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Abstract

Copula theory is particularly useful for modeling multivariate distributions as it allows us

to decompose a joint distribution into marginal distributions and a copula. Copula-based

models have been widely applied in finance, insurance, macroeconomics, microeconomics

and many other areas in recent years. This doctoral thesis particularly pays attention to

applications of copula theory in quantitative risk management.

The first chapter of this thesis provides a comprehensive review of recent developments

of copula models and some important applications in the large and growing finance and eco-

nomics literature. The first part of this chapter briefly introduces the definition and properties

of copulas as well as several related concepts. The second part reviews estimation and infer-

ence methods, goodness-of-fit tests and model selection tests for copula models considered

in the literature. The third part provides an exhaustive review of the extensive literature

of copula-based models in finance and economics. Finally, an interesting topic for further

research is suggested.

The remaining three chapters investigate applications of copula theory in three topics:

market risk prediction, portfolio optimization and credit risk estimation.

Chapter Two investigates the dynamic and asymmetric dependence structure between eq-

uity portfolios from the US and UK. We demonstrate the statistical significance of dynamic

asymmetric copula models in modeling and forecasting market risk. First, we construct

“high-minus-low" equity portfolios sorted on beta, coskewness, and cokurtosis. We find

substantial evidence of dynamic and asymmetric dependence between characteristic-sorted

portfolios. Second, we consider a dynamic asymmetric copula model by combining the gen-

eralized hyperbolic skewed t copula with the generalized autoregressive score (GAS) model

to capture both the multivariate non-normality and the dynamic and asymmetric dependence
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between equity portfolios. We demonstrate the usefulness of this model by evaluating the

forecasting performance of Value-at-Risk and Expected Shortfall for high-minus-low portfo-

lios. From backtesting, we find consistent and robust evidence that our dynamic asymmetric

copula model provides the most accurate forecasts, indicating the importance of incorporat-

ing the dynamic and asymmetric dependence structure in risk management.

Chapter Three investigates the dependence between equity and currency in international

financial markets and explores its economic importance in portfolio allocation. First, we find

striking evidence for the existence of time-varying and asymmetric dependence between eq-

uity and currency. Second, we offer a methodological contribution. A novel time-varying

skewed t copula (TVAC) model is proposed to accommodate non-Gaussian features in uni-

variate time series as well as the dynamic and asymmetric dependence in multivariate time

series. The multivariate asymmetry is captured by the skewed t copula derived from the

mutlivariate skewed t distribution in Bauwens and Laurent (2005) and the time-varying de-

pendence is captured by the GAS dynamics proposed by Creal et al. (2013). This model can

be easily generalized from the bivariate case to the multivariate case. Third, we show that

findings of dynamic and asymmetric dependence between equity and currency have impor-

tant implications for risk management and asset allocation in international financial markets.

Our empirical results show the statistical significance of the TVAC model in risk manage-

ment and its economic values in real-time investment.

Chapter Four studies the credit risk of UK top-tier banks. We document asymmetric and

time-varying features of dependence between the credit risk of UK top tier banks using a

new CDS dataset. The market-implied probability of default for individual banks is derived

from observed market quotes of CDS. The default dependence between banks is modeled by

a novel dynamic asymmetric copula framework. We show that all the empirical features of

CDS spreads, such as heavy-tailedness, skewness, time-varying volatility, multivariate asym-

metries and dynamic dependence, can be captured well by our model. Given the marginal

default probability and estimated copula model, we compute the joint and conditional proba-

bility of default of UK banks by applying a fast simulation algorithm. Comparing our model

with traditional copula models, we find that the traditional models may underestimate the

joint credit risk most of the time, especially during a crisis. Furthermore, we perform an ex-

tensive regression analysis and find solid evidence that time-varying tail dependence between
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CDS spreads of UK banks contains useful information to explain and predict their joint and

conditional default probabilities.

Chapter Five concludes with recommendations for further study.
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Chapter 1

Copula Models in Finance and

Economics: A Comprehensive Survey

Copula theory is particularly useful for modeling multivariate distributions as

it allows us to decompose a joint distribution into marginal distributions and a

dependence function (copulas). Copula-based models have been widely used in

finance, insurance, macroeconomics, microeconomics and many other areas in

recent years. The purpose of this chapter is to provide a comprehensive review

of recent developments of copula models and some important applications in

the large and growing finance and economics literature. First, we briefly intro-

duce the definition and properties of copulas as well as several related concepts.

Second, we review estimation and inference methods, goodness-of-fit tests and

model selection tests for copula models considered in the literature. Third, we

provide an exhaustive review of the extensive literature of copula-based models

in finance and economics.

1



1.1 Introduction

The concept of “copula” can be traced back to the work of Sklar (1959), but its importance in

applications of finance and economics only has been realized since the late nineties. Mathe-

matically speaking, copula is a multivariate distribution function with uniformly distributed

margins. Nelsen (2013) defines copulas as “functions that join or couple multivariate dis-

tribution functions to their one-dimensional marginal distribution functions”. It provides

a convenient and flexible way of describing the dependence between different components

(See Sklar, 1996 for a detailed proof of Sklar’s Theorem).

There are several desirable properties of copulas. First, the flexibility of copulas allow

us to specify marginal distributions separately from the dependence structure, without the

requirement that they come from the same family of joint distributions. Second, a copula-

based model can be used as a practical and flexible instrument to generate Monte Carlo

scenarios of risk factor returns. Third, copulas express dependence on a quantile scale, which

is able to describe both non-linear and tail dependence and is natural in a risk management

context. Fourth, copulas allow us to combine more sophisticated marginal models with a

variety of possible dependencies and to investigate the sensitivity of risk to the dependence

specifications (McNeil et al., 2005; Nelsen, 2013).

Embrechts et al. (2002), which was widely circulated as a working paper in 1999, is

one of the earliest papers exploiting the usage of copulas in finance. Copulas have attracted

much attention and became popular in financial industry after the appearance of another

influential work by Li (2000). Since then, copulas have been widely applied to handle the

comovement between time series in literature, including finance (Christoffersen et al., 2012;

Chollete et al., 2011; Christoffersen and Langlois, 2013; Chollete et al., 2009; Patton, 2004,

2006a,b; Rosenberg and Schuermann, 2006; Jin and De Simone, 2014, etc), actuarial science

and insurance (Embrechts et al., 2002; Frees and Valdez, 2008; Rosenberg and Schuermann,

2006, etc.), and economics (Acharya et al., 2012; Bonhomme and Robin, 2009; Brendstrup

et al., 2007; Engle et al., 2015, etc.), among many others. The amount of papers on copula

theory and its applications in the above fields has been growing remarkably in recent decades.

We provide a more detailed discussion about applications of copula models in finance and

economics in Section 1.5.
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There are several important surveys on copula theory and applications in the existing lit-

erature. Two fundamental and comprehensive textbooks are Joe (1997) and Nelsen (2013),

which provide exhaustive introductions to copula theory and dependence modeling with

mathematical proofs. These two textbooks introduce the mathematical foundations of copula

modeling in detail, including definitions and basic properties of copulas, methods of con-

structing copulas, Archimedean copulas and dependence measures. Cherubini et al. (2004)

and Cherubini et al. (2011) present comprehensive overviews of copula-based models on ap-

plications of mathematical finance, such as credit derivatives pricing and option pricing. A

concise review of the early start of copula models in finance and insurance can be found in

Embrechts et al. (2009). This review also contains a list of copula must-read references as

well as a comment on potential future development of this field. Genest et al. (2009a) pro-

vide an bibliometric overview of the rapid development of copula models in mathematics,

statistics, actuarial science and finance from 1970 to 2005. Jaworski et al. (2010) contains

several surveys from different aspects of copula modeling and empirical studies investigat-

ing applications of copulas to finance and insurance. For instance, one survey in this book,

Choroś et al (2010), extensively reviews both parametric and nonparametric estimations of

copulas for both independent and identically distributed (hereafter i.i.d.) data and time series

data. Manner and Reznikova (2012) review different copula models with time-varying de-

pendence structure and compare their applicability in different cases. Patton (2009a), Patton

(2012a) and Patton (2012b) provide comprehensive reviews of copula models for economic

and financial time series, as well as detailed empirical studies to illustrate estimation and

inference methods of various copula models. Embrechts and Hofert (2014) concisely review

mathematical properties and important algorithms of copula models to show their usage in

quantitative risk management. See also Alexander (2009) and Andersen et al. (2013) for suc-

cinct reviews of treatments of copulas in financial risk management. More in-depth discus-

sions about the treatment and usage of copula-based models in quantitative risk management

can be found in McNeil et al. (2005) and its updated version McNeil et al. (2015).

The structure of the remainder of this chapter is as follows. Section 1.2 introduces the def-

initions and basic properties of copulas. Several important related concepts are also briefly

introduced in this section. In Section 1.3, we survey estimation and inference methods of

copulas in literature. Section 1.4 reviews several widely used goodness-of-fit tests to eval-
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uate copula models. In Section 1.5, we provide a comprehensive review of applications of

copulas in finance and economics. In Section 1.6, we summarize and discuss several possible

extensions of copula modeling. Figures are presented in the appendix.

1.2 Copulas: Concept and Properties

1.2.1 Sklar’s Theorem

Theorem 1 (Sklar, 1959): Suppose a vector random variable X = [X1,X2, ...,Xn]
′, with joint

distribution function F and marginal distribution functions Fn, then there exists a copula C (a

distribution function on [0,1]n with uniform marginals on [0,1], i.e. C : [0,1]n→ [0,1]) such

that

F(x1, ...,xn) = C(F1 (x1) ,F2 (x2) , ...,Fn (xn)) , ∀x ∈ Rn. (1.1)

C is uniquely defined if Fn are continuous. From equation 1.1, we know that a copula is

essentially a joint distribution of probability integral transformations (PITs) of random vari-

ables.1 A detailed analytic proof of this theorem can be found in Sklar (1996).

Given any copula C and univariate distribution functions Fn , F defined by Equation 1.1

is a n-variate distribution function with margins Fn. Define Ui as the PIT of Xi, i.e. Ui ≡

Fi (Xi) , i ∈ {1, ...,n}, then Ui ∼ U [0,1] and define U = [U1,U2, ...,Un]
′, then the distribution

function of U can be denoted by a copula C. Thus, Equation 1.1 can be also written as

C (u1,u2, ...,un) = F
(
F−1

1 (u1) ,F−1
2 (u2) , ...,F−1

n (un)
)
, (1.2)

where F−1
i denotes the inverse distribution function of Fi, where Xi = F−1

i (Ui) for 0≤Ui ≤

1.2 There are two important interpretations of Sklar’s theorem. First, it allows one to de-

compose any multivariate distribution function into its univariate margins and a copula and

thus to investigate the univariate margins and multivariate distribution, separately. Suppose

the joint distribution function F is n-times differentiable, Fi has density fi and copula C has

1Probability transformation: Let a random variable X has a continuous distribution with the cumulative
distribution function F , then F(X) has a uniform distribution F(X)∼ U [0,1].

2Quantile transformation: Let U ∼ U [0,1] and F the distribution function of any random variable X , then
F−1 (U)≡ X so that F−1 (U)∼ F .
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density c, then the nth cross-partial derivative of equation 1.1, i.e. the density f of F, is given

by

f(x)≡ ∂ n

∂x1∂x2 · · ·∂xn
F(x)

=
n

∏
i=1

fi (xi) ·
∂ n

∂x1∂x2 · · ·∂xn
C (F1 (x1) ,F2 (x2) , ...,Fn (xn)) (1.3)

≡
n

∏
i=1

fi (xi) · c(F1 (x1) ,F2 (x2) , ...,Fn (xn)) .

so from equation 1.3, we know that the joint density can also be decomposed into two parts:

the product of its marginal densities and a corresponding copula density. The decomposition

of joint density implies that the joint log-likelihood of f can be split into the sum of univariate

log-likelihood and the likelihood of copula density:

log f(x) =
n

∑
i=1

log fi (xi)+ logc(F1 (x1) ,F2 (x2) , ...,Fn (xn)) . (1.4)

Thus, the parameters can be estimated through standard maximum likelihood estimation

(MLE). To illustrate the ability of copulas to model various dependence structures, we pro-

vide counter plots for different bivariate copula densities in Figure 1.1. More functional

forms and details of copula models can be found in Joe (1997) and Nelsen (2013).

[ INSERT FIGURE 1.1 ABOUT HERE ]

1.2.2 Survival Copula

Let x be a random vector with multivariate survival functions S, marginal distribution func-

tions Fn and marginal survival function Sn, where Si = 1−Fi. Using Sklar’s theorem, we

have

S(x1,x2, ...,xn) = C̄ (S1 (x1) ,S2 (x2) , ...,Sn (xn)) . (1.5)
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where C̄ is the survival copula of C. For the bivariate case, the relationship between a copula

and corresponding survival copula is that

C̄ (1−u1,1−u2) = 1− (1−u1)− (1−u2)+C (1−u1,1−u2) (1.6)

=−1+u1 +u2 +C (1−u1,1−u2)

If C̄ =C , C is called radially symmetric.

1.2.3 The Fréchet–Hoeffding Bounds Theorem

Theorem 2 (Fréchet–Hoeffding bounds): For any n-dimensional copula C : [0,1]n→ [0,1]

and any u = [u1,u2, ...,un] ∈ [0,1]n, the following bounds hold:

W (u1,u2, ...,un)≤C (u1,u2, ...,un)≤M (u1,u2, ...,un) . (1.7)

where W denotes the lower Fréchet–Hoeffding bound and is defined as

W (u1,u2, ...,un) = max

{
1−n+

n

∑
i=1

ui,0

}
. (1.8)

and M denotes the upper Fréchet–Hoeffding bound and is defined as

M (u1,u2, ...,un) = min{u1,u2, ...,un} . (1.9)

W is a copula if and only if n = 2 (the comonotonic model) and M is a copula for all n ≥ 2

(the countermonotonic model). This theorem is important as it suggests that the marginal

distribution functions constrain the joint distribution function built on them. For the bivariate

case, the Fréchet–Hoeffding bounds theorem states:

max{u+ v−1,0} ≤C (u,v)≤min{u,v} (1.10)

The Fréchet–Hoeffding bounds have important implications in risk management and port-

folio optimization. Figure 1.2 shows distributions of the Fréchet–Hoeffding upper bound,

lower bound and independence copula.
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[ INSERT FIGURE 1.2 ABOUT HERE ]

1.2.4 Tail Dependence

Let X1 and X2 be continuously distributed random variables with distribution functions F1

and F2. Provided a limit λL ∈ [0,1] exists, the lower tail dependence coefficient (LTDC) λL

of X1 and X2 is defined by

λL = lim
q→0+

P
(
X2 ≤ F−1

2 (q) | X1 ≤ F−1
1 (q)

)
, (1.11)

If λL ∈ [0,1], then X1 and X2 are lower tail dependent. If λL = 0, then X1 and X2 are asymp-

totically independent in the lower tail. Analogously, provided a limit λU ∈ [0,1] exists, the

upper tail dependence coefficient (UTDC) λU of X1 and X2 is defined by

λU = lim
q→1−

P
(
X2 > F−1

2 (q) | X1 > F−1
1 (q)

)
, (1.12)

If λU ∈ [0,1], then X1 and X2 are upper tail dependent. If λU = 0, then X1 and X2 are

asymptotically independent in the upper tail. Tail dependence is a property of a copula,

since

P
(
X2 ≤ F−1

2 (q) | X1 ≤ F−1
1 (q)

)
(1.13)

=
P
(
X2 ≤ F−1

2 (q) ,X1 ≤ F−1
1 (q)

)
P
(
X1 ≤ F−1

1 (q)
)

=
P
(
F2
(
X2 ≤ F−1

2 (q)
)
,F1
(
X1 ≤ F−1

1 (q)
))

P
(
F1
(
X1 ≤ F−1

1 (q)
))

=
P(F2 (X2)≤ q,F1 (X1)≤ q)

P(F1 (X1)≤ q)
=

C (q,q)
q

, q ∈ (0,1)

thus λL = lim
q→0+

C(q,q)
q . Analogously, for the upper tail dependence, we use Equation 1.6 to

obtain

λU = lim
q→1−

1−2q+C (q,q)
1−q

= lim
q→1−

C̄ (1−q,1−q)
1−q

= lim
q→0+

C̄ (q,q)
q

, q ∈ (0,1) (1.14)
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where C̄ is the survival copula of C (see the definition in Equation 1.5). For both lower

tail and upper tail dependence, we have λL,λU ∈ [0,1], since λL and λU are conditional

probabilities. For radially symmetric copulas, λL = λU , since C̄ = C, see McNeil et al.

(2015).

1.3 Model Estimation and Inference

1.3.1 One-stage Maximum Likelihood Estimation

In this section, we briefly describe some general approaches of estimation and inference for

copula-based models. Theoretically, estimation of margins and a copula can be done by the

one-stage maximum likelihood estimation (also known as full maximum likelihood estima-

tion, FML). The vector of parameters can be estimated by maximizing the log-likelihood

function of Equation 1.4. Although the one-step MLE estimator is efficient and asymptoti-

cally normal, it normally suffers computationally complexities as it solves the whole system

simultaneously.

1.3.2 Two-stage Maximum Likelihood Estimation

Alternatively, the two-stage estimation procedure for copula modeling is more popular in

practice. First, the one-stage MLE is computationally difficult especially when the number

of parameters increases, whereas the two-stage MLE is computationally easier to implement

without losing much asymptotic efficiency (see Joe, 1997; Patton, 2006b). Second, the two-

stage procedure is relatively straightforward and convenient for the comparison of different

copula candidates with the same specification of univariate margins. Third, modeling the

margins and dependence separately may yield more insight and allow a more in-depth anal-

ysis of various model components (McNeil et al., 2015).

Various methods have been proposed in literature to obtain the marginal estimate Fi,t and

they can be generally classified into three types:

(1) Parametric estimation. There are many possible choices for the parametric models

(distributions) for Fi,t . For the return data of financial risk factors, several widely used dis-
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tributions including the Gaussian, the Student’s t, the skewed t and normal inverse Gaussian

(NIG), can be considered.3 It is most important to choose an appropriate distribution from

the many possible candidates and then to fit our data to it, by MLE. For modeling operational

loss or insurance data, the Pareto or the lognormal distribution are normally considered.

(2) Nonparametric estimation. The nonparametric estimate for marginals is based on

the empirical distribution function (EDF) F̂i and the estimated probability integral transform

variable Ûi,t can be obtained via a rescaled empirical distribution function

F̂i (z)≡
1

T +1

T

∑
t=1

1(ẑi,t ≤ z) , where ûi,t = F̂i (ẑi,t)∼Uni f (0,1) , (1.15)

where zi,t denotes the standardized residuals of risk factor returns, the denominator is differ-

ent from the normal empirical distribution function by using T +1 instead of T . We use this

to guarantee that ûi,t lies strictly within the unit cube.

(3) Semiparametric estimation. Some empirical studies suggest that the EDF cannot

capture well tail behaviors of underlying distribution. One way to solve this problem is using

a generalized Pareto distribution (GPD) from extreme value theory (EVT) to model the tail

behaviors. The center of distribution can be still described by EDF. See McNeil and Frey

(2000) for more detailed discussion and implementation.

Thus, the copula-based models can be estimated either parametrically or semiparametri-

cally or nonparametrically. When both marginal distributions and the copula are estimated

using parametric models, the resulting estimation is fully parametric, see Joe (1997). When

the marginal distribution is estimated by the nonparametric or semiparametric models, but

their dependence is characterized by parametric copula functions, the resulting estimation is

semiparametric, see Genest et al. (1995), Chen and Fan (2006a) and Chen and Fan (2006b),

etc. When the marginal distributions are estimated using nonparametric models, and depen-

dence is also characterized by nonparametric copula functions, the resulting joint distribution

is fully nonparametric, see Genest and Rivest (1993) and Capéraà et al. (1997), etc.

For the full parametric case, we apply MLE to obtain parameters for univariate margins

in the first stage and then, holding the univariate parameters fixed from the first stage, we
3Many different univariate skewed t-type distributions have been proposed in literature and several widely

used versions in financial time series include Hansen (1994), Fernández and Steel (1998), Jones and Faddy
(2003) and Aas and Haff (2006), etc.
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use MLE again to estimate copula parameters in the second stage. The likelihood of a fully

parametric copula model for conditional distribution of zt takes the form:

L(θ) =
T

∏
t=1

f(zt |zt−1;θ)

=
T

∏
t=1

[
ct
(
u1,t , ...,ud,t |zt−1;θC

) N

∏
i=1

fi,t (zi,t |zt−1;θi)

]

with log-likelihood

L (θ) =
T

∑
t=1

log f(zt |zt−1;θ)

=
T

∑
t=1

d

∑
i=1

log fi,t (zi,t |zt−1;θi)+
T

∑
t=1

logct
(
F1,t (z1,t |zt−1;θ1) , . . . ,Fd,t

(
zd,t |zt−1;θd

)
|zt−1;θC

)
where θ denotes the parameter vector for the full model parameters, θi denotes the parame-

ters for the ith marginals, θC denotes the parameters of copula model and zt−1 denotes the

information set available at time t−1. Following the two-stage maximum likelihood estima-

tion (also known as the Inference Method for Marginals, IFM) of Joe and Xu (1996) and Joe

(1997), we first estimate the parameters of marginal models using maximum likelihood:

θ̂i = argmax
θi

T

∑
t=1

log fi,t (zi,t |zt−1;θi) , i = 1, ...,N

and then using the estimations in the first stage, we calculate Fi,t and estimate the copula

parameters via maximum likelihood:

θ̂ C = argmax
θC

T

∑
t=1

logct
(
F1,t (z1,t |zt−1;θ1) , ...,Fd,t

(
zd,t |zt−1;θd

)
|zt−1;θC

)
(1.16)

Notice that IFM does not lead to efficient estimators but the asymptotic efficiency loss for this

method is acceptable, see Joe (1997) and Joe (2005). Shih and Louis (1995) show asymptotic

properties of this estimator for i.i.d. data and Patton (2006b) shows the conditions under

which the two-stage MLE is not less asymptotically efficient than the one-stage MLE for

time series data via simulations. The most attractive advantage of IMF estimation is that this

method can significantly reduce the computation complexity.
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In the semiparametric estimation (also known as Canonical Maximum Likelihood Esti-

mation, CML), the univariate marginals are estimated nonparametrically using the empirical

distribution function (See Equation 1.15) and the copula model is again parametrically esti-

mated via maximum likelihood:

θ̂ C = argmax
θC

T

∑
t=1

logct (û1,t , ..., ûi,t |zt−1;θC) (1.17)

This estimator is also sometimes called “pseudo-maximum likelihood” in literature, see for

instance Genest et al. (1995) and Klaassen and Wellner (1997). It is noted that the semipara-

metric estimator θ̂ C is consistent, asymptotically normal and fully efficient at independence,

see Genest et al. (1995). Shih and Louis (1995) investigate the asymptotic properties of the

semiparametric estimator in the i.i.d. case. Chen and Fan (2006a) and Chen and Fan (2006b)

also establish the asymptotic properties of the semiparametric estimator for time series data.

Furthermore, some studies show the robustness of semiparametric estimation via extensive

simulations. For instance, Kim et al. (2007) show that without knowing the marginal distri-

butions, the semiparametric copula model can provide better estimations than FML and IFM

in statistical computations and data analysis.

Some studies also investigate fully nonparametric estimations of copula models. For

instance, Genest and Rivest (1993) studies the nonparametric estimation of Archimedean

copulas for i.i.d. data. The nonparametric estimation of various extreme value copulas

are extensively studied by many researchers, for instance Capéraà et al. (1997), Zhang et

al. (2008), Genest and Segers (2009), Kojadinovic and Yan (2010), Gudendorf and Segers

(2011), Gudendorf and Segers (2012), among many others. The estimation for time series

data are considered by Fermanian and Scaillet (2003), Fermanian et al. (2004), Sancetta and

Satchell (2004), Gagliardini and Gouriéroux (2007) and Ibragimov (2009), etc. Further-

more, a novel estimation of copula models based on a simulated method of moments (MM)

has been recently proposed by Oh and Patton (2013b).
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1.4 Evaluation of Copula–based Models

The evaluation of a proposed model is of particular importance in econometric modeling.

Two types of tests are most commonly applied to evaluate copula-based models: goodness-

of-fit tests (GoF) and model selection tests. The former test is normally used to access how

well the proposed copula fits a set of specified observations and the latter is commonly used

to determine which copula in a given set of candidates is able to provide the best performance

in dependence measuring. In econometric application, these two types of tests are mutually

complementary.

1.4.1 Goodness-of-fit Test

Various GoF tests for copulas have been proposed in recent decades, see Fermanian (2005),

Scaillet (2007) and Savu and Trede (2008) for the GoF tests for i.i.d. data, and Breymann et

al. (2003), Malevergne and Sornette (2003) and Kole et al. (2007) for the case of time series

data. For the semiparametric copula model, a simulation-based approach is considered by

Chen and Fan (2006a) to obtain the critical values for copula GoF tests.

Berg (2009) implements a power comparison of copula GoF tests by examining the ef-

fect of dimension, sample size and strength of dependence, and concludes that no approach

always performs better than any other. Genest et al. (2009b) also provide a critical review

of various copula GoF tests available in the literature. They carry out a comparative power

study of the GoF tests for copula models through an extensive simulation study and find that

a Cramér–von Mises test is the most powerful.

1.4.2 Model Selection

The primary goal of model selection is to determine the most parsimonious model that ade-

quately fits specific data sample. Comparison between candidates of copula models can be

accomplished via statistical criteria. The most straightforward way is using classical like-

lihood ratio tests, see Greene (2011) and Davidson and MacKinnon (2004). The intuition

behind a likelihood ratio test is that if the restricted copula model is inadequate, the differ-

ence between the log-likelihood values of a restricted model (e.g. the Gaussian copula) and
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an unrestricted model (e.g. the Student’s t copula) should be significantly different from zero.

Given the log-likelihood values for two competing copula-based (restricted and unrestricted)

models, the test statistic can be easily obtained by

LR = 2
(
L1
(
θ̂1
)
−L2

(
θ̂2
))

, LR∼ χ
2 (k) (1.18)

where θ̂1 and θ̂2 denote the maximum likelihood estimators of restricted and unrestricted

models, respectively. LR is distributed as χ2 with the degree of freedom k, where k is the

number of restrictions. Notice that the classical likelihood ratio requires nested models,

i.e. the unrestricted model can be transformed into the restricted model by imposing some

restrictions. In other words, the restricted one should be a special case of the unrestricted

one, as the Gaussian copula is a special case of the t copula or the t copula a special case of

the GH skewed t copula.

Another more generalized likelihood ratio test proposed by Vuong (1989) and Rivers and

Vuong (2002) is also considered in copula literature, for instance Patton (2012a) and Patton

(2012b). The most desirable property of their test is that it allows non-nested competing

models. The null hypotheses and alternative hypotheses are given by

H0 : E
[
L1,t

(
θ̂1
)
−L2,t

(
θ̂2
)]

= 0 (1.19)

H1 : E
[
L1,t

(
θ̂1
)
−L2,t

(
θ̂2
)]

> 0

H2 : E
[
L1,t

(
θ̂1
)
−L2,t

(
θ̂2
)]

< 0

where Li,t
(
θ̂i
)
≡ log fi,t

(
zt |zt−1; θ̂i

)
(1.20)

The t-statistic of the difference between the sample averages of the log-likelihoods is asymp-

totically normally distributed. Patton (2012a) shows that this test can be used for both con-

stant and dynamic conditional copula models. Furthermore, Akaike Information Criterion

(AIC) or Bayesian Information Criterion (BIC), which include a penalty of the number of

estimated parameters, can also be applied to the model selection.
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1.5 Applications of Copulas in Finance and Economics

Applications of copulas in finance and economics can be broadly categorized into eight areas.

1.5.1 Quantitative Risk Management

Copula-based models have been considered as a useful tool in quantitative risk management

since early 2000 and have been widely used to estimate and forecast portfolio risk in recent

years. The advantages of copula-based models in risk management are three-fold. First,

copula-based models provide us with a flexible tool to handle different dependence structures

between assets, since various copulas can be used to model different kinds of dependence

(See Figure 1.1). Second, a bottom-up approach can be built based on the copula theory,

which allows us to model margins and their dependence separately. This property is very

attractive in risk management because it enable us to combine more sophisticated marginal

models with various copulas in multivariate modeling. Third, copulas are easily simulated

and thus it is very convenient to implement Monte Carlo simulation based on estimated

copulas. This provides us a powerful method to generate a variety of scenarios for portfolios

to obtain their P&L distributions (McNeil et al., 2015).

The well-publicized trading losses of several large financial institutions (e.g. Barings

Bank, Long-Term Capital Management, Lehman Brothers) and the recent global financial

crisis of 2007-2009 have led financial regulators and supervisory authorities to favor quan-

titative techniques which assess the possible loss that these institutions can incur. Value-at-

Risk (VaR) and Expected Shortfall (ES) are the most prevalent measures to quantify market

risk. VaR provides an estimation (quantile) of the likely losses which could arise from price

changes over a pre-determined horizon at a given level. ES is a coherent risk measure and

can be viewed as the expected loss when VaR is exceeded. For more details about theoretical

concepts and modeling techniques of VaR and ES, see Jorion (2007) and Alexander (2009).

In the past decade, numerous studies have developed and applied a variety of copula-

based models to estimate and forecast portfolio VaR or ES for different assets in different

markets, see, for example Cherubini and Luciano (2001), Embrechts et al. (2002), Glasser-

man et al. (2002), Embrechts et al. (2003a), Christoffersen and Pelletier (2004), Embrechts
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and Höing (2006), Kole et al. (2007), Hsu et al. (2008), Huang et al (2009), Giacomini et

al. (2009), Chollete et al. (2009), Hafner and Reznikova (2010), Hsu et al. (2012), Patton

(2012a) and Cerrato et al. (2015), among many others. One copula paper of integrated risk

management is Rosenberg and Schuermann (2006), which measures integrated risk by com-

bining market, credit and operational risks together using copulas. McNeil et al. (2015)

provides a comprehensive treatment of copula theory and its applications in quantitative risk

management.

1.5.2 Portfolio Management

Empirical studies provide solid evidence that modeling time-varying and asymmetric de-

pendence are very informative for portfolio decision making. Patton (2004) find economic

significance of univariate and multivariate asymmetries for out-of-sample asset allocation

decisions. Hong et al. (2007) demonstrate the economic importance of incorporating asym-

metric characteristics into asset allocation using Clayton and mixture copulas.

Some studies apply copula-based models to study the international diversification benefit.

For instance, Chollete et al. (2011) examine diversification opportunities in international

markets using copula models and show international limits to diversification. Christoffersen

et al. (2012) propose a dynamic asymmetric copula to capture multivariate nonnormality and

asymmetries for developed and emerging market indices and find that diversification benefits

have mostly disappeared for developed markets, whereas emerging markets still able to offer

substantial diversification benefits.

Instead of modeling asset or index returns, Christoffersen and Langlois (2013) study

the dependence structure between four important equity market factors (i.e. Fama-French

three-factors and momentum factor) and show that significant economic gains are obtained

when accounting for the nonlinear dependence measured by dynamic copulas. Elkamhi and

Stefanova (2014) develop a copula-based model that allows for increased and asymmetric de-

pendence between extreme asset returns. They demonstrate that taking into account depen-

dence between extreme events in portfolio decisions can yield significant economic values.

Another interesting topic is copula-based portfolio optimization, however related studies are

very limited, see Boubake and Sghaier (2013) for instance.
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1.5.3 Financial Derivatives

Credit derivatives, such as credit default swaps (CDS) and collateralized debt obligations

(CDO), normally contain risks coming from different sources. Thus, copulas are very pow-

erful tools to model and price multivariate risks from these derivative contracts. To the best

of our knowledge, Li (2000) is the first study exploiting the usage of the Gaussian copula

function in credit risk modeling. He applies this copula function to investigate default cor-

relation and further value credit derivatives, such as CDS and first-to-default contracts. A

large number of studies exploit applications of copula functions in credit risk, including Frey

and McNeil (2003), Hull and White (2004), Giesecke (2004), Hull and White (2006), Hull

and White (2010), Hofert and Scherer (2011), Duffie (2011), Duffie and Singleton (2012),

Oh and Patton (2013a) and Christoffersen et al. (2014), among many others. In addition,

some studies also investigate applications of copulas in other derivatives, including pricing

multivariate contingent claims (Rosenberg, 2003), quanto FX options (Bennett and Kennedy,

2004), better-of-two-markets and worse-of-two-markets options (van den Goorbergh et al.,

2005), currency options (Salmon and Schleicher, 2006; Taylor and Wang, 2010), and en-

ergy futures (Grégoire et al., 2008), among others. Cherubini et al. (2004) and Cherubini

et al. (2011) provide detailed treatments of applications of copula functions in mathematical

finance.

1.5.4 Asymmetric Dependence Testing and Modeling

It is a stylized fact in finance that dependence between asset returns is more correlated dur-

ing market downturns than during market upturns. This phenomenon is named “asymmetric

correlation/dependence” and has been investigated by a large number of empirical studies

without drawing on copula theory, see for instance, Kroner and Ng (1998), Longin and Sol-

nik (2001), Ang and Chen (2002), Ang and Bekaert (2002), Bae et al. (2003), Yuan (2005),

among many others. More generally, they find overwhelming evidence against the assump-

tion that asset returns are multivariate normally distributed. These findings indicate that the

dependence between asset returns is non-Gaussian. One attractive property of copula-based

models is that some can capture well non-Gaussian features between asset returns, such as

multivariate asymmetry.

16



The amount of empirical studies on asymmetric dependence in financial markets using

copulas has been increasing rapidly since 2000. A strand of studies applies copula models to

verify and investigate multivariate asymmetries between assets in different markets, includ-

ing equity markets (see Christoffersen et al., 2012; Jondeau and Rockinger, 2006; Christof-

fersen and Langlois, 2013; Cerrato et al., 2015; Hong et al., 2007; Chollete et al., 2009;

Okimoto, 2008; Patton, 2004; Kang et al., 2010; Li, 2014, etc), the foreign exchange mar-

ket (Bouyé and Salmon, 2009; Patton, 2006a; Li, 2011), bond markets (Garcia and Tsafack,

2011), future markets (Hsu et al., 2008) and energy markets (Aloui et al., 2014; Reboredo,

2011), among others. Another strand of studies examines asymmetric dependence between

different kinds of assets, such as equity and currency (Ning, 2010), equity and commodity

(Wen et al., 2012), and currency and commodity (Wu et al., 2012).

1.5.5 Time-varying Dependence Modeling

Empirical finance studies provide a wealth of evidence that the correlations and volatility of

financial time series change over time, thus, many multivariate GARCH models have been

proposed to capture time-varying correlations and covariance matrix, see Bollerslev et al.

(1988), Bollerslev (1990), Engle (2002) and Tse and Tsui (2002), among many others. For

comprehensive reviews , see Bauwens et al. (2006) and Silvennoinen and Teräsvirta (2009).

Furthermore, many empirical studies also show another stylized fact. that conditional depen-

dence structure between asset returns varies through time, see Dias and Embrechts (2004),

Patton (2006a), Jondeau and Rockinger (2006), Giacomini et al. (2009) and Christoffersen

et al. (2012), etc. This noteworthy phenomenon motivates the consideration of time-varying

copulas, which allow correlation parameters to change dynamically. Recently, various mod-

els have been proposed in the literature to capture this feature of financial time series.

Patton (2006a) introduces the notion of time-varying copula where the copula function is

constant but its parameter is allowed to vary through time as a function of an autoregressive

term and transformations of the lagged data. Similar observation driven copula models also

can be found from Jondeau and Rockinger (2006), Ausin and Lopes (2010), Fermanian and

Wegkamp (2012). Creal et al. (2013) proposed a popular driving mechanism for time-varying

copulas called the Generalized Autoregressive Score (GAS) model. This is an observation
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driven model which uses the scaled score of likelihood function to update the model pa-

rameters over time. They show that the GAS model is a consistent and unified framework,

which encompasses some well-known models in the literature. They also illustrate the GAS

framework by introducing new model specifications for time-varying copula. Based on the

results of simulation and empirical evidence, they note that the driving mechanism of Patton

(2006a) only captures part of the variations in the dependence coefficients. They point out

that Patton’s conditional copula model cannot capture the dynamics of upper and lower tail

dependence simultaneously. Correspondingly, the GAS specification has better performance

in capturing different types of dynamics.

Christoffersen et al. (2012) develop a dynamic asymmetric copula (DAC) model to cap-

ture trends in dependence, multivariate nonnormality, and asymmetries in a large set of de-

veloped and emerging markets. They utilize the dynamic conditional correlation (DCC)

model proposed by Engle (2002) and Tse and Tsui (2002) as the driving mechanism to up-

date dynamic copula correlations. The function of dynamic copula parameter is composed

by the weighted average of a constant term, the lagged conditional correlation matrix and the

lagged cross-product of the standardized copula shocks. They apply recent econometric in-

novations and a composite likelihood procedure proposed by Engle et al. (2008) to overcome

computational complications arising from the high dimensionality that promote estimation

using long samples of asset returns for a large number of countries. They also illustrate that

the implementation of their DAC model is relatively straightforward and computationally

efficient. Other studies, which also consider combining DCC GARCH with copula models,

include Lee and Long (2009), Fengler et al. (2012), among others.

There are other three strands of literature about time-varying copula models. The first

strand is termed the “Stochastic copula”, which is based on the different stochastic volatil-

ity models, see Manner and Segers (2011), Hafner and Manner (2012) and Creal and Tsay

(2015). The second strand of research is inspired by the regime switching model of Hamil-

ton (1989). Some studies consider the “Regime switching copula” that allows the func-

tional form of copula to vary for different states, see for instance Rodriguez (2007), Oki-

moto (2008), Chollete et al. (2009), Garcia and Tsafack (2011) and Wang et al. (2013),

etc. The third strand, called the “Locally constant copula”, is considered by Giacomini et

al. (2009), Dias and Embrechts (2010), Guegan and Zhang (2010), Harvey (2010), Hafner
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and Reznikova (2010) and Busett and Harvey (2011). For a comprehensive review of time-

varying copula models, see Manner and Reznikova (2012)

1.5.6 Copula-based Quantile Regression

One interesting topic of copula application is the copula-based quantile regression. Several

copula-based regression models have been developed in statistical literature, see for instance

Oakes and Ritz (2000), Pitt et al. (2006), etc. However, their applications in finance and eco-

nomics have not been extensively investigated in literature. For instance, Chen et al. (2009a)

propose a copula-based nonlinear quantile autoregression and point out its usefulness in esti-

mation and inference about VaR in financial time series. Bouyé and Salmon (2009) propose

a dynamic copula quantile regression to investigate dependency in the foreign exchange mar-

ket. For a comprehensive survey of copula-based quantile regression, see Kolev and Paiva

(2009).

1.5.7 High-dimensional Application

Dealing with high-dimensional data is a common task in financial practice. Problems arise

when estimating high-dimensional copulas due to the “curse of dimensionality”. This moti-

vates researchers to develop various copula-based models to resolve high-dimensional issues

in estimation and inference. For instance, Aas et al. (2009), Min and Czado (2010) and Acar

et al. (2012) consider models which use a cascade of pair-copulas to decompose high dimen-

sion copula into bavariate cases. Similarly, Okhrin et al. (2013) and Hering et al (2010) also

develop efficient techniques to model high-dimensional multivariate distributions through

hierarchical Archimedean copulas. Another similar method, named “nested Archimedean

copulas”, is considered by Hofert and Scherer (2011).

Christoffersen et al. (2012) implement the ingenious composite likelihood method pro-

posed by Engle et al. (2008) to solve large-scale estimation problems in their dynamic copula

model for 33 equity markets. Oh and Patton (2015a) decompose dependence between high-

dimensional returns into linear and nonlinear components. They utilize high frequency data

to forecast linear dependence and high dimension copulas to capture nonlinear dependence.

Their estimation procedure also relies on the composite likelihood method of Engle et al.
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(2008). Oh and Patton (2015b) also propose a novel factor copula model based on a latent

factor structure to handle the high dimensional problem. Despite the factor copula model

lacking a closed-form density, they show that some properties can be still obtained analyti-

cally.

1.5.8 Other Applications

Although most of the important contributions of copula models in finance and economics

have been reviewed above, there are still some conspicuous contributions that cannot be

appropriately classified into any of above topics. Smith (2003) proposes a method to model

sample selection using Archimedean copulas; Demarta and McNeil (2005) investigate the

properties of Student’s t copula and some related extensions; Granger et al. (2006) present a

definition for a common factor for bivariate time series using copulas; Zimmer and Trivedi

(2006) consider trivariate copulas to model sample selection and treatment effects; Bartram et

al. (2007) consider a time-varying copula model to study the impact of the introduction of the

Euro on the dependence between stock markets in European countries; Heinen and Rengifo

(2007) propose a multivariate autoregressive conditional double Poisson model based on

copulas to investigate time series of count data; Rodriguez (2007) applies copulas to measure

financial contagion; Dearden et al. (2008) and Bonhomme and Robin (2009) study earnings

dynamics using copulas; Lee and Long (2009) propose copula-based multivariate GARCH

with uncorrelated residuals; Patton (2009b), Dudley et al. (2011) and Kang et al. (2010)

investigate the dependence structures between hedge fund and different assets using copula-

based models; Zimmer (2012) shows the restrictions of the Gaussian copula and explores

various copula specifications to model US housing price data; Lee and Yang (2014) propose a

copula-based Granger-causality test to study causal relationships between financial markets;

Jin and De Simone (2014) study banking systemic vulnerabilities using a CIMDO model

combined with dynamic t copula.
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1.6 Conclusions and Areas for Future Research

Thus, it is very convenient to construct a multivariate density from different marginal densi-

ties via copulas. The desirable properties of copulas have been well documented in statistical

literature and the usefulness of copulas have been well documented in finance and economic

literature. Recently, numerous copula-based models have been proposed to model multi-

variate densities and some of them have been widely applied in applications of dependence

modeling, aggregation of risks, and asset allocation, etc. In this chapter, we have briefly re-

viewed the basic definition and properties of copulas as well as some related concepts which

are particularly useful to applications in financial and economic time series modeling. Then,

we discussed some estimation, inference and evaluation methods widely used in existing

copula literature. Finally, we provided an exhaustive review of literature on copula models

in finance and economics.

High-frequency data is becoming more and more important in financial practice. In re-

cent years, there has been a dramatic increase in the amount of high frequency data available.

The theoretical and empirical literature has been growing very fast, with contributions in-

cluding Engle (2000), Andersen et al. (2001), Andersen et al. (2003), Andersen et al. (2005),

Xiu (2010), among others. However, the literature that considers copulas to model multi-

variate distribution of high-frequency financial time series is rather limited, see for instance

Breymann et al. (2003), Dias and Embrechts (2010), Salvatierra and Patton (2015). Thus,

using copulas to model dependence structure between high-frequency data is likely to be a

promising topic for further research.
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Chapter 2

Modeling Dependence Structure and

Forecasting Market Risk with Dynamic

Asymmetric Copula

We investigate the dynamic and asymmetric dependence structure between eq-

uity portfolios from the US and UK. We demonstrate the statistical significance

of dynamic asymmetric copula models in modelling and forecasting market risk.

First, we construct “high-minus-low" equity portfolios sorted on beta, coskew-

ness, and cokurtosis. We find substantial evidence of dynamic and asymmet-

ric dependence between characteristic-sorted portfolios. Second, we consider

a dynamic asymmetric copula model by combining the generalized hyperbolic

skewed t copula with the generalized autoregressive score (GAS) model to cap-

ture both the multivariate non-normality and the dynamic and asymmetric de-

pendence between equity portfolios. We demonstrate its usefulness by evalu-

ating the forecasting performance of Value-at-Risk and Expected Shortfall for

the high-minus-low portfolios. From backtesting, we find consistent and robust

0This chapter is the early version of the working paper "Cerrato, Marrio., Crosby, John., Kim, Minjoo., and
Zhao, Yang. (2015). Modeling Dependence Structure and Forecasting Market Risk with Dynamic Asymmetric
Copula. SIRE Discussion Papers 2015, Scottish Institute for Research in Economics (SIRE)". I would like
to thank Andrew Patton, Paul Embrechts, Alexander McNeil, Drew Creal and Wolfgang Härdle for sharing
their copula codes, and conference discussants at 2015 Quant Europe in London, ICBI Global Derivatives 2015
conference in Amsterdam, and workshop discussants at the University of Glasgow for helpful discussions and
comments.
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evidence that the dynamic asymmetric copula model provides the most accurate

forecasts, indicating the importance of incorporating the dynamic and asymmet-

ric dependence structure in risk management.
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2.1 Introduction

The finance and econometrics literature provides a wealth of evidence that the conditional

correlation or dependence structure between assets varies through time (see Jondeau and

Rockinger, 2006; Dias and Embrechts, 2010; Longin and Solnik, 1995; Giacomini et al.,

2009, etc). Moreover, asset returns also exhibit greater correlation, or more generally, greater

dependence during market downturns than market upturns. One feature of the recent finan-

cial crisis is the extent to which assets that had previously behaved mostly independently

suddenly moved together. This phenomenon is usually termed asymmetric dependence, see

for instance Longin and Solnik (2001), Ang and Bekaert (2002), Ang and Chen (2002),

Poon et al. (2004), Patton (2006), Okimoto (2008) and Christoffersen and Langlois (2013).

The presence of asymmetric correlations or dependence is empirically important, as it can

cause serious problems in hedging effectiveness and portfolio diversification (see Hong et

al., 2007). In the foreign exchange markets, Patton (2006) suggests that this asymmetry is

possibly caused by the asymmetric responses of central banks to exchange rate movements.

In the equity markets, although there have been many studies of asymmetric dependence,

there is no consensus on the underlying economic cause. One possible cause is that risk-

averse investors treat downside losses and upside gains distinctively, which is consistent

with “Prospect Theory” (see Kahneman and Tversky, 1979).

Clearly, the key to portfolio risk management is therefore to recognize how quickly and

dramatically the dependence structure changes. An increasingly popular method for con-

structing high dimensional dependence is based on copulas. Copulas are functions that con-

nect multivariate distributions to their one-dimensional margins (Sklar, 1959). The copula

approach is particularly useful in portfolio risk measurement for the following reasons. First,

copulas can describe the dependence between assets under extreme circumstances, as they

use a quantile scale. Second, copulas can be utilized to build a flexible bottom-up approach

that can combine a variety of marginal models with a variety of possible dependence specifi-

cations (McNeil et al., 2005). Ideally, an appropriate copula for financial modeling should be

capable of accommodating both positive and negative dependence, capturing both symmet-

ric and asymmetric dependence, and allowing for possible tail dependence. The generalized

hyperbolic skewed t copula (hereafter GHST copula) of Demarta and McNeil (2005) can be
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viewed as a flexible extension that contains all these desirable properties.

Further, the time-variation of dependence motivates the consideration of dynamic copula

models which allow the correlation parameter to change dynamically. One such model is

proposed by Patton (2006) who extended Sklar’s theorem for conditional distributions and

proposed an observation driven conditional copula model. This model defined the time-

varying dependence parameter of a copula as a parametric function of transformations of the

lagged data and an autoregressive term. Another example is the dynamic conditional correla-

tion (DCC) model proposed by Engle (2002). Christoffersen et al. (2012) and Christoffersen

and Langlois (2013) develop a dynamic asymmetric copula (DAC) model based on the DCC

model to capture long-run and short-run dependence, multivariate nonnormality, and depen-

dence asymmetries.

Creal et al. (2013) propose a class of Generalized Autoregressive Score (GAS) mod-

els, which use the scaled score of a likelihood function to update the parameters over time.

The GAS model is a consistent and unified framework, which encompasses many successful

econometric models including the GARCH, the autoregressive conditional duration, the au-

toregressive conditional intensity, and Poisson count models with time-varying mean. They

illustrate the GAS framework by introducing a new model specification for a dynamic cop-

ula.1 Based on simulation results and empirical evidence, they point out that the driving

mechanism in Patton (2006) only captures some of the changes in the dependence coeffi-

cients. Specifically, it has shortcomings in tracking the upper and lower tail dependence dy-

namics simultaneously, since the constant mechanism applies to both types of dependence.

Conversely, the GAS specification has better performance in capturing different types of

dynamics. Therefore, the GAS model is becoming popular in both economics and finance

applications (see Creal et al., 2014; Lucas et al., 2014; Oh and Patton, 2013, among many

others). Thus, our study adopts it as the driving mechanism to update copula parameters.

Recently, Christoffersen and Langlois (2013) study how the extreme dependence struc-

ture is related to the Fama-French factors and address its role in broad areas of finance,

such as asset pricing, portfolio analysis, and risk management. They also emphasize the im-

portance of the copula modeling of the extreme dependence structure. Chung et al. (2006)

1Harvey (2013) proposes a similar approach for modeling time-varying parameters, which he calls a “dy-
namic conditional score (DCS)” model
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argue that the Fama-French factors are closely related to higher-order comoments such as

coskewness and cokurtosis.2 They suggest the use of Fama-French factors as good prox-

ies for higher-order comoments on the grounds that the latter are, in practice, difficult to

accurately estimate. These interesting studies have initiated research investigating the de-

pendence structure between portfolios sorted by higher-order comoments. Several studies

show that tail dependence between portfolios has a close relationship with, not only beta, but

also coskewness. For example, Garcia and Tsafack (2011), in their international bond and

equity market portfolio analysis, show that a strong dependence in lower returns creates a

large negative coskewness. Chabi-Yo et al. (2014) also show that a strong lower tail depen-

dence creates a large negative coskewness. In addition they show that beta is monotonically

increasing with respect to the lower tail dependence.

In line with the asset pricing literature cited above, we recognize that the Fama-French

factors are closely related to higher-order comoments. Moving beyond the asset pricing lit-

erature, we argue that it is important to investigate how higher-order comoments are related

to the dependence structure of equity portfolios. The latter would be a key input when in-

vestors manage the market risk from portfolios constructed using the Fama-French factors or

from higher-order comoments. Hence, we use equity portfolios sorted on beta and higher-

order comoments. We empirically investigate if the dynamic asymmetric copula, combining

the GHST copula and GAS dynamics, significantly improves the modeling and forecasting

of the market risk of the equity portfolios. We consider two popular market risk measures,

Value-at-Risk (hereafter VaR) and Expected Shortfall (hereafter ES), both of which are very

sensitive to the dynamics and extreme dependence structure of asset returns.

Our study makes three contributions. First, we provide a comprehensive study of the

dynamic evolution of dependence in equity markets. We find striking evidence that the de-

pendence structures between characteristic-sorted portfolios, such as the high beta portfolio

and the low beta portfolio, significantly changed after the start of the global financial crisis

of 2007-2009. Second, we provide new empirical evidence of asymmetric dependence in

the US and UK equity markets. In general, we show that the coefficients of lower tail de-

pendence (LTD) are greater than the coefficients of upper tail dependence (UTD) and that

2The importance of higher-order comoments have been demonstrated in many asset pricing literature (see
Bakshi et al., 2003; Ang et al., 2006; Conrad et al., 2013; Dittmar, 2002; Guidolin and Timmermann, 2008;
Harvey and Siddique, 2000).
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this asymmetry is statistically significant. Third, while estimation of portfolio VaR and ES

has been widely studied in the literature, there have been relatively few studies examining

portfolio VaR and ES forecasting, especially forecasting through asymmetric copula. Using

the characteristic-sorted portfolios, we evaluate the statistical significance of incorporating

asymmetric and dynamic dependence into VaR and ES forecasts, and show ignorance of de-

pendence asymmetry and dynamics is costly in risk management. The backtesting results

provide solid evidence that the dynamic asymmetric copula model can consistently provide

better VaR and ES forecasts than alternative benchmark models, especially at the 99% level.

And we also find that semiparametric dynamic asymmetric copula models perform better

than full parametric dynamic copula models.

The remainder of this paper is organized as follows. In Section 2.2, we detail the methods

we employ for portfolio sorting, and we provide an overview of copula theory and computa-

tion methods for tail dependence coefficients. Then, we present the dynamic copula model

and its estimation methodology. The data used in the paper, summary statistics and uni-

variate model estimations are in Section 2.3. In Section 2.4, we focus on testing whether

the dependence structures between characteristic-sorted portfolios are statistically dynamic

and asymmetric, especially during the global financial crisis of 2007-2009 and the Euro

Sovereign Debt crisis of 2010-2011, and then discuss the possible reasons for different kinds

of dependence. In Section 2.5, we predict portfolio VaR and ES using dynamic copulas and

benchmark models and report the comparison results of backtesting. Finally, conclusions

are given in Section 2.6. All the tables and figures used in this paper are presented in the

Appendix.

2.2 Model Specification

In this section, we detail the models and portfolio construction that we use in this paper.

2.2.1 Portfolio Construction

The return on an asset is defined as the first difference of the log price, rt = logPt− logPt−1.

We construct portfolios sorted on beta, coskewness and cokurtosis separately. Following the
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definition in Bakshi et al. (2003) and Conrad et al. (2013), the market beta, coskewness and

cokurtosis are defined as:

BETAi,t =
E [(ri,t−E [ri,t ]) (rm,t−E [rm,t ])]

Var (rm,t)
, (2.1)

COSKi,t =
E
[
(ri,t−E [ri,t ]) (rm,t−E [rm,t ])

2
]

√
Var (ri,t)Var (rm,t)

, (2.2)

COKTi,t =
E
[
(ri,t−E [ri,t ]) (rmt−E [rm,t ])

3
]

Var (ri,t)Var (rm,t)
. (2.3)

All stocks are sorted on the three characteristics above and divided into five groups based on

the 20th, 40th, 60th and 80th percentiles. We estimate beta, coskewness and cokurtosis each

year using all the daily data within this year. Then, we form annually rebalanced portfolios,

value weighted based on the capitalization of each stock.3 We denote by BETA1 (COSK1,

COKT1) the portfolio formed by stocks with the highest beta (respectively, coskewness,

cokurtosis), and BETA5 (COSK5, COKT5) denotes the portfolio formed by stocks with the

lowest beta (coskewness, cokurtosis).

We then take a long position in the stocks falling in the highest beta (coskewness, cokur-

tosis) quintile and a short position in the stocks falling in the lowest beta (coskewness, cokur-

tosis) quintile to construct a high-minus-low (HML) portfolio. It is not our intention to gain

high excess returns from this trading strategy. We simply generate a portfolio by combining

two extreme characteristics (highest and lowest) using a popular HML strategy. We expect

that these two extreme characteristics could create a portfolio with a strong extreme depen-

dence structure. We define the HML portfolio return to be

rhml,t = rh,t− rl,t (2.4)

where rh,t and rl,t denote returns from the highest beta (coskewness, cokurtosis) and the

lowest beta (coskewness, cokurtosis), respectively.

3We compute the market capitalization of each company (stock price multiplied by the number of shares
outstanding) and then use it to assign weights.
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2.2.2 Modeling the Marginal Density

We allow each series (rh,t and rl,t) to have time-varying conditional mean (µi,t) and variance

(σ2
i,t), and we also assume that the standardized returns zi,t = (ri,t−µi,t)/σi,t are identically

distributed. We fit an AR model to the conditional mean

ri,t = ci +
p

∑
k=1

φi,kri,t−k + εi,t , i = h, l, , where εi,t = σi,tzi,t (2.5)

and an asymmetric GARCH model, namely GJR-GARCH(1,1,1) (see Glosten et al., 1993),

to the conditional variance

σ
2
i,t = ωi +αiε

2
i,t−1 +βiσ

2
i,t−1 + γiε

2
i,t−1Ii,t−1 (2.6)

where Ii,t−1 = 1 if εi,t−1 < 0, and Ii,t−1 = 0 if εi,t−1 ≥ 0.

Let zi,t be a random variable with a continuous distribution F . For the parametric model,

we assume that zi,t follows the skewed Student’s t distribution of Hansen (1994):

zi,t ∼ Fskew−t,i (ηi,λi) , ui,t = Fskew−t,i (zi,t ;ηi,λi) (2.7)

where Fskew−t,i denotes the cumulative distribution function, ηi denotes the degrees of free-

dom, λi the skewness parameter, and ui,t the probability integral transformation. Hence, we

can easily compute the probability given the estimates of parameters; µ̂i,t , σ̂i,t , η̂i and λ̂i. For

the nonparametric model, we use the empirical distribution function to obtain the estimate of

Fi:

F̂i (z)≡
1

T +1

T

∑
t=1

1{ẑi,t ≤ z} , ûi,t = F̂i (ẑi,t) . (2.8)

We estimate all parameters in (2.6) – (2.7) using the maximum likelihood estimation. Then

we generate each marginal density parametrically or nonparametrically for the purpose of

copula construction.
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2.2.3 Copulas

In this section, we provide a brief introduction to copulas. The Sklar (1959) theorem allows

us to decompose a conditional joint distribution into marginal distributions and a copula. It

allows considerable flexibility in modeling the dependence structure of multivariate data. Let

z = (z1, . . . ,zd)
′ , d ≥ 2 be a d-dimensional random vector with joint distribution function

F(z1, . . . ,zd) and marginal distribution functions Fi (zi), i = 1, ...,d. According to Sklar’s

theorem, there exist a d-dimensional copula C [0,1]d → [0,1] such that

F(z1, . . . ,zd) =C (F1 (z1) ,F2 (z2) , . . . ,Fd (zd)) , (2.9)

and the copula C (u1, . . . ,ud), ui ∈ (0,1) is unique if the marginal distributions are continuous.

Let F−1
i denote the generalized inverse distribution function of Fi, then F−1

i (ui) = zi. The

copula C (u1, ...,ud) of a multivariate distribution F(z1, . . . ,zd) with marginals Fi (zi) is given

by

C (u1, ...,ud) = F
(
F−1

1 (u1) ,F−1
2 (u2) , . . . ,F−1

d (ud)
)

(2.10)

If Fi has density fi, the copula density c is given by

c(u1, . . . ,ud) =
f
(
F−1

1 (u1) ,F−1
2 (u1) , . . . ,F−1

d (ud)
)

∏
d
i=1 fi

(
F−1

i (ui)
) =

∂ nC (u1, . . . ,ud)

∂u1 · · ·∂ud
(2.11)

Sklar’s theorem implies that for multivariate distribution functions, the univariate marginals

and the dependence structure can be separated. In our study, we only consider the case of a

bivariate copula.

2.2.4 Computation of Asymmetric Dependence

A primary goal of our paper is to investigate how the characteristic-sorted portfolio returns

covary and whether their dependence structures are asymmetric. Consequently, we consider

three different dependence structures: The threshold correlation; the quantile dependence;

and the tail dependence.

Following Longin and Solnik (2001) and Ang and Chen (2002), the threshold correlation
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for probability level p is given by

ρ
− =Corr

(
rh,t ,rl,t |rh,t ≤ rh (p) and rl,t ≤ rl (p)

)
if p≤ 0.5 (2.12)

ρ
+ =Corr

(
rh,t ,rl,t |rh,t > rh (p) and rl,t > rl (p)

)
if p > 0.5 (2.13)

where r (p) denotes the corresponding empirical percentile for asset returns rh,t and rl,t . In

words, we compute the correlation between two assets conditional on both of them being less

(respectively, greater) than their pth percentile value when p ≤ 0.5 (respectively, p > 0.5).

To examine whether this asymmetry is statistically significant, we consider a model-free test

proposed by Hong et al. (2007). If the null hypothesis of ρ+ = ρ− is rejected, then there

exists a linear asymmetric correlation between rh,t and rl,t .

The quantile dependence provides a more precise measure of dependence structure than

the threshold correlation, as it contains more detailed information. In addition, from the risk

management perspective, tails are more important than the center. Following Patton (2012),

the quantile dependence can be defined as

λ
q =

P
{

uh,t ≤ q|ul,t ≤ q
}
= C(q,q)

q if 0 < q≤ 0.5

P
{

uh,t > q|ul,t > q
}
= 1−2q+C(q,q)

1−q if 0.5 < q≤ 1
(2.14)

and nonparametrically estimated by

λ̂
q =


1

T q ∑
T
t=1 1

{
ûh,t ≤ q, ûl,t ≤ q

}
if 0 < q≤ 0.5

1
T (1−q) ∑

T
t=1 1

{
ûh,t > q, ûl,t > q

}
if 0.5 < q < 1.

, (2.15)

where C denotes the corresponding copula function.

The tail dependence coefficient (TDC) is a measure of the degree of dependence in the

tail of a bivariate distribution (see Frahm et al., 2005; Joe et al., 2010; McNeil et al., 2005,

among others). Let zh and zl be random variables with continuous distribution functions Fh
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and Fl . Then the coefficients of upper and lower tail dependence of zh and zl are

λ
L = lim

q→0+

P
{

zh ≤ F−1
h (q) ,zl ≤ F−1

l (q)
}

P
{

zl ≤ F−1
l (q)

} = lim
q→0+

C (q,q)
q

(2.16)

λ
U = lim

q→1−

P
{

zh > F−1
h (q) ,zl > F−1

l (q)
}

P
{

zl > F−1
l (q)

} = lim
q→1−

1−2q+C (q,q)
1−q

(2.17)

The coefficients can be easily calculated when the copula C has a closed form. The copula

C has upper tail dependence if λU ∈ (0,1] and no upper tail dependence if λU = 0. A

similar conclusion holds for the lower tail dependence. If the copulas are symmetric, then

λ L = λU , otherwise, λ L 6= λU (see Joe, 1997). McNeil et al. (2005) state that the copula of

the bivariate t distribution is asymptotically dependent in both the upper and lower tail. The

rotated Gumbel copula is an asymmetric Archimedean copula, exhibiting greater dependence

in the negative tail than in the positive. Both of them allow heavier negative tail dependence

than the Gaussian copula and are widely used in the finance literature. We use both the

Student’s t copula and the rotated Gumbel copula to estimate the tail dependence coefficient

between portfolios.

2.2.5 Generalized Hyperbolic Skewed t Copulas

In this section, we provide a brief introduction to the generalized hyperbolic (GH) skewed t

distribution which we employ to capture asymmetric extreme dependence structure between

equity portfolios in our study. It belongs to the class of multivariate normal variance mixtures

and has the stochastic representation

X = µ + γW +
√

WZ (2.18)

for a d-dimensional parameter vector γ . Further, W is a scalar valued random variable fol-

lowing an inverse gamma distribution W ∼ IG(ν/2,ν/2) and Z is a d- dimensional random

vector following a normal distribution Z ∼ N (0,Σ) and is independent of W (see Demarta

and McNeil, 2005).
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The density function of multivariate GH skewed t distribution is given by

fskt (z;γ,ν ,Σ) =
2

2−(ν+d)
2 Kν+d

2

(√
(ν + z∗′Σ−1z∗)γ ′Σ−1γ

)
ez∗′Σ−1γ

Γ
(

ν

2

)
(πν)

d
2 |Σ|

1
2 (ν + z∗′Σ−1z∗)

−ν+d
2
(
1+ 1

ν
z∗′Σ−1z∗

)−ν+d
2

(2.19)

where Kλ , ν and γ denote the modified Bessel function of the third kind, the degree of

freedom and skewed parameter vector, respectively. The density of multivariate GH skewed

t converges to the conventional symmetric t density when γ tends to 0. For the parametric

case, we define the shocks z∗i,t = F−1
skt,i (ui,t) = F−1

skt,i

(
Fskew−t,i (zi,t)

)
where F−1

skt,i (ui,t) denotes

the inverse cumulative distribution function of the univariate GH skewed t distribution and it

is not known in closed form but can be well approximated via simulation. Fskew−t,i denotes

the cumulative distribution function of skewed t distribution in Hansen (1994). Note that we

use z∗i,t not the standardized return zi,t . For the nonparametric case, we use the EDF to obtain

the estimate of ui,t . A more detailed discussion can be found in Christoffersen et al. (2012).

The probability density function of the GHST copula defined from above multivariate

GH skewed t density of Equation (2.19) is given by

cskt (z;γ,ν ,Σ) =

2
(ν−2)(d−1)

2 Kν+d
2

(√(
ν + z∗′Σ−1

t z∗
)

γ ′Σ−1
t γ

)
ez∗′Σ−1

t γ

Γ
(

ν

2

)
|Σ|

1
2
(
ν + z∗′Σ−1

t z∗
)−ν+d

2
(
1+ 1

ν
z∗′Σ−1

t z∗
)−ν+d

2

×
d

∏
i=1

(√(
ν +(z∗i )2

)
γ2

i

)− ν+1
2 (

1+ 1
ν
(z∗i )

2) ν+1
2

Kν+1
2

(√(
ν +(z∗i )2

)
γ2

i

)
ez∗i γi

(2.20)

where Σt is the time-varying covariance matrix. Specifically, Σt = DtRtDt , where Dt is an

identity matrix in copula modeling and Rt is the time-varying correlation matrix. Note that

Christoffersen et al. (2012) applied the GHST copula by constraining all the margins to have

the same asymmetry parameter. Different from their model, our model consider a more

generalized case by allowing the copula to have the different asymmetry parameters across

margins. Although our model can be used for high-dimensional copula modeling, in this

paper, only the bivariate case is considered as modeling the dependence and market risk of

long-short portfolio is our main task. Figure 2.6 shows the probability contours for bivariate

GHST copula with different asymmetric parameters.
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2.2.6 Generalized Autoregressive Score (GAS) Model

We estimate the dynamic copula model based on the Generalized Autoregressive Score

(GAS) model of Creal et al. (2013). We assume that the correlation parameter δt
4 is dy-

namic and is updated as function of its own lagged value. To make sure that it always lies

in a pre-determined range (e.g. δt ∈ (−1, ,1)), the GAS model utilizes a strictly increasing

transformation. Following Patton (2012), the transformed correlation parameter is denoted

by gt :

gt = h(δt)⇔ δt = h−1 (gt) , (2.21)

where δt = (1− e−gt )/(1+ e−gt ). Further, the updated transformed parameter gt+1 is a

function of a constant ω̄ , the lagged transformed parameter gt , and the standardized score of

the copula log-likelihood Q−1/2
t st :

gt+1 = ω̄ +ηQ−1/2
t st +ϕgt , (2.22)

where

st ≡
∂ logc

(
uh,t ,ul,t ;δt

)
∂δt

and Qt ≡ Et−1
[
sts′t
]
.

Since the GAS model is an observation driven model, we estimate the parameters using the

maximum likelihood estimation

δ̂t = argmax
δt

n

∑
t=1

logc
(
uh,t ,ul,t ;δt

)
. (2.23)

The dynamic copulas are parametrically estimated using maximum likelihood estimation.

When the marginal distributions are estimated using the skewed t distribution, the resulting

joint distribution is fully parametric. When the marginal distribution is estimated by the

empirical distribution function, then the resulting joint distribution is semiparametric. More

details can be found in the appendix.

4In the baivariate case, the copula correlation is a scalar and it can be obtained from the correlation matrix

Rt =

[
1 δt
δt 1

]
estimated in Section 2.2.5.
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2.2.7 Value-at-Risk and Expected Shortfall Forecasts

We now turn to VaR and ES forecasts of the HML portfolio defined in Equation (2.4). The

ex ante VaR and ES of the HML portfolio at time t and given nominal probability α ∈ (0,1),

are defined as:

P
[
rhml,t ≤VaRhml,t (α)

]
= 1−α, (2.24)

EShml,t (α) = E
[
rhml,t | rhml,t <VaRhml,t (α)

]
, (2.25)

In our study, α is assumed to be either 0.95 or 0.99, and we report results focusing on 0.99

which is the most widely used value for market risk management. Once the dynamic copula

parameters have been estimated, Monte Carlo simulation is used to generate 5000 values

of r(s)h,t and r(s)l,t and, hence, of r(s)hml,t . From the empirical distribution of r(s)hml,t , the desired

quantile VaR and ES are estimated.

2.3 Data and Marginal Distribution Modeling

2.3.1 Description of Data

Stock prices are obtained from Datastream. Daily returns of the 500 stocks listed in the

S&P 500 and the 100 stocks listed in FTSE 100 are used to construct portfolios. Our data,

spanning the period of the global financial crisis of 2007-2009 and European sovereign debt

crisis of 2010-2011, go from January 4, 2000 to December 31, 2012, resulting in 3,268 daily

observations for each stock in US and 3,283 daily observations for each stock in UK.

Given the one-year estimation period, we estimate beta, coskewness and cokurtosis using

daily data (250 days) for each stock.5 We rank securities by the estimates of beta (coskew-

ness, cokurtosis) and form into five portfolios, highest (1st) – lowest (5th). Then we calculate

daily returns for each portfolio within the estimation period.6 In this way, we construct thirty

5Since we estimate a factor beta on the daily return, we use a short sample period. We also consider
alternative longer estimation periods (3 years and 5 years) and find consistent results with a one year estimation
period.

6We also calculate daily reruns for the next 12-months, which are forward looking portfolio returns, and
find similar forecasting results. Since we are interested in how beta and higher-order comoments are related to
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different portfolios - fifteen for US equities and fifteen for the UK. The fifteen consist of

one for each of the three characteristics (beta, coskewness and cokurtosis), divided into five

portfolios. We annually rebalance all the portfolios and calculate 12-month daily returns.7

The definitions of HML portfolios are presented in Table 2.1.

[ INSERT TABLE 2.1 ABOUT HERE ]

Summary statistics for the high and low portfolio returns are presented in Panel A of

Table 2.2. We find that the portfolio constructed from high beta stocks (i.e. BETA5) tends

to offer relatively lower average returns than the portfolio constructed from low beta stocks

(i.e. BETA1). This anomaly is likely driven by the fact that the US and UK equity markets

have fallen 2.02% and 16.13% from 2000 to 2012. Also, it can be explained by the “betting

against beta” factor and the funding constraint model in Frazzini and Pedersen (2014). The

skewness of the portfolio returns are non-zero while the kurtosis of the portfolio returns

are significantly higher than 3 indicating that the empirical distributions of returns display

heavier tails than a Gaussian distribution. Using the Ljung-Box Q-test, the null hypothesis

of no autocorrelation is rejected at lag 5 and lag 10 for all the portfolios. The ARCH test of

Engle (1982) indicates the significance of ARCH effects in all the series. We also find similar

results for the HML portfolios in Panel B of Table 2.2. Overall, the summary statistics show

the nonnormality, asymmetry, autocorrelation and heteroscedasticity of portfolio returns.

[ INSERT TABLE 2.2 ABOUT HERE ]

Figure 2.1 displays the scatter plots of the high and low portfolio pairs; (BETA1, BETA5),

(COSK1, COSK5) and (COKT1, COKT5). Further it provides threshold correlation coeffi-

cients at the center and at both the upper and lower tails of the empirical distribution. Beta

portfolios have larger correlations at both tails than the correlations at the center in both

stock markets. Coskewness portfolios of the US stock market have smaller correlation at the

center than the correlation at the lower tail while those of the UK stock market have larger

correlations at both tails than the correlation at the center. Cokurtosis portfolios show simi-

lar patterns to coskewness portfolios. The common feature is that the lower tail correlation

the extreme dependence structure, we prefer portfolio returns calculated within the estimation period to forward
looking returns.

7We also consider monthly rebalancing of portfolios and find results consistent with annual rebalancing.
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is larger than the upper tail correlation. This stylized fact is consistent with previous re-

search (see Patton, 2006; Christoffersen and Langlois, 2013; Hong et al., 2007, etc). Overall,

the scatter plots and the threshold correlation coefficients clearly show that the correlations

between the respective high and low portfolios are nonlinear and asymmetric.

[ INSERT FIGURE 2.1 ABOUT HERE ]

Before modeling the joint distribution of portfolio returns, it is necessary to select a suit-

able model for the marginal return distribution, because misspecification of the univariate

model can lead to biased copula parameter estimates. To allow for autocorrelation, het-

eroskedasticity and asymmetry, we use the models introduced in Section 2.2 in Equation

(2.5) to (2.8).

First, we use the Bayesian Information Criterion (BIC) to select the optimal order of the

AR model for the conditional mean up to order 5. Second, to allow for the heteroskedastic-

ity of each series, we consider a group of GARCH models as candidates and find that the

asymmetric GARCH model of Equation (2.6) is preferred to the others based on their likeli-

hood values. Thus, we consider the GJR-GARCH class of up to order (2,2,2) and select the

optimal order by using BIC again. The model parameters are estimated by using maximum-

likelihood estimation (MLE) and the results of AR and GARCH estimations are presented in

Panel A of Table 2.3. For each series, the variance persistence implied by the model is close

to 1. For all the series, the leverage effect parameters γ are significantly positive implying

that a negative return on the series increases volatility more than a positive return with the

same magnitude.

[ INSERT TABLE 2.3 ABOUT HERE ]

The obvious skewness and high kurtosis of returns leads us to consider the skewed Stu-

dent’s t distribution of Hansen (1994) for residual modeling. We report the estimation results

in Table 2.3. To evaluate the goodness-of-fit for the skewed Student’s t distribution, the

Kolmogorov-Smirnov (KS) and Cramer-von Mises (CvM) tests are implemented and the p-

values from these two tests are reported in Table 2.3.8 Our results suggest that the skewed

8The p-values are obtained based on the algorithm suggested in Patton (2012)
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Student’s t distribution is suitable for residual modeling. Thus, in general, the diagnostics

provides evidences that our marginal distribution models are well-specified and therefore, we

can reliably use the combination of AR, GARCH and skewed Student’s t distribution, allied

to copulas to model the dependence structure.

2.4 Dependence: Dynamics and Asymmetry

This section seeks to accomplish two tasks. First, we describe the dynamic evolution of de-

pendence between the high beta (respectively, coskewness, cokurtosis) portfolios and the low

beta (coskewness, cokurtosis) portfolios, and examine whether it is statistically time-varying.

If the variation of dependence between portfolio returns were not to be statistically signif-

icant, then there would be no reason to implement a dynamic model (due to its increased

computational complexity). In addition, we want to test whether the dependence structure

has dramatically changed after the start of the global financial crisis of 2007-2009 and after

the start of the European sovereign debt crisis of 2010-2011. Second, we measure asym-

metric dependence using threshold correlation, copula-based quantile dependence and tail

dependence and we test whether this asymmetry is significant.

2.4.1 Time-varying Dependence

There is considerable evidence that the conditional mean and conditional volatility of finan-

cial time series are time-varying. This, possibly, suggests the reasonable inference that the

conditional dependence structure may also change through time. To visualize this variation,

Figure 2.2 depicts two time series plots of average rolling 250-day rank correlation between

the high and low portfolios in both US market and UK market for each year. The average

rolling rank correlations for all the equity portfolios increase significantly during 2000-2002,

which is probably caused by the early 2000s economic recession that affected the European

Union during 2000 and 2001 and the United States in 2002 and 2003, and the bursting of the

dot com bubble. In general, all the rolling window rank correlations between the high and

low portfolios increase from 2000 to 2012.

[ INSERT FIGURE 2.2 ABOUT HERE ]
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We now consider three tests for time-varying dependence. The first one is a naïve test for

a break in rank correlation at specified points in the sample, see Patton (2006). A noticeable

limitation of this test is that the break point of dependence structure (e.g. a specified date)

must be known a priori. The second test for time-varying dependence allows for a break in

the rank correlation coefficient at some prior unspecified date, see Andrews (1993). The third

test is the ARCH LM test for time-varying volatility, see Engle (1982). The critical values

for the test statistic can be obtained by using a iid bootstrap algorithm, see Patton (2012).

The results of the above tests for time-varying dependence are summarized in Table 2.4.

Suppose there is no a priori date for the timing of a break, we first consider naïve tests for

a break at three chosen points in our sample, at t*/ T ∈{0.15,0.50,0.85}, which corresponds

to the dates 10-Dec-2001, 03-Jul-2006, and 17-Jan-2011. Then we consider another test in

Andrews (1993) for a dependence break of unknown timing. As can be seen from Table

2.4, for almost all the equity portfolios, the p-value is significant at the 5% significance level

showing clear evidence against a constant rank correlation with a one-time break. To detect

whether the dependence structures between the high and low portfolios significantly changed

during the global financial crisis of 2007-2009 and the European sovereign debt crisis of

2010-2011, we use 15-Sep-2008 (the collapse of Lehman Brothers) and 01-Jan-2010 (EU

sovereign debt crisis) as two break points. We find that the dependence between BETA1 and

BETA5 significantly changed around those dates, as all the p-values are fairly small. For

other portfolio pairs, time homogeneity of the dependence structure is rejected by at least

one test.

[ INSERT TABLE 2.4 ABOUT HERE ]

Overall, we find evidence against time homogeneity of the dependence structure between

the standardized residuals of portfolios. This result shows that the standard portfolio diversi-

fication and risk management techniques based on constant correlations (or dependence) are

inadequate, especially during financial crisis. Thus, the heterogeneity of dependence pro-

vides us a strong motivation to introduce a dynamic copula model for financial forecasting.
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2.4.2 Asymmetric Dependence

Standard models fail to take into account a noteworthy feature during financial crisis that

asset returns often become more highly correlated (in magnitude). To test for the presence

of this feature, we use threshold correlations, Equation (2.12) – (2.13). Figure 2.3 shows

the lower and upper threshold correlations for the high portfolio versus low portfolio. The

lower threshold correlations are always greater than the upper threshold correlation indicat-

ing that portfolios are more correlated when both of them perform poorly. From a portfolio

management perspective, this feature is extremely important. For instance, for UK market,

the correlation between BETA1 and BETA5 is relatively low suggesting that diversification

is high, but when both BETA1 and BETA5 have poor performances, their correlation can

go up to more than 0.61. Therefore, the bivariate normal distribution cannot well describe

the “true” dependence for the following reasons: First, the normal distribution is symmetric.

Second, in the bivariate normal distribution, the threshold correlation approaches 0 when the

threshold is asymptotically close to 0 or 1. To find out whether this asymmetry is statisti-

cally significant, we perform the symmetry tests of Hong et al. (2007). Table 2.5 reports the

test results and shows that, as measured by threshold correlation, half of the portfolios are

significantly asymmetric at the 10% level: HML(Beta,US/UK) and HML(Cokt,UK).

[ INSERT FIGURE 2.3 AND TABLE 2.5 ABOUT HERE ]

Although threshold correlation offers some insights, it is still based on (linear) correla-

tion and, therefore, does not take into account nonlinear information. To capture nonlinear

dependence, we consider copula-based quantile dependence and tail dependence. Compared

with (linear) correlation, the key advantage of copulas is that they are a “pure measure” of

dependence, which cannot be affected by the marginal distributions (see Nelsen, 2006).

Quantile dependence measures the probability of two variables both lying above or be-

low a given quantile (e.g. upper or lower tail) of their univariate distributions. Examining

different quantiles allows us to focus on different aspects of the relationship. In Figure 2.4,

we present the quantile dependence between the high beta (coskewness, cokurtosis) portfo-

lios and the low beta (coskewness, cokurtosis) portfolios as well as the difference in upper

and lower quantile dependence. For every portfolio pair, Figure 2.4 shows the estimated
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quantile dependence plot, for q ∈ [0.025,0.975], along with 90% (pointwise) i.i.d. bootstrap

confidence intervals. As expected, the confidence intervals are narrower in the middle of

the distribution (values of q close to 1/2) and wider near the tails (values of q near 0 or 1).

Figure 2.4 also shows that observations in the lower tail are slightly more dependent than ob-

servations in the upper tail, with the difference between corresponding quantile dependence

probabilities being as high as 0.3. The confidence intervals show that these differences are

borderline significant at the 10% significance level, with the upper bound of the confidence

interval on the difference lying around zero for most values of q. From the perspective of risk

management, the dynamics implied by our empirical results may be of particular importance

in the lower tails, because of its relevance for the portfolio VaR and ES.

[ INSERT FIGURE 2.4, 2.5 AND TABLE 2.6 ABOUT HERE ]

Next, we consider the tail dependence, which is a copula-based measure of dependence

between extreme events. We employ the rotated Gumbel copula and the Student’s t cop-

ula to estimate the tail dependence coefficients. All the coefficients are estimated by both

parametric and semiparametric copula methods (detailed in the appendix). To avoid possible

model misspecification, we use the nonparametric estimation method proposed by Frahm et

al. (2005) as a robustness check and the results are consistent with results generated by the

parametric and semiparametric methods.

Table 2.6 reports the coefficients of lower tail dependence (LTD) and upper tail depen-

dence (UTD) and the difference between them. The coefficients are estimated using McNeil

et al. (2005). For example, the lower tail coefficient estimated by rotated Gumbel cop-

ula (respectively, Student’s t copula) for BETA1 and BETA5 in the US equity market is

0.256 (respectively, 0.171) and the upper tail coefficient estimated by rotated Gumbel copula

(Student’s t copula) is 0.099 (respectively, 0.018). Then we find the significant difference

between the upper and lower tail dependence coefficients. In the UK equity market, we

also find evidence of asymmetric dependence in that all the portfolio pairs exhibit greater

correlation during market downturns than market upturns. This finding about asymmet-

ric dependence between the high beta (coskewness, cokurtosis) portfolio and the low beta

(coskewness, cokurtosis) portfolios is new. It is possibly associated with the fact that in-

vestors have more uncertainty about the economy, and therefore pessimism and panic spread
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from one place to another more quickly during market downturns. Another possible expla-

nation is the impact of liquidity risk. Some “uncorrelated” liquid assets suddenly become

illiquid during market downturns, and, therefore, even a small trading volume can lead to

huge co-movements.

The semiparametric tail dependence approach (that is nonparametric approach for the

marginal distributions and and parametric for the copula estimation) and the nonparametric

tail dependence approach of Frahm et al. (2005) are used as robustness checks and both of

them provide similar results to the parametric approach.

We present the dynamic evolution of tail dependence coefficient (TDC) between the stan-

dardized residuals of the high and low portfolios in Figure 2.5. The dependence between

portfolios, such as BETA1 and BETA5, is quite low in 2003 and has significantly increased

since then. In the US equity market, the lower tail dependence (LTD) is relatively close to

or even lower than the upper tail dependence before the global financial crisis of 2007-2009.

However, the LTD has become greater than UTD following 2007. In the UK market, the

LTD is always greater than the UTD. This phenomenon can be interpreted from behavioural

finance theory that myopic loss aversion investor has a greater sensitivity to losses than to

gains. In general, for US portfolio pairs, the asymmetries (differences between LTD and

UTD) become more significant during the global financial crisis of 2007-2009 but the dif-

ferences are relatively stable for UK portfolio pairs during the full sample period. Thus, we

can reject the null hypothesis of symmetric dependence and conclude that for, most portfolio

pairs, dependence is significantly asymmetric.

2.5 Forecasting Portfolio Risk with Dynamic Asymmetric

Copula

In the previous section, the significance of dynamic dependence and asymmetries has been

verified. In this section, we evaluate the statistical significance of the dynamic asymmetric

copula model by forecasting our portfolio VaR and ES.9

9We use the HML portfolio returns to forecast VaR and ES. This is important for the following reasons:
First, the HML portfolio returns have different characteristics compared to simple long or short return series;
Second, the HML portfolios have recently become increasingly popular in studies of asset pricing; Third,
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We consider 10 copulas including Normal, Student’s t, GHST, Clayton, Rotated Clayton,

Gumbel, Rotated Gumbel, Plackett, Frank and Symmetrized Joe-Clayton,10 as candidates

to model the dependence between BETA1 (COSK1, COKT1, OF1) and BETA5 (COSK5,

COKT5, OF5). All the copula parameters are estimated by maximizing the log-likelihood

function of Equation (2.35) for the parametric case, and Equation (2.38) for the semipara-

metric case. Standard errors are estimated using Chen and Fan (2006). Computing the

log-likelihood of each copula in constant case, we find that the Student’s t copula and the

GHST copula provide the highest likelihoods over the in-sample period in most cases.11 In

addition, we also find that all the log-likelihoods of dynamic copula models are significantly

higher than constant cases.

Figure 2.6 shows the probability contour plots for bivariate normal, Student’s t and GHST

copula with different asymmetric parameters. It is clear that the GHST copula exhibits great

flexibility of modeling asymmetric dependence for both upper and lower tails. Thus, we

employ the t copula and GHST copula to model the dependence and combine with GAS

model to forecast our portfolio VaR and ES. A detailed algorithm for dynamic copula-based

forecasting can be found in Appendix C.

In order to evaluate VaR and ES forecasts, we use a rolling window instead of the full

sample period and the rolling window size is set at 250 (one trading year) for all the data

sets.12 All the models are recursively re-estimated throughout the out-of-sample period and

the correlation coefficients of copulas are forecasted by the GAS model. For the purpose of

comparison, we also consider the most successful univariate model, filtered historical simu-

lation (FHS; Barone-Adesi, et al., 2002),13 and three simulation-based multivariate GARCH

modeling the VaR and ES of the HML portfolios is of interest to practitioners as HML strategies are widely
used in the financial industry.

10The reason that we consider so many copula candidates is because different copula could capture different
dependence structure across assets. The analytical forms of Normal, Student’s t, Clayton, Gumbel, Plackett,
Frank and Symmetrized Joe-Clayton can found in (Patton, 2004). More details about GHST copula can be
found in Demarta and McNeil (2005) and Christoffersen et al. (2012). See Lucas et al. (2014) for a detailed
discussion of GAS dynamics for the correlation matrix of GHST copula.

11For the sake of simplicity, we call the Student’s t copula and the generalized hyperbolic skewed t copula
as t copula and GHST copula, respectively.

12The reason we use a moving window of 250 days instead of other window length or expending window
is because a moving window of 250 days is the standard estimation period by the Basel accord. In practice
the selection of an optimal sample size is a nontrivial issue. As the window size increases, estimation and
forecasting precision generally improves. On the other hand it also raises uncertainty about the latent market
regimes caused by a sequence of rare or extreme shocks hitting the market in which case it would be more
desirable to select the shorter and homogeneous sample rather than longer and heterogeneous ones.

13We also evaluate other univariate models such as Historical Simulation, RiskMetrics, GARCH, GJR-
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models, namely, BEKK-GARCH, CCC-GARCH, DCC-GARCH.

The backtesting evaluates the coverage ability and the statistical accuracy of the VaR

models. The coverage ability is evaluated by the empirical coverage probability (hereafter

ECP) and Basel Penalty Zone (hereafter BPZ). The statistical accuracy is evaluated by the

conditional coverage test (hereafter CC test; Christoffersen, 1998) and the dynamic quantile

test (hereafter DQ test; Engle and Manganelli, 2004).

We first define the failure of the VaR model as the event that a realized return rs is not

covered by the predicted VaR. We identify it by the indicator function taking the value unity

in the case of failure:

Is = 1
{

rs < V̂aRs (α|zs−1)
}
, s = 1, . . . ,N, (2.26)

where V̂aRs (α|zs−1) is the VaR forecast based on the information set at s− 1, denoted

by zs−1, with a nominal coverage probability α . Henceforth, we abbreviate the notation

V̂aRs (α|zs−1) to V̂ars (α).

ECP is calculated by the sample average of Is, α̂ = N−1
∑

N
s=1 Is which is a consistent

estimator of the coverage probability. The VaR model for which ECP is closest to its nominal

coverage probability is preferred. BPZ is suggested by Basel Committee on Banking and

Supervision (1996). It describes the strength of the VaR model through the test of failure rate.

It records the number of failures of the 99 percent VaR in the previous 250 business days.

One may expect, on average, 2.5 failures out of the previous 250 VaR forecasts given the

correct forecasting model. The Basel Committee rules that up to four failures are acceptable

for banks and defines the range as a “Green” zone. If the failures are five or more, the banks

fall into a “Yellow” (5–9) or “Red” (10+) zone. The VaR model for which BPZ is in the

“Green” zone is preferred.

Accurate VaR forecasts should satisfy the condition that the conditional expectation of

the failure is the nominal coverage probability:

E [Is|zs−1] = α. (2.27)

GARCH, Extreme Value Theory model, and CAViaR. We find that FHS strongly outperforms others for all
backtestings. Hence, we include only FHS as a univariate model. The results of other univariate models are
available in the Internet Appendix.

63



Christoffersen (1998) shows that it is equivalent to testing if Is|zs−1 follows an i.i.d. Bernoulli

distribution with parameter α:

H0 : Is|zs−1 ∼ i.i.d. Bernoulli(α) . (2.28)

The CC test uses the LR statistic which follows the chi-squared distribution with two degrees-

of-freedom under the null hypothesis, Equation (2.28). The DQ test is a general extension

of the CC test allowing for more time-dependent information of {Is}N
s=1. The out-of-sample

DQ test is given by

DQ =

(
Ĩ′Z
)
(Z′Z)−1 (Z′Ĩ)

α (1−α)

d∼ χ
2
p+2, (2.29)

where Ĩ=
(
Ĩp+1, Ĩp+2, . . . , ĨN

)′, Ĩs = Is−α , Z=
(
zp+1, . . . ,zN

)′ and zs =
(

1, Ĩs−1, . . . , Ĩs−p,V̂aRs (α)
)′

.

We use the first four lags for our evaluation, i.e., zs =
(

1, Ĩs−1, . . . , Ĩs−4,V̂aRs (α)
)′

.

Backtesting of ES is not a straightforward task because it fails to satisfy elicitability (see

Gneiting, 2011). We consider a backtesting for the ES forecast given the sample of N ES

forecasts, {
ÊS1 (α) , . . . , ÊSN (α)

}
,

where ÊSs (α) is the ES forecast based on the information set at s− 1. We simply evaluate

the ES forecast based on a loss function which enables researchers to rank the models and

specify a utility function reflecting the concern of the risk manager. We define two loss

functions:

Absolute error :=
∣∣∣rs− ÊSs (α)

∣∣∣ Is, Squared error :=
(

rs− ÊSs (α)
)2

Is,

where Is = 1
{

rs < V̂aRs (α)
}

. In order to rank the models, we compute the mean absolute

error (MAE) and the mean squared error (MSE):

MAE =
1
N

N

∑
s=1

∣∣∣rs− ÊSs (α)
∣∣∣ Is, (2.30)

MSE =
1
N

N

∑
s=1

(
rs− ÊSs (α)

)2
Is. (2.31)

This evaluation is in line with the framework proposed by Lopez (1999) for the VaR evalua-

64



tion. The smaller value indicates more accurate forecast.

For the UK portfolios, we estimate the VaR and ES models using 250 business days over

the period 4 Jan. 2000 - 15 Dec. 2000, and compute the one-day-ahead forecast of the 99

percent VaR and ES for 18 Dec. 2000. We conduct rolling forecast by moving forward a day

at a time and end with the forecast for 31 Dec. 2012. This generates 3,033 out-of-sample

daily forecasts. Next we repeat the same process for the US portfolios. It starts with the

forecast for 18 Dec. 2000 and ends with the forecast for 31 Dec. 2012. This generates 3,018

out-of-sample daily forecasts.

2.5.1 Backtesting of Value-at-Risk

We evaluate the coverage ability by ECP and BPZ as follows: We calculate ECP for each

portfolio and then report bias and Root Mean Square Error (RMSE). Bias is the average

deviation of ECP from the nominal coverage probability (1% in our case). The smaller the

bias is, the more accurate the VaR forecast is. RMSE is the average of the squared deviation.

It shows the dispersion of ECP from the nominal coverage probability. It makes up for the

defect of bias due to the offset of positive and negative deviations. Financial regulators would

prefer a VaR model with, simultaneously, a small bias and small RMSE. BPZ describes the

coverage ability of the VaR model through the test of failure rate. It counts the number of

failure over the previous 250 business days. Figure 2.7 presents the realized returns and 99%

VaR estimated by the dynamic GHST copulas.

[ INSERT FIGURE 2.7 ABOUT HERE ]

2.5.1.1 Empirical Coverage Probability

Table 2.7 presents the ECPs of the VaR models. First, the bias of the parametric dynamic

copula models is -0.03% and the bias of the semiparametric dynamic copula models is -

0.02% which are much smaller than those of the other models. It shows that the ECPs of

the dynamic copula models are very close to the nominal one. In addition, the RMSEs

of dynamic GHST copula are significantly smaller than the others. The bias of the static

GHST copula is 0.05% which is greater than those (magnitude) of the dynamic GHST copula
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models, and the RMSE is more than two times the RMSE of the dynamic t copula. This is

clear evidence of the superiority of the dynamic copula model. Although, the biases of

dynamic t copulas and their skewed version are similar, the RMSEs of dynamic GHST copula

are clearly smaller than those of dynamic t copula, implying the importance of incorporating

asymmetric dependence in risk forecasting. Second, FHS shows a large positive bias (0.31%)

which implies the under-forecasts of VaR. Its RMSE is also large - twice greater than the

dynamic t and GHST copula models. Finally, the bias of the multivariate GARCH models

range from 0.26% to 0.36%. These are greater than for the dynamic copula models. Their

RMSEs are also much greater than those of the dynamic copula models.

[ INSERT TABLE 2.7 ABOUT HERE ]

2.5.1.2 Basel Penalty Zone

Table 2.8 presents the BPZ of the VaR models. We find that most of the models achieve

12 Green zone using the framework of Basel committee. The static t copula, static GHST

copula and BEKK GARCH achieve 11 Green zone and 1 Yellow zone. This result is not

surprising as the “traffic lights” backtest is not as rigorous as other statistical tests such as

CC test and DQ test.

[ INSERT TABLE 2.8 ABOUT HERE ]

Next, we evaluate the statistical accuracy by the CC test and the DQ tests as follows: We

calculate both statistics for each portfolio and test them at the 5% significance level. Then

we report the number of rejected portfolios.

2.5.1.3 Conditional Coverage Test

Table 2.9 reports the CC test results. First, the dynamic t copula models are rejected for

2 (parametric) and 1 (semiparametric) portfolios whilst the static t copula is rejected for 5

portfolios. Also, the dynamic GHST copula (parmaetric and semiparametric) models are

rejected for 2 portfolios whilst the static GHST copula is rejected for 5 portfolios. Second,

FHS is rejected for 3 portfolios which is slightly more than the dynamic copula models.
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Third, multivariate GARCH models are rejected for 3 (BEKK; DCC) and 4 (CCC) portfolios

which are slightly more than the dynamic copula models.

[ INSERT TABLE 2.9 ABOUT HERE ]

2.5.1.4 Dynamic Quantile Test

Table 2.10 reports the results of the DQ test. Although the number of rejections increases,

the results are qualitatively consistent with those of the CC test. First, the dynamic t cop-

ula models are rejected for 3 portfolios whilst the static t copula is rejected for 6 portfolios.

Also, the dynamic GHST copula models are rejected for 2 (parametric) and 3 (semiparamet-

ric) portfolios whilst the static GHST copula is rejected for 6 portfolios. Second, FHS is

rejected for 4 portfolios which is slightly more than the dynamic copula models. Finally, the

multivariate GARCH models are more frequently rejected for the DQ test than the dynamic

copula models. BEKK, CCC and DCC are rejected for 4, 8 and 4 portfolios, respectively.

[ INSERT TABLE 2.10 ABOUT HERE ]

2.5.2 Backtesting of Expected Shortfall

Table 2.11 reports the MAE results for ES. Dynamic copula models provide the most accurate

forecasts (lowest MAEs) in 10 out of 12 portfolios. Also, the GHST copula model generates

lower average MAE in general comparing with t copula models, as it takes into account

the asymmetric dependence between portfolios. As a robustness check, the MSE results

reported in Table 2.12 also confirm this conclusion. The dynamic copula models have better

performance than both univariate model and multivariate models in almost all cases. In

general, the semiparametric GHST copula model tends to outperform the parametric copula

models, as it allows for more flexible assumptions regarding the true distribution.

[ INSERT TABLE 2.11 AND 2.12 ABOUT HERE ]

In sum, we have the following implications of the copula model from the backtesting

results. First, the multivariate modeling of the tail dependence is more effective than the
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multivariate modeling of the central dependence (e.g. covariance) for the accurate extreme

event forecast. Further, it outperforms the most successful univariate model, FHS.14 Second,

the modeling of the tail dependence is more important than the modeling of the central de-

pendence for improving the extreme event forecast. Third, a copula must take into account

the dynamic nature of the tail dependence. The dynamic copula models strongly outperform

the static copula models. Forth, the modeling of asymmetric tail dependence can help it to

improve the extreme event forecast. The dynamic GHST copula model tends to outperform

the dynamic t copula models in the extreme event forecast. Finally, to check the robustness

of our results, we also examine the predication performance of all the candidate models at

95% and 97.5% significance level. The consistent results confirm our conclusion and suggest

that data mining are unlikely explanations.15

2.6 Conclusion

This paper empirically addresses three related questions to improve our understanding of

the dependence structure between financial assets with different characteristics under vari-

ous market conditions and shows the statistical significance of dynamic asymmetric copula-

based models from a risk management perspective. Our findings are novel as we go beyond

the earlier copula literature that investigates the dependence across single assets and explore

dependence in a cross-sectional setting by forming characteristics-based portfolios of stocks

in US and UK markets. We sort stocks listed on the S&P 500 and the FTSE 100 into portfo-

lios based on their comoments including beta, coskewness and cokurtosis.

First, we provide empirical evidence that the dependence between characteristic-sorted

portfolios is significantly time-varying. Using empirical data, spanning recent financial

crises, we conclude that the returns of portfolios exhibit time-varying dependence and that

the dependence has increased in recent years. Therefore, it provides strong support and mo-

tivation to apply dynamic copulas in dependence modeling.

Second, we use several tests to verify the presence of asymmetric dependence between

14The multivariate GARCH models could not outperform FHS. Rather, FHS outperforms the multivariate
GARCH models for some cases. It implies that the multivariate modeling of the central dependence cannot
help it to improve the extreme event forecast.

15All the robustness checks are available on request from the authors.
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high beta (coskewness, cokurtosis) portfolios and low beta (coskewness, cokurtosis) portfo-

lios. Our empirical results confirm this asymmetry and show that most portfolio pairs have

stronger dependence during market downturns than during market upturns. Our conclusion

strongly confirms the results in the extant literature, see Patton (2006), Okimoto (2008),

Chollete et al. (2011) and many others. It has wide implications for empirical asset pricing

and asset allocation as well as for risk management.

Third, we apply a dynamic asymmetric copula framework based on Demarta and McNeil

(2005) and Creal et al. (2013) to predict portfolio VaR and ES. This dynamic copula model

has several attractive properties for VaR forecasting. The most attractive one is that it not only

takes into account common features of univariate distributions, such as heteroscedasticity,

skewness, fat tails, but also captures asymmetries and time-varying dependency between time

series. All the models are estimated either parametrically, with the marginal distributions

and the copula specified as belonging to parametric families, or semiparametrically, where

the marginal distributions are estimated nonparametrically. Several widely used univariate

and multivariate VaR and ES models are also considered for comparison. Backtestings are

included in the evaluation process as well. To evaluate the predictions of ES, we consider a

test in line with the one proposed for backtesting VaR in Lopez (1999). Overall, our study

provides new evidence that the dynamic asymmetric copula model can offer more accurate

VaR and ES forecasts.

Taken together, these empirical findings indicate the statistical significance of incorpo-

rating asymmetric and dynamic dependence in risk management. They can help investors

better understand the co-movement between portfolios with different characteristics, and

control portfolio risk more effectively under different market conditions. Moreover, we em-

pirically prove that the dynamic asymmetric copula-based model can provide both the Basel

committee and financial institutions with a more powerful and precise tool to forecast market

risk and adjust minimum capital requirements.
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Appendix

2.A Estimation of Parametric Copula Model

The log-likelihood of a fully parametric copula model for conditional distribution of zt takes

the form:

L(θ) =
T

∏
t=1

f(zt |zt−1;θ) (2.32)

=
T

∏
t=1

[
ct
(
u1,t , ...,ud,t |zt−1;θC

) N

∏
i=1

fi,t (zi,t |zt−1;θi)

]

with log-likelihood

T

∑
t=1

log f(zt |zt−1;θ) =
T

∑
t=1

d

∑
i=1

log fi,t (zi,t |zt−1;θi) (2.33)

+
T

∑
t=1

logct
(
F1,t (z1,t |zt−1;θ1) , . . . ,Fd,t

(
zd,t |zt−1;θd

)
|zt−1;θC

)
where θ denotes the parameter vector for the full model parameters, θi denotes the parame-

ters for the ith marginals, θC denotes the parameters of copula model and zt−1 denotes the

information set at time t−1. Following the two-stage maximum likelihood estimation (also

known as the Inference method for marginals) of Joe and Xu (1996), we first estimate the

parameters of marginal models using maximum likelihood:

θ̂i = argmax
θi

T

∑
t=1

log fi,t (zi,t |zt−1;θi) , i = 1, ...,N (2.34)
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and then using the estimations in the first stage, we calculate Fi,t and estimate the copula

parameters via maximum likelihood:

θ̂C = argmax
θC

T

∑
t=1

logct
(
F1,t (z1,t |zt−1;θ1) , ...,Fd,t

(
zd,t |zt−1;θd

)
|zt−1;θC

)
(2.35)

2.B Estimation of Semiparametric Copula Model

In the semiparametric estimation (also known as Canonical Maximum Likelihood Estima-

tion), the univariate marginals are estimated nonparametrically using the empirical distribu-

tion function and the copula model is again parametrically estimated via maximum likeli-

hood.

F̂i (z)≡
1

T +1

T

∑
t=1

1{ẑi,t ≤ z} (2.36)

ûi,t ≡ F̂i (z)∼Uni f (0,1) , i = 1,2, ...,N (2.37)

θ̂C = argmax
θC

T

∑
t=1

logct (û1,t , ..., ûi,t |zt−1;θC) (2.38)

where zi,t are the standardized residuals of the marginal model and F̂i is different from the

standard empirical CDF by the scalar 1
n+1 (in order to ensure that the transformed data cannot

be on the boundary of the unit interval [0,1]).

2.C Algorithm for VaR and ES Forecasting Using Dynamic

GHST Copula Model

Step 1: Determine the in sample and out-of-sample period for VaR and ES forecasting.

Step 2: We predict conditional mean and conditional volatility from the prespecified time

series model on rolling window and do one step ahead forecasting for each margins;
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Step 3: Estimate the density model to get the probabilities for each forecasted margin.

We consider both parametric (univariate skewed t) and nonparametric (EDF) estimation on

sliding window.

Step 4: Estimate the parameters for full parametric and semiparametric copulas using using

maximum likelihood estimation (see Appendix A and B).

Step 5: Using the estimated parameters in Step 4 as initial values, we estimate time-varying

dependence parameters for asymmetric (GHST) copulas based on the GAS framework, see

Equation (4.9).

Step 6: With the estimated time-varying copula parameters in hand, we can apply Monte

Carlo simulation to generate N samples of shocks and then portfolio returns.

Step 7: Based on the empirical α−quantile of forecasted portfolio return, it is straightfor-

ward to forecast corresponding VaR.

Step 8: Given the N simulated portfolio returns, we can also calculate α−quantile expected

shortfall using Equation (2.25).

Step 9: Use the realized portfolio returns to backtest VaR and ES predications.
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Figure 2.1 The Scatter Plots for Portfolio 1 (High) and Portfolio 5 (Low)

Panel A: US Stock Market Panel B: UK Stock Market

ρL = 0.63, ρC = 0.42, ρU = 0.52 ρL = 0.61, ρC = 0.29, ρU = 0.30
Beta Portfolio Beta Portfolio

ρL = 0.70, ρC = 0.63, ρU = 0.46 ρL = 0.61, ρC = 0.46, ρU = 0.53
Coskewness Portfolio Coskewness Portfolio

ρL = 0.65, ρC = 0.61, ρU = 0.41 ρL = 0.67, ρC = 0.47, ρU = 0.68
Cokurtosis Portfolio Cokurtosis Portfolio

Note: This figure shows the scatter plots for different portfolio pairs, including (BETA1,BETA5),
(COSK1,COSK5), and (COKT 1,COKT 5). Three threshold correlation coefficients are used to demonstrate
the asymmetric dependence between the portfolios:

ρL =Corr
(
r1,r5|r1 ≤ F−1

1 (0.15) ,r5 ≤ F−1
5 (0.15)

)
,

ρU =Corr
(
r1,r5|F−1

1 (0.85)< r1,F−1
5 (0.85)< r5

)
,

ρC =Corr
(
r1,r5|F−1

1 (0.15)< r1 ≤ F−1
1 (0.85) ,F−1

5 (0.15)< r5 ≤ F−1
5 (0.85)

)
,

where ρL, ρU and ρC denote the correlation coefficients at the lower tail, upper tail and center, respectively, and
F−1 denotes the inverse cumulative probability density function.
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Figure 2.2 Time-varying Rank Correlation for High versus Low Portfolios

Panel A: US Stock Market

Panel B: UK Stock Market

Note: This figure depicts two time series plots of average rolling 250-day rank corre-
lation between the high and low portfolios; (BETA1,BETA5), (COSK1,COSK5), and
(COKT 1,COKT 5), for each year.
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Figure 2.3 Threshold Correlation for High versus Low Portfolios

Panel A: US Stock Market Panel B: UK Stock Market
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Note: This figure shows the threshold correlation (or exceedance correlation) between high
beta (coskewness and cokurtosis) portfolio and low beta (coskewness and cokurtosis) portfo-
lio. The threshold correlation measures the linear correlation between two assets when both
assets increases or decreases of more than specified quantiles (see Ang and Bekaert, 2002;
Ang and Chen, 2002; Longin and Solnik, 2001). A left solid line denotes (2.12) and a right
solid line denotes (2.13), respectively. The dash line represents the threshold correlations
implied by the bivariate normal distribution with a linear correlation rho from the data.
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Figure 2.4 Quantile Dependence between the Standardized Residuals of High and Low
Portfolios

Panel A: US Stock Market Panel B: UK Stock Market
Quantile Dependence Quantile Dependence

Beta Portfolio Beta Portfolio

Coskewness Portfolio Coskewness Portfolio

Cokurtosis Portfolio Cokurtosis Portfolio

Note: This figure presents the estimated quantile dependence between the standardized resid-
uals for high beta (coskewness and cokurtosis) portfolio and low beta (coskewness and cokur-
tosis), and the difference in upper and lower quantile dependence. A solid black line denotes
a quantile dependence and dash lines denote 90% bootstrap confidence interval.
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Figure 2.5 Time-varying Asymmetric Tail Dependence

Panel A: US Stock Market Panel B: UK Stock Market

Beta Portfolio Beta Portfolio

Coskewness Portfolio Coskewness Portfolio

Cokurtosis Portfolio Cokurtosis Portfolio

Note: This figure shows the dynamic evolution of average tail dependence coefficient (TDC).
TDC is estimated by rotated Gumbel copula from rolling window with window length of
1,000 observations for all the portfolio pairs and we take the average of TDC for each year.
The TDCs between portfolios generally increase over time, especially during recent financial
crisis. In the US market, lower tail dependence (LTD) is relatively close to or even lower than
the upper tail dependence before the financial crisis. However, the LTD has become greater
than upper tail dependence (UTD) since the outbreak of the US subprime mortgage crisis in
2007. In the UK market, the LTD is always greater than UTD. Note that DIFF denotes the
difference between LTD and UTD (DIFF = LT D−UT D).
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Figure 2.6 Contour Probability Plots for Copulas

Normal Copula, ρ = 0.5 Student’s Copula, ρ = 0.5,ν = 10
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Note: This figure shows contour probability plots for the normal, Student’s t, and GHST cop-
ulas. The probability levels for each contour are held fixed across six panels. The marginal
distributions are assumed to be normally distributed. ρ denotes the correlation coefficient, ν

denotes the degree of freedom, and λ denotes the asymmetric parameters of copulas.
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Figure 2.7 P&L and VaR Estimated by Dynamic Asymmetric Copulas
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Note: This figure shows realized returns of beta, coskewness and cokurtosis portfolios and
corresponding 99% VaR estimated by dynamic asymmetric (GHST) copulas.84



Table 2.1 Definitions of Portfolios

This table describes the 12 HML portfolios that we constructed for the purpose of empirical
analysis in our study. Portfolios are sorted by market beta, coskewness and cokurtosis. All
the portfolios are annually rebalanced.

Portfolio Market Description
HML(Beta,L/S;US) US Stock Market Long (short) BETA5 and short (long) BETA1
HML(Cosk,L/S;US) Long (short) COSK5 and short (long) COSK1
HML(Cokt,L/S;US) Long (short) COKT5 and short (long) COKT1
HML(Beta,L/S;UK) UK Stock Market Long (short) BETA5 and short (long) BETA1
HML(Cosk,L/S;UK) Long (short) COSK5 and short (long) COSK1
HML(Cokt,L/S;UK) Long (short) COKT5 and short (long) COKT1
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Table 2.4 Tests for Time-varying Dependence between High and Low Portfolios

We report the p-value from tests for time-varying rank correlation between the high portfolio
(e.g. BETA5) and the low portfolio (e.g. BETA1). Having no a priori dates to consider for
the timing of a break, we consider naive tests for breaks at three chosen points in sample
period, at t*/ T ∈{0.15, 0.50, 0.85}, which corresponds to the dates 10-Dec-2001, 03-Jul-
2006, 17-Jan-2011. The ‘Any’ column reports the results of test for dependence break of
unknown timing proposed by Andrews (1993). To detect whether the dependence structures
between characteristic-sorted portfolios significantly changed after the US and EU crisis
broke out, we use 15-Sep-2008 (the collapse of Lehman Brothers) and 01-Jan-2010 (EU
sovereign debt crisis) as two break points and the ‘Crisis’ panel reports the results for this
test. The ‘AR’ panel presents the results from the ARCH LM test for time-varying volatility
proposed by Engle (1982). Under the null hypothesis of a constant conditional copula, we
test autocorrelation in a measure of dependence (see Patton, 2012).

Panel A: Break Panel B: Crisis Panel C: AR(p)
Portfolio 0.15 0.5 0.85 Any US EU AR(1) AR(5) AR(10)
US BETA1&5 0.00 0.00 0.04 0.00 0.00 0.07 0.00 0.00 0.00
US COSK1&5 0.00 0.03 0.82 0.04 0.22 0.38 0.00 0.00 0.00
US COKT1&5 0.02 0.30 0.67 0.25 0.92 0.42 0.18 0.75 0.09
UK BETA1&5 0.00 0.00 0.17 0.00 0.04 0.08 0.00 0.12 0.00
UK COSK1&5 0.59 0.03 0.62 0.03 0.07 0.25 0.01 0.00 0.02
UK COKT1&5 0.98 0.24 0.36 0.24 0.24 0.13 0.00 0.00 0.00

Table 2.5 Testing the Significance of the Differences of Exceedence Correlations

This table presents the statistics and p-values from a model-free symmetry test proposed by
Hong et al. (2007) to examine whether the exceedance correlations between low portfolio
(i.e. BETA1) and high portfolio (i.e. BETA5) are asymmetric. We report p-values in [·].
The J statistics for testing the null hypothesis of symmetric correlation, ρ+ (c) = ρ− (c), is
defined as

Jρ = T
(
ρ̂
+− ρ̂

−)′
Ω̂
−1 (

ρ̂
+− ρ̂

−)
where Ω̂ = ∑

T−1
l=1−T k (l/p) γ̂l and k is a kernel function that assigns a suitable weight to each

lag of order l, and p is the smoothing parameter or lag truncation order (see Hong et al.
(2007) for more details).

Panel A: US market Panel B: UK market
BETA1&5 COSK1&5 COKT1&5 BETA1&5 COSK1&5 COKT1&5

48.471 40.246 44.363 56.249 38.655 46.367
[0.06] [0.25] [0.13] [0.01] [0.31] [0.09]
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Table 2.6 Estimating Tail Dependence Using Parametric Copulas

This table reports the coefficients of lower tail dependence (LTD) and upper tail dependence
(UTD) and the difference between them for all the portfolios pairs. The estimations are
calculated by the parametric approach in McNeil et al. (2005). λ G

L and λ G
U denote the lower

and upper tail dependence coefficients estimated by rotated Gumbel copula and λ T
L and λ T

U
denote the lower and upper tail dependence coefficients estimated by t copula. The p-values
of testing λL = λU are computed by a bootstrapping with 500 replications and reported in [·].

LTD UTD Difference Difference
Portfolio λ G

L λ T
L λ G

U λ T
U λ G

L −λ
G
U λ T

L −λ
T
U

US BETA1&5 0.256 0.171 0.099 0.018 0.157 [0.00] 0.153 [0.02]
US COSK1&5 0.315 0.200 0.192 0.153 0.123 [0.01] 0.047 [0.53]
US COKT1&5 0.306 0.153 0.216 0.103 0.090 [0.12] 0.050 [0.13]
UK BETA1&5 0.165 0.104 0.024 0.018 0.141 [0.00] 0.086 [0.00]
UK COSK1&5 0.297 0.203 0.095 0.062 0.202 [0.00] 0.141 [0.01]
UK COKT1&5 0.209 0.137 0.088 0.052 0.121 [0.00] 0.085 [0.21]
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Chapter 3

Time-varying and Asymmetric

Dependence of International Financial

Markets: Robust Risk Management and

Optimal Asset Allocation

Understanding the dependence between equity and currency returns is of par-

ticular importance in international financial markets. However, less attention

has been paid to modeling dependence. This motivates us to study the depen-

dence structure of international financial markets. We find striking evidence of

time-varying and asymmetric dependence between equity and currency returns.

To specify this dynamic and asymmetric dependence, we propose a new time-

varying asymmetric copula (TVAC) model. We empirically demonstrate that the

use of this TVAC model makes risk management more robust and asset alloca-

tion more optimal in international financial markets.

0The early version of this paper is formerly entitled "Time-varying Skewed t Copula Model with Appli-
cations". I am grateful to Carol Alexander and Sjur Westgaard, and other participants in the Young Finance
Scholars’ conference 2014 at the University of Sussex and workshop participants at the University of Glasgow,
for helpful discussions and comments.
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3.1 Introduction

The recent global financial crisis and the European sovereign debt crisis have revealed the

importance of robust risk management and efficient asset allocation in international financial

markets. The failure of traditional risk measures and portfolio optimization frameworks also

motivates us to further investigate the intricate and dynamic relationship between financial

markets and to look for a more appropriate model to accommodate their well-documented

features.

Empirical finance literature has reported substantial evidence of two types of distribu-

tional asymmetries in the joint distribution of asset returns. The first type of asymmetry is

from the univariate distribution of individual assets and its importance in asset pricing has

been well investigated over the last four decades (see Friend and Westerfield, 1980; Harvey

and Siddique, 1999, 2000; Kraus and Litzenberger, 1976). The second type comes from

multivariate distribution and has attracted much attention in recent years. The evidence for

asymmetric dependence between equity returns has been widely reported in empirical fi-

nance literature (see Ang and Bekaert, 2002; Ang and Chen, 2002; Ang et al., 2006; Bae et

al., 2003; Christoffersen et al., 2012; Christoffersen and Langlois, 2013; Longin and Solnik,

2001; Okimoto, 2008; Patton, 2004; Poon et al., 2004). These reports find that the depen-

dence of asset returns is greater in down markets than in up markets. This phenomenon

cannot be ignored in financial modeling for two reasons. First, ignoring asymmetries across

asset returns will cause substantial underestimation of portfolio tail risk. Second, traditional

portfolio diversification based on the standard investment theory will be challenged if all

the components of a portfolio tend to fall when the market slumps. Further, the presence

of asymmetric dependence across assets may also reduce hedging effectiveness to some ex-

tent. Recent studies have revealed that asymmetric dependence is economically important in

asset allocation. For instance, Patton (2004) shows that the presence of asymmetric depen-

dence can greatly impact portfolio decisions and that significant economic gains are earned

when acknowledging this asymmetry. Hong et al. (2007) show the substantial economic

importance of incorporating asymmetries into portfolio selection for disappointment-averse

investors. In addition, some empirical studies have paid attention to modeling the asymmetric

dependence between exchange rates (see Chen and Fan, 2006b; Patton, 2006b).
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Although understanding the co-movement across the equity market and the currency mar-

ket is of particular importance in international investment and risk hedging, less attention has

been paid to the modeling of dependence between these markets (see Ning, 2010). In our

study, we focus on a country equity index and a corresponding foreign exchange rate from 6

developed markets and 6 emerging markets and consider two measures - the threshold cor-

relation in Ang and Chen (2002) and tail dependence coefficients in McNeil et al. (2005)

- to quantify the extent of asymmetric dependence between equity and currency. To verify

the statistical significance of these asymmetries, we consider a model free test proposed by

Hong et al. (2007) and a bootstrap method in Patton (2012a).

It is a stylized fact that the conditional covariance between financial time series appears to

vary over time (see Bollerslev et al., 1988; Harvey, 1989; Ng, 1991, etc.), and this leads us to

consider whether the conditional dependence between asset returns also changes over time.

Empirical finance literature finds that the dependence between asset returns is regime depen-

dent and time-varying (see Bouye and Salmon, 2009; Christoffersen et al., 2012; Christof-

fersen and Langlois, 2013; Giacomini et al., 2009; Patton, 2006b, etc.). Some studies show

that capturing dynamic dependence is of particular importance in investment decisions. For

instance, Christoffersen and Langlois (2013) find strong economic gains from modeling non-

linear and time-varying dependence between four equity market factors using an experiment

of real-time investment. In this paper, we consider two types of test to see whether the de-

pendence structure between equity and currency varies over time. The first one is a naïve

test to detect change-points in rank correlation at some specified dates in the sample period

(see Patton, 2012a). This test is relatively easy to implement but it requires us to have a

priori knowledge of break-point. The second type of tests are those for structural change

of unknown timing for a conditional model proposed by Andrews (1993) and Andrews and

Ploberger (1994).

Christoffersen et al. (2012) propose a new dynamic asymmetric copula model based on

the multivariate skewed t copula of Demarta and McNeil (2005). Their model captures the

evolution of dependence by generalizing the dynamic conditional correlation (DCC) model

of Engle (2002) and Tse and Tsui (2002). To capture the non-normality of univariate asset re-

turn, the multivariate asymmetry and joint dynamics across asset returns simultaneously, we

develop a time-varying asymmetric copula (TVAC) model. First, our univariate model com-
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bines the autoregressive model for the time-varying conditional mean, univariate GARCH-

type models for the dynamics of conditional volatility, and the univariate skewed t distri-

bution of Fernández and Steel (1998) for the skewness of standardized residuals. Second,

our proposed TVAC model is based on the combination of the multivariate skewed t copula

(Bauwens and Laurent, 2005), an observation driven framework for time-varying parameters

by Creal et al. (2013), and a comprehensive work on dynamic copula models for time se-

ries by Patton (2012a). Differently from Christoffersen et al. (2012) and Christoffersen and

Langlois (2013), we use the version of skewed t distribution of Bauwens and Laurent (2005)

and implement the Generalized Autoregressive Score (GAS) model proposed by Creal et

al. (2013) as a driving mechanism to deal with the possible time variability of the model

parameters. The GAS framework has become increasingly popular in recent economic and

financial studies (see Creal et al., 2011, 2014; De Lira et al., 2013; Lucas et al., 2013; Oh

and Patton, 2013, etc.). It is an observation-driven model based on score function and lagged

information (the lagged copula parameter in our application). In this paper, we implement

GAS dynamics as it has several advantages compared with other observation driven mod-

els in the literature. First, it is a unified and consistent method for modelling time-varying

behaviours of parameters in nonlinear models. Second, the likelihood evaluation is computa-

tionally straightforward. Third, instead of considering the first-order moment or higher-order

moments only, it investigates the complete distribution structure.

The copula function provides a flexible and convenient tool for multivariate time series

modelling, and therefore it is particularly important in the econometrics of financial risk

measurement, see McNeil et al. (2005). Value-at-risk (hereafter VaR) has become a univer-

sal standard in risk management, as it can provide some quantitative insight to the riskiness

of asset return. Some important contributions related to the copula-based VaR model include

Glasserman et al. (2002), Embrechts et al. (2003a), Embrechts et al. (2003b), Junker and

May (2005), Rosenberg and Schuermann (2006), Kole et al. (2007), Perignon et al. (2010)

and Hsu et al. (2012), among many others. The VaR pays attention to frequency of extreme

events and can only provide the maximum loss at a specified quantile. Expected shortfall

(hereafter ES, also known as CVaR or TVaR) is defined as the expectation of losses ex-

ceeding VaR and focuses on both the frequency and magnitude of losses in the case of tail

events. In addition ES, as a coherent risk measure, has several desirable properties, including
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translation invariance, positive homogeneity, convexity, subadditivity and monotonicity, see

Artzner et al. (1999). Because of these superior properties, ES has gradually gained pop-

ularity in finance and insurance. McNeil et al. (2005) and Alexander (2009) also provide

comprehensive books for copulas and financial risk management. In this paper, we forecast

the portfolio market risk (both VaR and ES) of hypothetical equity-currency portfolios1 us-

ing a time-varying asymmetric copula (TVAC) approach. This approach is a combination

of AR-GARCH-type models for the dynamics of univariate returns, the univariate skewed t

distribution for standardized residuals, the time-varying skewed t copula model we proposed

for multivariate dependence and a Monte Carlo simulation for VaR and ES forecasts. For

the sake of comparison, three widely used multivariate GARCH models will also be consid-

ered. We also consider three backtests: the Empirical Coverage Probability, the Conditional

Coverage test proposed by Christoffersen (1998) and the Dynamic Quantile test proposed by

Engle and Manganelli (2004), to evaluate the predictive power of the TVAC model for VaR.

There is no widely recognized method to backtest ES since it fails to satisfy elicitability, see

Gneiting (2011). We consider the ES as a point prediction and use the backtest in Cerrato et

al. (2014).

Another important application of copula-based models is portfolio optimization, which

is one of the most crucial topics in financial decision-making. Finding an optimal balance

between return and risk in investment is normally the main concern of investors. The classic

portfolio optimization process is based on the Markowitz-inspired mean-variance framework,

see Markowitz (1952). The goal of the portfolio optimization problem is to seek minimum

risk for any given amount of expected excess return or to seek maximum expected excess re-

turn for any given amount of risk. Clearly, choosing appropriate risk measures is of particular

importance in practice. A number of ways have been proposed to measure risk in portfolio

optimization, such as standard deviation, mean-absolute deviation (MAD), VaR and ES. The

prevalence of standard deviation, MAD and VaR are due to their computational simplicity.

However, standard deviation and MAD are often criticized due to their symmetry, and VaR

is also criticized due to its lack of subadditivity2 and convexity as we discussed above. ES,

which is the most popular coherent risk measure, has been considered as a desirable alter-
1For instance, we form our portfolio by buying the UK national equity index and selling British Sterling.

The reason we do this will be discussed in 3.2.
2Failure to satisfy subadditivity means that the VaR of a diversified portfolio can be larger than the aggregate

of the VaRs of its components.
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native in the literature, (see Agarwal and Naik, 2004; Alexander et al., 2006; Rockafellar

and Uryasev, 2000, 2002, etc.).3 For instance, Agarwal and Naik (2004) compare mean-ES

optimization with the traditional mean-variance framework and demonstrate that the mean-

variance framework substantially underestimates tail losses, especially when portfolios have

low volatility.

Meanwhile, traditional mean-variance method assumes that asset returns are well ap-

proximated by normal distribution. Similarly, previous literature also considers portfolio

optimization with ES constraints under the normality assumption and shows that ES could

be efficiently minimized using linear programming techniques and non-smooth optimiza-

tion algorithms (see Rockafellar and Uryasev, 2000, 2002, etc). However, a large number

of empirical studies show that normal distribution is not a reasonable assumption to make

for modelling multivariate financial time series (see Affleck and McDonald, 1989; Ang and

Chen, 2002; Longin and Solnik, 2001; Patton, 2006a, among many others). A comprehen-

sive review of this topic can be found in Jondeau et al. (2007). The failure of multivariate

normal distribution leads us to look for a more appropriate multivariate model. Copula can

be considered as a straightforward way to extend the optimization problem from the multi-

variate normal hypothesis to a combination of different well specified marginal models and

a variety of possible dependence specifications. Copula has been widely used as an effective

tool to predict multivariate distribution for assets in portfolio decision problems, see Pat-

ton (2004), Hong et al. (2007), Christoffersen et al. (2012) and Christoffersen and Langlois

(2013), among others. Thus, using a copula-based mean-ES method is possibly a superior

way to optimize portfolios.

In order to evaluate the performance of optimization, three measures will be considered.

Sharpe ratio (SR), one of the most popular measures to quantify the balance between reward

and risk, has been widely used as a standard tool to access investment since Sharpe (1966).

One drawback of SR is that it chooses standard deviation to quantify risk, because standard

deviation fails to differentiate good volatility and bad volatility. In addition, SR fails to con-

sider the existence of arbitrage opportunities and it also may be misleading when the return

is not normally distributed. To overcome these undesirable drawbacks, many other perfor-

3Although the literature of portfolio optimization typically uses the term “CVaR” instead of “Expected
Shortfall (ES)”, to keep consistence with the expressions of the Bank for International Settlements (BIS) and
Basel Committee on Banking Supervision (BCBS), we use the term “ES” in this paper.
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mance measures have been developed, for instance, the gain loss ratio (GLR) proposed by

Bernardo and Ledoit (2000). GLR is defined as the ratio of the mean excess return over the

expectation of the negative tail. Cherny and Madan (2009) developed a more general frame-

work termed acceptability indices to overcome the disadvantages of conventional measures.

This is a consistent measure of comparing the performance of different portfolios even when

the returns on the portfolios are not normally distributed.4 Recently, this concept has been

widely used in asset pricing (see Carr et al., 2011; Cherny and Orlov, 2011; Madan, 2010,

etc). For the sake of robustness, all the performance measures above will be considered in

this paper.

The main contributions of this paper are as follows:

First, understanding and quantifying the dependence of international financial markets,

especially tail dependence, is one of the key issues in risk management and portfolio diversi-

fication for international investment. There are several studies in the literature on modelling

the dependence structure between the exchange rates using copulas, however, to the best of

our knowledge, there are few on applying dynamic copulas to study the co-movements be-

tween equity and currency returns. Our study pays particularly close attention to this matter,

and uses two different methods to quantify this dependence. We find evidence that the depen-

dence structures between equity and currency returns are not symmetric, which is different

from the finding of Ning (2010). Using several tests, we show that the asymmetry of tail

dependence is also statistically significant.

Second, verifying the existence of dynamic dependence is imperative, as a large number

of studies have found the failure of traditional linear correlation and time-invariant depen-

dence in portfolio hedging and asset allocation. We find striking evidence to demonstrate

that the dependence structures between country equity index and corresponding currency

change over time. Both markets move together more closely during currency crisis or finan-

cial crisis than during a normal period. We also find solid evidence to show that GAS-based

time-varying copulas statistically outperform the corresponding time-invariant copulas in the

modeling of equity-currency dependence. This finding implies that the time-varying depen-

dence may offer economic benefits in real-time investment.

Third, the presence of multivariate asymmetry and time-variation of dependence motivate
4More details about the definition and properties of these measures can be found in Appendix I
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us to consider a model that can accommodate all these documented properties. We propose a

novel time-varying skewed t copula model allowing for multivariate non-normality and dy-

namic and asymmetric dependence. This model can be easily generalized from the bivariate

case to the multivariate case. We will discuss more about the good properties of the TVAC

model in Section 3.4.

Fourth, our findings of dynamic and asymmetric dependence between equity and cur-

rency have important implications for risk management in international financial markets.

We construct long-short stock-currency portfolios from a US investor’s perspective. Using

various models of backtesting, we show that our TVAC model outperforms other popular

models in general in VaR and ES forecasts. Our results show that the TVAC model substan-

tially improves the accuracy of VaR and ES forecasts. This finding indicates the importance

of modelling the dynamic and asymmetric dependence of international financial markets in

risk management.

Lastly, our empirical findings and the proposed TVAC model also have practical impli-

cations for optimal asset allocation in international financial markets. The skewed t copula

used in this paper can be generalized from the bivariate case to the high dimensional case,

and this allows us to include a large amount of assets in the optimization problem.5 We use

a copula-based mean-ES framework, which combines the optimization method of Rockafel-

lar and Uryasev (2000) with the TVAC model, to optimize our global equity portfolio. Our

evaluation results indicate that significant economic value is earned when we choose this

copula-based mean-ES approach instead of other traditional methods. In addition, we find

that the optimization based on the TVAC model can provide the highest economic value.

The remainder of the paper is structured as follows. Section 3.2 clarifies the importance

of the dependence structure of international financial markets using risk management and

optimal asset allocation examples. Section 3.3 describes the data, as well as the empirical

results on the asymmetric and dynamic dependence between the country stock index and the

corresponding currency. Section 3.4 describes the modeling of the dynamic and asymmetric

dependence. Section 3.5 and 3.6 study the economic importance of acknowledging dynamic

and asymmetric dependence of international financial markets in risk management and the

5Although some Archimedean copulas, such as Gumbel, Clayton or their rotated versions, are also able to
handle asymmetric dependence, they usually suffer from the issue of dimension restriction, see McNeil et al.
(2005).
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optimal asset allocation applications. Section 3.7 concludes.

3.2 Motivations

We study the nature of the dependence of international financial markets. We focus on equity

portfolios and foreign exchange rates which are most actively traded in international financial

markets. We are especially interested in how the dependence structure between the equity

portfolio and the foreign exchange rate affect risk management and optimal asset allocation

in international financial markets.

3.2.1 Risk Management

Suppose that a US investor invests $1 in the UK stock market at time t. She firstly has to

exchange her US dollars for GBP to buy stocks from the UK stock market. If the exchange

rate (USD/GBP, i.e., GBP per 1 USD) is Xt and the stock price is Pt , she could buy Xt/Pt

shares. If the stock price is Pt+1 at time t + 1, the total value of the investment is WUK
t+1 =

(Xt/Pt)Pt+1. We can represent this using a stock return
(
RE) as

WUK
t+1 = Xt

(
1+RE) . (3.1)

Assuming that she sells her stocks and takes money back to US, she has to convert the

pound denominated wealth into the dollar. If the exchange rate is Xt+1 at time t + 1, the

dollar denominated wealth is

WUS
t+1 =

Xt

Xt+1

(
1+RE) . (3.2)

Taking a natural logarithm to both sides produces

ln
(

WUS
t+1

)
= ln

(
Xt

Xt+1

)
+ ln

(
1+RE) , (3.3)

and we replace ln(Xt/Xt+1) by

ln
(

Xt

Xt+1

)
= ln

(
1

1+RF

)
=− ln

(
1+RF) , (3.4)
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where RF is the return on the exchange rate. Furthermore, the logarithm return of 3.3 can

be represented using the return on the total wealth (R) as ln
(
WUS

t+1
)
= ln(1+R). Since

ln(1+ z)≈ z for a small z > 0, the total return can be written by

R = RE −RF . (3.5)

This investment can be interpreted as a portfolio taking a long position for the UK stock

market and a short position for the exchange rate (USD/GBP, i.e. GBP per 1 USD).

Therefore, the dependence structure between equity and currency is of particular impor-

tant in risk management. International investors are keen to manage extreme event risks to

avoid financial disaster. VaR or ES would be the most useful measures on extreme event risk:

P [R≤VaRt+1 (α)] = 1−α, (3.6)

where zt represents the information available at t, and

ESt+1 (α) = E [R | R≤VaRt+1 (α)] (3.7)

which is the expected value in the α worst cases over a given time horizon. Since both

measures rely highly on tail dependence, the time-varying and asymmetric tail dependence

of two assets is crucial for extreme event risk management (Christoffersen and Langlois,

2013). We study this extensively in Section 3.5.

3.2.2 Optimal Asset Allocation

Suppose that the US investor invests $1 in a global equity portfolio containing N equity-

portfolios from different countries at time t.6 Thus the wealth from this investment should

be a growth return $(1+R) at time t +1. We define returns on the equity and the exchange

6We use a stock index as a proxy for the equity portfolio.
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rate by

RE =
Pt+1−Pt

Pt
, (3.8)

RF =
Xt+1−Xt

Xt
, (3.9)

where P denotes an equity price in a domestic currency and X denotes a domestic currency

for US dollar. Then the wealth of the global equity portfolio (denominated by US dollar) is

obtained by

WUS = 1+RUS, (3.10)

where RUS = ∑
N
i=1 wiRUS

i and RUS
i =

(
RE

i −RF
i
)
/
(
1+RF

i
)
.

The US investor wants to construct an optimal equity portfolio using the N equity port-

folios. That is, she wants to find the optimal weights on assets (wi) in (9). To this end, she

would consider various frameworks for optimal asset allocation. The mean-variance frame-

work is a classical one. However, many studies criticize it for losing its efficiency when

there is further dependence such as a time-varying or non-linear dependence structure. For

this reason, we study the mean-ES portfolio optimization given by

min
wit∈(0,1)

ESt+1 (α) (3.11)

subject to

E
[
RUS

t+1

]
≥ κ,

N

∑
i=1

wit = 1,

where κ is the prespecified target return. The mean-ES efficient frontier can be obtained by

optimization, given a series of target returns. The optimal portfolio weights with risk-free

asset can be obtained by the following programming

max
wit∈(0,1)

E
[
RUS

t+1−R f
]

ESt+1 (α)
(3.12)
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subject to
N

∑
i=1

wit = 1.

If the dependence structure is constant and linear for all pairs of assets under the normality

assumption on asset returns, we cannot obtain any economic gains from this framework.

Otherwise, this framework would perform better than the mean-variance framework.

The dependence structure of two assets is much more complicated in international finan-

cial markets than in domestic financial markets. For example, consider country i and j. Then

we should consider three types of dependence, as described in Figure 3.1.

(1) Dependence between RE
i

(
RE

j

)
and RF

i

(
RF

j

)
.

(2) Dependence between RE
i
(
RF

i
)

and RE
j

(
RF

j

)
.

(3) Dependence between RE
i
(
RF

i
)

and RF
j

(
RE

j

)
.

Therefore, it is important how well we model this complicated dependence structure of in-

ternational financial markets in optimal asset allocation.

3.3 Equity Portfolios and Foreign Exchange Rates

We study daily currency spot rate expressed in a local currency per US dollar and the corre-

sponding equity index measured in the local currency over the period from January 3, 2000

to December 31, 2014 (3,913 observations). We use two sets of countries for the sake of

comparison. Our developed markets sample comprises the European Union, United King-

dom, Japan, Switzerland, Canada and Australia, and our emerging markets sample comprises

Brazil, India, Russia, Turkey, South Korea and South Africa.7 The stock market index from

each country/region represents the equity portfolio of that country/region, and our country

equity indices data are provided by Morgan Stanley Capital International (MSCI). The 3-

month Treasury-bill rate is used as the risk-free rate. We also study weekly data for optimal

asset allocation. All the data is obtained from Datastream.
7We use the emerging markets list provided by MSCI.
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3.3.1 Returns

Descriptive statistics and distributional characteristics of the daily log returns are reported in

Table 3.1. The non-zero values of skewness indicate that all the log return series of equities

and currencies are either positively or negatively skewed. The values of kurtosis indicate

the leptokurtosis and fat tails of return series. Both the skewness and the kurtosis clearly

indicate that the return series are not normally distributed, and this departure from normality

is also confirmed by the Jarque-Bera test (all the series are rejected by the JB test at 5%

significant level). Ljung-Box Q-statistics of order 12 show the presence of autocorrelation

in 17 out of 24 return series. Ljung-Box statistics of order 12 applied to squared returns

are highly significant, implying significant heteroscedasticity. The significance of Lagrange

Multiplier tests for ARCH effects in all return series also supports the usage of AR-GARCH-

type models in our univariate modeling. Descriptive statistics of the weekly log returns are

reported in Table 3.2.

The Pearson’s linear correlation and Spearman’s rank correlation between the country

equity index and the corresponding currency are also reported at the bottom of the tabel

for each country. All the correlations are negative except for Japan and Switzerland. The

negative correlation between equity and currency is not surprising. Suppose that the equity

index of UK is rising (probably outperforming the US market), this would lead an US investor

to invest her money in the UK market. Thus she converts her US dollars to British Sterling

and buys equity in the UK. The sale of US dollar and the buying of Sterling causes the

appreciation of Sterling (i.e. the British Pound per US dollar goes down). Since the exchange

rates are defined as local currency per USD, strong stock market performance in a country

is accompanied by decrease of exchange rate. Meanwhile, the positive correlations of Japan

and Switzerland are probably because both the Japanese Yen and Swiss Franc have been

historically used as the funding currencies in the carry trade, see Galati et al. (2007) and

Gyntelberg and Remolona (2007). Their safe haven properties are empirically supported by

Ranaldo and Söderlind (2010). Figure 3.2 displays scatter plots of the equity indices and

currencies for each country.

[ INSERT TABLE 3.1, 3.2 AND FIGURE 3.2 ABOUT HERE ]
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3.3.2 Return Dynamics

To deal with some well-established distributional properties of univariate financial asset re-

turns, we consider using an AR(1) model to compensate for autocorrelation

Ri,t = φ0 +φ1Ri,t−1 + εi,t , i = 1, ...,n, where εi,t = σi,tzi,t (3.13)

and the GJR-GARCH(1,1,1) model of Glosten, et al. (1993) to capture volatility persistence,

heteroskedasticity and leverage effect

σ
2
i,t = ω +αε

2
i,t−1 +βσ

2
i,t−1 + γε

2
i,t−1I (3.14)

where Ri,t is the return of asset i at time t. The last term of Equation 4.2 incorporates asym-

metry (leverage) into the variance by a Boolean indicator I that takes the value 1 if the prior

model residual εi,t−1 is negative and 0 otherwise. The standardized residual is given by

zi,t =
(Ri,t−µi,t)

σi,t
=

(Ri,t−φ0−φ1Ri,t−1)

σi,t
(3.15)

For parametric model, we assume that the standardized residuals zi,t follow the skewed t

distribution of Fernández and Steel (1998):

zi,t ∼ Fskew−t,i (ηi,λi) , ui,t = Fskew−t,i (zi,t ;ηi,λi) , ηi ∈ (2,∞] , λi ∈ R+ (3.16)

where Fskew−t,i is the cumulation distribution function of skewed t distribution, ui,t is the

probability integral transformation. ηi is the degrees of freedom, which determines the

thickness of the tails, and λi is the skewness parameter, which determines the the degree

of asymmetry. The distribution is positively skewed if λi > 1 and it is negatively skewed if

λi < 1. We assume any univariate asymmetry can be captured by this parametric marginal

model. Appendix C provides the details of this univariate skewed t density (PDF). For the

nonparametric model, we use the empirical distribution function (EDF) Fi:

F̂i (z)≡
1

T +1

T

∑
t=1

1{ẑi,t ≤ z} , ûi,t = F̂i (ẑi,t) (3.17)
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The maximum likelihood estimation is used to estimate parameters in Equation 4.2 and 3.16.

Using these models, the probability integral transformation for each asset can be estimated

parametrically or nonparametrically for the copula estimation.

Table 3.3 and 3.4 report the results from the estimation of the AR-GJR-GARCH model

with skewed t innovations for equity and currency returns on each market for the 2000-

2014 data set. The standardized residuals in this step are used for the dependence structure

modeling in Section 3.3.3.

All the estimations appear to be standard. All the leverage parameters for equity indices

are significantly positive indicating higher volatility when the market goes down. Interest-

ingly, most of the leverage parameters for currencies are significantly negative except for

Japan and Switzerland. This exception can also be explained by the funding currency and

frequent government intervention in these countries.

In order to examine the fitness of this univariate model, we use the Ljung-Box test again

on the model residuals and find that the autocorrelation of log returns can be picked up well

by the AR-GJR-GARCH model. Therefore, we can confirm that the AR-GJR-GARCH type

models for the conditional mean and variance appear to fit the data well. Table 3.3 and 3.4

also report the results of goodness-of-fit tests of the skewed t distribution. We consider both

Kolmogorov-Smirnov (KS) and Cramer-von Mises (CvM) tests following Patton (2012a).

Impressively, all the p-values are greater than 0.05. Thus, we can verify that the skewed t

distribution of Fernández and Steel (1998) is appropriate for modeling the conditional distri-

bution of the standardized residuals.

[ INSERT TABLE 3.3 AND 3.4 ABOUT HERE ]

3.3.3 Asymmetric Dependence

In this section, we test whether the dependence between the equity portfolio and the corre-

sponding foreign exchange rate is asymmetric. We consider both linear and copula-based

approach to test the asymmetry.

First, we use the threshold correlation8 in Ang and Chen (2002) and a model free test

8In our application, we apply a modified version of threshold correlation to measure the correlation be-
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in Hong et al. (2007) to see whether the dependence is symmetric from a linear perspec-

tive. Surprisingly, all the exceedence correlations in developed markets are not significantly

asymmetric. However, for the emerging markets, the linear asymmetries are significant in 4

markets (see Table 3.5). The rank correlations imply negative dependence and this can be

easily accommodated by the Gaussian or Student’s t copula (see Patton, 2012b).

Second, differently from the literature, we apply lower-upper and upper-lower tail depen-

dence as we are concerned with the situation when the invested equity portfolio goes down

and the exchange rate goes up (because we use the data measured by local currency per 1

USD, exchange rate going up means currency depreciation). The decline of equity portfolio

and depreciation of corresponding currency will make a US investor suffer a dual loss if she

wants to sell her equity and convert local currency back to USD. The test for copula-based

tail dependence (see McNeil et al., 2005) provides clear evidence of asymmetry. This in-

consistency may imply linear symmetric but nonlinear asymmetric dependence. Except for

Switzerland, all the equity-currency pairs have stronger lower tail dependence than upper

tail dependence, which is consistent with the empirical results of other asset classes, see for

instance, Patton (2004), Patton (2006b) and Okimoto (2008). The abnormal pattern of the

Swiss market is possibly caused by interventions from the Swiss National Bank. Appendix

A and B describe a threshold correlation and a tail dependence in detail.

[ INSERT TABLE 3.5 ABOUT HERE ]

3.3.4 Time-varying Dependence

To investigate the time-varying dependence between the equity portfolio and the foreign

exchange rate, we consider three tests to verify the presence of structural breaks in rank

correlation. Table 3.6 presents the results of all the dependence break tests.

[ INSERT TABLE 3.6 ABOUT HERE ]

First, we investigate whether there is a break in the rank correlation at some specified

point in the sample period. Following the naïve test used in Patton (2012a), we simply as-

sume three points in the sample, at t∗/T ∈ {0.15,0.50,0.85} which corresponds to the dates

tween equity and currency returns when equity market goes down but the exchange rate goes up (currency
depreciation). The analytical expression of the modified threshold correlation is presented in Appendix A.
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01-Apr-2002, 02-Jun-2007 and 28-Sep-2012. The results show that for each country there is

at least one significant break point, indicating evidence against a constant rank correlation.

In addition, we find it informative to further investigate whether the rank correlation between

equity and currency statistically changed after the financial crisis broke out. We assume the

first break point is September 15, 2008, which corresponds to the date of the collapse of

Lehman Brothers. This break point is significant at 5% for 8 pairs (see the result in the col-

umn “US Crisis”). The second assumed break point is January 01, 2010, which corresponds

to the break out of the European debt crisis.9 Not surprisingly, this break is significant for

the equity-currency pair of the European Union, and it is also significant for several other

markets, such as that of Japan, Russia, India, etc. (see the result in the column “EU Crisis”).

Second, we consider another test for the time-varying dependence used in Patton (2012a).

It is based on the Engle (1982)’s ARCH LM test for time-varying volatility. Similarly, the

result reported in column AR(1)-(3) also provides solid evidence against a constant rank

correlation.

Third, the right column of Table 3.6 reports the p-values computed based on a generalized

break test without an a priori point proposed by Andrews and Ploberger (1994). The results

indicate that for all the equity-currency pairs, there is at least one dependence break point.

In order to demonstrate the dynamics of dependence, we present the variation of skewed

t copula correlation estimated by the GAS model in Figure 3.3.

Overall, all the results above suggest that the dependence structures between country

equity indices and corresponding currencies are regime dependent and time-varying.

3.4 Modeling Dependence

As shown in the previous section, the findings of time-varying and asymmetric dependence

motivate us to consider using a TVAC in risk management and portfolio optimization. In

this section, we introduce the modeling of time-varying and asymmetric dependence by cop-

ula. Furthermore, we investigate how much a TVAC improves the ability to explain data by

comparing it to constant and symmetric copulas.
9The European debt crisis has hit several EU countries since the end of 2009. Thus, we arbitrarily assume

that January 01, 2010 is a break point.
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3.4.1 Copulas

The copula is the function that connects a multivariate distribution to its one-dimensional

margins (see Sklar, 1959). If we let z = (z1, ...,zn)
′ denote an n-dimensional random vector

and let F denote a multivariate distribution with marginal distributions F1, ...Fn given by

ui = Fi (zi) = P(Zi ≤ zi) for i = 1, ...,n, then there exists a copula C : [0,1]n → [0,1] such

that,

F(z1, ...,zn) = C(F1 (z1) , ...Fn (zn)) ,∀z ∈ Rn (3.18)

If the F1, ...Fn are continuous, this copula function C is unique. If F−1
i denotes the inverse

distribution function of Fi, where the zi = F−1
i (ui) for 0≤ ui ≤ 1 and i = 1, ...,n, then

C(u1, ...un) = F
(
F−1

1 (u1) , ...F−1
n (un)

)
(3.19)

We define ui ≡ Fi (zi) as the probability integral transformation variables, when Fi is

continuous, then ui is uniformly distributed.

ui = Fi (zi)∼ Unif(0,1) , i = 1,2, ...,n (3.20)

We set Z =
(
F−1

1 (u1) , ...,F−1
n (un)

)′
, then we obtain

P(Z1 ≤ z1, ...,Zn ≤ zn) = P
(
F−1

1 (u1)≤ z1, ...,F−1
n (un)≤ zn

)
(3.21)

= P(u1 ≤ F1 (z1) , ...,un ≤ Fn (zn))

= C(F1 (z1) , ...,Fn (zn))

Patton (2006b) states that the joint distribution F can be decomposed into its n univariate

margins F1, ...,Fn and an n-dimensional copula C. If their densities f and c exist, then we

obtain the representation of joint probability distribution function (PDF) implied by joint

CDF in Equation (3.18):

f(z1, ...,zn) = c(F1 (z1) , ...,Fn (zn))×
N

∏
i=1

fi (zi) , (3.22)
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where c(u1, ...,un) =
∂ nC(u1,...,un)

∂u1·...·∂un
.

3.4.2 Asymmetric Copulas

Based on the multivariate skewed t distribution of Bauwens and Laurent (2005), Sklar’s

theorem (see Equation 3.18 and 3.19), the probability density function of the skewed t copula

is given by

Cskt (u1,t , ...un,t) = Fλ ,η

(
F−1

λ1,η
(u1) , ...F−1

λn,η
(un) | 0,Σt

)
(3.23)

where Cskt denotes the skewed t copula, Fλ ,η denotes the cumulative distribution function

(CDF) of the multivariate skewed t distribution with zero mean vector, correlation matrix

Σ, the multivariate skewness parameter λ and the degree of freedom η . F−1
λi,η

denotes the

inverse CDF of univariate skewed t distribution with asymmetric parameter λi and degree of

freedom η , which is identical with the degree of freedom of multivariate distribution.

From Patton (2006b), we know that a joint distribution can be decomposed into its

marginal distributions and corresponding copula function. Therefore, we can decompose

the joint PDF of skewed t distribution

cskt (u1,t , ...,un,t) =
fλ ,η

(
F−1

λ1,η
(u1,t) , ...F−1

λn,η
(un,t) |0,Σt

)
∏

N
i=1 fλi,η

(
F−1

λi,η
(ui)
) (3.24)

where fλ ,η and fλi,υi denote the multivariate and univariate skewed t density functions,

respectively. Next, we define zi,t = (z1,t , ...,zn,t), zi,t = F−1
λi,η

(ui,t), i = 1, ...,n and z∗t =

Σ
− 1

2
t (zt − µt). Then the probability density function of the time-varying skewed t copula

defined from the multivariate skewed t distribution of Bauwens and Laurent (2005) is given

by

ct (u1,t , ...,un,t) =
Σ
− 1

2
t Γ

(
η+n

2

)[
Γ
(

η

2

)n−1
](

1+ a′tat
η−2

)−η+n
2

[
Γ

(
η+1

2

)]n n
∏
i=1

[
1+

λ
−2ICi,t
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(3.25)

where Σt denotes the covariance matrix and η is the degree of freedom. The vector a =
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(a1, ...,an) contains elements defined as ai = λ
−IC∗

i,t
i

(
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i x∗i,t

)
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, (3.26)
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The PDF of this multivariate skewed t distribution can be found in Appendix D.

3.4.3 Time-varying Copulas

To deal with the time-varying characteristics of dependence structure, we implement the

generalized autoregressive score (GAS) model of Creal et al. (2013). For the sake of sim-

plicity, we let the correlation parameter δt of skewed t copula vary over time according to

the GAS dynamics, holding other parameters constant. A strictly increasing transformation

function δt = (1− e−gt )/(1+ e−gt ) is used to ensure that δt ∈ (−1,1), and the transformed

correlation parameter is denoted by

gt = h(δt)⇔ δt = h−1 (gt) (3.28)

Following Creal et al. (2013) and Patton (2012a), we define the evolution of the trans-

formed copula parameter gt+1 as a function of a constant ϖ , the lagged copula parameter gt

and the standardized score of the copula log-likelihood Q−1/2
t st

gt+1 = ϖ +ηQ−1/2
t st +ϕgt (3.29)

where

st ≡
∂ logc(u1,t , ...,un,t ;δt)

∂δt
and Qt ≡ Et−1

[
sts′t
]
.

The GAS model is an observation driven model and therefore its parameters can be easily
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estimated by the maximum likelihood estimation

δ̂t = argmax
δt

n

∑
t=1

logc(u1,t , ...,un,t ;δt) . (3.30)

When n > 2, the estimation of the GAS dynamics for the covariance matrix of copula model

is not straightforward. In our study, we follow the method of Lucas et al. (2013) to obtain

the covariance matrix of the high-dimentional case.

3.4.4 Parametric and Semiparametric Estimation

The inference procedures for parametric and nonparametric models are different (see Patton,

2012a) and we provide some details about these two methods separately in Appendix E and F.

The maximum likelihood estimation for parametric copula-based models is sometimes com-

putationally difficult, thus we consider a two-stage maximum likelihood estimation, which

estimates univariate parameters from maximizing univariate likelihoods, and then estimates

dependence parameters from a multivariate likelihood, see Joe and Xu (1996), Joe (1997) and

Joe (2005). Appendix E provides the details needed to implement this method. Intuitively,

the two-stage maximum likelihood should be asymptotically less efficient than one-stage

MLE, simulation results in Joe (2005) and Patton (2006b) suggest that the two-stage MLE

has relatively good efficiency in general.

A semiparametric copula model is characterized by a parametric copula model of depen-

dence and nonparametric models of marginal distributions. In the first step, the marginal

data is transformed by the empirical distribution function, and in the second step the cop-

ula dependence parameter is estimated by maximizing the estimated log-likelihood function

holding the marginal distributions fixed from the first step, see Chen and Fan (2006a) and

Chen and Fan (2006b).

We estimate copula models by both parametric and semiparametric approaches. Over-

all, the semiparametric approach provides slightly better performance than the parametric

approach. Hence, we provide all the results estimated by the semiparametric approach in

our paper. The results estimated by the parametric approach are available in the internet

appendix.
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3.4.5 Improvements by TVAC

We investigate how accurately the TVAC model explains the dependence between the equity

portfolio and the foreign exchange rate. We evaluate the log likelihoods (hereafter LL) of

alternative copula models for 12 equity-currency pairs with daily and weekly data. Table 3.7

reports the LL values for four copula models: constant t copula, constant skewed t copula,

time-varying t copula and time-varying skewed t copula. Note that a marginal distribution

is modeled by the AR-GJR-GARCH model introduced in Section 3.3 and we use the semi-

parametric approach to estimate the copula models.

[INSERT TABLE 3.7 ABOUT HERE]

For the constant copula, when we switch the symmetric copula (t copula) into the asym-

metric one (skewed t copula), the LL is improved by 15 on average. For the time-varying

copula, the LL is improved by 25 on average. These improvements are also observed for all

individual equity-currency pairs. The results show that the asymmetric copula can explain

the data better than the symmetric copula.

Next, we investigate how much the time-varying copula improves the LL. For the sym-

metric copula, when we switch the constant copula into the time-varying copula, the LL is

improved by 83 on average. For the asymmetric copula, the LL is improved by 93 on av-

erage. These improvements are also observed for all individual equity-currency pairs. The

results show that the time-varying copula can explain the data much better than the constant

copula.

Interestingly, the improvements by the time-varying copula are much better than those by

the asymmetric copula. When we switch the constant copula into the time-varying copula,

the LL improves by 98 on average. This improvement is about five times that obtained by

switching from the symmetric copula into the asymmetric copula.

Consequently, the results demonstrate that the TVAC is able to accurately model the

time-varying and asymmetric dependence observed from the equity-currency data in Section

3. Hence, the use of the TVAC could improve the performance of risk management and the

optimal asset allocation in international financial markets.
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3.5 Robust Risk Management

We study the implications of the TVAC model by evaluating the performance of risk man-

agement in international financial markets. We consider the out-of-sample forecast of VaR

and ES of the equity-currency portfolio. To this end, we use daily equity-currency data and

construct a long-short portfolio described in Equation (3.5). We use Monte Carlo simulation

to generate N simulated R̃E
t and R̃F

t from the estimated model, then form simulated portfo-

lio returns R̃t = R̃t
E − R̃t

F
. We use an empirical distribution of simulated portfolio returns

to compute VaR and ES given a nominal probability α . More details about our forecasting

algorithm can be found in Appendix G.

To forecast the one-step-ahead VaR and ES, we use a rolling window instead of the full

sample and the rolling window size is set at 250 (one trading year) for all the return series.

All the model parameters are recursively updated throughout the out-of-sample period and

the correlation coefficients of copulas are predicted by the GAS model. In order to evaluate

the coverage ability and the statistical accuracy of VaR forecasts, we implement three widely

used backtestings including the empirical coverage probability (hereafter ECP), the condi-

tional coverage test (hereafter CC test; Christoffersen, 1998), and the dynamic quantile test

(hereafter DQ test; Engle and Manganelli 2004). In addition, we employ a mean absolute

error (MAE) to evaluate the predictive power on ES.

We evaluate four copula models: constant t copula, constant skewed t copula, time-

varying t copula and time-varying skewed t copula. The copula models are estimated by the

semiparametric approach. For the purpose of comparison, widely used multivariate GARCH

models are also considered as the benchmarks. Analogous to the copula models, we use

Monte Carlos simulation to compute VaR and ES.

3.5.1 Coverage Ability

Table 3.8 presents the ECPs of the VaR forecast for both 95% and 99% nominal probabilities.

The ECP should be close to α (small bias) and this small bias should be maintained for all

portfolios (small variation). For this reason, we evaluate the root mean square error (RMSE)

of ECPs. First, the RMSEs of copula models are much smaller than those of multivariate

118



GARCH models. Second, when we switch the symmetric copula into the asymmetric one,

RMSEs decrease. Third, when we switch the constant copula into the time-varying one,

RMSEs also decrease. Note that the TVAC has the smallest RMSE.

[INSERT TABLE 3.8 ABOUT HERE]

3.5.2 Statistical Accuracy

We evaluate the statistical accuracy of the VaR forecast by counting the number of rejections

at the 5% significance level for both CC and DQ tests. A smaller number of rejections

indicates a higher accuracy of the VaR forecast. Table 3.9 reports the CC test results. First,

the copula models are less frequently rejected than the multivariate GARCH models. When

the confidence interval is 99%, the copula models are rarely rejected while the multivariate

GARCH models are rejected for all equity-currency pairs. Second, when we switch the

symmetric copula into the asymmetric one, the rejection numbers decrease. Third, when we

switch the constant copula into the time-varying one, the rejection numbers also decrease.

Note that the rejection numbers of the TVAC are smallest at both nominal probabilities. Next,

Table 3.10 reports the DQ test results. The results are qualitatively consistent with the CC

test results despite the slight increase in the number of rejections.

[ INSERT TABLE 3.9 and 3.10 ABOUT HERE ]

3.5.3 Predictive Loss

We evaluate the predictive loss of the ES forecast. Table 3.11 reports the MAE computed by

MAE =
1
N

N

∑
s=1

∣∣∣Rs− ÊSs (α)
∣∣∣ Is, (3.31)

where Is = 1
{

Rs < V̂aRs (α)
}

. A smaller value indicates a more accurate forecast. First,

the copula models have smaller MAEs than the multivariate GARCH models at the 99%

confidence interval while only time-varying copula models have smaller MAEs at the 95%

confidence interval. Second, when we switch the symmetric copula into the asymmetric one,
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the MAEs are decreased. Third, when we switch the constant copula into the time-varying

one, the MAEs are also decreased.

[ INSERT TABLE 3.11 ABOUT HERE ]

To sum up, we perform a broad range of backtestings including coverage ability, statisti-

cal accuracy and predictive loss. When we switch the symmetric copula into the asymmetric

one, the backtesting results are improved. When we switch the constant copula into the

time-varying one, the backtesting results are also improved. Therefore, the use of the TVAC

makes the risk management in the international financial market more robust.

3.6 Optimal Asset Allocation

In this section, we construct and monitor global equity portfolios to explore the economic

importance of modeling the time-varying and asymmetric dependence of international finan-

cial markets. The naïve buy and hold strategy, the mean-variance framework (Markowitz,

1952) and the mean-absolute deviation (MAD) framework (Konno and Yamazaki, 1991) are

considered to be classical benchmarks. We allow further dependence beyond the classical

benchmarks and employ the copula-based optimization. First, we estimate the parameters of

the skewed t copula model of global equity portfolio and then use the Monte Carlo simulation

to generate scenarios for the computation of portfolio ES. Second, we use minimal ES as the

objective function to optimize a portfolio to get the optimal weights for each asset. We repeat

this process to form dynamically rebalanced portfolios with specified return and minimal ES

described in Section 3.2. Weekly equity-currency data are used to construct optimal port-

folios and monitor weekly portfolio returns. For the sake of comparison, we also consider

several traditional optimization constrains. More details about our optimization algorithm

can be found in Appendix H.

In order to evaluate the performance of optimal asset allocation, we consider two classi-

cal performance measures: Sharpe Ratio (SR) and Gain-Loss Ratio (GLR). Because of the

limitations of these measures mentioned in Section 3.1, we also use the new measures termed

indexes of acceptability recently proposed by Cherny and Madan (2009). The bigger value

indicates better performance. Appendix I describes these measures in detail.
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Table 3.12 reports the performance measures. First, the copula-based optimal portfolios

dominate the classical benchmarks for all measures. This demonstrates that the dependence

structure of the international financial markets is more complicated than that assumed by the

classical frameworks. Thus the classical frameworks generate significant economic disutility

by ignoring the further dependence structures in the optimal asset allocation.

Second, the bottom panel of 3.7 shows that the log-likelihood of the copula model can

be significantly improved by taking into account the time-varying correlation and the result

of likelihood ratio test also confirms that a significant improvement is obtained if we con-

sider the asymmetric depdendence. For the 95% ES, when we switch the symmetric copula

(Gaussian copula) into the asymmetric one (skewed t copula), performance is improved for

all measures. When we switch the constant copula into the time-varying copula,10 perfor-

mance is also improved for all measures. Note that the TVAC shows the best performance

for all measures.

Third, for the 99% ES, when we switch the constant copula into the time-varying copula,

performance is improved for all measures. However, when we switch the symmetric copula

into the asymmetric copula, performance is improved in the time-varying setting only. Note

that the TVAC also shows the best performance for all measures.

[ INSERT TABLE 3.12 ABOUT HERE ]

Taken together, the evaluation results clearly indicate that the time-varying and asym-

metric dependence structure of international financial markets is crucial for optimal asset

allocation. The use of the TVAC model can properly balance return and risk by capturing

the highly complicated dependence structure. When we switch the constant or symmetric

models into the time-varying and asymmetic model, we can get more economic utility not

obtained by the constant or symmetric framework.

10In our case, we estimate the GAS dynamics for the covariance matrix of high-dimensional case (12×12)
following the method described in Lucas et al. (2013).
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3.7 Conclusion

In this paper, we provide a comprehensive empirical study on the dependence structure of

international financial markets. We find evidence of asymmetric dependence between the

equity portfolio and the corresponding foreign exchange rate. Their lower tail dependence is

significantly greater than the upper tail dependence in 6 out of 12 countries, indicating that

the equity portfolio and the foreign exchange rate tend to move together more closely during

a crash. In addition, we also find solid evidence against the constant dependence between the

equity portfolio and the foreign exchange rate. This result implies that dynamic dependence

may offer large economic benefits in real time investment.

A methodological contribution is offered in this paper. To accommodate some well-

documented features and our empirical findings of the equity-currency relationship, we pro-

pose a novel time-varying asymmetric copula (TVAC) model that allows for non-linearity,

asymmetry and time variation of the dependence, and deviations from multivariate normal-

ity. The time-varying mean and volatility are modeled by the AR-GJR-GARCH model and

the univariate asymmetry and fat-tails are fitted by the univariate skewed t distribution in

Fernández and Steel (1998). The multivariate asymmetry is captured by the skewed t copula

derived from the mutlivariate skewed t distribution in Bauwens and Laurent (2005) and the

time-varying dependence is captured by the GAS dynamics proposed by Creal et al. (2011).

The estimation results indicate that our TVAC model can provide statistically better fitness

than other constant or symmetric models.

Our findings about time-varying and asymmetric dependence have important implica-

tions for risk measurement. To show the usefulness of the TVAC model in market risk fore-

cast, we apply it to forecast portfolio Value-at-Risk and Expected Shortfall. The backtesting

results shows that the TVAC model yields better out-of-sample forecast performance of VaR

and ES than other widely used multivariate models in general, at both 95% and 99% confi-

dence intervals. Thus, our proposed TVAC model can be an ideal choice for financial institu-

tions and regulatory authorities to make risk management in international financial markets

more robust.

We also access the economic importance of acknowledging multivariate asymmetry and

dynamic dependence from an investment perspective by comparing the TVAC-based opti-
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mization with several classical frameworks, such as mean-variance and mean-MAD opti-

mization. Using different performance measures, we show that the TVAC-based mean-ES

method can provide higher risk-adjusted reward than traditional optimization methods in

general. This finding shows that the presence of statistically significant asymmetry and

time-varying dependence are also economically important for the optimal asset allocation

in international financial markets.
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Appendix

3.A Threshold Correlation

The threshold correlation (TC) is the linear correlation measuring a selected subset of data.

Following Ang and Chen (2002), The threshold correlation with respect to the quantiles at

probability level q of empirical distribution of asset return RE and RF is defined by

ρ
−− =Corr

(
RE

t ,R
F
t |RE

t ≤ RE (q) and RF
t ≤ RF (q)

)
if q≤ 0.5 (3.32)

ρ
++ =Corr

(
RE

t ,R
F
t |RE

t > RE (q) and RF
t > RF (q)

)
if q > 0.5 (3.33)

In our study, we want to measure the correlation between equity and currency returns when

equity market goes down but the exchange rate goes up (currency depreciation). We rely on

a modified expression of TC to measure the correlation between equity returns below their

qth quantiles and exchange rate returns above their (1−q)th quantiles, or vise versa

ρ
−+ =Corr

(
RE

t ,R
F
t |RE

t ≤ RE (q) and RF
t ≥ RF (1−q)

)
if q≤ 0.5 (3.34)

ρ
+− =Corr

(
RE

t ,R
F
t |RE

t > RE (q) and RF
t < RF (1−q)

)
if q > 0.5 (3.35)

3.B Tail Dependence

The tail dependence coefficient (TDC) is an important concept and useful measure to quan-

tify the degree of dependence in multivariate analysis (see McNeil et al., 2005, among oth-

ers). The upper tail dependence (UTD) is defined to measure the upper-upper tail case and the

lower tail dependence (LTD) is used to measure the lower-lower tail case. Both of them have
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been widely applied in empirical finance literature (see Christoffersen et al., 2012; Elkamhi

and Stefanova, 2014; Patton, 2009; Poon et al., 2004, among many others).

Let zi ∼ Fi, i = 1,2 be continuously distributed random variables. Then the coefficients

of lower-lower, upper-upper, lower-upper and upper-lower tail dependence of z1 and z2 are

λ
LL = lim

q→0+

P
{

z2 ≤ F−1
2 (q) ,z1 ≤ F−1

1 (q)
}

P
{

z1 ≤ F−1
1 (q)

} = lim
q→0+

C (q,q)
q

(3.36)

λ
UU = lim

q→1−

P
{

z2 > F−1
2 (q) ,z1 > F−1

1 (q)
}

P
{

zl > F−1
l (q)

} = lim
q→1−

1−2q+C (q,q)
1−q

(3.37)

λ
LU = lim

q→1−

P
{

z2 > F−1
2 (q) ,z1 < F−1

1 (q)
}

P
{

zl < F−1
l (q)

} = lim
q→1−

1−q−C (1−q,q)
1−q

(3.38)

λ
UL = lim

q→1−

P
{

z2 < F−1
2 (q) ,z1 > F−1

1 (q)
}

P
{

zl < F−1
l (q)

} = lim
q→1−

1−q−C (q,1−q)
1−q

(3.39)

If the copula C has an analytic solution, the coefficients can be easily calculated. The cop-

ula C has lower-lower tail dependence if λ LL ∈ (0,1] and no lower-lower tail dependence

if λ LL = 0. A similar conclusion holds for the other tail dependence coefficients. In our

application, the Student’s t copula is applied to compute tail dependence.

3.C The Univariate Skewed t Distribution

We assume that the standardized residuals of marginal distribution follow the univariate

skewed Student’s t distribution of Fernández and Steel (1998). They generate a skewed t

distribution by introducing skewness into symmetric t distribution, and the probability den-

sity fucntion fγ,υ of this distribution is given by:

fλi,υi (zi,t) =
2λi

1+λ 2
i

[
fνi

(
zi,t

λi

)
I (zi,t ≥ 0)+ fνi (zi,tλi) I (zi,t ≤ 0)

]
, λi ∈ (0,∞) (3.40)

where I is the indicator variable equal to 1 when the condition is true and 0 otherwise, λi

is the skewness parameter and υi is the degree of freedom, which controls the thickness of

the tails. And fνi is chosen to be the Student’s t distribution with υi df, υi ∈ R+, which is
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unimodal and symmetric around 0.

fυi

(
xi,t p µi,σ

2
i
)
=

Γ

(
νi+1

2

)
Γ
(

νi
2

)√
(νi−2)πσ2

i

[
1+

(xi,t−µi,t)
2

(νi−2)σ2
i

]− νi+1
2

, (3.41)

where µi,t is the conditional mean. Then the skewed t distribution is give by the PDF

fλi,υi

(
xi,t p µi,σ

2
i
)
=

2λisiΓ
(

νi+1
2

)
(
1+λ 2

i
)

Γ
(

νi
2

)√
(νi−2)πσ2

i

{
1+

λ
−2I
i [miσi + si (xi,t−µi,t)]

2

(νi−2)σ2
i

}− νi+1
2

(3.42)

where

I =

1 if xi,t ≥ µi,t− miσi
si

−1 if xi,t < µi,t− miσi
si

, (3.43)

and

mi =
Γ

(
νi−1

2

)√
νi−2

Γ
(

νi
2

)√
π

(
λi−

1
λi

)
, s2

i = λ
2
i +

1
λ 2

i
−1−m2

i . (3.44)

3.D The Multivariate Skewed t Distribution

Bauwens and Laurent (2005) propose a flexible approach to introduce skewness into multi-

variate Student’s t distribution and extend this univariate skewed t distribution to a multivari-

ate case. The PDF of their multivariate skewed t distribution is given by

fλ ,η (x p µ,Σ) =

(
2√
π

)n
(

n

∏
i=1

λisi

1+λ 2
i

)
Γ
(

η+n
2

)
|Σ|−

1
2

Γ
(

η

2

)
(η−2)

n
2

(
1+

a′a
η−2

)−(η+n
2 )

(3.45)

where λ=(λ1, ...,λn) denotes the vector of asymmetric parameters, Σ denotes the covariance

matrix and η is the degree of freedom. The vector a = (a1, ...,an) contains elements defined

as ai = λ
−Ii
i (mi + six∗i ), where x =(x∗1, ...,x

∗
n) = Σ

− 1
2 (x−µ) and

I =

1 if xi,t ≥ µi,t− mi
√

σii
si

−1 if xi,t < µi,t− mi
√

σii
si

, (3.46)
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where

mi =
Γ

(
η−1

2

)√
η−2

Γ
(

η

2

)√
π

(
λi−

1
λi

)
, s2

i = λ
2
i +

1
λ 2

i
−1−m2

i . (3.47)

3.E Estimation of Parametric Copula Model

The likelihood of a fully parametric copula model for conditional distribution of rt takes the

form:

L(φ) =
T

∏
t=1

f(zt |zt−1;φ) (3.48)

=
T

∏
t=1

[
ct (u1,t , ...,un,t |zt−1;φC)

n

∏
i=1

fi,t (zi,t |zt−1;φi)

]

with log-likelihood

T

∑
t=1

log f(zt |zt−1;φ) =
T

∑
t=1

d

∑
i=1

log fi,t (zi,t |zt−1;φi) (3.49)

+
T

∑
t=1

logct (F1,t (z1,t |zt−1;φ1) , . . . ,Fn,t (zn,t |zt−1;φn) |zt−1;φC)

where φ denotes the parameters for the full model parameters, φi denotes the parameters for

the ith marginals, φC denotes the parameters of copula model and zt−1 denotes the infor-

mation set at time t− 1. Following the the two-stage maximum likelihood estimation (also

known as the Inference method for margins) of Joe and Xu (1996), we first estimate the

parameters of marginal models using maximum likelihood:

φ̂i = argmax
φi

T

∑
t=1

log fi,t (zi,t |zt−1;φi) , i = 1, ...,n (3.50)

and then using the estimations in the first stage, we calculate Fi,t and estimate the copula

parameters via maximum likelihood:

φ̂C = argmax
φC

T

∑
t=1

logct (F1,t (z1,t |zt−1;φ1) , ...,Fn,t (zn,t |zt−1;φn) |zt−1;φC) (3.51)
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3.F Estimation of Semiparametric Copula Model

In the semiparametric estimation (also known as Canonical Maximum Likelihood Estima-

tion), the univariate margins are estimated nonparametrically using the empirical distribution

function (EDF) and the copula model is still parametrically estimated via maximum likeli-

hood.

F̂i (z)≡
1

T +1

T

∑
t=1

1{ẑi,t ≤ z} (3.52)

ûi,t ≡ F̂i (z)∼ Unif (0,1) , i = 1,2, ...,n (3.53)

φ̂C = argmax
φC

T

∑
t=1

logct (û1,t , ..., ûn,t |zt−1;φC) (3.54)

where zi,t is the standardized residuals of marginal models and F̂i is different from the stan-

dard empirical CDF in the scalar 1
n+1 , which is to ensure that the transformed data cannot be

on the boundary of the unit interval [0,1].

3.G Algorithm for TVAC based VaR and ES Forecasting

Step 1: It is necessary to determine the in sample and out-of-sample period for our fore-

casting.

Step 2: We forecast conditional mean, conditional volatility and residuals from the prespec-

ified time series model on sliding window and do one step ahead forecasting.

Step 3: To get the estimation for the forecasted marginal distributions, we do parametric

(univariate skewed t) and nonparametric (EDF) estimation on sliding window.

Step 4: We estimate parameters for full parametric and semiparetric copulas using in-sample

data.

Step 5: Using the estimated parameters in Step 4 as initial values, we estimate time-

varying dependence parameters for asymmetric (skew t) copulas based on GAS framework,

see Equation 3.29.

Step 6: With the estimated time-varying copula parameters in hand, we can apply Monte

Carlo simulation to generate N samples of innovations and portfolio returns.
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Step 7: Based on the empirical α−quantile of forecasted portfolio return, it is easy to

forecast corresponding VaR.

Step 8: Given the N simulated portfolio returns, we can also calculate α−quantile expected

shortfall using Equation 3.7.

Step 9: Using realized portfolio returns to backtest VaR and ES forecasts.

3.H Algorithm for TVAC Copula based Portfolio Optimiza-

tion

Step 1: Before copula modelling, we need to characterize individually the distribution of

returns of each asset. Specifically, we use AR and GJR-GARCH to esimate conditional mean

and conditional volatility, repectively, and use parametric or nonparametric method to get the

probability integral transforms of the standardized residuals.

Step 2: Using the probability integral transforms we estimated from the last step, we esti-

mate one-step-ahead skewed t copula parameters using rolling window11.

Step 3: Given the copula parameters, the jointly-dependent uniform variate can be simulated

by the skewed t copula random number generator.

Step 4: To generate the simulated daily returns, we transfer the uniform variate derived

from the skewed t copula random number generator via the inverse CDF of each asset.

Step 5: The generated multivariate simulations from the skewed t copula model can be used

to compute the single-period ES of a sample portfolio.

Step 6: Following Rockafellar and Uryasev (2000, 2002), we could find an optimal portfolio

(weights) that gives us a minimum ES for a certain level of return at time t and repeat Step 1

to Step 6 using rolling window for weekly rebalance.

11A detailed method for the estimation of GAS dynamics for the covariance matrix of high-dimensional GH
skewed t copulas can be found in Lucas et al. (2013).

137



3.I Sharpe Ratio, Gain-Loss Ratio and Index of Accept-

ability

The Sharpe Ratio of the portfolio return is defined by the ratio of the expected excess return

over the standard deviation:

SR(R) =


E(R)−R f

σ(R) if E (R)−R f > 0

0 otherwise
(3.55)

where E (R)−R f , R f and σ(R) denote the excess return, the risk free rate and the standard

deviation of R, respectively. This measure satisfy the quasi-concavity, scale invariance, law

invariance, expectation consistency and Fatou property. However, it is not monotonic, see a

detailed proof in Cherny and Madan (2009).

The Gain-Loss Ratio proposed by Bernardo and Ledoit (2000) is defined as the ratio of

the expected excess return over the expectation of the negative tail:

GLR(R) =


E(R)−R f

E(R−) if E (R)−R f > 0

0 otherwise
(3.56)

where R−=max{−T,0}. This measure satisfies all the desirable properties discussed before.

Nevertheless, one major drawback of GLR is that the small losses and large losses are equally

weighted in this measure.

The indices of acceptability are consistent measures which quantify how much a return

on a portfolio is acceptable to rational investors. These measures satisfy a set of axioms

including monotonicity, scale invariance, quasi-concavity and Fatou property. Bielecki et

al. (2014) point out that these attractive properties also have corresponding finance inter-

pretations. For instance, monotonicity implies that if a random variable X is acceptable at

level α and it is dominated by another random variable Y , then Y is acceptable at level α as

well. Quasi-concavity means that a combined portfolio always performs at higher acceptable

level than its components. We consider the indices of acceptability based on the weighted
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Value-at-Risk (WVaR), which is defined as the mixture of weighted ES at risk levels µ:

WVaRµ (X) =−
ˆ

∞

−∞

xd
[
Ψµ (FX (x))

]
, (3.57)

where FX is the distribution function of X and Ψµ (FX (x)) is a distortion function param-

eterized by µ . The numerical evaluation of WVaR is straightforward. If the x1, ...,xN are

historical portfolio returns and X has its empirical distribution, then:

WVaRµ (X) =−
N

∑
n=1

xn

[
Ψµ

( n
N

)
−Ψµ

(
n−1

N

)]
, (3.58)

where x(1), ...,x(N) are the portfolio returns x1, ...,xN in the increasing order. Using the func-

tion above, we can find the largest stress level by distorting the distribution function of X ,

such that E(x)> 0 under the corresponding distortion. Thus, the higher level of acceptability

implies the better performance of portfolio. Following Cherny and Madan (2009), we con-

sider four acceptability indices, including AIMIN, AIMAX, AIMAXMIN and AIMINMAX,

under four concave distortion functions with different properties.
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Figure 3.1 Dependence of International Financial Markets
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Figure 3.2 The Scatter Plots for Country Stock Index and Corresponding Currency
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Note: This figure shows the scatter plots for different country equity indices (MSCI) and
currencies pairs for the period from January 3, 2000 to December 31, 2014.
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Figure 3.3 Dynamic Evolution of Dependence
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Note: This figure shows the time-varying copula correlations between country equity indices
(MSCI) and currencies implied by the GAS model (solid line) and constant copula correlation
(dashed line) for the period from January 3, 2000 to December 31, 2014.
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Figure 3.4 Contour Probability Plots for Copulas
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Note: This figure shows contour probability plots for the normal, Student’s t, and skewed t
copulas derived from the multivariate skewed t distribution of Bauwens and Laurent (2005).
The probability levels for each contour are held fixed across six panels. The marginal dis-
tributions are assumed to be normally distributed. ρ denotes the correlation coefficient, ν

denotes the degree of freedom, and λ denotes the asymmetric parameters of copulas.
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Table 3.5 Tests for Asymmetric Dependence between Equity and Currency

Test Threshold correlaton Tail dependence
HTZ p-value LTD UTD Diff p-value

Panel A: Developed Markets
STX-EUR 40.537 0.239 0.037 0.030 0.008 0.772
STX-GBP 31.515 0.637 0.002 0.000 0.002 0.729
STX-JPY 24.508 0.907 0.032 0.017 0.015 0.041*
STX-CHF 30.619 0.680 0.037 0.047 -0.010 0.633
STX-CAD 42.456 0.181 0.035 0.005 0.030 0.024*
STX-AUD 36.708 0.390 0.058 0.047 0.011 0.538

Panel B: Emerging Markets
STX-BRL 38.065 0.332 0.068 0.030 0.038 0.022*
STX-INR 130.595 0.000* 0.104 0.089 0.015 0.575
STX-RUB 60.366 0.005* 0.076 0.049 0.027 0.044*
STX-TRY 50.731 0.042* 0.184 0.147 0.037 0.203
STX-KRW 31.339 0.646 0.198 0.067 0.131 0.000*
STX-ZAR 49.808 0.049* 0.061 0.015 0.046 0.016*

Notes: This table presents the statistics and p-values from two asymmetric tests. “HTZ” denotes the statistic
from a model-free symmetry test proposed in (Hong et al., 2007) to examine whether the exceedance correla-
tions between currency and corresponding country stock index returns are asymmetric at all. “LUTD”, “ULTD”
and “Diff” denote the coefficients of lower-upper tail dependence and upper-lower tail dependence estimated
by Student’s t copula, and the difference between them for all the portfolios pairs. The estimations are calcu-
lated by semiparametric approach in Patton (2012a). The p-values from the tests that the low tail and upper tail
dependence coefficients are computed with 500 bootstrap replications. We use * to indicate significance at the
5%.
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Table 3.7 Likelihood Ratio Test for Copula Models

Portfolio STX-EUR STX-GBP STX-JPY STX-CHF STX-CAD STX-AUD
T 64.34 23.02 56.91 81.90 44.40 100.98
SkT 67.15 33.42 67.77 100.94 54.66 118.45
TV T 261.26 102.21 101.36 185.27 93.16 129.00
TV SkT 279.50 127.90 109.58 202.47 114.30 195.85
LR test 0.000 0.000 0.000 0.000 0.000 0.000
Portfolio STX-BRL STX-INR STX-RUB STX-TRY STX-KRW STX-ZAR
T 214.48 247.82 169.32 477.02 338.84 107.45
SkT 263.55 266.09 174.89 487.40 350.44 120.25
TV T 221.23 304.10 235.16 533.05 465.33 289.39
TV SkT 279.80 322.61 246.70 568.59 475.13 301.16
LR test 0.000 0.000 0.000 0.000 0.000 0.000
Portfolio STX_ALL
T 3447.78
SkT 3719.98
TV T 8658.26
TV SkT 9713.82
LR test 0.000

Notes: This table reports the log likelihood values for two constant copula models and two time-varying copula
models, and the p-values for likelihood ratio test. “T”, “SkT”, “TV T” and “TV SkT” denote the “constant t
copula”, “constant skewed t copula”, “time-varying t copula” and “time-varying skewed t copula” respectively.
All copula models are semiparametrically estimated. “LR test” reports the p-values of likelihood ratio test of
model specification with 2 degrees of freedom. We use the this test to assess whether our data provide enough
evidence to favor the unrestricted model (TV SkT) over the restricted model (TV T). “STX_ALL” denotes the
portfolio formed by all the equity indices from 12 markets in the application of asset allocation.
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Table 3.8 Empirical Coverage Probability

Portfolio T SkT TV T TV SkT BEKK CCC DCC

Panel A: 95% Value-at-Risk
STX-EUR 5.16% 5.05% 5.00% 5.05% 5.62% 5.43% 5.49%
STX-GBP 4.86% 4.89% 4.83% 4.97% 5.68% 5.46% 5.35%
STX-JPY 4.75% 4.83% 4.91% 5.02% 5.46% 5.16% 5.00%
STX-CHF 5.13% 5.08% 4.97% 4.94% 5.24% 5.43% 5.35%
STX-CAD 5.11% 5.05% 5.00% 4.97% 5.76% 5.54% 5.51%
STX-AUD 5.21% 4.70% 5.08% 4.94% 5.43% 5.21% 4.97%
STX-BRL 5.21% 4.83% 5.27% 5.13% 5.24% 5.27% 5.16%
STX-INR 5.16% 4.64% 5.21% 5.21% 5.43% 5.43% 5.21%
STX-RUB 5.35% 4.94% 5.19% 5.00% 4.75% 5.08% 4.80%
STX-TRY 5.62% 5.60% 5.27% 5.05% 2.87% 4.10% 3.77%
STX-KRW 5.51% 5.08% 5.27% 5.00% 6.03% 5.87% 5.90%
STX-ZAR 5.19% 5.30% 4.70% 4.97% 5.27% 5.68% 5.32%
RMSE 0.31% 0.26% 0.20% 0.08%E 0.84% 0.54% 0.54%

Panel B: 99% Value-at-Risk
STX-EUR 0.98% 1.09% 0.96% 0.98% 1.64% 1.69% 1.58%
STX-GBP 1.15% 1.09% 1.04% 0.96% 1.88% 1.94% 1.64%
STX-JPY 0.76% 0.87% 0.85% 0.98% 1.37% 1.26% 1.28%
STX-CHF 0.98% 0.96% 1.06% 1.01% 1.61% 1.53% 1.45%
STX-CAD 1.09% 0.96% 1.04% 1.06% 1.69% 1.67% 1.56%
STX-AUD 1.26% 1.23% 1.34% 1.20% 1.99% 1.94% 1.94%
STX-BRL 1.15% 1.06% 1.15% 1.15% 1.97% 1.88% 1.80%
STX-INR 1.09% 1.12% 1.12% 0.98% 1.80% 1.83% 1.61%
STX-RUB 1.06% 0.93% 1.09% 1.01% 1.80% 1.91% 1.88%
STX-TRY 1.31% 1.31% 1.17% 1.28% 0.90% 1.50% 1.34%
STX-KRW 0.85% 1.04% 0.98% 1.01% 1.69% 1.72% 1.86%
STX-ZAR 1.06% 1.04% 0.98% 1.06% 1.53% 1.86% 1.53%
RMSE 0.17% 0.14% 0.14% 0.12%E 0.72% 0.76% 0.66%

Notes: This table reports ECP for each equity-currency portfolio and VaR model. Bias summarizes the average
deviation of 12 portfolios from the nominal coverage probability, 5% and 1%, for each VaR model, and RMSE
(Root Mean Square Error) summarizes the fluctuation of the deviation across 12 portfolios for each VaR model,
For the equity minus currency portfolios, we estimate the VaR and ES models using 250 business days over
the period January 3, 2000 - December 15, 2000, and compute the one-day-ahead forecasts of the 95 and 99
percent VaR for December 18, 2000. We conduct rolling forecasting by moving forward a day at a time and
end with the forecast for December 31, 2014. This generates 3,663 out-of-sample daily forecasts. * indicates
that the VaR model is rejected at the 5% significance level. “T”, “SkT”, “TV T” and “TV SkT” denote the
“constant t copula”, “constant skewed t copula”, “time-varying t copula” and “time-varying skewed t copula”
respectively. All copula models are semiparametrically estimated. “BEKK”, “CCC” and “DCC” denote the
multivariate GARCH models. E indicates the smallest RMSE among 7 different models.
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Table 3.9 Conditional Coverage Test

Portfolio T SkT TV T TV SkT BEKK CCC DCC

Panel A: 95% Value-at-Risk
STX-EUR 11.39* 8.78* 9.49* 3.28 24.59* 7.20* 1.79
STX-GBP 5.79 2.11 1.59 1.08 8.74* 2.50 1.07
STX-JPY 1.24 2.11 1.19 0.66 19.18* 17.36* 12.90*
STX-CHF 3.00 1.39 0.45 2.62 0.84 1.56 0.96
STX-CAD 15.77* 18.23* 17.04* 11.29* 18.15* 13.10* 8.53*
STX-AUD 14.74* 7.54* 10.26* 6.53* 10.14* 6.32* 7.93
STX-BRL 6.32* 3.48 4.14 0.73 1.99 2.82 0.74
STX-INR 3.99 1.80 2.85 0.79 5.96 4.85 0.79
STX-RUB 8.86* 5.21 6.53* 5.02 2.13 0.76 0.76
STX-TRY 10.00* 8.61* 10.69* 3.28 43.64* 11.54* 18.14*
STX-KRW 3.35 3.17 0.90 2.49 8.83* 7.12* 6.03*
STX-ZAR 5.10 4.85 4.72 0.15 4.89 6.61* 2.08
Average 6 4 5 2E 7 7 5

Panel B: 99% Value-at-Risk
STX-EUR 0.73 1.19 0.75 0.73 12.64* 16.84* 10.72*
STX-GBP 1.74 1.19 0.85 0.75 23.29* 28.39* 14.64*
STX-JPY 3.79 1.76 2.16 0.82 18.58* 13.48* 12.64*
STX-CHF 0.82 0.96 0.76 0.74 11.66* 8.94* 8.06*
STX-CAD 3.39 4.06 0.72 3.40 15.42* 14.43* 15.97*
STX-AUD 7.55* 4.15 5.67 2.48 31.51* 27.08* 25.84*
STX-BRL 1.74 0.99 1.74 1.74 29.83* 23.03* 21.66*
STX-INR 0.85 1.00 1.00 0.82 21.27* 20.87* 12.57*
STX-RUB 0.99 1.16 0.85 0.74 21.27* 24.55* 24.55*
STX-TRY 11.80* 11.80* 7.07* 4.81 4.77 9.32* 23.62*
STX-KRW 1.45 0.85 0.73 0.76 16.84* 15.79* 21.74*
STX-ZAR 3.40 3.48 0.82 0.76 10.07* 28.40* 10.07*
Average 2 1 1 0E 11 12 12

Notes: This table presents the CC results. The CC test uses the LR statistic and it follows the Chi-squared
distribution with two degrees-of-freedom under the null hypothesis. For the equity-currency (long equity and
short currency) portfolios, we estimate the VaR and ES models using 250 business days over the period January
3, 2000 - December 15, 2000, and compute the one-day-ahead forecasts of the 95 and 99 percent VaR for De-
cember 18, 2000. We conduct rolling forecasting by moving forward a day at a time and end with the forecast
for December 31, 2014. This generates 3,663 out-of-sample daily forecasts. * indicates that the VaR model
is rejected at the 5% significance level. “T”, “SkT”, “TV T” and “TV SkT” denote the “constant t copula”,
“constant skewed t copula”, “time-varying t copula” and “time-varying skewed t copula” respectively. All cop-
ula models are semiparametrically estimated. “BEKK”, “CCC” and “DCC” denote the multivariate GARCH
models. “Rejection” counts the number of rejection from the 12 equity-currency portfolios. E indicates the
smallest rejection among 7 different models.
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Table 3.10 Dynamic Quantile Test

Portfolio T SkT TV T TV SkT BEKK CCC DCC

Panel A: 95% Value-at-Risk
STX-EUR 26.08* 21.62* 24.93* 16.62* 48.85* 17.55* 4.70
STX-GBP 22.78* 19.63* 6.61 5.31 22.72* 12.43* 3.06
STX-JPY 15.63* 12.51* 8.89 10.41 42.25* 32.11* 24.32*
STX-CHF 21.71* 13.06* 11.11* 9.39 10.99 10.53 2.71
STX-CAD 28.99* 40.13* 37.02* 34.58* 33.44* 25.31* 14.57*
STX-AUD 32.99* 15.10* 24.93* 19.10* 23.39* 17.39* 13.88*
STX-BRL 26.90* 15.06* 25.00* 10.44 19.12* 19.49* 5.32
STX-INR 5.27 2.03 4.03 1.56 7.47 6.79 2.48
STX-RUB 23.92* 10.77 12.66* 10.72 7.89 8.40 8.40
STX-TRY 28.46* 29.61* 30.23* 32.31* 43.35* 24.93* 19.07*
STX-KRW 6.53 5.55 5.11 8.12 13.56* 11.45* 11.12*
STX-ZAR 25.23* 21.32* 10.14 11.02 13.11* 19.01* 3.37
Rejection 10 9 7 5E 9 9 5E

Panel B: 99% Value-at-Risk
STX-EUR 10.59* 8.83 3.19 9.65 45.94* 42.53* 21.73*
STX-GBP 8.23 8.39 9.42 9.06 60.60* 48.73* 35.33*
STX-JPY 4.78 4.54 13.39* 3.22 81.09* 46.38* 48.78*
STX-CHF 22.26* 11.31* 19.53* 21.11* 21.18* 18.88* 12.56*
STX-CAD 13.75* 11.25* 15.04* 8.94 28.19* 22.65* 32.93*
STX-AUD 68.57* 27.39* 58.33* 64.98* 94.54* 129.63* 78.55*
STX-BRL 8.16 8.16 8.16 8.16 43.93* 34.19* 31.56*
STX-INR 24.14* 27.80* 13.35* 22.68* 55.83* 43.48* 29.87*
STX-RUB 8.21 3.74 8.64 9.43 39.60* 47.72* 47.72*
STX-TRY 33.67* 33.67* 30.98* 8.15 25.58* 34.52* 23.62*
STX-KRW 13.11* 9.55 9.63 10.03 35.83* 47.17* 33.58*
STX-ZAR 19.31* 20.11* 10.75 8.98 23.15* 62.36* 21.19*
Rejection 8 6 6 4E 12 12 12

Notes: This table presents the DQ test results. The DQ test uses the Wald statistic and it follows the Chi-
squared distribution with 6 degrees-of-freedom under the null hypothesis. For the equity-currency (long equity
and short currency) portfolios, we estimate the VaR and ES models using 250 business days over the period
January 3, 2000 - December 15, 2000, and compute the one-day-ahead forecast of VaR for December 18, 2000.
We conduct rolling forecasting by moving forward a day at a time and end with the forecast for December
31, 2014. This generates 3,663 out-of-sample daily forecasts. * indicates that the VaR model is rejected
at the 5% significance level. “T”, “SkT”, “TV T” and “TV SkT” denote the “constant t copula”, “constant
skewed t copula”, “time-varying t copula” and “time-varying skewed t copula” respectively. All copula models
are semiparametrically estimated. “BEKK”, “CCC” and “DCC” denote the multivariate GARCH models.
“Rejection” counts the number of rejection from the 12 equity-currency portfolios. E indicates the smallest
rejection among 7 different models.
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Table 3.11 Evaluation of Expected Shortfall: Mean Absolute Error

Portfolio T SkT TV T TV SkT BEKK CCC DCC

Panel A: 95% Expected Shortfall
STX-EUR 0.0331 0.0291 0.0223 0.0222E 0.0289 0.0307 0.0254
STX-GBP 0.0288 0.0294 0.0236 0.0232E 0.0304 0.0298 0.0264
STX-JPY 0.0290 0.0278 0.0238 0.0233E 0.0284 0.0253 0.0249
STX-CHF 0.0262 0.0241 0.0217 0.0211E 0.0239 0.0239 0.0221
STX-CAD 0.0300 0.0275 0.0273E 0.0274 0.0310 0.0303 0.0290
STX-AUD 0.0353 0.0326 0.0326 0.0319E 0.0374 0.0363 0.0331
STX-BRL 0.0482 0.0426 0.0432 0.0427 0.0471 0.0466 0.0451
STX-INR 0.0413 0.0343E 0.0378 0.0367 0.0392 0.0397 0.0356
STX-RUB 0.0640 0.0530E 0.0552 0.0550 0.0556 0.0617 0.0583
STX-TRY 0.0743 0.0751 0.0567 0.0556E 0.0475 0.0631 0.0559
STX-KRW 0.0466 0.0421 0.0391 0.0371E 0.0432 0.0429 0.0425
STX-ZAR 0.0369 0.0366 0.0306 0.0303E 0.0335 0.0377 0.0314
Average 0.0411 0.0378 0.0345 0.0339E 0.0372 0.0390 0.0358

Panel B: 99% Expected Shortfall
STX-EUR 0.0061 0.0056 0.0031 0.0029E 0.0081 0.0096 0.0074
STX-GBP 0.0057 0.0057 0.0042 0.0033E 0.0095 0.0092 0.0080
STX-JPY 0.0088 0.0065 0.0051 0.0043E 0.0094 0.0086 0.0074
STX-CHF 0.0062 0.0047 0.0038 0.0030E 0.0076 0.0073 0.0063
STX-CAD 0.0077 0.0076 0.0065 0.0054 0.0097 0.0099 0.0085
STX-AUD 0.0103 0.0083 0.0067 0.0049E 0.0133 0.0133 0.0106
STX-BRL 0.0097 0.0101 0.0093 0.0084E 0.0146 0.0150 0.0133
STX-INR 0.0095 0.0069 0.0056 0.0036E 0.0135 0.0143 0.0129
STX-RUB 0.0181 0.0112E 0.0129 0.0126 0.0228 0.0253 0.0229
STX-TRY 0.0192 0.0197 0.0099 0.0089E 0.0203 0.0276 0.0221
STX-KRW 0.0075E 0.0118 0.0097 0.0094 0.0154 0.0159 0.0160
STX-ZAR 0.0070 0.0065 0.0062 0.0053 0.0094 0.0109 0.0089
Average 0.0096 0.0087 0.0069 0.0060E 0.0128 0.0139 0.0120

Notes: This table presents the mean absolute error (MAE) to evaluate the performance of ES predication. For
the equity-currency (long equity and short currency) portfolios, we estimate the VaR and ES models using 250
business days over the period 26 Oct. 2005 - 10 Oct. 2006, and compute the one-day-ahead forecast of VaR for
11 Oct. 2006. We conduct rolling forecasting by moving forward a day at a time and end with the forecast for 4
Jan. 2012. This generates 1,677 out-of-sample daily forecasts. “T”, “SkT”, “TV T” and “TV SkT” denote the
“constant t copula”, “constant skewed t copula”, “time-varying t copula” and “time-varying skewed t copula”
respectively. All copula models are semiparametrically estimated. “BEKK”, “CCC” and “DCC” denote the
multivariate GARCH models. “Average” evaluates the average MAE of the 12 equity-currency portfolios. E
indicates the smallest MAE among 7 different models.
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Table 3.12 Evaluation of Optimal Asset Allocation

Portfolio Sharp Ratio GL Ratio AIMIN AIMAX AIMAXMIN AIMINMAX

Panel A: Traditional Frameworks
Naïve 0.2492 0.1078 0.0422 0.0380 0.0441 0.0197
MEAN-VAR 0.4450 0.2001 0.0764 0.0686 0.0828 0.0353
MEAN-MAD 0.4696 0.2092 0.0802 0.0723 0.0872 0.0371

Panel B: Copula Optimization (95% Expected Shortfall)
G 0.7565 0.3702 0.1378 0.1188 0.1598 0.0612
SkT 0.7665 0.3743 0.1404 0.1192 0.1634 0.0619
TV G 0.7555 0.3732 0.1399 0.1190 0.1627 0.0617
TV SkT 0.7738E 0.3790E 0.1415E 0.1207E 0.1648E 0.0625E

Panel C: Copula Optimization (99% Expected Shortfall)
G 0.7638 0.3770 0.1393 0.1208 0.1619 0.0621
SkT 0.7500 0.3708 0.1367 0.1187 0.1584 0.0610
TV G 0.7666 0.3776 0.1396 0.1211 0.1623 0.0622
TV SkT 0.7771E 0.3867E 0.1430E 0.1227E 0.1669E 0.0633E

Notes: This table presents values of 6 performance measures for different optimization strategies. The first
column reports the Sharpe Ratio and the second column reports the Gain-Loss Ratio. The other columns
report four acceptability indices including AIMIN, AIMAX, AIMAXMIN and AIMINMAX, see Cherny and
Madan (2009). “Naïve” denotes the equally weighted buy and hold strategy. “Mean-variance” denotes the
optimal portfolio constructed by the mean-variance framework. “Mean-MAD” denotes the optimal portfolio
constructed by the mean-MAD framework proposed by Konno and Yamazaki (1991). All the copla based
optimal portfolios are constructed by mean-ES framework (The portfolio ES is estimated by the copula model
at both 95% and 99% confidence levels). “G”, “SkT”, “TV G” and “TV SkT” denote the “constant Gaussian
copula”, “constant skewed t copula”, “time-varying Gaussian copula” and “time-varying skewed t copula”
respectively. All copula models are semiparametrically estimated. E indicates the maximum value for each
performance measure.
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Chapter 4

Correlated Defaults of UK Banks:

Dynamics and Asymmetries

We document asymmetric and time-varying features of dependence between

the credit risk of UK top tier banks using a new CDS dataset. The market-

implied probability of default for individual banks is derived from observed

market quotes of CDS. The default dependence between banks is modeled by

a novel dynamic asymmetric copula framework. We show that all the empiri-

cal features of CDS spreads, such as heavy-tailedness, skewness, time-varying

volatility, multivariate asymmetries and dynamic dependence, can be captured

well by our model. Given the marginal default probability and estimated cop-

ula model, we compute the joint and conditional probability of default of UK

banks by applying a fast simulation algorithm. Comparing our model with tra-

ditional copula models, we find that the traditional models may underestimate

the joint credit risk most of the time, especially during the recent crisis. Further-

more, we perform an extensive regression analysis and find solid evidence that

time-varying asymmetries between CDS spreads of UK banks contain useful in-

formation to explain and predict their joint and conditional default probabilities.
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4.1 Introduction

The recent global financial crisis and EU sovereign debt crisis have caused great concern

about the credit risk of large financial institutions and sovereign entities. The central banks

and financial authorities have paid much more attention to the supervision of credit risk

in large financial institutions since then. Understanding the joint credit risk of financial

institutions is of particular important because their failures and losses can impose serious

externalities on the rest of the economy (Acharya et al., 2010). Acharya et al. (2014) also

document that the bailouts of large banks in Eurozone triggered a significant increase of

sovereign credit risk from 2007 to 2011.

Recent empirical literature shows that modeling default dependence and joint default

probability plays an important role in banking supervision (see Erlenmaier and Gersbach,

2014; Pianeti et al., 2012). This is because joint default probability can be viewed as an

efficient systemic risk measure, as the systemic default risk arises from simultaneous default

of multiple large banks. Some giant banks are “too big to fail” and the default of one bank can

probably trigger a series of defaults of other banks and financial companies; for instance, the

collapse of the Lehman Brothers in September 2008 triggered turmoil in financial markets

and exacerbated the global financial crisis of 2007-2009. Das et al. (2006) show that the

defaults of individual firms may cluster when their default risk is driven by some common

factors.

From the perspective of practitioners, modeling the joint default probability of banks is

also of great interest for risk management and derivative pricing. For instance, a protection

contract (e.g. Credit Default Swap (CDS)) written by one bank (CDS seller) to insure against

the default of another bank (debtor) is exposed to the risk that both banks default. In other

words, CDS buyer also takes the counterparty risk that CDS seller will fail to fulfill their

obligations because of the OTC nature of the CDS market.

There are two important aspects of modeling the joint default probability of two or several

reference entities:

First, it is essential to obtain reliable probability of default (PD) and capture the default

dynamics of a single reference entity. A number of statistical and econometric models have
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been proposed to obtain the term structure of default rates and they can be classified into three

methods: (i) Historical default rate based on the internal rating systems from rating agencies

(e.g. Moody’s publishes historical default information regularly); (ii) Structural credit pric-

ing models based on the option theoretical approach of Merton (1974); (iii) Reduced-form

models. In our study, we consider using one reduced-form model based on the bootstrapping

method proposed in Hull and White (2000a) and O’Kane and Turnbull (2003) to calculate

the risk neutral default probability for each bank using CDS market quotes.1 The reason

we choose this approach is as follows: Firstly, the rating information provided by agencies

is not able to change as fast as the market movement. Whereas, the market information

used in the approach of Hull and White (2000a) can reflect well the market agreed anticipa-

tion of evolution of future credit quality; Secondly, although credit rating agencies such as

Moody’s regularly publish short-term and long-term credit ratings (PDs) for firms, this rating

information normally lacks granularity. Different from the rating information provided by

agencies, CDS market quotes normally have different maturities (6 month, 1-year, 2-year,

3-year, 4-year. 5-year, 7-year and 10-year) and thus could imply the full term structure of

default probability; Thirdly, the bootstrapping procedure is a standard method for marking

CDS positions to market and has been widely used by the overwhelming majority of credit

derivative trading desks in financial practice, see Li (2000) and O’Kane and Turnbull (2003).

Recently, this procedure has also has been applied in empirical financial studies, see Huang

et al (2009), Creal et al. (2014b) and Lucas et al. (2014), etc.

Second, an empirically reliable model of correlated defaults between the reference enti-

ties plays a central role in credit risk modeling and pricing. Various approaches have been

proposed to model correlated defaults and these models can be roughly classified into four

categories: (i) CreditMetrics; (ii) Intensity-based models; (iii) Barrier-based firm’s value

models; (iv) Copula-based correlation models. However, these popular methods have their

own limitations. For instance, the calibration and implementation of barrier-based models are

difficult and the intensity-based approach normally has computational complexities because

of a large number of parameters (see Schönbucher, 2003).

1CDS is essentially a protection contract to insure against the default of a reference entity. The CDS spread
can be viewed as a more direct measure of credit risk compared to bond or loan spreads. This is because the
bond or loan spread is also driven by other factors, such as interest rate movements and firm-specific equity
volatility, see Campbell and Taksler (2003).
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A Copula function has several attractive mathematical properties in default correlation

modeling. First, it allows more flexibility and heterogeneity in the marginal distribution mod-

eling. It is straightforward and convenient to link random variables with different marginal

distributions with one copula function. Second, there are various versions of copula function

and that allows us to fit different default dependence between the reference entities. Earlier

studies on default dependence modeling normally rely on the Gaussian copula assumption

(see Andersen and Sidenius, 2004; Das et al., 2007; Glasserman and Li, 2005; Giesecke,

2004; Hull and White, 2004; Li, 2000, among many others), however empirical finance liter-

ature provides strong evidence against the assumption of Gaussian dependence.2 One draw-

back of the Gaussian copula is the lack of tail dependence. This means that tail events in the

Gaussian copula are asymptotically independent of each other. Thus, the Gaussian copula-

based models lack the ability to model the dependence between extreme values and therefore

substantially underestimate the risk under extreme circumstance of financial market, such as

the recently financial crisis caused by the collapse of Lehman Brothers in 2008. Substan-

tial evidence has been found to show that default dependence between reference entities is

non-Gaussian and time-varying, see for instance, Christoffersen et al. (2013). Meneguzzo

and Vecchiato (2004) use the Student’s t copula to price the CDO and basket CDS and find it

could provide better fit than the Gaussian copula because of its flexibility in capturing the tail

dependence. Thus the t copula is able to generate simultaneous extreme events with higher

probabilities than the Gaussian copula. This property is of particular importance in credit

risk modeling, as it leads to higher probabilities of joint defaults. However, the t copula is

limited by its nature of symmetry and thus it is not able to well capture any asymmetries

between assets.

Another important feature of default correlation is the time variation. Some conventional

models use historical data to estimate the default correlation (e.g., Gupton et al., 1997; Lu-

cas, 1995), however historical data cannot reflect well the current perception of the market.

First, the default correlation changes over time as the credit quality of firms is dynamic. A

2Before the 2007-2008 global financial crisis, the Gaussian copula was the most popular copula model in
derivatives pricing, especially the valuation of collateralized debt obligations (CDOs), because of its computa-
tional simplicity. However, many financial media commentators believed that the abuse of the Gaussian copula
was one of the major reasons contributing to this crisis, see for instance, “Recipe for Disaster: The Formula
That Killed Wall Street” (Wired Magazine, 2009), “Wall Street Wizards Forgot a Few Variables” (New York
Times, 2009), and “The Formula That Felled Wall Street” (The Financial Times, 2009).
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substantial improvement of credit quality may cause a significant drop of default correlation,

whereas a deterioration of credit quality may lead to a considerable increase of default cor-

relation (Zhou, 2001). Second, the default correlation also varies with systemic risk factors,

such as the state of the economy in the business cycle and the conditions of the financial

market (Crouhy et al., 2000).

In this paper, we apply a novel multivariate econometric framework to model the de-

fault correlation and assess the joint default probability of UK banks following Lucas et al.

(2014). Specifically, we use a dynamic asymmetric copula model which combines the gen-

eralized hyperbolic skewed t (hereafter GHST) copula with the generalized autoregressive

score (hereafter GAS) model. Our model is able to capture all the empirical features of

univariate and multivariate financial time series, such as heavy-tailedness, skewness, time-

varying volatility, multivariate asymmetries and dynamic dependence. This dynamic frame-

work is closely related to two strands of literature on copula modeling. One strand of litera-

ture focuses on modeling multivariate asymmetries using the GHST copula, see for example

Demarta and McNeil (2005), Smith et al (2012), Christoffersen et al. (2012) and Christof-

fersen and Langlois (2013), among others. Another strand of literature which uses the GAS

model to capture the dependence dynamics, is pioneered by Creal et al. (2013). It has several

attractive econometric properties and therefore has become increasingly popular in empiri-

cal finance studies in recent years, see for instance, Creal et al. (2014a), Janus et al (2014),

Lucas et al. (2014) and Salvatierra and Patton (2015). There are two clear advantages of

this dynamic asymmetric copula framework. First, it allows for non-zero tail dependence

and multivariate asymmetries. Second, the time-varying nature of default correlation can be

captured well by the GAS process.

Given the joint probability of default, we can further estimate the conditional default

probabilities under “what if” circumstances. Inspired by Lucas et al. (2014), we further

investigate the default risk of one bank given a credit event occurring in another bank. From

the perspective of financial institutions and authorities, a robust stress testing and monitoring

framework are obviously useful for quantifying the interaction and contagions of corporate

credit risks during the crisis.

In addition, the ongoing debate on the source of banking credit risk also motivates us to

investigate if the tail dependence have explanatory and predictive power to joint and condi-
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tional default risk for the top-tier banks in UK markets. Although the determinants of credit

spreads have been extensively studied by both theoretical and empirical finance literature,3

research on determinants of joint and conditional credit risk is very limited. This is important

because understanding determinants of systemic credit risks of banks can not only help us

explain the time-variation of default risk, but also improve the predictive accuracy of joint

and conditional probabilities of default in the future.

We make five empirical contributions to the literature:

First, differently from existing literature on the joint credit risk of UK banks, such as

Li and Zinna (2014), we document two important features of CDS spreads for UK top tier

banks: multivariate asymmetry and dynamic dependence. Using threshold correlation and a

model free test proposed by Hong et al. (2007), we find there is no significant linear asym-

metries between CDS spreads of UK banks. However, significant asymmetries are found by

performing a test based on the tail dependence in Patton (2012). In addition, we also apply

several widely used structure break tests and identify the presence of dynamic dependence

of CDS spreads. These documented features provide us with strong motivation to consider a

econometric model which is able to accommodate them.

Second, we apply a novel dynamic asymmetric (i.e. GHST) copula framework to capture

the variation of credit dependence between banks. Differently from the copula literature on

CDS market, such as Christoffersen et al. (2013) and Lucas et al. (2014), we consider not

only a full parametric method, but also a semiparametric dynamic copula framework that

relies on fewer amounts of distributional assumptions, see Chen and Fan (2006a) and Chen

and Fan (2006b). Surprisingly, we find that semiparametric copula models slightly under-

perform compared with a full parametric copula. We attribute this result to the better fitness

provided by the univariate skewed t distribution in full parametric modeling. In general, we

find the dynamic asymmetric copula outperforms the dynamic model based on the Gaussian

or Student’s t copula, as our framework is able to capture the multivariate asymmetry and

dependence dynamics simultaneously. In addition, from the copula implied default correla-

tion, we find that correlation between banks dramatically increases during times of stress and

gradually decreases after 2013.

3Important contributions include Merton (1974), Collin-Dufresne et al. (2001), Campbell and Taksler
(2003), Ericsson et al. (2009) and Christoffersen et al. (2013), among many others.
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Third, we perform a copula-based simulation algorithm to estimate the joint default prob-

ability of UK top tier banks. Our empirical results show that the joint probability of default

estimated by dynamic asymmetric copula is higher than the probability estimated by dynamic

Gaussian or Student’s t copula in most of the time during our sample period. This indicates

that the Gaussian or Student’s t copula-based models may underestimate the potential risk

as neither of them can accommodate the multivariate asymmetries between credit risk of

banks. Using marginal and joint probability, we also investigate the conditional probability

of default under a hypothetical adverse market scenario.

Fourth, we find that the joint credit risk of UK banks implied by the copula model has dra-

matic variation during 2007-2015. The joint probability of default remarkably increases dur-

ing the global financial crisis, Eurozone debt crisis and after the downgrade of US sovereign

debt. In addition, our result also implies that the monetary policy implemented by the Bank

of England and European Central Bank also significantly affect the joint credit risk of UK

banks.

Fifth, we perform an extensive regression analysis to investigate two questions: (1)

Whether the tail dependence of CDS spreads between banks implied by dynamic copulas

are related to the their joint and conditional probabilities of default; (2) Whether the tail

dependence can provide useful information to predict future joint and conditional probabili-

ties of default. We find that the tail dependence contains useful information which not only

explains the contemporaneous joint and conditional default probability but also predicts the

future risk of joint default in the bank industry.

The remainder of the paper is organized as follows. In Section 4.2, we introduce the

model for marginal default probability and the dynamic asymmetric copula model. Section

4.3 presents the main empirical results on asymmetric and dynamic dependence, marginal

default probability, joint default probability estimates and conditional default probability.

Section 4.4 contains a regression analysis to investigate if the estimated dependence measures

(i.e. the lower and upper tail dependence) are related to cross-sectional joint probabilities of

default as well as conditional probabilities of default between banks. We further investigate

if the time-varying tail dependence have predictive power of future joint and conditional

default probability. Section 4.5 concludes.
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4.2 Model Specification

4.2.1 Dynamic Model of CDS Spread

First, we define an observed d-dimensional time series vector yi,t ∈ Rd, t = 1, ...,T, as the

log-difference of weekly CDS spread. In order to obtain the standardized residuals for con-

sistent modeling of dependence dynamics, we consider an ARMA(1,1) model to capture the

variation of conditional mean of the log-differenced CDS spreads,4

yi,t = ci +ϕiyi,t−1 +θiεi,t−1 + εi,t (4.1)

where εi,t is assumed to be independent of yi,t and thus the conditional mean is µi,t =

ci +ϕiyi,t−1 +θiεi,t−1. Second, the conditional variance is fitted by the GJR-GARCH(1,1,1)

model, which is able to capture the asymmetric volatility clustering (see Glosten et al., 1993).

σ
2
i,t = ωi +αiε

2
i,t−1 +βiσ

2
i,t−1 +δε

2
i,t−1Ii,t−1 (4.2)

where ωi,αi and βi are constrained to be positive and the indicator function Ii,t−1 = 1 if

εi,t−1 < 0 and Ii,t−1 = 0 if εi,t−1 > 0 . The standardized residual is given by zi,t =(yi,t−µi,t)/σi,t .

For the parametric modeling, we assume that zi,t follows the univariate skewed t distribution

Fskew−t from Hansen (1994) to accommodate its skewed and heavy-tailed features. For the

semiparametric modeling, we use the empirical distribution function F̂i to transfer zi,t to the

uniformly distributed probabilities.5

Then we further investigate asymmetric and time-varying default dependence across dif-

ferent banks in US and EU markets. The linear asymmetry can be tested using a Wald test

proposed in Hong et al. (2007) and the tail dependence asymmetry can be tested by the

bootstrap method in Patton (2012). The time-varying nature of default dependence between

banks can be examined by the structural break tests used in Patton (2012). Verifying these

4We first consider all the possible models nested within the ARMA(2,2) and choose the optimal order
according to the Bayesian Information Criterion (BIC). It turns out that for most banks, ARMA(1,1) gains the
smallest BIC.

5More details of semiparametric copula model can be found in Chen and Fan (2006a) and Chen and Fan
(2006b)
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properties of CDS spreads in the banking sector will provide strong motivation and support

for using dynamic asymmetric copula models.

4.2.2 Calibrating the Marginal Default Probability Curve

It is essential to estimate the firm-specific default probability before computing the joint

default probability of selected banks. The firm-specific default probabilities can be estimated

from the observed spreads of corporate CDS using conventional way. First, we define the

default probability function Fi (t) of bank i at time t by

Fi (t) = P(τ ≤ t) = 1−P(τ > t) = 1−Q(t) , t ≥ 0 (4.3)

where the τ denotes the time to default (survival time). Qi (t) is the survival function, which

is defined in terms of a piecewise hazard rate λ (t)

Qi (t) = exp
(
−
ˆ tN

t
λ (s)ds

)
(4.4)

More discussions and proofs of hazard rate function can be found in Appendix 4.A. Follow-

ing the “bootstrapping” method6 described in Hull and White (2000a), O’Kane and Turnbull

(2003) and O’Kane (2008), the risk neutral default probabilities can be calculated by invert-

ing a CDS pricing formula.7 Defining the time to default τ = T − tV , we have

Qi (t,T ) =



exp(−λ0,1τ) if 0 < τ < 1

exp(−λ0,1,−λ1,3 (τ−1)) if 1 < τ < 3

exp
(
−λ0,1,−2λ1,3−λ3,5 (τ−3)

)
if 3 < τ < 5

exp
(
−λ0,1,−2λ1,3−2λ3,5−λ5,7 (τ−5)

)
if 5 < τ < 7

exp
(
−λ0,1,−2λ1,3−2λ3,5−2λ5,7−λ7,10 (τ−7)

)
if τ > 7

6Here, the bootstrap approach is different from the concept of the bootstrap used in statistics. It is an iterative
process to construct the default probability curve using CDS market quotes. This method has been widely used
in financial practice because of its computational simplicity and stability.

7More details of premium leg, protection leg and breakeven quotes of CDS can be found in Appendix 4.B
and 4.C.
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where Qi (t,T ) denotes the arbitrage-free survival probability of the reference entity to time

T conditional on surviving to time tV , λt0,t1 denotes the hazard rate from time t0 to t1. Given

the market quotes of CDS spreads S1, ...,SN at market dates t1, ..., tN , we can calibrate the

hazard rate λ (t) and calculate the default probability pi,t = Fi (t). We provide a detailed

bootstrapping algorithm in Appendix 4.D.

4.2.3 Generalized Hyperbolic Skewed t Copula Model

Copula has been widely applied in default dependence modeling in the financial industry

since Li (2000). The existence of multivariate asymmetry and time-variation of default de-

pendence between CDS spreads necessitates the usage of a new class of dynamic asymmetric

copula models. Following the study of Christoffersen et al. (2012), Christoffersen and Lan-

glois (2013) and Lucas et al. (2014), we apply an asymmetric copula framework implied

by the generalized hyperbolic (GH) skewed t distribution discussed in Demarta and McNeil

(2005). This distribution belongs to the class of multivariate normal variance mixtures and

has the stochastic representation

X = µ + γW +
√

WZ (4.5)

for a d-dimensional parameter vector γ . Further, W is a scalar valued random variable fol-

lowing an inverse gamma distribution W ∼ IG(ν/2,ν/2) and Z is a d-dimensional random

vector following a normal distribution Z ∼ N (0,Σ) and is independent of W (see Demarta

and McNeil, 2005).

The density function of multivariate GH skewed t distribution is given by

fskt (z;γ,ν ,Σ) =
2

2−(ν+d)
2 Kν+d

2

(√
(ν + z∗′Σ−1z∗)γ ′Σ−1γ

)
ez∗′Σ−1γ

Γ
(

ν

2

)
(πν)

d
2 |Σ|

1
2 (ν + z∗′Σ−1z∗)

−ν+d
2
(
1+ 1

ν
z∗′Σ−1z∗

)−ν+d
2

(4.6)

where Kλ , ν and γ denote the modified Bessel function of the third kind, the degree of

freedom and skewed parameter vector, respectively. The density of multivariate GH skewed

t converges to the conventional symmetric t density when γ tends to 0. For the parametric

case, we define the shocks z∗i,t = F−1
skt,i (ui,t) = F−1

skt,i

(
Fskew−t,i (zi,t)

)
where F−1

skt,i (ui,t) denotes

the inverse cumulative distribution function of the univariate GH skewed t distribution and it

165



is not known in closed form but can be approximated well via simulation. Fskew−t,i denotes

the cumulative distribution function of skewed t distribution in Hansen (1994). Note that we

use z∗i,t not the standardized return zi,t . For the nonparametric case, we use the EDF to obtain

the estimate of ui,t . A more detailed discussion can be found in Christoffersen et al. (2012).

The probability density function of the GHST copula defined from above multivariate

GH skewed t density of Eq. 4.6 is given by

cskt (z;γ,ν ,Σ) =

2
(ν−2)(d−1)

2 Kν+d
2

(√(
ν + z∗′Σ−1

t z∗
)

γ ′Σ−1
t γ

)
ez∗′Σ−1

t γ

Γ
(

ν

2

)
|Σ|

1
2
(
ν + z∗′Σ−1

t z∗
)−ν+d

2
(
1+ 1

ν
z∗′Σ−1

t z∗
)−ν+d

2
(4.7)

×
d

∏
i=1

(√(
ν +(z∗i )2

)
γ2

i

)− ν+1
2 (

1+ 1
ν
(z∗i )

2) ν+1
2

Kν+1
2

(√(
ν +(z∗i )2

)
γ2

i

)
ez∗i γi

where Σt is the time-varying covariance matrix. Specifically, Σt = DtRtDt , where Dt is an

identity matrix in copula modeling and Rt is the time-varying correlation matrix. So we only

need to model the correlation matrix Rt in this case. Figure 4.1 illustrates the differences

between the Gaussian copula, t copula and GHST copula in dependence modeling.

[ INSERT FIGURE 4.1 ABOUT HERE ]

4.2.4 GAS Dynamics

Next, we investigate the evolution of dependence structure of credit risk across UK top tier

banks during our sample period. The dynamics of copula correlation matrix Rt are driven by

the Generalized Autoregressive Score (GAS) model of Creal et al. (2013) and Lucas et al.

(2014). We assume that the correlation parameter δt is dynamic and is updated as function

of its own lagged value and the standardized score of the log-likelihood.8 To make sure that

it always lies in a pre-determined range e.g. δt ∈ (−1, ,1), the GAS model utilizes a strictly

increasing transformation. Following Patton (2012) and Lucas et al. (2014), the transformed

8In the baivariate case, the copula correlation is a scalar and it can be obtained from the correlation matrix

Rt =

[
1 δt
δt 1

]
estimated in Section 4.2.3. When the dimension is three or above, we assume that Σt = Σt (δt) =

L(δt)L(δt)
′
= Dt(δt)Rt(δt)Dt (δt), see more detailed discussion in Lucas et al. (2014).

166



correlation matrix is denoted by gt :

gt = h(δt)⇔ δt = h−1 (gt) (4.8)

where δt = (1− e−gt )/(1+ e−gt ). Furthermore, the updated transformed parameter gt+1 is

a function of a constant ω̄ , the lagged transformed parameter gt , and the standardized score

of the copula log-likelihood st = Q−1/2
t ∇t :

gt+1 = ω̄ +ηQ−1/2
t ∇t +ϕgt (4.9)

where

∇t ≡
∂ logc

(
u1,t , ...,ud,t ;δt

)
∂δt

and Qt ≡ Et−1
[
∇t∇

′
t
]
.

where ∇t is the score of the conditional copula density with respect to δt and Qt is the scaling

matrix for the score ∇t . Since the GAS model is an observation driven model, we estimate

the parameters using the maximum likelihood estimation

δ̂t = argmax
δt

n

∑
t=1

logc
(
u1,t , ...,ud,t ;δt

)
(4.10)

The dynamic copulas are parametrically estimated using maximum likelihood estimation.

When the marginal distributions are estimated using the skewed t distribution, the resulting

joint distribution is fully parametric. When the marginal distribution is estimated by the

empirical distribution function, then the resulting joint distribution is semiparametric.

4.2.5 Modeling Joint and Conditional Probability of Default

From the last section, we know the distribution function (marginal default probability) pi,t of

bank i at time t; then the joint probability of default pi, j,t for banks i and j at time t is given

by

pi, j,t = P
(

zi,t > F−1
i,t (1− pi,t) ,z j,t > F−1

j,t
(
1− p j,t

))
(4.11)

where zi,t denotes the filtered CDS spread changes of bank i at time t and F−1
i,t (·) denotes the

inverse univariate GHST distribution. The joint probability of exceedance can be computed

using the dependence estimated by GHST copula. The conditional probability of a default
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for bank i given a default of bank j is defined by

pi| j,t = P
(

zi,t > F−1
i,t (1− pi,t) ,z j,t > F−1

j,t
(
1− p j,t

)
| z j,t > F−1

j,t
(
1− p j,t

))
=

pi, j,t

p j,t
(4.12)

4.3 Empirical Analysis

4.3.1 Data

We use a novel dataset of weekly corporate credit default swap (CDS) spreads with different

maturities (6-month, 1-year, 2-year, 3-year, 4-year and 5-year) of top-tier UK banks includ-

ing Barclays, HSBC Holdings (hereafter HSBC), Lloyds Banking Group (hereafter Lloyds),

Royal Bank of Scotland Group (hereafter RBS) and Standard Chartered (hereafter Standard).

All the CDS contracts are denominated in Euros. The London Interbank Offered Rate (hence-

forth Libor) data with different maturities are also collected to calibrate the marginal default

probability curve. Our data cover the period from September 7, 2007 to April 17, 2015.9 We

use weekly data to avoid non-synchronicity and other problems with daily data. All the CDS

market quotations are collected from Bloomberg. For the dependence analysis, we mainly

focus on 5-year CDS contracts on all banks as these contracts are the most liquid and take up

the largest percentage of the entire CDS market.

Table 4.1 reports descriptive statistics and time series test results for log-differences of

weekly 5-year CDS spreads across five top tier UK banks in FTSE 100 index from September

7, 2007 to April 17, 2015. The basic statistics in Panel A describe the main features of CDS

spread, such as univariate asymmetry, heavy-tailness and leptokurtosis. The non-zero skew-

ness and large value of kurtosis clearly indicate the non-Gaussian features of CDS spreads.

In particular, we find that the Standard Chartered obtains the largest skewness (0.793) as well

as the largest kurtosis (10.041). Panel B reports that the results of the Jarque-Bera test for

normality, the Ljung-Box Q-test for autocorrelation, as well as the Engle’s Lagrange Mul-

tiplier test for the ARCH effect. The basic statistics and the p-values of JB test show solid

evidence against the assumption of normality. Also the results for the Ljung-Box Q-test and

Engle’s Lagrange Multiplier test indicate the necessity for modeling conditional mean and

9The CDS data of Standard Chartered is only available since June 27, 2008.
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conditional variance before modeling the dependence structure between the CDS spread of

UK banks. Table 4.2 reports the Pearson’s linear correlation coefficients as well as the Spear-

man’s rank correlation coefficients between UK banks and it indicates that the credit risk of

banks are highly correlated with each other. It is worth noting that the correlations of Stan-

dard Chartered with other banks are clearly lower than the correlations between other four

banks. This is possibly because the Standard Chartered does not have retail banking busi-

ness in the UK, and about 90% of its profits come from the Asian, African and the Middle

Eastern markets according to its annual report in 2013. Althrough HSBC and Barclays are

also multinational banking and financial services companies, the UK market is still targeted

as their "home market".

[ INSERT TABLE 4.1 AND 4.2 ABOUT HERE ]

Figure 4.2 shows the levels and conditional volatility of average CDS spread of five UK

top tier banks. It indicates some important patterns regarding the CDS spread in our sample

period. Panel A illustrates the trend of the average CDS spread across five top tier banks.

The arrows in each figure indicate several major events in CDS market from 2007 to 2015.

We can see that the occurrence of major credit events is always accompanied with the CDS

spread skyrocketing. For instance, after the S&P downgrades the US sovereign debt, the

average CDS spread goes up to 285 in November 2011. Panel B plots the timer series of the

conditional volatility for the average CDS spread changes estimated by the GJR-GARCH

of Glosten et al. (1993). First, this shows that the CDS spread is extraordinarily volatile

during the financial crisis in 2008-2009. Second, it also indicates that the turbulence of CDS

spreads of UK banks is closely related to the credit events in global financial market. Another

worth noting fact is that conditional volatility has been stabilized since the end of the global

and EU financial crisis. It is significantly smaller than volatility during crisis even when the

average CDS spread shows skyrocketing after the S&P downgraded the US government debt

in August 2011. It would indicate that the CDS spread was widely fluctuated during global

financial crisis due to high uncertainty while it kept maintaining high CDS spread without

big fluctuation since 2011.

[ INSERT FIGURE 4.2 ABOUT HERE ]

169



Table 4.3 presents the parameter estimations and results of goodness-of-fit test for uni-

variate models, i.e. ARMA for conditional mean, GJR-GARCH for conditional volatility

and skewed t distribution for standardized residuals. First, we model the conditional mean

dynamics using the ARMA model up to order (2,2) and use Bayesian Information Criterion

(BIC) to select the optimal order. It turns out that the ARMA(1,1) is the best candidate for all

the cases except the Standard Chartered. Second, the time-varying volatility is captured by

the GARCH-type model. We experiment with ARCH, GARCH and GJR-GARCH models

up to order (2,2) and choose the best candidate according to the BIC. The values of BIC

indicate that GJR-GARCH provides the best performance. All the leverage parameters of

the GJR-GARCH model are significantly negative indicating asymmetric volatility cluster-

ing, i.e. large positive changes of CDS spread are more likely to be clustered than negative

changes. This finding is consistent with the phenomenon that the CDS spread normally has

sharp and continuous increase near or after the occurrence of major credit events. The bot-

tom of Table 4.3 reports p-values from the Kolmogorov-Smirnov and Cramer-von Mises

goodness-of-fit tests for the conditional marginal distributions modeling. The p-values are

obtained using the simulation approach in Patton (2012). All the p-values are clearly greater

than 0.05, so we fail to reject the null hypothesis that the filtered returns are well-specified

by the skew t distribution of Hansen (1994).

[ INSERT TABLE 4.3 ABOUT HERE ]

4.3.2 Calibrating CDS-implied Marginal Default Probability

In this section, we calibrate the model using the market quotes of CDS with different ma-

turities (6-month, 1-year, 2-year, 3-year, 4-year and 5-year) at each time t, and bootstrap

the default probability term structure following the procedure proposed in Hull and White

(2000a) and O’Kane and Turnbull (2003). This mark-to-market probability of default of indi-

vidual firm is derived from the observed spread of CDS contract by inverting a CDS formula.

Specifically, we use the Libor rate with different maturities as discount factors and assume

that the recovery rate is 40% (see O’Kane and Turnbull, 2003). Following recent finance

literature, such as Huang et al (2009), Black et al. (2013), Creal et al. (2014b) and Lucas

et al. (2014), we consider a CDS pricing formula with no counterparty default risk. Given
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the assumptions above, the default intensity can be obtained using a bootstrap algorithm, see

Appendix 4.D. Given the default intensity, we can also compute the probability of default for

different maturities as this is just a function of the default intensity. Note that the probability

we obtain is risk neutral as the bootstrap method assumes that the present value premium leg

should be exactly equal to the present value of the protection leg, see a detailed discussion in

Appendix 4.C.

[ INSERT FIGURE 4.3 ABOUT HERE ]

Figure 4.3 illustrates the risk neutral default probabilities for individual banks inferred

directly from the market quotes of CDS spread. Panel A plots the bank-specific marginal

probabilities of default over a one year horizon and Panel B plots the bank-specific marginal

probabilities of default over a five year horizon. The market-implied default probabilities

vary over time. They significantly rise after the bankruptcy of Lehman Brothers and the

downgrade of US sovereign debt. After May 2012, the probabilities of default for all the

banks dramatically decline and stay at a low level in the last two years.

4.3.3 Asymmetric Dependence between Credit Risk of Banks

The asymmetric dependence assets in equity, currency and energy markets have been ex-

tensively studied in empirical finance literature. In this section, we verify the existence of

asymmetries in credit market. Specifically, we investigate whether the dependence between

the CDS spreads of banks is asymmetric. Two methods are considered to test for the pres-

ence of asymmetric dependence: a model-free test for asymmetric correlations proposed by

Hong et al. (2007) and a tail dependence-based asymmetric test described in Patton (2012).

[ INSERT TABLE 4.4 ABOUT HERE ]

Table 4.4 reports the results of two tests on bivariate asymmetry. Given the number of

banks n = 5, there are n(n− 1)/2 = 10 different pairwise combinations of banks. Panel

A reports the statistics and corresponding p-values of the model-free test of Hong et al.

(2007) on threshold correlation. We find that there is no statistically significant asymmetry
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on the threshold correlations. We compute the threshold correlations using the standardized

residuals of CDS spreads. Panel B presents the estimates of the lower and upper tail depen-

dence coefficients for the standardized residuals of CDS spreads based on the full parametric

copula model. It also reports bootstrap p-values from tests on the null hypothesis that the

dependence structure is symmetric (i.e. the upper and lower tail dependence coefficients are

equal). Differently from the test based on the linear correlation, half of the pairs are rejected

at 5% significance level showing evidence of significant difference between the upper and

lower tail dependence coefficients. Interestingly, different from the asymmetries of other

assets which exhibit greater correlation during market downturns than market upturns, CDS

spreads have higher upper tail dependence than lower tail dependence. This is because of

the nature of CDS as a credit derivative contract to insure the protection buyer against any

uncertain reference loan defaulting. The spread of CDS is the cost that the protection buyer

needs to pay to the protection seller in order to obtain a payoff if the loan defaults. The higher

upper tail dependence of CDS market is due to the asymmetric reaction of CDS spreads to

negative and positive news. The spreads normally incorporate negative news much faster

than positive news, see for instance Lehnert and Neske (2006). Thus, when the credit mar-

ket deteriorated sharply during the crisis, the CDS spreads (insurance costs) of firms tend to

increase together more rapidly. Panel C presents the estimates of the lower and upper tail

dependence coefficients based on the semiparametric copula model and the results confirm

the presence of asymmetric dependence between CDS spreads of UK banks.

4.3.4 Time-varying Dependence between Credit Risk of Banks

From Figure 4.2 in Section 4.2.1, we find that the CDS spreads and volatility are time-

varying. This leads us to consider a reasonable conjecture that the dependence structure

between CDS spreads also may vary through time. In order to examine the presence of time-

varying dependence, we consider three tests widely used in literature: (i) A simple test that

examines a structure break in rank correlation at some specified point in the sample period,

see Patton (2012); (ii) A test for unknown break points in rank correlation, see Andrews

(1993); (iii) A generalized break test without an a priori point, see Andrews and Ploberger

(1994).
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[ INSERT TABLE 4.5 ABOUT HERE ]

We implement these tests for time-varying dependence between the standardized residu-

als of 5-year weekly CDS spreads and summary results in Table 4.5. First, without a priori

knowledge of breaking points, we consider using naïve tests for breaks at three chosen points

in sample period, at t*/ T ∈{0.15, 0.50, 0.85}, which corresponds to the dates 24-Oct-2008,

24-Jun-2011, 21-Feb-2014. Second, the “Any” column reports the results of the test for

dependence break of unknown timing proposed by Andrews (1993). The p-values in col-

umn “QA” are based on a generalized break test without an a priori point in (Andrews and

Ploberger, 1994). In order to detect whether the dependence structures between CDS spreads

of different banks significantly changed after the US and EU crisis broke out, we use 15-Sep-

2008 (the collapse of Lehman Brothers) and 01-Jan-2010 (EU sovereign debt crisis) as two

break points in rank correlation and the “US” and “EU” panels report the results for this

test. Overall, the results indicate that for all the bank pairs, except for Lloyds and Standard

Chartered, the null hypothesis (that there is no break point in rank correlation in the sample

period) is significantly rejected by at least one test at 5%. This finding motivates us to choose

the dynamic copula model instead of constant copula model in dependence modeling.

4.3.5 Joint Credit Risk of UK Banking System

The presence of multivariate asymmetry and time-varying dependence between the credit

risk (CDS spreads) of UK top tier banks provides us with strong motivation to apply the

GAS-based GHST copula model proposed by Lucas et al. (2014). It is able to capture all

the stylized facts of CDS spread in univariate time series, the asymmetry as well as the

time-varying dependence in multivariate CDS spread series. In this section, we consider this

framework to estimate the dependence structure between banks and further use the estimated

dependence to simulate the joint probability of default (JPD) of UK top tier banks.

[ INSERT TABLE 4.6 AND 4.7 ABOUT HERE ]

First, we estimate the time-varying correlation coefficients of 10 pairs of banks using the

GAS-based GHST copula. For the sake of comparison, the GAS-based Gaussian copula and
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t copula are also considered. Table 4.6 and Table 4.7 report the estimates for parametric and

semiparametric dynamic copula models, respectively. Comparing these two tables, we find

that their estimates are very close and the parametric copula models are able to provide rela-

tively higher log-likelihood in general. This is probably due to the better fitness in univariate

modeling of the skewed t distribution in Hansen (1994).

[ INSERT FIGURE 4.4 ABOUT HERE ]

Figure 4.4 shows the dynamic evolution of average correlation, which is averaged across

time-varying correlations of 10 bivariate pairs. We plot the time-varying average correlation

implied by the GAS-Gaussian copula, GAS-Student’s t copula and GAS-GHST copula. For

each model specification, we use the same standardized residuals obtained in Section 4.3.1.

The figure shows that the average correlation significantly increased during the crisis. It

goes up to over 0.9 during the global financial crisis in 2008 and has a remarkable decrease

after 2013. Notice that the sudden decreases of correlations on June 27, 2008 are caused by

the fact that we include the data of the Standard Chartered, which has much lower average

correlation with other banks. We find that the correlation implied by the GHST copula is

greater than the correlations implied by the Gaussian and Student’s t copulas. This result is

in accordance with the properties and connection of these copula models. Specifically, the

Gaussian copula is nested in the Student’s t copula, as the Student’s t copula asymptotically

approaches the Gaussian copula when the degree of freedom increases. Unlike the Gaussian

copula, the Student’s t copula is able to take into account the tail dependence, which is of

particular importance in risk modeling. Further, the Student’s t copula is also nested in the

GHST copula. The GHST copula is equivalent to the t copula when its skewness parameter is

equal to zero. The skewness parameter enables the GHST copula to capture the multivariate

asymmetry in dependence modeling. Thus, the GHST copula is a more general framework

which is able to capture the tail dependence as well as the asymmetric dependence.

[ INSERT FIGURE 4.5 ABOUT HERE ]

Given the marginal probability of default for each bank, the estimated time-varying cor-

relation matrix and the copula parameters, we can simulate the joint probability that two or
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more credit events occur in five UK top tier banks during the sample period. Figure 4.5

shows the market-implied joint probability of default (i.e. two or more credit events occur-

ring) among five UK banks over a five year horizon. The probabilities are estimated based

on three different multivariate models: GAS-Gaussian copula, GAS-Student’s t copula and

GAS-GHST copula. The arrows indicate time points of several major events in the global

financial market. First, joint probability of default sharply rises during the crisis or after the

major credit events take place. The highest default probability arises after S&P downgrades

the US sovereign debt. Second, the joint probability is also affected by the monetary policy

implemented by the Bank of England and European Central Bank, and gradually decreases

after the cut of interest rate. Third, compared with the GHST copula, the Gaussian and

Student’s t copula tend to underestimate the joint probability of default most of the time.

4.3.6 Conditional Risk of UK Banks

Given the joint probability of default and the marginal default probability of individual banks,

we can further investigate the conditional probability of default under a hypothetical adverse

market scenario. Recently, the Bank of England published a new document to list all the key

elements of stress testing for UK banks. Counterparty default is considered as a key risk of

many traded risk scenarios in this document, because a large amount of risk exposures to

individual counterparties is contained in the banks’ trading books (Bank of England, 2015).

In our case, we estimate the conditional probability of default for top tier banks in UK as-

suming that a default event occurs in one of them. We consider a hypothetical scenario that a

credit event happens in RBS and estimate the default probabilities of other banks conditional

on this adverse market scenario. The reason that we choose RBS instead of other banks is

because RBS has the highest average market-implied default probability among five selected

banks (0.1287).

[ INSERT FIGURE 4.6 ABOUT HERE ]

Figure 4.6 shows conditional probability of default for four UK top tier banks assuming

a credit event of RBS. The conditional probabilities are estimated by the Gaussian copula,

Student’s t copula and GHST copula models. First, we find that the GHST copula obtains
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highest conditional probability estimates and the Gaussian copula model has the lowest es-

timates. The conditional probabilities estimated by the Gaussian copula are about 17% (or

24%) lower those estimated by the Student’s t copula (or the GHST copula). This is because

the Gaussian copula is unable to model tail dependence and neither the Student’s t copula nor

the Gaussian copula are able to take into account the asymmetries of dependence. Second,

the probability estimates sharply increase during the financial crisis. In addition, the credit

risk (default probability) also remarkably increases after S&P downgrades the US sovereign

debt.

In this section, first we provide a brief analysis based on the summary statistics of CDS

spreads of five top-tier banks listed in FTSE 100 and we find that occurrence of major credit

events is always accompanied with the significant rise of CDS spread. Also, we find that

the volatility of CDS spreads is extremely fluctuate during the global financial crisis but

the volatility tends to be stabilized in recent years. Second, we calibrate the CDS-implied

marginal default probability for each bank using its CDS market quotes. Third, we doc-

ument two important features of dependence structures between CDS spreads: asymmetry

and time-variation. Given the presence of multivariate asymmetries and time-varying de-

pendence, we apply a dynamic asymmetric (GHST) copula model to compute the joint and

conditional probability of default of UK banks. Our results show that the default probabili-

ties estimated by the GHST copula are higher than the probabilities estimated by Gaussian

or t copula implying that the Gaussian or t copula-based mode may underestimate the default

probabilities due to their symmetric natures.

4.4 Further Analysis of Asymmetry

In this section, we further study how the asymmetric dependence structures (the upper and

lower tail dependence coefficients) play in measuring and predicting joint (or conditional)

default probability using insightful regression analysis. This analysis would further support

the empirical findings in the previous section.
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4.4.1 Asymmetry and Joint Default Probability

Let the joint default probability of bank i and j be pi, j,t and their tail dependence be λi, j,t

at time t. We define the joint default probability by Equation (4.11) and we compute av-

erage joint probability of default p̄i, j,t implied by six GAS-based copula models, including

parametric and semiparametric Gaussian, Student’s t and GHST copulas. We test the impact

of the asymmetric dependence on the joint default probability. We measure the asymmetric

dependence using lower and upper tail dependence implied by both parametric and semi-

parametric dynamic asymmetric copula models. Following McNeil et al. (2005) the lower

tail dependence (LTD) is defined by

λ
LL
i, j,t = lim

q→0+

Ct (q,q)
q

, (4.13)

and the upper tail dependence (UTD) is defined by

λ
UU
i, j,t = lim

q→1−

1−2q+Ct (q,q)
1−q

. (4.14)

We estimate the bivariate dynamic GHST copula model across all possible pairs of banks. For

each pair, we compute average tail dependence λ̄ LL
i, j,t and λ̄UU

i, j,t by taking average of parametric

and semiparametric tail dependence coefficients. Then, we regress p̄i, j,t on λ̄ LL
i, j,t and λ̄UU

i, j,t ,

and test the impact of LTD and UTD on the joint default probability. Hence, the regression

equation is

p̄i, j,t = α +β
LL
i, j λ̄

LL
i, j,t +β

UU
i, j λ̄

UU
i, j,t + εi, j,t . (4.15)

Panel A of Table 4.9 presents the regression results of Equation (4.15).

We consider three possible estimators with panel data: (i) pooled OLS (POLS); (ii) fixed

effects (FE); (iii) random effects (RE). First, we test the existence of fixed effects by com-

paring POLS and FE. We perform the F-test under the null of no fixed effects and reject the

F-test statistic. Hence, we should consider the fixed effects in the regression to get consistent

and efficient results. Second, we test if regressors are correlated with the fixed effects using

Hausman approach. The Hausman test statistic is also rejected. Thus FE is consistent while

RE is inconsistent. We interpret the estimation results based on FE.
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We find that β̂ LL is insignificant while β̂UU is significantly positive, and β̂UU > β̂ LL. This

implies that a higher upper tail dependence from credit deterioration is closely associated

with a higher joint default risk. We also find that both tail dependences can explain the

variation of the conditional default probability by 12.1%. The regression results show that

the upper tail dependence is more informative than the lower tail dependence. The upper tail

plays an important role for measuring the joint default probability.

Next, we test the predictability of the tail dependence. To this end, we included a lagged

tail dependence coefficients as regressors in the regression equation:

p̄i, j,t = α +β
LL

λ̄
LL
i, j,t−k +β

UU
λ̄

UU
i, j,t−k + εt, j,t . (4.16)

We estimate (4.16) by FE for k = 1, . . . ,5 and report results in Panel B.

Only β̂UU is significant and positive for all lags and its magnitude is slowly decreased

as the lag increases. On the other hand, β̂ LL is insignificant for all lags. R2 is also slowly

decreased as the lag increases. It ranges from 0.119 (first lag) to 0.116 (fifth lag). Hence,

both the current and lagged upper tail dependences contains a significant and strong signal

for the future joint default risk.

[INSERT TABLE 4.9 ABOUT HERE]

In sum, the upper tail dependence contains useful information which not only explains

the current joint default probability but also predicts the future risk of joint default of banks.

Thus modeling of asymmetric tail dependence between banks can improve the accuracy of

measuring and forecasting the joint default risk of banks.

4.4.2 Asymmetry and Conditional Default Probability

We apply the regression analysis to the conditional default probability. We regress p̄i| j,t on

λ̄ LL
i, j,t and λ̄UU

i, j,t and test the impact of lower and upper tail dependences between bank i and j

on the conditional default probability. The regression equation is thus given by

p̄i| j,t = α +β
LL
i, j λ̄

LL
i, j,t +β

UU
i, j λ̄

UU
i, j,t + εi, j,t . (4.17)
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Panel A of Table 4.10 presents the regression results of Equation (4.17).

We perform the F-test under the null of no fixed effects and we reject the F-test statistic.

The Hausman test statistic is also rejected. FE is thus consistent while RE is inconsistent.

We interpret the estimation results based on FE.

Both β̂ LL and β̂UU are significant and positive, implying that higher dependence under

extreme circumstances is closely associated with higher conditional default risk. We apply

the equality test to H0 : β LL = βUU to test the asymmetric effect. Although quantitatively

β̂ LL < β̂UU , the null of equality is statistically not rejected. We find that both tail depen-

dences can explain the variation of the conditional default probability by 17.4%. The estima-

tion results therefore show that the upper tail dependence is quantitatively more informative

than the lower tail dependence while it is not statistically validated. Thus we conclude that

the tail dependence plays an important role for measuring the conditional default probability.

Next, we test the predictability of the tail dependence. To this end, we included a lagged

tail dependence coefficients as regressors in the regression equation:

p̄i| j,t = α +β
LL

λ̄
LL
i, j,t−k +β

UU
λ̄

UU
i, j,t−k + εt, j,t . (4.18)

We estimate (4.18) by FE for k = 1, . . . ,5 and report results in Panel B.

Both β̂ LL and β̂UU are significant and positive for all lags and its magnitude is slowly

decreased as the lag increases. This implies that higher dependence under extreme circum-

stances leads to higher conditional default risk. Quantitatively, β̂ LL < β̂UU for all lags but

the inequality is not statistically validated. R2 is also slowly decreased as the lag increases.

It ranges from 0.170 (first lag) to 0.156 (fifth lag). These results indicate that both tail depen-

dence coefficients contain a significant and strong signal for the future conditional default

risk.

[INSERT TABLE 4.10 ABOUT HERE]

In sum, both tail dependence coefficients contain useful information which not only ex-

plains the current conditional default probability but also predicts the future risk of condi-

tional default of banks. Although the upper tail dependence is quantitatively more infor-

mative than the lower tail dependence, it is not statistically validated. Thus the modeling
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of asymmetric tail dependence between banks can improve the accuracy of measuring and

forecasting the conditional default risk of banks.

Consequently, we find that asymmetry contains useful information for measuing and

forecasting joint (or conditional) default risk of banking system, from the regression analysis.

This has two important economic implications. First, from the perspective of the credit risk

modeller, asymmetric dependence should be considered in the credit risk model to avoid the

past nightmare in 2007. Ignoring both multivariate asymmetries must underestimate a joint

default risk of banking system, from the risk manager’s (regulator’s) perspective, during a

crisis. Second, from the perspetive of risk manager, tail dependence coefficients should be

good indicators to predict a future joint default risk of banking system. They can monitor the

banking system, by keep watching if a high tail dependence is frequently observed to give an

early warning to both banks and financial authorities.

4.5 Conclusion

We characterize asymmetric and time-varying dependence between CDS spreads using a new

dataset on top tier UK banks. We find substantial evidence that the upper tail dependence

of CDS spreads is significantly higher than lower tail dependence. Also, the results from

structural break tests are strongly against the constant dependence structure over the sample

period. Our findings highlight the importance of using a multivariate econometric framework

to capture these documented features simultaneously. We calibrate a marginal model using

market quotes of CDS to obtain the market-implied risk neutral default probability for each

bank using a bootstrap algorithm and apply a novel dynamic asymmetric copula approach to

model the default dependence between banks. We find that the default dependence between

banks dramatically increases during times of stress and gradually decreases after 2013. Using

marginal default probability and estimated copula model, we perform a simulation algorithm

to obtain the joint and conditional probability of default of all the selected banks. Our empir-

ical results show that the joint probability of default estimated by the dynamic asymmetric

copula is higher than the probability estimated by the dynamic Gaussian or Student’s t cop-

ula in most of the time during our sample period indicating that the Gaussian or Student’s t

copula-based models may underestimate the potential risk as neither of them can accommo-
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date the multivariate asymmetries between credit risk of banks. Furthermore, we perform a

panel regression analysis and find clear evidence that the time-varying tail dependence coef-

ficients are closely related to the joint and conditional default probabilities of banks. Also,

we empirically show that the time-varying tail dependence coefficients are very informative

to predict future joint and conditional default risks. Overall, our empirical findings have im-

portant implications for credit risk modeling and derivative pricing in financial practice and

a possible extension for further studies is to apply our framework to the firms in other sectors

or markets.
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Appendix

4.A Hazard Rate Function

The hazard rate function λ (t) is the conditional instantaneous default probability of reference

entity, given that it survived until time t.

P(t < τ ≤ t +4t | τ > t) =
F (t +4t)−F (t)

1−F (t)
≈ f (t)4t

1−F (t)
(4.19)

The association of the hazard rate function λ (t) at time t with the default probability F (t)

and survival probability S (t) is as follows

λ (t) =
f (t)

1−F (t)
=−Q

′
(t)

Q(t)
(4.20)

The survival function Q(t) can be defined in terms of the hazard rate function λ (t)

Q(t) = exp
(
−
ˆ tN

t
λ (s)ds

)

Proof:

Q
′
(t) =

d (Q(t))
dt

=
d (1−F (t))

dt
=− f (t)

λ (t) =−d (Q(t))
dt

1
Q(t)

=
f (t)
Q(t)

=−d log(Q(t))
d (Q(t))

· d (Q(t))
dt

=−d log(Q(t))
dt

Taking integral on both sides

− log(Q(t)) =
ˆ tN

t
λ (s)ds
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and taking exponentials of both sides, we get

Q(t) = exp
(
−
ˆ tN

t
λ (s)ds

)

4.B Valuing the Premium Leg and Protection Leg

The premium leg is a stream of the scheduled fee payments of CDS made to maturity if the

reference entity survivies or to the time of the first credit event occurs. The present value of

the premium leg of an existing CDS contract is given by

PVpremium (t, tN) = S0 ·RPV01(t, tN) (4.21)

RPV01(t, tN) =
N

∑
n=1

∆(tn−1, tn,B)Z (t, tn)Q(t, tn)

+
N

∑
n=1

ˆ tn

tn−1

∆(tn−1,s)Z (t,s)(−dQ(t,s)) , n = 1, ...,N (4.22)

where t, tn, tN denotes the effective date, the contractual payment dates, and the maturity

date of the CDS contract, respectively. S (t0, tN) represents the fixed contractual spread of

CDS with maturity date tN at time t0, RPV01(t, tN) represents the present value at time t of

1bp paid on the premium leg until default or maturity, whichever is sooner. ∆(tn−1, tn,B)

represents the day count fraction between premium date tn−1 and tn in the selected day count

convention B, Z (t, tn) is the Libor discount factor from the valuation date t to premium

payment date tn and Q(t, tn) is the arbitrage-free survival probability of the reference entity

from t to tn. O’Kane (2008) show that in practice, the integral part can be approximated by

ˆ tn

tn−1

∆(tn−1,s)Z (t,s)(−dQ(t,s))w
1
2

∆(tn−1, tn)Z (t, tn)(Q(t, tn−1)−Q(t, tn)) (4.23)

Thus, it can be simplified as

RPV01(t, tN) =
1
2

N

∑
n=1

∆(tn−1, tn,B)Z (t, tn)(Q(t, tn−1)+Q(t, tn))

The protection leg is the compensation that the protection seller pays to the buyer for the

loss associated to a given reference entity at the time of default. It is a contingent payment of
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(100%−R) on the par value of the protection when the credit event occurs. R is the expected

recovery rate of the cheapest-to-deliver (CTD) obligation into the protection at the time of

the credit event. So the expected present value of the protection payment is given by

PVprotection (t, tN) = (1−R)
ˆ tN

t
Z (t,s)(−dQ(t,s)) (4.24)

The computation of the integral part is normally tedious. Nevertheless, following O’Kane

and Turnbull (2003) and O’Kane (2008), we could assume that the credit event only hap-

pens on a finite number M of several specific discrete points per year without much loss

of accuracy. We can discrete the time between t and tN into K equal intervals, where

K = int(M× (T − t)+0.5). Defining ε = (T − t)/K, we can calculate the approximation

of expected present value of the protection payment as

PVprotection = (1−R)
K

∑
k=1

Z (t,kε)(Q(t,(k−1)ε)−Q(t,kε)) (4.25)

Clearly, more accurate results can be obtained by increasing discrete points M.

4.C Relationship between Market Quotes and Survival Prob-

ability

In order to compute the survival probabilities from the market quote of CDS spread, it is

important to understand their relationship. For a fair market trade, the present value premium

leg should be exactly equal to the present value of the protection leg

PVpremium=PVprotection

New quotes for CDS contracts at time t0 can be obtained by substituting and rearranging

Equation 4.21 and 4.25

S (t0, tN) =
(1−R)

2
∑

K
k=1 (Z (t0, tk−1)+Z (t0, tk))(Q(t0, tk−1)+Q(t0, tk))

RPV01(t0, tN)
(4.26)
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where the RPV01 is given by

RPV01(t0, tN) =
1
2

N

∑
n=1

∆(tn−1, tn,B)Z (t0, tn)(Q(t0, tn−1)+Q(t0, tn))

4.D Bootstrapping a Survival Probability Curve

The bootstrap is a fast and stable curve construction approach, which has been widely used in

financial practice as a standard method for constructing CDS survival curves. The bootstrap

algorithm works by starting with shortest maturity contract and works out to the CDS contract

with the longest maturity. At each step it uses the spread of the next CDS contract to solve for

the next maturity survival probability and to extend the survival curve (see Hull and White,

2000a; O’Kane and Turnbull, 2003; O’Kane, 2008; Schönbucher, 2003, etc.). The default

probability can be easily obtained by calculating the complement of survival probability.

First, we define the market quotes of CDS as a set of maturity dates T1,T2, ...,TM and

corresponding CDS spread S1,S2, ...,SM. All the CDS quotes are sorted in order of increasing

maturity. Second, we need to extrapolate the survival curve below the shortest maturity CDS

by assuming that the forward default rate is flat at a level of 0, and we also extrapolate the

survival curve beyond the longest maturity TM by assuming that the forward default rate is

flat at its latest interpolated value.

The bootstrap algorithm to calculate the survival probability from CDS market quotes is

as follows:

1. We initialize the first point of survival curve by defining Q(T0 = 0) = 1 and m = 1.

2. The survival probability Q(Tm) can be calculated by solving Equation (4.26). Note

that the no-arbitrage bound on Q(Tm) is 0 < Q(Tm)≤ Q(Tm−1).

3. Given the value of Q(Tm) which reprices the CDS with maturity Tm, we can extend the

survival curve to time Tm.

4. Set m = m+1 and go back and repeat step 2 - 4 iteratively until m≤M.

5. Given M + 1 points values of survival probability 1,Q(T1) ,Q(T2) , ...,Q(TM) at time

0,T1,T2, ...,TM.
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Figure 4.2 Dynamics of CDS Spread from 2007 to 2015

A. Average CDS Spread
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B. Conditional Volatility of Average CDS spread
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Notes: This figure shows the levels and conditional volatility of average 5-year CDS spread
of five UK top tier banks from September 7, 2007 to April 17, 2015. The conditional volatil-
ity of average CDS spread changes is estimated by the GJR-GARCH(1,1,1) of Glosten et al.
(1993). The arrows in each figure indicate several major events in CDS market during the
sample period.
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Figure 4.3 CDS-implied Marginal Risk Neutral Default Probabilities

A. Probability of Default over One Year Horizon
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B. Probability of Default over Five Year Horizon
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Notes: This figure plots risk neutral marginal probabilities of default for five top tier banks
in UK. These probabilities are directly inferred from weekly CDS prices with different ma-
turities using bootstrap algorithm described in Appendix 4.D. The sample period is from
September 7, 2007 to April 17, 2015.
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Table 4.1 Descriptive Statistics and Time Series Tests on 5-year CDS Spreads

Barclays HSBC Lloyds RBS Standard

A. Descriptive Statistics
Mean 0.079 0.200 0.256 0.211 0.054
Median -0.243 -0.012 0.141 0.432 0.000
Std. 11.857 10.466 10.872 11.968 8.707
Skewness -0.176 0.122 0.287 -0.055 0.793
Kurtosis 6.443 5.305 6.112 8.783 10.041
Max 49.320 48.432 51.173 57.738 48.906
Min -55.131 -36.795 -44.802 -68.245 -38.349

B. Time Series Tests
JB test 0.000* 0.000* 0.000* 0.000* 0.000*
LB Q(12) 0.101 0.047* 0.083 0.011* 0.077
LB Q(12)^2 0.000* 0.000* 0.000* 0.000* 0.000*
LM ARCH 0.000* 0.000* 0.001* 0.001* 0.000*

Notes: This table reports descriptive statistics and time series test results for log-differences
of 5-year weekly CDS spreads across five top tier UK banks in FTSE 100 index from Septem-
ber 7, 2007 to April 17, 2015, which correspond to a sample of 398 observations for Barclays,
HSBC, Lloyds and RBS and a sample of 356 Standard Chartered (Note: The CDS data of
Standard Chartered is available from June 27, 2008.). Note that the means, standard de-
viations, minima, and maxima are reported in %. JB test denotes the Jarque–Bera test for
normal distribution. LB test lag 5 and 10 denote the p-values of the Ljung-Box Q-test for
autocorrelation at lags 5 and 10, respectively. In addition, we report the p-values of Engle’s
Lagrange Multiplier test for the ARCH effect on the residual series. We use * to indicate the
rejection of the null hypothesis at the 5% significance level.
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Table 4.2 Correlation Matrix of Weekly Log-differences of CDS spreads

A. Linear Correlation
Barclays HSBC Lloyds RBS Standard

Barclays 1.000
HSBC 0.854 1.000
Lloyds 0.873 0.847 1.000
RBS 0.897 0.855 0.862 1.000
Standard 0.762 0.803 0.711 0.781 1.000

B. Rank Correlation
Barclays HSBC Lloyds RBS Standard

Barclays 1.000
HSBC 0.835 1.000
Lloyds 0.879 0.837 1.000
RBS 0.885 0.840 0.879 1.000
Standard 0.746 0.785 0.710 0.727 1.000

Notes: This table reports the correlation matrix for log-differences of 5-year weekly CDS
spreads across five top tier UK banks in FTSE 100 index from September 7, 2007 to April
17, 2015, which correspond to a sample of 398 observations for Barclays, HSBC, Lloyds
and RBS and a sample of 356 Standard Chartered (The CDS data of Standard Chartered is
available from June 27, 2008.). Panel A reports the Pearson’s linear correlation coefficients
and Panel B reports the Spearman’s rank correlation coefficients.
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Table 4.3 Summary of ARMA-GJR-GARCH Estimation on Weekly Log-Differences

Barclays HSBC Lloyds RBS Standard

ARMA
φ1 -0.671*** -0.848*** -0.794*** -0.697*** -0.094*

(0.238) (0.114) (0.173) (0.203) (0.053)
φ2 0.580** 0.791*** 0.757*** 0.593*** _

(0.261) (0.132) (0.187) (0.228) _

GARCH
ω 3.168*** 3.28*** 2.663*** 3.361*** 7.089***

(0.099) (1.761) (1.683) (1.599) (0.149)
α 0.096*** 0.101** 0.078* 0.067* 0.106***

(0.026) (0.047) (0.040) (0.036) (0.000)
δ -0.096*** -0.080 -0.027 -0.044 -0.107***

(0.031) (0.054) (0.059) (0.049) (0.007)
β 0.916*** 0.894*** 0.905*** 0.915*** 0.850***

(0.022) (0.041) (0.036) (0.033) (0.003)

SkT
υ 5.511*** 7.385*** 7.179*** 5.269*** 3.159***
η 0.017* 0.079*** 0.001 -0.012* 0.016*

KS p-value 0.83 0.94 0.22 0.23 0.16
CvM p-value 0.58 0.91 0.15 0.41 0.25

Note: This table presents the estimated parameters with p-values from the ARMA model
for the conditional mean and GJR-GARCH(1,1) models for the conditional variance of log-
differences of 5-year weekly CDS spread. We estimate all parameters using the sample from
September 7, 2007 to April 17, 2015, which correspond to a sample of 398 observations for
Barclays, HSBC, Lloyds and RBS and a sample of 356 Standard Chartered (The CDS data
of Standard Chartered is available from June 27, 2008.). The values in parenthesis represent
the standard errors of the parameters. We also report the p-values of two goodness-of-fit tests
for the skewed Student’s t distribution. KS and CvM denote Kolmogorov-Smirnov test and
Cramer-von Mises test, respectively.
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Table 4.5 Structural Break Test for Time-varying Dependence Structures

0.15 0.5 0.85 Any US EU QA

B-H 0.053 0.310 0.369 0.110 0.035 0.360 0.020
B-L 0.040 0.106 0.296 0.080 0.019 0.282 0.152
B-R 0.021 0.087 0.190 0.040 0.014 0.250 0.030
B-S 0.837 0.767 0.357 0.500 0.951 0.247 0.048
H-L 0.026 0.154 0.485 0.020 0.015 0.226 0.595
H-R 0.024 0.227 0.407 0.070 0.012 0.225 0.005
H-S 0.542 0.403 0.571 0.720 0.806 0.161 0.048
L-R 0.043 0.062 0.320 0.090 0.013 0.241 0.010
L-S 0.721 0.965 0.540 0.460 0.945 0.319 0.521
R-S 0.993 0.840 0.280 0.240 0.883 0.490 0.014

Notes: This table reports the p-values from tests for time-varying dependence between 5-
year weekly CDS spreads changes of different banks. “B”, “H”, “L”, “R” and “S” denote
Barclays, HSBC, Lloyds, RBS and Standard Charted, respectively. Without a priori knowl-
edge of breaking points, we consider using naïve tests for breaks at three chosen points in
sample period, at t*/ T ∈{0.15, 0.50, 0.85}, which corresponds to the dates 24-Oct-2008, 24-
Jun-2011, 21-Feb-2014. The “Any” column reports the results of test for dependence break
of unknown timing proposed by Andrews (1993). The p-values in column “QA” is based on
a generalized break test without priori point in (Andrews and Ploberger, 1994). In order to
detect whether the dependence structures between CDS spreads changes of different banks
significantly changed after the US and EU crisis broke out, we use 15-Sep-2008 (the collapse
of Lehman Brothers) and 01-Jan-2010 (EU sovereign debt crisis) as two break points in rank
correlation and the “US” and “EU” panels report the results for this test. We use * and ** to
indicate significance at the 5% and 1%, respectively.
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Table 4.8 Log-Likelihood, AIC and BIC for Model Comparisons

Portfolios B-H B-L B-R B-S H-L H-R H-S L-R L-S R-S JOINT

Panel A: Log-Likelihood
Gaussian 259 309 317 149 249 250 181 338 143 140 1238
GAS-T 268 318 324 155 256 257 190 350 155 154 1296
GAS-GHST 298 343 341 174 279 281 210 361 180 163 1412
LR test 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Panel B: Akaike Information Criterion (AIC)
Gaussian -509 -610 -626 -290 -490 -493 -354 -668 -277 -272 -2449
GAS-T -527 -627 -638 -300 -503 -505 -369 -690 -299 -298 -2565
GAS-GHST -584 -674 -670 -335 -545 -550 -408 -710 -348 -315 -2793

Panel C: Bayesian Information Criterion (BIC)
Gaussian -493 -594 -610 -274 -475 -477 -338 -652 -261 -256 -2398
GAS-T -507 -607 -618 -280 -483 -485 -349 -670 -279 -279 -2509
GAS-GHST -560 -650 -646 -311 -521 -526 -384 -686 -324 -291 -2733

Notes: This table presents the results of model comparison via statistical criteria. Panel A
reports the log-likelihood from three GAS based copula models: Gaussian, Student’s t and
GHST. The bottom row of Panel A shows the p-values of likelihood ratio test for Student’s
t and GHST copula models. Panel B and C report the values of Akaike Information Cri-
terion (AIC) and Bayesian Information Criterion (BIC) for different model specifications,
respectively.
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Table 4.9 Joint Default Probability and Asymmetry

A. Contemporaneous Relationship
POLS FE RE

LTD 0.022*** 0.020 0.054***
(0.003) (0.054) (0.011)

UTD 0.049*** 0.174* 0.118***
(0.002) (0.087) (0.010)

Cons 0.013 -0.035 -0.023
(0.001) (0.028) (0.004)

R2 0.125 0.121 0.125
T-test (LTD) [0.000] [0.361] [0.000]
T-test (UTD) [0.000] [0.038] [0.000]
F-test [0.000]
Hausman [0.000]

B. Predictability
Lag(1) Lag(2) Lag(3) Lag(4) Lag(5)

LTD(-1) 0.013
(0.053)

UTD(-1) 0.177**
(0.088)

LTD(-2) 0.010
(0.054)

UTD(-2) 0.176*
(0.090)

LTD(-3) 0.008
(0.053)

UTD(-3) 0.174*
(0.090)

LTD(-4) 0.009
(0.053)

UTD(-4) 0.165*
(0.092)

LTD(-5) 0.008
(0.053)

UTD(-5) 0.160*
(0.092)

Cons -0.034 0.090 -0.031 -0.028 -0.026
(0.028) (-0.033) (0.028) (0.029) (0.029)

R2 0.119 0.118 0.118 0.117 0.116
T-test (LTD) [0.403] [0.427] [0.442] [0.433] [0.437]
T-test (UTD) [0.022] [0.025] [0.026] [0.036] [0.041]
Notes: This table reports the regression analysis of the impact of the tail dependence on the joint default prob-
ability. We estimate the bivariate dynamic GHST copula models across all possible pairs of banks. For each
pair, we compute average tail dependence by taking average of parametric and semiparametric tail dependence
coefficients. The average joint default probability is computed by taking average of joint default probabili-
ties estimated from six time-varying copula models (parametric and semiparametric Gaussian, Student’s t and
GHST copulas). In Panel A, we regress the joint default probability on the lower tail dependence (LTD) and
the upper tail dependences (UTD) in Equation (4.13). We consider three panel data estimators; pooled OLS
(POLS), fixed effects (FE), and random effects (RE), and choose a consistent and efficient estimator. We test
the existence of fixed effects by F-test and apply Hausman approach to test if regressors are correlated with the
fixed effects. T-test (LTD) (T-test (UTD)) tests the null of β LL = 0 against β LL > 0 (βUU = 0 against βUU > 0).
In Panel B, we regress the joint default probability on the lagged tail dependences in Equation (4.16). We
estimate regression equations by one selected from Panel A. In both panels, [·] reports the p-value of the test
and (·) reports the standard error of the estimate, respectively. We use *, ** and *** to indicate the significance
levels at 10%, 5% and 1%. 206



Table 4.10 Conditional Default Probability and Asymmetry

A. Contemporaneous Relationship
POLS FE RE

LTD 0.269*** 0.506*** 0.532***
(0.011) (0.152) (0.143)

UTD 0.216*** 0.639*** 0.592***
(0.008) (0.159) (0.138)

Cons 0.190*** -0.045 -0.032
(0.004) (0.062) (0.061)

R2 0.179 0.174 0.177
t-test (LTD) [0.000] [0.002] [0.000]
t-test (UTD) [0.000] [0.001] [0.000]
F-test [0.000]
Hausman [0.000]

B. Predictability
Lag(1) Lag(2) Lag(3) Lag(4) Lag(5)

LTD(-1) 0.477***
(0.153)

UTD(-1) 0.630***
(0.162)

LTD(-2) 0.460***
(0.154)

UTD(-2) 0.610***
(0.168)

LTD(-3) 0.446***
(0.150)

UTD(-3) 0.588***
(0.171)

LTD(-4) 0.438***
(0.149)

UTD(-4) 0.557***
(0.179)

LTD(-5) 0.422***
(0.143)

UTD(-5) 0.534***
(0.177)

Cons -0.032 -0.019 -0.006 0.009 0.022
(0.062) (0.063) (0.064) (0.065) (0.065)

R2 0.170 0.166 0.162 0.159 0.156
t-test (LTD) [0.001] [0.001] [0.001] [0.002] [0.002]
t-test (UTD) [0.000] [0.000] [0.000] [0.001] [0.001]
Notes: This table reports the regression analysis of the impact of the tail dependence on the conditional default
probability. We estimate the bivariate dynamic GHST copula models across all possible pairs of banks. For
each pair, we compute average tail dependence by taking average of parametric and semiparametric tail depen-
dence coefficients. The average conditional default probability is computed by taking average of conditional
default probabilities estimated from six time-varying copula models (parametric and semiparametric Gaussian,
Student’s t and GHST copulas). In Panel A, we regress the conditional default probability on the lower tail
dependence (LTD) and the upper tail dependences (UTD) in Equation (4.17). We consider three panel data es-
timators; pooled OLS (POLS), fixed effects (FE), and random effects (RE), and choose a consistent and efficient
estimator. We test the existence of fixed effects by F-test and apply Hausman approach to test if regressors are
correlated with the fixed effects. T-test (LTD) (T-test (UTD)) tests the null of β LL = 0 against β LL > 0 (βUU = 0
against βUU > 0). In Panel B, we regress the conditional default probability on the lagged tail dependences
in Equation (4.18). We estimate regression equations by one selected from Panel A. In both panels, [·] reports
the p-value of the test and (·) reports the standard error of the estimate, respectively. We use *, ** and *** to
indicate the significance levels at 10%, 5% and 1%. 207



Chapter 5

Conclusions and Further Research

Copula method provides a flexible way of modeling multivariate distributions, as it allows us

to specify the marginal behavior of individual risk factors separately from their dependence

structure. The concept of copula and its mathematical properties are extremely useful in

quantitative risk modeling. There are several attractive advantages of copula-based models.

First, copulas can help us understand the dependence between risk factors at a deeper level,

because copula functions describe dependence on a quantile scale and therefore overcome

several disadvantages of linear correlation (see McNeil et al., 2015; Embrechts et al., 2002

for a detailed discussion). More importantly, copula dependence is able to provide insight-

ful information about joint extreme outcomes of risk factors (more on this below). Second,

copulas can be utilized to build a bottom-up framework for multivariate modeling, as they

enable us to combine different well-developed marginal models with various possible depen-

dence structures. This provides us flexibility to experiment with different kinds of marginal

specifications either parametrically or nonparametrically. Third, most of the copulas can be

easily simulated and this convenience allows us to apply them to the Monte Carlo studies of

risk in practice.

This thesis reviews the growing literature on copula-based methods in economics and

finance, and investigates empirical applications of copula theory in three different areas:

market risk, portfolio optimization and credit risk. Chapter 1 reviews recent advances in

copulas and some empirical applications of copula-based models for economic and financial

time series in literature to date. Chapter 2 investigates the dependence structure between eq-
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uity portfolios from the US and UK, and demonstrates the statistical significance of dynamic

asymmetric copula models in modeling and forecasting market risk. We show consistent

and robust evidence that our dynamic asymmetric copula model provides the most accu-

rate Value-at-Risk and Expected Shortfall forecasts, indicating the importance of incorporat-

ing the dynamic and asymmetric dependence structure in market risk modeling. Chapter 3

studies the dependence between equity return and currency return in international financial

markets, and explores its economic importance in portfolio allocation. We find empirical

evidence of time-varying and asymmetric dependence between the equity portfolio and the

corresponding foreign exchange rate across the developed and emerging markets. To account

for these empirical characteristics, we further introduce a new time-varying asymmetric cop-

ula (TVAC) model, which allows for non-linearity, asymmetry and time variation of the

dependence. Our empirical applications indicate that the use of this TAVC model is gener-

ally preferred for making risk management more robust and asset allocation more optimal

in international financial markets. Chapter 4 studies the credit risk of UK’s top-tier banks.

We document the dynamics of joint credit risk by relying on a copula approach using weekly

CDS data for the UK banks. We find that the tail dependence between CDS spreads con-

tains useful information not only for explaining current joint default probabilities but also

predicting systemic credit events in the banking sector.

Recent econometric and finance literature shows that a theoretically ideal and empirically

practical copula model should contain several properties. First, a truly ideal copula model

should be able to accommodate both positive and negative dependence, because in the real

financial world, the dependence structure (or correlation) between assets can be either posi-

tive or negative and sometimes varies from positive to negative, or vice versa. Second, this

copula model should also allow for non-zero tail dependence, as the tail dependence is able

to provide measures of the strength of dependence in the tails. For instance, the Student’s

t copula and its skewed versions are asymptotically dependent in both the upper and the

lower tails. This property is particularly useful for describing extreme co-movements be-

tween risk factors in financial practice. Third, besides taking into account the possibility of

non-zero tail dependence, an ideal copula model should also allow for both symmetric and

asymmetric dependence. In other words, it allows the lower tail dependence to be greater

than the upper one, or vice versa. The properties of non-zero tail dependence and asymmetry
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are important in a risk management context, as risk modelers and decision makers are more

concerned about large simultaneous losses in risk factors. Fourth, a flexible copula should

be able to handle not only the bivariate case but also the higher dimensional case. Elliptical

copulas (i.e. the Gaussian and the Student’s t copula) are quite flexible in high dimensional

modeling, however a computational complexity still exists when we consider using skewed

t copulas. In this thesis, we applied high-dimensional copulas in empirical studies of asset

allocation and credit risk modeling, but we only used the bivariate copulas for market risk

prediction. As we discussed in Chapter 1, although several models have been proposed in the

literature to mitigate the curse of dimensionality in copula modeling (see Aas et al., 2009;

Oh and Patton, 2015a), this topic is still an open issue. Fifth, an empirically practical copula

model should be able to capture the variation of copula parameters over time. Several mech-

anisms have been applied to update the correlation matrix of copula models, see for instance,

Patton (2006), Jondeau and Rockinger (2006), Christoffersen et al. (2012) and Creal et al.

(2013). Empirical studies in this thesis also only focus on the time-varying correlations of

copula models holding other parameters constant. However, other parameters of copulas, for

instance the degrees of freedom and the skewness parameter of the skewed t copula, are also

likely to be time-varying. Therefore, taking into account the dynamics of other parameters in

copula modeling will be an active area of research. Taken together, these properties underline

the attractiveness of the dynamic (or time-varying) asymmetric copula models in quantitative

risk management and asset allocation.

The empirical findings in this thesis have very important implications for risk manage-

ment and asset allocation. Several important challenges are still left for future research. First,

we only focus on the low-dimensional cases in this thesis and extending our studies to high-

dimensional cases would be interesting. Second, it would also be interesting to investigate

which economic and financial variables drive the variations of correlation, asymmetry, and

joint probability of default between banks. We could conduct this analysis using the method-

ology of Christoffersen et al. (2015). Third, our analysis on the impact of the monetary policy

on the credit risk of banks in the UK is preliminary and it would be interesting to further in-

vestigate this topic using appropriate models. Finally, a possible extension is to investigate

the usefulness of the dynamic asymmetric copula model in systemic risk measurement.
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