by the OUT ommand. It is not known why this happens, but hypothesise that

it is an artefat resulting from the heavy optimisation options. The TM also has

at least one ase where the optimiser provides a undesirable result whih an be

improved by relaxing the options.

Beause the symbol table for the TM is part of the ontrol, utilisation results

for the TM programs vary from one to the next. With the exeption of the list

membership program, the utilisation �gures tend to follow the number of tuples

involved in the program. This is not a smooth trend though, as the gap of ten

tuples between the Addition and Subtration yields less of a di�erene than the

gap between the equality and multipliation programs whih is only four tuples.

Further experimentation has revealed that the optimiser attempts to ombine

tuples and even trims away ones that are deemed `onstant'. The optimiser was

given a symbol table of two states, both of whih did the exat same thing. The

optimiser threw a warning and said that the seond state would be trimmed.

It stands to reason then that the optimiser algorithm tries to ombine as many

signals as possible into ommon LUTs and FF pairs to redue spae. However

the optimiser an lok itself into a non-optimal route and an ause problems

162



Chapter 5. Ciruit Information

as in the ase of the Universal RASP. A strit area optimisation strategy vastly

exaggerates the required number of LUTs (> 2000) required by the universal

RASP, whereas a more balaned one yields 1025. Sine we are unfortunately not

privy to the optimisation algorithms inner workings, we annot entirely be sure

what it does to in�ate the LUT requirement.

Without the work of onstruting individual gates themselves, we are reliant

on the optimiser to deliver us a near-optimal iruit. However the above examples

highlight that the results may not be perfet, and so we should take these FPGA

numbers as estimates muh like the �gures from the previous hapter.

That said, a hardware realisation at this level is a time e�etive solution to

the in�nite regress problem, and it provides another set of results with whih to

ompare against our hand onstruted semantis and programs as a sanity hek.
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Analysis

This hapter ollates the data from the previous three hapters and provides an

analysis. It analyses and then ompares the models. There is data whih either

supports or ontradits the hypotheses and analysis of this evidene is performed

relative to the hypotheses. The revised hypotheses postulated at the beginning

of Chapter 3 are resolved starting in Setion 6.2.8.

Setion 6.1 overviews the trends in the program and semanti size measure-

ments from Table 4.2 in Chapter 4. It reviews the data in disrete sets of the

arithmeti, list, and universal funtions.

Setion 6.2 pairs the models (i.e. RASP and TM or RASP and SKI) and

examines how the relative information ontents of the semantis and programs

for those models onform to the hypotheses.

Setion 6.2.8 uses the omparisons made in Setion 6.2 to resolve the Semanti

Information (SI), and Total Information (TI) hypotheses (Setion 3.1.2).

The FPGA measurements from Tables 5.1�5.4 in Chapter 5 are analysed in

Setion 6.3. These analyses are used to evaluate the veraity of the Semanti

Ciruit (SC) and Total Ciruit (TC) hypotheses (Setion 3.1.3).

Setion 6.4 in the seond half of this hapter makes further observations on

the data whih do not in�uene the outome of the hypothesis evaluation. Setion

6.5 ompares the input enodings for the programs in eah model. It also gives

a onrete example of how the size of a program an hange in relation to the

density of the enoding system as introdued in Setions 3.1.1 and 3.1.2.
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(a) Calulating the arithmeti mean A

G =

(

n
∏

i=1

gi

)
1
n

(b) Calulating the Geometri mean G

Figure 6.1: The formulae for alulating the arithmeti and geometri means

6.1 Overall Trends

This setion provides general omments on how the information ontents of the

programs relate to one another. The programs are grouped into sets and their

Program Information (PI), and Total Information (TI = PI + Semantis size)

amounts are ompared aross models. The sets inlude the arithmeti (AR)

funtions, the List (L) funtions, arithmeti and list (AR+L), and the arithmeti,

list, and universal funtions (All).

We ompute the arithmeti and geometri means for the PI and TI of eah

grouping by using the standard formulae in Figure 6.1. The di�erene between

two arithmeti means is an indiator of the absolute di�erene of haraters be-

tween the sets of data. The di�erene in geometri means is more of an indiator

of the ratios between datasets implemented in di�erent models.

We use both means as evidene to resolve the hypotheses and often the means

are in agreement; if the arithmeti mean for one model is lower than the arithmeti

mean for another, then the geometri mean should also be lower. Interestingly

this is not always the ase. As evidened by the AR means in Table 6.1 whih

show that the arithmeti means for the SKI and λ-alulus are larger than those

of the RASP2 and RASP3, but their geometri means are lower. As disussed in

Setion 6.2.8, these geometri ratios appear to indiate if a model has an aptitude

for representing the spei� set in a more more suint manner.

6.1.1 Arithmeti

Table 6.1 shows all of the program, semantis, and mean sizes for the arith-

meti funtions. The imperative models (the RASPs and TM) steadily grow in

the amount of information required to express the addition funtion up to the

exponentiation funtion. This growth is expeted as the funtions inrease in
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RASP RASP2 RASP3 TM SKI λ-Calulus
Addition 58 9 25 29 16 27

Subtration 59 59 61 149 113 46

Equality 57 26 27 179 208 117

Multipliation 126 59 60 223 8 15

Division 131 131 134 281 565 229

Exponentiation 132 129 131 450 11 9

Semantis Size 556 585 587 335 291 515

AR PI Mean 93.83 68.83 73 218.50 153.83 73.83

AR TI Mean 649.83 653.83 660 553.50 444.83 588.83

AR PI Geo Mean 86.71 48.95 59.27 167.15 51.52 40.62

AR TI Geo Mean 648.84 652.18 658.53 538.68 410.48 584.09

Table 6.1: The program and semanti sizes of the arithmeti funtions for eah

model.

omplexity and involve more nested loops.

On the other hand the funtional models (SKI and λ-alulus) have large sub-

trative funtions (subtration, division, and equality), but omparatively small

ombinative funtions (addition, multipliation, exponentiation). The reason for

this is to do with how the λ-alulus and SKI represent numerals. The higher

order funtionality of the Churh numerals enables very suint ombinative

funtions. For example, the exponentiation funtion diretly applies one numeral

to another.

RASP numerals are de�ned as naturals and the INC and DEC instrutions

are de�ned to operate over these in the semantis. The SKI and λ-alulus so

not have suh de�ned strutures and operators in their semantis, whih results

in the numerals and operations suh as derementation needing to be de�ned in

eah expression whih wants to use them.

Setion 2.3.2.1 desribes why the λ-alulus PRED funtion is larger than

SUCC. In requiring a �program level� de�nition for PRED, expressions whih use

it are in�ated in size ompared to expressions whih do not. If numerals and

SUCC/PRED were de�ned in the semantis of the λ-alulus and SKI, it would

be expeted that the (PI) of the funtions would normalise to look something

more like the RASP �gures.

The means show that the PI for the expressive models (RASPs and the λ-

alulus) is lower than for the less expressive models. However TI of the less
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RASP RASP2 RASP3 TM SKI λ-Calulus
List Membership 271 129 131 379 362 208

Linear Searh 281 132 135 779 385 236

Reverse List 140 135 137 499 190 134

Stateful Rev List 273 273 277 1049 1397 460

Bubble Sort 557 549 297 1611 1903 550

Semantis Size 556 585 587 335 291 515

L PI Mean 304.4 243.6 195.4 863.4 847.4 317.6

L TI Mean 860.4 828.6 782.4 1198.4 1138.4 832.6

L PI Geo Mean 276.67 202.98 181.93 757.23 588.18 278.13

L TI Geo Mean 850.31 814.57 778.72 1123.07 953.07 817.85

Table 6.2: Program and semanti sizes of the list funtions for eah model

expressive models is overall lower than that of the more expressive ones. For

these arithmeti funtions, it appears that the extra information in the semantis

of the RASPs and λ-alulus outweighs the average information saving for their

programs. The implementations of the division and exponentiation funtions in

the TM require more TI than their RASP and λ-alulus ontemporaries. This

is also true for the SKI division TI.

6.1.2 List

Table 6.2 shows the sizes and means of the programs and semantis for the list

funtions. The data for this funtion set is more homogeneous aross the models

in omparison to the arithmeti funtion sizes. Here the di�erene in size from

one funtion to the next is roughly orrelative aross all models.

Setions 4.3.3 and 4.3.4 imply that reversal of a list by building a new list

is a simpler funtion than reversal by swapping elements in plae. The PIs here

support that impliation as there is a jump in the required amount of information

for all of the models.

The means for these funtions show that the more expressive models have now

have a lower PI and TI amounts than the less expressive models. The RASP3 has

the lowest PI and TI of all of the models and has the largest semantis. The TM

has the highest PI and TI despite having larger semantis than the SKI alulus.
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RASP RASP2 RASP3 TM SKI λ-Calulus
Universal TM 613 571 574 1270 2593 584

Universal RASP 1239 1209 1231 14414 9554 1084

Semantis Size 556 585 587 335 291 515

Table 6.3: Program sizes of the universal funtions for eah model

1 Strong Semanti Information hypothesis

1a. SI within family. For: 6.2.1

1b. SI within paradigm. For: 6.2.2, 6.2.3

1. SI aross paradigms. For: 6.2.4, 6.2.7 Against: 6.2.5, 6.2.6

2. Strong Total Information hypothesis

2a. TI within family. For: 6.2.1

2b. TI within paradigm. For: 6.2.2, 6.2.3

2. TI aross paradigms. For: 6.2.4, 6.2.7 Against: 6.2.5, 6.2.6

Figure 6.2: Hypotheses and evidene for eah

6.1.3 Universal

Table 6.3 shows the sizes of the universal RASP and Turing mahines for eah

model and their semantis. The data shows that models with larger semantis (>

500) require roughly double the amount of information to represent the URASP

ompared with representing the UTM. In ontrast, less expressive models require

signi�antly more information. This is evidene that there is a fundamental

di�erene between the expressive models and less expressive models in how they

manage the memory strutures of the TM and RASP. This topi is overed in

further detail in Setion 6.4.

6.2 Grouped Analysis

This setion groups the models so that relations between them an be observed

and evidene an be gathered to on�rm or refute the SI and TI hypotheses.

Figure 6.2 list on�rming and ontraditing evidene up front. The SI and TI

hypotheses are de�ned in Setion 3.1.2 and are reapped here.

Hypothesis 1: The Semanti Information (SI) hypothesis states that: �For

two Turing Complete models; if model A has more semanti information (larger

semantis) than model B, the average size of suint programs (where at least
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1 Strong Semanti Information hypothesis

1a. SI within family hypothesis

1.1. Program Sizes (RASP) predition.

1b. SI within paradigm hypothesis

1.2. SI RASP vs TM predition

1.3. λ-alulus vs SKI predition

1. SI aross paradigms hypothesis.

1.4. Aross paradigms predition

2. Strong Total Information hypothesis

2a. TI within family hypothesis

2.1. TI for RASPs

2b. TI within paradigm hypothesis

2.2. TI RASP vs TM

2.3. TI λ-alulus vs SKI

2. TI aross paradigms hypothesis

2.4. TI aross paradigms predition

Figure 6.3: Breakdown of the Strong SI and TI hypotheses

one program utilises the extra semanti information) written for model A will be

lower than the average for model B.� (Setion 3.1.2). This `strong' hypothesis is

broken down into three sub-hypotheses whih state the above relation for models

for the same family (1a), models in the same paradigm (1b), and models in

di�erent paradigms(1).

Hypothesis 2: The Total Information (TI) hypothesis states that: �For two

Turing Complete models X and Y , where X has more semanti information

than Y ; As the size and omplexity of a program inreases, the average total

information (TI) of a suint implementation in X will derease relative to the

total information of a suint implementation in Y .� (Setion 3.1.2). Again,

there are set of sub-hypotheses to over the paradigmal possibilities (2a, 2b, and

2). Figure 6.3 presents the hierarhy of hypotheses and the predited nature of

the relationships. Setion 3.1.2 gives the exat wordings of the sub-hypotheses

and preditions.

Tables 6.4, 6.5, and 6.6 show: all of the size measurements for the programs

and semantis of all the models, the arithmeti means of the groupings, and the

geometri means of the groupings. These tables shall all be referred to throughout
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RASP RASP2 RASP3 TM SKI λ-Calulus
Addition 58 9 25 29 16 27

Subtration 59 59 61 149 113 46

Equality 57 26 27 179 208 117

Multipliation 126 59 60 223 8 15

Division 131 131 134 281 565 229

Exponentiation 132 129 131 450 11 9

List Membership 271 129 131 379 362 208

Linear Searh 281 132 135 779 385 236

Reverse List 140 135 137 499 190 134

Stateful Rev List 273 273 277 1049 1397 460

Bubble Sort 557 549 297 1611 1903 550

Universal TM 613 571 574 1270 2593 584

Universal RASP 1239 1209 1231 14414 9554 1084

Semantis Size 556 585 587 335 291 515

Table 6.4: The ombined program and semanti sizes for eah model

RASP RASP2 RASP3 TM SKI λ-Calulus
AR PI 93.83 68.83 73 218.50 153.83 73.83

AR TI 649.83 653.83 660 553.50 444.83 588.83

L PI 304.4 243.6 195.4 863.4 847.4 317.6

L TI 860.4 828.6 782.4 1198.4 1138.4 832.6

AR + L PI 189.55 148.27 128.64 511.64 468.91 184.64

AR + L TI 745.55 733.27 715.64 846.64 759.91 699.64

All PI 302.85 262.38 247.69 1639.38 1331.15 284.54

All TI 858.85 847.38 834.69 1974.38 1622.15 799.54

Table 6.5: The arithmeti means of the program groupings

the analysis.

6.2.1 RASP Mahines

The RASP mahines are a family of models. They have a ommon ore of model

semantis whih share a number of funtions. They eah di�er in how they modify

the value in their aumulator: RASP uses INC and DEC, RASP2 has a diret

ADD x and SUB x, and RASP3 has an indiret ADD x and SUB x.

The RASP mahines are relevant in the resolution of SI/TI within family

sub-hypotheses. The vanilla RASP mahine has the smallest semantis, followed

by the RASP2, and then the RASP3 (Table 6.4). By the SI and TI within

family hypotheses, it is therefore expeted that the instrution ounts (Table

6.7), harater ounts (Table 6.4), and means (Tables 6.5�6.6) follow the trend
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RASP RASP2 RASP3 TM SKI λ-Calulus
AR PI 86.71 48.95 59.27 167.15 51.52 40.62

AR TI 648.84 652.18 658.53 538.68 410.48 584.09

L PI 276.67 202.98 181.93 757.23 588.18 278.13

L TI 850.31 814.57 778.72 1123.07 953.07 817.85

AR+L PI 146.93 93.44 98.68 332.16 155.84 97.39

AR+L TI 733.70 721.54 710.74 752.26 601.98 680.66

All PI 193.22 130.78 137.21 492.16 265.52 134.54

All TI 814.65 802.48 793.38 1002.53 841.93 754.17

Table 6.6: The geometri means of the program groupings

Program RASP RASP2 RASP3

Addition 17 4 6

Subtration 18 22 22

Equality 19 9 11

Multipliation 32 24 24

Division 42 45 45

Exponentiation 51 43 40

List Membership 71 34 31

Linear Searh 87 36 35

New List Rev 57 45 43

In Plae Rev 73 78 77

Bubble Sort 131 127 123

Universal TM 200 148 137

Universal RASP 313 292 283

Arithmeti Mean 85.46 69.76 67.56

Geometri Mean 57.99 40.79 41.47

Table 6.7: Registers used by the various RASP programs

where the RASP3 ounts grow slower than the RASP2, whih in turn grow slower

than the RASP ounts.

RASP mahine sizes grow aording to the value 2n, where n is the number

of bits that the mahine an hold in eah register. The size of the mahine's

memory and maximum natural number whih an be represented is therefore

2n for an n-bit mahine. A program �ts into the memory if there is at least

one register available to �t eah instrution/datum in the program starting from

register 3. Unused registers are padded with the HALT instrution (0) and an be,

in priniple, utilised by the program for storage, but the program at initialisation

does not diretly write to or read from the registers.

Table 6.7 shows the number of utilised registers for eah program in eah

RASP mahine. For the arithmeti funtions, the RASP2 uses fewer registers on
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average than the RASP3 and RASP. However for the list funtions, the RASP3

requires fewer registers on average than the RASP2. This trend ontinues for

the universal funtions. On average, the RASP3 requires fewer registers than the

RASP2, whih requires fewer registers than the RASP. This data �ts Predition

1.1 (Figure 6.3) where the model with the most SI requires the least number of

registers/instrutions.

Referening the RASP olumns of Table 6.5. The arithmeti means of the

program groupings show the RASP2 with the overall lowest PI for the arithmeti

funtions, the RASP with the overall lowest TI of the arithmeti funtions, and

the RASP3 with the overall lowest PIs and TI for every other group. The RASP3

rankings for L, AR+L, and All is losely followed by RASP2, and then followed

by the RASP.

The geometri means (RASP olumns, Table 6.6) show the PI of the RASP2

as the lowest for all sets exluding the L set. The RASP3 PI is the overall lowest

for the L set and the TI is the overall lowest for every set exept the AR TI set.

The RASP has the lowest AR TI for the arithmeti and geometri means.

The arithmeti and geometri mean data �ts Preditions 1.1 and 2.1. These

state that the RASP3 will eventually have the lowest average PI and TI respe-

tively. The TI of the RASP is the lowest of the three models for the arithmeti

funtion grouping, but as the set of tested funtions grows, the RASP3 beomes

the model with the lowest TI.

With the exeption of the PI geometri means for eah ategory (PI rows,

Table 6.6), whih show the RASP2 using less PI than the RASP3, these expe-

tations have been met and the data is in favour of on�rming sub-hypotheses 1a

and 2a (Figure 6.3).

With the exeption of the above geometri PI measure, Predition 1.1 has

been ful�lled by the �All PI� row of Table 6.5 showing RASP3 with the lowest

PI of the RASPs. The utilised register average of Table 6.7 also substantiates

this. The ontrary geometri mean �gures show the RASP2 as having the least

utilised registers in Table 6.7, and lowest PI in Table 6.6. This arries less weight

in our minds as the geometri mean is weighted very heavily towards the shorter

arithmeti funtions. The RASP3 requires fewer haraters to implement the
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funtions of Table 6.4 than the RASP2, (3249 vs 3439).

Predition 2.1 has also been ful�lled by as the average TI of the RASP3 is

the lowest of all of the RASPs, and the TI of the RASP is the greatest. This

relationship holds for both the arithmeti and geometri means.

This analysis onludes that the data is onsistent with preditions 1.1 and

2.1, and therefore we on�rm sub-hypotheses 1a and 2a; SI/TI within family.

6.2.2 RASP vs TM

Comparisons of the RASP and TM models seeks evidene for the SI/TI within

paradigm sub-hypotheses (hypotheses 1b and 2b) fully stated in Setion 3.1.2.

To paraphrase; the SI within paradigm hypothesis predits that there is an in-

verse size relationship between semantis size and program size for models of the

same paradigm. The TI within paradigm hypothesis states that as a program or

programs grows in size and omplexity, the average TI (SI+PI) of an expressive

model implementing these programs redues relative to the average TI of a less

expressive model in the same paradigm.

This setion ompares the RASPs and TM to gather evidene for the imper-

ative paradigm. Setion 6.2.3 also gathers evidene for these hypotheses, but in

the funtional paradigm using the SKI and λ-alulus.

The Turing mahine semantis are smaller than the semantis of the RASP

mahines. We therefore expet to see (Preditions 1.2, 2.2) that the TM produes

larger program on average than the RASP. We also expet that for some of the

simpler programs, the TI of the TM is lower than that of the RASPs, but as the

set of programs grows the TI of the RASPs drops to below that of the TM.

The program sizes (RASP and TM olumns, Table 6.4 show that the average

program size for the TM is larger than those for the RASP. The only exeption

to this is the addition program. The means in Tables 6.5 and 6.6 substantiate

this with the PI rows. The average PI of the TM in every ategory is higher than

that of the RASPs. This data supports the SI within paradigm sub-hypothesis

(1b).

Turning attention to the TI within paradigm sub-hypothesis, we onsider the

TI means of Tables 6.5 and 6.6. The TI means for the TM implementing the AR
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funtions is lower than the TI means of the RASPs. However as more funtions

are introdued: L, AR+L, and All; the TIs of the RASPs end up lower than

the TIs of the TMs. This is substantiating evidene for the TI within paradigm

sub-hypothesis as it satis�es Predition 2.2.

This analysis is onsistent with our Preditions 1.2 and 2.2, whih support

the SI/TI within paradigm sub-hypotheses. The SI/TI within paradigm sub-

hypotheses appear to be on�rmed with respet to the RASP and TM.

6.2.3 SKI vs λ-alulus

Like the RASP vs TM omparison above in Setion 6.2.2, this analysis aims to �nd

evidene supporting, or ontraditing, the SI/TI within family sub-hypotheses

(Setion 3.1.2, hypotheses 1b and 2b. If these hypotheses are orret, the rela-

tionship between the SKI and λ-alulus information sizes will broadly mirror the

observed relationship between the TM and RASP.

The SKI semantis are smaller than those of the λ-alulus so it is expeted

that the average size of SKI programs is larger than that of the λ-alulus (by the

SI within paradigm hypothesis). It is also expeted that for some of the simpler

programs, the TI of the SKI is lower than that of the λ-alulus, but as the set

of programs grows the TI of the λ-alulus drops to below that of the SKI.

Like the resolution of the SI hypothesis with the RASP and TMs, the mean

program sizes from Tables 6.5 and 6.6 (SKI and λ-alulus olumns) show the

PI means of the λ-alulus to be lower than that of the SKI. The measurements

from Table 6.4 substantiate this, with the multipliation funtion as the only

exeption. The SI within paradigm sub-hypothesis (1b) is therefore supported by

this data.

Evidene for the TI within paradigm sub-hypothesis an be found in the mean

Tables 6.5 and 6.6. For the arithmeti means (Table 6.5), the TI �gures for the

AR set shows that the SKI is lower than that of the λ-alulus, but as other sets

get introdued, the TI of the λ-alulus returns to below that of the SKI.

This is almost a mirroring of the results of the RASP and TM omparisons.

However, the geometri TI means of Table 6.6 show the mean SKI TI diverging

from the λ-alulus at a slower rate. The RASP and TM diverged after the AR
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set, but the SKI and λ-alulus diverge after the AR+L set of funtions.

The SKI and λ-alulus program sizes are highly orrelated, espeially on-

sidering that the SKI programs are derived from the λ-alulus via braket ab-

stration (Setion 2.3.2.2). Therefore it makes sense that it takes more programs

to show a separation in program size for the SKI/λ-alulus than for the RASP

and TM whih are not derived from one another.

The arithmeti and geometri means therefore support the TI within paradigm

sub-hypothesis (hypothesis 2b, Setion 3.1.2). Along with the analysis of the

program size means, both the SI and TI sub-hypotheses are supported by the

data of the SKI and λ-alulus. Both the evidene for this analysis, and the

RASP/TM analysis (Setion 6.2.2) are brie�y reiterated in Setion 6.2.8 where

the SI/TI within paradigm hypotheses are resolved.

6.2.4 RASP vs SKI

The RASP vs SKI analysis produes evidene for the SI/TI aross paradigms

sub-hypothesis (hypotheses 1 and 2). The SI sub-hypothesis states that there

is an inverse relationship between the size of the semantis and the average size of

programs whih holds when two models from di�erent paradigms are ompared

(Setion 3.1.2).

Table 6.4 (RASP and SKI olumns) shows that the SKI alulus has a smaller

set of semantis than any of the RASP mahines. It also shows that the SKI

programs for the ombinative AR funtions (addition, multipliation, exponenti-

ation) are smaller than any of the RASP programs. The higher-order funtionality

of the Churh numerals allows the SKI (and λ-alulus) to produe very onise

ombinative AR funtions.

As a result of this, the geometri �AR PI� mean (Table 6.6) favours the SKI

over the RASPs. The �L PI� geometri mean for the SKI is muh larger than

that of the RASP, and this extra information pushes the means in favour of

the RASP mahines. The �AR+L PI� geometri means for the RASP is lower

than the orresponding mean for the SKI. The gap widens when the universal

mahines are introdued to the test set. The arithmeti means (Table 6.6) are

not as in�uene by the small ombinative funtions as the geometri mean, so
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they show the RASPs have less PI than the SKI in all program sets.

This evidene onforms to the SI within paradigm hypothesis, and is in line

with predition 1.4 (Setion 3.1.2) beause the larger RASP semantis result in

smaller programs on average ompared to the SKI.

The TI aross paradigms sub-hypothesis (2) states that as a program or

programs grows in size and omplexity, the average TI (SI+PI) of an expressive

model implementing these programs redues relative to the average TI of a less

expressive model in a di�erent paradigm (Setion 3.1.2).

The arithmeti TI means in Table 6.5 show that the SKI has a lower TI than

the RASPs for the AR funtions. As more funtions are introdued however,

the TI of the RASPs drops to below the TI of the SKI. It takes longer for the

geometri means to diverge (RASP and SKI olumns, Table 6.6). The �AR TI�

and �AR+L TI� means show that the SKI requires less TI on average than the

RASPs. Inluding the universal mahines also

The data from this analysis supports the SI/TI aross paradigms hypotheses.

For these hypotheses to be on�rmed though, analysis has to be made of the

RASP vs λ-alulus (Setion 6.2.5), TM vs SKI (Setion 6.2.6), and TM vs λ-

alulus (Setion 6.2.7).

6.2.5 RASP vs λ-alulus

The RASP vs λ-alulus analysis produes evidene for the SI/TI aross paradigms

sub-hypothesis (hypotheses 1 and 2). The SI sub-hypothesis states that there

is an inverse relationship between the size of the semantis and the average size of

programs whih holds when two models from di�erent paradigms are ompared

(Setion 3.1.2).

The RASP mahines all have larger semantis than the λ-alulus (Table 6.4)

so if the SI hypothesis were to hold, it is expeted that the programs in the RASPs

are smaller on average ompared to those in the λ-alulus. As with the SKI,

the λ-alulus has small ombinative arithmeti funtions, and large subtrative

funtions.

The RASP and λ-alulus olumns of Table 6.5 show that the λ-alulus uses

less PI for the AR funtions, than the RASP and RASP3 but more than the
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RASP λ-alulus Di�erene

AR PI 93.83 73.83 20

AR+L PI 189.55 184.64 4.9

All PI 302.85 284.54 18.30

Table 6.8: Di�erene between RASP PI arithmeti means and the λ-alulus
means

RASP2. For the �AR + L PI� funtion set, the RASP2 and RASP3 sets use less

PI than the λ-alulus. Adding the universal funtions ranks the RASPs and

λ-alulus in terms of required PI as: RASP3 < RASP2 < λ-alulus < RASP.

This analysis ontradits the SI aross paradigms hypothesis, whih is inter-

esting onsidering that the evidene for the previous hypotheses is on�rmatory.

The vanilla RASP has more semanti information than the λ-alulus, so by Pre-

dition 1.4 (Setion 3.1.2) we expet to see that the λ-alulus requires more PI

than the RASP. This is not the ase. And from Table 6.8 we an see that the

gap between the PIs shrinks from AR to AR+L, but widens when the universal

funtions are inluded. The relationship between the PIs of the RASP and λ-

alulus are too omplex to be simply haraterised by the SI within paradigms

hypothesis.

The TI aross paradigms sub-hypothesis (2) states that as a program or

programs grows in size and omplexity, the average TI (SI+PI) of an expressive

model implementing these programs redues relative to the average TI of a less

expressive model in a di�erent paradigm (Setion 3.1.2).

Beause the λ-alulus has smaller semantis, Predition 2.4 (Setion 3.1.2)

sets out the expetation of the RASPs requiring less TI to represent all of the

funtions. From Tables 6.5 and 6.6, this is not the ase at all. The TI measure-

ments of the λ-alulus implementations are onsistently lower than any of the

RASP measurements.

We onlude that the SI and TI aross paradigms hypotheses (1 and 2) with

respet to the RASPs and λ-alulus annot be on�rmed. The data here does

not onform to the predition that the λ-alulus will have a higher mean PI and

TI than the RASPs. Indeed, the di�erene between the PI and TI of the models

�utuates as more sets of programs are ompared, with no lear relationship

whih an be explained to �t the hypothesis. This is disussed more in Setion
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6.2.8.

6.2.6 TM vs SKI

The TM vs SKI analysis produes evidene for the SI/TI aross paradigms sub-

hypothesis (hypotheses 1 and 2). The SI sub-hypothesis states that there is

an inverse relationship between the size of the semantis and the average size of

programs whih holds when two models from di�erent paradigms are ompared

(Setion 3.1.2).

The TM has more semanti information than the SKI, (Table 6.4) so it is

expeted that the TM will require less PI on average than the SKI to ompute

the funtions.

Tables 6.5 and 6.6 show that the mean PI measurements for the SKI are

exlusively lower than the PI measurements of the TM. These measurements lend

no evidene to the SI aross paradigms hypotheses. Indeed, this data ontradits

the hypothesis, muh like the data from the RASP and λ-alulus omparison in

Setion 6.2.5.

The TI aross paradigms sub-hypothesis (2) states that as a program or

programs grows in size and omplexity, the average TI (SI+PI) of an expressive

model implementing these programs redues relative to the average TI of a less

expressive model in a di�erent paradigm (Setion 3.1.2).

Again, Tables 6.5 and 6.6 demonstrate that the TI of the SKI is lower than the

TI of the TM for both arithmeti and geometri means in all program sets. The

analysis here of the SKI measurements against the TM measurements ontradit

the SI/TI aross paradigms hypotheses (1 and 2). This is very similar to the

examination of the λ-alulus and RASP in Setion 6.2.5

6.2.7 TM vs λ-alulus

The �nal omparison whih we draw in this part of the analysis is between the

TM and λ-alulus. This analysis serves to �nd evidene for the SI/TI aross

paradigms hypothesis (hypotheses 1 and 2).

The TM semantis are smaller than the λ-alulus semantis (Table 6.4), so

it is expeted, by the SI aross paradigms hypothesis, that the average size of
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programs in the λ-alulus is lower than the average size of programs in the TM.

The means in Tables 6.5 and 6.6 show that the PIs of the λ-alulus funtions

are lower than the PIs of the TMs in all funtion sets. This behaviour �ts with

predition 1.4, muh like the RASP and TM omparison in Setion 6.2.2.

The TI aross paradigms sub-hypothesis (2) states that as a program or

programs grows in size and omplexity, the average TI (SI+PI) of an expressive

model implementing these programs redues relative to the average TI of a less

expressive model in a di�erent paradigm (Setion 3.1.2).

The λ-alulus has larger semantis of than the TM, so the TI arithmeti and

geometri means (Tables 6.5 and 6.6) of the AR funtion set show that the TM

requires less TI than the λ-alulus. As the funtion sets expand, the TI required

for the λ-alulus redues relative to the TI required for the TM.

Predition 2.4 is also satis�ed by this behaviour. The λ-alulus and TM

omparison produes evidene with supports both of the SI/TI aross paradigms

hypotheses.

6.2.8 The SI and TI Hypotheses

Figure 6.2 lists the evidene gathered for eah sub-hypothesis and the setion

where that evidene is found. The semanti information (SI) hypothesis predits

(Preditions 1.1 - 1.4) that if two models have di�ering semanti sizes, the model

with more semanti information will require less information to implement su-

int programs on average ompared to the model with less semanti information.

At least one of the programs should utilise the extra operators a�orded by the

larger semantis in order to see the bene�t (Setion 3.1.2).

This PI data ful�ls Preditions 1.1, and 1.2 and 1.3, therefore Sub-hypotheses

1a (family) and 1b (within paradigm) are on�rmed. The RASP data shows that

over the whole set of ompared funtions, the RASP3 uses less information on

average than the RASP2 and RASP. The RASP3 has the largest semantis, while

the RASP has the smallest (Setion 6.2.1).

The within paradigm hypothesis is supported by the omparison of the size

of λ-alulus expressions versus the size of SKI expressions (Setion 6.2.3). In

the imperative paradigm, the average TM PI versus the average RASP PI shows
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that the TM programs are typially larger than the RASP ones (Setion 6.2.2).

The third sub-hypothesis, hypothesis 1 requires that four omparisons are

made: RASP and SKI, RASP and λ-alulus, TM and SKI, and TM and λ-

alulus. Unlike the other two sub-hypotheses, the omparison aross paradigms

reveals evidene ontrary to the hypothesis and does not satisfy the predition

entirely.

Over this test set, an imperative model ompared with a funtional one with

approximately the same amount of Semanti Information will show that the fun-

tional model has a lower average PI than the imperative model.

The RASP and λ-alulus omparisons show that the λ-alulus requires less

PI than the RASPs, despite the fat that the RASPs have more SI (Setion

6.2.5). Similarly, the TM has more SI than the SKI, but the SKI still has smaller

programs on average (Setion 6.2.6).

The Strong Semanti Information hypothesis is not on�rmed. The within

family and within paradigm hypotheses have evidene enough to on�rm them.

The aross paradigms hypothesis has evidene for it, but more importantly, has

strong evidene against it.

The Total Information (TI) hypothesis predits (Preditions 2.1 - 2.4) that as

the size and omplexity of a program, or programs, inreases; the TI (SI + PI)

of suint implementations of the programs in a model whih is more expressive

will redue relative to the TI of the implementations in a model whih is less

expressive (Setion 3.1.2).

Muh like the SI hypothesis, the TI hypothesis has support from the within

family, and within paradigm hypotheses (2a and 2b). The RASP semanti sizes

are ordered as RASP<RASP2<RASP3. When the entirety of the program set

is onsidered, the TI sizes of the RASPs are RASP3<RASP2<RASP whih �ts

the predition and on�rms the within family hypothesis (Setion 6.2.1).

The within paradigm hypothesis is supported by the evidene of the TM vs

RASP and λ-alulus vs SKI omparisons. While the smaller models had a lower

TI for the AR set of funtions, as the set was augmented with the list, and then

universal, funtions, the TI shifted in favour of the larger models. Setion 6.2.2

ompared the RASP with the TM while Setion 6.2.3 ompared the λ-alulus
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and SKI.

Generalising TI to aross paradigms appears to fall into the same trouble as

the SI orresponding hypothesis. Comparing two models of di�ering paradigms

with roughly the same amount of SI will favour the funtional model as the

omparisons of the RASP and λ-alulus (Setion 6.2.5), and SKI vs TM (Setion

6.2.6) suggest.

Like the SI hypothesis, sub-hypotheses 2a and 2b are on�rmed, while sub-

hypothesis 2 is not. The strong TI hypothesis in this ase annot be on�rmed.

It is suspeted that the simple metri of raw harater distane between the

semantis of models from di�ering paradigms is too naïve to apture the subtleties

of their evaluation method. The evaluation method produes less of an impat on

the information values for those models in the same model family or paradigm,

ompared to aross paradigm omparisons where the evaluation method is muh

more relevant.

Returning to the geometri means, omparing the RASP2/3 means against the

λ-alulus means in Tables 6.5 and 6.6, it an be seen that while the arithmeti

PI means of the λ-alulus are always greater than those of the RASPs, the

geometri means do not neessarily follow. This appears to stem from the PI

required to represent the AR funtions.

The λ-alulus uses muh smaller expressions for the additive arithmeti fun-

tions in omparison to the RASPs due to the Churh numerals and their ombina-

tori attributes. This results in a lower geometri mean for the AR funtions, even

though the arithmeti mean is higher (beause of the relatively large subtrative

AR funtions). It would then be interesting to onsider the geometri-arithmeti

mean relationship as an indiation of a models aptitude at representing a set

of funtions. In this ase, the λ-alulus has an advantage in representing AR

funtions.

This indiation is less lear however as the sets are ombined. The AR+L

and all sets also have lower geometri means despite the L set and universal sets

alone having no notable deviation in this geometri-arithmeti relationship.
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3. Semanti Ciruit hypothesis

3a. SC within family hypothesis

3.1. SC for RASPs.

3b. SC within paradigm hypothesis

3.2. SC RASP vs TM

4. Total Ciruit hypothesis

4a. TC within family hypothesis

4.1. TC for RASPs.

4b. TC within paradigm hypothesis

4.2. TC RASP vs TM

Figure 6.4: Breakdown of the FPGA hypotheses

6.3 FPGA Analysis

This setion provides an analysis of the FPGA measurements with respet to

evaluating the Semanti Ciruit (SC) size and Total Ciruit (TC) size hypothe-

ses. This setion provides an overview of the measurements. Setion 6.3.1 overs

omparisons of the RASP mahines to �nd evidene for the SC and TC hypothe-

ses. Setion 6.3.2 ompares the RASP implementation to the TM implementation

for more evidene. Setion 6.3.3 uses the evidene of the aforementioned setions

to evaluate the hypotheses.

Figure 6.4 breaks down the SC and TC hypotheses. Like the SI and TI hy-

potheses, there are sub-hypotheses de�ned. Beause only the RASPs and TMs are

de�ned in the FPGA, there are no �aross paradigms� hypotheses. The Semanti

Ciruit hypothesis states that there is a diret relationship between the SI and

the size of the iruit to represent the semantis. Simply put, SI is proportional

to SC.

The Total Ciruit hypothesis is analogous to the TI hypothesis. It states that

for two models A and B, where A has a larger semanti iruit than B. As the set

of tested programs grows in size and omplexity, the average total implementation

size (number of FPGA omponents required to implement the semantis and

program) for A will derease relative to the average total implementation size for

B.

In Chapter 5, the RASP and TM models were realised in VHDL and synthe-
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sised down to registers, �ip-�ops (FFs) and look up tables (LUTs). Synthesis of

VHDL to FPGA omponents not only onverts programs to eletroni ompo-

nents, but also the semantis of the model. In essene, an instane of the mahine

is onstruted and loaded with the program and data ready to be exeuted.

If the number of required FPGA omponents an be used to predit the TI of

programs in models, then it is expeted that the omponent ounts orrelate with

the TI �gures of the programs/models. Figure 6.5 plots the TIs for the RASPs

and TM from the �gures presented previously in this hapter.

The Slie Registers (Table 6.9, Figure 6.6) are individual memory loations

used by the models. Both the RASP and TM use registers (whih are on�gured

to be �ip-�ops) to store state information of the model. Various ounters within

the model keep trak of whih instrutions are to be exeuted in eah lok yle,

and these ounters are stored in slie registers.

Furthermore, the RASPs store their programs in slie registers, the number

of whih depend on the memory size of the partiular mahine. The RASP plots

in Figure 6.6 exhibits similarities in shape with the TI RASP plots of Figure

6.5. These similarities an be interpreted as; the number of slie registers used
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RASP RASP2 RASP3 TM

Addition 28 21 25 14

Subtration 28 28 29 15

Equality 28 24 25 16

Multipliation 32 28 29 19

Division 32 32 33 19

Exponentiation 32 32 33 20

List Membership 37 32 33 22

Linear Searh 37 32 33 22

Reverse List 32 32 33 23

Stateful Rev List 37 37 38 23

Bubble Sort 41 41 38 24

Universal TM 41 41 42 23

Universal RASP 46 45 46 19

Table 6.9: Slie registers for programs and models on FPGAs
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Figure 6.6: Slie registers for RASPs and TM
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RASP RASP2 RASP3 TM

Addition 66 51 70 13

Subtration 66 70 78 13

Equality 66 60 70 16

Multipliation 74 70 78 20

Division 74 79 91 22

Exponentiation 74 79 91 30

List Membership 81 79 91 44

Linear Searh 81 79 91 49

Reverse List 74 79 91 32

Stateful Rev List 81 86 102 80

Bubble Sort 90 96 102 150

Universal TM 89 96 112 195

Universal RASP 92 108 123 1019

Table 6.10: LUTs for programs and models on FPGAs

RASP RASP2 RASP3 TM

Slie Registers 0.795 0.754 0.808 0.00

LUTs 0.706 0.742 0.807 0.980

Flip-Flops 0.776 0.754 0.808 -0.076

Table 6.11: The Pearson orrelation oe�ient of the TI vs the omponents

to implement a RASP program on an FPGA is an indiator of the amount of TI

required to implement the program against the semantis. There is no similarities

whih an be observed between the TI of the TM and the number of slie registers

used.

The number of LUTs required to implement the RASP and TM programs in

the FPGA is presented in Table 6.10 and plotted in Figure 6.7. These �gures

orrelate with the TI levels of the TM. This suggests to that, like the slie registers

for RASPs, the number of LUTs is an indiator of the TI of a program written

for a TM.

Table 6.11 shows the Pearson orrelation oe�ient between the TI �gures

and the various omponent ounts. As we have noted above, the number of slie

registers do not orrelate at all with the TI ounts of the TMs. However, the

orrelation oe�ient of the number of LUTs in the TM implementation is 0.984

whih is a very high orrelation and suggests a ausal link.

There is also a orrelation between the TI of the RASP and the number of

slie registers. This orrelation dereases slightly for the RASP2, and inreases
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again for the RASP3.

LUTs strongly orrelate with the TI of TMs, but are not a perfet indiator.

The TM to �nd the membership of a list is 38 tuples in size and 379 haraters

long. The list reversal TM is 50 tuples in size and 499 haraters long. The bubble

sort is 140 tuples/1611 haraters and the universal mahine is 113 tuples/1270

haraters. The number of LUTs to implement the membership TM is 44, as

opposed to 32 for the reversal TM. Similarly, it takes 150 LUTs to implement the

bubble sort and 195 for the UTM. The number of omponents for eah pairing

is at odds with the number of tuples and haraters required. If there were a

diret orrelation between the number of LUTs and number of tuples, then these

relations would be swithed.

The unknown variable in the FPGA ompilation proess is the optimisation

stage. The optimiser is set up for a muh ompression as possible, and it is

oneivable that the tuples for the bubble sort and reversal an be ombined into

a smaller overall pakage. New work foused on this question would bring insight

as to why.

Despite the inonsistenies regarding the membership, reversal, bubble sort,
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RASP RASP2 RASP3 TM

Addition 28 21 25 14

Subtration 28 28 29 15

Equality 28 24 25 16

Multipliation 32 28 29 19

Division 32 32 33 19

Exponentiation 32 32 33 20

List Membership 37 32 33 22

Linear Searh 37 32 33 22

Reverse List 32 32 33 23

Stateful Rev List 37 37 38 23

Bubble Sort 41 41 38 24

Universal TM 41 41 42 23

Universal RASP 46 45 46 18

Table 6.12: FFs for programs and models on FPGAs

and the UTM; the high orrelation between the TI and LUT ount strongly

indiates that the TI of a TM implementation a�ets the orresponding LUT

ount of that implementation in a FPGA.

The number of LUTs in an implementation does not appear to diretly link

the RASP mahines to their TI, but is useful when the RASPs are ompared

against eah other later in this setion.

The slie registers on the FPGA are versatile. They an be on�gured as

and/or logis, lathes, lath-thrus, or D-type �ip-�ops [105, 13℄. With the exep-

tion of the universal RASP in the TM, slie registers in these implementations

have been exlusively used to implement �ip-�ops. The table and plot for the

�ip-�ops are very similar to the table and plot for the slie registers, so what

has been said about the slie registers applies here. The FF ounts are not an

indiator of the TI of TM implementations, and have a orrelation oe�ient on

par with the slie registers for the RASPs.

For this data set, the slie registers (Table 6.9) and �ip-�op ounts (Table

6.12) are almost idential. But if there was more variety in the on�gurations

for the slie registers, then the number of �ip-�ops ould be a better indiator of

RASP program information as it orresponds to the size of the RASP memory

and state memories. The absolute slie register ount would be a better indiator

of TI as it overs not only the program size and state memories, but also the

anillary logis and lathes that a slie register an be used for.
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To properly evaluate the Semanti Ciruit (SC) hypothesis, the omponents

to implement the programs and data are required to be separated from the ontrol

units of the RASP and TM implementations. The RASP FPGA implementations

have highly oupled ontrol units and memory; eah semanti rule holds numerous

pre- and post-onditions on the state of the memory. Sine the state mahine for

the RASPs also performs swithes on the data in memory, the memory has to

be able to hold at least eight values for the eight instrutions of the mahine.

Furthermore, any value in the memory ould be an address, so the memory must

be addressable by eight distint values.

This inherent dependeny between data and memory size restrits us to a

lower bound on memory size for RASPs at eight. Any lower and the mahine

either annot address memory loations, or the synthesis tool optimises out parts

of the RASP state mahine that annot be run beause the required instrution

annot be held in memory.

The ompromise is a �at omparison of the three RASP mahines with mem-

ories of size eight. The FPGA FPGA utilisation report provided by the ompiler

shows the number of omponents to implement the ontrol module of the models.
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Slie Registers LUTs FFs

RASP 21 48 21

RASP2 21 50 21

RASP3 22 63 22

TM 10 7 10

Table 6.13: Components to implement semantis

Table 6.13 displays the number of omponents required to implement the

minimal state mahines (and memories) of the models. The RASPs were all

measured with an empty memory of size 8, and the TM had a single tape ell

and a single tuple in the symbol table.

6.3.1 RASPs on FPGAs

The Semanti Ciruit hypothesis (SC, hypothesis 3) states: �Consider two models

A and B. If model A has larger semantis than model B, the FPGA iruit whih

realises the semantis of A will be larger than the FPGA iruit for B.� (Setion

3.1.3). In essene, as the semantis get more expressive, more LUTs, �ip-�ops,

and slie registers are required to represent the semantis in hardware.

The semantis of the vanilla RASP are smaller than the semantis of the

RASP2, whih in turn are smaller than those of the RASP3. The data in Tables

6.9 � 6.12 is onsistent with predition 3.2, and supports sub-hypotheses with

respet to the SC within family (3a), and SC within paradigm (3b).

The slie registers/�ip-�op ounts (Tables 6.9 and 6.12) show that the RASP

and RASP2 are equal in size, with the RASP3 only requiring one extra slie

register.

The LUT ounts in Table 6.10 show that the RASP2 semantis are larger

than the RASP semantis while the RASP3 semantis are larger than the other

two. This falls into line with what would be expeted given the relationship of

the SOS sizes. Beause the LUTs primarily implement random logi and slie

registers are typially purposed for state variables/memories, there is more of an

inlination to weigh the LUT ount over the register ount with respet to the

rules of the semantis. Predition 3.2 is therefore satis�ed, and sub-hypothesis

SC within family (3a) is on�rmed.

The Total Ciruit Size hypothesis (TC, hypothesis 4) states: �For two models
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RASP RASP2 RASP3

Slie R LUTs Slie R LUTs Slie R LUTs

Arith Mean Arithmeti 30 70 27.5 68.17 29 79.67

Geo Mean Arithmeti 29.93 69.89 27.2 67.38 28.81 79.2

Arith Mean List 36.80 81.40 34.8 83.80 35 95.4

Geo Mean List 36.69 81.24 34.62 83.55 34.92 95.25

Arith Mean Arithmeti + List 33.09 75.18 30.82 75.27 31.73 86.82

Geo Mean Arithmeti + List 32.83 74.84 30.35 74.30 31.44 86.13

Arith Mean All 34.69 77.54 32.69 79.38 33.62 91.54

Geo Mean All 34.28 77.06 32.01 77.99 33.11 90.33

Table 6.14: Arithmeti and geometri means of RASPs on FPGA

A and B, where the iruit implementation of the semantis of A is larger than

the iruit for the semantis of B. As a funtion grows in omplexity, the average

total implementation size of a suint realisation of the funtion in model A will

redue relative to the average for model B.� (Setion 3.1.3). The RASP spei�

hypothesis is the TC within family hypothesis 4a and predition 4.1 sets out what

we expet to observe.

Table 6.14 shows the arithmeti and geometri means of the RASP programs.

Unlike the TI Tables 6.5 and 6.6, there is no trend in number of LUTs or slie regis-

ters whih shows the RASP3 requiring less omponents on average than the RASP

or RASP2. Where onsidering all funtions, the TI of the RASPs onformed to

the relation: RASP3<RASP2<RASP, the TC of the FPGA realisations for all

funtions is: RASP<RASP2<RASP3 for the LUTs, and RASP2<RASP3<RASP

for the slie registers. This evidene ontravenes the TC within family sub-

hypothesis. The redution in average slie registers provides an indiation of

smaller programs for the RASP2 and RASP3 relative to the RASP, but the LUT

relationship remains onsistent.

The plots of slie registers and LUTs shed some light on why this is the ase.

The slie registers for the programs in Figure 6.6 show the RASP3 and RASP2

following roughly the same plot. The exeptions are the addition funtion, where

RASP2 uses less memory than the RASP3, and the bubble sort, where RASP3

uses less. The RASP2/3 plots are below the RASP plot when the RASP2/3 use

less memory than the RASP, otherwise they use slightly more.

The LUTs for the mahines (Figure 6.7) also show the RASP2 and 3 following
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the same plot, again where the RASP3 has an overhead on top of the RASP2.

The bubble sort, where the RASP3 has a smaller program than the other RASPs,

is slightly redued but not to the extent where the hypothesis would be onsidered

on�rmed.

The RASP data here is strong evidene for the on�rmation of the SC hy-

pothesis (Hypothesis 3) via the within family sub-hypothesis. The analysis also

�nds evidene whih ontradits the TC hypothesis. The RASP3 having a larger

semanti iruit does not imply that the total number of omponents required for

programs will be lower than the omponents required for the RASP2 and RASP

implementations. This evidene ontravenes both the within family and within

paradigm hypotheses (4a and 4b).

6.3.2 RASP vs TM

Contrasting the data of the TM against that of the RASPs. If the SC hypothesis

were to hold, we would expet that an �nd evidene whih is predited by 3.2,

whih states that sine the TM semantis are smaller than the RASP semantis,

the TM semanti iruit will be smaller also. Table 6.13 shows that the TM

uses less slie registers, LUTs, and FFs to represent the semantis. This satis�es

predition 3.2 and supports the SC within paradigm sub-hypothesis.

The implementations and harater-wise measurements of the various pro-

grams in TM with respet to the RASP measurements (Table 6.4) show that,

exepting addition, the TM programs are larger than any of the RASPS. If the

TC hypothesis holds, then it is expeted that the mean number of omponents

to implement the

The abstrat implementations the models in SOS and their assoiated pro-

grams show the TI of the TM growing rapidly relative to the RASP mahines.

With the exeption of the addition funtion, the TI of the TM is greater than

that of the RASPs.

In ontrast, the number of omponents to implement the TMs on the FPGA is

muh lower than than of the RASPs. With the exeption of the number of LUTs

required to implement the bubble sort, UTM, and URASP, the TM values are

always lower than the RASP omponent numbers. The TC within paradigm sub-
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3. Strong Semanti Ciruit hypothesis

3a. SC within family hypothesis For: 6.3.1

3b. SC within paradigm hypothesis For: 6.3.2

4. Strong Total Ciruit hypothesis

4a. TC within family hypothesis Against: 6.3.1

4b. TC within paradigm hypothesis Against: 6.3.2

Figure 6.9: FPGA hypotheses and evidene for eah

hypothesis 4b, like the TC within family sub-hypothesis 4a, annot be on�rmed

by this data.

6.3.3 The SC and TC Hypotheses

Figure 6.9 lists the evidene gathered for eah sub-hypothesis and the setion

where that evidene is found. The Semanti Ciruit (SC) Hypothesis is onerned

with the FPGA realisations of the semantis and programs of the RASP and

TMs. The hypothesis states that if model A has more semanti information (as

measured by the size of the SOS implementation) than model B, then the FPGA

iruit whih implements the semantis of model A will be larger than the iruit

to implement the semantis of model B.

This hypothesis is veri�able using the semantis sizes taken from Table 6.13.

For the RASP and Turing mahines, the SOS sizes of the semantis follow the

relation: TM<RASP<RASP2<RASP3 (Table 6.4), and this relation is mirrored

in the semanti iruit sizes. The LUTs largely implement the state mahines

of the ontrol units, while slie registers are dediated to state information and

the memories of the mahines. From examining the table, the number of slie

registers and LUTs show that the TM has the smallest iruit size (Setion 6.3.2),

followed by the RASP, RASP2, and then RASP3 with the largest (Setion 6.3.1).

These observations satisfy the within family (3a) and within paradigm (3b)

sub-hypotheses in order to on�rm the SC hypothesis.

The TC hypothesis is analogous to the TI hypothesis. The Total Ciruit

hypothesis predits that as the size and omplexity of a program, or programs,

inreases the total iruit size of a suint implementation of the program(s) in

an expressive model will redue relative to the implementations in a less expressive
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model.

This hypothesis is not on�rmed at all. Within the RASP family (Setion

6.3.1), there is no indiation of the average number of LUTs or slie registers re-

duing relative to the RASP2. The RASP relation sits at RASP<RASP2<RASP3

for average number of LUTs, and RASP2<RASP<RASP3 for slie registers (Ta-

ble 6.14).

Comparing the TM TC size to the RASP TC size (Setion 6.3.2) shows that

the total iruit sizes for the RASP tend to be muh lower than the total iruit

sizes for the RASPs. Only the bubble sort and universal RASP programs in the

TM require more LUTs than the orresponding RASP programs. As a result, the

TC hypothesis annot be on�rmed.

It should be onsidered why the TC hypothesis annot be on�rmed for two

models in the same paradigm as the TI hypothesis. The abstrat realisations

of the semantis of the models are isolated relative to the programs whih are

measured. One the author of a semantis is satis�ed that the semantis are

orret, they are bundled with programs of all sizes to measure and obtain the

TI.

It is learly pratial to do so. A semantis has no regard for size bounds.

If size were to be regarded, a di�erent semantis would be required for eah

program unless the programs happened to be the same size as some other. Rather,

strutures in the semantis are de�ned via types � whih are sets whih an be

bounded or unbounded in size. For instane, the memory of a RASP is de�ned

as a size 2n list of numbers, with eah number between 0 and 2n−1. The type of

the memory struture is N whih denotes the natural numbers. The exponent n

is also a natural number, so the RASP model permits memories of size 20 up to

an arbitrarily large value of n without the need to hange the semantis beause

set theory permits in�nite sets.

The real world is unfortunately not as �exible. The semantis for the FPGAs

are de�ned with �xed sizes for the RASP memory, TM symbol table, or TM tape

so that the ompiler an alloate the appropriate level of resoures to represent

these memories or strutures. Furthermore, the rules have a less `funtional' im-

plementation in the FPGA semantis and therefore require the use of temporary
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RASP RASP2 RASP3 TM

Slie R LUTs Slie R LUTs Slie R LUTs Slie R LUTs

Addition 7 18 0 1 3 7 4 6

Subtration 7 18 7 20 7 15 5 6

Equality 7 18 3 10 3 7 6 9

Multipliation 11 26 7 20 7 15 9 13

Division 11 26 11 29 11 28 9 15

Exponentiation 11 26 11 29 11 28 10 23

List Membership 16 33 11 29 11 28 12 37

Linear Searh 16 33 11 29 11 28 12 42

Reverse List 11 26 11 29 11 28 13 25

Stateful Rev List 16 33 16 36 16 39 13 73

Bubble Sort 20 42 20 46 16 39 14 143

Universal TM 20 41 20 46 20 49 13 188

Universal RASP 25 44 24 58 24 60 9 1012

Table 6.15: Components for programs only on FPGAs

variables whih also have to grow in size to orretly store intermediate values of

the exeution.

This reates an overhead in the FPGA realisations where the size of the seman-

tis inreases proportionally to the size of the program being exeuted. Assuming

that the semantis sizes in the FPGA realisations are �xed aording to Table

6.13, the number of semanti omponents an be subtrated from the TC ompo-

nent values to obtain the program information analogue for the FPGAs in Table

6.15.

The overhead of the semanti growth is rolled into the FPGA program infor-

mations. The list funtions in this table show that the program information for

the TM is often higher than that of the RASPs with respet to the number of

LUTs, and very lose to the RASPs when onsidering the slie registers. From

this perspetive, if the omplexity of the funtions were to smoothly grow, the

eventual average TC of the TMs would beome lower than that of the RASPs.

The RASP3 has a smaller implementation of the bubble sort than the other

models and this is re�eted in the LUT and slie register ounts. This shows that

the redution in the number of required omponents for the RASP3 implemen-

tation an oneivably outweigh the extra omponents required for the semanti

overhead. It is hypothesised that given more omplex funtions, if the RASP3

implementations were to keep reduing in size relative to the other RASPs as in-
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diated in Setion 6.2.1, then the TC size with respet to the RASP2 and RASP

implementations will drop as evidened by the TI �gures.

In onlusion, this analysis �nds that the number of a spei� omponent

(LUTS for TM and slie registers for RASPs) is an indiator of the TI relative

to the TI of other programs implemented in that model. Conversely, using said

omponent ounts to analyse TI measurements aross models does not work.

A reason for this is the growing overhead of the semantis implemented on the

hardware. In the abstrat semantis an in�nite set an be designated for all

programs to use, but in these onrete realisations, the sets must be bounded

and have to grow aording to the size of the program implemented.

6.4 Further Observations

This setion disusses the dramati inrease in required information for the SKI

and TM when representing the Universal funtions opposed to the RASP and λ-

alulus. It also onsiders how the use of parsing semantis a�ets the information

measurements made.

6.4.1 Model Attributes

Figures 6.10 to 6.13 show plots of the geometri and arithmeti means of the PI's

and TI's. The geometri plots show the normalising e�et of the geometri mean

proess and bunhes the models together.

The arithmeti mean plots are more interesting. The RASP mahines are

bunhed together muh like in the geometri mean graph, whih is not surprising

due to their operational similarity. But the λ-alulus is also grouped with the

RASP mahines. Furthermore, the SKI and TM plots are separated from the

RASP and λ grouping, and are orrelated together.

The SKI expressions are derived from the λ-alulus expressions via braket

abstration (Setion 2.3.2.2). The TM programs are not derived from, nor have

any diret translation to the orresponding RASP program. Despite this, the

RASP and TM �gures show the same separation as from the SKI and λ-alulus.

The TM and SKI numbers orrelate very strongly with Pearson's r between 0.985
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Figure 6.10: The PI geometri means from Table 6.6
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Figure 6.11: The TI geometri means from Table 6.6
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Figure 6.12: The PI arithmeti means from Table 6.5
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Figure 6.13: The TI arithmeti means from Table 6.5
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RASPs+λ TM+SKI Fator

AR 55.74 177.56 3.19

L 150.08 602.45 4.01

AR+L 143.42 537.08 3.74

U 327.20 6157.32 18.82

ALL 319.17 3233.37 10.13

Table 6.16: Standard deviations of the sample of RASPs+λ-alulus vs the

TM+SKI.

and 0.99 for the above plotted datasets.

The separately orrelated data points in Figures 6.12 and 6.13 are thought to

be due to attributes of the models whih do not a�et the omputational power

of the models.

It is to be expeted that the less expressive models will have some overhead

in the representation of the program set. After all, the intuition of expressivity

laid out in the introdution is supported by the data gathered. Table 6.16 shows

the standard deviation of the sample for the two groups of data points. The

deviations for the TM+SKI data points is about 3 times that of the RASP+λ

points for the arithmeti funtions 4 times for the list funtions and 18 times for

the universal funtions.

Combining the program ategories produes a fator of 3.74 for AR+L, and

10.13 for the entire set. This suggests that there is a di�erene between the data

points for the universal funtions whih is above the norm shown by omparisons

of the AR and L funtion sets.

The RASPs and λ-alulus both have some form of random aess whih

merely speeds up memory aess times. The RASPs have random aess memory

and the λ-alulus has variables whih an be substituted using β redution.

TM and SKI do not. The TM has to sequentially shift the tape and the SKI

has to repeatedly evaluate ombinators at the far left hand side to move applied

expressions into eah other whih the λ-alulus ahieves though abstration and

substitution alone.

Adding more semanti operators for TMs or SKI whih enable random aess,

suh as a TM searh whih returns the �rst ourrene of a partiular symbol to

the right or left of the head position, is hypothesised to adjust the mean values
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RASP RASP2 RASP3 TM SKI λ-Cal
Parsing Semantis 71 71 71 203 101 162

Evaluation Semantis 484 513 515 146 190 381

Ratio Parsing:Eval 0.15 0.14 0.14 1.39 0.53 0.43

Table 6.17: The ratio of parsing semantis to evaluation semantis for eah model.

suh that they onverge to those of the RASPs and λ-alulus. Setion 7.3.4

presents a hypothesis to guide investigation into this observed separate orrela-

tions of PI/TI and disusses the possibility of other separations preipitated by

other model attributes.

6.4.2 Interpretation vs Evaluation Semantis

The omparisons whih have been explained thus far have been made relative

to the entirety of the semantis for eah model. A program has been written in

some external representation, onverted into the internal representation using the

parsing semantis, and evaluated with the evaluation semantis.

The parsing semantis do not add any omputational power to the models.

A di�erent perspetive ould be gain through omparing only the size of the

evaluation semantis of the models with the size of programs. Table 6.17 ompares

the size of the parsing semantis with the evaluation semantis. Note that the

sum of the parsing and evaluation semantis is often greater than the presented

sizes in Table 6.4 and in the rest of this thesis. This is beause both the parsing

and evaluation parts may share a funtion or de�nition whih has to be de�ned

for both when the semantis are split.

The external and internal representations of the RASP mahines are very sim-

ilar, so there is little overhead in parsing programs. The parser pattern mathes

natural numbers from the left hand side adding them to the mapping whih makes

up the initial memory of the program.

The SKI and λ-alulus have a more ompliated parsing proedure whih on-

verts the linear external representation into the tree-like internal representation.

The onversion proedure for both models is similar. The expression is pattern

mathed from the right hand side and the tree is reursively onstruted from the

root. In SKI, internal tree nodes denote appliations with ombinators as leaves.
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RASP RASP2 RASP3 TM SKI λ-Calulus
AR PI 86.71 48.95 59.27 167.15 51.52 40.62

AR TI 576.72 579.98 586.35 341.12 301.19 448.82

L PI 276.67 202.98 181.93 757.23 588.18 278.13

L TI 777.44 741.38 706.54 919.60 832.81 681.07

AR+L PI 146.93 93.44 98.68 332.16 155.84 97.39

AR+L TI 660.57 648.46 638.21 535.40 478.20 542.50

All PI 193.22 130.78 137.21 492.16 265.52 134.54

All TI 739.42 727.23 718.52 743.90 690.48 612.10

Table 6.18: Geometri means of the program sets using evaluation semantis

RASP RASP2 RASP3 TM SKI λ-Calulus
AR PI 93.83 68.83 73 218.5 153.50 73.83

AR TI 577.83 581.83 588 364.5 343.50 454.83

L PI 304.4 243.6 195.4 863.4 847.4 317.6

L TI 788.4 756.6 710.4 1009.4 1037.4 698.6

AR+L PI 189.55 148.27 128.64 511.64 468.91 184.64

AR+L TI 672.82 661.27 643.64 657.64 658.91 565.64

All PI 302.85 262.38 247.69 1639.38 1331.15 284.54

All TI 786.85 775.38 762.69 1785.38 1521.15 665.54

Table 6.19: Arithmeti means of the program sets using evaluation semantis

The λ-alulus parses both appliations and abstrations as internal nodes and

uses variables for the leaves. As mentioned in Chapter 3, this transformation is to

failitate graph redution where nodes are swapped when sub-expressions move

around the term.

The TM parsing semantis presented here are larger than the evaluation se-

mantis. In ontrast to the RASPs and funtional models, a TM de�nition is in

two parts; a symbol table and a tape. Both of these have to be parsed and they

are both done in a di�erent manner. The symbol table is pattern mathed for the

disrete elements of the tuples whih are ombined into a mapping to reate the

symbol table. If the tape ontains a aret (^) the symbol to the left is mapped

to zero in the tape funtion and the rest of the funtion is �lled in reursively

left and right, whih are mappings to negative and positive integers respetively.

This neessitates the reating of multiple rules with spei� funtionalities whih

are di�ult to generalise. If the ability for the TM to start at an arbitrary point

on the tape were to be removed, three of the parsing rules ould be removed.

Tables 6.18 and 6.19 show the means of the the program sets when parsers
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Figure 6.14: Plot of PI geometri means from Table 6.18.

are disounted. Removing the parsing semantis from onsideration results in

less homogeneity in the means between the models. Figures 6.14 to 6.17 show

the plots of these means.

Comparing these plots to the arithmeti and geometri mean plots of the full

semantis, there is not a dramati di�erene. The arithmeti plot shows the TM

and SKI loser together and the λ-alulus TI means trending downwards, further

from the means of the RASPs. The apparent separation between SKI/TM and

RASPs/λ-alulus is still observable whih is enouraging in that it is not simply

an artefat of the inlusion of parsers.

The geometri plot notably shows the smoothing of the TM urve and the

eventual lowering of the geometri mean of all TM programs to below those of

of the RASPs. The λ-alulus and SKI have the most and seond most minimal

information ontents of all of the models under the geometri mean. This data

further reinfores our assertion that hypothesis 2 is inorret as the semantis

of the funtional models are now muh smaller than the RASP and still maintain

an overall lower TI.
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Figure 6.15: Plot of TI geometri means from Table 6.18.
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Figure 6.16: Plot of PI arithmeti means from Table 6.19.
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Figure 6.17: Plot of TI arithmeti means from Table 6.19.

6.5 Inputs

The measurements made and hypotheses evaluated thus far have onsidered only

the size of the semantis and programs. Setion 3.4 has made the ase for the

`parsing semantis' to be inluded in the overall semanti sizes omparisons. In

essene, the programs for these models are all ommonly expressed in a linear

fashion, while the struture of λ-alulus and SKI expressions whih are atually

evaluated may be very di�erent. These expressions are linear, but their linearity

belies their tree struture whih is diretly manipulated to evaluate the expres-

sions via graph redution (Setion 3.4.3). Therefore there has to be some semanti

rules to onvert the linear external representation into the tree-like internal rep-

resentation.

In a similar way, expressions and programs written for a model parse inputs

from the external, into internal representations and evaluate them. Information

for omputation is hierarhial and regressive. Programs are bespoke semantis

and models to ompute spei� funtions. The most general of these funtions

are universal whih have their own language/enoding for their inputs.
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It is these program spei� languages whih are foused on now. The programs

presented in Chapter 4 assumed natural enodings for the inputs and these enod-

ings are measured diretly in haraters and asymptoti notation, Big O [86, 32℄,

will be supplied for these.

6.5.1 RASPs

The �oored logarithm to base x of n: ⌊logx(n) + 1⌋ is a measure of the number

of haraters required to represent the base 10 number n in the base x numeral

system. While the PI of the RASPs inludes registers to hold the inputs for

the program, the registers measured only hold single digits and are the minimal

number of registers required to onstitute an input (only two element lists for

example).

The RASPs represent all of their inputs in base 10. Inputs are either disrete

digits x and y, or a list of k elements with t as the largest number in the list.

Furthermore, the PI of the RASPs grow as any of these variable grow in size.

Reall that a 2n length RASP an only hold a numeral from 0 to 2n − 1.

Assuming that all inputs for a 2n RASP are numerals between 0 and 2n − 1,

the arithmeti funtions have two inputs x and y. The number of haraters for

these inputs is determined by the log rule:

⌊log10(x)⌋ + ⌊log10(y)⌋+ 2 = ⌊log10(xy)⌋+ 2

In big-O this is shortened to O(log10(xy)) beause the input size is dependent

on both of the mutually independent variables x and y.

Lists in the RASP are a ontiguous array of k registers. At least one register

holds the numeral t, where t is the largest numeral in l. The list size is therefore

bounded via the funtion:

k × (⌊log10(t)⌋+ 1) ∈ O(k log10(t))

The list membership and linear searh funtions also require a target value as

input whih ould possibly be as large as t, whih adds another ⌊log10(t)⌋ + 1

haraters.
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The UTM is arranged as an enoded symbol table followed by a tape of

symbols. The UTM in RASP an simulate a TM with s states and t symbols.

A tape of k symbols requires k × (⌊log10(t)⌋+ 1) ∈ O(klog10(t)) haraters. The

symbol table is a list of 〈So〉〈Syo〉〈Sn〉〈Syn〉〈D〉 quintuples terminated with a 0

value (Setion 4.4.1).

s× t(⌊log10(s)⌋+ ⌊log10(s)⌋+ ⌊log10(t)⌋ + ⌊log10(t)⌋+ 4 + 1) + 1

= s× t(⌊log10(s
2t2)⌋+ 5) + 1

∈ O(s× t log10(s
2t2))

Pairing the symbol table with the tape expression gives:

O(k log10(t)) +O(s× t) ∈ O(k log10(t) + s× t× log10(s
2t2))

Whih is the �nal growth rate upper bound of TM expressions in the RASP

UTM.

A RASP to be simulated by the universal mahine is a list and grows aording

to the number of bits n for that mahine. Again, there is a value t whih is the

largest �gure in the simulated mahine. The spei� equation is similar to the

list growth equation above, however k is replaed by the growth expression of 2n:

2n × (⌊log10(2
n − 1)⌋+ 1) ∈ O(2n log10(2n − 1))

6.5.2 TM

The arithmeti funtions of the UTM take unary inputs on their tape. Thereby,

the number x requires x symbols to represent. For two variables, the growth rate

is bounded by the sizes of both: O(x+ y).

Lists are a delimited array of binary numbers whih ome in two variants;

#〈addr∗data〉 . . . and 〈data1〉∗〈data2〉 . . . These lists hold binary numbers where

t is the largest number in the list, and k is the number of elements. Both lists
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Figure 6.18: A 3 bit RASP arranged on a TM tape.

are terminated with a single symbol.

#〈addr ∗ data〉 . . . = k(log2(k) + log2(t) + 4) + 1 ∈ O(k log2(k × t))

∗〈data1〉 . . . = k(log2(t) + 2) + 1 ∈ O(k log2(t))

The linear searh requires address/data pairs so the input size growth is

bounded by O(k log2(k × t)). The other list funtions require data only lists,

so their input size growth is bounded by O(k log2(t))

The UTM is overed in detail in Setion 6.6. The universal RASP is repre-

sented on the tape as a list of 2n − 1 〈addr〉 ∗ 〈data〉 pairs. The data for the

PC has no address, and there is an additional IR whih is used in the ase of an

instrution requiring a parameter (Figure 6.18).

For a size 2n mahine, eah register is represented by two n-bit numbers. Eah

pair of numbers is pre�xed and separated by a single symbol (#,*), two symbols

end the memory and four of the n-bit numbers use a speial symbol to indiate

that they are registers used in the F-E yle. Thus the number of haraters to

represent an n-bit RASP is:

2n(2(log2(2
n) + 1) + 2) + 6 = 2n(2(n+ 1) + 2) + 6

= 2n(2n+ 4) + 6

∈ O(2n)

6.5.3 λ-Calulus

The magnitude of a Churh numeral in the λ-alulus is the number of times

the �rst argument is applied to the seond. Aside from the numeral for zero, the

number of haraters to represent the Churh numeral (n) is: 3n+8. The numeral

for 0 is 9 haraters in size. For proper appliation, the numerals are externally

braketed. The numeral 3 is (λf.λx.f(f(fx))). Arithmeti funtions all have two

numerals x and y as inputs, so the number of haraters is (3x+ 8) + (3y + 8) ∈

O(x+ y).
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Lists in the λ alulus are lists of Churh numerals. Eah element of the list is

a Churh numeral paired with another list, or with the NIL expression. The NIL

expression is 12 haraters long and PAIR is 16, not ounting the two external

brakets whih enlose the expression (PAIR p q). If k is the list length of the

list and t is the size of the largest numeral, then the expression for the size of a

list is bound by the expression:

18n+ kt+ 12 ∈ O(k × t)

The membership and linear searh expressions also require a single numeral, whih

ould possibly be of size t, to searh for; O(t).

The UTM in the λ-alulus is a list of quintuples (5 element lists without a

NIL terminator) for the symbol table, and a list of Churh numerals for the tape.

A quintuple onsists of two numerals for states, two numerals for symbols and

a numeral for diretion. The largest state is s, largest symbol is t, and largest

diretion is ONE (11 haraters). With s states and t symbols, the number of

quintuples in the table is s× t, and the size equation for the symbol table is:

s t(2(3s+ 3t+ 16) + 11 + 5(16 + 2)) + 12 = s t(2(3s+ 3t+ 16) + 11 + 5× 18) + 12

= s× t× (2s+ 2t+ 101) + 12

∈ O(s2 × t + s× t2)

The tape is a list, so it onforms to the size equation for lists O(k × t), where k

is the length of the tape, and t is as above. The upper bound of the entire input

to the UTM in λ-alulus is O(t(s2 + t+ k)).

The universal RASP takes two inputs: a list of numerals of size 2n, and an

output vetor whih is to be populated by ourrenes of the OUT instrution;

whih defaults to NIL. The numerals in the list an be have a maximum size

of 2n − 1, so the numeral size is bounded by 3(2n − 1) + 8. Eah RASP has a

memory of 2n, so there are 2n ourrenes of PAIR and a numeral, whih one

NIL to terminate the list. A RASP mahine is bounded in terms of bits with the
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equation:

2n(18 + 3(2n − 1) + 8) + 2× 12 + 2

= 2n(24 + 3(2n − 1)) + 26

∈ O(2n)

6.5.4 SKI

As has been the onvention throughout the thesis, the SKI expression have been

derived from the λ expression via braket abstration. It is therefore expeted

that the asymptoti growth of SKI inputs mirrors that of the λ-alulus. The

spei� size equations will be di�erent however.

The number of haraters required to represent a numeral f > 2 in SKI an

be alulated as: 11f − 1. The numeral for 0 is KI, 1 is I, and 2 is S(S(KS)K)I.

Arithmeti operations over numerals x and y are thus 11(x+ y)− 2 ∈ O(x+ y)

Lists are onstruted pairwise and terminated with the SKI NIL expression.

PAIR is 37 haraters long, not ounting the enlosing brakets. NIL is two

haraters in length. If k is the number of elements in a list, and t is the largest

numeral, then an input for the list funtion is:

k(11t− 1 + 39) + 2 ∈ O(k × t)

As with the other models, the SKI requires a further numeral as input for the list

membership and linear searh funtions.

The UTM is a list of quintuples and a list of numerals for the symbol table and

tape respetively. As with the λ-alulus, symbol table entries are tuples with �ve

elements and no NIL terminator. There are two numerals for state (possibly state

s), two numerals for symbols (possibly t), and a numeral for diretion (either 0

or 1). Using s states, and t symbols the symbol table of a TM in SKI is sized as:

st(4× 39 + 2(11s− 1) + 2(11t− 1)) + 12

= st(152 + 22(s+ t)) + 12

∈ O(ts2 + s× t2)

The tape of the UTM is a list of k elements and up to t symbols: O(k × t). The

input size of the UTM is therefore bounded by O(t(s2 + t+ k)).
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RASPs TM SKI λ-Calulus
Arithmeti O(log10(xy)) O(x+ y) O(x+ y)

List Membership

O(k log10(t))

O(k log2(t))

O(kt)
Linear Searh O(k log2(kt))
List Reversal O(k log2(t))

Stateful List Rev O(k log2(t))
Bubble Sort O(k log2(t))
Universal TM O(k log10(t) + stlog10(s

2t2)) O(s(log2(s))
2 + k) O(t(s2 + st+ k))

Universal RASP O(2n) O(2n) O(2n)

Table 6.20: Big O notation of input size growth rates

The RASP mahine enoded for the SKI is a list to represent the memory of

the mahine, and an initially empty vetor for outputs. An n-bit mahine has 2n

registers and eah an hold a maximum number of 2n − 1:

2n(39 + (11(2n − 1)− 1)) + 4 ∈ O(2n)

6.5.5 Comparison

Table 6.20 shows the big-O notations of the input growth rate. The variables x

and y are numbers, k is the length of a list, t is the largest element of a list or

number of symbols in a TM, s is the number of states in a TM, and n is the

number of bits in a RASP mahine.

These rates indiate the how the size of enoded input information hanges

depending on the size of unenoded inputs. It is useful to expose the advantages

inherent to the enoding system of a model.

For example, the RASP uses the set of natural numbers in its semantis to

evaluate mahines beause all of the RASP operations are de�ned over the set

of natural numbers. This in turn makes makes the natural numbers (and the

suessor/predeessor operations) impliit information within the semantis of

the RASP (nowhere are the naturals de�ned in the semantis).

Beause the RASP operators are de�ned over the natural numbers, there is an

injetive mapping from the external representation to the internal representation.

And beause arrays of natural numbers are versatile enough to represent many

di�erent inputs, the enodings are onsequently relatively suint.

By virtue of the base 10 representation of natural numbers, the RASP has
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overall the slowest growing inputs for the funtions. The TM uses unary enod-

ing for the arithmeti funtions, and binary enodings for the other funtions.

Without another numerial base to use, the representations of the input Churh

numerals is linear throughout the entire set of funtions.

Enodings for the URASP input grows at the same rate for all models, but that

is not true for the UTM. The RASP and funtional inputs grow in aordane

to the number of states, symbols and the tape length. The TM however, is

onerned only with the number of states and the length of the tape. While the

RASP and funtional UTM inarnations an simulate any arbitrary (s,t) TM,

Minsky's UTM an only simulate (s,2) TMs.

This does not a�et the omputational power of the Minsky's UTM language

relative to the languages of the RASP and funtion model UTMs, but may make

it less expressive in that the TM to be simulated will have a more onstrited

input language.

As disussed earlier, the TI aross paradigms sub-hypothesis (where TI = SI

+ PI) is ontradited by the fat that the λ-alulus and SKI have lower TIs

to alulate the funtions on average than the RASP and TM do respetively.

Viewing the growth rates, it is possible that the de�nition of TI does not go far

enough, in that it does not take the input size of funtions into aount. The

input growth size indiates that after a su�iently large input, the RASPs will

have the lowest TI + input size for all models. This is little more than onjeture

at this point but an interesting topi for future investigation.

The growth rates are for natural enodings, whih are straightforward map-

pings from unenoded to enoded data. There exist programs whih are stritly

more (Chaitin) elegant than the programs measured, but have more omplex

enodings whih grow faster. An example of this is the UTM by Neary.

6.6 The UTM

The ontrast between two di�erent universal mahines is an informative example

of how the enoding and information ontent of the input to a program in�uenes

the size of the program. Most notably for the TM, the elegane of the programs

210



Chapter 6. Analysis

Figure 6.19: The tape of the UTM simulating a mahine M . (From [65℄, pp 26)

an be in�uened by the enoding sheme of their input. The intuition is that

natural enodings of inputs require more program information to deode, whereas

well onstruted, larger, and more omplex enoding shemes o�oad omplexity

from the program to the input.

Realling the proof of the undeidability of elegant funtions in Setion 3.1,

we are reminded that there exists at least one funtion where the amount of

information required to speify the program+input an be improved for in�nitely

many inputs. The UTM may or may not be an example of suh a funtion, but

this example shows the extent that input enodings an have on program size.

6.6.1 Neary's UTM

Neary is the reator of the smallest urrently known diret simulation UTM. His

8 state, 4 symbol mahine is strongly universal, onsists of 30 tuples, and an

simulate 2 symbol Turing Mahines. Traditional diret simulation UTMs enode

a symbol table, and tape of a mahine M . The simulator maintains pointers to

whih state the mahine is urrently in, and whih position the head is at on the

tape. This intuitive onstrution requires the head of the simulator to traverse

the whole tape regularly.

Neary's mahine stores the entire urrent state on the simulated tape, thereby

using the state as a positional marker for the head. From an initial on�guration

with the symbol table represented as a olletion of enoded transition rules

(ETRs), and the state/symbol pair on the simulated tape (Figure 6.19), the

mahine operates in four yles.

The �rst yle sans the state and symbol pair on the tape. For eah b in

the pair, the mahine tiks o� a orresponding λ on the left. It does this until

211



Chapter 6. Analysis

Figure 6.20: The UTM �nding the relevant ETR (From [65℄, pp 26)

it reahes the word ba. In the example in Figure 6.20, the �rst three b symbols

from the enoded state have striken o� the �rst three λ's from the right.

The seond yle, opies the relevant ETR over the urrent state and symbol

pair on the tape. In this example, the ETRs are 5 symbols long and made up

of a and b symbols. This yle overwrites the ETR on the simulated tape with

the seleted ETR in the symbol table and initiates yle three, whih restores the

tape of the UTM, unheking the λ's and the symbols of the ETR that have been

opied.

The behaviour of yle four is dependent on whether the UTM has proessed

a left or right move. A right move exeutes a speial ETR whih inrementally

shifts the ETR to the right. The symbols 0 and 1 on the tape are represented as

the pairs aa and ba. A right shift would move the ETR from ETR ba to b ETR a,

to ba ETR.

Left shift ETRs are longer than the ETRs of the right shift. Sine the opying

of the new ETR is performed from the right hand size of the old state and symbol

pair, the new left-shift ETR therefore protrudes over the spae of the old ETR

by two symbols to the left. This in e�et shifts the tape relative to the ETR head

and pushes the new head position to the right of the ETR where yle 1 begins

again.

Neary's mahine has no spei�ed halting state; rather it halts through the

simulated mahine trying to run o� the left hand side of the tape. The teh-

niques used in this UTM are simple in isolation. It exhibits simple searhing for

and opying of ETRs. The enoding of the symbol table as ETRs, belies the

omplexity of the simulation.

Neary has also produed a slightly larger (3,11) mahine whih operates, save
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1,0,2,1,R

1,1,1,0,R

2,0,2,0,L

2,1,3,1,L

3,0,3,0,L

3,1,3,1,L

Figure 6.21: A (3,2) TM as the benhmark for testing input sizes

for very minor tehnial details, in the same manner as the (8,4) mahine. These

two mahines have similar, but di�erent enoding shemes. The (3,11) mahine

de�nes 31 tuples as opposed to the 30 of the (8,4) mahine, so if the intuition

of more tuples implying onise enodings is orret then it is expeted that the

expression for the TM in the (3,11) mahine will be more onise than the (8,4)

mahine. Also in this omparison is the UTM from Minsky. This (23,8) mahine

uses many more tuples than Neary's mahines, but has a muh more natural

expression of the tape and symbol table of the simulated TM.

6.6.2 Enodings

Consider the TM in Figure 6.21. This (3,2) mahine will halt on Neary's UTM by

running o� the left hand side of the tape and is what shall be used for omparison

of three UTMs.

The tape of Neary's UTM is initially arranged as a triple 〈M〉〈q1〉〈w〉 of the

enoding of the mahine as Enoded Transition Rules (ETRs), an enoding of

the initial state, and a right unbounded tape respetively. A tuple tst,sy is a

a quintuple t = 〈stx, syx, syy, D, sty〉, where stx is the original state, syx the

original symbol, D is either R or L, and syy/sty are the new symbol and state

respetively

1

. Here |Q| is the number of states and f is the symbol table itself.

The enoding of M is as follows:

〈M〉 = λε(t|Q|,1)λε(t|Q|,0)λε(t|Q|,0)λε(t|Q|,1)λε
′(f, t|Q|,0)

. . .

λε(t1,1)λε(t1,0)λε(t1,0)λε(t1,1)λε
′(f, t1,0)λe

1

Note that this form for tuples is from Neary and is used to make the reoniliation of his

work easier. This notation will not be used in any other setion.
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The funtions ε and ε′ enode the spei� tuples and depend on the partiular

UTM that the tuple is being enoded for. For the (3,11) UTM, the funtions are:

ε3,11(t) =































ea(t)hb(t)
If D = R, syy = 0

hea(t)hb(t)
If D = R, syy = 1

ea(t)−1hb(t)eee If D = L, syy = 0

ea(t)−1hb(t)ehe If D = L, syy = 1

ε′3,11(f, t) =



















ea(t
R,x)−3hb(tR,x)+2

If ∃tR,x, stx 6= st1

(Nothing) If 6 ∃tR,x, stx 6= st1

e5|Q|−3h4
If stx = st1

where tR,x
is any transition rule that shifts right and transits to the urrent state

from state x. The funtions a(t) and b(t) are de�ned by the equations:

a(t) = 5|Q|+ 2− b(t)

b(t) = 2 +

y
∑

j=1

g(t, j, y)

where y is the state transitioned to by the tuple. Finally, the funtion g(t, j) is

de�ned:

g(t, j) =



















5 If j < y

3 If D = L, j = y

0 If D = R, j = y

Funtions a(), b(), and g() are ommon to both of Neary's mahines. Only

the ε and ε′ funtions are di�erent. The relevant funtions for the (8,4) mahine

are as follows:

ε8,4(t) =































bba(ab)a(t)b
2(b(t))

aa If D = R, syy = 0

aabbb(ab)a(t)−1b2(b(t))aa If D = R, syy = 1

a(ab)a(t)−1b2(b(t))(ab)3aa If D = L, syy = 0

a(ab)a(t)−1b2(b(t))abbbabaa If D = L, syy = 1
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ETR T Rule tR,x b(t) a(t) ε or ε′ Size

ε′(f, t1,0 q1, 0, 1, R, q2 q1, 1, 0, R, q1 2+0=2 15 e12h4
16

ε(t1,0 q1, 0, 1, R, q2 2+5+0=7 10 he10h7
18

ε(t1,1 q1, 1, 0, R, q1 2+0=2 15 e15h2
17

ε′(f, t2,0 q2, 0, 0, L, q2 q1, 0, 1, R, q2 2+5+0=7 10 e7h9
16

ε(t2,0 q2, 0, 0, L, q2 2+5+3=10 7 e6h10eee 19

ε(t2,1 q2, 1, 1, L, q3 2+5+5+3=15 2 eh15ehe 19

ε′(f, t3,0 q3, 0, 0, L, q3 (None) null null (nothing) 0

ε(t3,0 q3, 0, 0, L, q3 2+5+5+3=15 2 eh15eee 19

ε(t3,1 q3, 1, 1, L, q3 2+5+5+3=15 2 eh15ehe 19

Table 6.21: Converting the benhmark to the format for Neary's (3,11) UTM

(from [65℄ pp 30)

ETR T Rule tR,x b(t) a(t) ε or ε′ Size

ε′(f, t1,0 q1, 0, 1, R, q2 q1, 1, 0, R, q1 2+0=2 15 bba(ab)12b8aa 37

ε(t1,0 q1, 0, 1, R, q2 2+5+0=7 10 aabbb(ab)9b14aa 39

ε(t1,1 q1, 1, 0, R, q1 2+0=2 15 bba(ab)15b4aa 39

ε′(f, t2,0 q2, 0, 0, L, q2 q1, 0, 1, R, q2 2+5+0=7 10 bba(ab)7b18aa 37

ε(t2,0 q2, 0, 0, L, q2 2+5+3=10 7 a(ab)6b10(ab)3aa 41

ε(t2,1 q2, 1, 1, L, q3 2+5+5+3=15 2 a(ab)1b30abbbabaa 41

ε′(f, t3,0 q3, 0, 0, L, q3 (None) null null a 1

ε(t3,0 q3, 0, 0, L, q3 2+5+5+3=15 2 a(ab)1b30(ab)3aa 41

ε(t3,1 q3, 1, 1, L, q3 2+5+5+3=15 2 a(ab)1b30abbbabaa 41

Table 6.22: Converting the benhmark to the format for Neary's (8,4) UTM

ε′8,4(f, t) =



















bba(ab)a(t
R,x)−3b2(b(t

R,x)+2)aa If ∃tR,x, stx 6= st1

a If 6 ∃tR,x, stx 6= st1

bba(ab)5|Q|−3b8aa If stx = st1

These sets of equations enode the symbol table of the mahine. Tables 6.21

and 6.22 present the working and results of enoding the test TM from Figure

6.21. The sixth olumn of the tables shows what will be on the tapes of the

UTMs. The supersribed numerals next to potentially braketed symbols indiate

a repetition of those symbols. Eah letter orresponds to a single symbol and the

size of eah onversion is given in haraters.

In ontrast to the Neary TMs, the initial tape of the Minsky UTM (Setion

4.4.1) is arranged as [w][st1][sy][M ]. The symbol table is arranged in quintuples

of stx, syx, sty, syy, D. The states are binary numbers, symbols are either 1 or 0,

and the diretion D is either 0 or 1 to indiate a left or right shift.
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T Rule Expression Size

q1, 0, 1, R, q2 0101011 7

q1, 1, 0, R, q1 0110101 7

q2, 0, 0, L, q2 1001000 7

q2, 1, 1, L, q3 1011110 7

q3, 0, 0, L, q3 1101100 7

q3, 1, 1, L, q3 1111110 7

Table 6.23: Converting the benhmark to the format for Minsky's (23,7) UTM

Mahine Tuple size State En Other Overhead UTM size Prog + UTM

N(8,4) 559 17 17 299 892

N(3,11) 254 17 17 319 607

M(23,8) 40 4 9 1270 1323

Table 6.24: Information ost of setting up the test TM on the three UTMs

A tuple enoded for Minsky's simulation uses binary numbers for both states,

and single symbols for the old symbol, new symbol and diretion. The urrent

state and symbol is stored elsewhere, neessitating another binary number and

single symbol. There are a number of delimiters to inlude too.

Table 6.23 shows the tuples onverted to their respetive tape expressions.

The onversion proess of the Minsky UTM produes a tuple form whih is muh

more in keeping with the original quintuples. Neary's onversion proess leaves

almost no easily disernible aspets of the original tuples. Without the tables and

equations, it would be very di�ult to derive the original tuples from this form.

The initial head position and state for Neary's UTMs (〈q1〉) is an expression

of length (5|Q|)+2. For both UTMs this is a5|Q|b2. Eah symbol on the simulated

tape is a pair of symbols on the UTM tape where 0 = aa and 1 = ba. Eah ETR

is separated by the λ symbol and terminated by the sequene λe.

The overhead of symbols for Minsky's mahine onsists of the head position

symbol M , the urrent state and symbol area between the �rst Y and �rst X

from the left, the X symbol separating tuples, and the �nal Y 0 at the far right

whih signi�es the end of the symbol table. The simulated tape has a one to one

orrespondene with the UTM tape.

All of the UTMs simulate arbitrary (n,2) TMs. The measurements made

measure the test TM implemented on the UTMs running with a blank tape.

Neary's UTMs require that all tuples enoded via ε are represented twie in the
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States Minsky (23,8) Neary (8,4)

2 37 318

3 53 626

4 86 1034

5 106 1542

6 126 2150

Table 6.25: Number of haraters per symbol table

symbol table, and that the ε′ tuples terminate eah state. Table 6.24 tallies up

the program information of a UTM set up to exeute the test TM on a blank

tape. The tuple sizes are measured as the total of expressions returned from ε(′)

or the Minsky enoding to populate the symbol table. `Other Overhead' symbols

are delimiters and suh.

There are 30 tuples in the (8,4) mahine, 32 in the (3,11), and 113 in the

(23,8) UTM. The data from the table shows that there is almost 1.5 times the

tape information required to represent the test mahine on the (8,4) UTM as

opposed to the (3,11) UTM, whih is two tuples larger. The (23,8) mahine is

muh larger than the other two mahines, but the representation of the test TM

is very onise in omparison. For this example the TI (measured in this ase as

the size of the TM tuples and the enoding of the benhmark mahines) of the

Minsky mahine is still larger than the TIs of the smaller mahines.

6.6.3 Input Growth

If s is the number of states in the mahine, the haraters required to implement

the symbol table for a Minsky-simulated mahine is:

2s(2(⌊log2(s)⌋ + 1) + 4) + (⌊log2(s)⌋+ 1) + 3

The Minsky enoding is agnosti to the operations of the tuples. The Neary

enoding however hanges depending on the shifts and state transitions whih

take plae. The enoding funtion ε′ hanges the sizes of the enoding depending

on whether there is a right moving transition into the urrent state. If state x

does not have a right moving transition entering it, then ε′ for the (8,4) (like state

3 in Table 6.22) mahine is a single harater, rather than something larger.
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The number of haraters required to implement the benhmark mahines in

the Neary (8,4) and Minsky (23,8) UTMs are shown in Table 6.25. The growth

of Nearys enoding here �ts the reurrene relation: an+1 = an + 100(n+ 1) + 8.

Solving this relation gives an equation that indiates that the growth in enoding

size is quadrati in the number of states:

an = 50n2 + 58n+ 2

The enoding for Minsky's mahine grows slightly more than quasilineraly

(n log2(n)), but far less than quadratially (n
2
). A ompromise is reahed with the

funtion n (log2(n))
2
whih grows faster than the formula for Minsky's enoding.

Neary's UTMs tape has two symbols per simulated symbol (2k), and Minsky's

UTM uses only one (k).

Thus, the big O notations for the Minsky and Neary enoding funtions are

O(s(log2(s)
2) + k) and O(n2 + k) respetively. This data shows that although

Neary's UTM is muh smaller than the UTM of Minsky, the enoding funtion

grows at a muh higher rate. Solving the formulae for the symbol table sizes and

adding in the TI of of Minsky's mahine at 1271 and Neary's at 300 haraters

shows that the breakpoint between enodings ours at 5 states. At simulating a

5 state TM, it is more information e�ient to use the UTM of Minsky.

6.7 Conlusions

This hapter has analysed the data from Chapters 4 and 5, to evaluate the hy-

potheses. Figure 6.22 summarises the hypotheses and sub-hypotheses, lists se-

tions with analyses whih are for and against the hypotheses and states (C) if

the hypothesis is on�rmed, and (NC) if not.

What has been found is that the Strong Semanti Information and Strong

Total Information hypotheses (Setion 3.1.2) annot be fully on�rmed. While

the number of haraters as an information metri is preditive for the RASP

family and between models of the same paradigm, the metri appears to fail to

aount for the di�erenes between models of di�erent paradigms.

The SI and TI hypotheses are onsistent within the on�nes of model paradigms
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1 Strong Semanti Information hypothesis (NC)

1a. SI within family. For: 6.2.1 (C)

1b. SI within paradigm. For: 6.2.2, 6.2.3 (C)

1. SI aross paradigms. For: 6.2.4, 6.2.7 Against: 6.2.5, 6.2.6 (NC)

2. Strong Total Information hypothesis (NC)

2a. TI within family. For: 6.2.1

2b. TI within paradigm. For: 6.2.2, 6.2.3 (C)

2. TI aross paradigms. For: 6.2.4, 6.2.7 Against: 6.2.5, 6.2.6 (NC)

3. Strong Semanti Ciruit hypothesis (C)

3a. SC within family hypothesis For: 6.3.1 (C)

3b. SC within paradigm hypothesis For: 6.3.2 (C)

4. Strong Total Ciruit hypothesis (NC)

4a. TC within family hypothesis Against: 6.3.1 (NC)

4b. TC within paradigm hypothesis Against: 6.3.2 (NC)

Figure 6.22: Hypotheses with evidene and on�rmation status

(Setions 6.2.1 � 6.2.3). What separates the paradigms is their internal represen-

tation and method of evaluation. The RASP and TM are primarily based on

arrays. The λ-alulus and SKI models have a graph based internal model and

evaluation system. It is onjetured here that this di�erene between the models

a�ets the data whih is ontrary to the SI and TI hypotheses. What is implied by

the urrent results is that the funtional models are more `information e�ient'

on average in omparison to the imperative models.

There appears to be a large separation in the in the TI amounts required

for the RAPS/λ-alulus opposed to the TI required for the TM/SKI (Setion

6.4.1). While the RASPs and λ-alulus have the onept of random aess/vari-

ables for the manipulation of data and strutures, the TM and SKI aess data

in a sequential fashion. The TI required to implement the universal TM and uni-

versal RASP programs in the TM and SKI are highly orrelated; the information

amounts are muh larger than the information amounts required for the RASP

and λ-alulus implementations.

The FPGA implementations, in de�ane of the abstrat TI implementations,

show that while there is a relationship between the number of times a partiular

omponent is used and the abstrat TI of a program in a model, that relationship

disappears when attempting to ompare the TIs of di�erent models (Setion
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6.3.3). In other words, if program A uses more LUTs on an FPGA than program

B for the TM, we an be reasonably on�dent that A has a higher TI than B.

However if A in the RASP uses more LUTs than B in the TM, we still annot

dedue the relative TIs between programs A and B. Cross model omparisons

do not work.

Part of the reason for this is there is an overhead in the semantis inurred

proportionally to the size of the programs. While the abstrat semantis an

easily de�ne a number as a member of the natural numbers, the FPGA reali-

sations require a onrete range. As the number grows, so must the number of

omponents required to represent that number at the hardware level.

Despite the TI being a poor indiator of relative iruit sizes, there exists

strong orrelations between omponent ounts and the information ontents of

programs. Table 6.11 shows that there is a very strong orrelation between LUTs

and the TI levels for TMs. The orrelation for RASPs is not as strong, but shows

a orrelation of both LUTs and slie registers with the TIs.

Potential elegane has been sari�ed by the author in favour of natural ex-

pressions of program inputs (Setion 3.1.1). Analysing the information growth

rates of the models (Setion 6.5) indiates that the growth rate of the TIs of

RASP programs of this thesis, paired with the inputs is lower in the limit than

the other models (Table 6.20). The TM follows the RASP due to its binary en-

oding. The funtional models with linear enodings are the largest. This holds

only for the spei� models and programs in this thesis, but is worthy of further

investigation.

A omparison between the mahines of Neary and Minsky shows just how

dramati an e�et input enoding shemes an have on the elegane of program

sizes (Setion 6.6). The input size for Neary's mahines grows quadratially in

relation to the number of states, while the input size for the Minsky UTM grows

in an almost quasilinear fashion. Simulating a TM with 5 states requires less

information for the Minsky TM than for Neary's (8,4) TM (Setion 6.6.3, Table

6.24).
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Disussion and Conlusion

This hapter onludes the thesis. Setion 7.1 reaps the aims, methodology,

results, and ontributions of the work. Setion 7.2 is a disussion ranging from

the role of type systems in programming languages to rereational programming.

Eah of these topis touhes on an aspet of this investigation and are disussed

in an informal manner. Finally, Setion 7.3 overs possible further work arising

from this investigation.

7.1 This Work

7.1.1 Aims

This work has been an empirial exploration of the intuition underlying the ex-

pressivity of models of omputation and languages. The intuition is that more

information in the semantis of model implies that the model is more expressive

than a model with omparatively less information. That extra information in

turn preipitates smaller programs in general.

More formally, the work has been an investigation into the relationship be-

tween the information ontent of the semantis of a model of omputation, and

the information ontent of programs written for that model. This is also known

as the �Coniseness Conjeture� (Setion 2.5).

The investigation was direted at resolving four hypotheses (Setion 3.1): the

Semanti Information (SI) hypothesis, the Total Information (TI) hypothesis, the

Semanti Ciruit (SC) hypothesis, and the Total Ciruit (TC) hypothesis.
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Consider two programs a and b whih ompute the same funtion and are

programmed in omputational models A and B respetively. The SI hypothesis

states that if model A has larger semantis than B, then program a will be

smaller in size than b on average. In essene, this asserts that there is an inverse

relationship between semanti size and mean program size.

The TI hypothesis not only onsiders the size of the program, but also of

the semantis. Consider programs a1 and b1 whih alulate a mathematially

trivial funtion suh as addition, and programs a2 and b2 whih alulate a more

omplex funtion suh as a universal mahine. If model A has signi�antly larger

semantis than model B, then the Total Information (size of program + size

of semantis) to alulate addition in model A may be higher than the Total

Information to alulate addition in B: sem(A) + a1 > sem(B) + b1.

Considering the ase of the more ompliated funtion. The TI hypothesis

states that with B having muh smaller semantis than A, the program b2 will

be muh larger in size than a2. This di�erene in size of programs is larger than

the di�erene in size of semantis and therefore sem(A) + a2 < sem(B) + b2.

The SC and TC hypotheses (Setion 3.1.3) are in referene to Field Pro-

grammable Gate Arrays (Chapter 5). The SC hypothesis states that there is a

diret relationship between the size of a models abstrat semantis, and the size

of a iruit whih realises those semantis.

The TC hypothesis is an analogue of the TI hypothesis above. Models whih

larger semanti iruits will produe an overall smaller iruit implementing a

omplex funtion than a model with a simpler semanti iruit.

7.1.2 Method

To resolve these hypotheses, 6 models of omputation are hosen. Models of

omputation an be separated into distint groups based on their harateristis.

Two of these groups: imperative and funtional (Setion 2.3) are represented here.

The imperative models inlude the Turing Mahine (Setion 2.3.1.1) and a family

of three Random Aess Stored Program (RASP, Setion 2.3.1.2) mahines. The

funtional models inlude the λ-alulus (Setion 2.3.2.1) and the SKI ombinator

alulus (Setion 2.3.2.2).
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These models have their methods of exeution and internal data represen-

tations formalised in Strutured Operational Semantis (SOS, Setion 3.4) and

thirteen programs are written for eah model (Chapter 4). The programs en-

ompass funtions in the set of arithmeti, those from list proessing, and the

universal mahines.

The sizes of the semantis and programs were measured by the number of

haraters it takes to write them (Setion 3.2) as is traditional in information

theory. As suh, the programs were written to be as �elegant� (Setion 2.2.2) as

possible while utilising what ould be alled a �natural� input/output enoding

(Setion 3.1.2). As the most elegant program to alulate a funtion may not use

a natural enoding, the programs and semantis measured are termed �suint�

(Setion 3.1.2).

As we are interested in the total amount of information required to speify

the program to ompute funtions, there are issues inherent in the approah of

speifying the semantis of models in an unspei�ed formalism. Attempts to

speify that formalism perpetuate suh issues (Setion 5.1). Thus the RASP and

TM models are implemented in hardware using Field Programmable Gate Arrays

(FPGAs, Chapter 5). The semantis and programs written for these models

are ompiled down to eletroni omponents and the number of omponents are

ounted.

7.1.3 Results

The SI and TI hypotheses make general statements about how the information

required to speify problems ompares against models with di�erent sizes of se-

mantis. Given the variane of omputational models tested in this investigation,

the hypotheses were split into three sub-hypotheses eah. These sub-hypotheses

are: SI/TI within family (omparing the three RASP models), SI/TI within

paradigm (omparing the TM with the RASPs, and the λ-alulus with SKI),

and SI/TI aross paradigms (omparing the TM with the λ-alulus/SKI and

the RASPs with the λ-alulus/SKI). In doing this, an exhaustive omparison is

made of the programs sizes of one model with the program sizes of another.

Chapter 6 provides the primary analysis of the measurements made to resolve
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the four hypotheses (Setion 6.7 and Figure 6.22):

• The SI/TI within family hypotheses are on�rmed with respet to the data.

• The SI/TI within paradigm hypotheses are on�rmed with respet to the

data.

• The SI/TI aross paradigms hypotheses are rejeted with respet to the

data.

• The Strong SI and TI hypotheses are not on�rmed by the data.

• The SC hypothesis is on�rmed by the data.

• The TI hypothesis is rejeted by the data.

In general, there is evidene for Felleisen's Coniseness Conjeture. However

the Total Information measure (semantis size + program size) used to gather

this evidene annot extend the onjeture to omparing models of omputation

aross paradigms.

While TI seems suitable for omparing di�erent models with the same eval-

uation methodology (i.e. imperative or graph redution evaluation), it appears

to be insu�ient for heterogeneous omparisons of models. There appears to be

subtle di�erenes between the semantis whih are not adequately onveyed by a

simple harater ount (Setion 6.2.8).

One of these subtleties ould be in the impliit de�nition of operators in the

semantis. Setion 7.3.5 disusses this in detail, but it is seemingly an issue as to

what is measured in the semantis and what is implied. For instane, the RASPs

use the natural numbers without any de�nition of them, whereas the λ-alulus

and SKI use no suh numerial onstruts.

Another lies in the de�nition of program inputs. A funtion is omputable if

there exists a program to solve any instane of that funtion. The program takes

the instane as input, hurns, and returns the solution. For any one funtion, if

it is omputable then there are an in�nite number of programs to ompute the

funtion. This spetrum of programs may vary from lever to naïve, e�ient to

wasteful, small to large, and many other opposing adjetives.

The FPGA hypotheses assert that there is indeed a relationship between the

size of the semantis represented in SOS, and the size of a iruit whih represents

the semantis. This on�rms the SC hypothesis (Setion 6.3.3). The TC hypoth-
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esis annot be on�rmed however. Given that the TC is an FPGA analogue to

the TI hypothesis, we would expet that the Total Ciruit size of some program

in models A and B would provide some insight into the relative expressiveness

of the two models. It turns out that this annot happen. Part of the reason for

this is there is an overhead in the semantis inurred proportionally to the size

of the programs. While the abstrat semantis an easily de�ne a number as a

member of the natural numbers, the FPGA realisations require a onrete range.

As the number grows, so must the number of omponents required to represent

that number at the hardware level.

While the relative number of omponents in FPGA implementations of models

is a poor indiator of the TI relationships between those models; there exists a

orrelation between the number of a spei� omponent (the preise omponent

is depended on the model), and the TI of the program implemented. In other

words, given two FPGA programs a and a1 written for the same model, if a1 uses

more of some omponent than a, then there is a reasonable ertainty that the the

abstrat program a1 will also be larger than the abstrat program a.

The logi optimiser of the FPGA ompilation software is an unknown variable

in these omparisons. At ompile time, the settings were tuned for maximum

ompression and it is urrently unknown quite how the ompiler optimises and

paks the logi into registers and LUTs. Investigation into this ould provide

insight into why there is a orrelation between omponent ounts and TIs, but

why the same omponent ounts give no indiation between the relative TIs of

models.

7.1.3.1 Other Results

Aside from resolving the hypotheses for the hosen funtions in the hosen models,

the analysis has unovered other results:

• There is evidene of a large jump in the required TI arising from sequential

vs random aess memories (Setion 6.4.1).

• There is a relationship between the size of inputs and the TI of a program

in a model (Setion 6.5.5).

Through ontrasting the UTM of Minsky with the UTMs of Neary (Setion
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6.6), it has been shown that two programs whih ompute the same funtion

an vary dramatially in size by virtue of their input enoding. Programs with

dense enoding systems of many symbols have relatively onise realisations of

the input data, whereas programs with sparse enodings have larger inputs.

The urrent evidene shows that programs whih dense input enodings are

larger than programs with sparser enoding systems. It was shown that for up

to TMs of size (5,2), Neary's (8,4) UTM has a lower TI + input enoding size

than the Minsky UTM. However, for inputs of greater size, the Minsky mahine

requires less information for the TI + input. This suggests that over all inputs,

programs with denser input enodings require less overall information.

Input enodings are not something whih is addressed by the Coniseness

Conjeture, or Chaitin's elegane. Indeed, if one were to also ount the size of

inputs as part of the total information, it would be found that there are funtions

whih annot have an optimal implementation for almost all inputs. These �nd-

ings are onsistent with Blum's speedup theorem whih addresses this spei�ally

(Setion 3.1.1).

And, if one were to ignore input sizes and used Chaitin's elegant �nder proess

to obtain a supposedly elegant program, it is only guaranteed that the found

program is elegant relative to a spei� input enoding.

The TI of the TM and SKI is muh larger than the TIs of the RASP mahines

and λ-alulus (Setion 6.4.1). The reason for this is suspeted to be random

aess memories. The RASP an modify data in arbitrary registers via diret

addressing. The λ-alulus abstration mehanism reads and reorders inputs to

the expression, preisely plaing them via substitution without unduly in�uening

the struture of the rest of the expression not involved in the substitution.

In ontrast, the sequential aess of the TM tape requires that it uses at least

one transition to shift left or right to aess and modify data. Likewise, the SKI

emulates the abstration mehanism of the λ-alulus by using the S ombinator

to `draw' inputs into terms, and the K ombinator to eliminate unrequired du-

pliate terms. These attributes of the SKI and TM bloat their expressions and

programs with `memory aess' terms whih are not present in the RASP and

λ-alulus ounterparts.
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7.2 Related Aspets

The e�ort of the investigation was direted towards being as broad and onsistent

as possible in the olletion of data to resolve the hypotheses. The olletion re-

sulted in 6 models of omputation and 13 programs. Furthermore, there were the

FPGA implementations of the RASPs and TMs. This is a lot of data, but leaves

the depth of the investigation, in partiular the formalisation of the relationships,

other minimal systems, alternative semanti representations, and other language

features somewhat laking.

Despite not being expliitly addressed in earlier hapters, there are arguments

to be made whih plae these features of models and programming languages in

the ontext of the SI, PI, and TI metris explored.

7.2.1 Conservative Extensions

Felleisen's expressiveness as desribed in Chapter 2 is based on the onept of

onservative extensions and restritions. The idea is that a Turing Complete

formal system A is more expressive than a Turing Complete system B if it an

be shown that A is a onservative extension of B.

The RASP2 and 3 are not true onservative extensions of the original RASP.

Rather, the respetive ADD and SUB instrutions have been added to the se-

mantis, and the INC and DEC instrutions removed. From Setion 2.5:

De�nition 2 (Conservative Extension/Restrition). A language L′
is a onser-

vative extension of L if:

• the funtions of L are a proper subset of those of L′
, with the di�erene

being {F1, F2, . . .};

• the sets of L-phrases and L-programs are proper subsets of their L′
oun-

terparts where there are no phrase or programs that ontain the extra L′

funtions {F1, F2, . . .};

• evalL is a proper subset of evalL′
and for all L-programs P , evalL(P ) holds

if and only if evalL′(P ) holds.

The onverse is a onservative restrition.
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The RASP2 and RASP3 do not �t this desription. However by the data

gathered, they are more expressive in that they require less information on average

than the RASP to express programs. The author believes that for models with

a similar evaluation method, the amount of semanti information is an indiator

of relative expressiveness. Setion 7.3 outlines work that an be done in this area

to on�rm or deny suh a notion.

With the framework onstruted in previous hapters, it is not hard to man-

ufature a RASP language that is a true onservative extension. The RASP2-1

and RASP3-1 are onservative extensions of both the vanilla RASP and their

respetive RASPx mahines. In essene, these mahines have INC and DEC in-

strutions as well as ADD and SUB, and an use INC plae of �ADD 1� whih is

sometimes neessary for RASP2/3 programs.

Preditions an be made as to the information levels of the two extensions.

The semanti information of the extensions will be greater than that of the RASP2

and RASP3 owing to the INC and DEC instrutions. It is also hypothesised that

the program informations of the extensions will be the same, or less than the PI

of the RASP and RASP3. The TI of the extensions will be initially greater than

that of the RASP2 and RASP3; and, realling the small amount of TI separating

the RASP2 and RASP3, is unlikely that the extensions will have a lower TI than

that of the smaller RASPs.

The RASP2-1 and RASP3-1 models have 10 instrutions: the basi 8 from the

vanilla RASP, and the ADD and SUB instrutions from the RASP2 and RASP3

models respetively. This adds an extra 54 haraters to the language semantis.

The ADD and SUB instrutions are mapped to the numbers 3 and 4, with the

other instrutions following on afterwards as in the de�nition of the RASP in

Chapter 2.

Tables 7.1 and 7.2 show the haraters of the implementations, and the number

of instrutions required. As expeted the extensions failitate smaller programs

than the ordinary RASP2 and RASP3, but the di�erene is rather negligible.

The extension is really only useful for replaing instrutions suh as �ADD/SUB

1� with the relevant INC or DEC, so it saves one instrution.

Where the di�erene is not negligible is in the RASP2 vs the RASP2-1 �gures
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RASP2 RASP3 RASP2-1 RASP3-1

Addition 9 25 9 25

Subtration 59 61 59 59

Equality 26 27 26 27

Multipliation 59 60 59 59

Division 131 134 131 131

Exponentiation 129 131 129 129

List Membership 129 131 129 130

Linear Searh 132 135 132 134

Reverse List 135 137 135 134

Stateful Rev List 273 277 273 273

Bubble Sort 549 297 292 290

Universal TM 571 574 572 571

Universal RASP 1209 1231 1208 1205

Semantis Size 585 587 639 641

Table 7.1: Program and semanti sizes

RASP2 RASP3 RASP2-1 RASP3-1

Addition 4 6 4 6

Subtration 22 22 20 20

Equality 9 11 9 11

Multipliation 24 24 23 23

Division 45 45 42 42

Exponentiation 43 40 41 38

List Membership 34 31 33 30

Linear Searh 36 35 35 33

New List Rev 45 43 43 39

In Plae Rev 78 77 73 72

Bubble Sort 127 123 121 117

Universal TM 148 137 143 131

Universal RASP 292 283 280 270

Arithmeti Mean 69.76 67.56 66.69 64

Geometri Mean 40.79 41.47 39.11 39.43

Table 7.2: Registers used by the various RASP2/3 and their extensions
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RASP2 RASP3 RASP2-1 RASP3-1

Arith Mean All PI 262.38 247.69 242.62 243.62

Arith Mean All TI 847.38 834.69 881.62 884.62

Geo Mean All PI 130.78 137.21 124.59 135.21

Geo Mean All TI 802.48 793.38 842.69 846.30

Table 7.3: Means of the information levels of the implementations

for the bubble sort. The extension and relevant replaement of ADDs with INCs

dropped the number of instrutions below the lower 2n−3 threshold whih ditates

RASP size, allowing for a smaller overall memory size. Table 7.2 shows that the

RASP2-1 requires only 121 instrutions, rather than 123 instrutions like the

RASP2.

The arithmeti and geometri means for all of the funtions are in Table 7.3.

As expeted, the overall TIs of the extensions are larger than the non-extended

RASPs. The savings on PI over the set of funtions is lower than added SI. But

as the set of tested funtions inreases in size, TIs of the RASP2-1 and 3-1 will

inrease slower than that of the RASP2 and 3.

The TI of the RASP2-1 is lower than the TI of the RASP3-1. This is beause

of the aforementioned drop in the size of the RASP2 mahine for omputing

the bubble sort. This data ontravenes hypothesis 2a: TI within model family.

However Table 7.2 does show that the RASP3-1 requires less instrutions than

the RASP2-1 for the list and universal funtions and that the low number of

haraters for the RASP2 implementing the addition funtion is largely the ause

of the imbalane. It is not unreasonable to projet that this imbalane is orreted

as the set of tested funtions grows.

The RASP2-1 and RASP3-1 are true onservative extensions of the RASP

and RASP2 or RASP3. Felleisen's oniseness onjeture holds in this ase as

programs implemented in the extended models are on average smaller than those

in the unextended models. This is also further evidene to the laim that SI =

expressiveness for models with similar evaluation methods.

While they are a greater distane apart than the RASPs, the λ-alulus and

SKI operate amongst similar priniples. Indeed, realling the mapping from SKI

ombinators to λ terms from Chapter 2 (Figure 7.1), the SKI an be mapped

diretly into the λ-alulus syntax.
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I ≡ (λx.x)
K ≡ (λx.λy.x)
S ≡ (λx.λy.λz.xz(yz))

Figure 7.1: Combinator λ terms

SKI λ-Calulus SKλ
Addition 16 27 16

Subtration 113 46 46

Equality 208 117 177

Multipliation 8 15 8

Division 565 229 229

Exponentiation 11 9 9

List Membership 362 208 208

Linear Searh 385 236 236

List Reversal 190 134 134

Stateful List Rev 1397 460 460

Bubble Sort 1903 550 550

Universal TM 2593 584 584

Universal RASP 9554 1084 1084

Semantis Size 291 515 600

Table 7.4: SKλ programs in omparison

The SKI language an be de�ned as a trunated version of the λ-alulus

without arbitrary variables and abstrations. The only permissible abstrations

are those within the S, K, and I ombinators. As a result, the ommon language

universe for the SKI and λ-alulus is very similar to the λ-alulus semantis.

SKλ is a onservative extension of both the SKI and λ-alulus. Retaining

all of the abstration, variable, and redution rules of the λ-alulus, SKλ is

augmented with named expressions, S, K, and I. At parsing time, these named

expressions get transformed into their orresponding λ terms and parsed into the

redution tree.

Considering how we make use of named terms to explain λ expressions all

throughout this thesis, espeially in Chapter 4, we an immediately see how

advantageous suh a mehanism would be. Considering only the abbreviations S,

K, and I, we an selet the smaller of the SKI or λ-alulus as the SKλ program.

Doing this yields Table 7.4.

There are likely other optimisations whih an result in smaller expressions,
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e =⇒ I(e1)

parse(e) =⇒ {APP, parse(λx.x)parse(e1)}

(a) Parsing an I

e =⇒ K(e1)

parse(e) =⇒ {APP, parse(λx.λy.x)parse(e1)}

(b) Parsing a K

e =⇒ S(e1)

parse(e) =⇒ {APP, parse(λx.λy.λz.x z(y z))parse(e1)}

() Parsing an S

Figure 7.2: Extra parsing rules for SKλ

but this simple seletion of the most onise expression of the two models demon-

strates how the SKλ has lower averages than either the SKI or λ-alulus.

The semantis of SKλ primarily follow those of the λ-alulus, previously

presented in Setion 3.4.3. These semantis are augmented by a series of rules

whih substitute the orret expressions in for the ombinators. Three new rules

are required whih are shown in Figure 7.2. In addition, the ombinators have to

be added to the syntax of the terms. The sizes of the new rules are added to the

λ-alulus semantis to derive the semantis size at the bottom of Table 7.4.

As a onservative extension of the SKI and λ aluli, the SKλ language has

larger semantis than either. It also produes smaller programs than either on

average. Again, Felleisen's oniseness onjeture reinfored by this data.

7.2.2 Compilation

The fous of this thesis presents the models as interpreted languages. Essentially,

the program universal SOS mahine �runs� the SOS evaluation funtion (E() in

the ase of the RASPs) step by step. These interpreted semantis are a onstant

size for all of the models. A RASP program whih immediately halts has the

same SI as the universal RASP mahine, despite not using 7/8 of the instrution

set.

More ommon in the programming language spae is a ompiler. A ompiler
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ombines a program in language A with the semantis of A to produe a self

ontained pakage written in the language of the exeuting mahine X , whih is

also known as the target arhiteture.

De�ning a ompiler for the RASP mahines would perform a semanti fold

where only the rules whih orrespond to instrutions in the program would be

pakaged. Using the immediately halting program above, the model semantis of

the RASP and rule for the HALT instrution would be all that was required to

exeute the program orretly. Disarding rules that the program will not exeute

results in a lower TI level than indiated in previous hapters.

In this way, ompilers an redue the TI of programs for models. Their e�-

ay of TI redution is based on the size of the original semantis. A semantis

ontaining many rules/instrutions and a small program utilising only a hand-

ful of those rules has a large redution in TI size. A model with omparatively

small or �fully utilised� (where every rule is used in the exeution of a program)

semantis suh as the TM or λ-alulus, would not ahieve suh a redution in

size.

The RASPs of this thesis are not an ideal testbed for a ompiler. If a ompiler

inludes only the rules where it is immediately evident that they will be exeuted,

the resulting semantis will only ontain the rules for the initial instrutions. If an

instrution is exeuted via self-modi�ation whih is not inluded in the bundle

of semantis then the mahine will halt, even if it is a valid instrution in the

original semantis.

Future work addressing the ompilation of programs to be run on the hy-

pothetial target arhiteture X should use models whih produe �stati� (non-

rewriting) programs. A onvenient model to use would be the RAM model, whih

is not unlike the RASP and exeutes stati programs.

7.2.3 Types

A type system is a restrition on the set of otherwise admissible programs. These

programs are syntatially orret, and all assignments and funtion alls use

either the orret types, or the inorret types are properly asted into the orret

type beforehand.
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At a low level, programs and data are represented using very simple strutures.

Most, if not all, mahines store and proess information as binary numbers. Say

that there was no type systems, and that eah binary number referred uniquely

to a piee of information. If A to Z were the binary numbers 00001-11010, then

whih binary numbers represent the numerals 1 to 26?

A type system provides ontext for how a partiular piee of data should be

evaluated. While the data is represented homogeneously at the lowest level, it

should not be allowed that the letter �A� (ASCII value 01000001) an be added

to the number 65 (also 01000001).

Say that one deided to eshew the traditional de�nitions of NIL and NULL

(Setion 2.3.2.1) for marking the end of and testing for the end of lists respe-

tively. A more onise expression for NIL is just FALSE = λx.λy.y, whih saves

three haraters per ourrene. A test for the new end of the list is NULL =

λp.p(λx.NOT). Reuse of this ommon Boolean funtion for a very spei� pur-

pose breaks when a list of booleans is traversed. The test for NIL is a test for

FALSE, whih may possibly be in multiple positions in the list.

What is more disheartening is that the expression for FALSE is also the ex-

pression for ZERO. So not even lists of numbers are safe from this poor hoie of

representation. A typial type system is a pair of the term and a number whih

indiates the type of the term. Upon appliation of a funtion to arguments, the

types of the arguments are ompared to the expeted types and if orret, the

funtion is omputed with the input and if not, the running program terminates.

The implementation of a type system in this manner is exessive for the set

of funtions examined here, but as the set grows and funtions get more ompli-

ated, a type system is a relatively onise method to extend the appliability of

expressions to multiple domains.

7.2.4 Semanti Shemes

The semantis of the models in this investigation were formalised as Strutured

Operational Semantis (SOS). The SOS notation is �exible enough to speify

the semantis of the models in a reasonably onise and uniform fashion. The

ability to speify the �ne details of model operation resulted in a set of small step

234



Chapter 7. Disussion and Conlusion

operational semantis.

The SOS is also a model of omputation. The elegane/suintness of the

model semantis is an indiation of just how expressive the SOS model is. Sine

SOS is a model of omputation, the semantis an be thought of as universal

mahines. There is little assurane that the information ontent of the semantis

aurately re�ets the expressivity of the models represented. While the infor-

mation ontent measures broadly align with the intuition of model expressivity,

orroborating measurements should be obtained by implementing universal ma-

hines of all models the model in every other model. Currently only the TM and

vanilla RASP are implemented.

It is worth remembering that the assertions of model expressivity, relation-

ships and the supporting measurements made by this thesis apply only to the

models and notations explored here. There are numerous alternate notations and

onservative extensions to models whih may hange the relationships.

DeBruijn indies are ostensibly a di�erent notation for the λ-alulus [21℄.

Rather than variable names, λ abstrations are numbered starting from the in-

nermost terms to the outermost. Bound variables are numerals whih our in

the body of the expression. A numeral n is bound by the nth λ from the innermost

level. A variable n is bound if it is in the sope of at least n λ's.

As an example, onsider the term:

(λx.λy.z (x(λp.p x y)))(λv.v k) ≡ (λλ4(3(λ132)))(λ12)

In the term, z and k are unbound in their parent expressions. Sine there are

three nested λ's in the expression, z is represented as `4' as to be out of sope.

Likewise, there is a single λ in the expression on the right whih binds the v, so

the k is represented as `2'.
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Redution to normal form follows already established onventions:

(λx.λy.z (x(λp.p x y)))(λv.v k) ≡ (λλ4(3(λ132)))(λ12)

⇒β (λy.z((λv.v k)(λp.p(λv.v k)y))) ≡ (λ4((λ15)(λ1(λ15)2)))

⇒β (λy.z((λp.p(λv.v k)y)k)) ≡ (λ4((λ1(λ15)2)5))

⇒β (λy.z(k(λv.v k)y)) ≡ (λ3(4(λ14)2))

⇒β (λy.z(k(yk))) ≡ (λ2(3(13)))

Given this behaviour, DeBruijn indies are a model for the λ-alulus, however

the evaluation semantis are di�erent. In the above redution the variable z

does not move, but it is renamed twie as the redution proeeds. Similarly the

variable k is renamed to be one above z. When a substitution is made under

DeBruijn indies, there is a global renaming e�ort for the entire term to rename

all variables aording to the number of nested λs there are. This is as opposed

to the familiar λ-alulus where renaming is done at a loal level.

Expressions using DeBruijn indies are typially shorter than expressions us-

ing the syntax of the λ-alulus de�ned in this thesis. However the semantis of

a DeBruijn model requires this global renaming and a notion of how to ount in

order to name variables. Expressions using DeBruijn indies therefore have to be

evaluated on their own terms with their own semanti sheme. The semantis

of DeBruijn's λ-alulus have not been made expliit and measured, but it is

theorised that this global renaming behaviour requires larger semantis than the

λ-alulus system exhibited throughout this investigation.

7.2.5 Related Minimalism

Elegane, or minimalism, in the size of programs is often a desirable property, in

so far as ahieving elegane does not adversely a�et other measures of how good

a program is; suh as time/spae e�ieny or readability. This setion brie�y

disusses systems whih embrae minimalism to the fullest and the ommunity

of programmers whih do the same.
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7.2.5.1 Another minimal system

A Turing tarpit is a model of omputation whih an do everything, but is very

hard to use. The term was oined by Perlis in [67℄:

54. Beware of the Turing tar-pit in whih everything is possible but nothing of

interest is easy.

The SKI and TM are small models of omputation, both with reasonably

tarpitty qualities. Without judiious use of white spae, it is near impossible to

determine the funtion of a suitably large SKI term. And without a sketh of a

state mahine/sample tape to hange it is di�ult to determine the funtion of

a TM.

Iota is a single ombinator universal system [89℄. The ombinator is i where:

i ≡ (λx.xSK)

where S and K are from the SKI ombinator alulus. The system also uses an

appliation operator; `*' suh that ∗FF = (FF ) where F is an expression. The

SKI ombinators an be de�ned in Iota to demonstrate Turing ompleteness:

∗i ∗ i ∗ i ∗ ii = (F (F (F (FF )))) = S

∗i ∗ i ∗ ii = (F (F (FF ))) = K

∗ii = (FF ) = I

Iota is a syntatially in�exible extension to the SK ombinator alulus (with-

out the I). Though the syntax is small, the semantis are relatively large. The

de�nition of i above implies the use of λ abstrations. Beause inluding the

semantis of the λ-alulus for a single ourrene of a λ abstration is extremely

wasteful, it is more prudent to de�ne a new ombinator ix = xSK. This sidesteps

the requirement of λ abstrations in the semanti de�nition of the model.

What annot be sidestepped is the requirement that the semantis of Iota use

the internal representation and evaluation semantis of the S and K ombinators.

In addition, two new evaluation rules are required for the evaluation of ∗ii =

SK(SK) and ∗ix = xSK. The rule for I an be disarded from the original SKI

semantis, along with the original parsing rules.
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e =⇒ ∗e1e2
P (e) =⇒ {A, (P (e1), P (e2)}

(a) Appliation of an expression to another

e =⇒ i

P (e) =⇒ {i, ∅, ∅}

(b) Parsing an instrution

Figure 7.3: Parsing rules for Iota

T.z = A
T.L.z = T.R.z = i

R(T ) =⇒ {A, {A, {A, S,K}, {A, S,K}}};R(Troot)

Figure 7.4: Applying i to itself

The parsing semantis for Iota are therefore are shown in Figure 7.3. Figure

7.4 shows the extra rule required to evaluate the Iota instrution. The size of the

Iota semantis in the format desribed in Chapter 3 is 272 haraters, whih is

slightly smaller than the semantis of the SKI at 291 haraters.

Expressions in Iota are also very large. At present, most Iota expressions are

derived from SKI, so large SKI ombinations derived from λ-alulus expressions

are made even larger through onversion of individual S, K and I ombinators to

their Iota ounterparts.

A restrited syntax mahine for the imperative paradigm also exists. The

Ultimate Redued Instrution Set Computer (URISC) model is Turing Complete

using only a single instrution [59℄. The exat nature of this instrution an

vary, but one of the more studied models Subleq [60℄ uses an instrution whih

subtrats the ontents of register A from the ontents of register B, stores the

result in B, then jumps if the result is less than or equal to zero.

7.2.5.2 Gol�ng

Code Golf is a rereational programming ativity where a problem is presented

and solutions are taken in either a spei� language or a multitude of languages.

The solutions are not only evaluated on their extensionality, but also their size.

Golfers attempt to minimise their sore by solving the problems with the fewest

keystrokes possible.

Naturally there has been the development of domain spei� languages for
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ode golf. A notable example is Golfsript, a stak language implemented in

Ruby where ommon operations are mapped to single haraters and overloaded

suh that funtion performed by an operator is dependent on the arguments

supplied.

A Golfsript program (say 1. + 2 + 3 ∗ 2+;) is a list of literals. Individual

numerals or haraters are pushed onto the stak, operators like + and * pop the

top two elements of the stak, add or multiply them, and then push the result

onto the top. The (.) funtion dupliates the top element of a stak and pushes

it; the (;) operator pops the top element. The program 1.+2+3∗2+; is traversed

from left to right. The 1 is pushed then dupliated, 1 and 1 are added to make

2, another 2 is pushed then 2 and 2 are added for 4, a 3 is pushed, 3 and 4 are

multiplied to 12, 2 is pushed, 2 and 12 are added to make fourteen, �nally the

fourteen is popped from the stak.

There are operators for lists whih an be onatenated with + ([1 2 1 3℄[4

5℄+ 7→ [1 2 1 3 4 5℄), bloks of ode ({. . .}) and if, while, do, fold statements.

Golfsript is Turing omplete.

Golfsript an produe very onise programs, but the underlying semantis

are quite large. While the internal representation as a vetor of input symbols

and a stak for proessing is reasonably simple, in partiular the overloading of

operators neessitates a type system so that expressions are evaluated orretly.

Golfsript would produe the smallest program for most, if not all, of the funtions

studied in this thesis, but the semantis would be larger.

7.3 Further Investigations

There is a onsiderable amount of further work arising from this investigation,

from formalising what has been observed, to exploring the extent that input

enoding a�ets the TI, to more aurate measurements by de�ning the impliitly

used operators of the semantis all the way down to the axioms.
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7.3.1 Formalism

The thesis results ould be generalised and formalised as follows. Felleisen's

de�nitions of expressiveness and language extensions are a good starting point.

His notion of a ommon language universe is a onservative extension of two

languages whih he wishes to ompare. This ommon language universe is used

to de�ne relative expressiveness.

Consider the languages L, L0, and L1 where L is a onservative extension

of both L0 and L1. The language L0 is said to be less expressive than L1 with

respet to L if L0 an (maro-)express a subset of the operators of L where L1 an

(maro-)express the operations whih L0 an express as well as other operators

of L.

There are some aveats to the �is expressible� statement. Felleisen de�nes ex-

pressibility in terms of a homomorphi (program struture retaining) translation

φ. A language L is said to have the ability to express an operator F (e1, . . . , ea) if

there exists φ suh that F (e1, . . . , ea) ≡ φ(F (e1, . . . , ea)) where ≡ is operational

equivalene.

While it is feasible for any Turing omplete system to express the operations

of any other, Felleisen imposes this restrition of a homomorphi mapping. That

is, that the translation of a program using some operator does not require a global

reorganisation of the rest of the program. Removing the original operator F and

inserting the translation φ(F ) should involve little disruption to the rest of the

program.

Now onsider the RASP2-1 with respet to the RASP and RASP2. RASP2-1

is L and the other two are L0 and L1 respetively. For the RASP2, the INC and

DEC instrutions of the RASP2-1 are eliminable as they are trivially equivalent to

the instrution �ADD 1� and �SUB 1�. Likewise, the ADD and SUB instrutions

of the RASP2-1 are eliminable with respet to the RASP as there exist RASP

programs whih are equivalent in funtion to the ADD and SUB instrutions.

This symmetry in operational equivalene and maro-expressibility opens up

an interesting edge ase in Felleisen's framework. Aording to the framework,

RASP2 and RASP have the same expressive power; despite the later oniseness

onjeture positing that more expressive languages produe smaller programs
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Figure 7.5: Conservative extensions of RASP mahines by semantis size

relative to less expressive languages.

A notion of relative expressiveness ould be de�ned to extend the notion of

Felleisen's expressiveness paired with the size of the translation given by the

mapping θ:

De�nition 3 (Relative Expressiveness). Let L be a language and L0, L1 be on-

servative restritions of L, where the set {F1, . . . , Fn} is the set of operators not

in L0, and the set {A1, . . . , Ak} is the set of operators not in L1. If n = k (both

L0 and L1 do not de�ne the same number of operators in L), then L0 is more

expressive than L1 if:

• The operators {F1, . . . , Fn} and {A1, . . . , Ak} are (maro-)eliminable with

respet to L0 and L1.

• The size of mapping φ0 from {F1, . . . , Fn} to L0-phrases is smaller than the

size of mapping φ1 from {A1, . . . , Ak} to L1-phrases.

This resolves the issue of apparent expressive equality of languages whih have

the same number of unde�ned operators in the ommon language universe. It

may not be the orret approah however if RASP2 vs RASP3 is onsidered.

Suppose the RASP4 ombines the addition and subtration funtions of both

RASPs for the funtions ADDd/SUBd (diret) and ADDi/SUBi (indiret) in the

way suggested in Setion 3.4.2 when the RASP instrutions of Hartmanis were

disussed. The sets of eliminable funtions: RASP4 \ RASP2 = {ADDi,SUBi}

241



Chapter 7. Disussion and Conlusion

CPY 'yval

STO 'yreg

LOAD x

ADD 0 ;yreg

y :yval

(a) RASP2 ADDi

CPY 'yval

STO 'yreg

LOAD

SUB 0 ;yreg

y :yval

(b) RASP2 SUBi

LOAD y

STO 'tmp

LOAD x

ADD 'tmp

0 :tmp

() RASP3 ADDd

LOAD y

STO 'tmp

LOAD x

SUB 'tmp

0 :tmp

(d) RASP3 SUBd

Figure 7.6: Implementations of diret and indiret ADD/SUB

and RASP4 \ RASP3 = {ADDd,SUBd} are the same size, so it falls to the

mappings θR2 and θR3 to tiebreak.

Figure 7.6 shows realisations of indiret and diret versions of ADD/SUB in

the RASP2 and RASP3 respetively. The realisations are the same size. Eah

one requires nine registers. This thesis has maintained that the RASP3 is more

expressive than the RASP2 by virtue of its larger semantis and oniser programs

on average. If the de�nition for relative expressiveness holds, then the RASP2

and RASP3 are of the same expressive power.

Integrating the general trends of these omparisons into Felleisens frame-

work would have to take these tiebreaker aspets into aount, as well as why

information-based ross-paradigm omparisons do not behave in the same manner

as inter-paradigm omparisons.

7.3.2 Program Equivalenes

Setion 4.6 disusses the importane of establishing equivalene between two re-

alisations of the same funtion before formal assertions are made. The work

of this thesis has not shown that the implemented programs herein hold under

extensional equivalene.

Though equivalene of programs in general is undeidable, equivalene of pro-

grams whih ompute the primitive reursive funtions, barring erroneous our-

renes of the µ operator (Setion 4.1) should be omputable.
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There are multiple ways whih extensional equivalene an be estimated, if

not proven [29, 51, 69℄. One approah involves indution over enoding funtions.

Consider a general problem statement: �5+8�, or �Searh 5 in [1,2,4,5,3,6,7,10℄�.

For eah (program, model) pair there exists a pair of funtions: an enoding fun-

tion and a deoding funtion. The enoding funtion encx,y(s) enodes the general

statement s ∈ Sy into a form suitable for evaluation with respet to program y in

model x. Similarly, the decx,y(q) deodes the result of an exeution q aording

to the program y written in model x.

Suppose Y is the set of all funtions, X is the set of all models, and Sy is

the set of all valid statements whih are inputs to funtion y. Two programs in

models x and z whih ompute a given funtion y are extensionally equivalent if:

∀s ∈ Sy : decx,y(semx(progx,y(encx,y(s)))) = decz,y(semz(progz,y(encz,y(s))))

where semx are the semantis whih exeute a program written in x, and progx,y

is a program written in x whih omputes the funtion y.

The abstration a�orded by the existene of enc and dec plaes the inner

workings of the semantis and program into a blak box, failitating the use of

indution to show equivalene.

7.3.3 Input Sizes

Setions 3.1.1 and 6.5 have disussed the e�et of input enoding on program

size. A renewed investigation would aim to fully explore the extent of how input

enoding e�ets the TI of a model and funtion.

The density of enodings has an in�uene on the size of the programs. For

example, returning to the UTMs of Setion 6.5, a relatively natural enoding

of the external tuple of the TM (〈sto, syo, stn, syn, D〉) uses single symbols to

represent the read and written symbols of eah tuple and a single symbol for the

diretion. The nominally base 10 numerals denoting the states are enoded in

binary, and tuples are delimited with a single symbol. The mahine to utilise this

enoding has a large number of state and symbols with many potential tuples:

(23,8) with 184.
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Reduing the size of the alphabet of the enoding results in a muh smaller

mahine of (8,4) with only 32 potential tuples, however the enoding of the input

is sparser and muh more omplex, inreasing in size by nearly 14 times. The

(3,11) of 33 potential tuples results in a denser enoding of just under half of the

enoding for the (8,4) mahine.

7.3.3.1 No Free Lunh and Invariants

It is suspeted that a variant of the �No Free Lunh� (NFL, [103℄) theorem applies

to the relationship of information between semantis programs and their inputs.

Both folklore and Felleisen hypothesise that small semantis beget large programs

and vie versa. The existene of Neary's UTMs show that there an be onise

programs with onise semantis relative to other models. However inputs for

suh programs are large. Similarly, a model with a very onise program and also

onise input should have a large set of semantis.

The NFL theorem states that any two searh algorithms are equivalent when

their performane is averaged over all possible problems. If an algorithm is par-

tiularly good at searhing over some arrangement of data, then it will be equally

bad at searhing some other arrangement:

Conjeture 1 (NFL for Information). Let P be an elegant program suh that

there exists no smaller program to alulate the funtion of P , whih uses the

same enoding funtion e for the input.

Any redution in the size of P would neessarily require an inrease in the size

of the semantis for the model of P (i.e. more instrutions), or a new enoding

funtion g suh that:

∀x : e(x) < g(x)

Consider an elegant semantis and an elegant program. A redution in the

semantis via elimination of some rule whih is used by the program will inrease

the size of the program. To further redue an elegant program will preipitate

an inrease in the semantis and maybe the input enoding. An elegant pro-

gram annot derease in size without the introdution of new operators via the

semantis.
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The formulation of the NFL hypothesis suggests that for every funtion there

exists some minimal amount of information whih is distributed over the seman-

tis, program, and input enoding for some model.

Conjeture 2 (Information Invariane). For all model and omputable funtion

pairs, there exists an information invariant i and overhead c. The value i + c is

distributed over the semantis, program, and enoding funtion. The program and

enoding funtion are optimal when c is minimised, and that any further redution

of information in the semantis, program, or enoding funtion will orrespond

to a rise in information in the other two.

7.3.4 Model Attributes

The radial di�erene in internal representation (array vs graph) and in evalua-

tion method (sequential vs graph redution) is believed to ause the disonnet

between the TIs of the imperative and funtional paradigms. It may be that some

operators of the SOS formalism whih are used in one paradigm but not the other

ontribute a large amount of omputational power. Setion 7.3.5 disusses how

this ould be aounted for.

Irrespetive of the paradigm, there is a dramati di�erene in the TI between

the models with large semantis and the models with small semantis. This ours

most notably in the representations of the universal RASP and universal TM. The

TI for the SKI and TM representations inrease drastially when implementing

these programs opposed to the RASP and λ-alulus implementations.

This is hypothesised to be preipitated by the di�erene in memory models

between the less expressive models and the more expressive ones. The less ex-

pressive models use sequential aess/redution while the more expressive models

have random aess and arbitrary substitution:

Conjeture 3 (Model Attributes). The di�erene observed between the informa-

tion ontents of the TM/SKI and RASPs/λ-alulus is aused by the existene

(or lak thereof) of random aess memory strutures in the models.

There may exist more of these �jumps� in required TI. A non-deterministi

model of omputation is a model whih leverages probability in order to ompute.
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Suh a model has a valid program if there exists at least one valid omputation

path whih returns the orret output. Non-deterministi varieties of all models

of omputation exist. There are non-deterministi TMs, redution strategies,

RAM and RASP mahines [86, 32℄.

Beause the mahine an make a hoie as to whih omputation path to

exeute, deisions whih would ordinarily be highly spei�ed need not be. This

leads to a saving in the number of instrutions, and thus information, needed to

speify the deision paths of the mahine.

Conjeture 4 (More Model Attributes). There exist other model attributes whih

preipitate a large di�erene in the required TI for programs similar to what has

been observed in this thesis. It is onjetured that models with suh attributes

would not require as muh TI as the models without.

7.3.5 Symbol Grounding

Those shooled in logi and mathematis are familiar with the meaning of symbols

like `+', `∀', `×', and `∃'. They have been taught the funtionality of what these

symbols represent and know how and when to apply these funtions to situations,

and when not to.

Searle's famous gedankenexperiment, The Chinese Room [81℄, was written as

an inditment against the proponents of Strong AI

1

. Searle asserted that the

manipulation of symbols by some �xed set of instrutions ould be mistaken as

onsiousness when it is merely the following of instrutions. The arguments for

and against this position here will not be disussed here, but Searle's paper raises

the question: at what point in a omputational system are meanings asribed to

the symbols whih make up the language of the system? This is known as the

symbol grounding problem [27, 91℄.

Chapter 5 disusses the problem of in�nite regress. Attempting to ground the

funtions of Strutured Operational Semantis in some other expressive formalism

begs the question of how that formalism is grounded. In this thesis a solution

to the problem was formulated by grounding the models in FPGAs, but there is

1

A philosophial position whih states that there exists a omputer program whih embodies

the attributes of onsiousness/ognition.
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another possible solution.

The semantis of the models in SOS presented herein are approximations.

The funtions of SOS have been taken as a baseline, but some models may use

di�erent aspets of SOS than others. The RASP and TM use numerals (natural

numbers for the RASP and integers for the TM) and the SKI and λ-alulus use

set indiretion to reason about sub-trees.

The SKI and λ-alulus models do not require numerals for their operation;

similarly RASP and TM do not require set indiretion. However, a �at baseline

like SOS would aount for both. A semanti system ould be devised where the

operations of the semanti system are derived from the base axioms of a formalism

suh as First Order Logi, Zermelo-Frankel set theory, or Russell's type theory.

Not all of these systems are self ontained however. The existential and uni-

versal quanti�ers are a part of First Order Logi, but required for set theory.

Furthermore, some operators annot be de�ned in a lower system. The existen-

tial and universal quanti�ers are axiomati in their system. Suh onepts will

be elementary de�nitions and axioms. If FOL and ZFC were to be used, a few of

these elementary de�nitions would inlude:

• Sets

• Variables

• Set Membership

• Existential/Universal Quanti�ers (pik one)

• Zero

These de�nitions form the baseline, as onepts so basi suh that there is no

mathematial expression to de�ne them. The onstrained notation for mathemat-

is is inadequate to de�ne suh onepts so natural language must be employed.

A logi onstruted as suh allows the information ontent of eah logial on-

strution built upon these axioms to be traked. A semanti system as expressive

as SOS, based on this axiomati foundation would have an information value for

its operators. Thereby any semantis whih use an operator pays the information

�prie�.

Formulating the semantis in this system would give a muh higher resolution

view of the information ontent of the semantis. It may then be possible to
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perform experiments where a root semantis is modi�ed multiple ways and the

e�et of suh hanges are measured aross the set of test programs. This would

also failitate study of hybridised languages, for example whih ontain both im-

perative and funtional subsets, and an judge if a `best of both worlds' language

provides bene�ts to mean program size.

7.3.6 Other Work

Imperative/Funtional Comparisons It is lear with the resolution of the

SI/TI aross paradigms hypotheses that the relative expressivity of models aross

paradigms annot be determined by TI alone. It is suspeted that this is due to

the vast di�erene in evaluation methodologies. This is not on�rmed, so further

work into investigating the information link aross paradigms may on�rm it.

Alternate Semantis Setion 7.2.4 argues the notion that the measurements

are relative only to the very spei� representations and evaluation methodology

as de�ned in the semantis. What is not known is if the hypotheses hold true

for other models and semanti shemes. Further work here would be in the

implementation of the models desribed here for other semanti systems and

evaluating the hypotheses for these.

Real Appliations While the FPGA realisations of the models do not provide

useful data on the relative TI of models, it does provide an indiation of the TI of

programs in a singular model. This information ould be generalised to the ross

ompilation of language subsets (suh as C) to FPGAs. Measuring the TI of a C

implementation may give an approximation of the size of the resulting iruit.
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Appendix A

The Busy Beaver Problem

The `Busy Beaver game' was �rst formulated by Radó [73℄ in order to showase

an example of a simple undeidable problem. The game is a ompetition amongst

Turing mahine programmers to �nd the Turing mahine of a ertain number of

states whih, when started on a blank tape, writes the most symbols to the tape

before halting.

More formally, Radó de�ned the game using n state, 2 symbol mahines and

there was a di�erent ategory for eah n. A urrent `hampion' mahine is a pair

(M, s) where M is the mahine and s is number of steps before halting. Cheking
the hampion then beame a trivial task of running M for s steps and ounting

the number of 1's on the tape to ensure orretness.

Brady generalised the game to inlude k symbols [62℄ whih introdued a new

set of lasses for mahines to fall into. A busy beaver hampion (M, s) �ts into
the lass Σ(n, k) when M has n states and k symbols.

There is a hampionship for the number of steps a mahine will make as well as

for the number of non-blank symbols on the tape, beause a hampion of symbols

will not neessarily be a hampion stepper and vie versa. The lass analogous

to Σ(n, k), S(n, k) is the lass for hampion steppers.

A.1 Turing Mahine Busy Beavers

Soon after the de�nition of the busy beaver game. Lin and Radó [54℄ performed

an exhaustive searh of the lasses (2,2) and (3,2). The size of the mahine spae

is as follows:

((n+ 1)× 2k)nk

where n and k are as de�ned above. This results in around 17 million mahines for

the (3,2) lass, but normalisation tehniques �lter out mahines that, immediately

halt or do not print a 1 as their �rst ation. This �ltering redues the number of

possible hampions to 82,944, whih were tested for halting behaviour.

Trivial non-halting mahines were �ltered out and the non-trivial ones were

exeuted by hand to determine their operation. As the authors note, there were

no mahines so ompliated as to make it impossible to assert halting behaviours

by hand. They onluded that S(2, 2) = 6, Σ(2, 2) = 4, S(3, 2) = 21, and
Σ(3, 2) = 6.

At this time, 4 lasses of busy beaver mahines have had on�rmed S and Σ
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Date Disoverer(s) Bounds

1963 Radó, Lin S(2, 2) = 6, Σ(2, 2) = 4
S(3, 2) = 21, Σ(3, 2) = 6

1964 Brady S(4, 2) = 107, Σ(4, 2) = 13
February 1990 Marxen, Buntrok S(5, 2) ≥ 47, 176, 870, Σ(5, 2) ≥ 4098
February 2005 T. and S. Ligoki S(2, 4) ≥ 40, 737, Σ(2, 4) ≥ 3, 932, 964

November 2007 T. and S. Ligoki

S(3, 3) ≥ 119, 112, 334, 170, 342, 540,
Σ(3, 3) ≥ 374, 676, 383
S(2, 5) > 1.9× 10704 ,Σ(2, 5) > 1.7× 10352

Deember 2007 T. and S. Ligoki S(3, 4) > 5.2× 1013036,Σ(3, 4) > 3.7× 106518

January 2008 T. and S. Ligoki S(4, 3) > 1× 1014072,Σ(4, 3) > 1.3× 107936

S(2, 6) > 2.4× 109866,Σ(2, 6) > 1.9× 104933

June 2010 Kropitz S(6, 2) > 7.4×1036534,Σ(6, 2) > 3.4×1018267

Table A.1: Currently known lower bounds of the explored lasses (2012 [62℄).

sores with mahines to math: BB(1,2), BB(2,2) BB(3,2) and BB(4,2). Marxen

and Buntrok [58℄ have established lower bounds for the lass (5,2) at S(5, 2) ≥
47, 176, 870 and Σ(5, 2) ≥ 4098.

The father and son team of Terry and Shawn Ligoki have made progress in

exploring the spae of mahines with more than 2 symbols by using simulated

annealing tehniques to obtain high soring mahines [62℄. They urrently hold

the reord for many of these lasses.

Table A.1, by way of Mihel [62℄ shows the urrent reords for a few of the

lasses as of June 2012.

A.2 RASP Busy Beavers

A busy beaver variant for the RASP mahine an be de�ned though the exeution

of the `OUT' instrution. For a lass of n-bit mahines Σ(n) is the ompetition

for the number of times the `OUT' ommand is exeuted, while S(n) is the

ompetition for the number of feth-exeute yles performed.

The mapping of instrutions to naturals in all RASP de�nitions (inluding the

one presented earlier in Setion 2.3.1.2) are arbitrary. There is no real reason for

INC to be mapped to 1 and CPY to be mapped to 7. This isn't suh a problem

in the literature onerned with runtimes [16, 36℄ but in the investigation of

mahines with maximal output, we want to be thorough in onsidering all of the

possibilities.

To failitate this, we extend the RASP model as to admit an arbitrary map-

ping of naturals to instrutions. We onstrain the range to 2n so that a mahine

annot map an instrution to a natural that the mahine annot represent. Sim-

ilarly, the mapping is injetive. An entrant into the ompetition BBR(n) is thus
a pair R(p, i) of the program p (of size 2n) and the instrution set mapping i.

Unlike the BB problem for TMs, the RASP version is omputable beause the

halting problem for �nite RASPs is omputable.

Theorem 3 (Halting problem deidability). The Halting problem for the �nite

RASP is deidable.
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Proof. Consider a �nite n-bit RASP mahine M . We de�ne the state of M to be

the entire memory at a partiular time, and eah feth-deode-exeute yle as a

transition from one state to another. Sine there is only a �nite range of values

for a �nite number of memory loations, we an alulate the maximum number

of possible states for any given mahine numStates(n) = nn
.

Beause eah feth-deode-exeute yle performs a transition between states

S → S ′
we an run the mahine for at most numStates(n) yles, storing eah

visited state as it is enountered and heking the store for the new state after

every state transition. If we enounter the same state twie, a loop has ourred

and an onlude that for some state X whih is entered during exeution of the

mahine, there exists a transitive losure over a relation R suh that XR+X.

From whih we an onlude that M will never halt.

A.3 Finding the Champions

Assuming the RASP has eight instrutions, the number of unique instrution set

mapping for an n bit mahine is:

PI(n) =
∏

n−8<i≤n

i

Eah potential program is a sequene of 2n natural numbers. Of these, the PC,

IR and ACC are initialised at {3 0 0}. Eah program is a base n number of length

2n − 3 so that that the formula to alulate the number of possible initial RASP
mahines is PR(n) = (2n)2

n−3
.

A.3.1 Brute Fore Methods

For 3 bit RASP mahines, PR(3) × PI(3) = 1, 321, 205, 760. This is a feasible

number to searh through in a parallel brute fore manner.

The parallel arhiteture was designed as a pseudo-task farm. Eah node has

an unique identifying integer (id) and knows how many nodes are working on the

problem. The node with an id of zero was designated the master node.

Upon initialisation of the searh, the nodes use their ids to work out whih

blok of instrution set mappings they should explore. They proeed to run eah

of their assigned mappings against every n-bit RASP mahine, reording the

highest shifter and highest `OUT' exeutor. One a node has searhed though all

of the mappings and has its hampion mahines, it returns them to the master

node whih �nds the overall hampions and outputs them. Non-halting behaviour

is deteted by storing eah state in a binary tree. If a state is already in the tree

when visited, the mahine is foribly halted and disarded.

This entire proedure takes around 6 minutes on 32 ores of a 256 ore Beowulf

luster onsisting of 8 ore Intel Xeon CPUs loked at 2.13GHz. Figures A.1a and

A.1b show the top soring mahines for Σ(3) = 47 and S(3) = 112 respetively.
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Instr I Label

3 :PC

0 :IR

0 :ACC

INC :start

INC

OUT

OUT

INC

(a) The best 3-bit OUT mahine

Instr I Label

3 :PC

0 :IR

0 :ACC

INC :start

OUT

DEC

INC

JGZ

(b) The best 3-bit steps mahine

The instrution sets for these mahines are:

A.1a {0 7→ OUT, 1 7→ LOAD, 2 7→ DEC, 3 7→ INC, 4 7→ CPY, 5 7→ STO,
6 7→ HALT, 7 7→ JGZ}

A.1b {0 7→ DEC, 1 7→ LOAD, 2 7→ STO, 3 7→ JGZ, 4 7→ OUT, 5 7→ HALT,
6 7→ INC, 7 7→ CPY }

The mahine spae PR(4) = 4, 503, 599, 627, 370, 496 is an infeasible number

of mahines to searh through in any reasonable time. So more advaned methods

must be employed.

A.3.2 Geneti Algorithms

A geneti algorithm is a problem solving strategy whih models natural sele-

tion [30℄. It begins with an initial pool of (often randomly generated) solutions to

some problem. Eah potential solution is evaluated for �tness to determine how

e�etive they are at solving the problem.

A subset of solutions are seleted and bred together by means of rossover

and mutation. Those not seleted for reprodution are killed o� and breeding

re�lls the pool of andidates. The �tness of a solution improves the hane of it

being seleted for reprodution, but doesn't guarantee it.

A.3.2.1 Seletion and Breeding

A solution for the RASP busy beaver is a pair of the program and the instrution

set mapping. These are represented in memory as two arrays of length 2n−3 and
8 respetively. We refer to these two arrays as hromosomes and the individual

elements of the arrays as genes.

The �tness sores of a andidate is alulated as the number of steps/number

of `OUT's (dependent on whether our searh is for S(n) or Σ(n)) if the mahine

halts, otherwise it is 1.

Seletion is handled through roulette wheel seletion [30℄. Imagine a roulette

wheel sized suh that it aommodates all andidates and eah andidate has a

`slie' of the wheel proportional to its �tness (Figure A.2).

When seleting a andidate, we oneptually boune a ball over the surfae

of the wheel. The distane that the ball an boune is alulated as a random

proportion of sums of all the �tnesses. As it moves round the wheel and passes
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C1

C1

C1

C2C3

C3

C4

C4

Figure A.2: A depition of the roulette wheel we use to selet andidates. C1

is the andidate with the highest �tness, so it gets the highest proportion of the

wheel. C2 has the lowest �tness. C3 and C4 are equal in �tness.

Bits Results Comments

3 S(3) = 112,Σ(3) = 47 Exat values found through

brute fore searhing.

4 S(4) ≥ 3413,Σ(4) ≥ 1483 Geneti, Pool: 100000,

Generations: 1000, Islands:

32

Table A.2: Current reords for numbers of shifts and outputs.

over andidates, it uses up its allowable distane. One all of the distane has been

used, it stops. The andidate that it stops on is then removed from the wheel,

the wheel is resized, and the proess starts again until the breeding population

target has been met.

Crossing hromosomes involves piking two of the solutions and hoosing a

random point on one of them. The new hromosome is reated by taking the

genes of the �rst parent up to the random point, then taking the genes of the

seond parent past that point. Mutation of the program piks a random gene in

a hromosome and hanges it to some other gene. Mutation of the instrution

set swaps two genes to maintain an injetive mapping.

Repopulating the pool piks two parents at random and selets a parent to be

`dominant'. There is a 1/3 hane that the programs get rossed, a 1/3 hane

that the instrution sets get rossed (while still adhering to the injetive rules for

the instrution sets) and a 1/3 hane that both get rossed. If a hromosome

isn't to be rossed, the hromosome from the dominant parent is opied. There

is a small (5%) hane that the program or instrution set will be mutated.

A.3.2.2 Current Results

Table A.2 shows the urrent results of the investigation while Table A.3 demon-

strates the reord holding instrution sets and programs.

The optimal strategy to evolve good mahines seems to stem from repeatedly

seeding the urrent hampion mahine into the algorithm. What this does is seed

the initial pools with the urrent hampion mahine in the hope that it will be
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Reord Held Instrution Set Program

S(3) = 112 {5,6,0,1,2,4,3,7} {6,4,0,6,3}

Σ(3) = 47 {6,3,2,1,5,0,7,4} {3,3,0,0,3}

S(4) ≥ 3413 {14,3,13,0,6,9,4,15} {9,3,6,3,4,12,9,13,6,9,3,4,7}

Σ(4) ≥ 1483 {2,6,7,5,1,3,4,0} {3,3,6,3,3,4,4,5,1,7,1,11,4}

Table A.3: Instrution sets and programs of reord holding mahines. Instrution

mapping is {HALT,INC,DEC,LOAD,STO,OUT,JGZ,CPY}.

improved upon. This is a manual version of the migration strategy laid out above

and the author has seen suess with hand onstruting a seed and letting the

algorithm evolve it into a better version.

A.4 Re�etion

The investigation outlined was not as enlightening as one would hope. This

setion re�ets on how we strutured our algorithm and hardware and what we

should do di�erently for a fresh investigation.

A.4.1 Landsape and Fitness

As with all informed searh methods, there is the danger of loal maxima. Ran-

domly generating and evolving solutions an ahieve good results, but with a

searh spae as large as n > 3 we annot hope to obtain a statistially bene�-

ial initial `spread' of andidates aross the solution landsape. Furthermore, the

landsape itself is exeptionally jagged. The �tness funtion is not nearly sophis-

tiated enough to e�etively navigate the spae. For example, hanging any one

of the reord mahines instrutions to a HALT (say {6, 4, 0, 6, 3} ↔ {6, 4, 0, 5, 3}
where 5 7→ HALT ) will ruin the �tness sore of the mahine.

We ould apply �lters to our mahine generator so that it aepts a HALT or

unmapped natural number in the body of the mahine only if it omes immedi-

ately after a LOAD, STO, JGZ, or CPY. This way, we would produe mahines

that don't instantly halt and that would need to ompute, or spei�ally jump

to some halting numeral before it will stop.

Another approah we ould try omes from the �eld of omputer seurity.

Self modi�ation is a typial obfusation tehnique to disguise maliious ode

and attempts to ombat it had resulted in the development of semanti models

whih deompose a self modifying binary into phases. These phases are statially

analysed for maliious behaviour as normal [22℄.

We ould possibly adopt this approah for larger spaes (n > 6). However we
would have to experiment to ensure that this deomposition and analyses is faster

than, or provides onsiderably more information than, just running the mahine.

Otherwise we will inur a greater time overhead per mahine in a spae where

speed of exeution is arguably more important.

Advaned stati analyses as desribed above oupled with (non)halting de-

tetion ould diret a geneti algorithm to target a spei� neighbourhood of a

andidate. If an n-bit andidate doesn't quite halt, but is otherwise a hampion
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mahine, the problem ould perhaps be narrowed down to k registers whih need

modi�ation. A narrow number of registers an oneivably be brute fored for

larger n's than what we've investigated so far. This very spei� modi�ation

method strays into the remit of Geneti Programming [48℄.

A.4.2 Arhiteture and Seeding

The geneti algorithm was parallelised as the brute fore algorithm. Eah proess

ontains its own pool, the best solutions are evolved from the pool. One the

proess has evolved a solution for n generations, it is sent bak to the master

proess whih judges the best overall solution.

This `isolated island' approah tends to exhibit speiation (loal maxima)

aross proesses. A better approah may be to migrate the top solutions from

the pools every few generations [8℄. This re-seeds the pool with the urrent best

solution to the problem, inreasing the hanes of evolving the urrent solution

into an even better one.
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Full Programs

This appendix presents the measured programs for eah of the models investigated

in this thesis. The programs here are what is measured to obtain the harater

ounts exempli�ed in Table 4.2 et al. and are analysed in Chapter 6.

B.1 RASP

The RASP programs are presented in two ways: the �programming language

form� as seen all throughout this thesis, and the �array form� whih is what is

atually measured.

B.1.1 Addition

Instr Data I Label D Label

LOAD 3 :addStart ;x

JGZ 'adding

HALT

DEC :adding

STO 'x

LOAD 4 ;y

INC

STO 'y

LOAD 1

JGZ 'addStart

3,5,6,8,0,2,4,4,3,8,1,4,12,3,1,6,3,0,0,0,0,0,0,0,0,0,0,0,0
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B.1.2 Subtration

Instr Data I Label D Label

LOAD 4 :sub_start ;sub_2

JGZ 'subbing

HALT

DEC :subbing

STO 'sub_2

LOAD 7 ;sub_1

JGZ 'subbing2

HALT

DEC :subbing2

STO 'sub_1

JGZ 'sub_start

3,4,6,8,0,2,4,4,3,7,6,16,0,2,4,12,3,1,6,3,0,0,0,0,0,0,0,0,0

B.1.3 Equality

Instr Data I Label D Label

LOAD 6 :de1 ;mp1

DEC

STO 'mp1

LOAD 5 ;mp2

DEC

STO 'mp2

JGZ 'de1

CPY 'mp1

JGZ 0

LOAD 1

HALT

3,6,2,4,4,3,5,2,4,9,6,3,7,4,6,0,3,1,0,0,0,0,0,0,0,0,0,0,0
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B.1.4 Multipliation

Instr Data I Label D Label

CPY 'multiplier

JGZ 'return

HALT

LOAD 5 :return ;multipliand

JGZ 'mul_start

HALT

DEC :mul_start

STO 'multipliand

LOAD 5 ;multiplier

STO 'tmp

LOAD 0 :loop ;tmp

JGZ 'add

LOAD 1

JGZ 'return

DEC :add

STO 'tmp

LOAD 0 ;runningTotal

INC

STO 'runningTotal

LOAD 1

JGZ 'loop

7,17,6,8,0,3,5,6,13,0,2,4,9,3,5,4,21,3,0,6,28,3,1,6,8,2,4,21,

3,0,1,4,32,3,1,6,20,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0
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B.1.5 Division

Instr Data I Label D Label

LOAD 3 :start ;divisor

JGZ 'div_start

HALT

STO 'tmp :div_start

LOAD 7 ;num

STO 'remainder

LOAD 0 :loop ;tmp

JGZ 'sub

LOAD 1

JGZ 'return

DEC :sub

STO 'tmp

CPY 'num

JGZ 'nl

HALT

DEC :nl

STO 'num

LOAD 1

JGZ 'loop

LOAD 0 :return ;quotient

INC

STO 'quotient

JGZ 'start

0 :remainder

3,3,6,8,0,4,15,3,7,4,44,3,0,6,22,3,1,6,37,2,4,15,7,11,6,30,0,

2,4,11,3,1,6,14,3,0,1,4,38,6,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0
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B.1.6 Exponentiation

Instr Data I Label D Label

LOAD 1 :start ;power

JGZ 'ontinue

HALT

DEC :ontinue

STO 'power

LOAD 1 ;runningTotal

STO 'multipliand

LOAD 0

STO 'runningTotal

LOAD 0 :return ;multipliand

JGZ 'mulStart

LOAD 1

JGZ 'start

DEC :mulStart

STO 'multipliand

LOAD 1 ;multiplier

STO 'tmp

LOAD 0 :loop ;tmp

JGZ 'add

LOAD 1

JGZ 'return

DEC :add

STO 'tmp

CPY 'runningTotal

INC

STO 'runningTotal

LOAD 1

JGZ 'loop

3,1,6,8,0,2,4,4,3,1,4,20,3,0,4,12,3,0,6,27,3,1,6,3,2,4,20,3,

1,4,35,3,0,6,42,3,1,6,19,2,4,35,7,12,1,4,12,3,1,6,34,0,0,0,

0,0,0,0,0,0,0
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B.1.7 List Membership

Instr Data I Label D Label

LOAD 'listStart :start

STO 'pointer :mp_pointer_target

STO 'indir_pointer

CPY 0 ;indir_pointer

STO 'mp_1

LOAD 0 ;target

STO 'mp_2

LOAD 'end_test

STO 'mp_return_1

LOAD 'equal

STO 'mp_return_2

LOAD 0 :mp_start ;mp_1

DEC

STO 'mp_1

LOAD 0 ;mp_2

DEC

STO 'mp_2

JGZ 'mp_start

CPY 'mp_1

JGZ 0 ;mp_return_1

LOAD 1

JGZ 0 ;mp_return_2

LOAD 0 :end_test ;pointer

STO 'mp_1

LOAD 'listend

STO 'mp_2

LOAD 'in_pointer

STO 'mp_return_1

LOAD 'list_ended

STO 'mp_return_2

JGZ 'mp_start

LOAD 1 :equal

HALT

CPY 'pointer :in_pointer

INC

JGZ 'mp_pointer_target

LOAD 0 :list_ended

HALT

:listStart

:listend

3,73,4,46,4,10,7,0,4,26,3,0,4,31,3,45,4,40,3,63,4,44,3,0,2,4,

26,3,0,2,4,31,6,25,7,26,6,0,3,1,6,0,3,0,4,26,3,72,4,31,3,66,4,

40,3,71,4,44,6,25,3,1,0,7,46,1,6,5,3,0,0,0,0,0,0,0,0,0,0,0,0,
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0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0

B.1.8 Linear Searh

Instr Data I Label D Label

LOAD 'listStart :start

STO 'pointer :mp_pointer_target

STO 'indir_pointer

CPY 0 ;indir_pointer

STO 'mp_1

LOAD 0 ;target

STO 'mp_2

LOAD 'end_test

STO 'mp_return_1

LOAD 'equal

STO 'mp_return_2

LOAD 0 :mp_start ;mp_1

DEC

STO 'mp_1

LOAD 0 ;mp_2

DEC

STO 'mp_2

JGZ 'mp_start

CPY 'mp_1

JGZ 0 ;mp_return_1

LOAD 1

JGZ 0 ;mp_return_2

LOAD 0 :end_test ;pointer

STO 'mp_1

LOAD 'listend

STO 'mp_2

LOAD 'in_pointer

STO 'mp_return_1

LOAD 'list_ended

STO 'mp_return_2

JGZ 'mp_start

CPY 'pointer :equal

STO 'mp_1

LOAD 'listStart

STO 'mp_2

LOAD '�nish

STO 'mp_return_1

STO 'mp_return_2

JGZ 'mp_start

CPY 'mp_1 :�nish

HALT

CPY 'pointer :in_pointer
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Instr Data I Label D Label

INC

JGZ 'mp_pointer_target

LOAD 'listend :list_ended

HALT

:listStart

:listend

3,89,4,46,4,10,7,0,4,26,3,0,4,31,3,45,4,40,3,63,4,44,3,0,2,4,

26,3,0,2,4,31,6,25,7,26,6,0,3,1,6,0,3,0,4,26,3,88,4,31,3,82,

4,40,3,87,4,44,6,25,7,46,4,26,3,89,4,31,3,79,4,40,4,44,6,25,

7,26,0,7,46,1,6,5,3,88,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

B.1.9 List Reversal

Instr Data I Label D Label

LOAD 'listEnd

STO 'pyPointer

INC

INC

STO 'writePointer

LOAD 0 :main ;writePointer

STO 'writeSTO

LOAD 0 ;pyPointer

STO 'pyLOC

CPY 0 ;pyLOC

STO 0 ;writeSTO

CPY 'writePointer

INC

STO 'writePointer

CPY 'pyPointer

STO 'tmp1

LOAD 'listStart

STO 'tmp2

LOAD 0 :loop ;tmp1

DEC

STO 'tmp1

LOAD 0 ;tmp2

DEC

STO 'tmp2

JGZ 'loop

CPY 'tmp1

JGZ 'deWritePointer

HALT

CPY 'pyPointer :deWritePointer

DEC

STO 'pyPointer
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Instr Data I Label D Label

JGZ 'main

:listStart

:listEnd

3,59,4,16,1,1,4,12,3,0,4,22,3,0,4,20,7,0,4,0,7,12,1,4,

12,7,16,4,37,3,58,4,42,3,0,2,4,37,3,0,2,4,42,6,36,7,37

,6,53,0,7,16,2,4,16,6,11,0,0,0,0

B.1.10 Stateful List Reversal

Instr Data I Label D Label

LOAD 'listStart

STO 'pointer1

LOAD 'listEnd

STO 'pointer2

LOAD 0 :main ;pointer1

STO 'mp1

LOAD 0 ;pointer2

STO 'mp2

LOAD 0 :loop ;mp1

DEC

STO 'mp1

JGZ 'ompare2

LOAD 0 ;mp2

DEC

JGZ 'swap

HALT

CPY 'mp2 :ompare2

DEC

STO 'mp2

JGZ 'loop

HALT

CPY 'pointer1 :swap

STO 'swpref1

STO 'writeref1

CPY 0 ;swpref1

STO 'swp

CPY 'pointer2

STO 'swpref2

STO 'writeref2

CPY 0 ;swpref2

STO 0 ;writeref1

LOAD 0 ;swp

STO 0 ;writeref2

CPY 'pointer1

INC

STO 'pointer1
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Instr Data I Label D Label

CPY 'pointer2

DEC

STO 'pointer2

JGZ 'main

:listStart

:listEnd

3,74,4,12,3,75,4,16,3,0,4,20,3,0,4,27,3,0,2,4,20,6,32,3,

0,2,6,40,0,7,27,2,4,27,6,19,0,7,12,4,47,4,59,7,0,4,61,7,

16,4,57,4,63,7,0,4,0,3,0,4,0,7,12,1,4,12,7,16,2,4,16,6,

11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

B.1.11 Bubble Sort

Instr Data I Label D Label

LOAD 'listStart :start

STO 'pointer1

INC

STO 'pointer2

LOAD 0

STO '�ag

LOAD 0 :mp_pointers ;pointer1

STO 'p1ref

CPY 0 ;p1ref

STO 'mp1

LOAD 0 ;pointer2

STO 'p2ref

CPY 0 ;p2ref

STO 'mp2

LOAD 'in_pointers

STO 'mpOther

STO 'equal1

LOAD 'swap

STO 'mp1Greater

LOAD 0 :mp_start ;mp2

DEC

STO 'mp2

JGZ 'mp1de

CPY 'mp1

DEC

JGZ 0 ;mp1Greater

LOAD 1

JGZ 0 ;equal1

LOAD 0 :mp1de ;mp1

DEC

STO 'mp1
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Instr Data I Label D Label

JGZ 'mp_start

LOAD 1

JGZ 0 ;mpOther

CPY 'pointer1 :in_pointers

INC

STO 'pointer1

CPY 'pointer2

STO 'mp2

LOAD 'listend

STO 'mp1

LOAD 'return_to_in

STO 'mp1Greater

LOAD 'foundEnd

STO 'equal1

STO 'mpOther

JGZ 'mp_start

CPY 'pointer2 :return_to_in

INC

STO 'pointer2

JGZ 'mp_pointers

LOAD 0 :foundEnd ;�ag

JGZ 'start

HALT

CPY 'pointer2 :swap

STO 'p2SwpRef

STO 'p2WriteRef

CPY 0 ;p2SwpRef

STO 'swp

CPY 'pointer1

STO 'p1SwpRef

STO 'p1WriteRef

CPY 0 ;p1SwpRef

STO 0 ;p2WriteRef

LOAD 0 ;swp

STO 0 ;p1WriteRef

LOAD 1

STO '�ag

JGZ 'in_pointers

:listStart

:listend

3,130,4,15,1,4,23,3,0,4,100,3,0,4,19,7,0,4,57,3,0,4,27,7,0,

4,41,3,67,4,66,4,55,3,104,4,51,3,0,2,4,41,6,56,7,57,2,6,0,

3,1,6,0,3,0,2,4,57,6,40,3,1,6,0,7,15,1,4,15,7,23,4,41,3,132,

4,57,3,92,4,51,3,99,4,55,4,66,6,40,7,23,1,4,23,6,14,3,0,6,3,

0,7,23,4,111,4,123,7,0,4,125,7,15,4,121,4,127,7,0,4,0,3,0,4,

0,3,1,4,100,6,67,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
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0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0

B.1.12 Universal TM

Instr Data I Label D Label

CPY 'CURR_ST :PStart

STO 'SE_ST

CPY 'CHP

STO 'SYMBOL_READ

CPY 5 ;SYMBOL_READ

STO 'SE_SY

LOAD 'MSearhRET

STO 'SeRetLo

JGZ 'SEStart

LOAD 0 :MSearhRET ;SeResLo

JGZ 'Vsearh

HALT

INC :Vsearh

INC

STO 'NST_Read

INC

STO 'NSY_Read

INC

STO 'NDIR_READ

CPY 0 ;NST_Read

STO 'CURR_ST

CPY 'CHP

STO 'HP

CPY 0 ;NSY_Read

STO 0 ;HP

CPY 0 ;NDIR_READ

DEC

JGZ 'DIR_RIGHT

CPY 'CHP

DEC

STO 'CHP

JGZ 'CONTINUE

CPY 'CHP :DIR_RIGHT

INC

STO 'CHP

CPY 'CURR_ST :CONTINUE

JGZ 'PStart

HALT

LOAD 'SYT_START :SEStart

STO 'urrentLo
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Instr Data I Label D Label

LOAD 0 :searh_loop ;urrentLo

STO 'l

CPY 3 ;l

JGZ 'Valid_Tuple

LOAD 1

JGZ 'Not_Found

LOAD 0 :Valid_Tuple ;SE_ST

STO 'CMP1

CPY 'urrentLo

STO 'tabomp1

CPY 5 ;tabomp1

STO 'CMP2

LOAD 'mp1_return

STO 'CMP_RET_LOC

JGZ 'CMP_START

CPY 'CMP_RET :mp1_return

JGZ 'nTupleSt

CPY 'urrentLo

INC

STO 'urrentLo

STO 'tabomp2

CPY 5 ;tabomp2

STO 'CMP1

LOAD 0 ;SE_SY

STO 'CMP2

LOAD 'mp2_return

STO 'CMP_RET_LOC

JGZ 'CMP_START

CPY 'CMP_RET :mp2_return

JGZ 'nTupleSy

CPY 'urrentLo

DEC

STO 'SeResLo

LOAD 1

JGZ 'searhExit

CPY 'urrentLo :nTupleSt

INC

STO 'urrentLo

CPY 'urrentLo :nTupleSy

INC

INC

INC

INC

STO 'urrentLo

JGZ 'searh_loop

LOAD 0 :Not_Found

STO 'SeResLo
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Instr Data I Label D Label

LOAD 1 :searhExit

JGZ 5 ;SeRetLo

LOAD 0 :CMP_START ;CMP1

DEC

STO 'CMP1

LOAD 0 ;CMP2

DEC

STO 'CMP2

JGZ 'CMP_START

CPY 'CMP1

JGZ 'NotEqual

STO 'CMP_RET :Equal

LOAD 1

JGZ 'CMP_EXIT

LOAD 1 :NotEqual

STO 'CMP_RET

JGZ 0 :CMP_EXIT ;CMP_RET_LOC

0 :CMP_RET

'TAPE_START :CHP

1 :CURR_ST

:SYT_START

:TAPE_START

7,202,4,87,7,201,4,12,7,5,4,120,3,21,4,171,6,70,3,0,6,26,0,1,

1,4,37,1,4,45,1,4,49,7,0,4,202,7,201,4,47,7,0,4,0,7,0,2,6,60,

7,201,2,4,201,6,65,7,201,1,4,201,7,202,6,3,0,3,194,4,75,3,0,4,

79,7,3,6,86,3,1,6,164,3,0,4,173,7,75,4,95,7,5,4,178,3,104,4,

199,6,172,7,200,6,142,7,75,1,4,75,4,116,7,5,4,173,3,0,4,178,3,

129,4,199,6,172,7,200,6,142,7,75,2,4,22,3,1,6,168,7,75,1,4,75,

4,150,7,2,6,142,7,75,1,4,75,4,161,7,0,6,74,3,0,4,22,3,1,6,5,3,

0,2,4,173,3,0,2,4,178,6,172,7,173,6,194,4,200,3,1,6,198,3,1,4,

200,6,0,0,196,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

B.1.13 Universal RASP

Instr Data I Label D Label

LOAD 'PC_P

INC

INC

INC

STO 'OFF_PC

CPY 'OFF_PC :SIM_START

STO 'INSLOC

CPY 4 ;INSLOC

STO 'IR_P

STO 'Deoder_Ins
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Instr Data I Label D Label

JGZ 'de1

HALT :none

DEC :de1

JGZ 'de2

CPY 'ACC_P

INC

STO 'x

STO 'ACC_P

CPY 'MAX_INT

STO 'y

LOAD 'ACC_P

STO 'sto_loation

LOAD 'done

STO 'return_loation

JGZ 'TEST_LOOP

DEC :de2

JGZ 'de3

CPY 'ACC_P

JGZ 'd

CPY 'MAX_INT

STO 'ACC_P

JGZ 'deST

DEC :d

STO 'ACC_P :deST

LOAD 1

JGZ 'done

DEC :de3

JGZ 'de4

LOAD 'LOAD_RETURN

STO 'FETCH_RETURN

JGZ 'FETCH

CPY 'IR_P :LOAD_RETURN

STO 'ACC_P

LOAD 1

JGZ 'done

DEC :de4

JGZ 'de5

LOAD 'STO_RETURN

STO 'FETCH_RETURN

JGZ 'FETCH

CPY 'IR_P :STO_RETURN

STO 'OINT

LOAD 'STO_O_RETURN

STO 'OFFSET_RETURN

JGZ 'OFFSET

CPY 'OINT :STO_O_RETURN

STO 'slo
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Instr Data I Label D Label

CPY 'ACC_P

STO 0 ;slo

LOAD 1

JGZ 'done

DEC :de5

JGZ 'de6

OUT

JGZ 'done

DEC :de6

JGZ 'de7

LOAD 'JGZ_RETURN

STO 'FETCH_RETURN

JGZ 'FETCH

CPY 'ACC_P :JGZ_RETURN

JGZ 'JGZ_JUMP

LOAD 1

JGZ 'done

CPY 'IR_P :JGZ_JUMP

STO 'PC_P

STO 'OINT

LOAD 'JGZ_O_RETURN

STO 'OFFSET_RETURN

JGZ 'OFFSET

CPY 'OINT :JGZ_O_RETURN

STO 'OFF_PC

JGZ 'SIM_START

DEC :de7

JGZ 'none

LOAD 'CPY_RET

STO 'FETCH_RETURN

JGZ 'FETCH

CPY 'IR_P :CPY_RET

STO 'OINT

LOAD 'CPY_O_RET

STO 'OFFSET_RETURN

JGZ 'OFFSET

CPY 'OINT :CPY_O_RET

STO 'pylo

CPY 0 ;pylo

STO 'ACC_P

LOAD 1

JGZ 'done

LOAD 'SIM_START :done

STO 'INC_FR

CPY 'PC_P :INC_PC

INC

STO 'PC_P
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Instr Data I Label D Label

STO 'x

CPY 'MAX_INT

STO 'y

LOAD 'PC_P

STO 'sto_loation

LOAD 'T_INC_RET

STO 'return_loation

LOAD 1

JGZ 'TEST_LOOP

CPY 'PC_P :T_INC_RET

JGZ 'INC_OFFSET

LOAD 'PC_P

STO 'OFF_PC

LOAD 1

JGZ 'INC_EXIT

CPY 'OFF_PC :INC_OFFSET

INC

STO 'OFF_PC

LOAD 1 :INC_EXIT

JGZ 0 ;INC_FR

LOAD 'PC_P :OFFSET

STO 'f

LOAD 0 :OFFSET_LOOP ;OINT

INC

STO 'OINT

LOAD 0 ;f

DEC

STO 'f

JGZ 'OFFSET_LOOP

LOAD 1

JGZ 0 ;OFFSET_RETURN

LOAD 'feth_r :FETCH

STO 'INC_FR

JGZ 'INC_PC

CPY 'OFF_PC :feth_r

STO 'FETCH_VAR

CPY 0 ;FETCH_VAR

STO 'IR_P

LOAD 1

JGZ 0 ;FETCH_RETURN

LOAD 0 ;x :TEST_LOOP

DEC

STO 'x

LOAD 0 ;y

DEC

STO 'y

JGZ 'xtest
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Instr Data I Label D Label

LOAD 1

JGZ 'xtest2

CPY 'x :xtest

JGZ 'TEST_LOOP

LOAD 1

JGZ 'RETURN

CPY 'x :xtest2

JGZ 'INVALID

LOAD 1

JGZ 'RETURN

LOAD 0 :INVALID

STO 5 ;sto_loation

LOAD 1 :RETURN

JGZ 0 ;return_loation

0 :Deoder_Ins

0 :OFF_PC

4 :MAX_INT

:PC_P

:IR_P

:ACC_P

3,306,1,1,1,4,314,7,314,4,15,7,4,4,308,4,313,6,23,0,2,6,47,7,

310,1,4,274,4,310,7,315,4,279,3,310,4,308,3,187,4,312,6,273,2,

6,67,7,310,6,60,7,315,4,310,6,61,2,4,310,3,1,6,187,2,6,84,3,76,

4,272,6,255,7,308,4,310,3,1,6,187,2,6,115,3,93,4,272,6,255,7,

308,4,240,3,103,4,254,6,235,7,240,4,110,7,310,4,0,3,1,6,187,2,

6,121,5,6,187,2,6,156,3,130,4,272,6,255,7,310,6,138,3,1,6,187,

7,308,4,306,4,240,3,150,4,254,6,235,7,240,4,314,6,10,2,6,22,3,

165,4,272,6,255,7,308,4,240,3,175,4,254,6,235,7,240,4,180,7,0,

4,310,3,1,6,187,3,10,4,234,7,306,1,4,306,4,274,7,315,4,279,3,

306,4,308,3,214,4,312,3,1,6,273,7,306,6,226,3,306,4,314,3,1,6,

231,7,314,1,4,314,3,1,6,0,3,306,4,245,3,0,1,4,240,3,0,2,4,245,

6,239,3,1,6,0,3,261,4,234,6,191,7,314,4,266,7,0,4,308,3,1,6,0,

3,0,2,4,274,3,0,2,4,279,6,289,3,1,6,297,7,274,6,273,3,1,6,309,

7,274,6,305,3,1,6,309,3,0,4,5,3,1,6,0,0,0,4,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

B.2 RASP2

The RASP2 programs are presented in two ways: the �programming language

form� as seen all throughout this thesis, and the �array form� whih is what is

atually measured.
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B.2.1 Addition

Instr Data

LOAD x
ADD y

3,5,1,8,0

B.2.2 Subtration

Instr Data I Label D Label

LOAD y :subStart ;y

JGZ 'subbing

HALT

SUB 1 :subbing

STO 'y

LOAD x ;x

JGZ 'subbing2

HALT

SUB 1 :subbing2

STO 'x

LOAD 1

JGZ 'subStart

3,4,6,8,0,2,1,4,4,3,7,6,17,0,2,1,4,13,3,1,6,3,0,0,0,0,0,0,0

B.2.3 Equality

Instr Data I Label D Label

LOAD 6 ;num1

SUB 6 ;num2

JGZ 'out

HALT

LOAD 1 :out

3,6,2,6,6,10,0,3,1,0,0,0,0
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B.2.4 Multipliation

Instr Data I Label D Label

LOAD 5 ;multiplier

JGZ 'return

HALT

LOAD 5 :return ;multipliand

JGZ 'start

HALT

SUB 1 :start

STO 'multipliand

CPY 'multiplier

ADD 0 ;runningTotal

STO 'runningTotal

LOAD 1

JGZ 'return

3,5,6,8,0,3,5,6,13,0,2,1,4,9,7,4,1,0,4,20,3,1,6,8,0,0,0,0,0

B.2.5 Division

Instr Data I Label D Label

LOAD y :start ;y

JGZ 'divStart

HALT

STO 'tmp :divStart

LOAD x ;x

STO 'remainder

LOAD 0 :loop ;tmp

JGZ 'sub

LOAD 1

JGZ 'return

DEC :sub

STO 'tmp

CPY 'x

JGZ 'nl

HALT

DEC :nl

STO 'x

LOAD 1

JGZ 'loop

LOAD 0 :return ;quotient

INC

STO 'quotient

JGZ 'start

0 :remainder
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3,0,6,8,0,4,15,3,7,4,47,3,0,6,22,3,1,6,39,2,1,4,15,7,11,6,

31,0,2,1,4,11,3,1,6,14,3,0,1,1,4,40,6,3,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0

B.2.6 Exponentiation

Instr Data I Label D Label

LOAD 1 :start ;power

JGZ 'ontinue

HALT

SUB 1 :ontinue

STO 'power

LOAD 1 ;runningTotal

STO 'multipliand

LOAD 0

STO 'runningTotal

LOAD 0 :return ;multipliand

JGZ 'mulStart

LOAD 1

JGZ 'start

SUB 1 :mulStart

STO 'multipliand

LOAD 1 ;multiplier

STO 'addition

CPY 'runningTotal

ADD 0 ;addition

STO 'runningTotal

LOAD 1

JGZ 'return

3,1,6,8,0,2,1,4,4,3,1,4,21,3,0,4,13,3,0,6,28,3,1,6,3,2,1,

4,21,3,1,4,39,7,13,1,0,4,13,3,1,6,20,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0
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B.2.7 List Membership

Instr Data I Label D Label

LOAD 'listStart :start

STO 'pointer :mp_pointer_target

STO 'indir_pointer

CPY 0 ;indir_pointer

STO 'mp_1

LOAD 4 ;target

SUB 0 ;mp_1

JGZ 'end_test

LOAD 1

HALT

LOAD 0 :end_test ;pointer

SUB 'listend

JGZ 'in_pointer

LOAD 0

HALT

CPY 'pointer :in_pointer

ADD 1

JGZ 'mp_pointer_target

:listStart

:listend

3,35,4,23,4,10,7,0,4,16,3,4,2,0,6,22,3,1,0,3,0,2,36,6,31,

3,0,0,7,23,1,1,6,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0
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B.2.8 Linear Searh

Instr Data I Label D Label

LOAD 'listStart :start

STO 'pointer :mp_pointer_target

STO 'indir_pointer

CPY 0 ;indir_pointer

STO 'mp_1

LOAD 4 ;target

SUB 0 ;mp_1

JGZ 'end_test

CPY 'pointer

SUB 'listStart

HALT

LOAD 0 :end_test ;pointer

SUB 'listend

JGZ 'in_pointer

LOAD 'listend

HALT

CPY 'pointer :in_pointer

ADD 1

JGZ 'mp_pointer_target

:listStart

:listend

3,37,4,25,4,10,7,0,4,16,3,4,2,0,6,24,7,25,2,37,0,3,0,2,

38,6,33,3,38,0,7,25,1,1,6,5,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0
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B.2.9 List Reversal

Instr Data I Label D Label

LOAD 'listEnd

STO 'pyPointer

ADD 2

STO 'writePointer

LOAD 0 :main ;writePointer

STO 'writeSTO

LOAD 0 ;pyPointer

STO 'pyLOC

CPY 0 ;pyLOC

STO 0 ;writeSTO

CPY 'writePointer

ADD 1

STO 'writePointer

LOAD 'listStart

STO 'lsSub

CPY 'pyPointer

SUB 0 ;lsSub

JGZ 'deWritePointer

HALT

CPY 'pyPointer :deWritePointer

SUB 1

STO 'pyPointer

JGZ 'main

:listStart

:listEnd

3,47,4,16,1,2,4,12,3,0,4,22,3,0,4,20,7,0,4,0,7,12,1,1,4,

12,3,46,4,36,7,16,2,0,6,40,0,7,16,2,1,4,16,6,11,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0

B.2.10 Stateful List Reversal

Instr Data I Label D Label

LOAD 'listStart

STO 'pointer1

LOAD 'listEnd

STO 'pointer2

LOAD 0 :main ;pointer1

STO 'mp1

LOAD 0 ;pointer2

STO 'mp2

LOAD 0 :loop ;mp1

SUB 1

STO 'mp1
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Instr Data I Label D Label

JGZ 'ompare2

LOAD 0 ;mp2

SUB 1

JGZ 'swap

HALT

CPY 'mp2 :ompare2

SUB 1

STO 'mp2

JGZ 'loop

HALT

CPY 'pointer1 :swap

STO 'swpref1

STO 'writeref1

CPY 0 ;swpref1

STO 'swp

CPY 'pointer2

STO 'swpref2

STO 'writeref2

CPY 0 ;swpref2

STO 0 ;writeref1

LOAD 0 ;swp

STO 0 ;writeref2

CPY 'pointer1

ADD 1

STO 'pointer1

CPY 'pointer2

SUB 1

STO 'pointer2

JGZ 'main

:listStart

:listEnd

3,79,4,12,3,80,4,16,3,0,4,20,3,0,4,28,3,0,2,1,4,20,6,34,3,

0,2,1,6,43,0,7,28,2,1,4,28,6,19,0,7,12,4,50,4,62,7,0,4,64,

7,16,4,60,4,66,7,0,4,0,3,0,4,0,7,12,1,1,4,12,7,16,2,1,4,16,

6,11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

B.2.11 Bubble Sort

Instr Data I Label D Label

LOAD 'listStart :start

STO 'pointer1

ADD 1

STO 'pointer2

LOAD 0

STO '�ag
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Instr Data I Label D Label

LOAD 0 :mpPointers ;pointer1

STO 'p1ref

CPY 0 ;p1ref

STO 'mp1

LOAD 0 ;pointer2

STO 'p2ref

CPY 0 ;p2ref

STO 'mp2

LOAD 'inPointers

STO 'mpOther

STO 'equal1

LOAD 'swap

STO 'mp1Greater

LOAD 0 :mpStart ;mp2

SUB 1

STO 'mp2

JGZ 'mp1de

CPY 'mp1

SUB 1

JGZ 0 ;mp1Greater

LOAD 1

JGZ 0 ;equal1

LOAD 0 :mp1de ;mp1

SUB 1

STO 'mp1

JGZ 'mpStart

LOAD 1

JGZ 0 ;mpOther

CPY 'pointer1 :inPointers

ADD 1

STO 'pointer1

CPY 'pointer2

STO 'p2sub

LOAD 'listend

SUB 0 ;p2sub

JGZ 'returnToIn

LOAD 0 ;�ag

JGZ 'start

HALT

CPY 'pointer2 :returnToIn

ADD 1

STO 'pointer2

JGZ 'mpPointers

CPY 'pointer2 :swap

STO 'p2SwpRef

STO 'p2WriteRef

CPY 0 ;p2SwpRef
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Instr Data I Label D Label

STO 'swp

CPY 'pointer1

STO 'p1SwpRef

STO 'p1WriteRef

CPY 0 ;p1SwpRef

STO 0 ;p2WriteRef

LOAD 0 ;swp

STO 0 ;p1WriteRef

LOAD 1

STO '�ag

JGZ 'inPointers

:listStart

:listend

3,128,4,16,1,1,4,24,3,0,4,88,3,0,4,20,7,0,4,60,3,0,4,28,

7,0,4,42,3,71,4,70,4,58,3,100,4,54,3,0,2,1,4,42,6,59,7,

60,2,1,6,0,3,1,6,0,3,0,2,1,4,60,6,41,3,1,6,0,7,16,1,1,4,

16,7,24,4,84,3,129,2,0,6,92,3,0,6,3,0,7,24,1,1,4,24,6,15,

7,24,4,107,4,119,7,0,4,121,7,16,4,117,4,123,7,0,4,0,3,0,

4,0,3,1,4,88,6,71,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

B.2.12 Universal TM

Instr Data I Label D Label

CPY 'C_STATE :PStart

STO 'SE_ST

CPY 'CHP

STO 'SY_R

CPY 5 ;SY_R

STO 'SE_SY

LOAD 'M_SE_RET

STO 'SE_R_LOC

JGZ 'SE_ST

LOAD 0 :M_SE_RET ;SRL

JGZ 'V_SE

HALT

ADD 2 :V_SE

STO 'N_STR

CPY 4 ;N_STR

STO 'C_STATE

CPY 'SRL

ADD 3

STO 'N_SYR
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Instr Data I Label D Label

CPY 'CHP

STO 'HP

CPY 5 ;N_SYR

STO 4 ;HP

CPY 'SRL

ADD 4

STO 'N_DIRR

CPY 1 ;N_DIRR

SUB 1

JGZ 'DIR_RIGHT

CPY 'CHP

SUB 1

STO 'CHP

JGZ 'CONTINUE

CPY 'CHP :DIR_RIGHT

ADD 1

STO 'CHP

CPY 'C_STATE :CONTINUE

JGZ 'PStart

HALT

LOAD 'SY_TABLE :SE_ST

STO 'urrentLo

LOAD 0 :searh_loop ;SE_ST

STO 'CMPState

LOAD 0 ;urrentLo

STO 'tabomp1

CPY 5 ;tabomp1

SUB 0 ;CMPState

JGZ 'nTupState

CPY 'urrentLo

ADD 1

STO 'urrentLo

STO 'tabomp2

CPY 5 ;tabomp2

STO 'CMPSymbol

LOAD 0 ;SE_SY

SUB 0 ;CMPSymbol

JGZ 'nTupSym

LOAD 1

JGZ 'found

CPY 'urrentLo :nTupState

ADD 1

STO 'urrentLo

CPY 'urrentLo :nTupSym

ADD 4

JGZ 'nextTuple

CPY 'urrentLo :found
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Instr Data I Label D Label

SUB 1

STO 'SRL

JGZ 'searhExit

STO 'urrentLo :nextTuple

JGZ 'searh_loop

STO 'SRL :Not_Found

LOAD 1 :searhExit

JGZ 0 ;SE_R_LOC

'TAPE_START :CHP

1 :C_STATE

:SY_TABLE

:TAPE_START

7,150,4,84,7,149,4,12,7,5,4,110,3,21,4,148,6,79,3,0,6,

26,0,1,2,4,31,7,4,4,150,7,22,1,3,4,45,7,149,4,47,7,5,4,

4,7,22,1,4,4,55,7,1,2,1,6,68,7,149,2,1,4,149,6,74,7,149,

1,1,4,149,7,150,6,3,0,3,147,4,88,3,0,4,94,3,0,4,92,7,5,

2,0,6,119,7,88,1,1,4,88,4,106,7,5,4,112,3,0,2,0,6,125,3

,1,6,131,7,88,1,1,4,88,7,88,1,4,6,139,7,88,2,1,4,22,6,

145,4,88,6,83,4,22,3,1,6,5,146,1,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0

B.2.13 Universal RASP

Instr Data I Label D Label

LOAD 'PC_P

ADD 3

STO 'OFF_PC

CPY 'OFF_PC :SIM_ST

STO 'INSLOC

CPY 4 ;INSLOC

STO 'IR_P

STO 'Deoder_Ins

JGZ 'de1

HALT :none

SUB 1 :de1

JGZ 'de2

CPY 'ACC_P

ADD 1

STO 'x

STO 'ACC_P

CPY 'MAX_INT

STO 'y

LOAD 'ACC_P
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Instr Data I Label D Label

STO 'sto_loation

LOAD 'done

STO 'return_loation

JGZ 'TEST_LOOP

SUB 1 :de2

JGZ 'de3

CPY 'ACC_P

JGZ 'd

CPY 'MAX_INT

STO 'ACC_P

JGZ 'deST

SUB 1 :d

STO 'ACC_P :deST

LOAD 1

JGZ 'done

SUB 1 :de3

JGZ 'de4

LOAD 'L_RET

STO 'FE_RET

JGZ 'FETCH

CPY 'IR_P :L_RET

STO 'ACC_P

LOAD 1

JGZ 'done

SUB 1 :de4

JGZ 'de5

LOAD 'S_RET

STO 'FE_RET

JGZ 'FETCH

CPY 'IR_P :S_RET

STO 'stoadd

LOAD 'PC_P

ADD 0 ;stoadd

STO 'slo

CPY 'ACC_P

STO 0 ;slo

LOAD 1

JGZ 'done

SUB 1 :de5

JGZ 'de6

OUT

JGZ 'done

SUB 1 :de6

JGZ 'de7

LOAD 'J_RET

STO 'FE_RET

JGZ 'FETCH
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Instr Data I Label D Label

CPY 'ACC_P :J_RET

JGZ 'JGZ_JUMP

LOAD 1

JGZ 'done

CPY 'IR_P :JGZ_JUMP

STO 'PC_P

STO 'jgzadd

LOAD 'PC_P

ADD 0 ;jgzadd

STO 'OFF_PC

JGZ 'SIM_ST

SUB 1 :de7

JGZ 'none

LOAD 'C_RET

STO 'FE_RET

JGZ 'FETCH

CPY 'IR_P :C_RET

STO 'pyadd

LOAD 'PC_P

ADD 0 ;pyadd

STO 'pylo

CPY 0 ;pylo

STO 'ACC_P

LOAD 1

JGZ 'done

LOAD 'SIM_ST :done

STO 'I_FRET

CPY 'PC_P :INCREMENT_PC

ADD 1

STO 'PC_P

STO 'x

CPY 'MAX_INT

STO 'y

LOAD 'PC_P

STO 'sto_loation

LOAD 'TI_RET

STO 'return_loation

LOAD 1

JGZ 'TEST_LOOP

CPY 'PC_P :TI_RET

JGZ 'I_OFF

LOAD 'PC_P

STO 'OFF_PC

LOAD 1

JGZ 'INC_EXIT

CPY 'OFF_PC :I_OFF

ADD 1
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Instr Data I Label D Label

STO 'OFF_PC

LOAD 1 :INC_EXIT

JGZ 0 ;I_FRET

LOAD 'feth_r :FETCH

STO 'I_FRET

JGZ 'INCREMENT_PC

CPY 'OFF_PC :feth_r

STO 'FETCH_VAR

CPY 0 ;FETCH_VAR

STO 'IR_P

LOAD 1

JGZ 0 ;FE_RET

LOAD 0 :TEST_LOOP ;x

SUB 1

STO 'x

LOAD 0 ;y

SUB 1

STO 'y

JGZ 'xtest

LOAD 1

JGZ 'xtest2

CPY 'x :xtest

JGZ 'TEST_LOOP

LOAD 1

JGZ 'RETURN

CPY 'x :xtest2

JGZ 'INVALID

LOAD 1

JGZ 'RETURN

LOAD 0 :INVALID

STO 5 ;sto_loation

LOAD 1 :RETURN

JGZ 0 ;return_loation

0 :Deoder_Ins

0 :OFF_PC

15 :MAX_INT

:PC_P

:IR_P

:ACC_P

3,286,1,3,4,293,7,293,4,14,7,4,4,286,4,292,6,22,0,2,1,6,48,7,

286,1,1,4,251,4,286,7,294,4,257,3,286,4,287,3,183,4,291,6,250,

2,1,6,70,7,286,6,62,7,294,4,286,6,64,2,1,4,286,3,1,6,183,2,1,

6,88,3,80,4,249,6,232,7,286,4,286,3,1,6,183,2,1,6,116,3,98,4,

249,6,232,7,286,4,105,3,286,1,0,4,111,7,286,4,0,3,1,6,183,2,1,

6,123,5,6,183,2,1,6,155,3,133,4,249,6,232,7,286,6,141,3,1,6,

183,7,286,4,286,4,150,3,286,1,0,4,293,6,9,2,1,6,21,3,165,4,249,
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6,232,7,286,4,172,3,286,1,0,4,176,7,0,4,286,3,1,6,183,3,9,4,231,

7,286,1,1,4,286,4,251,7,294,4,257,3,286,4,287,3,211,4,291,3,1,6,

250,7,286,6,223,3,286,4,293,3,1,6,228,7,293,1,4,293,3,1,6,0,3,238,

4,231,6,187,7,293,4,243,7,0,4,286,3,1,6,0,3,0,2,1,4,251,3,0,2,1,4,

257,6,268,3,1,6,276,7,251,6,250,3,1,6,288,7,251,6,284,3,1,6,288,3,

0,4,5,3,1,6,0,0,0,15,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

B.3 RASP3

The RASP3 programs are presented in two ways: the �programming language

form� as seen all throughout this thesis, and the �array form� whih is what is

atually measured.

B.3.1 Addition

Instr Data I Label

LOAD x
ADD 'label

y :label

3,5,1,8,0,8,0,0,0,0,0,0,0

B.3.2 Subtration

Instr Data I Label D Label

LOAD 4 :sub_start ;sub_2

JGZ 'subbing

HALT

SUB 'subTarget :subbing

STO 'sub_2

LOAD 7 ;sub_1

JGZ 'subbing2

HALT

SUB 'subTarget :subbing2

STO 'sub_1

LOAD 1 ;subTarget

JGZ 'sub_start

3,4,6,8,0,2,22,4,4,3,7,6,17,0,2,22,4,13,3,1,6,3,0,0,0,0,0,0,0
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B.3.3 Equality

Instr Data I Label D Label

LOAD 6 ;num1

SUB 'num2

JGZ 'out

HALT

LOAD 1 :out

HALT

5 :num2

3,6,2,13,6,10,0,3,1,0,6,0,0

B.3.4 Multipliation

Instr Data I Label D Label

LOAD 5 ;multiplier

JGZ 'return

HALT

LOAD 5 :return ;multipliand

JGZ 'start

HALT

SUB 'one :start

STO 'multipliand

LOAD 0 ;runningTotal

ADD 'multiplier

STO 'runningTotal

LOAD 1 ;one

JGZ 'return

3,5,6,8,0,3,5,6,13,0,2,24,4,9,3,0,1,4,4,18,3,1,6,8,0,0,0,0,0

298



Appendix B. Full Programs

B.3.5 Division

Instr Data I Label D Label

LOAD 0 :start ;divisor

JGZ 'div_start

HALT

STO 'tmp :div_start

LOAD 7 ;num

STO 'remainder

LOAD 0 :loop ;tmp

JGZ 'sub

LOAD 1

JGZ 'return

SUB 'one :sub

STO 'tmp

CPY 'num

JGZ 'nl

HALT

SUB 'one :nl

STO 'num

LOAD 1 ;one

JGZ 'loop

LOAD 0 :return ;quotient

ADD 'one

STO 'quotient

JGZ 'start

0 :remainder

7,9,6,8,0,3,3,4,17,3,7,4,49,3,0,6,24,3,1,6,41,2,38,4,17,7,13,

6,33,0,2,38,4,13,3,1,6,16,3,0,1,38,4,42,6,8,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0
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B.3.6 Exponentiation

Instr Data I Label D Label

LOAD 1 :start ;power

JGZ 'ontinue

HALT

SUB 'one :ontinue

STO 'power

LOAD 1 ;runningTotal

STO 'multipliand

LOAD 0

STO 'runningTotal

LOAD 0 :return ;multipliand

JGZ 'mulStart

LOAD 1

JGZ 'start

SUB 'one :mulStart

STO 'multipliand

CPY 'runningTotal

ADD 'multiplier

STO 'runningTotal

LOAD 1 ;one

JGZ 'return

1 :multiplier

3,1,6,8,0,2,39,4,4,3,1,4,21,3,0,4,13,3,0,6,28,3,1,6,3,2,39,4

,21,7,13,1,42,4,13,3,1,6,20,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0
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B.3.7 List Membership

Instr Data I Label D Label

LOAD 'ls :start

STO 'pointer :mp_pointer_target

STO 'mp_1

LOAD 2 ;target

SUB 'pointer ;mp_1

JGZ 'end_test

LOAD 1 ;one

HALT

LOAD 0 :end_test ;pointer

SUB 'listend ;in_sub

JGZ 'in_pointer

LOAD 0

HALT

CPY 'pointer :in_pointer

ADD 'one

JGZ 'mp_pointer_target

'le :listend

:ls

:le

3,29,4,19,4,12,3,2,2,19,6,18,3,1,0,3,0,2,33,6,27,3,0,0,7,19,

1,16,6,5,31,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0
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B.3.8 Linear Searh

Instr Data I Label D Label

CPY 'listStart :start

STO 'pointer :mp_pointer_target

STO 'mp_1

LOAD 2 ;target

SUB 'pointer ;mp_1

JGZ 'end_test

CPY 'pointer

SUB 'listStart

HALT

LOAD 0 :end_test ;pointer

SUB 'listend ;in_sub

JGZ 'in_pointer

LOAD 'listend

HALT

CPY 'pointer :in_pointer

ADD 'one

JGZ 'mp_pointer_target

1 :one

'ls :listStart

'le :listend

:ls

:le

7,36,4,21,4,12,3,2,2,21,6,20,7,21,2,36,0,3,0,2,37,6,29,3,37,0,

7,21,1,35,6,5,1,33,34,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0
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B.3.9 List Reversal

Instr Data I Label D Label

LOAD 'listEnd

STO 'pyPointer

ADD 'two :one

STO 'writePointer

LOAD 0 :main ;writePointer

STO 'writeSTO

LOAD 0 ;pyPointer

STO 'pyLOC

CPY 0 ;pyLOC

STO 0 ;writeSTO

CPY 'writePointer

ADD 'one

STO 'writePointer

LOAD 'listStart

SUB 'pyPointer :two

JGZ 'deWritePointer

HALT

CPY 'pyPointer :deWritePointer

SUB 'one

STO 'pyPointer

JGZ 'main :listStart ;listEnd

3,43,4,16,1,45,4,12,3,0,4,22,3,0,4,20,7,0,4,0,7,12,1,44,4,12,3,

42,2,16,6,36,0,7,16,2,44,4,16,6,11,1,2,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0

B.3.10 Stateful List Reversal

Instr Data I Label D Label

LOAD 'listStart

STO 'pointer1

LOAD 'listEnd

STO 'pointer2

LOAD 'listEnd

SUB 'ls

ADD 'one

STO 'listsize

LOAD 0 :main ;pointer1

SUB 'pointer2

JGZ 'ontinue

HALT

LOAD 0 :ontinue ;listsize

SUB 'swaps

JGZ 'swap
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Instr Data I Label D Label

HALT

CPY 'pointer1 :swap

STO 'swpref1

STO 'writeref1

CPY 0 ;swpref1

STO 'swp

LOAD 0 ;pointer2

STO 'swpref2

STO 'writeref2

CPY 0 ;swpref2

STO 0 ;writeref1

LOAD 0 ;swp

STO 0 ;writeref2

CPY 'pointer1

ADD 'one :one

STO 'pointer1

CPY 'pointer2

SUB 'one :two

STO 'pointer2

LOAD 0 ;swaps

ADD 'two

STO 'swaps

JGZ 'main

'listStart :ls

:listStart

:listEnd

3,75,4,20,3,76,4,44,3,76,2,79,1,77,4,27,3,0,2,44,6,26,0,3,0,2,70,

6,33,0,7,20,4,40,4,52,7,0,4,54,3,0,4,50,4,56,7,0,4,0,3,0,4,0,7,20,

1,77,4,20,7,44,2,77,4,44,3,0,1,78,4,70,6,19,1,2,75,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0

B.3.11 Bubble Sort

Instr Data I Label D Label

LOAD 'listStart :start

STO 'pointer1

ADD 'one

STO 'pointer2

LOAD 0

STO '�ag

LOAD 0 :mp_pointers ;pointer1

STO 'p1ref

CPY 0 ;p1ref

STO 'mp1

LOAD 0 ;pointer2
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Instr Data I Label D Label

STO 'p2ref

CPY 0 ;p2ref

STO 'mp2

LOAD 'in_pointers

STO 'mpOther

STO 'equal1

LOAD 'swap

STO 'mp1Greater

LOAD 0 :mp_start ;mp2

SUB 'one

STO 'mp2

JGZ 'mp1de

CPY 'mp1

SUB 'one

JGZ 0 ;mp1Greater

LOAD 1 ;one

JGZ 0 ;equal1

LOAD 0 :mp1de ;mp1

SUB 'one

STO 'mp1

JGZ 'mp_start

LOAD 1

JGZ 0 ;mpOther

CPY 'pointer1 :in_pointers

ADD 'one

STO 'pointer1

LOAD 'listend

SUB 'pointer2

JGZ 'return_to_in

LOAD 0 ;�ag

JGZ 'start

HALT

CPY 'pointer2 :return_to_in

ADD 'one

STO 'pointer2

JGZ 'mp_pointers

CPY 'pointer2 :swap

STO 'p2SwpRef

STO 'p2WriteRef

CPY 0 ;p2SwpRef

STO 'swp

CPY 'pointer1

STO 'p1SwpRef

STO 'p1WriteRef

CPY 0 ;p1SwpRef

STO 0 ;p2WriteRef

LOAD 0 ;swp
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Instr Data I Label D Label

STO 0 ;p1WriteRef

LOAD 1

STO '�ag

JGZ 'in_pointers

:listStart

:listend

3,124,4,16,1,56,4,24,3,0,4,84,3,0,4,20,7,0,4,60,3,0,4,28,7,0,4,

42,3,71,4,70,4,58,3,96,4,54,3,0,2,56,4,42,6,59,7,60,2,56,6,0,3,

1,6,0,3,0,2,56,4,60,6,41,3,1,6,0,7,16,1,56,4,16,3,125,2,24,6,88,

3,0,6,3,0,7,24,1,56,4,24,6,15,7,24,4,103,4,115,7,0,4,117,7,16,4,

113,4,119,7,0,4,0,3,0,4,0,3,1,4,84,6,71,0,0

B.3.12 Universal TM

Instr Data I Label D Label

CPY 'CS :P_START

STO 'SS :four

CPY 'CHP

STO 'SY_READ

CPY 5 ;SY_READ

STO 'S_SY

LOAD 'MSR :three

STO 'STL

JGZ 'SE_ST :six

LOAD 0 :MSR ;SRL

JGZ 'VS

HALT

ADD 'two :VS

STO 'N_ST_R

CPY 4 ;N_ST_R

STO 'CS

CPY 'SRL

ADD 'three :one

STO 'NEW_SY_READ

CPY 'CHP

STO 'HP

CPY 5 ;NEW_SY_READ

STO 4 ;HP

CPY 'SRL

ADD 'four

STO 'N_D_R

CPY 1 ;N_D_R

SUB 'one :two

JGZ 'DIR_RIGHT

CPY 'CHP

SUB 'one
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Instr Data I Label D Label

STO 'CHP

JGZ 'CONTINUE

CPY 'CHP :DIR_RIGHT

ADD 'one

STO 'CHP

CPY 'CS :CONTINUE

JGZ 'P_START

HALT

LOAD 'SYTABST :SE_ST

STO 'urrentLo

LOAD 0 :searh_loop ;SS

SUB 0 ;urrentLo

JGZ 'nTupSt

CPY 'urrentLo

ADD 'one

STO 'urrentLo

STO 'CMPSymbol

LOAD 0 ;S_SY

SUB 0 ;CMPSymbol

JGZ 'nTupSy

LOAD 1

JGZ 'found

CPY 'urrentLo :nTupSt

ADD 'one

STO 'urrentLo

CPY 'urrentLo :nTupSy

ADD 'four

JGZ 'nextTuple

CPY 'urrentLo :found

SUB 'one

STO 'SRL

JGZ 'searhExit

STO 'urrentLo :nextTuple

JGZ 'searh_loop

STO 'SRL :Not_Found

LOAD 1 :searhExit

JGZ 5 ;STL

'T_ST :CHP

1 :CS

:SYTABST

:T_ST

7,138,4,84,7,137,4,12,7,5,4,98,3,21,4,136,6,79,3,0,6,26,0,1,56,

4,31,7,4,4,138,7,22,1,15,4,45,7,137,4,47,7,5,4,4,7,22,1,5,4,55,

7,1,2,26,6,68,7,137,2,26,4,137,6,74,7,137,1,26,4,137,7,138,6,3,

0,3,138,4,86,3,0,2,0,6,107,7,86,1,26,4,86,4,100,3,0,2,0,6,113,3,

1,6,119,7,86,1,26,4,86,7,86,1,5,6,127,7,86,2,26,4,22,6,133,4,86,
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6,83,4,22,3,1,6,5,138,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

B.3.13 Universal RASP

Instr Data I Label D Label

LOAD 'PC_P :three

ADD 'three

STO 'OFF_PC

CPY 'OFF_PC :SIM_ST

STO 'INSLOC

CPY 4 ;INSLOC

STO 'IR_P

STO 'Deoder_Ins

JGZ 'de1

HALT :none

SUB 'one :de1

JGZ 'de2

CPY 'ACC_P

ADD 'one

STO 'x

STO 'ACC_P

CPY 'MAX_INT

STO 'y

LOAD 'ACC_P

STO 'sto_loation

LOAD 'done

STO 'return_loation

JGZ 'TEST_LOOP

SUB 'one :de2

JGZ 'de3

CPY 'ACC_P

JGZ 'd

CPY 'MAX_INT

STO 'ACC_P

JGZ 'deST

SUB 'one :d

STO 'ACC_P :deST

LOAD 1

JGZ 'done

SUB 'one :de3

JGZ 'de4

LOAD 'L_RET

STO 'F_RET

JGZ 'FETCH

CPY 'IR_P :L_RET
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Instr Data I Label D Label

STO 'ACC_P

LOAD 1

JGZ 'done

SUB 'one :de4

JGZ 'de5

LOAD 'S_RET

STO 'F_RET

JGZ 'FETCH

LOAD 'PC_P :S_RET

ADD 'IR_P

STO 'slo

CPY 'ACC_P

STO 0 ;slo

LOAD 1

JGZ 'done

SUB 'one :de5

JGZ 'de6

OUT

JGZ 'done

SUB 'one :de6

JGZ 'de7

LOAD 'J_RET

STO 'F_RET

JGZ 'FETCH

CPY 'ACC_P :J_RET

JGZ 'JGZ_JUMP

LOAD 1

JGZ 'done

CPY 'IR_P :JGZ_JUMP

STO 'PC_P

LOAD 'PC_P

ADD 'IR_P

STO 'OFF_PC

JGZ 'SIM_ST

SUB 'one :de7

JGZ 'none

LOAD 'C_RET

STO 'F_RET

JGZ 'FETCH

LOAD 'PC_P :C_RET

CPY 'IR_P

STO 'pylo

CPY 0 ;pylo

STO 'ACC_P

LOAD 1

JGZ 'done

LOAD 'SIM_ST :done

309



Appendix B. Full Programs

Instr Data I Label D Label

STO 'I_FRET

CPY 'PC_P :INCREMENT_PC

ADD 'one

STO 'PC_P

STO 'x

CPY 'MAX_INT

STO 'y

LOAD 'PC_P

STO 'sto_loation

LOAD 'TI_RET

STO 'return_loation

LOAD 1

JGZ 'TEST_LOOP

CPY 'PC_P :TI_RET

JGZ 'INC_OFFSET

LOAD 'PC_P

STO 'OFF_PC

LOAD 1

JGZ 'INC_EXIT

CPY 'OFF_PC :INC_OFFSET

ADD 'one

STO 'OFF_PC

LOAD 1 :INC_EXIT

JGZ 0 ;I_FRET

LOAD 'feth_r :FETCH

STO 'I_FRET

JGZ 'INCREMENT_PC

CPY 'OFF_PC :feth_r

STO 'FETCH_VAR

CPY 0 ;FETCH_VAR

STO 'IR_P

LOAD 1

JGZ 0 ;F_RET

LOAD 0 :TEST_LOOP ;x

SUB 'one

STO 'x

LOAD 0 ;y

SUB 'one

STO 'y

JGZ 'xtest

LOAD 1

JGZ 'xtest2

CPY 'x :xtest

JGZ 'TEST_LOOP

LOAD 1

JGZ 'RETURN

CPY 'x :xtest2
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Instr Data I Label D Label

JGZ 'INVALID

LOAD 1

JGZ 'RETURN

LOAD 0 :INVALID

STO 5 ;sto_loation

LOAD 1 :RETURN ;one

JGZ 0 ;return_loation

0 :Deoder_Ins

0 :OFF_PC

4 :MAX_INT

:PC_P

:IR_P

:ACC_P

3,281,1,3,4,284,7,284,4,14,7,4,4,281,4,283,6,22,0,2,280,6,48,

7,281,1,280,4,242,4,281,7,285,4,248,3,281,4,278,3,173,4,282,

6,241,2,280,6,70,7,281,6,62,7,285,4,281,6,64,2,280,4,281,3,1,

6,173,2,280,6,88,3,80,4,240,6,223,7,281,4,281,3,1,6,173,2,280,

6,112,3,98,4,240,6,223,3,281,1,281,4,107,7,281,4,0,3,1,6,173,2,

280,6,119,5,6,173,2,280,6,149,3,129,4,240,6,223,7,281,6,137,3,

1,6,173,7,281,4,281,3,281,1,281,4,284,6,9,2,280,6,21,3,159,4,

240,6,223,3,281,7,281,4,166,7,0,4,281,3,1,6,173,3,9,4,222,7,281,

1,280,4,281,4,242,7,285,4,248,3,281,4,278,3,201,4,282,3,1,6,241,

7,281,6,213,3,281,4,284,3,1,6,219,7,284,1,280,4,284,3,1,6,0,3,

229,4,222,6,177,7,284,4,234,7,0,4,281,3,1,6,0,3,0,2,280,4,242,

3,0,2,280,4,248,6,259,3,1,6,267,7,242,6,241,3,1,6,279,7,242,6,

275,3,1,6,279,3,0,4,5,3,1,6,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
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B.4 TM

B.4.1 Addition/Subtration/Equality

1,1,2,0,R

2,1,2,1,R

2,0,0,1,L

(a) Addition

1,1,1,1,R

1,0,2,0,R

2,1,2,1,R

2,0,3,0,L

3,1,4,0,L

3,0,0,0,R

4,1,4,1,L

4,0,5,0,L

5,1,5,1,L

5,0,6,0,R

6,1,1,0,R

6,0,7,0,R

7,0,8,0,R

7,1,7,0,R

8,0,0,0,R

(b) Subtration

1,0,7,0,R

2,1,2,1,R

2,0,3,0,R

3,1,3,1,R

3,0,4,0,L

4,1,5,0,L

4,0,9,0,L

5,1,5,1,L

5,0,6,0,L

6,1,6,1,L

6,0,1,0,R

7,0,0,0,R

7,1,8,0,R

8,1,8,0,R

8,0,0,1,R

9,0,0,0,L

9,1,10,0,L

10,1,10,0,L

10,0,0,1,L

() Equality
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B.4.2 Multipliation/Division

1,0,10,0,R

1,1,2,0,R

2,1,2,1,R

2,0,3,0,R

3,#,3,#,R

3,1,4,#,R

3,0,8,0,L

4,1,4,1,R

4,0,5,0,R

5,1,5,1,R

5,0,6,1,L

6,1,6,1,L

6,0,7,0,L

7,#,7,#,L

7,1,7,1,L

7,0,3,0,R

8,#,8,1,L

8,0,9,0,L

9,1,9,1,L

9,0,1,0,R

10,1,10,0,R

10,0,0,0,R

(a) Multipliation

1,1,2,#,R

1,#,1,#,R

1,0,6,0,L

2,1,2,1,R

2,0,3,0,R

3,#,3,#,R

3,1,4,#,L

3,0,9,0,L

4,#,4,#,L

4,0,5,0,L

5,#,5,#,L

5,1,5,1,L

5,0,1,0,R

6,#,6,1,L

6,0,7,0,L

7,1,7,1,L

7,0,8,1,R

8,1,8,1,R

8,0,1,0,R

9,#,9,0,L

9,0,10,0,L

10,#,12,0,L

10,1,11,0,L

11,1,11,0,L

11,#,12,0,L

12,#,12,1,L

12,0,0,0,L

(b) Division
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B.4.3 Exponentiation

1,0,0,0,R

1,1,2,0,R

2,1,2,1,R

2,0,3,0,R

3,#,3,#,R

3,0,14,0,R

3,1,4,#,R

4,1,4,1,R

4,0,5,0,R

5,0,5,0,R

5,1,6,#,R

6,1,6,1,R

6,0,7,0,R

7,1,7,1,R

7,0,8,1,L

8,1,8,1,L

8,0,9,0,L

9,#,9,#,L

9,1,9,1,L

9,0,10,0,R

10,1,6,#,R

10,#,10,#,R

10,0,11,0,L

11,#,11,1,L

11,0,12,0,L

12,0,12,0,L

12,#,13,#,L

12,1,13,1,L

13,1,13,1,L

13,#,13,#,L

13,0,3,0,R

14,0,14,0,R

14,1,15,0,R

15,1,15,0,R

15,0,16,0,L

16,0,16,0,L

16,#,17,1,L

17,#,17,1,L

17,0,18,0,L

18,1,18,1,L

18,0,1,0,R

B.4.4 List Membership

1,1,1,B,R

1,0,1,A,R

1,*,2,*,L

2,1,2,B,L

2,0,2,A,L

2,*,2,*,L

2,A,2,A,L

2,B,2,B,L

2,T,3,T,R

3,0,3,0,R

3,1,3,1,R

3,B,4,1,R

3,A,7,0,R

3,*,8,*,L

4,A,4,A,R

4,B,4,B,R

4,*,4,*,R

4,1,5,B,L

4,0,6,A,R

5,A,5,A,L

5,B,5,B,L

5,1,5,1,L

5,0,5,0,L

5,*,5,*,L

5,T,3,T,R

6,0,6,0,R

6,1,6,1,R

6,*,2,*,L

6,E,0,E,R

7,A,7,A,R

7,B,7,B,R

7,*,7,*,R

7,0,5,A,L

7,1,6,B,R

8,0,8,0,L

8,1,8,1,L

8,T,9,T,L

9,0,0,1,L
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B.4.5 Linear Searh

1,1,1,B,R

1,0,1,A,R

1,#,2,#,L

2,A,2,A,L

2,B,2,B,L

2,0,2,A,L

2,1,2,B,L

2,#,2,#,L

2,*,2,*,L

2,T,3,T,R

3,1,3,1,R

3,0,3,0,R

3,B,4,1,R

3,A,9,0,R

3,#,10,#,L

4,A,4,A,R

4,B,4,B,R

4,#,4,#,R

4,*,4,*,R

4,1,5,B,L

4,0,6,A,R

5,A,5,A,L

5,B,5,B,L

5,1,5,1,L

5,0,5,0,L

5,#,5,#,L

5,*,5,*,L

5,T,3,T,R

6,0,6,0,R

6,1,6,1,R

6,*,6,*,R

6,#,2,#,L

6,E,7,E,L

7,0,7,0,L

7,1,7,1,L

7,A,7,A,L

7,B,7,B,L

7,*,7,*,L

7,#,7,#,L

7,T,8,T,L

8,0,8,*,L

8,E,0,E,R

9,A,9,A,R

9,B,9,B,R

9,#,9,#,R

9,*,9,*,R

9,1,6,B,R

9,0,5,A,L

10,0,10,A,L

10,1,10,B,L

10,T,10,T,L

10,E,11,E,R

11,A,12,0,R

11,T,0,T,R

12,A,12,A,R

12,B,12,B,R

12,*,12,*,R

12,#,12,#,R

12,T,12,T,R

12,0,13,A,L

12,1,14,B,L

13,A,13,A,L

13,B,13,B,L

13,*,13,*,L

13,#,13,#,L

13,T,13,T,L

13,0,11,0,R

14,A,14,A,L

14,B,14,B,L

14,*,14,*,L

14,#,14,#,L

14,T,14,T,L

14,0,11,1,R
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B.4.6 List Reversal

1,#,1,#,L

1,A,1,A,L

1,B,1,B,L

1,$,1,$,L

1,0,9,0,L

1,1,9,1,L

1,*,2,*,R

1,E,0,0,R

2,A,2,A,R

2,B,2,B,R

2,1,7,B,R

2,0,5,A,R

2,#,3,#,R

2,$,3,$,R

3,A,3,A,R

3,B,3,B,R

3,#,3,#,R

3,$,3,$,R

3,0,4,$,L

4,A,4,A,L

4,B,4,B,L

4,#,4,#,L

4,$,4,$,L

4,*,1,$,L

5,A,5,A,R

5,B,5,B,R

5,0,5,0,R

5,1,5,1,R

5,$,5,$,R

5,#,6,#,R

6,A,6,A,R

6,B,6,B,R

6,$,6,$,R

6,0,1,A,L

7,A,7,A,R

7,B,7,B,R

7,0,7,0,R

7,1,7,1,R

7,$,7,$,R

7,#,8,#,R

8,A,8,A,R

8,B,8,B,R

8,$,8,$,R

8,0,1,B,L

9,1,9,1,L

9,0,9,0,L

9,A,9,A,L

9,B,9,B,L

9,*,2,*,R

9,E,2,E,R
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B.4.7 Stateful List Reversal

1,0,2,Z,R

1,1,5,Z,R

1,*,7,*,R

2,0,2,0,R

2,1,2,1,R

2,A,2,A,R

2,B,2,B,R

2,*,2,*,R

2,E,3,E,R

3,A,3,A,R

3,B,3,B,R

3,0,4,A,L

4,A,4,A,L

4,B,4,B,L

4,0,4,0,L

4,1,4,1,L

4,*,4,*,L

4,E,4,E,L

4,Z,1,Z,R

5,0,5,0,R

5,1,5,1,R

5,A,5,A,R

5,B,5,B,R

5,*,5,*,R

5,E,6,E,R

6,A,6,A,R

6,B,6,B,R

6,0,4,B,L

7,A,7,A,R

7,B,7,B,R

7,0,7,0,R

7,1,7,1,R

7,*,7,*,R

7,E,8,E,L

8,A,8,A,L

8,B,8,B,L

8,*,8,*,L

8,1,9,1,R

8,0,9,0,R

8,Z,14,Z,R

9,*,10,*,L

9,E,10,E,L

10,0,11,Z,L

10,1,13,Z,L

10,*,14,*,R

11,A,11,A,L

11,B,11,B,L

11,0,11,0,L

11,1,11,1,L

11,*,11,*,L

11,Z,12,A,R

12,A,12,A,R

12,B,12,B,R

12,0,12,0,R

12,1,12,1,R

12,*,12,*,R

12,Z,10,Z,L

13,A,13,A,L

13,B,13,B,L

13,0,13,0,L

13,1,13,1,L

13,*,13,*,L

13,Z,12,B,R

14,Z,14,Z,R

14,A,14,A,R

14,B,14,B,R

14,*,14,*,R

14,E,14,E,R

14,0,15,0,L

15,A,16,0,L

15,B,17,0,L

15,E,18,E,L

16,E,16,E,L

16,A,16,A,L

16,B,16,B,L

16,*,16,*,L

16,Z,14,A,R

17,E,17,E,L

17,A,17,A,L

17,B,17,B,L

17,*,17,*,L

17,Z,14,B,R

18,A,18,A,L

18,B,18,B,L

18,*,18,*,L

18,0,19,0,L

18,1,19,1,L

18,E,0,E,R

19,0,19,0,L

19,1,19,1,L

19,*,19,*,L

19,A,20,A,R

19,B,20,B,R

20,*,1,*,R
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B.4.8 Bubble Sort

1,*,2,$,R

1,1,1,1,R

1,0,1,0,R

2,0,2,0,R

2,1,2,1,R

2,*,3,$,L

2,#,13,#,L

3,0,3,0,L

3,1,3,1,L

3,A,3,A,L

3,B,3,B,L

3,$,4,$,R

4,1,5,B,R

4,0,8,A,R

4,A,4,A,R

4,B,4,B,R

4,$,12,$,R

5,0,5,0,R

5,1,5,1,R

5,$,6,$,R

6,1,7,B,L

6,0,15,0,L

6,A,6,A,R

6,B,6,B,R

7,A,7,A,L

7,B,7,B,L

7,$,3,$,L

8,0,8,0,R

8,1,8,1,R

8,$,9,$,R

9,1,10,1,L

9,0,7,A,L

9,A,9,A,R

9,B,9,B,R

10,A,10,0,L

10,B,10,1,L

10,$,11,*,L

11,A,11,0,L

11,0,11,0,L

11,B,11,1,L

11,1,11,1,L

11,$,1,*,R

12,A,12,A,R

12,B,12,B,R

12,*,10,*,L

13,0,13,0,L

13,1,13,1,L

13,*,13,*,L

13,$,13,*,L

13,#,14,#,L

14,0,0,0,R

14,1,14,0,R

14,#,1,#,R

15,A,15,0,L

15,B,15,1,L

15,$,16,$,R

16,Z,16,Z,R

16,0,17,Z,R

16,1,20,Z,R

16,*,22,*,L

16,#,22,#,L

17,0,17,0,R

17,1,17,1,R

17,*,17,*,R

17,#,18,#,R

18,A,18,A,R

18,B,18,B,R

18,0,19,A,L

19,Z,19,Z,L

19,0,19,0,L

19,1,19,1,L

19,A,19,A,L

19,B,19,B,L

19,*,19,*,L

19,#,19,#,L

19,$,16,$,R

20,0,20,0,R

20,1,20,1,R

20,*,20,*,R

20,#,21,#,R

21,A,21,A,R

21,B,21,B,R

21,0,19,B,L

22,Z,22,Z,L

22,$,23,*,L

23,A,23,0,L

23,B,23,1,L

23,0,23,0,L

23,1,23,1,L

23,*,23,*,L

23,Z,23,Z,L

23,$,24,$,R

24,Z,24,Z,R

24,0,25,Z,R

24,1,26,Z,R

24,*,27,*,R

25,0,25,0,R

25,1,25,1,R

25,*,25,*,R

25,Z,23,0,L

26,0,26,0,R

26,1,26,1,R

26,*,26,*,R

26,Z,23,1,L

27,0,27,0,R

27,1,27,1,R

27,*,27,*,R

27,#,28,#,R

28,A,28,A,R

28,B,28,B,R

28,0,29,0,L

29,A,30,0,L

29,B,31,0,L

29,#,32,#,L

30,A,30,A,L

30,B,30,B,L

30,0,30,0,L

30,1,30,1,L

30,*,30,*,L

30,#,30,#,L

30,Z,27,0,R

31,A,31,A,L

31,B,31,B,L

31,0,31,0,L

31,1,31,1,L

31,*,31,*,L

31,#,31,#,L

31,Z,27,1,R

32,0,32,0,L

32,1,32,1,L

32,*,32,*,L

32,$,32,$,L

32,#,33,#,L

33,0,34,1,R

33,1,34,1,R

34,#,34,#,R

34,0,34,0,R

34,1,34,1,R

34,*,34,*,R

34,$,1,*,R
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B.4.9 Universal TM

1,0,1,A,L

1,1,1,B,L

1,Y,5,Y,R

1,X,1,X,L

1,B,1,B,L

1,A,1,A,L

2,Y,0,Y,R

2,X,1,X,L

2,1,2,1,R

2,0,2,0,R

3,1,2,B,R

3,0,4,A,L

3,B,3,B,R

3,A,3,A,R

3,X,3,X,R

4,Y,5,Y,R

4,X,4,X,L

4,A,4,A,L

4,B,4,B,L

4,1,4,1,L

4,0,4,0,L

5,A,3,0,R

5,B,6,1,R

5,X,23,X,R

5,0,5,0,R

5,1,5,1,R

6,1,4,B,L

6,0,2,A,R

6,A,6,A,R

6,B,6,B,R

6,X,6,X,R

7,S,1,A,L

7,0,7,0,R

7,1,7,1,R

7,Y,7,Y,R

8,S,1,B,L

8,0,8,0,R

8,1,8,1,R

8,Y,8,Y,R

9,0,7,M,R

9,1,8,M,R

10,0,7,M,R

10,1,8,M,R

11,B,9,0,R

11,A,10,0,L

11,0,11,0,L

11,1,11,1,L

11,Y,11,Y,L

12,B,9,1,R

12,A,10,1,L

12,0,12,0,L

12,1,12,1,L

12,Y,12,Y,L

13,0,11,S,L

13,1,12,S,L

13,B,13,1,L

13,A,13,0,L

13,X,13,X,L

13,Y,13,Y,L

14,0,13,0,L

14,1,13,1,L

14,A,14,A,R

14,B,14,B,R

14,X,14,X,R

14,Y,14,Y,R

15,B,15,1,R

15,A,15,0,R

15,X,14,X,R

15,0,15,0,R

15,1,15,1,R

15,Y,15,Y,R

16,M,15,A,R

16,A,16,A,L

16,B,16,B,L

16,Y,16,Y,L

16,0,16,0,L

16,1,16,1,L

17,M,15,B,R

17,A,17,A,L

17,B,17,B,L

17,Y,17,Y,L

17,0,17,0,L

17,1,17,1,L

18,X,17,X,L

18,0,19,B,R

18,1,19,B,R

18,A,18,A,R

18,B,18,B,R

19,X,23,X,R

19,1,19,1,R

19,0,19,0,R

20,0,19,A,R

20,1,19,A,R

20,X,16,X,L

20,A,20,A,R

20,B,20,B,R

21,Y,20,Y,R

21,B,21,B,L

21,A,21,A,L

21,X,21,X,L

21,1,21,1,L

21,0,21,0,L

22,Y,18,Y,R

22,A,22,A,L

22,B,22,B,L

22,X,22,X,L

22,1,22,1,L

22,0,22,0,L

23,1,22,B,L

23,0,21,A,L

23,A,23,A,R

23,B,23,B,R

23,X,23,X,R
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B.4.10 Universal RASP

1,0,1,A,R

1,1,1,B,R

1,#,53,#,L

1,S,1,S,R

53,A,53,A,L

53,B,53,B,L

53,1,53,1,L

53,0.253,0,L

53,S,53,S,L

53,#,53,#,L

53,P,2,P,R

2,1,2,1,R

2,0,2,0,R

2,#,3,#,L

3,0,3,A,L

3,1,3,B,L

3,A,3,A,L

3,B,3,B,L

3,P,4,P,R

3,*,3,*,L

3,#,3,#,L

3,S,3,S,L

3,I,3,I,L

3,X,3,X,L

4,0,4,0,R

4,1,4,1,R

4,A,5,0,R

4,B,12,1,R

4,#,15,#,R

5,A,5,A,R

5,B,5,B,R

5,#,6,#,R

6,S,6,S,R

6,A,6,A,R

6,B,6,B,R

6,1,6,1,R

6,0,6,0,R

6,#,7,#,R

7,I,7,I,R

7,#,7,#,R

7,*,7,*,R

7,A,7,A,R

7,B,7,B,R

7,X,7,X,R

7,0,9,A,L

7,1,8,B,R

8,I,8,I,R

8,X,8,X,R

8,*,8,*,R

8,1,8,1,R

8,0,8,0,R

8,E,13,E,L

8,#,3,#,L

9,S,9,S,L

9,I,9,I,L

9,X,9,X,L

9,*,9,*,L

9,#,9,#,L

9,1,9,1,L

9,0,9,0,L

9,A,9,A,L

9,B,9,B,L

9,P,4,P,R

10,I,10,I,R

10,#,10,#,R

10,*,10,*,R

10,A,10,A,R

10,B,10,B,R

10,X,10,X,R

10,1,9,B,L

10,0,8,A,R

11,S,11,S,R

11,A,11,A,R

11,B,11,B,R

11,1,11,1,R

11,0,11,0,R

11,#,10,#,R

12,A,12,A,R

12,B,12,B,R

12,#,11,#,R

13,1,13,1,L

13,0,13,0,L

13,A,13,A,L

13,B,13,B,L

13,S,13,S,L

13,I,13,I,L

13,X,13,X,L

13,I,13,I,L

13,#,13,#,L

13,*,13,*,L

13,P,14,P,L

14,#,14,#,L

14,0,23,P,L

15,S,15,S,R

15,B,16,1,R

15,A,16,0,R

15,#,21,#,R

16,#,16,#,R

16,*,16,*,R

16,A,16,A,R

16,B,16,B,R

16,I,16,I,R

16,X,16,X,R

16,0,17,A,L

16,1,19,B,L

17,#,17,#,L

17,*,17,*,L

17,A,17,A,L

17,B,17,B,L

17,X,17,X,L

17,I,17,I,L

17,0,17,0,L

17,1,17,1,L

17,S,18,S,R

18,A,18,A,R

18,B,18,B,R

18,#,21,#,R

18,1,15,A,R

18,0,15,A,R

19,#,19,#,L

19,*,19,*,L

19,A,19,A,L

19,B,19,B,L

19,X,19,X,L

19,I,19,I,L

19,0,19,0,L

19,1,19,1,L

19,S,20,S,R

20,A,20,A,R

20,B,20,B,R

20,#,21,#,R

20,0,15,B,R

20,1,15,B,R

21,0,21,0,L

21,1,21,1,L

21,A,21,A,L
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21,B,21,B,L

21,*,21,*,L

21,#,21,#,L

21,X,21,X,L

21,I,21,I,L

21,S,21,S,L

21,P,22,P,L

22,#,22,#,L

22,0,23,B,L

23,E,24,E,R

24,P,24,P,R

24,#,24,#,R

24,*,24,*,R

24,0,24,0,R

24,1,24,1,R

24,A,24,A,R

24,B,24,B,R

24,S,24,S,R

24,I,24,I,R

24,X,24,X,R

24,E,25,E,L

25,P,26,P,L

25,#,25,#,L

25,*,25,*,L

25,0,25,0,L

25,1,25,1,L

25,A,25,0,L

25,B,25,1,L

25,S,25,S,L

25,I,25,I,L

25,X,25,X,L

26,P,26,P,L

26,#,26,#,L

26,*,26,*,L

26,0,26,0,L

26,1,26,1,L

26,A,26,A,L

26,B,26,B,L

26,S,26,S,L

26,I,26,I,L

26,X,26,X,L

26,E,27,E,R

27,1,54,0,R

27,A,46,0,R

27,B,28,0,R

27,P,38,0,R

27,S,86,0,R

27,#,208,0,R

28,P,28,P,R

28,0,28,0,R

28,1,28,1,R

28,#,28,#,R

28,*,28,*,R

28,A,28,A,R

28,B,28,B,R

28,S,29,S,R

29,A,29,A,R

29,B,29,B,R

29,0,30,A,R

29,1,33,B,R

29,#,36,#,R

30,0,30,0,R

30,1,30,1,R

30,A,30,A,R

30,B,30,B,R

30,*,30,*,R

30,#,30,#,R

30,I,31,I,R

31,0,32,A,L

31,1,32,A,L

31,A,31,A,R

31,B,31,B,R

32,0,32,0,L

32,1,32,1,L

32,A,32,A,L

32,B,32,B,L

32,*,32,*,L

32,#,32,#,L

32,I,32,I,L

32,S,29,S,R

33,0,33,0,R

33,1,33,1,R

33,A,33,A,R

33,B,33,B,R

33,*,33,*,R

33,#,33,#,R

33,I,34,I,R

34,0,35,B,L

34,1,35,B,L

34,A,34,A,R

34,B,34,B,R

35,0,35,0,L

35,1,35,1,L

35,A,35,A,L

35,B,35,B,L

35,*,35,*,L

35,#,35,#,L

35,I,35,I,L

35,S,29,S,R

36,0,36,0,L

36,1,36,1,L

36,A,36,A,L

36,B,36,B,L

36,#,36,#,L

36,S,36,S,L

36,P,37,P,L

37,#,37,#,L

37,0,23,A,L

38,P,39,P,R

38,#,38,#,R

39,#,45,#,L

39,A,39,A,R

39,B,39,B,R

39,0,40,A,R

39,1,43,B,R

40,1,40,1,R

40,0,40,0,R

40,#,40,#,R

40,S,41,S,R

41,A,41,A,R

41,B,41,B,R

41,0,42,A,L

41,1,42,A,L

42,0,42,0,L

42,1,42,1,L

42,B,42,B,L

42,A,42,A,L

42,S,42,S,L

42,#,42,#,L

42,P,39,P,R

43,1,43,1,R

43,0,43,0,R

43,#,43,#,R

43,S,44,S,R

44,A,44,A,R

44,B,44,B,R
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44,0,42,B,L

44,1,42,B,L

45,#,45,#,L

45,A,45,A,L

45,B,45,B,L

45,P,45,P,L

45,0,23,B,L

46,#,46,#,R

46,P,46,P,R

46,0,46,0,R

46,1,46,1,R

46,P,46,P,R

46,S,47,S,R

47,1,47,1,R

47,0,47,0,R

47,#,48,#,L

48,1,51,1,L

48,0,49,0,L

49,0,49,0,L

49,1,49,1,L

49,S,49,S,L

49,#,49,#,L

49,P,50,P,L

50,#,50,#,L

50,0,23,S,L

51,0.251,0,L

51,1,51,1,L

51,S,51,S,L

51,#,51,#,L

51,P,52,P,L

52,#,52,#,L

52,0,23,1,L

54,#,54,#,R

54,P,55,P,R

55,1,55,1,R

55,0.255,0,R

55,#,56,#,L

56,1,56,1,L

56,P,57,P,R

56,0.257,1,R

57,1,57,0,R

57,#,58,#,R

58,0.258,A,L

58,1,58,B,L

58,#,71,#,L

58,S,59,S,R

59,1,59,1,R

59,0.259,0,R

59,#,60,#,L

60,0,60,A,L

60,1,60,B,L

60,A,60,A,L

60,B,60,B,L

60,P,61,P,R

60,*,60,*,L

60,#,60,#,L

60,S,60,S,L

60,I,60,I,L

60,X,60,X,L

61,#,72,#,R

61,0,61,0,R

61,1,61,1,R

61,A,62,0,R

61,B,69,1,R

62,A,62,A,R

62,B,62,B,R

62,#,63,#,R

63,S,63,S,R

63,A,63,A,R

63,B,63,B,R

63,1,63,1,R

63,0,63,0,R

63,#,64,#,R

64,I,64,I,R

64,#,64,#,R

64,*,64,*,R

64,A,64,A,R

64,B,64,B,R

64,X,64,X,R

64,0,66,A,L

64,1,65,B,R

65,I,65,I,R

65,X,65,X,R

65,*,65,*,R

65,1,65,1,R

65,0,65,0,R

65,E,70,E,L

65,#,60,#,L

66,S,66,S,L

66,I,66,I,L

66,X,66,X,L

66,*,66,*,L

66,#,66,#,L

66,1,66,1,L

66,0,66,0,L

66,A,66,A,L

66,B,66,B,L

66,P,61,P,R

67,I,67,I,R

67,#,67,#,R

67,*,67,*,R

67,A,67,A,R

67,B,67,B,R

67,X,67,X,R

67,1,66,B,L

67,0,65,A,R

68,S,68,S,R

68,A,68,A,R

68,B,68,B,R

68,1,68,1,R

68,0,68,0,R

68,#,67,#,R

69,B,69,B,R

69,#,68,#,R

70,1,70,1,L

70,0,70,0,L

70,A,70,A,L

70,B,70,B,L

70,I,70,I,L

70,X,70,X,L

70,I,70,I,L

70,#,70,#,L

70,*,70,*,L

70,S,82,S,R

71,A,71,A,L

71,B,71,B,L

71,1,71,1,L

71,0,71,0,L

71,S,71,S,L

71,#,71,#,L

71,P,59,P,R

72,S,72,S,R

72,B,72,B,R

72,A,72,A,R

72,#,72,#,R

72,*,72,*,R
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72,I,73,I,R

73,0,73,0,R

73,1,73,1,R

73,A,73,A,R

73,B,73,B,R

73,#,74,#,R

74,0,80,0,L

74,1,80,1,L

74,A,75,A,L

74,B,75,B,L

75,A,75,A,L

75,B,75,B,L

75,I,76,I,R

75,0,75,0,L

75,1,75,1,L

75,#,75,#,L

76,1,76,1,R

76,0,76,0,R

76,A,77,0,R

76,B,77,0,R

76,#,80,#,L

77,A,77,A,R

77,B,77,B,R

77,X,77,X,R

77,#,77,#,R

77,*,77,*,R

77,0,78,A,L

77,1,79,B,L

78,A,78,A,L

78,B,78,B,L

78,#,78,#,L

78,*,78,*,L

78,X,78,X,L

78,0,75,0,L

78,1,75,0,L

79,A,79,A,L

79,B,79,B,L

79,#,79,#,L

79,*,79,*,L

79,X,79,X,L

79,0,75,1,L

79,1,75,1,L

80,A,80,A,L

80,B,80,B,L

80,1,80,1,L

80,0,80,0,L

80,#,80,#,L

80,*,80,*,L

80,S,80,S,L

80,X,80,X,L

80,I,80,I,L

80,P,81,P,L

81,#,81,#,L

81,0,23,S,L

82,A,82,A,R

82,B,82,B,R

82,#,82,#,R

82,*,82,*,R

82,I,83,I,R

83,A,83,0,R

83,B,83,0,R

83,#,84,#,L

84,A,84,A,L

84,B,84,B,L

84,1,84,1,L

84,0,84,0,L

84,*,84,*,L

84,#,84,#,L

84,S,84,S,L

84,I,84,I,L

84,P,85,P,L

85,#,85,#,L

85,0,23,S,L

86,#,86,#,R

86,P,86,P,R

86,0,86,0,R

86,1,86,1,R

86,S,87,S,R

87,1,87,1,R

87,0,87,0,R

87,#,88,#,L

88,1,89,1,L

88,0,90,0,L

89,1,91,1,L

89,0,94,0,L

90,1,93,1,L

90,0,92,0,L

91,1,96,1,L

91,0,95,0,L

92,1,101,1,L

92,0,102,0,L

93,1,99,1,L

93,0,100,0,L

94,1,97,1,L

94,0,98,0,L

95,0,95,0,L

95,S,174,S,R

95,1,100,1,L

96,0,96,0,L

96,1,100,1,L

96,S,143,S,R

97,0,97,0,L

97,1,100,1,L

97,S,131,S,R

98,0,98,0,L

98,1,100,1,L

98,S,123,S,R

99,0,99,0,L

99,1,100,1,L

99,S,108,S,R

100,0,100,0,L

100,1,100,1,L

100,S,0,S,R

101,0,101,0,L

101,1,100,1,L

101,S,103,S,R

102,S,113,S,R

102,0,102,0,L

102,1,100,1,L

103,1,103,1,R

103,0,103,0,R

103,#,103,#,R

103,*,103,*,R

103,I,103,I,R

103,X,104,X,R

104,0,104,0,R

104,1,104,1,R

104,#,105,#,L

105,1,105,1,L

105,X,106,X,R

105,0,106,1,R

106,1,106,0,R

106,#,107,#,L

107,1,107,1,L

107,0,107,0,L

107,X,107,X,L
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107,#,107,#,L

107,*,107,*,L

107,I,107,I,L

107,S,107,S,L

107,P,203,P,R

108,1,108,1,R

108,0,108,0,R

108,#,108,#,R

108,*,108,*,R

108,I,108,I,R

108,X,109,X,R

109,1,109,1,R

109,0,109,0,R

109,#,110,#,L

110,0,110,0,L

110,X,111,X,R

110,1,111,0,R

111,0,111,1,R

111,#,112,#,L

112,1,112,1,L

112,0,112,0,L

112,#,112,#,L

112,*,112,*,L

112,X,112,X,L

112,I,112,I,L

112,S,112,S,L

112,P,203,P,R

113,1,113,1,R

113,0,113,0,R

113,*,113,*,R

113,#,113,#,R

113,I,113,I,R

113,X,114,X,R

114,A,114,A,R

114,B,114,B,R

114,0,115,A,R

114,1,118,B,R

114,#,120,#,R

115,1,115,1,R

115,0,115,0,R

115,#,115,#,R

115,*,115,*,R

115,E,116,E,R

116,A,116,A,R

116,B,116,B,R

116,*,116,*,R

116,0,117,A,L

117,A,117,A,L

117,B,117,B,L

117,0,117,0,L

117,1,117,1,L

117,#,117,#,L

117,*,117,*,L

117,E,117,E,L

117,X,114,X,R

118,1,118,1,R

118,0,118,0,R

118,#,118,#,R

118,*,118,*,R

118,E,119,E,R

119,A,119,A,R

119,B,119,B,R

119,*,119,*,R

119,0,117,B,L

120,1,120,1,R

120,0,120,0,R

120,#,120,#,R

120,*,120,*,R

120,E,121,E,R

121,A,121,A,R

121,B,121,B,R

121,*,121,*,R

121,0,122,*,L

122,A,122,A,L

122,B,122,B,L

122,0,122,0,L

122,1,122,1,L

122,X,122,X,L

122,I,122,I,L

122,S,122,S,L

122,#,122,#,L

122,*,122,*,L

122,E,122,E,L

122,P,203,P,R

123,1,123,1,R

123,0,123,0,R

123,#,123,#,R

123,*,123,*,R

123,I,124,I,R

124,A,124,A,R

124,B,124,B,R

124,1,125,B,R

124,0,129,A,R

124,#,130,#,R

125,1,125,1,R

125,0,125,0,R

125,#,125,#,R

125,*,125,*,R

125,X,126,X,R

126,A,126,A,R

126,B,126,B,R

126,0,127,B,L

126,1,127,B,L

127,0,127,0,L

127,1,127,1,L

127,A,127,A,L

127,B,127,B,L

127,#,127,#,L

127,*,127,*,L

127,X,127,X,L

127,I,124,I,R

128,A,128,A,R

128,B,128,B,R

128,0,127,A,L

128,1,127,A,L

129,0,129,0,R

129,1,129,1,R

129,#,129,#,R

129,*,129,*,R

129,X,128,X,R

130,0,130,0,L

130,1,130,1,L

130,A,130,A,L

130,B,130,B,L

130,#,130,#,L

130,*,130,*,L

130,I,130,I,L

130,S,130,S,L

130,P,203,P,R

131,1,131,1,R

131,0,131,0,R

131,I,131,I,R

131,#,131,#,R

131,*,131,*,R

131,X,132,X,R

132,0,132,0,R
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132,1,133,1,L

132,#,142,#,R

133,#,133,#,L

133,*,133,*,L

133,1,133,1,L

133,0,133,0,L

133,X,133,X,L

133,I,134,I,R

134,A,134,A,R

134,B,134,B,R

134,1,136,B,L

134,0,135,A,L

134,#,140,#,L

135,0,135,0,L

135,1,135,1,L

135,I,135,I,L

135,S,135,S,L

135,*,135,*,L

135,#,135,#,L

135,A,135,A,L

135,B,135,B,L

135,P,137,P,R

136,0,136,0,L

136,1,136,1,L

136,I,136,I,L

136,S,136,S,L

136,*,136,*,L

136,#,136,#,L

136,A,136,A,L

136,B,136,B,L

136,P,138,P,R

137,A,137,A,R

137,B,137,B,R

137,0,139,A,R

137,1,139,A,R

138,A,138,A,R

138,B,138,B,R

138,1,139,B,R

138,0,139,B,R

139,0,139,0,R

139,1,139,1,R

139,S,139,S,R

139,#,139,#,R

139,*,139,*,R

139,I,134,I,R

140,A,140,A,L

140,B,140,B,L

140,0,140,0,L

140,1,140,1,L

140,#,140,#,L

140,*,140,*,L

140,S,140,S,L

140,I,140,I,L

140,P,141,P,L

141,#,141,#,L

141,0,23,#,L

142,0,142,0,L

142,1,142,1,L

142,I,142,I,L

142,X,142,X,L

142,*,142,*,L

142,#,142,#,L

142,S,142,#,L

142,P,203,P,R

143,0,143,0,R

143,1,143,1,R

143,*,143,*,R

143,#,143,#,R

143,I,144,I,R

144,0,144,0,R

144,#,158,#,L

144,1,145,1,R

145,1,145,1,R

145,0,145,0,R

145,#,146,#,L

146,0,146,A,L

146,1,146,B,L

146,A,146,A,L

146,B,146,B,L

146,*,146,*,L

146,#,146,#,L

146,X,146,X,L

146,I,147,I,R

147,1,147,1,R

147,0,147,0,R

147,A,148,0,R

147,B,150,1,R

147,#,152,#,R

148,A,148,A,R

148,B,148,B,R

148,#,148,#,R

148,*,148,*,R

148,X,148,X,R

148,0,149,A,L

148,1,151,B,R

149,0,149,0,L

149,1,149,1,L

149,A,149,A,L

149,B,149,B,L

149,#,149,#,L

149,*,149,*,L

149,X,149,X,L

149,I,147,I,R

150,A,150,A,R

150,B,150,B,R

150,#,150,#,R

150,*,150,*,R

150,X,150,X,R

150,1,149,B,L

150,0,151,A,R

151,0,151,0,R

151,1,151,1,R

151,*,151,*,R

151,X,151,X,R

151,E,165,E,L

151,#,146,#,L

152,A,152,A,R

152,B,152,B,R

152,*,152,*,R

152,X,153,X,R

153,A,154,0,R

153,B,154,0,R

153,#,164,#,L

154,A,154,A,R

154,B,154,B,R

154,*,154,*,R

154,#,154,#,R

154,1,155,B,L

154,0,156,A,L

155,A,155,A,L

155,B,155,B,L

155,#,155,#,L

155,*,155,*,L

155,0,153,B,R

156,A,156,A,L

156,B,156,B,L
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156,#,156,#,L

156,*,156,*,L

156,0,153,A,R

158,0,158,0,L

158,1,158,1,L

158,A,158,A,L

158,B,158,B,L

158,*,158,*,L

158,#,158,#,L

158,I,158,I,L

158,S,158,S,L

158,X,158,X,L

158,P,159,P,R

159,A,159,A,R

159,B,159,B,R

159,#,164,#,L

159,0,160,A,R

159,1,162,B,R

160,0,160,0,R

160,1,160,1,R

160,S,160,S,R

160,#,160,#,R

160,*,160,*,R

160,I,160,I,R

160,X,161,X,R

161,A,161,A,R

161,B,161,B,R

161,1,158,A,L

161,0,158,A,L

162,0,162,0,R

162,1,162,1,R

162,S,162,S,R

162,#,162,#,R

162,*,162,*,R

162,I,162,I,R

162,X,163,X,R

163,A,163,A,R

163,B,163,B,R

163,0,158,B,L

163,1,158,B,L

164,A,164,0,L

164,B,164,1,L

164,0,164,0,L

164,1,164,1,L

164,X,164,X,L

164,I,164,I,L

164,S,164,S,L

164,*,164,*,L

164,#,164,#,L

164,P,203,P,R

165,1,165,1,L

165,0,165,0,L

165,A,165,A,L

165,B,165,B,L

165,X,165,X,L

165,*,165,*,L

165,#,165,#,L

165,I,166,I,R

166,A,166,0,R

166,B,166,1,R

166,1,166,1,R

166,0,166,0,R

166,#,167,#,L

167,0,167,0,L

167,1,167,1,L

167,I,168,I,R

168,A,168,A,R

168,B,168,B,R

168,#,164,#,L

168,0,169,A,R

168,1,172,B,R

169,0,169,0,R

169,1,169,1,R

169,A,169,A,R

169,B,169,B,R

169,#,169,#,R

169,*,169,*,R

169,X,170,X,R

170,A,171,0,L

170,B,171,0,L

170,0,170,0,R

170,1,170,1,R

171,X,171,X,L

171,A,171,A,L

171,0,171,0,L

171,1,171,1,L

171,B,171,B,L

171,#,171,#,L

171,*,171,*,L

171,I,168,I,R

172,0,172,0,R

172,1,172,1,R

172,A,172,A,R

172,B,172,B,R

172,#,172,#,R

172,*,172,*,R

172,X,173,X,R

173,0,173,0,R

173,1,173,1,R

173,A,171,1,L

173,B,171,1,L

174,1,174,1,R

174,0,174,0,R

174,#,174,#,R

174,*,174,*,R

174,I,175,I,R

175,0,175,0,R

175,#,196,#,R

175,1,176,1,R

176,0,176,0,R

176,1,176,1,R

176,#,177,#,L

177,0,177,A,L

177,1,177,B,L

177,A,177,A,L

177,B,177,B,L

177,#,177,#,L

177,*,177,*,L

177,X,177,X,L

177,I,178,I,R

178,1,178,1,R

178,0,178,0,R

178,A,179,0,R

178,B,182,1,R

178,#,183,#,R

179,A,179,A,R

179,B,179,B,R

179,#,179,#,R

179,*,179,*,R

179,X,179,X,R

179,0,181,A,L

179,1,180,1,R

180,1,180,1,R

180,0,180,0,R

180,*,180,*,R

180,X,180,X,R
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180,#,177,#,L

180,E,189,E,L

181,A,181,A,L

181,B,181,B,L

181,X,181,X,L

181,0,181,0,L

181,1,181,1,L

181,#,181,#,L

181,*,181,*,L

181,I,178,I,R

182,A,182,A,R

182,B,182,B,R

182,#,182,#,R

182,*,182,*,R

182,X,182,X,R

182,0,180,A,R

182,1,181,B,L

183,A,183,A,R

183,B,183,B,R

183,*,183,*,R

183,X,184,X,R

184,1,202,1,L

184,0,202,0,L

184,A,185,0,R

184,B,188,1,R

185,A,185,A,R

185,B,185,B,R

185,#,185,#,R

185,*,185,*,R

185,1,186,A,L

185,0,186,A,L

186,A,186,A,L

186,B,186,B,L

186,#,186,#,L

186,*,186,*,L

186,0,186,0,L

186,1,186,1,L

186,X,187,X,R

187,0,187,0,R

187,1,187,1,R

187,A,185,0,R

187,B,188,1,R

187,#,202,#,L

188,A,188,A,R

188,B,188,B,R

188,#,188,#,R

188,*,188,*,R

188,1,186,B,L

188,0,186,B,L

189,1,189,1,L

189,0,189,0,L

189,A,189,0,L

189,B,189,1,L

189,*,189,*,L

189,#,189,#,L

189,X,189,X,L

189,I,190,I,R

190,0,190,0,R

190,1,190,1,R

190,#,190,#,R

190,*,190,*,R

190,X,191,X,R

191,0,192,A,L

191,1,194,B,L

191,A,191,A,R

191,B,191,B,R

191,#,202,#,L

192,1,192,1,L

192,0,192,0,L

192,A,192,A,L

192,B,192,B,L

192,*,192,*,L

192,#,192,#,L

192,X,192,X,L

192,I,193,I,R

193,0,190,A,R

193,1,190,A,R

193,A,193,A,R

193,B,193,B,R

194,1,194,1,L

194,0,194,0,L

194,A,194,A,L

194,B,194,B,L

194,*,194,*,L

194,#,194,#,L

194,X,194,X,L

194,I,195,I,R

195,0,190,B,R

195,1,190,B,R

195,A,195,A,R

195,B,195,B,R

196,0,196,0,R

196,1,196,1,R

196,#,196,#,R

196,*,196,*,R

196,X,197,X,R

196,S,196,S,R

196,I,196,I,R

197,A,197,A,R

197,B,197,B,R

197,0,198,A,L

197,1,200,B,L

197,#,202,#,L

198,1,198,1,L

198,0,198,0,L

198,A,198,A,L

198,B,198,B,L

198,#,198,#,L

198,*,198,*,L

198,I,198,I,L

198,S,198,S,L

198,X,198,X,L

198,P,199,P,R

199,A,199,A,R

199,B,199,B,R

199,0,196,A,R

199,1,196,A,R

200,1,200,1,L

200,0,200,0,L

200,A,200,A,L

200,B,200,B,L

200,#,200,#,L

200,*,200,*,L

200,I,200,I,L

200,S,200,S,L

200,X,200,X,L

200,P,201,P,R

201,A,201,A,R

201,B,201,B,R

201,0,196,B,R

201,1,196,B,R

202,0,202,0,L

202,1,202,1,L

202,A,202,0,L

202,B,202,1,L

202,I,202,I,L
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202,S,202,S,L

202,X,202,X,L

202,#,202,#,L

202,*,202,*,L

202,P,203,P,R

203,1,203,1,R

203,0,203,0,R

203,#,204,#,L

204,1,204,1,L

204,P,205,P,R

204,0,205,1,R

205,1,205,0,R

205,#,206,#,L

206,1,206,1,L

206,0,206,0,L

206,P,207,P,L

207,#,207,#,L

207,0,23,#,L

208,#,208,#,R

208,P,209,P,R

209,0,209,0,R

209,1,209,1,R

209,#,1,#,R

B.5 λ-Calulus

B.5.1 Addition

λn.λm.λn.(λp.λf.λx.f(p f x))m

B.5.2 Subtration

λm.λn.n(λn.λf.λx.n(λg.λh.h(g f))(λu.x)(λu.u))m

B.5.3 Equality

(λz.(λq.(λa.λm.λn.n a m(λx.q)z(m a n(λx.q)z)(n a m(λx.q)z))
(λn.λf.λx.n(λg.λh.h(g f))(λu.x)(λu.u)))(λx.λy.y))(λx.λy.x)

B.5.4 Multipliation

λm.λn.λf.m(n f)

B.5.5 Division

(λu.(λz.(λt.(λg.(λx.g(x x))(λx.g(x x)))(λg.λq.λa.λb.(λn.n(λx.u)z)
b u((λa.λb.λk.λj.a t b(λx.u)z j k)a b((λx.λy.λf.f x y)q a)
(g((λn.λf.λx.f(n f x))q)((λm.λn.n t m)a b)b)))u)
(λn.λf.λx.n(λg.λh.h(g f))(λu.x)(λu.u)))(λx.λy.x))(λx.λy.y)
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B.5.6 Exponentiation

λe.λb.b e

B.5.7 List Membership

(λz.(λt.(λw.((λg.(λx.g(x x))(λx.g(x x)))(λa.λb.λc.(λp.p(λx.λy.z))b z
((λm.λn.n w m(λx.z)t(m w n(λx.z)t)(n w m(λx.z)t))((λp.p t)b)
c t(a((λp.p z)b)c)))))(λn.λf.λx.n(λg.λh.h(g f))(λu.x)
(λu.u)))(λx.λy.x))(λx.λy.y)

B.5.8 Linear Searh

(λv.(λz.(λt.(λg.(λx.g(x x))(λx.g(x x)))(λa.λb.λc.(λp.p(λx.λy.z))c(λf.λx.f x)
((λm.λn.n t m(λx.z)v(m t n(λx.z)v)(n t m(λx.z)v))((λp.p v)c)b)z
((λn.λf.λx.f(n f x))(a b((λp.p z)c)))))(λn.λf.λx.n(λg.λh.h(g f))
(λu.x)(λu.u)))(λx.λy.y))(λx.λy.x)

B.5.9 List Reversal

(λj.(λz.(λg.(λx.g(x x))(λx.g(x x)))(λg.λa.λl.(λp.p(λx.λy.j))l
a(g((λx.λy.λf.f x y)((λp.p z)l)a)((λp.p j)l)))(λx.z))(λx.λy.x))(λx.λy.y)

B.5.10 Stateful List Reversal

(λj.(λm.(λk.(λq.(λs.(λv.(λi.(λr.(λz.(λa.(z(λa.λb.λc.λd.(λa.λb.λd.λc.a i b
(λx.j)m c d)b c(a(s b)(i c)((z(λa.λb.λc.λd.r b(v((λa.λb.a q b m)c d)
((z(λa.λb.λc.λd.r b(v c(q d))(v(k d)(a(i b)c(q d)))))(i c)(k d)(q d)))
(v(k d)(a(i b)(i c)(q d)))))b c d))d))j(i((z(λa.λb.λc.(λp.p(λx.λy.j))c
b(a(s b)(q c)))j)a))a))(λg.(λx.g(x x))(λx.g(x x))))(λn.n(λx.j)m))
(λn.λf.λx.n(λg.λh.h(g f))(λu.x)(λu.u)))(λx.λy.λf.f x y))
(λn.λf.λx.f(n f x)))(λp.p j))(λp.p m))(λx.λy.x))(λx.λy.y)

B.5.11 Bubble Sort

(λj.(λo.(λu.(λh.(λt.(λi.(λs.(λg.(λf.(λv.(λz.(z(λa.λb.λc.λd.λe.
(λm.λn.n f m(λx.o)j)d(f((z(λa.λb.λc.(λp.p(λx.λy.o))c b(a(g b)(t c)))o)e))
((λa.λb.λc.λd.a f b(λx.o)j d c)(s d e)(s c e)(a j(g c)(g d)
((z(λa.λb.λc.λd.v b(i(s c d)((z(λa.λb.λc.λd.v b(i c(t d))(i(h d)(a(f b)c(t d)))))
(f c)(h d)(t d)))(i(h d)(a(f b)(f c)(t d)))))c d e))(a b(g c)(g d)e))
(b(a o o u e)e)))o o u)(λg.(λx.g(x x))(λx.g(x x))))(λn.n(λx.o)j))
(λn.λf.λx.n(λg.λh.h(g f))(λu.x)(λu.u)))(λn.λf.λx.f(n f x)))(λa.λb.a t b j))
(λx.λy.λf.f x y))(λp.p o))(λp.p j))(λf.λx.f x))(λx.λy.y))(λx.λy.x)
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B.5.12 Universal TM

(λz.(λu.(λl.(λk.(λj.(λi.(λg.(λf.(λe.(λd.(λc.(λb.z(λa.λs.λh.λt.λp.d(c s(e h p)t)
p(a(g(c s(e h p)t))(b(g(i(i(c s(e h p)t))))(j h)((λn.λf.λx.f(n f x))h))
t((z(λa.λb.λc.λd.(λn.n(λx.l)u)b(k c(i d))(k(g d)(a(j b)c(i d)))))h
(g(i(c s(e h p)t)))p))))(λn.n(λx.l)u))((z(λa.λs.λy.λt.((λp.p l u)(d t))
(((λp.λq.p q p)(f s(g(g t)))(f y(g(i(g t)))))(i(i(g t)))(a s y(i t)))
(k l(k l(k l(λx.u))))))))(λp.p(λx.λy.l)))(λa.λb.a i b u))(λm.λn.n j m
(λx.l)u(m j n(λx.l)u)(n j m(λx.l)u)))(λp.p u))(λp.p l))(λn.λf.λx.n
(λg.λh.h(g f))(λu.x)(λu.u)))(λx.λy.λf.f x y))(λx.λy.y))(λx.λy.x))
(λg.(λx.g(x x))(λx.g(x x)))

B.5.13 Universal RASP

(λs.(λr.(λq.(λp.(λn.(λl.(λk.(λj.(λi.(λh.(λg.(λf.(λe.(λd.(λc.(λb.s
(λa.λm.λo.f(g n(d m))n(a(c r(c p(d m)))o)(f(g n(d m))p(a(c r(b p(d m)))o)
(f(g n(d m))(λf.λx.f(f(f x)))(a(c r((λm.e p(g n(d(c r m)))(d(c r m)))
(d m)))o)(f(g n(d m))(λf.λx.f(f(f(f x))))(a(c r((λm.e(g n(d(c r m)))(g p m)
(d(c r m)))(d m)))o)(f(g n(d m))(λf.λx.f(f(f(f(f x)))))(a(c r(d m))
((λm.λo.(i(g p m)o))m o))(f(g n(d m))(λf.λx.f(f(f(f(f(f x))))))(a(c r
((λm.(f(g p(d(c r m)))r)(d(c r m))(b r(e r(g n(d(c r m)))(d(c r m)))))
(d m)))o)(f(g n (d m))(λf.λx.f(f(f(f(f(f(f x)))))))(a(c r((λm.e p(g(g n
(d(c r m)))(d(c r m)))(d(c r m)))(d m)))o)(i(d m)o)))))))))(λd.λm.(f(g d m)r)
(e d(k(h m))m)(e d(k(g d m))m)))(λd.λm.(f(k(h m))(g d m))(e d r m)
(e d(l(g d m))m)))(λm.e n(g(g r m)m)m)))(s(λa.λb.λc.λd.(λn.n(λx.r)q)
b(i c(j d))(i((λp.p q)d)(a(k b)c(j d))))) (λm.λn.n k m(λx.r)q(m k n
(λx.r)q)(n k m(λx.r)q)))(λa.λb.a j b q))(s(λa.λb.λc.(λp.p(λx.λy.r))c
b(a(l b)(j c)))r))(λx.λy.λf.f x y))(λp.p r))(λn.λf.λx.n(λg.λh.h(g f))
(λu.x)(λu.u)))(λn.λf.λx.f(n f x))) (λf.λx.f x))(λf.λx.f(f x)))(λx.λy.x))
(λx.λy.y))(λg.(λx.g(x x))(λx.g(x x)))

B.6 SKI

B.6.1 Addition

SI(K(S(S(KS)K)))

B.6.2 Subtration

S(K(S(SI(K(S(K(S(K(S(K(SS(K(KI))))))(S(K(S(K(SS(KK)))K)))))
(S(K(SS(K(S(K(S(K(S(K(S(K(SI))K))))(SI)))K))))K))))))K

B.6.3 Equality

S(S(S(KS)(S(K(S(KS)(S(K(SSK)))))))(S(K(S(K(SS(KK)))K))S))
(K(S(K(S(K(S(SI(K(K(KI))))(KK)))))(S(K(S(SI(K(S(K(S(K(S
(K(SS(K(KI))))))(S(K(S(K(SS(KK)))K)))))(S(K(SS(K(S(K(S
(K(S(K(S(K(SI))K))))(SI)))K))))K))))))K)))
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B.6.4 Multipliation

S(KS)KII

B.6.5 Division

S(K(S(K(S(SSK(S(K(SS(S(SSK))))K))(K(KI))))(S(K(S(K(S(K(S(S
(S(SI(K(K(KI))))(KK))(K(KI))))))))))))(S(S(K(S(K(S(K(S
(KS)K))S))(S(K(S(KS)(S(KS)))))))(S(K(S(K(S(K(S(K(S(K
(SS(K(S(K(S(KK)))(S(K(S(K(S(K(S(K(SS(KK)))K))S))
(SI)))K)))))K))S))(S(KS))))(S(K(S(K(S(SI(K(KI)))
(KK))))))))(S(K(S(K(S(K(SS(KK)))K))S))(S(K(S(K(S
(SI(K(K(KI))))(KK)))))))))(S(K(S(K(S(K(S(K(S(K(S
(K(SS(KI)))))))))(S(S(K(S(KS)(S(K(S(K(S(K(S
(KS)K))S))K)))))(S(K(SS(K(S(S(KS)K)))))K)))))K))K))
(S(K(S(SI(K(S(K(S(K(S(K(SS(K(KI))))))(S(K(S(K(SS(KK)))K)))))
(S(K(SS(K(S(K(S(K(S(K(S(K(SI))K))))(SI)))K))))K))))))K)

B.6.6 Exponentiation

S(K(SI))KII

B.6.7 List Membership

SSK(S(K(SS(S(SSK))))K)(S(K(S(K(S(K(S(S(SI(K(K(K(KI)))))
(K(KI)))))))(S(S(KS)(S(K(S(K(SS(K(KK))))(S(S(K(S(S(S(KS)
(S(K(S(KS)(S(K(SSK)))))))(S(K(S(K(SS(KK)))K))S))
(K(S(K(S(K(S(SI(K(K(KI))))(KK)))))(S(K(S(SI(K(S(K(S(K(S
(K(SS(K(KI))))))(S(K(S(K(SS(KK)))K)))))(S(K(SS(K(S(K(S(K
(S(K(S(K(SI))K))))(SI)))K))))K))))))K)))))(SI(KK))))))K)))))
(S(K(S(K(SS(K(SI(K(KI))))))K))))

B.6.8 Linear Searh

SSK(S(K(SS(S(SSK))))K)(S(K(S(K(S(S(KS)(S(K(S(K(S(K(SS(K
(K(KI)))))(S(S(SI(K(K(K(KI)))))(KI)))))(S(S(K(S(S(S(KS)
(S(K(S(KS)(S(K(SSK)))))))(S(K(S(K(SS(KK)))K))S))
(K(S(K(S(K(S(SI(K(K(KI))))(KK)))))(S(K(S(SI(K(S(K(S(K(S
(K(SS(K(KI))))))(S(K(S(K(SS(KK)))K)))))(S(K(SS(K(S(K(S(K
(S(K(S(K(SI))K))))(SI)))K))))K))))))K)))))(SI(KK))))))K))))
(S(K(S(K(S(S(KS)K))))))))(S(K(S(K(SS(K(SI(K(KI))))))K))))

B.6.9 List Reversal

SSK(S(K(SS(S(SSK))))K)(S(K(S(K(S(S(K(S(KS)
(S(SI(K(K(K(KI))))))))K)))(S(K(SS(K(SI(K(KI)))))))))
(S(K(S(K(S(K(SS(K(S(K(S(S(K(S(K(S(K(S(K(S(K(SS(KK)))K))S))
(SI)))K))(SI(KK)))))K))))K))S))K))(KK)
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B.6.10 Stateful List Reversal

S(S(K(SS(KI)))(S(K(S(K(SS(K(S(K(S(K(S(K(S(K(SS(K(KI))))))
(S(K(S(K(SS(KK)))K)))))(S(K(SS(K(S(K(S(K(S(K(S(K(SI))K))))
(SI)))K))))K)))(SSK(S(K(SS(S(SSK))))K)(S(K(S(K(S(S(K(S(KS)
(S(SI(K(K(K(KI))))))))K)))(S(K(S(K(SS(K(SI(K(KI))))))K)))))
(S(K(SS(K(S(S(KS)K)))))K))(KI))))))K))(S(K(S(K(S(K(S(K(S
(SSK(S(K(SS(S(SSK))))K))(K(KI))))(S(K(S(K(S(K(S(K(SS(KI)))))))
(S(S(K(S(KS)(S(K(S(KS)K)))))(S(K(S(K(S(K(S(SI(K(KI)))(KK)))))
(S(S(K(S(K(S(SI(K(K(KI))))(KK)))))(S(K(S(SI(K(S(K(S(K(S(K(SS
(K(KI))))))(S(K(S(K(SS(KK)))K)))))(S(K(SS(K(S(K(S(K(S(K(S(K
(SI))K))))(SI)))K))))K))))))K)))))K))))))))(S(S(K(S(K(S(KS)
(S(K(S(KS)(S(K(S(KS)K))))))))(S(K(S(K(SS(K(S(K(S(K(S(K(SS
(K(KI))))))(S(K(S(K(SS(KK)))K)))))(S(K(SS(K(S(K(S(K(S(K(S
(K(SI))K))))(SI)))K))))K)))))K)))))(S(K(SS(K(S(S(KS)K)))))K)))))K))
(S(S(K(S(KS)(S(K(S(KS)(S(KS)))))))(S(K(S(K(S(K(S(K(SS(K(S(K
(S(K(SI(KK)))))(SI(K(SI(K(KI)))))))))K))S))K))))(S(K(S(K(S(K
(SS(KI)))))))(S(K(S(K(S(K(SS(K(S(KK)(S(K(S(K(SI(KK)))))
(SI(K(SI(K(KI))))))))))K))S))(S(K(S(KS)K)))))))))(K(SSK(S
(K(SS(S(SSK))))K)(S(K(S(K(S(S(K(S(KS)(S(KS))))(S(K(S(K(S(K(S
(K(SS(K(S(K(S(K(SS(K(SI(K(KI))))))K))(S(K(S(K(S(K(S(K(SS
(KK)))K))S))(SI)))K)))))K))S))K))(S(SI(K(K(KI))))(KK))))))
(S(K(S(K(S(K(S(S(K(S(K(S(K(S(K(S(K(SS(KK)))K))S))(SI)))K))
(SI(KK)))))))(S(K(S(K(SS(K(SI(K(KI))))))K))))))))
(S(K(SS(K(S(K(S(K(S(K(SS(K(KI))))))(S(K(S(K(SS(KK)))K)))))
(S(K(SS(K(S(K(S(K(S(K(S(K(SI))K))))(SI)))K))))K)))))K))))
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B.6.11 Bubble Sort

S(S(K(SS(K(K(SSK(S(K(SS(S(SSK))))K)(S(K(S(K(S(S(K(S(KS)
(S(KS))))(S(K(S(K(S(K(S(K(SS(K(S(K(S(K(SS(K(SI(K(KI))))))K))
(S(K(S(K(S(K(S(K(SS(KK)))K))S))(SI)))K)))))K))S))K))
(S(SI(K(K(KI))))(KK))))))(S(K(S(K(S(K(S(S(K(S(K(S(K(S(K
(S(K(SS(KK)))K))S))(SI)))K))(SI(KK)))))))(S(K(S(K(SS
(K(SI(K(KI))))))K))))))))(S(K(SS(K(S(K(S(K(S(K(SS(K(KI))))))
(S(K(S(K(SS(KK)))K)))))(S(K(SS(K(S(K(S(K(S(K(S(K(SI))K))))
(SI)))K))))K)))))K)))))))(S(K(SS(K(KI))))(S(K(S(K(S(K(S(K(SS
(K(K(KI)))))(S(K(S(SSK(S(K(SS(S(SSK))))K))(K(KI)))))))
(S(K(S(K(SS(K(S(K(S(K(S(K(S(K(S(K(S(KK)K))))(S(K(SS(KI))))))
(S(S(KS)K))))K))(S(S(SI(K(KI)))(K(KI)))(KI))))))(S(K(S(KS)
(S(K(S(KS)(S(K(S(K(S(KS)(S(KS))))(S(S(KS)(S(K(S(K(SS(K(S(K
(S(K(S(K(S(K(SS(K(KI))))))(S(K(S(K(SS(KK)))K)))))(S(K(SS(K
(S(K(S(K(S(K(S(K(SI))K))))(SI)))K))))K)))(SSK(S(K(SS(S(SSK))))K)
(S(K(S(K(S(S(K(S(KS)(S(SI(K(K(K(KI))))))))K)))(S(K(S(K(SS(K
(SI(K(KI))))))K)))))(S(K(SS(K(S(S(KS)K)))))K))(KI))))))K))
(S(K(S(K(S(SI(K(K(KI))))(KK)))))(S(K(S(SI(K(S(K(S(K(S(K(SS
(K(KI))))))(S(K(S(K(SS(KK)))K)))))(S(K(SS(K(S(K(S(K(S(K(S(K
(SI))K))))(SI)))K))))K))))))K)))))))))))))))))))(S(K(S(K(SS
(K(S(K(S(K(S(K(S(K(SS(K(S(S(KS)K)))))K))))))(S(K(S(K(SS(K(S
(S(KS)K)))))K)))))))(S(K(S(K(S(K(S(KS)K))S))(S(K(S(KS)
(S(KS)))))))))))))(S(S(K(S(K(S(K(S(K(S(K(S(KS)K))S))K))S))
(S(K(S(KS)(S(KS)))))))(S(S(K(S(K(S(KS)K))S))(S(K(S(KS)(S(K
(S(K(S(K(S(K(S(SI(K(KI)))(KK)))))(S(S(K(S(K(S(SI(K(K(KI))))
(KK)))))(S(K(S(SI(K(S(K(S(K(S(K(SS(K(KI))))))(S(K(S(K(SS
(KK)))K)))))(S(K(SS(K(S(K(S(K(S(K(S(K(SI))K))))(SI)))K))))
K))))))K)))))K)))))))(S(KK))))(S(K(S(K(S(K(S(S(K(S(K(S(KS)
(S(K(S(KS)(S(K(S(KS)K))))))))(S(K(S(K(SS(K(S(S(KS)K)))))
K)))))(S(K(S(K(SS(K(S(S(KS)K)))))K))(SI(KK))))))K))))
(S(S(K(S(K(S(K(S(KS)(S(K(S(KS)(S(K(S(KS)(S(KS))))))))))
(S(S(KS)(S(K(S(K(S(K(S(KS)K))S))K)))))))K))K)(S(K(S(K(S
(K(S(K(S(K(S(K(SS(KI)))))))))(S(S(K(S(K(S(KS)K))S))(S(K
(S(KS)K)))))))K))(S(KK)))))))))(K(S(K(S(K(SI(KK)))))
(SI(K(SI(K(KI)))))))
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B.6.12 Universal TM

S(K(SSK(S(K(SS(S(SSK))))K)))(S(S(K(S(K(S(K(S(KS)K))S))
(S(K(S(K(S(KS)(S(K(S(K(S(KS)(S(KS))))(S(K(S(K(SS(KI)))
(S(K(SI(K(K(K(KI)))))))))))))))(S(K(S(K(S(K(SS(KK)))K))S))))))))
(S(K(S(K(S(K(S(K(SS(K(S(K(S(K(SI(KK)))))(SI(K(SI(K
(KI)))))))))K))S))K))))(S(S(K(S(KS)(S(K(S(KS)(S(K(S(K(S(KS)
(S(K(S(KS)(S(KS)))))))(S(K(S(K(SS(KK)))(S(KS)))))))))))))
(S(S(K(S(K(S(K(S(K(S(KS)(S(K(S(KS)(S(K(S(KS)(S(K(S(KS)
(S(KS)))))))))))))(S(S(K(S(K(S(K(S(K(S(K(S(K(S(KS)K))S))
K))S))K))S))K))))K))(S(K(S(K(S(K(S(K(S(K(SI(KK)))))))))
(S(K(S(K(S(K(SS(KK)))K))S))))))))(S(K(S(K(S(K(S(K(SS(K(S(K
(S(K(SI(KK)))))(SI(K(SI(K(KI)))))))))K))S))K))))(S(K(S(K(S(KK)
(S(K(S(K(SS(K(S(K(S(KK)K))(S(S(KS)K))))))(S(K(S(KS)
(S(KS))))))))))(S(K(S(K(S(K(SS(K(S(K(S(KK)K))(S(K(S(K(S(K
(SS(K(KI))))))(S(K(S(K(SS(KK)))K)))))(S(K(SS(K(S(K(S(K(S(K
(S(K(SI))K))))(SI)))K))))K))))))(S(K(S(KS)(S(K(S(KS)
(S(K(S(K(S(K(S(K(S(SI(K(K(KI))))(KK)))(SI(KK))))(SI(K(KI)))))
(SI(K(KI))))))))))))))(S(K(S(K(S(K(SS(KK)))K))S))))))))
(S(K(S(K(S(K(S(K(SS(K(S(K(S(K(SI(KK)))))(SI(K(SI(K
(KI)))))))))K))S))K))))))(S(K(S(KK)(S(K(S(K(S(K(S(K(S(K(S
(K(SS(KI)))))))(S(S(K(S(K(S(K(S(KS)K))S))K))(SSK(S(K(SS
(S(SSK))))K)(S(K(S(K(S(S(K(S(KS)(S(KS))))(S(K(S(K(S(K(S(K
(SS(K(S(K(S(K(SS(K(SI(K(KI))))))K))(S(K(S(K(S(K(S(K(SS
(KK)))K))S))(SI)))K)))))K))S))K))(S(SI(K(K(KI))))(KK))))))
(S(K(S(K(S(K(S(S(K(S(K(S(K(S(K(S(K(SS(KK)))K))S))(SI)))K))
(SI(KK)))))))(S(K(S(K(SS(K(SI(K(KI))))))K))))))))(S(K(SS(K
(S(K(S(K(S(K(SS(K(KI))))))(S(K(S(K(SS(KK)))K)))))(S(K(SS(K
(S(K(S(K(S(K(S(K(SI))K))))(SI)))K))))K)))))K)))))))(S(K(S
(K(S(K(S(K(SI(KK)))(SI(K(KI))))))))))))(S(K(S(K(S(K(SS
(KK)))K))S))))))))(S(K(S(K(S(K(S(K(SS(K(S(K(S(K(SI(KK)))))
(SI(K(SI(K(KI)))))))))K))S))K))))))(SSK(S(K(SS(S(SSK))))K)
(S(K(S(K(S(K(S(K(S(K(SS(K(K(S(K(S(K(S(K(S(K(SS(KK)))K))S))
(SI)))K(KI)(S(K(S(K(S(K(S(K(SS(KK)))K))S))(SI)))K(KI)(S(K
(S(K(S(K(S(K(SS(KK)))K))S))(SI)))K(KI)(KK))))))))(S(S(K(S
(SI(K(KI)))(KK)))(SI(K(K(K(KI)))))))))))))(S(S(K(S(K(S(KS)
(S(KS))))(S(K(SS(K(S(K(S(K(SI(K(KI))))(SI(K(KI)))))
(SI(KK)))))))))(S(K(S(K(S(K(S(K(SS(K(S(K(S(K(SS(K(S(K(S(K
(SI(KK)))(SI(K(KI)))))(SI(KK))))))K))(S(S(S(KS)(S(K(S(KS)
(S(K(SSK)))))))(S(K(S(K(SS(KK)))K))S))(K(S(K(S(K(S(SI(K(K(KI))))
(KK)))))(S(K(S(SI(K(S(K(S(K(S(K(SS(K(KI))))))(S(K(S(K(SS
(KK)))K)))))(S(K(SS(K(S(K(S(K(S(K(S(K(SI))K))))
(SI)))K))))K))))))K))))))))K))S))(S(K(SSK)))))(S(K(S(K(SS(K
(S(K(SI(KK)))(SI(KK))))))K))(S(S(S(KS)(S(K(S(KS)(S(K(SSK)))))))
(S(K(S(K(SS(KK)))K))S))(K(S(K(S(K(S(SI(K(K(KI))))(KK)))))
(S(K(S(SI(K(S(K(S(K(S(K(SS(K(KI))))))(S(K(S(K(SS(KK)))K)))))
(S(K(SS(K(S(K(S(K(S(K(S(K(SI))K))))(SI)))K))))K))))))K))))))))))
(S(K(S(K(S(K(SS(K(SI(K(KI))))))K)))))))

334



Appendix B. Full Programs

B.6.13 Universal RASP

S(S(K(S(K(SS(K(S(KK)(S(K(SS(KI)))(S(K(S(K(SS(K(S(S(K(S
(K(S(K(SI(KK)))))(SI(K(SI(K(KI)))))))(S(K(S(K(SI(KK)))))
(SI(K(SI(K(KI)))))(KI)))I))))K))(SI(KI))))))))(S(KS))))
(S(S(K(S(KS)(S(K(S(KS)(S(K(S(KS)(S(K(SSK(S(K(SS
(S(SSK))))K))))))))))))(S(S(K(S(K(S(K(S(KS)K))S))(S(K(S(KS)
(S(K(S(KS)(S(K(S(K(S(K(S(KS)K))S))(S(KS)))))))))))))
(S(K(S(K(S(K(SS(K(S(K(S(K(S(K(S(K(S(K(S(S(KS)K)))K))))
(S(S(K(S(KS)K))(SI(K(KI)))))))(S(S(K(S(KS)K))(SI(K(S(S
(KS)K)I)))))))K))))(S(K(S(K(S(K(S(K(S(K(S(KS)K))S))K))S))
(S(K(S(KS)K))))))))(S(K(SS(K(KI)))))))(S(K(S(K(S(K(SS
(K(S(K(S(K(S(K(SI(KK)))))(SI(K(SI(K(KI)))))I))))))K))S))K)))
(S(S(K(S(KS)(S(K(S(KS)(S(K(S(KS)(S(K(S(KS)(S(K(S(KS)(S
(K(S(KS)(S(KS)))))))))))))))))))(S(S(K(S(K(S(K(S(K(S
(KS)K))S))(S(K(S(K(S(K(S(K(S(K(S(K(S(K(S(KS)K))S))K))S))K))S))
(S(K(S(KS)K))))))))(S(K(SS(K(K(S(S(KS)K)I))))))))(S(K(S
(K(S(K(SS(K(S(K(S(K(S(K(SI(KK)))))(SI(K(SI(K(KI)))))
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VHDL Code

This appendix presents the VHDL whih spei�es the oordination, ontrol and

memory modules for the TM and RASP mahines. For the sake of brevity, the

general form of the programs for eah mahine are also presented, rather than

every program represented in full VHDL.

C.1 RASP

The RASPs all share the same oordination module. This is the VHDL module

whih ties the ontrol and memory modules together. It de�nes and routes the

buses and signals between the two modules.

The VHDL ode has set of variables whih are adjusted for eah partiular

instane of a RASP, these variables are related to the number of bits per register

for a mahine. For the sake of brevity, the oordination module and memory will

be displayed one with these variables uninstantiated.

C.1.1 All RASP Coordination

l ibrary IEEE ;

use IEEE .STD_LOGIC_1164 .ALL;

entity RASPMahine i s

Port ( ha l ted : out STD_LOGIC;

memrw : out s td_log i  ;

 l k : in s td_log i  ;

ontro lOut : out s td_log i  ) ;

end RASPMahine ;
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arhiteture Behav iora l of RASPMahine i s

Component RASPControl i s

Port (  l k : in s td_log i  ;

ha l ted : out s td_log i  ;

addres s : out STD_LOGIC_vetor ( x downto 0 ) ;

datain : out s td_log i_vetor ( x downto 0 ) ;

dataout : in s td_log i_vetor ( x downto 0 ) ;

wFlag : out s td_log i  ;

ontro lOut : out s td_log i  ) ;

end omponent ;

Component RASPmemory

Port ( addres s : IN s td_log i_vetor ( x downto 0 ) ;

datain : IN s td_log i_vetor ( x downto 0 ) ;

dataout : OUT s td_log i_vetor ( x downto 0 ) ;

wFlag : IN s td_log i  ;

 l k : IN s td_log i  ;

memrw : out s td_log i  ) ;

END Component ;

signal addres s : s td_log i_vetor ( x downto 0 ) ;

signal datain : s td_log i_vetor ( x downto 0 ) ;

signal dataout : s td_log i_vetor ( x downto 0 ) ;

signal wFlag : s td_log i  ;

begin

 on t r o l : RASPControl port map (  lk , halted , address , datain ,

dataout , wFlag , ontro lOut ) ;

memory : RASPmemory port map ( address , datain , dataout ,

wFlag ,  lk , memrw) ;

end Behav iora l ;
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C.1.2 All RASP Memory

l ibrary IEEE ;

use IEEE .STD_LOGIC_1164 .ALL;

use IEEE .NUMERIC_STD.ALL;

use std . t e x t i o . a l l ;

entity RASPMemory i s

Port ( addres s : in STD_LOGIC_VECTOR (x downto 0 ) ;

datain : in STD_LOGIC_VECTOR (x downto 0 ) ;

dataout : out STD_LOGIC_VECTOR (x downto 0 ) ;

wFlag : in STD_LOGIC;

 lk : in STD_LOGIC;

memrw : out s td_log i  ) ;

end RASPMemory ;

arhiteture Behav iora l of RASPMemory i s

type mem i s array (0 to n) of s td_log i_vetor ( x downto 0 ) ;

signal m : mem := ( ". . . " , . . . ) ;

begin

proess (  l k )

begin

i f f a l l i ng_edge (  l k ) then

i f wFlag = '1 ' then

m( to_integer ( unsigned ( addres s ) ) ) <= datain ;

memrw <= ' 0 ' ;

else

dataout <= m( to_integer ( unsigned ( addres s ) ) ) ;

memrw <= ' 1 ' ;

end i f ;

end i f ;

end proess ;

end Behav iora l ;
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C.1.3 RASP Control

l ibrary IEEE ;

use IEEE .STD_LOGIC_1164 .ALL;

use IEEE .NUMERIC_STD.ALL;

entity RASPControl i s

Port (  l k : in s td_log i  ;

ha l ted : out s td_log i  ;

addres s : out STD_LOGIC_vetor ( x downto 0 ) ;

datain : out s td_log i_vetor ( x downto 0 ) ;

dataout : in s td_log i_vetor ( x downto 0 ) ;

wFlag : out s td_log i  ;

ontro lOut : out s td_log i  ) ;

end RASPControl ;

arhiteture Behav iora l of RASPControl i s

signal inFlag : s td_log i  := ' 1 ' ;

signal  u r r e n t I n s t r : s td_log i_vetor ( x downto 0) := "" ;

signal temp : s td_log i_vetor (x downto 0) := "" ;

begin

p : proess (  l k )

variable ounterOuter : unsigned (2 downto 0) := "000" ;

variable ounter Inner : unsigned (2 downto 0) := "000" ;

variable add i t i on : unsigned (x downto 0) := "" ;

begin

i f r i s ing_edge (  l k ) then

ontro lOut <= ' 0 ' ;

ase ounterOuter i s

when "000" =>

wFlag <= ' 0 ' ;

inFlag <= ' 1 ' ;

addres s <= "" ;

ounterOuter := ounterOuter +1;

when "001" =>

addres s <= dataout ;

ounterOuter := ounterOuter +1;
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when "010" =>

addres s <= "" ;

datain <= dataout ;

wFlag <= '1 ' ;

 u r r e n t I n s t r <= dataout ;

ounterOuter := ounterOuter +1;

when "011" =>

wFlag <= ' 0 ' ;

ase  u r r e n t I n s t r i s

when "000" => −− HALT

ha l ted <= ' 1 ' ;

inFlag <= ' 0 ' ;

when "001" => −− INC

ase ounter Inner i s

when "000" =>

addres s <= "010" ;

ounter Inner := ounter Inner +1;

when "001" =>

add i t i on := unsigned ( dataout ) ;

add i t i on := add i t i on + 1 ;

datain <= std_log i_vetor ( add i t i on ) ;

wFlag <= ' 1 ' ;

ounter Inner := ounter Inner +1;

when "010" =>

wFlag <= ' 0 ' ;

ounter Inner := "000" ;

ounterOuter := ounterOuter +1;

ha l ted <= ' 0 ' ;

when others => null ;

end ase ;

when "010" => −− DEC

ase ounter Inner i s

when "000" =>

addres s <= "010" ;

ounter Inner := ounter Inner +1;

when "001" =>

add i t i on := unsigned ( dataout ) ;

add i t i on := add i t i on − 1 ;

datain <= std_log i_vetor ( add i t i on ) ;

wFlag <= ' 1 ' ;

ounter Inner := ounter Inner +1;

when "010" =>

wFlag <= ' 0 ' ;

ha l ted <= ' 0 ' ;

ounter Inner := "000" ;

ounterOuter := ounterOuter +1;

when others => null ;

end ase ;
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when "011" => −− LOAD

ase ounter Inner i s

when "000" =>

addres s <= "000" ;

ounter Inner := ounter Inner +1;

when "001" =>

add i t i on := unsigned ( dataout ) ;

add i t i on := add i t i on + 1 ;

datain <= std_log i_vetor ( add i t i on ) ;

wFlag <= ' 1 ' ;

ounter Inner := ounter Inner +1;

when "010" =>

wFlag <= ' 0 ' ;

addres s <= "000" ;

ounter Inner := ounter Inner +1;

when "011" =>

addres s <= dataout ;

ounter Inner := ounter Inner +1;

when "100" =>

addres s <= "001" ;

datain <= dataout ;

wFlag <= '1 ' ;

ounter Inner := ounter Inner +1;

when "101" =>

addres s <= "010" ;

wFlag <= '1 ' ;

ounter Inner := ounter Inner +1;

when "110" =>

wFlag <= ' 0 ' ;

ounter Inner := "000" ;

ounterOuter := ounterOuter +1;

ha l ted <= ' 0 ' ;

when others => null ;

end ase ;
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when "100" => −− STO

ase ounter Inner i s

when "000" =>

addres s <= "000" ;

ounter Inner := ounter Inner +1;

when "001" =>

add i t i on := unsigned ( dataout ) ;

add i t i on := add i t i on + 1 ;

datain <= std_log i_vetor ( add i t i on ) ;

wFlag <= ' 1 ' ;

ounter Inner := ounter Inner +1;

when "010" =>

addres s <= "000" ;

wFlag <= ' 0 ' ;

ounter Inner := ounter Inner +1;

when "011" =>

addres s <= dataout ;

ounter Inner := ounter Inner +1;

when "100" =>

addres s <= "001" ;

datain <= dataout ;

wFlag <= '1 ' ;

ounter Inner := ounter Inner +1;

when "101" =>

temp <= dataout ;

wFlag <= ' 0 ' ;

ounter Inner := ounter Inner +1;

when "110" =>

addres s <= "010" ;

ounter Inner := ounter Inner +1;

when "111" =>

datain <= dataout ;

addres s <= temp ;

wFlag <= ' 1 ' ;

ounter Inner := "000" ;

ounterOuter := ounterOuter +1;

ha l ted <= ' 0 ' ;

when others => null ;

end ase ;
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when "101" => −− OUT

ha l ted <= ' 0 ' ;

ontro lOut <= ' 1 ' ;

ounterOuter := ounterOuter +1;

when "110" => −− JGZ

ase ounter Inner i s

when "000" =>

addres s <= "000" ;

ounter Inner := ounter Inner +1;

when "001" =>

add i t i on := unsigned ( dataout ) ;

add i t i on := add i t i on + 1 ;

datain <= std_log i_vetor ( add i t i on ) ;

wFlag <= ' 1 ' ;

ounter Inner := ounter Inner +1;

when "010" =>

addres s <= "000" ;

wFlag <= ' 0 ' ;

ounter Inner := ounter Inner +1;

when "011" =>

addres s <= dataout ;

ounter Inner := ounter Inner +1;

when "100" =>

addres s <= "001" ;

datain <= dataout ;

wFlag <= '1 ' ;

ounter Inner := ounter Inner +1;

when "101" =>

temp <= dataout ;

wFlag <= ' 0 ' ;

ounter Inner := ounter Inner +1;

when "110" =>

addres s <= "010" ;

ounter Inner := ounter Inner +1;

when "111" =>

i f ( dataout = "000" ) then

null ;

else

addres s <= "000" ;

datain <= temp ;

wFlag <= ' 1 ' ;

inFlag <= ' 0 ' ;

end i f ;

ounter Inner := "000" ;

ounterOuter := ounterOuter + 1 ;

ha l ted <= ' 0 ' ;

when others => null ;

end ase ;
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when "111" => −− CPY

ase ounter Inner i s

when "000" =>

addres s <= "000" ;

ounter Inner := ounter Inner +1;

when "001" =>

add i t i on := unsigned ( dataout ) ;

add i t i on := add i t i on + 1 ;

datain <= std_log i_vetor ( add i t i on ) ;

wFlag <= ' 1 ' ;

ounter Inner := ounter Inner +1;

when "010" =>

addres s <= "000" ;

wFlag <= ' 0 ' ;

ounter Inner := ounter Inner +1;

when "011" =>

addres s <= dataout ;

ounter Inner := ounter Inner +1;

when "100" =>

addres s <= "001" ;

datain <= dataout ;

wFlag <= '1 ' ;

ounter Inner := ounter Inner +1;

when "101" =>

addres s <= dataout ;

wFlag <= ' 0 ' ;

ounter Inner := ounter Inner +1;

when "110" =>

addres s <= "010" ;

datain <= dataout ;

wFlag <= ' 1 ' ;

ounter Inner := "000" ;

ounterOuter := ounterOuter + 1 ;

ha l ted <= ' 0 ' ;

when others =>

halted <= ' 1 ' ;

inFlag <= ' 0 ' ;

end ase ;

when others => null ;

end ase ;
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when "100" =>

wFlag <= ' 0 ' ;

i f inFlag = '1 ' then

addres s <= "000" ;

end i f ;

ounterOuter := ounterOuter +1;

when "101" =>

i f inFlag = '1 ' then

add i t i on := unsigned ( dataout ) ;

add i t i on := add i t i on + 1 ;

datain <= std_log i_vetor ( add i t i on ) ;

wFlag <= ' 1 ' ;

end i f ;

ounterOuter := "000" ;

when others => null ;

end ase ;

end i f ;

end proess ;

end Behav iora l ;
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C.1.4 RASP2 Control

The ontrol module for the RASP2 is idential to that for the RASP save that

the INC and DEC instrutions of the RAPS are replaed by the following ADD

and SUB instrutions.

when "001" => −− ADD

ase ounter Inner i s

when "000" =>

addres s <= "000" ;

ounter Inner := ounter Inner +1;

when "001" =>

add i t i on := unsigned ( dataout ) ;

add i t i on := add i t i on + 1 ;

datain <= std_log i_vetor ( add i t i on ) ;

wFlag <= ' 1 ' ;

ounter Inner := ounter Inner +1;

when "010" =>

addres s <= "000" ;

wFlag <= ' 0 ' ;

ounter Inner := ounter Inner +1;

when "011" =>

addres s <= dataout ;

ounter Inner := ounter Inner +1;

when "100" =>

addres s <= "001" ;

datain <= dataout ;

temp <= dataout ;

wFlag <= '1 ' ;

ounter Inner := ounter Inner +1;

temp <= dataout ;

when "101" =>

addres s <= "010" ;

ounter Inner := ounter Inner +1;

when "110" =>

add i t i on := unsigned ( dataout ) ;

add i t i on := add i t i on + unsigned ( temp ) ;

datain <= std_log i_vetor ( add i t i on ) ;

wFlag <= ' 1 ' ;

ounter Inner := ounter Inner +1;

when "111" =>

wFlag <= ' 0 ' ;

ounter Inner := "000" ;

ounterOuter := ounterOuter +1;

ha l ted <= ' 0 ' ;

when others => null ;

end ase ;
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when "010" => −− SUB

ase ounter Inner i s

when "000" =>

addres s <= "000" ;

ounter Inner := ounter Inner +1;

when "001" =>

add i t i on := unsigned ( dataout ) ;

add i t i on := add i t i on + 1 ;

datain <= std_log i_vetor ( add i t i on ) ;

wFlag <= ' 1 ' ;

ounter Inner := ounter Inner +1;

when "010" =>

addres s <= "000" ;

wFlag <= ' 0 ' ;

ounter Inner := ounter Inner +1;

when "011" =>

addres s <= dataout ;

ounter Inner := ounter Inner +1;

when "100" =>

addres s <= "001" ;

datain <= dataout ;

temp <= dataout ;

wFlag <= '1 ' ;

ounter Inner := ounter Inner +1;

temp <= dataout ;

when "101" =>

addres s <= "010" ;

ounter Inner := ounter Inner +1;

when "110" =>

add i t i on := unsigned ( dataout ) ;

add i t i on := add i t i on − unsigned ( temp ) ;

datain <= std_log i_vetor ( add i t i on ) ;

wFlag <= ' 1 ' ;

ounter Inner := ounter Inner +1;

when "111" =>

wFlag <= ' 0 ' ;

ounter Inner := "000" ;

ounterOuter := ounterOuter +1;

ha l ted <= ' 0 ' ;

when others => null ;

end ase ;

C.1.5 RASP3 Control

The ontrol module for the RASP2 is idential to that for the RASP save that

the INC and DEC instrutions of the RAPS are replaed by the following ADD
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and SUB instrutions.

when "001" => −− ADD

ase ounter Inner i s

when "0000" =>

addres s <= "000" ;

ounter Inner := ounter Inner +1;

when "0001" =>

add i t i on := unsigned ( dataout ) ;

add i t i on := add i t i on + 1 ;

datain <= std_log i_vetor ( add i t i on ) ;

wFlag <= ' 1 ' ;

ounter Inner := ounter Inner +1;

when "0010" =>

wFlag <= ' 0 ' ;

addres s <= "000" ;

ounter Inner := ounter Inner +1;

when "0011" =>

addres s <= dataout ;

ounter Inner := ounter Inner +1;

when "0100" =>

addres s <= "001" ;

datain <= dataout ;

wFlag <= '1 ' ;

ounter Inner := ounter Inner +1;

when "0101" =>

wFlag <= ' 0 ' ;

addres s <= dataout ;

ounter Inner := ounter Inner +1;

when "0110" =>

temp <= dataout ;

addres s <= "010" ;

ounter Inner := ounter Inner +1;

when "0111" =>

add i t i on := unsigned ( dataout ) ;

add i t i on := add i t i on + unsigned ( temp ) ;

datain <= std_log i_vetor ( add i t i on ) ;

wFlag <= ' 1 ' ;

ounter Inner := ounter Inner +1;

when "1000" =>

wFlag <= ' 0 ' ;

ounter Inner := "0000" ;

ounterOuter := ounterOuter +1;

ha l ted <= ' 0 ' ;

when others => null ;

end ase ;
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when "010" => −− SUB

ase ounter Inner i s

when "0000" =>

addres s <= "000" ;

ounter Inner := ounter Inner +1;

when "0001" =>

add i t i on := unsigned ( dataout ) ;

add i t i on := add i t i on + 1 ;

datain <= std_log i_vetor ( add i t i on ) ;

wFlag <= ' 1 ' ;

ounter Inner := ounter Inner +1;

when "0010" =>

wFlag <= ' 0 ' ;

addres s <= "000" ;

ounter Inner := ounter Inner +1;

when "0011" =>

addres s <= dataout ;

ounter Inner := ounter Inner +1;

when "0100" =>

addres s <= "001" ;

datain <= dataout ;

wFlag <= '1 ' ;

ounter Inner := ounter Inner +1;

when "0101" =>

wFlag <= ' 0 ' ;

addres s <= dataout ;

ounter Inner := ounter Inner +1;

when "0110" =>

temp <= dataout ;

addres s <= "010" ;

ounter Inner := ounter Inner +1;

when "0111" =>

add i t i on := unsigned ( dataout ) ;

add i t i on := add i t i on − unsigned ( temp ) ;

datain <= std_log i_vetor ( add i t i on ) ;

wFlag <= ' 1 ' ;

ounter Inner := ounter Inner +1;

when "1000" =>

wFlag <= ' 0 ' ;

ounter Inner := "0000" ;

ounterOuter := ounterOuter +1;

ha l ted <= ' 0 ' ;

when others => null ;

end ase ;
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C.1.6 RASP Programs

The initial state of a program in the RASP is represented in the memory module.

The line:

signal m : mem := ( ". . . " , . . . ) ;

is �lled with the entire ontents of the RASP memory, inluding the initial states

of the PC, IR, and ACC. Eah numeral is an n-bit binary number, where n is the

number of bits in the mahine.

The programs are onverted from the �array form� in Appendix B into bi-

nary and arranged after the register states. As an example, onsider the RASP2

addition program from Appendix B.2.1:

3,5,1,8,0

This program onverted to the VHDL form is:

signal m : mem := ( "011" , "000" , "000" , "011" , "101" , "001" ,

"000" , "000" ) ;

C.2 TM

As with the RASPs, the TM has the same oordination and memory modules for

eah TM. The variable (x) in this ase refers to the number of symbols whih are

de�ned for use of on the tape of the mahine.
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C.2.1 TM Coordination

l ibrary IEEE ;

use IEEE .STD_LOGIC_1164 .ALL;

use IEEE .NUMERIC_STD.ALL;

entity TuringMahine i s

Port (  l k : in STD_LOGIC;

a : out STD_LOGIC;

ha l ted : out s td_log i  ) ;

end TuringMahine ;

arhiteture Behav iora l of TuringMahine i s

omponent TMControl i s

port (

 l k : in STD_LOGIC;

symbolOut : in i n t e g e r range 0 to x ;

headPos : out unsigned (0 to 0 ) ;

wFlag : out STD_LOGIC;

symbolIn : out i n t e g e r range 0 to x ;

ha l ted : out s td_log i  ) ;

end omponent ;

omponent TMTape i s

Port (

headPos : in unsigned (0 to 0 ) ;

symbolIn : in i n t e g e r range 0 to x ;

symbolOut : out i n t e g e r range 0 to x ;

wFlag : in s td_log i  ;

a : out s td_log i  ;

 l k : in s td_log i  ) ;

end omponent ;

signal symbolIn : i n t e g e r range 0 to x := 0 ;

signal symbolOut : i n t e g e r range 0 to x := 0 ;

signal wFlag : s td_log i  := ' 0 ' ;

signal headPos : unsigned (0 to 0 ) ;

begin

 on t r o l : TMControl port map (  lk , symbolOut , headPos ,

wFlag , symbolIn , ha l ted ) ;

tape : TMTape port map ( headPos , symbolIn , symbolOut ,

wFlag , a ,  l k ) ;

end Behav iora l ;

354



Appendix C. VHDL Code

C.2.2 TM Memory

The TM memory is a tape whih ontains a single symbol. The tape an aept

up to x symbols whih are represented as integers.

l ibrary IEEE ;

use IEEE .STD_LOGIC_1164 .ALL;

use IEEE .NUMERIC_STD.ALL;

entity TMTape i s

Port ( headPos : in unsigned (0 to 0 ) ;

symbolIn : in i n t e g e r range 0 to x ;

symbolOut : out i n t e g e r range 0 to x ;

wFlag : in s td_log i  ;

a : out s td_log i  ;

 l k : in s td_log i  ) ;

end TMTape ;

arhiteture Behav iora l of TMTape i s

type mem i s array (0 to 1) of i n t e g e r range 0 to x ;

signal tape : mem := ( 0 , 1 ) ;

begin

proess (  l k )

begin

i f f a l l i ng_edge (  l k ) then

i f wFlag = '1 ' then

tape ( to_integer ( headPos ) ) <= symbolIn ;

a <= ' 1 ' ;

else

symbolOut <= tape ( to_integer ( headPos ) ) ;

a <= ' 0 ' ;

end i f ;

end i f ;

end proess ;

end Behav iora l ;

C.2.3 TM Control

The TM ontrol houses the semantis of the TM and the symbol table. The

variable x is again the number of symbols required for the mahine to funtion,

and the new variable n is number of bits required to represent the maximum

number of states of the mahine. The variable t ditates the number of tuples in
the symbol table.

The symbol table st is what holds the spei� symbol table of eah TM. In

this example, the symbol table is left un�lled.
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l ibrary IEEE ;

use IEEE .STD_LOGIC_1164 .ALL;

use IEEE .NUMERIC_STD.ALL;

entity TMControl i s

Port (  l k : in STD_LOGIC;

symbolIn : out i n t e g e r range 0 to x ;

headPos : out unsigned (0 to 0 ) ;

wFlag : out STD_LOGIC;

symbolOut : in i n t e g e r range 0 to x ;

ha l ted : out s td_log i  ) ;

end TMControl ;

arhiteture Behav iora l of TMControl i s

type tup l e i s reord

stateR : unsigned (n downto 0 ) ;

symbolR : i n t e g e r range 0 to x ;

stateW : unsigned (n downto 0 ) ;

symbolW : i n t e g e r range 0 to x ;

d i r : s td_log i  ;

end reord ;

signal u r r en tS ta t e : unsigned (n downto 0) := "01" ;

signal ounter : unsigned (2 downto 0) := "000" ;

signal hPos : unsigned (0 to 0) := "1" ;

type s t i s array (0 to t ) of tup l e ;

onstant symbolTable : s t :=(. . . , . . . ) ;
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begin

proess (  l k )

variable found : s td_log i  := ' 0 ' ;

variable var : i n t e g e r range 0 to t := 0 ;

begin

i f r i s ing_edge (  l k ) then

ase ounter i s

when "000" =>

found := ' 0 ' ;

headPos <= hPos ;

ounter <= ounter + 1 ;

when "001" =>

i f u r r en tS ta t e = "00" then

ha l ted <= ' 1 ' ;

else

ha l ted <= ' 0 ' ;

ounter <= ounter + 1 ;

end i f ;

when "010" =>

for i in symbolTable 'RANGE loop

i f symbolTable ( i ) . stateR = ur r en tS ta t e

and symbolTable ( i ) . symbolR = symbolOut then

found := ' 1 ' ;

var := i ;

exit ;

end i f ;

end loop ;

ounter <= ounter +1;

when "011" =>

i f found = '1 ' then

headPos <= hPos ;

wFlag <= ' 1 ' ;

symbolIn <= symbolTable ( var ) . symbolW ;

ur r en tS ta t e <= symbolTable ( var ) . stateW ;

ounter <= ounter +1;

else

ounter <= "001" ;

u r r en tS ta t e <= "00" ;

end i f ;
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when "100" =>

wFlag <= ' 0 ' ;

i f ( symbolTable ( var ) . d i r = '1 ' ) then

hPos <= hPos + 1 ;

else

hPos <= hPos − 1 ;

end i f ;

ounter <= "000" ;

when others =>

end ase ;

end i f ;

end proess ;

end Behav iora l ;

C.2.4 TM Programs

Programs in the TM are spei�ed in the ontrol module as ROM. The line:

onstant symbolTable : s t :=(. . . , . . . ) ;

in the ontrol module spei�es the symbol table in the �tuple� reord whih is

de�ned just above this line.

The format of the symbol table itself follows the previous onventions of the

thesis laid out in Setions 2.3.1.1 and 3.4.1. There is a straightforward enoding

of the TM tuples into the VHDL form. Consider the addition TM in Appendix

B.4.1:

1,1,2,0,R

2,1,2,1,R

2,0,0,1,L

This TM is onverted to the following VHDL form:

onstant symbolTable : s t := (

( "01" ,1 , "10" , 0 , ' 1 ' ) ,

( "10" ,0 , "00" , 1 , ' 0 ' ) ,

( "10" ,1 , "10" , 1 , ' 1 ' ) ) ;

Eah symbol is an integer from 0 to x. The states are onverted into binary

notation with n bits, where n is the number of bits required to represent the

largest state of the TM. Appendix B shows the full tuples for the TM whih are

onverted using the above method and mapped to an FPGA iruit to produe

the measurements of this thesis.
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Full Semantis

This appendix lists the Reverse Polish Notation [56℄ expressions of the semantis

of the omputational models whih are featured in this thesis (Setion 3.3). These

expressions are measured and their sizes shows in Table 4.2 et al. and are analysed

in Chapter 6.

The notation used here is obtuse. When reading this Appendix, it is reom-

mended that the reader onurrently follow the appropriate sub-setion in Setion

3.4. Eah RPN rule shown here orresponds to a semanti rule expressed in in�x

notation in Setion 3.4.

D.1 RASPs

D.1.1 RASP Model

S ,Y,T, J :NN 7→
X,F,L :N

G: { 0 . . 2 n^1−}
IG⊂
#:SN 7→
A:SX×SX× 7→
P:G{, } ∪+ N×S 7→
E:SX×SX× 7→
SZ : 0 S1+S#%
J{03 7→, 10 7→, 20 7→}=
F∅=
e , k :G{, }∪+

〈S ,X〉Je2P∪FE=

eg , k =⇒
gG∈
enP{ne 7→}kn1+P∪=

enP∅ =⇒

0SSI∈
0YSZ=

1Y0SS=

〈T,L〉YXA=
SXETLE =⇒

0SSI /∈
1Y0SS=

SXE〈Y,X〉 =⇒
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D.1.2 RASP Language

1S1=

2Y2S1+S#%=
SXA〈Y,X〉 =⇒

1S2=

Y2S1−S#%=
SXA〈Y,X〉 =⇒

1S3=

1Y2Y0SS==

0YSZ=

SXA〈Y,X〉 =⇒

1S4=

1Y0SS=

1Y1>

0SSY2S=

0YSZ=

SXA〈Y,X〉 =⇒

1S4=

1Y0SS0==

0Y2S=

1T0=

0TYZ=

SXA〈T,X〉 =⇒

1S4=

0SS1=

1Y2S=

0YSZ=

SXA〈Y,X〉 =⇒

1S5=

1Y=0SS

2S0=

0YSZ=

SXA〈Y,X〉 =⇒

1S5=

1Y0Y0SS==

2S0>

SXA〈Y,X〉 =⇒

1S6=

FX{2S}∪=
SXA〈Y,F〉 =⇒

1S7=

1Y0SS=

2Y1YS=

0YSZ=

SXA〈Y,X〉 =⇒
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D.1.3 RASP2 Language

1S1=

1Y0SS=

2Y2S1Y+S#%=
0YSP=

SXA〈Y,X〉 =⇒

1S2=

1Y0SS=

2Y2S1Y−S#%=
0YSP=

SXA〈Y,X〉 =⇒

1S3=

1Y2Y0SS==

0YSZ=

SXA〈Y,X〉 =⇒

1S4=

1Y0SS=

1Y1>

0SSY2S=

0YSZ=

SXA〈Y,X〉 =⇒

1S4=

1Y0SS0==

0Y2S=

1T0=

0TYZ=

SXA〈T,X〉 =⇒

1S4=

0SS1=

1Y2S=

0YSZ=

SXA〈Y,X〉 =⇒

1S5=

1Y=0SS

2S0=

0YSZ=

SXA〈Y,X〉 =⇒

1S5=

1Y0Y0SS==

2S0>

SXA〈Y,X〉 =⇒

1S6=

FX{2S}∪=
SXA〈Y,F〉 =⇒

1S7=

1Y0SS=

2Y1YS=

0YSZ=

SXA〈Y,X〉 =⇒
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D.1.4 RASP3 Language

S1=

1Y0SS=

2Y2S1YS+S#%=
0YSP=

SXA〈Y,X〉 =⇒

1S2=

1Y0SS=

2Y2S1YS−S#%=
0YSP=

SXA〈Y,X〉 =⇒

1S3=

1Y2Y0SS==

0YSZ=

SXA〈Y,X〉 =⇒

1S4=

1Y0SS=

1Y1>

0SSY2S=

0YSZ=

SXA〈Y,X〉 =⇒

1S4=

1Y0SS0==

0Y2S=

1T0=

0TYZ=

SXA〈T,X〉 =⇒

1S4=

0SS1=

1Y2S=

0YSZ=

SXA〈Y,X〉 =⇒

1S5=

1Y=0SS

2S0=

0YSZ=

SXA〈Y,X〉 =⇒

1S5=

1Y0Y0SS==

2S0>

SXA〈Y,X〉 =⇒

1S6=

FX{2S}∪=
SXA〈Y,F〉 =⇒

1S7=

1Y0SS=

2Y1YS=

0YSZ=

SXA〈Y,X〉 =⇒
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D.2 TM

s , r :Q

y :Γ
h :Z

d : {L ,R}

T, J ,X:ZΓ 7→
δ :QΓ×QΓ×d× 7→
P: eδ 7→
U, I : Zf×T7→
e , a :ΓQ∪d∪{ ,}∪+

f , k ,m:Γ+
{^}∪

E:Q(ZΓ 7→)×Z× (ZΓ 7→) 7→
δeP=
J1fU0E=

es , y , r , v , d a =⇒
eP{〈s , y\ rang l e 〈r , v , d\ rang l e 7→}aP∪ =⇒

eP∅ =⇒

fk^gm=⇒
gΓ ∈
f0Uk−1I {0g 7→}∪m1U∪=

fgm =⇒
gΓ ∈
fnU{ng 7→}mn1+U∪ =⇒

fnU∅ =⇒

f n I ∅ =⇒

fmg =⇒
gΓ ∈
f n I {ng 7→}mn1−U∪=

shTδ〈r , hX,L〉=
sThEfXh1−E =⇒

shTδ〈r , hX,R〉=
sThErXh1+E =⇒

shTδ〈r , hX, d〉 6=
sThET =⇒
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D.3 λ-Calulus

F,T, J ,R,G,L={z , L ,R}

e , f , g∈({λ ,{ a . . z }+ , ( , ) , . , ,}V∪)+

v ,mV∈
V:{ a . . z}

+

z=B|A| v

P: eT 7→
E:TT7→
B:TV7→
Z :TV×V×T7→
S :TT×v×T7→
JeP=

FJE=

e =⇒ λv . f
eP{B, vP , fP} =⇒

e =⇒ f v

eP{A, fP , vP} =⇒

e =⇒ f ( g )

eP{A, fP , gP} =⇒

e =⇒ v

eP{v , ∅ ,∅} =⇒

e =⇒ ( f )

ePfP =⇒

T. zA=

T.L . zB=

T.R. zT .LB/∈
TET.L .RT.RT.L .L . zS =⇒ ; JE

T. zA=

T.L . zB=

HT.L .RB=

T.R. zH∈
mH/∈
TET.L .RmT.R. zZT .RT.L .L . zS =⇒ ; JE

TE{T. z ,T.LE,T.RE} =⇒

T∅=
TE∅ =⇒

TGjS{T. z ,T. LGjS ,T. LGjS} =⇒

T. z j=

TGjSG=⇒

T∅=
TGjS∅ =⇒

T. zB=

T.L . z j=

TGjST =⇒

T. zB=

TB{T.L . z}T.RB∪ =⇒

T. zA=

TB=⇒ T.LBT.RB∪

TB∅ =⇒

T. zv=

TmkZ{m, ∅ ,∅} =⇒

T∅=
TmkZ∅ =⇒
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e , f , g : ( Z{ ( , ) }∪{A}/)+

E:TT7→
P: eT 7→
F,T,L ,R, J : { z , L ,R}

z∈Z
Z: {S ,K, I ,A}

JeP=

FJR=

e =⇒ ( f )

ePfP =⇒

e =⇒ f ( g )

eP{A, fP , gP} =⇒

e =⇒ f z

eP{A, fP , zP} =⇒

e =⇒ z

eP{z , ∅ ,∅} =⇒

T. zA=

TE{A,LE,RE} =⇒

T. zA=

T.L . z I=

TE =⇒ T.R; JE

T. zA=

T.L .L . zK=

TE =⇒ T.L .R; JE

T. zA=

T.L .L .L . zS=

hT .R=

TE =⇒ {A, {A,T.L .L .R, h} ,{A,T.L .R, h }} ;JE

T∅=
TET=⇒
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