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Abstract 

This thesis concerns numerical investigations of the combustion behaviour of various 

combustion regimes. The simulations are based on modelling the flow of the fuels in 

the combustion devices. Computational fluid dynamics (CFD) modelling and analysis 

were used in three different works. FLUENT software, which is based on the finite 

volume method, is used to carry out all the simulations. Firstly, numerical simulations 

were carried out to investigate the turbulent non-premixed combustion of a mixture of 

methane (CH4) 90% and nitrogen (N2) 10%, on volume basis, inside an axis-symmetric 

cylindrical chamber (base case). The objective is to investigate the turbulent flow, 

flame propagation, temperature and species concentration and evaluate the effects of 

different reduced reaction mechanisms of methane and the influence of various 

turbulence models on them. The turbulent combustion inside the chamber occurs under 

a condition for which the equivalence ratio (ɸ) of 1.04 is used. Instead of using fully 

detailed chemical kinetics schemes and to reduce the computational costs, four global 

reduced chemical kinetics mechanisms are employed in the combustion model and they 

are named as (M-I, M-II, M-III and M-IV). The simulations, in which M-I is used, are 

performed by Renolds-Averaged Navier Stokes (RANS) approach with the three two-

equation k-ϵ closures (standard, realizable and RNG) employed to model the turbulent 

flow. Concerning the chemistry-turbulence interaction, the finite-rate/eddy-dissipation 

model (FR/ED) is used. The first two of the above kinetics schemes are two-step 

reaction mechanisms and the other two are first-step and five-step reaction 

mechanisms, respectively. The latter one is used to assess the capability of FR/ED 

model for modeling such a mechanism. The influence of thermal radiation is also 

investigated by means of P-1 model. The standard k-ϵ model and realizable k-ϵ model 

are also modified and used in the course of simulations. Moreover, the reaction 

mechanism (M-II) is optimized to see its effects on the combustion process. The results 

are compared with the experimental data and gave good agreement. It is found that the 

best results are generally obtained using the modified standard k-ϵ model. Moreover, 

the simulation results using the realizable turbulence model are found to have large 

discrepancies compared to the experimental data. In comparison with the experimental 

data, the optimization of M-II (   = 1.6x108 J/kmol) is found to have good results in 

terms of temperature. Increasing the dilution of the fuel by N2 is investigated. Four 

cases, CH4 (85, 80, 75 and 100%) on volume basis, are performed. The latter one 
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concerns the combustion of pure methane. The results are compared with the base case 

and found that the base case is the best compromise to obtain the highest temperature in 

inside the chamber.  

Secondly, an axis-symmetric combustion model based on the Euler-Lagrange approach 

was formulated to model the combustion of pulverized bituminous coal. Three cases 

with three different char oxidation models are presented. In case1 and case 2, the 

diffusion and kinetic/diffusion global char models are used, respectively. Whereas, to 

model char oxidation in case 3, the multi-surface reactions model is used. The volatiles 

released during the devolatilization stage, which is modelled using a single kinetic rate 

model, are treated as one species and its combustion is modelled using the FR/ED 

model. The predicted results have good agreement with the available experimental data 

and the best predictions are obtained from case 3. The results showed that the 

combustion inside the reactor was affected by the particulate size. It is found that the 

burnout of the particle with the diameter of 16 μm at the exit of the furnace is 100%. 

Whereas, the burnout of the particles with diameters of 84, 154, 222, 291 μm is 

approximately 86, 75, 35, 33, 29 %, respectively. 

A number of simulations were carried out to find the best values of parameters suitable 

for predicting NOx pollutants. The chemical formation and reduction rates of NO are 

calculated by post-processing data obtained from the previously reacting flow 

simulations. This method is computationally efficient. For volatile-N is assumed that 

the nitrogen is released via the intermediates HCN and NH3. For char-N path way, it is 

assumed that all the nitrogen is released via the intermediate HCN. It is found that the 

assumption of the partition of volatile-N by 52% HCN, 10% NH3 and 38% NO has the 

best agreement with the experiment data. The influence of different operating 

parameters on the combustion process and NOx formation was investigated as well.  

For the same operating conditions and the same particles size distribution, the 

combustion of pulverised biomass alone, represented by straw, was investigated 

followed by the investigation of its firing with coal. The former one show a promising 

results under such operating conditions. It is found that the temperature distribution 

when burning straw particles is nearly the same as that obtained from burning coal 

because all the saw particles are completely burned out inside the furnace when 

compared with the coal particles. The NOx model, in which the ratio of HCN to NH3 is 

suggested to be for the partitioning of volatile-N, shows that NO formation is reduced 
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by approximately 20% for case I and 26% for case II at the exit of the furnace when 

compared to coal. For the latter one the results of co-firing blends of coal with 10, 20, 

30 and 40% share of biomass are presented and show the influence of co-firing on the 

combustion process. Co-firing of straw with coal enhances the combustion behaviour 

and increases the burnout of coal particles compared to that of coal firing only. It is 

seen that the burnout of the particles with sizes 84, 154 and 222 μm is remarkably 

increased. On the other hand, the burnout of the other two particles (291 μm and 360 

μm) does not show a great change. The share of 10% of straw shows the highest 

temperature. 

Thirdly, Two-phase computational modelling based on the Euler–Euler was developed 

to investigate the heterogeneous combustion processes of carbon particles inside a 

newly designed combustion chamber. A transient simulation was carried out for a small 

amount of carbon powder situated in a cup which was located at the centre of the 

combustion chamber. A heat source was provided to initiate the combustion with the 

air supplied by three injection nozzles. The combustion simulations are performed for 

particle sizes with different diameters (0.5mm, 1mm, 1.5mm, 2mm, 2.5mm and 3mm). 

The particle of 1mm diameter is assigned to the baseline case. The results show that the 

combustion is sustained in the chamber, as evidenced by the flame temperature. It is 

shown that, up to a time of 0.55 s, the higher temperature was gained from the case of 

carbon particles with the diameter of 3 mm and burning the carbon particles with a 

diameter of 0.5 mm produces lower temperature. This may be attributed to the 

residence time of the carbon particles and the design of the burner. The larger particles 

stay longer than the smaller ones inside the chamber. This may due to the reason that 

the smaller particles follow the streamlines of the continuous phase and increasing the 

particle size leads to that the larger particles may deviate from the streamlines of the 

continuous phase and their slip velocity may increase resulting in enhancing convective 

transports of heat and species concentrations. 

  

The influence of the chamber design was also investigated. The height of the chamber 

is doubled. With the same operating conditions, up to a time of approximately 0.55 s, it 

is found that burning carbon particles in the doubled height chamber produces higher 

temperature than the baseline case (particle diameter 1 mm) and after this time the 

opposite takes place. Most of the other cases do so. 



 

 

v 

Acknowledgement 

For their insight and encouragement, there are so many people who deserve a thank you 

during the course of this PhD, but firstly, I thank Allah for his many blessings and 

countless favours on me. I would like to thank Allah for giving me the health and the 

patience from the beginning to the end of this research study. 

I owe a matchless and sincere gratitude to my supervisors, Dr Manosh C. Paul and Dr 

Ian Watson for their help and support.  I would like to offer them my deepest thanks for 

their consistent support, warm encouragement, wise criticisms, insightful suggestions, 

scientific guidance and inspiring determination in preparing and improving of this 

thesis. 

I must acknowledge the Ministry of Higher Education in Libya for providing the 

financial support for my PhD study and my stay in Glasgow. 

I would like to thank all members of academic staff, IT staff, technical staff and 

administrative staff of school of engineering who have helped during the course of this 

work. 

I am deeply indebted to my parents who dedicated their lives to ensure my success in 

my academic programme. I am very grateful to them for their moral support and 

encouragement during my stay abroad. I really owe them much that I cannot express. 

Most special thanks are to my wife and children for always being there for me. They 

have given up a lot in order to give me the opportunity to complete this work. They 

shared the joy and pain with me. I extend my thanks to my brothers, particularly 

Ahmad, sisters and relatives who stood by me. 

Finally, I am delighted to acknowledge the support, the encouragement and the pleasant 

working environment I have received from all my colleagues. In particular, many 

thanks to my office mate Ahmad Alwaaly, Najeeb Yahya and Taiwo O. Oni. 

 

 

 

 

 



                                                                                                                              Contents 

 

vi 

Contents 

Abstract....................................................................................................... iii 

Acknowledgement ........................................................................................ v 

List of figures ................................................................................................ x 

List of tables .............................................................................................. xix 

List of symbols ........................................................................................... xix 

List of abbreviations .................................................................................... 1 

1 Introduction ........................................................................................... 2 

1.1 Computational Fluid Dynamics (CFD) ................................................................... 10 

1.2 Purpose of the work................................................................................................. 10 

1.3 The importance of the research study ..................................................................... 10 

1.4 Thesis outline .......................................................................................................... 10 

2 Literature review ................................................................................ 11 

2.1 Solid fuels structure and properties ......................................................................... 11 

2.1.1 Non-renewable solid fuel (coal) ................................................................ 14 

2.1.2 Renewable solid fuel (biomass) ................................................................ 17 

2.2 Coal versus biomass combustion ............................................................................ 21 

2.3 Combustion characteristics ..................................................................................... 23 

2.4 Thermo-chemical conversion processes of solid fuels ............................................ 24 

2.5 Char oxidation (heterogeneous combustion)........................................................... 32 

2.6 Combustion technologies ........................................................................................ 34 

2.7 Modelling of solid fuel rates ................................................................................... 37 

2.7.1 Drying ........................................................................................................ 38 

2.7.2 Devolatilization models ............................................................................. 38 

2.7.3 Heterogeneous combustion models ........................................................... 41 

3 RANS simulations of methane combustion ...................................... 44 

3.1 Introduction ............................................................................................................. 44 

3.2 Governing equations ............................................................................................... 47 

3.2.1 The Navier-Stokes (N-S) equations .......................................................... 47 

3.2.2 Species mass conservation equation ......................................................... 48 

3.2.3 Energy conservation equation ................................................................... 49 

3.2.4 The equation of state ................................................................................. 51 



                                                                                                                              Contents 

 

vii 

3.3 Turbulence models .................................................................................................. 51 

3.3.1 Transport equations for the standard k-ϵ model ........................................ 54 

3.3.2 Transport equations for the RNG k-ϵ model ............................................. 54 

3.3.3 Transport equations for the realizable k-ϵ model ...................................... 55 

3.4 Thermal radiation .................................................................................................... 56 

3.5 Chemistry modelling ............................................................................................... 58 

3.5.1 Chemical kinetics ...................................................................................... 58 

3.5.2 Reaction mechanism ................................................................................. 59 

3.5.3 Modelling turbulence/chemistry interactions ............................................ 61 

3.5.3.1 Eddy-dissipation model (EDM)............................................................. 62 

3.5.3.2 Finite-rate/eddy-dissipation model (FR/ED) ......................................... 63 

3.5.3.3 Eddy dissipation concept model (EDC) ................................................ 63 

3.6 Numerical methods ................................................................................................. 64 

3.7 Geometry and boundary conditions ........................................................................ 64 

3.8 Material properties .................................................................................................. 65 

3.9 Computational domain and grid refinement............................................................ 65 

3.10 Results and discussion ............................................................................................. 71 

3.10.1 Mechanism one (M-I) ................................................................................ 71 

3.10.2 Mechanism (M-I) with modified turbulence model .................................. 90 

3.10.3 Mechanism two (M-II) .............................................................................. 98 

3.10.4 Mechanisms M-III and M-IV .................................................................. 107 

3.10.5 The effect of fuel concentration .............................................................. 115 

3.11 Conclusion ............................................................................................................. 118 

4 Pulverized combustion ..................................................................... 120 

4.1 Introduction ........................................................................................................... 120 

4.2 Governing equations and used models .................................................................. 123 

4.2.1 Gas phase ................................................................................................. 123 

4.2.2 Modelling of the particulate phase .......................................................... 123 

4.2.2.1 The particle equation of motion ........................................................... 124 

4.2.2.2 Heat and mass transfer to and from particles calculations .................. 125 

4.2.2.3 Thermally-thin assumption .................................................................. 127 

4.2.3 Combustion stages of fuel particle .......................................................... 127 

4.2.4 Turbulent dispersion in gas-solid flow .................................................... 128 

4.2.5 Particle size distribution .......................................................................... 130 

4.2.6 Radiation ................................................................................................. 131 



                                                                                                                              Contents 

 

viii 

4.3 Pulverized coal combustion .................................................................................. 131 

4.3.1 Model geometry and operating conditions .............................................. 131 

4.4 Chemistry of coal .................................................................................................. 133 

4.4.1.1 Devlatilization ..................................................................................... 133 

4.4.1.2 Heterogeneous reactions ...................................................................... 134 

4.4.1.3 Gas phase reactions ............................................................................. 136 

4.4.2 Coal volatile elemental composition and enthalpy of formation ............ 138 

4.5 Mesh-independence study ..................................................................................... 140 

4.6 Numerical methods ............................................................................................... 141 

4.7 Modelling of NOx chemistry ................................................................................. 142 

4.7.1 Mechanisms of NOx formation ............................................................... 142 

4.7.2 Kinetics of NOx reactions ........................................................................ 144 

4.7.3 Numerical procedure ............................................................................... 149 

4.8 Results and discussion of coal combustion model ................................................ 151 

4.8.1 Combustion model .................................................................................. 151 

4.8.1.1 Model validation .................................................................................. 151 

4.8.1.2 Temperature and mass fractions of combustion species ..................... 154 

4.8.1.3 Particles depletion and burnout ........................................................... 162 

4.8.2 NOx model ............................................................................................... 164 

4.8.3 Effects of wall temperature ..................................................................... 165 

4.8.4 The influence of air inlet rate .................................................................. 170 

4.9 Biomass pulverized combustion ........................................................................... 179 

4.9.1 Chemistry of straw and chemical reactions ............................................. 179 

4.9.2 Numerical solution .................................................................................. 181 

4.10 Results and discussion of straw combustion ......................................................... 181 

4.10.1 Combustion results of pulverized straw .................................................. 181 

4.10.2 NOx formation from straw burning ......................................................... 187 

Figure 4.59: The radial profiles of NO mass fraction at various axial locations. ......... 189 

4.10.3 Co-firing of coal and biomass particles ................................................... 190 

4.11 Conclusion ............................................................................................................. 193 

5 Multiphase modelling (Euler-Euler approach).............................. 196 

5.1 Mathematical model .............................................................................................. 196 

5.1.1 Conservation of mass and momentum .................................................... 196 

5.1.2 Conservation of energy ........................................................................... 199 

5.2 Turbulence modelling ........................................................................................... 200 



                                                                                                                              Contents 

 

ix 

5.3 Overview of numerical methods ........................................................................... 201 

5.4 Geometry and boundary conditions ...................................................................... 201 

5.5 Grid-independence study....................................................................................... 203 

5.6 Results and discussion ........................................................................................... 204 

5.6.1 Base case ................................................................................................. 204 

5.6.2 The influence of chamber height ............................................................. 213 

5.7 Conclusion ............................................................................................................. 224 

6 Final conclusions and recommendations for future research ...... 225 

6.1 Conclusions ........................................................................................................... 225 

6.2 Recommendations for future research................................................................... 228 

References ................................................................................................. 230 

Appendix A ............................................................................................... 242 

Appendix B ............................................................................................... 243 

Appendix C ............................................................................................... 246 

Appendix D ............................................................................................... 248 

Appendix E ............................................................................................... 250 

Appendix F Publications and presentations ......................................... 255 

 

 

 

 

 

 

 

 

 

 

 

 



                                                                                                                      List of figures 

 

x 

List of figures 

Figure 1.1: Renewable energy sources till 2040. ........................................................... 11 

Figure 1.2: The total global consumption of energy and the total renewable energy 

sources till 2040. ............................................................................................................ 11 

Figure 1.3: Renewable energy contribution (%) till 2040. ............................................. 12 

Figure 1.4: The contribution of renewable energy sources to the world total primary 

energy consumption [9]. ................................................................................................. 12 

Figure 1.5: Fuel shares in the world total primary energy supply 2011 [10]. ................ 13 

Figure 1.6: Product shares in the world renewable energy supply [10]. ........................ 13 

Figure 1.7: Renewable share of power generation [3]. .................................................. 14 

Figure 2.1: Chemical composition of various solid fuels [26]. ...................................... 13 

Figure 2.2: Coal rank as a function of H/C and O/C atomic ratios [27]. ....................... 13 

Figure 2.3: Coalification (adopted from [29]). ............................................................... 14 

Figure 2.4: Examples of biomass. .................................................................................. 17 

Figure 2.5: Thermo-chemical process for conversion of biomass into fuels, gases or 

chemicals. ....................................................................................................................... 24 

Figure 2.6: Various chemical and physical mechanisms during solid fuel combustion 

(adapted from [59]). ....................................................................................................... 25 

Figure 2.7: Combustion stages of a small biomass particle (adapted from [26])........... 26 

Figure 2.8: Thermo-gravimetric weight loss curves of four wood samples: ○ spruce, □ 

brich, ● beech white and ■ acacia (adapted from [26]). ................................................ 29 

Figure 2.9: Char combustion (adapted from [110]). ...................................................... 33 

Figure 2.10: Coal combustion systems outline (adapted from [117]). ........................... 35 

Figure 2.11: Two-stage semi-global reaction mechanisms for (a) cellulose; (b) wood. 40 

Figure 3.1: Geometrical configuration of the burner. .................................................... 64 

Figure 3.2: Computational grid. ..................................................................................... 66 

Figure 3.3: Velocity along the axial distance of the furnace for three different meshes.

 ........................................................................................................................................ 67 

Figure 3.4: Temperature along the axial distance of the furnace for three different 

meshes. ........................................................................................................................... 67 

Figure 3.5: Radial profiles of velocity at x = 0.312 m for three different meshes. ........ 68 

Figure 3.6: Radial profiles of velocity at x = 0.612 m for three different meshes. ........ 68 

Figure 3.7: Radial profiles of velocity at x = 0.912 m for three different meshes. ........ 69 



                                                                                                                      List of figures 

 

xi 

Figure 3.8: Radial profiles of temperature at x = 0.612 m for three different meshes. .. 69 

Figure 3.9: Radial profiles of temperature at x = 0.912 m for three different meshes. .. 70 

Figure 3.10: Velocity profile inside the chamber for k-ϵ standard case (M-I). .............. 71 

Figure 3.11: Axial velocity profile inside the chamber for k-ϵ standard case (M-I). ..... 72 

Figure 3.12: Velocity field vectors inside the chamber for k-ϵ standard case (M-I). ..... 72 

Figure 3.13: The variation of axial velocity along the radial direction at different axial 

locations k-ϵ standard case (M-I). .................................................................................. 72 

Figure 3.14: Velocity magnitude along the centreline of the chamber (M-I). ............... 73 

Figure 3.15: Axial velocity along the centreline of the chamber (M-I). ........................ 73 

Figure 3.16: Temperature distributions for standard k-ϵ case (M-I). ............................. 74 

Figure 3.17: Temperature distributions for RNG k-ϵ case (M-I). .................................. 74 

Figure 3.18: Temperature distributions for Realizable k-ϵ case (M-I). .......................... 75 

Figure 3.19: Temperature distributions for standard k-ϵ case (without radiation) (M-I).

 ........................................................................................................................................ 75 

Figure 3.20: CH4 mass fraction for standard k-ϵ case (M-I). ......................................... 76 

Figure 3.21: O2 mass fraction for standard k-ϵ case (M-I). ............................................ 76 

Figure 3.22: CO2 mass fraction for standard k-ϵ case (M-I). ......................................... 76 

Figure 3.23: CO mass fraction for standard k-ϵ case (M-I). ........................................... 76 

Figure 3.24: Rate of methane destruction reaction (r-2) in (kmol/m
3
/s) for standard k-ϵ 

case (M-I). ...................................................................................................................... 77 

Figure 3.25: Rate of reaction (r-3) in (kmol/m
3
/s) for standard k-ϵ case (M-I).............. 77 

Figure 3.26: Rate of reaction (r-4) in (kmol/m
3
/s) for standard k-ϵ case (M-I).............. 77 

Figure 3.27: The profiles of reaction rate along the centreline of the chamber for 

standard k-ϵ case (M-I). .................................................................................................. 78 

Figure 3.28: Gas temperature along the centreline of the chamber (M-I). ..................... 78 

Figure 3.29: Comparison between the experimental and predicted data of gas 

temperature for all cases- (M-I). Ideal results lie on the line indicated by y = z. .......... 79 

Figure 3.30: CH4 mass fraction along the central line (M-I). ........................................ 80 

Figure 3.31: O2 mass fraction along the central line (M-I). ........................................... 81 

Figure 3.32: CO mass fraction along the central line (M-I). .......................................... 82 

Figure 3.33: CO2 mass fraction along the central line (M-I). ........................................ 83 

Figure 3.34: Radial temperature profile at axial location x = 0.312 m, (M-I). .............. 85 

Figure 3.35: Radial temperature profile at axial location x = 0.912 m, (M-I). .............. 85 

Figure 3.36: Radial temperature profile at axial location x = 1.312 m, (M-I). .............. 86 

Figure 3.37: Radial profile of O2 mass fraction at axial location x = 0.312 m, (M-I). .. 86 



                                                                                                                      List of figures 

 

xii 

Figure 3.38: Radial profile of O2 mass fraction at axial location x = 0.912 m, (M-I). .. 87 

Figure 3.39: Radial profile of O2 mass fraction at axial location x = 1.312 m, (M-I). .. 87 

Figure 3.40: Radial profile of CO2 mass fraction at axial distance x = 0.312 m, (M-I). 88 

Figure 3.41: Radial profile of CO2 mass fraction at axial distance x = 0.912 m, (M-I). 88 

Figure 3.42: Radial profile of CO2 mass fraction at axial distance x = 1.312 m, (M-I). 89 

Figure 3.43: Radial profile of CO mass fraction at axial location x = 1.312 m, (M-I). . 89 

Figure 3.44: Gas temperature along the centreline of the chamber (M-I with modified 

turbulence models). ........................................................................................................ 90 

Figure 3.45: O2 mass fraction along the centreline of the chamber (M-I with modified 

turbulence models). ........................................................................................................ 91 

Figure 3.46: CO mass fraction along the centreline of the chamber (M-I with modified 

turbulence models). ........................................................................................................ 92 

Figure 3.47: CO2 mass fraction along the centreline of the chamber (M-I with modified 

turbulence models). ........................................................................................................ 92 

Figure 3.48: Radial temperature profile at axial location x = 0.312 m, (M-I with 

modified turbulence models). ......................................................................................... 93 

Figure 3.49: Radial temperature profile at axial location x = 0.912 m, (M-I with 

modified turbulence models). ......................................................................................... 94 

Figure 3.50: Radial temperature profile at axial location x = 1.312 m, (M-I with 

modified turbulence models). ......................................................................................... 94 

Figure 3.51: Radial profile of O2 mass fraction at axial location x = 0.312 m, (M-I with 

modified turbulence models). ......................................................................................... 95 

Figure 3.52: Radial profile of O2 mass fraction at axial location x = 0.912 m, (M-I with 

modified turbulence models). ......................................................................................... 95 

Figure 3.53: Radial profile of O2 mass fraction at axial location x = 1.312 m, (M-I with 

modified turbulence models). ......................................................................................... 96 

Figure 3.54: Radial profile of CO2 mass fraction at axial location x = 0.312 m, (M-I 

with modified turbulence models). ................................................................................. 96 

Figure 3.55: Radial profile of CO2 mass fraction at axial location x = 0.912 m, (M-I 

with modified turbulence models). ................................................................................. 97 

Figure 3.56: Radial profile of CO2 mass fraction at axial location x = 1.312 m, (M-I 

with modified turbulence models). ................................................................................. 97 

Figure 3.57: Radial profile of CO mass fraction at axial location x = 1.312 m, (M-I with 

modified turbulence models). ......................................................................................... 98 

Figure 3.58: Gas temperature along the centreline of the chamber, (M-II). ................ 100 



                                                                                                                      List of figures 

 

xiii 

Figure 3.59: O2 mass fraction along the centreline of the chamber, (M-II). ................ 100 

Figure 3.60: CO2 mass fraction along the centreline of the chamber, (M-II). ............. 101 

Figure 3.61: CO mass fraction along the centreline of the chamber, (M-II). ............... 101 

Figure 3.62: Radial temperature profile at axial location x = 0.312 m, (M-II). ........... 102 

Figure 3.63: Radial temperature profile at axial location x = 0.912 m, (M-II). ........... 102 

Figure 3.64: Radial temperature profile at axial location x = 1.312 m, (M-II). ........... 103 

Figure 3.65: Radial profile of O2 mass fraction at axial location x = 0.312 m, (M-II).

 ...................................................................................................................................... 103 

Figure 3.66: Radial profile of O2 mass fraction at axial location x = 0.912 m, (M-II).

 ...................................................................................................................................... 104 

Figure 3.67: Radial profile of O2 mass fraction at axial location x = 1.312 m, (M-II).

 ...................................................................................................................................... 104 

Figure 3.68: Radial profile of CO2 mass fraction at axial location x = 0.312 m, (M-II).

 ...................................................................................................................................... 105 

Figure 3.69: Radial profile of CO2 mass fraction at axial location x = 0.912 m, (M-II).

 ...................................................................................................................................... 105 

Figure 3.70: Radial profile of CO2 mass fraction at axial location x = 1.312 m, (M-II).

 ...................................................................................................................................... 106 

Figure 3.71: Radial profile of CO mass fraction at axial location x = 1.312 m, (M-II).

 ...................................................................................................................................... 106 

Figure 3.72: Gas temperature along centreline of the chamber for all cases. .............. 108 

Figure 3.73: O2 mass fraction along the centreline of the chamber for all cases. ........ 109 

Figure 3.74: CO2 mass fraction along the centreline of the chamber for all cases. ..... 109 

Figure 3.75: CO mass fraction along the centreline of the chamber for all cases. ....... 110 

Figure 3.76: Radial temperature profiles at axial location x = 0.312 m for all cases... 110 

Figure 3.77: Radial temperature profile at axial location x = 0.912 m for all cases. ... 111 

Figure 3.78: Radial temperature profile at axial location x = 1.312 m for all cases. ... 111 

Figure 3.79: Radial profile of O2 mass fraction at axial location x = 0.312 m for all 

cases. ............................................................................................................................ 112 

Figure 3.80: Radial profile of O2 mass fraction at axial location x = 0.912 m for all 

cases. ............................................................................................................................ 112 

Figure 3.81: Radial profile of O2 mass fraction at axial location x = 1.312 m for all 

cases. ............................................................................................................................ 113 

Figure 3.82: Radial profile of CO2 mass fraction at axial location x = 0.312 m for all 

cases. ............................................................................................................................ 113 



                                                                                                                      List of figures 

 

xiv 

Figure 3.83: Radial profile of CO2 mass fraction at axial location x = 0.912 m for all 

cases. ............................................................................................................................ 114 

Figure 3.84: Radial profile of CO2 mass fraction at axial location x = 1.312 m for cases.

 ...................................................................................................................................... 114 

Figure 3.85: Radial profile of CO mass fraction at axial location x = 1.312 m for all 

cases. ............................................................................................................................ 115 

Figure 3.86: Gas temperature along centreline of the chamber for different cases with 

different percentages of CH4 (volume basis). .............................................................. 116 

Figure 3.87: CH4 mass fraction along the centreline of the chamber for different cases 

with different percentages of CH4 (volume basis). ...................................................... 116 

Figure 3.88: O2 mass fraction along the centreline of the chamber for different cases 

with different percentages of CH4 (volume basis). ...................................................... 117 

Figure 3.89: CO2 mass fraction along the centreline of the chamber for different cases 

with different percentages of CH4 (volume basis). ...................................................... 117 

Figure 3.90: CO mass fraction along the centreline of the chamber for different cases 

with different percentages of CH4 (volume basis). ...................................................... 118 

Figure 4.1: The interaction between gas phase and particulate phase [158]. ............... 124 

Figure 4.2: Coupling regions for particle-fluid turbulence interaction [198]. ............. 124 

Figure 4.3: Trajectories of particles for a single cell [202]. ......................................... 130 

Figure 4.4: Geometry of the axisymmetric combustor. ............................................... 132 

Figure 4.5: The grid of the computational domain. ...................................................... 140 

Figure 4.6: The variation of temperature predicted along the centreline of the reactor 

with different grids (coal 1). ......................................................................................... 141 

Figure 4.7: The variation of temperature predicted along the line (y = 70 cm) of the 

reactor with different grids (coal 1). ............................................................................. 141 

Figure 4.8: Fuel-NO pathways: (a), (b) [227], (c) and (d) [218]. ................................. 147 

Figure 4.9: Mass fraction of O2 for coal 1 along the axial distance of the reactor. ...... 152 

Figure 4.10: Mole fraction of CO2 for coal 1 along the axial distance of the reactor. . 152 

Figure 4.11: Mass fraction of O2 for coal 2 along the axial distance of the reactor. .... 153 

Figure 4.12: Mole fraction of CO2 for coal 2 along the axial distance of the reactor. . 153 

Figure 4.13: Comparison between the experimental and simulated data of O2 mass 

fraction for coal 1. Ideal results lie on the line indicated by y = z. .............................. 154 

Figure 4.14: Comparison between the experimental and simulated data of CO2 mole 

fraction for coal 1. Ideal results lie on the line indicated by y = z. .............................. 155 



                                                                                                                      List of figures 

 

xv 

Figure 4.15: The variation of volatile mass fraction for coal 1 in the axial direction of 

the reactor. .................................................................................................................... 155 

Figure 4.16: Volatile mass fraction distribution for coal 1: (a) case 1, (b) case 2 and (c) 

case 3. ........................................................................................................................... 156 

Figure 4.17: Gas temperature variation for coal 1 along the axial distance of the reactor.

 ...................................................................................................................................... 157 

Figure 4.18: Predicted temperature distribution for coal 1: (a) Case 1, (b) Case 2 and (c) 

Case 3. .......................................................................................................................... 158 

Figure 4.19: Particles burnout for coal 1. ..................................................................... 158 

Figure 4.20: Mass fraction of O2 distribution for coal 1: (a) case 1, (b) case 2 and (c) 

case 3. ........................................................................................................................... 160 

Figure 4.21: The distribution of CO2 mass fraction for coal 1: (a) case 1, (b) case 2 and 

(c) case 3. ...................................................................................................................... 160 

Figure 4.22: H2O mass fraction distribution for coal 1: (a) case 1, (b) case 2 and (c) 

case 3. ........................................................................................................................... 161 

Figure 4.23: The distribution of N2 mass fraction for coal 1: (a) case 1, (b) case 2 and 

(c) case 3. ...................................................................................................................... 161 

Figure 4.24: The distribution of CO mass fraction for coal 1 (case 3). ....................... 162 

Figure 4.25: The distribution of H2 mass fraction for coal 1 (case 3). ......................... 162 

Figure 4.26: Mass fraction of CO and H2 for coal 1 along the axial distance of the 

reactor. .......................................................................................................................... 162 

Figure 4.27: Mass depletion of particles with different sizes for case 3. ..................... 163 

Figure 4.28: Burnout of particles with different sizes for Case 3. ............................... 164 

Figure 4.29: NO weight fraction for various runs along the axial distance of the reactor.

 ...................................................................................................................................... 165 

Figure 4.30: The variation of gas temperature along the centreline for various wall 

temperatures. ................................................................................................................ 165 

Figure 4.31: The variation of volatile concentration along the centreline for various 

wall temperatures. ........................................................................................................ 166 

Figure 4.32: The variation of O2 concentration along the centreline for various wall 

temperatures. ................................................................................................................ 167 

Figure 4.33: The variation of CO2 mass fraction along the centreline for various wall 

temperatures. ................................................................................................................ 168 

Figure 4.34: The variation of H2O mass fraction along the centreline for various wall 

temperatures. ................................................................................................................ 168 



                                                                                                                      List of figures 

 

xvi 

Figure 4.35: The variation of CO mass fraction along the centreline for various wall 

temperatures. ................................................................................................................ 169 

Figure 4.36: The variation of H2 mass fraction along the centreline for various wall 

temperatures. ................................................................................................................ 169 

Figure 4.37: Variation of species mass fraction at the exit of the reactor for various wall 

temperatures. ................................................................................................................ 170 

Figure 4.38: NO weight fraction along the axial distance of the reactor for various wall 

temperatures. ................................................................................................................ 170 

Figure 4.39: The variation of gas temperature along the centreline at different 

secondary air inlet velocities. ....................................................................................... 171 

Figure 4.40: The variation of volatile concentration along the centreline at different 

secondary air inlet velocities. ....................................................................................... 172 

Figure 4.41: The variation of O2 concentration along the centreline at different 

secondary air inlet velocities. ....................................................................................... 173 

Figure 4.42: Stream lines: (a) 11.5 m/s, (b) 13.5 m/s, (c) 15.5 m/s and (d) 17.5 m/s. . 173 

Figure 4.43: The variation of CO2 mass fraction along the centreline at different 

secondary air inlet velocities. ....................................................................................... 174 

Figure 4.44: The variation of H2O mass fraction along the centreline at different 

secondary air inlet velocities. ....................................................................................... 175 

Figure 4.45: The variation of CO mass fraction along the centreline at different 

secondary air inlet velocities. ....................................................................................... 176 

Figure 4.46: The variation of H2 mass fraction along the centreline at different 

secondary air inlet velocities. ....................................................................................... 176 

Figure 4.47: Mass depletion of particles: (a) 16 μm, (b) 84 μm, (c) 154 μm, (d) 222 μm, 

(e) 291 μm and (f) 360 μm at two secondary air inlet velocities. ................................ 178 

Figure 4.48: NO weight fraction along the centreline at different secondary air inlet 

velocities. ...................................................................................................................... 179 

Figure 4.49: The variation of gas temperature along the centreline of the reactor. ..... 182 

Figure 4.50: Gas temperature distribution of (a) case I and (b) case II. ....................... 183 

Figure 4.51: Radial temperature profiles at different axial locations. .......................... 184 

Figure 4.52: The variation of volatiles mass fraction along the centreline of the furnace.

 ...................................................................................................................................... 185 

Figure 4.53: Volatiles mass fraction distribution: (a) case I and (b) case II. ............... 185 

Figure 4.54: The variation of species mass fraction along the centreline of the reactor.

 ...................................................................................................................................... 186 



                                                                                                                      List of figures 

 

xvii 

Figure 4.55: Mass depletion of particles with different sizes for case I. ...................... 186 

Figure 4.56: Burnout of straw particles with different sizes. ....................................... 187 

Figure 4.57: Nitrogen concentration in char versus pyrolysis temperature for selected 

fuels and various experimental methods [217]. ........................................................... 188 

Figure 4.58: The variation of NO concentration of straw along the centreline of the 

furnace. ......................................................................................................................... 188 

Figure 4.59: The radial profiles of NO mass fraction at various axial locations. ........ 189 

Figure 4.60: The variation of gas temperature along the centreline of the furnace for 

different co-firing cases. ............................................................................................... 190 

Figure 4.61: Distribution of gas temperature: 10% straw (a), 20% straw (b), 30% straw 

(c) and 40% straw. ........................................................................................................ 191 

Figure 4.62: Mass weighted-average mass fraction of CO2 at the exit of the furnace. 192 

Figure 4.63: Particles burnout at the exit of the reactor. .............................................. 192 

Figure 5.1: (a) Combustion chamber (Model 1) with holder frame, (b) computational 

domain and (c) grid of the domain. .............................................................................. 202 

Figure 5.2: Maximum temperature inside the chamber for the particle size of 1 mm 

diameter for base case. ................................................................................................. 204 

Figure 5.3: The variation of volume fraction of the solid phase at the middle plane for 

the base case (particle diameter of 1 mm) at different simulation times (s): (a) 0, (b) 

0.05, (c) 0.1, (d) 0.15, (e) 0.2, (f) 0.25, (g) 0.30, (h) 0.35, (i) 0.40, (j) 0.45, (k) 0.50, (l) 

0.55 and (m) 0.6. .......................................................................................................... 205 

Figure 5.4: The variation of temperature at the middle plane for the base case (1 mm 

particle diameter) showing at time (s): (a) 0.05, (b) 0.1, (c) 0.15, (d) 0.2, (e) 0.25, (f) 

0.3, (g) 0.35, (h) 0.4, (i) 0.45, (j) 0.5, (k) 0.55 and (l) 0.6. ........................................... 207 

Figure 5.5: Temperature contours at different horizontal locations in y direction and at 

different times (s) for the base case (1 mm particle size). ............................................ 208 

Figure 5.6: The mass fraction of CO2 at the middle plane at different time (s) for the 

base case (particle diameter of 1 mm): (a) 0.05, (b) 0.1, (c) 0.15, (d) 0.2, (e) 0.25, (f) 

0.3, (g) 0.35, (h) 0.4, (i) 0.45, (j) 0.5 and (k) 0.55. ....................................................... 209 

Figure 5.7: Iso-surfaces at time 0.65 s for the base case for different particle sizes: (a) 

1220 K, (b) 1250 K, (c) 1280 K, (d) 1400 K and (e) 1550 K. ..................................... 210 

Figure 5.8: The peak temperature variation with time (s) for different particle sizes for 

the base case. ................................................................................................................ 212 

Figure 5.9: The variation of volume fraction of the solid phase at the middle plane 

showing at different times (s) for the doubled-height case (particle diameter of 1 mm): 



                                                                                                                      List of figures 

 

xviii 

(a) 0, (b) 0.05, (c) 0.1, (d) 0.15, (e) 0.2, (f) 0.25, (g) 0.30, (h) 0.35, (i) 0.40, (j) 0.45, (k) 

0.50, (l) 0.55, (m) 0.6 and (n) 0.65. .............................................................................. 214 

Figure 5.10: The distribution of temperature for the doubled-height case (1 mm particle 

diameter) showing at different times (s): (a) 0.05, (b) 0.1, (c) 0.15, (d) 0.2, (e) 0.25, (f) 

0.3, (g) 0.35, (h) 0.4, (i) 0.45, (j) 0.5, (k) 0.55, (l) 0.6 and (m) 0.65. ........................... 216 

Figure 5.11: Temperature contours at different locations in y direction and different 

times (s) for the doubled-height case (particle diameter of 1 mm). ............................. 218 

Figure 5.12: The mass fraction of CO2 at different time (s) for the doubled-height case 

(particle diameter of 1 mm): (a) 0.05, (b) 0.1, (c) 0.15, (d) 0.2, (e) 0.25, (f) 0.3, (g) 0.35, 

(h) 0.4, (i) 0.45, (j) 0.5, (k) 0.55 and (l) 0.6. ................................................................ 219 

Figure 5.13: The peak temperature variation with time for different particle sizes for the 

doubled-height case. ..................................................................................................... 220 

Figure 5.14: Iso-surfaces at time 0.65 s for different doubled-height cases with different 

particle diameters: (a) 1220 K, (b) 1250 K, (c) 1280 K and (d) 1310 K. ..................... 221 

Figure 5.15: The peak temperature variation with time inside the chamber for both the 

base and doubled-height cases for different particle sizes: a) 0.5 mm, b) 1 mm, c) 1.5 

mm, d) 2 mm and e) 2.5 mm. ....................................................................................... 223 



 

 

xix 

 

List of tables 

Table 2.1: Fuel properties for increasing coalification degree (wt. - %) [30]. ............... 15 

Table 2.2: Coal properties for increasing rank (on % DAF basis) [31]. ........................ 15 

Table 2.3: Classification of anthracite and bituminous coals by rank (ASTM D 388-05) 

[34]. ................................................................................................................................ 16 

Table 2.4: Classification of bituminous, sub-bituminous and lignite coals by rank 

(ASTM D 388-05) [34]. ................................................................................................. 17 

Table 2.5: Analysis of various coals [37]. ...................................................................... 18 

Table 2.6: Sources of biomass [16]. ............................................................................... 19 

Table 2.7: Proximate analysis for several coal and biomass samples [39]. ................... 20 

Table 2.8: Average of elemental analysis for many thousands of coal and biomass 

samples [46]. .................................................................................................................. 20 

Table 3.1: Source terms. ................................................................................................. 56 

Table 3.2: Reaction kinetics. .......................................................................................... 61 

Table 3.3: Material properties. ....................................................................................... 65 

Table 3.4: Number of mesh cells. .................................................................................. 66 

Table 3.5: Mesh independence temperature and flow rates at furnace outlet. ............... 70 

Table 3.6: Optimized values of activation energy for reaction (r-2). ............................. 98 

Table 4.1: Operating conditions of pulverized coal combustion. ................................ 132 

Table 4.2: Coal analysis data........................................................................................ 133 

Table 4.3: Devolatilization and char oxidation models used in the simulation cases. . 136 

Table 4.4: Kinetic constants of reactions. .................................................................... 138 

Table 4.5: Rate constants for thermal NO chemical reactions,          (     ).

 ...................................................................................................................................... 144 

Table 4.6: Reaction kinetics. ........................................................................................ 148 

Table 4.7: Oxygen reaction order. ................................................................................ 149 

Table 4.9: The chemical composition of straw. ........................................................... 180 

Table 4.10: Constants of single rate devolatilization model. ....................................... 180 

Table 4.11: operating conditions of pulverized biomass combustion. ......................... 181 

Table 5.1: Solver parameters. ....................................................................................... 201 



 

 

xix 

 

List of symbols 

Roman symbols 

   Pre-exponential factor [units vary] 

    Surface area of the particle [m
2
] 

   Specific internal surface area of char particle [m
2
] 

  Absorbing coefficient [m
-1

] 

  Oxygen reaction order 

   
  Reaction order with respect to species i 

a1, a2, a3 Constants 

Bi Biot number 

C1 Diffusion rate coefficient [m
3
/K

0.75
s] 

   Specific heat [J/kg K] 

   ,    ,    ,    Model constants  

C1, C2 Constants  

   Drag coefficient [kg/m
3
s] 

   Species concentration [kmol/m
3
] 

   Reactant concentration [kmol/m
3
] 

    Oxidant concentration [kmol/m
3
] 

Di,m Diffusion coefficient for oxidant [m
2
/s] 

D○ Diffusion rate [m
2
/s] 

De Effective diffusion coefficient [m
2
/s] 

Di Diffusion coefficient of species i [m
2
/s] 

Da Damköhler number 

dp Particle diameter [m] 

 ̅ Mean diameter of the particles [m] 

  Activation energy [J/kmol] 

  Specific total energy [J/kg] 

     Volatile fraction 

      Combustible fraction 

   Fraction of heat absorbed by the particle 

    Drag force [N] 



                                                                                                                    List of symbols 

 

xxv 

 

     Mass fraction of volatiles in DAF coal  

      Mass fraction of char in DAF coal  

  Gravitational acceleration [m/s
2
] 

   Generation of turbulence kinetic energy due to buoyancy 

   Generation of turbulence kinetic energy due to mean velocity 

gradients 

  Incident radiation [W/m
2
] 

H Enthalpy [J/kg] 

  
  Heat of formation of species i [J/kmol] 

    Latent heat of devolatilization [J/kg] 

 ̂ Convective heat transfer coefficient [W/m
2
 K] 

   
  Enthalpy of formation of particle [J/kmol] 

           
  Enthalpy of formation of products [J/kmol] 

            
  Enthalpy of formation of reactants [J/kmol] 

      Enthalpy of reaction [J/kg] 

       Volatile matter 

    Heat transfer coefficient [W/m
2
 K] 

      Heat of formation [J/Kmol] 

   Source term 

  Radiative intensity [W/m
2
 sr] 

     Diffusion flux [kg/m
2
 s] 

  Turbulence kinetic energy [m
2
/s

2
] 

  Chemical reaction rate 

Le Lewis number 

   Ratio of particle volume to particle surface area [m] 

   Eddy length scale [m] 

mp Mass [kg] 

mp.ο Initial particle mass [kg] 

   Molecular weight [kg/kmol] 

    
  Mass fraction of nitrogen in volatiles 

     
  Mass fraction of nitrogen in char 

    
  Total mass fraction of nitrogen in DAF coal 

   Number of species in gas phase 

  Refractive index 

  Spread parameter 



                                                                                                                    List of symbols 

 

xxvi 

  Apparent order of reaction  

P Pressure [pa] 

   Bulk partial pressure [pa] 

   Internal production rate of thermal energy [W] 

   Energy flux [W/m
2
] 

  
  Energy flux due to conduction [W/m

2
] 

  
  Energy flux due to species diffusion [W/m

2
] 

  
  Energy flux caused by concentration gradients [W/m

2
] 

    Heat exchange between gas phase and solid phase [W] 

     Chemical production rate for species i [kmol/m
3
.s] 

   Universal gas constant [J/ kmol K] 

   Reynolds number 

  Reaction kinetic rate [units vary] 

     Rate of particle species depletion [kg/m
2
 s] 

   Total rate of production of a certain species i [kmol/m
3
.s] 

  
    Net rate of production of species i due to homogeneous 

chemical reactions [kg/m
3
.s] 

 ̅    Rate of particle surface species depletion (char combustion 

rate) [kg/s] 

 ⃗ Position vector 

   Stoichiometry 

   Schmidt number 

   Stefan-Boltzmann constant [5.67×10
-8

 W/m
2
 K

4
] 

  ,   ,   ,    ,     Source terms 

   Source term of production and reduction of NO 

 ⃗,  ⃗  Incoming and outgoing radiation direction vectors 

  Temperature [K] 

   Reference temperature (298.15 K) 

   Fluid Lagrangian integral time [s] 

  Velocity [m/s] 

 ⃗⃗⃗ Phase-weighted velocity [m/s] 

   
 ,    

   Stoichiometric coefficients of the reactants or products of 

species i in reaction m 

   Volume of particle or volume of dispersed phase [m
3
] 

  Specific volume [m
3
] 

 ⃗ Phase velocity [m/s] 



                                                                                                                    List of symbols 

 

xxvii 

     Terminal velocity correlation for the solid phase 

  Mole fraction 

  Mass fraction 

   Mass fraction of particles 

  , x, y, z Cartesian coordinate 

Greek symbols 

   Particle volume fraction 

  Density [kg/m
3
] 

  Effectiveness factor 

  Thiele modulus 

   Turbulent time scale [s] 

   Chemical time scale [s] 

    Viscous stress tensor [N/m
2
] 

  Dynamic viscosity [kg/m s] 

  Distribution coefficient 

     Kronecker delta 

  Thermal conductivity [W/m K] 

   Thermal conductivity of the particle [W/m K] 

  Flow variable [variable units] 

   Turbulent viscosity [kg/m s] 

   Bulk viscosity [kg/m s] 

  Turbulence dissipation rate [m
2
/s

3
] 

   Turbulent Prandtl number for k 

   Turbulent Prandtl number for   

   diffusion coefficient of the flow property [variable units] 

   Effective viscosity [kg/m s] 

   Scattering coefficient [m
-1

] 

  Solid angle [Sr] 

  Scattering phase function 

  Equivalence ratio 

  Temperature exponent 

  Distribution Parameter of nitrogen between volatiles and char 

   Particle emissivity 

   Radiation temperature [K] 



                                                                                                                    List of symbols 

 

xxviii 

   Eddy lifetime [s] 

       Time for particle to cross an eddy [s] 

   Particle relaxation time [s] 

   Volume fraction of phase i 

 ̂  Effective density of phase i [kg/m
3
] 

   Bulk viscosity of solid phase [kg/m s] 

 ̿ Stress-strain tensor [N/m
2
] 

     Characteristic time of the energetic turbulent eddies [s] 

  Normally distributed random number 

Subscripts 

i Species or phase 

p Particle 

  Gas  

s Solid  

  Char  

r Reaction 

m Reaction 

   Chemical reaction 

ox Oxidant  

    Vaporization 

    Volatiles 

     Surroundings  

 

 

 

 

 

 

 

 

 



                                                                                                           List of abbreviations 

 

1 

List of abbreviations 

BP British petroleum 

EREC European Renewable Energy Council 

IEA International Energy Agency 

Mtoe Million ton oil equivalent 

EU European Union 

OECD Organization for Economic Co-operation and Development 

CFD Computational Fluid Dynamics 

RANS Rynolds-Averaged Navier Stokes 

DNS Direct Numerical Simulation 

RNG Renormalization-group 

LES Large-eddy simulations 

ASTM American Society for Testing and Material 

BFB Bubbling Fluidized Bed 

CFB Circulating Fluidized Bed 

PF Pulverized Fuel 

EDM Eddy-Dissipation Model 

FR/ED Finite Rate/Eddy-Dissipation model 

EDC Eddy-Dissipation concept 

FLM Flamelet model 

FG-DVC Functional Group-Devolatilization Vaporization Cross-linking 

CPD Chemical Percolation Devolatilization 

M-I Mechanism one 

M-II Mechanism two 

M-III Mechanism three 

M-IV Mechanism four 

DAF  Dry-Ash-Free 

DPM Discrete Phase Model 

DRW  Discrete Random Walk 

WSGGM Weighted-Sum-of Gray-Gases Model 

SIMPLE Semi-Implicit Method for Pressure Linked Equations 

HHV High Heating Value 

LHV Low Heating Value 

BET Brunauer, Emmett and Teller 

UDF User-Defined Function 

 

 



 

 

2 

1 Introduction 

There is a gradual transition globally to carbon-neutral fuels to potentially reduce 

global warming and at the same time, dependency on traditional carbon-based fuels 

such as coal, oil and natural gases which are facing the risk of depletion. The supply of 

energy has been dominated by fossil fuels for decades and this dominance will continue 

in the near future. Currently, almost 80% of the world’s energy is produced from fossil 

based fuels [1, 2]. But there is a general agreement that oil and natural gas are expected 

to be depleted within this century. In the British Petroleum (BP) reports, it was 

estimated that the world has approximately 50 years’ reserves of oil and 60 years of 

natural gas remaining at that consumption rates of the year 2009 [3]. However, these 

predictions could vary as there is still the possibility to discover new reserves over the 

next few decades. Coal is still important in power generation because of its low cost 

and, based on major deposits existing on every continent, is expected to last for around 

115 years which is significantly longer than the conventional oil and gas reserves [4].  

Unfortunately, the dependency of global population on the production of energy 

through the burning of these fossil fuels has become high and this leads to the global 

consumption rising rapidly than the production. Moreover, the growth of carbon 

dioxide emissions has also been accelerated [3]. Indeed, because of the rise of the 

world’s population the demand for energy has increased and become more abrupt in the 

coming years. Covering this increasing demand of energy in accordance with 

adherence to current emissions’ limits is crucial and needs from us to look for other 

alternatives to produce energy. 

Since the fossil fuel sources are limited and its burning causes many environmental 

problems, the renewable fraction has been increasing in the last decades. The major 

pollutants from combustion are soot, sulphur oxides (SOx), nitrogen oxides (NOx), 

unburned hydrocarbons (UHC), carbon dioxide (CO2) and carbon monoxide (CO).  

Combustion of fossil fuels influences the environment mainly through emissions of 

nitrogen oxides (NOx) to atmosphere. These emissions comprise various nitrogen 

compounds such as nitrogen dioxide (NO2) and nitric oxide (NO) which are associated 

with a variety of environmental concerns such as the formation of acid rain and 

photochemical smog in urban air [5]. In addition, they participate in a chain reaction 

which can result in the depletion of ozone [6]. 
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Burning coal is the main source of SOx. When combined with water in the atmosphere, 

the emitted SOx lead to form sulphuric acid and precipitates as acid rain, with 

devastating effects on aquatic life and soil erosion. Another serious, and potentially 

catastrophic, environmental problem is the global warming caused by the increased 

amount of anthropogenic CO2 in the atmosphere. Therefore, looking for ways for 

removing CO2 from the atmosphere is of increasing interest [7]. 

In the coming decades, supplying a sustainable energy is one of the greatest challenges 

that mankind will face, particularly because of the need to address climate change by 

energy producers. Moreover, the energy consumers want this energy to be secure and 

affordable. Nowadays, decisions regarding power generations are not only about 

technology and finances, but also taking into consideration the above mentioned 

factors. Depleting supplies of fossil fuels and the environmental issues caused by the 

burning of these fuels (growing greenhouse gas emissions) are the driving forces 

behind the global interest in sustainable, environmentally friendly and clean energy 

systems.  

Indeed, renewable alternatives of energy have been a solution as well as sustainable 

development concerns have become a common sense worldwide. Basically, renewable 

energy is a type of energy produced from sources other than fossil fuels. These sources 

come in many forms such as wind, solar, hydro, geothermal energy and biomass or 

bioenergy. However, these resources cannot completely replace fossil fuels in the near 

future, but they can make a substantial contribution to supplying future energy demand 

if carefully managed. Furthermore, implementing renewable energy systems is 

dependent on aspects such as the availability of fossil fuels and renewable energy 

carriers and the economic possibilities. Biomass, wind, and geothermal energy are 

making relatively fast progress and are commercially competitive [8]. 

A global renewable energy scenario for 2040, by the European Renewable Energy 

Council (EREC), is shown in Figure 1.1, Figure 1.2 and Figure 1.3. The information 

has been extracted from [9]. The consumption of energy is in Million ton oil equivalent 

(Mtoe). It was claimed that by then nearly half of the global energy supplies will be 

provided by renewable energy sources with the condition that the cumulative growth 

rates are reached as shown in Figure 1.4. 

Referring to the International Energy Agency (IEA) statistics [10], the total world 

energy primary supply was 13107 Mtoe in 2011. Figure 1.5 shows that only 13% of 
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worldwide energy consumption is covered by renewable resources with biomass takes 

the share of 9.7% followed by 2.3% which is provided by hydro power and the rest 

comes from the other renewables such as wind, solar, geothermal and tide. 

 

Figure 1.1: Renewable energy sources till 2040. 

 

Figure 1.2: The total global consumption of energy and the total renewable energy 

sources till 2040.  
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Figure 1.3: Renewable energy contribution (%) till 2040. 

 

Figure 1.4: The contribution of renewable energy sources to the world total primary 

energy consumption [9]. 

Figure 1.6 also shows the global renewable energy supplies with biomass representing 

74.9%, which is by far the largest source of renewable energy and this is because of its 

non-commercial use in developing countries.  

With regards to BP energy outlook 2035 [3], renewable energy deployment for power 

has been led by Europe. The share of renewable sources in power generation in the 

European Union (EU) increases from 13% in 2012 to 32% in 2035 as shown in Figure 
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of strong policies supporting renewable energy in the late 1990s and early 2000s. More 

recently, in 2007, the EU proposed a new renewable energy target by increasing the 

share of renewable energy to 20% by 2020 [10] and 45% by 2030 [11]. 

 

Figure 1.5: Fuel shares in the world total primary energy supply 2011 [10]. 

 

Figure 1.6: Product shares in the world renewable energy supply [10]. 

In spite of their environmental effects, coal and natural gas are still playing a 

paramount role in power sector as they accounts for 41.3% and 21.9 %, respectively, of 

the world total electricity production in 2011. Whereas, the contribution of renewables 

was 20% [10]. The coal share will decline to 37% by 2035 due to the increase of 

renewables share [3]. 

Among the renewable energy sources, biomass can be seen as a promising resource to 

producing energy and it is expected to have a strong growth within sectors such as heat 

and power generations and transportation biofuels in the coming decades. It is a 

worthwhile alternative, when compared with unpredictable wind energy and high cost 
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photovoltaic energy. Combustion of biomass was the oldest. It is the first on-demand 

source of energy that humans exploited and by which they started to make fire, cook 

and produce heat. It is still today the worldwide most spread out energy source used in 

a variety of applications for the production of heat and power. It can be said that the 

history of combustion is related to the availability and utilization of fuel. Furthermore, 

factors such as security supply, demand pressure, environmental concerns and political 

issues are the driving forces of energy production. In the mid-1800s, most of the 

world’s energy needs had been supplied by biomass before the era of fossil fuel began 

when it started to be phased out in the industrialized countries. There was a transition 

towards energy production based on coal, then on oil and natural gas. But the first oil 

crisis in 1970s made biomass again to be a viable energy resource to potentially reduce 

oil consumption [12]. 

 

Figure 1.7: Renewable share of power generation [3]. 

In the developing part of the world, the use of biomass is mostly for domestic heating 

and cooking. On the other hand, because of its carbon-neutral its use for energy 

production is presently on the rise in the developed countries. In the Organisation for 

Economic Co-operation and Development (OECD) countries, the largest proportion of 

renewable energy was supplied by biofuels and waste in 2012 [10].  Recently, about 

10% of the world’s current energy consumption is met by biomass and over the last 

decades there has been a gradual increase of using biomass in energy systems [1]. The 

interest in using of biomass fuels for energy production purposes across the world has 

also been growing and most of energy scenarios indicate that they will be increasingly 

used worldwide. Biomass is considered to be one of the options to replace fossil fuels 

and its result will lead to decrease the emissions of greenhouse gases [13, 14].   
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Nussbaumer [15] gave an overview of the combustion technologies available in Europe 

with regulations on emissions and fundamentals of combustion of woody biomass. 

Possible direct combustion as well as an option of co-firing and gasification of biomass 

makes it a more attractive source of fuel for power production. However, a detailed 

study of complex and complicated combustion reactions of biomass requires a highly 

scientific focus, since the biomass, in general terms; include all materials derived from 

photosynthetic plants to animal wastes. The sources also include naturally grown 

forests, energy plantations, herbaceous plants or grasses, by-products from different 

industries such as agricultural, food, wood processing, manures, and paper industries or 

municipal solid waste [16].  

The compositions and molecular structures found in any carbonaceous fuel, such as 

coal and biomass, are very complex. The main elements present in coal and biomass, 

determined by ultimate analyses, are usually carbon (C), hydrogen (H), oxygen (O) and 

nitrogen (N). Other elements found in nitrogen, sulphur, chloride and other impurities. 

The proximate analysis determines the percentages contents of moisture, volatiles, 

fixed carbon and ash. 

Both, the volatiles which are released as a gas by heating and the content of fixed 

carbon provide a measure of the ease with which biomass can be ignited. Biomass is 

usually combustible because it has a high level of volatiles and therefore, forms a 

potential source of energy. However, it has lower energy content due to the higher O/C 

and H/C atomic ratios when compared to coal. In reality, biomass is regarded by many 

as CO2-neutral fuel as it does not contribute to any increase of CO2 in atmosphere [17]. 

This means that the carbon dioxide generated from biomass combustion constitutes one 

of the elements of the carbon cycle between the atmosphere and the plant kingdom and, 

therefore, it does not affect the atmospheric carbon dioxide concentration. The 

renewability here comes from that the amount of biomass grown per unit time equals 

the amount of biomass used for producing energy in that unit and as a result it does not 

enhance the greenhouse effect. This leads to avoid the carbon dioxide emission and 

other pollutants associated with the combustion of coal and other fossil fuels when the 

energy produced from burning biomass substitutes the one that would otherwise be 

obtained by burning fossil fuels. Biomass is also characterized by less sulphur and 

nitrogen compared to coal.  
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Reaction methods of solid fuel combustion or gasification include fixed bed, fluidized 

bed and pulverized methods. The latter one is commonly used for power generation. 

The development in these technologies is required and due to the need to reduce the 

cost and time, numerical simulations emerges as powerful research tool that not only 

complement the experimental investigation but also due its ability to simulate more 

complex cases. In this thesis, FLUENT commercial code is used to simulate different 

combustion cases including the combustion of methane, coal and biomass. 

1.1 Computational Fluid Dynamics (CFD) 

There are basically three approaches by which a problem in fluid mechanics and heat 

transfer can be solved. These approaches are experimental, theoretical and 

computational. The experimental approach is capable of being more realistic and the 

theoretical uses general information which is usually in a formula form and is usually 

restricted to simple geometries and linear problems. Computational fluid dynamics 

(CFD) is a methodology for solving complex problems in fluid dynamics and heat 

transfer. It is used to predict fluid flow by finding the numerical solution to a set of 

partial differential equations governing the continuity of mass, momentum and energy 

in the flow field. Problems with highly non-linear flows can be solved using CFD. In 

combustion, reactive flow processes are often characterized by a complex interaction of 

transport and chemical kinetics. Moreover, the chemistry may include either only gas 

phase or both gas and solid phases. In the latter case (combustion of solid fuels), 

multiple phases are present and the solid particles have a range of sizes and shapes. 

Chemical reactions are affected by adding sink or source terms in the equations for 

reactants and products as well as appropriate sources in the energy equation to account 

for exothermic and endothermic reactions. In terms of chemical kinetics, it is needed 

for prescribing the paths and rates through which chemical reactions take place because 

all combustion processes have some finite characteristic times defining the relevant 

phenomena. This set of equations is highly coupled and non-linear and as a result the 

problem domain must be discretized. In the discretization process, the governing 

equations are converted to a simple algebraic form that can be solved numerically. For 

discretization of these equations the finite volume method is used and a solution found 

through numerical methods. The ability of this method to cope with unstructured 

meshes allows the complicated geometries to be modelled. There are various methods 

for discretizing the equations such as first-order and second-order methods.  
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Turbulence is a significant complication to the problem of modelling of engineering 

flows and there are different techniques with different approaches have been developed 

to account for it that exist in literature. These approaches include direct numerical 

simulation (DNS), Reynolds Averaged (time-averaged) Navier-Stokes (RANS) and 

large-eddy simulation (LES). In DNS model, the governing equations are discretised 

and solved numerically and the attempt is even to resolve the smallest of structures, 

which requires fine meshes. Such approach removes the need for any turbulence model 

when using grids and time steps that are small enough to capture the real physics of 

turbulent flow. Thus, it is extremely computationally very expensive and viable only 

for turbulent flows in relatively simple geometries and flow cases at low Reynolds 

number as the number of cells increases with Reynolds number. Therefore, it is applied 

as a basic tool to fundamental research studies on turbulence. However, in engineering 

applications, the effects of turbulence can be calculated approximately using the other 

two approaches.  

With regard to RANS approach, the attempt is to model the turbulence by artificially 

increasing the viscosity of the fluid, thereby increasing the rate of mixing and the 

resistance to flow and, for practical calculations, most of the industrial scale modelling 

of turbulent flows is being carried out by applying Reynolds Averaged Navier-Stokes 

(RANS) equations. This model ignores the turbulent fluctuations and calculates only 

the turbulent-averaged flow. Since there is no single RANS model can accurately 

predict all flow regimes, it is considerably cheaper than DNS simulations. Hence, it is a 

favored approach in engineering applications. However, turbulence models are required 

to close the stress terms that result from time averaging of Navier-Stokes equations. 

These terms are called Reynolds stresses. As a result of these extra terms, new 

unknowns are contributed to the RANS equations to close them and need to be related 

to the other variables. A wide range of turbulence models are available for this purpose 

in literature and the k-ϵ model has become the most employed model in industrial CFD 

simulations. 

LES is another approach that is considered somewhere between direct solution DNS 

and RANS approach. With this approach the governing equations are filtered to 

separate the large scale eddies, which depend on geometrical shape and boundary 

conditions of the flow field from the small scale ones, which do not depend upon the 

geometry and have a universal structure. The idea is to resolve only the large eddies, 

which carry the majority of the energy and dominate the physical behaviour of any 
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turbulent flow, accurately and to approximate the effects of the small scales. A sub-grid 

scale model is used to include the effects of the small eddies in the filtered equations. 

This approach is still costly as it is inherently three-dimensional and unsteady, but it is 

a feasible option for some real problems. 

Generally, gas-solid flow (particle-laden) is the phenomena of the transport of particles, 

which are distinguishable from the carrier phase and can be dense or dilute. A simple 

way to differentiate between the dense and dilute particle–laden flows is based on the 

particle volume fraction   . In industrial processes like fluidized beds, a particulate 

flow with    < 0.15 is considered to be dilute. Modelling of these systems is very 

complex because the flow field of the continuous phase as well as the motion of the 

particulate phase, need to be solved. This type of modelling is based on the type of 

reference frame. There are two basic approaches by which the solid particles are 

modelled, which are the Eulerian-Eulerian approach and the Eulerian-Lagrangian 

approach. In both cases the gas phase is treated by using an Eulerian reference frame. 

With regards to the particulate phase, it is treated as a continuous phase mixed with the 

fluid phase (these models are also known as continuum models or two-fluid models), 

whereas the solid particles are treated as discrete objects in the Lagrangian particle 

dispersion models. As these solid particles pass through the reactor their organic 

fraction is consumed, and their motion is tracked as they move through the flow field. 

However, the particles are tracked individually and as a result the computational time 

may be large. Therefore, it is assumed for this model that the dispersed phase occupies 

a volume fraction that is usually less than 10-12%. To reduce the computational time, 

only representative samples of the particles are tracked but the number of calculated 

trajectories should be sufficient to provide a complete picture of the particle behaviour 

in the turbulent flow. More details of CFD is given in [18]. In terms of biomass 

combustion and gasification field, there are significant challenges that one can face 

when modelling biomass combustion and gasification due to complexity of biomass 

composition. There are many CFD studies, regarding combustion and gasification of 

different biomass, but there is still needs to be studied especially the co-firing of 

biomass and coal, which is still developing. A review [19] that gives a summary of 

various CFD applications in the field of  thermochemical conversion of biomass has 

been reported in literature. 
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1.2 Purpose of the work 

The overall objective of this thesis is to understand what happens to solid fuels such as 

coal and biomass fuels during the combustion process. Particularly, the aim is to 

investigate the pulverized combustion of coal and biomass, including the temperature, 

species, NOx formation and analyse the performance of combustion by applying 

computational fluid dynamics technique and this includes the followings: 

1. Study the parameters that have important effects on the combustion of different 

types of solid fuel particles when subjected to different operating conditions.  

2. Study the interactions between the gas phase and solid phase. 

3. Develop a combustion model that includes solid the combustion stages of a 

solid fuel based on the available experimental data and computational 

modelling. 

4. Compare the results predicted by the modelling with the available experimental 

data in order to validate the models.  

1.3 The importance of the research study 

The applications of solid fuel combustion and gasification are implemented in many 

different types of furnaces such as fixed beds reactors and moving bed ones, fluidized 

and circulating fluidized beds, and pulverized fuel burners. So this study will greatly 

help to develop better methods of combustion that can be implemented in such practical 

applications as well as help to reduce the emissions of greenhouse gases and decrease 

burning the fossil fuels as mentioned previously. 

1.4 Thesis outline 

This thesis is constructed as follows: 

In chapter 2, an overview of the current status of combustion of coal and biomass is 

made. This includes the difference between the properties of the coal and biomass as 

well as the models which are used to their combustion rates. 

In chapter 3, the combustion of one phase, which is the gas phase, is given. As it is 

well-known those gases (volatiles) are released when burning solid fuels and the most 

significant gases for solid fuels combustion due to their high activities are methane 
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(CH4), carbon monoxide (CO), and hydrogen (H2). Therefore, the oxidation of these 

gases is important when burning sold fuels. The combustion of methane (CH4), which 

is also important in practical combustion devices such as furnaces and gas turbines, is 

investigated in this chapter. The governing equations of turbulent reacting flow are 

described. Different global reaction mechanisms with different k-ϵ turbulence models 

are used to model the combustion of methane. The effects of modified turbulence 

models on the combustion process are also investigated. The reaction mechanism by 

Westbrook and Dryer is optimized to see its effect as well. This chapter presents the 

modelling approach and numerical results of methane combustion in an axi-symmetric 

chamber. The predictions are presented and compared against the experiments 

conducted by Garreton and Simonin [20].  

In chapter 4, the pulverized combustion of coal and biomass is investigated using the 

Euler-Lagrange approach. The particulate phase modelling is described. The formation 

of the nitric oxide (NO) during the combustion is also described and modelled. First, 

the volatiles released during the devolatilization stage of both fuels are treated as one 

species in all cases. The intention was to include many species in the combustion of 

volatiles in the next step, but, unfortunately, the time was not enough to do so. The 

particle size distribution for both coal and biomass particles is assumed to be the same 

and follow a Rosin-Rammler distribution curve. The results of the simulations, which 

are carried out in a 2-D axi-symmetric furnace, are presented and compared with the 

available experimental data. Moreover, the work is extended to investigate the 

influence of co-firing of coal and biomass on the burnout of coal particles. 

In chapter 5, contrary to the cases presented in chapter 4, the Euler-Euler approach is 

used to investigate the heterogeneous combustion of carbon particles in a three-

dimensional numerical model. The governing equations of both gas phase and solid 

phase are described. The carbon particles are burned inside a newly designed 

combustion chamber. Since the carbon particles are located in a small cap inside the 

chamber (static combustion); i.e. there is no continuous flow of the fuel, it is thought 

that this approach is more applicable for modelling such a case. The effects of the 

chamber design on the heterogeneous combustion of the particles are also investigated. 

The results are presented and discussed, and a conclusion is drawn. 

In chapter 6, conclusions of the findings of the present study are summarized and some 

recommendations for improving the work in the future are given. 
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2 Literature review 

In this chapter, a general review of the combustion of solid fuels has been given. First, 

a description of the properties of coal and biomass is to be presented. Then, an outline 

of the combustion processes and the effects of various factors such as temperature, 

particle size, heat rate on these processes are given. Finally, an overview on the 

combustion systems and the models used for modelling the combustion processes are 

discussed.   

2.1 Solid fuels structure and properties  

Combustion technologies such as fixed beds, fluidized beds, and pulverized 

combustion furnaces apply to a wide variety of practical carbonaceous solid fuels 

extending from low grade fuels to high grade fuels [21]. Solid fuels, used in 

combustion and gasification, are classified in the following two main categories: 

1. Fossil solid fuels and are represented by coals (high grade fuels such as bituminous 

and anthracite and low grades like subbituminous coals, lignite and peat). 

2. Renewable solid fuels and can be represented by biomass (low grade fuels). 

The composition of fuel has a great influence on the characteristics and rates of solid 

fuel combustion and formation of emissions. Therefore, it should be known to enable 

valid modelling of the process. Modelling of solid fuel combustion or gasification 

requires data for physical and chemical properties. To evaluate coal or biomass 

properties that affect the design and operation of combustion systems, several types of 

analysis are performed which include the following: 

 The proximate analysis, which involves a series of tests that heat and burn solid 

fuel and by which the percentages of moisture content, volatiles, fixed carbon 

(char) and ash are determined.  

 The ultimate analysis, which gives the elemental analyses for carbon, hydrogen, 

nitrogen, sulphur, and oxygen. The latter is determined by difference in the 

balance between the sum of contents determined by the ultimate analysis and 

the total dry-ash-free (DAF) weight. 

 The determination of the heating value by combustion of fuel sample in a 

calorimeter. 
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 The analysis of the grindability and the determination of the swelling index. 

 The determination of the particle size distribution.  

The composition of any fuel, in standard fuel analysis, is determined by proximate 

(technical) and ultimate (elemental) analyses. The methods employed for such analysis 

are thoroughly described in [22, 23]. On dry basis, renewable and fossil solid fuels 

consist of two fractions. They are the combustible organic substance and inert inorganic 

material (mineral matter). The former one is responsible for the energy content of the 

fuel. The latter one is not identical to the mineral content and presents significant 

challenges regarding the design and operation of furnaces. It is common, though, to 

give the ash content as a measure of the mineral matter in the fuel in combustion 

engineering due to the more complexity of the procedure for the determination of the 

mineral content than that for the determination of ash content. Performing the 

proximate analysis distinguishes the moisture, volatile matter, fixed carbon (char) and 

ash and serves as an indicator of combustion behaviour.  

The main elements, which are determined by ultimate analysis in most solid fuels, 

include carbon (C), hydrogen (H), oxygen (O), sulfur (S) and nitrogen (N). Additional 

varying quantities constituents like chlorine (Cl), potassium (K) and sodium (Na) might 

be present in the fuel sample. The ultimate analysis gives a first estimation of emissions 

result from the combustion process. The combustion calculations of the stoichiometric 

oxygen demand, the flue gas quantity and the flue gas composition are based on the 

elemental composition of the fuel.  

The variation of shares of the above mentioned elements in coal and in biomass has a 

great influence on the pyrolysis and combustion characteristics. The increase in 

hydrogen to carbon and, to lesser extent, the increase in oxygen to carbon ratio leads to 

increase the mass loss of the solid fuel particles during the pyrolysis stage. The mass 

evolved during pyrolysis can vary from a few percent and up to 70-80% of the total 

particle weight. Typically, anthracite coals lose less than 10% of their mass by 

pyrolysis and bituminous coals lose from 5 to 65% of their mass, whereas, the mass 

loss of lignite coals, peats and biomass can reach over 90%. This mass loss may last 

from a few seconds to several minutes, depending on the composition of fuel. The 

elemental composition and nature of the inorganic compound in solid fuels and trace 

metals also affect the fuel reactivity [24].  



Chapter 2                                                            2.1 Solid fuels structures and properties   

 

13 

One of the differences between biomass and coals is the hydrogen-to-carbon H/C and 

oxygen-to-carbon O/C atomic ratios, with higher values for biomass. The change in 

atomic ratios H/C and O/C from biomass to peat, lignite, coal and anthracite is shown 

in Figure 2.1. The diagram was developed by Van Krevelen [25]. The increase in rank 

from biomass to bituminous coal involves de-oxygenation of solid fuel and an increase 

in carbon content and consequently a decrease in H/C ratio and a decrease in O/C ratio 

as illustrated in Figure 2.2.  

 

 

 

 

 

 

 

 

 

Figure 2.1: Chemical composition of various solid fuels [26]. 

 

Figure 2.2: Coal rank as a function of H/C and O/C atomic ratios [27]. 

For simplicity, in many combustion models, the char is assumed to consist of carbon 

only and the elemental composition of volatiles is determined from the proximate and 

ultimate analysis data of the solid fuel. Other properties of fuel and process conditions 

such as air-fuel ratio and temperature are important in the combustion process. 

Moreover, the particle size of solid fuels varies greatly, depending upon grinding 
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technique and desired application. For example, the coal dust size in the case of a utility 

boiler application is much smaller than that in the case of fluidized bed gasifier. The 

particle sizes play a fundamental role in the combustion and gasification processes of 

solid fuels. Therefore, when the solid particles are injected into the combustor or the 

gasifier they cover a wide range of sizes and one can easy imagine that smaller particles 

carried by gas stream tend to be consumed faster and easier than the larger ones. 

Therefore, to specify a fuel system, it is necessary to define the relative numbers or 

masses of particles of different sizes, i.e. the particle size distribution.  

2.1.1 Non-renewable solid fuel (coal) 

Coals are mainly the results of slow deterioration of biomass and the degree of this 

deterioration determines the coal rank. Coal is a black, inhomogeneous fuel, formed 

from the partial decomposition of plant materials. It is used primarily as a fuel, so its 

heat of combustion is the most important property. The structure of coal varies based 

on time, the extent of temperature and therefore the amount of pressure applied to it 

over time. Typically, coal structure consists of numerous aromatic rings of five or six 

carbons bonded with principally hydrogen, nitrogen, sulphur, and oxygen atoms [28]. 

Coal is a mixture of organic material and mineral matter as mentioned before. The 

geological process of conversion of plant materials such as peat to coal, shown in 

Figure 2.3, is called coalification. It takes place in stages to produce different types of 

coals. The progress of this process in which plants are changed into coals is the base for 

coal classification. Elevated temperatures and pressures caused physical and chemical 

changes in the initial plant material and as a result it transformed first into peat, then 

into lignite (brown coal) and finally into hard coals.  

 

Figure 2.3: Coalification (adopted from [29]). 

In the coalification process, the coal rank increases from lignite to anthracite. As shown 

in Table 2.1 and Table 2.2, increasing coalification degree means lower oxygen and 

hydrogen contents and accordingly higher carbon levels. In particular, coals are solid 

and unlike oil fuels, so it is impossible to easily adjust coal properties through refinery. 
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Therefore, it becomes very necessary to correctly identify the coal properties and 

logically classify coal types. 

Table 2.1: Fuel properties for increasing coalification degree (wt. - %) [30]. 

Material Moisture (air-dried) CDAF HDAF ODAF 

Wood  10-15 50 6.0 43 

Peat  20-25 55-65 5.5 32 

Lignite  15-25 65-73 4.5 21 

Bituminous coal 1-13 78-92 5.3 8 

Table 2.2: Coal properties for increasing rank (on % DAF basis) [31]. 

Coal type Moisture Volatiles C H O LHV 

Lignite  31-70 42-65 62-73 4.3-5.9 20-30 23.7-29.5 

Sub-bituminous  16-35 37-52 70-80 4.5-6.0 13-22 28.6-31.9 

Bituminous       

High volatiles 1-21 32-49 76-88 4.9-6.0 4.5-16 30.9-37.2 

Medium volatiles 1-4 20-32 84-91.5 4.5-5.4 2.0-8.5 34.2-37.2 

Low volatiles 1-2 9-20 90.5-93.5 3.7-4.8 1.5-3.5 36.1-37.2 

Anthracite 1.5-3 4-9 92.5-96 2.0-3.9 1-2.5 34.5-36.6 

Regarding coal rank classification, several works, based on compositions, are 

dedicated. Among them is the work of Averit [32] and a more recent coal rank is 

presented by Hensel [33]. It increases from lignite to anthracite and is summarized 

below on weight fractions at dry and ash-free basis (wt. DAF):  

(1) Anthracite has volatile percentages between 1.8 and 10% and carbon between 

91 and 94.4%. The carbon and hydrogen ratio (C/H) is between 23.4 and 46, 

and combustion enthalpy is between 34.4 and 35.7 MJ/kg. 

(2) For bituminous coal, the percentages are between 19 and 44.6% for volatile and 

between 77.7 and 89.9% for carbon. C/H is between 14.2 and 19.2, while 

combustion enthalpy is between 32 and 36.3 MJ/kg. 

(3) The volatile percentage of sub-bituminous coal is between 44.2 and 44.7% and 

that of carbon is between 73.9 and 76%. C/H is between 14.3 and 14.6, and 

combustion enthalpy is between 29 and 30.7 MJ/kg. 
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(4) Lignite’s volatile and carbon contents are approximately 47 and 71%, 

respectively. C/H and combustion enthalpy are around 14.5, 28.3 MJ/kg, 

respectively. 

In the U.S., the American society for testing and material (ASTM) uses a method of 

classification that is based on a number of parameters obtained by various prescribed 

tests for the fixed carbon values as well as other physical properties. It distinguishes 

between four types of coal and each of each is subdivided into several groups as shown 

in Table 2.3 and Table 2.4. This method is based on approximate analysis. Coals 

containing less than 31% volatile matter on the mineral matter-free basis are classified 

on the basis of fixed carbon.  

The fuel ratio which is the ratio of fixed carbon to volatile matter gives an indication of 

coal rank. In general, a coal with high rank has high fixed carbon content while the 

volatile matter reduces, which results in the increase of the fuel ratio. Proximate and 

ultimate analyses of various types of coals are listed in Table 2.5. 

Table 2.3: Classification of anthracite and bituminous coals by rank (ASTM D 388-05) 

[34]. 

 Fixed carbon limits         

(Dry mineral-matter-

free basis), % 

Volatile matter limits   

(Dry mineral-matter-

free basis), % 

Rank  Equal or 

greater than  

Less 

than  

Greater 

than 

Equal or 

less than 

Meta-Anthracite 98 n/a n/a 2 

Anthracite 92 98 2 8 

Semi-anthracite 86 92 8 14 

Low volatile bituminous coal 78 86 14 22 

Medium volatile bituminous coal 69 78 22 31 

High volatile A bituminus coal n/a 69 31 n/a 
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Table 2.4: Classification of bituminous, sub-bituminous and lignite coals by rank 

(ASTM D 388-05) [34]. 

                                                                         Gross calorific value limits    

                                                                  (moisture, mineral-matter-free basis) 

 Btu/Ib MJ/kg 

Rank Equal or 

greater than  

Less 

than  

Equal or 

greater than 

Less 

than 

High volatile A bituminous coal 14000 n/a 32.557 n/a 

High volatile B bituminous coal 13000 14000 30.232 32.557 

High volatile C bituminous coal 11500 13000 26.743 30.232 

Sub-bituminous A coal 10500 11500 24.418 26.743 

Sub-bituminous B coal  9500 10500 22.09 24.418 

Sub-bituminous C coal  8300  9500 19.30 22.09 

Lignite A  6300  8300 14.65 19.30 

Lignite B   n/a  6300   n/a 14.65 

2.1.2 Renewable solid fuel (biomass) 

Biomass is an umbrella that covers a great diversity of its sorts. It was defined as the 

biodegradable fraction of products, waste and residues from agriculture (including 

vegetal and animal substances), forestry and related industries, as well as the 

biodegradable fraction of industrial and municipal waste [35]. Figure 2.4 shows some 

examples of biomass. 

 

Figure 2.4: Examples of biomass. 

Biomass has been used for domestic purposes since a long time. It can be used to 

produce usable energy like heat, electricity or bio-energy. Therefore, it can be either 

converted into energy directly via combustion or into a secondary bio-fuel, which can 

be in the form of solid, liquid or gas. Bio-fuels can include charcoal which is a higher 
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energy density solid fuel, ethanol (liquid fuel) or producer gas. The latter is produced 

from the gasification of biomass. The conversion processes for the latter form include 

thermo-chemical, biochemical and physical chemical conversion [36]. 

Table 2.6 lists the two types of harvested biomass in food and non-food categories, and 

indicates the potential conversion products from them.  

                              Table 2.5: Analysis of various coals [37]. 
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Table 2.6: Sources of biomass [16]. 

Farm products Corn, sugar cane, sugar beet, wheat, 

etc. 

Produces ethanol 

Rape seed, soybean, palm sunflower 

seed, Jatropha, etc 

Produces biodiesel 

Ligno-cellulosic 

materials 

Straw or cereal plants, husk, wood, 

scrap, slash, etc. 

Can produce ethanol, 

bio-liquid, and gas 

Biomass is considered renewable because of the process which is called photosynthesis 

takes place as biomass is grown. In this process, CO2 released from biomass 

combustion in the atmosphere is captured where, together with water (H2O), it is 

converted into organic matter under the influence of sunlight as represented by 

Equation (2.1). 

                     
              
→                                                                     

(2.1) 

Then, energy stored in biomass is again released into the atmosphere by its conversion 

into CO2 and H2O by the following equation: 

                                                                                  (2.2) 

 

Moreover, the chemical energy stored in biomass is passed on to the animals and to the 

human that take the plants as food and as a result there will be waste that also 

contributes to biomass. 

From the chemical point of view, virgin biomass such as wood, plants and leaves 

(Lingo-cellulose) consist of three main components of materials: cellulose, 

hemicellulose and lignin. In addition to the other ones which are “extractives” and 

minerals (inorganic compounds) [16, 38-40]. The detailed description of these 

components is found in the critical review paper [41]. Biomass can be classified based 

on the atomic ratios as shown in Figure 2.1, which shows that H/C and O/C than fossil 

fuels biomass has higher.  

The proximate and ultimate analyses mentioned before, which are classification 

techniques developed for coal, are also applied to characterize biomass fuels. Various 

biomass fuels can be found in literature and for example large variations between 

biomass fuels were summarized by Vassilev et al [42] and Demirbas [43]. Biomass 

fuels are generally low in carbon and high in volatile matter and oxygen [39, 43, 44], 
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which lead to low calorific value. The typical weight percentages for C, H and O, 

respectively are 30 to 60 %, 5 to 6 % and 30 to 45 % [1, 24]. For coal, the typical 

compositions (mass percentages) include  65 to 95% C, 2 to 7% H, up to 25% O and 1 

to 2% N [45]. Summary of the chemical compositions of several important fuels is 

provided in Table 2.7 and  Table 2.8.  

Table 2.7: Proximate analysis for several coal and biomass samples [39]. 

 Moisture* 

(%) 

Volatile matter 

(%) 

Fixed carbon 

(%) 

Ash 

(%) 

LHV 

(MJ/kg) 

Wood 20 82 17 1 18.6 

Wheat straw 16 59 21 4 17.3 

Barley straw 30 46 18 6 16.1 

Lignite 34 29 31 6 26.8 

Bituminous coal 11 35 45 9 34 

*Intrinsic: the moisture content of material without the influence of weather effects. 

Biomass, as carbon dioxide neutral fuel with good availability in most regions of the 

world, is still more attractive to energy producers. Many studies and investigations 

have been conducted on biomass gasification, combustion and co-firing. Properties 

similar to low-value coal allow comparison and access to detailed combustion data. 

 Table 2.8: Average of elemental analysis for many thousands of coal and biomass 

samples [46]. 

 Anthracite Bituminous Sub-

bituminous 
lignite Grass Straw Wood 

chips 
Waste 

wood 

C 90.22 78.35 56.11 42.59 45.34 48.31 51.59 49.62 

H 2.85 5.75 6.62 7.40 5.82 5.85 6.14 6.34 

N 0.93 1.56 1.10 0.73 2.04 0.78 0.61 1.01 

O 5.03 11.89 35.31 48.02 45.95 44.18 41.57 42.89 

S 0.96 2.43 0.84 1.15 0.24 0.18 0.07 0.07 

Cl 0.03 0.08 0.01 0.01 0.62 0.70 0.02 0.06 
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2.2 Coal versus biomass combustion 

Selecting the combustion system (technology) is greatly based on the fuel properties 

such as the chemical composition, moisture and ash content, particle size, particle size 

distribution, temperature, pressure, etc. The important characteristic properties of 

biomass are: heating value, moisture content, volatile matter and ash etc. Biomass is a 

good candidate for replacing coal or for co-firing with it and one of the reasons behind 

this is that both biomass and coal are solid fuels and, from the view point of power 

generation, the equipment designed to burn coal are assumed to be able to use biomass 

as well. However, the chemical composition of biomass is different from that of coal. 

Furthermore, biomass properties vary significantly more than those of coal do.  

Referring to Table 2.7, it can be seen that biomass has a higher fraction of oxygen and 

less carbon than coal as mentioned before. The hydrogen fraction is also somewhat 

higher than that of coal. Regarding nitrogen and chlorine contents, these components 

vary significantly among biomass fuels. For both biomass and coal, they are directly 

related to NOx emissions and corrosion. Some biomass fuels like straw has contents of 

chlorine can exceed those of coal. When compared to coal, biomass has a higher 

moisture content and lower heating value as shown in Table 2.7. Moisture content 

affects the behaviour of pyrolysis. Product yields depend on the moisture content [47]. 

It can also cause many problems related to the ignition. It reduce the maximum possible 

temperature and increase the necessary residence time in the combustion chamber and 

this gives less room for preventing emissions as a result of incomplete combustion [43, 

48].  

In biomass combustion, fuel moisture is a limiting factor due its effect on heating 

value. The reaction of combustion is exothermic and the evaporation of water is 

strongly endothermic and, practically, a supplemental fuel such as natural gas is 

required for combustors that burn biomass in excess of 50 to 55% moisture wet basis 

[24] or it must be dried to a level where it becomes able to sustain combustion. 

Concerning the volatile matters, biomass has a very high volatile content in comparison 

with coal, (up to 80 % for biomass and less than 20% for coal), which causes it to have 

more flaming combustion and less char combustion (highly reactive fuel) [49]. 

Therefore, the higher volatile content in biomass can affect the optimum sizing and 

design of the combustion chamber, as well as the ideal flow rate and location of 
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combustion air. Furthermore, the higher amount of volatile matter leads to a 

dominating role of devolatilization in the overall conversion process of biomass 

particles. Ash is identified as the inorganic incombustible part of fuel which left after 

complete combustion [1]. Typically coal contains more ash than biomass and it reflects 

mineralogical composition, whereas the composition of biomass ash is based on the 

chemical components required for plant growth. Biomass ash contains inorganic 

elements in the form of salts while coal ash is bound mostly in silicates, which are more 

stable at high temperature. Thus, biomass ash is more disposed to form deposits in the 

combustor which is known as slagging and fouling [50]. Burning coal containing more 

carbon will increase carbon dioxide emissions deeply related to global warming.  

With regard to the physical properties, An important variable in large scale biomass 

combustion applications especially where entrainment of fuel particles in the flue gas 

occurs, as in pulverized fuel combustion, is fuel particle size [26]. Biomass particles are 

typically much larger than pulverized coal particle. In comparison with traditional coal 

combustion, the large size of biomass particles has effects on biomass combustion [17, 

51]. Solid fuels are burned at rates depend on two predominant factors, which are the 

rates of heat transfer and the kinetic rates of reactions. For the former one, particle size 

dominates the influence of heat transfer. Therefore, a rapid heating is found in small, 

thin particles (thermally thin) while heating is slower for coarser, thicker particles 

(thermally thick) [24]. Thermally thick particles are those where there is a significant 

temperature gradients inside them, whereas, for thermally thin particles it is assumed 

that the temperature distribution is uniform throughout the particles. To evaluate 

whether a particle can be considered as isothermal or not during heating the criterion 

based on Biot number is used. This number relates the internal heat transfer resistance 

to the external resistance. It is mentioned in the review paper [52] that when biomass is 

ground by milling, chipping or any other sizing process, the particles would still have a 

bigger size and great particle distribution. This is because of the higher moisture 

content and fibrous nature of many biomass fuels [53]. Regarding the pulverized 

biomass and coal there are significant differences between the particle sizes utilized for 

them. The average pulverized coal particle size is ~50 μm with top sizes of 100-120 

μm, whereas a biomass particle can be up to 200 times as large [46, 54]. However, it 

was reported that wood particles should be milled to a size less than 1000 μm in order 

to reach a satisfactory burn-out with the residence times typical for pulverized fuel 

boilers [55]. Since the particle sizes of pulverised coal are small, they 
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allow complete combustion after around half a second in a furnace. The critical 

biomass particle size is 1000 μm [56] and this is because the residence time is limited 

to few seconds which is similar to pulverized coal particles and the oxidation rate of 

non-micron range particles is limited by oxygen diffusion to the particles and not by 

reaction kinetics. However, particle specifications have not yet been defined for 

pulverized biomass in comparison with those of coal that are standardized [57]. Size 

reduction of biomass fuels is an intensive task that needs energy and is costly, but it 

could be an efficient way in terms of producing usable renewable energy. A study in 

which the pulverization of three different forest biomasses have been investigated [58].  

The other parameter that affects the combustion process, the most aspect of operational 

control, is the temperature. The key parameter of heating rate, the residence time of 

solid and maximum temperature is the control of temperature. The residence time is 

directly influenced by the combustion temperature and to some extent by the mixing 

time [26].  

2.3 Combustion characteristics 

The heating value of a fuel, also called the calorific value, is defined as the heat 

released when combusting 1kg of it, with the assumption that the combustion products 

are cooled down to the initial temperature i.e. the flue gases have the same 

temperatures as the temperature of the fuel prior to combustion. This value, which is 

the so-called high heating value (HHV), is based on dry basis and it is measured 

directly in a calorific bomb. Whereas, the value that is calculated by subtracting the 

energy required for evaporating any moisture content of the fuel is called low heating 

value. This value, if the experimental methods are not possible, can be estimated using 

empirical correlations. There are many of these correlations in the literature that are 

used for estimating the heating value of solid fuels such as coal and biomass. 

Parameters that are definitely related to the energy content of a solid fuel are the atomic 

ratio between oxygen and carbon O/C and the atomic ratio between hydrogen and 

carbon H/C. The diagram was previously shown in Figure 2.1 that relates together the 

LHV, the H/C and O/C ratio on a dry ash-free basis for all fuels, from carbon-rich 

anthracite to carbon-deficient woody biomass. The heating value of biomass fuels are 

lower than that of most coals and, on average, the heating value of biomass fuels 

usually ranges from 18 to 22 MJ/kg (on dry basis) [26]. However, according to [24] the 
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contents of C and H tend to increase the heating value. Every 1% increase of carbon 

mass fraction elevates the heating value of biomass by 0.39 MJ/kg while high content 

in oxygen results in low energy content. Therefore, the higher O/C ratio the lower 

energy content will be. For example, the higher heating value (HHV) of a biomass 

correlates well with the oxygen-to-carbon (O/C) ratio, reducing from 38 to about 15 

MJ/kg while the O/C ratio increases from 0.1 to 0.7. The effective heating value of the 

fuel is reduced as a result of the increase of hydrogen-to-carbon (H/C) ratio. For 

example, fresh plant biomass like leaves has very low heating values due to its high 

H/C and O/C ratios. As it is also shown in Figure 2.1, the atomic ratios of a fuel 

decreases with increasing its geological age, which means that the older the fuel, the 

higher its energy content. For example, anthracite, which is a fossil fuel geologically 

formed over many thousands of years, has a very high heating value. On one hand, the 

lower H/C ratio of this solid fuel gives higher heat. On the other hand, the carbon 

intensity or the CO2 emission from its combustion is high.  

2.4 Thermo-chemical conversion processes of solid fuels 

Reducing the pollutants does not depend only on the type of the fuel but also on the 

conversion processes and the technologies used to carry out them. The processes to 

thermo-chemically convert the chemically stored energy in solid fuels to usable forms 

of energy include pyrolysis, combustion and gasification as shown in Figure 2.5.  

 

Figure 2.5: Thermo-chemical process for conversion of biomass into fuels, gases or 

chemicals. 

Direct combustion of solid fuels is a conversion process by which heat is generated. 

When burning solid fuels to produce energy, chemically, the combustion process is an 

exothermic reaction between oxygen and the hydrocarbons that converts them into high 
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temperature gaseous emissions. Regarding the combustion of coal and biomass, it is the 

classic technology for household energy, especially for cooking. There are several 

major chemical and physical phenomena occurring during this process as illustrated in 

Figure 2.6. The ideal combustion is the complete oxidation of fuel molecules to CO2 

and H2O. In practice, combustion is always incomplete, and even in the idealised case 

of complete combustion. For example, the nitrogen in the air may react with the oxygen 

to produce nitrogen oxides and also many fuels contain elements other than carbon that 

may be transformed during combustion.  

 

Figure 2.6: Various chemical and physical mechanisms during solid fuel combustion 

(adapted from [59]). 

Figure 2.7 shows the volume loss and mechanisms involved in the combustion of a 

solid fuel. For the design and optimization of combustion systems, knowledge of these 

mechanisms is essential. The combustion process generally entails the combustion of 

the volatiles released during devolatiliztion stage (homogeneous combustion) followed 

by the char oxidation, which represents the reactions between the solid carbon and the 
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surrounded gases (heterogeneous combustion). It must be noted that the latter one may 

simultaneously proceeds with devolatilization, depending on reaction conditions.  

Devolatilization is the release of volatile matter by thermal decomposition. It is carried 

out in widely different environmental conditions and plays a paramount role in burning 

solid fuels. When it occurs in an inert atmosphere is termed pyrolysis, which, as a 

standalone technology, is a possible thermo-chemical conversion route of commercial 

importance in the production of a huge number chemical compounds. 

 

Figure 2.7: Combustion stages of a small biomass particle (adapted from [26]). 

However, for engineering applications, in the absence of any reacting gas medium, it is 

defined as an endothermic reaction which converts solid fuel to a mixture of gas and 

solid residue at high temperature (950-1100 K). Based on biomass in a number of 

ways, pyrolysis as a thermo-chemical conversion route can be used as a part of 

renewable energy systems. For example, liquid and gas products produced from 

pyrolysis of biomass can be used directly for generating electricity. Moreover, high 

value products suitable for use as transport fuels are produced by upgrading the liquid 

product. Additionally, the char produced by pyrolysis can also be used as a renewable 

fuel and in its traditional form as charcoal is used for cooking in the developing 

regions. However, the traditional process of making charcoal is often seen as a major 

source of environmental degradation in the form of deforestation and pollution in rural 

areas [60]. 

 Devolatilization is the term that typically used for the process occurring in an oxidising 

or combusting atmosphere such as the one present within a combustor and this context 

will be used in the present investigations. It is the process where combustible gases are 
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released from the solid fuel due to thermal decomposition [61]. As devolatilization 

proceeds, volatile gases are formed from the solid fuel matrix. These released gases 

diffuse towards the particle surface and may combust within or in the vicinity of the 

particle or in both of them. Despite its occurrence on a time scale that is much shorter 

than the subsequent char oxidation process, devolatilization has a profound effect on 

the whole combustion process [62, 63]. This process is the basic step in any 

combustion or gasification process of a solid fuel [61, 64].  

During the devolatilisation, the degree of released volatiles and the composition of 

these volatiles and char depend on several parameters such as the fuel type and 

composition, particle size, pyrolysis temperature and heating rate and pressure. For 

more information about the effects of these parameter one can refer to the review 

papers by Yu et al. [65], Borah et al. [66] and Di Blasi [61]. The process of 

devolatilization accounts for up to 70% of weight loss experienced by coal and up to 

95% for biomass and it takes place on a time scale shorter than char oxidation. 

Typically, the devolatilization products consist of CO, H2O, CO2, H2 and light and 

heavy hydrocarbons (CxHy), which subsequently may react in an oxidising gas phase to 

produce CO2 and H2O as well as the solid carbonaceous residue, char, which includes 

also the inorganic components (ash). The first five components are termed as light gas, 

and the last one as tar. Tar is a high molecular weight substance that is released in the 

gaseous phase and it condenses at room temperature. Normally, the assumptions made 

on the mechanisms of formation, the rate of biomass decomposition, and the final 

composition of the volatiles are differ from one researcher to another depends on the 

objectives of the modelling and the available experimental data for the particular 

situation. For example, in [67, 68] all these components are lumped together and 

treated as a single pseudo-product. It maintains the species balance and has an energy 

of information of that is consistent with the overall energy of the reaction. For the 

simplicity of combustion modelling, the same assumption has been made in the current 

investigations. The portions of the three products of pyrolysis process (gases tar and 

char) depend upon the type of pyrolysis that is determined by the residence time and 

temperature. High temperature and long residence time enhances the conversion of 

solid fuel into gaseous products, while for short residence time tends tar yields are 

favoured. 

The most important parameter for the devolatilisation process among those mentioned 

above is the temperature. At increasing temperatures the mass loss due to thermal 
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decomposition of chemical bonds increase until only char and ash remain. In addition 

to that, higher temperatures lead to lower char yield in all pyrolysis reactions. The char 

composition is also affected by temperature, and therefore, at higher temperatures, the 

chars produced are rich in carbon [47].  

The devolatilisation is also affected by the molecular structure of the solid fuel as it 

involves the breaking of chemical bonds. For example, coal devolatilization behaviour 

is different from that of biomass. Coal devolatilisation takes place at much higher 

temperatures. However, there is a broad range of coal types as outlined in § 2.1.1, each 

of which decomposes in slightly different manner. Generally, low rank coals generate 

high gas yields and low tar yields [69] like biomass. Bituminous coals generate a high 

yield of tar compared to other coals [69, 70], while high-rank coals exhibit low gas 

yields and also moderate or low tar yields [69]. On one hand, as it is heated, coal 

typically releases volatiles in three stages which are low temperature process, primary 

pyrolysis, and secondary pyrolysis [71].  

The low temperature process (200-400°C) in which coal undergoes mild changes is 

related to removal of crystal-bound moisture and disruption of hydrogen bond. Then, 

during the primary pyrolysis at higher temperatures, the weakest covalent bonds break 

and produce fragments, which will be released as primary tar if they are small enough 

to vaporize and be transported out of the char particle. The secondary pyrolysis 

involves breaking the stronger covalent bonds. It initiates when the tar and certain light 

gases begin to undergo further reactions in the gas phase. On the other hand, biomass 

devolatilisation is mainly related to the content of lignocellulosic components which 

are cellulose, hemi-cellulose, and lignin. It results in a rapid weight loss as these 

components break down. It appears to be simple. However, the differences in chemical 

composition of these components and its breaking down at different temperature ranges 

make the devolatilization process complicated and the subsequent release of inherent 

volatiles lead to structural changes [72].  

During pyrolysis, biomass typically starts to release volatiles at temperature of 160-300 

°C [73, 74]. Cellulose and hemicellulose components contribute differently to the 

overall pyrolysis [75, 76] and they decompose in a somewhat narrow temperature 

interval. Whereas, lignin decomposes slowly through a wide temperature interval [77]. 

At a heating rate of 5°C/min, first, the decomposition of latter one takes place at lower 

temperatures around 250°C to 320°C. Then, the decomposition of the former one 

occurs at higher temperatures 310 to 380°C. The decomposition of the two 
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components, in some cases, may overlap and occur at similar rates. Finally, the thermal 

degradation of lignin takes place at 300 to 430°C [78]. It typically results in a 

continuous weight loss at slow rates in the regions of highest temperatures. Figure 2.8 

depicts the thermal degradation of four 5mg wood samples at a rate of 10 °C/min. All 

the samples have the same trend for weight and derived weight as a function of 

temperature. The areas of weight loss for the three components of biomass are shown in 

the figure. It was reported in [61] that at low temperatures, the evolution of CO, CO2 

and H2O is mainly because of the degradation of extractives and hemicelluloses and as 

the temperature increases, the formation of tar vapours becomes predominant due to 

cellulose degradation. Lignin decomposition also attains fast rates and results in 

producing char and additional gases (CO2, CO, CH4 and H2).  

 

Figure 2.8: Thermo-gravimetric weight loss curves of four wood samples: ○ spruce, □ 

brich, ● beech white and ■ acacia (adapted from [26]). 

The process of devolatilization, in the case of coal and depending on its type, occurs 

when the coal is first heated to temperature higher than 350
º
C [74] and both the 

chemical and pore structures change significantly. This is due to the release of the 
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volatile constituents of the coal in the form of gaseous compounds and tar in an inert 

environment. The yields of this process also include the char, which is the solid product 

that has higher carbon to hydrogen ratio than the original coal. The composition of 

these productions depends on the factors mentioned above. It was observed that amount 

of ultimate weight loss of coal during pysolysis increases with increasing the peak 

temperature [79-81]. The yields of char are inversely impacted by temperature. Higher 

temperature decreases char yields, whereas, lower devolatilization temperature 

increases char yields.  

The influence of particle size on the devolatilization process of solid fuels is related to 

the internal heat transfer and residence time of the reactive species in the particle. 

Therefore, the pyrolysis can be conventional (slow) or fast, based on the operating 

conditions that are used [16, 82]. Regarding the former one, the larger the particles the 

slower the heating rate and consequently, the slower the devolatilization rate. In the 

present study, the latter one has been considered due to its relevance to the pulverized 

combustion, where values reaching. For fast pyrolysis, the following conditions should 

be met: (a) high heating rate, (b) short vapour residence time. This, generally, entails 

that the solid fuel to be prepared as small particle sizes. Moreover, it needs a design 

that removes the vapours quickly from the presence of hot particles. Therefore, the 

understanding of the influence of particle sizes will be of importance in order to select 

appropriate size fraction for conversion efficiency and design of biomass combustion 

alone or co-combustion with coal [83].  

It is easy to imagine that smaller particles carried by the gas stream tend to be 

consumed faster and more easily than the larger ones. Therefore, the particle size 

distribution influences not only the rate at which the fuel reacts with oxygen and other 

gases, but almost all other aspects of combustors and gasifiers as well.  

In the case of biomass, grinding it into small particles is a challenging exercise because 

of the non-friable nature of biomass and its moisture content and requires energy. 

However, size reduction minimises the fibrous nature of biomass so that the burning 

rate is faster, enhances boundary layer diffusion and reduces heat transfer resistant [84, 

85]. Di Blasi [86] studied the effects of parameters such as particle size, reactor 

heating, and temperature in a reactor. It was found that char yields increase as particle 

size increases and higher rates lead to higher volatile matter yields and lower char 

yields. A study of the combustion characteristics of a single biomass particle ranging in 
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size from 10 μm to 20 mm was carried out [87]. It was concluded that the results were 

beneficial when used in assessing different combustion systems using biomass as a fuel 

such as pulverized fuel furnaces. Many other studies related to the influence of fuel 

particle size have been carried out [17, 87-90]. For coal devolatilization, the effect of 

particle size has also been observed [72].  

In terms of the effect of heat rate, the volatile yield, the temperature range at which the 

volatiles are released and the rate of weight loss are influenced by heating rate [61]. 

Therefore, the range at which volatiles are released shifts towards higher temperatures 

for increasing heating rates. Therefore, it is almost impossible to avoid the influence of 

heating rate on pyrolysis. As mentioned before, pyrolysis can be slow or fast. Slow 

pyrolysis assumes that the heating rate of the sample is below 10 K/s, while the rates of 

the latter one can be above 10
3
 K/s. The fast pyrolysis occurs. In almost all 

combustions of pulverized solid fuels, where the fast pyrolysis occurs, the heating rates 

of values reaching 10
5
 or even 10

6
 can be found. Whereas, fluidized bed  imposes lower 

values, or around 10
2
–10

4
 K/s and moderate to slow may happen in sections of moving 

or fixed bed combustion or gasification [91]. Pyrolysis has been studied in the case of 

biomass and extensively in the case of coal and numerous studies can be found in 

literature [51, 92-101]. 

Another process by which the thermal conversion of solid fuels is carried out is the 

gasification technology. It is defined as the thermal degradation of a solid fuel in the 

presence of an oxidizing agent such as oxygen, carbon dioxide or steam [26]. Its 

primary goals are to convert the non-ash fraction of the solid fuel to gas and produce 

gases that preserve, as much as possible, the heat of combustion value of the solid fuel. 

Combustion and gasification are two closely related processes, but there is a difference 

between them. The latter one packs energy into chemical bonds in the product gas, 

whereas in the former one these bonds are broken to release the energy. It should be 

noted that the term combustion is used for the gasification of char with the oxygen. It 

takes place at slightly lower temperatures than the combustion and aims to maximize 

the product gas which mainly consists of CO, CO2, H2O, H2, CH4, and other 

hydrocarbons. This technology, compared with the combustion, leads to reduce the 

emissions of CO2 due to the limited amount of oxygen (an oxygen-deficient 

environment). It is an endothermic process and as a result leads to reduce the 

temperature. Comparison between these processes can be found in [102]. 
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2.5 Char oxidation (heterogeneous combustion) 

Despite the similarity of biomass and coal chars, there are large physical differences 

between them with regard to thermal conductivity, density, porosity, surface area and 

particle size and shape. In terms of biomass, several fundamental studies have been 

carried out focussing on the reactivity and conversion of either single biomass particles 

or biomass char [87, 100, 103, 104]. In addition, more information regarding char 

reactivity of coal and biomass can be found in many reviews e. g. [61, 105]. Char 

oxidation and gasification is the process to occur in solid fuel combustion systems 

proceeding simultaneously or after the devolatilization process. The latter is usually 

assumed because the blowing of volatile matter through the particle surface and the 

flame formed during the combustion of volatiles effectively inhibits the surrounding 

oxygen from reaching the char [106]. During this process the char is oxidized or 

gasified by means of heterogeneous reactions. The heterogeneous reactions take place 

between the solid phase (char) and surrounding gases in the gas phase. Since char 

conversion is the slowest reaction, the heterogeneous combustion rate is a crucial factor 

for industrial furnaces and gasifiers. It determines the time required for complete 

conversion of char. It accounts for the majority of time required for fuel particle burn 

out. Furthermore, it defines the necessary residence times in the furnace, which directly 

influences the necessary size of the unit and as a result the investment costs [107]. It is 

the rate-limiting step. The rate-limiting step can be chemical or diffusional as will be 

described next. The burn out of carbon is affected by several factors that include the 

amount of volatile matter quickly released from the fuel, porosity of the resulting char, 

char particle size, the reactant and its partial pressure, furnace temperature and the 

residence time. If residence time is long enough and particle size is fine, the burnout 

increases.  

Heterogeneous reactions require a longer time than that of devolatilization. For 

complete combustion of char, the time required can be several of orders of magnitude 

larger than that for devolatilization. Since most of the char is carbon, CO and CO2 are 

the dominating products of burning carbon. Therefore, the other elements may be 

neglected when considering the heat effect of char combustion, and the char is 

considered to be 100% carbon without making large errors. However, the elements that 

have a large effect on formation of environmental emissions such as nitrogen and 

sulphur needs to be known in order to determine the emissions formation correctly. For 
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the process of char combustion and gasification, an oxidizing agent (oxygen, steam, 

carbon dioxide, etc.) from the surrounding bulk flow must diffuse to the particle surface 

through a boundary layer [108]. Reactions of char with oxygen are called oxidation 

reactions and those with steam and carbon dioxide are called reduction reactions. 

However, char gasification rates for its reactions with H2O and CO2 are negligible if the 

oxygen is present, and sufficiently we can only consider the char combustion with the 

oxygen [109].  

In addition, in the case of gasification and especially for high hydrogen partial 

pressures, the reaction of char with hydrogen may also become important. There is a 

thin layer surrounds the char particle where the homogeneous reactions occur. Through 

this layer, the diffusion of gaseous reactants and products takes place. The former ones 

diffuse into the char surface, while the latter ones diffuse away to the gaseous phase as 

shown in Figure 2.9 .  

 

 
 

Figure 2.9: Char combustion (adapted from [110]). 

Based on the process that controls the reaction rate of heterogeneous reaction rate, 

chemical kinetics, diffusion or a combination of them controls the combustion and 

gasification of char. One can refer to the comprehensive reviews [45, 105, 109, 111, 

112] for more information regarding the combustion of char regimes. Based on the 

rate-controlling mechanism the oxidation of char may be divided into three combustion 

regimes [61]. The heterogeneous reaction rate is limited by chemical kinetics (regime I) 

if temperatures are low, a char particle is very small and the reaction rate is low. 

Therefore, the concentration of oxygen is uniform within both the entire particle and 

the bulk gas phase in this case. 
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On the other hand, large char particles at high temperature often burn under diffusion 

limitations (regime III). In such case, the chemical reactions are very fast so that 

oxygen is consumed at the outer surface of the particle which means that the 

penetration depth of oxygen and the external surface concentration of oxygen 

approaches zero. With increasing the temperature in comparison to that of regime I, the 

reaction rate is influenced by the combined effects of chemical kinetics and diffusion of 

oxygen (regime II) in the intermediate region.  

In real combustion systems, various particles may burn under different regimes (the 

overall rate is influenced by a combination of adjoining zones and therefore, the 

analysis of oxidation regimes is more complicated. For example, pulverized fuel 

combustion has a significant distribution of particle sizes and therefore the oxidation of 

small particles of 1 μm may follow regime I, while those of ≥ 100 μm may burn under 

the conditions of regime II or III [105]. Under conditions of regime III, Biomass char 

particle are significantly more reactive than coal ones with respect to O2 and as a result 

a lower temperature is required for a biomass char particle to be oxidized than a coal 

char particle. 

2.6 Combustion technologies 

The application and knowledge of combustion of solid fuels are ancient. Solid fuels, in 

terms of wood from plant, have been used for cooking and generating heat since man 

discovered the fire. In modern times, they are burned in different ways. In principle, 

several combustion technologies exist for the combustion of solid fuels. The following 

ones can be distinguished: 

 Fixed bed combustion 

 Fluidized bed combustion 

 Pulverized fuel combustion 

Such solid fuel firing technologies are widespread and play a paramount role in 

generating heat and electricity. The choice of the proper firing system depends on many 

considerations. The basic principles of these systems are shown in Figure 2.10 and the 

distinction between them is based on the fuel feed techniques, the mode of heat-

feedback and combustion. The advantages and disadvantages of these systems and the 

comparison between them can be found in [16, 113-115].  
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The fixed bed combustion systems have been used for burning solid fuels since a long 

time ago. In these systems, also known as grate firing systems, the primary combustion 

air is supplied through a bulk bed of fuel, where drying, devolatilization and char 

combustion take place. Typically, the primary air speed is 0.1 m/s in utility plants [116] 

which is insufficient to lift the fuel particles and they remain in the layer on the grate. 

In most of the combustion systems there are two or more locations through which the 

air is supplied. In these systems the combustible gases released from the fuel bed are 

burned with secondary air additions that are often located separately from the primary 

combustion zone [26].  

 

Figure 2.10: Coal combustion systems outline (adapted from [117]). 

Fixed bed combustion systems are characterized by their flexibility regarding moisture 

content and fuel particle size [114, 118]. However, due to the poor mixing of air and 

solid particles longer reaction resident time is required to achieve full conversion of 

solid fuels. The poor mixing results in inhomogeneous combustion conditions at some 

parts of the grate. Moreover, ineffective mixing condition needs higher amount of 

excess air for complete combustion. The typical fixed bed combustion systems are 

grate furnaces and under-feed stokers. Based on the grate design, there are several 

different grate furnaces, including fixed grates, travelling grates, rotating grates and 

vibrating grates. All these types of furnaces have specific advantages and disadvantages 

depending on fuel properties [26]. Since no or minor fuel preparation is required, grate 

firing systems are preferred for fuels such as solid industrial wastes or biomass. The 
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grate furnaces can burn biomass fuels ranging in size from pellets (6-10 mm)  to wood 

logs [26]. 

Increasing the air velocity leads to that the drag forces between the air and the particles 

become larger and the bed begins to expand in volume. Then, a limit, where the drag 

force is in balance with the gravitational force and the particles are suspended within 

the flow, is reached. At this point the particles start to exhibit fluid-like behaviour and 

the bed is considered to be at minimum fluidization state [119]. Fluidization technology 

gives very good heat and mass transfer characteristics. In this technology (fluidized bed 

combustion), solid fuels are burned in a suspension of gas and solid bed material (non-

reactive material). Sand is usually used as the solid bed and located in the bottom part 

of the furnace. The primary air enters from below the bed through a nozzle distributor 

plate. Based on the air fluidization velocity and the particle size of the bed material, 

two different technologies, the bubbling fluidized bed combustion (BFB) and 

circulating fluidized bed combustion (CFB), are employed.  

In BFB, the fluidization velocity is lower to keep the bed particles which are located in 

the bottom part of the furnace in suspension by the primary air. Whereas, in CFB, the 

fluidization velocity is high and the bed is continuously circulating and thus the bed 

particles are carried out of the bed and separated in a cyclone and circulated back into 

the combustion chamber [26]. The feed of solid fuel particles is located somewhere 

above the sand bed and these particle fall down and mix with sand and therefore they 

are being lifted. Fluidized bed reactors, compared to other combustion systems such as 

fixed beds reactors mentioned above, on one hand, are generally characterized by 

having a very wide operating range regarding fuel materials and moisture and because 

of the good mixing conditions the temperature profiles along them are uniform. 

Therefore, the formation of hot spots is avoided. On the other hand, they are inflexible 

with regard to fuel particle sizes [114]. Therefore, a suitable fuel pre-treatment system 

for particle size reduction is required. For CFB, a particle of biomass with size below 

40 mm is recommended and regarding BFB units a size up to 80 mm can be used [26]. 

As outlined earlier, these types of furnaces provide better heat transfer within the 

fluidized bed and as a result the size of the boiler can be reduced. Furthermore, the 

lower temperatures in these furnaces make low level of NOx emissions. 

In pulverised fuel (PF) combustion, also called dust or entrained combustion, fuel 

particles are pneumatically injected into a furnace. They are kept in suspension while 
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reacting with the ascending gas flow. The combustion of the released gas is achieved 

by supplying secondary air. Pulverized combustion technology requires both fuel 

particle sizes to be very fine and low moisture content [114]. Pulverised combustion of 

coal is the common technique that is used for generating electricity for industries and 

utilities in the world. It is only feasible in large scale applications. In comparison with 

the other two types of reactors, they are characterized by their ability to use various 

types of fuels with different composition (e.g. co-firing of coal and biomass) and their 

quick responses to changes in load. Being a rapid process disturbed over the entire 

furnace, the combustion process of the pulverized particles makes it possible to achieve 

higher capacities than the other two types of combustion systems. Fuel requirements for 

PF combustion are higher than those for grate or fluidised bed combustion. When 

burning coal in pulverized furnace, it must be ground to fine dust with 90–98% of 

particles smaller than 100 μm to travel with the gas stream and they are characterized 

by short residence times no greater than a few seconds [37, 120, 121]. The higher 

moisture content and fibrous nature of many biomass fuels makes them harder to grind 

than coal and, according to van Loo and Koppejan [26], the maximum size for 

renewable fuels in PF boilers is 10-20 mm. However, as mentioned in § 2.2,  it was 

reported that wood particles should be milled to less than 1 mm, which is the critical 

size, in order to reach a satisfactory burn-out within the residence times typical for PF 

boilers. This is due to two factors. First, the residence time in PF is limited to few 

seconds. Secondly, oxidation rate of non-micron range particles in PF furnaces is 

limited by the oxygen diffusion to the particle and not by reaction kinetics. Using 

biomass alone in pulverized combustion not yet at any advance stage because of the 

high cost of biomass pulverization (reduction to fine particles) and the challenge to 

reduce the moisture content [122]. 

2.7 Modelling of solid fuel rates 

The field of combustion and gasification of solid fuels such as coal and biomass is one 

of the important sources for producing energy and power and it is always of great 

importance to understand the processes of burning such fuels. Combustion studies are 

required for the purpose of determining combustion characteristics under well-

controlled conditions to aid in the design and operation of solid fuel combustion 

systems. This section presents the solid fuel combustion sub-models such as drying, 

devolatilization and char oxidation models.  
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2.7.1 Drying 

One issue that is related to the combustion of solid fuels is the moisture content. The 

moisture content of coal is very little that it has not a great effect on the combustion 

process, while biomass contains large amounts of water that needs to be dried prior to 

combustion. The conversion process of solid fuels always starts with drying process. 

The water leaves the fuel particle as steam which cools down its outer surface. 

Proceedings of heat are needed for drying, and in return, this lowers the temperature in 

the combustion device. Therefore, as mentioned in § 2.2, for biomass combustion, it is 

not practically feasible to burn particles with high moisture content, since moisture 

content in excess of 55 wt % makes it very difficult to maintain the combustion process 

[24].  

There are two forms of moisture in which a solid fuel particle can exist, which are free 

water and bound water. To categorize the moisture content in biomass, the criterion of 

fibre saturation point, which is approximately 30% wt db for wood, can be used. The 

moisture content is categorized as free water above this point and as bound water below 

it. There are various methods of modelling the moisture-drying process [123]. The 

thermal model is the simplest one in which the drying process begins when the fuel 

reaches a predefined temperature, which is typically 100 
º
C. Another model uses an 

algebraic expression for temperature as a function of moisture content. It is similar to 

the thermal model but the evaporation temperature is not constant. In some cases, 

moisture evaporation is assumed to be diffusion limited (diffusion expression 

method).The most common method is that in which the drying process is treated as an 

additional chemical reaction. It is so-called the first-order kinetic rate model. In this 

model, it is sufficient to add water and its vaporization heat to kinetic scheme. The 

reaction rate    can be expressed in first order Arrhenius form [124, 125]: 

        
  
→                                                                              (2.3) 

2.7.2 Devolatilization models 

As it was mentioned before (see section 2.4) that the devolatilization process is 

complex owing to  several influencing parameters, which include  heating rate, 

temperature, moisture content, fuel chemical composition, pressure and particle size 

and shape. With regard to coal combustion, a number of models have been previously 

developed and implemented for the devolatilization of various coals. Several reviews of 
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these models have been published [69, 126]. These models include the simple ones 

such as constant model [127], single kinetic rate model [128] and the Kobayashi model 

(two competing rates model) [99]. The first one is the most basic devolatilization model 

that assumes the driving off of volatiles to take place at a constant rate. In the second 

model, it is assumed that the rate of volatiles release is first order dependent based on 

the amount of volatiles remaining in the fuel. The important shortcoming of this model 

is that it cannot account for the dependence of the volatile yield on the final 

temperature. To overcome this, the Kobayashi model is used to handle the 

devolatilization of coal and volatiles release through the implementation of two 

equations. One equation is for low temperatures and has a certain volatile yield and the 

other is for higher temperatures where it is assumed that the volatile yield could be 

much larger.  

In addition to the above mentioned models, there are complex models, which are 

applicable over a wide range of coal types, including the functional group-

devolatilization vaporization cross-linking model (FG-DVC) [129], the FLASHCHAIN 

structural model [130] and the chemical percolation devolatilization (CPD) [126]. 

These models are extremely complex and difficult to use for practical applications. 

Despite the important differences between coal and biomass, coal devolatilization 

models have been commonly adapted for the biomass devolatilization. In addition, 

many biomass pyrolysis/devolatilization models have been developed and 

comprehensive reviews on the various models and kinetics are presented by Di Blasi 

[97] and also given in [19, 131]. The kinetic mechanisms classification involves these 

three main global schemes: 

1. One-step global mechanisms. 

2. One-step multi-reaction mechanisms. 

3. Multi-step semi-global mechanisms. 

The way used by one-step global mechanism to define devolatilization rates is very 

simple. The products can be either (volatiles or char) or (gases, tar and char) as shown 

in equations (2.4) and (2.5). 

       
  
                                                                                      (2.4) 
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                                                                                 (2.5) 

The rate of reaction (  ) is expressed in an Arrhenius fashion (equation (2.6)) and the 

necessary kinetic parameters are generally obtained experimentally using tube furnaces, 

thermo-gravimetric analysers, etc. 

        (
   

   
)                                                                             (2.6) 

where    is pre-exponential factor,    is activation energy,    is universal gas constant 

and   is temperature (°K). The major drawback of this mechanism is its inability to 

predict the composition of volatiles and not accounting to various components of the 

virgin biomass. To overcome these limitations, One-step multi reaction mechanism has 

been developed as can be illustrated below: 

       (      )
  
  (        )                                                                  (2.7) 

 

        (        ) 
  
                                                                    (2.8) 

where   is gases, tar or char. But this scheme neglects the secondary reactions 

(tarcracking to light molecular weight volatiles) which become significant when the 

temperatures become higher and there are sufficiently long residence times as well. To 

address this issue multi-step semi-global schemes have been considered. It is usually 

assumed that the fuel first decompose to so called active intermediates with lower 

degree of polymerization. Then, theses intermediates decompose to other products. 

Two-stage semi-global reactions for both cellulose and wood are illustrated in Figure 

2.11 [131]. It is assumed that all reactions are first order, irreversible and follow 

Arrhenius law (equation (2.6)). Kinetics of these two schemes are given in [132]. 

 

Figure 2.11: Two-stage semi-global reaction mechanisms for (a) cellulose; (b) wood. 
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2.7.3 Heterogeneous combustion models 

The devolatilization process produces gaseous volatiles and solid char that both react 

further in homogeneous and heterogeneous reactions. The gaseous volatiles, at high 

temperature, react very fast towards their equilibrium composition (mixture of the main 

components CO2, CO, H2O, H2 and N2. The heterogeneous reactions take place 

between char, which is assumed to be consisting of only carbon and these gases and 

determine the further solid fuel conversion. 

A part from the reaction with oxygen which is simply termed char combustion that 

produces CO and CO2, all reactions of char with any gaseous reactant other than 

oxygen refer to char gasification. The latter takes place at rate much slower than the 

former one and consequently the gasification reactions have a longer residence time 

within the furnace. 

The heterogeneous reactions are considered to be influenced by many factors including 

the total active surface area, the local gas reactant concentration, local temperature, 

pressure, char structure and composition and the overall scheme can be described in 

these basic processes: diffusion of mass and heat through the boundary layer 

surrounding the solid fuel particle, diffusion of mass and heat within the porous 

structure of fuel and reaction of gases with solid surfaces [105].  The surface burnout 

reaction is represented by equation (2.9). 

 ( )           ( )          ( )                                                                 (2.9) 

where    is the stoichiometry and defined in terms of mass of oxidant per mass of char 

 ( ). Its value depends on whether the gaseous product is CO or CO2. There are 

several global char combustion models available in literature. One of these models is 

the diffusion-limited surface reaction rate. It assumes the conditions of regime III 

mentioned in §2.5, where the chemical reactions are assumed to be fast. In this regime, 

the oxidant (oxygen) is consumed as soon as reaches the particle surface. At high 

temperatures, surface reactions are so fast and this means that the partial pressure at the 

particle surface is assumed zero. This model is based on the work done by Baum and 

Street [127]. It is based on the assumption that the surface reaction proceeds at a rate 

determined by the diffusion of gaseous oxidant (oxygen) to particle surface i.e. the rate 

of combustion only depends on the mass transfer in the vicinity of the char particle and 

this rate is computed by the following equation: 
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 ̅     
   

  
           

       

  (     )
  (2.10) 

where   ,     ,   ,    ,   ,    and    are the stoichiometry of equation (2.9), the 

diffusion coefficient for oxidant in the bulk, the particle diameter, the local mass 

fraction of oxidant in the bulk the particle temperature, the gas temperature and  the gas 

density, respectively. In this model, it is assumed that the diameter does not change and 

the kinetic contribution to the surface reaction rate is ignored. Range of the validity of 

the diffusion limited approach can be extended to the conditions of regime II. It was 

suggested by Baum and Street [127] and Field [133] to use a diffusion rate coefficient 

and a reaction rate coefficient. Thus, the effective surface reaction rate includes the 

effects of both bulk diffusion and chemical reaction rates. Therefore, the so-called 

kinetics/diffusion limited surface reaction model was developed. In this model, char 

reactivity is limited by the minimum of kinetic rate and the oxidant boundary layer 

diffusion.  

In the kinetics/diffusion model, the diffusion rate is expressed by the following 

equation [127]: 

      
[(     )  ⁄ ]

    

  
  (2.11) 

and the kinetic rate is determined by: 

      (     )⁄   (2.12) 

then, char combustion rate is: 

 ̅     
   

  
        

   

    
     

        

     
 (

   

    
)  (2.13) 

where    (      
 ),    ,    and       are the surface area of the coal particle, the 

partial pressure of oxidant species in the gas phase, the diffusion rate coefficient and 

the molecular weight of oxidant, respectively. The above mentioned models only 

consider boundary layer diffusion and ignore some important phenomena like char 

porosity, changes in pore structure and external surface area during char combustion 

[134]. Contrary to this, the model that accounts for pore diffusion is the intrinsic 

reaction model, which is based on the model of Smith [135]. It is similar to 

kinetics/diffusion limited rate model. In this model, the diffusion rate is computed by 

equation (2.11), but the chemical rate is describes the combined effect of intrinsic 

reactivity and pore diffusion and expressed as following: 
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         (2.14) 

where   is the effectiveness factor (the ratio of the actual combustion rate to the rate if 

no pore diffusion resistance existed),    is the volume of the particle,    is the apparent 

density of the char,    is the specific internal surface area of the char particle and    is 

the intrinsic chemical reaction rate, which is of Arrhenius form: 

      
 (     )⁄   (2.15) 

where the pre-exponential factor   and the activation energy   can be measured for 

each char.    is solved as a function of Thiele modulus as 

   
 

 
(        )  (2.16) 

where   is the Thiele modulus: 

   
  

 
*
           

     
+  (2.17) 

and     stands for the density of oxidant in the gas phase and    is the effective 

diffusion coefficient in the particle pores (for more details one can refer to [135])    

The other model of char oxidation is the multiple surface reactions model, which 

describes that the particle surface species can be depleted or produced by the 

stoichiometry of the particle surface reaction. 
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3 RANS simulations of methane 

combustion 

Methane is one of the main species resulted from the devolatilization process when 

burning solid fuels and modelling its oxidation is not only important in gas turbines but 

in oil, gas, pulverized coal-fired boilers and furnaces as well. Therefore, this chapter 

has been dedicated to the investigation of the turbulent diffusion combustion of both 

pure methane and its dilution with nitrogen based on Reynolds Averaged Navier-Stokes 

(RANS) approach. The investigation has focused on evaluating the effect of various 

turbulence models on the accuracy of CFD simulations. The Navier-Stokes equations 

are solved with k-ϵ turbulence closures. Since several phenomena such as mixing, 

turbulence, radiative heat transfer, chemical kinetics take place during combustion 

process, and in order to obtain reasonable results, a rational approach with appropriate 

sub-models should be used. The standard and realizable k-ϵ turbulence models are 

modified and their effects on the combustion process are also investigated. Different 

reduced global reaction mechanisms of methane combustion have been used. The 

reaction mechanism by Westbrook and Dryer is optimized to see its effect as well. The 

turbulence-chemistry interaction is modelled using a finite-rate/eddy dissipation model 

FR/ED. This chapter presents the modelling approach and numerical results of methane 

combustion in an axi-symmetric chamber. The results are compared with experimental 

data available in literature. 

3.1 Introduction 

In terms of fluid mechanics, modelling of turbulent combustion is one of the most 

important and complicated subjects due to the complicated nature of turbulence-

chemistry interaction. Turbulent flames involve a wide range of coupled problems such 

as the mixing between the reactants and, more generally, all transport phenomena (heat 

transfer, molecular diffusion, turbulent transport, etc.). To carefully describe these 

problems, the fluid mechanical properties of the combustion system must be well-

known. Combustion requires both the fuel and the oxidizer to be mixed at a molecular 

level. The other important things that are involved in turbulent flames include the 

chemical reaction schemes as well as the heat transfer due to radiation. 
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Detailed description chemistry is necessary to estimate the consumption rate of fuel, 

formation of combustion products and pollutant species and give a deeper insight into 

reactive flow processes. Therefore, a good knowledge of the chemistry schemes 

(chemical reaction schemes) is definitely required to predict the combustion processes. 

Such a detailed chemistry can contain hundreds of chemical species and thousands of 

elementary reactions.  

In combustion systems at high temperatures, radiative heat transfer becomes significant 

and for accurate simulations, it needs to be taken into account. There are two main 

categories in which turbulent combustion can be classified which are premixed and 

non-premixed combustion. In the former one, the fuel and the oxidizer are first mixed 

homogeneously and then the mixture enters the combustion chamber. This type of 

combustion is found in the spark-ignition engine where the fuel and the oxidizer are 

mixed at the molecular level for a long time and then the energy of the spark initiates 

the combustion flame at first by laminar and then by turbulent propagation.  

In turbulent non-premixed combustion, the fuel and the oxidizer enter the combustion 

chamber individually and the combustion takes place simultaneously with the turbulent 

mixing process. This type of combustion, which is of the primary interest in this 

chapter, is employed in a wide array of practical applications such as gas turbines and 

oil, gas, pulverized coal-fired boilers and furnaces. The widespread use of non-

premixed combustion is the major motivation for the numerous model approaches to 

their numerical simulation [136]. The rate of the reaction is often controlled by the 

mixing rate and the molecular diffusion of the reactants towards the reaction zone and 

because the diffusion transport is essential in the effective mixing of the reactants at the 

molecular level, the non-premixed combustion is also known as diffusion combustion.  

The developments of simplified models play a significant role in the understanding of 

solutions of complex systems of governing equations. Therefore, a lot of successful 

models include their validations against results from experiment have been worked out. 

Many computational studies regarding diffusion combustion have been carried out and 

numerous combustion models have been developed and used for different applications. 

There are many reviews dealt with non-premixed combustion such as Bilger et al. 

[137], Bilger [138], Peters [139], Veynante and Vervisch [140].  

One of the important aspects in the numerical simulations of combustion of fuels such 

as methane is the modelling of kinetic mechanisms. In reality, this phenomenon can 
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involve a large number of species and reactions. In CFD simulations, for each species 

in the reaction mechanism, one species conservation equation needs to be solved. 

Therefore, to decrease the computational costs, the level of description of combustion 

chemistry has to be reduced down to a level that a few numbers of species and 

reactions are included. Moreover, the addition of chemical species makes the turbulent 

reaction modelling more complicated since the chemical reaction rates depend non-

linearly on the concentration of species [141]. Then, the reduced mechanisms are 

favourable.  

In this context, the present simulations were intended to apply different simplified 

reaction mechanisms accompanied with different turbulence models to model the 

turbulent diffusion combustion of both methane and its dilution with nitrogen. The 

major work includes the comparison between the selected reaction mechanisms and the 

investigation of the effects of different turbulence models and how they affect the 

simulation results when they are modified.  

The other important aspects are the kinetics and mixing time scales. The interaction 

between combustion chemistry and turbulent mixing is important because the structure 

of non-premixed flames is mainly governed by the coupling between both mixing and 

chemical reactions. The chemistry could be considered infinitely fast when considering 

the chemical reaction characteristic time to be much smaller than the flow time scale, 

and correspondingly the Damköhler number is very high. The Damköhler number (  ) 

is the ratio of chemical reaction and fluid dynamic mixing.  

     
  

  
      (3.1) 

where    is the turbulent time scale and    is the chemical time scale.  

In this case, a simple finite rate model (FRM) is less unrealistic and otherwise to model 

the combustion, approaches such as eddy breakup model, also referred to as eddy-

dissipation model (EDM) [142] in FLUENT, or flamelet models (FLM) could be used. 

However, the EDM model does not take into account the real gas effects, e.g. the 

exclusion of reactant concentration in the reaction rate calculation. The FLM assumes 

that the local chemical structure of a flame is independent of the physical complexity of 

the surrounding flow. Therefore, the flame structure resembles a laminar like structure. 

In this model, diffusion processes and chemistry are coupled. In the case of laminar 

flamelet model, all flame properties in the flame at any point in the flow are described
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in terms of the mixture fraction and the strain rate (or scalar dissipation rate). This 

reduction of the complex chemistry to two variables allows the flamelet calculations to 

be pre-processed, and stored in look-up tables. Therefore, computational costs are 

reduced considerably. By using this model the calculation of a turbulent reactive flow 

with a detailed chemical kinetic can be achieved by solving only two additional 

transport equations for the mean mixture fraction and the mixture variance. 

Accounting for chemistry on turbulent diffusion flames  can be also described by more 

elaborate models such as finite rate/eddy dissipation model (FR/ED) and eddy 

dissipation concept model (EDC) [143] are used. In these two models, the chemical and 

mixing times are of the same order, thus, the mixing and chemical reactions are 

influenced by each other.  

3.2 Governing equations 

With regards to a homogeneous reacting flow, the change in pressure, temperature, 

density, velocity of the flow and concentration of species is as a result of fluid flow, 

molecular transport, radiation, and chemical reactions as mentioned in § 3.1.  

3.2.1 The Navier-Stokes (N-S) equations 

In reacting flows, properties such as mass, momentum and energy are conserved and as 

a result of this the mathematical modelling is basically based on a set of governing 

equations of the conservation of mass, momentum, energy, and chemical transport and 

reactions. These equations can be derived by considering a control volume as a system. 

Such an approach is known as control volume approach.  

The law of mass conservation results in the mass continuity equation as shown below: 

  

  
 

 

   
(   )     (3.2) 

where    (j = x, y, z) are the Cartesian coordinates,    or (ux, uy, uz) are the Cartesian 

components of the velocity vector  ⃗⃗ [m/s], t [s] is the time coordinate and   [kg/m
3
] is 

the mixture density. 

The law of momentum conservation leads to the following equation: 
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where p [Pa] is the static pressure,     [N/m
2
] denotes the viscous stress tensor and     

[N/m
3
] is the gravitational body force. The body force can often be neglected when 

modelling chemical reactions. The viscous stress tensor can be expressed in terms of 

molecular viscosity, µ [kg/m.s], and local velocity gradient as 

     (
 

   
   

 

   
   

 

 

 

   
      )  (3.4) 

where      is the kronecker delta i.e., (     = 1 if i = j and      = 0 otherwise). 

3.2.2 Species mass conservation equation 

In the case of fluid mixture and in addition to the Navier-Stokes equations, the species 

mass conservation equation is also needed to describe the chemically reacting flow. 
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(    )    

               i = 1,..., Nɡ                  (3.5) 

The two terms on left hand represent the rate of change of mass of species i and the net 

rate of decrease of mass of species i due to convection, respectively. The other two 

terms on right hand are the net rate of increase of mass of species i due to diffusion and 

the net rate of increase of mass of species i due to source. 

In the above equation,    is mass fraction of species i in the mixture,    is the number 

of species in the gas phase,   
    [kg/m

3
.s] is the net rate of production of species i due 

to homogeneous chemical reactions and      [kg/m
2
.s] denotes the molecular mass flux 

of species i. Generally, it has three components which are known as mass diffusion, 

pressure diffusion and thermal diffusion [144]. For most combustion processes, the last 

two ones may be neglected [141]. Using the Fick’s law the diffusion flux is given by 

             
   

   
                                                                                                         (3.6) 

The description of mass flux is further simplified by introducing the non-dimensional 

Schmidt number. 

      
 

   
                                                                                                                (3.7) 

then  

        
 

  
 
   

   
                                                                                                            (3.8) 
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   [m
2
/s] is the diffusion coefficient for species i and it will be different for different 

species. In this work, a simplification is made that all species have the same diffusion 

coefficient.  

3.2.3 Energy conservation equation 

The knowledge of temperature, T, is required for the evaluation of density and chemical 

reaction rate. It can be obtained by solving the energy equation which can take several 

forms having one of these, static temperature, static enthalpy and stagnation enthalpy or 

internal energy, as the principle variable. The governing equation can be written in the 

following form:  

 

  
(  )  

   

   
(    )   

 

   
       (3.9) 

where,    is the energy flux,    is the internal production rate for thermal energy, for 

example due to radiation and e is the specific total energy and is given by  

      
 

 
                                                                                                                (3.10) 

where h is the enthalpy of the mixture. 

then equation (3.9) becomes as following: 

  
 

  
(  )  

   

   
(  )  

  

  
 

 

   
                                                                        (3.11) 

The enthalpy in equation (3.10) is related to the temperature by its definition in terms 

of species enthalpy, 

    ∑     
  
 

  (3.12) 

where    is the absolute internal enthalpy for species i and for an ideal gas the enthalpy 

is an unique function of temperature. The enthalpy at given temperature is calculated 

from approximated by 

    ( )    
  ∫     ( )  

 

  
  (3.13) 

where   
  is the heat of formation of species i at a reference temperature    (298.15 K) 

and      ( ) is the specific heat at constant pressure of species i. 

       (
  

  
)
 
                                                                                                            (3.14) 
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The specific heat for the mixture    at constant pressure is 

     ∑       
  
 

  (3.15) 

The energy flux    is divided into three different parts [141]. 

        
    

    
                                                                                                 (3.16) 

where   
  denotes energy flux due to conduction,   

 denotes energy flux due to species 

diffusion and   
  denotes energy flux caused by concentration gradients (Dofour 

effect). The latter is usually much smaller than the other two components [141], and 

has been neglected in this work. 

The energy flux due to conduction is expressed by Fourier’s law as following: 

    
    

  

   
                                                                                                        (3.17) 

with   being the thermal conductivity of the mixture. As a function of enthalpy, by 

combining equations (3.12), (3.13) and (3.14) the energy flux due to conduction can be 

written as 

    
  

 

  
(∑   

  
 

   

   
 

  

   
)  (3.18) 

As indicated by the name, energy flux due to diffusion is caused by the diffusion of 

species with different enthalpy and is given by 

    
  ∑       

  
 

                                                                                                        (3.19) 

 

    
   

 

  
∑   

   

   

  
 

                                                                                               (3.20) 

then, the energy flux can be written as 

        
  

   
 

 

  
∑   

   

   

  
 

                                                                                    (3.21) 

Similar to the introduction of Schmidt number in mass flux, the non-dimensional 

Prandtl number    is introduced to simplify the description of energy flux 

     
   

 
   (3.22) 

The Lewis number is the ratio of Schmidt and Prandtl numbers 
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   (3.23) 

then, the total energy flux becomes,  
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 (  

 

  
)∑   

   

   

  
 

]  (3.24) 

The Lewis number for most gases is close to unity [145], and by assuming Le = 1, 

equation (3.24) is further simplified. Equation (3.10) is further simplified by assuming 

that      to the following equation: 

  
 

  
(  )  

   

   
(  )  
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)      (3.25) 

3.2.4 The equation of state 

The mixture of reactants and products is treated as ideal gas and therefore the equation 

of state for density is needed to make the system of governing equations close. For the 

operating conditions of flames studied in this work the gas mixture can be assumed to 

behave as an ideal gas mixture and with the equation of state [146] the pressure   is 

given by 

        ∑
  

    

  
 

                                                                                                  (3.26) 

Alternatively  

       
 

∑       
  
 

                                                                                                  (3.27) 

where      and    are the molecular weight and mole fraction of species i, 

respectively, T is the mixture temperature in [K] and    is the universal gas constant 

(   = 8.1314 KJ/kmol.K).  

3.3 Turbulence models 

In turbulent flows, all transport processes are enhanced by turbulent fluctuations but in 

laminar flows most of the transport processes take place on molecular level. The 

interaction of chemistry and turbulence leads to turbulent combustion. When the 

interaction of a flame and a turbulent flow occurs, the turbulence is modified by the 

combustion due to the strong flow accelerations through the flame front induced by the 

release of heat and due to the large kinematic viscosity changes associated with the 
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temperature changes. There are many practical devices in which turbulent combustion 

occurs like gas turbines, furnaces, boilers, internal combustion engines and rocket 

engines. In these devices, turbulence causes large fluctuations of mass fractions, 

temperature and density and moreover extinction can occur when turbulence effects are 

strong. Turbulent flows are characterized by the presence of a wide range of time and 

scales at which motion and fluctuations take place. The formation of turbulent eddies is 

present in a wide range of sizes, ranging from largest scales to small eddies 

(Kolmogorov scales), and transport most of the turbulent kinetic energy. The 

turbulence scale in comparison to laminar flame thickness characterizes turbulent 

flames and therefore the interaction of chemistry and turbulence plays an important role 

in turbulent combustion. The large scale eddies, which are responsible for the effective 

mixing, are exposed to the process of vortex stretching. They are significant as they 

carry most of the energy. In the process of vortex stretching, the motion in large scales 

is translated into the smaller eddies. In this way, the energy is passed on from large 

eddies to smaller and smaller eddies until reaching the smallest eddies, where the 

viscous effects are strong and energy is dissipated into heat through viscous dissipation. 

Such a process is known as energy cascade. In DNS simulations, as mentioned in §1.1, 

all of the motions contained in the flow are resolved. In order to account for the full 

nonlinear multi-scale effect of turbulence in a combustion process, the governing 

equations must be solved resolving the Kolmogrov scale eddies, which makes such 

simulations computationally expensive. Thus, DNS is restricted to low-Reynolds 

number turbulent flows and simple geometries. A review work on the current status of 

DNS applications to non-premixed combustion is done by Vervisch and Poinsot [147].  

Instead of directly solving the Navier-Stokes equations for turbulent flows, LES and 

time-averaging approaches are used. The former approach (see §1.1) is still expensive 

in terms of computational costs, but when compared to DNS, they are much more 

reasonable. Comprehensive reviews on LES of turbulent flows can be found in 

literature such as Moin [148] and Lesieur and Metais [149]. The latter one is solving 

the RANS equations (Reynolds-Averaged Navier-Stokes). These equations describe the 

behaviour of the time-averaged flow quantities instead of the exact instantaneous 

values. In this approach, RANS equations arise when the Reynolds decomposition 

(Equation (3.28)) is implemented into the Navier-Stokes equations. Reynolds 

decomposition refers to the separation of the flow variable   into two components: 

mean component,  ̅   and fluctuating component,         
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      ̅                                                                                                                 (3.28) 

For the velocity components: 

       ̅    
   (3.29) 

The same is applied for pressure and other scalar quantities. 

After applying the Favre-time-averaging procedure and neglecting the gravitational 

body force RANS equations are as follows: 
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      )         ̅̅ ̅̅ ̅̅ + (3.31) 

Additional unknown Reynolds stress term         ̅̅ ̅̅ ̅̅  [N/m
2
] is introduced and in order to 

close equation (3.31) this term should be modelled. A number of turbulent models have 

been proposed and among them are the two-equation turbulence models [150-152], but 

the most popular models presently are the k-ϵ model [153] and the k-ω model [154]. 

They have proven to give good results for different turbulent flow regimes. These 

turbulence models are commonly used with gas and coal combustion models for the 

simulation. In the present work, the k-ϵ models have been used. There are three k-ϵ 

models available in FLUENT, which are the standard, RNG (renormalization-group) 

[155], and realizable [156] models. They are based on solving two additional transport 

equations. A common method employs the Boussinesq hypothesis [157] is used in 

these turbulence models. 

          ̅̅ ̅̅ ̅̅    (
 

   
   

 

   
  )  

 

 
    (  

 

   
     )                                        (3.32) 

where    is the turbulent viscosity and    is called the bulk viscosity and also known as 

volume viscosity, which expresses the resistance of the fluid against the rapid changes 

in volume. It is identically zero for low density monotonic gases and it is not too 

important. 

In the case of k-ϵ, two additional transport equations, for the turbulence kinetic energy k 

and the turbulence dissipation rate ϵ, are solved, and    is computed as a function of k 

and ϵ. 
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3.3.1 Transport equations for the standard k-ϵ model 

This model is a two-equation turbulence model proposed by Launder and Spalding 

[153]. It is a high-Reynolds number model. The model transport equations for k and ϵ 

are given in equation (3.33) and (3.34) as given by FLUENT [158]. The turbulence 

kinetic energy is obtained from the following transport equation: 
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]                  (3.33) 

And the rate of dissipation is computed from the following equation: 
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(        )     

  

 
      (3.34) 

where    and    are the turbulent Prandtl numbers for k and ϵ respectively,    is the 

generation of turbulent kinetic energy due to the mean velocity gradients (the 

production of turbulence kinetic energy),    is the generation of turbulence kinetic 

energy due to buoyancy, which is not considered in this study,    is the dissipation rate 

due to fluctuating dilatation in compressible flow and    ,     and     are model 

constants. The default values given by FLUENT [158] have been used for the model 

constants. To evaluate the turbulent viscosity   , equation (3.35) is used. 

         
  ⁄                                                                                                          (3.35) 

where    is a constant. The default values of model constants are as following: 

    = 1.44,     = 1.92,    = 0.09,    = 1.0,    = 1.3 and        

3.3.2 Transport equations for the RNG k-ϵ model 

This model has a similar form to the standard k-ϵ model. It was developed by Yahot 

and Orszag [155] in response to the empirical nature of the standard k-ϵ model. Rather 

than being based on observed fluid behaviour, this two-equation model was derived 

from the instantaneous Navier-Stokes equations using a statistical technique called 

renormalization group theory [159]. It takes into account low-Reynolds number effect. 
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    (3.37) 

The quantities    and    are the inverse effective Prandtl numbers for   and  . The 

model constants in equation (3.37) have values analytically by the RNG theory, used by 

default in FLUENT [158], which are 

                        

3.3.3 Transport equations for the realizable k-ϵ model 

The realizable k-ϵ model is an improvement on the standard k-ϵ model with respect to 

prediction of jet spreading rate according to FLUENT [158]. The transport equations 

for k and ϵ in the realizable k-ϵ model are  
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and 
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where  

      [     
 

   
]          

 

 
         √        

In these equations,    and     are constants and     is the mean strain rate. The model 

constants are 

    = 1.44,    = 1.90,    = 1.0 and    = 1.2 

The governing equations as well as the equations of the turbulent kinetic energy and its 

rate of dissipation at steady state for incompressible flow in a 2d-axisymmetric 

coordinate system can be written in the following generalized form: 

  
 

  
(      
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(        

  

  
)                                                          (3.40) 

where  ,  ,  ,  ,    and    are the density, velocity in x direction, velocity in r 

direction, flow property, diffusion coefficient of the flow property and source term of  

flow property on a volumetric basis, respectively. 
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Depending on  , equation (3.40) represents mass (m), velocity components ( ,  ), 

enthalpy (h) and a range of species mass fraction (  ). The variable   can also represent 

the turbulent scalars which are the turbulent kinetic energy ( ) and the rate of 

dissipation of this energy ( ) as summarized in Table 3.1. This table also shows the 

values for (  ) and the source terms as well.   

Table 3.1: Source terms. 

Equation            

Continuity 1 0 1 0 

Axial 

momentum 

u   
  

 

 

1  

  
(  

  

  
)  
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Radial 

momentum 
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Energy h
  

  
 
  
  

 
0.9    

Species   
 

    
  
  

 
0.7   

    

Turbulent 

energy 
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Turbulent 

dissipation 

rate 

    
  
  

 
1.3  

 
(           ) 

Constants
1
                  ,           ,             

Other terms        
    { [(
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 (
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]  (
  

  
 
  

  
)
 

} 

        
       

  ⁄  

where   and    are the laminar and turbulent viscosities, respectively. 

1 
Constants for standard k-ϵ turbulence model, 

2    is the production term. 

3.4 Thermal radiation 

In most combustion systems, thermal radiation may have a large influence on the 

combustion process. By radiation energy will be transported from the high temperature 

gas mixture to its cooler surroundings and this transfer will result in lower combustion 

temperature. The thermal radiative heat flux    from a blackbody to isothermal 

surroundings is given as 

       ( 
       

 )                                                                                                (3.41) 
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where    = 5.67x10
-8

 [W/m
2
.K

4
] is the Stefan-Boltzmann constant and       [K] is 

surroundings temperature. The radiative flux is proportional to    and therefore it 

becomes significant compared to the heat transfer due to convection or conduction. It 

depends on the hot combustion products, mainly carbon dioxide CO2 and water vapour 

H2O, which absorb and emit a significant amount of radiation in the thermal spectrum. 

They show strong absorption/emissions in the infrared spectrum. In contrast, diatomic 

gases N2 and O2 have no significant absorption bands. Thermal radiation propagation is 

described by the radiative transport equation (RTE). The accuracy in describing 

radiative heat transfer is crucial in simulations of turbulent combustion systems and the 

exact solution of the RTE is extremely costly. Therefore, to obtain an approximation, 

there are various radiation models are used to simulate radiation heat transfer such as P-

1 [160, 161], discrete transfer [162], discrete ordinates [163, 164] and rosseland [161] 

radiation models. In this study, P-1 radiation model (spherical harmonic method) was 

employed. This model is a first order approximation to the RTE. The radiation intensity 

is expressed by an orthogonal series of spherical harmonics. Therefore, it is 

mathematically simple and its implementation is easy. Additionally, it is 

computationally robust. 

The equation of balance of radiative energy transfer in a specified direction  ⃗ through a 

small differential volume for an absorbing, emitting, and scattering medium can be 

written as 

 
  ( ⃗  ⃗)

  
 (    ) ( ⃗  ⃗)    

    
 

 
 

  

  
∫  ( ⃗  ⃗) ( ⃗  ⃗ )  
  

 
 (3.42) 

where   [W/m
2
.sr] is the radiative intensity,   [m

-1
] and    [m

-1
] are the absorbing and 

scattering coefficients respectively,   is the refractive index, which is important when 

considering radiation in semi-transport media,   is the solid angle,  ⃗ and  ⃗  are the 

incoming and outgoing radiation direction vectors,  ⃗ is the position vector and   is the 

scattering phase function. In the above equation the term 
   

 

 
 represents the blackbody 

radiative intensity at the temperature of the medium T. 

P-1 model is based on the expansion of radiation intensity I into an orthogonal series of 

spherical harmonics. The radiation flux is calculated using the following equation: 

       
 

 (    )    
                                                                                              (3.43) 
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where C is the linear-anisotropic phase function coefficient and   is the incident 

radiation. By introducing the parameter    ( (    )     )⁄ , the above equation 

is simplified to 

            (3.44) 

The transport equation for   is given by 

               
   (3.45) 

3.5 Chemistry modelling  

3.5.1 Chemical kinetics 

In modelling gas phase, the source term   
    [kg/m

3 
s], which is the net rate of 

production of species i due to homogeneous chemical reactions, is found by appropriate 

reaction mechanism. Mostly, the chemical reactions occur on time scales comparable 

with that of the flow and the molecular transport processes. In this case, information 

about the rate of chemical reactions is needed. However, if one can assume that the 

chemical reactions are fast in comparison with the other processes like flow, diffusion 

and heat conduction, then, thermodynamics alone allow the description of the system 

locally.  

In a general case, for the gas phase that consist of number of species     and 

number of chemical reactions     the chemical reactions can be written in the 

following form  

   ∑    
    ∑    

    
   
 

   
 

                    m = 1,..., ncr     (3.46) 

where    is the specification of species i and    
  and    

   are the stoichiometric 

coefficients of the reactants or products of species i in reaction m. The chemical 

production rate for species i can be expressed as 

         (   
      

 )∏   
   
    

   
  (3.47) 

where    is species concentration [kmol/m
3
] and    

  is the reaction order with respect 

to the species i. The reaction orders of elementary reactions are always integers and 

equal the molecularity of the reaction, but those of global reactions are not necessarily 
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integer because the global reactions can have complex rate laws. The rate coefficient of 

reaction m is    and is calculated from the following modified Arrhenius expression: 

        
        ⁄   (3.48) 

where    (units vary) is the pre-exponential factor,    is temperature exponent and 

   [J/kmol] is the activation energy.  

In complex chemical schemes involving     reactions the total rate of production of a 

certain species i is the sum of individual rates of each reaction producing the species i, 

which is given by  

     ∑     
   
     (3.49) 

The rate is used as a source term in equation (3.5), which has the units [kg/m
3
.s]. To 

convert to required units, we multiply     , which is in [kmol/m
3
.s] by the molecular 

weight     . The net rate of production of species i due to homogeneous chemical 

reactions, is expressed by  

    
            (3.50) 

3.5.2 Reaction mechanism 

The oxidation of methane is widely dealt with in combustion modelling topic. 

Combustion occurs through a reaction mechanism which includes a number of 

elementary reactions that together lead to the overall reaction. Detailed mechanisms for 

the combustion of methane can include thousands of elementary reactions as discussed 

by Turns [90]. In general, detailed mechanisms are not applicable to CFD simulations 

because of the computation time involved to solve the large system of differential 

equations associated with such mechanisms when reaction kinetics are included. 

Therefore, to save time required for simulations, simplified combustion mechanisms 

are used. 

Various chemical kinetic mechanisms reported in the literature are used to study 

methane–air diffusive flames. Simplified or reduced global mechanisms such as the 

two-step mechanism proposed by Westbrook and Dryer (WD) [165] and the 4-step 

mechanism by Jones and Lindstedt (JL) [166], which are multi-step reaction 

mechanisms, are often used in combustion modelling of hydrocarbons. Another 

reduced mechanism can be used in modelling methane is the 5-step mechanism 
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developed by Nicol et al. [167]. The other types of mechanisms include the detailed 

and the skeletal mechanisms. Many detailed mechanisms (full mechanisms) were 

developed such as Glarborg et al. [168], Miller and Bowman [169], C1/C2 mechanism 

of Warnatz and Maas [170] and the standard GRI-Mech. releases 1.2, 2.11 [171] and 

v.3.0 [172]. The skeletal mechanisms include Kazakov and Frenklach [173], Petersen 

and Hanson [174], Glarborg et al [175], Yungster and Rabinowitz [176], Li and 

Williams [177], Peter et al. [178] and Li and Williams[179]. There is a difference 

between all these mechanisms with respect to number of species and reactions with the 

full mechanisms have the large number. 

Four reaction mechanisms are used in this study as shown in Table 3.2. They include a  

one-step reaction mechanism [180], the two-step reaction mechanism of Westbrook-

Dryer [165] which is available as default in FLUENT. Another two-step mechanism 

[181] and the five-step mechanism developed by Nicol et al. [167] were selected. The 

rate expressions of these mechanisms are shown in Table 3.2. It is worth noting that the 

units for the pre-exponential parameter    vary depending on the reaction order and 

some of the values in Table 3.2 are given in the units (cm, cal, s and mol) and must be 

converted to SI units system, which is employed by FLUENT. The finite-rate/eddy-

dissipation model (FR/ED) is employed to model turbulence/chemistry interaction. 

This model calculates both the Arrhenius and eddy-dissipation reaction rates. The later 

one is calculated according to the EDM, which is based on the work of Magnussen and 

Hjertager [142]. The reactions included in the mechanisms are: 
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Table 3.2: Reaction kinetics. 

Reaction           Reaction order 

Mechanism one (M-I): Two-step; units in (cm, cal, s and mol) [181]. 

(r-2) 2×10
15 

0 1.464×10
8 [   ]

   [  ]
    

(r-3) 2×10
9 

0 1.2×10
4 [  ][  ]

    

(r-4) 8.11×10
10 

0 7.72×10
4 [   ] 

Mechanism two (M-II): Two-step (Westbrook-Dryer); units in (m, J, s, kmol) [165]. 

(r-2) 5.012×10
11 

0 2×10
8 [   ]

   [  ]
    

(r-3) 2.239×10
12 

0 1.7×10
8 [  ]   [  ]

    [   ]
    

Mechanism three (M-III): One-step; units in (cm, cal, s and mol) [180].  

(r-1) 1.35×10
14 

0 1.26×10
8 [   ][  ]

  

Mechanism four (M-IV): Five-step; units in (m, J, s, kmol) [167]. 

(r-2) 1.66×10
15

   1.7163×10
8
  [   ]

    [  ]
       

(r-3) 7.98×10
14

   9.655×10
7
 [  ]      [  ]

     

(r-4) 2.233×10
14

   5.1805×10
8 [   ] 

(r-5) 8.831×10
23

   4.44×10
8 [  ]

      [  ]
       

(r-6) 9.268×10
14

  - 0.5 5.73×10
8 [  ][  ]

    

3.5.3 Modelling turbulence/chemistry interactions 

Gas phase reactions are homogeneous because the reactants are in the same phase. The 

gas flow is turbulent in most combustion applications and the characteristic features of 

the combustion process such as flame propagation, peak temperature and pollutant 

formation do not depend on these reactions and their corresponding rates alone. They 

are also affected by gas flow turbulence. It alters flame structure and may enhance 

these reactions increasing their rates. Furthermore, high levels of turbulent can inhibit 

the flame. On the other hand, the chemical reactions have an influence on the 

turbulence as outlined in §3.3. Combustion process involves chemical reactions take 

place in a wide range of time scales and turbulence also has its time scale. These time 

scales range from almost instantaneous to several seconds. Therefore, to capture and 

describe the phenomenon, all the characteristic time scales needs to be retained. All 

these effects are what so-called turbulence/chemistry interaction that needs to be 

modelled. To do so in finite volume simulations, there are different possibilities have 

been attempted in the literature. Several methods to model the gas phase reactions in 

finite volume simulations.    
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3.5.3.1 Eddy-dissipation model (EDM) 

This model is based on the following single step reaction: 

     ( )         (   )         

where   is the stoichiometric coefficient of the reaction. In this widely used model, the 

basic assumption is fast irreversible, one-step chemistry and because of this, the rate of 

combustion is determined by the turbulent mixing process. The simple idea of the 

eddy-dissipation model given in (3.51) and (3.52) is to consider that chemistry does not 

play any explicit role, while turbulent motions only control the reaction rate.  It has 

been proposed for predicting the mean reaction rates for flows with high Damköhler 

number (   >>1) in turbulent diffusion flames. Therefore, infinitely fast chemical 

reactions can be assumed and the reaction rate is controlled by the characteristic 

turbulent time and by the limiting ingredient needed for reaction either fuel, or oxidizer 

or heat. In the case of rich mixture, O2 will be consumed completely and a proportional 

amount of fuel will be consumed, as determined by the stoichiometric coefficient ( ). 

In the case of lean mixture, fuel will be consumed completely together with a 

proportional fraction of O2. 

The chemical reaction rate is governed by the large eddy mixing time scale (  ⁄ ). 

The reactant mixing rate 
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)                                                                    (3.51) 

The product mixing rate 
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∑    
      

 
 

)                                                                           (3.52) 

where    is the mass fraction of any product species,  ,    is the mass fraction of a 

particular reactant,  , and   and   are empirical constants that take the values of 4.0 

and 0.5, respectively. 

In this model the reaction rate is proportional to the large eddy mixing time scale given 

by   ⁄ . The reaction rate is taken as the smaller of the values determined with the 

above two equations. The advantages of this model include its simple implementations 

and reasonable results that can be achieved as will be shown next. Moreover, it is 
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computationally inexpensive. This model can be used for reactions with any number of 

reactants and products and even possible to use more than one global reaction. An 

example regarding the latter case is when considering CO as intermediate species in the 

combustion of methane. Because the oxidation of CO is a comparably slow reaction, 

CH4 reaction is calculated first. 

3.5.3.2 Finite-rate/eddy-dissipation model (FR/ED) 

The EDM is based on the assumption that the chemical reactions are extremely fast and 

the reaction rate of species is totally controlled by turbulent mixing. Such assumption 

leads to that this model estimates a high combustion rate in the large dissipation zones. 

Therefore, the finite rate/eddy-dissipation model is considered. Regarding this model, 

the rate of reaction is determined by the Arrhenius and by eddy-dissipation equations. 

Reaction rates, equations (3.51) and (3.52) as well as the Arrhenius rate equation 

(3.47), are calculated. Local reaction rate is given as the minimum value of these two 

rates. In practice, the Arrhenius rate (equation (3.47)) acts as a kinetic switch, 

preventing reaction before the flame holder. When the flame is ignited, the eddy 

dissipation rate is generally smaller than that of Arrhenius, and the reaction is mixing 

limited. These models are used for reduced chemistry and it difficult to extend them to 

full chemistry mechanisms. Therefore, to include a detailed chemistry, the eddy-

dissipation concept model (EDC) can be considered.  

3.5.3.3 Eddy dissipation concept model (EDC) 

It is based on the representation of turbulent flow by the energy cascade discussed in 

§3.3. The mechanical energy in the turbulent flow is primarily contained in the largest 

eddies and passed on to smaller and smaller eddies until reaching the smallest eddies, 

where the viscous effects are strong and energy is dissipated into heat through viscous 

dissipation. It assumes that the reactions take place in the regions where the dissipation 

of turbulence energy takes place. These regions (smallest eddies), where the dissipation 

takes place, are called fine structures. In regions where the turbulence levels are high, 

the mixing is fast and, as a result, the reaction rate is not limited by small-scale mixing. 

The kinetically controlled reaction rate has the smallest value. Whereas, in regions 

where turbulence levels are low small-scale mixing may be slow and limits the rate of 

reaction. With varying degree of complexity, the EDC is capable of handling chemical 

reactions ranging from the fast chemistry limit to a detailed description of the different 

elementary reactions involved in the combustion process. However, a detailed
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chemistry calculation is computationally expensive. The calculation time for 

integrating the chemistry is high. The reactions, governed by Arrhenius rates, are 

solved numerically using ISAT algorithm. Therefore, a reduction in the calculation 

time can be reached. 

3.6 Numerical methods 

The simulations are carried out using the CFD package Fluent. Flow field equations are 

solved using simple pressure velocity coupling method [114] in which the mass 

conservation solution is used to obtain the pressure field at each flow iteration. The 

finite volume scheme is employed to dicretize these equations. The discretization is 

done using the second-order scheme. The Standard scheme [115] is used for 

interpolation methods for pressure. The criterion of convergence is set to 10
-6

 for 

energy and radiation and 10
-4

 for the other terms of the transport equations. Regarding 

the radiative heat transfer, the (P1) radiation model and the weighted sum of gray gases 

model (WSGGM) proposed by Hottel and Sarofim [182] are employed into the 

simulations. 

3.7 Geometry and boundary conditions 

 

Figure 3.1: Geometrical configuration of the burner. 

In this study the combustion chamber reported by Garreton and Simonin [20] is 

numerically simulated. The geometrical configuration of the burner is shown in Figure 

3.1. The cylindrical chamber is 1.7 m in length with a diameter of 0.5 m. The fuel 

enters the chamber with a velocity of 7.67 m/s and temperature of 313.15 K. The 

velocity of air is 36.29 m/s and its temperature is 323.15 K with a corresponding 

Reynolds number is 1.22×10
6
. The fuel is composed of 10% nitrogen (N2) and 90% 

methane (CH4) on volume basis. Full details of this chamber and its operating
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conditions can be found in [20]. The computational domain of this chamber was also 

reported in [183-185]. The cases are simulated have an equivalence ratio of (ɸ = 1.04) 

which means that they are moderately fuel-rich. The equivalence ratio is given as the 

stoichiometric air to fuel ratio divided by the actual air to fuel ratio Equation (3.53). 

    
(       ⁄ )      

(       ⁄ )      
                                                                                                       (3.53) 

3.8 Material properties 

The material properties that have been used in the simulation are given in Table 3.3. 

The specific heat at constant pressure    for the gas mixture is obtained from equation 

(3.15). In this work,     is determined from the piecewise-polynomial function of 

temperature and the default values provided by FLUENT were used (see appendix A). 

Table 3.3: Material properties. 

Property Value 

Thermal conductivity λ [W/m.K]study 0.0454 

Viscosity µ [kg/m.s] 1.72x10
-5 

Mass diffusion coefficient Di [m
2
/s] 2.88x10

-5
 

Scattering coefficient    [m
-1

] 0 

Refractive index n 1 

3.9 Computational domain and grid refinement 

For use in the CFD simulations, computational meshes of the interior volume of the 

furnace have been constructed. The dimensions used for meshes are shown in Figure 

3.1. The mesh centreline is aligned with the x axis. All meshes have been constructed 

using GAMBIT. A two-dimensional axis-symmetric domain was utilized for which the 

common mesh elements are rectangles and triangles.  

In the present study, the rectangular mesh elements were used. As shown in Figure 3.2 

the cells are concentrated at the centreline where the flame is located and, as a result, 

large gradients in flow properties exist. Thus, more cells are concentrated here to more 

accurately resolve the gradients. The growth ratio of the distance between cell nodes 

has been used. 
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Generally, the accuracy of simulations increases as the number of cells increases. In 

order to determine a mesh that yields a mesh independent solution, a mesh 

independence study is required. The grid density was slightly varied by increasing 

number of cells. The meshes are designated A, B, C in order of increasing number of 

cells, which is given in Table 3.4 for each mesh. 

 

Figure 3.2: Computational grid. 

Table 3.4: Number of mesh cells. 

Mesh Number of cells 

A 23634 

B 18395 

C 13200 

 

Converged solutions, in which the mechanism (M-I) shown in Table 3.2 was used for 

the simulations, were performed on the three computational meshes. The interaction 

between combustion chemistry and turbulent mixing was modelled using FR/ED 

model. To model the turbulence, k-ϵ model was used. Ideally, all variables of interest 

should be monitored, but doing so leads to a large amount of data handling. 

Figure 3.3 and Figure 3.4 show comparisons of velocity magnitude and temperature 

along the axial distance, respectively. The velocity and temperature in the radial 

direction at different axial locations are shown in Figure 3.5 to Figure 3.9. It can be 

seen from the figures that all the results obtained from the three meshes are very close 

except for the mesh C, which shows very small discrepancies in the radial variation of 

the chosen variables compared with meshes A and B. 

Table 3.5 also shows the temperature and species flow rates at the outlet and the 

maximum temperature inside the furnace obtained for all meshes. From the axial and 

radial plots of velocities and temperatures as well as the values given in Table 3.5 a 

comparison was made between the meshes at the monitored locations, and 
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consequently mesh B, shown in Figure 3.2, was determined to yield a mesh 

independent solution and was chosen for carrying out all the subsequent simulations. 

 

Figure 3.3: Velocity along the axial distance of the furnace for three different meshes. 

 

Figure 3.4: Temperature along the axial distance of the furnace for three different 

meshes. 

 

 

 

0

5

10

15

20

25

30

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

V
el

o
ci

ty
 (

m
/s

) 

Axial distance (m) 

23634 cells

18395 cells

13200 cells

0

300

600

900

1200

1500

1800

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

T
em

p
er

at
u
re

 (
K

) 

Axial distance (m) 

23634 cells

18395 cells

13200 cells



Chapter 3                                                3.9 Computational domain and grid refinement   

 

68 

 

 

 

Figure 3.5: Radial profiles of velocity at x = 0.312 m for three different meshes. 

 

Figure 3.6: Radial profiles of velocity at x = 0.612 m for three different meshes. 
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Figure 3.7: Radial profiles of velocity at x = 0.912 m for three different meshes. 

 

Figure 3.8: Radial profiles of temperature at x = 0.612 m for three different meshes. 
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Figure 3.9: Radial profiles of temperature at x = 0.912 m for three different meshes. 

Table 3.5: Mesh independence temperature and flow rates at furnace outlet. 

Mesh A B C 

Mass weighted average temperature [K]  

     1339.049 1336.4049 1347.5334 

Species flow rate [kg/s]  

 ̇     0.00071109226 0.00064929423 0.00061162794 

 ̇   0.66752805×10
-05 

1.203249×10
-05

 1.3592869e-05 

 ̇    0.030436978 0.029913951 0.029893884 

 ̇   0.00081159326 0.0012321554 0.0012466239 

 ̇     0.025945209 0.026058445 0.026087508 

 ̇   0.15501644 0.15506227 0.155074 

 ̇      0.21292794 0.21292813 0.21292722 

Maximum temperature inside the chamber [K] 

     1600.338 1601.91 1602.871 
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3.10 Results and discussion 

The results of CFD analysis are presented and discussed. These results include the 

effects of turbulence models, turbulence/ chemistry interaction and kinetic mechanisms 

on as well as the effects of mass fraction on the combustion process.  

3.10.1  Mechanism one (M-I)  

In this case, the chemical mechanism is the same mechanism used for grid 

independence analysis was employed to model the combustion of methane, which is 

mechanism (M-I). This mechanism consists of three reactions as shown in Table 3.2. 

For turbulence/chemistry interaction, the FR/ED model was used. To model the 

turbulence three models were utilized. They are the two-equation k-ϵ models (standard, 

RNG and realizable). The constants of these models are mentioned in § 3.3. With 

regard to radiation modelling, P-1 model was used.  

Numerical models on computational fluid dynamics and heat transfer can only be 

accepted if the results obtained from the simulations match quite well those obtained 

from the experimental work whether they are available in the literature or they are 

obtained from side by side experiments. In the case of this mechanism and the other 

mechanisms that will be presented in the next discussions, the model were validated by 

comparing the predictions against the experiments conducted by [20], the numerical 

results of Magel et al [183] and the numerical results obtained by [184] . In general, the 

results show good agreement with the experiments.  

Figure 3.10, Figure 3.11 and Figure 3.12 show the velocity magnitude, axial velocity 

and velocity field vectors inside the chamber. The negative values of axial velocity 

indicate that there is an internal recirculation zone in front of the fuel inlet due to the 

sudden expansion.  

 

Figure 3.10: Velocity profile inside the chamber for k-ϵ standard case (M-I). 
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Figure 3.11: Axial velocity profile inside the chamber for k-ϵ standard case (M-I). 

From Figure 3.11, a recirculation region (circled) is observed at the entrance region 

near the fuel inlet. The creation of this recirculation leads to a premixing of air and fuel. 

The other recirculation region located close to the wall also enhances the mixing 

process and speeds up the reactions due to temperature increase. The variation of axial 

velocity along the radial direction at different axial locations is shown in Figure 3.13. It 

can be seen that there is a variation in positive and negative of axial velocity. This 

variation of velocity indicates the occurrence of recirculation zones which leads to 

good mixing of air and fuel. 

 

Figure 3.12: Velocity field vectors inside the chamber for k-ϵ standard case (M-I). 

 

Figure 3.13: The variation of axial velocity along the radial direction at different axial 

locations k-ϵ standard case (M-I). 
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Figure 3.14: Velocity magnitude along the centreline of the chamber (M-I). 

The velocity magnitude and the axial velocity along the centreline are shown in Figure 

3.14 and Figure 3.15, respectively. It can be seen that the predicted values reasonably 

agree with the measured values. It is shown that all cases under-predict the 

experimental data in the axial distance lies between 0.4 and 1.25 m. This may attributed 

to mesh resolution in this region, which may need to be increased. From the figures, it 

can also be seen that RNG k-ϵ case shows better agreement with the experimental data 

along the centreline at the axial distance lies between 0 and 0.4 m. 

 

Figure 3.15: Axial velocity along the centreline of the chamber (M-I). 
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Figure 3.16 to Figure 3.19, show the difference between the temperature distributions 

for all present cases. They visualize the flame and its structure by means of the 

temperature distributions and show how these distributions are differing for all the 

cases. It is shown in the figures that the flame is blown further downstream of the 

chamber. For all cases, it can be also noted that the highest temperature zone occupies a 

wider span of the radial section. It can be seen from the figures that at the centre of the 

chamber the flame temperature increases very slowly along the axial distance till 

approximately half of the way then it starts to increase quite rapidly and reaches its 

maximum. This can be clearly seen in Figure 3.28 that will be presented next. It can 

also be seen from the figures that the temperature contours of standard k-ϵ case are 

approximately the same as those of RNG k-ϵ case and there is not a considerable 

difference between them. On the other hand, in comparison with standard k-ϵ and RNG 

k-ϵ cases, there is an obvious difference in the flame structure of the realizable k-ϵ. It 

can be seen that the position of the highest temperature zone of gases for the realizable 

k-ϵ shifts along the centreline of the chamber towards the exit. The contours of the case 

in which the radiation was not taken into account follow the same behaviour.  

 

Figure 3.16: Temperature distributions for standard k-ϵ case (M-I). 

 

Figure 3.17: Temperature distributions for RNG k-ϵ case (M-I). 
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Figure 3.18: Temperature distributions for Realizable k-ϵ case (M-I). 

 

Figure 3.19: Temperature distributions for standard k-ϵ case (without radiation) (M-I). 

Figure 3.20 to Figure 3.23 show the contours of mass fraction of species CH4, O2, CO2 

and CO, respectively. As shown in Figure 3.20, it is clear that CH4 is consumed in the 

reaction zone at the far side from the burner. CH4 has a mass fraction of 0.84 at the 

inlet which stays constant till the axial distance of 0.08 m where its consumption 

started. At this point there is a premixing of methane and air that takes place due to the 

recirculation of the gas flow as mentioned earlier when describing Figure 3.11 and 

Figure 3.13. The mass fraction of CH4 approximately becomes zero at the downstream 

region towards the exit of the chamber. 

When having a look on the mass fraction distribution of O2 (see Figure 3.21), as 

expected, we can notice that the concentration  of O2 is zero at both the inlet of fuel and 

the region near the exit of the chamber, which is consistent with the consumption of 

CH4. The consumption of oxygen begins by the axial distance of 0.09 m. 

From Figure 3.22 and Figure 3.23, it is clearly seen that the most CO2 and CO products 

are in the region where the combustion flame is indicated (see Figure 3.16).  



Chapter 3                                                                                3.10 Results and discussion   

 

76 

 

Figure 3.20: CH4 mass fraction for standard k-ϵ case (M-I).  

 

Figure 3.21: O2 mass fraction for standard k-ϵ case (M-I). 

 

Figure 3.22: CO2 mass fraction for standard k-ϵ case (M-I). 

 

Figure 3.23: CO mass fraction for standard k-ϵ case (M-I). 
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The rates of the reactions (r-2), (r-3) and (r-4) are shown in Figure 3.24, Figure 3.25 

and Figure 3.26, respectively. As mentioned above, it is clearly seen that the flame is 

located at the region near the exit of the chamber where the reactions take place. 

 

Figure 3.24: Rate of methane destruction reaction (r-2) in (kmol/m
3
/s) for standard k-ϵ 

case (M-I). 

 

Figure 3.25: Rate of reaction (r-3) in (kmol/m
3
/s) for standard k-ϵ case (M-I). 

 

Figure 3.26: Rate of reaction (r-4) in (kmol/m
3
/s) for standard k-ϵ case (M-I). 

The profiles of the rate of reactions mentioned earlier along the centreline are shown in 

fig 3.26. It is shown that the combustion was not rapid. To view the gradients of 

temperature along the axial direction (x), the variations of the computationally 

predicted temperature compared with the experimental data along the chamber 

centreline are plotted in Figure 3.28. 
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Figure 3.27: The profiles of reaction rate along the centreline of the chamber for 

standard k-ϵ case (M-I). 

All the cases exhibit the correct temperature trend as the experimental data by [20]. For 

all cases, the predicted temperature started to increase very slowly and as the 

combustion takes place it increases and achieves a maximum value of 1586 K (standard 

k-ϵ case at x = 1.43 m), 1617 K (RNG k-ϵ case at x = 1.42 m), 1548 K (realizable k-ϵ 

case at x = 1.6 m) and 1979 K (standard k-ϵ case without radiation at x = 1.6 m). 

 

Figure 3.28: Gas temperature along the centreline of the chamber (M-I). 
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Unfortunately, there is no experimental data available beyond the axial distance of 1.3 

m to validate the predicted results. It can be seen that larger temperature gradients 

occur along the centreline of the chamber between x = 1.3 and x = 1.7 m. At x < 0.7 m, 

all the cases yield the correct temperature. Whereas, for x > 0.7 m, RNG k-ϵ and 

standard k-ϵ cases show better results than the realizable k- ϵ case when compared with 

the experimental data with the former one predicted the best results. The gas 

temperature predicted by realizable k-ϵ case is significantly underestimated in 

comparison with the measured temperature. Radiation is a source of heat loss in flames 

and has a major influence on temperature distribution. Neglecting the radiative heat 

transfer generally causes over-prediction in temperature profile. As is evident from 

Figure 3.28, comparing the results of standard k-ϵ case, including and excluding the 

radiation effects, with the experimental data indicates that maximum temperature 

obtained from the case without radiation was reduced by 19.8 % and the results are 

better fit to the experimental data. However, as shown in the figure, the effects of 

radiation are considerable at the exit of the chamber (at x > 1.3 m) where the 

temperatures are higher, while for x < 1.3 m, the temperatures are relatively lower and 

these effects appear to be very smaller and are neglected along the axial distance.  

In order to further estimate quantitatively the difference between the experimental and 

numerically predicted results, a parity plot of the gas temperature at different axial 

locations lie between x = 0 and x = 1.35 m are presented in Figure 3.29.  

 

Figure 3.29: Comparison between the experimental and predicted data of gas 

temperature for all cases- (M-I). Ideal results lie on the line indicated by y = z. 
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The y = z line indicates the ideal results i.e. the simulated results are identical to those 

from the experiment. It is seen that all the results of the present cases lie very close to 

the line at the axial locations on the centreline for x < 0.7 m, except for the results 

predicted by Silva et al. [184] and Magel et al. [183], which show slight difference 

above the line. At the axial locations for x > 0.7, it is shown that the results of Magel et 

al., standard k-ϵ and RNG k-ϵ cases lie closer to the line than the other two cases. 

Moreover, it is seen that RNG k-ϵ case gives better results than Magel et al. case at the 

axial positions x ≈ 1.124 and 1.311 m.  

The mass fraction of the species in the axial direction along the centreline is shown in 

Figure 3.30 to Figure 3.33. With respect to CH4 mass fraction along the axial direction, 

its variation along the centreline is illustrated by Figure 3.30. It shows that the trend of 

variation is almost the same for all the cases and in comparison with the experimental 

data CH4 is predicted very well. It is seen that mass fraction of CH4 decays slowly due 

to its consumption by chemical reactions and approximately reaches zero at the exit of 

the chamber. The slow decay can be attributed to the slow mixing which results in that 

the chemical reactions are quite slow leading to a slow rise in temperature (see Figure 

3.28). Moreover, in terms of the effects of radiation on CH4 species, there is only a very 

slight difference between the mass fraction of both the standard k-ϵ and standard k-ϵ 

(without radiation). However, as it is seen, the radiation effect of non-gray gases of 

CO2 and H2O changed the other species mass fractions and the results improved. 

 

Figure 3.30: CH4 mass fraction along the central line (M-I). 
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The axial profile of mass fraction of O2 along the centreline of the chamber is depicted 

in Figure 3.31, which shows that the predictions of standard and RNG k-ϵ cases are in 

good agreement with the experimental data. It is shown that the trend is well 

reproduced by all cases. It is also seen that O2 mass fraction of both the experimental 

and computational results increases from the inlet along the axial distance up to the 

axial position of approximately 0.6 m where it starts to decay till reaches the exit of the 

chamber where is totally consumed. From the figure, one can see that the mass 

fractions of realizable k-ϵ and standard k-ϵ (without radiation) are predicted well in the 

upstream distance of the chamber and they shifted towards the exit of the chamber in 

the downstream distance. 

Figure 3.32 shows the variation of CO mass fraction along the chamber central line 

compared with the experimental data. All the cases predicted the correct results along 

the axial distance between 0 and 0.9 m. However, after this point a reliable comparison 

is not possible due to the absence of experimental data, except for that point which 

measured at axial position of 1.3 m. As seen from the figure, this point can be 

considered as the maximum value of the experimental data. According to this, it is seen 

that the CO peak concentrations are over-predicted in most cases. The reason for this 

may be the partial premixing of the fuel with air.  

 

Figure 3.31: O2 mass fraction along the central line (M-I). 
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The figure also indicates that better results were obtained from standard and RNG k-ϵ 

cases. It can be seen that realizable k-ϵ case showed the same trend of the two cases, 

but the peak value shifted towards the outlet. Regarding the case in which the radiation 

was excluded, it can be seen that CO mass fraction was significantly over predicted in 

the downstream zone close to the outlet. This over-prediction was reduced and the 

results were improved when the reaction (r-4) (for CO2 decomposition) was excluded 

from the mechanism as shown in Figure 3.32.  

Figure 3.33 depicts the comparison between the computationally predicted mass 

fraction of CO2 and the experimental data along the centreline of the chamber. It can be 

seen that realizable k-ϵ case shows the best results when compared to the other cases, 

while no comparison is also possible beyond the axial position (x = 1.36 m) due to the 

unavailability of the experimental data. 

 

 

Figure 3.32: CO mass fraction along the central line (M-I). 
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Figure 3.33: CO2 mass fraction along the central line (M-I). 

A selection of results obtained at various axial locations downstream from the burner 

for temperature and species mass fractions are plotted in Figure 3.34 to Figure 3.42. 

Generally, most of the predicted results are matched reasonably well with the 

experimental data and qualitatively they have good agreement implying some accurate 

predictions in some locations.  

Figure 3.34, Figure 3.35 and Figure 3.36 show the profiles of gas temperature at axial 

locations (0.312, 0.912 and 1.312 m) downstream of the burner inlet as a function of 

radial distance from the centreline compared with the measurements, respectively. As it 

is evident from Figure 3.34, the heating up of the mixture started at radial distance of 

0.03m. Further, the radial temperature increases due to the initiation of exothermic 

reactions as can be seen from Figure 3.35 and Figure 3.36. Apart from the case without 

radiation, it can be seen that the other three cases show reasonable agreement with the 

experimental data at axial locations x = 0.312 and 0.912 m. At x = 0.312m, all cases 

under-predict the radial temperature excluding the case without radiation, which over-

predicts the temperature at all selected axial locations. At x = 0.912 m depicted by 

Figure 3.35, RNG and realizable k-ϵ cases show very good agreement, whereas 

standard k-ϵ case slightly over-predicts the temperature when compared with 

experimental data.  
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Concerning the axial location at x = 1.312 m, it is shown in Figure 3.36 that standard 

and RNG k-ϵ cases predicted the radial profiles of temperature excellently. It can be 

seen that the former one shows excellent agreement with the experiment in the zone 

around the centreline at a radial distance between 0 and 0.13 m. On contrary, the results 

of later one have excellent agreement with experiment in the zone far from the 

centreline at a radial distance between 0.13 and 0.25 m. Regarding realizable k-ϵ case, 

it shows good agreement with the experimental data at radial distance lies between 0.14 

and 0.25 m. Whereas, it under-predicts the radial temperature in the opposite direction 

at a radial distance lies between 0 and 0.14 m. This is due to the shift of the position of 

the increased temperature zone of gases along the centreline of the chamber towards the 

exit as mentioned before as shown in Figure 3.18. It is evident from the plots of radial 

profiles that effects of thermal radiation are so small around the centreline of the 

chamber and this is clear in Figure 3.28, which, as mentioned previously, shows that 

the thermal radiation is considerable at x > 1.3 m. On the hand, it can be clearly seen 

that the effects of thermal radiation substantially reduces the flame temperatures along 

the radial distance (r > 0.03 m). 

Figure 3.37, Figure 3.38 and Figure 3.39 depicts the radial profiles of O2 mass fraction 

that show the comparisons of the predicted results against the experiment [20] and the 

computational results reported by Silva et al.[184]. As seen from the figures, the results 

obtained from the present cases agree well with the experimental data and fellow the 

same trend. In Figure 3.37, it is seen that the maxima of O2 mass fraction are over-

predicted compared with experiment and these maxima shifted to the left when 

referring to the maximum value of the experimental data. For all cases, there is a slight 

over-prediction in O2 mass fraction at the radial distance lies between 0 and 0.03 m. At 

the radial distance lies between 0.03 and 0.25 m, all the cases, except for the case 

without radiation, show good results in comparison with the experimental data. The 

effects of thermal radiation on the concentration of O2 can also be observed from the 

figure, since the over-prediction in O2 mass fraction (without radiation case) is reduced 

when these effects are taken into account (standard k-ϵ case).  

A part from the case without radiation, the obtained results from the cases are in good 

agreement with the experimental data as shown in Figure 3.38. However, it can be seen 

that they shows slight over-predictions in O2 mass fraction at the radial distance (r > 

0.06 m). The plots of radial profiles at the axial position x =1.312 m (see Figure 3.39) 

show that all cases significantly under-predict O2 mass fraction, except for realizable k-
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ϵ case, which shows very good agreement with the experimental data. It is also seen in 

the figure that excluding the thermal radiation effect (standard k-ϵ case: without 

radiation) gives better results in terms of O2 mass fraction than those when including it 

(standard k-ϵ case).  

 

Figure 3.34: Radial temperature profile at axial location x = 0.312 m, (M-I). 

 

Figure 3.35: Radial temperature profile at axial location x = 0.912 m, (M-I). 
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Figure 3.36: Radial temperature profile at axial location x = 1.312 m, (M-I). 

 

Figure 3.37: Radial profile of O2 mass fraction at axial location x = 0.312 m, (M-I). 
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Figure 3.38: Radial profile of O2 mass fraction at axial location x = 0.912 m, (M-I). 

 

Figure 3.39: Radial profile of O2 mass fraction at axial location x = 1.312 m, (M-I). 
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Figure 3.40: Radial profile of CO2 mass fraction at axial distance x = 0.312 m, (M-I). 

 

Figure 3.41: Radial profile of CO2 mass fraction at axial distance x = 0.912 m, (M-I). 
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Figure 3.42: Radial profile of CO2 mass fraction at axial distance x = 1.312 m, (M-I). 

 

Figure 3.43: Radial profile of CO mass fraction at axial location x = 1.312 m, (M-I). 
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the results are improved and fit better with the experimental data by excluding the 

reaction (r-4) from the mechanism. 

3.10.2 Mechanism (M-I) with modified turbulence model 

In this case the same mechanism provided in Table 3.2 was used. Using this 

mechanism in this case is differ from its using in the previous case, discussed in § 

3.10.1, in terms of turbulence modelling. In this case modified standard and realizable 

k-ϵ models are adopted. The value of turbulent Schmidt number (Sc) is modified from 

0.7 to 0.85. The effects of the modification will be seen in the next figures.  

Figure 3.44 shows the axial profiles of gas temperature inside the chamber along the 

centreline of the chamber. It can be seen that there is no difference between the 

standard and realizable k-ϵ cases (base case with the default value)  and the modified 

standard and realizable cases (base case with the new value) along the centreline of the 

chamber up to the value (x = 1 m). Beyond this point and up to the axial value of 1.36 

m for standard k-ϵ cases and 1.48 m for realizable k-ϵ cases, there is a slight difference 

in temperature. After these two points, the temperature increased. The same behaviour 

is seen in Figure 3.45.  Compared with the base cases, It can be seen that O2 mass 

fraction resulted from the modified cases are slightly shifted to the right along the axial 

distance till the axial location (x = 0.7 m), where this difference after this point became 

bigger.  

 

Figure 3.44: Gas temperature along the centreline of the chamber (M-I with modified 

turbulence models). 
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Figure 3.45: O2 mass fraction along the centreline of the chamber (M-I with modified 

turbulence models). 

The axial profile of CO mass fraction along the centreline of the chamber is illustrated 

in Figure 3.46. As is shown in the figure, the maximum values of the two modified 

cases are increased and shifted to the right. It is also seen that the cases with the 

modified turbulence models predicted the same results as the experiments and the other 

two base cases along the axial distance up to the value of 0.96 m.  

In Figure 3.47, the variation of CO2 mass fraction is also shown along the centreline of 

the chamber. It appears in the figure that the predicted results of the case with the 

modified standard k-ϵ model fits the experimental data better than the base case (with 

the default standard k-ϵ model) and shows very good agreement in the axial distance, 
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realizable model also show very good agreement with the experimental results in some 

axial distance. It is also noticed that all the Figure 3.44 to Figure 3.47 indicate that the 

effects of the modified turbulence models on the results clearly appear in the axial 

distance above 1 m.  

The radial profiles of the results obtained from the case with the modified standard k-ϵ 

model are compared with the ones which have been generated from the case with the 

default standard k-ϵ model as will be shown the next figures. These figures depict the 

distribution of temperature and species mass fraction as a function of the radial distance 

at various axial positions which are x = 0.312, 0.912 and 1.312 m. 
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Figure 3.46: CO mass fraction along the centreline of the chamber (M-I with modified 

turbulence models). 

 

Figure 3.47: CO2 mass fraction along the centreline of the chamber (M-I with modified 

turbulence models). 
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Figure 3.48, Figure 3.49 and Figure 3.50 show the radial profiles of gas temperature at 

these axial positions, respectively. It can be seen that the predicted results of the case 

with standard k-ϵ model were improved by increasing the value of turbulent Schmidt 

number (Sc). The computationally predicted results of the case with modified standard 

k-ϵ model has very good agreement with the experimental data in the radial distance at 

the axial locations x = 0.912 and x = 1.312 m. For the same case, at the axial location x 

= 0.312 m, it is appeared from Figure 3.48 that the temperature decreased slightly when 

compared with the base case and the predicted radial temperature of case with modified 

realizable k-ϵ model also does the same in comparison with the base case.  

The radial variation of O2 mass fraction is shown in Figure 3.51, Figure 3.52 and 

Figure 3.53. Better improvement in results is obtained from the case with the modified 

standard k-ϵ model as shown in Figure 3.52 and Figure 3.53. Modified realizable k-ϵ 

turbulence model case also shows very good improvements in results in the radial 

distance far from the centreline as is shown in Figure 3.52. Regarding the radial 

variation at the axial position (x = 0.312 m), it can be seen from Figure 3.51 that there 

is a slight difference between the base and modified cases. 

 

Figure 3.48: Radial temperature profile at axial location x = 0.312 m, (M-I with 

modified turbulence models). 
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Figure 3.49: Radial temperature profile at axial location x = 0.912 m, (M-I with 

modified turbulence models). 

 

Figure 3.50: Radial temperature profile at axial location x = 1.312 m, (M-I with 

modified turbulence models). 
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Figure 3.51: Radial profile of O2 mass fraction at axial location x = 0.312 m, (M-I with 

modified turbulence models). 

 

Figure 3.52: Radial profile of O2 mass fraction at axial location x = 0.912 m, (M-I with 

modified turbulence models). 
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Figure 3.53: Radial profile of O2 mass fraction at axial location x = 1.312 m, (M-I with 

modified turbulence models). 

CO2 mass fraction is illustrated in Figure 3.54, Figure 3.55 and Figure 3.56. From these 

figures, it is seen that better results are also obtained from the case with the modified 

standard k-ϵ turbulence model when compared with those of base case. As is evident 

from Figure 3.57, contrary to the base case, the case with the modified standard k-ϵ 

over predicts the experimental data in terms of the mass fraction of carbon monoxide 

CO, but it shows the same trend. 

 

Figure 3.54: Radial profile of CO2 mass fraction at axial location x = 0.312 m, (M-I 

with modified turbulence models). 
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Figure 3.55: Radial profile of CO2 mass fraction at axial location x = 0.912 m, (M-I 

with modified turbulence models). 

 

Figure 3.56: Radial profile of CO2 mass fraction at axial location x = 1.312 m, (M-I 

with modified turbulence models). 
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Figure 3.57: Radial profile of CO mass fraction at axial location x = 1.312 m, (M-I with 

modified turbulence models). 

3.10.3 Mechanism two (M-II) 

In the following cases, the reaction mechanism (M-II) by Westbrook and Dryer (WD) 

[165], which is shown in Table 3.2, was used. Three cases were suggested in this 

section. The kinetics of the reactions for case 1 (the base case) are provided in Table 

3.6. This chemical reaction mechanism is already built in FLUENT. Regarding the 

other two cases, (cases 2 and 3), the activation energy (  ) of reaction (r-2) was 

optimized. The values of the activation energy for the reaction (r-2) are given in Table 

3.6. In these cases, the standard k-ϵ turbulence model was also modified by changing 

the turbulent Schmidt number. The default value was 0.7 and was changed to 0.85 

which also resulted in better results as will be seen in the next figures. 

Table 3.6: Optimized values of activation energy for reaction (r-2). 

Case Activation energy     (J/kmol) 

Case 1(base case) 2x10
8
 [165] 

Case 2 1.7x10
8 

Case 3 1.6x10
8 

 

Figure 3.58 depicts the gas temperature along the centreline of the chamber. As it is 
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1.1 m and when comparing them with the experimental data, they show very good 

agreement along the axial distance from 0 to 0.66 m. It is also shown that case 1 shows 

a great difference in comparison with the experimental data. It is seen that decreasing 

the activation energy of reaction (r-2) in cases 2 and 3 improves the results and gives 

better fit with the experimental data along the axial distance above 1.1 m. With respect 

to the variation of oxygen species O2 along the centreline, it is also seen in Figure 3.59 

that decreasing the activation energy leads to improve the predicted results, which give 

better fit with the experiment measurements. Figure 3.60 shows the effect of decreasing 

the activation energy on the concentration of CO2. It can be seen that case 1 has very 

good agreement with experimental data. The other two cases also have very good 

agreement in comparison with experimental data along the axial distance lies between 

0.6 and 1.2 m, but there is an over-prediction of the results after that. CO mass fraction 

along the centreline of the chamber for the three cases is plotted in Figure 3.61. For 

case 1, it is seen that the maximum value is 0.0128 for case 1, which is nearly the same 

as that of the experiments and located at the axial distance of 1.5 m.  

Unfortunately, there is not experimental data available beyond the axial distance of 1.3 

m to compare the results that lie beyond this point with it. It is also indicated that the 

maximum concentration of CO shifted towards the burner for cases 1 and 2 and the 

results are better fit with the experimental data, though the maximum value is 

increased. 

The gas temperature and species concentrations at 0.312, 0.912 and 1.312 m 

downstream of the burner as a function of radial distance from the centreline compared 

with measurements are shown in Figure 3.62 to Figure 3.71. At 0.312 m (see Figure 

3.62) the results obtained from the cases are the same, even though there is an under-

prediction in comparison with the experimental data. At 0.912 m it is evident from 

Figure 3.63 that case 3 agreed well with the experimental data and so it does at 1.312 m 

as shown in Figure 3.64. From Figure 3.65, which depicts the radial variation of O2 

mass fraction at axial distance of 0.312 m, it is also seen that all cases produced the 

same results and have the same trend of the experimental data. At the axial distance of 

0.912 m illustrated in Figure 3.66 cases 2 and 3 have very good agreement with the 

experimental data. Figure 3.67 shows that case 1 has better agreement with the 

experimental data than case 2 and case 3 which significantly under-predict O2 mass 

fraction. Concerning the concentration of CO2 species, the radial variation of CO2 mass 

fraction is shown in Figure 3.68, Figure 3.69 and Figure 3.70. At axial distance of 
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0.312 m all the cases approximately produced the same results, but at 0.912 m case 1 

agreed well with the experimental data. At 1.312 m it is seen that case 2 is in closest 

agreement with the experimental data. On contrary to the other two cases, case 1 failed 

to predict the correct results CO concentration at the axial distance of 1.312 m. Cases 2 

and 3 show the same trend of the experimental data. The latter one provides very good 

agreement with the experimental data along the radial distance above 0.09 m. 

  

Figure 3.58: Gas temperature along the centreline of the chamber, (M-II). 

 

Figure 3.59: O2 mass fraction along the centreline of the chamber, (M-II). 
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Figure 3.60: CO2 mass fraction along the centreline of the chamber, (M-II). 

 

Figure 3.61: CO mass fraction along the centreline of the chamber, (M-II). 
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Figure 3.62: Radial temperature profile at axial location x = 0.312 m, (M-II). 

 

Figure 3.63: Radial temperature profile at axial location x = 0.912 m, (M-II). 
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Figure 3.64: Radial temperature profile at axial location x = 1.312 m, (M-II). 

 

Figure 3.65: Radial profile of O2 mass fraction at axial location x = 0.312 m, (M-II). 
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Figure 3.66: Radial profile of O2 mass fraction at axial location x = 0.912 m, (M-II). 

 

Figure 3.67: Radial profile of O2 mass fraction at axial location x = 1.312 m, (M-II). 
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Figure 3.68: Radial profile of CO2 mass fraction at axial location x = 0.312 m, (M-II). 

 

Figure 3.69: Radial profile of CO2 mass fraction at axial location x = 0.912 m, (M-II). 
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Figure 3.70: Radial profile of CO2 mass fraction at axial location x = 1.312 m, (M-II). 

 

Figure 3.71: Radial profile of CO mass fraction at axial location x = 1.312 m, (M-II). 
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3.10.4  Mechanisms M-III and M-IV 

In the present cases, another two reaction mechanisms were selected for the 

simulations. One of them is a one-step reaction mechanism [180] and the other one is 

the five-step reduced mechanism, which was developed by Nicol et al. [167].  The 

chemical kinetics of the reactions involved in these two mechanisms are also provided 

in Table 3.2. In these two cases, the turbulence was modelled using the standard k-ϵ. 

The FR/ED model was also used to model the interaction between the chemistry and 

turbulence.  

The axial variations of temperature and species mass fraction at the centreline of 

combustion chamber are shown in Figure 3.72 to Figure 3.75. It can be seen from the 

figures that there are only slight differences between the predicted results of the two 

cases and the experimental data as well as the other cases, except for the axial variation 

of CO mass fraction (see Figure 3.75) which shows that the maximum value was 

shifted to the left in the direction towards the burner. However, the figure shows that all 

the cases have very good agreement with the experimental data along the axial distance 

from 0 to 0.9 m. Unfortunately, after this point, as mentioned in § 3.10.1, there is only 

one measured value available which appears to be the maximum value of CO mass 

fraction, and this point is not enough to compare the obtained results from the various 

cases with. The radial profiles of temperature at axial distances 0.312, 0.912 and 1.312 

m are depicted in Figure 3.76, Figure 3.77 and Figure 3.78, respectively. At 0.312 m, as 

is evident from Figure 3.76, the two cases under-predict the experimental data and fit 

better with the other cases. Regarding the axial location at axial distance of 0.912 m, it 

is seen from Figure 3.77 that both cases over predict the experimental data. For one-

step case, the over-prediction is far from the centreline of chamber and lies in the radial 

distance between 0.11 and 0.24 m. On the other hand, along the radial distance less 

than 0.11 m this case has very good agreement with the experimental data. The five-

step case shows an over-prediction along the almost radial distance, except for the 

radial distance that are very close to both the centreline and the wall, where it shows 

good agreement with the experiments. At 1.312 m, it is shown that the two cases 

generated very good results at some radial distance when comparing them with the 

experimental data and the previous cases that are discussed before. The one-step case 

has very good agreement with the experiments along the radial distance close to the 

centreline up to 0.06 m and beyond this point there is a small over-prediction. On 

contrary, the results of the five-step case agrees well with the experimental data along 
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the radial distance far from the centre line and over-predicts them along the radial 

distance close to the centreline (less than 0.07 m). Radial profiles of mass fraction of O2 

at different downstream positions are plotted in Figure 3.79, Figure 3.80 and Figure 

3.81. The two cases agree very well with the experimental data and the other cases as 

shown in Figure 3.79 for the axial location at (x = 0.312 m). For (x = 0.912 m) shown 

in Figure 3.80, it is seen that one-step case show better results than five-step case when 

comparing them with the experimental data. Figure 3.81 depicts the radial variation at 

(x = 1.312 m). It is also seen that the two cases under-predict the experimental data 

significantly with better results of one-step case than five-step case. The radial profiles 

of CO2 mass fraction are shown in Figure 3.82, Figure 3.83 and Figure 3.84. It is seen 

that the two cases over-predict the experimental data as the other cases did. In terms of 

CO mass fraction, its radial variation at the axial distance of 1.312 m is shown in 

Figure 3.85. It can be seen that the five-step case approximately has the same trend of 

the experimental data. However, it predicts a significantly lower CO concentration 

along the radial distance near the centreline of the chamber and a higher concentration 

along the radial distance far from it. 

Although, it was mentioned in [158] that allowing multi-step reaction mechanisms with 

this model will likely lead to incorrect solutions, the results obtained from the five-step 

reaction mechanism show a reasonable fit with experimental data as well as the other 

cases. Generally, in comparison with the results presented in the previous sections, the 

one-step and five-steps cases show good results as will be seen in the next figures. 

 

Figure 3.72: Gas temperature along centreline of the chamber for all cases. 
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Figure 3.73: O2 mass fraction along the centreline of the chamber for all cases. 

 

Figure 3.74: CO2 mass fraction along the centreline of the chamber for all cases. 
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Figure 3.75: CO mass fraction along the centreline of the chamber for all cases. 

 

Figure 3.76: Radial temperature profiles at axial location x = 0.312 m for all cases. 
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Figure 3.77: Radial temperature profile at axial location x = 0.912 m for all cases. 

 

Figure 3.78: Radial temperature profile at axial location x = 1.312 m for all cases. 
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Figure 3.79: Radial profile of O2 mass fraction at axial location x = 0.312 m for all 

cases. 

 

Figure 3.80: Radial profile of O2 mass fraction at axial location x = 0.912 m for all 

cases. 
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Figure 3.81: Radial profile of O2 mass fraction at axial location x = 1.312 m for all 

cases. 

 

Figure 3.82: Radial profile of CO2 mass fraction at axial location x = 0.312 m for all 

cases. 
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Figure 3.83: Radial profile of CO2 mass fraction at axial location x = 0.912 m for all 

cases. 

 

Figure 3.84: Radial profile of CO2 mass fraction at axial location x = 1.312 m for cases. 
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Figure 3.85: Radial profile of CO mass fraction at axial location x = 1.312 m for all 

cases. 

3.10.5  The effect of fuel concentration 

The combustion of various fuel concentrations was simulated i.e. the fuel is diluted. 

The chemistry mechanism used in the simulations is M-I and the modified standard k- ϵ 

turbulence model was also adopted. The axial temperature profile along the centreline 

of the chamber for the base case (CH4 90 %, N2 10 % by volume) and the other case 

(CH4 100, 85, 80, 70 %) is plotted in Figure 3.86. As it is shown in the figure, the 

predicted temperature is the same for all cases along the axial distance up to 1 m. It is 

also indicated that the peak temperature is decreased for all cases even for the case with 

pure methane as a fuel (fuel rich case with equivalence ratio ɸ = 1.1556). The peak 

temperature position at centreline of the base case lies between that of pure methane 

and 85% methane cases. It is clearly shown that the base case produces the highest 

temperature. Figure 3.87 depicts the axial variation of CH4 mass fraction along the 

centreline of the chamber. It is shown that methane decays slowly for all cases and this, 

as mentioned previously, can be attributed to the slow mixing which results in that the 

chemical reactions are quite slow leading to a slow rise in temperature. It can be also 

seen that CH4 mass fraction is a little bit higher than the other cases at the exit of the 

chamber. The mass fractions of species O2, CO2 and CO are shown in Figure 3.88, 

Figure 3.89 and Figure 3.90, respectively. 
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Figure 3.86: Gas temperature along centreline of the chamber for different cases with 

different percentages of CH4 (volume basis). 

 

Figure 3.87: CH4 mass fraction along the centreline of the chamber for different cases 

with different percentages of CH4 (volume basis). 
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Figure 3.88: O2 mass fraction along the centreline of the chamber for different cases 

with different percentages of CH4 (volume basis). 

 

Figure 3.89: CO2 mass fraction along the centreline of the chamber for different cases 

with different percentages of CH4 (volume basis). 
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Figure 3.90: CO mass fraction along the centreline of the chamber for different cases 

with different percentages of CH4 (volume basis). 

3.11 Conclusion  

In this chapter, the investigations have sought to determine the accuracy of CFD 

simulations using RANS approach. The simulations are based on the finite volume 

solution procedure, including sub-models for turbulent flow, radiative heat transfer and 

combustion. The purpose is to analyse the turbulent flow, species concentrations and 

temperature arising in the turbulent non-premixed combustion of natural gas (90% 

methane and 10% nitrogen by volume) in a cylindrical combustor. Experimental data of 

existing study [20] has been utilized for comparisons. For the combustion modelling 

the FR/ED model was considered. This model has the advantage that it is 

computationally inexpensive and simple to use. The flow field was calculated using the 

standard k-ϵ, RNG k-ϵ and realizable k-ϵ. For chemical reactions, four global 

mechanisms were employed. For radiation modelling, P-1 method was applied for 

investigating the radiative heat transfer from the flame. A mesh independence study 

was performed for the aim of identifying which of the meshes constructed lead to a 

mesh independent solution. It was found that mesh B fulfils this requirement and has 

been chosen to perform all the subsequent simulations. The trends of all cases are well 

reproduced in comparison with the experiment. Despite some disagreement with the 

experimental data at some locations, good agreement is achieved in both quantitative 

and qualitative aspects. In comparison with the experimental data, it is shown that one-

step reaction mechanism (M-III) can provide satisfactory estimate of maximum 

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

C
O

 m
as

s 
fr

ac
ti

o
n

 

Axial distance (m) 

CH₄ 100% 
CH₄ 90% 
CH₄ 85% 
CH₄ 80% 
CH₄ 70% 



Chapter 3                                                                                                  3.11 Conclusion   

 

119 

temperature in the reaction zone. For the case of M-I, it is observed that the results of 

all turbulence models show very good agreement with the experimental data in terms of 

temperature along the centreline in the half of the chamber close to the burner. In the 

direction towards the exit of the chamber the results obtained from standard k-ϵ case are 

almost close to that obtained from RNG k-ϵ. The inclusion of radiative heat losses 

reduced the temperature inside the chamber and this is noticed in the region near the 

exit of the chamber. When applying the modified standard k-ϵ it is observed that 

obtained results were improved. The optimization of kinetic energy of reaction (r-2) in 

mechanism (M-II) also improved the results. Regarding the case (M-IV) in which a 

five-step reaction mechanism was employed, the predicted results shows a reasonable 

agreement with the experiments in terms of temperature. In some locations especially 

for the predicted concentration of carbon monoxide CO along the centreline and at the 

axial location of x = 1.312 m there is an over-prediction, though, the trend is similar to 

that of experimental data. It is seen that peak temperatures obtained from both the 

combustion of pure methane (100% CH4) and the combustion of diluted methane (85% 

CH4, 15% N2) are less than that of the base case (90% CH4, 10% N2) at the same 

operating conditions. This leads to conclude that the best compromise of methane and 

nitrogen is that of the base case. To sum up, in comparison with the experimental data 

and the predicted results reported by Magel et al [183], which were obtained by using 

EDC, the FR/ED model proved to capture the features of combustion process with 

sufficient accuracy. The numerical simulations indicate that the cases with the modified 

standard k-ϵ lead to generally best predictions.   
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4 Pulverized combustion 

This chapter presents a CFD modelling study of pulverized combustion of coal and 

biomass as well as the co-firing of both. It provides the basis for a comprehensive 

model. Some assumptions to simplify the modelling process are considered. The 

simulations of pulverized combustion are based on the Euler-Lagrange approach. The 

discrete phase model (DPM) is used. The first part of this chapter starts with modelling 

the pulverized combustion of two types of bituminous coal. It presents three cases 

using three different char oxidation models. Cases 1 and 2 use diffusion and 

kinetics/diffusion models, respectively. Case 3 uses the multi-surface reaction model, 

where a UDF is used to define the rate of heterogeneous reactions between both the gas 

and particulate phases. Modelling of NOx is also presented. The models are validated 

with the available experimental data in the literature. The results show good agreement 

with the experiments. The combustion model of case 3 is then used to model the 

pulverized combustion of straw particles and the co-firing of pulverized coal and straw 

particles. Finally, a conclusion of the predicted results is given.   

4.1 Introduction  

Chemical compositions and molecular structures in any carbonaceous fuel, such as coal 

or biomass, are very complex. The main elements present in biomass, determined by 

ultimate analyses, are usually carbon (C), hydrogen (H), oxygen (O) and nitrogen (N). 

Other elements also found include sulphur, chloride and other impurities. The 

difference in this composition and particle size distribution results in different 

characteristics of combustion for biomass and coal as discussed in § 2. One of the 

combustion technologies that have a great of importance in generating power is the 

pulverized combustion of solid fuels. This technology is based on the pneumatic 

conveying system, since the fuel particles are carried by the air. Therefore, it is 

considered as one of the typical examples of particle-laden flows. 

Despite the general similarities between the pulverised combustion of coal and that of 

biomass, there is a difference between their chemical compositions. Biomass has 

significantly lower fractions of carbon, while its oxygen content exceeds that of coal. 

The hydrogen fraction is also somewhat higher than that of coal. The typical weight 

percentages for C, H and O, respectively are 30 to 60 %, 5 to 6 % and 30 to 45 % [1].
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For coal, the typical compositions (mass percentages) include 65 to 95% C, 2 to 7% H, 

up to 25% O and 1 to 2% N [45] Moreover, there is also a difference between biomass 

and coal regarding their devolatilization. Compared to coal, biomass has a much higher 

amount of volatile matter leading to a dominating role of devolatilization in the overall 

conversion process of biomass particles. The volatiles fraction in biomass is usually 70-

80%, whereas the fraction in coal is 10-50%. The high level of volatiles makes biomass 

a combustible fuel which means that it is easier to ignite even at low temperature. 

However, it has lower energy content due to the higher O/C and H/C atomic ratios 

when compared to coal. With anthracite less than 10% and bituminous from 5 to 6%, 

biomass fuels can lose up to 90% of their masses during the process of devolatilization 

[1]. The heating value of biomass fuels is significantly lower than that of coal requiring 

a large amount to be injected in furnaces compared to coal firing and this also suggests 

that less excess air is needed for biomass combustion. Moreover, biomass fuels begin to 

release volatiles at a lower temperature and in a more rapid way than coal does.  

Regarding the devolatilization kinetics, the sensible prediction of the rate of release of 

volatile matter is of importance for the success of any computational model. 

Devolatilization process plays an important role in coal and biomass combustion. 

Determination of devolatilization rates is typically done by means of thermo-

gravimetric analysis. In these analyses, small samples of solid fuel are ground so fine 

that the size dependence is not a factor which is to be considered and heated up with 

different temperature slopes. Using the thermo-gravimetric analyser, in a well-

controlled atmosphere, the change in sample weight is measured. A number of kinetic 

models have been developed for the devolaltilization of various coals and the models 

that are relatively simple include the single kinetic rate model and the two competing 

rates model. Models that are applicable over a wide range of coal types, but they are 

complex and difficult to use for practical applications include the functional group 

model, the flashchain model and the chemical percolation devolatilization model. The 

devolatilization of biomass and coal has been extensively investigated in [186-189].  

In numerical simulations, most researchers for simplicity considered the combustion of 

solid fuels occurring in two individual steps. The first one is the combustion of volatiles 

and the second one is the combustion of char, neglecting the interaction between the 

two steps. But, for any two-phase flow, such as pulverized coal combustion, the 

interactions between the gaseous and solid phases needs to be taken into account 

because such a type of flow is characterized by non-linear coupling between the two 
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phases such as gas turbulence influencing both the particle motion and heat up. This 

requires an accurate description of both continuous gas phase and dispersed particle 

phase. This may be studied by using the Euler-Lagrange or Euler-Euler modelling 

approaches and it is crucial for practical application of prediction of solid fuels 

combustion for different technologies. The former one is the basis for the discrete 

phase model (DPM) in FLUENT. 

When carrying out numerical simulations of particle-laden flows, it needs to bear in 

mind that there are different flow regimes which are classified in dilute and dense flow 

regimes. Therefore, to decide which regime is the case to be simulated is determined by 

the volume fraction of the dispersed (particulate) phase. 

   
  

 
  (4.1) 

where    is the volume of the dispersed phase in a specific volume  . This volume 

fraction has an upper threshold that is given by maximum value of 0.64 in a packed bed 

of particles (mono-dispersed spherical particles) [190]. In DPM, the assumption made 

is that the particles take up a negligible volume in the fluid phase. Practically, this 

limits the particulate phase to around 10-12%. The other thing that needs to be 

mentioned is the turbulent dispersion. Although the calculation of particle trajectories 

from the mean continuous phase velocities is valid for an individual particle, unrealistic 

results will be produced when considering an ensemble of similar particles. Therefore, 

to account for turbulence a term which is stochastic can be added to the calculation.   

Pulverized combustion is characterized by small volume fraction of the dispersed 

particle phase and therefore, in this study, the Euler-Lagrange approach has been used 

to model the pulverized coal and biomass combustion, whereas, the other approach has 

been applied in another model that will be presented in the next chapter.  

In the simulation of pulverised combustion of coal or biomass, the mathematical model 

needs to describe a number of phenomena such as multi-phase turbulent fluid 

mechanics (particle dispersion and exchange of mass, momentum and energy between 

phases), turbulent mixing, particle devolatilisation, volatiles combustion, char oxidation 

and radiative heat transfer. 

Many models adopted Lagrangian approach in treating the particle phase when 

modelling pulverized coal combustion [191-193]. Concerning biomass combustion, the
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Lagrangian  approach was used by Fletcher [194] to simulate the flow and reactions 

inside an entrained biomass gasifier and the numerical results showed the capability of 

the Lagrangian  model to optimise the design of such gasifiers. Another study regarding 

the modelling of pulverized wood combustion was carried out in which the Lagrangian 

manner was also adopted [195]. In this chapter, two firing scenarios have been 

simulated including pulverized coal combustion and pulverized biomass combustion. 

4.2 Governing equations and used models 

4.2.1 Gas phase  

The governing equations of the conservation of mass, momentum, chemical species, 

energy as well as the equations of the turbulent kinetic energy and its rate of dissipation 

for the steady incompressible flow in 2d axisymmetric takes the general form as 

presented in equation (3.40). The turbulence model used in the current simulation is the 

standard k-ϵ, which has been outlined in § 3.3. Unfortunately, the optimized standard k-

ϵ considered in ch.3, which shows better results when modelling the combustion of 

methan is not used in these simulations. 

4.2.2 Modelling of the particulate phase  

Besides the modelling of turbulent and reactive gaseous flow, pulverized fuel 

combustion also includes solid fuel particles which are dispersed into it. In the Euler-

Lagrange approach, the dispersed phase is solved by the DPM, in which a large amount 

of particles is tracked. However, it is computationally expensive. In the application of 

pulverised fuel, the discrete phase is considered to be dilute and its volumetric fraction 

is neglected [158, 196]. The dilute dispersed flows are defined as those in which the 

particle motion is controlled by the hydrodynamic forces (drag and lift forces) [197]. 

Therefore, the motion of particles mainly depends on drag forces. On the other hand, it 

is controlled by the collisions of particles in dense flow systems. Coupling between the 

two phases accounts for the exchange of mass, momentum and heat as shown in Figure 

4.1. Generally, the coupling between the gas and particulate phases can be found in 

different ways which include one-way coupling, two-way coupling and four-way 

coupling (related only to dense flows) as shown in Figure 4.2. For volume fraction less 

than 10
-6

 (very dilute flows), the particulate phase has negligible effects on the gas 

phase. Regarding the Larger volume fraction (<10
-3

), a two-way coupling is required. A 
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four-way coupling should be used for larger volume fraction (>10
-3

). FLUENT 

provides only the first two types of coupling. The motion of fuel particles is modelled 

according to the differential equations for mass, momentum and energy. These 

equations predict the change in particle trajectory as it moves through the gas phase 

taking into account the interaction between the two phases by treating the heat and 

mass losses of the particles as the source terms in the governing equations.  

 

Figure 4.1: The interaction between gas phase and particulate phase [158]. 

 

Figure 4.2: Coupling regions for particle-fluid turbulence interaction [198]. 

4.2.2.1 The particle equation of motion 

The trajectory of each discrete phase particle is calculated by solving its equation of 

motion, whose theory is based on Newton’s second law. For the x-direction, it is given 

by: 

  
   

  
  ∑    (4.2) 
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where    and   , respectively are the mass and instantaneous velocity of the particle 

and    represents different forces acting on the particle which, depending on the 

characteristics of the particles and the continuous phase (gas phase), some of them have 

various relevance and some of them can be neglected.  

  
   

  
  ∑     (     )     (    )   ⁄       (4.3) 

where    and    are the drag force and acceleration gravity, respectively and    ,  , 

and    are the particle density, the instantaneous gas velocity and  additional forces that 

can be important, respectively. The other forces that are represented by    may include 

pressure gradient force, virtual mass force, lift force (see for [158] more details). If the 

fluid-particle density ratio is very small (~ 10
-3

), all the forces are neglected, apart from 

the drag force and the gravity force. The drag force    is the only one taken into 

account in this model and calculated as following: 

     
  

    
 

     

 
        (4.4) 

where    is the particle diameter and      is the relative Reynolds number which is 

calculated using the following equation: 

          
   |     |

  
   (4.5) 

where    is  the gas viscosity. To calculate the drag coefficient    for spherical 

particles, FLUENT uses the correlations developed by Morsi and Alexander [199]. 

       
  

   
 

  

   
    (4.6) 

where   ,   , and    are costants. 

4.2.2.2 Heat and mass transfer to and from particles calculations 

The thermal energy conservation equation can be written as following: 

 (    )

  
  ∑  ̇   (4.7) 

where   ̇ is the sum of energy sources, such convection from the gas phase, radiative 

energy transport and heat of reaction and    is the particle enthalpy. 

The particle enthalpy per unit mass is 
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  ∫        

  

  
   (4.8) 

where      is the heat capacity of the particle,    is the particle temperature,    is the 

temperature at standard conditions (298 K) and    
  is the enthalpy of formation (   

  = 

0). The particle temperature is governed by a heat balance of different heat fluxes that 

involve convective heat transfer, radiative heat transfer, the heat loss due to evaporation 

of moisture and the devolatilization reaction in the particle and the heat of char 

combustion. Mathematically, the particle heat balance can be represented as 

      
   

  
        (      )        (  

     
 )  

   

  
    

                                                                                                                ∑
   

  
           (4.9) 

where    is the particle diameter,   is the thermal conductivity of gas phase,    is the 

temperature of the gas phase, ,       
 
 is the surface area of the particle,    is the 

particle emissivity,    is the Stefan-Boltzman constant (5.67032 x 10
-8

 W/m
2
.K

4
),     is 

the radiation temperature, (
 

   
)
  ⁄

,    is the fraction of heat absorbed by the particle 

and takes the value of 0.3,        is the enthalpy of reaction r (the heat gain/loss by 

heterogeneous reactions including the heat gain due to char combustion reactions and 

the heat loss due to the gasification reactions),     is the latent heat of devolatilization 

and    is the Nusselt number. ( ) is the incident radiation in W/m
2
: 

  ∫    
    

   (4.10) 

where   is the radiation intensity and   is the solid angle.  

The convective heat transfer coefficient  ̂ is evaluated using the correlation of Ranz 

and Marshall: 

    
 ̂  

 
           

  ⁄     ⁄    (4.11) 

and 

         ⁄    (4.12) 

where    is Prandtl number of the gas phase. In equation (4.9), the first term in the 

right hand side represents the heat transfer due to convection, the second term is the 

heat transfer caused by radiation, the third term is the heat of reaction and the last one 

is the heat transfer results from evaporation. The heat of evaporation is not included in 

this model as the coal was considered to be dry-ash-free (DAF). The heat of 
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devolatilization is neglected in this work, firstly, due to the difficulties and uncertainty 

of measurements [200] and secondly, because it is much less than the heat transferring 

from the gas phase to the particle. It is negligible as compared to the heat due to 

convection and radiation. Moreover, the latent heat is normally small for coals. 

4.2.2.3 Thermally-thin assumption  

Equation (4.9) assumes that the internal resistance to heat transfer is negligible, i.e., the 

particles are at a uniform temperature throughout (thermally-thin assumption is 

considered). If the temperature is uniform throughout the particles, the stages of fuel 

particle combustion such as heating, devolatilization and char oxidation occur in a 

sequence way and the current study is based on this assumption. On the other hand, 

when temperature gradients are present, they may occur simultaneously. The 

temperature distribution in a particle is generally characterized by means of Biot 

number (  ), which relates the internal heat transfer resistance (internal conduction 

resistance) to the external resistance (surface convection). When the Biot number is 

very small the internal heat transfer due to conduction is fast. Therefore, temperature 

gradients are negligible inside the particle and the temperature of the particle can be 

regarded as uniform, which means that the combustion and gasification will depend on 

the external heat transfer and chemical reactions. On contrary, if the number is large, 

the external heat transfer due to convection is faster than that due to conduction. This 

means that the particle size will be a limiting factor. 

   
 ̂  

  
   (4.13) 

Where  ̂ is the convective heat transfer coefficient,    is the thermal conductivity of the 

particle, and    is the ratio of particle volume to its surface area (       ⁄ ). In the 

current study, either pulverised combustion of coal and biomass are modelled by using 

the discrete phase model which is based on the assumption that the particles are 

thermally-thin and the particles are tiny in size. Therefore, under the conditions of all 

cases, the Biot number is so small that the uniformity of temperature within the particle 

phase due to the small size and large thermal conductivity of the particles has been 

considered.  

4.2.3 Combustion stages of fuel particle 

The general model used for many solid fuels involves three stages of combustion: 
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1. Fuel heating and drying. 

2. Devolatilization of particle to produce volatile and char. 

3. Volatile combustion in the gas phase and char oxidation and gasification. 

The inert heating is applied as long as the particle temperature is less than the 

vaporization temperature (devolatilization temperature) and after the volatile fraction of 

the particle has been released (       ). During this stage, the fuel particle is heated 

rapidly by both the convective heat and absorption of radiation at the surface and 

equation (4.9) becomes as 

      
   

  
         (      )        (  

     
 )  (4.14) 

When the temperature of the particle reaches the vaporization temperature, the 

combusting particle may proceed to obey the devolatilization and surface combustion 

laws and returns to the inert cooling law when the volatile fraction has been consumed 

(   (      )    ). In this study, it is assumed that all the particle combustion 

stages take place in sequence way. In this process, devolatilization refers to the release 

of volatile matter by thermal decomposition, while it is termed pyrolysis when it takes 

place under inert conditions. The devolatilization law is applied to the combusting 

particle when (       ) and stays effective while the mass of the particle    exceeds 

the mass of non-volatile in the particle (   (      )    ). The particle 

temperature during this stage is described by equation (4.15). 

       
   

  
         (      )        (  

     
 )  

   

  
     (4.15) 

After a complete evolve of the volatile component the surface reactions, which 

consumes the combustible fraction (     ), begin. At this point, (   (  

    )    ). At this stage, the combustion of char starts and continues until it is 

consumed and the particle temperature is described by equation (4.9). 

4.2.4 Turbulent dispersion in gas-solid flow 

Commonly, turbulent dispersion is a term used to describe the transport phenomena of 

the particles in the carrier phase, whilst the flow is turbulent. In the analysis of gas-

solid flows, coupling between the gas phase and the particulate phase is an important 

concept. It describes the effects of one phase on the other as shown in Figure 4.1. The 
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combination of the stochastic change in velocity and the misalignment of particles and 

fluid trajectories are the ways in which the turbulence is felt by the dispersion phase.  

When considering a turbulent flow, we must take into account the effect of a random 

fluctuating velocity. The effects of turbulence are accounted for by predicting the 

trajectories of particles using the mean gas phase velocity ( ̅) in the trajectory 

equations. The model of particle motion given by equations ((4.2)-(4.6)) needs the 

instantaneous local value of the velocity of the gas mixture.  

   ̅      (4.16) 

In the current work, the standard k-ϵ model is used for estimating the turbulence 

properties. Thus, the mean velocity,  ̅, is calculated by solving the Favre averaged 

Navier-Stokes equations for the gas phase and the fluctuating velocity,   , is assumed 

to fellow a Gaussian probability distribution and determined in a stochastic manner 

within a turbulent eddy. Therefore, the instantaneous gas velocity is calculated as 

   ̅   (    ̅̅ ̅̅  )
  ⁄

   ̅   (    ⁄  )  ⁄   (4.17) 

where   is a normally distributed random number. 

For this purpose the dispersion of the particles due to turbulence in the gas phase is 

predicted using a stochastic tracking approach. The turbulent dispersion of particles is 

predicted by integrating the trajectory equations for individual particles using the 

instantaneous fluid velocity along the particle path during the integration. The particle 

position at any given instant of time, the density, the temperature and the sources to the 

gas phase are computed for a sufficient number of representative particles (number of 

tries) with different sizes, dropped from each cell of the inlet as shown in Figure 4.3. In 

the present investigations, the discrete random walk (DRW) [201] model is used. In this 

model, the fluctuating velocity components are discrete piecewise constant functions of 

time and their random value is kept constant over an interval of time given by the 

characteristic lifetime of eddies. 

The eddy lifetime is expressed as a constant: 

       (4.18) 

where    is the fluid Lagrangian integral time and given as 
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  (4.19) 

To cross an eddy, the particle requires time is given by 

             (  
  

  |    |
) (4.20) 

where    is the particle relaxation time,    is the eddy length scale, and |    | is the 

magnitude of the relative velocity. It is assumed that the particle interacts with the gas 

phase over the smaller of    and    and therefore a new value of instantaneous velocity 

has to be calculated. 

 

Figure 4.3: Trajectories of particles for a single cell [202]. 

4.2.5 Particle size distribution 

The size of particles injected into the reactor is one of the important parameters when 

modelling multiphase systems such as pulverised fuel combustion. The pulverized fuel 

composed of particles with different sizes. Therefore, the particle size distribution 

needs to be measured. It is normally obtained by a standard laboratory screening 

method. In FLUENT, it is possible to simulate pulverized fuel flow with using various 

sizes of particles with the assumption that the particle size distribution follows a Rosin-

Rammler distribution curve i.e. in the form of Rosin-Rammler type. The Rosin-

Rammler distribution function is based on the assumption that an exponential 

relationship exists between the particle diameter    and the mass fraction of particles 

   with diameter greater than   : 

     
 (   ̅⁄ )

 

  (4.21) 

where  ̅ is the mean diameter and   is the spread parameter. Therefore, the measured 

particle size distribution is transferred to the Rosin-Rammler distribution. Then, the
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average particle diameter is calculated. Finally, the spread parameter is calculated. The 

particle size distribution of the fuels used in the current study will be presented next. 

4.2.6 Radiation 

The distribution and concentrations of products are strongly influenced by heat transfer 

in combustion systems. Therefore, its proper prediction is essential. In pulverised coal 

combustion systems and combustion reactors with heated walls, radiation is the 

dominating heat transfer mechanism [203]. Several radiation models have been 

developed as outlined in § 3.4. For comprehensive combustion modelling, the P-1 

radiation model has employed for the heat transfer of radiation [17]. This radiation 

model has been successfully used by several researchers [204-206]. The weighted-sum-

of gray-gases model (WSGGM) is used for determining the absorption coefficient of 

the gas phase. The WSGGM-cell based method, which calculates the mean beam 

length based on a characteristic cell size from the CFD model has been used. 

4.3 Pulverized coal combustion 

In the current work, the combustion of pulverized coal is modelled in an electrically 

heated reactor which will be described in § 4.3.1. To validate how well the CFD 

models capture the physical and chemical process taking place inside the reactor, the 

predictions are compared with the relevant experimental data.  

4.3.1 Model geometry and operating conditions 

The basic geometry of the reactor considered for this study is taken from literature 

[207]. The reactor is 2.5 m in length with an internal diameter of 200 mm. The axis-

symmetric computational domain and the burner of the reactor that consists of three 

concentric tubes are as shown in Figure 4.4. The coal particles are injected centrally 

through an 8 mm diameter inner tube. A concentric tube with a diameter of 18 mm 

makes an annular gap that admits the primary air through it. The secondary air is 

supplied through another annular gap made by a concentric tube with a diameter of 34 

mm. The operating conditions are provided in Table 4.1. Some assumptions are made 

in order to simplify the modelling. It is assumed that the gas phase can be treated as an 

ideal-gas mixture.  
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Figure 4.4: Geometry of the axisymmetric combustor. 

The coal particles are assumed to be spherical in shape and enter the combustor at the 

same velocity as the carrying air. It is also assumed that the particles are dry with a 

temperature of 300 K. The side walls are modelled as having a constant temperature 

maintained by electrical heater. For the discrete phase, the particles parameters 

including the mass flow rate, temperature, velocity and diameters were specified at the 

inlet. The interaction between the particles was neglected. 

Table 4.1: Operating conditions of pulverized coal combustion. 

Parameters                                                                Units                                    Values 

Coal mass flow                                                          kg/hr                                      1 

Wall temperature                                                       K                                            1523 

Volume flow rate of coal carrying air                       m³/hr                                      2.38 

Temperature of coal carrying air                               K                                            473 

Volume flow rate of primary air                                m³/hr                                      4.68 

Temperature of primary air                                        K                                            523 

Volume flow rate of secondary air                            m³/hr                                       11.15 

Temperature of secondary air                                    K                                             623 
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Table 4.2: Coal analysis data. 

               Proximate analysis (wt%, raw basis)           Ultimate analysis (wt%, raw basis) 

             Moisture   Volatile   Fixed carbon   Ash            C         H        O        N        S 

Coal 1      1.57         30.46          62.87         6.67           78.9     4.9      7.6      1.3     0.6 

HHV = 35084.16 [KJ/Kg]                                                     LHV = 33930.32 [KJ/Kg] 

Coal 2      1.69         31.94          57.32        10.74          74.2     4.4      8.2       1.2     1.1 

HHV = 34210.764 [KJ/Kg]                                                   LHV = 33127.25 [KJ/Kg] 

Particle size distribution 

Average particle size                                      [μm]                   16,   52,   160,   350 

Mass fraction of particle diameters                   %                      30,   35,    25,    10 

Rosin-Rammler particle size 

distribution 
Min    [μm]         Max    [μm]         ̅ [μm]        [-]    

        16                      350                48           0.747 

4.4 Chemistry of coal 

The simulations of pulverised coal combustion have been carried for two types of 

bituminous coal. The proximate and ultimate analysis and the particle size distribution 

data of the two coals fired in the pulverised combustion reactor are shown in Table 4.2.  

It appears that the low heating value is higher than that of pure carbon (around 33 

MJ/kg) because the high heating value was estimated on the DAF basis using the 

correlation given in [208]. 

Reaction kinetics 

The combustion of solid fuels is a complicated process that includes several physical 

and chemical phenomena. This makes combustion modelling to be a time-consuming 

challenging task. Therefore, the combustion phenomena need to be considerably 

simplified for CFD modelling and a reduced combustion mechanism is used. The 

combustion mechanism used in the current work is explained below. 

4.4.1.1 Devlatilization  

The pulverized coal combustion model proposed in this simulation involves 

devolatilization, volatile combustion, char combustion and other gas phase reactions. In 
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this study, volatiles release is described by the single rate model [128]. It assumes that 

the rate of devolatilization is first-order dependent on the amount of volatiles remaining 

in the particle and employs global kinetics. The reaction and its rate constant are: 

     
  
→          ( )        (   )   (R1) 

where   is the distribution coefficient. 

       (    )⁄  (4.22) 

4.4.1.2 Heterogeneous reactions 

Four well-defined steps are usually involved in the chemical processes of solid fuel 

combustion as mentioned above: drying, devolatilization, volatile combustion and char 

oxidation. Once solid fuels are injected into a combustion chamber, they are heated up 

and the drying process (the release of moisture) occurs immediately, followed by the 

rapid devolatilization process (the release of volatiles) which occurs due to high 

temperatures. Char produced through the volatilization process is consumed by 

heterogeneous processes of combustion and gasification and its combustion yields 

carbon monoxide (CO) and carbon dioxide (CO2) according to the following reactions:  

 ( )              (R2) 

 

 ( )           (R3) 

 

 ( )          (R4) 

Reactions (R2) and (R3) are exothermic and will occur very rapidly but reaction (R4) is 

endothermic. In general, a dominating heterogeneous reaction is related to whether the 

char combustion rate is limited by either the diffusion of oxygen through the boundary 

layer surrounding particles or the kinetic rate of carbon oxidation reactions. 

Heterogeneous reactions can also include the following endothermic reaction: 

 ( )                                                                      (R5) 

where the carbon monoxide (CO) and hydrogen (H2) resulting from reactions (R4),                                                           

(R5) and (R6) are incorporated to the gas phase and oxidized to CO2 and H2O 

according to the following homogeneous reactions: 
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             (R6) 

 

                                  (R7) 

Three cases are considered in the present work. The heterogeneous reaction begins after 

the volatile fraction of coal particles is completely evolved. In case (1) and case (2), the 

initial reaction considered in this simulation is the oxidation of combustible fraction of 

coal particle (char) to carbon dioxide (R2). The models that are applied to calculate the 

reaction rate, described in § 2.7.3, are the diffusion model [127] for case (1), and the 

kinetics/diffusion model [133] for case (2). It assumes that the heterogeneous reaction 

rate is determined by the diffusion of the gaseous oxidant to the surface of the particle 

in the former model, and is determined either by the diffusion rate or by a chemical 

reaction, presumed to be first order in oxidant partial pressure and occurring entirely at 

the particle surface, in the latter one. With regard to case (3), the multiple-surface 

reaction model was used. Surface reactions are modelled by the implicit relationship 

proposed by Smith [135]. According to this model, the rate of particle species depletion 

for any reaction is given by 

 ̅                  (4.23) 

where   ,  ,    and      are the particle surface area [m
2
], effectiveness factor, mass 

fraction of surface species i in the particle and rate of particle species depletion [kg/m
2
 

s], respectively.  

        (    
    
  
)
 

            (4.24) 

where   ,   ,    and   are bulk partial pressure of the gas phase species (pa), the 

diffusion and kinetic rate and apparent order of reaction, respectively.  

where    is the mass diffusion limited rate constant (   = 5x10
-12

 m
3
/K

0.75
s).  

Then, the rate of particle surface species depletion for a reaction with order (N = 1) is 

given by 

        
[(     )  ⁄ ]

    

  
      (4.25) 

          (    )⁄             (4.26) 
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and for a reaction with order (N = 0),  

In case 3, the combustion of char was assumed to follow the reactions (R2)-(R5).  To 

determine the rates of these reactions, a user-defined function (UDF), given in 

appendix (B), was written and exported to the solver. The other processes were 

modelled using sub-models which are readily available in fluent such as turbulence, 

turbulence-chemistry interaction, radiation, particles initial heating up, particles 

devolatilization, and NOx models. 

Summary of the three cases and the heterogeneous reactions and the models used to 

determine their rates are provided in Table 4.3. 

Table 4.3: Devolatilization and char oxidation models used in the simulation cases. 

                         Case 1 Case 2 Case 3 

Devolatilization  Single rate model Single rate model Single rate model 

Char oxidation  diffusion model kinetics/diffusion 

model 

multiple surface 

reaction model 

Heterogeneous 

reactions 

(R2) (R2) (R2), (R3), (R4), (R5) 

4.4.1.3  Gas phase reactions  

In the gas phase reactions, the yields of gases and tars combined are known as the 

volatile matter (      ) which will evolve during the devolatilization process. This 

volatile matter, for simplicity in this study and also because the detailed chemical 

species in it are not completely understood due to the complexity of the chemical 

structure of coal and biomass, was generally treated as a single species which varies 

depending on the type of solid fuel whether it is coal or biomass and comprising 

carbon, hydrogen and oxygen (      ) in a ratio determined from the ultimate analysis 

of the solid fuel. Moreover, the formation of volatile products consists of individual 

time-dependent species release, but this takes place so rapidly that for most modelling 

application they can be treated as a single time-dependent variable. For the description 

of the gas composition inside the furnace the species transport approach in FLUENT 

   ̅               
   

    
             (4.27) 

   ̅                          (4.28) 



Chapter 4                                                                                          4.4 Chemistry of coal   

 

137 

has been used and for this purpose six species have been defined:      , O2, CO2, CO, 

H2O and N2. For all the cases, the homogeneous reactions (R6) and (R8) are included. 

                    (R8) 

where    and   represent the composition of the chemical elements based on the type of 

solid fuel. Thus, equating the numbers of atoms of each element in the reactants to the 

number in the products gives: 

  (       ⁄⁄ ) (4.29) 

 

    ⁄   (4.30) 

For coal and biomass types used in the current study, the volatile gas species are 

represented in the CFD predictions as will be presented later which was calculated from 

the coal’s ultimate and approximate analysis. The FR/ED model that calculates both the 

Arrhenius kinetic and eddy-dissipation [142] rates was applied in the simulations to 

account for the turbulence/chemistry interaction and the net reaction rate is chosen as 

the minimum of the two rates depending on which one is dominating the local reactions 

as outlined in chapter § 3.5.3.2. 

      (         ) (4.31) 

The Arrhenius kinetic and eddy-dissipation rates are, respectively, given as 

        
     ( 

 

   
) [  ]

 [   ]
  (4.32) 

 

where    and     are reactant and oxidant concentrations, respectively. 

           
      

 

 
   [   

 
(

  

    
     

)  
∑    

 ∑     
      

 
 

]  (4.33) 

 

where      is the molecular weight of species i,    is the mass fraction of any product 

species,    is the mass fraction of a particular reactant  , N is the number of species, 

    
 

 is the stoichiometric coefficient for reactant i, and     
  

 is the product species 

stoichiometric coefficient and it will be zero for any species that is not a product in the 

reaction.  
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For the chemical reactions considered: the heterogeneous ones (R2) through                                                           

(R5) and the gaseous reactions (R6) and (R8), a summary of the kinetics data used in 

the present combustion modelling and the values of d and e are provided in Table 4.4. 

Table 4.4: Kinetic constants of reactions. 

Type of reaction Reaction. no. Kinetic parameters d e Ref. 

A 

(units vary) 

E 

(J/kmol) 

β 

Devolatilization   (R1) 3.12E+05 7.4E+07 - - - [128] 

Heterogeneous (R2) 0.002 7.9E+07 0 - - 
[158] 

Heterogeneous (R3) 0.052 1.33E+08 0 - - [209] 

Heterogeneous (R4) 4.4 1.62E+08 1 - - [210] 

Heterogeneous (R5) 1.33 1.47E+08 1 - - [210] 

Homogeneous (R6) 1.30E+11 1.26E+08 - 0.5 0.5 [211] 

Homogeneous (R8) 2.119E+11 2.027E+8 - 0.2 1.3 [158] 

4.4.2 Coal volatile elemental composition and enthalpy of formation  

The molecular formulas of the two coals used in the model have been simplified in a 

form that makes the numerical simulations simpler. The contents of Sulphur (S) and 

Nitrogen (N) have been neglected. 

For (coal 1) on DAF basis, the proximate analysis is 32.6% volatile and 67.4% fixed 

carbon (char). The elemental composition of the coal 1 on DAF basis is 86.32% C, 

5.36% H and 8.32% O. The relative proportion composition of the volatile is 

determined by assuming that its mass is to be 32.6% of 1kg of the DAF composition. 

thus   

      (    ⁄ )  (       ⁄ )  (       ⁄ )    

then  

             

The elemental composition of volatile is         ⁄             ⁄  and this leads 

to                . 
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The volatiles of (coal 1) has the simplified molecular formula “            ” with the 

molecular weight of 20.672 kg/kmol.  

The lower heating value of volatile (      ) is calculated using the following formula: 

       
               

    
   (4.34) 

where    is the mass fraction of char in coal [kg/kg-coal],      is the mass fraction of 

volatiles in coal [kg/kg-coal] and      is the lower heating value of char which is 

regarded to be equal to that of fixed carbon (32900 KJ/Kg). 

       
                     

     
                

then 

                                           

The oxidation of volatiles of coal 1 is represented by the following reaction: 

                                   (R9) 

The formation of enthalpy of the volatile is calculated by the following equation: 

      ∑           
  ∑            

    (4.35) 

where       is heat of reaction (745442.4658 kJ/kg), and            
  and             

  

are the enthalpy of formation of products and reactants in [kJ/kmol], respectively. The 

enthalpy of information of the species   ,     and     are obtained from 

FLUENTdatabase. Solving equation (4.35) resulted in the enthalpy of formation of the 

volatiles of (coal 1),        
  that have the value of (-5.824 x10

7
 J/kmol). 

The same steps above have been followed to obtain the enthalpy of formation of the 

volatiles of (coal 2),        
  which has the molecular formula “           ” with the 

molecular weight of 19.97 kg/kmol. The obtained enthalpy of formation has the value 

of (-6.8462068×10
7
 J/kmol), which is based on the following reaction: 

                                  (R10) 
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4.5 Mesh-independence study 

The mesh for the geometry shown in Figure 4.4 is generated using GAMBIT. A steady-

state computation was initially carried out with a grid resolution having a total of 

48,000 control volumes, which is shown in Figure 4.5. For proving that the solution is 

independent of the mesh used in the simulations, it is important to carry out a grid-

independence study. Therefore, the grid density was slightly reduced to 37,500, and 

then symmetrically increased to 52,000, 61,000 control volumes to check their 

sensitivity on simulated results. Figure 4.6 shows the temperature inside the reactor 

along the mid-line for the four grids and the predicted results show reasonably good 

agreement with small variation at the upstream of the reactor. Moreover, Figure 4.7 

shows the variation of the temperature along the axial line at an outer radius (i.e., y = 

70 cm). It is shown that the simulation results based on the four meshes are very close 

to each other except for the small discrepancies in the upstream region. Therefore, the 

grid that has a total number of cells of 48000 was sufficient for obtaining a grid-

independent CFD solution and used for carrying out the further simulations. 

 

                                    

Figure 4.5: The grid of the computational domain. 
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Figure 4.6: The variation of temperature predicted along the centreline of the reactor 

with different grids (coal 1). 

 
Figure 4.7: The variation of temperature predicted along the line (y = 70 cm) of the 

reactor with different grids (coal 1). 

4.6 Numerical methods 

Solving the governing equations of two phases during the course of simulations has 

been carried out using the implicit finite volume method. ANSYS FLUENT 6.2 

software has been used for solving the equations. The steady state segregated solver has 

been employed with a pressure-velocity coupling derived by the SIMPLE (Semi-

Implicit Method for Pressure linked equations) algorithm [24]. The discretisation 

process is second order upwind scheme and the evaluation of gradients and derivatives 

is carried out by Green-Gauss cell based Gradient Evaluation method.  For getting a
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stable solution, the relaxation factors have been adjusted and the residual for all the 

variables converged to 10
-3 

but for the energy and radiation to 10
-6

. Six discrete particle 

sizes are considered to be released from each cell of the injection surface. The particles 

enter the computational domain through the coal burner. The total number of particles 

tracked depends on the number of tries of DRW model (see § 4.2.4), which have been 

set to the value of 10. Number of cells in the injection’s surface is 20. Therefore, there 

are 1200 particles, which are tracked during the simulations. They are tracked cell by 

cell through the volume. They are subjected to devolatilization and combustion and 

exchange of heat with the gas phase as well. Tracking these particles takes place till 

they either burn out or pass out the reactor exit. 

4.7 Modelling of NOx chemistry 

4.7.1 Mechanisms of NOx formation 

In combustion systems including pulverized combustion, the formation and destruction 

of nitrogen oxides (NOx) emissions are influenced by several factors as fuel properties 

and combustion conditions such as the temperature of combustion zone and the fuel-air 

ratio [212, 213].  Understanding the chemistry of nitrogen in solid fuel burned systems 

mainly can help to improve the measures of NOx control. 

The nitrogen from combustion air and solid fuel are converted to pollutants 

compromise various nitrogen compounds such as nitric oxide (NO), nitrogen dioxide 

(NO2), nitrous oxide (N2O), ammonia (NH3) and hydrocyanide (HCN). NOx oxides can 

include mostly NO and too much lower the contributions from NO2 and N2O. So, the 

focus of NOx models is only on predicting the concentration of NO in the reactive field 

of interest. 

Without considering the nitrogen contained in the fuel, these emissions are formed at 

high temperatures from the combustion air nitrogen and can be limited by combustion 

engineering measures to a permitted values. On the other hand, when using nitrogenous 

fuels and low combustion temperatures, the formation of NOx is mainly due to the 

conversion of fuel nitrogen partially or totally into nitrogen oxide [115]. 

During devolatilization, the nitrogen in the solid fuel is released as the nitrogen in the 

volatiles (volatile-N), such as Tar-N, HCN, NH3 and N2 and the remainder is retained 

as the nitrogen in the char, which is called (char-N). Most coals contain 0.5-2.0% 
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nitrogen by weight with bituminous coals generally have high nitrogen levels and 

anthracite low nitrogen levels. The split of nitrogen in the fuel into volatile-N and char-

N is important for NOx formation. Consequently, nitrogen release from both coal 

pyrolysis and char oxidation must be considered when modelling NOx reactions in coal 

combustion systems. 

Different mechanisms during the combustion of solid fuels cause the formation of NOx 

oxides. In combustion field, there are four different mechanisms, which are identified 

in the formation of NOx nitrogen oxides can be formed [213] and briefly described as 

following: 

1. Thermal-NO, which is simply formed by the high-temperature oxidation of 

atmospheric nitrogen and determined by a set of chemical reactions, which take 

place in a few tens of microseconds, and are highly temperature-dependent.  

2. Prompt-NO, which is first postulated by Fenimore [214]. It is another way in 

which the atmospheric nitrogen can participate in the formation of NO. In this 

mechanism, the molecular nitrogen is attacked by hydrocarbon radicals 

produced at high temperature in fuel-rich regions of flames when hydrocarbon 

fuels or coal are burned, producing atomic nitrogen, which is subsequently 

oxidized to NO. Therefore, Prompt-NO is only important in very fuel-rich 

regions with high hydrocarbons concentration. Due to reason that the presence 

of hydrocarbons is only in the devolatilization zone of the coal flames with a 

concentration that is much lower than that in methane flames, it is likely to 

make only a small contribution to the total NO formation in industrial 

combustion systems. Therefore, it is usually negligible in the combustion of 

solid fuels. In pulverized coal combustion, it was estimated that the amount of 

NO is less than 10 ppm [115] 

3. In the combustion of solid fuels, fuel-NO is the principle source of the NOx. It 

describes the formation of NO from the nitrogen, which is chemically bounded 

in the fuel during the combustion process. As mentioned earlier, Fuel-NO is 

namely composed of volatile-NO and char-NO and typically accounts to more 

than ~ 80% [215]. The formation of NO is usually assumed to proceed through 

the formation of HCN and/ or NH3 which are oxidized to NO.  

4. In addition to the above mechanisms, there is another mechanism that could be 

considered which is nitrous oxide N2O intermediate mechanism. In this 

mechanism and with the presence of a third body, the molecular nitrogen is 
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attacked by the O atom to form N2O, which subsequently reacts with O atom to 

form NO.  

In solid fuel combustion systems, the oxidation of fuel-NO is typically the most 

significant source produced during the combustion process with some contribution 

from thermal-NO. It has been shown in [216-218] that over 80% of the NO formed in 

pulverised coal combustion derives from the coal, i.e. they results from the oxidation of 

nitrogen in the coal (coal-N), and the remainder is due to thermal and prompt NO. In 

addition, the experimental work carried out by Pershing and Wendt [215] demonstrated 

that the contributions of thermal NO become significant when the temperatures in the 

coal flames are greater than 1650 K.  

4.7.2 Kinetics of NOx reactions 

Table 4.5: Rate constants for thermal NO chemical reactions,         (     ⁄ ). 

Rate constant A   E 

k1 1.8x10
8 

0 38370 

k2 3.8x10
7 

0 425 

k3 1.8x10
4 

1 4680 

k4 3.8x10
3 

1 20820 

k5 7.1x10
7 

0 450 

k6 1.7x10
8 

0 24560 

In this work, thermal-NO and the fuel-NO were considered. For the former one, NO is 

predicted by using the Zelovich [219] mechanism with the partial equilibrium approach 

for radicals O and OH concentrations. It incorporates the following reactions: 

     
      
↔         (R11) 

 

     
     
↔        (R12) 

 

     
     
↔        (R13) 
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where:            stands for the forward and   ,   ,    for the backward rate 

constants of the reactions and  ,   and    are oxygen radical, nitrogen radical and 

hydroxyl radical. Fluent uses the values compiled by Hanson and Salimian [220] as 

shown in Table 4.5. 

The net rate of NO production is: 

 [  ]

  
   [ ][  ]    [ ][  ]    [ ][  ]

   [  ][ ]    [  ][ ]    [  ][ ] (4.36) 

where all concentrations have units mol/m
3
.  

In order to compute the concentrations of NO, the concentrations of N, N2, O, H and 

OH radicals must be known. It is useful to assume that the rate of consumption of free 

nitrogen atoms becomes equal to the rate of its formation and therefore a quasi-steady 

state can be established. This assumption is valid for most of the combustion cases 

except in those of extreme fuel-rich conditions. Hence the formation rate of NO can be 

expressed as following [221]: 

 [  ]

  
  [ ] {

  [  ]  
    [  ]

 

  [  ]

  
  [  ]

  [  ]    [  ]

} (4.37) 

If the reverse reactions and the third reaction of the above mechanism are neglected, the 

following simplified expression can be obtained: 

 [  ]

  
    [ ][  ] (4.38) 

The [ ] and [  ] are estimated by the partial equilibrium approach as following: 

[ ]      
  ⁄ [  ]

  ⁄  (4.39) 

 

[  ]      
     [  ]

  ⁄ [   ]
  ⁄  (4.40) 

where the equilibrium constants   and    are as follows: 

           (
      

 
) (4.41) 
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    (

     

 
) (4.42) 

With regard to fuel-NO, most coals contain 0.5-2.0% nitrogen by weight with 

bituminous coals generally have high nitrogen levels and anthracite low nitrogen levels. 

It was assumed that the nitrogen contained in the coal is completely devolatilized 

during the simulations and distributed between the volatiles and the char when a coal 

particle is heated. This distribution is indicated by most experimental studies of coal 

pyrolysis [222]. The split of nitrogen in the fuel into volatiles and char is important for 

NOx formation. Consequently, nitrogen release from both coal pyrolysis and char 

oxidation must be considered when modelling NOx reactions in coal combustion 

systems. The key issue is the knowledge of partitioning of the nitrogen between them. 

The fraction of nitrogen released with the volatiles depends on the fuel type, the 

temperature, and the residence time [217]. The increase in temperature and residence 

time favours the conversion of coal-N to volatile-N. On contrary, low temperature 

favours the preferential retention of nitrogen in char, which is greater for biomass 

[217]. 

In some studies [223-225], it was assumed that fuel nitrogen is distributed evenly 

between the volatiles and the char, whereas, a parameter   (char nitrogen as a fraction 

of total nitrogen) is introduced to describe this distribution in this analysis as follows: 

    
  (   )  

    
 

    
 (4.43) 

 

     
     

    
 

  
 (4.44) 

where    〈   〉:     
 ,      

 ,     
 ,      and    are the mass fraction of nitrogen in 

volatiles, the mass fraction of nitrogen in char, the total mass fraction of nitrogen in 

DAF coal, mass fraction of volatiles in DAF coal and mass fraction of char in DAF 

coal, respectively.  

The transformation of nitrogen to pollutants takes place via intermediates HCN and 

NH3. For both of them, two variations of fuel NOx pathways are included as shown in  

Figure 4.8 [218, 226].  

The reactions considered for NO formation and the ones that leads to the reduction of 

NO are as follows: 
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→      (R14) 

 

      
  
→      (R15) 

 

      
  
→      (R16) 

 

      
  
→      (R17) 

 

 
(a) 

 
(b) 

 

 
(c) 

 

 
(d) 

Figure 4.8: Fuel-NO pathways: (a), (b) [227], (c) and (d) [218]. 

The rate of conversion of HCN and NH3 are given by De Soete [228] as the following: 
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    (     ⁄ ) (4.45) 

 

            
    (     ⁄ ) (4.46) 

 

               (     ⁄ ) (4.47) 

 

               (     ⁄ )   (4.48) 

where   is the mole fraction (1/s),   is the oxygen reaction order and   is the 

instantaneous temperature (K). 

The kinetics of these reactions are given in Table 4.6 and the oxygen reaction order is 

taken from Table 4.7. Regarding NO reduction on char surface, the heterogeneous 

reaction by which the reduction of NO occurs on the char surface is given as 

 ( )    
  
→      (R18) 

Levy [229] who uses pore surface area (BET) to define the rate of NO consumption due 

to this reaction which will then be: 

                     (4.49) 

where      is BET surface area (m
2
/kg),    is the concentration of the particles and 

      is NO consumption (kg/m
3
/s). 

Table 4.6: Reaction kinetics. 

Rate of reaction   (1/s)   (J/mol) 

   1.0x10
10 

280451.95 

   4.0x10
6 

133947.2 

   3.0x10
12 

251151 

   1.8x10
8 

113017.95 
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Table 4.7: Oxygen reaction order. 

Oxygen mole fraction   

          
   1 

                    
                  

                                  

         0 

For coal, typically, the BET area is 25000 m
2
/kg. This value is used as the default in 

FLUENT. The reaction rate (  ) is modelled as 

        (     ⁄ )    (4.50) 

where    is the rate of NO reduction (mol/s/    
 ),     is NO partial pressure 

calculated using Dalton’s law:          and   is the mean temperature (K). The 

kinetic constants of this reaction are     2.27x10
-3

 (mol/pa/s/    
 ) and    = 

142737.485 J/mol.  

4.7.3 Numerical procedure 

Due to the reason that the concentration of NO formed is so small compared with the 

concentration of other species of interest in the combustion process, the reactions 

included in the NO chemistry have been decoupled from the pulverized coal 

combustion process, i.e. the models of nitrogen pollutants are de-coupled from the 

combustion model and executed after the flame structure has been predicted. Thus, the 

method used for NOx modelling in RANS simulations and particularly in Fluent is the 

one by which the chemical formation and reduction rates of NO are calculated by post-

processing data obtained from previously reacting flow simulations. Another advantage 

of this method is the computational efficiency. Standard Fluent NO-post-processing 

models considering thermal-NO and fuel-NO formation were used and the specie 

transport equations for the mass fraction of NO, HCN, and NH3 were solved. 

 

  
(    )  

 

   
(    )  

 

  
(   

   
  
)   

 

   
(    

   
  
)     (4.51) 

where    is the mass fraction of NO, HCN, and NH3 and    is the source term of the 

production and reduction of NO. 
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As mentioned above, thermal NO is calculated according to the extended Zedovich 

mechanism with the partial equilibrium approach for the radicals O and OH. On the 

other hand, some assumptions are made to calculate fuel-NO. 

Moreover, during the process of pulverized combustion, devolatilization takes place 

rapidly, followed by the oxidation of the devolatilized products (volatiles) such as tar 

and light gases. When these volatiles are released much of the nitrogen contented in the 

coal particles is also released. However, the nitrogen contained in the fuel is partially 

released in both the volatiles and the char. The split of nitrogen in the fuel into volatile-

N and char-N is potentially important for NOx formation.  

It is assumed that fuel nitrogen is distributed between the volatiles and char according 

to the parameter  , which takes the value of 0.2. This assumption has been made 

because the conversion of the nitrogen released in the volatiles to NOx is predominant 

during pyrolysis in pulverized fuel flames. As mentioned in § 4.7.2 the nitrogen is 

depleted at high temperatures but at low temperatures it is retained in the char. In 

particular, at higher temperatures (above 1500 K), up to 70-90% of coal nitrogen is 

devolatilized [230]. Pulverized furnaces produce high temperature which results in 

releasing most of the coal nitrogen with the volatiles.  

In regular pulverized coal combustion, about 60-80% of NOx is resulted from the 

volatile-N [231].  Thus, by using the value   = 0.2 the mass fractions of nitrogen in 

both the volatiles and char are calculated using the equations (3.43) and (4.44). 

Furthermore, the type of coal used in this study is bituminous which yields large 

amount of tar when compared with the other types of coals [232].  

Yang et al. [233] showed that volatile matter for bituminous coals is the most important 

NOx-forming property, and the volatile-N consists mostly of tarry compounds that at 

high temperatures decay rapidly to HCN. In addition, the combustion of the bituminous 

coals show more HCN formation than NH3 [234-236], thus leading to the assumption 

that the nitrogen is released via the intermediates HCN and NH3 with higher percentage 

of the former one. The percentages used for different simulation runs for the two 

species are shown in Table 4.8 and, depending on the local conditions, these two 

species will react to form either NO or N2. For char-N path way, it is assumed that all 

the nitrogen is released via the intermediate HCN [218, 237]. 
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Table 4.8: Partition of volatile nitrogen via the intermediates HCN and NH3. 

Run volatile nitrogen (volatile-N) partitioning 

 % HCN % NH3 % NO 

1 60 10 30 

2 55 10 35 

3 52 10 38 

4 50 10 40 

5 48 10 42 

6 45 10 45 

4.8 Results and discussion of coal combustion model  

4.8.1 Combustion model 

Three cases were simulated for both types of coals: In the first two cases, the char was 

assumed to be only oxidized to CO2 according to reaction (R2). The char oxidation 

model used in the first case (Case 1) was the diffusion model while in the second case 

(Case 2) was the diffusion-kinetics model. In the third case (Case 3), the combustion of 

char was assumed to follow the reactions (R2)-(R5).   

4.8.1.1 Model validation 

In order to validate the model, the simulation results are compared with the experiment 

data [207] as shown in Figure 4.9 and Figure 4.10 for coal 1 and in Figure 4.11 and 

Figure 4.12 for coal 2. It can be seen that the predictions of O2 and CO2 concentrations 

have a good agreement with the experimental data. In particular, the mass fraction of 

oxygen along the axial distance of the reactor in Figure 4.9 for coal 1 and Figure 4.11 

for coal 2 show that the results predicted by Case 3 are more close to the experimental 

data near the burner than the other two cases, while Case 1 results for coal 1 show 

better agreement at the exit of the reactor. In terms of coal 2, case 2 show better results 

at the exit of the reactor in comparison with the experimental data. The mole fractions 

of carbon dioxide in Figure 4.10 for coal 1 and Figure 4.12 for coal 2 also show that the 

Case 3 results have very good agreement with the experimental data. 
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Figure 4.9: Mass fraction of O2 for coal 1 along the axial distance of the reactor. 

 

Figure 4.10: Mole fraction of CO2 for coal 1 along the axial distance of the reactor. 

We note that Zhang et al. [207] also performed CFD investigations in the same 

combustion chamber, and the results predicted by the current simulation approaches are 

far better than their results. CFD 2 means an algebraic unified second-order moment 

(AUSM) turbulence/chemistry model of char combustion that takes into account the 

influence of temperature fluctuation on char combustion rate, which is totally 

eliminated by CFD 1 model (the old char combustion model). For more details one can 

refer to reference [207]. They used an Eulerian-Eulerian model while the current 
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simulations results proved that the discrete phase Eulerian-Lagrangian model is a better 

suited method for this particular application of modelling coal combustion. 

 

Figure 4.11: Mass fraction of O2 for coal 2 along the axial distance of the reactor.  

 

Figure 4.12: Mole fraction of CO2 for coal 2 along the axial distance of the reactor. 

In order to further estimate quantitatively the difference between the experimental and 

numerically predicted results, a parity plot of the O2 mass fraction and CO2 mole 

fraction for coal 1 at the different axial locations are presented in Figure 4.13. The y = z 
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line indicates the ideal results i.e. the simulated results are identical to those from the 

experiment. 

 

Figure 4.13: Comparison between the experimental and simulated data of O2 mass 

fraction for coal 1. Ideal results lie on the line indicated by y = z. 

From Figure 4.13 above for the oxygen mass fraction, it can be seen that the results of 

Case 3 have good agreement as most of the data points lie very close the line when 

compared with the other cases. Results of Cases 1 and 2 have good agreement with the 

experiment towards the downstream of the reactor but failed to achieve better accuracy 

near the burner region as can be seen at the axial distances x ≈ 0.142 m and x ≈ 0.2 m 

where the data placed far from the line.  

The same is seen in Figure 4.14 for the carbon dioxide mole fraction. However, we 

further emphasise that no information is available in Zhang et al. [207] on the standard 

deviation of these experimental data and in practice this has to be taken into account in 

any comparative plot, and overall, as already mentioned, Case 3 produces the best 

agreed results. 

4.8.1.2 Temperature and mass fractions of combustion species 

The volatile mass fraction for coal 1 is illustrated in Figure 4.15. It is seen that the 

behaviour of the volatile release is almost the same in general for all the cases but the 

start of volatile release shifts to a downstream location of the reactor for case 1 and 
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case 2 in comparison with case 3. This can also be seen in Figure 4.16, which shows 

the distribution of the volatile mass fraction. 

 

Figure 4.14: Comparison between the experimental and simulated data of CO2 mole 

fraction for coal 1. Ideal results lie on the line indicated by y = z. 

  

Figure 4.15: The variation of volatile mass fraction for coal 1 in the axial direction of 

the reactor. 
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inlets. Therefore, the release and combustion of volatiles mainly occurs at the centre of 

the reactor as can be seen in Figure 4.16. 

(a)  

(b)  

(c)  

Figure 4.16: Volatile mass fraction distribution for coal 1: (a) case 1, (b) case 2 and (c) 

case 3. 

The variation of gas temperature inside the reactor along the centreline for all the cases 

is depicted by Figure 4.17. It is shown that the high temperature occurs in the region 

where the volatiles combustion takes place which can be identified by the release of 

volatiles shown in Figure 4.15 and Figure 4.16. It can be seen that case 3 gives higher 

temperature than that of the other cases. 

Figure 4.18 demonstrates the isothermal contours of the gas phase in the reactor. The 

maximum temperature of case 3 is 1632 K. The maximum temperature of both case 1 

and case 2 are 1604.77 K and 1602.967 K, respectively. The high temperature zone at 

the upstream where the release of volatile takes place is due to the exothermic coal 

combustion. Despite the difference in the temperature distribution at the part near the 

coal inlet, it can be seen that it is almost the same near the exit of the reactor. The 

variation of temperature inside the reactor indicates the process of the coal combustion 

when referring to Figure 4.17. For all the cases, once the particles of coal mix with the 

air at the feed point, the mixture temperature initially increased due to the process of 
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heating up till the point where the release of volatiles started. At this location the 

temperature dropped down due to the heat taken by the coal particles for the 

devolatilization process then went up gradually. After a gradual increase, the 

temperature rapidly increases as a result of the combustion of volatiles followed by the 

combustion of char. The gas phase reactions have rates that are known to be much 

faster than those of the char combustion reactions and therefore they are dominant in 

the presence of O2. The peak temperature occurs at the instant when most of the oxygen 

is depleted (see Figure 4.9). When the peak temperature is reached the gasification 

reactions become more important and their effectiveness depends on the operating 

conditions. It is clearly seen from Figure 4.17 that when the peak temperature is 

achieved the temperature of gas phase begins to decreases due to commence of the 

gasification reactions. 

 

Figure 4.17: Gas temperature variation for coal 1 along the axial distance of the reactor. 

Figure 4.19 shows the char burnout rates. From this figure and both Figure 4.15 and 

Figure 4.16, it can be seen that both the process of char combustion and the process of 

release and combustion of volatile for the whole combustion process take place in the 

same time. The coal particles injected into the reactor have different particle sizes and 

some particles are so smaller and some are bigger. Therefore, the smaller particles 

release their volatile content faster than the bigger ones and their char content is 

combusted while the bigger ones are still releasing their volatile content. When 
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considering only the combustion of one coal particle, it will takes place in a sequence 

way based on the assumption made earlier (see § 4.2.2.3). 

 (a)  

(b)  

(c)  

Figure 4.18: Predicted temperature distribution for coal 1: (a) Case 1, (b) Case 2 and (c) 

Case 3. 

(a)  

(b)  

Figure 4.19: Particles burnout for coal 1. 
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(c)  

Figure 4.19: continued. 

The distribution of mass fractions of combustion species for the three cases of coal 1 is 

shown in Figure 4.20 through Figure 4.23 for O2, CO2, H2O and N2, respectively. From 

Figure 4.20, it can be seen that O2 is available in the vicinity of the burner. For case 1, 

O2 is available in the first 10 cm of the reactor for case 1 and in the first 8 cm. For case 

2, the availability of O2 is in the first 15 cm of the reactor. These sections represent the 

drying zones and the earlier devolatilization zones. The distribution of O2 in these 

zones is fairly uniform (O2 does not vary along the axial direction). For all cases, as O2 

moves further it is consumed by the combustion of volatiles and char till the exit of the 

reactor where only a very small fraction is available as can be seen in Figure 4.9. The 

concentration of O2 in these stages depends on the devolatilization rate, the mixing rate 

of volatiles and air due to the turbulence and the particles residence time. It is seen that 

the rapid consumption of O2 is mainly due to the combustion of volatiles. 

From Figure 4.21 and Figure 4.22, it can be seen that the concentration of CO2 and H2O 

increase showing high quantities just after the rapid decrease of O2. The concentration 

of CO2 reaches the maximum value at the outlet as can be seen in Figure 4.10, which 

gives an indication that the gasification reaction (R4) is not effective. The mass 

fractions of the species CO and H2 for case 3 are plotted respectively in Figure 4.24 and 

Figure 4.25. It is observed that the concentrations of CO and H2 are very small within 

the char combustion zone. CO produced is immediately consumed in the gas phase. 

There is only very little of CO appearing in the downstream region which resulted from 

the reduction reaction (R4). This is consistent with what mentioned above regarding the 

ineffectiveness of this reaction. Regarding H2, it increases monotonically along the 

length of the reactor as can be clearly seen in Figure 4.26, which illustrates the 

variation of mass fractions of species CO and H2 along the centreline of the reactor.  
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(a)  

 (b)  

 (c)  

Figure 4.20: Mass fraction of O2 distribution for coal 1: (a) case 1, (b) case 2 and (c) 

case 3. 

(a)  

(b)  

(c)  

Figure 4.21: The distribution of CO2 mass fraction for coal 1: (a) case 1, (b) case 2 and 

(c) case 3. 
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(a)  

(b)  

(c)  

Figure 4.22: H2O mass fraction distribution for coal 1: (a) case 1, (b) case 2 and (c) 

case 3. 

(a)  

(b)  

(c)  

Figure 4.23: The distribution of N2 mass fraction for coal 1: (a) case 1, (b) case 2 and 

(c) case 3. 
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Figure 4.24: The distribution of CO mass fraction for coal 1 (case 3). 

 

Figure 4.25: The distribution of H2 mass fraction for coal 1 (case 3). 

 

Figure 4.26: Mass fraction of CO and H2 for coal 1 along the axial distance of the 

reactor. 
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From Figure 4.27 that depicts the mass change of coal particles along the axial distance 
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period of time than that of the smaller particles to be heated up. Then, there is a 

decrease in the mass due to the particles devolatilization which takes place rapidly for 

the small particles and becomes slower near the exit of the reactor as the particle size 

increases. During the devolatilization the volatile matter is released. Figure 4.27 also 

shows that whole volatile matter was almost released and the char reactions began. 

From the properties of the coal the solid combustible fraction of coal on DAF basis was 

approximately 67 % and it is seen that the decrease in mass reached this value means 

that nearly the total volatile matter was released. This reduction in mass is accompanied 

by the volatile combustion and this can be identified when referring to Figure 4.17, 

where it was found that the highest rate of change of temperature occurred in the region 

between 0.1 m and 0.4 m due to the rapid change of mass of the small particles. This 

effect is now clearly examined from Figure 4.27, where the results show that the 

particles with smaller diameters (e.g. 16 and 84 μm) rapidly lost their mass, at a faster 

rate than the larger particles. For the larger particles, the heat release by combustion is 

taken up by the endothermic reactions, causing a slower decrease in their mass. 

Furthermore, when the heat is released by combustion and the oxygen is almost 

depleted, the gas temperature decreases gradually.  

 

Figure 4.27: Mass depletion of particles with different sizes for case 3. 

Figure 4.28 shows the burnout of the particles. The burnout of the particles is a measure 

of the extent of coal particles combustion. It can be seen that the particle size has a 

great effect on the coal burnout. The burnout of the particle with a diameter of 16 μm is 
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100%. Whereas, the burnout of the particles with diameters of 84, 154, 222, 291 μm at 

the exit of the combustion domain is approximately 86, 75, 35, 33, 29 %, respectively. 

This leads to the conclusion that when the particle size increases the burnout decreases. 

 

Figure 4.28: Burnout of particles with different sizes for Case 3. 

4.8.2 NOx model 

Figure 4.29 shows the calculated NO emissions for the third case of pulverized 

combustion modelling (Case 3) for different runs. It shows the effect of the 

intermediates on the formation of NO. All the runs gave the same trend, but it is clear 

that the run with the assumptions: 52% HCN, 10% NH3 and 38% NO has good 

agreement with the experiment data available in [238]. Further, it can be seen that the 

calculated profile of NO concentration is rather smooth except at the upstream where 

there is a slight difference found between the measured and calculated values. On the 

other hand, it gives good agreement in the downstream towards the exit of the reactor. 

Referring to Figure 4.29, it is seen that the variation of intermediate percentages has an 

influence on the formation of NO. Thus, the decrease of the assumed HCN percentage 

results in increasing the mass fraction of NO.  
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Figure 4.29: NO weight fraction for various runs along the axial distance of the reactor. 

4.8.3 Effects of wall temperature 

Figure 4.30 through Figure 4.36 show the effects of the variation of wall temperature 

on the temperature of gas phase and the species concentrations. In Figure 4.30, the 

variation of gas temperature along the centreline of the reactor is plotted. It can be seen 

that the gas temperature increases as the wall temperature increases. It is also seen that 

the trends are similar. The other important thing that can be extracted from Figure 4.30 

is the heat needed to the process of char gasification. It is seen that at wall temperature 

of 1800 K, more heat is taken for the char gasification than the other cases as can be 

identified from the decrease of gas temperature after reaching the maximum value.  

 

Figure 4.30: The variation of gas temperature along the centreline for various wall 

temperatures. 
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From Figure 4.31, it can be seen for all case that the release of volatile takes place in 

the same region, but the maxima of volatile mass fraction increases as the wall 

temperature increases.  

 

Figure 4.31: The variation of volatile concentration along the centreline for various 

wall temperatures. 

With regard to O2 concentration, it can be seen from Figure 4.32 that there is no much 

change in it due to the increase of wall temperature. This is also seen in Figure 4.33, 

which depicts the variation of CO2 mass fraction along the centreline of the reactor. 
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Figure 4.32). This means that reaction (R4) is not effective.  
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heterogeneous reaction (R3) is immediately consumed in the gas phase due to the 

presence of O2, only a small amount of CO is seen within the char combustion zone as 

shown in Figure 4.35. It is seen from the figure that the concentration of CO increases 

with increasing the wall temperature. It can be also seen that by increasing the wall 

temperature very small amounts of CO started to appear according to the reaction (R4) 

along the axial distance between the axial location (x > 1 m) and the exit of furnace. 

H2 mass fraction increases with increasing the wall temperature as depicted in Figure 

4.36. It can be also noticed that the concentration of H2 for all cases increases along the 

axial distance of the reactor due to the heterogeneous reaction (R5). Furthermore, H2 

mass fraction increases as O2 mass fraction decreases because of the reason that the 

heterogeneous reaction (R5) becomes more active and this is consistent with the 

decrease in H2O at the region near the exit of the furnace (see Figure 4.34). Figure 4.37 

shows the composition of gas products at the reactor exit.  

Regarding the influence of wall temperature on the concentration of pollutant NO, 

Figure 4.38 depicts the variation of NO emissions along the centreline of the reactor, 

which is plotted by different wall temperatures. The figure shows that increasing the 

wall temperature increases the concentration of NO. Apart from that the peak of the 

case for wall temperature 1600 K, which is lower than that for the base case, the same 

behaviour is visible for all graphs. 

 

Figure 4.32: The variation of O2 concentration along the centreline for various wall 

temperatures. 
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Figure 4.33: The variation of CO2 mass fraction along the centreline for various wall 

temperatures. 

 

Figure 4.34: The variation of H2O mass fraction along the centreline for various wall 

temperatures. 
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Figure 4.35: The variation of CO mass fraction along the centreline for various wall 

temperatures.  

 

Figure 4.36: The variation of H2 mass fraction along the centreline for various wall 

temperatures. 

 

 

0

0.005

0.01

0.015

0.02

0.025

0.03

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

C
O

 m
as

s 
fr

ac
ti

o
n

 

Axial distance (m) 

1523 K (Base case)
1600 K
1700 K
1800 K

0

0.0005

0.001

0.0015

0.002

0.0025

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

H
2
 m

as
s 

fr
ac

ti
o
n

 

Axial distance (m) 

1523 K (Base case)
1600 K
1700 K
1800 K



Chapter 4                                        4.8 Results and discussion of coal combustion model   

 

170 

 

Figure 4.37: Variation of species mass fraction at the exit of the reactor for various wall 

temperatures. 

 

Figure 4.38: NO weight fraction along the axial distance of the reactor for various wall 

temperatures. 
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release rate of the gas phase combustion reactions) and char takes place. For the 

secondary inlet velocity of 11.5 m/s the maximum temperature is about 2250 K and for 

the other two case it is ~ 1850 K for the inlet velocity of 13.5 m/s and ~ 1790 for the 

inlet velocity of 17.5 m/s. For all cases, the figure shows that the gas temperature 

reaches its maximum value then, later in the gasification process, it begins to decrease 

gradually due to the reduction reaction (the endothermic nature of the gasification 

reactions). It is also seen that the gas temperature is almost the same for all case in the 

region between the axial locations (x = 0.6 m) and (x = 2 m). In this region, the rate of 

decrease in temperature is too slow. The influence of gasification reactions on the gas 

phase temperature is clearly seen in the case with the secondary inlet velocity of 11.5 

m/s. The variation of the released volatiles along the centreline of the reactor is plotted 

in Figure 4.40. It can be noticed that decreasing the velocity of the secondary air leads 

to that the particles will spend more time inside the reactor. Therefore, the residence 

time increases and as a result more volatiles will be released as can be seen for 11.5 m/s 

case in Figure 4.40. Moreover, It is also seen that a small portion of the volatiles 

appears in the region by the axial distance of 0.68 m till the exit of the reactor, which is 

attributed to that there is no more oxygen left for it to be oxidized (see Figure 4.41).  

 

Figure 4.39: The variation of gas temperature along the centreline at different 

secondary air inlet velocities. 
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Figure 4.40: The variation of volatile concentration along the centreline at different 

secondary air inlet velocities. 
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As it can be seen from Figure 4.42, which shows the flow stream lines, the secondary 

air effects on the mixing process. For the base case, it is shown that there is a vortex 
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the mixing process and leads to the rapid depletion of O2. Increasing the secondary inlet 

velocity to 17.5 m/s results in a vortex structure in the region between x = 20 cm and x 
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for the other two cases of 11.5 m/s and 13.5 m/s. It is seen that the O2 is consumed 

rapidly where the vortex structures are created (see Figure 4.42) because of the reason 

that these vortex structures enhanced the mixing process.  
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Figure 4.41: The variation of O2 concentration along the centreline at different 

secondary air inlet velocities. 
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(c)  

        (d)  

Figure 4.42: Stream lines: (a) 11.5 m/s, (b) 13.5 m/s, (c) 15.5 m/s and (d) 17.5 m/s. 
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Figure 4.43 and Figure 4.44 show the variation of CO2 and H2O along the axial 

direction of the reactor. From Figure 4.43, it is shown that the concentration of CO2 for 

the cases with velocities of 11.5 m/s and 13.5 m/s increased when compared with the 

base case. For the former one, it is also shown that the concentration of CO2 reached its 

peak by axial distance of 0.88 m then it began to decrease along the axial towards the 

exit of the reactor because of the heterogeneous reaction (R4). CO2 mass fraction for 

the case with the velocity of 13.5 m/s reached its peak value in the region close to the 

exit of the reactor at the axial location (x ≈ 1.88 m). Compared with the base case, the 

case with the velocity of 17.5 m/s shows low concentration of CO2. It can also be 

noticed that the heterogeneous reaction (R4) is not activated in this case due to the 

availability of O2. 

 

Figure 4.43: The variation of CO2 mass fraction along the centreline at different 

secondary air inlet velocities. 
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concentration of H2O than that of the base case. It is also seen that the concentration of 

H2O began to decrease along the centreline of the reactor towards its exit. 

 

Figure 4.44: The variation of H2O mass fraction along the centreline at different 

secondary air inlet velocities. 

The mass fraction of CO and H2 is plotted in Figure 4.45 and Figure 4.46, respectively. 
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the case of 17.5 becomes higher than that for the base case (15.5 m/s) from the axial 

location of (x ≈ 1 m) till the exit of the furnace. This can be attributed to the structure 

vortex (see Figure 4.42 (d)) that enhances the mixing process in this region. 

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

H
2
O

 m
as

s 
fr

ac
ti

o
n

 

Axial distance (m) 

11.5 m/s

13.5 m/s

15.5 m/s (Base case)

17.5 m/s



Chapter 4                                        4.8 Results and discussion of coal combustion model   

 

176 

 

Figure 4.45: The variation of CO mass fraction along the centreline at different 

secondary air inlet velocities. 

 

Figure 4.46: The variation of H2 mass fraction along the centreline at different 

secondary air inlet velocities. 
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inlet velocity of the secondary air the particles stays longer inside the reactor. When 

decreasing the inlet velocity of the secondary air the slops of the curves of mass change 

become steeper which indicate that more char conversion takes place inside the reactor.  

Therefore, their mass loss is improved. It is shown that all the particles end their release 

of volatile matter in the case with the velocity of 11.5 m/s by an axial distance that is 

shorter than that they do in the base case except for  the particle with size of 16 μm. In 

comparison with the base case, it can be seen that the heating up stage in the case of 

11.5 m/s, which is represented by the flat part of the curve, for the particles 16 μm, 84 

μm and 154 μm increased. This means that the heating period increased. For the 

particle with the size of 16 μm, it can be seen that the whole mass loss stages takes 

place in the upstream region of the reactor, but it ends by the axial distance of ~ 0.4 m 

for the case with 11.5 m/s, which is shorter than that of the base case (~ 0.75 m). As 

indicated in the figure, the mass of the particles of sizes 84, 154, 222 and 291 μm 

decreased at the exit of the reactor in the case of 11.5 m/s when is compared with base 

case. The particle with the size of 154 μm shows the highest percentage of decrease of 

~ 31 %. This decrease in mass ratio (mp/mp,ο) at the exit of the reactor for the case with 

the velocity of 11.5 m/s when compared with the base case is due to the commence of 

reduction reactions which can be identified the rapid decrease in gas temperature 

(Figure 4.39) due to the heat taken for such endothermic reactions. Figure 4.47 (f) 

shows the ratio of mass loss of the particle with size of 360 μm. It indicates that the 

conversion of the char does not occur for both cases.  It can be noticed that period of 

heating is the same for the two case which is the same for the particles with sizes of  

222 and 291 μm as shown in Figure 4.47 (d) and (e). 

The variation of pollutant NO along the centreline of the reactor is depicted in Figure 

4.48. As it is evident from the figure, all the cases show higher concentration of NO 

along the axial direction when compared with the base case, but the trend is similar. It 

seen that the case with the velocity of 11.5 m/s shows the highest concentration, which 

is mainly due to the conversion of fuel-N. As mentioned in § 4.7.3 that Yang et al. 

[233] showed that volatile matter of bituminous coals is the most important NOx-

forming property and when referring to Figure 4.40, it can be seen that more volatiles 

are released during the devolatilization process which as a result contributed to the 

higher increase of NO. The same is for the case with the velocity of 13.5 m/s. It is also 

shown that the slops of the curves for the cases with the inlet secondary air velocities of 

11.5 and 13.5 m/s are steeper when compared with other two cases. For the former, this 



Chapter 4                                        4.8 Results and discussion of coal combustion model   

 

178 

becomes more obvious along the axial distance beyond the axial location (x = 0.8 m). 

This is because O2 in this region is consumed (refer to Figure 4.41) and therefore, the 

concentration of the NO-intermediate products, which are HCN and NH3 increase 

because the reactions (R14) and (R15) become ineffective i.e. they are impeded. In 

turn, the rates of the reactions (R16) and (R17) become higher due to the increase of 

HCN and NH3 concentrations resulting in lower concentrations of NO. On contrary, the 

increase of NO concentration for the case with the velocity of 17.5 m/s, firstly, can be 

attributed to the the reason that more O2 is available and therefore the reactions (R14) 

and (R15) become more active and, secondly, may result from the conversion of 

thermal-N, since more nitrogen is supplied in the inlet air.  

 (a)  (b)  

(c)  (d)  

(e) (f)  

Figure 4.47: Mass depletion of particles: (a) 16 μm, (b) 84 μm, (c) 154 μm, (d) 222 μm, 

(e) 291 μm and (f) 360 μm at two secondary air inlet velocities. 
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Figure 4.48: NO weight fraction along the centreline at different secondary air inlet 

velocities. 

4.9 Biomass pulverized combustion 

Pulverized coal combustion is a main source to produce energy in power section, but in 

the recent years there has been a development towards finding alternatives to be fired 

either alone or with coal for supplying energy. Therefore, biomass is the only 

alternative that can replace coal and regarded as the most important of renewable 

energy sources as discussed in chapter (2). In this part of the current work, an attempt 

has been made to deal with the development of modelling the combustion of biomass, 

which is represented by the pulverized combustion of straw. Despite the general 

similarities between the pulverised combustion of coal and that of biomass, there is a 

difference between their chemical compositions (see § 2.2). The volatile content of 

straw is significantly higher than that of coal. In addition, the release of volatile matter 

of straw starts at a lower temperature and more rapidly than coal. 

4.9.1 Chemistry of straw and chemical reactions  

The straw used in this work in terms of the ultimate and proximate analysis has the 

chemical composition that is shown in Table 4.9. The combustion of volatiles released 

during devolatilization, which has the molecular formula               (molar mass = 

29.585 kg/kmol) based on the ultimate and proximate analysis, is also treated in the 

similar way of coal volatiles (see § 4.4.2).  
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The stoichiometric combustion reaction of the straw volatiles is as following: 

                                    (R19) 

The enthalpy of formation of straw volatiles was calculated according to equation 

(4.35) and found to be (-2.2983193×10
8
 J/kmol). 

Table 4.9: The chemical composition of straw. 

Ultimate analysis 
Proximate analysis 

Moisture 

(wt%, AR
1
) 

Volatiles 

(wt%, D
2
) 

Char 

(wt%, D) 

Ash 

(wt%, D) 

C (wt%, D) 47.3 7.7 79.5 15.6 4.91 

H (wt%, D) 5.68 HHV (kJ/kg, D)  18.493 

O (wt%, D) 41.6 LHV (kJ/kg, DAF
3
) 17.244 

N (wt%, D) 0.54 Particle density (  ), kg/m
3
 600 

S (wt%, D) < 0.01 Particle size distribution   considered as coal 

  Operational conditions             considered as coal 

The bases: (1) AR = as received, (2) D = Dry, and (3) DAF = dry ash-free, wt% on mass. 

For the simulation of gas phase, reactions (R6) and (R19) are considered. In terms of 

char oxidation, the heterogeneous reaction (R2)-(R5)  of case 3 of pulverized coal 

combustion were considered. Regarding the devolatilization process, since there is little 

direct experimental information on the behaviour of the reaction rates of biomass in 

furnace flames where the heating-up rate is important, the present simulation is limited 

to selected works that use a single kinetic rate model according to reaction (R1) and 

Equation (4.22). The kinetic parameters,   and   used in Equation (4.22) are taken 

from [158] and the work of Zhou et al. [188] and shown in Table 4.10.  

Table 4.10: Constants of single rate devolatilization model. 

Reference   [s
-1

]   [J/kmol] 

Fluent [158] 3.12×10
5
 7.4×10

7
 

Zhou et al. [188] 1.56×10
10 

1.38×10
8
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4.9.2 Numerical solution 

Some assumptions have been made in the current simulations which involve that the 

biomass particles are assumed to be spherical and dry and they are thermally thin. The 

conversion of straw particles is solved by the default DPM laws as has been done for 

coal combustion presented earlier. The FR/ED model is used to model the turbulence-

chemistry interaction in gas phase. For modelling radiation heat transfer, the P-1 

radiation model is used. In terms of turbulence modelling, standard k-ϵ model is used. 

4.10 Results and discussion of straw combustion  

4.10.1 Combustion results of pulverized straw 

Two cases were performed to model the pulverised coal combustion of straw in the 

same reactor shown in Figure 4.4. The first one (case I) uses the default kinetics for 

modelling the devolatilization and the second (case II) uses the kinetics of Zhou et al 

(see Table 4.10). Concerning the kinetic constants, those shown in Table 4.4 are used. 

The straw composition is the same used by C. Yin et al. [239]. The operating 

conditions are the same as those used for modelling the combustion of coal particles, 

and are provided by Table 4.11. The size of the particles is also considered to be the 

same as that of coal particles is used in order to compare the characteristics of biomass 

with that of coal.  

Table 4.11: operating conditions of pulverized biomass combustion. 

Parameters                                                                        Units                              Values 

Biomass mass flow                                                           kg/hr                               1 

Wall temperature                                                              K                                     1523 

Volume flow rate of biomass carrying air                        m³/hr                               2.38 

Temperature of biomass carrying air                               K                                     473 

Volume flow rate of primary air                                      m³/hr                               4.68 

Temperature of primary air                                              K                                     523 

Volume flow rate of secondary air                                   m³/hr                               11.15 

Temperature of secondary air                                          K                                      623 
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Figure 4.49: The variation of gas temperature along the centreline of the reactor. 

The temperature variation in axial direction of the reactor along the centreline is shown 

in Figure 4.49. It can be seen that the two cases of straw give a temperature variation 

close to that of coal (case 3 in coal model). Even though, the high heating value of coal 

is higher than that of straw which should have resulted in more heat release during 

combustion, it is seen, when using the same operating conditions, that there is not a big 

difference between the maximum temperatures in all cases. Moreover, the temperature 

is almost the same when go further down towards the exit of the furnace. This may be 

attributed to the reason that not all the coal particles lose their mass as can be seen 

when referring to Figure 4.27and Figure 4.28. The latter one shows that the particle 

with size of 16 μm is the only particle that is completely burned out (% 100 burnout). 

The particles with bigger sizes (≥ 222 μm) show a burn out less than 40 %, which 

means that less energy is released from them.  

The distribution of gas temperature of the two cases is shown in Figure 4.50. Apart 

from the small differences between the two cases in the upstream region close to the 

burner, they show a similar temperature distribution.  
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(a)  

(b)  

Figure 4.50: Gas temperature distribution of (a) case I and (b) case II. 

Temperature profiles as a function of radial distance at different axial locations are 

shown in Figure 4.51. From Figure 4.51 (a), it can be seen that radial variation of 

temperature of both straw cases is close to that of coal case in the outer region far from 

the centre. On the other hand, only straw case II shows a radial variation close to that of 

coal case with a maximum difference of ~100 K at radial distance (r = 0). Straw case I 

shows a maximum difference of ~360 K at (r = 0) when compared with coal case. 

It can be also seen that the difference in temperature between straw cases and coal case 

decreases when going downstream towards the exit of the furnace. For the axial 

location (x = 0.6 m), shown in Figure 4.51 (b), it can be seen that the difference 

between the maximum temperature of coal case and that of both straw case is ~20 K for 

case I and 34 K for case II at the radial distance (r = 0). These differences are 5 K and 

16.5 K in the middle of the furnace at axial location (x = 1 m) as shown in Figure 4.51 

(c). The radial variation of temperature is shown to be nearly the same (see Figure 4.51 

(d)) and became identical at x = 1.8 m with a difference of 4 K when compared with 

that of coal case as shown in Figure 4.51 (e). 
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Figure 4.51: Radial temperature profiles at different axial locations. 

The variation of volatiles concentration along the centreline of the furnace and the 

distribution of this concentration are depicted by Figure 4.52 and Figure 4.53, 

respectively. It is seen that the two cases show a similar trend. It is noted also that the 

the release of volatiles in case II takes place faster than that in case I, but it reaches a 

maximum value of 0.016 that is less than that of the latter which is 0.0184 as can be 

seen from Figure 4.52. As it is evident from this figure and Figure 4.49, it can be seen 

that the release of volatiles and combustion occur in parallel and this is because of the 

overlap of the zones of the volatiles release and maximum temperature. 
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Figure 4.52: The variation of volatiles mass fraction along the centreline of the furnace. 

(a)  

(b)  

Figure 4.53: Volatiles mass fraction distribution: (a) case I and (b) case II. 

Mass fractions along the centreline of the reactor are shown in Figure 4.54. It can be 

seen that the behaviour of the combustion is similar to that of coal discussed earlier. 

Compared to coal when referring to Figure 4.11 (case 3), it is seen that the mass 

fraction of oxygen is higher than that of coal at the exit of the reactor. Therefore, the 

occurrence of heterogeneous reactions (R4) and (R5) has a little influence on the 

combustion process as it is evidence from Figure 4.54. As it is seen from the figure, 

only very small fraction of CO and H2 appear. For the former one, it can be attributed 

to that CO produced is immediately consumed according to the reaction (R6). 

0

0.003

0.006

0.009

0.012

0.015

0.018

0.021

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

V
o
la

ti
le

s 
m

as
s 

fr
ac

ti
o
n

 

Axial distance (m) 

Case I

Case II



Chapter 4                                              4.10 Results and discussion of straw combustion 

 

186 

 

Figure 4.54: The variation of species mass fraction along the centreline of the reactor. 

 

Figure 4.55: Mass depletion of particles with different sizes for case I. 

The mass loss of straw particles and their burnout are illustrated by Figure 4.55 and 

Figure 4.56. On contrary to coal particles, it can be seen from the figures that the mass 

of all straw particles are depleted during their journey inside the reactor and before they 
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Figure 4.56: Burnout of straw particles with different sizes. 

4.10.2 NOx formation from straw burning 

With regard to the formation of NO when burning biomass fuels, as mentioned earlier, 

it is of importance for NOx formation is the split of nitrogen in the solid fuel into 

volatiles and char. The fraction in the former one increases with increasing the oxygen 

content in the fuels with decreasing rank [240] and  biomass can be included in such 

fuels. Moreover, compared with most coals, biomass such as straw and wood appears 

to release the nitrogen more readily as the temperature increases.  

It is also of importance for NOx formation is the partitioning of volatile-N to 

intermediate species, which depends on the fuel type, devolatilization temperature and 

heating rate. For bituminous coals, the main species observed during the 

devolatilization at high heating rates is HCN [236] and this was the base for NOx 

modelling for coal, which has been discussed earlier. On the other hand, low rank coals 

and biomass tend to yield a significant amounts of NH3 [241]. For biomass, it is 

believed that fuel-N can exist in amine form and therefore, NH3 becomes the principle 

product of its conversion. 

Based on the study by Liu and Gibbs [242] on woody-biomass as mentioned in 

FLUENT documents, due to the younger age of the fuel it has been suggested that the 

ratio of HCN to NH3 is 1:9 which has been used in the current investigations of straw 

combustion. In the current study, the split of fuel-N is also assumed to be 70% for 

volatile-N and 30% for char-N based on the recent study [243]. Furthermore, the latter 

one decreases at high temperatures as shown in Figure 4.57, which shows the ratio of 
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the nitrogen content in the char and in the parent fuel as a function of pyrolysis 

temperature (on a DAF basis), and this makes this assumption acceptable. Based on the 

same study, is assumed to be converted to NH3 intermediate, which becomes NO after 

further reactions as pointed out earlier. 

 

Figure 4.57: Nitrogen concentration in char versus pyrolysis temperature for selected 

fuels and various experimental methods [217]. 

The nitric oxide (NO) profile as a function of the axial distance for the case of straw is 

shown in Figure 4.58. It can be seen that it qualitatively fellow the same trend of that of 

coal. The values are higher for the case of coal than that of straw. The NO value was 

reduced by approximately 20% for case I and 26% for case II at the exit of the furnace. 

The results give an indication that switching to alternative fuels that would replace 

fossil fuels can be achieved and as a result produce low NOx emissions.  

 

Figure 4.58: The variation of NO concentration of straw along the centreline of the 

furnace. 
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Figure 4.59: The radial profiles of NO mass fraction at various axial locations. 
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The radial profiles of NO are depicted by Figure 4.59. The figure shows that the two 

straw cases clearly exhibit lower NO concentration at all axial locations. At the axial 

location (x = 0.2 m) as shown in Figure 4.59 (a), the variation of NO for straw case I 

and case II increases in the radial direction towards the outer region of the furnace 

away from the its centreline with lower values of the former one than those of the latter 

till the radial distance of ~ 0.05 m, where they become nearly the same. The radial 

profile of NO fellow the same trend as temperature profile (see Figure 4.51 (a)). The 

variation of NO at other axial locations is constant for all cases as can be seen in Figure 

4.59 (b, c, d and e). 

4.10.3 Co-firing of coal and biomass particles 

Co-firing of coal and biomass in pulverized combustion offers the opportunities for 

biomass utilization. It is the fastest alternative that can use biomass for electric power 

generation and therefore saving the capital costs by using the existing pulverized coal 

combustion systems. Moreover, it reduces the levels of the undesirable emissions that 

affect the environment. In this study, the coal and straw particle are burned inside the 

furnace. The particle size distribution is assumed to be the same for coal and biomass 

particles. Several simulations were performed. The co-fired biomass fractions used on 

mass basis are 10, 20, 30 and 40%. 

 

Figure 4.60: The variation of gas temperature along the centreline of the furnace for 

different co-firing cases. 
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combustion region. It reaches its maximum value which is about 1767 K for 10%, 1751 

K for 20%, 1743K for 30% and 1718 K for 40% of co-firing straw. The temperature 

increased by 8, 6.7, 6.3 and 5%, respectively, when compared with coal (the base case). 

However, it can be seen that increasing the fraction of straw leads to decreasing the gas 

temperature.  

The temperature distribution of the co-firing cases is shown in Figure 4.61. It can be 

seen that apart from the differences in the upstream region all the cases have the same 

temperature distribution in the rest of the furnace. 

Figure 4.62 shows the mass weighted-average mass fraction of CO2 at the exit of the 

furnace. It is shown that the concentration of CO2 decreases with increasing the fraction 

of straw that is fired with coal. 

(a)  

(b)  

(c)  

(d)  

Figure 4.61: Distribution of gas temperature: 10% straw (a), 20% straw (b), 30% straw 

(c) and 40% straw. 
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Figure 4.62: Mass weighted-average mass fraction of CO2 at the exit of the furnace. 

 

Figure 4.63: Particles burnout at the exit of the reactor. 
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 particles do. When straw particles are burned with coal particles (co-firing cases), it is 

seen that the burnout of the coal particles is enhanced. It can be clearly seen that the 

burnout of the particles with sizes 84, 154 and 222 μm is remarkably increased. On the 

other hand, the burnout of the other two particles does not show a great change except 

for the case of 40% straw, which show a reasonable increase in burnout in terms of the 

coal particle with the size of 291 μm. The variation of coal particles burnout and mass 

loss for the co-firing cases is shown in Figure C. 1 in appendix (C). 

4.11 Conclusion 

To understand the combustion processes of burning solid fuels a numerical model for 

predicting the pulverized combustion of coal was formulated. It encompasses the 

stages, which are the devolatilization, the volatiles combustion and char oxidation and 

char gasification. The drying stage was excluded from the simulations as the coal 

particles were considered to be dry. In the devolatiliztion process, the volatiles are 

released and the heat is consumed, which causes the gas temperature to decrease. Both 

the combustion of volatiles and char oxidation make the temperature to increase rapidly 

and this provides the energy needed for char gasification. The influence of operating 

conditions on the combustion process and species concentrations is predicted using the 

model. The results show good agreement when compared with the available 

experimental data. They also show that the combustion inside the furnace was affected 

by the coal particles size. In comparison with the larger particles, it was shown that the 

volatiles from the smaller particles released rapidly and the temperature reached its 

maximum, followed by a decrease due to start of the endothermic reactions. Moreover, 

increasing the diameter of the coal particles reduces the coal burnout at the exit of the 

reactor.  

Even though they took place, the gasification reactions (R4) and (R5) (the reduction 

reactions) have a little effect on the gas temperature for the base case which shows only 

a small decrease along the axial distance of the reactor after reaching its maximum 

value. On the other hand, when the wall temperature was increased it was shown that 

these reactions, specifically (R5), have a moderate effect on the variation of gas 

temperature along the centreline of the reactor. The carbon-steam reaction (R5) is the 

dominating in the reduction stage. This is clear when the wall temperature increased to 

1800 K.  
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The influence of secondary air inlet rate was investigated and led to the conclusion that 

the gas temperature increases in the region where the combustion of volatiles and char 

takes place by decreasing the inlet velocity of the secondary air. Decreasing this 

velocity also led to enhancing the gasification reactions (R4) and (R5), which can be 

identified by the increase in the concentrations of CO and H2 species in the downstream 

region of the furnace. This enhance of gasification reactions is reflected on the burnout 

process. It is concluded that the case with secondary inlet velocity of 11.5 m/s shows 

better burnout of the coal particles than the base case (15.5 m/s) does. The decrease in 

the inlet velocity of the secondary air also enhanced the burnout of the coal particle by 

making the particles to stay longer inside the furnace during their journey towards the 

exit of the furnace.  

The model of NOx formation successfully predicts the NOx emissions in the furnace. 

Optimised parametric results are found for the chemical kinetics of NOx prediction. The 

NO concentration at the furnace exit was calculated and the results of run 3 gave the 

best combinations of parameters when compared with the experimental data.  

The influence of wall temperature and secondary air inlet velocity on the formation of 

NOx was investigated as well. It was found that NO concentration is affected by both of 

them. Increasing wall temperature leads to increasing NO concentration. Regarding the 

effects of the secondary air rate, when compared with the base case (15.5 m/s), it was 

found that NO concentration increases whether the secondary air inlet velocity is 

increased or decreased. For the latter case (11.5 and 13.5 m/s), it was found that the 

slops of the curves become more steeper in comparison with the base case and 

therefore, the concentration of NO decreases along the axial direction towards the exit 

of the furnace. 

To compare the combustion of pulverised coal with other solid fuels, the model has 

been used to predict the combustion of pulverised biomass, which is represented by the 

combustion of pulverised straw. Within the context of combustion, the results obtained 

by using the same boundary conditions and particle size distribution of coal particles 

gives an indication that burning alternative fuels that can replace coal is applicable 

without affecting the performance of the furnace. It was found that the temperature 

distribution when burning straw particles is nearly the same as that obtained from 

burning coal. The saw particles with this size distribution are completely burned out 

inside the furnace when compared with the coal particles with the same size, which 

show that increasing the size of the particle results in reducing its burnout. It should be 
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bear in mind that milling the biomass particles to such a particle size distribution is not 

cost effective as mentioned earlier, therefore, instead of burning the straw particles 

alone they can be co-fired with coal particles to improve their burnout. 

With regard to the formation of NO, when compared to coal combustion it was found 

that burning saw produces less NO with 20 and 26% for case I and Case II respectively.  

It was found that the co-combustion of pulverized particles of coal and straw enhances 

the burnout of the coal particles and as a result the gas temperature inside the furnace 

increases. It was found that the fraction of 10% of fuel that was replaced by straw gave 

the highest temperature.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

196 

5 Multiphase modelling (Euler-Euler 

approach) 

This chapter has been dedicated to developing a mathematical model based on the 

Euler-Euler approach. An attempt has been made to model the combustion of carbon 

particle inside a newly designed combustion chamber. In the combustion cases, which 

have been presented in the previous chapter, it was found that the Euler-Lagrange 

approach is better suited than the Euler-Euler approach for such cases (continuous flow 

of fuel). However, the latter one is more applicable for the following case because the 

carbon particles are located in a small cap inside the chamber (static combustion); i.e. 

there is no continuous flow of the fuel. The objective is to apply the Euler-Euler model 

to evaluate the influence of the particle size and the design of the chamber. Concerning 

the latter one, the effect of the chamber height on the combustion flame has been 

investigated.  

5.1 Mathematical model 

5.1.1 Conservation of mass and momentum  

The descriptions of multiphase flow as interpenetrating continua incorporate the 

concept of phase volume fractions denoted by   . Volume fractions represent the space 

occupied by each phase. Conservation equations of mass, momentum, energy and 

chemical species, are satisfied by each phase. The volume of phase, (i), is defined by 

        ∫    
     (5.1) 

where 

∑    
 
        (5.2) 

The effective density of phase (i) is:  

 ̂           (5.3) 

The conservation of mass for a single phase is given by: 
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   (  ⃗)  ∑(                    )   (5.4) 

where,  ⃗, is the phase velocity. These external influences such as the rate of production 

of species in the phase by chemical reactions and the diffusion flux of the species. In 

the present case of multiphase modelling which includes a gaseous phase and granular 

solid phase, each phase would be modelled with its own conservation of mass equation. 

For the gas phase is:  

 
 (     )

  
    (      ⃗ )           (5.5) 

For the solid phase is:  

 
 (     )

  
    (      ⃗ )           (5.6) 

where the subscript   is for the gaseous phase, the subscript   is for the solid phase and 

the source term,     is the specific rate of production of the mass of the phase, i, due to 

chemical reactions where 

              (5.7) 

For a general single phase case, the forces acting upon the control volume include body 

forces, pressure forces,  , gravitational forces,   ⃗, and the surface viscous forces,    ̿. 

Then the conversion of momentum equation becomes 

 (  ⃗⃗ )

  
     (  ⃗ ⃗)         ⃗     ̿   (5.8) 

In the case of multiphase flow modelling an additional force that considers the 

interaction between the gas phase and the solid phase,    ( ⃗   ⃗ ) is required. 

Furthermore, in the case of reaction modelling the mass exchange between phases is 

considered in the form of source term. 

The momentum equations for the gaseous phase and solid phase respectively as 

following: 

  (          ⃗⃗ )

 ( )
    (       ⃗  ⃗ )       ( )          ̿           ⃗   

                                                                                                   ( ⃗   ⃗ )       ⃗    (5.9) 

and    
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   (          ⃗⃗ )

 ( )
    (       ⃗  ⃗ )                     ̿           ⃗   

                                                                                                    ( ⃗   ⃗ )       ⃗   (5.10) 

The stress-strain tensors for the viscous forces are as following: 

For the gaseous phase is   

  ̿       (  ⃗     ⃗ 
 )   

 

 
     (   ⃗ )  ̿  (5.11) 

and for the solid phase is 

  ̿       (  ⃗     ⃗ 
 )      (    

 

 
  ) (   ⃗ )  ̿   (5.12) 

where:    and    are the shear viscosity of the gaseous phase and solid phase 

respectively and    is the bulk viscosity of the solid phase and taken from works of Lun 

etal [190].    , is the momentum exchange coefficient for fluid solid and calculated by 

using the Syamlal-O’Brien model [244] as following: 

     
       

        
     (

   

    
) | ⃗   ⃗ |  (5.13) 

 

     
    | ⃗⃗   ⃗⃗ |

  
         (5.14) 

 

    (     
   

√       ⁄
)
 

        (5.15) 

 

         (             √(        )           (    )       )  (5.16) 

where    is the diameter of the solid phase particles,    is the drag function which has 

a form derived by Dalla Valle [245],     is the relative Reynolds number and      is the 

terminal velocity correlation for the solid phase [246] 

with  

     
      (5.17) 

and  

     
                                           for     ≤ 0.85 (5.18) 

and 



Chapter 5                                                                                     5.1 Mathematical model 

 

199 

     
                                           for     > 0.85 (5.19) 

 

5.1.2 Conservation of energy 

The fundamental physical principle is that the rate of change of energy must equal the 

sum of the rate of heat added and the work done on the fluid. Then, the conservation of 

energy is written in the forms of the enthalpy for each phase as follows: 

 

  
 (      )     (        )    (     )              (5.20) 

and                                                                                                                                   

 

  
 (      )     (        )    (     )              (5.21) 

where    and    are the enthalpies of gaseous phase and solid phase, respectively, and 

   and    are the thermal conductivities of both gaseous and solid phases respectively. 

    is the heat exchange between the phases and     represents the source term. It 

includes sources of enthalpy,    is the enthalpy for each species in the mixture and     

is the mixture thermal conductivity. The specific enthalpy, hi, for the individual species 

in a mixture is defined as following: 

    ∫     
 

  
          (5.22) 

where,     ,  is the specific heat, and        is the heat of formation. 

             (     )   (5.23) 

and the heat transfer coefficient     which is related to the Nusselt number,     is 

given by 

    
          

   
     (5.24) 

Nusselt number is typically calculated from one of the many correlations found in the 

literature. In this case, the one has been used is that proposed by Gunn [247]. 
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 )[               ⁄ ]  (            

                                                                                                             )  
        ⁄   (5.25) 

 

    
(  )   

  
     (5.26) 



Chapter 5                                                                                   5.2 Turbulence modelling  

 

200 

    
    | ⃗⃗   ⃗⃗ |

  
    (5.27) 

5.2 Turbulence modelling 

In this work, to model the gaseous phase, the  -  model was used. Within the context 

of the  -  models, Fluent [158] provides three methods for modelling turbulence in 

multiphase flows. In this case, the  -  dispersed turbulence model is used to model the 

gaseous phase. This is because of the reason that the concentration of the secondary 

phase (solid phase) is dilute. Therefore, the interparticle collisions are neglected. The 

dominant process in the random motion of the solid phase is the influence of the 

turbulence of gas phase. Fluctuating quantities of the solid phase can therefore be given 

in terms of the mean characteristics of the gaseous phase and the ratio of the particle 

relaxation time and the eddy-particle interaction time. 

The eddy viscosity model is used to calculate averaged fluctuating quantities. The 

Reynolds stress tensor for the gas phase is calculated by using the following equation: 

  ̿         (  ⃗     ⃗⃗⃗ 
 )   

 

 
 (              )  ̿    (5.28) 
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The transport equations for turbulent kinetic energy   and its dissipation rate   for the 

gaseous phase are as follows: 

 (      )
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                                                                                                                                 (5.31) 
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where  ⃗⃗⃗  is the phase-weighted velocity,      is the turbulent viscosity,      is the 

characteristic time of the energetic turbulent eddies,     and     represent the 

influence of the dispersed phase (the solid phase on the gaseous phase) and      is the 
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production of turbulent kinetic energy. The model constants are taken from Launder 

and Spalding [153] to be as following: 

     = 144,     = 1.92 and   = 0.09  

The turbulent Prandtl numbers for   and   are   =1.0 and    =1.3 respectively. 

5.3 Overview of numerical methods 

CFD software provides a user-defined function (UDF), with which the heterogeneous 

chemical reaction between the solid and gas phases was defined and incorporated. It is 

included in the appendix (D). For the boundary conditions, the velocity-inlet was 

selected for the inlet condition with air inlet velocity of 1 m/s. The pressure outlet was 

selected for the outlet of the chamber. The walls are stationary with no-slip condition. 

The method used for carrying out the simulations was the finite volume method. The 

simulations use unsteady-state solver. For the discretization of all conservation 

equations, volume fraction, mass fraction of chemical species, etc., a first-order upwind 

was used. The evaluation of gradients and derivatives was carried out by Green-Gauss 

cell based Gradient Evaluation method Table 5.1 summarize the parameters of the 

solver.  The time step was set as 1×10
-3 

s.  

Table 5.1: Solver parameters. 

characteristic Value 

Pressure-based Enable 

Formulation Implicit 

Space 3-D 

Velocity formulation Absolute 

Porous formulation Superficial velocity 

Discretization First order upwind 

Gradient option Green-Gauss cell based 

Pressure velocity coupling      Phase coupled simple 

5.4 Geometry and boundary conditions 

The geometry of a newly designed combustion chamber is shown in Figure 5.1 (a) 

which consists of a small cup located in the centre of the chamber. The computational 

domain is a cylinder with an internal diameter of 48 mm and length of 101 mm. The
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dimensions of the cup are 20 mm in diameter and 10 mm in height. Solid carbon 

particles are placed in the cup and for the dispersion of the particles, the air is supplied 

through the three injection nozzles, each having a diameter of 3 mm, as shown in 

Figure 5.1 (b). The nozzle in the middle was made with an angle of 30° from the 

horizontal line for the sake of injecting the air into the centre of the cup. The geometry 

of the combustion chamber was created by using solid works which was then exported 

to the pre-processor GAMBIT to generate the mesh and specify the boundary 

conditions, as shown in Figure 5.1 (b, c). 

 

(a)  

 

(b)            (c)        

Figure 5.1: (a) Combustion chamber (Model 1) with holder frame, (b) computational 

domain and (c) grid of the domain. 

For the boundary conditions, the velocity-inlet was selected with an air inlet velocity of 

1 m/s. The pressure outlet (i.e. the zero gauge pressure) was selected at the outlet of the 

chamber as shown in Figure 5.1 (b) and the walls are stationary with no-slip condition. 

The combustion simulations are performed for particle sizes with different diameters 

(0.5mm, 1mm, 1.5mm, 2mm, 2.5mm and 3mm). The particle of 1mm diameter is 

assigned to the baseline case. The other particle diameters are also simulated for
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 comparison. The particles are assumed to be inelastic and mono-dispersed spheres. 

Thus, in each case, the solid phase is assumed to have a uniform particle size. The 

volume fraction of the solid phase is set to 0.6 for all cases, owing to the void that is 

always present between the particles. Each case has its own particle size, which means 

that six simulations are performed. An unsteady-state solver with a time-step of 10
-3 

s is 

used. The combustion modelling is based on the two-phase Euler-Euler approach which 

takes into account the interactions of the gaseous and solid phases. The char 

combustion is considered according to the heterogeneous reaction (R1). The 

combustion rate of char is assumed to be limited by the chemical kinetics because the 

only reactive species that is included in the gas phase is O2. Then, the reaction rate    

(kmol/m
3
s) is defined as 

       ( )        (5.33) 

where   ( ) and     (kmol/m
3
) are the concentrations of carbon and oxygen, 

respectively; and    is the reaction rate constant given by the Arrhenius type relation: 

     
    ( 

 

   
)  (5.34) 

The kinetic constants are provided in Table 4.4. 

A user-defined function (UDF), with which the rate of the heterogeneous chemical 

reaction between the solid and gas phases is defined, is developed and coded in C++ 

language and incorporated in the solver. Some assumptions are made to simplify the 

combustion modelling: the composition of solid particles is a pure (100%) carbon. In 

reality, this is not the case and to some extent the existence of inherent moisture, 

sulphur, nitrogen, and other non-carbon components will affect the combustion 

characteristics. Moreover, the virtual mass effect is neglected because the density of the 

solid phase is greater than that of the gas phase. Since the particle size is small the lift 

force is not significant and as a result it has also been neglected. Therefore, the 

interaction between the phases is only due to the drag force.  

5.5 Grid-independence study 

Initially, a grid-refinement test is carried out in order to estimate the grid size and mesh 

quality required for the simulation. It is commonly known that more accurate solution 

can be obtained from numerical simulations with a higher number of computational
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mesh cells. Therefore, a grid-refinement test is carried out for the coal particle size of 

(1 mm) by sequentially increasing the number of control volumes inside the chamber. 

The peak combustion temperature presented in Figure 5.2 against time (sec) shows that 

the variation in the results obtained by the two relatively higher resolution grids 

(551486 and 977899) is very moderate. And the results obtained by the grid cell size of 

474748 lay between the results of the highest and lowest density grids. Thus, one of 

these relatively higher resolution grids will be suitable for the simulations, but in order 

to save the computational time the grid size of 474748 is used to perform all the 

numerical simulations. 

  

Figure 5.2: Maximum temperature inside the chamber for the particle size of 1 mm 

diameter for base case. 

5.6 Results and discussion 

5.6.1 Base case 

For the case of a 1 mm particle diameter, the volume fraction at different simulation 

time-steps is shown in Figure 5.3. At the beginning the volume fraction was set to 0.6, 

and the results taken at the mid-plane of the combustion chamber show that the volume 

fraction of the solid phase progresses upward the chamber. It can also be seen that the 

carbon particles move upward where good mixing of the particles with the injected air 

through the nozzles was obtained. 
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                                 a)                b)                 c)                d) 

                         
                        e)                f)                  g)                h)                i) 

                                  
                                    j)                    k)                  l)                   m) 

Figure 5.3: The variation of volume fraction of the solid phase at the middle plane for 

the base case (particle diameter of 1 mm) at different simulation times (s): (a) 0, (b) 

0.05, (c) 0.1, (d) 0.15, (e) 0.2, (f) 0.25, (g) 0.30, (h) 0.35, (i) 0.40, (j) 0.45, (k) 0.50, (l) 

0.55 and (m) 0.6. 
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Particularly, the results show that some particles are accumulated at the centre of the 

top wall of the chamber after 0.2 sec and this can be identified by referring to Figure 

5.4, which illustrates the high temperature zone inside the chamber at the different 

time-steps.  

From the temperature distribution at the middle plane shown in Figure 5.4, it is also 

clear that the combustion was sustained and the temperature of the gas phase rapidly 

propagates upward from the cup due to the release of heat during the process of 

combustion. Moreover, the temperature contour profiles further show that the location 

of the combustion zone moves to the top section of the chamber with time, and the 

waviness seen in the contours in the lower right region attributes to the air injection 

from the three nozzles. It is shown that the flame expands longitudinally in the chamber 

and after the time of 0.2 s it reaches the top wall of it and starts to expand laterally. The 

hot gas is reverted back towards the cup and expands laterally towards the side walls.  

To visualize the propagation of the flame more clearly, some horizontal sections are 

taken at different locations of the chamber height. These locations are at y = 4, 6, 8 and 

10 cm. These slices display the temperature contours at different times as can be seen 

in Figure 5.5. The figure shows the progress of the gas temperature inside the chamber 

in two ways. It shows the variation of temperature contours as a function time in the 

vertical direction and as a function of chamber height in the horizontal direction.   

It can be seen from Figure 5.5 that the flame is concentrated at the centre of the 

chamber and the temperature expands horizontally towards the side walls of the 

chamber as the time passes. At time 0.2 s, the flame reaches the top wall of the 

chamber (refer to Figure 5.4) then it starts to expand towards the side wall of the 

chamber. Therefore, it is seen that at the height location of 10 cm which is very close to 

the top wall that the flame expands towards the side walls at t = 0.3 s. This is obvious at 

times of 0.4 and 0.5 s. 

Temperature contours at the same height locations for the cases of the particle size with 

diameters of 0.5 mm and 1.5 mm are provided in appendix (E). It can be seen that there 

is not a big difference between the former one (see Figure E. 1) and the case of 1 mm 

particle size. On the other hand, the latter one (see Figure E. 2) shows a clear difference 

compared with the case of 1 mm particle size. The temperature distribution at 

horizontal sections at different locations of the height of the chamber for the other 

sizes’ cases is shown in Figure E. 3 provided in the appendix (E) as well. 
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                     a)                           b)                            c)                           d) 

                      
                     e)                           f)                             g)                           h) 

                      
                     i)                            j)                            k)                            l)   

Figure 5.4: The variation of temperature at the middle plane for the base case (1 mm 

particle diameter) showing at time (s): (a) 0.05, (b) 0.1, (c) 0.15, (d) 0.2, (e) 0.25, (f) 

0.3, (g) 0.35, (h) 0.4, (i) 0.45, (j) 0.5, (k) 0.55 and (l) 0.6. 
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             Y = 4 cm       y = 6 cm       y = 8 cm       y = 10 cm 

 

t = 0.1 s     

 

t = 0.2 s     

 

t = 0.3 s     

 

t = 0.4 s     

 

t = 0.5 s     

 

t = 0.6 s     

Figure 5.5: Temperature contours at different horizontal locations in y direction and at 

different times (s) for the base case (1 mm particle size). 

The concentration of carbon dioxide (CO2) at the middle plane is depicted in Figure 

5.6. It can be seen that the CO2 concentration is also progressing with the time. The 

concentration at the time of 0.25 sec also indicates the accumulation of the carbon 

particles at the centre of the top wall of the chamber as mentioned before. 
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            a)                            b)                          c)                           d) 

             
             e)                           f)                           g)                          h) 

       
            i)                             j)                            k)                          l)                                                                                 

Figure 5.6: The mass fraction of CO2 at the middle plane at different time (s) for the 

base case (particle diameter of 1 mm): (a) 0.05, (b) 0.1, (c) 0.15, (d) 0.2, (e) 0.25, (f) 

0.3, (g) 0.35, (h) 0.4, (i) 0.45, (j) 0.5 and (k) 0.55. 
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Figure 5.7 shows different temperatures’ iso-surfaces at time 0.65 s for different cases 

with different particle diameters. From Figure 5.7 (a), it can be seen that for the case of 

particles’ size of 0.5 mm that the flame is concentrated inside the cup. The height of the 

flame core is increased by increasing the particle size as shown for the cases of 

particles’ size of 1, 1.5 and 2 mm. Then, it is reduced for the cases of particle sizes with 

a diameter of 2.5 and 3 mm. It is also seen that the highest temperature zones are at the 

air injection hole in the middle as seen in Figure 5.7 (e).  

     Carbon particle size 

0.5 mm       1 mm       1.5 mm        2 mm       2.5 mm       3 mm 

 

            (a) T = 1220 K 

 

           (b) T = 1250 K 

 

Figure 5.7: Iso-surfaces at time 0.65 s for the base case for different particle sizes: (a) 

1220 K, (b) 1250 K, (c) 1280 K, (d) 1400 K and (e) 1550 K. 
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            (c) T = 1280 K 

 

            (d) T = 1400 K 

 

            (e) T = 1550 K 

Figure 5.7: Continued.  

Figure 5.8 shows the variation of the peak temperature inside the chamber with time for 

cases with different particle diameters. At the beginning the temperature was 1200 K 

and when the combustion took place it increased with time. It is clear that the size of 

particle plays a crucial role in the combustion process as can be seen from this figure. It 
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is obviously seen that as the particle size decreased, the peak temperature of the gas 

phase decreased till the time of 0.55 s. The bigger the particle size the higher the 

temperature is gained. It is shown that the higher temperature was obtained from the 

case of carbon particles with a diameter of 3 mm and the lower one was gained by 

burning carbon particles with a diameter of 0.5 mm. This seems to be counterintuitive 

as it is known that the smaller particles have a surface area to volume ratio larger than 

that of the larger particles and they should react more quickly as it has been presented 

in chapter 4. This may be attributed to the residence time of the carbon particles and the 

design of the burner. When the air is injected through the nozzles the particles are 

blown up out of the small cap and, therefore, the larger particles stay longer than the 

smaller ones inside the chamber. This may due to the reason that the smaller particles 

follow the streamlines of the continuous phase. Whereas increasing the particle size 

leads to that the larger particles may deviate from the streamlines of the continuous 

phase. Consequently, this deviation may increase the slip velocity resulting in 

enhancing convective transports of heat and species concentrations.  

  

Figure 5.8: The peak temperature variation with time (s) for different particle sizes for 

the base case. 

It is also shown that the peak temperature of the gas phase is getting close to each other 

for all the cases at time 0.6 sec, then the temperature of the smaller particles size 

increases when compared with that of the particles with bigger sizes. When referring to 

Figure 5.7 (e), one can extract the peak temperature is in the zone close to the middle 

air injection hole. The results after the time of 0.65 sec are excluded. 

1200

1300

1400

1500

1600

1700

1800

0.05 0.15 0.25 0.35 0.45 0.55 0.65

P
ea

k
 t

em
p
er

at
u
re

 (
K

) 

Time (s) 

0.5 mm

1    mm

1.5 mm

2    mm

2.5 mm

3    mm



Chapter 5                                                                                  5.6 Results and discussion 

 

213 

5.6.2 The influence of chamber height  

The carbon particles in the base case were accumulated at the centre of the ceiling of 

the chamber (see Figure 5.3) due to the reason that there is no enough space for them to 

be dispersed inside the chamber. Therefore, the design of the chamber was modified by 

increasing the height of the chamber for the purpose of investigating its effect on the 

combustion inside the chamber. The height of the chamber was doubled in order to 

provide more space for the dispersion of the particles inside the chamber. Doing so will 

give the particles more space to mix well with the air inside the chamber and may 

prevent them from accumulating at the centre of the top wall of the chamber.  

As can be seen in Figure 5.9, which illustrates the volume fraction of the solid phase at 

the middle plane for the case of particle size of 1 mm diameter, that most of the 

particles are burned before reaching the ceiling of the chamber when compared with the 

base case. This means that increasing the height of the chamber results in better mixing 

between the air and the carbon particles. It is also seen that some particles start to 

accumulate at top wall at time of 0.6 s which is clearly identified by the shape of the 

flame in Figure 5.10. This figure shows the temperature distribution at the middle plane 

and at different times. In comparison with the base case (see Figure 5.4), it is seen that 

the shape of the flame of this case is different. It can be seen the propagation of the 

flame occurs in a longitudinal direction till the time of 0.55 s when the horizontal 

expansion becomes clear.  

Figure 5.11, which shows the temperature distribution at different horizontal planes, 

gives clear indications of the effects of increasing the height of the chamber in order to 

give more space for the carbon particle and, therefore, having good mixing with the 

injected air. When comparing it with Figure 5.5 (base case), one can notice the 

difference between them in the flame shape. It is seen that the temperature distribution 

is approximately the same at the time of 0.1 s except for the waviness in the flame 

shape which is clearer in the base case than the case of double height at the cross 

sections at heights y = 4 and 6 cm. This can be attributed to the back revert of the hot 

gas towards the cup. This can be confirmed from Figure 5.11 at times 0.5 s and up 

when the waviness becomes clear. At these times the flame moves close to the top wall 

and the hot gas is reverted and therefore the waviness in the flame shape increases.  The 

mass fraction of CO2 at the middle plane is shown in Figure 5.12. 
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                               a)                 b)                  c)                  d)  e) 

                            
          f)                   g)                 h)                  i)                 j) 

Figure 5.9: The variation of volume fraction of the solid phase at the middle plane 

showing at different times (s) for the doubled-height case (particle diameter of 1 mm): 

(a) 0, (b) 0.05, (c) 0.1, (d) 0.15, (e) 0.2, (f) 0.25, (g) 0.30, (h) 0.35, (i) 0.40, (j) 0.45, (k) 

0.50, (l) 0.55, (m) 0.6 and (n) 0.65. 
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                              k)                 l)                   m)                n)     

Figure 5.9: continued.  
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               a)                             b)                            c)                            d) 

          
               e)                            f)                               g)                                                   

 

Figure 5.10: The distribution of temperature for the doubled-height case (1 mm 

particle diameter) showing at different times (s): (a) 0.05, (b) 0.1, (c) 0.15, (d) 0.2, 

(e) 0.25, (f) 0.3, (g) 0.35, (h) 0.4, (i) 0.45, (j) 0.5, (k) 0.55, (l) 0.6 and (m) 0.65. 
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               h)                              i)                              j)                                          

           
               k)                             l)                              m) 

Figure 5.10: continued. 
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            y = 4 cm      y = 6 cm      y = 8 cm     y = 10 cm 

 

t = 0.1 s     

 

t = 0.2 s     

 

t = 0.3 s     

 

t = 0.4 s     

 

t = 0.5 s     

 

t = 0.6 s     

 

t = 0.65 s     

 

Figure 5.11: Temperature contours at different locations in y direction and different 

times (s) for the doubled-height case (particle diameter of 1 mm). 
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               a)                               b)                             c)                            d) 

         
              e)                             f)                                g)                              h) 

 

Figure 5.12: The mass fraction of CO2 at different time (s) for the doubled-height case 

(particle diameter of 1 mm): (a) 0.05, (b) 0.1, (c) 0.15, (d) 0.2, (e) 0.25, (f) 0.3, (g) 0.35, 

(h) 0.4, (i) 0.45, (j) 0.5, (k) 0.55 and (l) 0.6. 
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             i)                               j)                              k)                               l) 

 

Figure 5.12: continued. 

The variation of peak temperature inside the doubled-height chamber with time for 

different cases (different particle sizes) is depicted by Figure 5.13. The trend of 

variation is similar to that of the base case (see Figure 5.8). It is also seen that the larger 

particles produce high temperature than the smaller ones and this may due to the reason 

mentioned in §5.6.1. 

 

Figure 5.13: The peak temperature variation with time for different particle sizes for the 

doubled-height case. 
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The temperature iso-surfaces are shown in  

Figure 5.14 at time 0.65 s. When comparing with base cases (refer to Figure 5.7), it can 

be seen that flame zone becomes bigger for the case of 0.5 mm particle size and the 

opposite is for the other cases. 

Carbon particle size 

                                0.5 mm       1 mm       1.5 mm      2 mm       2.5 mm 

 

 

                        (a) T = 1220 K 

 

                       (b) T = 1250 K 

 

Figure 5.14: Iso-surfaces at time 0.65 s for different doubled-height cases with different 
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particle diameters: (a) 1220 K, (b) 1250 K, (c) 1280 K and (d) 1310 K.  

 

 

                       (c) T = 1280 K 

 

                        (d) T = 1310 K 

 

Figure 5.14: Continued. 

The comparison between the base cases and the double height cases in terms of the 

variation of peak temperature with time is shown in Figure 5.15. Up to approximately a 

time of 0.6s for most of the cases, it can be seen that the peak temperature inside the 

chamber for the double height chamber cases is higher than that of the base cases. 

Then, after this time the temperature of the base cases becomes higher.  For the former 
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one, this can be attributed to the reason that more space is created when increasing the 

height of the chamber leads to the particles to have good mixing with the injected air 

and also to have a longer residence time, which supports the explanation of 

phenomenon (see §5.6.1) that the larger carbon particles produce high temperature than 

the smaller particles because their travel time is longer. Thus, when the chamber height 

is increased the particles of 0.5 mm travel longer inside the chamber than they do in the 

base case and as a result they produce higher temperature. The same trend is followed 

by the cases of the other particle sizes. Whereas, in the latter, it may due to the reason 

that the hot gas reaches the ceiling of the chamber it quickly reverts back towards the 

cup in the base case in comparison with the doubled-height chamber case and, 

consequently, the particles are exposed to more heat in the base case than in the 

doubled-height case. 

  

 

  

Figure 5.15: The peak temperature variation with time inside the chamber for both the 

base and doubled-height cases for different particle sizes: a) 0.5 mm, b) 1 mm, c) 1.5 

mm, d) 2 mm and e) 2.5 mm. 
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5.7 Conclusion 

Numerical simulations are an effective technology for optimizing the combustion 

devices. A three-dimensional modelling of the combustion of carbon particles in a 

small chamber has been developed. The Euler-Euler approach has been used for 

simulating the combustion of the particles. Simplification to the heterogeneous reaction 

was made and the rate of the reaction is defined in FLUENT 6.3.26 by incorporating a 

user-defined function (UDF). The carbon particles are assumed to be spherical and 

mono-sized. The results presented show that the combustion was sustained in the 

chamber as evidenced by the temperature distribution.  

The effect of particle size was investigated and found that the temperature was affected 

by varying the size of the particles. Though the smaller particles have a surface/volume 

ratio larger than that of the larger particles and they should react more quickly, it was 

found that burning them produces lower temperature than burning the larger ones. This 

may attributed to the reason that the smaller particles have a shorter residence time than 

the larger particles.  

The influence of the design of the chamber on the combustion process was 

investigated. It was found by increasing the height of the chamber that the trend of the 

variation of the peak temperature with time inside the chamber is similar to that of the 

base case. On one hand, it was found within the period of time up to approximately 0.6 

s for most of the cases that the peak temperature is higher in comparison with the base 

cases, which may be attributed to the better mixing between the carbon particles and 

the injected air as well as the longer residence time of the particles. On the other hand, 

after this time it was found that the peak temperature obtained from the base cases is 

higher, which may be due to the reason that the hot gas was reverted back towards the 

cup which helps to increase the temperature.  
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6 Final conclusions and 

recommendations for future 

research 

The work presented in this thesis investigates different combustion scenarios using 

Computational Fluid Dynamics (CFD). The CFD simulations were carried out to model 

the combustion of methane, pulverized coal combustion, biomass coal combustion, the 

co-firing of coal and biomass and finally the combustion of carbon particles using the 

Euler-Euler approach. The findings of these simulations are summarized in § 6.1. 

Additionally, a number of useful recommendations for future study, summarized in § 

6.2, have been made. 

6.1 Conclusions 

The combustion of different fuels was numerically investigated. The main results and 

conclusions of this thesis are presented below. 

In chapter 3, the combustion of methane was investigated using four different simple 

reaction mechanisms. The results of the predicted temperature and species 

concentrations along both the axial and radial directions were compared with the 

experimental data [20] and computational results by Silva et al. [184] and Magel et al. 

[183]. In comparison with the experiment data, it was found that the trends of all cases 

are well reproduced. Despite some disagreement with the experimental data at some 

locations, good agreement is achieved in both quantitative and qualitative aspects. In 

terms of the results of the case in which a one-step reaction mechanism (M-III) and the 

case based on the five-step reaction mechanism (M-IV), it was found that both cases 

gives reasonable  results when compared with the experimental data. 

For the case based on the reaction mechanism (M-I) which consists of three reactions, it 

was observed that the results of all turbulence models show very good agreement with 

the experimental data in terms of temperature along the centreline in the half of the 

chamber close to the burner. In the direction towards the exit of the chamber the results 

obtained from standard k-ϵ case are almost close to that obtained from RNG k-ϵ. In the 

standard k-ϵ case, it also observed that by modifying the turbulence model (the value of
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turbulent Schmidt number (Sc) is 0.85) the computational results were improved when 

comparing them with the ones of the base case (the default value of turbulent Schmidt 

number (Sc) is 0.7). Even in the case in which the reaction mechanism (M-II), the 

modified turbulence standard k-ϵ model and the optimization of kinetic energy of 

reaction (r-2) also improved the results. To sum up, the numerical simulations indicate 

that the cases with the modified standard k-ϵ lead to generally best predictions.   

In chapter 4, the pulverized combustion of both coal and biomass based on the Eulerian 

-Lagrangian approach was investigated. In the case of coal, the simulations were 

performed using two bituminous coals. The computational results of three cases with 

different char oxidation models, case 1 (diffusion model), case 2 (kinetics/diffusion 

model) and case 3 (multiple surface reaction model), were compared against the 

experimental data and showed very good agreement, but case 3 showed the best results. 

The heterogeneous reaction rates in case 3 were defined by incorporating a UDF in 

FLUENT.  

The computational results of case 3 also show that the combustion inside the furnace 

was affected by the coal particles size. In comparison with the larger particles, it was 

shown that the volatiles from the smaller particles (e.g. 16 and 84 μm) are released 

rapidly and the temperature reached its maximum, followed by a decrease due to start 

of the endothermic reactions. Moreover, increasing the diameter of the coal particles 

reduces the coal burnout at the exit of the reactor. The burnout of the particle with a 

diameter of 16 μm is 100%. Whereas, the burnout of the particles with diameters of 84, 

154, 222, 291 μm at the exit of the combustion domain is approximately 86, 75, 35, 33, 

29 %, respectively. 

The model of NOx formation successfully predicts the NOx emissions in the furnace for 

case 3. Optimised parametric results are found for the chemical kinetics of NOx 

prediction. Different runs of simulation were performed and the NO concentration at 

the furnace exit was calculated and the results of run 3 gave the best combinations of 

parameters when compared with the experimental data.  

The influence of wall temperature and the inlet secondary air velocity was investigated 

and found that increasing the former one enhances the gasification reactions specially 

the heterogeneous reaction (R5). Decreasing the latter one also enhances the 

gasification reactions, which is reflected on the burnout process. It can be concluded 

that the case with secondary inlet velocity of 11.5 m/s shows better burnout of the coal 
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particles than the base case (15.5 m/s) does. The decrease in the inlet velocity of the 

secondary air enhanced the burnout of the coal particle by making the particles to stay 

longer inside the furnace during their journey towards the exit of the furnace. The 

influence of the above mentioned parameters on the formation of NO was also 

observed. Increasing wall temperature increases NO concentration. Regarding the 

effects of the secondary air rate, when compared with the base case (15.5 m/s), it was 

found that NO concentration increases whether the secondary air inlet velocity is 

increased or decreased. For the latter case (11.5 and 13.5 m/s), it was found that the 

slops of the curves become more steeper in comparison with the base case and 

therefore, the concentration of NO decreases along the axial direction towards the exit 

of the furnace. 

The combustion of pulverized biomass, represented by straw, was investigated by 

assuming that the particle size distribution of straw particles is the same as that of coal 

particles. The same combustion model of pulverized coal (case 3) was applied and two 

simulations with different devolatilization kinetics were carried out. It was found that 

the temperature distribution when burning straw particles is nearly the same as that 

obtained from burning coal (case 3). This is attributed to that the straw particles are 

completely burned out when compared with the coal particles, which show that 

increasing the size of the particle results in reducing its burnout. In terms of NOx 

formation, it was also observed that burning saw particles produces less NO with 20 

and 26% for case I and Case II respectively.  

The cofiring of the coal and straw was investigated. The co-fired biomass fractions 

used on mass basis are 10, 20, 30 and 40%. It was found that the co-combustion of 

pulverized particles of coal and straw enhances the burnout of the coal particles and as 

a result the gas temperature inside the furnace increases. The temperature increased by 

8, 6.7, 6.3 and 5%, respectively, when compared with coal (case 3). The burnout of the 

coal particles with sizes of 84, 154 and 222 μm is remarkably increased. The burnout of 

the other two particles (291 and 360 μm) do not show a great change except for the 

case of 40% straw, which show a reasonable increase in burnout in terms of the coal 

particle with the size of 291 μm.   

In chapter 5, an attempt to investigate the heterogeneous combustion of carbon particles 

was made using the Euler-Euler approach. Simplification to the heterogeneous reaction 

was made and the rate of the reaction is defined in FLUENT 6.3.26 by incorporating a 

user-defined function (UDF). In this investigation, no comparison between the 
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predicted results and experimental data is possible. However, the present computational 

results show that the combustion was sustained in the chamber as evidenced by the 

temperature distribution. Therefore, this investigation can be considered as a basic step 

towards a more detailed study latter. The effect of particle size was investigated and 

found that the temperature was affected by varying the size of the particles. The 

influence of the design of the chamber on the combustion process was investigated. By 

increasing the height of the chamber it was found within the period of time up to 

approximately 0.6 s for most of the cases (different particle sizes) that the peak 

temperature is higher in comparison with the base cases, which can be attributed to the 

better mixing between the carbon particles and the injected air. On the other hand, after 

this time it was found that the peak temperature obtained from the base cases is higher, 

which may be due to the reason that the hot gas was reverted back towards the cup 

which helps to increase the temperature.  

6.2 Recommendations for future research 

The field of combustion is complex and the investigations presented in the present 

research have been made as a step for better understanding the features of the 

combustion processes and provided an opportunity for further developments, which 

will lead to creating new insights into it. Therefore, a list of recommendations for 

further work to improve the models is summarized as following: 

For the case of combustion of methane 

 A further step is to consider modelling the turbulence with a better turbulent 

model such as large eddy simulation (LES) model, which can resolve the 

turbulence field better and give more detailed description of the eddy structure 

of the turbulent flames. 

 Only the FR/ED model has been used for the turbulence-chemistry interaction. 

Thus, the computational results of the case of the five- step reaction mechanism 

(M-IV) are going to be evaluated by using the eddy-dissipation concept model 

(EDC). 

 The intention for future work is to use the same modified standard k-ϵ in 

modelling combustion cases other than the one presented in this work to see 

how it works. 
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For the case of pulverized combustion  

 For simplicity in present work, the volatiles were treated as one species and its 

combustion in the gas phase was based on one reaction. Therefore, the species 

released during devolatilization process include many species that their 

reactions should be considered when modelling the gas phase to obtain more 

comprehensive results.  In addition, the impact of ash on the combustion 

process as well as the combustion of tar should be investigated. 

 Attention should be paid to the kinetics of the devolatilization process and 

biomass fuels other than straw should be investigated. In addition, further work 

could be done to investigate influence of the shape of the particles, which was 

assumed to be spherical in the present work.  

For the case of Euler-Euler approach model 

 Experimental work is required to compare the computational results with before 

any final conclusions about the validity of the model can be made and more 

attention to the boundary conditions should be paid.  

 Extending the model to capture the combustion features of, for example coal 

particles, therefore, incorporating more reactions is required including the 

devolatilization process.  
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Appendix A 

Coefficients of piecewise-polynomial function
* 

for temperature-dependent specific heat 

(  ) of species, which are taken from the material database given by Fluent Inc. (2005).  
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Appendix B 

FLUENT UDF for defining heterogeneous reaction rates:  

#include "udf.h" 

#define c1 5e-12 

#define A1 0.002 

#define E1 7.9e7 

#define A2 0.052 

#define E2 6.1e7 

DEFINE_PR_RATE (user_rate, c, t, r, mw, pp, p, sf, dif_i, cat_i, rr) 

{ 

/* Argument types 

cell_t c 

Thread *t 

Reaction *r (reaction structure) 

real *mw (species molecular weight) 

real *pp (gas partial pressures) 

Tracked_Particle *p (particle structure) 

real *sf (current mass fractions of solid species in particle char mass) 

int dif_i (index of diffusion controlled species) 

int cat_i (index of catalyst species) 

real *rr (rate of reaction kgmol/s) */ 

/*_______________________________________________________*/ 

/* Mass fractions */ 

real mhv_vol = C_YI(c,t,0); 

real mO2 = C_YI(c,t,1); 

real mCO2 = C_YI(c,t,2); 

real mH2O = C_YI(c,t,3); 

real mCO = C_YI(c,t,4); 

real mH2 = C_YI(c,t,5); 

real mN2 = C_YI(c,t,6); 

/*_______________________________________________________*/ 

/* partial pressuers */ 
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real pOp = 101325;     /* Operating pressure (pa) */ 

real sum = (mhv_vol/20.672 + mO2/32 + mCO2/44 + mH2O/18 + mCO/28 + mH2/1 + 

mN2/28); 

real pO2 = mO2/32/sum*pOp; 

real pCO2 = mCO2/44/sum*pOp; 

real pCO = mCO/28/sum*pOp; 

real pH2O = mH2O/18/sum*pOp; 

/*_______________________________________________________*/ 

if (!strcmp(r->name, "reaction-3")) 

/* C + O2 -> CO2 */ 

{ 

real Tg= C_T(c,t); 

real Tp= P_T(p); 

real ash_mass = 

P_INIT_MASS (p)*(1.-DPM_CHAR_FRACTION (p)-

DPM_VOLATILE_FRACTION (p)); 

real one_minus_conv = 

MAX (0.,(P_MASS(p)-ash_mass) / P_INIT_MASS(p)/ DPM_CHAR_FRACTION(p)); 

real Do = MAX(1.E-15, c1*pow(0.5*(Tp + Tg),0.75)/P_DIAM(p)); 

real R = A1*exp(-E1/UNIVERSAL_GAS_CONSTANT/Tp); 

*rr=-P_DIAM (p)*P_DIAM (p)*M_PI*(Do*R)/(Do+R)*pO2*sf[0]*one_minus_conv; 

} 

/*_______________________________________________________*/ 

else if (!strcmp(r->name, "reaction-4")) 

/* C + 0.5O2 -> CO */ 

{ 

real Tg= C_T(c,t); 

real Tp= P_T(p); 

real ash_mass = 

P_INIT_MASS (p)*(1.-DPM_CHAR_FRACTION (p)-

DPM_VOLATILE_FRACTION (p)); 

real one_minus_conv = 

MAX (0.,(P_MASS(p)-ash_mass) / P_INIT_MASS(p)/ DPM_CHAR_FRACTION(p)); 

real Do = MAX(1.E-15, c1*pow(0.5*(Tp + Tg),0.75)/P_DIAM(p)); 

real R = A2*exp(-E2/UNIVERSAL_GAS_CONSTANT/Tp); 
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*rr=-P_DIAM (p)*P_DIAM (p)*M_PI*(Do*R)/(Do+R)*pO2*sf[0]*one_minus_conv; 

} 

/*_______________________________________________________*/ 

else if (!strcmp(r->name, "reaction-5")) 

{ 

/* C + CO2 -> 2CO */ 

/* k = 4.4*Tp*exp(-1.62x10^8/RTp) */ 

real ash_mass = 

P_INIT_MASS (p)*(1.-DPM_CHAR_FRACTION (p)-

DPM_VOLATILE_FRACTION (p)); 

real one_minus_conv = 

MAX (0.,(P_MASS(p) -ash_mass) / P_INIT_MASS(p)/ 

DPM_CHAR_FRACTION(p)); 

real rate = 4.4*P_T(p)*exp(-1.62e8/UNIVERSAL_GAS_CONSTANT/P_T(p)); 

*rr=-rate*P_DIAM (p)*P_DIAM (p)*M_PI*sf[0]*one_minus_conv; 

} 

/*_______________________________________________________*/ 

else if (!strcmp(r->name, "reaction-6")) 

/* C + H2O -> CO + H2 */ 

/* K = 1.33*Tp*exp(-1.47x10^8/RTp) */ 

{ 

real ash_mass = 

P_INIT_MASS (p)*(1.-DPM_CHAR_FRACTION (p)-

DPM_VOLATILE_FRACTION (p)); 

real one_minus_conv = 

MAX (0., (P_MASS(p) -ash_mass) / P_INIT_MASS(p)/ 

DPM_CHAR_FRACTION(p)); 

real rate = 1.33*P_T(p)*exp(-1.47e8/UNIVERSAL_GAS_CONSTANT/P_T(p)); 

*rr=-rate*P_DIAM (p)*P_DIAM (p)*M_PI*sf[0]*one_minus_conv; 

} 

} 
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Appendix C 

Burnout of coal particles for the co-firing of coal and straw cases: 

 

 

 

Figure C. 1: Burnout of coal particles with different sizes for co-firing of coal and straw 

at different shares on wt. basis: (A) 40% straw, (B) 30% straw, (C) 20% straw and (D) 

10% straw. 
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Figure C. 1: Continued. 
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Appendix D 

A UDF for defining the heterogeneous reaction (Euler-Euler model): 

#include "udf.h" 

static const real Arrhenius = 0.002; 

static const real E_Activation = 79.e08; 

#define SMALL_S 1.e-29 

DEFINE_HET_RXN_RATE (arrh, c, t, hr, mw, yi, rr, rr_t) 

{ 

     Thread **pt = THREAD_SUB_THREADS (t); 

  Thread *tp = pt; /*Primary phase_gas*/ 

  Thread *ts = pt[1]; /*Secondary phase_solid carbon*/ 

  Domain **domain_reactant = hr->domain_reactant; 

     real *stoich_reactant = hr->stoich_reactant; 

     int *reactant = hr->reactant; 

     int i; 

     int sp_id; 

     int dindex; 

     Thread *t_reactant; 

     real ci; 

     real Tg=C_T(c,tp); /*Gas phase temperature*/ 

  real Tp=C_T(c,ts); /*Solid phase temperature*/ 

     /* instead of compute rr directly, compute log (rr) and then 

        take exp */ 

     *rr = 0; 

     for (i=0; i < hr->n_reactants; i++) 

       { 

         sp_id = reactant[i]; /* species ID to access mw and yi */ 

         if (sp_id == -1) sp_id = 0; /* if phase does not have species, 

                                  mw, etc. will be stored at index 0 */ 

         dindex = DOMAIN_INDEX(domain_reactant[i]); 

                              /* domain index to access mw & yi */ 

         t_reactant = THREAD_SUB_THREAD (t,dindex); 



                                                                                                                         Appendix D 

 

249 

         /* get conc. */ 

         ci = yi[dindex][sp_id]*C_R(c,t_reactant)/mw[dindex][sp_id]; 

         ci = MAX(ci,SMALL_S); 

         *rr += stoich_reactant[i]*log (ci); 

       } 

     *rr += log (Arrhenius + SMALL_S) - 

E_Activation/(UNIVERSAL_GAS_CONSTANT*Tg); 

     /* 1.e-40 < rr < 1.e40 */ 

     *rr = MAX(*rr,-40); 

     *rr = MIN(*rr,40); 

     *rr = exp(*rr); 

} 
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Appendix E 

            y = 4 cm         y = 6 cm        y = 8 cm        y = 10 cm 

t =0.1 s  

t = 0.2 s  

t = 0.3 s  

t = 0.4 s  

t = 0.5 s  

t = 0.6 s  

Figure E. 1: Contours of temperature at different locations in y direction showing at 

different times (s) for the base case (particle diameter of 0.5 mm). 
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                                     y = 4 cm        y = 6 cm        y = 8 cm       y = 10 cm 

t = 0.1 s  

 

t = 0.2 s  

 

t = 0.3 s  

 

t = 0.4 s  

 

t = 0.5 s  

 

t = 0.6 s  

Figure E. 2: Temperature contours at different locations in y direction and different 

times (s) for the base case (particle diameter of 1.5 mm). 
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                     Time (s) 

                        0.1             0.2              0.3             0.4             0.5              0.6 

 

               a) Case of 2 mm particle diameter. 

 

 b) Case of 2.5 mm particle diameter. 

 

 c) Case of 3 mm particle diameter. 

Figure E. 3: Temperature contours at different locations in y direction and different 

times (s) for the base case: a) 2 mm, b) 2.5 mm and c) 3 mm. 
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                      Time (s) 

                         0.1             0.2              0.3             0.4             0.5             0.6 

 

             a) Case of 0.5 mm particle diameter. 

 

            b) Case of 1.5 mm particle diameter. 

 

             c) Case of 2 mm particle diameter. 

Figure E. 4: Temperature distribution for the doubled-height case at different times and 

different particle sizes: a) 0.5 mm, b) 1.5 mm, c) 2 mm and d) 2.5 mm 
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 d) Case of 2.5 mm particle diameter. 

Figure E. 4: Continued. 
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Publications 

1. Blaid Alganash, Manosh. C. Paul and Ian A. Watson: Numerical investigation 

of the heterogeneous combustion processes of solid fuels. Fuel, 141 (2015) 236-

249. 

Conference Presentations 

1. B. Alganash, M. C. Paul and I. A. Watson: Numerical study of heterogeneous 

combustion processes of solid fuels. In: 13
th

 UK Heat Transfer Conference, 

London, UK, 2-3 Sep 2013. 

2. B. Alganash, M. C. Paul and I. A. Watson: Investigation of heterogeneous 

combustion processes of biomass. In: 6
th

 European Combustion Meeting, Lund, 

Sweden, 5-8 Jun 2013. 

3. B. Alganash, M. C. Paul: Investigation of heterogeneous combustion processes 

of biomass. In 26
th

 Scottish Fluid Mechanics Meeting on 29
th

 May 2013 (Poster 

Presentation). 

4. B. Alganash, M. C. Paul and I. A. Watson: Experimental and computational 

investigations of biomass mixing and combustion processes. In: 5
th

 European 

Combustion Meeting, Cardiff University, 28
th

 June -1
st
 July 2011. 

5. B. Alganash, M. C. Paul and I. A. Watson: Experimental and computational 

invetigations of biomass and combustion processes. Combustion Phenomena in 
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