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Abstract 

The 5-year survival rate of lung cancer patients is only 16%. As most patients are 

diagnosed at an advanced stage, little is known about early stages and mechanisms 

underlying the progression to metastatic disease. There are few targeted therapies 

available and targeting KRas driven lung cancer is especially challenging. KRAS is 

one of the most frequently mutated oncogenes in lung adenocarcinomas at ~33% 

of cases and is notably associated with resistance to EGFR inhibitors.  

In order to study tumour progression in vivo we chose a Cre/loxP inducible system 

in which Cre recombinase expressing Adenovirus is delivered to the lung by 

intranasal installation. In this model, Cre-mediated induction of a conditional 

KRasG12D allele gives rise to benign papillary adenomas (BPAs) that rarely progress 

to adenocarcinoma. Combined activation with conditional modest MYC 

overexpression however increases both the growth rate of the BPAs and their 

frequency of progression to adenocarcinoma. Deregulated MYC expression alone 

however gives rise to focal proliferation in the bronchioles but does not lead to 

tumours. Loss of functional Tp53 does not increase MYC’s tumour initiating potential 

in this model.  

Importantly, the KRasG12D/MYC model faithfully recapitulates the morphology of a 

subset of the human disease. I used Erk phophorylation status to distinguish 

between benign (p-Erk negative) and more advanced (p-Erk positive) tumour 

regions, and laser capture microdissection to harvest regions of interest. RNA was 

isolated from those regions and analyzed by RNA-Sequencing. GeneGo pathway 

analysis revealed that the ErbB and Wnt pathways are significantly upregulated in 

the p-Erk positive dataset. In order to validate the importance of these pathways, 

we treated cells derived from the same KRasG12D- and MYC-driven mouse tumours 

with the pan-ErbB-family inhibitor Neratinib and the WNT-inhibitor LGK974. Single 

treatment with either inhibitor suppressed cell propagation, migration and invasion 

into Matrigel, whereas combined treatment had a stronger effect on both 

characteristics. A panel of KRas mutant human lung adenocarcinoma cell lines were 

similarly sensitive to at least one inhibitor or to the combination of both.  

With KRas being downstream of ErbB family receptors and EGFR- and KRAS-

mutations being mutually exclusive in NSCLC, the reliance on ErbB family signalling 
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in KRas mutant cells was not expected. These results suggest that broad-specificity 

inhibitors of these proteins may be effective against a broader spectrum of NSCLC 

than hitherto anticipated. These results moreover indicate significant cooperation 

between the Ras and Wnt pathways that likewise may be exploited for therapy. 

Individual p-Erk associated genes that are also amplified or overexpressed in 

human NSCLC were selected for an in vitro siRNA screen. A significant number of 

these genes also correlate with decreased overall survival of NSCLC and in 

particular lung ADC patients. Screening of 3 KRas mutant human lung 

adenocarcinoma cell lines revealed that a considerable number of genes is 

important for cell viability of all tested cell lines. Also, knockdown of certain genes 

considerably suppressed cell migration in two efficiently migrating cell lines. 

These results suggest, that I have identified a list of genes that play an important 

role in KRas mutant lung adenocarcinoma. 
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MMTV = Mouse mammary tumour virus 

MNU = N-methyl-N-nitrosourea 

mTOR = Mammalian target of Rapamycin 

Myc = Myelocytomatosis oncogene 

Myc-ER = Myc-oestrogen receptor fusion transgene 

Myrf = Myelin regulatory factor 

 

N 

Ndrg1 = N-myc downstream regulated gene 1 

NGS = Normal goat serum 

Nf1 = Neurofibromatosis 1 

NLST = National lung screening trial  

NRas = Neuroblastoma ras oncogene 

NSCLC = Non-small cell lung cancer 

NTC = Non-targeting control 

Nt5e = 5' nucleotidase, ecto 

 

O 

4-OHT = 4-Hydroxy tamoxifen 

OIS = Oncogene-induced senescence  

OS = Overall survival 

 

P 

P130 = Retinoblastoma-related protein 2 

p53 = Cellular tumour antigen p53 

p63 = Transformation-related protein 63 

PBS = Phosphate buffered saline 

PCR = Polymerase chain reaction 

PDGF = Platelet derived growth factor 

Pdia4 = Protein disulfide isomerase associated 4 

PFS = Progression free survival 

Pgk1 = Phosphoglycerate kinase 1 

PH domain = Pleckstrin homology domain 

Phlda1 = Pleckstrin homology-like domain, family A, member 1 

PI = Propidium iodide 
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Pi3kca = Phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit alpha 

isoform 

PIP2 = Phosphatidylinositol (4,5)-bisphospate 

PIP3 = Phosphatidylinositol (3,4,5)-triphosphate 

Plekha6 = Pleckstrin homology domain containing, family A member 6 

PLL slides = Poly-L-Lysine coated slides 

Porcn = Porcupine 

PSA = Prostate-specific antigen 

Pten = Phosphatase and tensin homolog 

Ptges = Prostaglandin E synthase 

 

R 

Rabgap1l = RAB GTPase activating protein 1-like 

Rap120 = Ras related protein 120 

Ral = Ras related protein Ral 

Rb1 = Retinoblastoma 1 

Rbp7 = Retinol binding protein 7 

Rbm10 = RNA binding motif protein 10 

REF = Rat embryonic fibroblasts 

RERTn = Cre-ERT2 recombinase under the control of the large subunit of  

RNA polymerase II locus  

Ret = Ret proto-oncogene 

Rgcc = Regulator of cell cycle 

Rgs5 = Regulator of G-protein signalling 

Rho = Rhodopsin 

RKIP = Raf kinase inhibitor protein 

Rock = Rho-associated coiled-coil containing protein kinase 

RIN = RNA integrity number 

RIPA = Radioimmunoprecipitation assay buffer 

Rit1 = Ras-like without CAAX 1 

RNA = Ribonucleic acid 

RNAi = RNA interference 

Ros1 = Ros1 proto-oncogene 

rRNA = Ribosomal RNA 

RT = Room temperature  

Rtk = Receptor tyrosine kinase 
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rtTA = Reverse tetracycline-controlled transactivator 

RWD = Relative wound density 

 

S 

S100a6 = S100 calcium binding protein A6 (calcyclin) 

S100a11 = S100 calcium binding protein A11 (calcyclin) 

S100a14 = S100 calcium binding protein A14 (calcyclin) 

SA β-Gal = Senescence-associated beta-galactosidase 

SCC = Squamous-cell carcinoma 

SCLC = Small cell lung cancer 

SDS = Sodium Dodecyl sulphate 

Ser = Serine 

Setd2 = SET domain containing 2 

Sftpa1 = Surfactant associated protein A1 

siRNA = Small interfering RNA 

SH2 domain = Src homology 2 domain 

SH3 domain = Src homology 3 domain 

shRNA = Short hairpin RNA 

Slc2a1 = Solute carrier family 2 (facilitated glucose transporter), member 1 

Slc38a1 = Solute carrier family 38, member 1 

Smarca4 = SWI/SNF related, matrix associated, actin dependent regulator of 

chromatin, subfamily a, member 4 

Sox9 = SRY-box containing protein 9 

Sp-C = Surfactant protein C 

Spry = Sprouty homolog 2 

Stk39 = Serine/threonine kinase 39 

 

T 

Tace = Tumour necrosis factor alpha converting enzyme 

TAE = Tris-acetate-EDTA buffer 

Tam = Tamoxifen 

TBS = Tris-Buffered saline 

TBS-T = Tris-Buffered saline and Tween20 

Tcf = Transcription factor 

TdT = Terminal nucleotidyl transferase enzyme 

TGF-α = Transforming growth factor alpha 
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Tnfrsf12a = Tumor necrosis factor receptor superfamily, member 12a 

Tnfrsf21 = Tumor necrosis factor receptor superfamily, member 21 

Tp53 = p53 gene 

TRE = Tetracycline-responsive promoter element 

Tspan 8 = Tetraspanin 8 

TTF-1 = Thyroid transcription factor 1 

TUNEL = Terminal nucleotidyl transferase dUTP nick end labeling 

Tyr = Tyrosine 

 

U 

U2af1 = U2 small nuclear ribonucleoprotein auxiliary factor 1 

 

V 

Vcam1 = Vascular cell adhesion molecule 1 

VEGF = Vascular endothelial growth factor 

VEGFR = Vascular endothelial growth factor receptor 

 

W 

Wnt = Wingless-related MMTV integration site 
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1 Introduction 

1.1 Lung Cancer 

Lung cancer is the leading cause of cancer death worldwide with a 5-year survival 

rate of 15.9% (Ettinger et al., 2013). Non-small-cell lung cancer (NSCLC) represents 

with 85% the major histopathological group of lung cancer and can be further 

subdivided into adenocarcinomas (ADC, ~50%), squamous-cell (SCC, ~40%) and 

large-cell carcinomas (LCC, ~10 %) (Chen et al., 2014). The remaining 15% of lung 

cancers have neuroendocrine origin; Small-cell lung cancer (SCLC) is the most 

common form in this group.  

ADCs are located in the distal airways, whereas SCCs are more proximal. 

Histologically they can be distinguished by expression of biomarkers. Two useful 

biomarkers for this purpose are thyroid transcription factor 1 (Ttf-1) and p63. ADCs 

stain positive for Ttf-1 and are negative for transformation-related protein 63 (p63), 

whereas SCCs are Ttf-1 negative and stain positive for p63 (Rekhtman et al., 2011). 

1.1.1 Mutations in Lung ADC 

Recent molecular profiling of lung ADC revealed that kirsten rat sarcoma viral 

oncogene homolog (KRAS) is mutated in 33% of ADC (Cancer Genome Atlas 

Research, 2014), but is rarely mutated in SCC (Cancer Genome Atlas Research, 

2012). Besides KRAS epidermal growth factor receptor (EGFR, 14%), liver kinase 

B1 (LKB1, 17%), kelch-like ECH-associated protein 1 (KEAP1, 17%) and cellular 

tumour antigen p53 (Tp53, 46%) are the most commonly mutated genes in lung 

ADC. Other mutations include serine/threonine-protein kinase B-Raf (BRAF, 10%), 

Phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit alpha isoform 

(PI3KCA, 7%), met proto-oncogene (MET, 7%), Ras-like without CAAX 1 (RIT1, 

2%), neurofibromatosis 1 (NF1, 11%), retinoblastoma 1 (RB1, 4%), cyclin-

dependent kinase inhibitor 2A (CDKN2A, 4%), SET domain containing 2 (SETD2, 

9%), AT rich interactive domain 1A (ARID1A, 7%), SWI/SNF related, matrix 

associated, actin dependent regulator of chromatin, subfamily a, member 4 

(SMARCA4, 6%), RNA binding motif protein 10 (RBM10, 8%), U2 small nuclear 

ribonucleoprotein auxiliary factor 1 (U2AF1, 3%) and MAX gene associated (MGA, 

8%). MGA is a MAX interacting protein and mutations increase myelocytomatosis 
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oncogene (MYC) activity. Mutations in MGA are mutually exclusive with MYC 

amplification (Cancer Genome Atlas Research, 2014).  

1.1.2 Current treatment options for NSCLC 

Which treatment options is chosen mainly depends on the tumour stage and the 

overall health of the patient. 

Treating stage 0 

Stage 0 NSCLC is limited to a few layers of cells in the airways and has not grown 

deeper into the lung. It can be treated by surgery without the need of chemotherapy 

or radiation (www.cancer.org). 

Treating stage I 

In some cases stage I can be treated by surgery alone. Depending on the size and 

location of the tumour either the entire lobe (lobectomy) or a smaller piece of the 

lung (wedge resection) will be removed. Following adjuvant chemotherapy can be 

used to lower the risk of recurrence (Zarogoulidis et al., 2013). A platinum based 

drug such as cisplatin and carboplatin, is commonly used in combination with one 

other drug. Radiotherapy is used to kill cells that have been left behind during 

surgery (www.cancer.org). 

Treating stage II 

Stage II cancers are usually removed by surgery, along with local lymph nodes that 

are also likely to have cancer cells. Chemotherapy and radiotherapy can be used 

beforehand to shrink the tumour (www.cancer.org). Chemotherapy and radiation, 

either alone or in combination, help to kill cancer cells that may have left behind 

during surgery (Zarogoulidis et al., 2013). 

Treating stage IIIA 

Treatment of stage IIIA usually includes chemotherapy and radiotherapy, with or 

without surgery, depending on the health status of the patient. If the patient can 

tolerate it, treatment starts with chemotherapy, often in combination with 

radiotherapy. In a following surgery, remaining cancer can be removed. If the health 

http://www.cancer.org/
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status does not allow surgery, radiation therapy, also in combination with 

chemotherapy is used (www.cancer.org). 

Treating stage IIIB 

Stage IIIB is defined as lung cancer that has spread to local lymph nodes and other 

parts of the chest. It therefore cannot be completely removed by surgery. If the 

patient is healthy enough, he can be treated with chemotherapy in combination with 

radiotherapy. Patients with a poor health status can be treated with either 

chemotherapy or radiotherapy alone (www.cancer.org). 

Treating Stage IV 

Stage IV cancer has spread to distant sites when it is diagnosed and is very difficult 

to cure. Treatments such as surgery, chemotherapy and radiotherapy can help to 

relieve symptoms and to increase survival (www.cancer.org). The tumours will also 

be tested for the presence of certain mutations. If certain markers are present, 

targeted therapy might be a good treatment option Zarogoulidis et al., 2013). 

1.1.2.1 Targeted therapies 

Targeted treatment options improved recently for patients with EGFR mutant lung 

cancer and lung cancer with anaplastic lymphoma kinase (ALK), Ros1 proto-

oncogene (ROS1) and ret proto-oncogene (RET) translocations.  

EGFR mutations 

The EGFR inhibitors Erlotinib and Gefitinib have been shown to increase 

progression free survival (PFS) compared to chemotherapy. Erlotinib has been 

shown to increase PFS to 10.4 months compared to chemotherapy (5.2 months) 

(Khozin et al., 2014) and Gefitinib improved survival to 10.8 months compared to 

chemotherapy (5.4 months) (Maemondo et al., 2010). However neither therapy 

provided a significant overall survival (OS) benefit.  

EML4/ALK fusion genes 

Echinoderm microtubule associated protein like 4 (EML4)/ALK fusion genes occur 

in 5% of NSCLC and these tumours are sensitive to the tyrosine kinase inhibitor 

Crizotinib (Shaw et al., 2013). Crizotinib has been shown to increase PFS to 7.7 
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months compared to 3 months with chemotherapy in patients with advanced ALK 

positive NSCLC, but it did not increase OS survival.  

ROS1 rearrangements 

ROS1 rearrangements occur in 1% of NSCLC. NSCLC patients with ROS1 

rearrangements that were treated with Crizotinib had similar response rates (72%) 

as patients with ALK fusion genes (61%) (Shaw et al., 2014). PFS was 19.2 months 

and overall survival rate at 12 months was 85%. The median overall survival could 

not be determined, as the median was not reached at the date of data-cutoff.  

RET fusion genes 

RET fusions occur in 1% of NSCLC. 3 patients were treated with Cabozantinib, a 

multi-tyrosine kinase inhibitor. At the time of data-cutoff, all 3 patients were still 

progression free. 2 patients had a partial response and the third patient had a 

prolonged stable disease of 8 months at the date of data-cutoff. A larger phase II 

clinical trial of Cabozantinib for RET fusion NSCLC is currently recruiting patients 

(Drilon et al., 2013). 

Unfortunately, most tumours acquire resistance to tyrosine kinase inhibitors within 

9-12 months of treatment (Chen et al., 2014; Katayama et al., 2012; Kobayashi et 

al., 2005). For this reason patients present with stage I to IIIA tumours with 

targetable driver mutations undergo surgery and receive combination chemotherapy 

as a standard of care (Chen et al., 2014; Pignon et al., 2008).  

1.1.3 KRas as a therapeutic target 

KRAS is with 33% the most frequently mutated oncogene in lung ADC and activating 

KRas mutations are associated with poor prognosis (Cancer Genome Atlas 

Research, 2014; Slebos et al., 1990). KRas withdrawal leads to tumour regression 

in KRas mutant lung ADC mouse models and is thereby a promising target (Fisher 

et al., 2001).  

1.1.3.1 Targeting KRas directly 

KRas has been proven difficult to be targeted directly. One approach is to use 

molecules that compete with GTP binding, which is essential for KRas activation. 
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This has been impossible so far, as KRas has a very high GTP affinity in the 

picomolar range and GTP molecules are present in the cell in millimolar 

concentrations. Moreover, KRas does not possess deep hydrophobic pockets that 

would allow easy binding of small molecule inhibitors.  

Another approach is to inhibit guanine exchange factors (GEFs). GEFs promote the 

dissociation of GDP from KRas, which then allows binding of GTP. Even though this 

strategy seems to be a good approach in theory, no inhibitors have been developed 

that would be potent enough to inhibit mutant KRas function in vivo. 

Association of KRas with the plasma membrane is crucial for its function. This 

requires the addition of a C15 farnesyl isoprenoid lipid to the carboxyterminal end 

of KRas. Therefore, inhibiting farnesyl transferases might be a feasible approach to 

inhibit KRas (Berndt et al., 2011). Farnesyl inhibitors have made it to phase III 

clinical trials. They failed because they inhibited Harvey rat sarcoma virus oncogene 

(HRas), instead of KRas. Another caviat in the inhibition of farnesyl transferases is, 

that they are unspecific as many proteins in the cell are farnesylated. Moreover, 

KRas can become a target for a related prenyl transferase that leads to alternative 

prenylation of KRas that allows KRas’ attachment to the membrane (Whyte et al., 

1997). 

1.1.3.2 Indirect targeting of KRas  

Approaches to indirectly target KRAS mutant lung cancer include inhibiting 

downstream signalling and targeting proteins that are synthetic lethal with mutant 

KRAS.  

Targeting the downstream MAPK pathway 

Targeting the mitogen-activate protein kinase (MAPK) pathway with the mitogen-

activated protein kinase kinase (MEK) inhibitor Selumetinib was shown to be 

effective in a subset of KRas mutant lung cancers (Chen et al., 2012). A co-clinical 

trial involving mouse models with mutant KRas and loss of Lkb1, as well as KRas 

and Tp53 mutations, revealed that KRas and Tp53 mutant but not KRas and Lkb1 

mutant murine lung tumours were sensitive to Selumetinib in combination with the 

chemotherapeutic agent Docetaxel. The primary resistance of KRas/Lkb1 mutant 

tumours was associated with an increased metabolic activity of the tumours, which 
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was shown by fluorodeoxyglucose-positron-emission tomography (FDG-PET). Co-

treatment of KRAS mutant lung cancer patients with Selumetinib and Docetacel 

showed that LKB1 mutation status and metabolic activity have prognostic value to 

Selumetinib response in human cancer as well.  

Engelman et al. (Engelman et al., 2008) showed in a KRas mutant mouse model 

that Selumetinib in combination with a Pi3k and mammalian target of Rapamycin 

(mTor) inhibitor (Bez235) was more effective than Selumetinib on its own. A phase 

2 study with patients with KRAS mutant advanced NSCLC showed that Selumetinib 

in combination with Docetaxel increased PFS (5.3 months) compared to Docetaxel 

alone (2.1 months) (Janne et al., 2013). Combination therapy however also 

increased toxicity with more grade 3-4 adverse events than with Docetaxel only.  

Synthetic lethality approaches 

Knockdown of genes that are synthetic lethal with KRas affects KRas mutant cells 

but not KRas wild-type cells (Figure 1-1). RNA interference (RNAi) screening led to 

the discovery of genes that are synthetic lethal in KRas mutant cancer.  

 

Figure 1-1 Synthetic lethality. 
The principle of synthetic lethality: If either gene A or gene B is mutated, the cell is not affected. If 
gene A and gene B are mutated, the cell dies.  

GATA2 

One synthetic lethal gene that was discovered this way is the transcription factor 

GATA binding protein 2 (GATA2) (Kumar et al., 2012). Its synthetic lethal effect 

could be confirmed in vivo by inhibiting GATA2 downstream pathways with the 

pharmacological inhibitors Bortezomib and Fasudil. This led to dramatic regression 

of established tumours in a KRas mutant lung cancer mouse model. Bortezomib is 

a proteasome inhibitor and Fasudil is a rhodopsin/Rho-associated coiled-coil 

containing protein kinase (RHO/ROCK) inhibitor and both have been approved for 
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use in human patients.  A phase II trial of Bortezomib in patients with KRAS mutant 

NSCLC is currently on-going (https://clinicaltrials.gov/show/ NCT01833143). 

Cdk4 

Loss of the interphase cyclin-dependent kinase 4 (Cdk4) has been shown to be 

synthetic lethal with mutant KRas. In a KRas mutant lung ADC model, ablation of 

Cdk4 led to senescence in these tumours (Puyol et al., 2010). A clinical trial with the 

CDK4/6 inhibitor LY2835219 is currently on-going (https://clinicaltrials.gov/ 

show/NCT01394016).  

c-Raf 

It was shown in a KRas mutant lung ADC mouse model that tumour initiation 

depends on the presence of c-Raf (Jackson et al., 2001). Surprisingly, c-Raf was 

not required for tissue homeostasis in adult mice. It still needs to be investigated if 

c-Raf abrogation has an effect on established tumours as well (Blasco et al., 2011). 

Myc 

Another synthetic lethal gene in KRas driven lung cancer is Myc. Myc is as a 

transcription factor difficult to target, but might be inhibited by targeting its interaction 

with other proteins. Omomyc, a dominant negative Myc interacting protein, binds 

Myc and thereby prevents Myc from binding to its binding partner max protein (Max), 

which is important for Myc’s transcriptional activity (Soucek et al., 2008). It was 

shown in a KRas driven mouse model that Omomyc is able to mediate rapid tumour 

regression and progressive eradication (Soucek et al., 2013).  

Another approach of targeting Myc involves the use of bromodomain inhibitors. 

Monoacetylated lysine residues that are found on N-terminal tails of histones are 

bound by bromodomain containing proteins, which leads to chromatin remodelling 

and is required for transcriptional activation of certain genes. The bromodomain and 

extra terminal (BET) bromodomain inhibitor JQ1 has been shown to inhibit 

bromodomain-containing protein 4 (Brd4) and to downregulate Myc and its target 

genes (Ott et al., 2012). It has been shown In a KRas-mutant NSCLC model that 

JQ1 treatment leads to tumour regression (Shimamura et al., 2013). 

https://clinicaltrials.gov/show/%20NCT01833143
https://clinicaltrials.gov/%20show/
https://clinicaltrials.gov/%20show/


 30 

1.1.4 CT screening for early detection 

About 75% of lung cancer cases are diagnosed at advanced stage. Earlier detection 

could drastically improve survival rates. As part of a study that was designed in order 

to examine the diagnostic value of low-dose computerized tomography (CT), 31,567 

asymptomatic persons were screened (International Early Lung Cancer Action 

Program et al., 2006). 85% of lung cancer that was detected in participants of this 

study was stage I and this group of patients had an estimated 10-year survival rate 

of 88%. Persons that were diagnosed with stage I lung cancer and underwent 

surgical resection within one month of diagnosis had an even better prognosis with 

an estimated 10 year survival rate of 92%.  

Another trial, the National Lung Screening Trial (NLST), recruited 53,454 

participants at high lung cancer risk and divided them randomly into 2 groups that 

were either screened using low-dose CT or chest radiography (National Lung 

Screening Trial Research et al., 2011). There was a 20% reduction of Lung Cancer 

deaths in the low-dose CT group compared to the chest radiography group.  

These numbers demonstrate that early diagnosis is crucial in order to improve 

survival rates, as even with the improvement of targeted therapies treatment of late 

stage disease is very challenging. A big problem with low-dose CT however is the 

very high rate of false positives, which came to ~95% in the NLST (National Lung 

Screening Trial Research et al., 2011). These people then had to undergo further 

screening and biopsies, which was associated with unnecessary and potentially 

risky interventions, especially for old people with a poor health condition. Attempts 

to reduce the number of false positives include raising the threshold of the lesion 

size that are counted as positive and repeated imaging in order to detect a growing 

lesion (Henschke et al., 2013; Horeweg et al., 2013).  

Nevertheless, additional methods that can complement or replace CT screening are 

needed. Ideal for this purpose would be biomarkers that are detectable in the blood 

or breath, as they could be tested in a non-invasive manner. Moreover, a simple 

reliable test such as a routine blood test could possibly be applied to a larger group 

of people than it is possible with CT screening. CT screening is considered for 

people at high lung cancer risk between 55 and 80 years of age, which means that 
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lung cancer cases that do not fall into this group will be missed (Humphrey et al., 

2013).  

Another approach to detect lung cancer is to look at gene expression profiles of cells 

in the airways, which can be sampled by brushes. A study compared gene 

expression profiles from smokers with and without lung cancer and identified 80 

biomarkers that were associated with lung cancer (Spira et al., 2007). However, the 

prognostic value of this method still needs to be proven.  

The difficulty of identifying suitable biomarkers for early disease detection goes back 

to the original problem, the fact that the vast majority of lung cancer cases are 

detected at an advanced stage. It would be possible to analyse biomarkers from late 

stage patients, but this would not tell anything about biomarkers that are increased 

in early disease, which are needed in order detect the disease at an early stage. 

Genetically engineered mouse models (GEMMs) are able to close this gap. Tumour 

development is very reproducible in these models and they allow the study of early 

stage lung tumours. A better understanding of molecular changes during early 

disease would help to find reliable biomarkers that could allow early diagnosis and 

would thereby help to improve survival rates.  

1.2 Ras and Myc proto-oncogenes 

1.2.1 Ras  

Ras proteins consist of 3 family members, HRas, NRas and KRas. KRas is essential 

during embryonic development, as KRas knockout is embryonic lethal (Koera et al., 

1997), HRas and NRas knockout mice are however viable (Esteban et al., 2001; 

Umanoff et al., 1995). Ras proteins are GTPases that become activated through 

GTP binding and that hydrolyse GTP to GDP (McGrath et al., 1984). The activity of 

Ras proteins depends on extracellular stimuli (Figure 1-2).  

One way of activating Ras proteins is through tyrosine protein kinase receptors, 

which are located in the plasma membrane and become activated through ligand 

binding, such as epidermal growth factor (EGF). Growth factor receptor bound 

protein 2 (GRB2) proteins function as adaptor proteins, which bind activated protein 

kinase receptors through an Src homology 2 (SH2) domain and Guanine exchange 

factors (GEFs) through 2 Src homology 3 (SH3) domains (Egan et al., 1993). GEFs 
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stimulate GDP release, which enables Ras to be bound and activated by a new GTP 

molecule (Wolfman and Macara, 1990). GTPase activating proteins (GAPs) on the 

other hand are able to inhibit Ras activity by stimulating GTP hydrolysis (Vogel et 

al., 1988). 

Ras mutations that decrease the GTPase activity of the Ras protein and thereby 

increase its activity are often found in human cancer. The two most frequent 

mutations affect codons 12 and 61. Codon 12 of the Ras gene encodes for glycine, 

which is the only amino acid without a side chain. Replacement of glycine with a 

side chain containing amino acid results in a conformational change that affects the 

interaction with GAPs and thereby decreases the GTPase activity of Ras (Scheffzek 

et al., 1997). Codon 61 encodes for glutamine, which forms a hydrogen bond with 

Arg789 in Ras-related protein 120 (RAP120). A H2O molecule can attack this 

hydrogen bond, which then leads to GTP hydrolysis (Scheffzek et al., 1997). 

 

Figure 1-2 Ras activation and downstream effectors. 
Ras is positively regulated by GEFs (Sos). Grb2 adaptor proteins bind phosphorylated receptors 
through their SH2 domain and Sos through their SH3 domains, which allows Sos to activate Ras. 
Ras is negatively regulated by GAPs. PI3K, Raf and Ral are three important Ras effectors. 

These mutations make the Ras protein independent from activation through GEFs. 

The activated, GTP bound Ras protein can signal through various effector 

pathways. It can for instance interact with Raf, a serine/threonine kinase, which is 

part of the MAPK pathway (Vojtek et al., 1993; Zhang et al., 1993).  
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Another Ras effector is the catalytic subunit of phosphatidylinositol 3-phosphate 

(Pi3k) (Sjolander et al., 1991). Pi3k phosphorylates phosphatidylinositol (4,5)-

bisphospate (PIP2), which then becomes phosphatidylinositol (3,4,5)-triphosphate 

(PIP3). Pleckstrin homology (PH) domain containing proteins are able to bind PIP3. 

One such PH domain containing protein is the serine/threonine kinase Akt, which 

gains kinase activity upon PIP3 binding. Akt can then again activate multiple effector 

pathways such as mTor, which stimulates protein synthesis and thereby cell growth 

(Inoki et al., 2002). Akt can also inactivate glycogen synthase kinase 3 beta (Gsk-

3β) (Cross et al., 1995), which antagonises proteins involved in cell proliferation and 

pro-apoptotic Bcl-2-associated death promotor (Bad) proteins (Datta et al., 1997), 

thereby inhibiting apoptosis.  

Another important Ras effector is Ras related protein Ral (Ral). Ral proteins are 

similar to Ras proteins and also become activated through GTP binding (Chardin 

and Tavitian, 1986). Ras activates Ral by activating Ral-GEFs (Hofer et al., 1994). 

Activated Ral proteins can again activate downstream effectors. There is some 

evidence that Ral proteins promote cell motility (Lim et al., 2006; Oxford et al., 2005).  

1.2.1.1 Consequences of oncogenic Ras 

Overexpression of oncogenic Ras leads after an initial wave of proliferation to 

growth arrest in primary rat embryonic fibroblasts (REFs) (Land et al., 1986). For 

transformation of primary cells, KRas needs a cooperating oncogene, such as Myc 

or the adenoviral early region 1A protein (E1A), or loss of tumour suppressor genes 

such as the alternate reading frame protein p19Arf or p53. KRas is however able to 

transform already immortalized cells, such as NIH-3T3 cells. These observations 

led to the discovery of oncogene-induced senescence (OIS), which is seen as a fail-

safe mechanism to prevent tumourigenesis.  

Until several years ago, OIS was seen as a cell culture artefact triggered by strong 

overexpression of oncogenes. In agreement with this Tuveson et al. showed that 

activation of endogenous Cre inducible mutant KRasG12D in primary MEFs leads to 

immortalization instead to senescence (Tuveson et al., 2004). Interestingly, MAPK- 

and PI3K-pathway were not upregulated, but even suppressed in KRasG12D MEFs 

compared to uninduced MEFs. In line with this, the MAPK pathway has been shown 

to trigger Ras induced senescence (Lin et al., 1998; Serrano et al., 1997). This 
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suggests that high but not low levels of oncogenic KRas are able to engage tumour 

suppressor pathways that then lead to senescence. Guerra et al. (Guerra et al., 

2003) observed the same phenotype with endogenous mutant KRasG12V in primary 

MEFs.  

In vivo, the lung is susceptible to tumour formation upon KRas mutation (Johnson 

et al., 2001). Tuveson et al. confirmed in a Cre inducible KRasG12D model, that 

mutant KRas gives rise to tumours in the lung (Tuveson et al., 2004). Epithelial 

hyperplasia could be detected 4 days after allele induction already, showing that no 

additional mutations are required. In agreement with the observations in MEFs, the 

hyperplastic lesions did not stain positive for p-Erk and no senescence or cell cycle 

arrest markers could be detected (p53, p16-Ink4a (Cdkn2a), p19Arf, p21). 

Another study investigated the induction of p19Arf in a KRas mutant model 

(KRasLa2), in which mutant KRasG12D is activated by spontaneous somatic 

recombination (Johnson et al., 2001), using a green fluorescent protein (GFP) allele 

that is knocked into the endogenous p19Arf locus. The mice are then null for p19Arf 

and on the same time activation of the p19Arf locus can be followed by GFP 

expression (Young and Jacks, 2010). The KRasLa2/p19ArfGFP mice developed a 

tumour spectrum that was different from KRasLa2 mice. Besides the lung tumours, 

thymic lymphomas and papillomas that were seen in the KRasLa2 mice, 

KrasLa2/p19ArfGFP mice developed also muscle-specific sarcomas and had enlarged 

spleens and kidneys with cells that displayed aberrant nuclei. Strikingly, lung 

tumours were negative for GFP, whereas sarcomas were positive, indicating that 

p19Arf suppressed sarcoma tumourigenesis in KRasLa2 mice. This indicates, that 

not only expression levels of oncogenic KRas dictate whether the cells respond with 

proliferation or senescence, but also the cell type in which oncogenic KRas is 

expressed. Closer examination revealed that the p19Arf locus was silenced by 

Polycomb-group protein (PcG) mediated Histone 3 Lysine 27 trimethylation (H3-

K27me3) in the lung tumours, which was not the case in sarcomas.  

Two other independent studies confirmed that the p19Arf/p53 pathway is not 

engaged in early stage KRas driven lung tumours even though loss of Tp53 has 

been shown to accelerate KRas driven tumourigenesis in the lung (Jackson et al., 

2005). In a KRasG12D/Tp53null model, in which Tp53 could be restored by Tamoxifen 

administration, it was shown that Tp53 restoration had no effect on early stage lung 
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tumours, whereas in advanced stage tumours it led to p21 expression and tumour 

regression (Feldser et al., 2010). This was confirmed independently in a similar 

mouse model (Junttila et al., 2010). This shows that endogenous KRas is driving 

tumourigenesis in the lung without engaging tumour suppressive mechanisms, 

explaining why certain lung cells are susceptible to KRas mutations.  

On the other hand in a KRasG12V mutant mouse model in which endogenous KRas 

is replaced by KRasG12V (Guerra et al., 2003), induction of KRasG12V gave rise to 

tumours in the lung, but they were shown to initially express senescence markers 

(p16, p15-Ink4b (Cdkn2b), deleted in esophageal cancer 1 (Dec1), decoy receptor 

2 (DcR2) and senescence-associated beta-galactosidase (SA β-Gal)), which were 

lost during progression to adenocarcinomas. The reason for the different phenotype 

in the two models is not clear. One difference is that induction of the allele was 

achieved in different ways: spontaneous somatic activation (Johnson et al., 2001) 

in the KRasLa2 model, or Adeno-viral Cre induction in the lsl-KRasG12D model, 

whereas the lsl-KRasG12V allele was induced either by tamoxifen-inducible Cre (Cre-

ERT2) under the control of the large subunit of RNA polymerase II locus (RERTn), 

or by cytomegalovirus (CMV)-Cre. Therefore, induction in the KRasG12D models was 

sporadic and limited to a relatively low number of cells, whereas the constitutively 

active promoters in the KRasG12V model gave rise to Cre expression and allele 

induction in the whole animal. Besides this, the only variation is the amino acid 

substitution in the point mutation, but this should not make a difference as they are 

both activating the KRas protein by the same mechanism.  

This is one example that shows that OIS is not a cell culture artefact, but indeed 

occurs in vivo. There are evidences that in vivo as well the decision if KRas induces 

proliferation or senescence is dose dependant. An elegant study using a dox 

inducible KRas allele under the mouse mammary tumour virus (MMTV) promoter 

showed that low levels of KRas induced proliferation leading to focal hyperplasias 

in the duct, whereas high level of KRas led initially to a high rate of proliferation that 

then soon decreased and resulted in inhibition of ductal elongation (Sarkisian et al., 

2007). This demonstrated nicely that within the same model, the levels of KRas 

determine if KRas induces proliferation or senescence.  

In summary, KRas levels crucially influence the fate of the cell by inducing either 

proliferation or senescence, but on the same time different cell types have variable 
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intrinsic properties that determine the cell’s tumourigenic sensitivity to KRas 

mutations. 

1.2.2 Myc 

Myc (c-Myc) belongs to a family of genes consisting of c-Myc, N-Myc and L-Myc 

(Nau et al., 1985; Slamon et al., 1986; Vennstrom et al., 1982) and is a transcription 

factor that is involved in many physiological processes, such as cell proliferation and 

growth, differentiation, apoptosis, metabolism and DNA repair (Dang, 1999; 

Fernandez et al., 2003). As a basic helix-loop helix/leucine zipper (bHLHZ) protein, 

Myc binds together with its binding partner Max to specific DNA sequences, called 

E-boxes, to activate target genes (Blackwell et al., 1990; Blackwood and Eisenman, 

1991). By binding to Miz-1 Myc is on the other hand also able to repress gene 

transcription (Peukert et al., 1997). 

1.2.2.1 Consequences of oncogenic Myc 

In vitro, Myc overexpression drives hyperproliferation, but also sensitizes cells to 

undergo apoptosis under low serum conditions (Evan et al., 1992). This is dose 

dependent, as clones expressing higher Myc levels showed higher levels of 

apoptosis. 

In vivo, low levels of deregulated MYC expression driven by the Rosa26 promoter 

drives proliferation in multiple tissues, but is on its own not sufficient for tumour 

initiation (Murphy et al., 2008). Colon is the only tissue with significant levels of 

apoptosis in this model, which is probably due to higher MYC expression. To confirm 

that high MYC levels can trigger apoptosis, the same study compared MYC levels 

in the pancreatic islets of Rosa26-MYC-ER mice with MYC levels in the pnls-MYC-

ER model, in which the insulin promoter drives MYC expression. Pnls-MYC-ER mice 

displayed ~15 times higher MYC mRNA levels than homozygous Rosa26-MYC-ER 

mice. In Rosa-26MYC-ER pancreatic islets, MYC activation by 4-OHT led to 

proliferation and hyperplasia, whereas it led to large amounts of apoptotic death in 

the pnls-MYC-ER mice, accompanied by islet involution. In the Rosa26-MYC-ER 

colonic epithelium, as well as pnls-MYC-ER pancreatic islets, the apoptotic 

phenotype went along with p19Arf expression. p19Arf was however absent in 

tissues, in which apoptosis was absent and MYC induction drove only proliferation. 

This suggests that oncogenic Myc levels that can induce p19Arf and thereby engage 
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tumour suppressive mechanisms (Zindy et al., 1998), require a certain threshold 

which is higher than the one needed for Myc induced proliferation.  

In most mouse models Myc is strongly overexpressed by using very potent tissue 

specific promoters or enhancers. Myc fusion to the Eµ immunoglobulin enhancer 

gives rise to B cell lymphomas within few months of age (Adams et al., 1985). Strong 

Myc overexpression proved to be potent cancer initiating event in this model. 

However, in many tissues with epithelial cell origin Myc on its own does not seem 

to be a potent inducer of tumourigenesis. Mouse models in which Myc is fused to 

the long terminal repeat (LTR) of the MMTV promoter give rise to only few and 

sporadic tumours in the mammary glands and they were shown to have acquired 

KRas mutations (D'Cruz et al., 2001; Stewart et al., 1984). A similar phenomenon 

has been observed in the lung (Allen et al., 2011). Myc’s oncogenic potency is 

however accelerated by simultaneous activation of anti-apoptotic proteins such as 

Bcl-xL (Pelengaris et al., 2002), or deletion of tumour suppressor genes such as 

p19Arf of p53 (Elson et al., 1995; Zindy et al., 2003), confirming that oncogenic Myc 

levels engage tumour suppressive mechanisms, whose abrogation enable Myc to 

exert its full oncogenic potential. 

1.2.3 Myc/Ras cooperation 

The observation that Myc and Ras cooperate in transformation goes back to 1986 

when Land et al. showed in primary rat fibroblasts that Ras on its own can drive 

initial colony formation, which stop growing after a while (Land et al., 1986). 

Cotransformation with Myc however helped to overcome this growth arrest. 

Since then it has been established that Myc and Ras complement each other by 

interfering with each other’s tumour suppressive functions (Figure 1-3). Oncogenic 

Ras leads to senescence in primary cells through p19Arf induction (Zindy et al., 

1998) and co-overexpression of Myc overrides this senescent phenotype (Hydbring 

et al., 2010). Ras on the other hand can overcome Myc induced apoptosis, which is 

mediated through Pi3k/Akt signalling (Kauffmann-Zeh et al., 1997). 
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Figure 1-3 Cooperation between Myc and Ras. 
The upper panel shows that Ras is inhibiting Myc induced apoptosis, caused by Myc levels above 
the threshold for Myc induced apoptosis. Myc on the other hand is able to inhibit Ras induced 
senescence. The lower panel illustrates that even below the tumour suppressive threshold levels, 
Myc and Ras are able to cooperate. 

Mechanistically this cooperation seems to originate from the fact that Myc and Ras 

have opposing effects on the cell cycle clock. Ras induces cyclin D1 (Filmus et al., 

1994), Myc can inhibit cyclin D1 (Philipp et al., 1994), but can on the other hand 

induce cyclin D2 (Bouchard et al., 2001). Moreover, Ras inhibits cyclin-dependent 

kinase 4 (Cdk4) expression (Lazarov et al., 2003), whereas Myc induces Cdk4 

(Hermeking et al., 2000). 

Also in vivo, Myc and Ras have been shown to cooperate. In a mammary model for 

instance, Myc dramatically increases Ras induced tumour incidence (Sinn et al., 

1987). Both oncogenes were however expressed at high levels, driven by the MMTV 

promoter, and Ras was able to suppress Myc induced apoptosis in this model 

(Hundley et al., 1997). 

The mechanism of Myc and Ras cooperation has always focussed on their ability to 

abrogate each other’s tumour suppressive effects, which originates from a large 

amount of studies in which Myc and Ras were highly overexpressed. It is the case 

with both oncogenes that their tumour suppressive functions depend on their 
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expression level - Ras induced senescence is more pronounced when Ras is 

present at high levels and Myc induced apoptosis requires a threshold level, which 

is higher than the one for Myc induced proliferation. This work is the first in vivo 

attempt to carefully investigate the effect of weak Myc overexpression, which is still 

at physiological levels, on endogenous mutant KRas driven tumourigenesis. I show 

that Myc levels that drive proliferation but no apoptosis are able to accelerate KRas 

driven tumourigenesis (Figure 1-3). Abrogation of KRas induced senescence by 

Myc can be excluded as a mechanism of cooperation, as KRas does not lead to 

senescence in this model. This shows that there is an actual cooperation between 

Myc and Ras beyond mere abrogation of each other’s tumour suppressive 

functions.  

1.3 Mouse Models for Lung Cancer 

1.3.1 Classification of proliferative lung tumour lesions 

The following classification represents a summary of the recommendations of the 

Mouse Models of Human cancers consortium (Nikitin et al., 2004) with focus and 

references to how I classified lesions throughout my work.  

Epithelial lesions can be divided into hyperplasias and tumours. Epithelial 

hyperplasia can be further divided depending if it arises from the airways or from 

alveoli. Airway hyperplasia describes the increase in number of respiratory epithelial 

cells in a diffuse or focal contribution, whereas alvoelar hyperplasia describes foci 

in the distal to terminal bronchioles and is usually single layered. I do not distinguish 

between these two types of hyperplasia and refer to them in general as 

“hyperplasia”. 

Tumours are subdivided into benign, preinvasive lesions and malignant lesions. The 

term benign is used differently in human and mouse pathology. In human pathology 

benign tumours refer to tumours (papillomas and adenomas) that are likely to never 

progress to cancer. In the mouse benign adenoma lesions are seen as an 

intermediate stage before they progress to adenocarcinomas and are not 

distinguished from benign tumours that will never progress.  

Benign tumours are represented by papillomas, which are defined by a papillary 

structure that is arising from the airways, and adenomas. Adenomas are usually 
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less than 5mm in diameter and retain the structure of nearby alveoli. They are further 

characterized by absence of vascular invasion and uniform nuclear morphology. 

Adenomas are further divided into solid, papillary or mixed depending on their 

structure. I refer to adenomas as tumours that consist of cells with regularly shaped 

nuclei and uniform organisation. I do not consider the size of the tumour, as from a 

tissue section it is not possible to determine the diameter of a 3-dimensional tumour. 

A small appearing tumour for instance could be a large tumour that was cut at its 

edge.  

Preinvasive lesions can be grouped into squamous dysplasia displaying epithelial 

cells with squamous metaplasia, diffuse pulmonary neuroendocrine cell 

hyperplasia, which refers to accumulation of neuroendocrine cells in the bronchiolar 

regions and atypical adenomatous hyperplasia (AAH). AAH are lesions in the alveoli 

and terminal bronchioles that involve cellular and nuclear atypia.  

Malignant tumours are more than 5mm in diameter and are characterized by 

invasion into airways and blood or lymphatic vessels. Moreover, cellular and nuclear 

atypia and a poor architecture are signs of malignancy. Malignant tumours can be 

grouped into squamous cell carcinomas, which are characterized by a broad 

keratinization, and adenocarcinomas.  

Adenocarcinomas show a great cytological atypia and an increased mitotic rate and 

can be grouped into solid, papillary or acinar depending on their structure. As 

mentioned above, I do not consider the size of the tumour to distinguish 

adenocarcinomas from adenomas. I focus on the loss of organisation and structure 

and the presence of enlarged, pleomorphic nuclei sometimes with prominent 

nucleoli, as adenocarcinoma characteristics.  

1.3.2 The need of mouse models to study lung tumour 
progression 

An early, benign tumour starts as a hyperplastic lesion, which is defined by the 

occurrence of hyperproliferative cells. Over time, the tumour may undergo changes 

in gene expression, which might be due to epigenetic changes and/or due to the 

acquisition of additional mutations (Hanahan and Weinberg, 2011). These changes 

are likely to occur in only part of the tumour - the tumour is said to be heterogeneous 

- and are the first step towards tumour progression, which is defined by the potential 
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to invade the surrounding stroma and to metastasize eventually. As soon as the 

tumour has acquired invading abilities, it is called malignant.  

In some cancer types such as colorectal cancer the process of tumour progression 

is very well understood (Kinzler and Vogelstein, 1996; Vogelstein et al., 1988). In 

colorectal cancer samples of different stage tumours, ranging from hyperplastic 

lesions to invasive carcinomas, are available, which makes it possible to study 

genetic alterations as the tumours progress. Lung cancer on the other hand is 

usually detected at an advanced stage. For this reason early stage material is very 

limited and extensive examination, including reasonable numbers, is only possible 

on advanced tumour material. 

Genetically engineered mouse models, which enable tumour initiation at a chosen 

time point, allow the study of early tumours and their progression over time. In a 

mutant KRas/Tp53null mouse model gene expression between the benign adenoma 

and more advance adenocarcinoma stage was compared (Feldser et al., 2010). 

Genes involved in proliferation, Ras pathway, Myc, inflammation and immune 

responses, as well as chemokine regulation were found to be upregulated in 

adenocarcinomas. The transition from adenoma to adenocarcinoma is defined by a 

change in cell morphology (Figure 1-4). Cell nuclei become enlarged and 

pleomorphic and in some cells nucleoli become visible. Also, the cell arrangement 

becomes highly irregular as the cells transit to the adenocarcinoma stage.  

 

Figure 1-4 Tumour progression. 
In benign tumour areas, cell nuclei are regularly shaped and arranged. Towards the transition to 
adenocarcinoma, nuclei become enlarged and pleomorphic and nucleoli become visible. The arrow 
points to a nucleolus. 
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The MAPK pathway, which is downstream of KRas is highly active in many cancers 

(Dhillon et al., 2007). Erk 1 and 2 (42 and 44 MAPK) are part of this pathway and 

Erk phosphorylation was only detected in adenocarcinomas, whereas adenomas 

were p-Erk negative in this model. In this thesis changes in cell morphology were 

used to distinguish between adenomas and adenocarcinomas and in the used 

R26DM.lsl-MYC/MYC;KRasG12D model this morphological change correlates with Erk 

phosphorylation, which was used as an progression marker. 

1.3.3 Mouse Models for NSCLC 

KRas mutant mouse models are widely used, either on its own or in combination 

with mutation or loss of tumour suppressor genes, such as Tp53 (Jackson et al., 

2005), Lkb1 (Ji et al., 2007), p16-Ink4a or Ink4a/ArfInk (Fisher et al., 2001), Rb, 

retinoblastoma-related protein 2 (p130) (Ho et al., 2009) and phosphatase and 

tensin homolog (Pten) (Iwanaga et al., 2008), which accelerates KRas driven 

tumourigenesis. Most KRas mutant models give rise to ADC; KRas in combination 

with Lkb1 is one exception, which leads to ADC but also SCC, mixed ADC/SCC 

histology and LCC (Ji et al., 2007). There are only few Mouse Models for SCC, 

another one uses combinatorial inactivation of Lkb1 and Pten, which leads only to 

SCC (Xu et al., 2014). 

Other mutated oncogenes that are used in NSCLC models are Egfr (Li et al., 2007), 

BRaf (Dankort et al., 2007), receptor tyrosine-protein kinase ErbB2 (Perera et al., 

2009), EML4-ALK fusion gene (Soda et al., 2008) and Pik3ca (PI3K p110-α subunit) 

(Engelman et al., 2008). Most of these genetic alterations give rise to 

adenocarcinoma spectrum, ErbB2 activation leads to adenosquamous tumours.  

1.3.3.1 Gene overexpression by tissue specific promoters 

Transgenic mouse models for human lung cancer improved over the years. Early 

mouse models used tissue specific promoters to overexpress genes that are 

amplified in human lung cancer. The surfactant protein C (Sp-C) promoter (Glasser 

et al., 1991) that is active in alveolar type II cells and the Clara Cell secretory protein 

(CC10) promoter (Stripp et al., 1992) that is active in Clara cells were commonly 

used and are still used today (Figure 1-5). As adenocarcinomas of the lung are Sp-

C positive, alveolar type II cells were seen as likely cells of origin (Linnoila et al., 

1992). However, as transgenes driven by both promoters can give rise to 
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bronchioalveolar hyperplasias that develop into adenocarcinomas, both cell types 

represented potential cells of origins (DeMayo et al., 1991; Wikenheiser et al., 

1992). Nowadays, dual positive bronchio-alveolar stem cells are considered as 

likely cells of origin for ADC (Giangreco et al., 2002; Kim et al., 2005). 

 

Figure 1-5 Mouse models using tissue specific promoters. 
The transgene is driven, and thereby overexpressed, by tissue specific promoters. In NSCLC 
models, CC10 and Sp-C are commonly used promoters. 

1.3.3.2 Classical Knock-out and knock-in models 

Knock-out or knock-in models are used to delete tumour suppressor genes or to 

bring in oncogenic versions of proto-oncogenes (Figure 1-6). In knock-out models 

intervening sequences interrupt the coding sequence. This cannot be done for gene 

knock-outs that are embryonic lethal, such as Rb (Jacks et al., 1992). Other tumour 

suppressor knock-outs that are not embryonic lethal, such as Tp53 can be used, 

but they are likely to give rise to tumours in multiple organs possibly even before 

they do so in the lung (Donehower et al., 1992).  

 

Figure 1-6 Classical knock-in and knock-out models. 
In the knock-in model, a proto-oncogene is replaced by a mutated version, within the endogenous 
locus. In the knock-out model, a tumour suppressor gene is deleted. 

In the knock-in version an oncogene is replaced by a mutated version. Advantage 

of this system over tissue specific promoters is that the mutated oncogene is driven 

by its endogenous gene locus at physiological levels. For instance, endogenous 

KRas is replaced by KRasG12D and gets activated by spontaneous somatic 
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recombination. This allele gives rise to ADCs, but leads also to tumour formation in 

other organs (Johnson et al., 2001). 

1.3.3.3 Conditional bitransgenic Mouse Models 

Conditional bitransgenic tetracycline-inducible mouse models allow the control of 

conditional alleles by addition and withdrawal of tetracycline derivates, such as 

Doxycyline (Furth et al., 1994). The reverse tetracycline-controlled transactivator 

(rtTA) is under the control of a chosen (in most cases a tissue specific) promoter. At 

the same time the transgene that is to be overexpressed is cloned into a 

tetracycline-responsive promoter element (TRE). The rtTA then binds together with 

Doxycycline to the TRE to induce transgene expression in the cells in which the 

promoter by which rtTA is driven is active (Figure 1-7). Advantage of this system is 

that expression of the transgene can be induced at any time point by doxycycline 

and that it is also possible to stop the transgene expression by withdrawal of 

doxycycline. This way not only tumour initiation can be studied, but also the effect 

of transgene removal on established tumours (Fisher et al., 2001). 

 

Figure 1-7 Bitransgenice conditional tetracycline inducible models. 
The transgene is under the control of a TRE promoter and rtTA is under the control of a tissue 
specific promoter. TRE requires rtTA and a tetracycline derivate (doxycycline) for transcriptional 
activity. Transgene expression can be controlled by addition or withdrawal of doxycycline (DOX). 

1.3.3.4 Conditional mouse models using the Cre/loxP system 

This system can be used to knock-out tumour suppressor genes or to induce 

conditional trangenes (Guerra et al., 2003; Jackson et al., 2005; Jackson et al., 

2001) (Figure 1-8). In the case of knock-out the targeted gene is flanked by locus of 

x-over P1 (loxP) sites (or alternatively by flippase recognition target (FRT) sites), 

which are recognised and recombined by Cre recombinase (or flippase (Flp) 

recombinase), which leads to deletion of the sequence that lies between the loxP  
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Figure 1-8 Conditional Cre inducible models. 
A) Cre can be either under the control of a tissue-specific promoter or can be delivered to the lung 
by nasal installation of Cre expressing adenovirus. B) In the conditional knock-in model, the 
inducible transgene is preceded by a loxP flanked Stop cassette, which prevents transcription. Cre 
recombinase mediates recombination of the loxP sites, which leads to excision of the Stop 
cassette. In the conditional knock-out model, the transgene is flanked by loxP sites. Cre 
recombinase again mediates recombination of the loxP sites, which in this case leads to excision of 
the transgene.  

(or FRT) sites (DuPage et al., 2009; Lee et al., 2012). In the case of knock-in, the 

conditional alleles are kept silent by a STOP cassette, which is flanked by loxP (or 

FRT) sites. Upon Cre (or Flp) recombination the STOP cassette gets excised and 

the allele can be transcribed. Cre (or Flp) can be either driven by a tissue specific 

promoter or, a method that is very commonly used to induce conditional alleles in 
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the lung, can be delivered to the lung by Cre (or Flp) expressing Adeno- or 

Lentivirus, via intranasal delivery (DuPage et al., 2009).  

Cre that is under the control of tissue specific promoters can be delivered this way 

as well (Sutherland et al., 2011). The loxp/Cre and FRT/Flp systems can be 

combined in order to allow induction of different alleles at different time points. 

This system allows induction of the alleles at a chosen time point, which makes the 

tumour phenotypes very reproducible. Another advantage of this system is that only 

the cells that are infected by the virus and recombine the alleles give rise to tumours, 

which are surrounded by nontransformed cells. This closely recapitulates the 

scenario of human lung tumour initiation where one mutated cell gives rise to a 

tumour. This approach also bypasses the problem of the cell of origin, as only cells 

that are naturally sensitive to the genetic alteration will give rise to tumours. 

Moreover, this system allows control over the number of tumours by varying the viral 

dose. Disadvantage of this system is that the infection rate relies on the breathing 

rate of the mouse, which leads to a high variation in terms of achieved tumour 

number and burden. Therefore, the qualitative characteristics of tumourigenesis are 

very reproducible in this system but the tumour quantity underlies fluctuations. 

1.3.4 Mouse Models for KRas mutant lung cancer 

1.3.4.1 KRas induction by spontaneous somatic recombination 

Mutations at codon 12 in KRas replace glycine with either aspartic acid (G12D) or 

valine (G12V). Both mutations, which lead to decreased GTPase activity of KRas 

and thereby make KRas constitutively active, are common in human lung cancer. 

KRasG12D and KRasG12V are both used in KRas mutant Mouse models for lung 

cancer (Guerra et al., 2003; Jackson et al., 2001). Two mouse models in which 

mutant KRas is expressed in the whole animal demonstrate that the lung is 

especially sensitive to KRas mutations compared to other tissues. The first one uses 

the latent KRasLA2 allele, which gets induced by spontaneous somatic 

recombination. The recombination activated mutant KRasG12D allele gives primarily 

rise to lung tumours (Jackson et al., 2001). At two weeks of age 100% of the mice 

present lung ADC, more than 50% thymic lymphoma and less than 20% papilloma 

tumours. This suggests that lung cells are prone to tumourigenesis upon KRas 

mutation and that other organs are less prone. However, it cannot be excluded that 
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recombination rate varies across different organs, which might contribute to an 

increased rate of tumourigenesis in the lung.  

Another mouse model using KRasG12V however confirms this phenotype (Guerra et 

al., 2003). In this model KRasG12V is kept silent by a loxP flanked STOP cassette, 

which has to be excised by Cre recombinase for allele induction. For this purpose, 

mice were crossed with either CMV-Cre+/T mice that express Cre under the 

constitutively active CMV promoter or with RERTn mice that express inducible Cre-

ERT2 under control of the locus encoding the large subunit of RNA polymerase II. 

All KRasG12V;CMV-Cre+/T mice develop breathing difficulties after seven to eight 

months of age. A subset of mice also develops sarcomas and papillomas. Similar 

phenotypes were obtained in KRasG12V;RERTn mice. The mice also express β-geo 

upon recombination of the conditional KRasG12V allele, which allows to follow 

recombined cells and to examine which ones give rise to tumour formation. 

Interestingly, many cells in the bronchio-alveolar lung epithelia were β-geo positive, 

but were morphologically normal. Also in other tissues in which tumours or 

hyperplastic growth was absent, β-geo positive cells were found. Other cell types 

possibly respond with senescence, cell cycle arrest or apoptosis to mutant KRas 

expression and give therefore not rise to tumours. This confirms that mutant KRas 

makes the lung susceptible to tumourigenesis and that other organs are less 

susceptible. 

1.3.4.2 Conditional Cre inducible mutant KRas  

In order to induce mutant KRas only in the lung the conditional Cre-inducible lsl-

KRasG12D or lsl-KRasG12V alleles are used. The alleles can be either induced by 

tissue specific Cre under the Sp-C or CC10 promoter or by intranasal delivery of 

Cre expressing Adeno- or Lentivirus (DuPage et al., 2009). KRasG12D that is 

recombined by Cre-ER under the Sp-C promoter gives rise to alveolar hyperplasia 

that progresses to adenoma and adenocarcinoma (Xu et al., 2012). Recombination 

of KRasG12D by Cre-ER under the CC10 promoter gave rise to hyperplasias in the 

bronchio-alveolar duct region that did not progress to adenoma or adenocarcinoma. 

lsl-KRasG12D induction by intranasal delivery of Cre expressing adenovirus gives rise 

to bronchiolar hyperplasia 2 weeks post induction. 6 weeks post induction 

hyperplasia can still be found, but hyperplastic regions are larger than after 2 weeks 
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and some lesions had progressed to papillary adenomas at this time point. 12 weeks 

post infection few regions of bronchiolar hyperplasia were still present among a 

large number of adenomas, in which a subset started to show signs of malignancy, 

such as nuclear hyperchromatism and increased proliferation. 16 weeks post 

infection larger adenomas and also adenocarcinomas were observed (Jackson et 

al., 2001).  

1.3.5 Myc overexpression in NSCLC models 

Mouse Models that are modelling Myc overexpression in the lung use either tissue 

specific SP-C or CC10 promoters, or a Cre inducible Myc allele under the 

ubiquitously active Rosa26 promoter (Murphy et al., 2008).  

Myc under the CC10 promoter gives rise to Clara Cell hyperplasia (Geick et al., 

2001). Several founder mice for SP-C/Myc were generated, some of them 

developed hyperplasias in the alveolar epithelium, others developed bronchiolo-

alveolar adenomas and adenocarcinomas (Ehrhardt et al., 2001). The reason for 

the difference in phenotypes could not be explained as they had comparable copy 

numbers of the transgene. The mouse model that uses the Cre inducible allele 

works after the similar principle as the Cre inducible KRas mutant mouse models 

with the difference that MYC-ER is driven by the ubiquitously active Rosa26 

promoter instead from its endogenous promoter and has to activated by 4-OHT. 

MYC activation in this model leads to proliferation of cells in the bronchioles after 3 

days and to hyperplasia after 6 weeks without giving rise to tumours in the lung 

(Murphy et al., 2008).  

In human lung ADC MYC is amplified or mutated in about 8% of cases and co-occur 

in 2-3% with KRAS mutations (Cancer Genome Atlas Research, 2014; Gao et al., 

2013). Moreover, 2-3% of KRAS mutant lung ADCs carry MGA inactivating 

mutations, which are mutually exclusive with MYC amplification. MGA is a MAX 

binding transcription factor and inhibits MYC’s transcriptional activity. 

In the mouse MYC overexpression driven by the Rosa26 promoter has been shown 

to accelerate KRasG12D driven tumourigenesis (Murphy et al., 2008). In a dox-

inducible system in which Myc was driven by either the Sp-C or CC10 promoter, 

Myc overexpression gave rise to adenomas and adenocarcinomas. However, all 
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tested tumours carried an activation KRas mutation, suggesting that Myc on its own 

is not able to drive tumourigenesis in the lung (Allen et al., 2011). Interestingly, when 

KRas mutagenesis was induced by the DNA-alkylating agent N-methyl-N-

nitrosourea (MNU) Myc overexpression interfered with KRas driven tumourigenesis, 

as dox-induced mice developed a lower number of tumours than uninduced mice. 

The tissue specific promoters Sp-C and CC10 are presumably stronger than the 

Rosa26 promoter. This suggests that low levels of Myc are able to cooperate with 

KRas initiated tumourigenesis, whereas higher Myc levels play an interfering role. 

This might be due to the fact that low levels of Myc drive proliferation and that higher 

Myc levels can engage the apoptotic machinery of the cell (Murphy et al., 2008).  

1.4 Thesis Aims 

Lung cancer is usually detected at an advanced stage, which is the reason why only 

little is known about disease progression. Aim of the thesis is to better understand 

the mechanism of lung ADC progression. For this purpose a mutant KRas driven 

mouse model was chosen. It was found that low levels of deregulated Myc 

expression are able to accelerate KRas driven tumourigenesis, which facilitates the 

study of tumour progression in a timely manner. 

Chapter 3 focuses on the outcome of low level deregulated Myc expression in the 

lung. The phenotypic characterization of Myc overexpression on its own, in 

combination with loss of functional Tp53 and in combination with KRasG12D is 

described in this chapter. 

In order to study gene expression changes from the adenoma to the 

adenocarcinoma stage, RNA was isolated from the respective tumour regions. This 

process required the establishment of a protocol that allows RNA isolation from very 

limited amounts of tissue material. The development of this process, which finally 

resulted in a gene list with candidate tumour progression genes, is described in 

chapter 4. 

Chapter 5 concentrates on the validation of these candidate target genes and also 

explores their potential as targets for therapeutic intervention. 
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2 Materials and Methods 

2.1 Animal work 

Transgenic mice were obtained from different laboratories (outlined in Table 2-1). 

The mice were kept on a 12h light cycle, and fed and watered ad libitum. The mouse 

procedures were performed according to protocol numbers 55.2-2531.01-30/11 

(University of Würzburg, Germany) and Home Office licence numbers 60/4183 and 

70/7950 (CRUK BICR, UK). 

Transgene and Source Tissue expression 

Lsl-KRasG12D (Jackson et al., 2001) Endogenous KRas is replaced by 
mutant KRasG12D, bearing a loxP 
flanked STOP cassette in the 5’UTR 

R26DM.lsl-MYC/MYC (Neidler et al. 
submitted) 

Human MYC is knocked into the 
Rosa26 locus, including an upstream 
loxP flanked STOP cassette  

R26RS.lsl-Myc/Myc (Wang et al., 2011) Murine Myc is knocked into the 
Rosa26 locus, including an upstream 
loxP flanked STOP cassette 

Tp53R172H (Jackson et al., 2005) Endogenous Tp53 is replaced by 
mutant Tp53R172H/R172H, including a 
loxP flanked STOP cassette 

Tp53Fl/Fl (Jonkers et al., 2001) Endogenous Tp53 is flanked by loxP 
sites 

Table 2-1 Transgenic mouse models used in this study. 

2.1.1 Colony maintenance 

Animals were bred to maintain the colony and to generate experimental mice. 

Matings were set up with one male and one or two females. At approximately 4 

weeks of age, pups were weaned and ear notched for genotyping. All mice were 

maintained in positively pressured individually ventilated cages (IVCs). In order to 

avoid contamination, cages were opened only in a laminar flow changing station. 

After genotyping, mice that were chosen for experiments were transferred to non-

barrier cages. The mice received an irradiated standard diet (CRM (E) expanded 

diet from Special Diet Services; Cat: 801730) and sterilized water ad libitum. 
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2.1.2 Genotyping 

At approximately weeks of age mice were ear notched and the piece of tissue was 

genotyped by Transnetyx (Cordova, TN, USA), using a combination of quantitative 

PCR and DNA hybridization to determine the presence of transgenic alleles.  

2.1.3 Experimental Cohorts 

2.1.3.1 Conditional Genetically-Engineered Mouse Models for human NSCLC 

All used alleles are conditional alleles that are induced by Cre recombinase. Cre 

recombinase recognizes LoxP sites, and excises region in between, which is 

flanked by these sites, leading to expression or deletion of the transgenes. The 

alleles were induced in the lung through intranasal delivery of Cre expressing 

Adenovirus, a method which has been described by DuPage et al. (DuPage et al., 

2009). The phenotype of Adeno-Cre induced KRasG12D in the lung has been first 

described by Jackson et al. (Jackson et al., 2001). 

By interbreeding the appropriate colonies, lsl-KRasG12D, R26DM.lsl-MYC/WT, R26DM.lsl-

MYC/MYC, R26DM.lsl-MYC/WT;KRasG12D, R26DM.lsl-MYC/MYC;KRasG12D, R26DM.lsl-MYC/WT 

;p53R172H/WT, R26DM.lsl-MYC/WT;Tp53R172H/R172H, R26DM.lsl-MYC/MYC;Tp53R172H/WT, 

R26DM.lsl-MYC/MYC;Tp53R172H/R172H, R26RS.lsl-Myc/WT, R26RS.lsl-Myc/Myc, R26RS.lsl-

Myc/WT;KRasG12D, R26RS.lsl-Myc/Myc;KRasG12D, R26RS.lsl-Myc/WT;Tp53R172H/WT, R26RS.lsl-

Myc/WT;Tp53R172H/R172H, R26RS.lsl-Myc/Myc;Tp53R172H/WT, R26RS.lsl-Myc/Myc;Tp53R172H/R172H, 

R26RS.lsl-Myc/WT;Tp53Fl/Fl, R26RS.lsl-Myc/Myc;Tp53Fl/WT and R26RS.lsl-Myc/Myc;Tp53Fl/Fl 

cohorts were generated. Tissues were sampled at defined time points unless the 

animal had to be culled for health issues, which was especially the case for 

Tp53R172H/R172H cohorts, as these animals are null for Tp53 and express mutant 

Tp53R172H only upon Cre recombination. 

For survival analysis, animals were taken at defined end points described below. 

 

2.1.3.2 End points 

Experimental animals were monitored at least 3 times weekly and culled when any 

of the following symptoms were observed: weight loss of > 10%, hunching, impaired 

breathing/panting, decreased mobility.  
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The mice were sacrificed by schedule 1 methods. Mice were euthanized by rising 

concentrations of CO2, followed by cervical dislocation. 

2.1.3.3 Allele induction 

For allele induction by nasal installation of Adenovirus, mice were anaesthetised 

using a mix of 5% Domitor/10% Ketamine in 0.9% NaCl, which was injected via 

intraperitoneal (IP) injection. The mice were weighed and received 200µl per 30g 

body weight. 

Adenoviral-Calcium-Phosphate precipitate 

EMEM (Invitrogen) was dissolved in H2O and titrated with NaOH to a pH of 7.86. 

Adeno-Cre was thawed and kept on ice until needed. The appropriate volume of 

virus (Table 2-2) was mixed with EMEM. CaCl2 was then added drop-wise and 

mixed by inverting the tube. The mix was incubated at room temperature for 40-50 

min to allow the precipitate to form. Mice received either 1*107 PFU or 5*107 PFU 

Adeno-Cre as indicated in the figure legends. 

Reagent Volume (µl) for 10 mice 

Adeno-Cre PFU per mouse *10 / virus titre  

EMEM 441 – virus volume 

0.2M CaCl2 9 

Total 450 

Table 2-2 Adenoviral calcium-phosphate mix. 

Once the mice were sleeping and breathing slowly and evenly, 45µl of the 

precipitate was pipetted slowly on the nasal septum of the mouse, which was then 

inhaled. The mice were then kept warm and monitored until they recovered, which 

usually took about 6 hours. 

2.1.4 Treatments 

Neratinib 

Neratinib (LC Laboratories, N-6404) was dissolved in 0.5% methocellulose-0.4% 

Tween-80 and given daily by oral gavage at a dose of 40mg/kg/day. 
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LGK974 

LGK974 (Novartis) was dissolved in 0.5% methocellulose-0.4% Tween-80 and 

given twice daily by oral gavage for a total dose of 10mg/kg/day. 

2.1.5 Tissue sample preparation 

Animals were sacrificed by schedule 1 method and dissected immediately. To 

prepare the mouse for post-mortem, the abdomen was sprayed with 70% EtOH. 

The abdominal cavity was first opened by cutting through the skin and then through 

the smooth muscle layer. A small incision into the diaphragm was made carefully 

without touching the lung, before opening the ribcage. In order to clean the organs 

from blood, a heart perfusion with PBS was performed. For this, an incision was 

made into the right atrium, to create an outlet. Then, the needle of a syringe 

containing 10ml PBS was inserted into the left ventricle and slowly emptied by 

applying constant pressure. After this the heart was removed. The skin above the 

thymus was then carefully removed until the underlying trachea became visible. An 

incision was made into the trachea and using a blunt needle, Zinc-buffered formalin 

(for FFPE samples) or OCT (1:1 diluted in 0.9% NaCl, for fresh frozen samples) was 

injected to inflate the lung. The lung was then removed and either fixed in Zinc-

buffered formalin at 4C overnight or embedded and frozen in OCT on dry ice and 

then stored at -80C. 

2.1.5.1 Tissue processing  

Formalin-fixed paraffin-embedded (FFPE) tissues 

After fixation, all tissues were dehydrated with increasing an alcohol gradient (30%, 

50%, 70%, 95%, 100%) for 30 min each. The tissues were then further processed 

by the BICR histology team, using an automated processor (Thermo scientific 

Excelsior ES). Tissues were then finally embedded in paraffin wax and left to cool 

down and harden. 

2.1.5.2 Sectioning of fixed tissues 

Paraffin embedded tissues were cut to 4µm sections using a microtome and were 

placed on poly-L-Lysine (PLL) coated slides, then baked at 65C over night. The 

sections were then dewaxed and dehydrated either for Haematoxylin and Eosin 
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(H&E) staining or immunohistochemistry (IHC) (see section 2.2.1). The sectioning 

and part of the IHCs were done by the BICR histology team.  

2.2 H&E staining 

2.2.1 Preparation of sections for IHC or H&E staining 

Paraffin embedded tissue sections were first de-waxed by incubation in xylene for 

3 x 5 min in a series of xylene containers. The sections were the rehydrated in 

decreasing gradients of EtOH (100%, 100%, 95%, 95%, 70%, 70%) for 2 min each 

and then left in deionised water (dH20). 

2.2.2 Hematoxylin and Eosin staining 

In order to visualize the cell morphology, tissue sections were stained with 

haematoxylin and eosin to stain the nuclei and cytoplasm of cells. Tissue sections 

were de-waxed and rehydrated as described in section 2.2.1 and were then stained 

by placing the sections in Gli1Haematoxylin (Sigma) for 3 min. This was followed by 

a wash in running tap water for 5 min and 20 dips in differentiation solution (Sigma). 

Sections were then washed again in running tap water for 30 sec and then dipped 

20 times in scotts tap water substitute (MgSo4+ sodium bicarbonate). Finally, slides 

were washed in running tap water for 30 sec and stained with an aqueous solution 

of 1% Eosin for 5 min, followed by 2 washes in tap water.  

2.2.2.1 Slide mounting 

The sections were then dehydrated through an increasing alcohol gradient (2x 70% 

ethanol, 2x 95% ethanol, 2 100% ethanol, 2 min each) and then placed in xylene for 

2x 5 min. Slides were then mounted in DPX mounting medium (VWR), coverslipped 

and left to air-dry over night in a fume hood. 

2.3 IHC 

2.3.1 Formalin fixed paraffin embedded tissue samples 

IHC was used to visualize the specific cellular proteins in the tissue. A general 

outline of the protocol is described in this section and individual protocols are listed 

in Table 2-3.  
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Primary 
antibody 

Antigen 
Retrieval 

Primary Antibody 
conditions 

Secondary 
Antibody 

Ki67 
Fisher scientific-
RM-9106 

Sodium citrate, 
microwave (10 
min) 

1:200, 1% BSA 

O/N at 4C or 2h 

at 37C 

Vectastain, 
ABC-kit-rabbit, 
biotinylated 
1:1000, 1h 

BrdU 
abD Serotec 
OBT0030C 

Sodium citrate, 
microwave (10 
min) 

1:250, 3% BSA 

O/N at 4C or 2h 

at 37C 

HRP-conjugated 
anti-rat GE 
Healthcare 
NA935, 1:250, 
1h 

CC10  
Millipore 07-623 

Not needed 1:2000, 3% NGS 

O/N at 4C or 2h 

at 37C 

Vectastain, 
ABC-kit-rabbit, 
biotinylated 
1:1000, 1h 

Sp-C 
Millipore AB3786 

Not needed 1:2000, 3% NGS 

O/N at 4C or 2h 

at 37C 

Vectastain, 
ABC-kit-rabbit, 
biotinylated 
1:1000, 1h 

p-Erk p-P44/42 
MAPK 
(Thr202/Tyr204) 
Cell signaling 
cs4370 

Sodium citrate, 
microwave (10 
min) 

1:500, 5% NGS 

O/N at 4C or 2h 

at 37C 

Vectastain, 
ABC-kit-rabbit, 
biotinylated 
1:1000, 1h 

Myc 
Abcam ab32072 

Sodium citrate, 
waterbath (40 
min) 

1:100, 5% NGS/1 

% BSA 72h at 4C 

Vectastain, 
ABC-kit-rabbit, 
biotinylated 
1:1000, 1h 

Sox9  
Millipore AB5535 

Sodium citrate, 
microwave (10 
min) 

1:500, 10% NGS 

O/N at 4C or 2h 

at 37C 

Signal boost 
rabbit (sigma), 
30min 

Table 2-3 IHC conditions. 

2.3.1.1 Preparation of Sections for IHC 

Formalin fixed, paraffin embedded tissues were sectioned onto PLL coated slides 

as described in section 2.1.5.2 and then further processed as described in section 

2.2.1. 

2.3.1.2 Blocking of Endogenous Peroxidase 

Bound antibodies were visualized by an enzymatic reaction of 3,3’-

diaminobenzidine (DAB), which is catalyzed by horseradish peroxidase (HRP). In 

order to quench the endogenous form of peroxidase, slides were incubated in 3% 

hydrogen peroxide (in dH20) for 15 min. This irreversibly blocks endogenous 

peroxidase, prevents false positive signals and reduces background detection. This 

was followed by a wash in dH20. 
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2.3.1.3 Antigen Retrieval 

Fixation leads to the formation of methylene bridges that crosslink proteins. These 

bridges mask the antigen and can prevent the antibody from binding. Therfore, 

formalin fixed, paraffin embedded tissues undergo antigen retrieval in order to 

unmask the antibody epitopes. This is often mediated by heat antigen retrieval. The 

tissue sections are boiled in an unmasking solution in a microwave for 10 min and 

then left to cool at room temperature for 30 min. 

2.3.1.4 Blocking of non-specific antibody binding 

Although antibodies have a high affinity for specific epitopes, antibodies may weakly 

bind to nonspecific proteins sites, causing background staining. In order to reduce 

the background staining, the samples were incubated in a solution that blocks 

unspecific binding sites. For this purpose, either BSA or normal goat serum were 

used. Tissue sections were first encircled using a hydrophobic barrier pen, PAP pen 

(Dako) and then incubated with blocking solution. The blocking solution was diluted 

in PBS in a concentration that blocks unspecific binding. The blocking solution was 

aspirated and the tissue sections were then incubated with primary antibody. 

2.3.1.5 Primary Antibody incubation 

Tissue sections were then incubated with a primary antibody at a concentration 

outlined in Table 2-3. Antibodies were incubated in a humidified chamber either 

overnight at 4C, or at 37C for 2 hours. After incubation the slides were washed 3x 

in PBS to remove unbound antibodies.  

2.3.1.6 Secondary Antibody incubation 

Tissue sections were then incubated in secondary antibody solution. Secondary 

antibodies recognize the primary antibody because they are raised against 

antibodies from the animal in which the primary antibody was raised. They thereby 

bind only primary antibodies that bind to the antigen of interest. The sections were 

incubated with secondary antibody for 1 h in a humidified chamber, and then 

washed 3x in PBS. The secondary antibody was either HRP conjugated, or 

biotinylated. Biotinylated antibodies require an additional signal amplification step, 

to link HRP to the secondary antibody. 
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2.3.1.7 Signal Amplification 

The amplification step involved the formation of a complex between the Biotin, which 

was bound to the secondary antibody and Avidin, which was bound to HRP 

(Vectastain Avidin-Biotin Complex (ABC) kit, Vector labs). The so called ABC 

reagent was prepared in 0.3M NaCl and incubated for 30 min at room temperature. 

The tissue sections were then incubated with ABC reagent for 30 min and washed 

3x in PBS.  

2.3.1.8 Visualization of the signal 

A chromogenic detection method was used to visualize the respective protein. This 

method requires the HRP enzyme, which converts its substrate, DAB (Invitrogen), 

into a brown coloured product. Tissue sections were incubated with DAB reagent 

until the signal had the desired strenght. Excess DAB was removed and quenched 

in dH2O water. 

2.3.1.9 Counterstaining and slide mounting 

To stain the nuclei, the slides were dipped 3x in hematoxylin and then washed in 

tap water until water became clear. This step was followed by 20 dips in 

differentiation solution. The slides were again rinsed in running tap water for 15 sec, 

which was followed by 20 dips in Scotts tap water substitute. After washing in 

running tap water for 2 min, slides were dehydrated in an EtOH series and mounted 

as described in section 2.2.2.1. 

2.3.2 TUNEL staining 

TUNEL staining was performed with the ApopTag peroxidase labelling kit (Millipore; 

S7100). The principle of the staining is based on DNA fragmentation, a hallmark 

event of apoptosis. Digoxigenin conjugated nucleotides were added to free 3’OH 

ends of single or double stranded DNA by an enzyme called terminal 

deoxynucleotidyl transferase (TdT). The digoxigenin containing, incorporated 

nucleotides were then detected by an HRP conjugated antibody against 

digoxigenin. Signal was detected with DAB as described in section 2.3.1.8. The 

protocol according to the manufacturer’s instructions was followed and an additional 

blocking step (1% BSA for 1h at room temperature) was incorporated prior to the 
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incubation with HRP conjugated anti-digoxigenin. The tissue sections were then 

counterstained as described in section 2.3.1.9.  

2.3.3 Fresh frozen tissue samples 

2.3.3.1 Sectioning of frozen tissue samples 

Cryo-sections were made using a Leica cryostat. 10 µm sections were sectioned on 

PLL coated slides. The slides were placed into fresh 50ml tubes and stored at -80C 

until needed.  

2.3.3.2 Fixation 

The slides were removed from -80C, air-dried for ~3 min and then fixed for 10 min 

in 1% formaldehyde in PBS. Slides were then washed 3x in PBS and fixed further 

for 10 min in ice-cold methanol on ice. Slides were again washed 3x in PBS. 

2.3.3.3 Blocking of endogenous peroxidase 

To block endogenous peroxidase slides were incubated for 20 min in 3% H2O2 in 

dH2O and then washed 3x in PBS. 

2.3.3.4 Cell membrane permeabilization  

Slides were incubated for 10 min in 1% Trition X-100 in PBS and then washed 3x in 

PBS. Then slides were incubated for 5 min in 1% SDS in PBS and again washed 

3x in PBS. 

2.3.3.5 Blocking of non-specific antibody binding 

The sections were blocked with 5% normal goat serum (NGS) for 1h at RT. 

2.3.3.6 Primary antibody incubation 

Sections were incubated with phospho-Erk1/Erk2 (T202/T204) antibody (Cell 

signaling, 4370), 1:500 in 5% NGS ON at 4C. The next morning slides were washed 

3x in PBS. 
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2.3.3.7 Secondary antibody incubation 

Sections were incubated with secondary HRP-conjugated signal boost anti rabbit 

(cell signaling) for 30 min at RT and then washed 3x in PBS. 

2.3.3.8 Visualization of the signal 

See section 2.3.1.8 for details. 

2.3.3.9 Slide mounting 

Slides were cover-slipped with fluorescence mounting media (Dako, S3023), 

containing Hoechst for nuclear staining. Slides were then dried for at least 2 nights 

at RT in the dark before microscopic inspection. 

2.3.4 CV staining 

The sections were removed from -80C and air-dried for ~10 min. The slides were 

then incubated in 70% and 50% EtOH for 2 min each to remove the OCT followed 

by incubation in 1% CV in 50% EtOH for 45 sec. Sections were then rinsed under 

running tab water until clear. The slides were then incubated in an increasing EtOH 

series (50%, 70%, 95%, 100%, 100%) for 2 min each, followed by 2 xyline 

incubations for 5 min each. Slides were mounted in DPX mounting medium, cover-

slipped and left to air-dry under the fume hood. 

2.4 PCR genotyping 

2.4.1 Genomic DNA isolation 

Genomic DNA was isolated from mouse tail tissue. The tissue sample was stored 

at 4C prior to extraction. The tissue was first incubated overnight at 55C in 500µl 

tail lysis buffer (10mM Tris [pH 8], 100mM NaCl, 10mM EDTA [pH 8], 10% SDS) 

containing 10µg/ml of Proteinase K (Sigma), to digest the tissue. Protein was 

precipitated by addition of 250µl 6M NaCl, the solution was mixed by inversion and 

incubated on ice for 10 min. Any insoluble debris was pelleted by centrifugation at 

2000 rpm for 10 min at 4C. The supernatant was removed and 500µl of isopropanol 

was added to precipitate the DNA. The tube was inverted to mix and incubated at 

RT for 15 min, then centrifuged at 14,000 rpm for 10 min. The supernatant was 
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discarded and the pellet was left to air dry. The DNA pellet was then resuspended 

in 50µl of PCR grade water.  

2.4.2 PCR  

The DNA was used to detect the transgenic allele by polymerase chain reaction 

(PCR). The PCR reaction contains 1x Phusion high fidelity GC buffer (Thermo 

scientific), Phusion DNA polymerase, 0.5M gene specific primers, 200µM dNTPs, 

and template DNA. The primers used are outlined in Table 2-4 and PCR conditions 

used are outlined in Table 2-5. 

Primer Sequence  

Rosa forward cccaaagtcgctctgagttg 

Rosa reverse ggagcgggagaaatggatatga 

Rosa modified reverse gcgaagagtttgtcctcaacc 

Table 2-4 Genotyping primers. 

2.4.3 Agarose Gel electrophoresis 

The PCR products were visualized using agarose-gel electrophoresis. 2% agarose 

gels were made by adding 2% (w/v) of agarose (sigma) in 1X Tris Acetate-EDTA 

buffer [TAE: 40mM Tris-acetate, 1mM EDTA (pH8.3)], and heated in a microwave 

until boiling and left to cool down at room temperature for a few min. 5µl of ethidium 

bromide (Sigma) was added per 100ml of agarose solution. The agarose solution 

was then poured into a mould (BioRad) and the combs were placed inside to create 

wells. After gels were solidified, they were placed into a TAE buffer containing gel 

electrophoresis tank. 

TemperatureC Duration 

1. 94C 30 sec 

2. 94C 30 sec 

3. 66C 20 sec 

4. 72C 80 sec 

go to step 2. 35x 

Table 2-5 Genotyping PCR cycle. 

PCR products were mixed with 4µl of 6x loading dye (NEB). The PCR samples were 

then loaded to the well (20µl) and a 100bp molecular weight DNA ladder (NEB) was 

loaded to one of the wells in order to be able to assess the size of the PCR product. 
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The gel was run at 120V until the ladder was well separated and the products were 

visualized with a GelDoc Transilluminator. 

2.5 Cell culture techniques 

2.5.1 Fibroblast Cell culture 

Primary mouse embryonic fibroblasts (MEFs) were isolated on day 13.5. Embryos 

were removed from the pregnant female and placed into a dish containing sterile 

PBS. The uterine wall was removed with sterile forceps and each embryo was 

placed in a separate 6 cm culture dish. “Red” tissue was removed with a spatula. 

The head was then removed and a part of the head tissue was genotyped by 

Transnetyx (USA). The rest of the embryo was homogenized with a scalpel, 

resuspended and collected in 1ml of PBS and transferred to a 15ml tube. 1ml of 1x 

trypsin was added and the homogenized embryo was incubated for 15 min at room 

temperature. The trypsin was then quenched with 8ml of complete medium the 

suspension was transferred to a 10cm tissue culture dish. After 24h, cells were 

washed and fresh medium was added. To avoid contamination, all steps were 

carried out in a sterile laminar air-flow hood and the forceps were rinsed in-between 

with 70% ethanol and dH2O. The cells were cultured in DMEM containing 10% FBS, 

1% glutamine, Penicillin (50,000units) and Streptomycin (50,000µg), and were 

grown at 37C at 5% carbon dioxide (CO2). The MEFs were cultured using the 

standard 3T3 protocol. They were passaged (see section 2.5.3) once in 3 days 

1.3x106 cells were seeded into a 10cm tissue culture dish. Primary MEFs were kept 

in culture for a maximum of 5 passages. 

2.5.2 Generation of primary lung cell lines 

Mice displaying signs of tumour burden were euthanized using a schedule 1 

method. The lung was washed in PBS, the lobes were separated and placed into 

separate 6 cm dishes. A scalpel was used to breakup the tumour containing tissue, 

which was then collected in full media supplemented with 10% FBS and cultured in 

12 well plates. Cells were maintained at 37°C in a 5% CO2 incubator. Medium was 

changed every 2 days. Once cells started to grow, which took several weeks up to 

months in some cases, cells were moved to larger plates and finally maintained in 

10 cm culture dishes in 10ml culture medium and passaged as required. 
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2.5.3 Passaging Cells in Culture 

Once the cells were confluent, they were split to prevent them from overgrowing. 

The medium was aspirated and the cells were washed with PBS. 1ml of 10% trypsin 

was added and incubated for 5-10 min in the incubator to break peptide crosslinking. 

Cells were then washed off the plastic surface by resuspension in cell culture 

medium and split into new dishes.  

2.5.4 Freezing down cell lines 

Cells were seeded into a 15 cm plate and grown until confluent. Medium was 

aspirated and the cells were washed using 5ml PBS. Cells were trypsinized using 

1.5ml of 10% trypsin and incubated for 5-10 at 37C. Cells were then suspended in 

6.5ml freezing media (90% FBS: 10% DMSO). 5 1.5ml aliquots were transferred to 

1.8 ml cryovials and placed in a freezing container (Mr.FrostyTM), which allows a 

cooling rate at -1C/min in a -80C freezer. The next day, cells were transferred to 

liquid nitrogen for long-term cold storage. 

2.5.5 Thawing cells 

Frozen cells were taken from liquid nitrogen and defrosted in a 37°C water bath. 

Cells were then gently resuspended in 10ml culture medium and plated into a 10 

cm culture dish. The cell culture medium was changed 24 h later.  

2.6 Incucyte 

2.6.1 Cell propagation analysis 

Cells were seeded in the evening into 96-well plates at ~30% confluency. 10mM 

LGK974 stock and 100µM Neratinib stock were diluted in DMSO so that further 

1:1000 dilution in cell culture media resulted in the desired final concentration. The 

next morning LGK974 and Neratinib stocks were diluted 1:1000 in cell culture media 

and 100µl was added to each well. Cell propagation over time was monitored using 

long term Incucyte (ESSEN BioScience) video microscopy. 
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2.6.2 Cell migration analysis 

Cells were seeded in the evening into 96-well plates at 100% confluency. The next 

morning a scratch was made using a woundmaker (ESSEN BioScience). The 

woundmaker is a device that makes a scratch through the cell layer, in every single 

well of a 96-well plate. The wells were washed once with PBS. LGK974 10mM stock 

and Neratinib 100µM stock were diluted 1:1000 in cell culture media and 100µl was 

added to each well. The plates were then transferred to a long term Incucyte video 

microscopy incubator. The Incucyte takes pictures of the scratch at a set interval 

and calculates the wound width relative to the initial wound width (relative wound 

density). 

2.6.3  Cell invasion analysis 

Cells were seeded as described in 2.6.2. The same evening, Matrigel (BD 

Biosciences, 225) was removed from -20°C and thawed over night on ice at 4°C. 

The next morning the scratch was made as in section 2.6.2 and layered with cold 

diluted Matrigel (1:1 in PBS). Plates were then incubated at 37°C for 1 h, treated 

and placed into the Incucyte as described in section 2.6.2. 

2.7 siRNA Screen 

The siRNA library, containing 4 individual siRNAs against 51 selected genes was 

purchased from Qiagen. In each 96-well, 5µl of 25nM siRNA was mixed with 15µl 

transfection reagent (diluted in serum-free media) and left on the shaker for 30 min. 

Transfection and cell seeding occurred at the same time and 80µl cell suspension 

was added to the transfection mix. The plates were placed in a for the screen 

designated incubator, at 37°C and 5% CO2. Transfection conditions and cell 

seeding numbers are summarized in Table 2-6. 

Cell line Assay Cells/well Transfection reagent Dilution 

A549 viability 3 500 Lipofectamine 2000 120 

A549 migration 15 000 Lipofectamine 2000 60 

H2009  viability 5 000 RNAi Max 120 

H2009 migration 22 000 Lipofectamine 2000 85.71 

H460 viability 5 000 RNAi Max 120 

Table 2-6 Transfection conditions. 
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2.7.1 Viability Assay 

For the viability assay, cells were seeded at a density that resulted in ~70% 

confluency after 72 h for cells that were transfected with a non-targeting control 

(NTC). After 72 h, cells were washed with PBS, fixed with 4% PFA for 20 min, again 

washed with PBS and then stained with DAPI. Pictures were taken and Nuclei 

counted with Operetta. Cell number relative to NTC was determined to calculate 

“loss of viability”. 

2.7.2 Migration Assay 

For the migration assay, cells were seeded at a density that resulted in 100% 

confluency after 48 h for cells that were transfected with NTC. After 48 h, a scratch 

was made, using a woundmaker. After the scratch was made, the plates were 

washed with media and transferred to a long term Incucyte video microscopy 

incubator. The Incucyte takes pictures of the scratch at a set interval and calculates 

the wound width relative to the initial wound width (relative wound density). 

2.8 Adeno-Cre infection of MEFs  

MEFs were seeded for Adeno-Cre infection (500 000/10 cm plate) and infected with 

Adeno-Cre the next morning. For infection, 3 ml of full media was mixed with 

polybrene (1:1000) and the virus at a multiplicity of infection (MOI) of 300 of added. 

The virus/polybrene mix was added to the cells and cells were incubated at 37°C 

and 5% CO2. 3 h later, another 7 ml of media was added to the plate. The next 

morning, cells were seeded for experiment. 

2.9 Analysis of Cell death with Annexin V/PI staining 

Annexin V/PI staining was used to measure apoptosis in vitro. The morning after 

Adeno-Cre infection, MEFs were seeded in 6-well plate (70,000 cells/well). 24 h 

later, the medium was changed to low serum medium (0.2% FBS). Cells were 

prepared for Annexin V/PI staining 30 h later. Cells were prepared for flow cytometry 

as follows; the culture medium of cells was collected in a 15ml centrifuge tube and 

kept on ice, then cells were trypsinized using 10% trypsin, 1% BSA was added to 

quench the trypsin and cells were collected in the same tube as the medium. Cells 

were centrifuged at 300g for 5 min. Supernatant was aspirated, 300µl of Annexin V 
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binding buffer (10mM HEPES [pH7.4], 140mM NaCl, 2.5mM CaCl2) and 2µl of 

Annexin V (conjugated with OG488 or APC, Biolegend) was added to the pellet and 

incubated in the dark for 15 min. Propidium iodide (1µg/ml) was added prior to the 

analysis. 

2.10 RNA isolation and quantitative Real Time PCR 

The morning after Adeno-Cre infection, MEFs were seeded at a concentration of 

1x105 cells per well in a 6-well plate. After 24 h, the cells were collected using 1ml 

of Trizol (Ambion) in a 1.5ml centrifuge tube and 200µL of chloroform (sigma) was 

added. Solutions were then mixed by gently inverting the tubes for 15 sec and 

incubated at room temperature for 2 to 3 min. The mixture was then centrifuged at 

14,000 g for 15 min at 4C. After centrifugation, the aqueous, upper phase was 

carefully removed and collected in a fresh autoclaved 1.5ml centrifuge tube. 500µl 

of isopropanol was added, mixed by inverting the tube and incubated on ice for 5-

10 min. Next the tubes were centrifuged at 14,000 g for 10 min at 4C. The 

supernatant was carefully removed and the pellet was washed twice with 1ml of 

70% Ethanol at 12,000 g for 10 min. The pellet was air dried until it was translucent 

and dissolved in an appropriate volume of sterile water (usually 30µl). Finally, the 

sample was heated at 56C for 10 min and stored at -80C until further use. 

2.10.1 cDNA synthesis 

RNA quantity was measured using Nanodrop (Thermo scientific). 1 µg of RNA was 

used to synthesize cDNA using QuantiTect Reverese transcriptase kit (Qiagen). In 

this method genomic DNA contamination was eliminated first by incubation with 

gDNA wipe out buffer at 42C for 2 min (Table 2-7). RNA was incubated with 

reverse-transcription reaction components (Table 2-8) and incubated at 42C for 15 

min followed by 95C for 3 min. The generated cDNA was later used for SYBR green 

based Real Time PCR analysis. The RT-Primer mix includes both oligo-dT and 

random primers that enable cDNA synthesis from all regions of RNA transcripts. 

Table 2-7 genomic DNA removal mix. 

gDNA wipeout buffer (7x) 2µl 
1µg template RNA variable 
RNase free water variable 

Total 14µl 
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Reverse Transcriptase 1µl 
RT buffer 4µl 

RT primer mix 1µl 
Genomic DNA elimination reaction 14µl 

Total 20µl 

Table 2-8 cDNA synthesis master mix. 

2.10.2 Primer design 

SYBR green quantitative Real Time PCR was employed. Intron spanning primers 

were designed using Universal Probe Library Assay Design Centre, a publically 

available website run by Roche. Primers are listed in Table 2-9. 

Gene Primer sequence 

B2M forward AGCCGAACATACTGAACTGCTACG 

B2M reverse CGGCCATACTGTCATGCTTAACTC 

Tp53 forward ATGCCCATGCTACAGAGGAG 

Tp53 reverse AGACTGGCCCTTCTTGGTCT 

Murine Myc forward CGCGTCCGAGTGCATTGA 

Murine Myc reverse AGCAGCGAGTCCGAGGAA 

Human MYC forward GCCCCTGGTGCTCCATGA 

Human MYC reverse CAACATCGATTTCTTCCTCATCTTCT 

Total Myc forward GAAAAGGCCCCCAAGGTAGT 

Total Myc reverse CAACTGTTCTCGTCGTTTCC 

Table 2-9 Real Time PCR primers. 

SYBR green Buffer (2x) 5µl  
Forward primer (20µM) 0.2µl 
Reverse primer (20µM) 0.2µl 

Water  4.6µl 
Total 9µl 

Table 2-10 Real Time PCR master mix. 

Temperature (C) Duration 

1. 95 5 min 

2. 95 30 sec 

3. 60 20 sec 

Go to step 2. 35 x 

4. 72 10 min 

5. 65 10 sec 

6. 95 30 sec 

Table 2-11 Real Time PCR cycle. 
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2.10.3 Real Time PCR 

SYBR Green mix from Quanta Biosciences (QUNT95072-012) was used. A master 

PCR mix was prepared and 9µl of this mix was added to 1µl cDNA (Table 2-10). 

The following PCR cycling protocol is outlined in Table 2-11. 

2.11 Protein extraction and Western Blot 

2.11.1 Protein extraction 

The morning after Adeno-Cre infection, cells for seeded for protein extraction at a 

density of 800,000 cells/10 cm plate. 24 h later the plate was removed from the 

incubator and placed on ice. The medium was aspirated and cells were washed 1X 

with PBS. Cells were then scraped in 600µL PBS and centrifuged for 5 min at 5,000 

rpm. Cytoplasmic and nuclear fractions were prepared by resuspending the pellet 

in Tris/Triton buffer (50mM Tris/HCl [pH 7.2], 1% [w/v] Triton X-100), followed by 

incubation on ice for 10 min. The samples were centrifuged for 10 min at full speed 

and the supernatant (cytoplasmic fraction) was transferred to a fresh tube. The 

nuclear pellet was resuspended in RIPA buffer (150mM NaCl, 50mM Tris [pH7.5], 

1% NP-40, 0.5% sodium deoxycholate, 0.1% SDS) plus complete protease inhibitor 

cocktail [Roche, 4693124001]. 

2.11.2 Preparation of Protein Samples 

Protein samples were stored at -80C, and then thawed on ice. 5X Laemmli Buffer 

(300mM Tris [pH 6.8], 50% Glycerol, 10% SDS, 4% -Mercaptoethanol, 0.5% 

Bromophenol blue) was added to the samples to denature the proteins and then 

heated at 95C for 5 min. 

2.11.3 SDS-PAGE 

Proteins were separated by SDS-PAGE. Polyacrylamide gels were prepared with 

the mini-protean (Biorad) gel apparatus. First, the separating gel was poured and 

allowed to solidify (Table 2-12). A layer of isopropanol prevented the desiccation of 

the gel and ensured that the gel surface was flat. The isopropanol was then removed 

and 4% stacking gel was poured on top of the separating gel. The gel comb (10 

well) was inserted to allow the formation of wells. Once the stacking gel was 
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solidified, the entire gel was transferred into a 1xSDS-PAGE running buffer 

containing gel tank (Table 2-13). The comb was then carefully removed and 5μl of 

protein molecular weight marker (GE healthcare Life sciences) was added to one of 

the wells. The protein samples were loaded to the remaining wells. Each gel was 

run at 100V until an appropriate separation was achieved. 

Components Separating gel (10%) Stacking gel (4%) 

Acrylamide 5.1ml 650µl 

1M Tris pH 8.9 5.6ml - 

1M Tris pH 6.8 - 600µl 

H2O 4.2ml 3.6ml 

SDS (10%) 150µl 150µl 

APS (20%) 75µl 25µl 

TEMED 15µl 5µl 

Table 2-12 SDS gel composition. 
SDS: Sodium dodecyl sulphate, APS: Ammonium persulfate, TEMED: Tetramethylethylenediamine 

10%  SDS 
250mM Tris 
1.92M  Glycine 

Table 2-13 1X SDS running buffer. 

2.11.4 Western Blot 

Following protein separation by SDS-PAGE, a Hoefer transfer module (TE22) was 

used to transfer the proteins from the gel to a nitrocellulose membrane (Protran) 

following the manufacturer’s instructions. The gel, the membrane and the sponges 

were placed inside the cassettes and then placed into a Mini-transfer tank and 

locked in place. 1x transfer buffer was then filled into the tank (Table 2-14). The 

transfer was performed at 230mA for 2h at 4C. To determine if the transfer was 

successful, the membrane was incubated briefly in Ponceau S solution (0.1% 

Ponceau S in 5% acetic acid), washed in TBS-T and incubated in 5% milk (Marvel 

milk powder) in TBS-T (Table 2-15) for 1h to block the membrane. The membrane 

was then incubated overnight in primary antibody in 5% milk (and 0.1% sodium 

azide) at 4°C (Table 2-16).  

0.1%  SDS 
25mM Tris 

0.192M  Glycine 
20%  Methanol 

Table 2-14 1X SDS transfer buffer. 
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200mM Tris 
1.37M Sodium Chloride 

1% Tween20 

Table 2-15 10X Tris buffered saline withTween20 (TBST). 
pH was adjusted to 7.5 

Primary 
antibody 

Primary antibody 
conditions 

Secondary 
antibody 

Secondary antibody 
conditions 

Myc 
Abcam 
ab32072 

1:2000, 5% BSA  Anti-rabbit 
IRDYe 
800CW, Licor 
926-32213 

1:10,000, 5% milk 

H2B Abcam 
ab1790 

1:1000, 5% BSA Anti-rabbit 
IRDYe 
800CW, Licor 
926-32213 

1:10,000, 5% milk 

Table 2-16 Antibody conditions for Western Blot. 

The following day the membrane was washed 3x 5 min in TBS-T, and then 

incubated with fluorescent secondary antibody (LI-COR) in 5% milk solution for 1h 

at room temperature. The membrane was then washed again 3x in TBST and 

fluorescent signal was detected with Odissey imager from LI-COR. 

2.12 RNA-sequencing 

2.12.1 Standard protocol 

The standard protocol was used for RNA that had been isolated from cell cultured 

cells. The TruSeq kit from Illumina (RS-930-20 01) was used. 

2.12.1.1 Principle of the protocol 

mRNA is isolated with the help of oligo(dt) magnetic beads. cDNA is then 

synthesized with random primers. Individual adaptors are then ligated to the cDNA 

fragments and the libraries are amplified by PCR. 

2.12.1.2 mRNA isolation and purification 

4 µg of total RNA were adjusted to 50µl volume with H2O. The samples were mixed 

with 50µl magnetic oligo (dt) beads and placed into a thermocycler to allow poly(A)-

RNA to bind to the beads. The program outlined in Table 2-17 was started. The 

beads were then washed twice with 200µl wash buffer. 50µl buffer was added to the 

beads and the samples were placed into a thermocycler. The program outlined in 
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Table 2-18 was started. 50µl RNA binding buffer was added to each sample and 

mixed. The beads were then washed twice with 200µl wash buffer and once with 

200µl elution buffer. In order to elute the RNA from the beads, 15µl of elution master 

mix was added to each sample (Table 2-19) and placed into a thermocycler. The 

program outlined in Table 2-20 was started. 

2.12.1.3 First strand synthesis 

The supernatant was transferred to a fresh tube and mixed with 10µl first strand 

synthesis master mix (Table 2-21). The tubes were placed into a thermocycler and 

the program outlined in Table 2-22 was started. 

Temperature (C) Duration 

65 5 min 

4 1 min 

25 5 min 

Table 2-17 Poly (A)-RNA binding. 

Temperature (C) Duration 

80 2 min 

25 3 min 

Table 2-18 further poly (A)-RNA binding. 

6µl First strand buffer 
1.5µl Random primers 
7.5µl H2O 
15µl Total 

Table 2-19 Elution master mix. 

Temperature (C) Duration 

95 15 min 

25 3 min 

Table 2-20 Poly (A)-RNA elution and fragmentation. 

0.5µl RNase inhibitor 
1µl Reverse transcriptase 

8.5µl H2O 
10µl Total 

Table 2-21 First strand cDNA synthesis master mix. 

2.12.1.4 Second strand synthesis 

60µl second strand master mix (Table 2-23) was added to each sample, mixed and 

placed into a thermocycler. The program outlined in Table 2-24 was started.  
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Temperature (C) Duration 

25 10 min 

42 50 min 

70 15 min 

4 hold 

Table 2-22 First strand cDNA synthesis program. 

2.12.1.5 cDNA purification 

The cDNA was purified with Qiaquick PCR purification kit (QIAGEN). 400µl PB 

buffer was added to each sample, transferred to the column and centrifuged for 1 

min at full speed. The column was washed with 750µl PE buffer and centrifuged for 

1 min at full speed. The cDNA was eluted by adding 63µl of resuspension buffer 

and centrifugation for 1 min at full speed. 

48µl H2O 
8µl Second strand buffer 
4µl Second strand enzyme 
60 Total 

Table 2-23 Second strand cDNA synthesis master mix. 

Temperature (C) Duration 

16 150 min 

25 3 min 

Table 2-24 Second strand cDNA synthesis program. 

2.12.1.6 End repair 

40µl of end repair buffer was added to each sample and incubated at 30C for 30 

min. Samples were purified with QIAGEN MinElute Reaction Cleanup kit. 300µl 

ERC buffer was mixed with the sample, transferred to a MinElute spin column and 

centrifuged for 1 min at maximum speed. 750µl PE buffer was added and 

centrifuged for 1 min at maximum speed. The cDNA was eluted in 18.5µl TE buffer 

by centrifugation for 1 min at maximum speed. 

2.12.1.7 Adenylation of 3’Ends and adapter ligation 

12.5µl of A-tailing buffer was added to each sample, mixed and incubated at 37C 

for 30 min. 2.5µl of individual adaptors were added to each sample and mixed. 5µl 

ligation mix (Table 2-25) was then added to each sample, mixed and incubated at 

30C for 10 min. 5µl Stop buffer was added to each sample. Samples were purified 

with Qiaquick PCR purification kit as described in section 2.12.1.5. The samples 
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were eluted in 52µl resuspension buffer. The samples were then further purified with 

magnetic beads. 50µl magnetic beads were added to the sample and incubated for 

10 min at room temperature. The tubes were transferred to a magnetic plate and 

the beads were washed twice with 200µl 70% EtOH. The samples were eluted in 

33µl resuspension buffer. 

2.5µl  DNA ligase 
2.5µl Buffer 

5µl Total 

Table 2-25 Ligation master mix. 

2.12.1.8 PCR amplification 

30µl PCR master mix (Table 2-26) was added to each sample and placed into a 

thermocycler. The program outlined in Table 2-27 was started. 

5µl PCR primers 
25µl PCR buffer 
30µl Total 

Table 2-26 PCR amplification master mix. 

Temperature (C) Duration 

1. 98 30 sec 

2. 98 10 sec 

3. 60 30 sec 

4. 72 30 sec 

Go to step 2. 12 x 

5. 72 5 min 

6. 4 hold 

Table 2-27 PCR amplification program. 

2.12.1.9 Library purification and quantification 

The samples were purified with magnetic beads. 50µl magnetic beads were added 

to the sample and incubated for 10 min at room temperature. The tubes were 

transferred to a magnetic plate and the beads were washed twice with 200µl 70% 

EtOH. The samples were eluted in 33µl resuspension buffer. Libraries were 

quantified using Quant-iT Pico green kit from Invitrogen. The pico green reagent is 

a fluorescent nucleic acid stain that binds double stranded DNA. The pico green 

excitation wavelength is 480 nm and its emission wavelength 520 nm. In order to 

measure DNA concentration a standard curve was prepared and the concentration 

of each sample was calculated based on standard. The protocol for the standard 
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curve is outlined in Table 2-28. After determination of the sample concentration in 

ng/µl, the average fragment length had to be determined for each sample in order 

to calculate the nM concentration. The fragment length was determined using the 

Agilent bioanalyzer with a DNA High Sens chip. The average length was estimated 

from the electropherogram and was ~300 bp. Libraries were mixed with a final 

concentration of 10nM for each library. 

2.12.2 Amplification protocol 

The amplification protocol was used for RNA that was isolated from laser captured 

frozen sections. 

TE (µl) 50 ng/ml DNA stock 
(µl) 

Diluted (1:200) Pico 
Green reagent 

Final DNA 
concentration 

0 1,000 1,000 25 ng/ml 

900 100 1,000 2.5 ng/ml 

990 10 1,000 250 pg/ml 

999 1 1,000 25 pg/ml 

1,000 0 1,000 blank 

Table 2-28 Pico green standard curve concentrations for cDNA quantification. 

2.12.2.1 Tissue sample preparation 

Mouse dissection was performed as described in section 2.1.5. 

2.12.2.2 Preparation of sections 

Cryo-sections were made using a Leica cryostat. The cryostat was cleaned with 

RNase Zap and the UV light was switched on for 15 min. A new blade was used. 10 

µm sections were sectioned on framed membrane slides. The slides were placed 

into fresh 50ml tubes and stored at -80C until needed. Adjacent sections were 

sectioned on PLL coated slides and stained for p-Erk as described in section 2.3.3. 

2.12.2.3 Selection of p-Erk positive and p-Erk negative regions for LCM 

Overview pictures were taken of p-Erk stained sections and p-Erk positive and 

negative regions were marked on the printouts. The p-Erk stained sections thus 

served as a template for the adjacent CV stained sections that were used for LCM. 
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2.12.2.4 Cresyl Violet staining 

Before LCM, the framed membrane slides were stained with CV. The staining was 

started immediately after taking the slides out of -80C, only 1 slide was stained at 

a time. The overall time for CV staining and LCM did not exceed 20 min. 

Fresh EtOH solutions using Ethanol p.a. and DEPC water were mixed in fresh 50ml 

tubes. RNase Inhibitor 500x concentrate (Sigma R7397) was added to the EtOH 

solutions following Cresyl Violet (RNase inhibitor interferes with the staining) and 

EtOH solutions were kept on ice. 1% Cresyl Violet was diluted in 50% EtOH, filtered 

through a 0.45µm filter and was also kept on ice. The sections were first placed into 

70% and 50% EtOH for 30 sec each to remove the OCT. Incubation in 1% CV was 

done for 45 sec, followed by a few dips into 2 H2O containing tubes to wash the 

slides. Then the slides were incubated in an increasing EtOH series (50%, 70%, 

95%, 100%, 100%) for 30 sec each. 

2.12.2.5 Microdissection  

Before LCM with a Leica DM 6000B Laser Microdissection Microscope the 

accessible parts of the microscope and the surrounding area were cleaned with 

RNase Zap. The Laser control settings are outlined in Table 2-29. 20µl RLT lysis 

buffer (part of the RNeasy micro kit) was placed into the lid of a 200µl PCR tube. 

LCM was done immediately after the CV staining.  

Laser characteristic Setting  

Power 50 

Aperture 56 

Speed 1 

Specimen balance 0 

Table 2-29 Laser settings for LCM. 

After LCM another 30µl RLT buffer (+ 1% β-mercaptoethanol) was added, and the 

sample was pulled 3-4 times through a 26 G needle. The sample was immediately 

frozen on dry ice and then stored at -80C until RNA was isolated. In total for each 

sample at least 1mm2 area was captured. Usually samples from several slides had 

to be pooled for RNA isolation.  
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2.12.2.6 RNA isolation 

Samples were thawed at 37C for 2 min. Samples were pooled for RNA isolation 

and the volume was adjusted to 350µl with RLT buffer. 350µl of 70% EtOH was 

added to the sample and transferred to an RNeasy MinElute spin column and 

centrifuged at 8,000 g for 15 sec to bind RNA. 350 µl RW1 buffer was added and 

the column was centrifuged at 8,000 g for 15 sec. 10µl DNase stock solution + 70µl 

RDD buffer was added to the column and incubated for 15 min at RT. Another 350µl 

RW1 buffer was added and centrifuged at 8,000 g for 15 sec. The column was then 

first washed with 500 µl RPE buffer by centrifugation at 8,000 g for 15 sec and then 

with 500µl 80% EtOH by centrifugation at 8,000 g for 2 min. RNA was eluted in 14µl 

H2O by centrifugation at full speed for 1 min. 

2.12.2.7 Measurement of RNA integrity  

The RNA integrity and quantity was analysed with an Agilent Bioanalyzer, using an 

RNA pico chip. The Bioanalyser is a machine that runs a small agarose gel on a 

chip and determines the RNA integrity number (RIN) by measuring the ratio between 

18S rRNA, 28S rRNA and the rest. 10 is the highest possible RIN for intact RNA.  

2.12.2.8 Principle of cDNA synthesis 

The Ovation RNA-Seq System V2 kit from Nugen (7102) was used for cDNA 

synthesis and amplification. For first strand synthesis, oligo (dt) primers and also 

random primers are used. Therefore, intact RNA is needed for this protocol. First 

strand primers that consist of an RNA and DNA part bind to the RNA and the 3’DNA 

ends of each primer are extended. The mRNA within the cDNA/mRNA hybrid 

molecule is then fragmented. The fragments create binding sites for second strand 

synthesis. For amplification, the RNA portion of the DNA/RNA chimeric primers is 

digested with RNase H. This creates a binding site for a SPIA DNA/RNA chimeric 

primer. DNA polymerase extends the 3’end of the primer and thereby displaces the 

already existing forward strand. The RNA portion of the SPIA primer is also removed 

by RNase H, which creates a new binding site for the next SPIA primer. This cycle 

of RNA removal by RNase H, SPIA primer binding and strand displacement leads 

to very rapid cDNA amplification (Figure 2-1).  
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2.12.2.9 First strand cDNA synthesis 

At least 3 ng RNA were used at input. 5µl RNA were mixed with 2µl first strand 

primers and incubated for 5 min at 65C to allow the primers to anneal. 3µl of first 

strand master mix (Table 2-30) was then added to the sample, mixed and placed in 

a thermocycler. The program outlined in Table 2-31 was started. 

 

Figure 2-1 SPIA cDNA synthesis and amplification. 
First strand synthesis primers either bind the 5’ poly(A) portion of the RNA or bind randomly across 
the transcript. For amplification, the RNA portion of the DNA/RNA chimeric primers is digested with 
RNase H, which creates a binding site for another DNA/RNA chimeric primer. 
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2.5µl First strand buffer 
0.5µl First strand enzyme 

3µl Total 

Table 2-30 First strand cDNA synthesis master mix. 

Temperature (C) Duration 

4 1 min 

25 10 min 

42 10 min 

70 15 min 

4 hold 

Table 2-31 First strand cDNA synthesis program. 

2.12.2.10 Second strand cDNA synthesis 

10µl of second strand master mix (Table 2-32) was added to the sample, mixed and 

placed in a thermocycler. The program outlined in Table 2-33 was started. 

9.7µl Second strand buffer 
0.3µl Second strand enzyme 
10µl Total 

Table 2-32 Second strand cDNA synthesis master mix. 

Temperature (C) Duration 

4 1 min 

25 10 min 

50 30 min 

80 20 min 

4 hold 

Table 2-33 Second strand cDNA synthesis program. 

2.12.2.11 cDNA purification 

Before the cDNA can be amplified, it has to be purified with the help of magnetic 

beads. 32µl of bead suspension was added to each sample, mixed and incubated 

at room temperature for 10 min. The tubes were transferred to a magnetic plate, the 

supernatant was removed and the samples were washed 3 times with 70% EtOH. 

2.12.2.12 SPIA amplification 

40µl master mix (Table 2-34) was added to the dried beads and mixed by 

resuspension. Samples were than placed into a thermocycler and the program 

outlined in Table 2-35 was started. 
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20µl SPIA buffer 
10µl SPIA primers 
10µl SPIA enzyme 
40µl Total 

Table 2-34 SPIA amplification master mix. 

Temperature (C) Duration 

4 1 min 

47 60 min 

80 20 min 

4 hold 

Table 2-35 SPIA amplification program. 

2.12.2.13 cDNA purification 

Final cDNA purification was done with the QIAGEN MinElute Reaction Cleanup kit 

as described in section 2.12.1.6. The cDNA was eluted in 22µl TE buffer by 

centrifugation for 1 min at maximum speed. 

cDNA was quantified by Nanodrop. The yield was ~200ng/µl. 

2.12.2.14 Shearing of cDNA 

cDNA had to be sheared to a size ~200bp. This was done with a sonicator (Covaris). 

9µl cDNA were mixed with 41µl TE buffer. The sonication settings are outlined in 

Table 2-36. The fragment size was determined with the Agilent bioanalyzer using a 

DNA 1000 chip. The fragment size was ~200bp.  

Characteristic Setting 

Power (W) 175 

Duty factor 10 % 

Cycles per boost 200 

Treatment time 120 sec 

Table 2-36 Sonication settings. 

The cDNA was concentrated using the MinElute Reaction Cleanup kit as described 

in section 2.12.1.6. The samples were eluted in 10µl TE buffer. 

2.12.2.15 End repair 

For library preparation, the Ovation rapid DR multiplex system from Nugen (0320-

32) was used. 7µl master mix (Table 2-37) was added to 8µl sample, mixed and 

placed into a thermocycler. The program outlined in Table 2-38 was started. 
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3.0µl End repair buffer 
2.5µl H2O 
0.5µl End repair enzyme 
1.0µl End repair enhancer 

7µl  Total 

Table 2-37 End repair master mix. 

Temperature (C) Duration 

25 30 min 

70 10 min 

4 hold 

Table 2-38 End repair program. 

2.12.2.16 Adaptor ligation 

3µl of the appropriate adaptor was added to each sample. Then, 12µl of ligation 

master mix (Table 2-39) was added to each sample, mixed and placed into a 

thermocycler. The program outlined in Table 2-40 was started. 

4.5µl  H2O 
6.0µl Ligation buffer 
1.5µl Ligation enzyme 
12µl Total 

Table 2-39 Ligation master mix. 

Temperature (C) Duration 

25 10 min 

65 10 min 

4 hold 

Table 2-40 Ligation program. 

2.12.2.17 Final repair 

20µl final repair master mix (Table 2-41) was added to each sample, mixed and 

placed into a thermocycler. The program outlined in Table 2-42 was started. 

19µl Final repair buffer 
1µl Final repair enzyme 

20µl Total 

Table 2-41 Final repair master mix. 

Temperature (C) Duration 

72 2 min 

25 hold 

Table 2-42 Final repair program. 
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2.12.2.18 Library purification 

50µl magnetic bead suspension was added to each sample, mixed and incubated 

at room temperature for 10 min. The tubes were transferred to a magnetic plate and 

washed twice with 200µl 70% EtOH. The libraries were eluted in 11µl TE buffer. 

2.12.2.19 Library quantification 

In order to verify that only cDNA fragments with ligated adaptors are measured, the 

library was quantified by Real Time PCR, using a library quantification kit (KAPA 

Biosystems, KK4824). The Real Time primers can bind all adaptors and only cDNA 

fragments with ligated adaptors become amplified. 3 dilutions for each library and 

for 6 standards with known concentration (Table 2-43) were prepared. 4µl sample 

dilution was added to 16µl master mix (Table 2-44). All samples and dilutions were 

measured in triplicates. The PCR program is outlined in Table 2-45. The most 

concentrated library dilution that fell into the dynamic range of the DNA standards 

was used to calculate the library concentration. The Real Time products were run 

on a 2% agarose gel and the average fragment size was estimated. The DNA 

standards have a fragment size of 452bp and in order to take the library fragment 

size into account, the concentration in pM was calculated with the following formula: 

𝑐 = 𝑑𝑖𝑙𝑢𝑡𝑖𝑜𝑛 𝑥 
452

𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡 𝑙𝑒𝑛𝑔𝑡ℎ
𝑥 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 𝑏𝑦 𝑞𝑃𝐶𝑅 

 

Standard Concentration (pM) 

1 20 

2 2 

3 0.2 

4 0.02 

5 0.002 

6 0.0002 

Table 2-43 Standards for Real Time quantification. 

12µl KAPA SYBR master mix 
4µl H2O 

16µl Total 

Table 2-44 Library quantification master mix. 
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2.12.3 Protocol for degraded RNA samples 

This protocol was used for RNA that had been isolated from laser captured FFPE 

sections. 

Temperature (C) Duration 

1. 95 5 min 

2. 95 30 sec 

3. 60 45 sec 

Go to step 2. 35 x 

4. 72 10 min 

5. 65 10 sec 

6. 95 30 sec 

Table 2-45 Library quantification Real Time PCR program. 

2.12.3.1 Mouse dissection 

The mouse dissection protocol described in section 2.1.5 was followed and the 

tissue was fixed and processed as described in section 2.1.5.1. 

2.12.3.2 Preparation of sections 

The microtome was carefully cleaned with RNase Zap, and DEPC treated water 

was filled into the waterbath tank. A fresh blade was used.10 µm sections were 

sectioned on framed membrane slides, adjacent sections were sectioned on normal 

PLL coated slides. After sectioning the slides were left to dry at 65C for a few hours. 

The framed membrane slides were stored in the fridge in cardbord boxes until 

needed, up to few days. In the meantime, the adjacent sections were stained for p-

Erk (section 2.3).  

2.12.3.3 Selection of p-Erk positive and p-Erk negative regions for LCM 

See section 2.12.2.3 for details. 

2.12.3.4 Cresyl Violet staining 

Before LCM, the framed membrane slides were stained with CV. The sections were 

taken out of the fridge ~30 min before starting and left to air-dry at room temperature. 

I only stained 1 slide at a time and overall time for CV staining and LCM did not 

exceed 20 min. 
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Figure 2-2 SMARTer cDNA synthesis and library preparation. 
Random primers are used for first strand cDNA synthesis. Second strand synthesis is performed 
with universal primers, followed by adapter ligation and PCR amplification. 

The staining containers and slide holders were cleaned with Rnase Zap. Fresh 

Xyline was used and fresh EtOH solutions using Ethanol p.a. and DEPC water were 

mixed in fresh 50ml tubes. RNase Inhibitor 500x concentrate (Sigma R7397) was 

added to the EtOH solutions following Cresyl Violet (RNase inhibitor interferes with 

the staining) and EtOH solutions were kept on ice. 1% Cresyl Violet was diluted in 

50% EtOH, filtered through a 0.45µm filter and was also kept on ice. The sections 

were then first deparaffinised in xylene, using 3 separate containers and sections 

were incubated for 30 sec in each one. This was followed by incubations in 

decreasing EtOH solutions (100%, 100%, 95%, 95%, 70%, 70%), for 30 sec each. 

Incubation in 1% CV was done for 30 sec, followed by a few dips into 2 H2O 

containing tubes to wash the slides. Then the slides were incubated in an increasing 

EtOH series (50%, 70%, 95%, 100%) for 30 sec each.  

5’ 3’

random primer

5’ 3’

xxxxxoligo nucleotide stretch

First strand cDNA synthesis

Second strand cDNA synthesis and adaptor ligation

xxxxx

5’ 3’

5’3’

universal forward primer

reverse indexing primer

5’ 3’

5’ 3’

5’3’

RNA

DNA
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2.12.3.5 Microdissection  

LCM was performed as described in section 2.12.2.5 with the modification that PKD 

buffer was used instead of RLT buffer. 

RNA isolation 

RNA was isolated with Qiagen RNeasy FFPE Kit. Samples were removed from -

80C, thawed and pooled. The volume was adjusted to 150µl with PKD buffer. If 

pooling resulted in a larger volume, all other volumes were adjusted accordingly. 

10µl proteinase K was added, mixed and then incubated at 56C for 15min, followed 

by 80C for 15min. The sample was then incubated on ice for 3 min and centrifuged 

for 15min at 20 000 g. The supernatant was transferred to a fresh 1.5ml Eppendorf 

tube, 16µl DNase booster buffer and 10µl DNase I stock solution was added and 

incubated for 15min at RT. 320µl RBC buffer and 720µl 100% EtOH was added, 

mixed and transferred to a RNeasy MinElute spin column. For RNA binding to the 

column, the samples were centrifuged at 8 000 g for 15 sec. The columns were then 

washed by adding 500µl RPE buffer and centrifuging for 2 min at 8 000g. The 

samples were eluted in 18µl H2O by centrifuging for 1 min at full speed. The samples 

were either stored at -80C or RNA integrity was measured immediately. 

2.12.3.6 Measurement of RNA integrity 

See section 2.12.2.7 for details. 

2.12.3.7 Principle of cDNA synthesis 

This protocol allows cDNA synthesis from degraded RNA. In contrast to most cDNA 

synthesis protocols that use Oligo (dT) primers for first strand synthesis, the 

SMARTER Stranded RNA-seq kit from Takara/Clontech (634836) uses random 

primers instead. For this reason the RNA has to be depleted from rRNA before 

cDNA synthesis. This is done with the help of magnetic beads that bind rRNA.  

For first strand synthesis, random primers bind to the RNA and are extended by 

reverse transriptase. When the reverse transcriptase reaches the 5’end of the 

mRNA, an additional oligo nucleotide stretch is attached to the 3’end. This oligo 

nucleotide stretch is complementary to a universal forward primer and serves as a 

template. The forward primer can then be used for the second strand synthesis. If 
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high quality, undegraded was used, the cDNA has to be sheared to a size of ~200bp. 

As RNA from FFPE samples is highly degraded, the synthesized cDNA is relatively 

short and hence does not need to be sheared. During library preparation, Ilumina 

indexing primer sets are used and attached to both ends of the cDNA, involving a 

Real Time quantification step (Figure 2-2). 

2.12.3.8 Ribosomal RNA depletion 

The SMARTER Stranded RNA-Seq kit recommends at least 100pg ribosomal RNA-

depleted RNA input, I used at least 80ng total RNA. Ribosomal RNA was depleted 

using the Ribo-Zero magnetic kit from Epicentre (MRZH116), followed by cleanup 

with NecleoSpin RNA XS kit from Machery-Nagel (740902.10). Magnetic beads had 

to washed with H2O, using a magnetic plate. The beads were then resuspended in 

magnetic bead resuspension solution and for each reaction, 35µl of the washed 

magnetic beads was aliqoted to a fresh 1.5ml eppendorf tube. 0.5µl RNase inhibitor 

was added to each reaction. 

2µl Ribo-Zero reaction buffer and 1µl Ribo-Zero rRNA removal solution was added 

to 17µl RNA and incubated first at 68C for 10 min and then at RT for 5 min. The 

RNA sample was then added to the magnetic beads and mixed and first incubated 

at RT for 5 min and then at 50C for 5 min. The incubations allow binding of rRNA 

to the magnetic beads. The samples are then placed into a magnetic plate and the 

supernatant, containing rRNA-depleted RNA is transferred to a fresh 1.5ml 

eppendorf tube.  

In order to clean up the sample, 50µl H2O and 100µl lysis buffer premix (25µl lysis 

buffer + 75µl 100% EtOH) were added, mixed and transferred to a NucleoSpin RNA 

XS column. The RNA was bound to the column by centrifuging first for 30 sec at 

2,000 g and then for 30 sec at 11,000 g. The column was washed by adding 400µl 

wash buffer and centrifugation for 30 sec at 11,000 g, which was repeated with 200µl 

wash buffer and centrifugation for 2 min at 11,000 g. RNA was eluted in 11µl H2O 

by centrifugation for 30 sec at 11,000 g. 

2.12.3.9 First strand synthesis 

8µl rRNA depleted RNA were mixed with 1µl SMART N6 primer. The samples were 

then incubated at 72C for 3 min and placed on ice afterwards. For first strand 
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synthesis a master mix was prepared (Table 2-46). 11µl master mix was added to 

each sample and the samples were incubated at 42C for 90 min. The reaction was 

terminated by increasing the temperature to 70C for 10 min and then cooled down 

to 4C. 

4µl 5x first strand buffer 
0.5µl DTT 
0.5µl RNase inhibitor 

2µl dNTP mix 
2µl Stranded oligo 

  2µl  reverse transcriptase       . 
11µl Total volume per reaction 

Table 2-46 First strand master mix. 

2.12.3.10 First strand purification 

The first strand cDNA reaction was purified using SPRI magnetic beads. cDNA 

binds to the beads and can then be washed with the help of a magnetic plate. 20µl 

SPRI magnetic beads were added to each sample and incubate for 8 min at RT to 

allow the cDNA to bind to the beads. The tubes were then placed into a magnetic 

plate and the supernatant was removed. While still on the magnetic plate, the beads 

were washed twice with 200µl 70% EtOH and left to dry for 3-5 min.  

25µl  2x SeqAmp PCR buffer 
1µl Universal forward PCR primer 
1µl Indexed reverse PCR primer 
1µl DNA polymerase 

22µl H2O                                           . 
50µl Total volume per reaction 

Table 2-47 PCR amplification master mix. 

Temperature (C) Duration 

1. 94 1 min 

2. 98 15 sec 

3. 55 15 sec 

4. 68 30 sec 

Go to step 2. 16x 

5. 4 hold 

Table 2-48 PCR amplification program. 

2.12.3.11 Second strand synthesis and PCR amplification 

The beads were resuspended in 50µl PCR master mix (Table 2-47) and placed in a 

PCR cycler with the cycling program outlined in Table 2-48. During PCR, the second 
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strand is synthesized (universal forward primer) and the double stranded cDNA is 

amplified. The reverse primer contains an individually indexed sequence that is 

needed for sample identification after sequencing. After the PCR another 50µl of 

SPRI AMPure magnetic beads was added to each sample. The beads were allowed 

to bind to the cDNA libraries, placed into the magnetic plate and washed twice with 

200µl 70% EtOH. The beads were left to dry for 3-5 min and resupended in 20µl 

elution buffer. 

2.12.3.12 Library quantification 

Libraries were quantified using Quant-iT Pico green kit from Invitrogen as outlined 

in section 2.12.1.9. 

2.12.3.13 Determination of library length 

After determination of the sample concentration in ng/µl, the average fragment 

length had to be determined for each sample in order to calculate the nM 

concentration. The fragment length was determined using the Agilent bioanalyzer 

with a DNA 1000 chip. The average length was estimated from the 

electropherogram and was ~300 bp. Libraries were mixed with a final concentration 

of 10nM for each library. 

2.12.4 Preparation of libraries for cluster generation and 
sequencing 

10nM libraries were denatured with 0.1N NaOH (1:1 dilution). Denatured libraries 

were diluted by addition of 980µl HT1 buffer, for a final library concentration of 10pM. 

Clustered were generated and libraries were sequenced with a paired-end run on 

the Illumina GA11x sequencer. 

2.12.5 Sequencing data analysis 

The raw RNA-Sequencing data files underwent quality checks using FastQC 

software. RNA-Sequencing reads were aligned to the GRCm38 version of the 

mouse genome using Tophat2. Expression levels were determined and statistically 

analysed by a combination of HTSeq and the R 3.0.2 environment, utilizing 

packages from the Bioconductor data analysis suite and differential gene 
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expression analysis based on the negative binomial distribution using the EdgeR 

package. 

2.13 Data analysis 

2.13.1 Graphical presentation of the data 

Raw data obtained from quantitative Real Time PCR, FACS, and Incucyte assays 

were copied into Excel (Microsoft) spreadsheets. All means, standard deviation, 

standard error of mean were calculated using the calculator function. Graphical 

representation of all data was also produced in Excel (Microsoft) 

2.13.2 Survival analysis 

Survival data were analysed using SPSS software. Kaplan-Meier plots were used 

to present the data, and significance was measured using Log-Rank test. 
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3 The role of moderately deregulated MYC in lung 
tumour initiation and its potential cooperation 
with oncogenic KRasG12D or loss of functional 
p53  

3.1 Introduction 

Myc’s tumour promoting potential has been shown is multiple mouse models 

(Morton and Sansom, 2013). Myc-driven tumour formation however usually requires 

additional genetic modifications such as coexpression of antiapoptotic proteins 

(Jager et al., 1997; Strasser et al., 1990).  

Low levels of Myc drive proliferation, whereas high levels of Myc are able to engage 

the apoptotic machinery and therefore high levels of Myc are unlikely to be a tumour 

initiating event in epithelial cell derived cancer (Jager et al., 1997; Muthalagu et al., 

2014; Pelengaris et al., 2002). It is more likely that Myc levels are initially only slightly 

elevated, e.g as the result of deregulation of upstream pathways such as the PI3K- 

and MAPK-pathway (Sears et al., 2000). By accumulation of Myc upregulating 

events over time, Myc levels rise gradually and as the tumour further progresses 

and acquires mutations that abrogate tumour suppressive mechanisms, high Myc 

levels can exert their full oncogenic potential.  

In most mouse models however, Myc is expressed at high levels through the use of 

strong tissue specific promoters, such as MMTV promoter in mammary tissue 

(Stewart et al., 1984) and SP-C or CC10 promoters in the lung (Ehrhardt et al., 2001; 

Geick et al., 2001). In the lung it has been shown that strong Myc expression can 

even interfere with KRas induced tumourigenesis (Allen et al., 2011). In this study, 

the DNA-alkylating agent N-methyl-N-nitrosourea (MNU) was used to induce KRas 

mutations. MNU treatment led to KRas mutant lung tumours and simultaneous 

induction of Myc driven by the Sp-C promoter reduced tumour number compared to 

uninduced mice. 

The consequences of low levels of deregulated MYC expression in the lung has 

been well described in a mouse model in which MYC was driven by the Rosa 

promoter (Murphy et al., 2008). A 4-hydoroxytamoxifen (4-OHT)-dependent MYC 

protein that was fused to Estrogen Receptor (MYC-ERT2) was used. In this model, 
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short term MYC activation by 4-OHT led to acute ectopic proliferation in the 

bronchiolar epithelium, which was detected by BrdU incorporation after 3 days of 

MYC induction. 6 weeks of MYC induction gave rise to mild epithelial hyperplasia, 

however MYC was not able to give rise to frank tumours within this time frame. The 

study also showed that low, deregulated MYC expression is able to accelerate 

KRasG12D driven tumourigenesis in the lung. Combination of KRasG12D with Rosa-

MYC-ER increased the size of the lesions and also led to sporadic progression to 

adenocarcinoma, which was not observed in KRasG12D mice within this time frame. 

 

Figure 3-1 Schematic of mouse models. 
All alleles are Cre inducible alleles and iduced by intranasal inhalation of Cre expressing 
Adenovirus. Murine Myc (R26RS.lsl-Myc) or human MYC (R26DM.lsl-MYC) are both knocked into the 
Rosa26 locus. KRasG12D: Endogenous KRas is replaced by KRasG12D. Tp53R172H: Endogenous 
Tp53 is replaced by mutant Tp53R172H. Tp53Fl: The floxed endogenous Tp53 allele is flanked by 
loxP sites. 

One disadvantage of this model is that daily tamoxifen administration cannot be 

tolerated by the mouse for more than 6 weeks, making long-term studies impossible. 
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To overcome this problem, we decided to use a Myc model, in which human 

influenza hemagglutinin (HA)-tagged murine c-Myc is knocked into the Rosa26 

locus, preceded by a floxed transcription Stop sequence (R26RS.lsl-Myc) (Wang et al., 

2011). Additionally, we generated our own version of this allele, using human c-

MYC (without HA-tag) instead of murine c-Myc (R26DM.lsl-MYC). This chapter focuses 

on the characterization of these 2 mouse models, exploring the tumour initiating 

potential of low level deregulated MYC expression in the lung and the potential 

cooperation with oncogenic KRasG12D and loss or mutation of p53. The MYC models 

were crossed with a well described KRasG12D model (Jackson et al., 2001) or with 

floxed Tp53 (Jonkers et al., 2001), or conditional mutant Tp53lsl-R172H (Jackson et 

al., 2005). All used alleles are conditional alleles that are induced in the lung by 

intranasal delivery of recombinant Adenovirus expressing Cre recombinase.  

As R26DM.lsl-MYC proved more potent in collaborating with KRasG12D than R26RS.lsl-Myc, 

we eventually focused on the former, which is why the R26DM.lsl-MYC model is 

described in more detail. 

3.2 Results 

3.2.1 MYC driven by the Rosa26 locus 

To confirm the presence of the transgenic MYC allele, genomic DNA was extracted 

from tails from R26DM.lsl-MYC mice and genotyping PCR was carried out. Figure 3-2 

A shows the correct size for the R26 wild type locus (600bp) and R26 locus 

containing the MYC transgene (300bp).  

In order to determine Myc transcript levels in R26DM.lsl-MYC and R26RS.lsl-Myc mouse 

embryonic fibroblasts (MEFs), Real Time polymerase chain reaction (PCR) was 

performed after infection with Cre expressing Adenovirus, using primers that 

specifically detect mouse Myc, human MYC or both. Figure 3-2 B shows Myc mRNA 

levels in R26RS.lsl-Myc (left) and R26DM.lsl-MYC (right) MEFs. R26RS.lsl-Myc MEFs do not 

contain human MYC, hence it could not be detected. R26RS.lsl-Myc MEFs that contain 

the transgene have higher murine Myc and total Myc levels than wild-type MEFs in 

a dose dependent manner, R26RS.lsl-Myc/Myc murine and total Myc transcript levels are 

approximately 2 times higher than in wild-MEFs. R26DM.lsl-MYC MEFs express human 

MYC and total MYC levels are comparable to those in R26RS.lsl-Myc MEFs. In R26DM.lsl-
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MYC/MYC MEFs, endogenous, murine Myc levels go down to less than 50% compared 

to wild-type MEFs after Cre mediated activation of the  

 

Figure 3-2 Characterization of Rosa-lsl-Myc MEFs. 
A) Genotyping of R26DM.lsl-MYC/WT and R26DM.lsl-MYC/MYC mice for the Rosa26 locus. WT band = 
600bp, MYC band =300bp. B) Quantitative real time PCR on mRNA from R26WT/WT, R26RS.lsl-Myc/WT 
and R26RS.lsl-Myc/Myc (left) and R26WT/WT, R26DM.lsl-MYC/WT and R26DM.lsl-MYC/MYC (right) MEFs after 
Adeno-Cre infection with primers specific for murine Myc, human MYC and primers that recognize 
both transcripts. Numbers represent % expression of Beta 2 microglobulin mRNA. Myc transgene 
levels increase in heterozygous and homozygous transgenic animals in a dose-dependent manner. 
Mean ± SEM from biological triplicates is shown. Asterisk indicates statistical significance (p< 
0.05), ANOVA, followed by post Hoc Tukey test. C) c-Myc immunoblot from R26DM.lsl-MYC MEFs 
after AdCre infection. Myc levels increase in a dose-dependent manner. Numbers indicate the fold 
change of total MYC expression.  

transgenic MYC allele. This is likely due to negative autoregulation of Myc that has 

been described before (Cleveland et al., 1988; Penn et al., 1990). R26DM.lsl-MYC/MYC 

MEFs also have about 2.5 times higher MYC protein levels than WT MEFs, which 

was detected with Y69 antibody that recognises murine and human MYC (Figure 

3-2 C). It has been reported that Myc overexpressing cells are sensitized to undergo 

apoptosis under low serum conditions (Evan et al., 1992; Murphy et al., 2008). To 

verify this I carried out AnnexinV/PI FACS analysis. R26DM.lsl-MYC MEFs were 

infected with Cre or LacZ expressing Adenovirus and apoptosis was measured after  
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Figure 3-3 Rosa-lsl-Myc MEFs undergo MYC induced apoptosis. 
A) Measurement of MYC induced apoptosis in MEFs by AnnexinV/PI FACS: Early passage (< 4) 
R26DM.lsl-MYC MEFs were infected with AdCre or AdLacZ and cultured for 30h under low (0.2%) 
serum conditions. B) The lower grey/black bar shows the percentage of cells stained positive 
AnnexinV, the upper orange/red bar shows cells positive for both, AnnexinV and PI (Propidium 
Iodide). AdCre infected R26DM.lsl-MYC/WT and R26DM.lsl-MYC/MYC MEFS undergo MYC induced 
apoptosis. Mean ± SEM from biological triplicates is shown. Asterisks indicate statistical 
significance (p<0.01), student’s t-Test. 
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Figure 3-4 Activation of Rosa-lsl-Myc in the lung. 
Lungs from R26WT/WT, R26DM.lsl-MYC/WT and R26DM.lsl-MYC/MYC mice (A) 4 days and (B) 6 weeks after 
AdCre infection (5*107 PFU). BrdU was injected the day before harvest and again 2h before 
harvest. 4 days post allele induction, clusters of BrdU positive cells could be detected in R26DM.lsl-

MYC/MYC mice. 6 weeks post allele induction hyperplastic lesions that stain positive for Ki67 could be 
detected in the bronchiolar epithelium. Pictures are representative for at least 4 mice for each 
genotype and time point. Scale bars: A: 20 µm, B 1,5,9: 300 µm, rest: 20µm 

culturing the cells for 30h under low (0.2%) serum conditions. As shown in Figure 

3-3 , Cre infection resulted in a modest but statistically significant amount of 

apoptosis in R26DM.lsl-MYC MEFs compared to wild-type cells. Also, apoptosis 

induced by MYC is dose dependent, as R26DM.lsl-MYC/MYC MEFs exerted higher levels 

of apoptosis than R26DM.lsl-MYC/WT MEFs (Figure 3-2 D).  

A R26WT/WT R26DM.lsl-MYC/WT R26DM.lsl-MYC/lsl-MYC

H&E

BrdU

4 days

post

Ad-Cre

41 7

B R26WT/WT R26DM.lsl-MYC/WT R26DM.lsl-MYC/lsl-MYC

H&E

H&E

Ki67

5 91

2 6 10

3

6 wks

post

Ad-Cre

7 11

2 5 8
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3.2.2 Moderate levels of deregulated MYC do not give rise to 
tumours 

It is known that acute MYC expression drives proliferation in the lung (Murphy et al., 

2008). However, previously a 4-OHT inducible version of MYC was used (MYC-ER) 

and I could confirm this phenotype without the use of 4-OHT (Figure 3-4 A). In 

R26DM.lsl-MYC/MYC mice, clusters of Bromodeoxyuridine (BrdU) positive cells in the 

bronchioles were reliably detectable 4 days post allele induction, whereas these 

clusters could not be detected in heterozygous R26DM.lsl-MYC/WT mice or wild-type 

mice.  

 

Figure 3-5 Myc induced hyperplasia. 
High magnification bronchioles from R26DM.lsl-MYC/MYC mice 6 weeks after AdCre infection (5*107 
PFU) to illustrate epithelial hyperplasia. EH: epithelial hyperplasia, n: normal bronchiolar 
epithelium. The arrow is pointing to a mitotic figure. Scale bars: 1: 50µm, 2: 10µm, 3,4: 20µm. 

Even 6 weeks post induction tumours could not be detected (Figure 3-4 B), which 

again confirms the observation of the 4-OHT inducible MYC-ER model (Murphy et 

al., 2008). MYC is however able to drive local proliferation, which can be seen in the 

small hyperplastic lesions, that stain positive for Ki67. In the higher magnification 
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(Figure 3-5) examples of epithelial hyperplasia (EH) next to normal bronchiolar 

epithelium can be seen. Epithelial cells in the bronchioles usually form a single row 

of columnar cells, however as they become hyperplastic, multiple layers can 

accumulate. The cells also undergo a morphological change, the nuclei are 

displaced and stain differently for haematoxylin. In Figure 3-5 panel 2, the arrow 

indicates a mitotic figure, an event that is usually not seen in untransformed 

bronchioles, confirming that deregulated MYC expression drives proliferation. 

Even though MYC is able to drive proliferation in the bronchioles, it does not give 

rise to tumours, even after a long time. Lungs from R26DM.lsl-MYC/MYC mice were 

examined 4 months post induction and did not show any sign of tumour formation 

(Table 3-1). This shows that Myc on its own is not sufficient to initiate tumourigenesis 

in the lung. 

 
3 

days 
6 

weeks 
4 

months 

    
R26DM-lsl-Myc/WT 7 4 7 

R26DM-lsl-Myc/lsl-Myc 12 4 4 

R26DM-lsl-Myc/WT 

Tp53R172H/WT nd 11 nd 

R26DM-lsl-Myc/WT 

Tp53R172H/R172H 
1 1 nd 

R26DM-lsl-Myc/lsl-Myc 

Tp53R172H/WT 
nd 8 6 

R26DM-lsl-Myc/lsl-Myc 

Tp53R172H/R172H 
6 2 nd 

Table 3-1 Numbers and genotypes of mice expressing human c-MYC from the Rosa26 locus 
harvested at the indicated times post allele induction. 
nd: not done 

3.2.3 Absence of functional p53 does not increase MYC’s tumour 
initiating potential 

As Myc on its own was unable to drive tumourigenesis, I reasoned that p53 might 

restrain tumour development in our model. Loss of p53 is known to accelerate 

MYC’s oncogenic potential in lymphomas (Schmitt et al., 1999). We therefore 

crossed the structural mutant Tp53R172H or floxed Tp53 allele into R26RS.lsl-Myc mice 

and mutant Tp53R172H into R26DM.lsl-MYC mice (see table 1&2 for all allele 

combinations and harvest timepoints) to see if deregulated MYC is able to drive 

tumourigenesis in the absence of functional p53. 
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R26DM.lsl-MYC/MYC;Tp53R172H/WT mice had not developed any tumours 4 months post 

induction and R26RS.lsl-Myc/Myc;Tp53FL/WT and R26RS.lsl-Myc/Myc;Tp53FL/FL did not have 

tumours 12 and 6 months post induction, respectively. It should be noted that 

Tp53R172H/R172H mice are constitutively null for p53 before allele induction and 

therefore develop lymphomas, limiting the duration of the experiment. 

 
3 

days 
6 

weeks 
9 

weeks 
3 

months 
6 

months 
12 

months 

       
R26RS-lsl-Myc/WT 2 4 nd nd nd nd 

R26RS-lsl-Myc/lsl-Myc 1 2 nd nd nd nd 

R26RS-lsl-Myc/WT 

Tp53R172H/WT nd 2 nd nd nd nd 

R26RS-lsl-Myc/WT 

Tp53R172H/R172H 
nd 4 nd nd nd nd 

R26RS-lsl-Myc/lsl-Myc 

Tp53R172H/WT 
nd 8 nd nd nd nd 

R26RS-lsl-Myc/lsl-Myc 

Tp53R172H/R172H 
nd 2 nd nd nd nd 

R26RS-lsl-Myc/WT 

Tp53Fl/Fl 
nd 2 nd nd nd nd 

R26RS-lsl-Myc/lsl-Myc 
Tp53Fl/WT 

nd nd nd nd nd 3 

R26RS-lsl-Myc/lsl-Myc 

Tp53Fl/Fl 
nd 13 7 8 6 nd 

Table 3-2 Numbers and genotypes of mice expressing murine c-Myc from the Rosa26 locus 
harvested at the indicated times post allele induction. 
nd: not done 

In order to control for transgene expression, bronchioles from R26DM.lsl-

MYC/MYC;Tp53R172H/R172H mice were laser captured 4 days after allele induction 

(uninduced mice served as control), RNA was isolated and Real Time PCR for p53 

and MYC mRNA was carried out. P53 and human MYC transcripts could be 

detected after induction, confirming that both alleles are expressed upon exposure 

to Cre (Figure 3-6).  

Looking at the effects of acute MYC expression 4 days post allele induction, MYC 

drives proliferation in the bronchioles in the presence or absence of mutant 

P53R172H, as detected by BrdU staining (Figure 3-7 A), and p53 had no effect on the 

number of BrdU positive bronchioles or on the number of BrdU positive cells within 

a bronchiole (Figure 3-7 B). MYC expression did not lead to apoptosis, neither in 

the presence (R26DM.lsl-MYC/MYC) nor absence of functional p53 (R26DM.lsl-MYC/MYC 

;Tp53R172H/R172H). In R26DM.lsl-MYC/MYC lungs, MYC is not detectable by 
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immunohistochemistry (IHC), using Y69 antibody, that recognizes murine and 

human MYC. KRasG12D on its own, or in combination with MYC (R26DM.lsl-

MYC/MYC;KRasG12D) drives proliferation in the bronchioles. In R26DM.lsl-

MYC/MYC;KRasG12D mice MYC is detectable in the bronchiolar regions where clusters 

of BrdU positive cells are found (Figure 3-7 A). Loss of functional p53 however, 

(R26DM.lsl-MYC/MYC ;P53R172H/R172H) did not improve MYC detection by IHC. This 

suggest that KRasG12D, but not mutant p53 is able to stabilize MYC protein (Sears 

et al., 2000).  

 

Figure 3-6 Myc and p53 transcript detection in the bronchioles. 
Quantitative real Time PCR on mRNA from R26DM.lsl-MYC/MYC;Tp53R172H/R172H bronchioles with (n=3) 
and without (n=2) AdCre infection (5*107 PFU). Tp53 and hMyc transcripts could only be detected 
in AdCre infected animals. Mean ± SEM is shown.  

The fact that there was no apoptosis detected in R26DM.lsl-MYC/MYC lungs and that 

simultaneous mutant p53R172H expression did not increase the proliferation rate in 

the bronchioles, suggests that Myc levels were not high enough to induce p53. Our 

data suggest that Myc is not a driver oncogene in the lung and has a lower 

oncogenic potential than KRas. Low levels of Myc may not be strong enough to 

engage p53 expression and hence presence or absence of p53 does not make any 

difference.  

3.2.4 Low levels of deregulated MYC accelerate KRasG12D driven 
tumourigenesis 

It has been shown before that MYC-ER is able to accelerate KRasG12D driven 

tumourigenesis (Murphy et al., 2008). In this model, MYC-ER had to be activated 

daily by 4-OHT administration, which might have influenced tumourigenesis. 
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Therefore, we decided to explore the long term effect of MYC and Ras combination 

in the lung without 4-OHT influence and we examined lungs from heterozygous and  

 

Figure 3-7 Absence of Absence of functional p53 has no influence on the outcome of acute 
Myc activation. 
A) H&E, BrdU, Myc and TUNEL staining of R26DM.lsl-MYC/MYC;p53WT/WT (n=10), R26DM.lsl-

MYC/MYC;p53R172H/R172H (n=4), R26DM.lsl-MYC/MYC;KRasG12D (n=4) and KRasG12D (n=3) bronchioles 4 
days after AdCre infection (5*107 PFU). In R26DM.lsl-MYC/MYC bronchioles clusters of BrdU positive 
cells could be detected irrespective of p53 status. Myc protein could only be detected in R26DM.lsl-

MYC/MYC;KRasG12D bronchioles. TUNEL positive cells could be detected in neither genotype. B) 
Quantification of the number of bronchioles/tissue section showing ectopic proliferation and % 
BrdU positivity of induced bronchioles in mice of the indicated genotypes.  
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Figure 3-8 Myc accelarates growth of KRasG12D initiated lung tumours. 
A) Overview pictures from KRasG12D (n=6), R26RS.lsl-Myc/WT;KRasG12D (n=4) R26RS.lsl-Myc/Myc;KRasG12D 
(n=4), R26DM.lsl-MYC/WT;KRasG12D (n=9) and R26DM.lsl-MYC/MYC;KRasG12D (n=12) lungs 6 weeks after 
AdCre infection (5*107 PFU). Scale bars: 300µm. B) Lung tissue occupied by tumours was 
measured on 1 tissue section per lung, 6 weeks after Adeno-Cre induction (5*107 PFU). KRasG12D 

n=6, R26DM.lsl-MYC/WT;KRasG12D n=9, R26DM.lsl-MYC/MYC;KRasG12D n=11. Tumour burden increases with 
the number of Myc transgene copies. The R26DM.lsl-MYC allele accelerates the KRasG12D phenotype 
further than the R26RS.lsl-Myc allele. Asterisks indicate statistical significance (p<0.05), ANOVA, 
followed by post Hoc Tukey test. C) Kaplan Meier curve with R26DM.lsl-MYC/WT;KRasG12D (11) and 
R26DM.lsl-MYC/MYC;KRasG12D (9) mice. R26DM.lsl-MYC/MYC;KRasG12D mice have a significantly shorter 
survival than R26DM.lsl-MYC/WT;KRasG12D mice. Chi-Square test: p = 0.001. 
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homozygous R26DM.lsl-MYC;KRasG12D and R26RS.lsl-Myc;KRasG12D mice 6 weeks post 

allele induction. Figure 3-8 A shows that KRasG12D on its own leads to hyperplasia 

and small benign tumours 6 weeks post induction, which has been shown before 

(Jackson et al., 2001). One copy of MYC (R26DM.lsl-MYC/WT;KRasG12D and R26RS.lsl-

Myc/WT;KRasG12D) can already accelerate this phenotype, which leads to bigger, and 

in R26DM.lsl-MYC /WT;KRas lungs, to more tumours. This is particularly interesting, as 

the same Myc levels that can accelerate the KRasG12D phenotype do not induce 

proliferation in the bronchiolar epithelium (Figure 3-4). Two copies of MYC 

accelerate this phenotype even further, resulting in increase in tumour size 

compared to the heterozygous counterpart (Figure 3-8 A). The effect of both on 

tumour burden was quantified and can be seen in Figure 3-8 B, demonstrating that 

with two copies of MYC the tumour burden is about 6 times higher in R26RS.lsl-

Myc/Myc;KRasG12D mice and more than 20 times higher in R26DM.lsl-MYC/MYC;KRasG12D 

mice than in KRasG12D mice.  

The increased tumour burden also results in shorter survival of the mice with a 

median survival of about 10 weeks for R26DM.lsl-MYC/WT;KRasG12D mice and less than 

8 weeks for R26DM.lsl-MYC/MYC;KRasG12D mice (Figure 3-8 C), whereas KRasG12D mice 

have been reported to live for approximately 28 weeks (Xue et al., 2011).  

Interestingly, human Myc (R26DM.lsl-MYC) accelerates the KRasG12D phenotype much 

further than murine Myc (R26RS.lsl-Myc). From MYC transcript analysis in MEFs we 

know that MYC levels are comparable (Figure 3-2 B), therefore this phenotype 

cannot be explained by differences in transcript levels. This suggests that murine 

and human MYC are differently regulated on protein level or that human MYC does 

not interact with murine proteins in the same way as murine Myc does.  

Closer examination of the lungs revealed that the vast majority of the tumours 

express the alveolar type II pneumocyte marker SP-C, and that bronchioles are 

CC10 positive (Mason et al., 2000) (Figure 3-9 and Figure 3-10). A small fraction of 

tumours show small regions that are CC10 positive. These tumours were 

morphologically indistinguishable from SP-C positive tumours (not shown). All 

tumours are Ki67 positive, with a tendency for more Ki67 positive cells towards the 

edge of the tumour, and each tumour has few terminal nucleotidyl transferase dUTP 

nick end labeling (TUNEL) positive cells.  
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In a very small fraction of tumours, a subpopulation is emerging, that shows a 

change in cell morphology, which again confirms the KRasG12D/Rosa-MYC-ER 

phenotype (Murphy et al., 2008). In these small regions that are part of otherwise 

benign appearing tumours, nuclei become enlarged and pleomorphic, a feature of 

tumour progression. Examples of this can be seen in Figure 8 panel 2 and Figure 9 

panel 2 and 10. Feldser et al. showed in a KRasG12D;Tp53null model that these 

regions, that are different in morphology and represent a more advanced stage, 

stain positive for p-Erk (Feldser et al., 2010). In the R26RS.lsl-Myc;KRasG12D and 

R26DM.lsl-MYC;KRasG12D model this is the case as well. The next two chapters will 

focus on the study of gene expression changes that occur during the transition from 

the benign to the more progressed tumour regions. 

 

Figure 3-9 R26RS.lsl-Myc;KRasG12D Histology. 
Lung tumours from R26RS.lsl-Myc/Myc;KRasG12D (n=4) mice 6 weeks after AdCre infection (5*107 PFU). 
3: p-Erk, 4: Ki67, 5: CC10, 6: SP-C. A small fraction of tumours has a p-Erk positive subpopulation. 
All tumours are Ki67 positive, bronchioles stain positive for Clara Cell marker CC10 and tumours 
stain positive for alveolar cell marker Sp-C. Scale bars: 1, 3, 4: 50µm, 2, 10: 20µm, 5, 6: 200µm.  

3.3 Discussion 

Deregulated Myc expression in the adult lung is alone able to drive proliferation, 

which is detectable shortly after Myc induction and still detectable after 6 weeks. 

Surprisingly, this proliferation wave does not lead to tumours, which raises the 

question about the fate of these cells. It has been shown before (Murphy et al., 

2008), that low levels of deregulated MYC as achieved by being driven by the weak 

Rosa promoter do not engage apoptosis in the lung, which we could confirm in our 

model. I therefore hypothesise that as the threshold to engage apoptosis is not 
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reached, p53 is also not engaged, explaining why loss of functional p53 had no 

effect on the consequences of acute MYC activation and could not facilitate 

tumourigenesis, even in the longer term. Possibly, a different tumour suppressive 

mechanism that engaged at a lower threshold of Myc deregulation forces the 

proliferating cells to undergo cell cycle arrest.  

 

Figure 3-10 R26DM.lsl-MYC;KRasG12D Histology. 
Lungs from R26DM.lsl-MYC/WT;KRasG12D (n=13) and R26DM.lsl-MYC/MYC;KRasG12D (n=12) mice 6 weeks 
after AdCre infection (5*107 PFU). 6 and 14: p-Erk staining, 7 and 15: Ki67 staining, 8 and 16: 
TUNEL staining, 3 and 11: CC10 staining, 4 and 12: Sp-C staining. A small fraction of tumours has 
a p-Erk positive subpopulation. All tumours are Ki67 positive, and display a few TUNEL positive 
cells. Bronchioles stain positive for Clara Cell marker CC10 and tumours stain positive for alveolar 
cell marker Sp-C. Scale bars: 1, 9: 300µm, 3, 4, 11, 12: 200µm, 5, 6, 7, 8, 13, 14, 15, 16: 50µm, 2, 
10: 20µm.  

Interestingly, I showed that the same Myc levels that do not drive tumourigenesis 

on its own, on the other hand accelerate KRas driven tumourigenesis. In human 

lung tumours, Myc is amplified or mutated in 2-3% of KRas mutant lung 

adenocarcinomas (Cancer Genome Atlas Research, 2014; Gao et al., 2013). A 

reporter assay showed that MGA loss-of-function mutations increase Myc activity 

(Hurlin et al., 1999). MGA is a Max binding transcription factor and is able to inhibit 

transcriptional activation by Myc. MGA loss-of-function mutations happen to occur 
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in 2-3% of KRas mutant human lung adenocarcinomas and are mutually exclusive 

with MYC mutations (Cancer Genome Atlas Research, 2014). Moreover, the KRas 

independent Wnt pathway, which is known to induce Myc (Sansom et al., 2007) is 

found to be upregulated in KRas mutant lung cancer. Several canonical Wnt ligands 

are amplified in human KRas mutant lung adenocarcinoma (Gao et al., 2013). 

Furthermore, the importance of Wnt signalling was shown recently in a BRaf driven 

mouse model (Juan et al., 2014). This suggests that Myc levels limit KRas driven 

tumourigenesis and that tumours find multiple ways to functionally increase MYC. 

KRas downstream signalling, such as MAPK and PI3K pathway lead to MYC protein 

stabilization by Ser62 phosphorylation (Sears et al., 2000). The more abundant the 

Myc protein, either through amplification or increased Myc transcription, the more 

proteins can be stabilized by KRas signalling. 

3.3.1 Future directions 

I observed that human MYC is able to accelerate KRasG12D driven tumourigenesis 

much further than murine Myc. As transcript levels are comparable, human and 

murine Myc proteins might be differentially regulated in the mouse. Determining 

MYC protein levels in MEFS would answer this question, ideally with and without 

KRasG12D, in order to see if KRas dependent signalling has different effects on 

murine and mouse MYC. Furthermore, I showed by IHC that loss of p53 function 

does not stabilize MYC, at least not to a detectable level, whereas presence of 

KRasG12D does. A possibility to confirm this result would be to determine MYC 

protein levels in R26DM.lsl-MYC;P53R172H and R26DM.lsl-MYC;KRasG12D MEFs. For a 

deeper understanding of Myc and KRas cooperation, it would help to do 

transcriptome analysis of R26DM.lsl-MYC MEFs, with and without KRasG12D, to see 

which pathways are engaged. This work is currently on-going. 
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4 RNA-sequencing from laser captured tissue 
material and identification of p-Erk associated 
genes 

4.1 Introduction 

Lung cancer is usually detected at an advanced stage. For this reason only little is 

known about tumour progression in the lung. Genetically engineered mouse models 

of cancer that allow allele induction at a specific time point are useful to study tumour 

progression, as they allow examination of the tumours at an early stage. The gene 

expression changes during tumour progression have been examined previously in 

a KRasG12D/Tp53null model of NSCLC (Feldser et al., 2010). In this paper, gene 

expression between adenomas and adenocarcinomas was compared and it was 

found that pathways associated with cell cycle processes were enriched in the 

adenocarcinoma samples. Moreover they found a Ras oncogenic signature and 

Myc target genes upregulated in adenocarcinomas. They also found that 

adenocarcinomas, but not adenomas, stain positively for phospho-Erk (p-Erk), 

which I used as a progression marker in the R26DM.lsl-MYC/MYC/KRasG12D model. 

As shown in chapter 3, R26DM.lsl-MYC/MYC/KRasG12D tumours give rise to sporadic 

tumour progression to adenocarcinoma, which stains positively for p-Erk. Tumour 

progression is a relatively infrequent, but reliably detectable event in this model, and 

the progressed tumour regions are clearly distinguishable from the benign 

adenomas, which makes it a good model to study early tumour progression.  

4.2 Results 

4.2.1 p-Erk as progression marker 

I showed in Chapter 3 that cells undergo a morphological change as tumours 

progress from adenoma to adenocarcinoma. Nuclei become enlarged and 

pleomorphic with prominent nucleoli. This process is accompanied by increased Erk 

phosphorylation, which is only detectable in adenocarcinomas. P-Erk as well as 

Ki67 and high levels of Myc detection tend to occur at the edge of the tumours. I 

therefore investigated if besides p-Erk, Ki67 or Myc positivity correlates with tumour 

progression. Figure 4-1 shows that irrespective of p-Erk signal, Ki67 and Myc 

staining increases towards the edge of the tumour. There is no difference in staining 
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intensity or number of Ki67 and Myc positive cells in p-Erk positive compared to p-

Erk negative tumours. This suggests that this co-localization is a coincidence rather 

than a functional correlation. Tumours have a higher proliferation rate towards the 

edge of the tumour, but this alone does not result in tumour progression, as the vast 

majority of tumours are p-Erk negative. Therefore, p-Erk, but not Ki67 or Myc, 

correlates with the morphological changes associated with tumour progression. 

 

Figure 4-1 p-Erk serves as a tumour progression marker in R26DM.lsl-MYC/MYC;KRasG12D lung 
tumours. 
Adjacent H&E, p-Erk, Ki67 and Myc stainings from R26DM.lsl-MYC/MYC;KRasG12D lung tumours 6 
weeks after allele induction. P-Erk signal, but not Ki67 or Myc, correlates with tumour progression. 
Scale bar: 50 µm. 

4.2.2 Technical considerations: Fresh Frozen versus FFPE 
tissues 

I had to decide whether to use fresh frozen or formalin fixed paraffin embedded 

(FFPE) material for gene expression analysis. In order to maintain RNA integrity it 

is advisable to freeze the samples as quickly as possible, to minimize time during 

which RNA degradation can occur. Formalin fixation however crosslinks RNA which 

can lead to RNA degradation. Therefore, for RNA analysis, freshly frozen samples 

are usually the better choice.  

With these considerations in mind, I compared the quality of RNA recovered from 

frozen tissue with that recovered from FFPE tissue. RNA quality was determined 

using a Bioanalyzer, which determines the integrity of RNA based on the ratio 

between 18S ribosomal RNA (rRNA), 28 rRNA and remaining RNA. The resulting 

RNA integrity number (RIN) represents the ratio of 18S rRNA, 28S rRNA and the 
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rest, with 10 being the highest score in case of completely intact RNA. From frozen 

tissue I was able to recover high quality RNA, with a RIN number ~9. From FFPE 

tissue I was only able to achieve a RIN of ~2 (Figure 4-2). 

 

Figure 4-2 RNA quality and p-Erk IHC in frozen and FFPE tissues. 
Upper part: RNA was isolated from frozen and FFPE LCM samples and analysed with agilent 
bioanalyzer. High quality RNA was isolated from frozen samples as 18S and 28S rRNA peaks are 
clearly visible. RNA isolated from FFPE samples were largely degraded. Lower part: p-Erk IHC on 
frozen and FFPE R26DM.lsl-MYC/MYC;KRasG12D lungs 6 weeks after allele induction. The staining is 
very clean on FFPE sections, on frozen sections it gives a lot of background signal. 

FFPE material on the other hand has the advantage that the histology is very well 

preserved, making it easy to study morphological changes in a sample. In frozen 

tissues, cell morphology is much less well preserved and I was morphologically not 

able to reliably distinguish between adenocarcinoma and adenoma regions. As the 

success of the project relied on the ability to reliably distinguish between adenoma 

and adenocarcinoma regions, FFPE samples seemed to be more suitable in this 

regard. However, after having identified p-Erk as a suitable progression marker, 

distinguishing adenoma and adenocarcinoma regions in frozen tissue samples 

seamed feasible.  

Unfortunately, p-Erk staining on frozen material is not as clean and clear as it is on 

FFPE material (Figure 4-2). There are tumour regions that stain more strongly for 

p-Erk than other regions, but there is a high background signal on the entire tissue. 

By staining several adjacent sections with p-Erk I was however able to follow the 
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signal through the sections and was confident that I was able to distinguish between 

p-Erk-positive and –negative tumour regions. Therefore, I chose to isolate RNA from 

frozen material.  

 

Figure 4-3 LCM of p-Erk negative and p-Erk positive tumour regions. 
Schematic of the process of Lacer Capture Microscopy to capture p-Erk negative and positive 
samples for gene expression analysis. Note, that LCM was done on adjacent, CV stained sections. 

4.2.3 Amplification does not introduce bias 

In order to isolate RNA from different tumour regions, tissues were cut into 10µM 

sections and stained and regions of interest were then captured with a Laser 

Capture Microscope (LCM) (Figure 4-3). The amount of tissue that can be recovered 

during this procedure is very small, resulting in only few nanograms of total RNA. 

As the protocol for library preparation requires larger amounts of complementary 

DNA (cDNA), RNA had to amplified during the process of reverse transcription to 

cDNA (see materials and methods section 2.12.2). This step results in a strong 

amplification, yielding in several micrograms of cDNA. To test whether the 

amplification step introduces a bias, a test experiment using cell culture cells was 

carried out. It is possible that during the amplification process some transcripts 

would be more strongly amplified than others and the number of reads for each 
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gene would not represent the real abundance of the individual transcripts in the 

sample.  

To address this issue, a KRasG12D;Tp53null murine lung cancer cell line was 

transfected with MYC-ER construct and treated for 6 hours with 4-OHT or vehicle 

control. RNA was isolated and libraries were either prepared using either a) the 

standard protocol or b) small amounts of RNA were amplified using the amplification 

protocol needed for Laser Capture samples (Figure 4-4).  

 

Figure 4-4 The effect of transcript amplification on gene expression analysis. 
KRasG12D;p53null cells were transfected with MYC-ER and treated with OHT or EtOH. 2 sample sets 
were prepared using standard library preparation or amplification protocol. N=2. The VENN 
diagram shows that there is a high overlap in the differentially regulated genes determined with 
both protocols, showing that the amplification protocol generates reliable data. The heatmap shows 
that the gene expression data generated with the standard and the amplification protocoal are very 
similar. 

Gene set enrichment analysis (GSEA) revealed that in both sample sets, Myc 

activation by 4-OHT led to upregulation of pathways involved in RNA processing, 

ribosome biogenesis, rRNA metabolic processes and regulation of apoptosis. With 

the standard protocol, 368 differentially regulated genes with a fold change 

(FC)>1.5, p<0.05 could be identified, whereas with the amplification protocol only 

83 differentially regulated genes were identified. 72 of the 83 genes overlapped with 

the genes from the standard protocol. The 11 genes that did not overlap with the 
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standard protocol, went however in the same direction, but did not reach statistical 

significance in the standard protocol. The heatmap shows as well that the gene 

expression changes in the samples that were prepared with the amplification or 

standard protocol are very similar. This means that the data obtained from the 

amplification protocol are highly reliable. There are less statistically significantly 

regulated genes in the data from the amplification protocol, however, those that are 

significantly regulated were also found to be regulated using the standard protocol. 

 

Figure 4-5 Workflow from tissue embedding to data analysis. 
Individual steps form tissue embedding to data analysis are shown. 

4.2.4 RNA-Sequencing from frozen material 

The workflow for gene expression analysis starts with freezing the tissue, followed 

by sectioning, staining, laser capturing the regions of interest, isolating RNA, 

preparing libraries for sequencing and data analysis (Figure 4-5). All steps before 

RNA isolation had to be performed as fast and cold as possible to avoid RNA 

degradation. For this reason, the sections that were used for laser capture were 

stained with Cresyl Violet (CV), following a protocol that was completed within a few 

minutes. Adjacent sections were stained for p-Erk and coverslipped. Regions were 

captured based on the p-Erk staining in the adjacent sections, assuming that the p-

Erk distribution is almost the same from one section to the next. After RNA isolation, 

libraries were prepared using the amplification protocol. Initially, a sample set 

consisting of 6 samples from 3 mice (1 p-Erk negative and a p-Erk positive sample  
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Figure 4-6 Comparative gene expression analysis between p-Erk negative and positive 
tumour regions from R26DM.lsl-MYC/MYC;KRasG12D mice in frozen samples. 
7 pErk negative and 7 p-Erk positive samples from 7 mice were prepared for RNA-seq following 
the amplification protocol. FC for p-Erk positive/p-Erk negative was calculated individually for 
samples from each mouse and statistical analysis was done with data from all 14 samples. The 
upper part shows the most significantly regulated genes. The lower part shows MetaCore pathway 
analysis that was done for genes upregulated in p-Erk positive samples, with FC>1.5 and p<0.5. 



 111 

per mouse) was prepared and sequenced. As the statistics were not good, another 

sample set consisting of an additional 8 samples from 4 mice had to be prepared.  

When designing an experiment it is important to do power analysis in order to 

determine the sample size that is needed to obtain a certain statistically significant 

effect. If the chosen sample size is too small the experiment is wasted and has to 

be repeated in the worst case scenario. This leads to a waste of time and money 

and when working with animals to unnecessary suffering. If the sample size is higher 

than actually needed, resources will be wasted as well.  

The first thing that has to be done is to determine the effect size that is expected. 

The smaller the effect size, the higher the required sample size in order to achieve 

statistical significance. When working with biological samples the variation among 

the replicates has also to be considered. The dispersion among biological replicates 

is much higher than among technical replicates and requires a bigger sample size. 

Within biological samples paired and unpaired sample analysis is possible. Paired 

sample analysis describes two different states within one biological specimen. In 

the present experiment, p-Erk-negative and –positive samples from the same 

mouse were compared, it falls therefore in the category of a paired experiment. 

Paired experiments require a smaller sample size than unpaired experiments 

because the expected dispersion is smaller (Ching et al., 2014).  

In the case of a paired RNA-seq experiment, the effect size corresponds to the log 

fold change (LFC) between the two sample groups and the p-value, the statistical 

significance of the LFC. In gene expression analysis, a LFC ≥ 1.5 and a p-value ≤ 

0.05 are usually set as a threshold. In RNA-seq experiments it is also important to 

consider how the samples will be prepared and what kind of transcripts will be 

present it in the sample. If a polyA enrichment method is used, the sample will 

contain mainly mRNA transcripts. If a ribosomal RNA depletion method is used, 

lincRNA will be present as well. lincRNAs are expressed at a lower level than 

mRNAs. Also, the number of different transcripts is higher when lincRNAs are 

present, which has influence on the statistics (Ching et al., 2014). Therefore, a 

higher sample size is needed to achieve significant statistical power. In the present 

experiment an mRNA enrichment method was used. 
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In the present experiment, because nobody has worked with this mouse model or 

has done this kind of experiment before, the LFC of differentially expressed genes 

was very difficult to estimate. A sample number of 3 is however the bare minimum 

in an experiment with biological samples and given the high degree of uncertainty 

in this kind of experiment a higher sample number of 4 or 5 sample pairs should 

have been chosen and the requirement to repeat the experiment would have been 

avoided. 

Including the new sample set, the fold changes from each p-Erk negative to p-Erk 

positive sample from the same mouse was calculated individually and samples from 

all 7 mice were included in the statistical analysis. Data analysis performed by Ann 

Hedley revealed that only 11 genes were significantly regulated between p-Erk-

negative and -positive regions, with a FC>2 and p<0.05. By choosing a less 

stringent p-value of p<0.1, the list could be extended to 27 regulated genes (Figure 

4-6). For pathway enrichment analysis, I set the FC>1.5 and relaxed the p-value 

further to p<0.5, in order to have a reasonable number of genes. 3 pathways that 

are associated with increased Erk signalling were among the top 10 upregulated 

pathways: development ACM activation of Erk, expression of proinflammatory 

cytokines via MAPKs and G protein mediated regulation MAPK ERK signalling. 

Interestingly, a cell adhesion pathway was also enriched. 

The fact that only a small number of genes were differently regulated between the 

two sample sets suggest that the distinction of the p-Erk positive regions from the 

p-Erk negative regions was not as clear as desired. P-Erk staining on frozen tissues 

does not seem to be reliable and as multiple regions had to be pooled for each 

sample, it is possible that some regions that went into the respective sample were 

of the wrong type, diluting the distinction of the regions that were categorized 

correctly and thereby reducing the significance.  

I confirmed some of the most upregulated genes from the p-Erk negative to p-Erk 

positive transition by Real Time analysis, using the same cDNA that was used for 

library preparation (Figure 4-7). All tested genes went in the same direction as the 

sequencing data: leucyl-tRNA synthetase (Lars2, FC=2.25), sprouty homolog 2 

(Spry2, FC=1.8), histidine decarboxylase (Hdc, FC=2.0), surfactant associated 

protein A1 (Sftpa1, FC=1.46), metastasis associated lung adenocarcinoma 

transcript 1 (Malat1, FC=1.4), carbonyl reductase 2 (Cbr2, FC=1.56), aldehyde 
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oxidase 3 (Aox3, FC=1.89), insulin-like growth factor binding protein 3 (Igfbp3, 

FC=1.85), regulator of cell cycle (Rgcc, FC=1.62), flavin containing monooxygenase 

2 (Fmo2, FC=2.12), regulator of G-protein signalling 5 (Rgs5, FC=1.36) and retinol 

binding protein 7 (Rbp7, FC=1.92). This confirms that the gene expression changes 

detected by RNA-sequencing are reproducible.  

In the meantime, technology had advanced and new kits were on the market that 

allowed sample preparation for RNA-Seq even from heavily degraded RNA (see 

Materials and Methods section 2.12.3). We therefore decided to prepare a separate 

sample set from FFPE material. 

 

Figure 4-7 Real Time PCR validation from frozen samples. 
12 genes that were found upregulated in the p-Erk positive samples were validated by Real Time 
PCR. For all genes expression went in the same direction as in the sequencing data. N=7 

4.2.5 RNA-Seq from FFPE material 

The workflow for FFPE samples is similar to the one for frozen samples (figure 5). 

Initially, the tissue gets fixed in Zn-Formalin over-night, dehydrated and embedded 

in paraffin. The paraffin embedded tissue can be stored for a long time until needed. 

Then sections are made and stained for p-Erk, which serve as a template for 

adjacent CV stained sections. RNA was isolated and libraries were prepared 

following a protocol that is optimized for degraded RNA samples (see and Methods 

section 2.12.3). 8 libraries from 4 mice (1 p-Erk positive sample and 1 p-Erk negative 

sample per mouse) were sequenced and data were analysed in collaboration with 

Ann Hedley.  
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More than 500 genes were differentially regulated with a fold change >2 and p 

<0.05. Enrichment analysis showed that Cytoskeleton remodelling, Wnt and 

transforming growth factor (TGF) signalling were among the most significantly 

upregulated pathways from p-Erk negative to p-Erk positive samples (Figure 4-8)  

 

Figure 4-8 Comparative gene expression analysis between p-Erk negative and positive 
tumour regions from R26DM.lsl-MYC/MYC;KRasG12D mice in FFPE samples. 
4 pErk negative and 4 p-Erk positive samples from 4 mice were prepared for RNA-seq following 
the protocol for degraded RNA samples. FC for p-Erk positive/p-Erk negative was calculated 
individually for samples from each mouse and statistical analysis was done with data from all 8 
samples. Pathway analysis was done for genes upregulated in p-Erk positive samples with FC>1.5 
and p<0.05 

Moreover, pathways associated with cystic fibrosis transmembrane conductance 

regulator (CFTR) activity, folding and maturation, cAMP response element-binding 

protein (CREB) pathway and immune response pathways were found upregulated. 

ErbB family ligands, as part of the epidermal growth factor receptor (EGFR) 

signalling pathway had high fold changes: Epiregulin (Ereg), which is upregulated 

by more than 20 fold, Amphiregulin (Areg), heparin-binding EGF-like growth factor 

(HB-EGF) and TGF-α, all showed significantly increased expression in the p-Erk 
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positive dataset. Also the Wnt pathway is highly upregulated in the p-Erk positive 

dataset. Porcupine, which is important for posttranslational modification and 

secretion of Wnt proteins, is significantly enriched more than 3-fold and SRY-box 

containing protein 9 (Sox9), which is a Wnt pathway target is more than 15-fold 

enriched. Also, several Wnt protein members, and Frizzled (Fzd) proteins, which 

are G protein coupled receptors that bind Wnt ligands are enriched (not all of them 

are significantly upregulated). As a first validation that the Wnt pathway is indeed 

associated with tumour progression, adjacent p-Erk stained sections were stained 

for Sox9 (Figure 4-9). There was a very good overlap between p-Erk positive and 

Sox9 positive regions. 

I could not find a significant number of overlapping genes between the frozen and 

the FFPE dataset. The fact that the FFPE sample set generated much more 

significantly regulated genes than the frozen sample set suggests that the distinction 

between p-Erk-positive and negative regions was inadequate in the frozen samples.  

 

Figure 4-9 Sox9 correlates with p-Erk expression in lung tumours from R26DM.lsl-MYC/MYC 

;KRasG12D mice. 
Adjacent sections were stained with Sox9 and p-Erk, showing a high overlap between p-Erk and 
Sox9 signal. 
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Real time validation was not possible with cDNA generated from FFPE samples, as 

CT values from the Beta 2 microtubulin (B2m) house keeping gene, that usually has 

CT values ~18, were ~10 cycles higher and most genes that are expressed at a 

lower level were not even detectable. The next chapter will focus on the validation 

of the importance of Wnt and EGFR signalling for tumour progression and also on 

the validation of individual genes. 

4.2.6 Comparison of Gene expression between tumours from 
KRasG12D and R26DM.lsl-MYC/MYC;KRasG12D mice 

I showed in chapter 3 that low levels of Myc, driven by the Rosa26 promoter 

accelerate KRasG12D driven tumourigenesis. Myc did not only increase tumour 

burden by leading to more and bigger tumours, but also accelerated tumour 

progression. Jackson et al. showed, that KRasG12D mice display hyperplasia and 

small adenomas 6 weeks after allele induction, whereas I found progression to 

adenocarcinoma in R26DM.lsl-MYC/MYC;KRasG12D mice at the same time point (Jackson 

et al., 2001). I therefore wanted to compare gene expression from KRasG12D and 

R26DM.lsl-MYC/MYC tumours to find out the role of MYC overexpression in KRasG12D 

driven tumourigenesis. 

As lesions from KRasG12D mice are were very small 6 weeks after allele induction it 

would have been very difficult to capture enough material. I therefore decided to use 

tumour material from KRasG12D lungs 9 weeks after induction, as tumours had a 

decent size.  

I prepared frozen samples from 5 KRasG12D mice and prepared libraries along with 

6 previously sequenced frozen samples from 3 R26DM.lsl-MYC/MYC;KRasG12D mice. I 

compared KRasG12D gene expression with the p-Erk negative and p-Erk positive 

gene expression profiles from R26DM.lsl-MYC/MYC;KRasG12D mice. 287 genes were 

upregulated in KRasG12D samples compared to p-Erk negative R26DM.lsl-

MYC/MYC;KRasG12D samples, and 180 genes were downregulated (FC >2, p<0.05). 

214 genes were found upregulated in KRasG12D samples compared to p-Erk positive 

R26DM.lsl-MYC/MYC;KRasG12D samples and 210 genes were downregulated.  

Interestingly, many genes that were significantly upregulated during the transition 

from p-Erk negative to positive in the R26DM.lsl-MYC/MYC;KRasG12D FFPE samples 

were also upregulated in the KRasG12D samples, compared to either p-Erk negative 
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(46 genes) or p-Erk positive (22 genes) R26DM.lsl-MYC/MYC ;KRasG12D samples (FC>2, 

p<0.05). Most genes that were not significantly regulated between R26DM.lsl-

MYC/MYC;KRasG12D and KRasG12D samples, still went in the same direction as genes 

from p-Erk negative to p-Erk positive R26DM.lsl-MYC/MYC;KRasG12D samples (Figure 

4-10).  

 

Figure 4-10 Comparative gene expression analysis between R26DM.lsl-MYC/MYC;KRasG12D and 
KRasG12D lung tumours. 
5 KRasG12D  samples (9 weeks after allele induction) and 6 previously sequenced R26DM.lsl-

MYCMYC;KRasG12D samples (3 p-Erk negative, 3 p-Erk positive samples, 6 weeks after allele 
induction) were prepared for RNA-seq. Shown are upregulated genes from the FFPE sample set 
(figure 8) and corresponding genes expression changes from p-Erk negative and positive R26DM.lsl-

MYC/MYC KRasG12D samples to KRasG12D samples. A high proportion of genes that was upregulated 
in p-Erk positive R26DM.lsl-MYCMYC;KRasG12D tumour regions was also upregulated in KRasG12D 
tumours (compared to R26DM.lsl-MYCMYC;KRasG12D tumours). 

This is surprising, as I expected KRasG12D tumours to be more benign than R26DM.lsl-

MYC/MYC;KRasG12D tumours. Instead, many genes associated with tumour 

progression were found to be higher expressed in KRasG12D samples than in 

R26DM.lsl-MYC/MYC;KRasG12D samples. This suggests that even though Myc 

accelerates tumour progression, KRasG12D tumours 9 weeks after allele induction 
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might be more advanced than R26DM.lsl-MYC/MYC;KRasG12D tumours 6 weeks after 

allele induction.  

By histological examination of 2 paraffin embedded KRasG12D lungs 9 weeks post 

induction, I could identify aggressive looking tumour regions with enlarged, 

pleomorphic nuclei. This should be confirmed by more extensive histological 

examination, for instance by staining frozen KRasG12D lungs with Sox9, which 

expression was 12 fold higher in the KRasG12D samples than in p-Erk negative 

R26DM.lsl-MYC/MYC;KRasG12D samples. 

4.3 Discussion 

The aim of this chapter was to identify lung tumour progression genes in the 

R26DM.lsl-MYC/MYC;KRasG12D model. This undertaking was associated with solving 

several technical problems but also led to new insights. 

In the control experiment with KRasG12D;Tp53null Myc-ER transfected cell lines, gene 

expression was analysed and compared using two different protocols. This 

experiment revealed that gene expression analysis even from very limited material 

is highly reliable. This finding is very valuable, as gene expression analysis from 

limited tissue material is often necessary. For instance, the importance of tumour 

heterogeneity is more and more emerging and analysis of different parts of the 

tumour (which might be very small) can reveal important information.  

Another important finding is that gene expression analysis from FFPE tissue 

material using RNA-sequencing is possible. Most histological tissue samples are 

preserved by formalin fixation. FFPE tissues retain a very good morphology and 

many antibodies are made for IHC on FFPE samples. This means that the same 

samples, which are morphologically well studied and characterized, can also be 

used for gene expression analysis instead of having to use separate frozen material. 

Until recently, RNA-sequencing could only be performed on RNA with high integrity. 

During library preparation for RNA-sequencing, intact RNA is first transcribed into 

cDNA, which is then sheared to produce smaller fragments. With this new 

technology it is however possible to generate cDNA from degraded RNA, which then 

saves the shearing step. Hence, the end product that gets sequenced is very similar 

and explains why the generated data are reliable. 
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Interestingly, the gene expression analysis suggests, that lung tumours from 

KRasG12D mice are more advanced than the ones from R26DM.lsl-MYC/MYC;KRasG12D 

mice. Aim of the experiment was to identify genes that are related to Myc 

overexpression. As lesions were too small in KRasG12D lungs 6 weeks after allele 

induction, I had to use lungs 9 weeks after allele induction. For a cleaner analysis, 

it would however been better to compare gene expression between KRasG12D and 

R26DM.lsl-MYC/MYC;KRasG12D lungs from the same time-point. It would have been 

possible for instance to use material from both mouse models 9 weeks after allele 

induction. 

Feldser et al. identified in a KRasG12D/Tp53null model 42 upregulated genes in 

adenocarcinomas compared to adenomas (FC>1.75, p<0.05) (Feldser et al., 2010). 

I found only 6 of these genes are upregulated in the p-Erk positive R26DM.lsl-

MYC/MYC/KRasG12D dataset (FFPE data). This study used microarrays to determine 

changes in gene expression. Microarrays are less sensitive than gene expression 

analysis by RNA-sequencing. Microarrays can only detect changes in gene 

transcript expression, whereas RNA-sequencing allows the determination of the 

absolute number of individual transcripts. This might be the reason why only a 

relatively small number of genes were found to be significantly regulated in this 

study. 

Interestingly, Sox9 was one of the few overlapping genes. I could also confirm by 

IHC that Sox9 signal overlaps with p-Erk signal in KRasG12D;Tp53Fl/Fl lung tumours 

(not shown), suggesting that Sox9 as a Wnt target might play a general role in 

tumour progression in KRasG12D mutant lung cancer.  

The Wnt signalling pathway is frequently upregulated in NSCLC (Stewart, 2014) and 

is associated with poor prognosis (Ettinger et al., 2013). Wnt pathway has also been 

found upregulated specifically in KRas mutant lung cancer models (Lee et al., 2009). 

Moreover, Wnt pathway activation has been shown to accelerate tumourigenesis in 

KRas mutant mice (Pacheco-Pinedo et al., 2011). 

The upregulation of ErbB-ligands in the p-Erk positive dataset is surprising, as KRas 

mutant cells are thought to be independent from upstream signals. Therefore, KRAS 

mutant lung cancers are resistant to EGFR inhibitiors (Pao et al., 2005). Some ErbB 

ligands are however able to bind and activate multiple ErbB family members. Ereg 
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for instance, which was found 24-fold upregulated in the p-Erk positive dataset is a 

pan-ErbB ligand that can bind and activate all functional homo- and heterodimers. 

Therefore, inhibition of all ErbB family members might be more efficient than EGFR 

inhibition alone. 

The next chapter will focus on further validation of Wnt, and ErbB pathway, and also 

on the validation of individual genes. 
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5 Validation of p-Erk associated genes 

5.1 Introduction  

In Chapter 4 gene expression between p-Erk negative and p-Erk positive tumour 

regions from R26DM.lsl-MYC/MYC;KRasG12D mice was compared. p-Erk was used a 

progression marker to identify potential tumour progression genes. Roughly 500 

genes were found to be upregulated in the p-Erk positive tumours regions from 

R26DM.lsl-MYC/MYC;KRasG12D mice. This chapter will focus on the validation of the data.  

ErbB and Wnt signalling stand out as two major pathways that were enriched in p-

Erk positive dataset. Individual pathway members, such as Epiregulin (Ereg) and 

Amphiregulin (Areg) in the case of ErbB, and Porcupine (Porcn) and SRY-box 

containing gene 9 (Sox9) in the case of Wnt, were among the highest upregulated 

genes.  

5.1.1 ErbB signalling in cancer 

ErbB receptors activate pathways involved in proliferation, migration, survival and 

metabolism and therefore play an important role in cancer (Citri & Yarden, 2006). 

ErbB receptor signalling can be deregulated by various mechanisms. The receptors 

themselves can be either amplified or mutated. EGFR is amplified in a wide range 

of cancers and somatic mutations in the tyrosine kinase domain occur in NSCLC 

(Shigematsu & Gazdar, 2006). ErbB2 amplification can be found in breast, ovary, 

salivary and gastric cancers and in a small percentage of NSCLC (Hynes and Stern, 

1994). ErbB3 mutations occur in 11% of colorectal cancers (Jaiswal et al., 2013). 

Another mechanism of ErbB signalling deregulation is a surplus of ligands, which 

can lead to constitutive receptor activation. EGF ligands are produced as 

precursors, which are cleaved and processed by proteases such as a disintigrin and 

metalloprotease (ADAM) family and matrix metalloproteinases (MMPs) (Salomon et 

al., 1995, Daub et al., 1996). 

One major downstream pathway is PI3K/Akt pathway, which appears to be 

deregulated in many cancers. In tumours this pathway can become constitutively 

activated by activating PI3K mutations or by deactivating mutations in PTEN, a 

negative PI3K regulator (Eng, 2003, Samuels et al., 2004). In ErbB2+ breast cancers 

the PI3K/Akt pathway becomes activated via ErbB3. ErbB3 is the preferred binding 
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partner of ErbB2 and is among the 4 ErbB receptors the main PI3K activator 

(Engelman et al., 2005). 

Another major ErbB downstream pathway is the MAPK pathway. Activating EGFR 

mutations lead to MAPK activation. Alternatively, the MAPK can be deregulated by 

downstream mutant KRas. In lung and colon cancer EGFR and KRas mutations are 

therefore mutually exclusive (Cancer Genome Atlas Research, 2014). In pancreatic 

ductual adenocarcinoma (PDAC) however, it has been shown that EGFR signalling 

plays an important role in KRas mutant cancer (Navas et al., 2012). 

5.1.1.1 ErbB signalling in lung cancer 

Epidermal growth factor receptor (EGFR) is mutated or amplified in ~17% of lung 

ADC (Cancer Genome Atlas Research, 2014). EGFR mutations are mutually 

exclusive with KRas mutations and KRas mutant lung cancers are resistant to EGFR 

inhibition (Pao et al., 2005). The pan-ErbB ligand Ereg is however highly expressed 

in KRas mutant NSCLC. In KRas mutant NSCLC lines, Ereg expression was shown 

to positively correlate with KRas copy number. Moreover, Ereg levels were shown 

to be higher in human KRas mutant lung ADC samples than in KRas wild-type 

samples. High Ereg expression levels have been also associated with shorter 

survival (Sunaga et al., 2013).  

ErbB2 is mutated or amplified in ~5% of lung ADC, ErbB3 in 2.5% and ErbB4 in 

~9% (Cancer Genome Atlas Research, 2014). ErbB3 is a preferred binding partner 

of EGFR and is thereby often deregulated in EGFR mutant lung cancer. High activity 

of the ErbB3 downstream pathway PI3K/Akt correlates with sensitivity to the EGFR 

inhibitor gefitinib (Engelman et al., 2005). Also ErbB2 plays an important role in 

EGFR mutant lung cancer. ErbB2 is an important EGFR binding partner and ErbB2 

amplification is associated with positive gefitinib treatment outcome in EGFR mutant 

lung cancer (Cappuzzo et al., 2005). 

5.1.1.2 ErbB signalling description 

ErbB receptors 

The ErbB receptors have four family members, the epidermal growth factor receptor 

(EGFR, also called ErbB1 or Her1), ErbB2 (also called Her2), ErbB3 (also called 
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Her3) and ErbB4 (Her4). They belong to the receptor tyrosine kinase family even 

though ErbB3 has no kinase activity. ErbB3 can however be phosphorylated by 

heterodimerization to any of the other ErbB family members. ErbB proteins function 

through dimerization by forming homo- or heterodimers upon ligand binding (Figure 

5-1).  

 

Figure 5-1 ErbB signalling. 
The ErbB signalling pathways becomes activated upon ligand binding. Ligands fall into three 
groups: EGF, Areg, TGF-α (blue) bind EGFR (ErbB1). Btc and HB-EGF bind EGFR (ErbB1) and 
ErbB4 (green). Ereg belongs to this group as well, but has a broader binding spectrum and can 
bind to all receptor combinations (red). Nrg1 and Nrg2 (light purple) bind ErbB3 and ErbB4, Nrg3 
and Nrg4 (dark purple) bind only ErbB4. Phosphorylated receptor tyrosine residues serve as 
docking sites for adaptor proteins, that then lead to effector activation. PTB (Shc) and SH2 (Grb2) 
domain containing proteins are adaptor proteins for Ras effectors, PI3K contains a p85 domain in 
the regulatory subunit. Neratinb inhibits kinase activity of ErbB1, ErbB2 and ErbB4. 

All homo- and heterodimer combinations are functional except ErbB2 homodimers, 

as ErbB2 is unable to bind ligands (Klapper et al., 1999) and ErbB3 homodimers, 

as ErbB3 is lacking kinase activity (Guy et al., 1994). Therefore ErbB2 and ErbB3 

require a heterodimeric partner. ErbB2 is the preferred heterodimeric partner for the 

other three ErbB receptors (Graus-Porta et al., 1997) and is able to increase the 

potency of its partner protein. It is able to enhance tyrosine phosphorylation capacity 
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of EGFR upon epidermal growth factor (EGF) binding (Graus-Porta et al., 1995) and 

of ErbB3 and ErbB4 upon NRG binding (Beerli et al., 1995). Moreover, ErbB2 

increases the ligand affinity of its binding partners (Karunagaran et al., 1996; 

Sliwkowski et al., 1994). Also, ErbB2 heterodimers have a higher recycling rate and 

undergo less endocytosis than other ErbB dimers, which leads to more sustained 

signalling (Lenferink et al., 1998; Worthylake et al., 1999). 

ErbB Ligands 

ErbB receptor ligands can be classified into three groups. The first group, which 

consists of EGF, Areg (Shoyab et al., 1988) and transforming growth factor-alpha 

(TGF-α) (Massague, 1990), binds specifically to EGFR. The second group, 

consisting of Betacullin (Btc) (Sasada et al., 1993), Heparing-binding EGF (HB-

EGF) (Higashiyama et al., 1992) and Ereg (Toyoda et al., 1995) has a strong affinity 

for ErbB1 and ErbB4. Neuregulins (NRG) make up the third group of ligands. NRG1 

and NRG2 bind to ErbB3 and ErbB4 (Carraway et al., 1997; Riese et al., 1995), 

whereas NRG3 and NRG4 bind only ErbB4 (Harari et al., 1999; Zhang et al., 1997).  

Epiregulin 

Ereg is a ligand with a very broad specificity. Besides binding to EGFR and ErbB4 

homodimers, it preferentially binds to ErbB heterodimers and is able to bind and 

activate all functional heterodimers (Shelly et al., 1998). It has a much lower binding 

affinity to individual receptors than ligands that specifically bind to a certain receptor 

(Toyoda et al., 1995). As mentioned earlier ErbB2 can increase the binding affinity 

of certain ligands to their receptors and in the case of Ereg it does so by increasing 

its binding affinity to ErbB4 (Riese et al., 1998). In some instances Ereg’s broad 

specificity makes it even a more potent mitogenic activator than EGF or TGF-α and 

is a potent activator of Mitogen-Activated Protein Kinase (MAPK) signalling (Draper 

et al., 2003). In agreement with this Ereg is highly expressed in many cancer cell 

lines (Toyoda et al., 1997) and has been described as a marker of advanced NSCLC 

(Zhang et al., 2008). 

ErbB Receptor signalling 

Auto-phosphorylated tyrosine receptors serve as docking stations for adaptor 

proteins that then transfer the signal. All four ErbB receptors contain recognition 
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sites for Src Homology 2 (SH2) and Phosphotyrosine-binding (PTB) domains, which 

allow binding of proteins such as Src, Growth factor receptor-bound protein 2 (Grb2) 

and Src homology 2 containing transforming protein 1 (Shc) (Batzer et al., 1994; 

Stover et al., 1995). Grb2 and Shc are both adaptor proteins for Guanine nucleotide 

Exchange Factors (GEFs) such as Son of sevenless (Sos), which are involved in 

Ras activation. Thereby all four ErbB proteins are linked to the MAPK pathway. 

ErbB3 is the main phosphatidylinositol-4,5-bisphosphate 3-kinase (Pi3k) activator, 

as it contains multiple binding sites for the p85 regulatory subunit of Pi3k (Prigent 

and Gullick, 1994). EGFR can also bind Stat proteins through their SH2 domains 

and thereby activate Stat signalling (Silvennoinen et al., 1993). 

Different ErbB ligands are expressed at distinct stages during development and 

differ in their tissue specific expression. By regulating ErbB receptor expression the 

cell is able to modulate its response to the ligands. The ligands and the receptor 

expression profile determine the signalling downstream of the receptors and give 

the cell room to fine-tune the response to external stimuli.  

5.1.2 The Wnt pathway in cancer 

The connection between Wnt signaling and cancer was initiated by the discovery 

that mammary tumours that occur in mice that have been infected with the murine 

mammary tumour virus were frequently caused by activation of Wnt1 (Mester et al., 

1987). APC is as part of the β-catenin destruction complex a negative regulator of 

Wnt signalling and is the most frequently mutated tumour suppressor gene in human 

cancers. Most sporadic colorectal cancers carry APC mutations, which leads to 

increased β-catenin protein stability (Polakis, 2007). WTX is also part of the β-

catenin destruction complex and is associated with Wilm’s tumour formation (Huff 

2011). In GSK3β, another part of the destruction complex, in frame splice deletions 

that affect the kinase domain occur in mylogenous leukemia (Abrahamsson et al., 

2009). Also β-catenin itself can be mutated, which prevents its destruction by 

kinases (Polakis, 2007). The Wnt coreceptor LRP5 is found to be aberrantly spliced 

in parathyroid and breast cancers (Bjorklund et al., 2009). Wnt signalling can also 

be epigenetically activated in cancer. Many Wnt inhibitor genes such as NDK2, 

Axin2 and sFRP5 are frequently occupied by EZH2. EZH2 is a methyl transferase 

that leaves repressive H3K23me3 chromatin marks and is part of the polycomb 

repressor complex 2 (PRC2) (Rodriguez & Paredes, 2011). 
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Figure 5-2 Wnt signalling pathway. 
In absence of Wnt ligands, APC, Axin and GSK-3β form a complex and β-catenin is 
phosphorylated and thereby marked for proteosomal degradation by β-TRCP. Upon ligand binding, 
activation of Dvl leads to dissociation of the Axin/APC/GSK-3β complex and β-catenin is free to 
translocate to the nucleus and activate target genes. LGK974 inhibits Porcn, which acetylates Wnt 
proteins. 

5.1.2.1 Wnt pathway in lung cancer 

The Wnt pathway is often highly active in human NSCLC (Stewart, 2014). To be 

specific many Wnt ligands, such as WNT-1 (Nakashima et al., 2008), WNT-2 (You 

et al., 2004), WNT-3 (Nakashima et al., 2012) and WNT-5a (Huang et al., 2005) are 

often overexpressed in NSCLC. Moreover, the WNT receptor Frizzled homolog 8 

(FZD8) is commonly overexpressed (Wang et al., 2012). Several Dishevelled 

homolog (DVL) proteins, such as DVL-1, DVL-2 and DVL-3 are also overexpressed 
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in NSCLC (Wei et al., 2008) and so is PORCN, which is crucial for post-translational 

modification and secretion of WNT proteins (Chen et al., 2008). Overexpression of 

Wnt pathway members is also associated with poor prognosis, which has been 

specifically shown for DVL-1 and DVL-3 (Zhao et al., 2010) and for WNT-1 

(Nakashima et al., 2008), WNT-3 (Nakashima et al., 2012) and WNT-5a (Huang et 

al., 2005). 

The Wnt pathway has also been shown to be upregulated in a KRas mutant lung 

cancer mouse model (Lee et al., 2009) and pathway activation was shown to 

accelerate KRas driven tumourigenesis (Pacheco-Pinedo et al., 2011).  

5.1.2.2 Pathway description 

When the Wnt signalling pathway is inactive, which is the case when no Wnt ligand 

is bound to the frizzled receptor, pro-proliferation proteins such as β-catenin are 

bound and phosphorylated by the regulatory Axin/APC/GSK-3β complex (Lee et al., 

2003) (Figure 5-2). Phosphorylated β-catenin is a target for proteosomal 

degradation through βTrCP/Skp pathway (Price, 2006).  

Upon Wnt binding to Frizzled LRP is in direct contact with the receptor and activates 

dishevelled. Activated dishevelled inhibits GSK-3β, which prevents GSK-3β from 

phosphorylating β-catenin. β-catenin is then free to translocate to the nucleus and 

can bind to LEF/TCF transcription factors and thereby activate transcription of its 

target genes. Wnt signalling plays a crucial role during development and is involved 

in several physiological processes such as cell proliferation and migration, which 

explains its importance in cancer. Wnt targets include for instance Myc (He et al., 

1998), Cyclin D1 (Tetsu and McCormick, 1999), c-jun (Mann et al., 1999) and Sox9 

(Blache et al., 2004). 

In order to validate the importance of the pathways for tumour progression I needed 

inhibitors that broadly inhibit the respective pathway, but are at the same time 

specific and do not inhibit other pathways.  

For Wnt pathway inhibition I chose the porcupine inhibitor LGK974 (Figure 5-2). 

There are 19 different Wnt ligands that can activate the pathway. Inhibiting them or 

knocking them down individually would be challenging. The palmitoyl transferase 

Porcn acetylates Wnt proteins, which is important for Wnt secretion and activity 
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(Galli et al., 2007; Herr and Basler, 2012). Porcn was more than 3-fold upregulated 

in the p-Erk positive dataset (Chapter 4). LGK974 binds and inhibits Porcupine and 

thereby inhibits the whole Wnt pathway (Liu et al., 2013). 

For ErbB signalling I chose Neratinib, which is a pan-EGFR inhibitor and has been 

shown to inhibit all four ErbB family members (Canonici et al., 2013) (Figure 5-1). 

Neratinib binds to Cysteine residues in the ATP binding pocket, which is conserved 

in ErbB1, 2 and 4 and is thereby specific in inhibiting ErbB family members (Wissner 

and Mansour, 2008). KRAS mutant cancers possess an inherent resistance to the 

EGFR inhibitors Erlotinib or Gefitinib (Pao et al., 2005). However, the in the p-Erk 

positive samples upregulated ErbB ligands do not only bind EGFR. HB-EGF-like 

growth factor and Ereg have high affinity to ErbB1 and ErbB4 (Paria et al., 1999) 

and Ereg has a broad affinity to all receptors, as described above. Upregulation of 

pan-ErbB ligands such as HB-EGF and Ereg in the p-Erk positive regions suggests 

that simultaneous activation of downstream pathways through all family members 

is necessary for tumour progression. Therefore blocking all 4 ErbB family members 

will probably be much more effective than blocking EGFR alone. 

In this chapter I first investigated the role of ErbB signalling and Wnt pathway in 

vitro. For this purpose I tested KRAS mutant human adenocarcinoma cell lines for 

sensitivity to the inhibitors. The cell lines have mutation for KRAS in common, but 

each one presents otherwise an individual set of mutations in various tumour 

suppressor- and oncogenes. Response rates from this heterogenous panel of lung 

cancer cell lines will give valuable information about how broad the dependence on 

the two pathways in KRAS mutant cell lines is. 

The next step was to validate our individual candidate genes. Long term goal is to 

explore their importance in vivo in an shRNA screen, using the R26DM.lsl-

MYC/MYC;KRasG12D model. shRNAs against genes that were found upregulated in the 

p-Erk positive regions will be cloned in cis with Cre recombinase into lentiviral 

vectors so that any cell that recombines the conditional alleles will express the 

shRNA as well. As the capacity to screen in vivo is limited, I reasoned that analysis 

of diverse human NSCLC lines with only KRAS mutation in common would reveal 

which genes are worth to be explored in vivo. For this purpose an in vitro siRNA 

screen was performed. 
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5.2 Results 

5.2.1 In vitro pathway validation 

In order to find concentrations that affect cell viability, a dilution series with LGK974 

and Neratinib in a panel of KRAS mutant lung adenocarcinoma cell lines was 

performed. Cells were seeded at low confluency (20-40%) and confluency was 

monitored over time using long term Incucyte video-microscopy (Figure 5-3 and 

Figure 5-4).  

LGK974 dilution series 

For LGK974, I used 1µM as a reference concentration, as this concentration has 

been shown to efficiently inhibit Wnt signalling in vitro (Jiang et al., 2013) and 

concentrations either side of this reference from 100nM to 25µM were thus tested. 

The titration revealed that 10µM LGK974 suppressed cell propagation over time 

compared to untreated or DMSO control in most tested KRAS mutant cell lines 

(Figure 5-3). An increase to 25µM reduced the cell number further in some cell lines. 

Lower concentrations had no consistent effects. Therefore 10µM seems to be an 

appropriate concentration and was used for all further cell culture experiments. 

The KRASG12C mutant cell line H23 and the EGFRL858R mutant cell line H3255 seem 

to be largely resistant to Porcupine inhibition, as even an increase to 25µM had no 

effect on cell confluency.  

It has to be noted that the seeding confluency was higher for these two cell lines 

(~60%), which might also explain why the cells were less sensitive to the inhibitor. 

Each experiment was carried out three times but it was difficult to find the optimal 

seeding density for the H23 and H3255 cell lines. When seeded at lower density the 

cells grow very slowly and are of low contrast and are therefore difficult to image. 

Neratinib dilution series 

Neratinib has been shown to have a very broad concentration range at which it is 

efficient depending on the cell line and ErbB mutation status (Rabindran et al., 2004) 

and was therefore tested at concentrations ranging from 10nM to 1µM (Figure 5-4). 

H358 and H441 show a modest response to the inhibitor at 50nM, which is further  
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Figure 5-3 LGK974 Dilution series. 
Indicated cell lines were seeded in the evening and treated with different concentrations of LGK974 
the next morning. Confluency was monitored with Incucyte over time. For 25µM LGK974 the 
DMSO concentration had to be increased to 0.25%. A549 and H2009 cells are LGK974 sensitive. 

increased by higher concentrations in a dose dependent manner. Below 50nM no 

effect was observed in any of the tested cell lines. Other cell lines, such as A549 

and H2009 showed a clear response from 250nM. H23 seems to be resistant to 

ERBB inhibition and the EGFR mutant cell line H3255 shows a modest response 

with concentrations starting from 500nM, but again these two cell lines were seeded 

at a higher confluency. As first migration and invasion experiments showed that 
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most cell lines respond to 100nM Neratinib, this dose was used for all further cell 

culture experiments.  

 

Figure 5-4 Neratinib dilution series. 
Indicated cell lines were seeded in the evening and treated with different concentrations of 
Neratinib the next morning. Confluency was monitored with Incucyte over time. A549, H358, H2009 
and H441 cells are Neratinib sensitive. 

Effects on cell migration 

I then tested the effect of LGK974 and Neratinib on motility of human KRAS mutant 

lung cancer cell lines by performing a migration scratch assay. In this setup cells 
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are seeded at 100% confluency and then a scratch is made through the confluent 

monolayer. The cells then close the wound by migration, which was monitored over 

time with long-term time-lapse Incucyte video-microscopy, which calculates the 

wound density relative to the width of the initial scratch wound (RWD).  

I noticed that some cell lines were sensitive to only one of the two inhibitors and that 

the response was then not further increased by the combination of the inhibitors. 

Some cells lines however were sensitive to both inhibitors and the response was 

increased by their use in combination.  

H460 and A427 (Figure 5-5) were sensitive to LGK974, which is very clear from the 

migration graphs of both cell lines and can also be seen in the H460 confluency 

graph. In the A427 the combination reduced confluency modestly, this cell line 

seems to be more susceptible to inhibition of migration.  

H358 and H441 (Figure 5-6) proved to be Neratinib sensitive. Neratinib on its own 

strongly inhibited migration and reduced cell confluency. The combination of the two 

inhibitors slightly increased the effects on migration and confluency, but this might 

be a DMSO effect, as the DMSO concentration is doubled in the combined treated 

cells. In the H441, LGK974 has no effect on cell confluency, but Neratinib does and 

the combination does not increase this effect much further. LGK974 has a modest 

effect on cell motility, whereas Neratinib initially inhibited migration strongly and the 

cells then caught up towards the end of the run. Combined treated cells on the other 

hand hardly migrated over time.  

The cell lines A549 and H2009 are sensitive to both inhibitors (Figure 5-7). Either 

inhibitor on its own slightly inhibits migration, which is further increased by the 

combination. The same is true for confluency in the A549 cells in the H2009 no clear 

effect of the inhibitors on cell confluency can be seen. Growth inhibition might be 

stronger in these cells when seeded at lower density. 
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Figure 5-5 Effect of LGK974 and Neratinib on Migration and Confluency of KRas 
mutant lung cancer cell lines – LGK974 sensitive cell lines. 

Indicated cell lines were seeded in the evening and treated with the inhibitors the next morning. For 
migration assay, a scratch was made through a confluent cell monolayer. Wound closure and 
confluency was monitored with Incucyte over time. Pictures were taken at the end of the run. 
LGK974 treatment clearly inhibited cell migration and propagation in the H460 cells and cell 
migration in the A427 cells. Neratinib treatment had no effect. 

The ErbB inhibitor Neratinib and the Wnt inhibitor LGK974 inhibit migration and cell 

growth, measured by cell confluency, in most tested KRAS mutant lung cancer cell 

lines, showing the importance of the two pathways.  

Murine cancer cell lines 

A murine cell line derived from R26DM.lsl-MYC/WT;KRasG12D tumours was generated 

and tested for responsiveness to the inhibitors. As the EGFR and Wnt pathways 

were increased in the more aggressive (p-Erk positive) tumour regions of these 

mice, responsiveness to ErbB and Wnt inhibitors would confirm the importance of 

the pathways in this genetic setting. A KRasG12D;Tp53null cell line that is also derived 
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from murine lung tumours was also tested. In addition to the migration assay an 

invasion assay was also performed. For invasion assays the setup is similar to 

migration assays, but the scratch is over-layered with matrigel: invasion intro 

matrigel is thus required for wound closure. 

 

 

Figure 5-6 Effect of LGK974 and Neratinib on Migration and Confluency of KRas 
mutant lung cancer cell lines – Neratinib sensitive cell lines. 

Indicated cell lines were seeded in the evening and treated with the inhibitors the next morning. For 
migration assay, a scratch was made through a confluent cell monolayer. Wound closure and 
confluency was monitored with Incucyte over time. Pictures were taken at the end of the run. 
Neratinib treatment clearly inhibited cell migration and propagation in the H358 and H441 cells. 
LGK974 treatment had no effect on H358 cells and mildly inhibited cell migration in the H441 cells. 
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Figure 5-7 Effect of LGK974 and Neratinib on Migration and Confluency of KRas mutant lung 
cancer cell lines – Dual sensitive cell lines. 
Indicated cell lines were seeded in the evening and treated with the inhibitors the next morning. For 
migration assay, a scratch was made through a confluent cell monolayer. Wound closure and 
confluency was monitored with Incucyte over time. Pictures were taken at the end of the run and 
after 10h for A549 and H2009, respectively. Neratinib and LGK974 treatment (individually and in 
combination) inhibited cell migration and propagation in the A549 cells and cells migration in the 
H2009 cells. 

Either inhibitor alone did not reliably inhibit invasion, but they did inhibit invasion 

when used in combination (Figure 5-8). Migration analysis gave a similar result with 

the combination of both inhibitors having the strongest effect on migration. Both, 

Wnt and ErbB inhibition suppressed cell propagation, but the effect was more 

pronounced when both pathways were inhibited. In the R26DM.lsl-MYC/WT;KRasG12D 

cell line proliferation seems to be blocked completely, but it has to be mentioned 

that these cells are of low contrast, which makes the Incucyte analysis difficult. 

These data confirm the importance of the two pathways in the genetic setting in 

which they were originally discovered.  
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Figure 5-8 Effect of LGK974 and Neratinib on invasion, migration and propagation of KRas 
mutant mouse cell lines. 
Indicated cell lines were seeded in the evening and treated with the inhibitors the next morning. For 
migration and invasion assay, a scratch was made through a confluent cell monolayer, in the 
invasion assay the scratch was layered with matrigel. Wound closure and confluency was 
monitored with Incucyte over time. Pictures were taken after 20h and 24h for KRasG12D;p53null and 
R26DM.lsl-Myc/WT;KRasG12D, respectively. Both cell lines are sensitive to LGK974 and Neratinib. 
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The fact that the KRasG12D;Tp53null murine cell line and most KRAS mutant human 

lung cancer cell lines are also sensitive to the inhibitors suggests that ErbB and Wnt 

signalling might be of general importance for KRas mutant lung cancer cell lines. 

5.2.2 In vivo pathway validation 

In order to determine the importance of ErbB signalling and Wnt pathway in KRas 

mutant lung cancer cell lines in vivo R26DM.lsl-MYC/MYC;KRasG12D mice were treated 

with the inhibitors. In xenograft mouse models using Her-2 mutant cell lines 

Neratinib was shown to inhibit tumour growth substantially at a dose of 40mg/kg/day 

and tumour growth was further decreased with a dose of 80mg/kg/day. Therefore, 

a dose of 40mg/kg/day was initially chosen.  

A dose of 10mg/kg/day LGK974 has been shown to be well tolerated and to 

significantly inhibit pancreatic tumour growth in vivo (Jiang et al., 2013) and was 

therefore chosen. 

Treatment was started 4 weeks post allele induction by Adeno-Cre, as tumour size 

and burden at this time point is already comparable to the well characterized time 

point of 6 weeks post induction. Mice were treated for 2 weeks and the lungs were 

histologically compared to vehicle treated mice. Neither treatment with either 

inhibitor alone nor the combination of both had any effect on overall tumour burden 

(Figure 5-9). Ki67 staining revealed that all treatment schemes resulted in tumours 

that were proliferating at a comparable level as vehicle controls or untreated 

tumours 4 weeks post Adeno-Cre infection (Figure 5-10). Also TUNEL staining 

showed that there is no significant increase in apoptosis as the number of TUNEL 

positive cells of all treatments was comparable to vehicle treated controls or 

untreated tumours 4 weeks post Adeno-Cre infection. From p-Erk and adjacent Ki67 

stainings we know that tumour progression does not correlate with a higher 

proliferation rate. As the two pathways are associated with tumour progression in 

this model it is therefore to be expected that Wnt and ErbB pathway inhibition affect 

tumour progression rather than tumour growth. Examination of lungs taken 4 weeks 

post induction revealed that p-Erk is already detectable at this time point (Figure 

5-11). However, after 2 weeks of treatment with either inhibitor or the combination 

p-Erk positive tumours could still be found. Possibly, Wnt and ErbB pathway 
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inhibition are not able to reverse tumour progression once it happened, but may still 

be able to prevent tumour progression. 

 

Figure 5-9 Tumour burden after LGK974 and Neratinib treatment starting 4 weeks post allele 
induction. 
The panels show representative overview pictures from untreated R26DM.lsl-Myc/Myc;KRasG12D control 
mice (n=10) 6 weeks post allele induction (1*107 PFU), mice that were treated for 2 weeks with 
LGK974 (10mg/kg/day) (n=5), Neratinib (40mg/kg/day) (n=5) or the combination (n=3) starting 4 
weeks post allele induction and untreated mice (n=2) 4 weeks post allele induction. Treatments 
had no effect on tumour burden. Scale bars: 300µm. 
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Figure 5-10 Proliferation and apoptosis after LGK974 and Neratinib treatment starting 4 
weeks post allele induction. 
Panels show Ki67 and TUNEL stainings of lung tumours and H&E staining from untreated R26DM.lsl-

Myc/Myc;KRasG12D control mice (n=10) 6 weeks post allele induction (1*107 PFU), mice that were 
treated for 2 weeks with LGK974 (10mg/kg/day) (n=5), Neratinib (40mg/kg/day) (n=5) or the 
combination (n=3) starting 4 weeks post allele induction and untreated mice (n=2) 4 weeks post 
allele induction. Treatments had no effect on number of Ki67 or TUNEL positive cells. Scale bars: 
20µm. 

We therefore decided to start the treatment earlier, at a time point at which tumours 

are significantly smaller and p-Erk signal cannot be detected. Importantly, the 

Neratinib dose was increased to 80mg/kg/day, given the failure of 40mg/kg/day to 

suppress p-Erk expression. 2 weeks after Adeno-Cre infection hardly any tumours 

can be found and the few detected ones are multiple times smaller than the ones 
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present at the 6 or 4 weeks time-point. Also, no p-Erk positive tumours could be 

found in this cohort. 

 

Figure 5-11 Tumour progression after LGK974 and Neratinib treatment starting 4 weeks post 
allele induction. 
Panels show images of p-Erk positive lung tumours and adjacent H&E staining from untreated 
R26DM.lsl-Myc/Myc;KRasG12D control mice (n=10) 6 weeks post allele induction (1*107 PFU), mice that 
were treated for 2 weeks with LGK974 (n=5), Neratinib (n=5) or the combination (n=3) starting 4 
weeks post allele induction and untreated mice (n=2) 4 weeks post allele induction. p-Erk signal 
was still detectable after treatment. Scale bars: 50µm. 

Preliminary data, which have to be confirmed by increasing the number of mice, 

showed that treatment with Neratinib or combined treatment of Neratinib and 

LGK974 for 4 weeks starting 2 weeks after Adeno-Cre infection resulted in a 

dramatic decrease in tumour burden, compared to vehicle control that was  
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Figure 5-12 Tumour burden after LGK974 and Neratinib treatment starting 2 weeks post 
allele induction 
The panels show representative overview pictures from untreated R26DM.lsl-Myc/Myc;KRasG12D control 
mice (n=10) 6 weeks post allele induction (1*107 PFU), mice that were treated for 4 weeks with 
Neratinib (80mg/kg/day) (n=3) or LGK974 (10mg/kg/day) and Neratinib (80mg/kg/day) (n=2) 
starting 2 weeks post allele induction and untreated mice (n=3) 2 weeks post allele induction. 
Tumour burden was clearly reduced after treatment. Scale bars: 300µm. 

comparable to the tumour burden at the 2 weeks time point (Figure 5-12). The 

experiment could not be carried out with a higher number of mice because the 

Adeno-Cre infection has to be done with mice of the same age. As the litter size is 
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usually not big enough for this kind of experiment, it needs to be repeated. These 

preliminary data suggest that Neratinib and LGK974 can interfere with tumour 

emergence and progression, but are not able to regress established tumours or 

tumour progression. Further treatments will show if Neratinib and LGK974 can 

indeed inhibit tumour emergence. 

5.2.3 In vitro siRNA screen 

In order to validate individual genes that I found to be upregulated in the p-Erk 

positive tumour regions, I performed a siRNA screen in collaboration with Kay Hewitt 

from the siRNA screening facility at our institute and Emma Shanks, who helped 

with the data analysis. The genes were selected by sorting the genes that were 

significantly upregulated (FDR < 0.05) in the p-Erk positive regions by fold change. 

Genes that have been reported to be amplified (according to cBioportal) and/or 

overexpressed (according to Oncomine) in human lung cancer were selected. From 

this selection the 51 genes with the highest fold change were chosen for the in vitro 

siRNA screen (Table 5-1). We chose to perform a deconvoluted screen, meaning 

that for each gene 4 siRNAs were tested separately. Deconvolution has the 

advantage to obtain more information about individual siRNAs than by pooling. In a 

pool siRNAs that do not considerably knockdown the gene of interest might dilute 

the effect of the siRNAs that do knockdown the respective gene. On the other hand 

deconvolution creates challenges in the data analysis that I will explain as I go 

through the data. 

Targeting cell viability and cell mobility are promising therapeutic approaches. 

Therefore both features were included in the screen. In order to simplify the 

screening process, cell viability was assessed based on nuclei count relative to the 

non-targeting control (NTC) 72h post transfection. I am aware that the term “loss of 

viability” is not perfectly accurate, as lack of proliferation and cell death can both 

contribute to a reduction in cell number, but will be further used in this chapter. 

Viability Screen 

In order to assess the importance of these genes in a human setting, KRAS mutant 

human lung adenocarcinoma cell lines were tested. 3 cell lines were included in the 

cell viability screen, A549, H2009 and H460.  
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Table 5-1 Genes that were included in the siRNA screen 
Genes that were found significantly (FDR<0.05) upregulated in the p-Erk positive R26DM.lsl-

MYC/MYC;KRasG12D  tumour regions were sorted by fold change. Genes that have been reported to 
be amplified (cBioportal) and/or overexpressed (Oncomine) were selected. From this selection the 
51 genes with the highest Fold Change were included in the screen. 

Looking at the individual siRNAs targeting the same gene it can be seen that the 

loss of viability is highly variable for most genes (Table 5-2). This might be due to 

differences in knockdown efficiency or to off-target effects.  

In order to make use of the additional information obtained by deconvoluting the 

siRNAs, I looked at the siRNAs that caused a loss of viability that was bigger than 

the average loss (Figure 5-13). For each cell line, the average loss of viability from 

all 51 genes and all 4 siRNAs for each gene was calculated. In the analysis I did not 

only consider how many siRNAs against a certain gene caused loss of viability, but 

also how consistent that was across multiple cell lines. Genes that play a role in cell 

viability for a variety of cell lines with different sets of mutations are the most 

interesting targets for therapy. Therefore only siRNAs that resulted in a loss of 

viability bigger than the mean loss in 2 or more of the tested cell lines were included 

in the analysis.  

Figure 5-13 shows the loss of viability for each individual cell line. The graph in 

Figure 5-14 contains data from all 3 cell lines. In order to rank the genes by their 

effect on viability, a scoring system was used. siRNAs that caused more than 

average loss of viability in 2 cell lines, were scored as 1, the ones that did the same 

in all 3 cell lines were scored as 2. For each gene the score was calculated by 

summing up the scores of the siRNAs that caused more than average loss of 

viability. For the graph genes were first sorted by mean loss of viability and then by 

their score (Table 5-2). The gene with the highest score (7) is flavin containing 

monooxygenase 1 (FMO1), 3 siRNAs caused more than average loss of viability in 

all 3 cell lines and the 4th one in 2 cell lines. The effect on cell viability is about 50%. 

Kinesin family member 23 (KIF23) has a score of 6 and knockdown results in loss 

of viability of more than 70%. As the effect of FMO1 and KIF23 knockdown was very 

strong and consistent across the cell lines, it would be interesting to see if this is 

specific for KRAS mutant cancer cell lines and also if the knockdown of KIF23 

affects normal cells. 
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Figure 5-13 Viability screen human KRas mutant lung cancer cell lines. 
4 individual siRNAs for each gene knockdown were used. siRNAs that resulted in loss of viability > 
mean loss in at least two of the three tested cell lines were included in the graph. Genes were 
sorted by number of siRNAs they are represented by (indicated by numbers 1-4 in the graph) and 
by loss of viability. Mean loss of viability for the individual cell lines: A549: 42.3%, H2009: 26.0% 
and H460: 27.7%. Error bars represent Standard Error. 
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Gene 
Symbol 

A549 

Sequence 1 - 
 MEDIAN 

Sequence 2 -  
MEDIAN 

Sequence 3 -  
MEDIAN 

Sequence 4 - 
 MEDIAN 

ARNTL2 51.10 30.30 31.23 16.54 

ATP13A4 53.80 -21.15 58.35 37.38 

ATP6V1G3 13.75 12.94 25.05 25.14 

B4GALT6 43.99 54.82 56.91 55.97 

BASP1 34.97 15.85 67.77 18.48 

CACNB3 68.97 29.82 42.03 34.39 

CD24 38.20 33.83 36.08 41.57 

CD38 59.96 -10.02 62.12 28.34 

CEACAM1 49.40 21.93 64.71 70.43 

CLDN4 42.93 36.45 54.85 41.43 

CMAS 69.34 58.30 33.33 57.03 

DLK1 59.09 41.59 37.56 22.80 

DSC2 45.29 22.65 56.19 36.00 

ECM1 56.01 58.01 43.23 68.26 

EREG 33.51 54.89 34.76 -10.94 

FABP5 -22.05 42.49 82.57 41.43 

FAM3C 48.32 54.12 14.52 26.87 

FMO1 41.06 48.66 58.32 73.33 

GAPDH 47.80 48.12 40.25 25.49 

GOLM1 -42.16 -18.02 80.24 42.52 

IGFBP5 71.48 60.67 44.80 34.01 

ITGA2 19.09 72.34 58.71 33.76 

ITGB4 47.78 39.42 68.32 66.76 

KIF23 58.64 86.47 55.76 -31.39 

KRT18 30.77 59.34 65.94 49.47 

KRT19 26.39 55.28 54.42 50.14 

KRT8 73.46 38.19 41.90 6.95 

LAD1 33.52 30.28 70.58 47.52 

LAMC2 78.63 67.04 48.02 22.49 

LGALS3BP 59.74 48.62 74.08 49.36 

MYRF 48.02 37.54 54.56 52.68 

NDRG1 14.89 1.94 58.10 7.85 

NT5E 70.62 18.36 36.28 11.80 

PDIA4 54.32 47.95 62.69 55.54 

PGK1 39.95 57.99 29.29 20.17 

PHLDA1 -0.91 20.72 22.49 49.97 

PLEKHA6 21.65 36.56 46.60 -2.26 

PORCN 58.06 47.70 91.51 20.79 

PTGES 25.06 45.07 22.88 23.30 

RABGAP1L 27.49 61.24 64.66 69.73 

S100A11 51.42 59.47 43.94 50.60 

S100A14 33.64 -5.58 22.16 63.92 

S100A6 57.58 69.84 38.23 63.60 

SLC2A1 82.23 68.66 52.30 67.24 

SLC38A1 28.31 53.22 9.13 57.85 

SOX9 8.93 33.53 64.01 14.38 

STK39 62.50 72.68 45.07 29.78 

TNFRSF12A 60.10 60.91 34.61 50.93 

TNFRSF21 43.63 54.87 68.77 48.19 

TSPAN8 14.76 32.30 21.98 48.90 

VCAM1 26.34 52.23 36.10 30.72 
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Gene 
Symbol 

H2009 

Sequence 1 -  
MEDIAN 

Sequence 2 -  
MEDIAN 

Sequence 3 -  
MEDIAN 

Sequence 4 - 
 MEDIAN 

ARNTL2 22.89 65.31 42.81 11.78 

ATP13A4 34.36 -5.54 18.17 40.20 

ATP6V1G3 15.93 7.51 13.00 -1.21 

B4GALT6 10.18 27.98 19.44 19.86 

BASP1 39.55 38.02 47.40 19.90 

CACNB3 45.09 8.33 38.80 20.29 

CD24 17.21 28.02 15.68 28.82 

CD38 7.81 -7.67 40.84 11.91 

CEACAM1 3.88 11.46 19.38 46.53 

CLDN4 18.01 35.27 73.79 24.38 

CMAS 36.58 22.36 25.11 38.72 

DLK1 22.28 40.68 15.22 20.51 

DSC2 9.65 12.62 9.60 24.90 

ECM1 45.30 32.94 11.62 24.35 

EREG 21.23 0.22 6.63 -4.72 

FABP5 -4.56 22.48 53.73 14.82 

FAM3C 13.44 24.00 9.33 8.59 

FMO1 39.46 37.97 40.07 61.22 

GAPDH 43.71 25.87 8.56 21.24 

GOLM1 18.69 -1.61 53.13 19.08 

IGFBP5 55.00 40.03 19.62 18.12 

ITGA2 5.83 60.29 4.18 -1.86 

ITGB4 27.52 37.23 46.84 48.56 

KIF23 73.20 83.26 88.04 -12.50 

KRT18 9.61 17.41 47.56 26.14 

KRT19 15.53 37.38 51.16 30.54 

KRT8 48.20 30.33 17.72 -6.98 

LAD1 12.22 -0.83 56.06 15.47 

LAMC2 61.89 71.82 35.00 31.88 

LGALS3BP 49.03 39.88 24.78 26.99 

MYRF 25.76 33.34 35.83 2.33 

NDRG1 22.79 6.70 52.85 11.88 

NT5E 42.82 20.57 43.86 13.83 

PDIA4 34.97 42.85 42.41 0.42 

PGK1 15.77 9.09 15.47 15.21 

PHLDA1 20.29 15.71 0.81 23.49 

PLEKHA6 24.60 57.08 26.01 7.73 

PORCN 59.87 12.62 47.71 4.72 

PTGES 25.56 38.76 34.05 7.45 

RABGAP1L 28.91 21.80 34.96 40.01 

S100A11 13.18 29.66 0.12 2.56 

S100A14 46.72 21.33 12.65 30.68 

S100A6 25.28 47.49 32.36 30.18 

SLC2A1 36.87 43.26 22.39 35.53 

SLC38A1 10.44 45.96 7.94 41.68 

SOX9 5.18 47.17 29.21 34.52 

STK39 15.22 29.89 18.75 24.03 

TNFRSF12A 19.61 29.92 -6.57 14.27 

TNFRSF21 11.50 31.82 34.76 18.63 

TSPAN8 6.80 -1.50 27.06 39.51 

VCAM1 25.49 32.14 -2.63 13.40 
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Gene 
Symbol 

H460 

Sequence 1 -  
MEDIAN 

Sequence 2 -  
MEDIAN 

Sequence 3 -  
MEDIAN 

Sequence 4 -  
MEDIAN 

ARNTL2 2.17 74.04 74.79 16.25 

ATP13A4 89.28 -25.36 35.06 -3.21 

ATP6V1G3 13.86 -3.07 -30.34 30.82 

B4GALT6 -10.94 48.71 16.65 -1.65 

BASP1 43.08 15.08 65.82 19.71 

CACNB3 44.43 22.87 72.51 60.27 

CD24 17.08 41.61 -8.11 54.70 

CD38 21.67 -48.71 38.61 1.75 

CEACAM1 9.93 -9.53 21.89 66.15 

CLDN4 12.37 18.22 72.96 54.07 

CMAS 90.71 -2.41 16.89 80.73 

DLK1 7.94 62.66 7.92 37.73 

DSC2 8.82 12.07 73.49 54.92 

ECM1 83.92 21.64 3.51 56.00 

EREG 17.45 16.88 66.94 -39.29 

FABP5 -39.22 3.75 54.80 57.03 

FAM3C 12.24 34.42 -26.86 -23.58 

FMO1 66.98 48.01 62.57 38.43 

GAPDH 54.03 -5.27 0.19 -16.24 

GOLM1 37.52 -35.77 45.48 -10.40 

IGFBP5 57.19 47.95 -6.39 0.54 

ITGA2 -25.13 68.55 4.37 -5.96 

ITGB4 55.26 14.56 94.03 50.21 

KIF23 72.92 77.24 84.54 -47.00 

KRT18 -27.40 27.66 60.17 37.30 

KRT19 -8.60 84.72 31.43 84.62 

KRT8 83.72 27.37 71.18 -8.31 

LAD1 21.17 -5.58 86.63 47.32 

LAMC2 94.71 68.25 23.29 5.92 

LGALS3BP 72.65 70.70 52.04 9.95 

MYRF 70.03 6.63 33.16 19.68 

NDRG1 7.29 -15.56 45.05 8.80 

NT5E 27.82 37.04 17.04 -1.51 

PDIA4 17.82 59.30 53.40 7.07 

PGK1 4.80 29.09 5.89 -2.54 

PHLDA1 34.52 43.62 -28.95 82.29 

PLEKHA6 22.72 27.70 25.61 32.06 

PORCN 57.48 -12.58 83.25 -22.07 

PTGES -0.44 66.41 32.72 -16.37 

RABGAP1L 24.72 28.59 46.27 85.26 

S100A11 30.23 67.84 -7.72 6.29 

S100A14 57.03 -1.83 -10.37 50.40 

S100A6 43.42 73.77 -8.69 45.59 

SLC2A1 78.13 77.84 26.39 28.91 

SLC38A1 35.35 29.34 -19.10 16.14 

SOX9 -8.80 37.02 72.85 17.27 

STK39 62.71 17.76 -7.55 6.72 

TNFRSF12A 42.20 91.49 1.75 -8.65 

TNFRSF21 3.11 32.24 44.14 46.06 

TSPAN8 -46.47 -12.09 -1.20 29.33 

VCAM1 -48.48 26.90 -22.97 -16.83 
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Gene 
Symbol 

Sequence 
1 

Sequence 
2 

Sequence 
3 

Sequence 
4 Score 

ARNTL2 0 1 1 0 2 

ATP13A4 2 0 1 0 3 

ATP6V1G3 0 0 0 0 0 

B4GALT6 0 2 0 0 2 

BASP1 1 0 2 0 3 

CACNB3 2 0 1 0 3 

CD24 0 1 0 1 2 

CD38 0 0 2 0 2 

CEACAM1 0 0 0 2 2 

CLDN4 0 0 2 0 2 

CMAS 2 0 0 2 4 

DLK1 0 1 0 0 1 

DSC2 0 0 1 0 1 

ECM1 2 0 0 1 3 

EREG 0 0 0 0 0 

FABP5 0 0 2 0 2 

FAM3C 0 1 0 0 1 

FMO1 1 2 2 2 7 

GAPDH 2 0 0 0 2 

GOLM1 0 0 2 0 2 

IGFBP5 2 2 0 0 4 

ITGA2 0 2 0 0 2 

ITGB4 2 0 2 2 6 

KIF23 2 2 2 0 6 

KRT18 0 0 2 2 4 

KRT19 0 2 2 2 6 

KRT8 2 0 0 0 2 

LAD1 0 0 2 0 2 

LAMC2 2 2 1 0 5 

LGALS3BP 2 2 1 0 5 

MYRF 1 0 2 0 3 

NDRG1 0 0 2 0 2 

NT5E 2 0 0 0 2 

PDIA4 1 2 2 0 5 

PGK1 0 1 0 0 1 

PHLDA1 0 0 0 1 1 

PLEKHA6 0 1 1 0 2 

PORCN 2 0 2 0 4 

PTGES 0 2 1 0 3 

RABGAP1L 0 1 2 2 5 

S100A11 1 2 0 0 3 

S100A14 1 0 0 2 3 

S100A6 1 2 0 2 5 

SLC2A1 2 2 0 2 6 

SLC38A1 0 2 0 1 3 

SOX9 0 1 1 0 2 

STK39 1 1 0 0 2 

TNFRSF12A 1 2 0 0 3 

TNFRSF21 0 2 2 1 5 

TSPAN8 0 0 0 2 2 

VCAM1 0 1 0 0 1 
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Table 5-2 Viability data of the KRas mutant human lung Adenocarcinoma cell lines A549, 
H2009 and H460. 
Loss of Viability was calculated based on the cell number relative to non-targeting control (NTC) 
72h after transfection. Individual values of each siRNA are shown, Loss of Viability > mean Loss of 
Viability are highlighted in yellow if Loss of Viability was only > mean Loss of Viability in the shown 
cell line, highlighted in green if Loss of Viability > mean Loss of Viability in 1 further cell line 
(assigned a score of a) and highlighted in red if Loss of Viability > mean Loss of Viability in all three 
cell lines (assigned a score of 2). Scores of individual siRNAs were summed up for each gene. 

Solute carrier family 2, member 1 (SLC2A1), integrin beta 4 (ITGB4) and keratin 19 

(KRT19) have a score of 6 and knockdown has a robust effect on cell viability with 

an average loss of more than 50% for all 3 genes. Laminin gamma 2 (LAMC2) and 

PORCN knockdown affect cell viability with about 65% with still good scores of 5 

and 4, respectively.  

 

Figure 5-14 Summarized Viability of human KRas mutant lung cancer cell lines. 
4 individual siRNAs for each gene knockdown were used. siRNAs that resulted in loss of viability > 
mean loss in at least two of the three tested cell lines were included in the graph. Numbers 
represent a score: siRNAs that caused loss of viability > mean loss in all three cell lines received a 
score of 2, in two cell lines received a score of 1. Scores of individual siRNAs were summed up for 
each gene. Genes were sorted by score and by loss of viability. Knockdown of FMO1, KIF23, 
SLC2A1, ITGB4, KRT19, LAMC2 and PORCN caused the highest loss of viability with a good 
consistency among the cell lines. Mean loss of viability for the individual cell lines: A549: 42.3%, 
H2009: 26.0% and H460: 27.7%. Error bars represent Standard Error. 

Keratin 8 (KRT8), claudin4 (CLDN4), integrin alpha 2 (ITGA2), pleckstrin homology 

domain containing, family A member 6 (PHLDA1) and desmocollin 2 (DSC2) have 

with about 65% average loss of viability a strong effect, however it is less consistent 

in terms of number of siRNAs and consistency across the cell lines, therefore the 

knockdown needs to be confirmed for these 5 genes. 
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To summarize the effect of knockdown of the 51 selected genes, FMO1, KIF23, 

SLC2A1, ITGB4, KRT19, LAMC2 and PORCN cause the highest loss of viability in 

KRAS mutant human lung Adenocarcinoma cell lines with a good consistency 

among all tested cell lines. KRT8, CLDN4, ITGA2, PHLDA1 and DSC2 might be 

relevant for cell viability of these cells, but the knockdown has to be confirmed. 

Migration screen 

As readout for migration 48h after transfection a scratch was made through a 

confluent monolayer of cells. Using long-term time lapse Incucyte video-microscopy, 

wound closure was monitored over time and the wound width relative to the initial 

scratch was calculated. The experimental setup is based on the effect of contact 

inhibition that blocks cell proliferation once cells are confluent (McClatchey and Yap, 

2012). Over-confluency is problematic as well, as the pin of the wound maker then 

tends to pull out cells next to the wound and cells adjacent to the scratch might be 

uplifted. It is therefore crucial that the scratch is made through a cell monolayer that 

is 100% confluent. If cells are less confluent, wound closure might occur as a result 

of cell proliferation. 

The migration screen was performed with 2 cell lines that migrate efficiently: A549 

and H2009. H460 could not be screened for migration, as they hardly migrate at all.  

Analysing the migration screen data was a challenge as many siRNAs had a strong 

effect on cell viability. Cells that are less viable as a result of cell death or lack of 

cell proliferation might be less motile and migrate less. Moreover, less viable cells 

are likely to be less confluent at the time of the scratch (cell number was optimized 

for NTC), which can influence the result of the migration assay. As a transfection 

control we used “Allstars for cell death”, a mixture of siRNAs that targets key 

regulators of cell viability and kills most transfected cells. Allstars transfected wells 

which contained hardly any cells always gave very random relative wound density 

(RWD) values, confirming that cells with a big loss of viability give unreliable results. 

Nevertheless I first had a look at the overall results including all siRNAs. In the 

migration assay viability based on nuclei count was again determined at the end of 

the experiment. The results were different from the viability screen with a much 

lower average loss of viability. This is probably because the cells are seeded and 

transfected at a much higher density for the migration assay. This is likely to 
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decrease the transfection efficiency (even though transfection efficiency was high 

enough to kill the Allstars transfected cells) and moreover, more confluent cells 

might need stronger effects to lose viability.  

 

Figure 5-15 Migration screen human KRas mutant lung cancer cell lines. 
4 individual siRNAs for each gene knockdown were used. All siRNAs were included in the graph. 
Mean Loss of Viability was plotted against mean Relative Wound density for each gene. In the 
A549 cells knockdown of MYRF, KIF23, ITGB4, SLC2A1, LAMC2, SOX9, S100A14, B4GALT6 and 
VCAM1 had the strongest effect on RWD. In the H2009 cells knockdown of KIF23, DLK1, ARNTL2, 
Sox9 and LAMC2 had the strongest effect on RWD. 

In Figure 5-15 viability is plotted against relative wound density (RWD) for both cell 

lines individually. In the A549 cell line myelin regulatory factor (MYRF), KIF23, 

ITGB4, SLC2A1, LAMC2, SOX9, S100 calcium binding protein A4 (S100A4), UDP-

Gal:betaGlcNAc beta 1,4-galactosyltransferase, polypeptide 6 (B4GALT6) and 

vascular cell adhesion molecule 1 (VCAM1) siRNAs have the strongest effect on 

RWD. Several of them had also a high score in the viability screen and MYRF 

siRNAs reduced viability with an average of almost 50%. Knockdown of S100A14, 

B4GALT6 and VCAM cause only moderate loss of viability, so knockdown of these 

3 genes seem to inhibit migration without considerably affecting viability. Then on 

the other hand there is lectin, galactoside-binding, soluble, 3 binding protein 

(LGALS3BP), whose knockdown causes a big loss of viability, but according to the 

RWD value they seem to migrate fine. 
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Figure 5-16 Migration without Loss of Viabilty > 30%. 
4 individual siRNAs for each gene knockdown were used. siRNAs that caused Loss of Viability > 
30% were excluded from the graph. Mean Loss of Viability > non-targeting control (NTC) is shown. 
A549: MYRF, KIF23, ITGB4 and SLC2A1 disappeared from the graph because low RWD was due 
to high loss of viability. RWD values for SOX9, B4GALT6 and VCAM remained low. H2009: KIF23 
was removed due to high loss of viability, RWD of DLK1, ARNTL2, SOX9 and LAMC2 did not 
change. N>=2, Error bars represent Standard Error and are shown for n>=3. 

In the H2009 cell line KIF23, delta-like 1 homolog (DLK1), aryl hydrocarbon receptor 

nuclear translocator-like 2 (ARNTL2), SOX9 and LAMC2 siRNAs reduce the RWD 

considerably. In the migration screen loss of viability was low for the vast majority 

of siRNAs and KIF23 is the only one with a high average loss of viability of more 

than 40%. Therefore the low RWD of the other 4 genes appears to be solely due to 

migration inhibition.  
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Figure 5-17 Combined migration graph. 
4 individual siRNAs for each gene knockdown were used. Relative wound density from all genes 
are shown. siRNAs that caused more than 30% loss of viability were excluded from the graph. 
Lines indicate respective Relative Wound Density of non-targeting control. Knockdown of SOX9, 
DLK1 and ARNTL2 had the strongest effects in both cell lines. N>=2. 

In order to account for an influence of viability loss on RWD data, I excluded all 

siRNAs that caused more than 30% of viability and only included genes that were 

then still represented by 2 or more siRNAs. 30% is an arbitrarily chosen number, 

assuming that a loss of viability up to 30% does not have too dramatic effects on 

the migration assay. The upper panel in Figure 5-16 shows for A549 the RWDs that 

are lower than the NTC. MYRF, KIF23, ITGB4 and SLC2A1 disappeared because 

only the siRNAs that caused high loss of viability gave rise to low RWD numbers. 

LAMC2 and S100 calcium binding protein A14 (S100A14) RWD values are still 

below NTC, but much higher than before removing the siRNAs that cause high loss 

of viability. SOX9, B4GALT6 and VCAM siRNAs still give rise to low RWD numbers 

below 60%, which is much lower than NTC (~80%). Possibly, the siRNAs that cause 

loss of viability result in a stronger knockdown than the ones that only inhibit 

migration, but this speculation needs to be confirmed by testing the knockdown of 

the individual siRNAs. Besides these 3 genes knockdown of phosphoglycerate 

kinase 1 (PGK1), S100 calcium binding protein A6 (S100A6), solute carrier family 
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38, member 1 (SLC38A1), EREG and tumor necrosis factor receptor superfamily, 

member 12a (TNFRSF12A) cause the strongest reduction in RWD. 

The lower panel in Figure 5-16 shows for H2009 the RWDs that are lower than the 

NTC. This was the case for a relatively small number of genes many siRNAs 

resulted in a RWD higher than NTC. It might have been better to run the assay for 

longer. According to previous experiments the H2009 migrated very quickly, this is 

why the assay was stopped after 20h. But by then the NTC wound was only about 

60% closed. A better wound closure probably would have given a better separation 

of the individual genes. As only KIF23 was removed from the analysis, the values 

for DLK1, ARNTL2, SOX9 and LAMC2 did not change.  

Looking at the combined RWD graph for both cell lines, SOX9, DLK1 and ARNTL2 

siRNAs reduced RWD considerably in both cell lines (Figure 5-17). Knockdown 

needs to be confirmed to exclude the possibility of a non-target effect. 

5.3 Discussion 

Treatment of KRas mutant cancer with EGFR inhibitors is controversial, as 

mutations, which lead to constitutive KRas signalling are thought to make the cell 

independent from upstream signalling. Moreover, treatment of KRAS mutant lung 

cancer with EGFR inhibitor has proven to have no benefit for the patients (Pao et 

al., 2005). However, we observed that in a subset of R26DM.lsl-MYC/MYC;KRasG12D 

driven tumours p-Erk positive regions are emerging, suggesting that KRas 

downstream signalling is higher in these subpopulations. The RNA sequencing data 

revealed that high levels of ErbB family ligands are associated with p-Erk positivity 

in these tumours. As these ligands do not only bind EGFR but also to the three other 

ErbB family members and heterodimers, all 4 ErbB family members might contribute 

to further activation of the MAPK pathway (Figure 5-18).  

Treatment with the pan-ErbB inhibitor Neratinib confirmed that most tested KRAS 

mutant cell lines are sensitive to pan-ErbB inhibition. It would be interesting to 

investigate which additional mutations favour or disfavour treatment outcome. In the 

siRNA screen knockdown of EREG had no strong effect on viability in the human 

cell lines. EREG knockdown does inhibit migration in the A549, but not in H2009. It 

is possible, that by inhibiting EREG alone cells are not greatly affected, as they 
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might be able to compensate its loss by upregulating other pan-ErbB ligands. This 

would explain why Neratinib treatment had a stronger effect on viability and 

migration in the tested cell lines.  

In vivo preliminary data suggest that Neratinib treatment interferes with tumour 

formation in the R26DM.lsl-MYC/MYC;KRasG12D model. The number of treated mice will 

be increased to confirm this and as an additional control experiment, mice are 

currently being treated with the EGFR inhibitor Erlotinib, to investigate if pan-ErbB 

inhibition is indeed more effective than EGFR inhibition alone. This experiment is 

currently ongoing.  

 

Figure 5-18 Model of how pan ErbB family ligands contribute to MAPK signalling. 
Ereg can bind and activate EGFR and ErbB4 homodimers and to all heterodimers of the 4 ErbB 
family members. Increased signalling through all ErbB family members would explain why part of 
the KRas mutant tumours present increased p-Erk signal. 

Inhibition of Wnt signalling in vitro proved to inhibit migration and cell confluency in 

multiple KRAS mutant cell lines. PORCN siRNA knockdown decreased viability in 

all three human cell lines, prominently in the A549. SOX9 knockdown had only a 

weak effect on cell viability, but strongly inhibited migration in the A549 and H2009. 

The importance of Wnt signalling for lung cancer has been shown recently in a BRaf 

driven mouse model (Juan et al., 2014). Treatment with LGK974 prevented tumour 

formation, which was rescued by sustained Myc or stabilized β-catenin expression. 
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The Braf and KRas models differ, as KRas activates MAPK and PI3K signalling and 

Braf activates only MAPK signalling. Braf mutant lung tumours become senescent 

and stop proliferating soon after tumour formation, whereas KRas mutant lung 

tumours do not become senescent. Moreover in the Braf model Myc overexpression 

helps the tumour to overcome senescence. The observation that inhibition of tumour 

formation by Porcupine inhibition is rescued by downstream actors Myc and β-

catenin, might explain why Porcupine inhibition had no effect on proliferation or p-

Erk positivity in the R26DM.lsl-MYC/MYC;KRasG12D model. Deregulated Myc expression 

might make the tumour independent from upstream inhibition. On the other hand, I 

showed that R26DM.lsl-MYC/WT;KRasG12D cells are sensitive to Porcupine inhibition in 

vitro. Treatment outcomes in vivo can be very different from in vitro, as the organism 

adds many additional factors, such as immune system and tumour environment. 

Therefore even though both pathways are associated with tumour progression in 

our model, Porcupine inhibition might not increase the effect of ErbB inhibition alone. 

Instead, inhibition of Myc downstream effectors might be more efficient. 

In order to show that the two inhibitors indeed inhibit the respective pathways, it 

would be good to show a cellular response on protein level. Sox9 and Myc are both 

Wnt targets, therefore they are expected to decrease after LKG974 treatment. In 

the LGK974 resistant cell lines H358 and H441 Wnt targets might not go down 

because the cells found a way to circumvent pathway inhibition. Moreover protein 

levels of Wnt targets after higher LGK974 concentrations could be determined, as 

the H358 and H441 cell lines might be sensitive to higher LGK974 concentrations, 

which is also suggested by the drug titration (Figure 5-3). Also it would be good 

determine in vivo by IHC if the levels of the Wnt targets Sox9 and Myc decrease 

upon LGK974 treatment. 

In order to show evidence of inhibition of ErbB signalling, the levels of 

phosphorylated ErbB receptors could be determined. Phosphorylation of EGFR at 

Tyr1068 for instance activates EGFR and the downstream MAPK pathway (Rojas 

et al., 1996). Downstream of the ErbB receptors, phosphorylation of members of the 

MAPK pathway, such as Erk1/2 phosphorylation at Tyr202/Tyr204 could be 

measured. Moreover, determining Epiregulin levels would be important, as 

oncogenic KRas has been shown to induce Epiregulin expression (Sunaga et al., 

2013). Epiregulin itself on the other hand binds to ErbB family members and 
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contributes in this way to MAPK signalling. Therefore downregulation of Epiregulin 

by ErbB inhibition would confirm its role as an oncogenic MAPK signalling target. A 

good cell line to start with would be H358, as it has been shown to have high 

Epiregulin levels and Epiregulin levels have been shown to go down upon 

knockdown of mutant KRas (Sunaga et al., 2013). In the Neratinib resistant cell lines 

H460 and A427 however, MAPK signalling might not be inhibited, which could 

explain resistance to Neratinib, if this is the case. In vivo, Neratinib treatment of 

R26DM.lsl-MYC/MYC;KRasG12D for two weeks starting 4 weeks after allele induction could 

not suppress p-Erk positivity. In order to test if the inhibitor is at least able to inhibit 

phosphorylation of the ErbB receptors, tumours could be stained by IHC using 

phospho-specific antibodies.  

In addition to the ErbB and Wnt pathways, I validated several individual p-Erk 

associated genes that showed effects in our in vitro analyses. I then examined the 

literature in order to find out if their role in viability and or migration has been reported 

before or if there is a functional explanation.  

Kif23 is a member of the kinesin-like protein family. Kinesins are involved in 

organelle transport along the microtubule and chromosome movement during cell 

division (Hornick et al., 2010; Neef et al., 2006). It has been shown that Kif23 

downregulation reduces proliferation of glioma cells (Takahashi et al., 2012), 

confirming its role in cell division. Moreover, KIF23 mutations are associated with a 

disease called congenital dyserythropoietic anemia type III, arising from defects in 

erythropoiesis probably due to proliferative defects in erythrocyte precursor cells 

(Liljeholm et al., 2013). The crucial role in cell proliferation would explain the 

dramatic decrease in cell number caused by KIF23 knockdown. In the sequencing 

data, the p-Erk negative samples had an average Kif23 transcript read count of 

>200, suggesting that the gene is essential in proliferating cells. Before considering 

KIF as a potential therapeutic target it will be important to test its knockdown in 

normal, untransformed cells. 

Three isoforms of FMOs exist. Fmo1 is primarily expressed in fetal liver and Fmo2 

in adult liver. FMOs are involved in N-oxydation of trimethylamines, a reaction that 

stabilizes proteins and has been shown to protect proteins from Urea denaturising 

effects (Ganguly, 2015).  
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Slc2a1 is also called glucose transporter protein type 1 (Glut1). It is located in the 

plasma membrane and facilitates glucose import into the cell (Olson and Pessin, 

1996). Cancer cells are highly dependent on glucose and an increased glycolytic 

metabolism is associated with cancer progression (Pertega-Gomes et al., 2015; 

Vander Heiden et al., 2009; Ward and Thompson, 2012). The effect on cell viability 

by knocking down this transporter highlights the dependence on glucose 

metabolism. 

Itbg4 is a receptor for laminins and high expression is associated with cancer 

invasion and migration (Masugi et al., 2015; Yang et al., 2013). 

Krt19 belongs to the keratin family and is a type I cytokeratin, which are acidic and 

usually form heterodimers with basic dimers. The small Keratin 19 is an exception, 

as it does not dimerize (Moll et al., 1982). Keratins are important for epithelial 

structure and Keratin 19 serves as an epithelial cell marker.  

Dlk1 is an EGF repeat containing transmembrane protein that gets cleaved by 

tumour necrosis factor alpha converting enzyme (TACE), which generates a soluble 

form of Dlk1 (Wang and Sul, 2006). Dlk1 is expressed in preadipocytes and inhibits 

adipocyte differentiation (Smas et al., 1997). It was shown in MEFs that inhibition of 

adipocyte differentiation is due to MEK/ERK activation (Kim et al., 2007). 

Interestingly MEK/ERK pathway activation through Dlk1 upregulates Sox9 (Wang 

and Sul, 2009). Sox9 is a Wnt target, which is involved in chrondrogenesis and 

osteogenesis. The fact that Dlk1 and Sox9 were both among the top hits in the 

migration screen supports each other’s role in cell migration. Sox9 is a Wnt target, 

whereas Porcn is crucial for Wnt secretion and thereby much further upstream than 

Sox9. Interestingly Porcn was in our setting more important for cell viability than 

migration. But as mentioned before these two characteristics influence each other 

and cannot be clearly separated, at least not in the used experimental setup. 

Arntl2 is a basic helix-loop-helix transcription factor and is likely to play a role in 

circadian clock regulation (Hogenesch et al., 2000). 

Laminins are extracellular glycoproteins and make up the major noncollagenous 

component of basement membranes (Malinda and Kleinman, 1996). They are 

composed of alpha, beta and gamma chains. Different alpha, beta and gamma 
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chains are combined to form heterotrimeric isoforms. Lamc2 is found in lung, skin 

and kidney epithelial cells. It was recently shown in a xenograft model that Lamc2 

enhances the metastatic potential of A549 cells (Moon et al., 2015). 

The genes that were shortlisted in the viability and migration screen give clues about 

which genes may play a role in tumour progression. Thereby the screen helped to 

narrow down the list of genes for in vivo investigation. However genes that did not 

score high in our screen might still be important for tumour progression in a different 

experimental setting or in different cell lines. Therefore in vivo investigation is clearly 

needed to confirm the importance of these genes in tumour progression. 

I was able to generate a cell line from R26DM.lsl-MYC/WT;KRasG12D tumours. As an 

internal validation, it would have been useful to also screen this cell line. Validation 

of the p-Erk upregulated genes in the same genetic background as the tumours that 

the data were derived from would confirm that the p-Erk positive tumour cells 

depend on high expression of these genes. I hypothesize that the cells that survived 

and were able to propagate in culture are at least partly derived from p-Erk positive 

tumours. P-Erk could be detected in protein lysates from these cells, confirming that 

the cells are at least partially p-Erk positive (not shown).  

We actually attempted to screen the R26DM.lsl-MYC/WT;KRasG12D tumour derived 

567T3 cell line. However, the average loss of viability upon siRNA treatment was 

very low in the 567T3 cells compared to the loss of viability in the human cell lines. 

567T3 cells proved difficult to transfect, therefore it is possible that the knockdown 

was not as efficient as it could have been with a higher transfection rate. The poor 

transfection rate did not generate any useful data. However, I think the fact that a 

significant number of genes seem to be important for viability and migration of even 

genetically unrelated (apart from the KRas mutation) human lung cancer cell lines, 

suggests that these gene have a role in tumour progression of KRas mutant cancer. 
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6 Final discussion and future directions 

6.1 The role of moderately deregulated MYC expression 
in the lung 

I showed that low levels of deregulated MYC expression, driven by the Rosa26 

promoter give rise to proliferation in the bronchioles within a few days, but did not 

lead to tumours, even in the long-term (Figure 3-4, Table 3-1 & Table 3-2). MYC 

expression did not lead to apoptosis and loss of functional Tp53 had no effect on 

short-term proliferation nor did it facilitate tumour formation (figure 3-6). This 

suggests that p53 was not engaged and hence presence or absence of p53 did not 

make any difference.  

The same MYC levels that were alone not able to initiate tumour formation did 

however accelerate KRas driven tumourigenesis (Figure 3-8). Also, I showed that 

mutant KRas stabilized MYC protein 4 days after allele induction (Figure 3-7) (Sears 

et al., 2000). So far Myc and KRas have been thought to complement each other by 

abrogating each other’s tumour suppressive functions: Myc can overcome KRas 

induced senescence and KRas can suppress Myc induced apoptosis. As MYC does 

not induce apoptosis in R26DM.lsl-MYC/MYC lungs and KRasG12D tumours are not 

senescent, this cooperative mechanism can be excluded. This shows that even Myc 

and KRas that are expressed below the tumour suppressive engaging threshold can 

cooperate in lung tumourigenesis. Moreover, this demonstrates the importance of 

Myc in KRas driven tumourigenesis. It had been shown before that Myc is essential 

for KRas driven tumourigenesis, even in established KRas mutant tumours. 

Expression of the dominant-negative Myc interacting protein Omomyc led to 

regression and eradication of established mutant KRas lung tumours (Soucek et al., 

2008; Soucek et al., 2013). MYC is amplified or mutated in 2-3% of KRAS mutant 

lung ADC (Cancer Genome Atlas Research, 2014; Gao et al., 2013). Moreover 

MGA, whose loss of function leads to increased MYC activity, is also mutated in 2-

3% of KRAS mutant lung ADC and is mutational exclusive with MYC amplification. 

The Wnt pathway, which is frequently hyperactivated in KRas mutant lung cancer 

presents another possibility to induce Myc transcription. I now showed that MYC 

overexpression accelerates mutant KRas driven lung tumourigenesis. This all 

suggests that Myc levels limit KRas driven tumourigenesis and that tumours find 

multiple ways to functionally increase Myc. 
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6.2 Pharmacological inhibition of p-Erk associated 
pathways 

I showed that deregulated MYC expression accelerates KRasG12D driven lung 

tumourigenesis. This acceleration did not only increase tumour size and burden, but 

also promoted tumour progression. Tumour progression is associated with a change 

in cell morphology and correlates with Erk phosphorylation. Erk was used as a 

progression marker in the R26DM.lsl-MYC/MYC;KRasG12D model and gene expression 

between p-Erk negative and p-Erk positive tumour regions was compared. Pathway 

analysis revealed that the Wnt pathway and ErbB signalling were strongly enriched 

in the p-Erk positive dataset. We therefore pharmacologically inhibited the Wnt and 

ErbB signalling pathways in a panel of KRAS mutant human lung ADC cell lines and 

in vivo in the R26DM.lsl-MYC/MYC;KRasG12D model. 

6.3 Targeting the Wnt pathway 

In human NSCLC, many Wnt pathway members are frequently overexpressed: 

WNT1 (Nakashima et al., 2008), WNT2 (You et al., 2004), WNT3 (Nakashima et al., 

2012) and WNT11 (Bartis et al., 2013), LRP6 (Li et al., 2004) DSH1, DSH2 and 

DSH3 (Uematsu et al., 2003; Wei et al., 2008; Zhao et al., 2010). Pathway inhibitors 

such as WNT7a (Winn et al., 2005) and WIF1 (Mazieres et al., 2004) however are 

frequently silenced. Overexpression of WNT pathway members is also associated 

with poor prognosis, which has been specifically shown for DVL-1 and DVL-3 (Zhao 

et al., 2010), and for WNT-1 (Nakashima et al., 2008), WNT-3 (Nakashima et al., 

2012) and WNT-5a (Huang et al., 2005). Moreover it has been shown that the 

canonical Wnt pathway mediates lung metastasis through LEF1 (Nguyen et al., 

2009). Conversely, high β-CATENIN levels are associated with good prognosis, 

which is likely due to its function in cell adhesion (Hommura et al., 2002; Kren et al., 

2003).  

Despite activation of the canonical Wnt pathway involving β-catenin stabilization, 

Wnt ligands can also activate so called “non-canonical Wnt pathways” (Gordon and 

Nusse, 2006). The two best-described non-canonical Wnt pathways are the cell 

polarity pathway and the Wnt/Ca++ flux pathway (Wang and Malbon, 2003). The 

GTPases Rho and Rac are important players of the cell polarity pathway and are 

involved in cell migration (Schlessinger et al., 2009). In the dataset generated from 
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R26DM.lsl-MYC/MYC;KRasG12D tumours Porcupine was strongly enriched in the p-Erk 

positive samples. As Porcupine mediates post-translational modification and 

secretion of all Wnt ligands, which can signal through canonical and non-canonical 

Wnt pathways, both pathway types may be involved in tumour progression in this 

model. The strong upregulation of Sox9, a canonical Wnt pathway target, suggests 

however an important role of the canonical Wnt pathway. 

Given the frequency of Wnt deregulation in human lung cancer the Wnt pathway is 

thought to be a promising target for therapeutic intervention. Until recently the lack 

of Wnt inhibitors has limited the study of the potential benefits of therapeutic Wnt 

intervention. A new inhibitor, the anti-Fzd antibody OMP-18R5, binds and blocks 

Fzd1, Fzd2, Fzd5, Fzd7 and Fzd8 (Gurney et al., 2012). All 5 receptors are known 

to be involved in canonical Wnt signalling. OMP-18R5 was shown to inhibit tumour 

growth in xenograft models, using cells from minimally passaged human tumours. 

OMP-18R5 inhibited tumour growth in 7 of 8 xenografts using human NSCLC cells 

(Gurney et al., 2012). No information about the mutations in these cells was given. 

The lack of markers that can predict response to Wnt inhibition is a general problem 

(Jiang et al., 2013).  

With regard to KRas mutant lung cancer, Wnt pathway has been shown to be 

upregulated in a KRas mutant mouse model (Lee et al., 2009). Oncogenic Braf, 

KRas and Mek1 mutations have been shown to induce Lrp6 phosphorylation. Upon 

Wnt binding Lrp6 binds Frizzled receptors and activates Dishevelled. This 

demonstrates one possibility how MAPK signalling can upregulate the Wnt pathway 

(Lemieux et al., 2014). KRas however can also activate the Wnt pathway further 

downstream through Pi3k, which inhibits Gsk-3β and thereby leads to stabilization 

of β-catenin (Cross et al., 1995). The Wnt pathway has also been shown to 

accelerate KRas driven tumourigenesis, suggesting cooperation between KRas 

downstream signalling and Wnt pathway. (Pacheco-Pinedo et al., 2011).  

Another Wnt inhibitor is LGK974, which I used in my work to inhibit the Wnt pathway. 

LGK974 inhibits Porcupine and Porcupine itself was more than 3-fold upregulated 

in the p-Erk positive dataset, generated from R26DM.lsl-MYC/MYC;KRasG12D tumours, 

suggesting a functional role in tumour progression. Also Sox9 and CyclinD1, both 

targets of the Wnt pathway were more than 15-fold and 2-fold enriched in the p-Erk 

positive dataset, respectively. I showed in a panel of KRAS mutant NSCLC cell lines, 
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that LGK974 inhibits cell propagation and migration (Figure 5-3 – Figure 5-7). Also, 

knockdown of Porcupine had a strong effect on cell viability in the A549 cell line 

(Figure 5-15). In vivo however, in the R26DM.lsl-MYC/MYC;KRasG12D model, LGK974 

treatment did not decrease overall tumour burden and proliferation rate and did not 

suppress Erk phosphorylation (Figure 5-9 – Figure 5-11).  

In a mutant Braf driven lung cancer mouse model, LGK974 was shown to drastically 

decrease tumour burden (Juan et al., 2014). Noticeably, the treatment was started 

2 weeks after allele induction, whereas I started the treatment 4 weeks after allele 

induction in the R26DM.lsl-MYC/MYC;KRasG12D model. Hence, earlier treatment start 

might also be more successful in our model. More importantly, it was shown in the 

Braf model that sustained β-catenin or Myc (driven by the Rosa26 promoter) 

expression could completely rescue the LGK974 effect on tumour burden. Myc 

upregulation through loss of APC has been shown to be ~4 fold (Sansom et al., 

2004). I showed in MEFs, that Myc transcripts driven by the Rosa26 promoter are 

not even 2-fold induced. This suggests that the Wnt phenotype is mainly attributed 

to Myc upregulation and that even slightly elevated Myc levels are striking. This 

might however also explain why LGK974 failed to reduce tumour burden in the 

R26DM.lsl-MYC/MYC;KRasG12D model. Myc is driven by the Rosa26 promoter in our 

model, which is not known to be regulated by Wnt signalling. Therefore it is to be 

expected that deregulated expression of a key Wnt target gene interferes with 

upstream inhibition. In the R26DM.lsl-MYC/MYC;KRasG12D model two important 

downstream Wnt players are induced: Gsk-3β through Pi3k signalling and MYC 

through overexpression. Noticeably, MYC is overexpressed artificially in our system, 

which is different from MYC overexpression in human cancer. Hence, when Myc is 

overexpressed and driven by endogenous, Wnt responsive promoters, Wnt 

inhibition might be much more efficient.  

Interestingly, endogenous Myc transcripts were not enriched in the p-Erk positive 

dataset and protein levels also did not correlate with p-Erk positivity, as I showed by 

IHC. Moreover, Sox9 was strongly enriched in the p-Erk positive dataset. These two 

facts suggest, that the R26DM.lsl-MYC/MYC;KRasG12D model is different from the Braf 

model and that Myc might be a less important Wnt target in our model.  
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I hypothesize, that Wnt inhibition further downstream e.g. through TCF/LEF 

transcriptional inhibition would be more successful in the R26DM.lsl-MYC/MYC;KRasG12D 

model. 

6.4 Targeting ErbB signalling 

14% of lung ADCs are mutant for EGFR (ErbB1) (Cancer Genome Atlas Research, 

2014). EGFR mutant lung cancers are sensitive to EGFR inhibition through Erlotinib 

and Gefitinib (Khozin et al., 2014; Maemondo et al., 2010). KRAS mutations are 

however mutually exclusive with EGFR mutations and KRAS mutant lung cancers 

are resistant to EGFR inhibition (Pao et al., 2005). 

Inhibition of KRas mediated signalling through inhibition of upstream signals is 

difficult for two reasons: 1) KRas can be activated by the large family of receptor 

tyrosine kinases (RTKs) and blocking every single one of them would be 

challenging. 2) mutant KRas has a decreased GTPase activity, which leads to 

constitutive signalling and makes KRas largely independent from activation through 

upstream signals.  

I observed in the R26DM.lsl-MYC/MYC;KRasG12D model that allele induction gives rise to 

tumours that are largely p-Erk negative and increased Erk phosphorylation, which 

is detectable by IHC, is a sporadic event that likely depends on additional, MAPK 

signalling upregulating incidents. Moreover, the pan-EGFR ligand Ereg together 

with other ErbB ligands (Areg, TGF-α and HB-EGF) were manifold enriched in the 

p-Erk positive samples, suggesting that upstream signalling can contribute to 

increased KRas activity and downstream signalling.  

In vitro, treatment with the pan-ErbB inhibitor Neratinib reduced cell propagation and 

suppressed migration in a panel of KRAS mutant lung ADC cell lines. In vivo 

however, Neratinib did not decrease overall tumour burden nor did it suppress Erk-

phosphorylation (Figure 5-9 - Figure 5-11). This might have several reasons: 1) 

Neratinib did not effectively inhibit all 4 ErbB family members. To answer this 

question, a decrease in phosphorylation of the individual ErbB proteins needs to be 

confirmed. 2) Inhibition of upstream signals through ErbB might not efficiently inhibit 

mutant KRas. As mutant KRas is able to signal independently without activation 

through upstream signals, it is not be expected that abrogation of upstream signals 
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would completely inhibit KRas. The upregulation of ErbB family ligands in the p-Erk 

positive regions suggests that upstream signals can still increase KRas activity. As 

a consequence, inhibition of upstream signals should result in decreased KRas 

activity. On the other hand roughly 500 genes were upregulated in the p-Erk positive 

samples and only a subset of them is involoved in ErbB/MAPK signalling. These 

genes might be able to compensate for ErbB-inhibition. Combined treatment with 

the Wnt inhibitor LGK974 provided however no benefit. 3) Other RTKs might 

compensate for ErbB suppression. KRas cannot only be activated through ErbB 

family members, but also through other RTKs, such as fibroblast growth factor 

receptors (FGFR), vascular endothelial growth factor receptors (VEGFR) and RET 

receptors. These receptors might get activated upon ErbB inhibition and be able to 

compensate. 4) pan-ErbB inhibition can prevent tumour progression but not reverse 

it. Once MAPK signalling is active it can be further increased through positive 

feedback loops. Phosphorylated Erk can for instance activate Raf by inhibiting the 

Raf kinase inhibitor protein (RKIP) (Shin et al., 2009). This suggests that once a 

certain level of MAPK signalling is reached, it is able to maintain itself and 

substantial intervention is required to interrupt this feedback mechanism.  

I started treatment of R26DM.lsl-MYC/MYC;KRasG12D mice with Neratinib 4 weeks after 

allele induction. At this time point p-Erk signal is already detectable in some 

tumours. Therefore an earlier treatment start before the occurrence of detectable 

Erk phosphorylation might be more successful. Preliminary data with treatments 

starting 2 weeks post induction suggest that this is indeed the case and that 

Neratinib treatment interferes with tumour emergence and progression. 

6.5 Validation of individual p-Erk associated genes 

Roughly 500 genes were found to be upregulated in the p-Erk positive dataset. In 

order to validate their importance in KRas mutant lung cancer, an in vitro screen 

with 3 KRas mutant human lung ADC cell lines (A549, H2009 and H460) was 

performed. 51 genes that were most highly and significantly (p<0.05) regulated and 

that had been reported to be amplified (cBioportal) and/or overexpressed 

(Oncomine) in human lung cancer were selected for the screen.  

Data analysis revealed, that most of the tested genes play a role in viability of all 3 

cell lines. Knockdown of FMO1, KIF23, SLC2A1, ITGB4, KRT19, LAMC2 and 
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PORCN reduced viability most consistently across all cell lines. SOX9, DLK1 and 

ARNTL2 were most important for cell migration in the A549 and H2009 cell lines. 

I sought to further investigate the role of these genes in human lung cancer. An 

online Kaplan Meyer analysis tool (Gyorffy et al., 2013) was used to investigate how 

expression levels of these genes correlate with overall survival (OS) and 

responsiveness to chemo- and radiotherapy of human lung cancer patients. High 

expression of 33 of the 51 tested genes was associated with significantly (p<0.05) 

altered OS in lung cancer patients (n=1926) and 25 of them were associated with 

decreased OS. Histological analysis of subgroups revealed that 27 genes were 

associated with decreased OS in lung ADC (n=719), but only 3 genes were 

associated with decreased OS in SCC (n=525). This supports the classification of 

the R26DM.lsl-MYC/MYC;KRasG12D tumours as representative for human ADC. 

In the Adenocarcinoma subgroup, 17 genes had a significant hazard ratio (HR) 

above 1.5. The strongest reduction in OS was associated with high expression of 

GAPDH (HR = 3.34), and with high expression of SLC2A1 (GLUT1; HR = 2.55). 

Other indicators of poor OS include S100 proteins A11 (HR = 2.32) and A6 (HR = 

1.96), and structural proteins KRT8 (HR = 2.09) and KRT18 (HR = 1.99). 

High expression of 5 genes was associated with poor response to chemotherapy 

(n=176): SLC2A1 (HR=1.96), S100A11 (HR=1.89), FABP5 (HR=1.69), GAPDH 

(HR=1.68) and ARNTL2 (HR=1.67) and two of them were also associated with poor 

response to radiotherapy (n=70): ARNTL2 and FABP5. High expression of 4 more 

genes was associated with poor response to radiotherapy: S100A14 (HR=1.93), 

PHLDA1 (HR=1.93), CD24 (HR=1.91) and EREG (HR=1.89).  

These data suggest, that a considerable number of genes that were found to be 

upregulated in p-Erk positive lung tumour regions of R26DM.lsl-MYC/MYC;KRasG12D mice 

play an important role in human NSCLC. 

6.6 Serum markers for early disease detection 

In the dataset generated from R26DM.lsl-MYC/MYC;KRasG12D tumours among the 

highest significantly upregulated genes in the p-Erk positive samples were several 

genes that encode for secreted proteins. The highest enriched one was Ereg (~24-
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fold), followed by Areg (~4-fold), Bmp-4 (~4-fold), HB-Egf (~2.5-fold) and TGF-α 

(~2.5-fold). During tumourigenesis tumour cells produce and secrete an increased 

amount of signalling molecules, which may be valuable for early diagnosis 

(Buckhaults et al., 2001; Sporn and Roberts, 1985; Welsh et al., 2001). In cancers 

other than lung cancer proteins that are found in the blood serum are used for 

diagnosis. For instance Alpha-fetoprotein (AFP), Prostate-specific antigen (PSA) 

and cancer antigen 125 (CA-125) are used for liver, prostate and ovarian cancer 

diagnosis, respectively.  

For lung cancer several markers have been found to be elevated in lung cancer 

patients: Carcinoembryonic antigen (CEA) (Okada et al., 2004), Plasma kallikrein 

(KLKB1) (Heo et al., 2007), Haptoglobin β chain (HP β) (Kang et al., 2011) and 

Complement component 9 (C9) (Narayanasamy et al., 2011). No markers for 

diagnosis are however in clinical use so far. Most markers were identified in already 

diagnosed lung cancer patients; therefore they might not be detectable in early 

disease. The above mentioned genes that encode for secreted proteins were found 

to be elevated in the p-Erk positive R26DM.lsl-MYC/MYC;KRasG12D tumour regions. 

These advanced, p-Erk positive regions are very sporadic at the investigated time 

point and just start to emerge. Therefore the data represent markers of early disease 

progression and might be useful for early diagnosis. In order to investigate the 

potential use of these secreted proteins as early markers, the comparison of Ereg 

levels in the blood between R26DM.lsl-MYC/MYC;KRasG12D mice 6 weeks after allele 

induction and uninduced mice, is planned. If we can confirm that Ereg serum levels 

are significantly elevated in tumour bearing mice it would be informative to extend 

the analysis to other (KRas mutant) lung cancer mouse models. Ereg might be a 

good candidate, as its expression levels were manifold enriched in the p-Erk positive 

samples. If tumour emergence and early progression is indeed associated with 

drastic increase in Ereg levels, the difference to serum from cancer-free patients 

should be clear and hopefully result in low false-positive rates. It is however more 

likely that a combination of markers will be used for diagnostic purposes, rather than 

one marker alone. 
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Figure 6-1 In vivo shRNA screen. 
shRNAs against potential tumour progression genes are cloned in cis with Cre recombinase into 
lentiviral vectors and pool containing vectors with different shRNAs is used to infect R26DM.lsl-

MYC/MYC;KRasG12D mice by intranasal delivery. Cells that are infected and recombine the alleles also 
express the shRNA. At the end of the experiment, p-Erk negative and p-Erk positive regions are 
laser captured, separately pooled and screened for the presence of the shRNAs. P-Erk negative 
samples should contain all shRNAs from the pool, in the p-Erk positive samples shRNAs against 
genes required for tumour progression should be missing. 

The ability to reliably detect serum markers in a simple blood test would be a non-

invasive, cost-effective method to increase early diagnosis of lung cancer. 

6.7 Future directions 

In the in vitro siRNA screen 3 KRas mutant human lung ADC cell lines were 

screened for 51 genes that were found to be enriched in p-Erk positive tumour 
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regions from R26DM.lsl-MYC/MYC;KRasG12D mice. The screen was performed to narrow 

down the list of genes to be tested in an in vivo shRNA screen. Knockdown of SOX9, 

DLK1 and ARNTL2 considerably reduced migration in the H2009 and A549 cell 

lines. FMO1, KIF23, SLC2A1, ITGB4, KRT19, LAMC2 and PORCN were most 

important for viability of all 3 tested cell lines (A549, H2009, H460). In order to 

validate their role in tumour progression in vivo, shRNAs will be cloned in cis with 

Cre recombinase into lentiviral vectors and a pool, containing vectors with different 

shRNAs will be used to infect R26DM.lsl-MYC/MYC;KRasG12D mice by intranasal delivery 

(Figure 6-1). Any cell that recombines the alleles will also express the shRNA. At 

the end of the experiment (6 weeks after allele induction or later) p-Erk negative and 

p-Erk positive tumour regions will be laser captured, separately pooled and 

screened for the presence of the shRNAs. The p-Erk negative samples should 

contain all shRNAs from the pool, unless the respective gene is required for tumour 

initiation. In the p-Erk positive samples, shRNAs against genes that are essential 

for tumour progression should be missing. A follow-up experiment with inducible 

shRNAs could then be performed to test the effect of knockdown of these genes on 

established tumours. 
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