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Abstract 
 
The motor cortex makes a substantial contribution to contralateral limb function 

via the corticospinal tract (CST). The extent to which the motor cortex 

influences ipsilateral limb function is less clear. Interest in ipsilateral cortical 

control stems from studies of stroke survivors, demonstrating increased 

activation of the ipsilateral motor cortex during movement of the affected limb. 

This raises the possibility that ipsilateral pathways contribute to recovery of 

function following damage to the contralateral CST.  The overarching aim of this 

thesis was to extend the knowledge of neural systems that might mediate 

ipsilateral actions of the motor cortex, both under normal circumstances and 

after stroke. 

In rodent models of stroke, there is evidence that CST axons originating from the 

non-ischaemic hemisphere sprout into the denervated (ipsilateral) side of the 

spinal cord, and the extent of sprouting correlates with the degree of motor 

recovery. However, it is yet to be confirmed whether the CST from the non-

ischaemic hemisphere establishes new terminals in the denervated (ipsilateral) 

side of the spinal cord to replace connections lost after stroke. Hence, the first 

major aim of this thesis was to assess for CST terminal remodelling between the 

non-ischaemic hemisphere and the denervated (ipsilateral) side of the cervical 

spinal cord following recovery from experimental stroke in the rat. Rats 

underwent 60 min middle cerebral artery occlusion (MCAo) or sham occlusion 

surgery. Behavioural testing was conducted prior to MCAo and postoperatively 

for 28 days to monitor functional deficit and recovery. At day 28, the 

anterograde tracer cholera toxin b (CTb) subunit was injected into the forelimb 

motor cortex of the non-ischaemic hemisphere. Spinal sections containing 

anterogradely labelled terminals were reacted with antibodies against CTb and 

immunoreactive terminals were quantified. MCAo was associated with loss of 

approximately 35% of CST axons originating from the ischaemic hemisphere and 

infarcts were localised to subcortical structures. Rats exhibited sensorimotor 

deficits in the early phase after MCAo but recovered over time such that there 

were no significant differences in sensorimotor performances between sham-

operated and MCAo rats at post-operative day 28. Despite functional recovery 

demonstrated by MCAo rats, the number of CTb-labelled terminals in the 
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cervical spinal cord originating from the non-ischaemic hemisphere was not 

altered compared to shams. The results of this first study suggest that after 

subcortical stroke, the motor cortex from the non-ischaemic hemisphere does 

not contribute to recovery of the affected limb via increasing its direct CST 

connections to the denervated (ipsilateral) side of the spinal cord. If the motor 

cortex from the non-ischaemic hemisphere does take over control of ipsilateral 

spinal circuitry after stroke, it likely utilises an indirect route.  

In the intact animal, a number of indirect routes via which the motor cortex may 

gain access to ipsilateral spinal circuitry have been identified. These pathways 

are complex and involve intercalated neurons located in the brainstem and 

contralateral spinal cord.  However, there are numerous putative indirect routes 

which have yet to be investigated. One such route involves contralaterally 

descending CST axons targeting spinal commissural interneurons (CINs), which in 

turn would either mono- or polysynaptically affect motor neurons on the 

opposite side of the spinal cord. CINs are a heterogeneous population of cells 

important for inter-limb coordination. Despite the importance of CINs to 

locomotion and their potential role in providing the motor cortex indirect access 

to ipsilateral spinal circuits, supraspinal input to CINs is poorly defined. Hence, 

the second major aim of this thesis was to characterise contacts to CINs from 

different supraspinal sources (the CST and reticulospinal tract (ReST)) in the 

cervical spinal cord of the intact rat.  The CINs included i) those that issue long-

range axonal projections to lumbar segments, termed long-descending 

propriospinal neurons (LDPNs), and ii) those that issue short-range axonal 

projections confined to a single segment, termed intrasegmental CINs. Axons 

were labelled anterogradely by injecting CTb into the forelimb motor cortex or 

medial longitudinal fasciculus (MLF), to label CST and ReST axons, respectively. 

Fluorogold (FG) was injected unilaterally into segments L1/L2 or C3/C4 in order 

to retrogradely label LDPNs or intrasegmental CINs, respectively. Spinal sections 

containing labelled cells and terminals were immunoreacted with various 

antibody combinations and were then examined with confocal microscopy. Both 

LDPNs and intrasegmental CINs received very few contacts from CST terminals 

but had significant numbers of contacts from ReST terminals. Use of vesicular 

glutamate and vesicular GABA transporters revealed that both cell types 

received approximately 80% of excitatory and 20% of inhibitory ReST contacts. 
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The results suggest that in the intact animal, the CST has a minimal direct 

influence on LDPNs and intrasegmental CINs but the ReST has a powerful direct 

influence. Therefore, following loss of CST axons (e.g. after stroke), the cortico-

reticulospinal-commissural pathway has the capacity to deliver information from 

the intact hemisphere to the denervated side of the spinal cord.  
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The motor cortex exerts a strong influence on contralateral limb function via the 

corticospinal tract (CST). From its origin in the cortex, the CST passes through 

the ipsilateral medullary pyramid before crossing at the pyramidal decussation 

and innervating contralateral spinal circuits (Porter & Lemon, 1993). Injury to 

the CST rostral to the pyramidal decussation, for example after stroke, results in 

prominent motor deficits in the contralateral side of the body such as paralysis 

or a loss of digit fractionation (Geyer & Gomez, 2009). The extent to which the 

motor cortex contributes to ipsilateral limb function however is less clear. The 

motor cortex may gain access to ipsilateral motor neurons via relay networks 

located in the brainstem and spinal cord but these pathways are currently ill-

defined (Jankowska & Edgley, 2006). Interest in ipsilateral cortical control stems 

from studies of stroke survivors; movement of the stroke-affected limb elicits 

abnormally enhanced activity in the motor cortex of the ipsilateral (undamaged) 

hemisphere, raising the possibility that ipsilateral descending pathways might 

contribute to recovery of movement, by taking over the actions of damaged 

crossed CST fibres (Stoeckel & Binofski, 2010). This thesis aims to extend the 

knowledge of the neural systems that might mediate ipsilateral actions of the 

motor cortex, both under normal circumstances and after stroke. The 

experiments conducted to fulfil the aims of this thesis were performed on rats.  

1.1 Descending supraspinal pathways in motor control 

The cerebral cortex gains access to the spinal cord directly via the CST, and 

indirectly via tracts descending from brainstem structures. Each descending 

tract has distinct anatomical, neurochemical and functional characteristics 

which are just beginning to be elucidated (Lemon, 2008). The purpose of this 

section is to provide a brief overview of the defining features of each of the 

major descending tracts.  

1.1.1 Corticospinal tract (CST) 

The CST has the longest axonal trajectory of the mammalian nervous system and 

is the most direct pathway by which the cerebral cortex affects spinal circuitry 

(Armand, 1982). The CST makes a substantial contribution to volitional 

movements and precisely coordinated actions, such as fractionated movement of 

the digits (Lawrence & Kuypers, 1968). In the rat, the CST mainly arises from 
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large layer 5 pyramidal cells located in the primary motor cortex and in the 

forelimb and hindlimb regions of the primary sensory cortex (Miller, 1987). 

Neurons in the forelimb area of the motor and sensory cortex project to the 

cervical enlargement, while those in the hindlimb area project to the lumbar 

enlargement (Li et al., 1990). CST fibres pass through the internal capsule 

(posterior limb) and cerebral peduncle, to form the longitudinal fibres of the 

pons. After exiting the basilar pons they pass through the medullary pyramid. In 

the rat, the majority of axons (>96%) then cross the midline at the pyramidal 

decussation, and subsequently travel in the contralateral dorsal column down to 

the most caudal level of the spinal cord (Terashima, 1995). It is noteworthy that 

in primates including humans, CST axons are not present in the dorsal column 

and instead descend mainly via the contralateral dorsolateral funiculus with a 

few uncrossed axons descending in the ipsilateral dorsolateral funiculus and 

ventromedial funiculus (Rosenzweig et al., 2009; Ralston & Ralston, 1985; 

Schoen, 1964). Anterograde tracing studies performed in the rat have shown that 

CST axons terminate in all spinal laminae contralateral to their cells of origin, 

with dense terminations in laminae II to VII and sparse terminations in laminae I, 

II and the ventral horn (Gribnau & Dederen, 1989; Casale et al., 1988; Liang, 

1991; Du Beau et al., 2012). In addition to the principal CST in the contralateral 

dorsal column, the rat spinal cord also contains CST fibres in the contralateral 

lateral, ipsilateral ventral and ipsilateral dorsal funiculi (Liang, 1991; Brösamle 

& Schwab, 2000; see Figure 1-1). CST terminals ipsilateral to the hemisphere of 

origin are very sparse in the rat and are largely found in the intermediate grey 

matter (Brösamle & Schwab, 2000). In primates, contralaterally projecting CST 

fibres terminate mainly in Rexed’s laminae II to VII and to a lesser extent in the 

ventral horn; ipsilaterally projecting fibres terminate in laminae V to IX (Lacroix 

et al., 2004; Rosenzweig et al., 2009; Ralston & Ralston, 1985). According to a 

recent tract tracing study in rhesus monkeys, the proportion of CST fibres that 

descend the spinal cord ipsilaterally (~13%) is higher than that of the rat (~4%) 

(Rosenzweig et al., 2009). Occasionally contralaterally descending fibres have 

collaterals that re-cross the midline at the level of the spinal cord to terminate 

ipsilaterally (Figure 1-1); these re-crossing axons are sparse in rats (Liang et al., 

1991) and somewhat more common in primates (Rosenzweig et al., 2009). In 

addition to its spinal projections, the CST issues collaterals to numerous 

subcortical targets including the striatum, red nucleus, reticular nuclei and 
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dorsal column nuclei to provide these structures with a copy of the cortical 

motor outflow (O’Leary & Terashima, 1988; Antal, 1984).  

The CST pathway is widely accepted to be excitatory (Lemon, 2008). CST 

terminals of the rat are enriched with glutamate (Valtschanoff et al., 1993) and 

a recent immunolabelling study demonstrated that 96% of rat CST axons contain 

vesicular glutamate transporter 1 (VGLUT-1; Du Beau et al., 2012). 
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Figure 1-1 Termination patterns of the corticospinal tract (CST) in the rat  

The CST is primarily a crossed pathway, with ~96% of axons terminating on the contralateral side 
of the spinal cord (black). A sparse number of axons descend in the spinal cord ipsilaterally and 
terminate ipsilaterally (blue). Occasionally, contralateral axons re-cross the midline at the spinal 
level, resulting in a “double crossed” pathway (green) (Modified from Carmel & Martin, 2014).   
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Contralateral actions of the CST 

In humans and non-human primates, CST fibres have been reported to synapse 

directly onto motor neurons in the contralateral ventral horn and these 

monosynaptic cortico-motorneuronal connections have long been considered to 

be decisive in the control of skilled voluntary movements such as digit 

fractionation (Lemon et al., 2004; Kuypers, 1960; Lawrence & Kuypers, 1968; 

Palmer & Ashby, 1992). The issue of whether similar monosynaptic connections 

exist in non-primate mammals, particularly in the rat, is controversial. According 

to an earlier anatomical tracing study, CST axons contact contralateral motor 

neurons in the rat, as they do in primates (Liang et al., 1991); however, this was 

not confirmed by electron microscopy (Yang & Lemon, 2003). In an experiment 

in the rat by Alstermark et al., (2004), corticofugal fibre stimulation at the level 

of the pyramid failed to evoke monosynaptic excitation of contralateral forelimb 

motor neurons. Instead, pyramidal stimulation excited contralateral motor 

neurons via two indirect pathways; the first pathway involved the CST acting on 

interneurons located within the same spinal segments as the forelimb motor 

neurons and the second pathway involved the reticulospinal tract (ReST) (Figure 

1-2). The pontomedullary reticular formation (from which the ReST originates) 

receives input from the sensorimotor cortex via collaterals from the CST and via 

a direct cortico-reticular pathway (Newman et al., 1989; Antal, 1984; Canedo & 

Lamas, 1993); and in turn ReST fibres make mono- and polysynaptic connections 

with motor neurons (see section 1.1.3). A large number of studies have been 

devoted to uncovering cortico-motorneuronal pathways of the cat, which like 

the rat, lacks monosynaptic connections between the cortex and spinal motor 

neurons. In the cat, the shortest pathway from the cortex to contralateral 

forelimb motor neurons is disynaptic (Illert et al., 1976). Behavioural 

experiments performed in the cat have shown that target-reaching involves the 

CST acting on cervical segment C3/C4 propriospinal interneurons, which in turn 

activate forelimb motor neurons; whereas food grasping involves the CST (and 

rubrospinal tract; RST) acting on premotor interneurons located within the 

forelimb segments (C6 to Th1) (Alstermark et al., 1985; Alstermark et al., 1981). 

Importantly, these “phylogenetically older” polysynaptic cortico-motorneuronal 

connections of the rat and cat still exist in primates and they may play 
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important functional roles in parallel with the newly developed monosynaptic 

cortico-motorneuronal connections (reviewed by Isa et al., 2013).  

The observation that rats have very few, if any, monosynaptic cortico-

motorneuronal connections (Yang & Lemon, 2003; Alstermark et al., 2004) has 

been employed to explain a perceived relative lack of ability for fine motor 

control (Courtine et al., 2007). However, detailed behavioural analysis suggests 

that rats have more dexterity than is generally appreciated; for instance, during 

food handling rats exhibit a complex repertoire of skilled movements including 

digit fractionation (Ivanco et al., 1996; Whishaw & Coles, 1996). A lesion of the 

motor cortex results in impaired digit manipulation of the paw contralateral to 

the lesion during food handling (Whishaw & Coles, 1996; Whishaw et al., 1986). 

Furthermore, a lesion of the dorsal columns, which carry crossed CST axons, 

impairs performance during a food pellet retrieval task (Weidner et al., 2001). 

Thus, rats exhibit fine motor control which appears to be dependent on the 

integrity of the motor cortex and its crossed CST projections. It is noteworthy 

however, that a recent study failed to detect reaching/grasping deficits in rats 

following dorsal column lesions; the authors raised the possibility that skilled 

forepaw function in the rat may not be critically dependant on spinal circuits 

controlled by the CST and that other pathways, such as the cortico-

reticulospinal-motorneuronal pathway might be more important (Alstermark & 

Pettersson, 2014). The precise function of the CST in the rat is therefore not yet 

fully understood.  
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Figure 1-2 Major pathways contributing to the contralateral actions of the motor cortex in 
the rat 

Originating from the sensorimotor cortex, the CST (thick black line), makes connections with motor 
neurons on the contralateral side of the spinal cord via spinal interneurons. Additionally, 
corticofugal fibres contact reticulospinal neurons that in turn relay the cortical command to 
contralateral motor neurons (Modified from Umeda et al., 2010).  
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Ipsilateral actions of the CST 

Traditionally, research has focussed on the contralateral actions of the CST, due 

to the predominance of CST axons that cross the pyramidal decussation and 

terminate in the contralateral side of the spinal cord (Porter & Lemon, 1993). 

However, ipsilateral CST terminals - arising from ipsilaterally descending axons 

as well as from “double crossed” axons (Figure 1-1) – are well established. 

Anatomical tracing studies in the rat have described ipsilateral CST terminals in 

laminae III to VII (Liang et al., 1991; Brösamle & Schwab, 1997). Ipsilateral CST 

terminals have also been identified in the cat in laminae VII to VIII (Armand et 

al., 1985) and in the primate in laminae V to IX (Lacroix et al., 2004). According 

to Soteropoulos et al., (2011), stimulation of the primate primary motor cortex 

(or medullary pyramid) failed to elicit monosynaptic excitation of ipsilateral 

motor neurons supplying forearm and hand muscles. However, Montgomery et 

al., (2013) stimulated the primate primary motor cortex (premotor cortex or 

supplementary motor area) using a longer stimulus train sufficient enough to 

activate both mono- and polysynaptic pathways and this elicited ipsilateral 

wrist, forearm and shoulder movements. Thus, based on primate 

electrophysiological studies, it appears that under normal circumstances, CST 

pathways do not directly influence ipsilateral motor neurons; however, the 

motor cortex has the capacity to influence ipsilateral motor neurons indirectly. 

There are several potential routes through which the motor cortex could gain 

access to ipsilateral motor neurons. For instance, the small number of 

ipsilaterally terminating CST fibres may contact ipsilaterally operating spinal 

interneurons that in turn excite (or inhibit) motor neurons (Jankowska & Edgley, 

2006). Evidence to support this notion comes from Jankowska & Stecina (2007); 

in the cat lumbar spinal cord, a small proportion of premotor interneurons 

mediating group I/II afferent reflexes can be monosynaptically excited by 

stimulation of the ipsilateral medullary pyramid. Furthermore, using electron 

microscopy in the rat, ipsilaterally terminating CST fibres were shown to form 

synaptic contacts with cells in the intermediate grey matter (Brösamle & 

Schwab, 2000). In addition to the CST fibres that terminate ipsilaterally, the 

motor cortex may also influence ipsilateral motor neurons via relay neurons 

located in the brainstem and contralateral spinal cord (Jankowska & Edgley, 

2006; Edgely et al., 2004: Jankowska & Stecina, 2007; Stecina & Jankowska, 
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2007); these more complex indirect pathways are considered later, in section 

1.3.  

1.1.2 Rubrospinal tract (RST) 

The rubrospinal tract (RST) is a phylogenetically old supraspinal system arising 

mainly from the magnocellular region of the red nucleus; a nucleus located on 

either side of the midbrain tegmentum (ten Donkelaar, 1988).  In addition to 

major input from cerebellar nuclei, the red nucleus of the cat and primate 

receives extensive projections from the sensorimotor cortex in the form of a 

direct corticorubral pathway and via collateral branches of CST axons (Brown, 

1974; Humphrey, 1984; Giuffrida et al., 1991).  These projections are mainly 

ipsilateral but there is a minor contralateral component. In the rat, cerebellar 

afferents to RST neurons are well established but afferents from the 

sensorimotor cortex are less well documented (Dekker, 1981). Anatomical 

studies have reported that the rat sensorimotor cortex provides projections to 

the parvocellular part of the red nucleus only (Gwyn et al., 1974; Brown, 1974); 

however, according to Giuffrida et al., (1988), stimulation of the rat motor 

cortex evokes monosynaptic excitation (and disynaptic inhibition) of neurons 

located in both the magnocellular and parvocellular parts of the ipsilateral red 

nucleus.  

In the rat, the majority of RST axons cross at the ventral tegmental decussation 

and descend the dorsolateral funiculus to terminate in laminae V to VII 

contralateral to their cells of origin; but a small number of ipsilateral 

projections are also present (Ruigrok et al., 2008; Antal et al., 1992). The RST is 

also a predominantly crossed pathway in carnivores and primates and it occupies 

a position ventral to the CST in the dorsolateral funiculus before terminating in 

laminae V to VII (Holstege & Kuypers 1987; Murray & Haines, 1975). According to 

electrophysiological studies performed in the rat, cat and primate, RST neurons 

mainly influence contralateral motor neurons indirectly, through activation of 

excitatory or inhibitory premotor interneurons (Al-Izk et al., 2008; Hongo et al., 

1972; Jankowska, 1988; Shapovalov, 1966), although a small number of 

monosynaptic connections between RST axons and contralateral motor neurons 

have been detected in the cat and primate (Holsteg & Kuypers, 1987).  
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In rats, damage to the dorsolateral funiculus, where the RST lies, impairs 

performance during a pellet- reaching task (Muir et al., 2007; Morris et al., 2011) 

and detailed behavioural analysis suggests that the RST is more involved in paw 

rotation as opposed to digit use (Morris et al., 2011). Electrophysiological 

recordings from primates during reaching and grasping have demonstrated that 

neurons of the magnocellular red nucleus discharge vigorously in association with 

grouped digit movements (Houk et al., 1988; Van Kan & McCurdy, 2002). Thus, it 

has been theorised that RST neurons control the muscle synergies that produce 

group digit extensions on which CST neurons superimpose control for 

individuated digit movements (Schieber, 1990; Van Kan & McCurdy, 2002). Some 

authors have placed emphasis on the importance of the RST in maintaining limb 

function after damage to the CST (Lawrence & Kuypers, 1968) and indeed, RST 

output to affected (contralateral) forearm flexor muscles has been reported to 

increase following unilateral ablation of the pyramidal tract in primates (Belhaj-

Saif & Cheney, 2000). However, the RST is virtually absent in humans (Nathan & 

Smith, 1955), making the contribution of this pathway to recovery in humans 

with pyramidal tract damage (e.g. stroke survivors) unlikely.  

The RST is purely an excitatory system. According to Antal et al., (1992) RST 

terminals of the rat are not immunoreactive for GABA or glycine. Moreover, a 

recent immunolabelling study revealed that 97% of RST terminals contain 

vesicular glutamate transporter 2 (VGLUT-2; Du Beau et al., 2012).  

1.1.3 Reticulospinal tract (ReST) 

Another phylogenetically old supraspinal system is the ReST, a heterogeneous 

tract originating from dispersed nuclei of the brainstem reticular formation. The 

reticular nuclei receive widespread convergence from multiple structures 

including the spinal cord, cerebral cortex, cerebellum, red nucleus and 

vestibular apparatus (Alstermark & Ekerot, 2013). Input from the sensorimotor 

cortex occurs in the form of CST collaterals and via a direct corticoreticular 

pathway and these fibres have extensive terminations within the medial 

pontomedullary reticular formation, the region from with ReST axons originate 

(Newman et al., 1989; Keizer & Kuypers, 1984; Keizer & Kuypers, 1989). 

According to anatomical tracing studies performed in the rat, cat and primate, 

the pontomedullary reticular formation receives projections from both the 
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ipsilateral and contralateral sensorimotor cortex (Newman et al., 1986; Keizer & 

Kuypers, 1984: Keizer & Kuypers, 1989). Investigations at the single cell level in 

the cat have demonstrated that an individual cortical neuron can branch 

profusely to give off widespread terminations on both sides of the 

pontomedullary reticular formation (Kably & Drew, 1998; Matsuyama & Drew, 

1997). In the cat, ReST neurons are monosynaptically activated following 

stimulation of the ipsilateral or contralateral cerebral cortex (Peterson et al., 

1974).  

Anatomical and physiological studies mainly in cats, but more recently in rats 

and primates, have identified two major subdivisions of the ReST; the medial 

ReST and lateral ReST (Peterson, 1979; Reed et al., 2008; Sakai et al., 2009). 

The medial ReST originates from neurons primarily in the medial pontine 

reticular formation and the rostral gigantocellularis (Ito, 1970). The fibres 

descend through, or close to the medial longitudinal fasciculus (MLF) in the 

caudal brainstem, continue in the spinal ventromedial funiculus and terminate in 

laminae VI to IX of all segmental levels of the spinal cord (Petras, 1967). 

Anterograde tracing of single pontine ReST axons in the cat showed that the 

majority of axons project to the ipsilateral spinal grey matter, but a small 

number of axons (~15%) project bilaterally as they exhibit additional branches 

that extend across the midline into the contralateral grey matter (Matsuyama et 

al., 1999). The lateral ReST originates from neurons located in the ventrocaudal 

part of the medial medullary reticular formation (Peterson, 1979). According to 

an anterograde degeneration study in cats, lateral ReST neurons send their axons 

to all spinal segments via both the ipsilateral and contralateral funiculus 

(Nyberg-Hansen, 1965) and an individual fibre can give off multiple bilateral 

collaterals with major arborisations in laminae V to IX (Holstege & Kuypers, 

1982). Therefore, the ReST has remarkable potential for exerting widespread 

effects, as a single neuron can project to both sides of the spinal cord at 

multiple segments. Although the majority of the above studies were performed 

in cats, similar complex bilateral termination patterns have also been reported 

for the ReST of rats (Reed et al., 2008) and primates (Sakai et al., 2009).  

In rats, cats and primates, stimulation of ReST fibres evokes monosynaptic 

excitation of ipsilateral neck, axial and limb motor neurons (Shapovalov & 
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Gurevitch, 1970; Peterson, 1979; Peterson et al., 1979; Riddle et al., 2009). In 

addition to monosynaptic activation, ReST axons also elicit disynaptic excitation 

and inhibition of motor neurons via intercalated spinal interneurons (Floeter et 

al., 1993; Shapovalov & Gurevitch, 1970; Riddle et al., 2009; Takakusaki et al., 

2001). In the cat lumbar spinal cord, Jankowska et al., (2003) demonstrated that 

ReST neurons can influence contralateral motor neurons disynaptically, via 

uncrossed ReST axons activating commissural interneurons (CINs) which in turn 

excite or inhibit motor neurons on the opposite side of the spinal cord 

(Jankowska et al., 2003). Immunocytochemical analysis of lumbar CINs 

monosynaptically excited by ReST neurons revealed that this population includes 

both glutamatergic and glycinergic neurons (Bannatyne et al., 2003).  

Functionally, the ReST is traditionally considered to control proximal and axial 

muscles, and most research has focused on its contribution to gross movements 

such as locomotion (Mori et al., 2001) or postural adjustments (Schepens et al., 

2008). However, an increasing body of evidence suggests that ReST axons may 

contribute to voluntary movements. For instance, in the mouse, selective 

ablation of ReST neurons in the lower brainstem produces a grasping impairment 

during a food pellet retrieval task (Esposito et al., 2014). In primates, ReST 

neurons make mono- and disynaptic connections with ipsilateral motor neurons 

that innervate intrinsic hand muscles (Riddle et al., 2009), and neurons of the 

pontomedullary reticular formation have been shown to modulate their activity 

in response to ipsilateral fine finger movements (Soteropoulos et al., 2012). 

Moreover, following unilateral pyramidal tract transection in primates, ReST 

fibres descending through the MLF strengthen their output to affected flexor 

motor neurons (Zaaimi et al., 2012); this raises the possibility that the ReST 

contributes to some of the recovery that occurs after loss of CST fibres (e.g. 

after stroke).  

Many ReST axons have strong excitatory actions on spinal neurons (Jankowska et 

al., 2003; Edgley et al., 2004). However, anterograde labelling studies have 

revealed some ReST axons to be GABAergic (Holstege, 1991) or glycinergic 

(Holstege & Bongers, 1991). A recent immunocytochemistry study performed in 

the rat reported that 59% of axons descending via the MLF contain vesicular 

glutamate transporter 2 (VGLUT-2) and 20% contain vesicular GABA transporter 
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(VGAT; Du Beau et al., 2012). Furthermore, in the rat, a proportion of ReST 

projections arising from the gigantocellular complex have been shown to be 

serotonergic (Bowker et al., 1981). Thus, the ReST systems are heterogeneous in 

terms of the neurotransmitters they contain.  

1.1.4 Other descending supraspinal pathways 

The vestibulospinal tract (VST), arising from all 4 subdivisions of the vestibular 

nuclear complex, controls postural extensor activity in the limbs, neck and trunk 

mainly via a medial and lateral pathway (Wilson et al.,1967; Bankoul & 

Neuhuber, 1992; Pompeiano, 1972). Tectospinal axons originate in the deep and 

intermediate layers of the superior colliculus and are implicated in head 

movements (Yasui et al., 1998). 

1.2 Spinal commissural interneurons (CINs) 

At the spinal level, CINs are defined by an axonal projection that crosses the 

midline to the contralateral side of the spinal cord. They constitute a highly 

heterogeneous population in terms of their location, their postsynaptic targets, 

and their presynaptic inputs (Kiehn & Butt, 2003). As will be discussed later 

(section 1.3), neural pathways involving CINs represent a potential substrate for 

recovery of function following injury to the CST (e.g. after stroke) (Jankowska & 

Edgley, 2006; Edgley et al., 2004). Therefore, it is important to examine the 

connectivity of CINs and their inputs from supraspinal sources. The purpose of 

this section is to provide an overview of the most extensively studied CIN 

systems.  

1.2.1 Lumbar commissural interneurons (CINs) 

CINs have been widely investigated in the lumbar spinal cord. Anatomical studies 

have described various types of CINs, mainly in laminae VI to VIII of lumbar 

segments, where the walking central pattern generator (CPG) is located (Kiehn, 

2006); 1) long-range CINs that project at least one and a half segments either 

rostrally (ascending) or caudally (descending), or bifurcate in both directions and 

2) short-range CINs that project less than one and a half segments 

(intrasegmental CINs; Stokke et al., 2002; Matsuyama et al., 2006). 
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The best-described CINs in the rat are descending CINs located in the laminae VI 

to VIII of segment L2/L3 and which have axons projecting contralaterally at least 

as far as segment L4 (Butt et al., 2002a; Butt et al., 2002b; Butt & Kiehn, 2003). 

These cells have been shown to play a role in flexor-extensor synergies across 

and along the spinal cord during locomotion and they are composed of a mixed 

population of glutamatergic and glycinergic neurons (Kiehn, 2006). They 

influence contralateral flexor and extensor motor neurons via 1) monosynaptic 

excitation 2) monosynaptic inhibition 3) polysynaptic inhibition mediated by 

glutamatergic CINs synapsing onto inhibitory interneurons located ipsilateral to 

motor neurons (Butt & Kiehn, 2003). A similar population of CINs exist in the cat 

lumbar spinal cord; they have somata located in L3 to L5 and axons projecting 

contralaterally at least as far as L7 and they provide monosynaptic excitatory 

and inhibitory as well as polysynaptic inhibitory inputs to motor neurons 

(Jankowska et al., 2003; Bannatyne et al., 2003). These CINs fall into two major 

subpopulations; those with monosynaptic input from ReST neurons, VST neurons 

and group I afferents, and those with monosynaptic input from group II afferents 

(Jankowska et al., 2005; Jankowska, 2008). Reconstructions of the axonal 

projections of these CINs have revealed that they have widespread projections 

over multiple segments and also innervate neurons located outside motor nuclei 

as well as motor neurons (Bannatyne et al., 2003; Matsuyama et al., 2004). 

Anatomical tracing in the rat has shown that approximately 10 per cent of CINs 

in the lumbar spinal cord are intrasegmental, with axons confined to a single 

segment (Stokke et al., 2002). Intrasegmental connections likely play a direct 

role in organising left-right coordination between segmental homonymous 

muscles (Kiehn, 2006). Intrasegmental CINs in laminae VII and VIII directly 

excite, directly inhibit or indirectly inhibit contralateral motor neurons (Quinlan 

& Kiehn, 2007; Kjaerulff & Kiehn, 1997). Indirect inhibition is likely mediated via 

Ia inhibitory interneurons and Renshaw cells (Jankowska et al., 2005; Nishimaru 

et al., 2006).  

Other studied populations of lumbar CINs include those in the dorsal horn 

targeted by group II muscle spindles, which are mainly inhibitory and project to 

the intermediate zone and ventral horn (Bannatyne et al., 2006). In mice, 

cholinergic partition cells in lamina X/VII of the lumbar spinal cord have been 
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shown to issue commissural projections; these cells have axons ascending or 

descending several segments and they influence motor neurons monosynaptically 

via large “C-bouton” synapses (Stepien et al., 2010; Miles et al., 2007). Genetic 

inactivation of cholinergic partition cells in mice impairs locomotion (Zagoraiou 

et al., 2009). Anterograde tracing studies performed in rats and cats have 

identified neurons in lumbar segments that issue commissural (and uncrossed) 

projections to cervical segments (Dutton et al., 2006; Brockett et al., 2013; 

English et al., 1985); these cells (termed long-range ascending propriospinal 

neurons; LAPNs) likely participate in the synchronisation of lumbar and cervical 

CPGs. Indeed, an experiment in neonatal rats showed that the hindlimb CPG 

issues rhythmic inputs to the forelimb CPG and part of this drive is crossed 

inhibition (Juvin et al., 2005).   

1.2.2 Cervical commissural interneurons (CINs) 

At variance with the numerous studies on CINs of the lumbar spinal cord, little 

information is available on CINs of the cervical spinal cord. One group studied in 

the cat comprises CINs in laminae VII and VIII of the upper cervical cord (C1 to 

C3); they synapse with motor neurons at least one segment rostral or caudal 

from their somata and they participate in bilaterally organised vestibulocollic 

reflexes (Bolton, 1991; Sugiuchi et al., 1992). Another population identified in 

the cat, are those in segments C3/C4 with axons projecting to contralateral 

forelimb motor neurons (C6 to Th1); these cells are active during targeted 

reaching, and they are postulated to provide postural stability to the 

contralateral limb when the ipsilateral limb is lifted (Alstermark & Kϋmmel, 

1990).  

Anatomical and physiological studies performed in cats, rats and mice have 

identified neurons within the cervical enlargement that issue long-distance 

axonal projections to the lumbar enlargement. These cells, referred to as long-

range descending propriospinal neurons (LDPNs), have both commissural and 

uncrossed projections (Alstermark et al., 1987; Alstermark et al., 1991; Brockett 

et al., 2013; Reed et al., 2009; Ni et al., 2014). Although the precise function of 

the different types of LDPNs (e.g. commissural versus uncrossed) is poorly 

understood, it is known that LDPNs work reciprocally with LAPNs to synchronise 

cervical and lumbar circuits during locomotion (Ballion et al., 2001; Juvin et al., 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Zagoraiou%20L%5BAuthor%5D&cauthor=true&cauthor_uid=20005822
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2005; Zaporozhets et al., 2006). It is likely that different types of LDPNs 

contribute to the adjustment of hindlimb postures during specific movements of 

the forebody (Alstermark et al., 1987). In the rat, unilateral injection of a 

retrograde tracer into the L1 or L3 segment was found to label cells in all 

cervical segments and approximately half of the labelled cells were commissural 

i.e. they were located in the grey matter contralateral to the tracer injection 

site (Brockett et al., 2013).  Similarly, bilaterally labelled cells were detected 

throughout all cervical segments in mice following unilateral injection of a 

transsynaptic tracer into hindlimb muscles, suggesting that both commissural 

and uncrossed LDPNs make monosynaptic connections with motor neurons (Ni et 

al., 2014). Some of the commissural (and uncrossed) LDPNs were found to have 

contacts from CST axons and brain-stem derived serotonergic axons, but the 

bouton numbers were very low (0 to 2 per cell), so the authors concluded that 

these supraspinal systems are not major regulators of LDPNs in mice (Ni et al., 

2014). Although, in an electrophysiological study in cats, commissural (and 

uncrossed) LDPNs located in segments C3 to C5 were monosynaptically excited 

by stimulation of the contralateral medullary pyramid (Alstermark et al., 1987), 

suggesting that these cells are under direct control from the CST. These cells 

were also disynaptically activated by stimulation of the ipsilateral medullary 

pyramid (via ReST neurons, which are the main source of input to them together 

with VST input; Alstermark et al., 1987; Alstermark et al., 1991). Supraspinal 

inputs to commissural (and uncrossed) LDPNs have yet to be fully characterised 

in the rat. However, recent interest in LDPNs stems from a study performed in 

rats: thoracically axotomised CST fibres were reported to sprout in the cervical 

spinal cord and increase their arborisation onto LDPNs, and the LDPNs in turn 

increased their innervation onto lumbar motor neurons, effectively forming a 

“bridge” so that descending commands could bypass the injury site (Bareyre et 

al., 2004). Furthermore, the formation of this new LDPN-mediated detour circuit 

led to the restoration of hindlimb function. Although it is unclear whether the 

CST sprouting observed by Bareyre and colleagues was onto commissural, 

uncrossed or both types of LDPNs, the study raises the possibility that LDPNs 

might be involved in supporting recovery after CST injury and highlights the need 

for a detailed characterisation of these cells and their supraspinal inputs.  
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As mentioned above (section 1.2.1), intrasegmental CINs with axons confined to 

a single segment have been characterised both anatomically and physiologically 

in the lumbar cord of rats and mice and these cells are postulated to be directly 

involved in the synchronisation of left-right homonymous muscles (Stokke et al., 

2002; Quinlan & Kiehn, 2007; Kjaerulff & Kiehn, 1997). Despite the proposed 

functional significance of intrasegmental CINs, information on these cells at the 

cervical level is currently lacking. Although a recent electrophysiological 

experiment in primates has established the existence of a short-range 

commissural system in the lower cervical enlargement of primates (C6 to Th1; 

Soteropoulos et al., 2013); these cells were shown to innervate motor neurons of 

intrinsic hand muscles and they also have inputs from the periphery and from 

fibres descending close to the MLF.  

1.3 Role of the motor cortex in ipsilateral movement 
control 

The motor cortex exerts a strong influence on contralateral limb function via the 

CST, which provides layer 5 pyramidal neurons with direct access to 

contralateral spinal circuits (section 1.1.1).  However, the role of the motor 

cortex in ipsilateral limb control is less well understood. As mentioned previously 

(section 1.1.1), electrophysiological studies performed in primates suggest that 

under normal circumstances, the motor cortex does not influence ipsilateral 

motor neurons directly (monosynaptically; Soteropoulos et al., 2011) but may 

have the capacity to influence ipsilateral motor neurons indirectly 

(polysynaptically; Montgomery et al., 2013). As will be discussed later (section 

1.4.2), it is important to uncover the neural systems that mediate ipsilateral 

actions of the motor cortex because these systems might underlie some of the 

recovery of function that occurs after damage to the crossed CST (e.g. after 

stroke; Jankowska & Edgley, 2006). The purpose of this section is to outline 

potential neural pathways that might allow the motor cortex to gain access to 

ipsilateral motor neurons.  

As discussed previously (section 1.1.1), a small proportion of CST fibres 

terminate on the side of the spinal cord ipsilateral to their cells of origin 

(Lacroix et al., 2004; Armand & Kuypers, 1980; Brösamle & Schwab). Currently, 

there is little information available on the cellular targets of these fibres other 
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than electrophysiological evidence from cats showing that a small number of 

premotor interneurons involved in group I/I afferent reflexes are 

monosynaptically activated by stimulation of the ipsilateral medullary pyramid 

(Jankowska & Stecia, 2007); and anatomical evidence from rats showing that 

ipsilaterally terminating CST fibres synapse onto cells in the intermediate grey 

matter (Brösamle & Schwab, 2000). Ipsilaterally terminating CST fibres are a 

readily available source through which sprouting could strengthen cortical 

control of the ipsilateral limb during recovery following injury of the crossed CST 

(e.g. after stroke; Jankowska & Edgley, 2006).  

A series of electrophysiological studies have been performed in the cat lumbar 

spinal cord in order to ascertain which neural systems could mediate ipsilateral 

actions of the motor cortex; the pathways investigated thus far are depicted in 

Figure 1-3. The motor cortex has the capacity to influence motor neurons via 

ipsilaterally descending CST fibres acting through premotor interneurons; and via 

ipsilateral ReST neurons with axons running through the MLF acting directly on 

motor neurons or though premotor interneurons (Stecina & Jankowska, 2007). In 

parallel to these uncrossed pathways, the motor cortex can also gain access to 

ipsilateral motor neurons via a “double-crossed” pathway, involving 

contralateral ReST neurons which in turn activate spinal CINs that project back 

across to motor neurons and interneurons ipsilateral to the stimulated pyramidal 

tract (Edgley et al., 2004). Candidate CINs that form synapses with contralateral 

motor neurons have been described in mid-lumbar segments (see section 1.2.1; 

Bannatyne et al., 2003; Jankowska et al., 2003). The ipsilateral premotor 

interneurons relaying the descending command to ipsilateral motor neurons 

include those that mediate group I/II afferent reflexes along with other 

interneurons that remain unidentified (Stecina et al., 2008).  
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Figure 1-3 Neural pathways between the cortex and ipsilateral motor neurons identified in 
the cat 

Uncrossed pathways include ipsilaterally projecting CST fibres acting on group I/II sINs and so far 
unidentified other interneurons (represented by ?). An additional uncrossed pathway involves 
ipsilateral ReST neurons acting directly on MNs as well as on sINs. A double crossed pathway 
comprises contralateral ReST neurons activating CINs that in turn re-cross the spinal midline. 
(Modified from Jankowska & Stecina, 2007).  

iPT = ipsilateral pyramidal tract; coPT = contralateral pyramidal tract; ReST = reticulospinal tract; 
MLF = medial longitudinal fasciculus;  sIN = segmental interneurons; CIN = commissural 
interneurons; MN = motor neurons 
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Under normal circumstances, the ipsilateral actions of the motor cortex 

described above are much weaker than the contralateral actions of the motor 

cortex. However, if crossed CST axons become damaged (e.g. after stroke), 

recovery of function might involve the strengthening of ipsilateral connectivity 

at spinal and/or bulbar levels; this would allow for the intact motor cortex to 

drive motor output to the impaired side of the body (Jankowska & Edgley, 2006). 

The connectivity diagram in Figure 1-3 is far from complete, as there are 

numerous putative pathways from the motor cortex to ipsilateral motor neurons 

that have yet to be examined. For instance, in rats, cats and primates, a 

moderate proportion of the contralaterally descending CST axons terminate in 

laminae VI to VII (Gribnau & Dederen, 1989; Liang, 1991; Lacroix et al., 2004; 

Rosenzweig et al., 2009) and a major cell group located within these laminae 

are CINs. One possibility, therefore, is that contralaterally descending CST fibres 

target CINs, which in turn either mono- or polysynaptically affect motor neurons 

on the opposite side of the spinal cord. However, there is so far only one 

preliminary observation to support this notion; as discussed earlier (section 

1.2.2), commissural LDPNs in segments C3 to C5 of the cat are monosynaptically 

excited by stimulation of the contralateral medullary pyramid (Alstermark et al., 

1987; section 1.2.2). Although anatomical evidence from mice suggests that the 

CST is not a major regulator of these cells (Ni et al., 2014). The disagreement in 

the available literature warrants further examination of CST inputs to 

commissural LDPNs. Additionally (as discussed in section 1.2), CINs are a highly 

heterogeneous population and a comparison of CST (and other supraspinal) 

inputs to different subpopulations of CINs has yet to be performed.  

Another putative route via which the motor cortex might influence ipsilateral 

motor neurons is via RST neurons located in the red nucleus. RST neurons 

receive direct input from the ipsilateral motor cortex (Giuffrida et al., 1988; 

Fanardjian, 1988) and the red nucleus has a small number of ipsilateral 

projections to the spinal cord (Antal et al., 1992; Ruigrok et al., 2008; see 

section 1.1.2). Although, a comparison of the postsynaptic potentials in motor 

neurons evoked by stimulation of the medullary pyramid versus red nucleus in 

cats suggests that the RST does not act as a relay for the ipsilateral actions of 

the motor cortex under normal circumstances (Stecina et al., 2008).   
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1.4 Stroke  

In the UK, stroke is the fourth leading cause of death and the most common 

cause of adult disability (www.stroke.org.uk, Stroke Statistics, 2015). Of those 

affected, 75% survive beyond the first year and many of those survivors 

experience sensorimotor and/or cognitive deficits depending on the extent and 

localisation of injury. The most common deficit among stroke survivors is 

contralateral motor dysfunction; with 80-90% of survivors exhibiting paresis or 

loss of dexterity on the side of the body opposite to the infarct (Lawrence et al., 

2001). Most survivors experience a degree of spontaneous motor recovery. The 

greatest phase of recovery typically occurs from 1 week to 1 month after stroke; 

then to a lesser extent between 2 to 3 months after stroke (Verheyden et al., 

2008). Unfortunately, the extent of recovery is highly limited, with >50% of 

survivors still exhibiting severe limb deficits 1 year after the initial stroke event 

(Dobkin, 2005). An understanding of the mechanisms of spontaneous motor 

recovery after stroke may reveal novel targets for improving functional 

outcome. However the neural events supporting recovery are poorly understood.  

Recovery after stroke involves three processes; resolution of acute tissue 

damage, behavioural compensation, and brain reorganisation (Carmichael, 

2003). Recovery within the first few days after stroke is attributed to resolution 

of oedema and cessation of inflammation associated with the initial infarct 

(Wieloch & Nikolick, 2006). Later improvements in function are partially due to 

compensation, whereby a subject adopts a new behavioural strategy to 

complete a task. Compensatory behaviours reflect learned activity patterns 

rather than changes in brain circuitry, and they are often inefficient and 

energetically expensive (Dobkin, 2005). Late recovery is also attributed to brain 

reorganisation. Reorganisation in this context refers to the recruitment of areas 

previously not engaged in a given task, in order to substitute for damaged areas 

(Nudo et al., 2006). There has been great interest in the possibility that the 

motor cortex of the non-ischaemic hemisphere assumes control of the recovered 

limb after stroke.  The following section will firstly outline the pathophysiology 

of stroke. Then, the notion that ipsilateral motor pathways arising from the non-

ischaemic hemisphere contribute to recovery will be discussed.  
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1.4.1 Stroke pathophysiology  

Stroke is the rapid loss of cerebral function following a severe reduction in blood 

flow. Although they can be haemorrhagic (caused by an arterial aneurysm 

rupture or arteriovenous malformation) the majority of strokes are ischaemic, 

accounting for 85% of cases (Chen et al., 2010). In ischaemic stroke, a cerebral 

artery occlusion arises from the production of an atherosclerotic plaque, 

thrombus or from a dislodged embolus such as a blood clot that ascends from the 

heart to the cerebral circulation. Within seconds following preclusion of blood 

flow to the affected area, the ischaemic cascade is initiated within the brain 

parenchyma. This encompasses a complex sequence of deleterious events that 

converge to mediate irreversible injury. The major pathological mechanisms 

include excitotoxicity, peri-infarct spreading depolarisations, inflammation, 

necrosis and apoptosis (Figure 1-4).  

Excitotoxicity 

Adenosine triphosphate (ATP) levels in the perfusion territory of the affected 

artery fall, impairing the ability of membrane ion-motive ATPases to maintain 

ionic gradients (Siesjo, 1992). As a consequence, intracellular Na+ levels rise 

leading to depolarisation of the membrane potential. This triggers the opening 

of presynaptic voltage-gated Ca2+ channels and glutamate is released into the 

extracellular space. Activation of N-Methyl-D-aspartate (NMDA), α-amino-3-

hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and metabotropic receptors 

exacerbates cytosolic Ca2+ overload. Na+ influx drives Cl− influx via chloride 

channels, resulting in inflow of water and cytotoxic oedema (Liang et al., 2007). 

The cytosolic Ca2+ overload impinges cell function via activation of 

endonucleases, phospholipases and cysteine proteins including calpains (Chan & 

Mattson, 1999). Additionally, Ca2+ induces a surge in superoxide and hydroxyl 

radicals along with nitric oxide which combines with superoxide to form a highly 

potent anion termed peryoxynitrate that induces DNA strand breakage 

(Garthwaite & Boulton, 1995).   
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Figure 1-4 The ischaemic cascade 

Occlusion of a cerebral blood vessel triggers a wide spectrum of biochemical events that culminate 
in cell death. (Modified from Chavez et al., 2009).  

 

 

 

 

 

 

 

 



25 
 
Peri-infarct depolarisations 

In the ischaemic core, energy failure is so profound that cells undergo anoxic 

depolarisation and are incapable of repolarising. This irreversibly damaged area 

is surrounded by a gradient of moderately hypo-perfused non-functional but still 

viable tissue known as the penumbra. In penumbral tissue, cells retain the 

ability to repolarise but at the expense of further energy consumption (Markus, 

2004). Once repolarised the same cells again depolarise in response to increasing 

glutamate and K+ levels which accumulate in the extracellular space. In the 

absence of reperfusion, the cycle continues as recurring waves of depolarisations 

called peri-infarct depolarisations, until the penumbral tissue is recruited into 

the core region destined to infarct. As the penumbra has recovery potential, it is 

a target for interventional therapy in acute ischaemic stroke (Rohl et al., 2001). 

Inflammation 

Inflammatory mediators such as tumour necrosis factor-alpha, interleukin-1 and 

interleukin-6 become overly expressed as a result of enhanced cystolic Ca2+. 

Neutrophils, macrophages and monocytes migrate into the ischaemic brain, 

guided by a variety of chemoattractants produced by cells at the site of the 

lesion (Dirnagl et al., 1999). Although the primary role of inflammatory cells is 

to clear necrotic cells, the activated macrophages express and release toxic 

factors including reactive oxygen species, proteinase and cytokines that further 

contribute to ischaemic damage (Arvin et al., 1996).  

Necrotic and apoptotic cell death 

Ischaemic cell death occurs via necrosis or apoptosis depending on the severity 

of the insult or the nature of the excitotoxic signalling pathways. Necrosis is a 

passive process secondary to energy depletion and predominates in the 

ischaemic core, where mitochondria are dysfunctional for ATP production. It is 

accelerated by Ca2+-dependant proteases and is typified by organelle swelling 

and spillage of intracellular contents including toxic mediators into the 

extracellular milieu, affecting the surrounding cells (Brouns and De Deyn, 2009).  

Apoptosis is a programmed mechanism that orchestrates cell death in the 

penumbra and peri-infarct regions (Dirnagl et al., 1999). Apoptosis remains 
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inactive until it is stimulated by appropriate death signals including free 

radicals, tumor necrosis factor, DNA damage, p53 induction and cytochrome c 

release from mitochondria (Ueda et al., 2004).  

The middle cerebral artery (MCA) 

In ischaemic stroke, the territory of the occluded vessel determines the brain 

areas affected and the subsequent neurological outcome. The middle cerebral 

artery (MCA) and its branches are the most commonly affected vessels in stroke, 

accounting for over 70% of cases (Geyer & Gomez, 2009). The MCA has the 

largest vascular territory of all of the major intracranial arteries; it supplies 

almost the entire convex surface of the brain as well as most of the basal ganglia 

and internal capsule (Tatu et al., 1998). In humans, the MCA arises from the 

internal carotid artery as the larger of the two main terminal branches (the MCA 

and anterior cerebral artery; Figure 1-5A). Approximately 5-15 penetrating 

lenticulostriate arteries branch off the MCA stem and supply the globus pallidus, 

caudate nucleus, putamen and internal capsule. The MCA stem then bifurcates 

into superior and inferior subdivisions that give rise to 12 branches that 

distribute in a “fan-like” fashion to supply the lateral surface of the hemisphere 

and underlying white matter (Bogousslavsky, 2001). Occlusion of the MCA 

commonly occurs within the main stem or within one of the terminal superior or 

inferior subdivisions. A blockage within the main stem can result in a large 

infarct affecting both deep and superficial structures. Although the deep 

structures (i.e. the basal ganglia and internal capsule) are particularly 

vulnerable to ischaemia, given that they are supplied by lenticulostriate end 

arteries without anastomoses (Decavel, 2012). It is possible for a small embolus 

to occlude a single lenticulostriate branch, resulting in a small infarct or 

“lacune” within the basal ganglia or internal capsule; although this only occurs 

occasionally, as the majority of lacunes are caused by small vessel wall 

thickening termed Lipohyalinosis (Wardlaw, 2005).  

Models of focal cerebral ischaemia have been established in a number of species 

(Macrae, 1992; Macrae, 2011; Traystman, 2003). The most commonly used 

species is the rat due to low animal and maintenance costs and similarities in 

cerebrovascular anatomy between humans and rats (Macrae, 2011). In a pattern 

comparable to humans, the MCA of the rat gives off deeply penetrating 
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lenticulostriate arteries before curving over the lateral surface of the cerebral 

hemisphere (Figure 1-5B; Scremin, 2004). Accordingly, blocking the MCA in rats 

can produce deep infarcts (involving the striatum and internal capsule) and/or 

superficial infarcts (involving the lateral cortex and underlying white matter) 

depending on the occlusion site and duration of ischaemia (Uluç et al., 2011; 

Garcia et al., 1993).  

In humans, at 2 weeks after the onset of MCA territory stroke, the extent of 

pyramidal tract damage at the level of the cerebral penduncle correlates with 

the degree of contralateral motor dysfunction (Thomalla et al, 2004). 

Furthermore, in subjects with MCA territory stroke, the degree of acute damage 

(<12 h) to the posterior limb of the internal capsule (PLIC) predicts the severity 

of contralateral limb weakness present at 3 months after the stroke event (Puig 

et al., 2011). Injury to the PLIC can arise from i) striatocapsular stroke, in which 

there is direct involvement of the PLIC in the infarct, and ii) cortical/subcortical 

stroke, in which there is no direct involvement of the PLIC in the infarct, but 

presumed anterograde degeneration of the descending pathways passing through 

the PLIC (Pendlebury et al., 1999). Thus, the integrity of the pyramidal tract, 

particularly at the level of the PLIC, plays a key role in motor outcome following 

MCA territory stroke. As such, damage to the pyramidal tract should be an 

important feature of animal models of MCA territory stroke and this will be 

addressed in Chapters 3 and 4.  
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Figure 1-5 Anatomy of the middle cerebral artery (MCA) in humans and rats 

A: In humans, the lenticulostriate branches of the MCA supply the caudate nucleus, internal 
capsule, putamen and globus pallidus. The distal subdivisions of the MCA supply much of the 
lateral surface of the hemisphere and underlying white matter.   

B: Similarly, the MCA of the rat gives off deeply penetrating lenticulostriate vessels before 
branching out across the convex surface of the hemisphere. The left image depicts the MCA on the 
lateral cortical surface. The right image is a coronal view of the MCA lenticulostriate and cortical 
branch locations. (Modified from Davis et al., 2013).  
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1.4.2 Current treatment strategies for stroke 

Effective treatment options for ischaemic stroke are extremely limited. The only 

Food & Drug Administration- approved treatment is recombinant tissue 

plasminogen activator (rtPA). This enzyme catalyses the conversion of 

plasminogen to plasmin, allowing for clot lysis and subsequent reperfusion of 

brain tissue before irreversible injury occurs. According to the National Institute 

of Neurological Disorders & Stroke, for every 100 patients treated with rtPA, 32 

will attain a better outcome (Saver, 2004). However, many patients are 

ineligible for rtPA therapy due to its limited 4.5 h treatment window and 

adverse effects on oedema and haemorrhagic transformation (Cronin, 2010). As 

such, only 9-12% of all patients are thrombolysed (Stroke Statistics 2015, 

www.stroke.org.uk).   It is noteworthy that a series of recent clinical trials have 

demonstrated significant benefits of intra-arterial thrombectomy in acute 

ischaemic stroke patients, with reports of enhanced reperfusion and improved 

functional outcome (Goyal et al., 2015; Berkhemer et al., 2015).  

For decades, research has primarily focussed on salvaging the ischaemic 

penumbra. Over 1000 putative neuroprotective agents have been investigated in 

animal models of ischaemia; including glutamate receptor antagonists, Ca2+ 

channel blockers, free radical scavengers and anti-inflammatory agents 

(Ginsberg, 2009). Unfortunately, this has yet to be translated into gains for 

stroke survivors, despite the completion of over 200 clinical trials (Stroke Trials 

Registry, www.strokecenter.org). Currently, post-stroke treatment remains 

limited to physical and occupational therapy.  

An alternative approach to stroke treatment would be to enhance the brains 

innate capacity to reorganise itself after stroke. Studies of humans and 

experimental animals have uncovered a plethora of repair-related events to 

occur in response to stroke (Cramer, 2008; Benowitz & Carmichael, 2010). Many 

of these events correspond temporally with spontaneous functional recovery. A 

better understanding of repair-related mechanisms may reveal novel targets for 

therapeutic interventions.  

http://www.stroke.org.uk/
http://www.strokecenter.org/
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1.4.3 Role of the non-ischaemic (ipsilateral) hemisphere in 
recovery of the affected limb 

Stroke induces long-lasting adaptive processes in regions both proximal and 

distal to the infarct. An extensive literature suggests that the non-ischaemic 

(ipsilateral) hemisphere may be involved in control of the spontaneously 

recovered limb (Dancause, 2006).  Brain mapping studies of both humans and 

animals have provided insights into how the non-ischaemic hemisphere responds 

to stroke at a systems level. Additionally, anatomical tracing studies in animals 

have demonstrated how neural pathways from the non-ischaemic hemisphere 

might become strengthened in order to take over control of the impaired limb.  

Insights from brain mapping studies 

According to fMRI and PET studies in stroke survivors, movement of the stroke 

affected hand elicits abnormally enhanced neural activity in the non-ischaemic 

(ipsilateral) hemisphere, which is not detected in healthy subjects (Grefkes & 

Fink, 2011; Ward & Frackowiak, 2006; Rehme et al., 2011; Chollet et al., 1991; 

Grefkes et al., 2008). For example, in subjects with chronic (> 5 weeks) 

subcortical MCA territory infarcts, movement of the stroke-affected hand evokes 

activity in the ipsilateral primary motor cortex, premotor cortex and 

supplementary motor area that is not seen in healthy controls (Grefkes et al., 

2008). Such findings have contributed to the notion that these ipsilateral motor 

areas mediate spontaneous recovery of the stroke-affected limb. However, 

identification of movement-related activation with functional imaging does not 

establish the functional significance of a particular brain area; ipsilateral 

activation could also reflect a nonspecific epiphenomenon of stroke, or even a 

maladaptive process that hinders recovery (Cramer, 2008).   

The most compelling evidence for the involvement of ipsilateral motor areas in 

limb recovery comes from studies examining the effects of disrupting these 

areas. Multiple pulse transcranial magnetic stimulation (TMS) transiently 

interferes with a target cortical site; a TMS-induced disturbance of a specific 

motor behaviour is indicative of a contributory role of the stimulated cortical 

site to that behaviour. In well-recovered chronic stroke patients (>8 months) 

with internal capsule infarcts, performance of a finger tapping task using the 
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recovered hand was found to deteriorate when inhibitory TMS was applied over 

the ipsilateral primary motor cortex (or premotor cortex; Lotze et al., 2006) i.e. 

blocking ipsilateral cortical activity reinstated the original deficit. Similarly, 

inhibitory TMS over the ipsilateral premotor cortex was also shown to slow down 

reaction times of the stroke-affected hand in chronic stroke subjects (6 months) 

with subcortical or cortical MCA territory infarcts (Johansen-berg et al., 2002). 

This is highly suggestive that motor areas in the non-ischaemic (ipsilateral) 

hemisphere participate in control of the recovered limb.  Interestingly, 

Johansen-berg and colleagues (2002) noted that TMS to the ipsilateral premotor 

cortex was more disruptive in subjects with greater impairments. Thus, from one 

point of view hand recruitment of ipsilateral areas seemed to be related to poor 

outcome; from another point of view ipsilateral activation was better present 

than absent, particularly in the most affected patients. The effect of infarct 

size/location on response in the non-ischaemic (ipsilateral) hemisphere requires 

more detailed investigation.  

In contrast with the above findings, some authors argue that recruitment of 

ipsilateral motor areas during paretic-limb movement is maladaptive. The 

underlying hypothesis is that activation in the non-ischaemic hemisphere is 

increased due to reduced transcallosal inhibition from the ischaemic to the non-

ischaemic hemisphere. In turn, over-active non-ischaemic hemisphere exerts a 

heightened transcallosal inhibitory influence on the ischaemic hemisphere, 

thereby deteriorating function of the affected limb beyond the initial deficit 

caused by the infarct (Nowak et al., 2009). Support for this comes from the work 

of Takeuchi et al., (2005) who studied chronic stroke subjects (> 7 months) with 

subcortical infarcts and reported that inhibitory TMS over the non-ischaemic 

(ipsilateral) primary motor cortex immediately improved performance of the 

stroke-affected hand during a pinching task.  

Cortical mapping studies have also been performed in rodent models of stroke. 

Abo et al., (2001) induced complete infarction of the sensorimotor cortex of rats 

and demonstrated that at 21 days after stroke, when recovery was apparent, 

stimulation of the stroke-affected hindlimb elicited activation in the ipsilateral 

(non-ischaemic) sensorimotor cortex to a greater degree than in normal healthy 

rats. Dijkuizen et al., (2001) induced a transient occlusion of the MCA in rats and 
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showed that stimulation of the stroke-affected forepaw at 3 and 14 days after 

stroke elicited widespread activation in the ipsilateral cortex.  

To summarise, human and animal brain mapping studies frequently report over-

activation of ipsilateral motor areas during stroke-affected limb movement but 

the exact function served by increased ipsilateral activation remains to be 

clarified. It is likely that recovery may rely on different mechanisms depending 

on the infarct localisation/extent and this may account for some of the above 

contradictory findings (Stoeckel & Binkofski, 2010).  

Insights from anatomical tracing studies 

There is evidence from anatomical tracing studies in rodents that the non-

ischaemic hemisphere may gain access to the stroke-affected limb through 

rewiring of its descending axonal projections. Most notably, the CST arising from 

the non-ischaemic hemisphere may reorganise its arborisation at the level of the 

spinal cord to replace lost synaptic connections. Following permanent 

experimental occlusion of the MCA (Liu et al., 2007; Liu et al., 2008), 

destruction of the primary motor cortex (Bachman et al., 2014; LaPash Daniels 

et al., 2009; Ueno et al., 2012) and unilateral pyramidotomy (Brus-Ramer et al., 

2007; Maier et al., 2008), CST axons originating from the uninjured hemisphere 

sprout into the denervated (ipsilateral) side of the spinal cord. Manipulating the 

extent of CST sprouting from the non-ischaemic hemisphere alters the degree of 

spontaneous motor recovery. For instance, intraspinal delivery of Chondroitinase 

ABC to degrade growth inhibitory proteoglycans increases sprouting from the 

non-ischaemic hemisphere and improves performance of sensorimotor tasks 

(Soleman et al., 2012). Other therapies reported to enhance CST sprouting from 

the non-ischaemic hemisphere and sensorimotor recovery include: stem cells 

(Liu et al., 2007; Liu et al., 2008), growth signalling proteins (Zai et al., 2009; 

Chen et al., 2002), and suppressors of neurite growth inhibitors (Lee et al., 

2004; Lindau et al., 2014). Conversely, knockdown of plasminogen, which is 

implicated in axonal path-finding, reduces CST sprouting from the non-ischaemic 

hemisphere and impairs motor recovery (Liu et al, 2014). 

The precise trajectory by which CST fibres from the non-ischaemic hemisphere 

reach the denervated (ipsilateral) side of the spinal cord following experimental 
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stroke is incompletely understood. The “new” fibres may reflect 1) originally 

crossed fibres re-crossing the midline at the level of the spinal cord, or 2) the 

sprouting of the pre-existing population of ipsilateral axons (Figure 1-6). Studies 

have reported that CST fibres spontaneously sprout across the midline of the 

spinal cord, extending across the dorsal and ventral commissure following 

experimental stroke (Liu et al., 2008; Zai et al., 2009) and unilateral 

pyramidotomy (Brus-Ramer et al., 2007; Maier et al., 2008). Following 

transection of the dorsal columns, which contain most of the crossed CST axons, 

ipsilaterally descending CST axons spontaneously sprout onto motor neuron pools 

(Weidner et al., 2001). Although, it is yet to be established whether stroke 

induces the sprouting of ipsilaterally projecting fibres. 

Despite the above reports of sprouting, it is yet to be established whether new 

CST axonal terminals, originating from the non-ischaemic hemisphere, form in 

the denervated (ipsilateral) half of the spinal cord to replace the synaptic 

connections lost after stroke. In a transgenic mouse in which CST axons were 

labelled with yellow fluorescent protein, Liu et al., (2013) investigated terminal 

remodelling after permanent occlusion of the MCA. An antibody against 

synaptophysin, an abundant presynaptic vesicle glycoprotein, was used as a 

marker of synaptogenesis. The number of CST axons containing synaptophysin in 

the stroke-affected side of the spinal cord was significantly reduced compared 

with control mice at 14 days after stroke, then significantly increased at 28 days 

after stroke. Although this is indicative of the formation of new CST terminals, 

all CST axons were labelled (i.e. from both hemispheres), so the extent to which 

the CST from the non-ischaemic hemisphere contributes to terminal remodelling 

remains unclear. Evidence for the formation of new synaptic connections 

between the non-ischaemic hemisphere and denervated (ipsilateral) limb 

muscles comes from Liu et al., (2008; 2009); at 4 (or 8) weeks following 

permanent middle cerebral artery occlusion in the rat, injection of a 

transsynaptic tracer into affected-forepaw muscles revealed an increased 

number of labelled cells in the motor cortex of the non-ischaemic (ipsilateral) 

hemisphere. 
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Figure 1-6 Potential patterns of CST sprouting from the non-ischaemic hemisphere  

The normal axonal projection patterns are shown in black and the potential patterns of CST 
sprouting that occur after stroke are shown in red. Fibres from the main contralateral component 
may sprout collaterals across the midline resulting in a “double crossed” pathway. The small 
population of pre-existing ipsilateral fibres may also sprout in order to strengthen connections 
between the non-ischaemic motor cortex and the stroke-affected (ipsilateral) limb. (Modified from 
Carmel & Martin, 2014).  

 

 

 

 



35 
 
The CST remodelling studies described above have principally used rodent 

models involving 1) complete ablation of the pyramidal tract from one 

hemisphere (Brus-Ramer et al., 2007; Maier et al., 2008); 2) targeted infarction 

of the entire primary motor cortex (LaPash Daniels et al., 2009; Bachman et al., 

2014); 3) or permanent occlusion of the MCA (Liu et al., 2007; 2008; 2009) which 

typically produces very large infarcts encompassing both subcortical and cortical 

structures (Garcia et al., 1993). In humans, it has been estimated that less than 

15% of all strokes involve cortical infarcts while the majority of strokes are 

subcortical (Bogousslavsky et al., 1988; Kang et al., 2003; Wessels et al., 2006; 

Corbetta et al., 2015). Whether subcortical infarcts result in remodelling of the 

CST from the non-ischaemic hemisphere has yet to be explored.  

The vast majority of studies have focussed on CST sprouting directly into the 

denervated (ipsilateral) side of the spinal cord as a potential mechanism of 

recovery following stroke. However, it is important to acknowledge that the 

motor cortex of the non-ischaemic hemisphere could also gain access to the 

denervated (ipsilateral) side of the spinal cord indirectly via relay neurons 

located in the brainstem and contralateral spinal cord (section 1.3) and the 

strengthening of these indirect pathways could also contribute to recovery. A 

small number of studies have alluded to this. For instance, at 4 weeks following 

cortical infarction in mice, the cortex from the non-ischaemic hemisphere 

increases its projections to the ipsilateral medullary reticular formation; and in 

turn, reticular nuclei increase their projections to the denervated (ipsilateral) 

side of the spinal cord (Bachmann et al., 2014). In primates, following pyramidal 

tract transection, ReST axons passing through the MLF increase their output to 

denervated flexor motor neurons (Zaaimi et al., 2012).  Additionally, at 4 weeks 

following permanent occlusion of the MCA in rats, pyramidal neurons in the non-

ischaemic hemisphere sprout fibres into the deafferented (contralateral) red 

nucleus (Liu et al., 2007). Finally, it is also noteworthy that in addition to the 

adaptive changes described for the non-ischaemic hemisphere, an array of 

repair-related events have been reported to occur within the ischaemic 

hemisphere after stroke (reviewed by Benowitz & Carmichael, 2010; Cramer, 

2008). Recovery from stroke therefore, likely involves the reorganisation of 

multiple systems at both the cellular and molecular level.  
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1.5 Aims of the Thesis 

This thesis has two overarching aims:  

1) In rodent models of stroke, there is evidence that CST axons originating 

from the non-ischaemic hemisphere sprout into the denervated 

(ipsilateral) side of the spinal cord, and the extent of sprouting correlates 

with the degree of motor recovery (section 1.4.3; Liu et al., 2007; Liu et 

al., 2008; LaPash Daniels et al., 2009; Bachmann et al., 2014). However, 

it is yet to be confirmed whether the CST from the non-ischaemic 

hemisphere establishes new terminals in the denervated (ipsilateral) side 

of the spinal cord after stroke. Hence, the first major aim of this thesis 

was to assess for CST terminal remodelling between the non-ischaemic 

hemisphere and denervated (ipsilateral) half of the cervical spinal cord 

following recovery from experimental stroke in the rat. It was 

hypothesised that rats subjected to experimental stroke would exhibit an 

increased number of CST terminals in the denervated (ipsilateral) half of 

the spinal cord and that the number of terminals would be correlated 

with the degree of motor recovery. 

2) Spinal CINs are a highly heterogeneous population and they play an 

important role in coordinating inter-limb activity (section 1.2). 

Furthermore, neural pathways involving CINs represent a potential 

substrate for recovery of function following injury to the CST (e.g. after 

stroke; section 1.3; Jankowska & Edgley, 2006; Edgley et al., 2004). 

Despite their proposed functional significance, CINs (particularly those of 

the cervical spinal cord) remain poorly defined and supraspinal input to 

the various populations of CINs has yet to be fully characterised. Hence, 

the second major aim of this thesis was to gain a better understanding of 

how supraspinal pathways engage different populations of CINs within the 

cervical spinal cord. Specifically, the goal was to characterise CST and 

ReST contacts onto two different populations of CINs in the rat:  i) those 

that issue long-ranged axonal projections to lumbar segments 

(commissural LDPNs) and ii) those that have short-range axonal 

projections confined to a single segment (intrasegmental CINs). It was 
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hypothesised that CST and ReST axons would establish contacts with both 

of these cell types.   
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This chapter provides a detailed description of the materials and methods used 

throughout this project. Any deviations from these procedures or additional 

techniques carried out to fulfil specific aims will be described in the appropriate 

results chapters. 

2.1 Rodents 

All experiments were performed using adult male Sprague-Dawley rats (250-

300g, Harlan, Bicester UK). Prior to surgery rats were group housed (12:12, 

light:dark) with food and water available ad libitum. All procedures were 

approved by the Ethical Review Process Applications Panel of the University of 

Glasgow and were performed in accordance with the UK Animals (Scientific 

Procedures) Act, 1986. 

2.2 Surgical procedures 

2.2.1 Animal preparation 

For all surgical procedures anaesthesia was induced in an anaesthetic chamber 

with 5% isoflurane (Baxter Healthcare Ltd, UK) delivered in 30% oxygen (O2) and 

70% nitrous oxide (N2O).  Absence of the hindlimb withdrawal reflex (assessed by 

pinching the metacarpal region of the hind-foot) indicated appropriate depth of 

anaesthesia. During surgery this reflex was assessed at regular intervals (~10 

min) to ensure an adequate dose of anaesthesia was maintained. The application 

of Lacri-Lube (Allergan, Irvine, USA) prevented corneal drying, and body 

temperature was held stable at 37±2ºC by a heated lamp and rectal thermal 

probe (Physitemp, New Jersey, USA). All surgeries were performed under strict 

aseptic conditions.  

2.2.2 Induction of transient focal cerebral ischaemia 

Prior to the induction of transient focal cerebral ischaemia, rats were intubated 

to allow for mechanical ventilation. This is because the surgical procedure 

involves manipulation of the vagus nerve, which is implicated in respiration.  

Firstly, an intubation wedge with a 25º angle made from the barrel of a 3-ml 

plastic syringe (as outlined by Jou et al., 2000) was inserted into the rat’s mouth 

to expand the oropharyngeal cavity for visualisation of the epiglottis. The rat 
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was placed in supine position and a flexible fiber-optic light source (Meiji 

Techno, UK) was shone onto the ventral surface of the neck to gain a clear view 

of the larynx and trachea. A 16 gauge catheter (MillPledge Veterinary, UK) was 

inserted through the intubation wedge directly into the tracheal entrance. The 

wedge was then removed and the catheter connected to a ventilator (Ugo 

Basile, Linton Instruments, UK) where the stroke volume was set to ~3ml at a 

frequency of 50 breaths per min. The catheter was sutured to the side of the 

mouth (4-0 silk) to secure it in place and anaesthesia (reduced to 2-3% 

isoflurane) was maintained via this method.  

Transient MCA occlusion (MCAo) was performed using the intraluminal filament 

method first described by Koizumi et al., (1986) with subsequent modifications 

(Longa et al., 1989). Following a ventral midline neck incision (~2 cm), the 

tracheal strap musculature and submandibular glands were retracted to reveal 

the left common carotid artery. Using a dissecting microscope (x10 

magnification), this vessel was carefully separated from the vagus nerve and 

surrounding fascia. The external carotid, internal carotid and occipital arteries 

were then isolated, as shown in Figure 2-1A. A loose ligature (4-0 silk) was 

looped around the carotid artery at the bifurcation and a second tie was placed 

tightly 1mm below the bifurcation. Loose ties were then placed around the 

external carotid, internal carotid and occipital vessels and tension was applied 

to each tie to minimise bleeding. Finally, the pterygopalatine branch of the 

internal carotid artery was isolated and tied off to prevent accidental intubation 

of this vessel with the filament. See Figure 2-1B for a schematic of the ligated 

vessels.  

The intraluminal filament was constructed from a length of 3-0 nylon 

monofilament (Covidien, UK) where a small diameter bulb (300-350µm diameter 

for 250-300g rats) was moulded using a cauterising pen (Aaron Medical, FL, USA). 

A bend was introduced in the filament at 22mm to ensure the bulb advanced to 

the proximal origin of the MCA. An arteriotomy was made between the 2 

ligatures on the common carotid artery and the filament was inserted and 

advanced along the internal carotid artery until only the bend of the filament 

was visible outside the vessel. At this point, resistance indicated that the bulb 

was lodged at the ostium of the MCA. The loose ligature at the carotid 
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bifurcation was tied tightly around the filament to secure it in place and the 

wound was filled with sterile saline and covered with gauze to prevent 

dehydration. After 60 min, the ligature around the carotid bifurcation was 

loosened and the filament retracted and removed. The incision point was 

cauterised with diathermy forceps and all ligatures were removed. The wound 

was then flushed with sterile saline and stitched using 4-0 silk sutures and 2ml of 

0.9% saline was administered subcutaneously (SC) to prevent dehydration. 

In animals subjected to sham occlusion as controls, the above surgical procedure 

was carried out with the exception of the arteriotomy and insertion of the 

filament. Briefly, the left common carotid artery was exposed and dissected 

from its bifurcation to the skull base and sterile silk sutures were tied around 

the common, external, internal, occipital and pterygopalatine vessels. After 60 

min, all of the ligatures were removed, the wound was closed and 2mL 0.9% 

saline injected (SC).  

At the end of the MCAo and sham procedures, anaesthesia was withdrawn and 

100% O2 was administered. When the rat began breathing against the ventilator, 

the O2 was switched off and the intubation tube was disconnected from the 

ventilator. Once the rat was breathing unaided, the intubation catheter was 

removed and the rat was transferred to a recovery cage. Animals were housed 

individually and their overall health status was closely monitored throughout the 

survival period. Until the rats fed independently (~3 days), they were hand fed 

using a 5ml syringe (baby food, Heinz) 3 times daily. Softened rat chow was also 

provided on the cage floor to encourage feeding for approximately 7 days 

following surgery.  
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Figure 2-1 MCA occlusion (MCAo) via the intraluminal filament model 

A: The common carotid, external carotid, internal carotid and occipital arteries were isolated and 
particular attention was paid to avoid damaging the vagus nerve. B: Once the appropriate vessels 
were ligated (black circles), an incision was made in the common carotid artery (red dotted line) 
and a bulbed filament (blue) was inserted and advanced along the lumen of the internal carotid 
artery until it blocked the origin of the MCA. Note that in this example a left MCAo is depicted but 
the vessels appear on the right hand side because the rat is in supine position.  
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2.2.3  Anterograde labelling of axonal terminals 

Descending axons were labelled anterogradely by stereotaxic injection of the b-

subunit of cholera toxin (CTb) into the forelimb motor cortex or MLF to label CST 

and ReST axons, respectively. Following induction of anaesthesia (section 

2.2.1), the fur on the skull was shaved and the rat transferred to a stereotaxic 

frame (World Precision Instruments, USA), as shown in Figure 2-2A. Equidistant 

ear bars were inserted into each external auditory meatus so that the head 

could be moved up and down but not laterally and the head was fixed in place 

by mounting the incisors onto an incisor bar.  During the stereotaxic surgery 

anaesthesia was maintained via face mask (2-3% isoflurane in O2 and N2O, 

30%:70%). Using a dissecting microscope (x10 magnification), a midline incision 

was made and the subcutaneous tissue and periosteum were separated to expose 

the surface of the skull. In rats where the forelimb motor cortex was targeted, 

Bregma was used as a stereotaxic reference point; whereas in rats where the 

MLF was targeted the Interaural Line was used as a reference point (Figure 

2.2B). This is because greater accuracy can be achieved if Bregma is used as 

landmark for work with rostral structures and the Interaural Line for work with 

caudal structures (Paxinos et al., 1985). To zero the apparatus for forelimb 

motor cortex injections, the tip of a glass micropipette (diameter 20μm) was 

aligned with Bregma and the resultant coordinates in the anterioposterior (AP), 

mediolateral (ML) and dorsoventral (DV) planes were recorded from the Vernier 

scale (mm). To zero the apparatus for MLF injections the micropipette tip was 

aligned with the right ear bar (Interaural Line) for the AP and DV readings and 

the sagittal suture for the ML reading. To obtain the appropriate injection sites, 

the known stereotaxic coordinates for each target region were subtracted (or 

added) from these “zero” coordinates.  The stereotaxic coordinates for each 

target region are listed in Table 2.1. The coordinates for the forelimb area were 

based on those defined by Neafsey et al., (1986) and the coordinates for the MLF 

were obtained from the stereotaxic atlas of Paxinos & Watson (2005). 

Once the micropipette was moved to the designated AP/ML coordinates, a 

dental drill (World Precision Instruments, USA) was used to expose the surface of 

the brain. For forelimb area injections, two burr holes were drilled at two 

different locations, then subsequently connected.  For MLF injections, one burr 

hole was drilled. A 2µl droplet of 1% CTb (Sigma-Aldrich Co., Poole, UK) in 
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distilled water was placed onto Parafilm (Bemis, USA) then drawn into the 

micropipette by applying suction with a 20ml syringe. The micropipette was then 

inserted into the brain at the appropriate depth (DV coordinate) and CTb 

solution was expelled by using an air pressure device (1-5 pound-force per 

square inch (psi); Pico-injector, World Precision Instruments, USA). Four 200nl 

injections were administered for forelimb area labelling and a single 200nl 

injection was administered for MLF labelling.  For each injection the needle 

remained in place for 5 min to prevent backflow. The exposed surface was then 

stitched (4-0 silk sutures) and 2mL 0.9% saline was administered (SC) to the 

animal. The isoflurane was switched off and the animal was allowed to breathe 

100% O2. Once the rat regained the foot-pinch withdrawal reflex, it was 

transferred to a recovery cage. Health status was recorded daily until 

termination. 

Descending 
system 

Target 
Bregma coordinates, mm 

AP ML DV 

CST 
Forelimb motor 

cortex 

+1.5 -3 -1.5 

-0.5 -2 -1.5 

  
Interaural coordinates, mm 

AP ML DV 

ReST 
Medial longitudinal 

fascicle (MLF) 
-3.8 +0.1 +1.0 

 

Table 2-1 Stereotaxic coordinates for labelling of CST and ReST axonal terminals  

To target the forelimb area for CST labelling, the coordinates were subtracted (or added) from the 
position of Bregma.  To target the MLF for ReST labelling, the coordinates were subtracted (or 
added) from the position of the Interaural line (AP and DV) and sagittal suture (ML).  AP= 
anterioposterior; ML= mediolateral; DV= dorsoventral; mm= millimetres  

 

 



 

 

Figure 2-2 Stereotaxic frame and landmarks of the rat skull. 

A: The ear and incisor bars were used to fix the rat’s head in place and the micropipette was moved to the appropriate coordinates using the anterioposterior 
(AP), mediolateral (ML) and dorsoventral (DV) stereotaxic arms. B: Dorsal view of the rat skull depicting the stereotaxic reference points used in this study. 
Bregma (the point where the coronal suture is intersected by the sagittal suture) was used as a landmark for targeting the forelimb area whereas the 
Interaural Line (measured from the position of the ear bars) along with sagittal suture were used as landmarks for targeting the MLF (modified from Paxinos et 
al.,1985). 
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2.2.4 Retrograde labelling of LDPNs and intrasegmental CINs  

The fluorescent retrograde tracer Fluorogold (FG; Fluorochrome, LLC, USA) was 

injected into the intermedio-ventral grey matter of the right side of the lumbar 

(L1/L2) or cervical (C4/C5) spinal to label LDPNs and intrasegmental CINs, 

respectively. Following induction of anaesthesia (section 2.2.1), the rat was 

placed in a stereotaxic frame and equidistant ear bars were inserted into each 

external auditory meatus. During this procedure anaesthesia was maintained via 

face mask (2-3% isoflurane in O2 and N2O, 30%:70%). To retrogradely label LDPNs, 

the L1 segment was targeted by counting down from the point of attachment of 

the lowest rib at T13; whereas to retrogradely label intrasegmental CINs, the C4 

segment was targeted by counting down from the prominent spinous process of 

the C2 vertebra.  Firstly, the fur on the back was shaved and a dorsal midline 

incision was made extending from ~Th10 to L3 (or ~C1 to C6). The rat was then 

secured in place by spinal fixators (for L1 injections) or by clamping the C2 

spinous process (for C4 injections). A small burr hole (1mm diameter) was then 

made adjacent to the midline in the laminar surface to expose the dorsal surface 

of the L1 (or C4) segment of the spinal cord (right side). Using a small syringe 

needle (Sigma-Aldrich, UK), a break was made in the pia mater to prevent 

dimpling of the spinal cord during micropipette insertion. A 2μl droplet of 4% FG in 

distilled water was placed onto Parafilm then drawn into a micropipette. The tip 

of the micropipette (20μm diameter) was inserted into the spinal cord to a depth 

of ~1.5mm from the surface at an angle of 15° to target the intermedio-ventral 

grey matter of the right side of the spinal cord. After waiting 5 min to prevent 

backflow of the tracer, the micropipette was removed, the wound was sutured 

and 2mL 0.9% saline was administered (SC). Buprenorphine (0.1mg/100g) and 

Carprofen (5mg/100g; Reckitt Benkiser Healthcare, Dumfries, UK) were also 

administered (SC). The animal was allowed to breathe 100% O2 until it regained 

the foot-pinch withdrawal reflex and health status was monitored daily until 

termination.  

2.2.5 Perfusion Fixation 

All rats were killed by transcardiac perfusion fixation to allow for tissue 

processing. Following induction of anaesthesia (5% isoflurane in O2 and N2O, 

30%:70%), the rat received a lethal dose of Pentobarbitone (1ml/200g, 
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intraperitoneally; Sigma-Aldrich, UK). An incision was made along the midline of 

the thorax to reflect the skin (~6cm) and the diaphragm was cut.  The ribcage was 

then cut along either side and the tip of the sternum displaced to expose the 

thoracic cavity. A 16-gauge needle delivering mammalian ringer solution (25-50ml) 

from a saline bag suspended 2 metres above the operative surface was inserted 

into the apex of the left ventricle and advanced into the aorta. The needle was 

clamped in place and the right atrium cut. When the blood was cleared from the 

liver, fixative (4% formaldehyde in 0.1M phosphate buffer, pH 7.4, ~1L) was 

perfused through the circulatory system. The brain, cervical and lumbar spinal 

cord were removed and post-fixed in the same fixative overnight at 4°C. To 

cryoprotect the brain, sucrose was added to this fixative solution (3g/10ml). If not 

immediately processed for analysis, tissue was stored in liquid nitrogen which 

freezes instantly at -210 ºC.  

2.3 Sensorimotor testing 

In experiments where rats underwent transient MCAo or sham occlusion surgery 

(Chapters 3 & 4), behavioural testing was employed for the assessment of 

sensorimotor deficits and recovery. To minimise stress during behavioural 

experiments, animals were handled daily for 1 week prior to the beginning 

testing. During a handling session the rat was gently lifted from under the 

shoulders and placed on the experimenters forearm for 10 min. The rat was then 

placed back into the home cage and rewarded (Multi-Cheerios, Kellogg’s). If a rat 

displayed obvious signs of stress (e.g. vocalising or freezing) on the seventh day of 

handling, they were excluded from use in the study. All behavioural testing was 

conducted at the same time every day (10am).  

2.3.1 Neurological score 

Global sensorimotor function was assessed using a 33 point neurological scale 

originally published by Hunter et al., (2000) and subsequently modified by McGill, 

(2005). The neurological scale is modified from an original scoring system 

published by Hunter et al., (2000). The scale consists of 11 separate tests which 

evaluate limb function and motility (Table 2-2). The maximum score of 33 

denotes normal neurological function; scores lower than 33 are indicative of 
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neurological dysfunction. This test was performed on the day prior to MCAo (day -

1) and postoperatively on days 1, 2, 3, 7 (14, 21 and 28 in Chapter 4).  

 

2.3.2 Adhesive label test 

The adhesive label test was used to determine the extent of forelimb-use 

asymmetry displayed by the animals (Schallert & Whishaw, 1984). During this test, 

the rat was removed from the home cage and a circular adhesive label (1.3cm 

diameter, Avery International, USA) was placed on the hairless radial aspect of 

each wrist as shown in Figure 2-3. To prevent order of attachment from biasing 

motor behaviour, label placement (left paw/right paw) was altered for 4 separate 

trials and the experimenter touched each forepaw simultaneously immediately 

after the stimuli were attached. The animal was then placed in an observation 

cage and behaviour was recorded using a video camera (Sony). If a label fell off 

without being directly removed, the trial was restarted. Each trial ended when 

both tabs had been removed, or when 3 min had elapsed and the animal failed to 

contact/remove each tab. The latency to contact each label with the mouth and 

the latency to remove each label was subsequently assessed by observing the 

videos.  For each trial, the difference in contact/removal time between the 

affected (right) and non-affected (left) paw was calculated to prevent the overall 

activity of the rat from affecting performance (Stroemer et al., 2009). Between 

each trial the rat was returned to the home cage for 5 min. This test was 

performed prior to MCAo (day -1) and postoperatively on days 3, 7 (14, 21, and 28 

in Chapter 4). A pilot study (Chapter 3) revealed that when MCAo rats were placed 

in the observation cage at postoperative days 1 and 2, they often exhibited a 

complete lack of activity, and sometimes remained in the same position for the 

duration of the trial (3 min). Such freezing behaviour would have confounded 

experimental results, so the adhesive label test was not performed at those 

particular time points.  
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Behaviour Procedure Score 

Paw placement Animal held lengthways at edge of 
table and each paw in turn gently 
pulled over side of table 

1 point  for each successful paw 
placement back onto table (max 4) 

Righting reflex Animal placed in supine position 1 point if righted itself 

Horizontal bar Forepaws placed on elevated bar 3: if both hindlimbs raised on bar 
2: if one hindlimb raised on bar 
1: if animal hangs on 
0: if animal falls off (max 3) 

Inclined 
platform 

Animal placed facing down on 45° 
incline 

4: if animal rotates immediately to 
face “uphill” 
3: if it takes between 15-30s 
2: if it takes over 30s 
1: if animal remains pointing 
downwards 
0: if animal falls off (max 4) 

Rotation Animal held by base of tail and rotated 
clockwise or anticlockwise. Animal 
should swivel contralaterally to the 
direction of rotation 

1 point for each side (max 2) 

Visual fore-paw 
reaching 

Animal held by base of tail and 
positioned just beneath the table top. 
The ability of the rat to place both 
forepaws onto the table was assessed 

1 point for each successful 
placement (max 2) 

Contralateral 
reflex 

Animal held by tail above table and 
assessed for reflex (holding of the 
contralesional limb into the body) 

0: for a reflex 
1: no reflex 

Circling Rat placed on floor 5: non circling 
4: if animal tends to one side 
3: large circles >50cm 
2: medium circles >15<50cm 
1: tight circles <15cm radius 
0 spinning (max 5) 

Grip strength Animal held by tail and allowed to grip 
cage lid 

3: if both paws grip to cage 
2: if both paws grip to cage but let 
go 
1: point if one paw grips to cage 
0:  if no paws grip (max 3) 

Motility Rat placed on floor: maximum score 
give if animal is active, inquisitive and 
rearing 

4: normal motility 
3: if very active 
2: if slow but still lively 
1: if unsteady 
0: if completely immobile (max 4) 

General 
condition 

Animals assessed for signs  of porphyrin 
around the eyes and nose, weight loss, 
coat condition, and hunched posture  

4 : if normal 
3:  if good but lack of weight gain 
2:  fairly good 
1. if secretions around eyes/nose  
0: if poor (max 4) 

Maximum 
score 

  33 

 
Table 2-2 The 33 point neurological score  

Limb function, motility and general condition were assessed using a battery of 11 tests originally 
developed by Hunter et al., (2000) and subsequently modified by McGill (2005).  
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Figure 2-3 The adhesive label test for the evaluation of forepaw function  

An adhesive label was placed on the distal-radial region of each wrist then the rat was returned to the 
home cage. The latency to contact and latency to remove each label was recorded to determine 
whether the rat showed bias for the affected or unaffected forelimb 
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2.4 Tissue preparation 

In rats that received CTb injections (into the forelimb motor cortex or MLF), the 

brain was cut into 100µm coronal sections with a freezing microtome (Leitz, 

Wetzlar) for histological examination of the injection site. Spinal segments 

containing anterogradely labelled terminals (and FG injection sites and 

retrogradely labelled cells) were firstly notched in the right ventral lateral white 

matter (to aid orientation post-sectioning), then cut into 60μm thick transverse 

sections using a Vibratome (Leica VT10005, Leica Microsystems, UK). All cut 

sections were then immediately placed in 50% ethanol (EtOH) for 30 min to 

enhance antibody penetration.  Surplus sections were stored in glycerol (-20°C) 

and remaining whole blocks of tissue were stored in liquid nitrogen (-210°C). 

Formulae for common laboratory reagents used throughout this project are 

provided in Appendix 1.  

2.5 Identification of brain injection sites and CTb-
labelled terminals 

Brain injection sites (in the forelimb motor cortex and MLF) and the axon 

terminals labelled by anterograde transport of CTb were revealed using the 

chromogen 3, 3’-diaminobenzidine (DAB; Sigma-Aldrich, UK). Brain sections and 

cervical spinal cord sections were incubated in goat anti-CTb (List Quadratech, 

USA: 1:50,000) for 48 h followed by 3 x 10 min rinses in phosphate buffered saline 

(PBS). They were then placed in biotinylated anti-goat immunoglobulin (IgG, 

Jackson Immunoresearch, USA; 1:500) for 3 h. After additional rinsing, the 

sections were incubated in avidin-horseradish peroxidase for 1 h (Sigma-Aldrich, 

UK; 1:1000). All antibodies were diluted with 0.3% Triton X-100 (Sigma-Aldrich, 

UK) in phosphate buffered saline (PBST). Finally, hydrogen peroxide (H2O2) plus 

DAB was applied for 10 min to reveal immunoreactivity at the injection sites as a 

brown product. Sections were mounted onto gelatinised slides and stored 

overnight in formalin vapour. After dehydration in distilled water, 70% EtOH, 90% 

EtOH and 100% EtOH and clearing in Histoclear (National Diagnostics, USA), the 

sections were cover-slipped using a mounting medium (Histomount, National 

Diagnostics, USA). Sections were viewed with transmission light microscopy and 

digitally photographed with an AxioCam camera (Carl ZEISS, Inc., Germany) using 
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AxioVision 4.8 software (Carl ZEISS, Inc., Germany). The injection site was then 

determined using a stereotaxic rat brain atlas (Paxinos & Watson, 2005). The 

segmental and laminar location of anterogradely labelled terminals was examined 

by superimposing the photomicrographs onto cervical segmental templates (from 

Paxinos & Watson, 2005) using Adobe Photoshop 7.0 (1990-2000). Representative 

photomicrographs are shown in Figure 2-4. 

2.6 Identification of spinal injection sites and FG-
labelled cells 

Following spinal segment sectioning (section 2.5), FG injection sites and 

retrogradely labelled LDPNs and intrasegmental CINs could be directly visualised 

under a fluorescent microscope (ultra violet filter, excitation, 323 nm; emission, 

408 nm) without any additional processing. Briefly, sections were washed with PBS 

(3 x 10 min) then mounted onto glass slides and coverslipped with a glycerol based 

anti-fade medium (Vectashield: Vector Laboratories, Burlingame, CA, USA). 

Sections were digitally photographed (AxioCam camera with AxioVision 4.8 

software) using an ultraviolet filter and in dark field. The photomicrographs were 

then superimposed onto spinal templates (taken from Paxinos & Watson, 2005) 

using Adobe Photoshop in order to examine the segmental location of the 

injection site as well as the laminar distribution pattern of the retrogradely 

labelled cells.  



53 
 

 

 

 

Figure 2-4 Anterograde labelling of terminals in the cervical spinal cord.  

In this example, CST terminals in the cervical spinal cord were anterogradely labelled by injecting CTb into the right forelimb motor cortex (A). The injection site in the 
brain (B) and the anterogradely labelled terminals in the cervical spinal cord (C) were revealed with a DAB reaction. Photomicrographs of spinal sections were 
superimposed onto cervical maps (obtained from the stereotaxic atlas of Paxinos & Watson, 2005) in order to determine the location of CTb-immunoreactive terminals 
relative to the various laminae of Rexed (Molander et al., 1989; D).  In this example, most CTb-immunoreactive terminals were found in laminae IV to VI. D is a 
magnified view of the box outlined in C. Scale bar in B = 1,000μm; scale bar in C = 450μm.  
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2.7 Multiple immunolabelling of terminals and cells 
for confocal microscopy 

In order to examine the relationship between labelled axonal terminals and 

specific spinal interneuron populations, cervical sections were processed for 

confocal microscopy. Immunocytochemistry (ICC) allowed multiple antigens to 

be detected within a single spinal cord section. The indirect ICC method, which 

contains two principal steps (Figure 2-5), was employed:    

1. Sections were incubated with a cocktail of primary antibodies, each with 

a selective affinity for a target antigen e.g. transporter, neurotransmitter 

or enzyme. Each primary antibody was derived from a different species. 

2. Sections were then incubated with secondary antibodies raised against the 

primary host species, with each secondary reagent recognising one of 

those species exclusively. The secondary antibodies were conjugated to 

fluorophores that emit light at different wavelengths, thus allowing the 

simultaneous visualisation of multiple antigens within the same section.  

The specificity of any given antibody is demonstrated by a negative control e.g. 

the absence of immunoreactivity in regions of the CNS known not to contain 

neurons that transport the tracer. For a positive control, the antibody is tested 

on neurons known to contain the target antigen. Information pertaining to the 

specificity and application of the primary antibodies utilised in this project 

(according to supplier product information) is shown in Appendix 2.   

All ICC experiments in this project followed the same general protocol. Firstly, 

continuously agitated sections were incubated with the primary antibodies for 72 

hr then incubated for 24 hr in secondary antibodies. A secondary antibody was 

generally an IgG raised in donkey against the IgG belonging to the species of the 

paired primary antibody. All antibody combinations were diluted with PBST and 

sections were washed in PBS (3 x 10mins) after each incubation. With notches 

appropriately aligned, sections were mounted onto glass slides and coverslipped 

with a glycerol based anti-fade medium (Vectashield: Vector Laboratories, 

Burlingame, CA, USA). 
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Figure 2-5 The indirect immunocytochemistry (ICC) method  

An unconjugated primary antibody binds to a specific antigen and the primary antibody is revealed 
by a fluorophore-conjugated secondary antibody specific to the IgG of the species providing the 
primary antibody. 
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2.8 Confocal microscopy, reconstructions and 
analyses 

Immunoreactive sections containing labelled cells and terminals were scanned 

with a three-colour channel laser confocal microscope (Radiance 2100, Biorad, 

UK). Systematic low power scans (x20, zoom factor of 1) were initially 

performed to assess the laminar location of neurons and to identify neurons with 

labelled terminals within their vicinity. Selected neurons were then scanned at 

x40 oil immersion with a zoom factor of 2 at 0.5μm increments (unless otherwise 

indicated in subsequent chapters). Table 2-3 shows the excitation-emission 

wavelengths of the different conjugated fluorophores used in this project.  

Neurons were reconstructed three dimensionally using Neurolucida 9.14.3 

software (MBF Bioscience, MicroBrightField, Inc.). Firstly, the cell body and 

dendritic processes were drawn, and then contacts were plotted using a specific 

marker for each type of contact.  Contacts were defined as being in close 

apposition to neuronal processes in the same focal plane with no intervening 

black pixels. For a given cell the total dendritic surface area (μm2) was recorded 

directly from Neurolucida 9.14.3 software (MBF Bioscience – MicroBrightField, 

Inc.). The surface area of the soma was calculated by firstly measuring the 

perimeter from the projected confocal image using ImageJ software (National 

Institutes of Health, USA) then calculating the surface area of an equivalent 

sphere (radius (μm) = perimeter/(2π) and surface area (μm2) = 4πr2). Data are 

expressed as the total number of contacts per unit area of neuronal surface 

(100μm2).  

 

 

 
 

Table 2-3 Excitation-emission wavelengths of the fluorophores used in this project

Fluorophore Excitation(λ) Emission(λ) 

Rhodamine-red 543 591 

Alexa-Fluor 488 488 517 

Dylight 649 652 670 
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2.9  Statistical analysis 

A common problem identified in scientific literature is “pseudoreplication” 

which involves taking multiple observations per individual subject and treating 

each observation as an independent data point (Lazic, 2010). Pseudoreplication 

should be carefully avoided because it artificially inflates the sample size which 

falsely raises the statistical power and devalues the conclusions drawn about a 

specific population. Therefore, in experiments where multiple observations were 

taken per rat, all of the observations for an individual rat were averaged. For 

example, in the adhesive label test each rat received 4 trials on a given day (see 

section 2.3.2) and these 4 data points were averaged so that each rat only 

contributed one value to the analysis.   

Statistically analysed data are presented graphically using Graphpad Prism 

statistical software (Graphpad Software, Inc. version 5, USA). Data from all 

experiments are expressed as mean ± standard deviation (SD). The following 

symbols were used to indicate varying levels of significance:  

Symbol Significance level 

* p < 0.05 

** P < 0.01 

*** P < 0.001 

**** P < 0.0001 

       

Prior to applying statistical analysis, raw data were visually inspected in a 

frequency histogram to assess for normal (bell shaped) distribution. 

Supplementary to the graphical assessment of normality the Shapiro-Wilk test 

was applied, which compares the actual data to a normally distributed data set 

with the same mean and standard deviation. The null hypothesis is that the 

sampled data are from a normally distributed population, thus if the test was 

significant (p<0.05) the distribution was assumed to be non-normal and a 

nonparametric test was applied e.g. Mann-Whitney or Kruskal-Wallis. Otherwise 

data were analysed using parametric t-tests and analysis of variance (ANOVA). 

Accompanying post hoc tests are described in the corresponding chapters.  



58 
 
 

 

 

 

 

 

Chapter 3 

Establishing a suitable experimental 
stroke model: assessment of final 
infarct and sensorimotor outcome 

following transient MCAo 
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3.1 Introduction 

Mimicking all of the characteristics of human stroke using a single animal model 

is not possible as ischaemic stroke is a highly complex and heterogeneous 

disorder. The strengths and weaknesses of the available stroke models must 

therefore be considered in relation to the research question. Ideally, an 

appropriate model should adhere to the following criteria: 1) the surgical 

technique for the induction of ischaemia should be minimally invasive; 2) the 

ischaemic process should be relevant to human stroke; 3) the size and 

distribution of the infarct should be reproducible; 4) the model should replicate 

the anatomical, physiological or functional features of stroke most pertinent to 

the research question (Durukan & Tatlisumak, 2007; Carmichael, 2005). The 

current project is concerned with the neuroanatomical correlates of 

sensorimotor function after stroke. As such, the animal model should exhibit 

ischaemic damage in the motor system and measurable sensorimotor deficits.  

For this project, the intraluminal filament model (Koizumi et al., 1986), which 

involves blocking the ostium of the MCA with a bulbed monofilament (see Figure 

2-1), was selected. Unlike other available rodent stroke models (Tamura et al., 

1981; Robinson et al., 1990; Frost et al., 2006), the intraluminal filament model 

enables the occlusion of the MCA without the use of a craniectomy. This is 

advantageous given that a craniectomy is invasive and does not mimic human 

stroke very closely. The major advantage of this model however, is that the 

filament can be withdrawn at any time to permit restoration of blood flow. 

Stroke models allowing for transient vessel occlusion are preferable given that 

human stroke generally involves a degree of reperfusion, either spontaneously or 

following thrombolysis therapy using recombinant tissue plasminogen activator 

(Carmichael, 2005).  

Using the intraluminal filament model to block the origin of the MCA in the rat 

produces infarcts in two general vascular territories: the deep lenticulostriate 

arteries (involving the basal ganglia and internal capsule) and the superficial 

branches (involving the lateral surface of the cortex and underlying white 

matter) (Uluç et al., 2011). A similar pattern occurs in humans, whereby 

depending on the occlusion site, MCA territory infarcts can be superficial, deep 

or both (Geyer & Gomez, 2009; see Chapter 1 section 1.4.1). In rats, the 
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intraluminal filament model induces contralateral limb deficits which have been 

well characterised using an array of behavioural tests. Examples of contralateral 

limb deficits include impaired reaching and grasping of food pellets, impaired 

detection and removal of adhesive labels placed on the forepaw, reduced grip 

strength and increased fore- and hindlimb faults during grid walking (reviewed 

by Kleim et al., 2007 and Hunter et al., 1998). Furthermore, in rats, the 

intraluminal filament model has been shown to induce axonal damage in the 

internal capsule (Valeriani et al., 2000). This is of particular relevance to the 

current project, given that the aim is to model the sensorimotor dysfunction of 

human stroke, which has been correlated with corticofugal axonal injury at the 

level of the internal capsule (Schiemanck et al., 2007; Puig et al., 2010). 

Targeted destruction of the internal capsule in rats leads to contralateral limb 

deficits such as impaired reaching and grasping (Kim et al., 2014), suggesting 

that the internal capsule of the rat serves a similar function to that of humans. 

Taken together, MCAo via the intraluminal filament method can be used to 

model the pathophysiological and functional aspects of human stroke.  

With the intraluminal filament model, consistent ischaemic infarcts have been 

reported following arterial occlusion times ranging from 20 min to 2 h (reviewed 

by Liu et al., 2009). However, there are various confounders that can limit the 

reproducibility of this model. For instance, subtle changes in filament insertion 

length (Zarow et al., 1999), bulb diameter (Abraham et al., 2002), temperature 

(Busto et al., 1987; Noor et al., 2003) and surgical technique (Chen et al., 2008; 

Tsuchiya et al., 2003) can significantly alter the degree of ischaemic injury. It 

was therefore important to conduct a pilot study to ensure an optimal setting for 

the induction of reproducible infarcts. A 60 min occlusion time was selected and 

depending on success rate, mortality rate and outcome variation, this occlusion 

period could be altered for future experiments if necessary. Based on previous 

reports, it was anticipated that MCAo for 60 min using the intraluminal filament 

model would produce infarcts encompassing the striatum and lateral cortex 

(Memezawa et al., 1992; Modo et al., 2000; Gharbawie et al., 2008).  

As well as infarct reproducibility, it was important to ensure that the 

experimental stroke model induced detectable sensorimotor deficits. Therefore, 

the sensorimotor outcome of MCAo for 60 min was examined using a neurological 
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scoring system and the adhesive label test. As described previously (Chapter 2 

section 2.3), a neurological score provides a global sensorimotor assessment and 

the adhesive label test can be used to detect forelimb use asymmetries. Based 

on previous reports, (Modo et al., 2000; Gharbawie et al., 2008), it was 

anticipated that MCAo for 60 min would be sufficient for the induction of 

sensorimotor deficits.   

Study aims: 

 To determine the degree of tissue loss in the brain at 7 days following 60 

min MCAo and to characterise the anatomical distribution of tissue loss 

throughout the MCA territory 

 To characterise sensorimotor function over 7 days following 60 min MCAo 

Hypothesis 

MCAo for 60 min will result in reproducible infarcts and impairments in both 

neurological score and the adhesive label test 

3.2 Methods 

3.2.1 Experimental design  

Eight adult male Sprague-Dawley rats (250-300g) were used in this study. A 

timeline of the experimental design is shown in Figure 3-1. All rats underwent 

left MCAo for 60 min. Behavioural testing was conducted before MCAo (day -1) 

and post-MCAo for 7 days to examine sensorimotor outcome. Rats were perfused 

with fixative on post-MCAo day 7 for histological examination of tissue loss in the 

brain.   

3.2.2 Induction of transient focal cerebral ischaemia 

Anaesthesia was induced in a chamber with 5% isoflurane delivered in O2 and N2O 

(30%: 70%. See Chapter 2, section 2.2.1). The rat was then intubated for 

mechanical ventilation and the MCA was occluded as described in Chapter 2, 

section 2.2.2. Briefly, the left common carotid artery was exposed from the 
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bifurcation to the base of the skull. Following an arteriotomy in the common 

carotid artery, a 3-0 monofilament with a bulbed tip (~0.3mm diameter) was 

advanced along the lumen of the internal carotid artery until it blocked the 

origin of the MCA (~22mm). The filament was withdrawn after 60min to allow for 

reperfusion. Anaesthesia was withdrawn and rats were transferred to recovery 

cages and health status was monitored throughout the survival period.  

3.2.3 Sensorimotor testing 

Rats were assessed prior to MCAo surgery (day -1) and at 1, 2, 3, 5 and 7 days 

post-MCAo using a battery of 10 tests to provide an overall neurological score 

(maximum score of 33 indicates normal neurological function, see Chapter 2 

section 2.3.1). The adhesive label test (detailed in Chapter 2 section 2.3.2), 

which measures latency to contact and remove an adhesive label from the 

ventral surface of each forepaw, was also performed prior to MCAo (day -1) and 

at days 1, 2 3 and 7 post-MCAo. Each rat received 4 trials on a given day and 

these 4 data points were averaged so that each rat contributed only one value to 

the statistical analysis (see Chapter 2 section 2.9).  
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Figure 3-1 Timeline of experimental procedures  

All rats underwent MCAo for 60 min (day 0). Neurological scoring was performed prior to surgery (day -1) and on post-MCAo days 1, 2, 3, 5 and 7. The adhesive label 
test was performed prior to MCAo (day -1) and on post-MCAo days 1, 2, 3 and 7. Rats were perfused with fixative on post-MCAo day 7 for histological examination of 
tissue loss in the brain.   
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3.2.4 Assessment of final infarct 

For this pilot study, final infarcts were assessed using haematoxylin and eosin 

(H&E) staining. Following transcardial perfusion fixation (see Chapter 2 section 

2.2.5) at day 7 post-MCAo, the brain was processed and embedded in paraffin 

wax in an automatic processor (Miles Scientific, see Appendix 3 for the paraffin 

processing steps). The embedded brain was then cut into 6µm thick sections 

using a microtome (Leica RM2135) and mounted onto poly-L-lysine glass slides. 

Brain sections from eight pre-determined coronal levels of the forebrain 

(described by Osborne et al., 1987) were stained with H&E (Appendix 4). 

Briefly, sections were immersed in a series of graded alcohols followed by 

haematoxylin (Surgipath, UK) staining. Then sections were washed, 

differentiated in acid alcohol, and dehydrated before eosin (Surgipath, UK) 

staining. Further dehydration was followed by immersion in histoclear prior to 

mounting the slides using DPX mounting medium (Raymond Lamb Laboratory 

supplies, Thermo Scientific, USA).  

Infarcted tissue exhibits characteristic changes in cellular morphology and 

neuropil such that it can be clearly distinguished from normal non-infarcted 

tissue using H&E staining (detailed by Garcia et al., 1993). At 3-7 days following 

ischaemia, the injured region adopts a homogeneously pale appearance that can 

be delineated (Figure 3-2A). When viewed under high magnification (x20) the 

pallor area exhibits early cavitation due to the reabsorption of necrotic debris by 

macrophages. See Figures 3-2B & C for a comparison of normal versus infarcted 

tissue, respectively. For each of the eight sections, a tiled photomicrograph was 

obtained (x10 magnification, Image-Pro, MediaCybernetics, USA). For a given 

section, ImageJ was used to directly delineate the contralesional hemisphere 

and the intact ipsilesional hemisphere (minus the region of pallor) and the area 

of each delineated region was calculated. The total volume of each hemisphere 

was determined by plotting areas against the known stereotaxic location of each 

section relative to Bregma (+3.24mm to 6.36mm) and calculating the area under 

the curve. To correct for any shrinkage that may have resulted from tissue 

dehydration and processing, the following equation was applied (based on 

Swanson et al., 1990):  
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Corrected 
lesion volume = 

Volume of contralesional 
hemisphere - 

Volume of intact 
ipsilesional hemisphere 

 

The resultant value was expressed as a percentage of the contralesional 

hemisphere to show the extent of tissue loss. To examine the location and 

distribution of the infarct throughout the rostrocaudal extent of the MCA 

territory, the pallor region on each section was superimposed onto a coronal 

brain template (taken from Paxinos and Watson, 2005) of the corresponding 

stereotaxic level (Adobe Photoshop).    

3.2.5 Statistical analysis 

For all results shown in this chapter, statistical analysis is based on the number 

of animals (not the number of behavioural trials) in order to avoid 

pseudoreplication (see Chapter 2 section 2.9). In accordance with the Shapiro-

Wilk normality test, behavioural data were analysed using repeated measures 

(RM) 1-way analysis of variance (ANOVA) with day as the independent variable 

and neurological score or contact/removal difference as the dependent variable. 

The Dunnett’s post hoc test was applied to compare data at each post-MCAo 

time point with day -1 (pre- MCAo) to assess for behavioural deficits. Each post-

MCAo time point was also compared with the post-MCAo day 1 to assess for 

recovery.  Pearson’s correlation was used to examine associations between 

tissue loss and behavioural outcome. Data are expressed as means ± SD and 

differences are considered significant at p < 0.05. 
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Figure 3-2 H&E defined infarct at 7 days following 60 min MCAo                                           

A: A light microscope (x10) image of an H&E stained section displaying the boundary between 
infarcted (area of pallor outline by dotted line) and non-infarcted tissue. B: A high power (x20) 
image of healthy non-infarcted tissue where neuronal cell bodies are pale stained and round. C: 
Image depicting infarcted tissue. Note neuronal loss and the appearance of early cavitation (scale 
bar = 100µm) 
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3.3 Results 

3.3.1 Excluded animals and data 

One, out of the eight animals used in this study died at 24 hours following MCAo 

surgery and assessment of the brain revealed signs of cerebral haemorrhage. 

Data for this rat were excluded from statistical analysis. All other animals began 

feeding within 48 hours and survived for the 7 day duration of the study.   

3.3.2 Ischaemic damage in the brain 

Total tissue loss was 18.9 ± 12.5% (ranging from 8.6 to 37.4%). With a coefficient 

of variation of 66%, total tissue loss was very variable between rats. Two rats 

exhibited very large infarcts encompassing both cortical and subcortical 

structures; whereas 5 rats exhibited smaller infarcts confined to subcortical 

structures (Figure 3-3). In the 2 rats with cortical damage, tissue loss was 

mainly in lateral cortical structures. The primary and secondary motor cortices 

along with the fore- and hindlimb regions of the primary sensory cortex were 

mainly spared, apart from a small degree of tissue loss within the rostral aspects 

of these structures. Irrespective of cortical involvement, all 7 rats exhibited 

tissue loss within large portions of the striatum. Tissue loss within the ventral 

location of the internal capsule was also apparent in all rats. Examples of H&E 

stained sections showing tissue loss relative to the location of the internal 

capsule, from the rat with the largest infarct and rat with the smallest infarct 

are shown in Figures 3-4A and 3-4B, respectively.  

Figure 3-5 shows area of tissue loss across the 8 coronal sections for all rats. A 

similar pattern of tissue loss was observed for all animals, whereby the sections 

with the highest degree of tissue loss were within end artery MCA territory 

(between 1.68 and -2.40 mm, relative to Bregma) and the sections with the 

lowest degree of tissue loss were within rostro-caudal regions that receive more 

collateral supply.  
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Figure 3-3 Tissue loss across the territory of the MCA at 7 days following 60 min MCAo 

For each rat, the infarct (blue) is shown over eight coronal levels, with the distance from Bregma (mm) defined at each level. Two rats exhibited large infarcts that 
encompassed both cortical and subcortical structures whereas 5 rats exhibited infarcts confined to subcortical structures, mainly the striatum. Reconstructions were 
obtained by delineating infarcted areas onto line diagrams (Paxinos and Watson, 2005) from light microscope images (x10) of H&E stained sections. 
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Figure 3-4 Tissue loss relative to the location of the internal capsule 

Low power (10x) light microscope images of H&E stained sections (-2.40mm from Bregma) from 
the rat with the largest infarct (A) and rat with the smallest infarct (B). The approximate anatomical 
location (taken from the atlas of Paxinos & Watson, 2005) of the internal capsule (IC) is shown. 
Note that for both rats, the infarct (area of pallor outlined by dotted line) appears to impinge upon 
the ventral location of the IC. Scale bar = 1000μm 
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Figure 3-5 Distribution of tissue loss at 7 days following 60 min MCAo  

Tissue loss is shown for 8 stereotaxic coordinates relative to the location of Bregma (mm) for each 
rat. Although the extent of tissue loss varied between rats, each rat exhibited a similar pattern of 
damage, whereby regions within end artery MCA territory (from 1.68 to -2.40 mm) showed the 
highest degree of tissue loss.  
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3.3.3 Sensorimotor outcome 

Figure 3-6A shows the mean neurological scores. A RM 1 way ANOVA revealed a 

significant effect of day on score (p<0.0001) and post hoc comparisons revealed 

that the mean score for each post-MCAo day (days 1 to 7) was significantly 

reduced compared to the mean score achieved prior to MCAo (day -1). Although 

the deficit in score lasted 7 days, the mean score at post-MCAo day 7 was 

significantly higher than that of post-MCAo day 1, suggestive of a degree of 

recovery. Individual scores for all seven rats are shown in Figure 3-6B. All rats 

received the maximum score of 33 before MCAo (day -1), indicative of normal 

neurological function. MCAo resulted in a marked reduction in score in all rats, 

followed by a gradual improvement. Despite the gradual improvement, none of 

the rats reached baseline score by day 7, suggestive of a persistent deficit. 

Table 3-1 shows the number of rats that exhibited impairments in each of the 11 

subtests, across different time points. Note that all 7 rats were impaired in the 

paw placement, horizontal bar, visual forepaw reaching and grip strength tests 

and that the rats were still impaired in these tests by day 7. All 7 rats were also 

impaired in the rotation, motility and general condition tests, but for some 

animals these impairments were absent by day 7. The inclined platform and 

circling tests were less susceptible to MCAo impairments, with 5 and 3 rats 

exhibiting deficits, respectively. Righting reflex was unaffected by MCAo and 

only 1 rat exhibited a contralateral reflex after MCAo which resolved after a day.  
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Figure 3-6  Effect of 60 min MCAo on neurological score over 7 days  

A: A RM 1 way ANOVA revealed a significant effect of day on score (F (5, 30) = 28.14, p<0.0001). Post hoc comparisons using the Dunnett’s test indicated that 
neurological score was significantly reduced at post-MCAo days 1, 2, 3, 5 and 7 compared to the pre-MCAo score (day -1). The score at day 7 was significantly higher 
than the initial deficit on day 1, thereby indicating a degree of recovery. Data represent mean ± SD. B: Individual scores for all 7 rats. Prior to MCAo (day -1) all rats 
received the maximum score of 33, after which, all scores were reduced. Although a gradual improvement was observed over time, none of the rats had returned to 
baseline score by day 7. The dotted horizontal line indicates the maximum score of 33, which denotes normal neurological function.   

*** p<0.001 versus day -1; # p<0.001 versus day 1.  
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Table 3-1 No. of rats with impairments in each of the 11 subtests of the neurological score 

All rats were impaired in the paw placement, horizontal bar, visual forepaw-reaching and grip 
strength tests, and the deficit tended to persist for 7 days. Deficits in the inclined platform, rotation, 
circling, motility tests were also apparent for some rats, with performance tending to improve over 
the 7 days.  Righting reflex and contralateral reflex were not affected by MCAo.  

 

 

 

 

 

 

 

 

 

 

 No. of rats with impairments 

 Day -1 Day 1 Day 2 Day 3 Day 5 Day 7 

Paw placement 0 7 7 7 7 7 

Righting reflex 0 0 0 0 0 0 

Horizontal bar 0 7 7 7 7 7 

Inclined platform 0 5 5 5 4 2 

Rotation 0 7 7 3 3 3 

Visual fore-paw 
reaching 0 7 7 7 7 6 

Contralateral 
reflex 

0 1 0 0 0 0 

Circling 
0 3 3 3 2 2 

Grip strength 0 7 7 7 7 7 

Motility 0 7 4 3 1 1 

General condition 0 7 3 4 1 1 
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For the adhesive label test, when the rats were placed in the observation cage 

at postoperative days 1 and 2, they exhibited freezing behaviour. Three of the 

rats in particular did not move position for the entire duration of each trial (3 

min). Five rats exhibited porphyrin around the eyes, which is consistent with 

stress. To prevent such freezing behaviour from confounding the experimental 

data, contact/removal latencies for days 1 and 2 were not analysed. No 

evidence of freezing was observed from postoperative day 3 onwards.  

The mean differences in contact time between the affected and unaffected 

paws are shown in Figure 3-7A. A RM 1 way ANOVA revealed a significant effect 

of day on contact difference time (p = 0.005) and post hoc comparisons revealed 

that contact difference time was significantly increased at post-MCAo day 3 but 

not at post-MCAo day 7. This is indicative of a bias for detecting stimuli on the 

unaffected paw that resolved after 7 days. Figure 3-7B shows the mean contact 

difference times for each individual rat (out of the 4 trials for each day). 

Following MCAo, all 7 rats exhibited an increased contact difference time that 

was then lessened by day 7. However, 2 rats exhibited much higher contact 

difference times than the other 5 rats at post-MCAo days 3 and 7.  There was 

also a significant effect of day on removal difference time (p<0.0001; Figure 3-

7C), and post hoc comparisons revealed that removal difference time was 

significantly increased at post-MCAo days 3 and 7. This indicates a bias for 

removing stimuli from the unaffected paw that persisted for 7 days. Figure 3-7D 

shows the mean removal difference times for each individual rat. Following 

MCAo, all 7 rats exhibited an increased removal difference time that was then 

lessened by day 7. However, 2 rats exhibited much higher removal difference 

times than the other 5 rats at both post-MCAo days 3 and 7. Although the 

removal difference time was lessened by day 7, there was still a marked deficit 

at this time point, with none of the rats reaching baseline performance.  
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Figure 3-7 Effect of 60 min MCAo on contact (and removal) difference times over 7 days 

A: A RM 1 way ANOVA revealed a significant effect of day on contact difference time (F (2, 20) = 14.61, p= 0.0006). Compared to day -1 (pre-MCAo), the contact 
difference time was significantly increased at post-MCAo day 3 but not 7 (Dunnett’s post hoc test). Data represent mean ± SD B: The mean contact difference times for 
all 7 rats. Note that 2 rats exhibited particularly high contact difference times at both post-MCAo days 3 and 7. C: There was a significant effect of day on removal 
difference time (F (2, 20) = 25.08, p< 0.0001). Compared to day -1 (pre-MCAo), the removal difference time was significantly increased at post-MCAo days 3 and 7. D: 
The mean removal difference times for all 7 rats. Note that 2 rats exhibited particularly high removal difference times and that all rats still exhibited asymmetries at post-
MCAo day 7. The dotted horizontal line indicates zero, which denotes symmetrical limb contact (and removal) latencies.    

*** p< 0.001 versus day 0. **p<0.01 versus day 0.  
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Pearson’s correlation was performed for post-MCAo days 3 and 7 in order to 

explore associations between total tissue loss and sensorimotor function. There 

was an inverse correlation between total tissue loss and neurological score i.e. 

as tissue loss increased, neurological score decreased. This trend was strong but 

non-significant for post-MCAo day 3 (r = -0.75; p = 0.053; Figure 3-8A) and 

significant for post-MCAo day 7 (r = -0.78; p = 0.04; Figure 3-8B).  There was no 

correlation between contact difference time and total tissue loss on post-MCAo 

day 3 (r = -0.04; p>0.05; Figure 3-8C) or post-MCAo day 7 (r = 0.26; p>0.05; 

Figure 3-8D). Similarly, there was no correlation between removal difference 

time and total tissue loss on post-MCAo day 3 (r = 0.02; p>0.05; Figure 3-8E) or 

post-MCAo day 7 (r = 0.07; p>0.05; Figure 3-8F).   
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Figure 3-8 Associations between tissue loss and sensorimotor outcome after 60 min MCAo 

There was an inverse correlation between total tissue loss and neurological score on post-MCAo 
days 3 (A) and 7 (B). There was no obvious trend between contact difference time and total tissue 
loss on post-MCAo days 3 (C) and 7 (D). Similarly, there was no obvious trend between removal 
difference time and total tissue loss on post-MCAo days 3 (E) and 7 (F). Pearson’s correlation.  

*p<0.05  
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3.4 Discussion 

This pilot study has yielded two important results in the selection of an 

appropriate stroke model for subsequent studies in this thesis: 1) MCAo for 60 

min using the intraluminal filament model produced lesions that encompassed 

subcortical regions alone, or cortical plus subcortical regions; 2) MCAo for 60 min 

induced impairments in neurological score and the adhesive label test that 

persisted for 7 days.  

Ischaemic damage in the brain 

Reproducibility of experimentally induced ischaemic injury is crucial for the 

utility of any animal stroke model. Following 60 min MCAo all rats exhibited 

tissue loss in subcortical brain regions, particularly the striatum and internal 

capsule. Cortical damage was less frequent however, with only 2 out of 7 rats 

exhibiting tissue loss within lateral cortical structures. This is in agreement with 

a study performed by Gharbawie et al., (2008) who reported that following 60 

min MCAo, all rats exhibited infarcts in subcortical structures, with the infarct 

encroaching into lateral cortical structures in some of the more severe cases. 

The unpredictable cortical involvement is likely due to Heubner anastomoses in 

the cortex having the ability to compensate for reductions in blood flow, unlike 

striatal tissue which is supplied by end arteries (Carmichael, 2005). In the 

current study, the primary and sensory motor cortices along with the fore- and 

hindlimb regions of the primary sensory cortex were spared, apart from in the 2 

rats with the largest lesions that exhibited a small degree of damage within the 

rostral portions of these structures. Predominant sparing of these structures 

following 60 min MCAo was also reported by Gharbawie et al., (2008). 

Interestingly, using intracortical microstimulation to elicit forelimb movements, 

Gharbawie and colleagues (2008) demonstrated a diminished forelimb map in the 

ipsilesional hemisphere of rats subjected to 60 min MCAo, even when the lesions 

were very small and subcortical. Thus, MCAo for 60 min disrupts pathways 

between the motor cortex and limb motor neurons, even when the motor cortex 

is not directly encompassed within the infarct. An animal stroke model that 

predominantly disrupts subcortical structures reflects the clinical situation well, 

given that most human strokes involve subcortical infarcts, while cortical 

infarcts account for less than 15% of the total number of cases (Bogousslavsky 

http://www.sciencedirect.com/science/article/pii/S0896627315001427#bib6
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et al., 1988;  Kang et al., 2003; Wessels et al., 2006). Furthermore, (see  

Chapter 1 section 1.4.1), axonal damage in the internal capsule plays a key role 

in motor outcome in human stroke (Schiemanck et al., 2007; Puig et al., 2010; 

Pendlebury et al., 1999) and there appeared to be tissue loss within the internal 

capsule in rats following 60 min MCAo in the current study.  

Sensorimotor outcome 

MCAo for 60 min resulted in a marked reduction in neurological score that 

persistent for 7 days. Although a deficit in neurological score was still present at 

post-MCAo day 7, the mean score was significantly higher than that of the initial 

deficit at post-MCAo day 1, thereby indicating a degree of recovery.  Such 

results are in agreement with Hunter et al., (2000) who employed a 21 point 

neurological score comprised of the same subtests used in the current study 

(except for grip strength), and reported a significant reduction in neurological 

score followed by partial recovery over 7 days after transient (90 min) MCAo. 

Modo et al., (2000) also demonstrated a reduction in neurological score after 60 

min MCAo using a slightly different scoring system.  On examining the results for 

each separate subtest, it appeared that the partial recovery observed at day 7 

was mainly due to improvements in the inclined platform, rotation, circling, 

motility and general condition. Impairments in the forelimb placing, horizontal 

bar, visual- forepaw reaching and grip strength tests were still apparent at day 

7. This suggests that 60 min MCAo produced persistent forelimb deficits. The 

partial recovery in some of the tests at this acute time point is likely attributed 

to the resolution of tissue oedema and the cessation of inflammation (Wieloch & 

Nikolich, 2006).   

In the adhesive label test, following 60 min MCAo, rats were impaired at 

contacting and removing labels attached to the affected (contralesional) 

forepaw, and the contact deficit recovered by post-MCAo day 7 while the 

removal deficit persisted. Following transient MCAo (90 min), Hunter et al. 

(2000) also reported impairments in contacting/removing labels attached to the 

affected forepaw that partially recovered over 7 days. Similar results were 

obtained by Modo et al., (2000) who noted that, following 60 min MCAo, rats 

were impaired in removing labels attached to the affected forepaw and although 

this deficit lessened over time, it was still present 12 weeks later. Unlike 

http://www.sciencedirect.com/science/article/pii/S0896627315001427#bib6
http://www.sciencedirect.com/science/article/pii/S0896627315001427#bib25
http://www.sciencedirect.com/science/article/pii/S0896627315001427#bib46
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neurological score which was inversely correlated with total tissue loss, there 

was no relationship between the extent of the contact/removal asymmetry and 

total tissue loss in the current study. Intriguingly, the rat with the smallest 

contact/removal asymmetry exhibited an extensive lesion affecting both cortical 

and subcortical structures whereas the rat with the largest contact/removal 

asymmetry exhibited a small lesion confined to subcortical structures.  This 

result contradicts reports from Wegener et al., (2005) who found that following 

60 min MCAo, rats were only deficient in the adhesive label test if they exhibited 

infarcts encompassing both cortical and subcortical structures; whereas if rats 

exhibited infarcts confined to subcortical structures they performed no 

differently to sham-operated rats. A possible explanation for this discrepancy is 

that the subcortical infarcts reported by Wegener and collegues appear to be 

within the lateral striatal region, whereas the subcortical infarcts in the current 

study were more medial, potentially affecting axons of the internal capsule to a 

greater extent.  The fact that use of a similar ischaemic duration and MCAo 

approach may lead to several different lesion types with varying sensorimotor 

outcomes highlights the impact of variables such as surgical technique, 

physiological parameters, housing environment and test conditions on the stroke 

model in the individual laboratory. It also emphasises the importance of 

performing pilot studies to establish the optical parameters for any new study 

(Liu et al., 2009). Finally, Virley et al., (2000) demonstrated a close correlation 

between impairments in the adhesive label test and pathological changes in the 

striatum, parietal cortex and forelimb motor cortex following transient (90 min) 

MCAo as depicted by fMRI, suggesting that damage to a range of brain regions 

can contribute to the functional impairments in this task.  

To summarise, MCAo for 60 min resulted in a 100% lesion success rate, a low 

mortality rate and tissue loss affecting either subcortical regions alone, or 

cortical plus subcortical regions. Despite variation in the extent of tissue loss 

between rats, all rats exhibited tissue loss within portions of the striatum and 

there also appeared to be tissue loss relative to the location of the internal 

capsule. Moreover, all rats exhibited impairments in neurological score and the 

adhesive label test. Based on such findings, MCAo for 60 min via the intraluminal 

filament model was selected in order to examine the neuroanatomical correlates 

of sensorimotor motor function after stroke (Chapter 4). 
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4.1 Introduction 

In Chapter 3, MCAo for 60 min was found to induce a measurable sensorimotor 

deficit that partially recovered over 7 days. The recovery detected at this early 

stage is attributed to the resolution of oedema, reperfusion of the ischaemic 

penumbra and cessation of inflammation (Wieloch & Nikolich, 2006). Any 

recovery occurring beyond the first week is thought to involve reorganisation of 

networks that have been spared by the infarct. These reorganisation processes 

are poorly understood but may involve 1) the unmasking/strengthening of 

existing but functionally weak pathways 2) sprouting of fibres from surviving 

neurons to form new synaptic connections 3) redundancy of pathways to allow 

for alternative circuits to take over function (Nudo, 2006).  

There is great interest in the possibility that the motor cortex of the non-

ischaemic hemisphere is involved in control of the spontaneously recovered 

(ipsilateral) limb after stroke. Evidence for this comes from imaging studies of 

stroke survivors showing that movement of the affected hand elicits abnormally 

enhanced activity in the motor cortex of the non-ischaemic hemisphere (Grefkes 

& Fink, 2011; Ward & Frackwiak, 2006; Rehme et al., 2011; Chollet et al., 1999; 

Grefkes et al., 2008; see Chapter 1 section 1.4.3 for more detail).  

According to anatomical tracing studies performed in rodents, the non-ischaemic 

hemisphere may gain control of the affected limb through rewiring of its CST 

projections at the level of the spinal cord. After permanent MCAo (Liu et al., 

2007; Liu et al., 2008), destruction of the primary motor cortex (Bachman et al., 

2014; LaPash Daniels et al., 2009; Ueno et al.,2012) and unilateral 

pyramidotomy (Brus-Ramer et al., 2007; Maier et al., 2008), CST axons 

originating from the uninjured hemisphere sprout into the denervated 

(ipsilateral) side of the spinal cord. Moreover, therapies that increase the extent 

of CST sprouting from the non-ischaemic hemisphere have been shown to 

enhance sensorimotor recovery (Soleman et al., 2012; Liu et al., 2007; Liu et al., 

2008; Zai et al., 2009; Chen et al., 2002; Lee et al., 2004; Lindau et al., 2014; 

see Chapter 1 section 1.4.3). 

Despite the above reports of fibre sprouting, it is yet to be confirmed whether 

the CST from the non-ischaemic hemisphere establishes new axonal terminals in 
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the denervated (ipsilateral) side of the spinal cord in association with recovery 

from stroke. Although increased staining of the synaptic-specific protein 

synaptophysin in the spinal cord after permanent MCAo is indicative of the 

formation of new terminals (Liu et al., 2007; Liu et al., 2013), the extent to 

which the CST from the non-ischaemic hemisphere contributes to terminal 

remodelling remains unclear. Hence, the goal of the current study was to 

characterise the termination patterns of the CST arising from the non-ischaemic 

hemisphere in the cervical spinal cord following MCAo. Specifically, the 

objective was to determine whether the number of CST terminals in the 

denervated (ipsilateral) side of the spinal cord changed in association with 

sensorimotor recovery.   

To test for terminal remodelling, CST axonal terminals arising from the non-

ischaemic hemisphere were anterogradely labelled using CTb at 28 days after 

MCAo. Although biotinylated dextran amine (BDA) is more commonly used to 

trace the CST system, CTb is transported much faster and it has been shown to 

label terminal structures more robustly (Hagg et al., 2005). Terminals were 

examined at 28 days post-MCAo because previous studies of experimental stroke 

have reported CST axonal sprouting (Liu et al., 2007; LaPash Daniels et al., 2009; 

Bachman et al., 2014) and increased synaptophysin staining (Liu et al., 2007; Liu 

et al., 2013) in the denervated side of the spinal cord at this stage. A model of 

transient (60 min) MCAo was selected because human stroke typically involves a 

degree of reperfusion (Carmichael, 2005). Furthermore, as established in 

Chapter 3, MCAo for 60 min predominantly disrupts subcortical structures and 

this reflects the clinical situation well given that the large majority of human 

strokes are subcortical (Bogousslavsky et al., 1988;  Kang et al., 2003; Wessels 

et al., 2006). Sensorimotor testing was employed to explore associations 

between CST terminal remodelling and functional outcome.  

Study aims: 

 To characterise the laminar termination pattern of the CST originating 

from the non-ischaemic hemisphere in the cervical spinal cord at 28 days 

following 60 min MCAo or sham surgery 

http://www.sciencedirect.com/science/article/pii/S0896627315001427#bib6
http://www.sciencedirect.com/science/article/pii/S0896627315001427#bib25
http://www.sciencedirect.com/science/article/pii/S0896627315001427#bib46
http://www.sciencedirect.com/science/article/pii/S0896627315001427#bib46
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 To quantify CST terminals originating from the non-ischaemic hemisphere 

in the cervical spinal cord at 28 days following 60 min MCAo or sham 

surgery 

Hypothesis 

Rats subjected to 60 min MCAo will exhibit an increased number of labelled CST 

terminals in the denervated (ipsilateral) side of the spinal cord compared with 

sham operated rats, and the number of terminals will be correlated with the 

degree of spontaneous sensorimotor recovery 

4.2 Methods 

4.2.1 Power Calculation 

For ethical and economic reasons, it is important to use the minimum number of 

animals necessary to achieve scientific goals – but not so few as to miss 

biologically important effects (Festing & Altman, 2002). The current study is 

concerned with the neuroanatomical correlates of sensorimotor function after 

MCAo. A power analysis calculator (http://www.graphpad.com/scientific-

software/statmate) was used to determine the minimum group sizes necessary 

to detect a significant reduction in neurological score in MCAo rats (versus sham 

rats). The means and SDs were estimated based on data obtained in Chapter 3 

(neurological scores at post- MCAo day 7; Figure 3-6). It was assumed that sham-

occlusion surgery would not alter baseline measures of neurological score. To 

detect a mean difference in neurological score of 7 with a significance of 0.05 

and a power of 0.8, a total of 6 rats per group would be required assuming a SD 

of 3.5. Therefore, 12 male Sprague-Dawley rats (250-300g) were used in this 

experiment, where 6 rats underwent MCAo and 6 rats underwent sham-occlusion 

surgery.  

4.2.2 Experimental design 

A timeline of the experimental design is shown in Figure 4-1. Six rats underwent 

left MCAo for 60 min and 6 rats underwent sham occlusion surgery. Sensorimotor 

testing was conducted prior to surgery (day-1) and after surgery for 28 days for 

the assessment of functional deficit and recovery. A T2 weighted MRI scan was 
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performed at post-MCAo day 7 for assessment of the infarct in the brain. At day 

28, all rats received a stereotaxic CTb injection into the right forelimb motor 

cortex for the visualisation of axonal terminals arising from this region. At day 

32 (4 days post-CTb injection), rats were perfused with fixative for the 

examination of CTb-labelled terminals in the cervical spinal cord. All image 

analysis and terminal counting was performed with the experimenter blinded to 

the identity of the rat.  

4.2.3 Induction of transient focal cerebral ischaemia 

Anaesthesia was induced in a chamber with 5% isoflurane delivered in O2 and N2O 

(30%: 70%. See Chapter 2 section 2.2.1). The rat was then intubated for 

mechanical ventilation and the MCAo was performed as described in Chapter 2, 

section 2.2.2. Following exposure of the left common carotid artery bifurcation, 

a filament with a bulbed tip was advanced along the lumen of the internal 

carotid artery until it blocked the origin of the MCA. The filament was 

withdrawn after 60 min to allow for tissue reperfusion. Sham operated rats 

underwent the same procedures with the exception of the insertion and 

advancement of the filament. Animals were transferred to recovery cages and 

health status was closely monitored throughout the survival period.  

4.2.4 Sensorimotor testing 

Neurological scoring was performed on the day prior to MCAo/sham surgery (day 

-1) and on postoperative days 1, 2, 3, 7, 14, 21 and 28 (as described in Chapter 2 

section 2.3.1). The adhesive label test (detailed in Chapter 2 section 2.3.2) 

was also performed prior to MCAo/sham surgery (day -1) and postoperatively on 

days 3, 7, 14, 21 and 28. Each rat received 4 trials on a given day and these 4 

data points were averaged so that each rat contributed only one value to the 

statistical analysis (see Chapter 2 section 2.9). 

 

 

 



86 
 

 

Figure 4-1 Timeline of experimental procedures   

Rats underwent left MCAo for 60 min or sham occlusion surgery (day 0). Sensorimotor testing was conducted at days -1, 1, 2, 3, 7, 14, 21, and 28. A T2 weighted MRI 
scan was performed at day 7 to examine infarcted tissue in the brain. At day 28, terminals originating from the right forelimb motor cortex were anterogradely labelled 
with CTb. Rats were perfused with fixative on day 32 for examination of the labelled terminals.  
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4.2.5 Assessment of final infarct 

MRI RARE T2 weighted imaging was used to determine the anatomical 

distribution and size of the infarct. After induction of anaesthesia (section 

2.2.1), the animal was transferred to a Bruker Biospin Avance 7T (300 MHz) MRI 

scanner with a gradient coil (121 mmID, 400mT/m) and a 72 mm birdcage 

resonator. The head was secured in place using ear and incisor bars and a linear 

surface receiver coil was placed onto the head. Anaesthesia was maintained via 

face mask (2-3% isoflurane in O2 and N2O, 30%:70%).  A 4-channel phased array 

surface receiver coil was placed on the head and a RARE T2 weighted sequence 

was acquired (TE=72.7ms, TR=5086.1ms, matrix=256x256, 16 coronal slices; 

0.75mm thick). The rat was then allowed to breathe 100% O2 until it regained 

the foot-pinch withdrawal reflex before being placed in a recovery cage.  Final 

infarct was defined as the hyperintense areas on the T2 weighted images (see 

Figure 4-4). These areas were manually delineated on each of the 16 T2 slices 

spanning the territory of the MCA using ImageJ software (National Institutes of 

Health, USA). The infarct volume was calculated by multiplying the total area 

across the 16 slices by the slice thickness (0.75mm). 

4.2.6 Anterograde labelling of CST terminals originating from the 
non-ischaemic hemisphere 

At 28 days post-MCAo/sham surgery, all rats received a stereotaxic injection of 

CTb into the forelimb motor cortex of the non-ischaemic (right) hemisphere, 

(see Chapter 2, section 2.2.3). Briefly, following induction of anaesthesia 

(Chapter 2 section 2.2.1), the 2 burr holes were made in the skull and a 

micropipette containing 1% CTb was inserted into the brain at 4 standardised 

points. At each point, 200nl of CTb was injected using a Pico Injector (World 

Precision Instruments, USA). See Table 2.1 for the stereotaxic coordinates used 

for targeting the right forelimb motor cortex. The scalp was sutured and health 

status of the animal was monitored until termination.  

4.2.7 Tissue preparation 

Four days following CTb injection (32 days after MCAo/sham surgery), rats were 

transcardially perfused with fixative (as described in Chapter 2 section 2.2.5). 

The brain and spinal cord were removed and post-fixed over night at 4°C. To 
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cryoprotect the brain, sucrose was added to the fixative (3g/10ml). The brain 

was then sectioned coronally (100μm) with a freezing microtome and segments 

C3-C8 of the cervical spinal cord were cut into transverse sections (60μm) with a 

Vibratome. All cut sections were immediately placed in 50% EtOH (30 min) to 

enhance antibody penetration.  

4.2.8 Identification of cortical CTb injection sites 

CTb injection sites in the cortex of the non-ischaemic hemisphere were revealed 

using DAB as a chromagen (see Chapter 2 section 2.5). Brain sections were 

incubated in goat anti-CTb for (48 h), and then biotinylated anti-goat IgG (3 h) 

followed by avidin-horseradish peroxidase (1 h). Finally H2O2 plus DAB was 

applied (10 min) for visualisation of CTb immunoreactivity. Sections were viewed 

under transmission light microscopy and digitally photographed (x5; Axiovision 

software). To confirm the anatomical location, injection sites were 

reconstructed onto coronal maps taken from a stereotaxic atlas (Paxinos & 

Watson, 2005) using Adobe Photoshop.  

4.2.9 Assessment of CST axonal loss from the ischaemic 
hemisphere  

To test whether MCAo led to the loss of CST axons originating from the ischaemic 

hemisphere, the intensity of protein kinase C gamma (PKC-γ) immunoreactivity 

in the dorsal columns was measured. PKC-γ is an important intracellular 

signalling kinase found in a specific subset of excitatory interneurons in lamina II 

and in axons of the dorsal CST (Mori et al., 1990). It has therefore been 

employed as a marker of CST axonal loss following pyramidotomy and stroke 

(Tan et al., 2012; Lindau et al., 2014; Bradbury et al., 2002). For each rat, PKC-

γ immunoreactivity was examined in 2 transverse sections from segment C8 of 

the cervical spinal cord. Sections were incubated with anti- PKC-γ for 72 h 

(Table 4.1) followed by donkey anti-rabbit Alexa 488 secondary antibody (24 h). 

They were then rinsed in PBS (3 x 10 min) and mounted with anti-fade 

(Vectashield). The dorsal columns were imaged using a BioRad radiance 2100 

confocal microscope at x20 magnification (zoom factor of 0.9 at 0.5μm 

intervals), whereby the entire thickness of the section was scanned. PKC-γ 

labelling intensity was then measured on the projected confocal microscope 
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image using ImageJ software. The software detected the brightness intensity of 

each pixel in a selected “region of interest” (ROI). A value of 0 indicated “no” 

brightness in pixels measured (i.e. black), and a value of 255 indicated the 

maximum brightness value the software could measure (i.e. white). As shown in 

Figure 4-2, the unaffected (left) side was delineated and the mean brightness 

intensity calculated. The image was then flipped horizontally so the same ROI 

could be applied to the affected (right) side. The absolute values of brightness 

intensity were subsequently expressed as a ratio of the affected (right) side 

versus unaffected (left) side to control for variation in immunolabelling between 

sections and animals. A value of 1 indicated no difference in PKC-γ 

immunoreactivity between the affected and unaffected side. For every rat, 

brightness intensity ratio was averaged (out of the 2 sections) so that each rat 

contributed only one value to the statistical analysis (see Chapter 2 section 

2.9).   
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Figure 4-2 Method for measuring PKC-γ immunoreactivity in the dorsal columns 

On the projected confocal microscope image, the unaffected (left) side was delineated (red) and the mean brightness intensity calculated. The image was then flipped 
horizontally to measure the mean brightness intensity of the affected (right) side. A ratio of affected (right) side/ unaffected (left) side was used to express the degree of 
symmetry of PKC-γ immunoreactivity. In this particular example the brightness intensity ratio was 0.95.  Image taken from a randomly selected sham occluded rat. 
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4.2.10 Examination of VGLUT-1 immunoreactivity in CTb-
labelled axonal swellings 

CST axonal terminals are enriched with VGLUT-1 (Du Beau et al., 2012) therefore 

co-expression of VGLUT-1 and CTb was used to verify that CTb-labelled axonal 

swellings in the spinal cord were terminals. Three sham and three MCAo rats 

were randomly selected. Sections (3-4 per rat) from cervical segment C4 were 

incubated with anti- CTb and anti-VGLUT-1 (72 h) followed by secondary 

antibodies coupled to Alexa 488 and Dylight 649, respectively (24 h; Table 4-1). 

They were then rinsed in PBS (3 x 10 min) and mounted with anti-fade 

(Vectashield). Using confocal microscopy (BioRad radiance 2100), fields 

containing CTb-labelled terminals were scanned using a x40 oil-immersion lens 

(zoom factor of 2 at 0.5µm intervals). For each section 4 fields were obtained: 3 

fields from the unaffected (left) side (contralateral to the injection site) 

encompassing the medial dorsal horn and medial intermediate grey matter, 

which is where previous studies have reported the majority of CST terminals to 

be distributed (Gribnau & Dederen, 1989; Liang, 1991; Du Beau et al., 2012); 

and 1 field from the affected (right) side (ipsilateral to the injection site) 

encompassing the intermediate grey matter which is where uncrossed CST axons 

have been reported to terminate (Brösamle & Schwab, 1997). Using Neurolucida 

software, stacks were initially viewed in a grid (10 x10 μm2) so that only CTb-

immunoreactivity (green channel) was visible. For each square, a CTb-labelled 

terminal closest to the bottom right corner was marked, and then the marked 

terminals were examined in the blue channel to assess for co-expression of 

VGLUT-1. The percentage of double-labelled CTb terminals as a proportion of 

the total number of CTb terminals was calculated for each rat.  

4.2.11 Assessment of the laminar distribution of CTb-labelled 
terminals in the cervical spinal cord 

For each rat, 1 section from segments C3, C5 and C7 was processed for D1AB 

(Chapter 2 section 2.6). A tiled image (x40 magnification) of each section was 

acquired using Image-Pro software. To make laminar distribution comparisons 

between rats, the terminals were mapped onto spinal templates (taken from 

Paxinos & Watson, 2005). This was achieved by thresholding the image so that 

only the dark coloured pixels (i.e. the DAB positive regions) were visible, then 
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transposing the dark coloured pixels onto corresponding spinal templates using 

Adobe Photoshop.  

4.2.12 Quantification of CTb-labelled terminals in the cervical 
spinal cord 

For each rat, 3 sections from segments C3, C5 and C7 were processed for DAB 

(Chapter 2 section 2.5) and a tiled image (x40 magnification) of each section 

was acquired using Image-Pro software. A ROI (0.9mm x 1mm) was then applied 

to each side of the grey matter. Each ROI was aligned with the ventromedian 

fissure (the midline) and the base of the grey commissure (as shown in Figure 4-

3A). This particular area of the grey matter was selected based on previous 

reports that fibres spontaneously sprout across the midline extending across the 

dorsal and ventral commissure following stroke and unilateral pyramidotomy (Liu 

et al., 2008; Maier et al., 2008; Brus-Ramer et al., 2007). An automatic counting 

technique was employed for calculating the numbers of terminals. Image-pro 

software allows for the automatic detection of “objects” based on pixel colour 

variations from the background. DAB-positive terminals appear as dark spots on a 

light background, so the software was calibrated to recognize dark areas on the 

image. On a given image, a few representative “objects” (or terminals) were 

selected and a region of background was defined. Only darkly labelled terminals 

that were fully in focus were selected (Figure 4-3B). Due to the thick vibratome 

sections images contained terminals that were partially in focus (Figure 4-3C); 

however, such terminals were not quantified because on initial testing the 

software could not accurately segment them from the background. The software 

automatically detected and counted all “objects” within the image that had the 

same colour disparity from the background as the representative “objects”. See 

Figure 4-3D for a x40 magnified image of DAB-positive terminals and Figure 4-

3E for the same terminals detected with the software.  

On assessment of the data from the first few sections, a potential source of 

error was identified: when examining the resultant area (μm2) for all of the 

individually detected “objects”, the majority were less than 4 μm2; however, 

occasionally objects ranging from 5 to 10 μm2 were detected, which were 

deemed too large to be single terminals. On visual inspection of the images, this 

appeared to be attributed to the software counting several clustered or 
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overlapping terminals (Figure 4-3F) as one single dark “object” (Figure 4-3G). 

To resolve this clustering issue, the software was calibrated to detect concavity 

created by an overlap. The intersection of two overlapping terminals was 

identified by the presence of two concave points (like a “figure of eight”). 

Instead of erroneously grouping the terminals as a single “object”, the software 

split the terminals at the point of overlap (i.e. at the narrowest part of the 

“figure of eight”). In case the software still failed to segment individual 

terminals, particularly in regions where they were densely distributed (e.g. the 

medial base of the dorsal horn, see Figure 4-3A), the total “object” surface 

area (mm2) within each ROI was also calculated. 

In the C5 sections for all rats, manual counting was performed specifically within 

the grey matter immediately surrounding the central canal. This was to assess 

for any changes that may have been too subtle for the automatic counting 

software. A 200µm x 300µm ROI was applied to each side of the grey matter, and 

aligned with the ventromedian fissure and base of the grey commissure, as 

above. Because of the relatively low density of terminals within this region 

compared to the dorsal horn, manual counting was deemed feasible. Using 

ImageJ, a marker was placed on each individual terminal, and then the total 

number of markers within the ROI was recorded. Again, only dark terminals in 

full focus were selected.  

Initially terminal counts (or CTb-positive surface areas) were compared in sham 

versus MCAo rats for each side of the cervical spinal cord separately. However, it 

was important to control for variation in CTb-immunoreactivity between rats 

that may have occurred due to subtle differences in the CTb injection volume or 

location. Therefore, terminal counts (or CTb-positive surface areas) were also 

expressed as ratios: affected/unaffected (ipsilateral to injection/contralateral) 

and the ratios in sham and MCAo rats were compared. Data were averaged (out 

of the 3 sections) for each rat so that an individual rat contributed only one 

value to the statistical analysis (Chapter 2, section 2.9).  
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Figure 4-3 Automatic detection of CTb-labelled terminals  

A: Photomicrograph showing CTb-immunoreactivity and the ROI (0.9mm x 1mm) on each side of the grey matter. B: An example of darkly labelled terminals that were 
fully in focus. C: An example of partially in focus terminals that were not quantified because they could not be segmented from the background by the detection 
software. A raw image of DAB labelled terminals is shown (D) and then the same image is presented whereby the terminals have been automatically detected (E: red). 
This was achieved by selecting a few representative “objects” (or terminals; black markers) and defining a region of background (green circle). In this example 893 
“objects” were counted. F: Examples of overlapping terminals (arrows). G: In this case the software failed to separate single terminals and counted each “cluster” as a 
single “object.  
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4.2.13 Statistical analysis 

For all results shown in this chapter, statistical analysis is based on the number 

of animals (not the number of spinal sections or number of behavioural trials) in 

order to avoid pseudoreplication (see Chapter 2 section 2.9). Based on results 

from the Shapiro-Wilk normality test, all statistical analysis was conducted using 

parametric statistics. Neurological score and adhesive label test data were 

analysed by RM 2 way ANOVA with surgery (MCAo or sham) as the independent 

variable and time and neurological score/contact difference/removal difference 

as the dependant variables. The Bonferroni’s post hoc test was applied to 

compare sham vs MCAo at each time point. Two sample t test was used to 

analyse group differences in PKC-γ immunoreactivity and labelled terminals. 

Pearson’s correlation was used to examine associations between anatomical 

changes and behavioural outcome. Data are expressed as means ± SD and 

differences are considered significant at p < 0.05.   
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Table 4-1 Summary of primary and secondary antibody combinations and concentrations used in the current experiment  

1. For the examination of PKC-γ labelling in the dorsal columns (segment C8). 2. For the visualisation of the CTb injection site in the cortex of the non-ischaemic 
hemisphere and for the quantification of labelled terminals (segments C3, C5 & C7). 3. For the assessment of the co-localisation of VGLUT1 and CTb as a marker of 
CST terminals (segment C4).  

rb = rabbit; gt = goat; gp = guinea pig

 

Primary antibody 

combination 
Concentration Supplier 

Secondary 

antibody 

combination 
Concentration 

Sequential 

reaction 
       

1 rb. PKC-γ 1:500 
List Biological Laboratories, 

Campell, CA 
Alexa 488 1:500 

 

       

2 gt. CTb 1:5000 
List Biological Laboratories, 

Campell, CA 
Biotinylated IgG 1:500 

Avidin HRP 

(1:1000) + DAB 
       

3 gp. VGLUT1 1:5000 Millipore, Harlow, UK Dylight 649 1:500 
 

 gt. CTb 1:5000 
List Biological Laboratories, 

Campell, CA 
Alexa 488 1:500  
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4.3 Results 

4.3.1 Excluded animals and data 

One sham rat and two MCAo rats were excluded from all analysis because there 

were no labelled terminals detected in the spinal cord for these animals. On 

examination of the MRI T2-weighted images, it was noted that the excluded 

MCAo rats exhibited very large infarcts encompassing both cortical and 

subcortical areas. Interestingly, bilateral ventricular expansion was also evident 

in these two rats (see Figure 4-4A) which is an indicator of brain atrophy (Ding 

et al., 2010).  Brain atrophy, therefore, may have distorted the stereotaxic 

location of the forelimb motor cortex in the rats with particularly extensive 

infarcts. Accordingly, the CTb injection site in these two rats was located lateral 

to the primary and secondary motor cortices (see Appendix 7A for an example). 

In total, 9 rats were used for analysis (5 sham and 4 MCAo rats). 

4.3.2 Ischaemic damage in the brain and CST 

Infarct volume defined by MRI T2-weighted imaging at day 7 after MCAo was 45.1 

± 17.6mm3 (ranging from 33.0 to 70.9 mm3). In all 4 rats, infarcted tissue was 

confined to subcortical structures, particularly the striatal region which is 

supplied by end arteries (see Figure 4-4B for an example).  

The extent of injury was also determined at the spinal cord level using 

immunoreactivity for PKC-γ to examine whether MCAo led to loss of CST axons 

arising from the ischaemic hemisphere. In sham-occluded rats, PKC-γ was 

visualised bilaterally in the dorsal columns (Figure 4-5A). In MCAo rats, partial 

loss of PKC-γ contralateral to the ischaemic hemisphere (affected/right side) 

was observed (Figure 4-5B). The mean PKC-γ brightness intensity ratio (affected 

versus unaffected side) for the sham group was 0.98 ± 0.08; whereas the mean 

PKC-γ brightness intensity ratio for the MCAo group was 0.66 ± 0.12, and the 

difference between the two groups was statistically significant (p = 0.012; 

Figure 4-5C). The CST axonal loss was likely due to ischaemic damage in the 

internal capsule, the ventral location of which appeared to be encompassed 

within the infarct (based on examination of the atlas of Paxinos & Watson, 

2005). Residual PKC-γ immunoreactivity was still present in the affected side of 
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MCAo rats, with the mean loss of axons from the ischaemic hemisphere being 34 

± 14%. This suggests that MCAo for 60 min only partially disrupted the CST from 

the ischaemic hemisphere. There was a negative, but not significant correlation 

between infarct volume and PKC-γ brightness intensity ratio, whereby the rat 

with the largest infarct volume had the lowest brightness intensity ratio 

(Pearson’s r: -0.74, p = 0.26).  
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Figure 4-4  Ischaemic damage in the brain at 7 days following 60 min MCAo 

A: MRI T2-weighted images from an excluded MCAo rat. The infarct (the hyperintense region outlined in red) is extensive, encompassing both cortical and subcortical 
structures and the ventricles of both hemispheres appear enlarged. B: MRI T2-weighted images from a representative MCAo rat included in all analysis. Note that the 
infarct is subcortical, mainly affecting the striatal region. The 8 coronal slices represent every second slice from the 16 images acquired during the T2 scan and show 
the rostro-caudal extent of the territory supplied by the MCA. 
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Figure 4-5 PKC-γ immunoreactivity in the dorsal columns at 28 days after 60 min MCAo 

A: Projected confocal microscope image of the dorsal columns (C8) from a sham rat labelled for PKC-γ. Note symmetrical labelling. B: The dorsal columns from a 
MCAo rat labelled for PKC-γ. Note the reduced PKC-γ immunoreactivity in the affected (right) side, indicative of CST fibre loss (Scale bar = 50µm). C: PKC-γ 
brightness intensity, expressed as a ratio of affected (right) side/unaffected (left) side, was significantly reduced in the MCAo group compared with the sham group. 
Each data point represents a spinal section (2 sections per rat; n=5 sham rats and 4 MCAo rats). The dashed horizontal line indicates 1, which denotes symmetrical 
PKC-γ immunoreactivity between the affected and unaffected sides.  

*p<0.05, unpaired t test (analysis based on number of animals, not number of sections) 
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4.3.3 Sensorimotor outcome 

Figure 4-6A shows the mean neurological scores.  A RM 2 way ANOVA showed a 

significant effect of MCAo on score (p<0.001); post hoc comparisons revealed 

that MCAo rats exhibited significantly reduced mean scores compared to the 

sham rats on post-MCAo days 1 to 21. Individual scores for the 5 sham rats are 

shown in Figure 4-6B. All rats received the maximum score of 33 prior to surgery 

(day -1). Although a slight reduction in score occurred on post-MCAo days 1 and 

2, most rats exhibited the baseline score throughout the 28 days of testing.  

Individual scores for the 4 MCAo rats are shown in Figure 4-6C. As with the sham 

rats, all MCAo rats received the maximum score of 33 prior to surgery (day -1). 

All rats then exhibited a marked reduction in score after surgery followed by a 

gradual improvement over the 28 days of testing. By day 28, two rats had almost 

reached baseline score (score = 32). Taken together, MCAo resulted in a 

neurological deficit that gradually recovered over 28 days. On examination of 

the scores for each of the 11 subtests, it was noted that most rats, including 

sham operated rats, were impaired in the horizontal bar, inclined platform and 

general conditions tests following surgery. By day 3, no sham rats exhibited 

impairments in these tests, while the MCAo rats were still impaired. This 

suggests that the anaesthesia or vessel manipulation may have caused transient 

deficits in balance or grip strength. The number of sham and MCAo rats 

exhibiting impairments in each of the 11 subtests across time can be seen in 

Appendix 5 and Appendix 6, respectively.  
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Figure 4-6 Effect of 60 min MCAo on neurological score over 28 days 

A: A RM 2 way ANOVA revealed a significant group effect (F(1, 71)= 20.10, p<0.001). Bonferroni post hoc analyses showed that the MCAo rats exhibited significantly 
reduced scores compared to sham rats at post-MCAo days 1 to 21. Data represent mean ± SD.  B: Individual scores for all 5 sham rats. Prior to surgery (day -1), all 
rats received the maximum score of 33 followed by a slight reduction in score that had returned to baseline by day 3. C: Individual scores for all 4 MCAo rats. Prior to 
surgery, all rats received the maximum score of 33, after which, all scores were markedly reduced. A gradual improvement was observed over 28 days. The dotted 
horizontal line indicates the maximum score of 33, which denotes normal neurological function. 

***p<0.001, **p <0.01  
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The mean differences in contact time between the affected and unaffected 

paws are shown in Figure 4-7A. A RM 2 way ANOVA revealed a significant effect 

of MCAo on contact difference time (p<0.0001); post hoc analysis showed that 

the contact difference time was significantly increased in the MCAo group versus 

the sham group on post-MCAo days 3 to 7. This indicates that MCAo induced a 

bias for detecting stimuli on the unaffected paw that resolved after 14 days. The 

mean contact difference times for each sham rat (out of the 4 trials for each 

day) are depicted in Figure 4-7B. For all 5 rats, the contact difference times 

remained relatively close to zero throughout the duration of testing, which 

indicates symmetry in the detection of forepaw stimulation.  The mean contact 

difference values for each MCAo rat are shown in Figure 4-7C. Prior to MCAo, all 

4 rats exhibited contact difference times close to zero, after which the contact 

difference times for all 4 rats increased. This asymmetry had resolved in 2 rats 

by post-MCAo day 14 and in all rats by post-MCAo day 28.  

The mean removal difference times are shown in Figure 4-8A. A RM-2 way 

ANOVA revealed a significant effect of MCAo (p<0.0001): post hoc comparisons 

showed that MCAo rats exhibited a significantly increased removal difference 

time versus sham rats on post-MCAo days 3 to 21. This indicates that MCAo 

resulted in a bias for removing stimuli from the unaffected paw that resolved 

after 21 days. The mean removal differences for each sham rat are depicted in 

Figure 4-8B. For all 5 rats, the removal difference time remained relatively 

close to zero throughout the duration of testing, indicating that there were no 

biases for either paw. Figure 4-8C shows the mean removal difference times for 

each individual MCAo rat. Prior to MCAo, the removal difference time for all rats 

was close to zero, after which the removal difference time increased in all rats. 

The degree of this asymmetry gradually decreased over the 28 days of testing. 

Although at day 28, the removal difference time for all rats was still above zero, 

suggesting that there was still a slight bias for the unaffected paw at this time 

point.  
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Figure 4-7 Effect of 60 min MCAo on contact difference times over 28 days  

A: A RM 2 way ANOVA revealed a significant group effect on contact difference (F(1, 71)= 23.19, p<0.001). Bonferroni post hoc analyses showed that the MCAo 
group exhibited an increased contact difference times versus the sham group on post-MCAo days 3 to 7. Data represent mean ± SD (n = 5 sham rats and 4 MCAo 
rats). B: The mean contact difference values for all sham rats. Note the contact difference time was close to zero throughout the testing period. C: The mean contact 
difference times for all MCAo rats. Note the increased contact different time for all rats after MCAo, followed by a gradual return to zero.  The dotted horizontal line 
indicates zero, which denotes symmetrical limb contact latencies.  

***p<0.001 
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Figure 4-8 Effect of 60 min MCAo on removal difference times over 28 days  

A: A significant group effect was yielded for removal difference (F(1,34) = 125.2, p<0.0001) where the removal difference time was significantly higher in the MCAo 
group versus the sham group at post-MCAo days 3 to 21. Data represent mean ± SD (n = 5 sham rats and 4 MCAo rats). B: The mean removal difference values for 
all sham rats. Note that the removal difference time was close to zero throughout the testing period. C: The mean removal difference times for all MCAo rats. Note the 
increased removal difference time for all rats after MCAo, followed by a gradual reduction over 28 days. However by day 28, all rats still exhibited removal difference 
times above zero. The dotted horizontal line indicates zero, which denotes symmetrical limb contact latencies. 

***p<0.001, **p <0.01.  
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4.3.4 CTb injection sites in the non-ischaemic hemisphere 

In all rats, the CTb injection site was confined to the cortex of the non-

ischaemic (right) hemisphere, as revealed with an immunoperoxidase reaction. 

In all rats, the injection sites incorporated aspects of the primary motor cortex, 

secondary motor cortex and primary somatosensory cortex. Photomicrographs of 

injections and reconstructions from a representative sham and MCAo rat are 

shown in Figure 4-9A and Figure 4-9B, respectively. Reconstructed injection 

sites for all rats used in this experiment are shown in Appendix 7B.  

4.3.5 VGLUT-1 immunoreactivity of CTb-labelled axonal swellings 

VGLUT-1 immunolabelled varicosities were present throughout the cervical 

spinal grey matter, with the highest density in the dorsal horn and a moderate 

density in the intermediate and ventral grey matter.  Confocal microscopy 

revealed that in both sham (Figures 4-10A to C) and MCAo rats (Figures 4-10D 

to F), CTb-labelled axonal swellings originating from the non-ischaemic 

hemisphere almost universally contained VGLUT-1, suggesting they are 

glutamatergic terminals. Table 4-2 summarises the percentages of CTb-labelled 

terminals that contained VGLUT-1 in both sham and MCAo rats. In the 

unaffected/left side (contralateral to the injection site) 95 ± 1% of CTb-labelled 

terminals in the sham group and 97 ± 1% of CTb-labelled terminals in the MCAo 

group contained VGLUT-1.  In the affected/right side (ipsilateral to the injection 

site) 87 ± 13% of CTb-labelled terminals in the sham group and 83 ± 5% of CTb-

labelled terminals in the MCAo group contained VGLUT-1. The lower percentage 

of double labelled terminals in the affected (right) side for both groups 

appeared to be due to the very small number of CTb-immunoreactive varicosities 

in this side. This meant that the presence of a single CTb-immunoreactive 

varicosity that did not contain VGLUT-1 dramatically affected the overall 

proportion of double labelled terminals within this side.  
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Figure 4-9 CTb tracer injection sites in the non-ischaemic (right) hemisphere 

Photomicrographs show CTb injection sites revealed with an immunoperoxidase reaction taken from a sham (A) and a MCAo rat (B). The drawings (based on the atlas 
of Paxinos & Watson, 2005) indicate the location and extent of reaction product relative to the location of the forelimb motor cortex (defined by Neafsey et al., 1986) 
and the distance from Bregma (mm) is defined.  The dark shading shows the core of the injection site and the light shading shows the spread surrounding the injection 
site.  

M1 = primary motor cortex; M2 = secondary motor cortex; S1HL= primary somatosensory-hindlimb region; S1FL = primary somatosensory-forelimb region
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Figure 4-10  Co-expression of VGLUT-1 with CTb-labelled axonal swellings from the non-ischaemic (right) hemisphere  

A: Single optical section (from segment C4) showing CTb-labelled axonal swellings (green) in a sham rat. B: immunoreactivity in the same plane for VGLUT-1 (red). C: 
Merged image. A similar series is also shown for a MCAo rat (D-F). Note that CTb-labelled axonal varicosities are immunoreactive for VGLUT-1, suggesting they are 
glutamatergic terminals. Scale bar = 5µm. 
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Unaffected (left) side Affected (right) side 

  
Total no. CTb terminals % VGLUT-1 Total no. CTb terminals % VGLUT-1 

Sham rat 1 375 96.3 23 73.9 

 
rat 2 267 95.1 22 86.4 

 
rat 3 305 94.9 9 100 

 
mean ± SD 

 
95 ± 1 

 
87 ± 13 

MCAo rat 1 647 95.3 16 87.5 

 
rat 2 856 96.2 49 77.6 

 
rat 3 601 98 20 85 

   
97 ± 1 

 
83 ± 5 

 

Table 4-2 Percentages of CTb-immunoreactive axonal swellings in the cervical spinal cord (segment C4) that contained VGLUT-1 

Note that for all rats the vast majority of CTb- immunoreactive terminals contained VGLUT-1. Terminals quantified in 3-4 cervical sections per rat.  
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4.3.6 Laminar distribution of CTb-labelled terminals originating 
from the non-ischaemic hemisphere 

CTb-immunoreactive terminals were similarly distributed in all rats at each of 

the cervical segments examined (C3, C5 and C7). See Figures 4-11A and 4-11B 

for examples of mapped out terminals from a sham and MCAo rat, respectively. 

Terminals were primarily located in the grey matter contralateral to the 

injection site (unaffected/left side). They were most numerous in the medial 

part of the base of the dorsal horn (lamina IV to VI) but they were also present 

in laminae III to X. Occasionally terminals were observed ipsilateral to the 

injection site (affected/right side), scattered diffusely mainly throughout the 

intermediate grey matter. Within this side of the grey matter, a very small 

number of terminals and fibres immediately adjacent to the central canal were 

detected. Because of the proximity of these structures to the midline, they may 

represent ramifications of axons that have re-crossed segmentally. However they 

were very rare in both sham and MCAo rats. They were present in 5 out of the 15 

sections examined in the sham group, and 3 out of the 12 sections examined in 

the MCAo group. See Figures 4-12A and 4-12B for example images of terminals 

from a sham and MCAo rat, respectively.   
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Figure 4-11 Laminar distribution pattern of CTb-labelled terminals originating from the non-
ischaemic (right) hemisphere 

A: Distribution of CTb-labelled terminals for C3, C5 and C7 segments taken from a sham rat. Each 
representation was made from a single 60μm section reacted with DAB.  The DAB 
immunoreactivity was transposed onto spinal templates (based on Paxinos & Watson, 2005) using 
Adobe Photoshop. Note that the vast majority of terminals were contralateral to the injection site 
(unaffected/left side), particularly in the medial base of the dorsal horn. However a small number of 
terminals were found in the side ipsilateral to the injection site (affected/right side) mainly scattered 
diffusely in the intermediate region. B: A similar series of images taken from a MCAo rat 
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Figure 4-12 Photomicrographs of CTb-labelled terminals originating from the non-ischaemic (right) hemisphere  

A: CTb-labelled terminals in a C3 section from a sham rat revealed with a DAB reaction. Note the majority of terminals are located in the side contralateral to the 
injection site (unaffected/left side) at the medial base of the dorsal horn. Terminals were also scattered diffusely throughout the intermediate grey matter of the side 
ipsilateral to the injection site (affected/right side; B). Occasionally, fibres and terminals were detected adjacent to the central canal, potentially representing 
ramifications of midline crossing fibres (C). B & C are magnified views of boxes 1 & 2 of plate A. A similar series of images are shown for MCAo rat (D, E, F). Scale bar 
in A & D = 150μm; Scale bar in B, C, E & F = 50μm 
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4.3.7 CTb-labelled terminal counts in the cervical spinal cord 

CTb-labelled terminals originating from the non-ischaemic (right) hemisphere 

were quantified in the cervical spinal cord using three different counting 

methods (as detailed in section 4.2.11). The results for each of the three 

counting methods are as follows:  

Automatic CTb-labelled terminal counts 

For each cervical segment examined (C3, C5 and C7), the mean number of 

terminals counted in the unaffected (left) side was not significantly different 

between sham and MCAo rats (Figure 4-13A, p>0.05). Similarly, for all analysed 

segments, the mean number of terminals in the affected (right) side was not 

significantly different between sham and MCAo rats (Figure 4-13B, p>0.05). 

Within both sham and MCAo groups the terminal counts varied between 

individual rats. This was likely due to subtle differences in the location/volume 

of the CTb injection. To compensate for variable terminal labelling between 

rats, the automatic terminal counts were also expressed as a ratio: affected 

(right)/unaffected (left). However, mean terminal counts expressed as a ratio 

were not significantly different between sham and MCAo rats, for all three 

segments examined (Figure 4-13C, p>0.05).  

CTb-positive surface area (mm2) 

In case the automatic counting software failed to segment individual terminals in 

regions where terminals were densely distributed, the CTb-positive surface area 

(mm2) within each side of the cervical grey matter was also measured. For each 

cervical segment analysed (C3, C5 and C7), the mean CTb-positive surface area 

in the unaffected (left) side was not significantly different between sham and 

MCAo rats (Figure 4-14A, p>0.05). Similarly, for all segments analysed, the 

mean CTb-positive surface area in the affected (right) side was not significantly 

different between sham and MCAo rats (Figure 4-14B, p>0.05). To control for 

variable labelling (as described above), the CTb-positive surface area was also 

presented as a ratio: (affected (right)/unaffected (left). However, the mean 

CTb-positive surface ratio was not significantly different between sham and 

MCAo rats, for all segments analysed (Figure 4-14C; p>0.05). The CTb-positive 
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surface area ratios tended to be slightly lower than the ratios obtained for the 

automatic terminal counts. This suggests that the automatic counting software 

may have underestimated the number of terminals in the unaffected (left) side, 

presumably by erroneously detecting clusters of overlapping terminals as a single 

“object” as discussed previously (section 4.2.11).  

Manual CTb-labelled terminal counts 

To assess for potential changes that may have been too subtle for the automatic 

counting software to detect, terminals were quantified manually with the region 

of the grey matter immediately adjacent to the central canal on the C5 sections. 

The mean number of terminals counted in the unaffected (left) side was not 

significantly different between sham and MCAo rats (Figure 4-15A, p>0.05). 

Similarly, the mean number of terminals in the affected (right) side was not 

significantly different between sham and MCAo rats (Figure 4-15B, p>0.05). To 

control for variable terminal labelling (as above) the manual terminal counts 

were presented as ratios: affected (right)/unaffected (left). However, the mean 

terminal ratio was not significantly different between sham and MCAo rats 

(Figure 4-15C, p>0.05). The mean ± SDs acquired using all three counting 

methods are listed in Appendix 8.  
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Figure 4-13 Automatic counts of CTb-labelled terminals in the cervical spinal cord 

A: CTb-immunoreactive terminal counts for the unaffected (left) side shown for cervical segments C3, C5 and C7. Each data point represents a single section (4 
sections per rat; n= 5 sham rats and 4 MCAo rats). Inset diagram shows the laminar location where counting was performed (red box). A similar series of images are 
shown for the affected (right) side (B) and the terminal ratio (affected/unaffected; C). There were no significant differences between sham and MCAo groups.  

p>0.05, unpaired t test (analysis based on number of animals, not number of sections) 
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Figure 4-14 CTb-positive surface area (mm
2
) in the cervical spinal cord 

A: CTb-positive surface areas for the unaffected (left) side shown for cervical segments C3, C5 and C7. Each data point represents a single section (4 sections per rat; 
n = 5 sham rats and 4 MCAo rats). Inset diagram shows the laminar location where counting was performed (red box). A similar series of images are shown for the 
affected (right) side (B) and the terminal ratio (affected/unaffected; C). There were no significant differences between sham and MCAo groups.   

p>0.05, unpaired t test (analysis based on number of animals, not number of sections) 
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Figure 4-15 Manual counts of CTb-labelled terminals in the cervical spinal cord 

A: CTb-immunoreactive terminal counts for the unaffected (left) side shown for cervical segment 
C5. Each data point represents a single section (4 sections per rat; n = 5 sham rats and 4 MCAo 
rats). Inset diagram shows the laminar location where counting was performed (red box). A similar 
series of images are shown for the affected (right) side (B) and the terminal ratio 
(affected/unaffected; C). There were no significant differences between sham and MCAo groups.  

p>0.05, unpaired t test (analysis based on number of animals, not number of sections) 
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4.4 Discussion 

In this study, 60 min MCAo was associated with loss of approximately 35% of CST 

axons originating from the ischaemic hemisphere. Rats exhibited sensorimotor 

deficits in the early phase after MCAo but recovered over time such that there 

were no significant differences in sensorimotor performances between sham-

operated and MCAo rats at post-operative day 28. Despite the functional 

recovery demonstrated by MCAo rats, the number of CST axon terminals in the 

cervical spinal cord originating from the non-ischaemic hemisphere was not 

altered compared to shams. 

Sensorimotor outcome 

MCAo for 60 min resulted in a sensorimotor deficit, as detected by neurological 

scoring and the adhesive label test. However, by post-operative day 28, there 

were no significant differences between sham and MCAo rats in both tests, 

suggestive of spontaneous sensorimotor recovery.  Similar results were obtained 

by Modo et al., (2000) who noted that, following 60 min MCAo, rats were 

impaired in removing labels attached to the affected forepaw. However, in 

contrast to the current study, Modo and colleagues reported this deficit to still 

be present at 12 weeks after MCAo, with rats only exhibiting partial recovery at 

this stage. A potential explanation for this discrepancy is that the adhesive 

labels used by Modo and colleagues were much larger (6cm long strips) and likely 

more difficult to remove compared to the labels used in the current study 

(1.3cm circular dots) and as such, the test used by Modo and colleagues may 

have been more sensitive to residual sensorimotor deficits compared to the test 

used in the current study. Another possibility is that the procedure used by Modo 

and co-workers to transiently occlude the MCA may have disrupted the 

sensorimotor system to a greater extent than in the current study, thereby 

producing a larger and more longer-lasting deficit. Accordingly, Modo and 

colleagues reported very large lesions encompassing both cortical and 

subcortical structures, while the lesions produced in the current study were 

confined to subcortical structures only. In agreement with the current study, 

Trueman et al., (2011) reported an impairment in contacting/removing labels 

(0.7cm dots) attached to the affected forepaw after 60 min MCAo, followed by 
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gradual recovery, whereby the MCAo rats approached sham levels of 

performance by post-MCAo week 4.  

CTb-labelled terminals in the cervical spinal cord  

In all rats, CTb-immunoreactive terminals were mainly located within the grey 

matter contralateral to the injection site (unaffected/left side), particularly 

within the medial base of the dorsal horn (lamina III to VI), as described 

previously (Gribnau & Dederen, 1989; Liang, 1991; Du Beau et al., 2012). A much 

smaller number of diffusely scattered labelled terminals were also present 

ipsilateral to the injection site (affected/right side), mainly in the intermediate 

grey matter. These terminals are likely to be components of the uncrossed CST 

described by Brösamle and Schwab (1997; see Chapter 1 section 1.1.1). It is 

probable that most of these terminals are sites of synaptic interaction as they 

were almost universally immunoreactive for VGLUT-1 which is present in some 

types of glutamatergic presynaptic boutons, including those of the CST (Du Beau 

et al., 2012). Quantitative analysis revealed that the number of CTb-

immunoreactive terminals (and CTb+ surface area (mm2)) within the affected 

(right) and unaffected (left) sides of the cervical spinal cord of MCAo rats was 

not significantly different to that of shams. Therefore, the data from the current 

study do not support the hypothesis that the density of CST synaptic terminals in 

the denervated side of the spinal cord increases at a time when rats have 

achieved functional recovery.  

Nevertheless, it is possible that there may have been subtle changes in terminal 

reorganisation in response to transient MCAo that were of insufficient magnitude 

to be detected by the methodology employed in the current study. For instance, 

the formation of new or enhanced CST synaptic connections with CINs located in 

the unaffected side of the spinal cord could provide an alternative route for 

information to be transmitted from the non-ischaemic hemisphere to the 

denervated (ipsilateral) side of the spinal cord (as discussed in Chapter 1 section 

1.3), in a similar way to the synaptic remodelling that occurs after spinal 

damage to the CST (Bareyre et al., 2004; see Chapter 1 section 1.2.2).  

An increased number of CST terminals in the denervated side of the cervical 

spinal cord following 60 min MCAo might have been predicted, based on previous 
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reports of CST fibre sprouting from the uninjured hemisphere to the denervated 

half of the spinal cord after permanent MCAo (Liu et al., 2007; Liu et al., 2008), 

destruction of the primary motor cortex (Bachman et al., 2014; LaPash Daniels 

et al., 2009; Ueno et al., 2012) and unilateral pyramidotomy (Brus-Ramer et al., 

2007; Maier et al., 2008). The data from the current study may indicate that 

although CST axonal sprouting occurs, new terminals are not formed. Liu et al., 

(2013) reported enhanced staining of the presynaptic protein, synaptophysin, in 

CST axons located in the denervated half of the spinal cord following MCAo, and 

this change occurred in relation to sensorimotor recovery. The finding from the 

current study – that the number of CST terminals in the cervical spinal cord 

originating from the non-ischaemic hemisphere in recovered MCAo rats was not 

altered compared to shams - suggests that the synaptic remodelling reported by 

Liu and colleagues might have involved CST axons arising from the ischaemic 

hemisphere, rather than the non-ischaemic hemisphere. An alternative 

explanation is that the extent of CST terminal reorganisation from the non-

ischaemic hemisphere depends on the size and location of the infarct. Liu et al., 

(2007) reported sprouting of CST axons from the non-ischaemic hemisphere after 

permanent MCAo, an arterial occlusion method that typically produces infarcts 

encompassing large areas of the cortex and subcortical structures (Garcia et al., 

1995). A subsequent study from the same laboratory reported evidence of CST 

synaptic remodelling after permanent MCAo (Liu et al., 2013, as mentioned 

above). In both of these previous studies animals were examined at 28 days post-

MCAo, a similar time-point to that of the current study. Thus, it seems unlikely 

that the current study did not detect changes because the timeframe was 

markedly difference from these other studies. However, the location and 

severity of the infarcts in the current study were different from those studies. 

The infarcts produced in the current study were relatively small and located 

subcortically. This contrasts with the size and distribution of the infarcts in the 

aforementioned studies (Liu et al., 2007; 2008; 2013). The results of the current 

study also contrast with previous reports of sprouting after the entire primary 

motor cortex was infarcted by means of photothrombosis (LaPash Daniels et al., 

2009; Bachmann et al., 2014) or the entire pyramidal tract transected (Brus-

Ramer et al., 2007; Maier et al., 2008). In the current study, 65% of the CST, as 

measured by PKC-γ immunoreactivity at the level of the dorsal columns, was 

preserved. Taken together, the evidence raises the possibility than in cases 
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where there is sparing of a relatively large proportion of the CST (as in the 

current study), fibres from the ischaemic hemisphere might principally mediate 

recovery; whereas, in cases of severe stroke, when ipsilesional plasticity is 

limited, networks of the non-ischaemic hemisphere might be recruited (Nudo, 

2006). Accordingly, deactivation of the motor cortex of non-ischaemic 

hemisphere with lidocaine following recovery from MCAo was found to reinstate 

the original deficits only in rats with large infarcts (Biernaskie et al., 2005). To 

explore this hypothesis further, Pearson’s correlation was performed in order to 

assess whether there was an association between the loss of CST axons (as 

measured by PKC-γ immunostaining) and the number of labelled terminals/CTb- 

positive surface area (mm3) in the affected side of the spinal cord, but there was 

no relationship or trend. It would be interesting to compare the numbers of CST 

terminals in the spinal cord after recovery following different durations of MCAo. 

Understanding the effect of the size/location of the infarct on plasticity 

processes would be important for determining which patient groups might 

benefit from interventions aimed at strengthening these processes. 

With a non-significant finding, it is important to consider the possibility that the 

study was underpowered i.e. the sample sizes may not have been large enough 

to detect a statistically significant difference in terminal numbers between sham 

and MCAo rats, particularly if the difference is small. Because the current study 

was novel, there was no pre-existing terminal count data available that could 

have been utilised to calculate appropriate sample sizes prior to the study. Using 

the standard deviation of automatic terminal counts in the affected (right) side 

(segment C5), a sample size calculation for a hypothetical future study was 

performed (StatMate, http://www.graphpad.com/scientific-software/statmate). 

It is difficult to predict what a biologically significant effect size would be, but 

370, 80 and 35 rats per group would be required to detect hypothetical mean 

differences of 10%, 20% and 30%, respectively (with power set at 0.8 and α set at 

0.05). Therefore, if a 10% (20% or 30%) difference in terminal counts exists 

between sham and MCAo rats, then an unrealistically large number of rats would 

be necessary to detect it.  

Recovery from stroke, whether involving large or small infarcts, is unlikely to be 

solely attributed to CST terminal reorganisation in the denervated 

http://www.graphpad.com/scientific-software/statmate
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(contralesional) side of the spinal cord. As discussed previously (Chapter 1 

section 1.3), the motor cortex from the non-ischaemic hemisphere may have 

access to the denervated (ipsilateral) side of the spinal cord via relay neurons 

located in the brainstem and contralateral spinal cord and the strengthening of 

these indirect pathways could also underlie recovery. Evidence to support this 

notion comes from Bachmann et al., (2014) who reported that after cortical 

infarction in mice, the motor cortex from the non-ischaemic hemisphere 

increases its projections to ipsilateral reticular nuclei and the reticular nuclei in 

turn, increase their projections to the denervated (ipsilateral) side of the spinal 

cord (Bachman et al., 2014). Strengthening of ReST output to affected motor 

neurons has also been reported in the primate after pyramidal tract transection 

(Zaaimi et al., 2012). Additionally, sprouting of corticorubral fibres from the 

non-ischaemic hemisphere has also been reported in rats after MCAo (Liu et al., 

2007). Finally, it is important to acknowledge that in addition to adaptive 

process described for the non-ischaemic hemisphere, a range of repair related 

events have also been reported to occur within the ischaemic hemisphere after 

stroke (reviewed by Benowitz & Carmichael, 2010; Cramer, 2008). 

To summarise, despite functional recovery demonstrated by MCAo rats, the 

number of CST terminals originating from the non-ischaemic hemisphere in the 

cervical spinal cord was not altered compared to shams. This observation 

suggests that, following stroke, the motor cortex from the non-ischaemic 

hemisphere may not take over control of the impaired limb by increasing its 

direct projections to the denervated (ipsilateral) side of the spinal cord. 

However, involvement of the motor cortex of the non-ischaemic hemisphere in 

recovery cannot be excluded based on the results of this study because there are 

several indirect routes via which the motor cortex from the non-ischaemic 

hemisphere could gain access to the denervated (ipsilateral) side of the spinal 

cord (see Chapter 1 section 1.3). These indirect routes require further 

investigation but may involve neurons located in the brainstem and contralateral 

(unaffected) side of the spinal cord (Jankowska & Edgley, 2006).  
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5.1 Introduction 

In Chapter 4, following 60 min MCAo, rats exhibited a sensorimotor deficit that 

spontaneously recovered over 28 days. This recovery was not associated with the 

formation of new CST terminals from the non-ischaemic hemisphere to the 

denervated (ipsilateral) side of the spinal cord. However (as mentioned in 

Chapter 1 section 1.3), the motor cortex from the non-ischaemic hemisphere 

may have the capacity to take over control of the impaired limb via 

strengthening of indirect routes involving relay neurons located in the brainstem 

and contralateral (unaffected) side of the spinal cord (Jankowska & Edgley, 

2006). For instance, the formation of new/enhanced CST connections with CINs 

located in the contralateral (unaffected) side of the spinal cord would allow for 

information to be conveyed from the non-ischaemic hemisphere to the 

denervated (ipsilateral) side of the spinal cord without the need for long-

distance CST sprouting.  CST input to spinal CINs is poorly characterised, even in 

intact animals (see Chapter 1 section 1.3). However, given that a moderate 

proportion of contralaterally descending CST axons terminate in laminae VI to 

VII, a region containing many CIN populations (Jankowska, 1992), it is probable 

that the CST establishes connections with CINs under normal circumstances. 

Hence, a short exploratory study was performed in order to examine whether 

recovery following 60 min MCAo was associated with new/enhanced CST contacts 

from the non-ischaemic hemisphere to spinal interneuron populations with 

known commissural components that have their somata in the contralateral 

(unaffected) side of the spinal cord. The spinal interneurons with commissural 

components were identified based on their neurochemical phenotypes.   

The first spinal interneuron population of interest were cholinergic partition 

cells located in lamina X and medial lamina VII. These interneurons directly 

influence motor neuron excitability during locomotion via large “C-bouton” 

synapses (Miles et al., 2007; Zagoraiou et al., 2009). Injection of a transsynaptic 

tracer unilaterally into the quadriceps of mice has revealed that medial 

cholinergic partition cells monosynaptically connected with motor neurons fall 

into two categories; those that project exclusively ipsilaterally and those that 

project both ipsi- and contralaterally (Stepien et al., 2010). Thus, medial 

cholinergic partition cells directly influence motor neurons and they have a well-

defined commissural component. Although most studies have focused on lumbar 
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circuitry, cholinergic partition cells are also present in cervical segments (Phelps 

et al., 1984) and likely have similar projection patterns and functions as those 

located in lumbar segments. In the cervical spinal cord of the cat, 

contralaterally projecting CST axons terminate within the immediate vicinity of 

cholinergic cells located in medial lamina VII (Chakrabarty et al., 2009), 

suggesting that the CST may establish connections with this cell population in 

the intact animal.  

The second spinal interneuron population of interest were those expressing the 

calcium binding proteins calbindin and calretinin. In the rat, unilateral injection 

of a retrograde tracer into L1/L3 was found to label LDPNs in all cervical 

segments and approximately half of the labelled cells were commissural i.e. 

they were located in the grey matter contralateral to the tracer injection site 

(Brockett et al., 2013; see Chapter 1 section 1.2.2). These cells were mainly 

found in medial laminae VII/VIII and some were found to express calbindin and 

calretinin. Transsynaptic tracing in mice has revealed that LDPNs have 

monosynaptic connections with hindlimb motor neurons (Ni et al., 2014). 

Evidence on CST input to commissural LDPNs is conflicting, with 

electrophysiological data from cats suggesting that commissural LDPNs are 

directly influenced by the CST (Alstermark et al., 1987) and anatomical data 

from mice suggesting that commissural LDPNs are rarely contacted by CST axons 

(Ni et al., 2014).  

Spinal cord tissue from MCAo and sham rats produced in Chapter 4 was used for 

this short exploratory study. A combination of immunofluorescence and confocal 

microscopy was employed in order to explore associations between 

anterogradely labelled CST terminals from the non-ischaemic hemisphere and 

different spinal interneuron populations. Antibodies against CTb were utilised to 

identify anterogradely labelled terminals and antibodies against choline 

acetyltransferase (ChAT; the enzyme responsible for the biosynthesis of 

acetylcholine; Oda, 1999), calbindin and calretinin were used to identify spinal 

interneuron populations.  
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Study aim: 

 To characterise CST contacts from the non-ischaemic hemisphere to 

ChAT, calbindin and calretinin- expressing interneurons with somata 

located in the contralateral (unaffected) side of the cervical spinal cord 

at 28 days following 60 min MCAo or sham surgery 

Hypothesis 

Rats subjected to 60 min MCAo will exhibit new or increased CST contacts to 

ChAT/calbindin/calretinin- expressing cells in the contralateral (unaffected) 

side of the cervical spinal cord compared to sham-operated rats 

5.2 Methods 

5.2.1 Immunolabelling of terminals and cells 

Three MCAo rats and three sham-occluded rats produced in Chapter 4 were 

randomly selected for use in this study. For the identification of CTb-labelled 

terminals and spinal interneurons, 60μm thick transverse sections from segment 

C5 (4 per rat) were incubated for 72 h with primary antibody combinations: (a) 

anti-CTb and anti-ChAT or (b) anti-CTb, anti-calbindin and anti-calretinin. 

Sections were then incubated for 24 h with secondary antibodies coupled to (a) 

Rhodamine red, Alexa 488, or (b) Rhodamine red, Dylight 649 and Alexa 488  (as 

shown in Table 5-1). Finally, sections were rinsed with PBS (3 x 10 min) and 

mounted with anti-fade (Vectashield; see Chapter 2 section 2.7 for detailed ICC 

steps.  

5.2.2 Confocal microscopy, reconstructions, and analyses  

Confocal microscopy and image analysis was conducted with the experimenter 

blinded to the identity of the rat. Immunoreactive spinal sections containing 

labelled cells and terminals were scanned with a three-colour channel laser 

confocal microscope (Biorad Radiance 2100). Scanning was performed on the 

unaffected side of the grey matter (contralateral to the CTb injection site). For 

ChAT- immunoreactive interneurons, imaging was focused within lamina X and 

medial lamina VII, which is where cholinergic partition cells with monosynaptic 
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connections to contralateral (and ipsilateral) motor neurons are located (Stepien 

et al., 2010); and for calbindin and calretinin- immunoreactive interneurons, 

imaging was focussed within medial laminae VII and VIII, which is where 

commissural LDPNs expressing these calcium binding proteins are located 

(Brockett et al., 2013). Firstly, systematic low power scans (x20, zoom factor of 

1) were performed to locate regions where CST terminals were in the immediate 

vicinity of interneurons. Selected neurons were then scanned using a x40 oil-

immersion lens (zoom factor of 2 at 0.5μm increments). If CTb-labelled 

terminals established contacts with a cell, the cell was reconstructed using 

Neurolucida Software (as described in Chapter 2 section 2.8) and contact 

density was expressed as the number of contacts per 1000 µm2 of neuronal 

surface. Contact densities were averaged for each rat so that an individual rat 

contributed only one value to the statistical analysis (see Chapter 2 section 

2.9).  

5.2.3 Statistical analysis 

For all results shown in this chapter, statistical analysis is based on the number 

of animals (not the number of spinal sections or number of cells) in order to 

avoid pseudoreplication (see Chapter 2 section 2.9). Contact densities in sham 

and MCAo groups were compared using the non-parametric Mann-Whitney test, 

because the data were skewed and failed the Shapiro-Wilk normality test. Data 

are expressed as means ± SD and differences are considered significant at p < 

0.05. 
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Table 5-1 Summary of primary and secondary antibody combinations used in the current experiment 

 
1. For the examination of CTb-labelled contacts to ChAT- expressing interneurons. 2. For the examination of CTb- labelled contacts to calbindin and calretinin- 
expressing interneurons (segment C5) 

gt=goat; gp=guinea pig; mo=mouse; rb=rabbit; Rh.Red=Rhodamine red

 

Primary antibody 
combination Concentration Supplier 

Secondary antibody 
combination 

     
1 mo. CTb 1:250 A. Wikström, University of 

Gothenburg 
Rh.Red 

 gt. ChAT 1:100 Millipore, Harlow, UK Alexa488 

     
2 mo.CTb 1:250 A. Wikström, University of 

Gothenburg 
Rh.Red 

 rb.Calbindin 1;1000 Swant, Bellizona, Switzerland Dylight649 

 gt. Calretinin 1:1000 Swant, Bellizona, Switzerland Alexa488 
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5.3 Results 

5.3.1 CST contacts to ChAT- expressing interneurons  

Figure 5-1 shows the distribution pattern of ChAT- immunoreactive cells in the 

cervical spinal cord. There were 4 major groups of ChAT-positive neurons: 1) 

motor neurons with large somata in the medial and lateral motor columns; 2) 

cells with small somata scattered very diffusely through laminae III to V of the 

dorsal horn; 3) cells with very small somata clustered around the central canal; 

4) a prominent group of partition cells with medium sized soma in lamina X and 

VII, forming a dividing line between the dorsal and ventral horn. For each group 

(sham and MCAo), a total of 23 ChAT- expressing partition cells (7-8 per rat) 

located in lamina X/medial lamina VII of the unaffected side (contralateral to 

the CTb injection site) were imaged and CTb-labelled contacts to these cells 

were quantified. In all rats, CTb-labelled terminals were distributed within the 

immediate vicinity of ChAT- immunoreactive cells. However, the terminals 

rarely established contacts with the cells, with the majority of the cells 

receiving no contacts. See Figures 5-2A and 5-2B for examples of ChAT-

immunoreactive cells with no CTb-labelled contacts, taken from a sham and 

MCAo rat, respectively. A small proportion of cells did receive CTb-labelled 

contacts (35% in the sham group; 39% in the MCAo group), and these cells tended 

to be located in lamina X, however they only received a very limited number of 

contacts (1-2 per cell). See Figures 5-3A and 5-3B for examples of ChAT-

immunoreactive cells that received contacts, taken from a sham and MCAo rat, 

respectively. For the sham group, the number of contacts per 1000 μm2 of 

neuronal surface was 0.04 ± 0.05 for somata and 0.13 ± 0.07 for dendritic 

processes; for the MCAo group the contact density was 0.11 ± 0.13 for somata 

and 0.20 ± 0.11 for dendritic processes, and there were no significant difference 

between the two groups (p>0.05; Figure 5-4).  
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Figure 5-1 Distribution pattern of ChAT- expressing neurons in the cervical spinal cord 

Projected confocal microscope image (100µm thick) showing ChAT- expressing cells in a 
transverse cervical section (C5). A spinal template (taken from Paxinos & Watson, 2005) 
demarcating laminae I-VII and X is superimposed onto the image. Arrows indicate lamina X/VII 
partition cells (PC) that span across the grey matter, dividing the dorsal horn from the ventral horn.   
Scale bar = 100µm 
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Figure 5-2 Examples of ChAT- expressing cells with no contacts from CTb-labelled terminals 

A: A projected confocal microscope image (57 optical sections, 0.5µm increments) from a sham rat showing numerous terminals (red) within the vicinity of a ChAT-
expressing cell (green). However, single optical images of the terminals (insets A1 & A2) show that the terminals do not establish contacts with the cell. B: A similar 
example is shown from a MCAo rat (64 optical sections, 0.5µm increments) whereby CTb-labelled terminals are within the vicinity of the cell but do not establish 
contacts (insets B1 & B2). Both images are taken from medial lamina VII. Scale bar in A & B = 20μm. Scale bar in insets =10μm 
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Figure 5-3 Example of ChAT-expressing cells with contacts from CTb-labelled terminals 

A: A projected confocal microscope image (32 optical sections, 0.5µm increments) from a sham rat showing numerous terminals (red) within the vicinity of a ChAT- 
expressing cell (green). The majority of the terminals within the vicinity of the cell did not establish contact with the cell (inset A1), however one terminal made contact 
with the soma (inset A2). B: A similar example is shown from a MCAo rat (41 optical sections, 0.5µm increments), whereby most CTb-labelled terminals within the 
territory of the cell did not make contact (inset B1). However, one terminal made contact with a dendritic process (inset B2). Both images are taken from lamina X. 
Arrows indicate terminals that established contacts with the cells. Scale bar in A & B= 20μm. Scale bar in insets =10μm 
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Figure 5-4 Density of CTb-labelled contacts to lamina X/VII ChAT- expressing cells 

Each data point represents a cell (7-8 cells per rat; n = 3 sham and 3 MCAo rats). For both somata 
and dendritic processes, the mean density of contacts was not significantly different between sham 
(black) and MCAo (red) groups.  

p>0.05, Mann-Whitney test (analysis based on number of animals, not number of cells/sections) 
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5.3.2 CST contacts to calbindin and calretinin- expressing 
interneurons 

Figure 5-5A shows the distribution pattern of calbindin and calretinin- 

immunoreactive cells in the cervical spinal cord. For both groups, 

immunoreactivity was densest within the superficial laminae. Calbindin and 

calretinin-positive cells were much more dispersed throughout the grey matter 

than ChAT-positive cells. Calbindin-expressing cells (Figure 5-5B) were less 

abundant than calretinin-expressing cells (Figure 5-5C).  

For each group (sham and MCAo), a total of 14 calbindin-positive cells (4-5 cells 

per rat) located in medial laminae VII and VIII of the unaffected side 

(contralateral to the CTb injection site) were imaged and CTb-labelled contacts 

to these cells were quantified. In all rats, CTb-labelled terminals tended to be 

located outside the territory of calbindin-positive cells. Although a small 

proportion of the more medially located cells did have terminals within the 

immediate vicinity of their somata and dendritic processes and some of the 

terminals established contacts with these cells. The proportion of cells that 

received contacts was 35% in the sham group and 15% in the MCAo group, but 

each cell only received 1 contact (see Figures 5-6A and 5-6B for examples taken 

from a sham and MCAo rat, respectively). For the sham group the density of 

contacts per 1000μm2 of neuronal surface was 0.41 ± 0.22 for somata and 0.25 ± 

0.45 for dendritic processes; for the MCAo group  the density of contacts for 

somata was 0.08 ± 0.08 and 0 for dendritic processes, and there was no 

significant difference between the two groups (p>0.05; Figure 5-7).   

For each group (sham and MCAo), a total of 14 calretinin-positive cells (4-5 cells 

per rat) located in medial laminae VII and VIII of the unaffected side 

(contralateral to the CTb injection site) were imaged and CTb-labelled contacts 

to these cells were quantified. In all rats, CTb-labelled terminals tended to be 

located outside the territory of calretinin-positive cells. Although a small 

proportion of the more medially located cells did have terminals within the 

immediate vicinity of their somata and dendritic processes and some of the 

terminals established contacts with these cells. The proportion of cells that 

received contacts was 21% in the sham group and 21% in the MCAo group, 

however each cell only received 1 contact (see Figures 5-8A and 5-8B for 
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examples taken from a sham and MCAo rat).  For the sham group the density of 

contacts per 1000μm2 of neuronal surface was 0.05 ± 0.08 for somata and 0.09 ± 

0.13 for dendritic processes; for the MCAo group the density of contacts was 0 

for somata and 0.18 ± 0.31 for dendritic processes, and there was no significant 

difference between the two groups (p>0.05; Figure 5-9).  
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Figure 5-5 Distribution pattern of calbindin and calretinin-expressing cells in the cervical spinal cord 

A: Projected confocal microscope image (100µm thick) of calbindin (red) and calretinin (green) - expressing cells in a transverse cervical section (segment C5). A 
template (taken from Paxinos & Watson, 2005) demarcating laminae I-VII and X is superimposed onto the image. Calbindin and calretinin immunoreactivity are also 
shown separately (B & C). Box in A depicts the region where scanning was performed for the assessment of CTb- labelled contacts to cells. Scale bar = 100µm 
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Figure 5-6 Examples of calbindin- expressing cells with contacts from CTb- labelled terminals  

A: Projected confocal microscope image (72 optical sections, 0.5µm increments) from a sham rat showing terminals (red) within the vicinity of a calbindin- expressing 
cell (blue). The majority of the terminals within the vicinity of the cell did not establish contact with the cell (inset A1), however one terminal established contact with a 
dendritic process (inset A2). B: A similar example is shown from a MCAo rat (56 optical sections, 0.5µm increments) whereby most CTb- labelled terminals within the 
cell territory did not make contact (B1), but a single terminal was found to make contact with the soma (B2). Both images are taken from the medial lamina VII. Arrows 
indicate terminals that established contacts with the cells. Scale bar in A & B= 20μm. Scale bar in insets =10μm 
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Figure 5-7 Density of CTb-labelled contacts to lamina VII/VIII calbindin-expressing cells 

 
Each data point represents a cell (4-5 cells per rat; n = 3 sham and 3 MCAo rats). For both somata 
and dendritic processes, the mean density of contacts was not significantly different between sham 
(black) and MCAo (red) groups. 

p>0.05, Mann-Whitney test (analysis based on number of animals, not number of cells/sections) 
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Figure 5-8 Examples of calretinin- expressing cells with contacts from CTb- labelled terminals  

A: Projected confocal microscope image (35 optical sections, 0.5µm increments) from a sham rat showing terminals (red) within the vicinity of a calretinin- expressing 
cell (green). The majority of the terminals within the vicinity of the cell did not establish contact with the cell (inset A1), however one terminal made contact with a 
dendritic process (inset A2). B: A similar example is shown from a MCAo rat (56 optical sections, 0.5µm increments) whereby most CTb- labelled terminals within the 
cell territory did not make contact with the cell (B1), but a single terminal was found to make contact with the cell soma (B2). Both images are taken from the medial 
lamina VII. Arrows indicate terminals that established contacts with the cells. Scale bar in A & B= 20μm. Scale bar in insets =10μm 
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Figure 5-9 Density of CTb-labelled contacts to lamina VII/VIII calretinin-expressing cells 

 
Each dot represents a cell (4-5 cells per rat; n = 3 sham and 3 MCAo rats). For both somata and 
dendritic processes, the mean density of contacts was not significantly different between sham 
(black) and MCAo (red) groups. 

p>0.05, Mann-Whitney test (analysis based on number of animals, not number of cells/sections) 
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5.4 Discussion 

In this short exploratory study, the contact densities of CST terminals originating 

from the non-ischaemic hemisphere to ChAT, calbindin and calretinin- 

expressing cells located in the contralateral (unaffected) side of the cervical 

spinal cord of MCAo rats were not significantly different to that of shams.  

It is likely that the rare number of contacts between CST axons and interneurons 

detected in this study were sites of synaptic interactions because (as reported in 

Chapter 4 section 4.3.5) the terminals expressed VGLUT-1 which is present in 

glutamatergic presynaptic boutons (Persson et al., 2006; Fremeau et al., 2001). 

To confirm that these contacts were synapses however, a combination of 

confocal and electron microscopy would have been required (Todd, 1997) 

because there is currently no reliable neurochemical marker for the 

identification of excitatory synapses. Nonetheless, the contact densities were 

not significantly different between sham and MCAo rats, thus the data from the 

current study do not support the hypothesis that the CST from the non-ischaemic 

hemisphere increases its connections with these three interneuron types at a 

time point associated with sensorimotor recovery after MCAo (28 days).  

In accordance with Chakrabarty et al., (2009), a large number of terminals were 

found within the immediate vicinity of the somata and dendritic processes of 

ChAT- expressing partition cells in lamina X/medial lamina VII. However, in both 

sham and MCAo rats, the terminals rarely established contacts with these cells. 

This suggests that cholinergic partition cells are not major targets of the CST and 

that CST terminals must establish contacts with non-cholinergic cells in lamina 

X/medial lamina VII. This region of the grey matter is composed of a diverse 

population of interneurons important in motor coordination (Jankowska, 1992).  

In both sham and MCAo groups, terminals were typically located outside the 

territory of calbindin and calretinin- expressing cells of medial lamina VII/VIII 

apart from a small proportion of cells in close proximity to the midline that 

received a very limited number of contacts. Cells that express these calcium-

binding proteins are widely distributed throughout the spinal grey matter (Ren & 

Rudo, 1994; Figure 5-5) but the current study only focused on those located in 

medial laminae VII/VIII because a proportion of these cells are likely to be 
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commissural LDPNs (Brockett et al., 2012). Thus, it is possible that the CST 

targets calbindin and calretinin- expressing cells located in other spinal laminae, 

particularly the more dorsal areas. 

An increased density of CST contacts onto ChAT/calbindin/calretinin- expressing 

cells after MCAo might have been predicted, because subpopulations of these 

cells are known to have commissural projections (Stepien et al., 2010; Brockett 

et al., 2012), and cells with commissural projections are postulated to provide 

an indirect route for information to be conveyed from the non-ischaemic 

hemisphere to the denervated (ipsilateral) side of the spinal cord after stroke 

(see Chapter 1 section 1.3). However, the ChAT, calbindin and calretinin- 

expressing cells examined in the current study make up a relatively small 

proportion of the total population of CINs and therefore, the possibility that the 

CST formed new/enhanced contacts with other types of CINs after MCAo cannot 

be excluded. Further experiments combining MCAo and anterograde CST 

terminal labelling with retrograde CIN labelling would allow for a more specific 

characterisation of CST termination patterns to such cell types. One way of 

testing for the formation of new intraspinal circuits involving CINs would be to 

inject forelimb muscles with a transsynaptic tracer then determine whether the 

tracer labelled the CINs of interest along with neurons in the motor cortex of the 

non-ischaemic hemisphere. This strategy has already been used to establish the 

presence of new intraspinal circuits after spinal cord injury (Bareyre et al., 

2004; see Chapter 1 section 1.2.2).   

To summarise, the numbers of CST contacts from the non-ischaemic hemisphere 

onto ChAT/calbindin/calretinin- expressing cells located in the contralateral 

(unaffected) side of the spinal cord in MCAo rats were not significantly altered 

compared to shams. However, because these cells only make up a small 

proportion of the total number of CINs, the possibility that the CST formed 

new/enhanced contacts with other types of CINs after MCAo cannot be ruled 

out. It would be useful to have a better understanding of how the CST and other 

supraspinal systems engage CIN populations in the intact animal, as this would 

provide a better insight into the systems that could be strengthened after MCAo 

so that the non-ischaemic hemisphere can gain control of the denervated 

(ipsilateral) limb.  
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6.1 Introduction 

As discussed in Chapter 1 (section 1.2.1), numerous subpopulations of CINs have 

been characterised within the lumbar spinal cord (Matsuyama et al., 2004; 

Jankowska et al., 2003; Stokke et al., 2002; Bannatyne et al., 2003) but there is 

little information available on CINs located within the cervical spinal cord. In the 

rat, retrograde tracing has revealed that there are commissural (and uncrossed) 

LDPNs present in all cervical segments that project to rostral lumbar segments 

(L1-L3; Brockett et al., 2013; Reed et al., 2009; Chapter 1 section 1.2.2). These 

cells are implicated in the coordination of fore- and hindlimb function (Ballion et 

al., 2001; Juvin et al., 2005; Zaporozhets et al., 2006). Transsynaptic tracing in 

mice has shown that commissural (and uncrossed) LDPNs establish monosynaptic 

connections with hindlimb motor neurons (Ni et al., 2014). In the same study, Ni 

and colleagues reported commissural (and uncrossed) LDPNs to receive contacts 

from CST axons and brain-stem derived serotonergic axons, but the bouton 

numbers were very limited (0 to 2 per cell), so the authors concluded that these 

supraspinal pathways are not chief regulators of LDPNs in mice. However, in 

cats, commissural (and uncrossed) LDPNs were monosynaptically excited by 

stimulation of the contralateral medullary pyramid (and stimulation of the MLF 

and vestibular nuclei; Alstermark et al., 1987), suggesting that these cells are 

under direct influence from the CST (as well as the ReST and VST). The 

disagreement in the available literature warrants further examination of CST 

inputs to commissural LDPNs.  

Intrasegmental CINs with axons confined to a single segment are postulated to 

be directly involved in the coordination of left-right homonymous muscles 

(Stokke et al., 2002; Quinlan & Kiehn, 2007; Kjaerulff & Kiehn, 1997; Chapter 1 

section 1.2.1). Despite the proposed functional importance of intrasegmental 

CINs, information on these cells at the cervical level is currently lacking. 

As discussed in Chapter 1 (section 1.3 & 1.4.3), neural pathways involving CINs 

might contribute to recovery following injury of the CST (e.g. after stroke), by 

providing indirect routes for information to be conveyed from the motor cortex 

of the uninjured hemisphere to the denervated (ipsilateral) side of the spinal 

cord (Jankowska & Edgley, 2006; Edgley et al., 2006). It is therefore important 

to have detailed maps of CINs and their inputs from different supraspinal 
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sources. The hypothetical neural pathways between the motor cortex and 

ipsilateral motor neurons examined in the current study are summarised in 

Figure 6-1.  

The goal of the current study was to characterise CST and ReST contacts onto 

commissural LDPNs and intrasegmental CINs in the cervical spinal cord of the 

intact rat using anatomical tracing techniques. Descending axons were labelled 

anterogradely by injecting CTb into the right forelimb motor cortex and MLF to 

label CST and ReST axons, respectively.  There are several components of the 

ReST (Chapter 1 section 1.1.3); this study focused upon axons projecting via 

the MLF because in electrophysiological studies it is possible to activate many 

ReST fibres via stimulation within this region which produces profound effects on 

networks involved in motor control (Jankowska et al., 2003; Edgley et al., 2004). 

Commissural LDPNs and intrasegmental CINs were labelled retrogradely by 

injecting FG into the right side of the intermediate grey matter of segments 

L1/L2 and C4/C5, respectively. The ReST is a complex pathway, whereby a 

single axon can innervate both sides of the grey matter (see Chapter 1 section 

1.1.2; Matsuyama et al., 1999; Jankowska et al., 2003). Furthermore, because 

of the proximity of the MLF to the midline, tracer injection spreads to both sides 

of the MLF, thereby labelling ipsilateral and contralateral axonal projections 

from both the left and right sides of the MLF (Du Beau et al., 2012). This 

bilateral labelling of ReST terminals provided an opportunity to characterise 

ReST contacts to LDPNs located on both sides of the grey matter in order to 

examine whether the ReST differentially targets commissural versus uncrossed 

LDPNs. As discussed previously (Chapter 1 sections 1.1.1 & 1.1.2), the CST is 

purely excitatory with all of its axons containing VGLUT-1; whereas ReST axons 

passing through the MLF are a heterogeneous population of excitatory and 

inhibitory axons with 59% of axons containing VGLUT-2 and 20% containing VGAT 

(Du Beau et al., 2012). Thus, the neurotransmitter phenotypes of contacts onto 

cells were investigated using antibodies against VGLUT-1 (CST) as well as VGLUT-

2 and VGAT (ReST).  
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Figure 6-1 Hypothetical neural pathways between the motor cortex and ipsilateral motor 
neurons examined in the current study 

One potential mechanism is via contralaterally projecting CST axons (red) influencing LDPNs 
(orange) and iCINs (blue), which in turn, project across to MNs and INs in the opposite side of the 
spinal cord. An alternative mechanism may involve corticobulbar axons (represented by black 
arrows) that influence ReST neurons (grey), which in turn, activate LDPNs or iCINs.  

CST = corticospinal tract; ReST = reticulospinal tract; MLF = medial longitudinal fasciculus; LDPN 
= long descending propriospinal interneuron; iCIN = intrasegmental commissural interneuron; MN = 
motor neuron; IN = interneuron  
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Aims:  

 To investigate whether LDPNs in the cervical spinal cord receive contacts 

from the CST and ReST and to examine the neurotransmitter phenotypes 

of these contacts 

- CST contacts were examined onto commissural LDPNs only 

- ReST contacts were examined onto both commissural and uncrossed 

LDPNs 

 To investigate whether intrasegmental CINs in the cervical cord receive 

contacts from the CST and ReST and to examine the neurotransmitter 

phenotypes of these contacts  

Hypotheses:  

The CST will establish contacts with commissural LDPNs; and the ReST will 

establish contacts with both commissural and uncrossed LDPNs 

Both the CST and ReST will establish contacts with intrasegmental CINs 

6.2 Methods 

6.2.1 Animals 

A total of 12 male Sprague Dawley rats (250-300g) were used in this experiment. 

Six rats received FG injections into the right intermediate grey matter of the 

lumbar cord (L1/L2; to retrogradely label LDPNs) and CTb was injected either 

into the right forelimb motor cortex or the MLF ( 3 rats in each group). Six rats 

received FG injections into the right intermediate grey matter of the cervical 

cord (C4/C5; to retrogradely label intrasegmental CINs) and CTb was injected 

either into the right forelimb motor cortex or the MLF ( 3 rats in each group). 
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6.2.2 Anterograde labelling of CST and ReST axonal terminals 

Following induction of anaesthesia (Chapter 2 section 2.2.1), the skull was 

drilled to expose the right forelimb motor cortex or MLF. Bregma was used as a 

stereotaxic reference point for cortical injections and the Interaural Line was 

used to target the MLF; see Table 2-1 for the stereotaxic coordinates used for 

targeting each injection site. A micropipette containing 1% CTb was inserted into 

the brain at 4 standardised points (or 1 point for the MLF). At each point, 200nl 

of CTb was injected using a Pico Injector (World Precision Instruments, USA; see 

Chapter 2 section 2.2.3). The scalp was sutured and health status of the animal 

was closely monitored until termination.  

6.2.3 Retrograde labelling of LDPNs and intrasegmental CINs  

At 48 h after the brain injections, rats received a unilateral injection of FG into 

the intermedio-ventral grey matter of the right side of the lumbar (L1/L2) or 

cervical (C4/C5) spinal cord. The procedure is described in detail in Chapter 2 

section 2.2.4. To retrogradely label LDPNs, the L1/L2 segment was targeted by 

counting down from the point of attachment of the lowest rib at T13; to 

retrogradely label intrasegmental CINs, the C4/C5 segment was targeted by 

counting down from the prominent spinous process of the C2 vertebra.  A small 

burr hole (1mm diameter) was then made adjacent to the midline in the laminar 

surface to expose the dorsal surface of the L1/L2 (or C4/C5) segments of the 

spinal cord (right side). A unilateral spinal injection of 50nl was made with a 

micropipette containing 4% FG in distilled water. The tip was inserted at a depth 

of 1.5mm from the surface at an angle of 15º to target the intermediate grey 

matter of the right side of the spinal cord. The wound was sutured and animals 

closely monitored until termination.  

6.2.4 Tissue processing 

Four days following FG injection, rats were transcardially perfused with fixative 

(as described in Chapter 2 section 2.2.5). The brain and spinal cord were 

removed and post-fixed over night at 4°C. To cryoprotect the brain, sucrose was 

added to the fixative (3g/10ml). The brain was then sectioned coronally (100μm) 

with a freezing microtome and spinal segments C4/C5 (and L1/L2 in rats with 

labelled LDPNs) were cut into transverse sections (60μm) with a Vibratome. All 
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cut sections were immediately placed in 50% EtOH (30 min) to enhanced 

antibody penetration.  

6.2.5 Identification of brain and spinal injection sites 

CTb injections sites in the cortex and MLF were revealed using DAB as a 

chromagen (see Chapter 2 section 2.5). Brain sections were incubated in goat 

anti-CTb for (48 h), and then biotinylated anti-goat IgG (3 h) followed by avidin-

horsradish peroxidase (1 h). Finally H2O2 plus DAB was applied (10 min) for 

visualisation of CTb immunoreactivity. Sections were viewed under transmission 

light microscopy and digitally photographed (x5; AxioVision software). To 

confirm the anatomical location, injection sites were reconstructed onto coronal 

maps taken from a stereotaxic atlas (Paxinos & Watson, 2005) using Adobe 

Photoshop.  

FG injection sites in L1/L2 (or C4/C5) could be directly visualised under a 

fluorescent microscope without any additional processing (as described in 

Chapter 2 section 2.6). Sections were digitally photographed (x5; AxioVision 

software) using an ultraviolet filter and in dark field. Photomicrographs were 

then superimposed onto spinal templates (based on Paxinos & Watson, 2005) 

using Adobe Photoshop in order to examine the segmental location of the 

injection site and spread of FG. 

6.2.6 Immunolabelling of terminals and cells 

Sections (60µm) from cervical segments C4/C5 were reacted for 72 h with the 

following primary antibody combinations: (a) anti- CTb, anti- FG and anti- 

VGLUT-1 for rats with CST labelling; (b) anti- CTb, anti- FG and ant- VGLUT-2 or 

anti- CTb, anti- FG, and anti- VGAT for rats with ReST labelling. Sections were 

then incubated in secondary antibodies coupled to Rhodamine red, Alexa 488 

and Dylight 649 for 48h (See Table 6-1). Finally, sections were rinsed with PBS 

(3 x 10 min) and mounted with anti-face (Vectashield; see Chapter 2 section 2.7 

for detailed ICC steps. 
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6.2.7 Assessment of the laminar distribution pattern of labelled 
cells and terminals in the cervical spinal cord 

For each rat, 2 transverse sections (60μm) from segment C4/C5 containing 

immunolabelled terminals (CTb) and cells (FG; above) were imaged (x10; 

AxioVision software) and the photomicrographs were superimposed onto spinal 

templates (taken from Paxinos & Watson, 2005). FG-labelled cells were recorded 

on the corresponding site on the template as a dot. CTb-labelled terminals were 

also mapped onto the templates to assess whether CST and ReST terminations 

were within the territory of the labelled LDPNs and intrasegmental CINs.  

6.2.8 Confocal microscopy, reconstructions and analyses 

Cells were scanned using a x40 oil-immersion lens (zoom factor of 2 at 0.5μm 

increments). If CTb-labelled terminals established contacts with a cell, the cell 

was reconstructed using Neurolucida Software (as described in Chapter 2 section 

2.8) and contact density was expressed as the number of contacts per 100 µm2 

of neuronal surface. Contact densities were averaged for each rat so that an 

individual rat contributed only one value to the statistical analysis (see Chapter 

2 section 2.9). 

6.2.9  Statistical analysis 

For all results shown in this chapter, statistical analysis is based on the number 

of animals (not the number of cells or number of sections) in order to avoid 

pseudoreplication (see Chapter 2 section 2.9). The data were analysed using 

non-parametric tests because the raw contact densities were skewed and failed 

the Shapiro-Wilk normality test. The Mann-Whitney test was used for individual 

comparisons of contact densities. The Kruskal-Wallis test was used to compare 

contact densities between cells located across different laminar boundaries. 

Data are expressed as means ± SD and differences are considered significant at p 

< 0.05.  
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 Primary antibody 

combination 

Concentration Supplier Secondary antibody 

combination 

Concentration Sequential reaction 

1 gt. CTb 1:5000 List Biological 

Laboratories, Campell, CA 

Biotinylated IgG 1:500 Avidin HRP (1:1000) + DAB 

2 gt. CTb 1:5000 List Biological 

Laboratories, Campell, CA 

Rh. Red 1:100 

 

 

rb. FG 1:5000 Chemicon/Millipore, CA, 

USA 

Alexa 488 1:500 

 

 
gp. VGLUT-1 1:5000 Millipore, Harlow, UK Dylight 649 1:500 

 
3 gt. CTb 1:5000 List Biological 

Laboratories, Campell, CA 

Rh. Red 1:100 

 

 

rb. FG 1:5000 Chemicon/Millipore, CA, 

USA 

Alexa 488 1:500 

 

 

gp. VGLUT-2 1:5000 Chemicon/Millipore, CA, 

USA 

Dylight 649 1:500 

 

4 gt. CTb 1:5000 List Biological 

Laboratories, Campell, CA 

Rh. Red 1:100 

 

 

rb. FG 1:5000 Chemicon/Millipore, CA, 

USA 

Alexa 488 1:500 

 

 

mo. VGAT 1:1000 Chemicon/Millipore, CA, 

USA 

Dylight 649 1:500 

 

 

 

Table 6-1 Summary of primary and secondary antibody combinations and concentrations used in the current experiment  

1. For the visualisation of the CTb injection site in the brain. 2. For the assessment of CST contacts to cells. 3. For the assessment of excitatory ReST contacts to cells. 
4. For the assessment of inhibitory ReST contacts to cells.  

rb = rabbit; gt = goat; gp = guinea pig; mo = mouse; Rh.Red= Rhodamine red
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6.3 Results 

6.3.1 CST and ReST contacts to LDPNs  

6.3.1.1 Injection sites 

Figure 6-2 shows the CTb injection sites in the cortex and corresponding FG 

injection sites in the lumbar cord (L1/L2) for each rat. The CTb injection sites 

were focussed within the primary and secondary motor cortex and the adjacent 

primary sensory cortex and they were confined to the right hemisphere (Figure 

6-2A). The FG injections were confined to L1/L2, and injection sites were 

present in the grey matter in all three rats, although the precise location varied 

with the core of the injection being in the intermediate grey matter for 1 rat, 

and slightly more dorsal 2 rats (Figure 6-2B). In all rats, there was considerable 

spread of FG within the grey matter ipsilateral to the injection sites but there 

was no spread to the contralateral grey matter.  

Figure 6-3 shows the CTb injection sites into the MLF and corresponding FG 

injection sites into the lumbar cord (L1/L2) of each rat. The micropipette for 

the MLF injections was placed in the right side (Table 2-1) but due to the 

proximity of the MLF to midline, CTb labelling was visualised in both sides of the 

MLF (Figure 6-3A). There was some spread of CTb into the raphe obscurus and 

tectospinal tract. The FG injections into the lumbar spinal cord were confined to 

L1/L2, with core of the injection site being in the intermedio-ventral grey 

matter for all three rats, and spread confined to the grey matter ipsilateral to 

the injection sites (Figure 6-3B).  



153 
 

 

Figure 6-2 CTb tracer injection sites in the cortex (right) and FG tracer injection sites in the 
lumbar spinal cord (right) of each rat 

 A: A representative CTb injection site revealed with an immunoperoxidase reaction. A1, A2, A3 
are reconstructions of injection sites for each rat on brain templates (taken from Paxinos & Watson, 
2005; -0.5mm relative to Bregma). The darkest shading represents the core of the injection and 
lighter shading represents spread beyond the core. B: A representative fluorescence/dark field 
micrograph showing a FG injection site within a transverse section of the lumbar spinal cord (L2). 
B1, B2, B3 are reconstructions of injection sites for each rat on spinal templates (based on Paxinos 
& Watson, 2005). The core of the injection is shown in black and the spread shown in grey.  
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FIgure 6-3  CTb tracer injection sites in the MLF and FG injection sites in the lumbar spinal 
cord (right) of each rat  

A: A representative CTb injection site revealed with an immunoperoxidase reaction. A1, A2, A3 are 
reconstructions of injection sites for each rat on brain templates (taken from Paxinos & Watson, 
2005; -12.6mm from Bregma). The darkest shading represents the core of the injection and lighter 
shading represents spread beyond the core. B: A representative fluorescence/dark field 
micrograph showing a FG injection site within a transverse section of the lumbar spinal cord (L2). 
B1, B2, B3 are reconstructions of injection sites for each rat on spinal templates (based on Paxinos 
& Watson, 2005). The core of the injection is shown in black and the spread shown in grey.  
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6.3.1.2 Laminar distribution pattern of LDPNs in relation to CST and ReST 
terminals in the cervical cord 

Figure 6-4 shows the laminar distribution pattern of LDPNs in relation to CST 

and ReST terminals in segment C5 for all rats. The distribution of FG-labelled 

LDPNs within the grey matter was similar for all rats despite some variation in 

the location of the FG-injection sites (see above). The largest numbers of cells 

were found in laminae VII and VIII both contralateral and ipsilateral to the L1/L2 

injection site; however the contralateral cells tended to be concentrated in the 

medial region of laminae VII unlike the ipsilateral cells which were more evenly 

distributed throughout the intermediate grey matter. LDPNs were relatively 

large cells, with a mean surface area (μm2) of 1313 ± 720 and 6337 ± 3200 for 

the somata and dendritic processes, respectively. CTb-labelled CST terminals 

were mainly found in the side of the grey matter contralateral to the cortical 

injection site (and contralateral to the L1/L2 FG injection site). As shown in 

Figures 6-4A to 4D, CST terminals were concentrated medially in laminae IV to 

VI which is dorsal to most LDPNs. However, a moderate number of CST terminals 

were also found in laminae VI to VII, within the same territory as LDPNs. CTb-

labelled ReST terminals were distributed bilaterally and were numerous through 

the deep dorsal horn, intermediate grey matter and ventral horn (Figure 6-4E to 

H); thus, on examination of the overall laminar distribution of cells and 

terminals, there were more ReST than CST terminals within the vicinity of 

LDPNs.  
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Figure 6-4 Distribution of LDPNs and axonal terminals in the cervical spinal cord (C5) 

A, B, C: Laminar distribution of FG-labelled LDPNs (green) in association with CTb-labelled CST terminals (black) for each rat. Note that most CST terminals were 
located in medial laminae IV to VI, but a moderate number were also located in deeper laminae, within the territory occupied by LDPNs. Each representation was made 
from two 60μm spinal sections. D: Photomicrograph of LDPNs (green) and CST terminals (red) taken from the grey matter contralateral to the lumbar injection site.  E, 
F, G: Laminar distribution of FG-labelled LDPNs (green) in association with CTb-labelled ReST terminals (black) for each rat. Note that ReST terminals were much 
more evenly distributed throughout the grey matter in comparison to CST terminals and many ReST terminals were located within the territory of LDPNs. H: 
Photomicrograph of LDPNs (green) and ReST terminals (red) taken from the grey matter contralateral to the lumbar injection site (Scale bar = 50μm). CC = central 
canal  
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6.3.1.3 Density of CST and ReST contacts onto LDPNs 

To examine CST inputs to commissural LDPNs, a total of 32 retrogradely labelled 

cells (9-12 cells per rat) were imaged. A moderate number of CTb-labelled CST 

terminals were found within the immediate vicinity of commissural LDPNs, 

particularly for those cells located in medial lamina VII; however, a very limited 

number of these terminals were found to establish contacts with the cells. 

Figure 6-5 shows an example of a commissural LDPN with numerous CTb-

labelled terminals within its immediate territory, but only 2 of the terminals 

were found to establish contacts with the cell. As shown in Table 6-2, all of the 

detected CTb-labelled contacts to commissural LDPNs were immunoreactive for 

VGLUT-1.   

 

Table 6-2 Immunoreactive contacts from the sensorimotor cortex to commissural LDPNs in 
cervical segment C5 

 Note that for each rat, all of the CTb-labelled contacts were immunoreactive for VGLUT-1.  

 

The mean number of CTb-labelled CST contacts per 100μm2 of neuronal surface 

was higher for the dendritic processes (0.02 ± 0.03) compared to the somata 

(0.005 ± 0.01) (Figure 6-6A) but this difference was not statistically significant 

(p>0.05). In order to examine whether the CST targets commissural LDPNs 

located within specific regions of the grey matter, the CTb-labelled contact 

densities onto cells located within different laminar boundaries were compared. 

There were no significant differences in the density of contacts to cells located 

in different laminae for both the somata (Figure 6-6B) and dendritic processes 

(Figure 6-6C) (p>0.05).  

 
 
 
 

 

No. cells 
reconstructed 

CTb 
contacts 
(total) 

VGLUT-1+CTb 
contacts % VGLUT-1 

 Rat 1 12 5 5 100 

Rat 2 11 5 5 100 

Rat 3 9 7 7 100 



158 
 

 

Figure 6-5 CST contacts onto a commissural LDPN in cervical segment C5 

A projected confocal microscope image (44 optical sections, 0.5µm increments) of a FG-labelled LDPN (green) and CTb-labelled CST terminals (red) taken from the 
medial region of lamina VII (contralateral to the L1/L2 injection site). Scale bar = 20μm. Insets are single optical sections:  A1 to A4 correspond to the region 
demarcated in A; insets B1 to B4 correspond to the region demarcated in B; insets C1 to C4 correspond to the region demarcated in C. A1, B1, C1 show 
immunoreactivity for FG; A2, B2, C2 show immunoreactivity for CTb; A3, B3, C3 show immunoreactivity for VGLUT-1; A4, B4, C4 are merged images. This LDPN was 
found to have a total of two CST contacts, shown in A. The remaining terminals found within the immediate vicinity of the cell did not establish contacts with the cell 
and examples are shown in B and C. CTb-labelled terminals are indicated by arrows. Scale bar = 5μm. 
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Figure 6-6 Density of CTb-labelled CST contacts to commissural LDPNs in cervical segment C5 

A: Density of CTb-labelled CST contacts to commissural LDPNs. Each data point represents a cell (9-12 cells per rat; n = 3 rats). The contact densities tended to be 
higher for dendritic processes compared to the somata but this difference was not statistically significant (p>0.05, Mann-Whitney test). B, C: The Kruskal-Wallis test 
compared contact densities to cells located in different laminae of Rexed (based on Molander, 1989). For both somata (B) and dendritic processes (C), there were no 
significant differences in contact densities between cells located in different laminar boundaries (p > 0.05).  

(All analysis based on number of animals, not number of cells/ sections) 

 

 



160 
 
To examine excitatory ReST contacts to LDPNs, a total of 36 cells (18 

contralateral and 18 ipsilateral to the L1/L2 injection site) were imaged. An 

extensive number of CTb-labelled ReST terminals were detected within the 

immediate vicinity of both commissural and uncrossed LDPNs and many of these 

terminals were found to establish excitatory (VGLUT-2 immunoreactive) contacts 

with the cells. Figure 6-7 shows an example of a cell with numerous excitatory 

(VGLUT-2 immunoreactive) ReST contacts. As summarised in Table 6-3, the 

majority of ReST contacts to both commissural (78.9 ±4.7%) and uncrossed (73.4 

± 8%) LDPNs were immunoreactive for VGLUT-2.   

  

No. cells 
reconstructed 

CTb contacts 
(total) VGLUT-2+CTb % VGLUT-2 

Commissural LDPNs Rat 1 7 356 283 79.49 

 
Rat 2 6 81 60 74.07 

 
Rat 3 5 84 70 83.33 

Mean 
    

78.9 

SD 
    

4.7 

Uncrossed LDPNs Rat 1 5 262 171 65.27 

 
Rat 2 7 102 75 73.53 

 
Rat 3 6 299 243 81.27 

Mean 
    

73.4 

SD 
    

8 

 

Table 6-3 Excitatory immunoreactive contacts from the MLF to commissural and uncrossed 
LDPNs in cervical segment C5 

Note that for both commissural and uncrossed LDPNs, the majority of CTb-labelled contacts were 
immunoreactive for VGLUT-2. 

 

The contact densities for all of the 36 reconstructed LDPNs are shown in Figure 

6-8A; for the somata, the mean overall number of CTb-labelled terminals per 

100μm2 of neuronal surface was 0.75 ± 0.83 and the mean number of CTb-

labelled terminals that contained VGLUT-2 (VGLUT-2+CTb) was 0.53 ± 0.64; for 

the dendritic processes, the mean total number of CTb-labelled terminals per 

100μm2 of neuronal surface was 0.42 ± 0.34 and the mean number of CTb-

labelled terminals that contained VGLUT-2 (VGLUT-2+CTb) was 0.30 ± 0.27. The 

mean contact densities were higher for the somata versus dendritic processes 

but these differences were not statistically significant (p>0.05). In order to 

examine whether excitatory ReST axons target LDPNs located within specific 

areas of the grey matter, the VGLUT-2+CTb contact densities onto cells located 
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within different laminar boundaries were compared. However there were no 

significant differences in the density of contacts to cells of different laminae for 

both the somata (Figure 6-8B) and dendritic processes (Figure 6-8C) (p>0.05). 

To assess whether the excitatory ReST axons differentially target commissural 

versus uncrossed LDPNs, VGLUT-2+CTb contact densities onto cells located on the 

either side of the spinal cord were compared. However, the density of contacts 

onto somata (Figure 6-9A) and dendritic processes (Figure 6-9B) did not vary 

between neurons located contralateral versus ipsilateral to the L1/L2 injection 

site (p>0.05).   
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Figure 6-7 Excitatory ReST inputs onto a LDPN in cervical segment C5 

A projected confocal microscope image (39 optical sections, 0.5µm increments) of a FG-labelled cell (green) and CTb-labelled ReST terminals (red) taken from the 
medial region of lamina VII (contralateral to the L1/L2 injection site). Scale bar = 20μm. Insets are single optical sections:  A1 to A4 correspond to the region 
demarcated in A. B1 to B4 correspond to the region demarcated in B.  A1, B1 show immunoreactivity for FG; A2, B2 show immunoreactivity for CTb; A3, B3 show 
immunoreactivity for VGLUT-2; A4, B4 are merged images. This LDPN has 123 ReST contacts in total and 103 of these contacts were immunoreactive for VGLUT-2. 
White arrows indicate CTb-labelled contacts that are immunoreactive for VGLUT-2. Yellow arrows indicate CTb-labelled contacts that are negative for VGLUT-2. Scale 
bar = 10μm. The projected confocal microscope image for the CTb-labelled ReST terminals only is shown in panel C. This image highlights the extensive number of 
contacts to the cell, because even though the cell (FG-immunoreactivity) is absent, the outline of the cell can still be seen as it is demarcated by terminals. Scale bar = 
20μm 
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Figure 6-8 Density of excitatory ReST contacts to LDPNs in cervical segment C5 

A: Density of ReST contacts to LDPNs reported as total CTb-labelled contacts (red) and CTb-labelled contacts immunoreactive for VGLUT-2 (VGLUT2
+CTb

; black). 
Each data point represents a cell (10-12 per rat; n = 3 rats). Contact densities tended to be higher for somata compared to dendritic processes but these differences 
were not statistically significant (p>0.05, Mann-Whitney test). B, C: The Kruskal-Wallis test compared VGLUT2

+CTb
 contact densities on cells located in different 

laminae of Rexed (based on Molander, 1989). For both somata (B) and dendritic processes (C), there were no significant differences in contact densities between cells 
located in different laminar boundaries (p > 0.05). 

(All analysis based on number of animals, not number of cells/ sections) 
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Figure 6-9 Densities of excitatory ReST contacts onto commissural (contralateral to the L1/L2 injection site) versus uncrossed (ipsilateral to the L1/L2 
injection site) LDPNs in cervical segment C5 

The densities of contacts onto somata (A) and dendritic processes (B) did not vary between LDPNs located contralateral or ipsilateral to the FG-L1/L2 injection site 
(p>0.05, Mann-Whitney). Each dot represents a cell (5-7 cells per rat; n = 3 rats) 

(All analysis based on number of animals, not number of cells/ sections) 
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To examine inhibitory ReST contacts to LDPNs, a total of 33 cells (20 

contralateral and 13 ipsilateral to the L1/L2 injection site) were imaged. An 

extensive number of CTb-labelled ReST terminals were detected within the 

immediate vicinity of both contralateral and ipsilateral LDPNs and some of these 

terminals were found to establish inhibitory (VGAT immunoreactive) contacts 

with the cells. Figure 6-10 shows an example of a cell with inhibitory (VGAT 

immunoreactive) ReST contacts. As summarised in Table 6-4, a small proportion 

of ReST contacts to both commissural (20.1 ± 2.7%) and uncrossed (19.7 ± 2.3%) 

LDPNs were immunoreactive for VGAT.   

  

No. cells 
reconstructed 

CTb contacts 
(total) VGAT +CTb % VGAT 

Commissural LDPNs Rat 1 8 733 169 23.06 

 
Rat 2 5 72 14 19.44 

 
Rat 3 7 427 76 17.80 

Mean 
    

20.1 

SD 
    

2.7 

Uncrossed LDPN Rat 1 4 32 8 22.22 

 
Rat 2 5 62 12 19.35 

 
Rat 3 4 91 16 17.58 

Mean 
    

19.7 

SD 
    

2.3 

 

Table 6-4 Inhibitory immunoreactive contacts from the MLF to commissural and uncrossed 
LDPNs in cervical segment C5 

Note that for both commissural and uncrossed LDPNs, a sizeable minority of CTb-labelled contacts 
were immunoreactive for VGAT 

 

The contact densities for all of the 33 reconstructed LDPNs are shown in Figure 

6-11A; for the somata, the mean total number of CTb-labelled terminals per 

100μm2 of neuronal surface was 0.99 ± 1.1 and the mean number of CTb-labelled 

terminals that contained VGAT (VGAT+CTb) was 0.24 ± 0.33; for the dendritic 

processes, the mean total number of CTb-labelled terminals per 100μm2 of 

neuronal surface was 0.48 ± 0.64 and the mean number of CTb-labelled 

terminals that contained VGAT (VGAT+CTb) was 0.08 ± 0.10. The mean contact 

densities were higher for the somata versus dendritic processes and these 

differences were not statistically significant (p>0.05). In order to examine 

whether inhibitory ReST axons target LDPNs located within specific areas of the 

grey matter, the CTb-labelled contact densities onto cells located within 
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different laminar boundaries were compared. However there were no significant 

differences in the density of contacts to cells of different laminae for both the 

somata (Figure 6-11B) and dendritic processes (Figure 6-11C) (p>0.05). To 

assess whether the inhibitory ReST axons differentially target contralaterally 

(commissural) versus ipsilaterally projecting LDPNs, VGAT+CTb contact densities 

onto cells located on the either side of the spinal cord were compared. 

However, the density of contacts onto somata (Figure 6-12A) and dendritic 

processes (Figure 6-12B) did not vary between neurons located contralateral or 

ipsilateral to the L1/L2 injection site (p>0.05).   
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Figure 6-10 Inhibitory ReST contacts onto a LDPN in cervical segment C5 

A projected confocal microscope image (54 optical sections, 0.5µm increments) of a FG-labelled cell (green) and CTb-labelled ReST terminals (red) taken from the 
medial region of lamina VII (contralateral to the L1/L2 injection site). Scale bar = 20μm. Insets A1 to A4 are single optical sections and correspond to the region 
demarcated in A.  A1 shows immunoreactivity for FG; A2 shows immunoreactivity for CTb; A3 shows immunoreactivity for VGAT; A4 is a merged image. This LDPN 
has 117 ReST contacts in total and 28 of these contacts were immunoreactive for VGAT. White arrows indicate CTb-labelled contacts immunoreactive for VGAT; 
yellow arrows indicate CTb-labelled contacts negative for VGAT. Scale bar = 5μm. 
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Figure 6-11 Density of inhibitory ReST contacts to LDPNs in cervical segment C5 

A: Density of ReST contacts to LDPNs reported as total CTb-labelled contacts (red) and CTb-labelled contacts immunoreactive for VGAT (VGAT
+CTb

; black). Each data 
point represents a cell (10-12 cells per rat; n = 3). Contact densities tended to be higher for somata compared to dendritic processes but these differences were not 
statistically significant (p>0.05, Mann-Whitney test). B, C: The Kruskal-Wallis test compared VGAT

+CTb 
contact densities on cells located in different laminae of Rexed 

(based on Molander, 1989). For both somata (B) and dendritic processes (C), there were no significant differences in contact densities between cells located in 
different laminar boundaries (p > 0.05). 

(All analysis based on number of animals, not number of cells/ sections) 
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Figure 6-12 Densities of inhibitory ReST contacts onto commissural (contralateral to the L1/L2 injection site) versus uncrossed (ipsilateral to the L1/L2 
injection site) LDPNs in cervical segment C5 

The densities of contacts onto somata (A) and dendritic processes (B) did not vary between LDPNs located contralateral or ipsilateral to the FG-L1/L2 injection site 
(p>0.05, Mann-Whitney). Each dot represents a cell (4-8 per rat; n = 3 rats). 

(All analysis based on number of animals, not number of cells/ sections)  
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6.3.2 CST and ReST contacts to intrasegmental CINs 

6.3.2.1 Injection sites 

Figure 6-13 shows the CTb injection sites into the cortex and the corresponding 

FG injection sites into the cervical cord (C4/C5) for each rat. The CTb injection 

sites were focussed within the primary and secondary motor cortex and the 

adjacent primary sensory cortex and were confined to the cortex of the right 

hemisphere (Figure 6-13A).  The FG injections were confined to C4/C5. 

Although there was some variation in the location of the injection site, the 

injection site was present in the grey matter of all three rats with considerable 

spread of FG within the grey matter ipsilateral to the injection site and no 

spread into the contralateral grey matter (Figure 6-13B).  

Figure 6-14 shows the CTb injection sites into the MLF and corresponding FG 

injection sites into the cervical cord (C4/C5) of each rat. In the MLF CTb 

labelling was visualised bilaterally (Figure 6-14A) and there was some spread of 

CTb into the raphe obscurus and tectospinal tract.  The FG injections were 

confined to C4/C5; for all three rats, the core of the FG injection site was within 

the grey matter and there was considerable spread of FG within the grey matter 

ipsilateral to the injection site but there was no spread of FG into the 

contralateral grey matter (Figure 6-14B).  
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Figure 6-13 CTb injections into the sensorimotor cortex and FG injections into the cervical 
spinal cord (right) of each rat 

A: A representative CTb injection site revealed with an immunoperoxidase reaction. A1, A2, A3 are 
reconstructions of injection sites for each rat on brain templates (taken from Paxinos & Watson, 
2005; -0.5mm from Bregma). The darkest shading represents the core of the injection and lighter 
shading represents spread beyond the core. B: A representative fluorescence/dark field 
micrograph showing a FG injection site within a transverse section of the lumbar spinal cord (C4). 
B1, B2, B3 are reconstructions of injection sites for each rat on spinal templates (based on Paxinos 
& Watson, 2005). The core of the injection is shown in black and the spread shown in grey.  
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Figure 6-14 CTb injections into the MLF and FG injections into the cervical spinal cord 
(right) of each rat 

A: A representative CTb injection site revealed with an immunoperoxidase reaction. A1, A2, A3 are 
reconstructions of injection sites for each rat on brain templates (taken from Paxinos & Watson, 
2005; -12.6mm from Bregma). The darkest shading represents the core of the injection and lighter 
shading represents spread beyond the core.B: A representative fluorescence/dark field micrograph 
showing a FG injection site within a transverse section of the lumbar spinal cord (C5). B1, B2, B3 
are reconstructions of injection sites for each rat on spinal templates (based on Paxinos & Watson, 
2005). The core of the injection is shown in black and the spread shown in grey.  

 

 



173 
 

6.3.2.2 Laminar distribution pattern of intrasegmental CINs in relation to 
CST and ReST terminals in the cervical cord 

Figure 6-15 shows the laminar distribution pattern of intrasegmental CINs in 

relation to CST and terminals in segment C4/C5 for all rats. The distribution of 

FG-labelled intrasegmental CINs within the grey matter was similar for all rats, 

despite some variation in the locations of the injection sites (see above). In 

comparison to the LDPNs characterised above (section 6.3.1), intrasegmental 

CINs were more numerous and they were more evenly distributed throughout 

laminae VI to VIII and X. Intrasegmental CINs tended to be smaller than LDPNs, 

with a mean surface area (μm2) of 1008 ± 590  and 2156 ± 1236 for the somata 

and dendritic processes, respectively. CTb labelled CST terminals were located 

in the grey matter contralateral to the cortical injection site (contralateral to 

the C4/C5 FG injection) (Figures 6-15A to D). Although the majority of CST 

terminals were dorsal to the intrasegmental CINs (in laminae IV to VI), a 

moderate number of CST terminals were visible in laminae VI to VII, within the 

same territory as the LDPNs. CTb-labelled ReST terminals were distributed 

bilaterally and were numerous through the deep dorsal horn, intermediate grey 

matter and ventral horn (Figure 6-15E to H); thus, on examination of the overall 

laminar distribution of cells and terminals, there were more ReST than CST 

terminals within the vicinity of intrasegmental CINs.  

 
 
 
 
 
 
 
 
 
 
 
 



174 
 

 

Figure 6-15 Distribution of intrasegmental CINs and axonal terminals in the cervical spinal cord (C5) 

A, B, C: Laminar distribution of FG-labelled CINs (green) in association with CTb-labelled CST terminals (black) for each rat. Note that most CST terminals were dorsal 
to CINs. Each representation was taken from 2 60μm thick spinal sections.  D: Photomicrograph of CINs (green) and CST terminals (red) taken from the grey matter 
contralateral to the lumbar injection site. E, F, G: Laminar distribution of FG-labelled CINs (green) in association with CTb-labelled ReST terminals (black) for each rat. 
Note that ReST terminals were much more evenly distributed throughout the grey matter in comparison to CST terminals and many ReST terminals were located within 
the territory of CINs. H: Photomicrograph of CINs (green) and ReST terminals (red) taken from the grey matter contralateral to the lumbar injection site (Scale bar = 
50μm). CC= central canal 
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6.3.2.3 Density of CST and ReST contacts onto intrasegmental CINs 

To examine CST contacts to intrasegmental CINs (cervical segment C4/C5), a 

total of 39 retrogradely labelled cells (9-12 per rat) were imaged. On inspection 

of the first few cells, it was found that although CTb-labelled terminals were 

present within the vicinity of the cells, they very rarely established contacts 

with the cells. Thus, for the remaining cells, confocal imaging was performed 

using the green and red channels only. However, 4 cells with detected contacts 

were re-scanned using the blue channel in order to confirm that the contacts 

were terminals i.e. that they contained VGLUT-1; and all of those contacts 

contained VGLUT-1. Figure 6-16 shows a rare example of an intrasegmental CIN 

with a CTb-labelled contact that was immunoreactive for VGLUT-1. The mean 

number of CTb-labelled CST contacts per 100μm2 of neuronal surface was higher 

for the dendritic processes (0.019 ± 0.05) compared to the somata (0.005 ± 0.02) 

(Figure 6-17A) but this difference was not statistically significant (p>0.05). In 

order to examine whether the CST targets intrasegmental CINs located within 

specific regions of the grey matter, the CTb-labelled contact densities onto cells 

located within different laminar boundaries were compared. However there 

were no significant differences in the density of contacts to cells of different 

laminae for both the somata (Figure 6-17B) and dendritic processes (Figure 6-

17C) (p>0.05).  
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Figure 6-16 CST contacts onto a segmental CIN in the cervical spinal cord 

A projected confocal microscope image (36 optical sections, 0.5µm increments) of a FG-labelled 
LDPN (green) and CTb-labelled CST terminals (red) taken from the medial region of lamina VII 
(contralateral to the C5 injection site). Scale bar = 20μm. Insets are single optical sections: A1 to 
A4 correspond to the region demarcated in A. A1 shows immunoreactivity for FG; A2 shows 
immunoreactivity for CTb; A3 shows immunoreactivity for VGLUT-1; A4 is a merged image. This 
CIN was found to have a total of 1 CST contact. CTb-labelled terminals are indicated by arrows. 
Scale bar = 5μm. 
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Figure 6-17 Density of CST contacts to intrasegmental CINs in the cervical segments C4/C5 

A: Density of CTb-labelled CST contacts onto intrasegmental CINs. Each data point represents a cell (9-12 cells per rat; n = 3 rats). Contact densities were higher onto 
dendritic processes compared to somata but this difference was not statistically significant (p>0.05, Man-Whitney). B, C: The Kruskal-Wallis test compared CST

 
contact 

densities on cells located in different laminae of Rexed (based on Molander, 1989). For both somata (B) and dendritic processes (C), there were no significant 
differences in contact densities between cells located in different laminar boundaries (p > 0.05). 

(All analysis based on number of animals, not number of cells/ sections) 
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To examine excitatory ReST contacts to intrasegmental CINs, a total of 31 cells 

(10-11 per rat) were imaged. An extensive number of CTb-labelled ReST 

terminals were detected within the immediate vicinity of intrasegmental CINs 

and many of these terminals were found to establish excitatory (VGLUT-2 

immunoreactive) contacts with the cells. Figure 6-18 shows an example of a cell 

with numerous excitatory (VGLUT-2 immunoreactive) ReST contacts. As 

summarised in Table 6-5, the majority of ReST contacts to intrasegmental CINs 

(78.8 ± 4%) were immunoreactive for VGLUT-2.   

 

No. cells 
reconstructed CTb contacts (total) VGLUT-2+CTb % VGLUT-2 

Rat 1 11 136 108 79.41 

Rat 2 10 97 80 82.47 

Rat 3 10 196 146 74.49 

Mean 
 

  78.8 

SD 
   

4 

 

Table 6-5 Immunoreactive excitatory contacts from the MLF to intrasegmental CINs 

Note that the majority of CTb-labelled contacts were immunoreactive for VGLUT-2. 

 

The contact densities for all of the 31 reconstructed intrasegmental CINs are 

shown in Figure 6-19A; for the somata, the mean overall number of CTb-

labelled terminals per 100μm2 of neuronal surface was 0.62 ± 0.63 and the mean 

number of CTb-labelled terminals that contained VGLUT-2 (VGLUT-2+CTb) was 

0.47 ± 0.60; for the dendritic processes, the mean total number of CTb-labelled 

terminals per 100μm2 of neuronal surface was 0.46 ± 0.43 and the mean number 

of CTb-labelled terminals that contained VGLUT-2 (VGLUT-2+CTb) was 0.40 ± 0.4. 

The mean contact densities were higher for the somata versus dendritic 

processes but this different was not statistically significant (p > 0.05). In order 

to examine whether excitatory ReST axons target intrasegmental CINs located 

within specific areas of the grey matter, the CTb-labelled contact densities onto 

cells located within different laminar boundaries were compared. Quantitative 

analysis revealed no significant differences in the density of contacts to cells of 

different laminae for both the somata (Figure 6-19B) and dendritic processes 

(Figure 6-19C) (p>0.05).  
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Figure 6-18 Excitatory ReST inputs onto an intrasegmental CIN in the cervical spinal cord 

A projected confocal microscope image (47 optical sections, 0.5µm increments) of a FG-labelled cell (green) and CTb-labelled ReST terminals (red) taken from the 
medial region of lamina VII (contralateral to the C5 injection site). Scale bar = 20μm. Insets A1 to A4 are single optical sections and correspond to the region 
demarcated in A. B1 to B4 are single optical sections and correspond to the region demarcated in B.  A1 and B1 show immunoreactivity for FG; A2 and B2 show 
immunoreactivity for CTb; A3 and B3 show immunoreactivity for VGLUT-2; A4 and B4 are merged images. This cell has 19 ReST contacts in total and 17 of these 
contacts were immunoreactive for VGLUT-2. White arrows indicate CTb-labelled contacts that are immunoreactive for VGLUT-2. Yellow arrows indicate CTb-labelled 
contacts that are negative for VGLUT-2. Scale bar = 5μm. 
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Figure 6-19 Density of excitatory ReST contacts to intrasegmental CINs in the cervical segments C4/C5  

A: Density of ReST contacts to intrasegmental CINs reported as total CTb-labelled contacts (red) and CTb-labelled contacts immunoreactive for VGLUT-2 
(VGLUT2

+CTb
; black). Each data point represents a cell (10-11 per rat). Contact densities tended to be higher for somata compared to dendritic processes but this 

difference was not statistically significant (p > 0.05, Mann-Whitney). B, C: The Kruskal-Wallis test compared VGLUT2
+CTb

 contact densities on cells located in different 
laminae of Rexed (based on Molander, 1989). For both somata (B) and dendritic processes (C), there were no significant differences in contact densities between cells 
located in different laminar boundaries (p > 0.05). 

(All analysis based on number of animals, not number of cells/ sections) 
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To examine inhibitory ReST contacts to intrasegmental CINs, a total of 21 cells 

(5-8 per rat) were reconstructed. An extensive number of CTb-labelled ReST 

terminals were detected within the immediate vicinity of intrasegmental CINs 

and a proportion of these terminals were found to establish inhibitory (VGAT 

immunoreactive) contacts with the cells. Figure 6-20 shows an example of a cell 

with inhibitory (VGAT immunoreactive) ReST contacts. As summarised in Table 

6-5, a sizeable minority of ReST contacts to intrasegmental CINs (19.8 ± 2.4%) 

immunoreactive for VGAT.   

  

No. cells 
reconstructed 

CTb 
contacts 
(total) VGAT +CTb % VGAT 

 
Rat 1 8 72 13 18.06 

 
Rat 2 5 96 18 18.75 

 
Rat 3 7 133 30 22.56 

Mean 
    

19.8 

SD 
    

2.44 

 

Table 6-6 Immunoreactive inhibitory contacts from the MLF to intrasegmental CINs 

Note that a sizeable minority of CTb-labelled contacts were immunoreactive for VGAT 

 

The contact densities for all of the 21 reconstructed intrasegmental CINs are 

shown in Figure 6-21A; for the somata, the mean total number of CTb-labelled 

terminals per 100μm2 of neuronal surface was 0.76 ± 1.32 and the mean number 

of CTb-labelled terminals that contained VGAT (VGAT+CTb) was 0.23 ± 0.59; for 

the dendritic processes, the mean total number of CTb-labelled terminals per 

100μm2 of neuronal surface was 0.29 ± 0.35 and the mean number of CTb-

labelled terminals that contained VGAT (VGAT+CTb) was 0.06 ± 0.07. The mean 

contact densities were higher for the somata versus dendritic processes but this 

difference was not statistically significant (p>0.05). In order to examine whether 

inhibitory ReST axons target intrasegmental CINs located within specific areas of 

the grey matter, the CTb-labelled contact densities onto cells located within 

different laminar boundaries were compared. However there were no significant 

differences in the density of contacts to cells of different laminae for both the 

somata (Figure 6-21B) and dendritic processes (Figure 6-21C) (p>0.05).  
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Figure 6-20 Inhibitory ReST inputs onto an intrasegmental CIN in the cervical spinal cord 

A projected confocal microscope image (39 optical sections, 0.5µm increments) of a FG-labelled cell (green) and CTb-labelled ReST terminals (red) taken from the 
medial region of lamina VII (contralateral to the C5 injection site). Scale bar = 20μm. Insets A1 to A4 are single optical sections and correspond to the region 
demarcated in A. A1 shows immunoreactivity for FG; A2 shows immunoreactivity for CTb; A3 shows immunoreactivity for VGAT; A4 is a merged image. This cell has 
12 ReST contacts in total and 3 of these contacts were immunoreactive for VGAT. White arrows indicate CTb-labelled contacts that are immunoreactive for VGAT. 
Yellow arrows indicate CTb-labelled contacts that are negative for VGLUT-2. Scale bar = 5μm. 
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Figure 6-21 Density of inhibitory ReST contacts to intrasegmental CINs in the cervical segments C4/C5  

A: Density of ReST contacts to intrasegmental CINs reported as total CTb-labelled contacts (red) and CTb-labelled contacts immunoreactive for VGAT (VGAT
+CTb

; 
black). Each data point represents a cell (5-8 per rat; n = 3 rats). Contact densities tended to be higher for somata compared to dendritic processes but this difference 
was not statistically significant (p > 0.05, Mann-Whitney). B, C: The Kruskal-Wallis test compared VGAT

+CTb
 contact densities on cells located in different laminae of 

Rexed (based on Molander, 1989). For both somata (B) and dendritic processes (C), there were no significant differences in contact densities between cells located in 
different laminar boundaries (p > 0.05). 

(All analysis based on number of animals, not number of cells/ sections) 
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6.4 Discussion 

In this study, LDPNs (both commissural and uncrossed) and intrasegmental CINs 

in the rat cervical spinal cord were found to receive a sparse number of contacts 

from the CST and an extensive number of contacts from the ReST. Use of 

VGLUT-2 and VGAT revealed that both types of cell received about 80% of 

excitatory and 20% of inhibitory RST contacts. In normal rats therefore the CST 

has a minimal influence on LCINs and LDPNs but the RST has a powerful 

influence. Therefore following loss of CST axons, the cortico-reticulospinal-

commissural pathway has the capacity to convey information from the intact 

hemisphere to the denervated spinal cord. 

Technical considerations 

CTb is a highly sensitive tracer that may be transported in the anterograde as 

well as the retrograde direction (Ericson & Blomqvist, 1988), but it is taken up 

by undamaged axons of passage in the CNS (Chen & Aston-Jones, 1995). On this 

basis, the possibility that the tracer contaminated axons derived from cell 

sources beyond the intended area of injection cannot be excluded. This is 

especially likely to be the case with MLF injections as fibres of the medial VST 

(Nyberg-Hansen & Mascitti, 1964; Wilson & Peterson, 1978) and the tectospinal 

tract (Petras, 1967) also descend within this region; although the medial VST of 

the rat terminates predominantly in the dorsal horn (Bankoul & Neuhuber, 1992) 

and tectospinal fibres are mainly found in upper cervical segments (C1 to C3; 

Yasui et al., 1998) so it is unlikely that the terminals analysed in the current 

study originated from these tracts. Another potential complication with MLF 

injections is that in addition to ReST axons, spinoreticular cells are also labelled 

and therefore the collateral axons of these cells may have contaminated the 

sample. However, a previous study using a sensitive method for revealing CTb 

reported that retrogradely transported CTb is detected in cell bodies and 

dendrites but not axons or fibre bundles (Angelucci et al., 1996).  

FG is taken up by axon terminals or through injured axons, and retrogradely 

transported to neuronal cell bodies, thereby specifically labelling neurons that 

project to the region of application (Catapano et al., 2008). A limitation of the 

study is that the FG does not label the most distal parts of dendritic trees and 
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therefore the numbers of contacts on LCINs and LDPNs may have been 

underestimated. Although the estimates of contact densities may not represent 

absolute values the difference in the relative values of contact densities 

between CST and RST terminals is striking. 

It is likely that the contacts reported in the this study were sites of synaptic 

interaction because they expressed VGLUT-1 (for the CST) and VGLUT-2 (for the 

ReST) which are present in glutamatergic presynaptic boutons (Persson et al., 

2006; Fremeau et al., 2001) and VGAT (for the ReST) which is present in both 

GABAergic and glycinergic boutons (Chaudhry et al., 1998). To confirm that 

inhibitory sites of contact were synapses, antibodies against the glycinergic 

receptor anchoring protein gephyrin could have been used whereby VGAT 

terminals in contact with gephyrin puncta on the cell indicates a synaptic 

interaction (Puskár et al., 2001). Due to the absence of a reliable neurochemical 

marker for the identification of excitatory synapses however, a combination of 

confocal and electron microscopy would have been required to determine 

synapses at sites of glutamatergic contacts (Todd, 1997).  

CST and ReST contacts to LDPNs 

Following unilateral FG injections into segments L1/L2, retrogradely labelled 

LDPNs were found in both sides of the grey matter of segment C5, with the 

majority of cells concentrated in laminae VII and VIII. This observation is 

consistent with findings from Brockett et al., (2010) who injected CTb into 

segments L1/L2 and described bilaterally labelled cells to be present in all 

cervical segments. Similarly, Reed et al., (2009) reported dense bilateral 

descending projections from cervical to lumbar segments following unilateral 

injection of BDA into the ventrolateral funiculus at T9.  

Both commissural and uncrossed LDPNs were found to receive a very limited 

number of CST contacts, suggesting that the CST may not be a chief regulator of 

these cells. This finding is consistent with Ni et al., (2014) who demonstrated 

that in mice, 35% of LDPNs are contacted by CST axons but the number of 

contacts per cell was very limited (< 2). However, according to Alstermark et 

al., (1987), LDPNs (mostly commissural but some uncrossed) in the cat are 

directly excited by stimulation of the contralateral medullary pyramid. Taking 
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this anatomical and electrophysiological evidence together, this might reflect 

the existence of highly potent synaptic contacts between CST axons and LDPNs 

such that a small number of synapses are sufficient for inducing strong 

depolarisations. An alternative explanation is that the CST directly influences 

LDPNs in cats, but not in rodents. Accordingly, the cat CST terminates most 

extensively in the deep dorsal horn and intermediate zone (Scheibel & Scheibel, 

1966; Chakrabarty et al., 2009); whereas the rat CST terminates most 

extensively in the deep dorsal horn, with lesser terminations in the intermediate 

zone (see Chapter 4 of this thesis; Gribnau & Dederen, 1989; Casale et al., 

1988). Thus, in the cat, the region of the grey matter occupied by LDPNs 

receives more CST projections compared to the rat. At this point it is worth 

briefly referring to the well-studied C3/C4 propriospinal system, which consists 

of shorter-axoned interneurons that project to caudal forelimb segments. Unlike 

in cats and primates, the C3/C4 propriospinal system of rodents does not receive 

monosynaptic excitation from the CST, only disynaptic excitation (Alstermark et 

al., 2004); but the C3/C4 propriospinal system of rodents can be 

monosynaptically activated by stimulation of the MLF (Azim et al., 2014). Taking 

all of these findings into account, it could be possible that in rodents the motor 

cortex accesses propriospinal systems via a cortico-reticulo-propriospinal 

pathway rather than via a cortico-propriospinal pathway. However a better 

comparison of these systems between different species is required.  Strong ReST 

control of LDPNs appears to be conserved in rats and cats because stimulation of 

the MLF in the cat evokes monosynaptic excitation and/or inhibition in the large 

majority of cells (both commissural and uncrossed; Alstermark et al., 1987); and 

the current study has demonstrated a very high number ReST contacts (both 

excitatory and inhibitory) to these cells in the rat.  

The large majority of ReST contacts to LDPNs contained VGLUT-2 (~75%) but a 

sizeable proportion contained VGAT (~20%). This is consistent with previous 

reports that the ReST of the rat is a heterogeneous system of excitatory and 

inhibitory axons (Du Beau et al., 2013).  

CST and ReST contacts to intrasegmental CINs 

Following unilateral FG injections into segments C4/C5, a large number of 

retrogradely labelled cells were found in the grey matter contralateral to the 
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injection site and these cells were particularly concentrated within laminae VI to 

VIII and X. This is consistent with data obtained from the lumbar spinal cord of 

mice, showing that cells located in laminae VI to VIII and X have axonal 

projections spanning < 1.5 segments and excite or inhibit motor neurons and 

interneurons in the contralateral grey matter (Quilan & Kiehn, 2007).  

Intrasegmental CINs in segments C4/C5 were found to receive a very sparse 

number of contacts from the CST, with the CST contact densities being similar to 

those obtained for the commissural (and uncrossed) LDPNs. In contrast, the 

intrasegmental CINs received extensive contacts from ReST axons, with the ReST 

contact densities being similar to those obtained for the commissural (and 

uncrossed) LDPNs. Also in accordance with the data obtained for the 

commissural (and uncrossed LDPNs), the large majority of ReST contacts to 

intrasegmental CINs were excitatory (79% expressing VGLUT-2) and a sizeable 

proportion were inhibitory (20% expressing VGAT). This anatomical finding is 

consistent with an electrophysiological study performed in the lumbar spinal 

cord of cats, showing that CINs with short axons projecting in and around the 

somata’s segmental level are excited monosynaptically by ReST pathways 

(Matsuyama et al., 2004).  

Taken together, the data from the current study support the hypothesis that the 

ReST establishes contacts onto commissural (and uncrossed) LDPNs and 

intrasegmental CINs. However, CST contacts onto both of these cell types were 

very rare, suggesting that the CST has minimal influence on these cells.   

Implications for functional recovery 

The findings of this study have various implications relating to neural pathways 

that might underlie recovery of function following damage to the CST after 

stroke. As discussed previously (Chapter 1 section 1.4.3), there is evidence that 

recovery of the impaired limb may be mediated by the non-ischaemic 

hemisphere and there are various potential routes via which the non-ischaemic 

hemisphere may gain access to denervated motor neurons (Chapter 1 sections 

1.3 & 1.4.3). A potential route is via CST axons from the non-ischaemic 

hemisphere acting on spinal CINs; if contralaterally descending CST fibres target 

CINs, the CINs would in turn either monosynaptically or polysynaptically affect 
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motor neurons on the opposite (denervated) side of the spinal cord. The findings 

from the current study suggest that if direct CST-CIN connections contribute to 

recovery of function after injury, this must occur through the formation of new 

connections, since CST connections to CINs were very sparse in the intact rat. 

Evidence from studies of spinal lesions suggest that LDPNs that bridge the lesion 

acquire new CST connections (Bareyre et al., 2004), thus the possibility still 

remains that the CST-commissural system contributes to recovery via the 

formation of de novo contacts with CINs. However it seems highly probable given 

the finding that CINs receive extensive input from RST axons that this pathway is 

a more readily available source of “detour circuits” after injury. Accordingly, 

studies have already identified that the motor cortex can gain access to 

ipsilateral motor neurons indirectly via a “double-crossed” pathway, involving 

contralaterally descending ReST neurons, which in turn, activate spinal CINs that 

project back across to the opposite spinal grey matter (Jankowska & Edgley, 

2006; Figure 1-3).  

To summarise, the results of this study suggest that in normal rats, the CST has 

minimal influence over CINs, while the ReST has a powerful influence over these 

cells. This finding has implications pertaining to the neural pathways underlying 

recovery of function following damage to the CST after stroke. The cortico-

reticulospinal-commissural system represents a pre-existing pathway that could 

become strengthened in order to convey signals from the non-ischaemic 

hemisphere to denervated motor neurons. However the CST-commissural system 

is weak in normal rats; for this system to contribute to recovery it would require 

the formation of de novo contacts.  
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Concluding remarks 
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The motor cortex exerts strong control over contralateral limb function via the 

CST. A growing body of evidence however, suggests that the motor cortex may 

also contribute to ipsilateral limb function, through currently ill-defined 

pathways (Jankowska & Edgley, 2006). It is important to ascertain which neural 

pathways might mediate ipsilateral actions of the motor cortex because these 

pathways could become strengthened after damage to the crossed CST (e.g. 

after stroke) so that the undamaged hemisphere can take over control of the 

denervated limb. The overarching aim of this thesis was to extend the 

knowledge of neural systems that may underlie ipsilateral actions of the motor 

cortex, both under normal circumstances and after stroke. The studies detailed 

within this thesis have generated two main novel findings:  

Despite functional recovery of MCAo rats, the number of CST axonal 

terminals in the cervical spinal cord originating from the non-ischaemic 

hemisphere was not altered compared to shams 

This finding suggests that, after stroke, the motor cortex from the non-ischaemic 

hemisphere may not contribute to recovery of the affected limb via increasing 

its direct CST connections to the denervated (ipsilateral) side of the spinal cord. 

If the motor cortex from the non-ischaemic hemisphere does take over control of 

denervated (ipsilateral) spinal circuitry after stroke, then it may utilise indirect 

routes. Indirect routes could involve brainstem relay systems as proposed by 

Jankowska & Edgley (2006; see Chapter 1 section 1.3). Accordingly, in mice, a 

recent study demonstrated that recovery from motor cortex infarction is 

accompanied by corticoreticular and ReST sprouting in addition to CST sprouting 

from the non-ischaemic hemisphere (Bachmann et al., 2014). Moreover, the 

ReST sprouts in the cervical spinal cord were more numerous than the CST 

sprouts (Bachmann et al., 2014). This suggests that strengthening of indirect 

routes involving brainstem systems might be particularly important for recovery 

of function. Further investigations are required to determine whether sprouted 

brainstem fibres form new synaptic connections with cells in the denervated side 

of the spinal cord in association with functional recovery. There is already 

evidence that ReST axons passing through the MLF increase their motor output 

to denervated motor neurons after pyramidal tract transection in primates 
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(Zaaimi et al., 2012). It would be interesting to perform similar experiments in a 

rodent model of stroke.  

In intact rats, LDPNs and intrasegmental CINs were found to receive few 

contacts from CST terminals but significant numbers of contacts from ReST 

terminals 

Therefore, in normal rats the CST has minimal influence on CINs but the ReST 

has a powerful influence on these cells. This finding has implications relating to 

the neural pathways that might underlie recovery of function following damage 

to the CST (e.g. after stroke). The cortico-reticulospinal-commissural system 

represents a pre-existing pathway that may have the capacity to convey 

information from the non-ischaemic hemisphere to denervated motor neurons. 

However the CST-commissural system is weak in normal rats; if this system does 

contribute to recovery processes it would require the formation of new synaptic 

connections between CST axons and CINs. According to spinal lesioning studies 

performed in rats, LDPNs that bridge the injury site acquire new connections 

from CST axons (Bareyre et al., 2004). Therefore, the possibility still remains 

that the CST-commissural system contributes to recovery via the formation of de 

novo contacts with CINs. A potential future experiment would be to quantify CST 

contacts onto CINs following MCAo in rats in order to examine whether contact 

density increases in association with functional recovery.  

With regards to potential strategies for enhancing ipsilateral actions of the 

motor cortex to improve recovery after injury, the large majority of studies have 

focussed on applying therapies that promote large-scale structural 

rearrangements, particularly CST sprouting into the denervated side of the 

spinal cord (Liu et al., 2007; Liu et al., 2008; Zai et al., 2009; Chen et al., 2002; 

Lee et al., 2004; Lindau et al., 2014). An alternative intervention, however, 

could be to increase the effectiveness of synaptic transmission of pre-existing 

pathways. For instance, in the cat, Edgley et al., (2004) identified the presence 

of a “double-crossed” pathway between the motor cortex and ipsilateral motor 

neurons, involving contralateral ReST neurons which in turn activate CINs that 

project back across the spinal cord to motor neurons and interneurons (see 

Figure 1-3).  In a subsequent study (Jankowska et al., 2005), application of the 

K+ channel blocker 4-aminopyridine (4-AP) was shown to enhance synaptic 
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transmission between cortical neurons and ReST neurons, and synaptic 

transmission between ReST neurons and ipsilateral motor neurons via CINs 

(Jankowska et al., 2005). Therefore, the development of pharmacological 

therapies for potentiating the actions of pre-existing but normally weak synaptic 

connections may represent a better opportunity for promoting recovery after 

injury to the CST.  
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Appendix 1: Formulae for common laboratory reagents 

To prepare 4 L of 0.1 M phosphate buffer (PB) stock solution:
37.4 g of NaH2PO (2H2O) in 1200 ml H2O

84.9 g Na2HPO4 in 3000 ml H2O

Distilled water is added to bring the total volume to 4 L with buffered pH 7.4

To prepare 0.3 M phosphate buffer saline solution (PBS):
100 ml of 0.2 M PB in 1900 distilled water plus 36 g NaCl

PBST: 0.3% Triton X-100 in PB

Ringer solution:
Contains CaCl2 + KCl + NaCl + NaHCO3 + glucose in PB, buffered to pH 7.4

To prepare 1L of 4% paraformaldehyde fixative solution:
40 g paraformaldehyde

400 ml distilled H2O at ≈ 68°C

500 ml 0.2 PB

NaOH, to raise pH (few drops)

Solution is cooled and then filtered with enough distilled water added to bring 

the total

volume to 1 L with pH adjusted as necessary

pH = - log [H+]

 C = Celsius; g = grams; L = litres; log = logarithmic, base 10; ml = millilitre; 

M= molar (moles per litre).
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Appendix 2: Primary antibody characterisation 

The following summarises information 

regarding antibody specificity, 

controls, and application and is 

provided as per suppliers’ data 

(referenced in Tables 4.1, 5.1, and 6.1 

in chapters 4, 5 and 6 respectively). 

CTb: Traces myelinated axons possessing 

the GM1 ganglioside, retrogradely and 

anterogradely. The specificity of antibody 

against CTb is demonstrated by the lack of 

staining in regions of the CNS that did not 

contain neurons that had transported the 

tracer and by the presence of 

immunostaining in neurons known to project 

to the injection sites. 

 

ChAT: Neuronal enzyme that catalyses the 
synthesis of ACh from acetyl coenzyme and 
choline, therefore found primarily in 
cholinergic neurons. Positive controls include 
the presence of immunostaining in human 
placenta lysates, rat forebrain/rostral 
hypothalamus.  Antiserum specificity routinely 
evaluated by Western blots on mouse brain 
lysates. 

 
FG: Retrogradely transported fluorescent 
marker that accumulates in lysosomes of 
neurons. The specificity of antibody against 
FG is demonstrated by the lack of staining in 
regions of the CNS that did not contain 
neurons that had transported the tracer and 
by the presence of immunostaining in 
neurons known to project to the injection 
sites.    
 
VGAT Functions in the uptake of GABA and 
glycine into synaptic vesicles. Marker of 
presynaptic GABAergic and glycinergic 
neurons. Antisera specificity is assured by 
Western blot on rat retina lysates. The 
immunogen peptide shows no significant 
homology with other known proteins. 
 
VGLUT1 Mediates the uptake of glutamate 
into synaptic vesicles at presynaptic nerve 
terminals of excitatory neural cells. Antisera 
specificity assured by ICC on tissue sections 
from the rat CNS corresponding to the 
pattern described using other antisera to 
VGLUT1.  
 
VGLUT2 localised in synaptic vesicles 
exhibiting excitatory features. Antisera 

specificity is assured by Western blots on rat 
brain lysate. 
 
Calbindin: Member of a large family of 
intracellular calcium-binding proteins of the 
EF-hand related to calmodulin and troponin-
C. Positive controls include the presence of 
specific staining of cerebellum  Purkinje cells. 
It shows no cross-reactivity with other 
calcium-binding proteins e.g. calretinin 
 
Calbindin: Calcium- binding protein that is 
expressed in central and peripheral nervous 
system and in many normal and pathological 
tissues. Positive controls include the 
presence of immunostaining in sensory 
ganglia and mesothelioma tissue.
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Appendix 3: Protocol for paraffin processing of rat brains 

 
 

Stage Process Time Period (h) 

1 70% EtOH 2 

2 80% EtOH 3 

3 95% EtOH 4 

4 Absolute EtOH 1 4 

5 Absolute EtOH 2 5 

6 Absolute EtOH 3 5 

7 Absolute EtOH 4 6 

8 50% Alcohol/50% Xylene 4 

9 Xylene 1 5 

10 Xylene 2 5 

11 Paraffin wax 1 5 

12 Paraffin wax 2 5 

13 Paraffin wax 3 6 
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Appendix 4: Haematoxylin and Eosin staining procedure for 

paraffin embedded sections 

Stage Process Time period (min) 

1 Histoclear 1 5 

2 Histoclear 2 5 

3 Histoclear 3 5 

4 Absolute EtOH 1 3 

5 Absolute EtOH 2 3 

6 90% EtOH 3 

7 70% EtOH 3 

8 Wash in running water 4 

9 Haematoxylin staining 4 

10 Wash in running water 2 

11 Differentiation in acid EtOH 2 dips 

12 Wash in running water 3 

13 Scot’s tap water substitute 2 

14 Wash in running water 2 

15 70% EtOH 2 

16 90% EtOH 2 

17 Alcoholic Eosin staining (95%) 4 

18 Absolute EtOH 1 4 

19 Absolute EtOH 2 4 

20 Absolute EtOH 3 4 

21 Histoclear 1 4 

22 Histolclear 2 4 

23 Histoclear 3 4 
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Appendix 5: No. of sham rats with impairments in each of the 11 subtests of the neurological score 
over 28 days 

 
 

Sham (n=5) No. of rats with impairments 

 Day -1 Day 1 Day 2 Day 3 Day 7 Day 14 Day 21 Day 28 

Paw placement 
0 0 0 0 0 0 0 0 

Righting reflex 
0 0 0 0 0 0 0 0 

Horizontal bar 
0 4 4 0 0 1 0 1 

Inclined platform 
0 4 1 0 0 0 0 0 

Rotation 0 0 0 0 0 0 0 0 

Visual fore-paw reaching 0 0 0 0 0 0 0 0 

Contralateral reflex 0 0 0 0 0 0 0 0 

Circling 
0 0 0 0 0 0 0 0 

Grasping 0 0 0 0 0 0 0 0 

Motility 0 2 1 0 0 0 0 0 

General condition 0 4 1 0 0 0 0 0 
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Appendix 6: No. of MCAo rats with impairments in each of the 11 subtests of the neurological score 
over 28 days 

 
 
 

MCAo (n=4) No. of rats with impairments 

 Day -1 Day 1 Day 2 Day 3 Day 7 Day 14 Day 21 Day 28 

Paw placement 
0 4 4 3 3 3 3 2 

Righting reflex 0 0 0 0 0 0 0 0 

Horizontal bar 0 4 4 4 4 4 4 3 

Inclined platform 0 4 3 3 2 2 2 2 

Rotation 0 2 2 1 0 0 0 0 

Visual fore-paw reaching 0 4 4 4 4 4 2 2 

Contralateral reflex 0 0 0 0 0 0 0 0 

Circling 0 2 2 1 1 1 1 1 

Grasping 0 4 4 4 2 2 2 2 

Motility 0 4 2 0 0  0 0 

General condition 0 0 0 0 0 0 0 0 
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Appendix 8: Mean ± SDs for all three CTb-labelled terminal counting methods for sham and 
MCAo rats 
 
 

 
Segment 

 
unaffected (left) affected (right) Ratio (affected/unaffected) 

CTb-labelled terminal C3 sham 4522 ± 1900 430 ± 208 0.09 ± 0.03 
counts (automatic) 

 
MCAo 4229 ± 3006 459 ± 344 0.11 ± 0.04 

 
C5 sham 5224 ± 1930 442 ± 192 0.09 ± 0.03 

  
MCAo 4632 ± 2402 486 ± 220 0.12 ± 0.04 

 
C7 sham 5263 ± 1566 520 ± 186 0.09 ± 0.02 

  
MCAo 4711 ± 2002 469 ± 270 0.1 ± 0.02 

CTb+ surface area C3 sham 0.032 ± 0.011 0.002 ± 0.002 0.07 ± 0.06 

  
MCAo 0.026 ± 0.015 0.002 ± 0.002 0.10 ± 0.06 

 
C5 sham 0.041 ± 0.022 0.003 ± 0.002 0.06 ± 0.04 

  
MCAo 0.028 ± 0.014 0.002 ± 0.001 0.07 ± 0.05 

 
C7 sham 0.04 ± 0.025 0.003 ± 0.003 0.07 ± 0.04 

  
MCAo 0.028 ± 0.016 0.002 ± 0.001 0.08 ± 0.06 

CTb-labelled terminal C5 sham 90 ± 47 9 ± 5 0.09 ± 0.05 
counts (manual) 

 
MCAo 105 ± 48 9 ± 8 0.09 ± 0.06 

 
 
 


