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Abstract 
In the field of tissue engineering complex 3D architecture has become increasingly relevant in the 

pursuit of precisely engineered control over living tissue. It is needed to recreate the heterogeneous 

and complex arrangements of cells seen in nature, and to be able to influence their proliferation, 

differentiation and fate. A method for the 3D structuring of cells is therefore desired and is 

something standard lithographic methods cannot provide - the precision engineered 3D cellular 

niche. This work transfers traditional 2D lithographic techniques used in MEMS (E-beam lithography, 

photolithography, soft lithography and nanoimprint lithography) to the construction of 3D as well as 

complex hierarchical structures compatible with cell culture. To address this, hydrogel bilayers act as 

biocompatible, flexible and environmentally responsive hinges to fold the 2D structure into a 3D 

conformation. To achieve this, a rapid method of producing nanopatterns with the potential for 

large area patterning was developed. These were fluorinated ethylene propylene (FEP) and 

polydimethylsiloxane (PDMS) replica stamps with 2D and 2.5D hierarchical patterns. They were 

capable of bending and conforming to uneven and curved surfaces. These were used in a novel 

combinational lithography approach to construct complex hierarchical structures by 

photolithography through photomasks with nanopatterned transparent FEP inlays to create 

unfolded 3D cellular niches by a 2D method. Several different hydrogels were synthesised and 

patterned by photolithography to be used as bilayer hinges. Actuation mechanisms included 

thermoresponsive N-isopropylacrylamide (NIPAAm), and anionic acrylic acid (AA)  monomers. 

Successful bilayers were formed using acrylate based photochemistry with poly(ethylene glycol) 

dimethacrylate (PEGDMA)  and pH responsive polyacrylic acid (PAA) in a novel sacrificial layer 

functionalisation method. These structures would bend and roll due to differential swelling in 

neutral pH and when acting as a hinge would result in self-folding of photolithographically defined 

2D structures into 3D containers. To test the compatibility of this method of manufacture with cell 

culture hESCs were trialled on the container materials, and showed excellent adhesion on the SU8 

structures. More ambitiously to see if they could in the future be used for the directed 

differentiation of stem-cells, hESCs were cultured on nanopatterned injection moulded polymer 

substrates with varying nanofeature type. It was found that hESEs had improved adhesion on 

vitronectin coated nanotopographies even at extremely low vitronectin concentrations, and showed 

an increased 3D colony structure leading to the enhanced expression of certain lineage markers. It 

was found that hESC attachment could be mediated by feature height and substrate elasticity. This 

work has demonstrated as a proof-of-principle, a rapid and simple method of producing 

nanopatterned 3D self-folding containers, compatible with cell culture which could in the future 

serve as 3D self-folding nanopatterned cellular niches for tissue engineering. 
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NOMENCLATURE 
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AFM Atomic force microscopy 
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PEGDMA Poly(ethylene glycol) dimethacrylate 

PEGDA Poly(ethylene glycol) diacrylate 

PHEMA Poly(hydroxyethyl methacrylate) 

PLLA Poly-l-lactide 

PLGA Poly(lactic-co-glycolic acid) 

PMAA Poly(methacrylic acid) 

PMMA Poly(methyl methacrylate) 

PNIPAAm Poly(N-isopropyl acrylamide) 

PS Polystyrene 

RT-qPCR Real time - Quantitative polymerase chain reaction 

qz Quartz 

RIE Reactive-ion etching 

ROCK-i Rho kinase (ROCK) inhibitor 

RO water Reverse osmosis purified water 

RPMI-B27 Cell culture media with low FBS supplementation 

SEM Scanning electron microscopy 

Si Silicon 

SiN Silicon nitride 

Sulfo-SANPAH Sulfosuccinimidyl 6-(4'-azido-2'-nitrophenylamino)hexanoate 

TCP Tissue culture plastic 

TEA Triethylamine 
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TMPTMA Trimethylolpropane trimethacrylate 
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UV-NIL Ultraviolet nanoimprint lithography 
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Glossary of terms 

Ashing The process of exposing sample to oxidising O2 plasma to remove any fine 
residual layers 

Accutase®  A cell detachment solution 

Baking The process of removal of moisture and solvent from a resist 

Degassing The removal of gas form a liquid or polymer, epoxy melt 

Deposition The immobilization of a substance onto a surface, such as the evaporation of 
metal to form a conductive coating 

Descum The removal of residues deposited during processing of a substrate 

Etching A chemical process of removing material, can be dry or wet, depending on 
the use of a liquid etchant, dry etching often more anisotropic 

Emboss A thermal imprinting process 

Mask A pattern on a transparent material used to mask areas during 
photolithography, thus defining a pattern. 

Matrigel® A blend of ECM proteins used for coating surfaces for stem cell attachment 

MA6 SÜSS MA6 photolithographic mask aligner 

MF319 Micro resist developer based on Tetramethylammonium hydroxide 

Plating The process of coating the substrate with ECM constituent proteins or ligands 
for cell attachment 

Resist A polymeric substance used to resist chemical etches of the substrate. 

Residual layer Thin film of material left after imprinting between imprint stamp features 
and substrate 

Seeding The process of dispensing cells in suspension with the intent of them adhering 
to the substrate surface 

Selectivity The rate at which one substance etches in relation to another 

SU8 A negative photoresist consisting of bisphenol-A novolac epoxy, gamma-
butyrolactone and a blend of triarylsulfonium and hexafluoroantimonate salt. 

S1818 Shipley 1818 positive photoresist consisting of electronic grade propylene 
glycol monomethyl ether acetate, Mixed cresol novolak resin and a diazo 
photoactive compound. 

Spinning A method of applying thin films by spinning of the substrate at high speed, 
thickness is controlled by varying fluid viscosity, spin speed and duration. 
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List of Symbols 

a Fitting parameter 

A Area 

χ A solvent/polymer interaction parameter. the materials used in synthesis can be 
correlated to the swelling ratio of the 

Cn Flory characteristic ratio 

D Diffusion coefficient 

D0 Diffusivity of solute 

E Young’s modulus 

φ Quantum yield 

ϕ2/s Specific volume of the polymer 

G Shear modulus 

h Layer thickness 

I Area moment of inertia 

kB Boltzmann constant 

k Material stiffness 

K Bilayer curvature 

n Integer value, number of bonds, number of values 

ν Poisson’s ratio 

η Viscosity 

Mc Molecular weight of polymer crosslinking chain 

Mn Molecular number averaged molecular weight 

Mr Average molar mass of the repeat unit of the polymer 

Mw Weight averaged molecular weight 

ρ Density 

pKa Acid dissociation constant 

Q Equilibrium volume swelling ratio 

q Equilibrium mass swelling ratio 

r Surface roughness 

rs  Stokes-Einstein hydrodynamic radius of solute 

R Radius of curvature 

σ Stress 

T Temperature 

Ttilt Pillar deflection tilt correction factor 

θ Angle  
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θc Contact angle 

θc
’ Contact angle on patterned surface (reduced wetted area) 

Vd Gel dry volume 

Vs Gel swollen volume 

Vsp,2 Specific volume of the solvent 

V1 Molar volume of solvent 

ζ Damping factor 

γLS Liquid-solid interfacial energy 

γLG Liquid-gas interfacial energy 

γSG Solid–gas interfacial energy 

Y Ratio of critical volume required for successful translational movement of the 
solute molecule to the average free volume per molecule of liquid. 
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(blue), laminin-111 (navy blue), vitronectin (red), fibronectin (green) collagen (yellow)] or synthetic 

surfaces (thick black lines) including SynthemaxTM, StemAdhereTM and PMEDSAH. On the left of 

the image complex extracellular matrix extracts (e.g. MatrigelTM and GeltrexTM) are illustrated as 

combinations of ECMPs, and on the right cell-cell adhesion is simplified in the extreme to illustrate 

homophilic E-cadherin binding. Where specific ECMP ligands are poorly-defined, CAMs are shown to 

interact with the ECMP line. Where specific CAMs have not been identified the orange CAM is used, 

and undefined, adsorbed ligands are represented by orange ovals with a white question mark. 
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delaminated, and leaves behind a replica FEP stamp. Thermal expansion differences between FEP, 

glass, qz/Si master are not observed to damage the replica pattern quality. ...................................... 84 

Figure 2-7- Process flow showing the use of modular stamps for UVNIL applications. A.) patterned 

FEP film placed onto a photoresist spun on a substrate with acetate photomask applied above to 

define the dimensions of the pattern. B.) Photolithography is carried out. C.) Stack is separated and 

photoresist developed producing defined micro- or nanoscale features. ........................................... 85 

Figure 2-8- Diagram of 3D tube moulding rig, manufactured from stainless steel. A central guide pin 

is wrapped in FEP patterned film, with wall of main chamber lined with alternate patterned film, a 

polymer melt is then introduced, and chamber is held at pressure. Central rod is optional (green) and 

can be removed all together to pattern cylinders externally. .............................................................. 87 
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Figure 2-9 – Contact angles of materials used (PLLA, SU8), and those of the available stamp materials 

(silicon, PDMS, glass, FEP). The contact angle of FEP is significantly higher than the alternatives being 

considered. Error bars: 1SD over n=5 measurements. ......................................................................... 88 

Figure 2-10  – (A) FEP film stamp replicating a silicon master during removal from master stamp. 

Scale bar 5 mm.  (B) SEM of 500 nm holes in the FEP film replicated from a silicon pillar surface. (C) 

SEM of 150 nm holes replicated in FEP film from a silicon master stamp. (D) 500 nm pillars on 500 

nm square pitch replicated from pitted silicon master stamp. Scale bars = 5 mm, 3 µm, 2 µm and 5 

µm for A, B, C, D respectively. .............................................................................................................. 89 

Figure 2-11 - Figure 1.4. AFM microscopy of FEP stamps post embossing by a quartz master stamp. 

(A) The quartz master with low aspect ratio pits. (B) FEP replica low aspect pillars (C) FEP replica 200 

nm high aspect ratio pillars. Scale bars = 2 µm, 2 µm and 1 µm respectively. ..................................... 90 

Figure 2-12 - Profile scan of those patterns seen in Figure 10 (centre). A: Average pillar height formed 

in FEP replica is 420 nm close to the original 450 nm depth of features in the Quartz master stamp. 

B: profile scan across master stamp (n=5). ........................................................................................... 90 

Figure 2-13 – (A) Original silicon grating master stamp and FEP replica stamp produced by embossing 

at 275 ˚C. (B) Demonstrated ease of multiple stamp manufacture in FEP within a short periods of 

time frame. (C) Graph of contact angle measurements of flat FEP film originally (Series 1), and after 

nanopatterning of 500 nm gratings at Orientation 1 (Series 2 - parallel to plane of view) Orientation 2 

(Series 3 - perpendicular to view plane). Error bars1SD (n=5). Scale bars = 10 mm. ........................... 91 

Figure 2-14 - AFM scans of FEP replica stamps of a 500 nm grating, produced in a varied series of 

imprint temperatures. Left to right (A) 205°C, (B) 240°C, (C) 280°C respectively, imprint temperature 

maintained for a 3 minutes duration at 10 bar. Some stretching is seen causing wavy lines to form. 

Scale bars = 4 µm, 4 µm and 5 µm respectively. .................................................................................. 91 

Figure 2-15 - AFM scans of FEP replica stamps of a 500 nm grating, showing improving feature height 

replication as melting point of FEP is reached. Left: 240 °C, Right: 280 °C respectively, imprint 

temperature maintained for a 3 minutes duration at 10 bar. (n=3). ................................................... 92 

Figure 2-16 - Imprint feature height after imprinting a 500 nm pitch and width grating for 3 minutes 

at 10 bar imprint pressure at different temperatures. Flow of FEP drastically improves above its melt 

temperature. Error bars are 1SD (n=6). ................................................................................................ 92 

Figure 2-17 – Measured spin thickness of 84,000 Da PMMA dissolved to 8 v/v % dilution in o-xylene 

after a 1 minute spin duration. Error bars are 1SD  (n=3). ................................................................... 93 

Figure 2-18 - Ash rates of spun PMMA film A in oxygen plasma with varying RF power, and AFM of 

imprinted PMMA film post 2 min ash. 84,000 Da PMMA dissolved to 8 v/v % dilution in o-xylene. 
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Measurements were taken by Dektak profilometer at the end of each ash cycle. Error bars are 1SD   

(n=3). ..................................................................................................................................................... 94 

Figure 2-19 – (A) AFM scan of PMMA imprinted by FEP stamp prior to metal sputtering. AFM scan of 

a Ti stamp produced by sputtering, an attempted inversion of the original master, which was a 

silicon (Si) pillar array of 500 nm diameter pits on a 500 nm square pitch. (B) Magnified scan of same 

stamp. (C) A macro photo of the resulting pattern on silicon, like with many imprint processes, areas 

of pattern damage can be seen where the stamp failed to fully imprint the PMMA lift-off layer.  (D) 

The FEP replica stamp produced from the original Si master. Scale bars: A) 2 µm, B) 3 µm, C) 5 mm 

and D) 3 µm respectively. ..................................................................................................................... 94 

Figure 2-20 – Example SEMs of hierarchical patterning in FEP films by novel combinational replica 

moulding. Initial micro pattern A can be combined with either B or D to produce C or E respectively. 

Scale bars are 30 µm, 5 µm and 10 µm respectively. Reproduced from Greer and Vasiev et al. [188].

 .............................................................................................................................................................. 95 

Figure 2-21 – A.) SEM images of hierarchical patterns showing 20 µm hexagonal islands with 500 nm 

pillars. B.) A magnified SEM image showing the hexagonal structure of the islands. C.) The 

nanopattern which was applied during the second emboss step. D.) The micropatterned hexagonal 

islands before the application of the secondary nanopattern. Scale bars: 5 µm, 10 µm, 20 µm and 30 

µm respectively. .................................................................................................................................... 96 

Figure 2-22- A) Hierarchical fluoropolymer stamp structure under AFM, in a 50 x 50 µm scan. 

B)magnified 5 x 5 µm scan. C) AFM of hexagonal islands with 2.7 µm height and a 400 nm grating 

pattern on top surface. Selection of different micro and nanopattern configurations allows for a mix 

and match approach to potentially cell confining patterns with selected topographical interaction. D) 

Section profile across topography with hierarchical grating. Scale bars: A) 20 µm, B) 2 µm, and C) 20 

µm respectively. .................................................................................................................................... 97 

Figure 2-23 –SEM images of FEP hierarchical structures showing a combined hexagonal 

microstructure (A,B,D)  with a 500 nm grating surface nanopatterns (C), produced by sequential 

embossing of the FEP layer. Illustrating the flexibility of the process and the customization of 

possible patterns. Scale bars: A) 10 µm, B) 20 µm, C) 5 µm and D) 50 µm. ......................................... 98 

Figure 2-25 –SEM images of SU8 Imprinted with a FEP hierarchical stamp. Imprinting done with 

combinational method through 1 cm square aperture above the FEP film. Scale bars: A) 50 µm, B) 10 

µm, C) 10 µm and D) 50 µm. ................................................................................................................. 99 

Figure 2-24 - Feature heights of hierarchical patterns showing an aggregate from 8 measurements. 

Error bars = 1SD (n=8 samples). ............................................................................................................ 99 
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Figure 2-26 – A) Optical image of a half cylinder cut from a PCL rod which had its circumference 

imprinted by a flexible FEP stamp at 80°C. B) AFM scan of imprinted cylinder surface showing the 

nanopits formed on the cylinder surface. C) Optical CMM image of cylinder surface, showing the 200 

µm gaps in the nanopatterned array on the cylinder surface. D) AFM of the FEP replica stamp used, 

same as that used for evaporation of Ti mastering process. Scale bars: A) 2 mm, B) 5 µm, C) 1 mm, D) 

4 µm. ................................................................................................................................................... 100 

Figure 2-27 - SEM image of A) micro star shapes and B) spirals produced by the combinational 

mastering approach utilizing FEP replica stamps and printed acetate photomasks. Scale bars: 1 mm.

 ............................................................................................................................................................ 101 

Figure 2-28 - A) Image of 'lotus' micro containers produced by combinational mastering and printing 

in SU8. B) Image of the FEP replica stamp used in the processing, attached to a glass backing slide 

just after manufacture. C) AFM scan of the FEP film surface showing 250 nm pits on a 1 µm square 

pitch. D) Demonstrating the flexibility of imprinted FEP stamps when removed from the glass 

backing plate. Scale bars: 2 mm, 5 mm, 5 µm and 5 mm respectively. .............................................. 102 

Figure 2-29- AFM scans of polycarbonate injection moulded topographies reproduced as negative 

replicas in PDMS by casting. A)  PDMS replica produced from non-ashed original NSQ surface with 

resulting lower feature fill. B)  PDMS replica with good fill from an ashed original NSQ surface with 

much better feature replication. C) PDMS replica produced from ashed SQ surface showing good 

feature fil, showing orange profile trace. D) The profile trace of PDMS replica of SQ surface. Scale 

bars: 2 µm. .......................................................................................................................................... 103 

Figure 2-30 - Top: feature fill diagram for the original master depth and the expected fill profile of 

the PDMS replica features. Bottom: Feature height of PDMS replicas taken from injection moulded 

polycarbonate (PC) masters. Error bars: 1SD from 5 measurements. ................................................ 104 

Figure 2-31 – Fiilm thickness for a range of spin speeds for different molecular weights and 

concentrations of commercial PAA. Average values from 3 profile scans. ........................................ 105 

Figure 2-32 - Fabrication process for creation of nanopatterned and micropatterned PEGDMA 

hydrogel films by PAA sacrificial layer embossing. A) PAA is spun onto Si wafer. B) PAA film is 

embossed using the master stamp. C) Hydrogel is applied to PAA surface. D) Master stamp or mask is 

applied and assembly is exposed to UV and developed in IPA. E) Wafer placed in RO water allowing 

for dissolution of PAA layer and subsequent lift-off of hydrogel patterned film [1]. ......................... 106 

Figure 2-33 – Hydrogel bilayer fabrication and actuation by pH modulation. Gel sheets patterned by 

photolithography leading to shape and active carboxyl group transfer to the gel film from below and 

patterning from the stamp above. This patterned film then undergoes a deprotonation of the –

COOH terminus of its pendant carboxyl groups in elevated pH (pH>pKa). Subsequently rolled sheet 
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can be unrolled if pH is lowered past the pKa value again, this process is notable slower. Reproduced  

from Vasiev et al. [1]. .......................................................................................................................... 107 

Figure 2-34 – SEM imaging of Embossed PAA. 2um wide and 500nm tall pillars and B: 200nm wide 

and 250nm deep holes with 200nm square pitch. Both produced from FEP imprinting of PAA at 90°C 

and 15bar. Scale bars: 5µm. ................................................................................................................ 107 

Figure 2-35 – A)  AFM scan of PAA surface with HEX pit array. B) A section showing the profile of 500 

nm pits on a 1 µm HEX pitch 500 nm deep reproduced in PAA by embossing with a Quartz (Qz) 

master. Scale bar 4 µm. ...................................................................................................................... 108 

Figure 2-36 – A) AFM scan of hydrogel nanopatterned film reproduced from an embossed PAA 

surface with 300 nm wide pillar distribution on a 300 nm pitch. B) Fourier plot showing feature size 

and frequency with the main peak in the sub µm range. C) Section profile of pillars showing 300 nm 

feature height. Scale bar: 4 µm........................................................................................................... 108 

Figure 2-37  A) Rolled micropatterned PEGDMA hydrogel film after exposure to pH 7 buffer and air 

drying, scale bar: 500 μm. B) Unrolled micropatterned PEGDMA hydrogel film after unrolling in pH 4 

buffer and air drying, scale bar: 200 μm. C) bottom surface of roll showing 1 µm pits replica from the 

nanopatterned PAA sacrificial under-layer, scale bar: 50 µm D) Top surface micropattern created as 

replica of top PDMS stamp.  Scale bar: 50 µm. Reproduced  from Vasiev et al. [1]. .......................... 109 

Figure 2-38 - A, B: SEM image of 250 nm wide and 270 nm tall pillars remaining on PEGDMA film 

after pattern transfer from PAA sacrificial layer, scale bar: 1μm and 4μm. C: PEGDMA film 

nanopatterned edge, scale bar: 10 μm. D: Cross-section view of rolled PEGDMA scaffold, scale bar: 

200 μm. Reproduced from Vasiev et al. [1]. ....................................................................................... 110 

Figure 2-39 - AFM trace of PEGDMA roll topography. A periodic pattern 250 nm high was recorded, 

the features also show reasonably square shoulders, suggesting the hydrophilic PAA layer has 

excellent filling properties, drawing the resist well into the right angled corner of the pit............... 110 

Figure 2-40- A) Hydrogel hierarchical pattern of 400 μm long 80 μm tall spacers made with PDMS 

mould. B) Two level topography for manufacture of PDMS moulds. 10 μm circular pattern with 

30x20μm hexagonal pillars 100 μm tall above. .................................................................................. 111 

Figure 2-41 - Spacer on hydrogel film when the film is rolled up. Rolls actuated by DMEM cell media 

(buffered), the process discussed in Chapter 5. Scale bars 100 µm and 250 µm. .............................. 112 

Figure 2-42- (A, B) Patterning of hydrogel rolls with high aspect spacer features. (C, D) Rolls 

patterned with 500 nm lines of 500 nm depth and 500 nm pitch. The spacer pillars measure 400 µm 

long 50 µm wide and 80 µm tall. Scale bars: 300 µm, 500 µm, 200 µm and 500 µm respectively. ... 112 

Figure 2-43 - Dragging of nanopillars through FEP during imprinting, wither by stamp rotation or 

early peeling from the master, can result in the ditches created here. Scale bar: 4 µm. .................. 114 
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Figure 2-44 – An SEM image of the 'flowers' formed by PMMA climbing up the hydrophobic FEP 

pillars during imprinting at 180 °C. The thickness of the PMMA layer being less than the height of the 

FEP can cause this problem.  Scale bar: 10 µm. .................................................................................. 115 

Figure 2-45- An AFM scan of the ‘flower’ surface illustrates the PMM bridging between individual 

FEP pillars. This is particularly noticeable when the PMMA film is roughly half the thickness or less 

then the height of the FEP features. Scale bar: 20 µm. ...................................................................... 115 

Figure 2-46 – A) 3D plot of Image of 'flower' morphology resulting from low viscosity of molten 

PMMA imprint layer, and a hydrophobic FEP stamp. B) The features are roughly twice as high as the 

spun film of PMMA, causing it to fill up the voids in the stamp by wicking up the stamp pillar 

features. C) A thin residual layer in the PMMA is still visible at the base of the features. ................ 116 

Figure 2-47 – SEM image of PMMA imprinted with a FEP pillar stamp, produced by spinning a thicker 

PMMA layer roughly 90 % of the height of the FEP features (500 nm). Non-uniformity can still be 

seen in the imprinted surface due to gas traps and the PMMA climbing up the FEP features. Marker 

bar: 20 µm. .......................................................................................................................................... 117 

Figure 2-48 –A) SEM images of damage caused to master stamp and FEP film due to catching o the 

replica on the high aspect ratio (4:1 aspect 250 nm wide) pillars. The high aspect prevented the 

successful peeling of the FEP replica stamp. B) Peeling caused permanent damage by breaking the 

pillars free from the substrate on the master. Scale bars: 4 µm and 1 µm respectively. .................. 118 

Figure 3-1 – Optical microscopy images of demonstrated lift-off of photopatterned components from 

a PAA sacrificial layer. One edge submerged in water causing gradual washing away of the water-

soluble polymer. A) Hydrogel features on PAA being approached by a wetting front (B-C). Scale bars: 

200 µm ................................................................................................................................................ 123 

Figure 3-2 - NiCr photomasks on glass slides, scale bar 10 mm. ........................................................ 124 

Figure 3-3 - Mask alignment process. A) MA6 mask aligner during lithography. B) Process of 

'alignment' where features are positioned using microscope and x-y stage. C) Process of 

photolithography, and D) photolithography with lift-off process. ..................................................... 124 

Figure 3-4 – A) Illustration of a parallel plate rheometer setup, the application of load and rotation 

rate used by the rheometer when the gel specimen is in a petri dish. B) The correction necessary to 

remove the thickness of the petri dish from the shear modulus calculation and obtain the true 

modulus of the material being tested. ............................................................................................... 131 

Figure 3-5 – A) Gel tensile specimen after rupture, B) The standard ASTM D412 type A sample 

schematic. C) The expected relationship from a perfectly linear sample as a force-displacement or 

stress-strain plot. It should be noted that with hydrogels a perfectly elastic response is highly unlikely 

given the multi-phase porous structure. ............................................................................................ 133 
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Figure 3-6- Absorption with concentration at various absorption peaks for LTPO photoinitiator. 

Distances in mm are the working distance of the UV-Vis spectrophotometer. Outside of the 380 nm 

peak for LTPO, curves show molar absorption coefficient decreases nonlinearly with concentration at 

the other prominent absorption peaks. ............................................................................................. 135 

Figure 3-7 - Swelling ratios of PEGDMA based hydrogels with exposure dose and monomer 

concentration. Values measured by weighing swollen samples incubated for 24 hours in RO H2O for 

24 hours after synthesis, and after dehydration by drying in a 120 °C oven, followed by placing in a 

100 mTorr vacuum for 12 hours. ........................................................................................................ 136 

Figure 3-8 - Mesh size correlation to monomer volume fraction for PEGDMA hydrogels synthesized in 

EtOH solvent. ...................................................................................................................................... 137 

Figure 3-9- Adapted values for Stokes radii and baseline diffusion coefficients (D0)at tissue culture 

temperatures for dissolved species in water at in vitro temperature (37 °C, nu=0.682) [199, 200] . 138 

Figure 3-10 - Diffusion correlation to hydrogel mesh size for PEGDMA gels synthesized at various 

exposure doses and monomer concentrations as illustrated in Figure 3-7. ...................................... 138 

Figure 3-11 - Swelling ratio with recipe for NIPAAm based gels, Correlation of levels at each swelling 

ratio used to interpret effect on gel network. Error bars: 1SD from 2 measurements. ..................... 140 

Figure 3-12 - Taguchi plot of mean value and associated variance for up and down regulation of 

certain synthesis parameters. (Red): variable at low level 1, (Blue) variable at high level 2. Error bars: 

1SD from n=4 values. .......................................................................................................................... 141 

Figure 3-13 – Conversion  ratio with exposure dose of MBAAm crosslinked PNIPAAm gels with LTPO 

as initiator, cast weight prior to development against fully swollen state, shows correlation between 

overexposure and loss of swelling potential as gel network is so rigid it barely accommodates any 

liquid other than that replacing unreacted monomer and solvent used in synthesis (n=1). ............. 142 

Figure 3-14- Swelling ratio of MBAAm crosslinked PNIPAAm gels compared with PNIPAAm-co-

PEGDMA gels (n=1). ............................................................................................................................ 142 

Figure 3-15 – PNIPAAm gel actuation ratios (weight fraction of water displaced above the hydrogel 

LCST) of the two thermo-responsive PNIPAAm hydrogel recipes (n=1). ............................................ 143 

Figure 3-16- N,N-Diethylaminoethyl methacrylate (DEAEMA) cationic gel swelling as it varies with 

exposure dose (n=1). .......................................................................................................................... 144 

Figure 3-17 - Transition in Cationic gel homogeneity.  Left to right: doses of exposure varying from A) 

15 seconds, B) 30 seconds, C) 45 seconds, D) 60 seconds and E) 75 seconds at 7.2 mW/cm2, scale bar 

10 mm. ................................................................................................................................................ 144 

Figure 3-18 - The swelling ratios of DEAEMA and 1-butanol solvent gel, as a result of changes in 

exposure dose under the MA6 mask aligner. Error bars 1 SD from (n=3) measurements................. 145 
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Figure 3-19 - Torque sweep of PEGDMA (90 % monomer concentration in EtOH with added 0.01 % 

TEA synergist) hydrogel thin film at angular frequency 10 rad/s. Storage and loss moduli corrected 

for the extra thickness of the sample holding plate. (T = 21 °C)......................................................... 145 

Figure 3-20 - Effect of drying as seen in the storage and loss moduli of the same gel sample- PEGDMA 

(90 % monomer concentration in EtOH) at 108 mJ/cm2 exposure. (T = 21 °C) .................................. 146 

Figure 3-21 - Averaged storage and loss moduli of polymerized 90 v/v % PEGDMA films, a drop off in 

storage modulus is seen with reducing exposure dose, with an inverse relationship seen for the loss 

modulus (T = 21 °C, 1-100 rad/s). This was a short investigation, with repeat experiments were not 

conducted due to time constraints and limited access. ..................................................................... 146 

Figure 3-22 - Comparison of PEGDMA 90 v/v % with (red) and without 0.01 v/v % TEA (blue) 

polymerization chain transfer agent. .................................................................................................. 147 

Figure 3-23 - Changes in PNIPAAm based gel storage and loss moduli during a temperature sweep. 

As the gel passes the LCST an increase in Loss modulus is visible due to the expulsion of fluid from 

the gel network. Values are corrected for the sample holder thickness. Only one sample was tested 

due to time constraints. ...................................................................................................................... 148 

Figure 3-24- Complex viscosity dropping as a result of temperature sweep through PNIPAAm 

hydrogel LCST. ..................................................................................................................................... 148 

Figure 3-25 - Increase in damping factor of the NIPAAm hydrogel as it passes the LCST at 32 °C. .... 149 

Figure 3-26 - A distinct difference can be seen between a hydrated cool NIPAAm gel sheet and one 

which has equilibrated at a point above the LCST. Above the LCST water is absent from the matrix, 

resulting in a higher modulus in the 40 °C gel. ................................................................................... 149 

Figure 3-27 - Contact angle image capture at A) 22 °C, and B) 40 °C PNIPAAm films. ....................... 150 

Figure 3-28- Effect of monomer concentration on two samples of PEGDMA gel under tensile load. A 

lower gradient for the 50 % monomer concentration gel, shows a lower elastic modulus with a 

reduction in monomer concentration, possibly due to the reduced density of the gel network, longer 

distances between crosslinks and higher fluid portion resulting in less resistance to elastic 

deformation. ....................................................................................................................................... 151 

Figure 3-29 - The addition of TEA as an oxygen scavenger and copolymer even at very low 

concentration shows an increased elasticity of the gel (blue), with samples contracting rather than 

breaking and eventually sliding out from the tensometer grips, while the sample numbers are low it 

is assumed to give an indication of the modifications oxygen scavengers give to the gel structure, 

with a potentially more mature network with fewer oxygen terminated connections. .................... 151 

Figure 3-30- Effect of TEA polymerization chain transfer agent on low monomer content gels shows a 

somewhat different characteristic of the oxygen scavenger. In these very soft gels the addition 
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appears to increase the modulus, again this is suggested to be due to a more mature network 

structure, with fewer oxygen terminated connections. Signal noise due to load cell sensitivity. ..... 152 

Figure 3-31 – Figure shows the effect of UV exposure dose on PEGDMA hydrogel Young's modulus, 

with an increase directly correlated to exposure dose. All samples were dried prior to testing to 

facilitate the ability to be gripped in the crosshead. .......................................................................... 152 

Figure 3-32- Figure shows the effect of exposure dose on Yield stress and elongation at failure of 90 

v/v % PEGDMA hydrogels. There is a large shift from the softer weaker gels to a strong but brittle 

state, and a middle dose at which the network appears to have the most beneficial properties of 

both. .................................................................................................................................................... 153 

Figure 3-33- FTIR spectrum of cationic gel containing N,N-diethylaminoethylmethacrylate (DEAEMA).

 ............................................................................................................................................................ 154 

Figure 3-34- FTIR Transmittance spectrum of PNIPAAm co MBAA hydrogel when dry. .................... 154 

Figure 3-35 - FTIR Transmittance spectrum of n-isopropylacrylamide (NIPAAm) co PEGDMA hydrogel

 ............................................................................................................................................................ 155 

Figure 3-36- FTIR absorbance spectrum of PAA modified and unmodified films. Blue- Unmodified,  

with the Light Blue-PAA Mw 1800, Purple PAA Mw 50,000,  Red PAA Mw  100,000 all coinciding in 

the elevated trace. .............................................................................................................................. 156 

Figure 3-37- FTIR spectrum of PEGDMA hydrogels (blue) with addition of 0.25 w/w % TEA (yellow) 

and 1 w/v % TEA (red). ........................................................................................................................ 157 

Figure 3-38 - Polymerization extent with exposure dose A) W shift in C=O peak in methacrylated PEG 

polymer (red = 6 s, purple = 8 s, blue = 40 s, green = 80 s). B) The shift in peak is thought to occur due 

to increasing crosslink density changing local conditions and thus harmonics of the pendant group by 

the proximity of local chains. .............................................................................................................. 157 

Figure 3-39 - PEGDMA 550 hydrogel film roll radius of curvature after scaffold lift-off from PAA 

50,000 Da spun at 4000 rpm for 30 s and buffered at pH 7 at different UV exposure doses. Error bars 

= 1SD from n=5 measurements of minimum curvature radius in the centre of SEM cross-section of 

gel rolls. Reproduced  from Vasiev et al. [1]. ...................................................................................... 158 

Figure 3-40 – Effect of bilayer thickness ratio (active/passive) as well as active gel actuation ratio on 

relative curvature. Young’s modulus and base swelling kept constant (8 kPa, 0.3 ε respectively), only 

actuator thickness and actuation strain varied, resulting in most efficient curvature achieved at 

thickness ratio of 0.125-1, peak at 0.375. ........................................................................................... 159 

Figure 3-41 - Effect of bilayer actuation strain differential (dstrain) on the curvature (K) and modulus 

relationship for an idealized gel bilayer at constant thickness ratio (m=8) ........................................ 160 
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Figure 3-42 - Effect of bilayer thickness (microns) on curvature K=1/R (µm) for bilayers of varying 

Young’s modulus E. ............................................................................................................................. 160 

Figure 3-43 - SEM image of hydrogel film roll after actuation in pH7 buffer and drying at room 

temperature. ....................................................................................................................................... 161 

Figure 4-1 – A) Obducat nano-imprint lithography (NIL) tool, and B) the imprinting routine for PAA 

patterning. Colour spectrum line shows heating cycle, blue line illustrates the variation of pressure 

through the imprinting cycle. ............................................................................................................. 168 

Figure 4-2 - Illustration of ionic hydrogel bilayer swelling in elevated pH, resulting in film rolling by an 

uneven swelling differential between top and bottom surfaces. Reproduced from Vasiev et al. [1].

 ............................................................................................................................................................ 170 

Figure 4-3 - Illustration of hydrogel anchoring to methacrylate groups of TPM coated surface. 

Attachment works for acrylic monomers and polymers, and can be used to semi-permanently bond 

the hydrogel photopatterns or structures to a glass slide or silicon wafer. ....................................... 171 

Figure 4-4 - PEGDMA plot of thickness against spin speed for 90 % PEGDMA in EtOH resist. Spin 

durations: 10s. Layers were exposed in proximity mode with 25 µm Teflon spacer between mask and 

gel surface. Thickness measured by profilometry on developed gels after development in IPA, while 

the gels were still adhered to the glass surface. Error bars: 1SD from 3 measurements. ................. 172 

Figure 4-5  - Gel thickness and radius of curvature for PEGDMA hydrogel films with grafted PAA from 

the lift off layer. Thickness was measured by profilometry immediately after development of 

hydrogel squares. Radius of curvature was measured from minimum cross-sectional diameter in 

optical microscopy images. Two exposure doses of 8s and 6s at 7.2mW/cm2. Gel thickness modified 

by spin speed. Error bars: 1SD from 3 measurements of each representative sample. .................... 173 

Figure 4-6- Possible uses of hydrogels as hinges in folding solid structure. Solid material is indicated 

in this case as the photo-crosslinkable epoxy SU8. Version 1) a thermally constricting gel based on 

PEGDMA-Co-PNIPAAm with a PAA activated base. 2) A similar design but with elongated thermal 

‘pulling’ actuator to give it more actuating leverage. 3) PEGDMA hinge with PAA activated base, and 

4) Double hinge design where two layers of gel are separated by a rigid block. ............................... 174 

Figure 4-7 - Radial plot of various container designs, shows the effect of falling versatility and 

complexity with rising robustness, or the susceptibility of a structure to fail when in use. .............. 174 

Figure 4-8 - Various container designs, left to right: 'Lotus' multi-symmetry containers, 

'Dodecahedron' type containers and finally hydrogel rolls, showing square windows for cell 

movement and oxygen permeability. Scale bars: 500µm. ................................................................. 175 

Figure 4-9 - Triangular polyhedron mask design stack. (A) The SU8 solid elements comprising the 

faces of the finished structure, which are non-flexible. (B) A potential all over coating with hydrogel 
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for improved SU8/ hydrogel interface and bonding strength. (C) The lighter hydrogel hinge 

alternative. .......................................................................................................................................... 176 

Figure 4-10 Hinge dimensions - triangular polyhedral container. Plots indicate the expected hinge 

angle of hydrogel hinges given a set hinge size and radius of curvature (Chapter 3). 360 degree arc 

angle indicates full rolling (tube). ....................................................................................................... 177 

Figure 4-11 - Hinge dimensions - box polyhedral container. Plots indicate the expected hinge angle of 

hydrogel hinges given a set hinge size and radius of curvature (Chapter 3). 360 degree arc angle 

indicates full rolling (tube). ................................................................................................................. 179 

Figure 4-12 - Mask design of a single pentagonal polyhedron container. The container involves two 

stages, the creation of rigid elements with the first mask (left) and the addition of slightly 

overlapping hinges (right) for better adhesion. This is fabricated on asacrificial PAA film for lift-off.

 ............................................................................................................................................................ 180 

Figure 4-13 - Ideal hinge dimensions for pentagonal polyhedron. Plots indicate the expected hinge 

angle of hydrogel hinges given a set hinge size and radius of curvature (Chapter 3). 360 degree arc 

angle indicates full rolling (tube). ....................................................................................................... 181 

Figure 4-14 - Pentagonal polyhedrons in their two stages with the design incorporating three hinge 

thicknesses of (left to right) 20 µm, 40 µm and 60 µm respectively. Several box dimensions were also 

designed, ranging from 200 µm faces up to 600 µm to cover possible future applications. ............. 182 

Figure 4-15 - Left to right: two smaller container sizes with two hinge widths of 20 and 40 µm. Far 

right: largest container with hinge dimension of 80 µm. ................................................................... 182 

Figure 4-16 - New ‘lotus’ containers with varying hinge numbers, both have six folding surfaces but 

one consists of the decagonal arrangement with 5 hinges per extremity while on the right is an 

octagonal arrangement with four hinges per extremity. The decagonal arrangement benefits from 

lower required hinge angles, while the octagonal structure benefits from fewer hinges and thus 

fewer things to fail should an alignment or exposure deviate from that required. ........................... 183 

Figure 4-17 - Comparing leaf dimensions over length from tip to median for different numbers of 

petals on ‘lotus’ form. ......................................................................................................................... 185 

Figure 4-18 - Comparing leaf dimensions over length from tip to median for different numbers of 

petals on ‘lotus’ form. ......................................................................................................................... 185 

Figure 4-19 Mask split to create negative and positive polarity hydrogel elements. (A) The full array 

of locking points to be patterned in magnetic resist or self-adhesive hydrogel. (B) Half of an negative 

to positive locking mechanism, with half the array to be made of an ionic hydrogel and the other half 

of a cationic one respectively. ............................................................................................................ 186 
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Figure 4-20 - Photomask design for new ‘lotus’ containers. (A) faces of container to be patterned in 

SU8 or other ‘structural’ material. (B) Hydrogel hinges to be patterned during a second stage of 

photolithography. (C) The locking mechanism to be patterned out of another layer of structural 

material, or a self-adhesive hydrogel. ................................................................................................ 186 

Figure 4-21 – Surface roughness plotted for increasing doses of oxygen plasma ashing of the PAA 

sacrificial films. It can be seen that the surface roughness increases at a non-linear rate with 

increasing exposure to O2 plasma.  AFM profilometry performed on three random locations on ashed 

samples. PAA Mw 1800 spun at 4000 rpm. Error bars: 1SD from n=5 AFM measurements of n=5 

separate 20 x 20 µm square areas. ..................................................................................................... 187 

Figure 4-22 - Surface roughness Ra plotted against spin speed for PAA Mw 1800 spun at increasing 

RPM. It can be seen that the roughness of the surface does not vary greatly with increasing spin 

speed. Error bars: 1SD from n=5 measurements of 20 x 20 µm AFM scans. ..................................... 187 

Figure 4-23 - Surface roughness of four different molecular weights of PAA. All surfaces dried on a 

hotplate at 90 °C for 5 minutes prior to measurement by AFM.  It can be seen that while the 

roughness is fairly consistent between different molecular weights, it does increase dramatically 

when the PAA is in its neutralised state (buffered with NaOH). Error bars: 1SD of n=5 measurements 

of 20 x 20 µm square AFM scan. ......................................................................................................... 188 

Figure 4-24 - Spin curves for SU8, PLLA 7 % w/v in CHCL3 and PCL 8 % w/v in CHCL3 films measured by 

profilometry. Error bars 1SD from 5 measurements. ......................................................................... 189 

Figure 4-25 – Mean values for film uniformity in spun polymer films, Roughness Ra value collected 

from 20 x 20 µm AFM surface topography scans. Error bars: 1SD from n=5 measurements. ........... 189 

Figure 4-26 - Spun polymer films considered as an alternative to traditional SU8 photoresist. A: PLLA 

spun at 6000 rpm, B: PLLA spun at 2000 rpm (both solutions 8 w/v % solution in chloroform). C: PCL 

spun at 4000 rpm D: PCL spun at 2000 rpm (both solutions 6 w/v % in chloroform) ........................ 190 

Figure 4-27 – Top left to right: 24 µm hexagonal pattern embossed into SU8 Dodecahedral container 

surface with a pre-embossed PAA layer creating double sided patterning. Bottom left to right: 

Devices with and without hinges after PAA dissolution. Scale bars: 100 µm, 50 µm. 200 µm and 300 

µm respectively. .................................................................................................................................. 191 

Figure 4-28 – SEM images of nanopatterned PLLA film with 2500nm diameter 1:1 aspect pits on 200 

nm pitch. Left to right decreasing magnification. Scale bars 500 nm and 5 µm respectively. ........... 192 

Figure 4-29 - Shown are the dry etch rates for PLLA and PAA thin films. The data shows a dry etching 

selectivity ratio in oxygen plasma of almost 2:1 between PLLA and PAA Mw 50,000. Point mean of 

n=3 profile scans. ................................................................................................................................ 192 
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Figure 4-30 - Dual exposure patterning method. The hydrogel film is exposed once to take it to the 

initial gelling state, it is then sequentially exposed to light through a different mask to further 

crosslink some sections, but leave others under-exposed. This heterogeneous exposure produces 

differential swelling effects across the film causing it to fold. ........................................................... 194 

Figure 4-31 - A, Double exposure pentagonal polyhedrons prior to lift-off. B, Post lift-off but without 

second exposure the films roll up in a unrestricted way. Note that the second exposure was not 

effective at creating solid sections, as the active components Scale bars: 300 µm. .......................... 194 

Figure 4-32 - SU8 micro containers attempting to close by PAA immobilized SU8 epoxy at the hinges. 

Scale bars: 500 µm .............................................................................................................................. 195 

Figure 4-33 - The over-exposure method for producing self-folding hydrogel containers. The 

exposure undercuts the mask by way of diffusion, and produces a crosslinking gradient underneath 

the mask feature. If correctly spaced, these under-exposed undercuts meet to produce a hinge 

which folds by differentia swelling. .................................................................................................... 195 

Figure 4-35 – Over-folded boxes made by overexposure method for the 20 µm length hinges, faces 

exposed for (A) 43.2 mJ/cm2 and (B) 57.6 mJ/cm2. And 40 µm length hinges exposed to: (C) 72 

mJ/cm2 and (D) 86.4 mJ/cm2. This folding results due to underexposure of the PEGDMA hydrogel in 

the container faces, making the whole structure flexible and unable to hold the shape properly. In 

instances where the structure is solid enough, the hinges are too rigid to attain the necessary folding 

angle. Scale bars: 500 µm. .................................................................................................................. 196 

Figure 4-36 - SU8 micro-container layer before (left) and after wet etching with NMP  (right) to 

remove the inter-facial film that had been affecting the performance of the subsequent hydrogel 

hinges. Excessive cracking can be seen after overdevelopment in NMP. Scale bars: 300 µm ........... 197 

Figure 4-37 - SU8 and Hydrogel hybrid containers affected by a thick boundary film, stress marks are 

visible after dissolution of PAA. Scale bars: 300 µm. .......................................................................... 197 

Figure 4-38 - SU8 showing the effects of overdevelopment after 6 minutes in EC solvent. Scale bar: 

300 µm. ............................................................................................................................................... 198 

Figure 4-39 - PAA oxygen plasma dry etch depth with time, process was very time consuming with 

practical etch depths in the region of a micron taking approximately 15 minutes. . Depths measured 

by profilometry. Error bars: 1SD (n=3). ............................................................................................... 199 

Figure 4-40 - Release of structures from PAA which were manufactured by this rapid processing Scale 

bars: 400 µm ....................................................................................................................................... 200 

Figure 4-41 - Containers made by the reverse process. A) The hinge integration into the SU8 face, 

and B) the closed containers in pH 7 solution. Scale bars: 50 µm and 300 µm respectively. ............ 200 
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Figure 4-42 - SU8 structures patterned onto a 1 µm thick PMMA layer. The PMMA is undercut by EC 

solvent development, creating voids at the patterned edges, thinner layers do not suffer from the 

same issues, and 80 nm films spun from o-xylene proved to be a suitable candidate for this method 

of fabrication. Scale bar: 300 µm. ....................................................................................................... 201 

Figure 4-43- Gold etch with time A) 10, B) 30 and C) 60 seconds with 30 nm gold barrier film a slight 

undercut below the SU8 features is visible. Ratio of potassium iodide to iodine is 2:1 with 4 g and 2 g 

in every 80 µl of MeOH:IPA 1:1 mix. Scale bars: 300 µm. .................................................................. 201 

Figure 4-44 - Containers made by the gold boundary layer process. A) etch attempt prior to cleaning 

with O2 plasma. B) etch with pre-clean. C)  Hinges applied. Scale bars: 500 µm. .............................. 202 

Figure 4-45 - Containers made by the gold boundary layer process. A,B,D) closed containers, C) 

container in the process of folding. Scale bars: 500 µm. .................................................................... 203 

Figure 4-46 - Lotus container made with the gold boundary layer method. (A) SU8 features of the 

lotus are created on a gold coated PAA surface. (B) The gold is etched in areas where it is not 

covered with SU8 features, exposing the PAA surface underneath, in preparation for hinge addition. 

Scale bars: a) 200 µm, b) 400 µm and c) 100 µm respectively. .......................................................... 205 

Figure 4-47 – PMMA boundary layer formed 'lotus' containers manufactured from SU8 before (left) 

and after (right) the application of hydrogel hinges. Scale bars = 500 µm......................................... 206 

Figure 4-48 - A gold covered 'lotus' container undergoing folding in pH 7 buffered solution. The 

position of the tips relative to the box centroid can be tracked in consecutive images to record 

container folding dynamics. Showing A) t=0, B) t=4 minutes C) t=10 minutes. Scale bars: all 500 µm.

 ............................................................................................................................................................ 206 

Figure 4-49 - Distance between the petal tip and the centroid of 'lotus' containers with time 

(centroid is axis in z-axis through central hexagonal face on x-y plane, where petals lie in the x-y 

plane), the transitional folding can be seen as the tip is folded and curled inwards to meet at the 

centroid of the container mask (the central hexagon to which all the petals attach). Error bars: 1SD 

from n=3 measurements. ................................................................................................................... 207 

Figure 4-50 - Swelling kinetics of PEDGDMA hydrogels for various monomer concentrations and 

exposure doses. , n=1 per sample. ..................................................................................................... 207 

Figure 4-51 - Interlocking mechanism design as applied to a 'lotus' container. The protrusions are 

created to overlap and thus reinforce adjoining faces, and limiting over-closure, where one face 

moves further inward than its neighbours, blocking them in the process. Scale bar: 300 µm. ......... 208 

Figure 4-52 - Etch rate of PAA in different concentrations of methanol diluted with isopropanol. 

Methanol was found to dissolve PAA readily, but did so in a more controlled manner when diluted 
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by an unreactive solvent such as IPA or EtOH. Depths measured by profilometry. Error bars: 1SD 

from n=5 measurements. ................................................................................................................... 209 

Figure 4-53 - Lift-off of S1818 from under PAA to provide an adhesive point to anchor devices. 

Showing the development of S1818 with etch duration in Ethyl lactate. A) Non-etched surface, B) 45 

seconds etch, C) 2 minutes etch. Scale bars: 100 µm. ........................................................................ 209 

Figure 4-54- A) TPM anchoring agent evaporated to slot dissolved through PAA by a S1818 mask 

coating glass underneath) hydrogel roll patterned above this slot is permanently anchored to the 

glass surface. Scale bars: 400 µm........................................................................................................ 210 

Figure 4-55 - Contact angles of Si treated with evaporated TPM. Measurements taken at discrete 

time points during coating in a sealed and inert container filled with N2 heated to 150 °C. . Error bars: 

1SD from n=5 measurements. ............................................................................................................ 210 

Figure 5-1 - A nanopillar gradient, where pillars increase in height along one axis of the 1cmx1cm 

pattern area. As a result of this topographical gradient cells selectively adhere to certain areas. This 

topographical preference was used to distinguish different cell types that would otherwise be 

difficult to identify. Images were analysed with cell profiler which output cell concentration, 

increases in a certain fluorescence probe over a region of pattern and overall cell number on 

particular areas of the gradient. Reproduced from  Reynolds et al. [211]. ........................................ 214 

Figure 5-2- Process tree for immobilizing injection moulded inserts in PEGDMA gel to limit wasted 

volume and create a cell repellent surface on periphery of injection moulded slides. Refer to Chapter 

2 for gel formulations. ........................................................................................................................ 220 

Figure 5-3 - PEGDMA fixated nanopatterned insert after 24 hours soaking in PBS, gel ends at edges of 

upper nanopatterned surface. ............................................................................................................ 220 

Figure 5-4 - Structure of hydrogel sheet with added dissolved collagen at three concentrations. 

Acetic acid solution contains 0.1 M acetic acid and collagen added to stated concentration. Gel 

mixtures had to be kept cool prior to photolithography to limit clumping and polymerization of 

collagen mixture. ................................................................................................................................ 222 

Figure 5-5 – UHAR Pillars and insert arrangement  produced by injection moulding in polystyrene 

(PS) using the technique of  Stormonth-Darling et al. [185]. .............................................................. 225 

Figure 5-6- Different components responsible for overall deflection of anchored pillars. Reproduced 
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Figure 5-7 - Tilt correction factor with respect to substrate Poisson’s ratio. Tilt significantly reduced 

in rubbery materials (where v tends to 0.5). ...................................................................................... 228 

Figure 5-8 - Cell profiler pipeline tree for hESCs colony cluster analysis, and cell area coverage 
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Figure 5-9 - Area coverage output and the threshold mask image after background subtraction and 

the subsequent edge identification and area segregation to calculate the total area covered by hESC 

colonies. Field of view is 1800x2200 µm, area coverage worked out as contrast between occupied 

and empty pixels. ................................................................................................................................ 229 

Figure 5-10 - Left to right: Original microscopy montage of images spanning the nanopillar gradient 

(bottom to top, from highest to lowest), Centre: Threshold applied to identify cell clusters, Right: 

Individual cell colony clusters identified. Scale in pixels, x axis distance 9mm. Scale bar: 1mm ....... 230 

Figure 5-11 - Contact angles of injection moulded (IM) nanopatterned polycarbonate substrates 

covered with Full Square (FSQ), Near-Square (NSQ 50) topographies and planar control. Error bars SD 

from 15 measurements. ..................................................................................................................... 231 

Figure 5-12 - Cells stained with DAPI and phalloidin, attached to a collagen modified PEGDMA 

hydrogel sheet. (A): Cell has fallen into window of hydrogel sheet appearing more compacted, (B) 

Cell spreading on solid hydrogel section. Cells seeded at 10,000 cells/cm2.  Boxes are 

photolithographically defined windows in the hydrogel sheet. Scale bars 100 µm. .......................... 233 

Figure 5-13 - Average hTERT fibroblast count per hydrogel square on 100 square array, with various 

degrees of collagen modification in the pre-polymer. Fibroblasts seeded at 10,000 cells/cm2and 

counted manually after 24 hours of incubation in DMEM media. All hydrogel surfaces were soaked 

for 24 hours in PBS and 12 hours in DMEM prior to seeding of cells. Unmodified PEGDMA gel used as 

negative control. Only one replicate was run as a pilot study............................................................ 233 

Figure 5-14 – hTERT fibroblasts stained with DAPI (green) and phalloidin (teal) attached to (A) SU8 

surfaces patterned with NSQ50 patterned nanopits, (B) SU8 simply ashed for 30 seconds at 80W in 

O2 plasma, (C) SU8 patterned with FSQ nanopits and (D) SU8 patterned with a randomized series of 

nanopits. Untreated SU8 without patterns showed very poor cell attachment after 24 hours. Scale 

bars: 200 µm. ...................................................................................................................................... 234 

Figure 5-15 – H2 hESCs seeded as clumps on Matrigel coated FSQ surface. Cells seeded at roughly 

20,000 cells/cm2 and cultured in Advanced DMEM. Phase contrast microscopy. Scale bars 600 µm

 ............................................................................................................................................................ 235 

Figure 5-16 - H2 hESCs on NSQ patterned inserts. A) Matrigel (standard protocol – 23ml DMEM+1ml 

Matrigel Aliquot) 24hrs - Adherence of H2 hESCs to planar substrates was visibly reduced, perhaps 

due to poorer Matrigel® coating of the non-patterned surface. In relation to this result vitronectin 

coating of the polymer inserts showed significantly improved promise and greater cell attachment 

on all surfaces shown below. B) Vitronectin (0.5 µg/cm2 – Standard) 24 hrs. C) Standard matrigel 

coatings 24hrs on three injection moulded topographies 24hrs after seeding at 40,000 cells/cm2. D) 

Standard Vitronectin coatings on an identical set of injection moulded topographies 24hrs after 
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seeding shows high density layer of cells in all samples. Phase contrast microscopy. Scale bars: 300 

µm. ...................................................................................................................................................... 236 

Figure 5-17  - A1-3: The morphology of single cell seeded H2 hESCs onto a Matrigel coated surface 

with rock inhibitor. B1-3 Cells seeded in ‘clumps’ after separation in EDTH onto Matrigel surface and 

shows distinct lack of cell viability In contrast to vitronectin where coverage was higher on average. 

C1-3: Show samples covered in vitronectin and seeded with single ROCK inhibited cells. D1-3: Clump 

seeded cells on vitronectin. Scale bar: 600 µm. ................................................................................. 237 

Figure 5-18 - Phase contrast microscopy of H2 hESCs clustering 24 hours after seeding in clumps on 

vitronectin coated FSQ, NSQ and Planar injection moulded insert respectively, little change in 

morphology is visible at 20x magnification. Scale bars: 300 µm. ....................................................... 238 

 Figure 5-19 - H2 hESC gene expression study with cells seeded as single cells from Acutase passage 

onto vitronectin (VTN) and Matrigel® coated nanopatterned inserts with NSQ50, FSQ patterned, 

with both planar polycarbonate and TCP controls. Cells collected after 72 hours in culture, after 

seeding at an initial concentration of 40,000 cells/cm2. RQ is the relative quantification to Actin ACTB 

endogenous control, all normalized to H2 undifferentiated TCP control. Error bars: 1SD. ............... 239 

Figure 5-20 – H2 hESC gene expression study with cells seeded as clumps from EDTA passage onto 

vitronectin (VTN) and Matrigel® coated nanopatterned inserts with NSQ50, FSQ patterned, with 

both polycarbonate planar controls and TCP controls. Cells collected after 120 hours in culture, after 

seeding at an initial concentration of 40,000 cells/cm2. RQ is the relative quantification to Actin ACTB 

endogenous control, all normalized to H2 undifferentiated TCP control. Error bars: 1SD. ............... 240 

Figure 5-21 – H2 hESCs 24 hrs after seeding. Cells cultured on TCP controls (polycarbonate) coated at 

progressively lower concentrations of vitronectin. A) Cells seeded at 40,000 cells/cm2.  B) Cells 

seeded at 80,000 cells/cm2. Similar behaviour was seen at 0.5 and 1 µg/cm2 rhVTN concentration.  

Scale bars: 500 µm. ............................................................................................................................. 241 

Figure 5-22 – H2 hESCs 24hrs after seeding on vitronectin coated NSQ substrates at various seeding 

densities and rhVTN concentrations. A: NSQ at 40,000 cells/cm2. B: NSQ at 80,000 cells/cm2. Similar 

behaviour was seen on FSQ substrates and at 0.5 and 1 µg/cm2 rhVTN concentrations. Scale bars: 

500 µm. ............................................................................................................................................... 241 

Figure 5-23 – H2 hESCs on PS TCP controls at 48hrs after seeding: A) Seeding done at 40,000 cells/ 

cm2. B) Seeding done at 80,000 cells/cm2.Scale bars: 500 µm ........................................................... 242 

Figure 5-24 - H2 hESCs on rhVTN coated NSQ injection moulded substrates at 48hrs after seeding at 

various plating and seeding densities. A) NSQ 40,000 cells/cm2. B) NSQ 80,000 cells/cm2. Similar 

behaviour was seen on FSQ substrates in these conditions. Scale bars: 500 µm. ............................. 242 
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Figure 5-25 – H2 hESC gene expression study with varying vitronectin concentration and cell seeding 

density. Cells collected after 96 hours in culture. 1.25, 2.5 and 5 represent plating density in µg/ml. 

200 and 400 represent seeding density of 200k and 400k cells/ml. C represents TCP controls and N 

represents NSQ nanopatterned surfaces. Results are split by expression of Oct-4 and Sox-2 

respectively which are common pluripotency markers for hESCs. RQ is the relative quantification to 

Actin ACTB endogenous control, all normalized to H2 undifferentiated TCP control. Error bars: 1SD.

 ............................................................................................................................................................ 244 

Figure 5-26 – H2 hESC gene expression study combining 3x96 well plates containing triplicates of 

cDNA from 9 culture wells and endogenous control. Substrates with varying plating concentration of 

vitronectin and seeding density. Cells collected after 96 hours in culture, after seeding at an initial 

concentration of 200,000 cells/cm2. The results are showing common pluripotency and lineage 

markers for H2 hESCs RQ is the relative quantification to Actin ACTB endogenous control, normalized 

to undifferentiated H2 TCP control. Up-regulation of FoxA2 can be seen on all patterned substrates, 

with a down-regulation of T and MIXL1. The cells had been imaged showing nodular 3D architecture 

after 84 hours of incubation (a day prior). All cells kept in E8 culture medium. Error bars 1SD. ....... 245 

Figure 5-27 - H2 hESCs 12 hours post seeding on A ) NSQ B) TCP controls coated with 0.1 µg/cm2 

rhVTN and C) uncoated TCP. All seeded with 40,000 cells/ cm2. Images taken using phase contrast 

microscopy. Similar correlation was seen in the range of 0.25 and 0.1 µg/cm2 rhVTN in increments of  

0.05. All scale bars: 300 µm. ............................................................................................................... 246 

Figure 5-28 - H2 hESCs seeded on 0.01 µg/cm2 rhVTN plated FSQ after 24 hrs 40,000 cells/ cm2. 

Similar results were seen on NSQ substrates at this concentration regardless of cell seeding density. 

Scale bar: 300 µm................................................................................................................................ 246 

Figure 5-29 - Cell area coverage with vitronectin coating concentration. Error bars: 1SD from n=5 

measurements .................................................................................................................................... 247 

Figure 5-30 - Phase contrast imaging at 24 hours after start of random differentiation of H2 hESCs on  

FSQ at A) 0.02, B) 0.05, C) 0.1 and D) 0.25 µg/cm2 of vitronectin respectively. NSQ showed a similar 

trend and 3D morphology. All scale bars: 600 µm. ............................................................................ 248 

Figure 5-31- Phase contrast imaging of induced differentiation of H2 hESCs in small molecules 24 

hours post media swap, 72 hours total culture duration.  0.1 µg/cm2 rhVTN. Cells seeded at 40,000 

cells/cm2. Similar heterogeneous morphology was seen at concentrations of 0.02 to 0.5 µg/cm2 

rhVTN on both FSQ and NSQ. Scale bar: 600 µm. .............................................................................. 249 

Figure 5-32 - Phase contrast imaging of H2 hESCs in E8 media on TCP coated with 0.5 µg/cm2 rhVTN 

at 72 hours total, 24 hours after the differentiation of all sample sets started. Similar 2D flat and 
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homogenous morphology was seen on 1 µg/cm2 TCP controls in the same conditions. All cells seeded 

at 40,000 cells/cm2.  Scale bar: 600 µm. ............................................................................................. 249 

Figure 5-33 - H2 hESCs in E8 media on: A) FSQ 0.05 µg/cm2, B:) FSQ 0.1 µg/cm2, C) FSQ 0.25 µg/cm2. 

D) NSQ 0.05 µg/cm2 E): NSQ 0.1 µg/cm2, F) NSQ 0.5 µg/cm2 rhVTN. Cells seeded at 40,000 cells/cm2. 

All scale bars: 750 µm: ........................................................................................................................ 250 

Figure 5-34 - Phase contrast imaging of H2 hESCs after differentiation in RPMI+B27 with small 

molecules, 48hrs after media swap: H2 hESCs in E8 media on: A) FSQ 0.05 µg/cm2, B:) FSQ 0.1 

µg/cm2, C) FSQ 0.25 µg/cm2. D) NSQ 0.05 µg/cm2 E): NSQ 0.1 µg/cm2, F) NSQ 0.5 µg/cm2 rhVTN. Cells 

seeded at 40,000 cells/cm2. All scale bars: 750 µm . .......................................................................... 250 

Figure 5-35 - Phase contrast imaging of H2 hESCs on immersion in SRDMSO media after the small 

molecules procedure, 24 hours after this second media swap. Samples died due to contamination at 

48 hours. A) Small molecules induced differentiation on NSQ with 0.1 µg/cm2 rhVTN coating. B)  

Random differentiation on NSQ with 0.1 µg/cm2 rhVTN coating. Similar results were seen on higher 

density rhVTN up to 0.25 µg/cm2. All cells seeded 40,000 cells/cm2. Scale bars: 600 µm. ................ 251 

Figure 5-36 - Differentiation seen in H2 hESCs on nanopatterned insert substrates after 84 hours in 

E8 media. The pattern morphology, highly 3d structure and what appears as a changed cell 

phenotype is reminiscent of the behaviour seen in small molecule induced differentiation. All cells 

seeded at 40,000 cells/cm2. Scale bars: A) 400 µm B) 300 µm. .......................................................... 251 

Figure 5-37 – Images taken of H2 hESCs 48 hours after seeding with Rock-, all cells seeded at 25,000 

cells/cm2. Right untreated, Left 0.1 µg/cm2 VTN coating A, B) D100 Short, C, D) D100 Tall, E, F) D150 

Short, G, H) D150 Tall. It can be seen that cells attach to the D100 short surface even without 

coating.  All scale bars: 300 µm. ......................................................................................................... 252 

Figure 5-38 - A-C: D150 Short at 0.05, 0.25 and 0.5 µg/cm2 rhVTN at 24 hours. D-F: D150 Tall at 0.05, 

0.25 and 0.5 µg/cm2 rhVTN at 24 hours. G-I: D100 Short at 0.05, 025 and 0.5 µg/cm2 rhVTN at 24 

hours. J-L: D100 Tall at 0.05, 0.25 and 0.5 µg/cm2 rhVTN at 24 hours. All scale bars: 300 µm. ......... 253 

Figure 5-39 – hESC colony area coverage with pillar type and coating density at 24 hours. D100T, 

D150T, D100S and D150S refer to the Diameter 100 nm tall, 150 nm tall, 100 nm short and 150 nm 

short respectively. Error bars: SE. ....................................................................................................... 254 

Figure 5-40 - Correlation of loading plotted against deflection for the four UHAR pillar geometries as 

determined from calculations. D100T, D150T, D100S and D150S refer to the Diameter 100 nm tall, 

150 nm tall, 100 nm short and 150 nm short respectively. ................................................................ 254 

Figure 5-41 - Angle of inclination at pillar tip in relation to the non-deformed axis with varied tip 

loading compared for the four UHAR pillar geometries as determined from calculations with 
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decreasing accuracy above 5⁰ pillar deflection. D100T, D150T, D100S and D150S refer to the 

Diameter 100 nm tall, 150 nm tall, 100 nm short and 150 nm short respectively. ............................ 255 

Figure 5-42 - Pillar stiffness’s of interest between 5 and 100 nN/µm for pillars of 500 nm, 1000 nm, 

1500 nm and 2000 nm in height (h), as a way of tuning substrate stiffness for cell attachment. 1000-

2000 have the largest useful range for cell culture applications. ....................................................... 256 

Figure 5-43 - A.B.) PEGDMA-Collagen (33 %) hydrogel rolls unfolded by pinning with thin PAA layer 

on Glass. Scale bars 400 μm C.) Cells at 24 hours Scale bar 400 μm and D.) 48 hours forming cell 

colonies to escape gel sheet Scale bars 400 µm. ................................................................................ 258 

Figure 5-44 - '6 petal octagonal Lotus' folding scaffolds with overlapping lock mechanism (see 
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1 INTRODUCTION   

1.1  3D CONSTRUCTS, THEIR OCCURRENCE IN NATURE, RELEVANCE TO TISSUE ENGINEERING, 

AND MAN-MADE RECREATION. 

1.1.1 3D architecture in nature 

Natural systems often depend on intrinsic 3D architectures to perform a function [1], optimise 

internal space or to reinforce fragile structures. These 3D architectures occur on every level of 

existence, from the very small micron sized structures of viruses, phytoplankton [2], the walls of 

pollen grains [3], bee hive honey comb [4], and more importantly for the development of embryos 

[5] and spatial arrangement of the cells that build our bodies (Figure 1-3). In phytoplankton 3D 

architecture serves the structural purpose of holding together and protecting colonies of symbiotic 

organelles in a protective bicarbonate sheath as shown in Figure 1-1.

 

Figure 1-1 - The 3D architecture in cyanobacterium exoskeletons. A-C: SEM image of cells of B. bigelowii. D-E: Optical 
micrographs of B. bigelowii cells showing dodecahedron shaped constructs of the exoskeleton composed of pentagonal 
sections. All scale bars: 1 µm. Reproduced from Hagino et al. [2]. 

In pollen grains micropatterned surface structure and 3D architecture composed of swelling 

biopolymers facilitate a moisture dependant actuation to fold up and preserve genetic material 
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during times of drought, the nature of this folding and the different types of grain constructs are 

shown in Figure 1-2. 

 

Figure 1-2 - Architecture and self-folding of pollen grains. (A) Mechanism of folding response to changes in humidity, allows 
a partial dehydration of the wall material while preventing complete desiccation of the internal genetic information and 
death. (B) A three aperture pollen grain with wall construction. (C)—(F) SEM images of pollen grains in hydrated states. (C) 
The single aperture pollen grain of Lilium longiflorum. D) The three aperture pollen grain of Euphorbia milii. (E) The single 
aperture pollen of Aristolochia gigantea. (F) The single aperture pollen grain of maize (Zea mays). Scale bars: 20 μm. 
Reproduced form Katifori et al. [3]. 

Naturally humans have a fascination with designing 3D structures, platonic polyhedral carvings have 

also been found in Scotland dating back to 2000 BC and mankind has progressed to use them in art 

and architecture to this day [6]. This interest has slowly progressed over the last 4000 years and now, 

with the advent of tissue engineering and nanotechnology, the exploration has started with the  

application of these geometric arrangements into the construction of micro environments has started 

with the push to create man-made 3D architecture and hierarchy in tissue engineering.  

This desire to build on the micro- and nanoscale stems from the need for sustained and precise control 

over cellular proliferation, function and differentiation. This task is a vital milestone in moving from 

materials which are observed to function, to those which are manufactured to function. This ‘design’ 

process reflects the main factors controlling cellular function in vivo, such as: the architecture, 
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chemical and mechanical stimuli, gradients and cross talk among diverse cell types. A multi-stimuli 

and multi-dimensional environment is therefore desirable if we are to emulate these complex 

systems. One area where this is quite apparent and of particular focus in this work, is hepatic tissue 

where there is a distinct 3D architecture (Figure 1-3).  

  

Figure 1-3 – Depiction of liver metabolism, showing the processes of the lobule to lobule interaction, nutrient and waste 
transport and chemical gradients including the chemical gradients and metabolic zones (1 to 3) resulting in nutrient and 
oxygen uptake as it transits the hepatic lobule. This image highlights the importance of geometric order in hepatic tissue 
constructs. Reproduced from Mohty et al. [7] 

Artificially grown hepatic tissues are needed as a more sustainable and repeatable model in modern 

medicine and pharmaceutical research for the creation of lab grown organelles [8], repair of 

damaged tissues, and to be used for pharmaceutical and pathological testing [9]. The liver is one of 

the best examples of a complex biological structure, and one that relies on specific cellular 

arrangement to function at optimum efficiency and metabolism [10].  

The liver consists of lobules which perform a series of metabolic functions, these are divided into 

individual units or hepatic acini, which can operate in heterogeneous order, independently, and can 

ramp up activity to meet demand. Blood flows past sheets of hepatocytes through the sinusoids and 

into the central vein (Figure 1-3). The first periportal zone nearest to the blood supply receives the 

most oxygenated blood, with the supply tapering off towards the centre of the lobule, this causes 

different behaviours and sensitivities in the lobule. An important aspect of this is that the 

oxygenated hepatocytes near the surface are specialized for oxidative functions such 

as gluconeogenesis, fatty-acid oxidation and production of cholesterol, while the internal cells 

perform glycolysis, and drug detoxification [11]. 
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Figure 1-4 – Pathways for bile regurgitation in cellular hepatic junction. In numbered order of: 1. escape through leaky 
junction, 2. vesicle mediated transport, 3. Transport to the sinusoid endothelial cell membrane. Scale bar: 20 µm. 
Reproduced from Desmet [12]. 

 Due to this heterogeneous and highly geometric structure, as well as the presence of multiple cell 

types; in vitro cultures of liver tissue do not show a realistic cellular metabolism, as they are not 

exposed to the correct ‘cross-talk’, be it due to the structural/mechanical characteristics of the 

substrate, lack of correct cell-to-cell contact, or lack of the correct chemical gradients seen in the 

native environment. Even in co-cultures with other cell types, the observed metabolism does not 

match that of native liver tissue [13]. The standard process of collecting biopsies for the study of drug 

metabolites, or doing live trials is time consuming and not as efficient as a miniature lab on a chip 

technique could be, evident in the number of pre-launch and post-market attrition of pharmaceuticals 

due to liver toxicity [13]. Animal trials are limited in their relevance to human drug metabolism, as 

their metabolic pathways cannot transfer to that of humans [14] this can be illustrated by the example 

of the drug Tirilazad which was associated with a worse outcome in patients with ischemic stroke but 

showed reduced infarct volume and improved neurobehavioral scores in animal models [15]. To 

circumvent the shortfalls of 2D hepatic cell culture, structuring is needed where cells are assembled 

into a 3D device, and it is hypothesized by the author that a 3D ordered configuration of hepatic tissue 

would lead to a boost in the liver tissue model performance and serve as a far more realistic system 

in a variety of clinical, pharmaceutical and research applications. 

Hepatocyte 
Hepatocyte 

Nucleus Nucleus 

Sinusoid 

Sinusoid 

Cholestatic 

cananaliculus 

20µm 
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1.1.2 Simulated 3D constructs 

This thesis is focused on the mechanical systems and material science in tissue engineering which 

combined offer potential foundations to control cell proliferation and tissue growth. The proposed 

importance of producing the necessary 3D architecture previously discussed in section 1.1.1.  

In the literature a multitude of attempts have been made to create 3D tissue scaffolds. These have 

used various polymers [16], composites [17]  and fabrication methods, including 3D printing [18], 2-

photon lithography [19], in situ polymerization [20, 21] and a variety of casting methods involving 

heat and radiation which are discussed further in section 1.3.3. These materials can then be given a 

particular architectural complexity by enforced and inherent mechanisms. Inherent 3D architecture 

can be a product of the manufacturing method such as foaming, spinning, eroding and sintering 

where pores and fissures occur during the production mechanism, by solvent evaporation, phase 

separation or porogen addition. Enforced on the other hand refers to self-assembly and actuation, 

where an external system or input creates the 3D construct, it is these systems which will be 

investigated in greater depth within this work. 

Many 3D designed structures have been attempted in the past, including various single photon 

lithography techniques and 3D printing. These are very slow and uneconomical to scale, something 

apparent in the use of 3D printing as a rapid prototyping technology, but not in commercial batch 

manufacture. Single photon lithography prints on a tiny scale by a femtosecond laser, this process is 

inherently time consuming. Actuation is then the likely solution, as every simple and high-

throughput method of nano- and microfabrication available is a 2D process, any lithography is 

writing on a 2D surface by different means, the same applies to nanoimprint lithography (NIL) 

processes such as embossing, which work by 2D replication.  

The problem of producing designed (enforced) 3D structures can be divided into two parts, firstly 

the scaffold itself has to be manufactured, and secondly is how that scaffold is then actuated and 

forced into forming a 3D construct. These two components need not be mutually exclusive, but 

creating an overlap produces a range of difficulties in handling the resulting devices which will be 

discussed in detail later.  
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1.2 ACTUATION AND THE SPONTANEOUS FORMATION OF ENGINEERED 3D STRUCTURES 

As candidates for the enforced method of 3D scaffold formation a wide range of actuators have 

previously only been employed in biomedical engineering, these have come in the form of 

environmentally sensitive valves, micro-electro-mechanical systems (MEMS) and folding bilayers, a 

number of these actuating systems (Figure 1-5). 

Figure 1-5 – Various actuating micro systems. A: Hemisphere of a dodecahedron formed by capillary force.  Scale bar: 50 
µm. Reproduced with permission from Legrain et al. [22] B-C: A tetrahedron before and after folding made of differentially 
exposed hydrogel, among other geometric shapes, the structure is formed by acidic and hot environment reproduced from 
Yoon et al. [23], scale bars 300 µm. D-E: A Venus flytrap mimicking device composed of rigid SU8 segments with a NIPAm-
AAc/PEODA bilayer hinge folding with low pH and high temperature,. scale bars: 3mm. reproduced with permission from 
Bassik et al. [24]. F: A jellyfish like hydrogel container formed by differential swelling of a NIPAAm based bilayer in cold 
water, scale bar: 100 µm. Reproduced with permission from  Guan et al.[25]  

Various fabrication methods have been demonstrated using material and morphological approaches 

to produce actuating micro devices. Many of these methods have produced devices which often lack 

permeability, or actuate by a cytotoxic process, such as highly elevated temperature or chemical 

concentration as shown in Figure 1-5 and further in Table 1-1. Of these fabrication approaches a 

permeable and cell friendly scaffold is needed which can be modified to suit particular applications 

from cell transport to in vitro differentiation of stem cells.  
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Table 1-1 - Previously published work on actuating micro-containers and micro-devices, showing their relevant methods of 
manufacture, actuation, and achieved size. 

Copolymers Solvent Fabrication 

method 

Hinge material Stimuli Size Nanopatter

n present 

Reference 

P(EGDMA-co-MAA) 

and 

Chitosan 

glycerin UV–NIL with 

PDMS mould. 

Carboxyl 

Deprotonation 

Swell in 

H2O 

100-500 

µm 

No [25] 

AAc-co-NIPAAm 1-

butanol 

UV 

Photolithography 

2 step 

Carboxyl 

swelling plus 

LCST transition 

pH2, 60°C 350-2000 

µm 

No [23] 

Nickel-Solder N/A Photolithography/

evaporation 

Solder (Thermal 

shrink) 

183°C 1500 µm No [26] 

PEGDA PBS Photolithography 

2 step. 

Swelling by Mw 

differential 

Swell in 

H2O 

1000 µm No [27] 

NIPAAm-co-AAm ethyl 

lactate 

Photolithography 

2 step. 

Carboxyl 

swelling and 

LCST transition 

Swell when 

T<22°C 

400 µm No [28] 

(HEMA-co-NIPAAm-

co-AAc) with SU8 

panels 

DMSO Photolithography 

3 step. 

Carboxyl 

swelling and 

LCST transition 

pH 2.5, 

40°C 

6000 µm No [24] 

Copper, SU8 N/A Photolithography 

4 step. 

Copper 

oxidation and 

reduction 

L-glutamine 0.150 µm No [29] 

Silicon nitride N/A Photolithography, 

undercut etching. 

Surface tension H2O 100 µm No [22] 

 

The list of possible candidates for both active and passive folding includes piezo materials, magnets 

[30], thermal expansion, surface energy interactions, hydrogel actuators [24, 31] memory metals and 

polymers [32, 33] and reported in natural systems via moisture absorption [3]. The use of these 

materials can allow the transformation of a 2D printing or lithographic process into a method for 

generating 3D devices, providing a scalable toolbox for tissue engineering applications [34].  The 3D 

structure aims to provide an environment reminiscent of one encountered by cells in vivo [35] as 

different cell types require different chemical [36, 37], topographical [38-40] and mechanical [41, 42]   

stimuli as well as the presence of secondary and tertiary cell types [43] to form congruent tissue sheets 

or structures. This list of techniques applied and demonstrated for the manufacture of 3D containers 

is shown in Table 1-1. These are organized by their actuator type, method of manufacture and length 

scales, as well as extra features such as nano-topographical modification which they may include, 

although this was found to be a niche which was not present in other work. Often structures would 

show the ability to form a 3D architecture, but would lack nano-topographical cues, or a means of 

folding which was compatible with cell culture. 
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The list is broad and many actuators which rely on benign and biocompatible triggers were also found, 

the recipes used by the Gracias group at Johns Hopkins University [23] to create hydrogel bilayers 

played a large role in the development of my future approach, and feature prominently in the table. 

It should be noted that within these methods, a truly biocompatible triggering method is rare, and 

many of the optimum conditions for actuation in literature fall outside the envelope that cells, 

especially very sensitive ones such as stem cells, can survive. The strong ionic gradients or extreme 

temperatures are seen as necessary to achieve the full potential of the actuator being used, but this 

subject will be addressed later. It is believed that the devices can be improved upon in relation to 

biocompatibility by reducing the strength of the stimuli or increasing the amount of hinges or 

increasing the hinge size, reducing the actuator thickness is also a beneficial route to improving their 

actuation potential. Of these methods the ones which possessed the best traits for the encapsulation 

and sustained culture of cells were based on hydrogels due to their tenability and permeability, 

making a hydrogel device or hydrogel actuated device the most viable option, the merits of these 

materials and their synthesis methods were investigated for this purpose. 

1.3 HYDROGELS AS TISSUE ENGINEERING SCAFFOLDS AND ACTUATORS 

Hydrogel polymers, either synthetic or of natural origin, have a large portion of their volume taken 

up by absorbed water, suspending a largely interconnected matrix of crosslinked or otherwise 

immobilized polymer chains. Due to this structure, hydrogels are able to swell, absorbing a large 

amount of water without the polymer dissolving (Figure 1-6). In the case of crosslinked gels, the 

network can be a homopolymer [44] or contain secondary networks, copolymers, co-polymeric 

grafts and an array of micro-scale modifications to change the material response, cell response and 

mechanical behaviour of the final gel scaffold. These properties make them ideal candidates for 

mimicking soft tissue in tissue engineering applications, offering a range of potential chemical and 

mechanical modifications. 
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In addition to their use in tissue scaffolds, hydrogels have been used as drug delivery devices [35, 45, 

46], lenses [47], membranes [48], chemical sensors [31, 49] optical sensors [50], stimuli augmentable 

surfaces [51], capture-and-release surfaces [52], chromatographic separation media [53], actuators 

[54] valves[55] and bulk scaffolds for cell growth [56-59]. The wide variety of available polymers and 

monomers has made hydrogels extremely attractive for tissue engineering applications. They can be 

tuned by alteration of their crosslinking density and volume fraction, and it is due to their tuneable 

physical characteristics, wide range of methods of synthesis, and polymer composition, that hydrogels 

are the choice material for many systems in regenerative medicine [60]. They can be readily modified 

or treated to mimic the modulus and chemical composition of extracellular matrix proteins for 

improved cell proliferation and survival or strong enough to comprise the bulk of an implantable 

scaffold. Many hydrogel formulations are available, allowing the chemical response, mechanical 

properties, biocompatibility, degradation and solute transport to be carefully engineered.  The relative 

ease with which hydrogels can be manufactured from their constituent polymers varies from heat 

catalysed casting [61], photo initiated free radical polymerization [62] as negative photoresists [63-

65] UV-NIL [66, 67] , plasma-polymerization [68], deep X-ray photolithography [69], or EBL exposure 

[70]. Utilizing the gel’s ready conformation to solid surfaces can produce micro patterned polymeric 

bilayers [24, 71] which can be altered to swell and change geometry depending on their environment 

or due to predefined triggers [72]. 

They can serve as scaffolds which mimic native cell environments, provide structural integrity to 

tissue constructs, and in the case of many stimuli responsive gels, serve as drug and protein delivery 

conduits to tissues and cell cultures, or as adhesives or barriers between tissue and material surfaces 

on biomedical implants. However, there has not been a successful system for active cell capture 

Crosslinking 

Initial swelling 

Energy 

H2O 

Stimuli 

Triggered transition 

Figure 1-6 – Hydrogel formation and actuation based on steady state equilibrium swelling and actuation between 
hydrophilic and hydrophobic states.  
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other than bulk cell encapsulation [64, 73, 74]. Some work on stimuli responsive photopatterned 

hydrogel structures has been done, but on a much larger macro scale [52]. This problem arises 

because hydrogel copolymer systems which are most responsive to external signals are often 

mechanically weak, while heavily crosslinked gel networks do not swell rapidly or significantly and 

react more slowly to external stimuli due to the high elastic force of the polymer network opposing 

the swelling of the gel [75]. Their ability to reversibly change can also lag when gels are too thick, 

both due to slow chemical reactivity, and concentration polarization where ions cannot be 

effectively transported in or out of the matrix [76]. Nanocomposite gels [77] polymerized with a 

nanoclay crosslinker have been suggested as a possible solution to many of these issues. These 

composite gels are also prepared by free-radical polymerization at near ambient temperature, 

without stirring, easily producing various shapes and surface forms. Because of their unique organic-

inorganic network structure, they possess high toughness and excellent optical properties. However 

the biocompatibility of these still requires investigation.  

Additionally no effective photoinitiated polymerization of nanocomposite smart gels currently exists 

[78], as the tetramethylethylenediamine (TEMED) based initiators in these systems work by actively 

immobilizing and absorbing on the clay particles, propagating the reaction outwards. This property 

does not seem to be present in photoinitiators, which usually produce weak gels. The addition of 

functional groups provides the basis of smart actuating hydrogels, and is achieved by attaching 

functional polymers to the gel network, ranging from pH [79], temperature [24, 54, 71], light [46], 

electrochemical [80] and enzyme sensitive polymers [81]. One final and significant advantage is their 

permeability to oxygen and dissolved species [82] and the adjustable level of protein immobilization 

[83] which make it possible to create multi-layer structures [74].  
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These structures can be capable of selective attachment/detachment of cells as seen in Figure 1-7 in 

a predefined area by minor changes to the aqueous environment [84]. 

Figure 1-7- Phase-contrast photomicrographs of (a) fibroblast and (b) HUVEC cell proliferated on a PNIPAAm hydrogel film. 
(1–3): Fibroblast sheet detachment upon decreasing the temperature to 10–20 °C when the gel falls below its LCST and 
begins to swell. Scale bars: 200 µm. Reproduced with permission from Haraguchi [78].  

To allow for the disposal of the scaffold, these gels can be modified to be bio [85], photo [86] and 

sonically [87] degradable by coupling a sensitive polymer to the network. Currently the use of gels in 

cell capture applications has been limited to flat surfaces [71, 72, 79]. Their porous structure also 

makes it tricky to nanopattern certain concentrations [66], and the process itself is often oxygen 

sensitive [88] requiring an inert environment, oxygen scavengers in the pre-gel, strong radiation, or 

an inert atmosphere [89]. 

1.3.1 Neutral or structural hydrogels 

What can be called “neutral hydrogels” form the backbone of any hydrogel system, providing rigidity 

and mechanical support while remaining inactive or unchanging to ongoing chemical reactions in the 

local environment. This structural material for the hydrogel bilayer needs to be a material that is easily 

patterned and permeable to nutrients and dissolved gases to enhance cell viability and survival when 

the finished hydrogel scaffold, hinge or structure is operating in vitro. The main candidates are 

polyethylene glycol (PEG) [90] or hydroxyethylmethacrylate (HEMA) and its polymer 

polyhydroxyethylmethacrylate (PHEMA) based copolymer systems [91] which have been used in 

contact lenses due to their clarity, flexibility and reasonable strength [47]. PHEMA hydrogels were 

among the first synthesized for biomedical applications by Lim and Wichterle in 1955 [92] for use in 

contact lenses due to its spectacular stability in different pH, temperature and ionic conditions. PEG 

also known as polyethylene oxide (PEO) for high molecular weight variants [92], is one of the most 
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widely used hydrogels in biomedical applications. Hydrogels based on its acrylated PEGs such as PEG-

dimethacrylate (PEGDMA) and PEG-diacrylate (PEGDA) are widely used due to their high 

biocompatibility, lack of toxic influence on surrounding tissue, lack of protein absorption and solubility 

[90]. These reasons have led to PEG having wide ranging applications in cell encapsulation and 

transport [93]. 

1.3.2 Stimuli responsive hydrogels 

As previously mentioned, a variety of triggers can be instilled in hydrogels, from light [46] electric 

potential [80], temperature [24], pH and enzymes and ionic compounds[81]. This thesis will focus on 

stimuli which are present in culture media or are non-cytotoxic to cells and living tissue. This eliminates 

the use of electric potential, or very strong ionic solutions to avoid cell rupture due to high osmotic 

potentials. The manufacture of each actuator type requires both different hydrogel chemistry and 

different fabrication steps, NIPAAm [94] in particular is very sensitive to oxygen inhibition.  

1.3.2.1 pH responsive gels 

The pH sensitivity in hydrogels is created by the copolymerization of an acid or acidic polymer such 

as polyacrylic acid (PAA) or polymethacrylic acid (PMAA) into the hydrogel network. The carboxylic 

groups of the acid respond to changes in pH by protonating or deprotonating [95]. The extent and 

threshold of this change of state depends on the pKa (acid dissociation constant) value of the acid in 

question. The higher the acid pKa values the smaller its proton dissociation. A weak poly acid such as 

PAA has a pKa value in the range of 4 to 6.5 in water [96] as shown in Table 1-2. 

 Table 1-2 - pKa Values of MAA, AA and their respective polymers, the pKa value is the point at which the chain reaches its 
respective protonating/deprotonating threshold. 

Acidic polymer or monomer pKa value 

Methacrylic acid 4.66 [97] 

Acrylic acid 4.25 [96, 98] 

Poly methacrylic acid 4-6 [96] 

Poly acrylic acid 4.5-6.4 [96] 

 

The values correspond to the states where the carboxyl groups exist in their COOH form and 

deprotonating to a COO- as the pH rises [96]. The point at which this occurs can be found from the 

relation [98]: 
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 𝑝𝐻 − 𝑝𝐾𝑎 = log⁡(
𝛼

1 − 𝛼
) Eq. 1-1 

Where α is a material dependant constant related to the activity of the chemical species. The change 

in hydrogen dissociation at the pKa leads to changes in surface energy and in addition to changes in 

hydrogel swelling the surface switches between a hydrophobic and hydrophilic state. The slight charge 

in the carboxyl groups also leads to their attraction to positively charged surfaces or particles, which 

can be a problem during fabrication and testing as the structure has a great affinity for its container. 

An ion concentration gradient over the interfaces between the hydrogel and the surrounding solution 

is then developed because of the fixed negative-charged groups on the acid modified side of the 

hydrogel. Osmotic pressure is generated because of the ion concentration difference in the active and 

neutral hydrogel structures. The use of acrylic and methacrylic acids also offers improved cell adhesion 

[99] and can be used to attach proteins and peptides. Additionally pH sensitive copolymer, grafted 

and double network [100] hydrogels have also been made by a variety of combinations of acids, poly-

acids and neutral methacrylates, very often crosslinking acrylic acid and NIPAAm monomers by 

photolithography. These double network gels are very fast in response, but suffer from concentration 

polarization where ions cannot be transported to the core of the gel fast enough, as a result they 

bubble or form a hard shell if two stimuli are changed at once, for instance raising pH while raising 

temperature.  

1.3.2.2 Thermally responsive hydrogels 

While it is not the only thermoresponsive monomer, NIPAAm has seen a lot of attention due to its 

good processability, means of manufacture and low toxicity. Work has been on-going for several 

decades into ways in which the mechanical and responsive properties of these gels can be improved. 

The material undergoes a chemical change above 32 °C [101] at which point it contracts and 

becomes hydrophobic, and begins to eject the absorbed water it contains, resulting in de-swelling 

[55]. This property is observable at body temperature as seen in Figure 1-8. The speed of response 

and exact LCST temperature are tuned by changing the polymer molecular weight and type of co-

polymers (hydrophobic or hydrophilic) used in the hydrogel synthesis [102]. These swelling 

properties make this actuator type particularly useful for use in vivo, as it will remain curled after 

implantation. 
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Figure 1-8 –A: shows the advancing (open square) and receding (closed square) contact angle of PNIPAAm gels. B: The 
swelling ratio of PNIPAAm gels in pH 7 buffered solutions of increasing ionic strength over a range of 0.005mol/dm3 (open 
circle) – 0.154 mol/dm3 (closed triangle) intermediate concentrations (closed circle, open triangle). Reproduced from 
Makino [103]. 

1.3.2.3 Light responsive gels 

The combination of thermo-responsive NIPAAm gels with particles such as gold nanospheres [46], 

fullerenes and nanotubes [104, 105] can be used to make them respond to that wavelength of light to 

which the selected nanoparticle reacts [17]. The heat generated by the dopant particle causes the 

polymer network to heat to above its transition temperature and shrink [76]. Additionally graphene 

sheets can be used to produce an electrically stimulated hydrogel based actuator [106].  

1.3.3 Hydrogel synthesis 

Hydrogels do not disintegrate during swelling due to their crosslinked structure. Crosslinking may be 

achieved as mentioned before, by physical or chemical immobilization of polymer chains. The 

crosslinking may take place in two environments: in vitro during the preparation of a hydrogel, or in 

situ after application in a precise location of the human body. This thesis considers device 

manufacture, and concerns the in vitro preparation of hydrogel devices, to be compatible with 

existing methods of manufacture, such as photolithography or solvent casting. Hydrogel actuators 

can be made by a variety of high throughput methods, such as photolithography, which allows for 

the quick creation of a network and the incorporation of certain ‘functional’ polymers, which expel 

the contained swelling agent when they are subjected to external stimuli [107]. Non-functional 

hydrogels can be made with the same method, discussed further in section 1.3.3.1, act as a 

permeable hydrated structure allowing for nutrient and ion transport while retaining rigidity [108]. 

A      B 



Iskandar Vasiev “3D Self-folding tissue scaffold origami”  53 

To initiate chemical crosslinking it is necessary to introduce into the reaction mixture a low-

molecular-weight crosslinking agent together with a polymer and initiator which propagates the 

polymerization reaction. Many factors play a role in the final properties of a gel, such as molecular 

weight of the constituent polymer between crosslinks, the volume fraction and type of solvent 

during casting, the temperature during synthesis, initiator type and crosslinker. Gels can be divided 

into four groups depending on the inertness, synthesis and presence of crosslinking reaction. If the 

crosslinking involves the creation of covalent bonds; the hydrogel could be termed a ‘permanent’ 

hydrogel [107], these include PMMA, PEGDMA and PHEMA. If the hydrogels are formed due to the 

physical interactions, such as van der Waals forces, ionic interaction or hydrogen bonding among the 

polymeric chains, then they are termed ‘physical’ hydrogels [107]. These hydrogen bonding groups 

and ionic side chains form the basis for further definition of hydrogel ‘type’ categorized as 

conventional and stimuli responsive hydrogels. The covalently bonded gels yield a polymer network 

resembling a chicken wire fence, where the crosslinking density depends on these factors.  

1.3.3.1 Free radical polymerization  

Radical polymerization is the most common means of hydrogel synthesis [90]. While other methods 

of producing various hydrogen bonded gels and sol-gels exist [109], these are not particularly useful 

for rigid structural applications. Among the free radical initiators available, thermal and photo 

cleavable initiators are widely used to produce gel devices [24, 48, 67, 109, 110]. Photo initiators are 

the more controllable choice in this instance, as they offer direct control over the shape, extent and 

crosslinking of the gels formed by altering the exposure dose [111], while thermal initiators are 

useful in instances where the shape is defined by solvent casting and moulding, as localised heating 

is more difficult to achieve. 

1.3.3.2 UV initiated free radical polymerization.  

Photoinitiation process is fast and provides spatial and temporal control of the polymerization 

reaction, since the radiation can be focused on a location of interest and stopped at a specified time. 

UV irradiation has become one of the most common way of photo-polymerization and the setup is 

relatively easy to prepare. Typically, the morphological properties of the final hydrogels are 

controlled by the type of solvent selected, as well as the amounts of crosslinking agent and initiator 

used (Table 1-3), as both affect the kinetics of the free-radical polymerization [109]. More pores 

means more space and less resistance to swelling, more crosslinking counteracts this by forming a 

denser network. 
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Table 1-3 – Photo Initiators used in this work, chosen based on frequent use in literature. The initiators have different 
molecular structures and thus also different excitation peaks [112]. This is useful when tuning the initiator to the light 
source available for curing. The most common being 365 nm UV light as that used in our mask aligner. 

Photoinitiator  Chemical compound Absorption peak 

wavelength (nm) 

Irgacure 2959   2-Hydroxy-4'-(2-hydroxyethoxy)-2-methylpropiophenone 280,320 

Irgacure 651  2,2-Dimethoxy-2-phenylacetophenone 250,340 

Lucirin TPO  Diphenyl(2,4,6-trimethylbenzoyl)phosphine oxide 295,368,380,393 

Irgacure 819 Phenylbis(2,4,6-trimethylbenzoyl)phosphine oxide 295,370 

Darocur 1173 2-Hydroxy-2-methylpropiophenone 245,280,331 

 

The most common method of UV photo-polymerization is using photo sensitive compounds called 

photoinitiators which provide the free radicals necessary to break and create new bonds within the 

polymer suspension creating a crosslinked polymer network [113, 114]. Carbonyl group containing 

photoinitiators which form free radicals by the cleaving of hydrogen atoms during hydrogen 

abstraction are the most widely used [115]. Several families of initiators are available of which 

phenones, ketals and phosphine-oxide based photoinitiators are widely used [116] and were chosen 

to be used in later formulations (Table 1-3). The most active are phosphine-oxide based 

photoinitiators, such as Lucirin TPO, which has been determined using the respective quantum yield 

of various photoinitiators [115] based on the MA6 exposure data shown in Table 1-4. 

Table 1-4 – SUSS MA6 mask aligner illumination values used for calculation of exposure frequency and dose. 

Light intensity Emitted light wavelength 

7.2mW/cm2 365 nm  

 

Using this and converting it into molecules decomposed per second of exposure, with the 

assumption that each incident photon decomposes one molecule of initiator. The energy of one 

photon is taken as: 

 
ℎ𝑣⁡ = ⁡𝐸⁡ ∗ ⁡𝐶⁡/⁡𝜆 

Eq. 1-2 
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Where E is Planck’s constant and c is the speed of light. This converts the quantum yield found for 

each initiator in literature to a quantifiable figure for MA6 exposure per second. 

Converting the number of moles into weight decomposed will give exposure times to achieve 100 % 

conversion per volume of initiator so that exposure can be adjusted for the size of sample this is 

shown in Table 1-5. The most well established initiator system for photo encapsulation is Irgacure 

2959, manufactured by Ciba and commonly used in combination with ultraviolet (UV) light. Although 

I2959 is tolerated by many cell types at a concentration of 0.03-0.1 % [111] it has very poor 

absorption in 365 nm light [111]. Initiators were first analysed by solubility, and secondly by their 

absorption spectra, to find the initiator most suitable for the lithography setup available using the 

Beer-Lambert law [117]. 

 𝐴 =⁡ 𝜀(𝐿/𝑚𝑜𝑙𝑐𝑚) ⁡ ∙ 𝐶(𝑚𝑜𝑙/𝐿) ∙ ⁡𝐿(𝑐𝑚) Eq. 1-3 

Where A is absorbance, c is concentration in solution, and l is the length of the path to be travelled 

by light. The chemical nature of the photoinitiator determines their respective curing rate, spectral 

sensitivity and oxygen sensitivity, the quantification of the quantum yield for several popular 

initiators is listed in Table 1-5. The quantum absorption coefficient was also found by varying 

initiator concentration under UV-VIS spectroscopy outlined in Chapter 3. 

Table 1-5 –Quantum yield conversion, data for Individual initiator quantum yield. Quantum yield is a measure of the 
radicals generated to produce a polymerisation reaction by the listed photoinitiators, a high value represents an efficient 
initiator. Data from [89], [115], [118] and [119].  

1.3.3.3 Oxygen Inhibition 

Oxygen is a strong factor in the radical polymerisation cycle, acting as a scavenger and terminating 

both free radicals and radically terminated molecules or chains. For high throughput, It is desirable to 

carry out polymerizations in air, and therefore, methods for enhanced oxygen inhibition are of great 

importance [119]. Oxygen inhibition effects free radical polymerizations by slowing polymerization 

rates, increasing induction periods, decreasing conversion, decreasing polymer kinetic chain length 

and creating tacky surface properties [120]. Successful reduction of oxygen interaction with the 

Initiator                                           Quantum yield ф Moles decomposed per cm2/ s 

I2959 0.05                [115] 1.099 x 10-9        

I651 0.1-0.7           [118] 2.197 x 10-9         

L-TPO 0.88                [119] 1.93 x 10-8                     

I-891 0.9                    [89] 1.977 x 10-8                    
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system would provide a significant advantage [89] in making thin films with micro- or nano-scale 

patterns. In films such as the gels being produced where film thickness and feature size is below 10 

µm, oxygen continually diffuses across these small length scales, scavenging the initiating and 

propagating radicals [109].  

Overcoming oxygen inhibition is done in a number of ways; purging the pre-polymer solution and 

mask aligner prior to exposure with an inert gas such as nitrogen or carbon dioxide, or with the 

addition of amine monomers such as TEA (Table 1-6) into the pre polymer solution as a synergist or 

oxygen scavenger[89], and/or providing more initiator or higher intensity light [120]. 

1.3.4 Hydrogel performance 

1.3.4.1 Equilibrium swelling ratio 

The swelling of hydrogels is a complicated process, consisting of a number of stages. The general 

equation governing the network is expressed as a balance of free energy. 

 ∆𝐺𝑆𝑦𝑠𝑡𝑒𝑚 =⁡⁡∆𝐺𝑚𝑖𝑥𝑖𝑛𝑔 +⁡∆𝐺𝑒𝑙𝑎𝑠𝑡𝑖𝑐 Eq. 1-4 

Where ∆𝐺𝑠𝑦𝑠𝑡𝑒𝑚⁡is the total free energy of the system, ∆𝐺𝑚𝑖𝑥𝑖𝑛𝑔 is the Gibbs free energy of ‘mixing’ 

or the tendency of the polymer chains to dissolve into the aqueous solution, finally ∆𝐺𝑒𝑙𝑎𝑠𝑡𝑖𝑐 is the 

elastic retraction energy or resistance to swelling expansion by the crosslinked chains. In the first stage 

water molecules enter the hydrogel matrix hydrating the most polar, hydrophilic groups such as the 

carboxyl groups in PAA and PMAA, this hydration results in the appearance of primary bound water. 

In the second stage, with the hydrophilic groups bound, the hydrophobic groups begin to interact with 

water molecules giving secondary bound water. These two stages form what is referred to as the total 

bound water, or the water which remains if a pressure or osmotic gradient acts on the gel. In the final 

stage, as the network tries to dissolve and is resisted by the covalent or physical crosslinks, an 

additional amount of water is absorbed by the osmotic driving force created as 

∆𝐺𝑚𝑖𝑥𝑖𝑛𝑔⁡and⁡∆𝐺𝑒𝑙𝑎𝑠𝑡𝑖𝑐 continue to grow. The water absorbed between the total bound water, and 

the equilibrium swelling level is called the free water; it fills the space between the network chains, 

but is not immobilized on the polymer network itself [92]. As equilibrium is reached, |∆𝐺𝑚𝑖𝑥𝑖𝑛𝑔| =

⁡|∆Gelastic|⁡and⁡∆GSystem = 0  the driving force of the swelling is reduced and brings the gel to a 

steady-state balance between the mixing and elastic free energy. 
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Table 1-6 – Structures of key monomers and polymers for hydrogel synthesis studied in this thesis 

Abbreviation Chemical name Molecular structure 

TPM 3-(Trimethoxysilyl)propyl methacrylate 

 

TEA Triethylamine 

 

PEGDMA Poly(ethylene glycol) dimethacrylate 

 

PAA Polyacrylic acid 

 

PMAA Polymethacrylic acid 

 

NIPAAm N-isopropylacrylamide 

 

DEAEMA N,N-Diethylaminoethyl methacrylate 

 

HEMA Hydroxyethyl methacrylate 

 

 

  

H H 

http://www.sigmaaldrich.com/catalog/product/aldrich/408980?lang=en&region=GB
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1.3.4.2 Hydrogel Immobilization 

To aid the study of hydrogel surfaces for cell adhesion, or to monitor containers which are 

immobilised in one area, or to anchor specific cell type containing hydrogel niches in a particular 

location a method of permanent attachment of all or part of the structures to the substrate is 

necessary. Hydrogels based on acrylate chemistry will readily crosslink onto other acrylated 

polymers such as PMMA, some epoxies and, with the correct choice of crosslinkers and initiators, 

polystyrene surfaces. On glass and other inorganic surfaces this is not as simple. In these instances 

hydrogels can be immobilized using 3-(Trimethoxysilyl)propyl methacrylate (TPM) a methacrylate 

terminated silane (Table 1-6) which can bind to silicon and borosilicate glass surfaces [67]. This can 

be implemented by a similar protocol to conventional silanization to create methacrylate based 

anchor points on the glass, which involve it in the crosslinking process during hydrogel synthesis. 

1.3.5 Hydrogel bilayer actuators  

While there has been significant progress in the manufacture of precisely engineered 2D surfaces for 

cell interface studies, most fall short of presenting the cells with the cues which exist in the native 3D 

cellular environment combined with surface patterning, mechanical and chemical stimuli [121, 122], 

there is also a lack of self-assembly in these applications [30] which can ease manufacture and 

greatly increase throughput. While many engineered 3D cellular tissue scaffold constructs have been 

demonstrated in the past with relatively easy methods of manufacture [123], these do not offer 

much control over the geometry and would not serve in making a purpose designed surface 

topography and structure. There is therefore a need to extend the applications of defined 2D micro- 

and nanopatterned methods to the third dimension. Self-folding is one method of achieving this 

conversion of 2D patterning techniques into a viable method of manufacturing a 3D cellular 

environment and creating reconfigurable structures which can fold or unfold in response to specific 

environmental cues. An array of self-folding 3D structures [30], employing stimuli responsive 

materials for cell capture [124] and drug delivery have been made in the past. These have often 

incorporated a bilayer structure [125] with varying environmental sensitivity of the constituent 

layers; including heat-shrink type hinges [126], shape memory polymers [127] and hydrogel films 

[128]. However these devices fail to combine surface patterning on a material while remaining 

permeable to oxygen and nutrients. The challenge lies in the creation of permeable and patterned 

2D templates composed of polymers and hydrogels so that self-folding structures can be 

constructed using a wider range of biocompatible and biodegradable materials. One possible 

solution is optical patterning using photolithography [129, 130], or soft lithographic methods such as 

UV-NIL [131]. Some of these methods have previously been utilized to fabricate hinge-less polymeric 

structures that roll up or curve spontaneously [129, 130]. Hydrogels are attractive materials for 
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these self-folding tissue scaffold structures because of their high water content, permittivity and 

mechanical properties which are comparable to non-osseous living tissues. Previous methods of 

manufacturing thin hydrogel scaffolds have used a two stage photolithographic process or 

manufacture by two-photon stereolithography. These processes are time consuming and require 

several stages of mask alignment or expensive equipment, as the micro-patterning of biocompatible 

hydrogel films is generally recognized as very difficult task [125]. The key features for a self-folding 

tissue engineering scaffold are patternability for cell contact guidance, nutrient permeability to avoid 

tissue necrosis and ease and speed of manufacture. To outline the fundamental factors affecting 

bilayer actuation; Timoshenko’s description of a bilayer with differentially expanding materials is 

implemented [132, 133]. The bending is assumed to be mono directional and results in a bilayer with 

a uniform radius of curvature R.  

 
𝐶𝑢𝑟𝑣𝑎𝑡𝑢𝑟𝑒⁡(𝐾) =

1

𝑅
=

6(𝜀2 − 𝜀1)(1 + 𝑚)2

𝑡 [3(1 + 𝑚)2 + (1 +𝑚𝑛) (𝑚2 +
1
𝑚𝑛

)]
 Eq. 1-5 

 

Where height, m, and modulus, n, ratios are defined as: 

𝑚 =
ℎ1
ℎ2

⁡𝑎𝑛𝑑⁡𝑛 = ⁡
𝐸1
𝐸2

 

Where h1 and h2 are the layer thicknesses, E1 and E2 are the Young’s moduli, t is the total thickness 

of the bilayer, and ε1 and ε2 are the actuation strains of the two layers [129, 133]. The radius of 

curvature is inversely proportional to the film strain and is not very sensitive to the difference in 

stiffness between the two layers, and is mainly controlled by the actuation strain and the layer 

thickness. The equation idealizes beam bending in only one direction and therefore does not predict 

the folding direction of the bilayer [133].  

1.4 NANOPATTERNING, METHODS AND APPLICATIONS. 

The capacity to fabricate well-defined nanofeatures to interact selectively with biology has had 

tremendous implications in the field of tissue engineering. UV nanoimprint lithography (UVNIL) and 

soft lithography have been the key techniques to fast replication of topographical patterns, with the 

majority of techniques employing a siloxane based castable gel: polydimethylsiloxane (PDMS) [134]. 

PDMS stamps have been widely used to achieve rapid replication and repeatability, however there 

are many issues regarding the use of PDMS in certain applications [135]. PDMS can stick to certain 

surfaces, is easily fouled, absorbs certain solvents and above all is too flexible for higher loaded 

applications.  
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1.4.1 NIL with flexible media 

Nanoimprint lithography (NIL) is a simple process for the reproduction of nano- and 

microtopographies. It utilizes a hard master stamp which drives the pattern replica into a surface or 

mouldable material by heat, sol-gel methods, UV polymerization or solvent casting. These stamps 

can be manufactured from a variety of materials, including quartz (qz), silicon (Si), silicon nitride 

(SiN), nickel (Ni), sapphire and diamond. The process of manufacturing these stamps often relies on 

commercial high resolution photolithography, electron-beam lithography, focused ion beam (FIB) 

and reactive ion etching (RIE) to drive the pattern created on the surface into the underlying 

substrate.  

Thermal-NIL and NIL respectively rely on heated or non-heated imprinting of these hard stamps into 

much softer materials, to create localised thinning of the mouldable surface. This often forms a so 

called “residual layer” which is considerably thinner than the bulk and is removed by O2 plasma 

ashing or etching process (depending on the material). The replica is then made by the deposition of 

material on the substrate through the newly created windows on the imprinted mask material 

surface. The deposited material can be made to act as a stamp in itself, or be used as an etch mask 

to drive the features into the underlying substrate with RIE, much like the aforementioned EBL and 

lithographic processes. Many soft material analogues for traditional solid stamps are becoming 

available (Table 1-7), driven both by cost and throughput, as stamp replication is relatively fast in 

comparison to traditional EBL methods. With stamp creation becoming more affordable it no longer 

requires large overheads and ceases to limit fabrication lead times as replicated stamps can be put in 

situations too risky for large expensive and brittle solid original stamps.  

The use of flexible stamps also negates the need for a perfectly level surface, a detrimental issue in 

spun films due to edge bead formation, imperfections, bubbles and sometimes uneven geometries 

all together. In a pneumatic NIL system, pressure is applied per unit area and a soft stamp has the 

advantage of contouring uneven areas better than their more robust counterparts. This is a double 

edged sword however, as the flexibility offered by these flexible master materials also limit the 

pressure those pillars can withstand, how well they retain their shape, position and how well they 

displace the melt.  
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Table 1-7 – Commonly used soft stamp materials in NIL and UV-NIL Adapted from [136]-[137, 138].  PDMS remains the 
most popular choice, and is one of the most versatile and adjustable stamp materials. It does suffer from delamination 
when filling deep or fine features, and has too low a modulus resulting in features flopping especially in the case of higher 
aspect pillars. 

Material Description 
Method of 

manufacture 

Flexural 

modulus E 

(MPa) 

Strain at 

break (%) 

sPDMS 
Soft PDMS (extra 

initiator) Sylgard 184 
Casting 

4-1.8  

[136, 139] 

160  

[136] 

hPDMS 
Hard PDMS (diluted, 

toluene) Sylgard 184 
Casting 

≤8.2 

 [136] 

7  

[136] 

xPDMS 
Crosslinking catalysed 

PDMS (platinum)[140] 
Casting 

10-8   

[138] 

116  

[138] 

Ormostamp 

Long stamp lifetime, 

release force optimized 

(Fl-based modification) 

UV-Polymerization 

[136] 
unknown unknown 

FEP 
Fluorinated amorphous 

polymer 
Embossing 

23  

[137] 
N/A 

 

Fluoropolymers such DuPont’s Teflon are ideal candidates to fill this niche, being previously used in 

various processes requiring non-stick or chemically inert properties [141]. They are well-known for 

their superior resistance to a wide range of chemicals and solvents which makes them almost 

impossible to etch, other than for surface functionalization, they also show excellent resistance to 

molecular adsorption and molecular leaching from the polymer into solutions [142]. Among these 

fluoropolymers, the semi-crystalline polymer, fluorinated ethylene-propylene (FEP), offers superior 

optical transparency and a mechanical strength an order of magnitude higher than PDMS. In 

addition it is biocompatible and differs from PTFE (polytetrafluoroethylene) in that it is compatible 

with conventional forming methods such as injection moulding, embossing, and extrusion [143]. The 

fluorine presence gives them hydrophobic behaviour due to their very low surface energy, which 

makes them virtually non-stick [144]. They are ideal in moulding applications, given their high 

melting temperatures, which can be as high as 300 °C and are resistant to a variety of harmful 

environments, including acids and solvents, making them compatible with a variety of photo resists 

and thermoplastic polymers. The material’s inherent flexibility provides the possibility of covering 3D 

and 2D surfaces in a manner of modular stamping systems by forming patterns on thin films of FEP 

ranging from 50-150 µm thick. 
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The FEP mastering process is considerable cheap when compared to master stamps produced in 

quartz (qz) or silicon (Si), and can be reproduced very quickly by embossing or direct thermal NIL. 

The ability to pattern large areas creates the opportunity to scale up the process for industrial 

applications, and roll-to-roll printing. This can be useful for biomedical and photonic applications by 

forming nanopatterned bio-interfaces on medical implants and a variety of culture plastics, and 

overcoming the limits of surface topographical engineering for applications such as high volume as 

cell studies for cell-surface interactions. Moreover, it has already been shown in  Ferchichi et al. 

[145] that a dual scale with a combination of micro- and nano- hierarchical structure can create 

super-hydrophobic behaviour on surfaces. This hierarchy is also key in the manufacture of 

differentially patterned zones for tissue culture substrates. 

1.4.2 Hierarchical patterning 

 Hierarchical patterns are widely encountered in nature and create some of the most impressive 

properties from the lotus leaf’s super-hydrophobic surface properties [146] to the feet of geckos 

which with their 30-130 µm long surface pillars and 200-500 nm long hierarchical ‘paddles’ allow 

them to traverse vertical and inverted surfaces [147]. Much work has been done on the formation of 

both randomly arranged and ordered hierarchical patterns by microstructural means, but this is 

fundamentally not easy to do, as it requires extra degrees of freedom in comparison to planar 

patterning, which many micro-fabrication techniques such as EBL [148] do not readily have without 

modification. One could call a hierarchical structure a 2.5D structure, being a planar surface, but 

with an inherent modification in the z-axis. The difficulty of producing these structures can be 

overcome by self-forming methods (Figure 1-9) such as residual stress and thermal shrinking [149] to 

produce self-organizing structures, and allow what was an initially 2D structure to buckle and 

arrange itself to produce a hierarchy. Others have employed consecutive direct NIL as a means of 

building these structures in an engineered manner [150]. Nanoimprint lithography (NIL) is a high-

resolution parallel patterning method, mainly aimed towards fields in which electron beam and  

photolithography are costly and lack resolution at reasonable volumes of production, it has been 

transferred and is in the process of being applied to rolling embossing systems, and roll-to-roll UV-

NIL and NIL systems capable of covering large areas. 
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Figure 1-9 – Spontaneous hierarchical structure formation and evolution of hierarchical surface pattern in13nm gold films 
on pre-strained elastomer substrates. In the top panel the biaxially strained substrates have a prestrain of εf1= 67 % and εf2= 
3 % (a), 20 % (b), 50 % (c) and 67 % (d). In the top panel the prestrain is εf1 = εf2 = 5 % (e), 30 % (f), 50 % (g) and 67 % (h). 
Scale bars are 10 µm in top panels and 2 µm in bottom panels of all images. Reproduced with permission  from Cao et al. 
[149]. 

In contrast to spontaneous and naturally occurring hierarchical structures, which have limited 

control over the patterns that can be produced, there is significant interest in the manufacture of 

ordered engineered hierarchies for tissue engineering, as demonstrated by the cell behaviour in  

Seunarine et al. [148] in Figure 1-10, where a combination of four different hierarchies combining 

nano-pits and micro grooves led to selective alignment of fibroblasts in vitro. Others have employed 

the spontaneous formation of geometric pits in anodized aluminium to create PDMS stamps with a 

“hairy surface” topography, made by the intrusion of the PDMS into anodized aluminium surfaces 

[151]. 

While PDMS is an excellent stamp material and has also been employed in this work, it is useful in 

applications where permeability is key, as it will readily diffuse dissolved gases, absorb solvents and 

even water vapour [152]. These properties are also the same as those which make it unattractive in 

other more corrosive, hazardous or oxygen inhibited applications (such as many photo curing 

systems as discussed in Chapter 3). 
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Figure 1-10 - Optical micrographs of cells on the four types of substrate textures. The arrows show the direction of textural 
features to which the cells may align. A similar grating of 500 nm width and pitch is utilized and converted into a FEP stamp 
later in this chapter. Reproduced with permission from Seunarine et al. [148]. © 2009 IEEE  

Fluoropolymer films show great promise in this area due to their flexibility, relative strength (thin 

films resist elongation) and as to be shown in this work, their excellent patternability properties, by 

processes which are significantly faster and more cost effective than traditional hierarchical 

structure fabrication techniques. An serial embossing approach has been tried before with PMMA by 

Dumond et al. [153] however these were suspended structures re-flown between two surfaces and 

that is an issue with many polymers, the lack of any potential for sequential patterning due to high 

flow speeds and quick deformation of the underlying surface.  

1.4.3 3D surface patterning. 

The ability to pattern curved or completely non-planar surfaces with high-resolution, and in a cost-

effective manner, is essential for many applications. It is the key to transferring nanofabrication 

technology into both consumer and complex application, such as the coating of implants, patterning 

of obscure surfaces and making the processability fast and accessible. Traditional methods such as 

EBL or most commercial lithographic tools cannot shift their basis to circumnavigate a non-planar 

surface in 360 degrees, and the setups which do this are expensive, and mostly non-existent for 

small diameter rods. This has in some cases been overcome by using nanoscale apertures in a 

flexible film [154]. Nickel shims often used in NIL are available in larger feature sizes on curved 

surfaces [155], but a large and curved nanopattern is an expensive and difficult endeavour. 

However, simple methods have also been shown of producing high resolution flexible moulds out of 

PDMS and silicon hybrid structures [155]. Nano colloidal particle deposition onto deformed polymer 
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microspheres [156]. FEP due to its higher modulus and chemical inertness is the perfect candidate 

for 3D thermal NIL applications. 

1.5 CELL-SCAFFOLD INTERACTION OR THE ‘BIOINTERFACE’ 

In the in vivo environment cells are subjected to various combined and time varying mechanical, 

topographical and chemical cues, these interactions shape embryogenesis, cell migration, 

differentiation, metabolic activity and generally form the fundamentals of tissue engineering as 

controllable factors in directing tissue formation and cell behaviour. Within this vast and relatively 

new area of research, the scope of this work has focused on surface topographical patterning and 

cell interface interaction, relying on mechanical and topographical engineered modification of 

substrates and devices to influence cell fate and behaviour in soft tissue engineering, with the aim of 

controlling stem cell behaviour before during and after differentiation. This requires a sustainable 

method to run large numbers of experiments to quantify gene expression and identify trends in cell 

and colony morphology, as indicators of any shifts in their pluripotent state or tendency to a certain 

line of differentiation. 

Making stem cell culture accessible and affordable remains a key challenge in expanding the 

industry, and the modification of surfaces to aid cell adhesion and cell surface interaction is a 

substantial part of current tissue engineering research. A variety of available coatings, methods and 

linking chemicals available to anchor functional groups to polymeric, metallic and ceramic surfaces. 

The mechanisms of application vary depending on the area of application and cell type, and can have 

profoundly different effects. With a focus on soft tissue engineering for regenerative medicine, 

coatings which not only improve stem cell adhesion and proliferation, but also do not interfere with 

or at least influence cell lineage in a controllable manner are necessary. 

1.5.1 Contact guidance 

The concept refers to topographical cell interfaces which by their morphology and properties direct 

the cells to a certain position or behaviour. The variety of patterns and applications is vast, but some 

key aspects that have demonstrated the remarkable effectiveness of topographical cues include the 

alignment of epithelial cells with nanogratings [157], the affinity of fibroblasts to settle parallel with 

grating lines (Figure 1-10), and the ability of stem cell differentiation and multipotency to be 

controlled by topographical means (Figure 1-11). Contact guidance is reliant on the 

mechanotransduction via a cell’s focal adhesions which, are shown to have a dependence of their 

size on the sustained force [158]. The force applied on a focal adhesion is purported to induce an 

elastic deformation of the contact which subsequently triggers conformational and organizational 
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changes in its constitutive proteins, which has the cascading effect of enhance binding with new 

proteins that enable the growth of the contact [158]. Contact guidance has been widely used to 

interface with different cell types to influence cell proliferation, differentiation and cell fate. The 

range of patterns varies between those which are made by self-organisation, surface roughening and 

precision engineered surfaces for controllable topography (Figure 1-11). 

 

Figure 1-11 – The spontaneous differentiation of MSCs into osteoblasts on ‘near-square’ nanopatterned surfaces. Surface 
patterned with pits arranged in increasingly disordered configurations, with osteoblasts labelled green, MSCs labelled red. 
Pattern with preferential bone formation is NSQ50 (d and j), with 150 nm diameter pits arranged on a 2:1 pitch, with a 50 
nm degree of disorder. Reproduced from McMurray et al. [159]. 

There has been significant progress with engineered nanotopographies, from those that control cell 

alignment and clustering behaviour, to those which sustain pluripotency in mesenchymal stem cells, 

or direct them into osteogenesis as seen in Figure 1-11. In this case responsive actuators will be made 

using high throughput methods such as photolithography [120], soft lithography [54] and UV-NIL 

[40,141] to achieve high throughput methods for the capture and differentiation of cells into 3D 

nanopatterned niches.  

The topography induced differentiation seen in mesenchymal stem cells (MSCs) (Figure 1-11) 

demonstrates that the principle has previously been applied to stem cell differentiation. While the 

hESCs mentioned later in the text follow very different differentiation pathways, it is considered 

possible but has been noted by the author. The line of hESC differentiation is shown for the creation 

of hepatic tissue in Figure 1-16, albeit by chemical stimuli and not topographical cues. 

1.5.2 Surface chemistry 

 In vitro maintenance of human pluripotent stem cells (hPSCs) requires the cells to be cultured in the 

correct media and a favourable microenvironment. hPSCs are routinely cultured in vessels 

SQ NSQ50 
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containing complex media and ‘plated’ onto non-standard culture surfaces which provide their 

microenvironment. The signalling pathways regulated by growth factors in the media [160] and by 

available ligands [161] and physical properties of the substrate [162] all contribute to downstream 

maintenance of pluripotency or directed lineage in pluripotent stem cells. 

To achieve rapid and high volume analysis, with the relevant controls; a coating or treatment 

method compatible with tissue culture plastic (TCP) was also a requirement. Protocols for cell 

culture across laboratories the preparation of culture substrates varies, traditionally feeder layers of 

cells [163] were implemented to create binding sites for stem cells  in this arrangement the initial 

feeder cells created the ECM and ligands for stem cells to plate on to. In current processes, with the 

advent of isolation and commercialisation of the ECM in products such as Matrigel® [164] a large 

variety of ECM constituent proteins and peptides [165] has been implemented as coatings [166], gels 

and self-assembled monolayers (SAMs). In particular collagen, integrin [167], laminin [164], 

fibronectin [168] and vitronectin[169] amongst others, have been the focus of many studies, with 

some now implemented in commercial TCP and flask products such as Synthemax® and 

StemAdhere®. Figure 1-12 is taken from a recent review by Lambshead et al. [161] and illustrates the 

binding sites of human pluripotent stem cells on various plating media and ECM constituents as well 

as their proposed interaction. 
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Figure 1-12 –An illustration of chemical interactions between human pluripotent stem cells (hPSCs) and culture surfaces. 
Specific ligands and cell adhesion molecules (CAMs) are included if they have been reported in hPSC attachment and/or 
culture studies. CAMs involved in hPSC adhesion include integrin subtypes α5β1 (green), αvβ5 (red), αvβ3 (purple), α6β1 
(blue) and α2β1 (navy blue), E-cadherin (black blocks), heparan sulphate proteoglycans (HSPGs; dashed blue lines) and 
unidentified CAMs (orange). Ligands are portrayed as coloured ovals and include the SMB domain of vitronectin 
(yellow/red), GKKQRFRHRNRKG (orange/red), KGGPQVTRGDVFTMP (red/dark red), AG-10 (CGGNRWHSIYITRFG; blue/dark 
blue), C-16 (CGGKAFDITYVRLKF; purple/navy blue), AG-73 (CGGRKRLQVQLSIRT; yellow/orange), GRGDSP (green) and 
laminin E8 fragments (light blue/blue). The ligands are presented by ECMPs [represented by curved coloured lines: laminin-
511 or −322 (blue), laminin-111 (navy blue), vitronectin (red), fibronectin (green) collagen (yellow)] or synthetic surfaces 
(thick black lines) including SynthemaxTM, StemAdhereTM and PMEDSAH. On the left of the image complex extracellular 
matrix extracts (e.g. MatrigelTM and GeltrexTM) are illustrated as combinations of ECMPs, and on the right cell-cell 
adhesion is simplified in the extreme to illustrate homophilic E-cadherin binding. Where specific ECMP ligands are poorly-
defined, CAMs are shown to interact with the ECMP line. Where specific CAMs have not been identified the orange CAM is 
used, and undefined, adsorbed ligands are represented by orange ovals with a white question mark. Reproduced from 
Lambshead et al. [161] 

 The application of these ECM constituents is often done via aqueous deposition with the level and 

durability of the coating dependant on the surface chemistry, anchoring type and surface roughness. 

In addition to the well documented modification of tissue culture plastics for biology [79, 99, 166], 

numerous methods exist for the selective binding to gold by the use of sulphate chemistry [156], and 

more broadly binding to metals, plastics and hydrophilic surfaces by using DOPA ‘click’ chemistry 

derived from polyphenol oxidase used in anchoring of mussels to the sea floor or other structures 

[170].  
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In applications where cells can potentially stick without pre-coating with ECM such as fibroblasts and 

other soft structural cells [166], environmentally responsive molecules such as NIPAAm can be 

immobilized on surfaces, based on thermally, chemically and radiation modulated surfaces with 

switchable wettability [79]. The switch can cause cells to attach and release depending on the state 

of activation of the coating [171]. In stem cell culture pre coating with a cocktail like Matrigel®, 

fibronectin, vitronectin and laminin are also often used due to their susceptibility to apoptosis, or 

loss of pluripotency due to stress and necessity to manufacture large quantities of their own ECM 

[172]. 

1.5.3 ECM and protein self-organization. 

There have been notable studies into the self-organization and ordering of extracellular matrix 

(ECM) constituent proteins, on various polymer surfaces [173] consisting of vinyl chains with COO- 

(deprotonated COOH) side groups. In that recent work [173] the Salmeron-Sanches group noticed 

that while the absorption of fibronectin was constant across the samples, the self-organization of 

these proteins changed as is clearly visible in the matrix (Figure 1-13). This area of molecular 

assembly and geometricity at the nanoscale was modulated with changes in substrate mechanical 

properties to yield changes in osteoblast response. It is clear that chemical, mechanical and 

topographical cues regulate the differentiation and proliferation of various cell types, and it is these 

arrays of modulation that are of interest in building a functional 3D cellular niche.  

 

Figure 1-13 - Self organization of fibronectin on different polymeric substrates shows the potential for geometrically 
mediated signalling by the tendency for the fibronectin to organise based on surface concentration. FN organisation and 
distribution on the surface then depends, for each substrate, on the concentration of the initial protein solution from which 
the protein is adsorbed. Reproduced with permission from Guerrera et al. [173]  
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1.5.4 Surface stiffness 

In addition to the modification of surface chemistry to aid cell adhesion, substrate elasticity plays a 

large part in the proliferation and viability of cell cultures, in particular cultures of ESCs and IPSCs 

which are very susceptible to apoptosis [172]. The term elasticity in this case refers to Hookean 

elasticity, where a material loaded in uniaxiall tension shows a direct proportionality between the 

tensile stress (σ) in the material and the applied tensile strain (ε). 

 𝜎⁡ ∝ ⁡𝜀 Eq. 1-8 

The constant of proportionality is the Young’s Modulus (E) of the material, where: 

 𝐸 = ⁡
𝜎

𝜀
 

Eq. 1-9 

 

While most polymeric biomaterials and certainly tissues within the body exhibit hyperelastic and or 

viscoelastic behaviour. These factors will be ignored in the discussion of nanofeatures and cell 

interaction due to the relatively small perturbations in strain, the linear elastic range of the surface is 

unlikely to be exceeded. 

These materials are then assumed to be elastic and thus conform to Hooke’s Law where the stress-

strain response of a material is independent of time and the strain in the material disappears 

completely on removal of the applied loading. The moduli of materials range from 0.1 kPa for some 

hydrogels to 1000 GPa for Diamond at the extreme end of the scale. The range of proteins lies 

between 1 MPa and 5.4 GPa, and tissue macro elasticity of between 100 kPa and under 10 GPa 

[174]. The range of gels synthesised for biomedical and life science applications often lies within the 

range of 0.2-120 kPa [175]. 
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Figure 1-14 – The relationship between focal adhesion area (FA) and transduced force, and the correlated force to pillar 
stiffness and effective modulus of the substrate of pillars if it were represented by an infinite flat surface. A decrease in 
pillar stiffness is equivalent to a material of lower stiffness, such as a transition from a plastic to a rubber like hyperelastic 
material which will accommodate larger displacements due to loading. Scale bars: 10 µm. Reproduced from Trichet et al. 
[158].  

In addition to the modulation of 2D patterned structures it is possible to fine tune the mechanical 

properties of planar substrates, and hydrogels are very useful. Hydrogels are easily adjustable by 

varying the extent of crosslinking. The modification of the substrate allows for a range of stiffness 

that can mimic or exceed the properties of natural biological tissues as illustrated in Figure 1-15. 
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Figure 1-15 – Changes in MSC gene expression with varying substrate stiffness. Correlation was seen between reduced cell 
proliferation on softer substrates. Gene expression shown in C.) shows the genes which are down regulated in (red) and 
genes which are up regulated in (green), showing lineage specific signalling depending on substrate stiffness. Scale bars 20 
µm. Reproduced from Trichet et al. [158]. 

1.6 THE USE OF HESCS FOR TISSUE ENGINEERING 

HESCs and more recently IPSCs are capable of differentiation into a multitude of germ layers, and 

could be considered the ultimate starting point to engineering a variety of tissues including the liver. 

The control of the hESC differentiation by topographical cues has not yet been demonstrated to the 

same extent as bone and muscle forming MSCs. Cultures of ESCs traditionally show key 

morphological stages, where cells seeded as a dispersion or in very small clumps grow and form 

small colonies, these in turn form a web-like network and eventual confluence as the volume of cells 

continues to grow. The colonies are smooth with cell-to-cell proximity and interaction a key 

determinant in cell survival [176]. Generally it is observed that human embryonic stem cells (hESCs) 

display a high rate of apoptosis in culture, contributing to the problems of efficient mass culture of 

these cells and subsequent differentiation for organ growth [177]. The full system that regulates this 

high mortality is still under debate, although it has been suggested that cell-to-cell contact provides 

crucial signals, perhaps mediated by the NOTCH system, for the proliferation of undifferentiated 

human pluripotent stem cells, in the absence of Rho-associated protein kinase inhibitor (ROCK-i), 

contact plays a large role in this high mortality, with single cells left stranded outside the main 

cluster readily undergoing apoptosis. It is for these reasons that the normal protocol calls for cells to 

be passaged by the so called ‘clump’ method, where they are split every 4–5 days at ratios of 1:3 or 

even 1:2 and re-plated in small clumps with a loss of up to 90 % of cells from cultures [178]. These 
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losses are eventually overcome by subsequent passaging and age of the derived cell line, with those 

exhibiting more consistent and strong growth characteristic falling under the coined term ‘adapted’ 

or karyotypically abnormal hESCs. Both lines are sensitive to cell-to-cell proximity, and the 

separation and plating of cells as individuals can be overcome by treatment with ROCK-i. However, 

according to Barbaric et al. [177] the time from initial plating to the first passage was shorter for the 

normal cells (8 hr) than for the normal or adapted cells treated with ROCK-i (12hr), in subsequent 

passages this difference was no longer noticeable. They also demonstrated that adapted cells 

showed a linear increase in cell numbers in respect to the plating density, while normal cells showed 

a quadratic relationship between cell-plating density and population growth. The presence of ROCK-i 

was shown to alleviate most bottlenecks in hESCs culture in the most critical period initially after 

seeding. It was for these reasons that initially both clumped and single cell approaches were used in 

this work to investigate the effect of topographical signalling, followed by subsequent plating with 

inhibited hESCs to look at cell to substrate interaction and colony formation morphology. While the 

pathway regulation in hESCs is likely to be very different from keratinocytes, it is proposed that the 

failed integrin clustering on soft surfaces, or another interaction trigger, is responsible for regulation 

of hESC behaviour and has a knock-on effect on colony formation and the rate of cell death that 

leads to the formation of critical cluster sizes. The spatial organization of hESCs into clusters has 

been observed in Peerani et al. [179] to affect the modulation of local cell density can be used to 

generate directed patterns of self-renewal and differentiation.  

It was found that the lowering of cell density in a cluster significantly decreased pluripotency 

markers in the form of an increase in pSmad1 levels which Siller et al. [172] correlated as having an 

inverse relationship with pluripotency which was seen with increasing colony size in hESCs. 

Furthermore Bauwens et al. [180] showed that controlling colony size lead to changes in hESC 

colonies controlled the level of pluripotency gene expression and the resulting ratio of endoderm-

associated to neural-associated cells in the colony varies as a function of colony size also visible in 

the stages of clustering shown in Figure 1-16. 

What can be drawn from all this information, and what is without exaggeration a very broad field of 

interest, is that cells depend on a variety of mechanisms which inform them about their 

environment, and provide the necessary signals for them to perform very complex and coordinated 

functions. So far many attempts have been made to both control cellular behaviour by the synthesis 

of bioactive materials, the manufacture of designed topographies and creation of fine-tuned 

chemical signals. Many methods of producing 3D structures out of 2D manufacturing methods by 

folding have also been demonstrated in the past. 
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The one thing which is lacking and which sets the precedent for this work is that of a nanopatterned, 

“smart” container which is capable of sustaining cells in a fine tuned and engineered niche, open to 

chemical signalling, but ordered in a controllable manner to reproduce the complex 3D structures 

many cell types experience in their native environment.  

 

Figure 1-16 - The process of differentiating hESCs into hepatocytes by the small molecules process demonstrated by the 
Sullivan group at the University of Oslo. Illustration, showing the stages between seeding hESCs and obtaining hepatocyte 
like cells. A.) Three phase process transitioning from a definitive endoderm to hepatic specification and hepatocyte 
maturation. B.) The chemical changes made in the media to move the cells through the specific stage. C.) Changes in gene 
up regulation during this stage of differentiation D.) Morphological changes in cell clustering during the specific stage. 
Reproduced from Siller et al. [172]. 

The bulk of this work aims to create just this environment, and combines nanopatterning techniques 

with “smart” actuators which are not only cell culture compatible, but permeable to nutrients. The 

containers may then be used and tuned to specific cell culture applications by modifying the surface 

chemistry, topography chemical environment and cell line. While not every possible gel chemistry, 

cell line and pattern have been tested, this work provides a pilot platform and a proof of concept 

that this can be achieved using traditional MEMS and electronics manufacturing techniques. 
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Objectives of this work 
 Produce methods for the simple and quick nanopatterning of biocompatible surfaces. 

 Produce a means of translating these patterns into functional assembled 3D structures. 

 Make the assembly of 3D structures or niches compatible with cell culture processes. 

 Apply structures to cell culture with the ultimate aim of culturing and differentiating stem 

cells into functional tissue within the 3D constructs. 

Strategies 
The objectives of this work will be achieved using the following strategies: 

 Photolithography for definition and manufacture of 3D containers. 

 Nano-imprint lithography for rapid nanopatterning of surfaces of the 3D containers. 

 Hydrogel thin film bilayers for assembling 2D patterned surfaces into 3D constructs. 

 Cell culture with cell lines such as hTERT fibroblasts for determining the effect of patterning 

on walls of self-folding containers. 

 hESC culture on nanopatterned surfaces as a feasibility study into the formation of 

organelles from undifferentiated cells within 3D cellular niches. 
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2 NANOPATTERNING TECHNIQUES 

2.1 INTRODUCTION 

To be able to pattern complex geometries it is essential to create a versatile and easy method of 

manufacture, which allows the rapid reproduction of nanopatterned surfaces. This is especially the 

case in tissue culture and anything which is intended to be used in large scale studies, or further 

down the line with scaling up into production. This chapter focuses on the fast methods of 

nanopattern mastering and transfer into more complex 2.5D hierarchical surfaces such as curved 

planes and hierarchical structures. These methods form a versatile foundation for the manufacture 

of smart nanopatterned containers and are the stepping stone towards engineered 3D 

environments. The available methods range from slower processes such as electron beam 

lithography (EBL) through to the higher throughput nanoimprint lithography and the various 

subdivisions of the field such as screen printing and roll-to-roll printing. 

One problem with the manufacture of 3D patterned surfaces is that all manufacturing methods are 

inherently 2D, and all stem from some form of printing, whether it is layer by layer deposition, 

casting or layer by layer removal of material. Even more critical is nanopatterning, which due to the 

immense precision of the processes required to do it (nanoscale focusing of energy beams) is 

immensely slow.  

A way to avoid the slow throughput and create more opportunities for these nanopatterns to be 

utilized is to find a method of reproducing these patterns in a more rapid fashion, by producing 

replicas from a master surface. This can be injection moulding against a master shim, or casting a 

polymer or solution on top of a master stamp and then reproducing this master in a secondary 

material. The currently available methods of reproduction, often have to be performed under 

precisely controlled pressures and temperatures, resulting in severe challenges with patterning 

anything that is uneven in topography or needs atmospheric control.  

This chapter discusses many of the methods developed which tackle these challenges. Ways of 

reproducing nanopatterned master stamps quickly in materials capable of conforming to uneven and 

even curved and fully round surfaces will be demonstrated. Their use in the manufacture of foldable 

3D geometries will then be shown as a proof of concept work, thus transferring these 2D techniques 

to the manufacture of so called 2.5D and 3D structures for the formation of cellular niches. 
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2.2 MATERIALS AND METHODS 

2.2.1 Materials 

Fluorinated ethylene propylene (FEP) films manufactured by DuPont were obtained from RS-Online 

as 304 x 200 mm films in thicknesses of 0.025 mm and 0.127 mm. Sylgard 184 (PDMS) and curing 

agent were obtained from Dow Corning via Farnell its UK based distributer. All reagents and 

commercial photolithographic resists were obtained from the distributers and used as intended 

without modification. Polymethylmethacrylate (PMMA) Mw 84,000 (Elvacite 2010 DuPont) was 

dissolved in o-xylene at a concentration of 8 %. 

2.2.2 Instrumentation 

2.2.2.1 AFM and surface profilometry 

High resolution metrology was done using a Veeco Dimension 3100 atomic force microscope (AFM). 

The characterization of topographies was done via AFM in contact mode with a 10 nm diameter 

silicon cantilever tip. Samples were kept immobile on a stage while the tip scanned rectangular 

surface profiles, speed was adjusted depending on surface rigidity and size of features. This method 

provides accurate depth data if the tip can reach the base of a feature. For lateral dimensions there 

may be inaccuracy due to the conical tip geometry. Additionally surface profilometry and micro 

feature height were measured in scanning mode with a Veeco Dektak 6M Height Profiler, where the 

resolution provided by AFM was not suitable. 

2.2.2.2 SEM sample preparation 

Scanning electron microscopy (SEM) Imaging was done using a Hitachi S4700 SEM. Non-hydrogel 

samples made from SU8 epoxy or injection moulded ones were washed in isopropanol, not water 

followed by evaporation in a vacuum and oxygen plasma ashing to descum. Ashing duration was 6 s  

at 80 W RF power. 

2.2.2.3 Nanoimprint lithography (NIL)  

Nanoimprint lithography (NIL) was performed using an OBDUCAT NIL-2.5 thermal Nano imprinter for 

patterning of sacrificial layers and master transfer and replication.  The process is discussed for the 

specific imprint material in each section, these included polyacrylic acid (PAA), 

polymethylmethacrylate (PMMA), fluorinated ethylenepropylene (FEP) and SU8 Epoxy. 

2.2.2.4 O2 Plasma ashing 

Ashing refers to the removal of thin fouling layers, or residues at the base of imprinted features with 

an oxygen plasma, and is the final cleaning and surface functionalising stage in many processes. 
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Samples and wafers were descummed and functionalized by use of an oxygen plasma asher at varied 

doses of 60-200 W. 

2.2.2.5 Dry etching 

During patterning, silicon (Si) and quartz (qz) dry etching was performed in STS ICP RIE and Oxford 

Instruments RIE80+ respectively. The process is discussed further in sub-section 2.2.3.1. 

2.2.2.6 Sputtering 

Metal deposition was done in a Plassys MEB 550S Electron Beam Evaporator for Au, Ti and NiCr 

deposition up to 100 nm in thickness 

2.2.2.7 Contact angle measurement 

Contact angle measurement was performed using a Biolin Scientiffic – Attension Theta Lite optical 

tensiometer. The data was used to identify chemical changes among various patterned surfaces. The 

surface wetting correlates to surface energy and roughness, key to adhesion of certain cells. 

 

Figure 2-1 - Contact angle measurement of an FEP film by optical densitometry. Droplets were dispensed on surface and 
imaged in silhouette illumination mode. 

 The model of contact angle is shown in Figure 2-2, where γSG, γSL and γLG are the interfacial free 

energies per unit area of solid-gas, solid-liquid and liquid-gas boundaries respectively[181].  
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Wenzel’s equation [182] describes the effect of surface topography on a drop in contact with a 

rough surface in a fully wetting state [25] and suggests that the surface roughness amplifies the 

surface interaction be it hydrophobic or hydrophilic resulting in a higher or lower contact angle 

respectively. 

 cos 𝜃𝐶 ′ = ⁡
γ𝑆𝐺 −⁡γ𝐿𝑆

γ𝐿𝐺
= 𝑟 cos 𝜃𝐶 Eq. 2 - 1 

The Cassie-Baxter model [183] takes into account for changes in contact angle when air trapping in 

the topography leads to a further amplified hydrophobicity due to increased drop free surface and 

thereby Gibbs free energy (Figure 2-2). This is described by the Cassie-Baxter equation:  

 cos 𝜃𝐶 ′ = 𝑟𝑓𝑓 cos𝜃𝐶 + 𝑓 − 1 Eq. 2 - 2  

Where γSG, γSL and γLG are the interfacial free energies per unit area of solid-gas, solid-liquid and 

liquid-gas boundaries respectively [181]. r is the roughness ratio of true area of the solid surface to 

the apparent area, substituted for with rf is the roughness ratio of the wet surface area, and f the 

fraction of solid surface area wet by the liquid, in the Cassie-Baxter equation with θc as the contact 

angle, and θc
’ the contact angle on a nanopatterned surface [162, 183]. Wenzel's equation suggests 

that structuring a surface amplifies the surface effect i.e. a hydrophobic surface becomes more 

hydrophobic, a hydrophilic surface becomes more hydrophilic[181]. The above relation for 

wettability[162] lets us predict that surface patterns will amplify contact angles by increasing the 

surface roughness when compared to the planar material (Figure 2-3).  

 

γLG 

γSG γLS θC 

γLG 

γSG 
θC γLS 

Figure 2-2 - Diagram of surface energy interactions at solid, liquid and gas interfaces, and their effect on contact angle of 
liquid droplets on planar and patterned surfaces in the Young (left) and Cassie-Baxter state (right). The presence of a 
nanopattern creating a higher contact angle as the droplet sits in a suspended higher energy state.  
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The purpose of measuring the contact angle is to find good surfaces for cell attachment, as wettable 

surfaces are conducive to cell attachment, due to the better spreading of the media drop, and to 

some extent correlate with the attachment of the cells themselves. It is also useful for determining 

good imprint materials, as those with high contact angles are less likely to stick and adsorb melted 

polymer or solvent cast solutions.  

2.2.3 Methods 

2.2.3.1 Manufacture of quartz (qz) master stamps 

Nanopatterned quartz (qz) stamp utilized for patterning of the FEP film were fabricated from 

standard 25 × 25 mm and 1 mm thick quartz samples. Electron beam lithography, metal lift-off and 

reactive ion etching (RIE) were used to create the patterns. Quartz (qz) is an ideal master stamp 

material due to its strength and transparency, it is harder to shatter than silicon in the author’s 

experience it is also a frequently used material in microfabrication with known etch protocols. 

The process used electron sensitive poly(methylmethacrylate) (PMMA) of Mw 84,000 at 4 w/v % 

dilution in o-xylene. This was spun at 5000 rpm for 60 seconds followed by a 180 °C bake for 15 

minutes. A second layer of PMMA at Mw 193,000 2.5 w/v % dilution in o-xylene was then spun on 

top of this layer at 500 rpm for 60 seconds. The purpose of the bi-layer is that larger molecular 

weight chains are less soluble in the developer after electron forced chain scission (process by which 

EBL pattern is achieved in this ‘positive’ lithographic resist). This difference in solubility creates an 

undercut in the resist. The undercut profile was to aid future metal lift-off, as it would prevent 

A B 

C 

2mm 

Figure 2-3 – Left to right: contact angle measurement, with water droplet before and after contact with a untreated silicon 
surface. Bottom: trace of contact angle over time shows the droplet reaching a steady state contact angle at roughly 300 
seconds. 



Iskandar Vasiev “3D Self-folding tissue scaffold origami”  81 

sputtered material sticking to the walls of the pit, thereby preventing it from being ripped off during 

dissolution of the PMMA mask.  

 

Figure 2-4 - Process for the nanopatterning of quartz master stamps by electron beam lithography (EBL), undercut 
development of PMMA resist layer aids lift-off without removing NiCr features during the lift-off step. The NiCr etch mask is 
applied by sputtering and then acts as to increase selectivity for the reactive ion etching (RIE) of the qz surface. 

Prior to defining the desired nanopattern, using an electron beam lithography tool, a discharge 

surface layer is required as both the quartz (qz) and polymethylmethacrylate (PMMA) of the stack 

has too low electrical conductivity. A build-up of surface charge from the electron beam exposure 

can occur on non-conductive substrates, causing poor resolution and repeatability and thus pattern 

deformity. In most cases 10 nm of aluminium (Al) was evaporated onto the samples to act as a 

charge dissipating layer. Electron beam lithography was done by defining dosage and spot 

information in L-edit software and Layout Beamer software to define the regions to pattern, the 

process is the same as that described in the work of Vasiev et al. [1] and Greer et al. [184]. The 

machine used to produce the patterns was a Vistec Gaussian Vector Beam 6 (100 kV) electron beam 

lithography tool. The author did not produce novel pattern geometries but used well established 

patterns and doses created within the group which had been used in previous work on cell contact 

guidance [162] and [185]. The nanopattern design for the stamps varied from an ordered array of 

250 nm diameter circles with a pitch of 500 nm covering a square area of 5 x 5 mm to 300 nm lines 

with 300 nm spacing covering four areas of 5 x 5 mm rotated 90°.  

Following exposure, the Al discharge layer was removed with tetramethylammonium hydroxide and 

the PMMA developed in a Methyl isobutyl ketone (MIBK): Isopropanol (IPA) in a 1:1 solution. The 

sample was then descummed in an O2 plasma for 1 minute at 60 W. NiCr has been shown to be an 

effective hard mask for RIE with qz nanofeatures [186]. To act as an etch mask 50 nm of NiCr was 

evaporated onto the PMMA coated qz face to produce the necessary selectivity for the nanofeature 

etch mask. Thereafter the PMMA resist was ‘lifted-off’ in acetone and a further oxygen plasma 

descum was performed. The penultimate step in the qz stamp fabrication was the transfer of the 

defined hard mask features into the qz. In order to achieve this an Oxford Instruments Plasmalab 80 

High Mw PMMA 
Low Mw PMMA 

Quartz Quartz Quartz 

Quartz Quartz Quartz 

1. Resists applied 2. EBL 3. Development 

4. NiCr sputtering 5. Resist ‘lift-off’ 6. Dry etch into qz 
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plus RIE machine was used with a mixture of CHF3 and Ar gases at flow was 25 sccm for CHF3 and 18 

sccm for Ar gas, at a process pressure 30 mTorr, the RF power was set at 200 W and temperature of 

20 °C. The qz was etched to a maximum depth of 250 nm producing robust nanofeatures over 35 

nm/minute etch rate. Finally any remaining NiCr on the top of the pillars was removed by giving the 

sample an agitated emersion in a solution of ceric ammonium nitrate and nitric acid (chrome etch) 

for 1 minute at a rate of 60 nm/minute. 

2.2.3.2 Manufacture of silicon (Si) master stamps 

Silicon (Si) stamps were fabricated for thermal nanoimprint lithography (Thermal-NIL) on Si 

substrates with varying size between 10 and 30 mm square. The substrates were initially cleaned 

with piranha solution (3:1 concentrated sulfuric acid to 30 % hydrogen peroxide solution) for 10 

seconds followed by washing in H2O, then acetone, methanol and isopropanol (IPA) in stages for 3 

minutes each. After a dehydration bake the wafers were spin coated with HSQ into which the 

nanopattern would be written. The design was then transferred to the silicon substrate by 

inductively coupled plasma (ICP) dry-etching. In this process the gas used for dry-etching was 

SF6/C4F8 [187] at a flow rate of 30 sccm SF6 and 90 sccm S4F8 in 12 mTorr at 20 °C. The coil power of 

600 W was used, with a platen power of 12 W producing an etch depth of 150 nm/min.  

2.2.3.3 Manufacture of PDMS replica stamps 

Polydimethylsiloxane (PDMS) micropatterned replica stamps were made by spinning SU8 3000 series 

resist on a silicon wafer followed by exposure through a photo mask and subsequent development. 

The master was coated by evaporated silane to act as a release layer to prevent adhesion. Sylgard 

184 PDMS (Corning) was mixed at a ratio of 10:1 to curing agent and poured onto the master 

pattern in a salinized glass dish. It was then sonicated for 2 minutes and de-aerated in a vacuum for 

30 minutes prior to curing in an oven for 3 hours at 70 °C. The stamps produced by this method were 

flexible and transparent, but thickness control and mechanical properties limit its application, as 

does the apparent swelling of PDMS in some solvents [138]. 

2.2.3.4 Manufacture of FEP stamps 

Fluorinated ethylene propylene (FEP) is an excellent stamp replicating polymer, as an amorphous 

form of Teflon and a thermoplastic, it is easy to emboss and retains its shape readily after cooling, 

resulting in excellent feature reproducibility. The absence of recrystallization on cooling also limits 

residual stresses and limits film buckling as it cools. Nanoimprint lithography was carried out in an 

Obducat Nanoimprinter tool NIL-2M. The advantage of using an Obducat NIL tool is the precise 

control over pressure and temperature which can be carried out over a range up to, 60 bar and 300 
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°C. Such a high temperature is sometimes useful for fluorinated polymers whose melt temperatures 

are relatively high. 

To find optimum imprint conditions and find a starting point an embossing temperature was found 

from converting the yield stress data from DuPont’s product information into units of pressure (bar) 

produced a range of imprint conditions that are necessary to deform the film into a new shape, 

these are found to be ≈15 bar at 200 °C or ≈10 bar at 270 °C shown in Figure 2-5. While this does not 

correlate directly to compressive strength, it gives an indication of when polymer chain mobility is 

great enough to allow the polymer to be deformed under pressure. 

 

Figure 2-5 – Illustration of the material yield strength, and the equivalent conversion to applied pressure at a given 
temperature. Trend is used to identify the necessary NIL pressure to transfer a pattern and reflow the FEP film. DuPont 
aggregate data for commercial FEP films. [137]. 

The NIL process is schematically presented in Figure 2-6. Initially a nanopatterned qz or Si master 

stamp, patterned as described previously (section 2.2.3.1) is preheated to 200 °C.  A FEP film of 

thickness ranging between 25 µm and 250 µm was positioned above the nanopatterned region of 

the stamp. A glass or qz backing plate was applied with a pressure of 15 bar and held at 270 °C. After 

a 3 minute cycle under heat and pressure the stack was cooled to 160 °C at which point pressure 

was removed and the stack was allowed to return to room temperature. At this point the film was 

separated from the master stamp by a quick flexing of the glass backing plate. This produced a free 

standing nanopatterned replica stamp in the FEP film, which is flexible and transparent.  

Imprintable range Poor melt flow 
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Figure 2-6- Process flow for the manufacture of patterned fluoropolymer stamps. A. )  qz master stamp is applied to a 
preheated FEP film attached to a glass backing plate. B.) Stack of quartz, FEP and glass is then held under pressure and 
elevated temperature. C.) After cooling the master is delaminated, and leaves behind a replica FEP stamp. Thermal 
expansion differences between FEP, glass, qz/Si master are not observed to damage the replica pattern quality. 

This process can be reproduced manually by hotplate and surface weight with the typical conversion 

of force per unit area adjusted to gravity. A 15 N load applied to an insulating film above the stamp is 

sufficient to drive a 1 cm2 array into the FEP film. 

2.2.3.5 Manufacture of novel hierarchical FEP stamps 

Hierarchical FEP micro- and nanopatterned stamps were manufactured by sequential embossing of 

the thin film with different patterns. Initially a micropatterned PDMS stamp with 5 µm tall features 

in a hexagonal array was applied to the FEP film in a process outlined in section 2.2.3.4 at 10 bar and 

heated to 280 °C for 3 minutes while placed on a glass microscope slide. After the first embossing 

the glass slide was rotated and a nanopatterned Si or qz stamp was placed underneath the FEP film 

and embossed again at 10 bar and held for 2 minutes. This process takes advantage of the 

fluoropolymer melt flow creep, to reflow it into areas by applying an increased pressure, and create 

a nanoscale topography on top of a series of previously micropatterned islands. 

2.2.3.6 Combinational mastering with FEP stamps 

Combinational or modular mastering, allows combinations of macro-, micro- and nanopatterning on 

a variety of surfaces. Depending on the curvature of the surface a flexible acetate or rigid glass mask 

is used in hard contact with the material surface. Modular stamps use an exterior acetate or Ni-

chrome photo-mask, and a nanopatterned transparent FEP insert. The acetate flexibility offers an 

opportunity for roll-to-roll printing and using UVNIL on non-planar surfaces (Figure 1-8). The UV 

absorption of transparent FEP stamps is also lower than that of PDMS or the qz [188], doing little to 

interfere with the UV doses absorbed by the underlying photosensitive material. 

 

Glass 

Qz or Si 

FEP film 

A B C 
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Samples were prepared using SU8 3000 series photoresist which was spun on silicon to a thickness 

of 5 µm and prebaked at 90 °C for 5 minutes. Exposure was carried out in a commercial SUSS MA6 

photolithography tool at a dose of 150 mJ/cm2. After the photo exposure samples were post-baked 

at 90 °C for 3 minutes and developed in EC solvent for 3 minutes exposing the patterns as illustrated 

in Figure 2-7. 

 

Figure 2-7- Process flow showing the use of modular stamps for UVNIL applications. A.) patterned FEP film placed onto a 
photoresist spun on a substrate with acetate photomask applied above to define the dimensions of the pattern. B.) 
Photolithography is carried out. C.) Stack is separated and photoresist developed producing defined micro- or nanoscale 
features. 

The choice of micro and nanopattern can offer a tailored substrate for controlling cell and 

topographical interaction on engineered bio interfaces. The transparency of the films has the 

potential for serial lithography where the film is imprinted with a FEP master in serial UV flash 

lithography to produce a large area nanopatterned surface [188]. 

FEP film 

Acetate Mask 

Photoresist 

Force 

Photo mask 

Fluoropolymer patterned film 

Figure 1.9. The design of a modular UVNIL printer device invisaged as a future proof of concept. 

Qz 

  Resist spun substrate 

A B C 



Iskandar Vasiev “3D Self-folding tissue scaffold origami”  86 

2.2.3.7  Master duplication from FEP replica 

The fabrication process can be divided into two main steps: 1.) initially the creation of an 

evaporation mask using thermal NIL followed by an oxygen plasma ash to remove any residual layer 

on the substrate, and secondly: 2.) the subsequent metal deposition and lift-off. 

Poly(methylmethacrylate) (PMMA) 2010 8 w/v % in o-xylene was spun on 500 µm thick silicon at 

5000 rpm and baked at 180 °C for 15 min. The spun film was then placed on a sheet of flat 

aluminium wafer (Obducat specific spacer). A nanopatterned FEP film was placed above with a 

second layer twice the area above this, to act as a buffer for irregularities in the top die. The 

assembly was placed inside an Obducat NIL-2M tool. The sample was initially preloaded to 3 bar 

prior to the application of heat, the temperature was then ramped to 120 °C at which point the 

pressure was ramped up to 10 bar, and then 175 °C and 15 bar, where it was held for 5 minutes. It 

then ramped down to 60 °C prior to the pressure being released, allowing the melt to stabilize. The 

imprinted PMMA was then ashed in oxygen plasma for 2 minutes at a power of 100 W to remove 

any fouling at the base of the pits. Titanium was then sputtered to a depth of 100 nm followed by a 2 

minute sonication in Microposit™ EC Solvent followed by a wash and sonication in acetone, 

methanol and IPA in that order for 1 minute each and finally a 3 minute oxygen plasma ash at 100 W 

power. 

2.2.3.8 Novel FEP based platform for curved surface Nano imprint lithography (NIL) 

The easy conformation of patterned FEP films allows for casting and NIL to be carried out on a 

variety of non-planar surfaces. FEP films covered with a 1 cm2 nanopattern of various arrangements 

and pitch were inserted into a machined stainless steel casting rig (Figure 2-8), into which powdered 

PCL and PLLA were introduced and formed on a hot press under 5 bar at 90 °C and 160 °C 

respectively, flowing into the lined cavity and filling the nanofeatures. On removal from the mould 

and cutting with a surgical scalpel a straw like hollow cylinder with internal and external nanopattern 

is formed. The use of the tool without a central rod allows the casting of solid cylinders with exterior 

curvature nanopattern. 
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2.3 RESULTS 

The use of fluorinated ethylene propylene (FEP) films was shown to make the mastering process 

considerably quicker, and less risky when applying patterns to SU8 with silicon stamps, a process 

that can be costly if a brittle silicon or quartz were to shatter. They are additionally shown to be far 

more hydrophobic in their natural state (without post treatment by salinization), a good property for 

de-moulding from an imprinted surface, without imprint and stamp damage. The results of various 

stamp manufacturing processes and successful applications thereof are shown in the following 

section. 

2.3.1 The benefits of using FEP as a stamp material 

Compared in Figure 2-9 are the measured contact angles  of the imprinting materials and 

imprintable materials used in this work, FEP was shown to have an exceptionally high contact angle 

Figure 2-8- Diagram of 3D tube moulding rig, manufactured from stainless steel. A central guide pin is wrapped in 
FEP patterned film, with wall of main chamber lined with alternate patterned film, a polymer melt is then 
introduced, and chamber is held at pressure. Central rod is optional (green) and can be removed all together to 
pattern cylinders externally. 

A 

Section A-A View 

A 



Iskandar Vasiev “3D Self-folding tissue scaffold origami”  88 

of (119±3.2°) compared to that measured for PDMS of (107.5±2.67°). 

 

Figure 2-9 – Contact angles of materials used (PLLA, SU8), and those of the available stamp materials (silicon, PDMS, glass, 
FEP). The contact angle of FEP is significantly higher than the alternatives being considered. Error bars: 1SD over n=5 
measurements. 

This allows for relatively easy de-moulding, along with improved mechanical properties compared to 

PDMS, and better transparency at 365 nm light used in UV photolithography, and the synthesis 

undertaken in earlier chapters of this work. 

2.3.2 FEP imprint stamps 

FEP stamps showed excellent uniformity and transparency (Figure 2-10), combined with very easy 

release due to their fluorinated nature, not requiring a release coating on the original Si master 

stamp, although it is recommended, some residue was noticed in the master after 15-20 replicates 

were made, particularly noticeable on cold de-moulding, warming the stamp to 100-120 °C made the 

release considerably easier for large patterns with deep features such as the gratings.  
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Figure 2-10  – (A) FEP film stamp replicating a silicon master during removal from master stamp. Scale bar 5 mm.  (B) SEM 
of 500 nm holes in the FEP film replicated from a silicon pillar surface. (C) SEM of 150 nm holes replicated in FEP film from a 
silicon master stamp. (D) 500 nm pillars on 500 nm square pitch replicated from pitted silicon master stamp. Scale bars = 5 
mm, 3 µm, 2 µm and 5 µm for A, B, C, D respectively. 

Nanopatterns within a variety of pitches and feature sizes were tested, the range rising from 150 nm 

features with 250 nm pitch to 1000 nm in diameter features with 50 nm pitch. Release problems 

were encountered on narrowly spaced pillars with aspect ratios greater than 4:1, where the FEP 

became stuck and did not de-mould from the silicon, or extracted pillars from the original stamp. 

A B 

C 

D 
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FEP was well suited to filling Pillars between 150 nm and 2000 nm in diameter and holes down to 

150 nm in diameter (Figure 2-10). The limiting factor was found to be the release process, due to the 

FEP film being very thin relative to its area; pure vertical removal was difficult, and resulted in 

tearing and hazing under excessive force. AFM scans of the low aspect (0.25) and medium aspect 

(1.5) pillars reproduced in FEP from a quartz (qz) master stamp are shown in Figure 2-11 (B and C).  

Figure 2-11 - Figure 1.4. AFM microscopy of FEP stamps post embossing by a quartz master stamp. (A) The quartz master 
with low aspect ratio pits. (B) FEP replica low aspect pillars (C) FEP replica 200 nm high aspect ratio pillars. Scale bars = 2 
µm, 2 µm and 1 µm respectively. 

The self-repelling qualities of FEP that are so attractive in imprinting, also serve to facilitate thin gaps 

between features, as visible in Figure 2-11. In addition to pillars, reproduction of grating replicas has 

been demonstrated using an original silicon (Si) master with grating of 500 nm depth and pitch. 

 

 

  

A B 

A B C 

2µm 1µm 

Figure 2-12 - Profile scan of those patterns seen in Figure 10 (centre). A: Average pillar height formed in FEP replica is 420 
nm close to the original 450 nm depth of features in the Quartz master stamp. B: profile scan across master stamp (n=5). 
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Figure 2-13 – (A) Original silicon grating master stamp and FEP replica stamp produced by embossing at 275 ˚C. (B) 
Demonstrated ease of multiple stamp manufacture in FEP within a short periods of time frame. (C) Graph of contact angle 
measurements of flat FEP film originally (Series 1), and after nanopatterning of 500 nm gratings at Orientation 1 (Series 2 - 
parallel to plane of view) Orientation 2 (Series 3 - perpendicular to view plane). Error bars1SD (n=5). Scale bars = 10 mm. 

2.3.2.1 Formability 

Data on FEP from the manufacturer (DuPont) was used to determine the nano imprint (NIL) 

conditions for the manufacture of FEP replica stamps. Although this is similar to the process of fluoro 

polymer imprinting demonstrated in Palacios-Cuesta and Vasiev [189], the process of imprinting 

uniform thin films proved to be easier than handling powdered polymers or monomers. The 

manufacturer’s data on temperature effect on polymer properties shown in Figure 2-5 cite a Tg of 

200 °C and a melting temperature in the region of 280 °C.  

B A C 

Figure 2-14 - AFM scans of FEP replica stamps of a 500 nm grating, produced in a varied series of imprint temperatures. Left 
to right (A) 205°C, (B) 240°C, (C) 280°C respectively, imprint temperature maintained for a 3 minutes duration at 10 bar. 
Some stretching is seen causing wavy lines to form. Scale bars = 4 µm, 4 µm and 5 µm respectively. 
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This was compared to imprints made into FEP films with a grooved master stamp at three 

temperatures and constant pressure and cycle duration. The process mentioned previously was used 

adjusting holding time from 200 °C to 240 °C and 280 °C for 3 minute durations.  

 

Figure 2-15 - AFM scans of FEP replica stamps of a 500 nm grating, showing improving feature height replication as melting 
point of FEP is reached. Left: 240 °C, Right: 280 °C respectively, imprint temperature maintained for a 3 minutes duration at 
10 bar. (n=3). 

 The samples when imaged with AFM showed an increasing flow tendency with an under-fill visible 

at that duration near the glass transition temperature Tg and improving flow characteristics as the 

material neared melting.  

 

Figure 2-16 - Imprint feature height after imprinting a 500 nm pitch and width grating for 3 minutes at 10 bar imprint 
pressure at different temperatures. Flow of FEP drastically improves above its melt temperature. Error bars are 1SD (n=6). 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

205°C 240°C 280°C

FE
P

 r
ep

lic
a 

gr
at

in
g 

h
ei

gh
t 

(µ
m

)



Iskandar Vasiev “3D Self-folding tissue scaffold origami”  93 

Although it was seen that the release of tall grating features underwent slight waving due to the long 

length scales this could be due to catching and slight plastic deformation of the grating section. 

2.3.3 Master replication 

Master stamps were attempted to be recreated by imprinting a resist with the FEP replica stamp, 

thus being able to loop the process back and allow a more economical creation of solid qz and Si 

master stamps without the use of EBL. The resulting calibration of the three stages to replicating 

masters in titanium are outlined in section 2.3.3.1 using profilometry, AFM and SEM imaging. As 

mentioned this is a three stage process to reproduce solid features using evaporation of a metal 

through pores created by FEP-NIL. 

2.3.3.1 Master replication by PMMA imprinting 

PMMA imprinting was done on layers slightly thinner than the pillar height to make sure the residual 

layer was as thin as possible. The spin thickness curves for 84,000 Da PMMA indicate an average 

thickness of between 200-325 nm. 

 

Figure 2-17 – Measured spin thickness of 84,000 Da PMMA dissolved to 8 v/v % dilution in o-xylene after a 1 minute spin 
duration. Error bars are 1SD  (n=3). 

This layer was imprinted by FEP features of over 300 nm in height, and ashed with O2 plasma to 

remove any residual layer. The imprint was followed by deposition of a 100 nm thick layer of 

titanium onto the imprinted and ashed PMMA pits. Subsequent lift-off yielded bound titanium 

nanofeatures replicated on silicon.  
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Figure 2-18 - Ash rates of spun PMMA film A in oxygen plasma with varying RF power, and AFM of imprinted PMMA film 
post 2 min ash. 84,000 Da PMMA dissolved to 8 v/v % dilution in o-xylene. Measurements were taken by Dektak 
profilometer at the end of each ash cycle. Error bars are 1SD   (n=3). 

Pillars of 500 nm 1:1 aspect ratio pillars with 500 nm pitch were replicated from a silicon master. 
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Figure 2-19 – (A) AFM scan of PMMA imprinted by FEP stamp prior to metal sputtering. AFM scan of a Ti stamp produced by 
sputtering, an attempted inversion of the original master, which was a silicon (Si) pillar array of 500 nm diameter pits on a 
500 nm square pitch. (B) Magnified scan of same stamp. (C) A macro photo of the resulting pattern on silicon, like with many 
imprint processes, areas of pattern damage can be seen where the stamp failed to fully imprint the PMMA lift-off layer.  (D) 
The FEP replica stamp produced from the original Si master. Scale bars: A) 2 µm, B) 3 µm, C) 5 mm and D) 3 µm respectively.  
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It should be noted that the resulting evaporated stamp inverse is of a low aspect ratio, thus the 

original stamp was taller than the master produced (500 nm stamp against roughly 100 nm 

evaporated metal) the process yields a fast approach to producing hard material stamps. The 

titanium can then be used as an etch mask for deep silicon etching to reproduce the original height. 

2.3.4 Hierarchical patterning 

Hierarchical patterns can be produced by sequential imprinting of the FEP features, with 

micropatterns defined initially, followed by nanopatterning of the feature surfaces as illustrated in 

Figure 2-20. 

 

Figure 2-20 – Example SEMs of hierarchical patterning in FEP films by novel combinational replica moulding. Initial micro 
pattern A can be combined with either B or D to produce C or E respectively. Scale bars are 30 µm, 5 µm and 10 µm 
respectively. Reproduced from Greer and Vasiev et al. [188]. 

Hierarchical patterns were produced by serial imprinting as illustrated in Figure 2-20. Initially the 

micropattern was created in the form of 20 µm hexagonal microarrays with a 4 µm deep PDMS 

stamp. The islands were then imprinted with a qz stamp containing 5 nm 1:1 aspect ratio pits on a 

500 nm pitch, and also 500 nm deep and 500 nm wide gratings with a 1:2 pitch.  The patterning 

could be adjusted depending on micro and nanopattern selection, for a combinational approach 

shown in Figure 2-21.  
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Figure 2-21 – A.) SEM images of hierarchical patterns showing 20 µm hexagonal islands with 500 nm pillars. B.) A magnified 
SEM image showing the hexagonal structure of the islands. C.) The nanopattern which was applied during the second 
emboss step. D.) The micropatterned hexagonal islands before the application of the secondary nanopattern. Scale bars: 5 
µm, 10 µm, 20 µm and 30 µm respectively.  
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AFM imaging of the stamp confirmed feature heights in the range of 500 nm as seen in Figure 2-22. 

The combination of topographies can be adjusted for a particular use but the initial micro feature 

loss is minimal given initial PDMS feature size of 4 µm, a 75 % under fill occurs between PDMS 

replication and transfer into FEP for the large features, this could be due to trapped gas pockets, or 

insufficient melt time as larger features have to displace more flowing polymer melt. Combining 

different nanotopographically patterned stamps during the second stage allows selection and 

combinational use of a primary and secondary pattern:  

Figure 2-22- A) Hierarchical fluoropolymer stamp structure under AFM, in a 50 x 50 µm scan. B)magnified 5 x 5 µm scan. C) 
AFM of hexagonal islands with 2.7 µm height and a 400 nm grating pattern on top surface. Selection of different micro and 
nanopattern configurations allows for a mix and match approach to potentially cell confining patterns with selected 
topographical interaction. D) Section profile across topography with hierarchical grating. Scale bars: A) 20 µm, B) 2 µm, and 
C) 20 µm respectively. 
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The top pattern morphology was not tested on high aspect pillars, for fear of the pressure required 

liquefying the underlying micro-pattern, but appears to work well on a variety of topographies 

especially gratings as seen in Figure 2-23. 

The maximum height of features obtained was 2443 ± 73 nm for the micro islands themselves, and 

424 ± 64 nm for the hierarchical nanopattern covering the islands (Figure 2-25).  

Figure 2-23 –SEM images of FEP hierarchical structures showing a combined hexagonal microstructure (A,B,D)  with a 500 
nm grating surface nanopatterns (C), produced by sequential embossing of the FEP layer. Illustrating the flexibility of the 
process and the customization of possible patterns. Scale bars: A) 10 µm, B) 20 µm, C) 5 µm and D) 50 µm. 
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Figure 2-25 - Feature heights of hierarchical patterns showing an aggregate from 8 measurements. Error bars = 1SD (n=8 
samples). 

These patterns can then be transferred to SU8 for container patterning or any other thermoplastic 

with a lower melt temperature than the Tg of FEP (205 °C). The reproduction of FEP patterns in SU8 

easily accommodates the hierarchical structure during its liquid phase prior to exposure during the 

pre-bake or after exposure during the post-bake. The resulting transfer into SU8 by imprinting during 

the post exposure bake can be seen in Figure 2-25. This type of hierarchy can be useful in tissue 

culture by adjusting micro borders to cell size and can be used for cell segregation studies with 

alternating topographies to test cell-topography triggers for array studies eliminating cell-to-cell 

interaction without using low cell volumes. 
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Figure 2-24 –SEM images of SU8 Imprinted with a FEP hierarchical stamp. Imprinting done with combinational method 
through 1 cm square aperture above the FEP film. Scale bars: A) 50 µm, B) 10 µm, C) 10 µm and D) 50 µm. 
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2.3.5 Curved surface patterning 

Curved surfaces were patterned and produced through utilising an FEP casting inlay method 

whereby PCL and PLLA pellets were melted in a mould lined with a nanopatterned FEP film at 80 °C 

and 200 °C respectively. This has application in traditional forming as it can be applied to the 

interiors of other forming moulds.  

If patterning a transparent curved surface it could be applied to the production of large area 

patterns for roll-to-roll printing, and 3D nanopatterning applications such as screws, cranial plates 

and other non planar implants. The pattern quality showed oscillations as seen in Figure 2-26, 

possibly caused by mould non uniformity or buckling of the FEP film inside the forming space. In 

addition to patterned cylinders, this interior and exterior patterning could be performed on cast 

hollow tubes and PDMS channels and is shown as a proof-of-principle. 

2mm 

A B 

C D 

5µm 

1mm 1mm 

Figure 2-26 – A) Optical image of a half cylinder cut from a PCL rod which had its circumference imprinted by a 
flexible FEP stamp at 80°C. B) AFM scan of imprinted cylinder surface showing the nanopits formed on the cylinder 
surface. C) Optical CMM image of cylinder surface, showing the 200 µm gaps in the nanopatterned array on the 
cylinder surface. D) AFM of the FEP replica stamp used, same as that used for evaporation of Ti mastering 
process. Scale bars: A) 2 mm, B) 5 µm, C) 1 mm, D) 4 µm.  
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2.3.6 Modular mastering process 

Subsequent imprinting and lithography by this method was shown to allow the structuring of a 

combinational pattern, with modular micro- and nanopatterned arrays for conducting cell-surface 

interaction analyses. There are numerous ways to create a 3D patterned box, or other patterned 

surfaces, but to be able to pattern multiple materials at relatively high throughput with a variable 

selection of nanotopographical and micropattern geometries (Figure 2-27) produced by 

combinational mastering and photolithography through FEP is not as easily achieved. This approach, 

to the author’s knowledge, has not been demonstrated before.  

The use of FEP film as a non-stick easy to clean nanopatterned inlay can be used with NIL to reduce 

wafer damage on fragile substrates without causing fracture. As the material is considerably lower 

modulus than silicon, and as a ductile material it accommodates machine surface irregularities and 

absorbs harder inclusion or dust particles that would normally cause stress concentrations on the 

wafer surface, and result in cracks in an expensive master stamp. This method allows for significantly 

faster design prototyping and simple manufacture of a variety of 3D micro containers, with different 

internal nanopatterns shown in Figure 2-28 being applied to the manufacture of 3D origami 

containers discussed later in Chapter 4 section 4.3. 

 

 

 

 

 

 

Figure 2-27 - SEM image of A) micro star shapes and B) spirals produced by the combinational mastering approach utilizing 
FEP replica stamps and printed acetate photomasks. Scale bars: 1 mm. 
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To increase and sustain the supply of available nanopatterns, a method of transferring injection 

moulded topographies produced by the group and utilized in the work of Dalby et al. [39] into FEP 

stamps is beneficial, combining an established process of manufacturing nanotopographies for cell 

culture with a material that is compatible with the aforementioned fabrication methods. 

 

 

 

 

 

 

Figure 2-28 - A) Image of 'lotus' micro containers produced by combinational mastering and printing in SU8. B) Image 
of the FEP replica stamp used in the processing, attached to a glass backing slide just after manufacture. C) AFM scan 
of the FEP film surface showing 250 nm pits on a 1 µm square pitch. D) Demonstrating the flexibility of imprinted FEP 
stamps when removed from the glass backing plate. Scale bars: 2 mm, 5 mm, 5 µm and 5 mm respectively. 
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2.3.7 Transferring patterns from higher throughput methods 

Feature replication for contact guidance can be done from injection moulded topographies using a 

PDMS replica pattern. The process of stamp fill by PDMS is assisted by ashing as demonstrated by 

the AFM profiles of cast PDMS surfaces in Figure 2-29. The replica surfaces were compared with 

profilometry to compare the replica pillar heights with the original mould as shown in the aggregate 

feature fill profiles and data in Figure 2-30. The original feature depth on the master mould is 

compared to replica PDMS features produced before and after ashing in O2 plasma for 1 minute at 

80 W RF power. 

 

Figure 2-29- AFM scans of polycarbonate injection moulded topographies reproduced as negative replicas in PDMS by 
casting. A)  PDMS replica produced from non-ashed original NSQ surface with resulting lower feature fill. B)  PDMS replica 
with good fill from an ashed original NSQ surface with much better feature replication. C) PDMS replica produced from 
ashed SQ surface showing good feature fil, showing orange profile trace. D) The profile trace of PDMS replica of SQ surface. 
Scale bars: 2 µm. 
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Figure 2-30 - Top: feature fill diagram for the original master depth and the expected fill profile of the PDMS replica 
features. Bottom: Feature height of PDMS replicas taken from injection moulded polycarbonate (PC) masters. Error bars: 
1SD from 5 measurements. 

Ashing is thought to improve the wetting of the surface by slight roughening and immobilization of 

transient functional groups, yielding better feature fill than non-ashed samples. The resulting depth 

profiles of the replica stamps are compared with the injection moulded master and show the scale 

of the improvement (Figure 2-30). The resulting PDMS stamp can then be used to recreate the 

pattern in photopatterned SU8 surfaces, for application on the self-folding 3D containers discussed 

in Chapter 4. 

2.3.8 Hydrogel patterning 

Patterns were transferred into the PAA sacrificial layer by thermal NIL, followed by replication into 

the subsequent hydrogel to be patterned after spinning above (described in section 2.3.8). This 

method of surface patterning also yields functionalization as the carboxyl group containing PAA 

chains are transferred to the gel underside by free radical polymerization. The sacrificial layer [190] 

can be embossed at approximately 100 °C or imprinted at room temperature [190] using a silanised 

Si stamp. In addition to NIL methods this layer can be wet etched in EDTA [191]. To optimize the 

preparation and application of the PAA sacrificial film, and allow the release layer to be finely 

controlled, different molecular weights (1800, 50000 and 100000 Da) and aqueous concentrations 

were spun between 1000 and 6000 rpm to determine the resulting film thicknesses. By varying the 

* 
* 
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viscosity of the PAA sacrificial layer, the spin thickness and thus possible feature size can be adjusted 

as shown in Figure 2-31. 

 

Figure 2-31 – Fiilm thickness for a range of spin speeds for different molecular weights and concentrations of commercial 
PAA. Average values from 3 profile scans. 

The PAA embossing method allows ingress of the pre-polymer and subsequent patterning by UV 

exposure. The process resolution is limited by pre-polymer surface energy and viscosity. However 

the ability to control sacrificial layer thickness allowed for a wide range of depths and aspect ratios 

to be imprinted ranging from 5000 to 50 nm diameter pits and pillars of 2000 to 200 nm, to a 

maximum aspect ratio of 2 to 1. PAA is soluble in water [190], but not in IPA which is used to 

develop PEG, this allows for selective layering and two-sided patterning as the PAA is not affected by 

the PEG hydrogel developer in this process. 
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2.3.9 UV-NIL as a means of manufacturing patterned hydrogel films 

The fabrication of nanofeatures on the hydrogel top layer was carried out with a transparent 

nanopatterned master stamp (Figure 2-32) where a procedure similar to photolithography was used. 

The process flow consisted of either a transparent quartz (qz) or polydimethylsiloxane (PDMS) stamp 

which was applied under slight pressure to the polyethyleneglycoldimethacrylate (PEGDMA) solution 

in a Suss MA6 mask aligner and exposed to UV light at 7.2 mW/cm2 as before. For samples made in 

bulk, following exposure, the samples were developed in isopropanol and sliced into individual 

sheets of required size prior to rehydration overnight in RO H2O. 

Figure 2-32 - Fabrication process for creation of nanopatterned and micropatterned PEGDMA hydrogel films by PAA 
sacrificial layer embossing. A) PAA is spun onto Si wafer. B) PAA film is embossed using the master stamp. C) Hydrogel is 
applied to PAA surface. D) Master stamp or mask is applied and assembly is exposed to UV and developed in IPA. E) Wafer 
placed in RO water allowing for dissolution of PAA layer and subsequent lift-off of hydrogel patterned film [1]. 

Sheets of gel photolithographically patterned through the PDMS mould were developed in IPA and 

then allowed to soak in RO H2O. Device lift-off occurred between several seconds and several days 

depending on the thickness of lift-off layer with the process shown in Figure 2-33. The PDMS 

procedure was replaced by a novel FEP imprinting technique discussed in Chapter 2. The micro- and 

nanopatterned hydrogel device were created through a series of stages to create the foundation for 

a high throughput one-step lithographic method. For each pattern, a mastering process was required 

in which quartz (qz), silicon (Si) or PDMS stamps were prepared, to be used in subsequent hot 

embossing and photolithography steps of the sacrificial polyacrylicacid (PAA) base layer to facilitate 

lift-off and functionalization of the PEGDMA hydrogel layer.  
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Figure 2-33 – Hydrogel bilayer fabrication and actuation by pH modulation. Gel sheets patterned by photolithography 
leading to shape and active carboxyl group transfer to the gel film from below and patterning from the stamp above. This 
patterned film then undergoes a deprotonation of the –COOH terminus of its pendant carboxyl groups in elevated pH 
(pH>pKa). Subsequently rolled sheet can be unrolled if pH is lowered past the pKa value again, this process is notable 
slower. Reproduced  from Vasiev et al. [1]. 

The range of imprints can then be transferred into the hydrogel film above to create a patterned 

hydrogel surfaces with added carboxyl group functionality. To achieve this, and double sided 

patterning a range of patterns in PAA are required. The hydrophilic nature of the PAA film allows for 

good transport of hydrogel resist into the feature cavities, allowing for the replication of sharp 

details. 

The diverse range of pattern morphologies obtained by embossing PAA shown in Figure 2-34 where 

PAA has been embossed with a FEP stamp. 

A B 

Figure 2-34 – SEM imaging of Embossed PAA. 2um wide and 500nm tall pillars and B: 200nm wide and 250nm deep holes 
with 200nm square pitch. Both produced from FEP imprinting of PAA at 90°C and 15bar. Scale bars: 5µm. 

A B 
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The patternability of PAA itself improves when using a hard stamp such as quartz (Figure 2-35). 

These embossed PAA surfaces can be used to cast and lift-off hydrogel features, transferring the 

underlying nanopatterns into the hydrogel layer above. AFM profiling of the hydrogel films patterns 

shows the ability to create hydrogel pillar features as a replica of the underlying embossed PAA 

surface (Figure 2-36).  

 

Figure 2-36 – A) AFM scan of hydrogel nanopatterned film reproduced from an embossed PAA surface with 300 nm wide 
pillar distribution on a 300 nm pitch. B) Fourier plot showing feature size and frequency with the main peak in the sub µm 
range. C) Section profile of pillars showing 300 nm feature height. Scale bar: 4 µm. 

The incorporation of PAA onto the PEGDMA gel network likely arises from diffusion of initiating 

radicals to the sacrificial PAA layer causing it to tangle with the many methacrylate groups above to 

form a semi inter penetrating network with the PEGDMA gel even though no initiator was present in 

the PAA when spun. The pH response was observed to be reduced or elevated, with lower Mw PAA 

providing a quicker swelling response, this may be caused by the increased difficulty of long chains 

to migrate into the PEGDMA network. 

A 

Figure 2-35 – A)  AFM scan of PAA surface with HEX pit array. B) A section showing the profile of 500 nm pits on a 1 µm 
HEX pitch 500 nm deep reproduced in PAA by embossing with a Quartz (Qz) master. Scale bar 4 µm. 
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The resulting hydrogel rolling patterned films are shown in Figure 2-37, with the spacer pillars clearly 

visible on the surface. This method of embossed sacrificial UV-NIL is based on hydrogel technology 

using simple wet chemical methods, a highly flexible and controllable patterned tissue scaffold has 

been fabricated that can be switched and controlled by external media. The fabrication technology is 

inexpensive, scalable, and rapid, reducing fabrication stages and reducing the use of expensive 

photo initiators to create the bilayer structure. 

While some diffusion occurs which creates the bilayer structure, PAA remains relatively insoluble in 

IPA and EtOH the two main solvents used in the PEGDMA pre-solution. As a result the predefined 

pattern in the sacrificial layer remains intact long enough to force the above solution into a 

replicated shape during crosslinking, and does not inhibit subsequent lift-off of the patterned 

structure. The definition of these features is good, with slight squaring of feature edges due to the 

inherently good wetting of the PAA, resist appears to be drawn further into the embossed features. 

These rolls can include photolithographically defined nanofeatures as seen in Figure 2-38. After 

sputtering with a gold conductive layer, SEM imaging does show some slight dissolution at pillar 

Figure 2-37  A) Rolled micropatterned PEGDMA hydrogel film after exposure to pH 7 buffer and air drying, scale bar: 500 
μm. B) Unrolled micropatterned PEGDMA hydrogel film after unrolling in pH 4 buffer and air drying, scale bar: 200 μm. C) 
bottom surface of roll showing 1 µm pits replica from the nanopatterned PAA sacrificial under-layer, scale bar: 50 µm D) Top 
surface micropattern created as replica of top PDMS stamp.  Scale bar: 50 µm. Reproduced  from Vasiev et al. [1]. 
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bases, this is due to being exposed to the larger surface area of free solvent in comparison to the 

base of the pit or the flat PAA surface. Some partial dissolution of the sacrificial master must occur.  

 

Figure 2-38 - A, B: SEM image of 250 nm wide and 270 nm tall pillars remaining on PEGDMA film after pattern transfer from 
PAA sacrificial layer, scale bar: 1μm and 4μm. C: PEGDMA film nanopatterned edge, scale bar: 10 μm. D: Cross-section view 
of rolled PEGDMA scaffold, scale bar: 200 μm. Reproduced from Vasiev et al. [1]. 

 

 
 
 
 
 
 
 

 

 

 

Figure 2-39 - AFM trace of PEGDMA roll topography. A periodic pattern 250 nm high was recorded, the features also show 
reasonably square shoulders, suggesting the hydrophilic PAA layer has excellent filling properties, drawing the resist well into 
the right angled corner of the pit. 
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2.3.9.1 Incorporation of macro-pores in hydrogel films 

While hydrogels offer some porosity, to produce enhanced flow and potentially to allow cells to 

migrate between the layers, windows were created in the photomask to leave non-patterned 

regions in the hydrogel sheet. These varying diameter holes allow better nutrient and gas diffusion 

between the hydrogel sheets. The size of pores was varied with gel sheet size pore dimensions kept 

at 10 % of the edge length with square sheets in the dimension of 2.5, 5 and 10 mm thus ranging 

from 200 µm to 1 mm. 

2.3.9.2 Fabrication of spacers in hydrogel films 

Hydrogel films are flexible, and will readily stack and collapse on one another when they are rolled 

into a tube. To avoid this and create room for cells proliferation and nutrient transport, spacers were 

introduced by performing UVNIL through a hierarchical PDMS stamp. The use of high aspect PDMS 

stamps in UV-NIL allows for the incorporation of tall spacers into the hydrogel roll as shown in Figure 

2-40. These spacers are intended to act as inter-sheet supports allowing for better cell proliferation 

and nutrient permeability. The stamp was made by serial lithography of shallow and deep SU8 

features. The full procedure is mentioned previously in section 3.2.8 on PDMS, with the different 

versions of spacer including elongated and hexagonal pillar designs. 

A hydrogel pre-mixture was then applied drop-wise onto a glass slide and compressed by the PDMS 

deep feature replica mould and a NiCr photomask glass plate or acetate. After exposure the 

hydrogel was rinsed in IPA and detached in RO H2O to produce spacer features of up to 80 µm tall. 

The lower structure can be lithographically or thermal NIL patterned SU8 or by etching silicon first 

and applying SU8 micro features on top, but this is more risky due to the costly process of producing 

nanofeatures by etching.  

Figure 2-40- A) Hydrogel hierarchical pattern of 400 μm long 80 μm tall spacers made with PDMS mould. B) Two level 
topography for manufacture of PDMS moulds. 10 μm circular pattern with 30x20μm hexagonal pillars 100 μm tall above. 

A B 
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The spacers produced in the PEGDMA roll surface by these spacer stamps is shown in Figure 2-42. 

The elongated spacer was chosen as it added anisotropy to the roll and could be used to control 

rolling direction as well as providing structural support. While the features were too high to measure 

by AFM successfully, they were measured by profilometry (see Dektak) and measured to be 63 ± 4 

µm tall (1σ where n=8), reproduced from SU8 3050 features originally 70 ± 1 µm tall. 

Because of the high stamp contact and thickness of resist in the mould during spacer formation, the 

spacer zone appears to be slightly more rigid than the surrounding film, which works to the 

Figure 2-42- (A, B) Patterning of hydrogel rolls with high aspect spacer features. (C, D) Rolls patterned with 500 nm lines 
of 500 nm depth and 500 nm pitch. The spacer pillars measure 400 µm long 50 µm wide and 80 µm tall. Scale bars: 300 
µm, 500 µm, 200 µm and 500 µm respectively. 

100µm 250µm 
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C D 

Figure 2-41 - Spacer on hydrogel film when the film is rolled up. Rolls actuated by DMEM cell media (buffered), the 
process discussed in Chapter 5. Scale bars 100 µm and 250 µm. 



Iskandar Vasiev “3D Self-folding tissue scaffold origami”  113 

advantage of strengthening the roll lengthways and making sure the spacer does not collapse or 

buckle under subsequent layers. The addition of spacers is assumed to improve flow between the 

rolled scaffold layers, and allow space in which cells can migrate and proliferate.  

2.4 DISCUSSION 

This process provides an effective means of producing self-folding, patterned hydrogel scaffolds. The 

scaffold incorporates a dual surface micro- and nanopatterned structure with controlled topography 

for scaffold-cell mechanical interaction and enhanced nutrient permeability. Some fabrication issues 

do occur when creating replica stamps. 

2.4.1 Fluoropolymer thin film stamps 

2.4.1.1 Positive attributes of method 

A substantial improvement has been made in the manufacturing process of hydrogel and hybrid 

containers by the incorporation of fluoropolymer stamps to replace quartz and silicon mastering 

processes, which are now replacing the aforementioned PDMS hierarchical method with numerous 

advantages: 

• Can be injection moulded or thumb embossed 

• More flexible and easier to use than PDMS 

• Does not stick to PDMS, or glass unless it is pre-treated 

• Much stiffer than PDMS (Young’s modulus of 23 MPa vs. 2.2 MPa respectively) 

•  Results in flexible nanopatterned films 25um thick 

The use of fluoropolymer films in master fabrication offers substantial increases in throughput due 

to the ease of embossing, de-moulding and subsequent NIL use of the non-adhesive films. Feature 

fill has been investigated for low to high aspect ratio patterns with excellent de-moulding. The flow 

properties of these polymers near their Tg allows for a staggered double patterning procedure, 

cutting the processing time for structures such as the one shown in section 1.2. Patterning of pillars 

is a huge advantage as gas entrapment in impermeable stamps often leads to loss of feature depth 

and quality. This ability to retain stamped nanofeatures is what makes fluoropolymers an ideal 

candidate for a modular lithographic system. 
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2.4.1.2 Artefacts and flaws affecting product quality 

However some short falls remain. Whereas PDMS can be cast and left to cure, the softness of FEP 

during the replication process means that it will continue to flow under even minute deformations. 

Figure 2-43 shows the effect of a 3 µm slip of the imprinting stamp due to chuck rotation. The 

resulting shear easily moves the pillars through the melt creating an array of lines, while this could 

be advantageous for certain applications, (saving EBL exposure time in the writing of lines by rather 

writing dots) it adds an element of uncertainty, and requires correct cooling of the melt prior to de-

moulding.  

 

When FEP features are too high in relation to the PMMA being imprinted and the imprint 

temperature is above the melt temperature of the PMMA the melt is drawn up by capillary force 

into the mould to form these geometric patterns nicknamed ‘flowers’  a stilted cloister like 2.5D 

structure. In this case 200 °C, with a spun layer 200 nm thick and imprinting pillars of 200 nm high 

and 400 nm tall. 

Figure 2-43 - Dragging of nanopillars through FEP during imprinting, wither by stamp rotation or early peeling from the 
master, can result in the ditches created here. Scale bar: 4 µm. 
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AFM scans of the surface showed the geometric nature of the patterns, with the PMMA bridging 

horizontally or diagonally between pillars. When plotted in an isometric view, the defects in the 

PMMA film can be seen as a result of too thin imprint layer at a high temperature. The high 

flowability and high surface energy of the stamp result in a wicking of the molten PMMA up into the 

cavity of the stamp. 

Figure 2-44 – An SEM image of the 'flowers' formed by PMMA climbing up the hydrophobic FEP pillars during 
imprinting at 180 °C. The thickness of the PMMA layer being less than the height of the FEP can cause this 
problem.  Scale bar: 10 µm. 

Figure 2-45- An AFM scan of the ‘flower’ surface illustrates the PMM bridging between individual FEP pillars. This is 
particularly noticeable when the PMMA film is roughly half the thickness or less then the height of the FEP features. Scale 
bar: 20 µm. 
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Figure 2-46 – A) 3D plot of Image of 'flower' morphology resulting from low viscosity of molten PMMA imprint layer, and a 
hydrophobic FEP stamp. B) The features are roughly twice as high as the spun film of PMMA, causing it to fill up the voids in 
the stamp by wicking up the stamp pillar features. C) A thin residual layer in the PMMA is still visible at the base of the 
features. 

There is insufficient PMMA melt to supply the wicking when the thickness of PMMA is less than the 

feature height of the FEP stamp. These geometrical phenomena occurs in a less pronounced form 

when the melt to pillar height ratio is closer to unity, but the temperature is elevated. 

A B 

C 
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Figure 2-47 – SEM image of PMMA imprinted with a FEP pillar stamp, produced by spinning a thicker PMMA layer roughly 
90 % of the height of the FEP features (500 nm). Non-uniformity can still be seen in the imprinted surface due to gas traps 
and the PMMA climbing up the FEP features. Marker bar: 20 µm. 

Shown in Figure 2-47 is the effect of insufficient pressure on PMMA layer imprinting with a FEP 

stamp during replication. It is proposed that this occurs as a result of trapped gases under the FEP 

film, and could be remedied by increasing pressure. 

2.4.1.3 Limitations of the FEP process in master replication 

Replicating pits from high aspect ratio (more than 4:1 with a 200 nm diameter) pillars has proven 

difficult, especially when the pitch nears half the pillar diameter. The FEP cannot be extracted, as 

due to the flexibility of the film, the transverse load of peeling catches on the pillars causing the film 

to tear. One solution for this would be to use a fixating FEP film with a cementable side etched with 

Fluoro Etch®. This would allow the film to be pulled in an exactly vertical direction from the mould, 

reducing the shear force on the pillars and the film. 
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Figure 2-48 –A) SEM images of damage caused to master stamp and FEP film due to catching o the replica on the high 
aspect ratio (4:1 aspect 250 nm wide) pillars. The high aspect prevented the successful peeling of the FEP replica stamp. B) 
Peeling caused permanent damage by breaking the pillars free from the substrate on the master. Scale bars: 4 µm and 1 µm 
respectively.  

It can also be seen that uneven feature thickness such as bulging or non-parallel feature walls can 

cause problems with replica separation. This is illustrated in Figure 2-48  where pillars do appear to 

have a thinning around the middle and a slightly expanded top, suggesting a slight undercut 

occurred during etching, which could cause them to stick inside the FEP, making delamination more 

difficult. In the absence of a purely vertical pull-off technique, and for stamps with lower aspect 

features; flexing the substrate could allow the sample to detach. However in the case of long and 

rigid pillars such as these in silicon, the result was excessive shear loading transverse to the pattern, 

it should be noted that all stamps were coated with evaporated silane to aid release from the 

imprint. 

2.5 CONCLUSIONS 

FEP has been shown to be a versatile, flexible and strong plastic with excellent wettability and to be 

chemically inert. It has been demonstrated that these plastics can play a vital in role in the 

manufacture of differentially patterned micro arrays, surfaces and micro-containers. While it still 

requires further expansion in terms of area coverage, this is a limitation in current patterning 

capacity and not of the FEP as a technology. Once large area patterns become available and large 

composite nanotopographical arrays are easily mastered, these can be quickly expanded in volume 

of production as FEP replicas. The process has been shown to dramatically increase the speed of this 

process as compared to one relying on manufacturing such features by lithographic methods. The 

cementability of the FEP from a regulated producer at very low cost opens the door to many 

possibilities, and greater freedom of experimentation. Its application to 3D curved surfaces makes 

this transferable to moulding and casting applications, and has sufficiently higher strength than 

PDMS, allowing for greater degrees of curvature without rupture. 

A B 
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3 HYDROGELS AND HYDROGEL ACTUATORS 

3.1 INTRODUCTION 

In this work, hydrogels are used as bioactive surfaces and actuators for the formation of 3D tissue 

engineering niches. They are a necessary step in translating the inherently 2D methods of surface 

pattern manufacture inherited from MEMS and electronics processing, into 3D architectures. 

Hydrogels offer several benefits, chief of which is their versatile chemistry, allowing the creation of 

different chemical sensitivities and interactions as discussed in Chapter 1. The gels can be made 

stealthy where they do not immobilize proteins, and thus allow controllable (by porosity) transit of 

intercellular chemical communication, movement of waste and nutrients [93]. Hydrogels can 

additionally be manufactured in layers to create environmentally responsive bilayers, by the 

incorporation of certain responsive pendant groups copolymers [110] and particle crosslinkers 

allowing for specific environmental triggers [17]. Combining tuneable hydrogel chemistry with an 

existing method of manufacture such as photolithography allows for the easy integration of hydrogel 

forming in existing photolithographic setups [1]. This provides a basis for the simple manufacture of 

these self-folding hydrogel geometries, which can then be scaled by other processes such as screen 

printing and roll-to-roll printing [67]. 

Hydrogels however are not without risks, as they suffer from poor actuation forces [24] and too low 

mechanical properties for structural applications [77]. The hydrogel often incorporates a solvent 

which forms the porous phase of the gel once it has been developed, thereby producing the empty 

space and high surface area which allows for large changes in swollen volume, depending on the 

amount of solvent used. This high solvent content (often water) can be incredibly difficult to apply to 

surfaces by spin coating, a common technique in microfabrication for applying thin polymer films by 

spinning the surface at high speed (Section 3.2.5). They are also difficult to maintain on the substrate 

surface, prevent stamp adhesion, destruction by sheer and delamination. The photolithographic 

process is unforgiving in this respect and requires very precise contact and demoulding between 

photomask and gel precursor solution. Additionally, when making structures that require lift-off 

from a surface in a controllable manner, hydrogels can be very difficult to anchor selectively, as their 

swelling can cause them to detach from many substrate surfaces. The solvent can also dissolve many 

lift-off layers which are not known for being chemically inert. New methods of micro fabrication and 

nanopatterning for the creation of hydrogel based 3D interfaces for cell culture will be 

demonstrated, as will the methods of fabrication available and difficulties in their implementation in 

the cleanroom based processes. 
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3.2 MATERIALS AND METHODS 

3.2.1 Materials 

Poly(ethylene glycol)dimethacrylate (PEGDMA) Average PEGDMA (Mn 550 g mol-1), Poly(ethylene 

glycol) diacrylate (PEGDA) average PEGDMA (Mn 700 g mol-1), Trimethylolpropane trimethacrylate 

(TMPTMA), Ethylene glycol dimethacrylate (EGDMA), N,N-Methylenebis(acrylamide) (MBAAm), 2-

Hydroxyethyl methacrylate (HEMA), Acrylic acid (AAc), Triethylamine (TEA), N,N-Diethylaminoethyl 

methacrylate (DEAEMA ) and Poly(N-isopropylacrylamide) (PNIPAAm) Mw 19,000-26,000 and 

monomer (NIPAAm) were  purchased from Sigma-Aldrich, UK and used as received. Photoinitiators 

I819, LTPO, I2959 and D1173 were purchased as chemical analogues from Sigma-Aldrich, UK and 

stored in dehydrated atmosphere in the dark. Poly(acrylic acid), 25 % aqueous dilution [Mw 50,000] 

and, poly(hydroxyethyl methacrylate)  (PHEMA) Mw 200,000 were obtained from Polysciences, USA. 

PAA with Mw 100,000 and 1,800 (Sigma-Aldrich, UK) were diluted with RO H2O to produce the 

necessary concentration for spinning. SU8 series resists and Shipley S1818 were used as received 

from the distributer. Sylgard 184 poly(dimethylsiloxane) (PDMS) and curing agent for the 

manufacture of spacer structures was obtained from Dow Corning via Farnell, UK and mixed to 

manufacturers specifications. Trichloro(octadecyl)silane (Sigma-Aldrich, UK) was used as received as 

a release coating for stamps and photomask plates. 

3.2.2 AFM and metrology for feature depth measurement 

High resolution metrology was done using a Veeco Dimension 3100 Atomic Force Microscope (AFM) 

and profilometry was performed with Veeco Dektak 6M Height Profiler, the full procedure was 

previously described in section 2.2.2.1. 

3.2.3 SEM imaging of nanostructures 

Scanning electron microscopy (SEM) imaging was done using a Hitachi S4700 SEM. Samples were 

dehydrated by an ethanol series starting with 100 % RO H2O. Samples were dried at 120 °C for one 

hour following further drying in a vacuum at 100 mTorr prior to sputtering with a 6 nm-9 nm iridium 

charge dissipating layer. 

3.2.4 O2 plasma ashing 

Samples and wafers were descummed and functionalized by use of an oxygen plasma to ‘ash’ (etch) 

the surface at varied powers ranging from 60 to 200 W RF power. Deep ashing through soluble 

polymers was done using long ashing periods of up to 10 minutes. 



Iskandar Vasiev “3D Self-folding tissue scaffold origami”  121 

3.2.5 Spin coating 

The process of spinning (spin coating) involves the application of thin solution or polymer films. The 

process involves spinning the wafer on which further processes are to be performed, and applying a 

quantity of liquid material. Speeds vary between 500 rpm and 6000 rpm, with film thickness altered 

by adjusting the viscosity, spin speed and duration. Values are confirmed experimentally by 

scratching the film and measurement with surface profilometry (Dektak) or AFM. 

3.2.6 Micro- and nanopattern formation on quartz and silicon 

3.2.6.1 Quartz master stamp fabrication 

The nanopatterned stamp used for both the pre-patterning of the sacrificial film and subsequent 

top-side patterning of the hydrogel films,  PDMS and FEP replicas was fabricated from a 1 mm thick, 

square quartz sample of 25 mm length sides. The full procedure was previously described in section 

2.2.3.1. 

3.2.6.2 Si master stamp fabrication 

The silicon stamp used for making PDMS and FEP replicas and for thermal NIL was manufactured in a 

similar process to those described in Section 2.2.3.2,  

3.2.7 Release coating for stamps and photomasks 

Release coatings were used to allow photolithographically produced devices to allow for the smooth 

separation of the transparent stamp from the set material underneath, this reduced the risk of 

stamp and feature damage during demoulding. This is also critical for making PDMS replica stamps, 

as the PDMS can bond very well with silicon containing substrates, by its siloxane group. To avoid 

these issues; prior to use in UV-NIL or manufacture of PDMS stamps the Si and qz masters were 

washed in acetone, methanol and isopropanol for 5 minutes each before being cleaned in an oxygen 

asher for 2 minutes. NiCr Photomask plates and slides were also coated with a silane release coating, 

to aid separation from photo-patterned resists.  

Silane deposition from liquid was carried out from a 0.0001 v/v % solution of silane in heptane for 20 

minutes. After the treatment was completed the master stamps were rinsed in heptane, acetone 

and isopropanol. Vapour deposition of silane required samples to be ashed for 1 minute at 60 W 

power in O2 plasma with the stamp or mask surface facing up, and placed on a set of foil spacers 

inside a large glass petri dish sealed with a second glass plate. The dish had one drop of silane placed 

on opposite sides of the dish and was filled with nitrogen to create an inert atmosphere. The dish 

was placed on a hotplate heated to 150 °C for 15 minutes. The silane was allowed to evaporate and 
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condense onto the surface of the stamp or mask, after which the dish was cooled and flushed with 

nitrogen before removing the slide and testing for hydrophobicity. 

3.2.8 PDMS replica stamps for NIL and UV-NIL 

PDMS replica stamps were produced in a method similar to that outlined previously in section 

2.2.3.3. However for tall features such as space pillars photoresist features were used. Silicon or 

glass was patterned with S1818 or SU8 photoresist (depending on feature height). In the case of 

hierarchical and spacer incorporated structures of feature size ≥50 µm, a thin layer of SU8 3005 was 

first spun at 4000 rpm for 30 seconds and patterned with micro or nanofeatures by 

photolithography and development or thermal NIL respectively. A thick layer >1 mm of SU8 3050 

was then spun on top at 1000 rpm and allowed to prebake for at least 3 hours at 90 °C to remove 

solvent. This was then photo lithographically patterned with spacer features. All non PMMA or 

S1818 masters were then silane treated by immersion into a heptane diluted silane, or by silane 

evaporation (Section 3.2.70 

Release coating). Sylgard 184 PDMS (Dow Corning) was mixed at a ratio of 10:1 to curing agent, and 

poured onto the master pattern in a salinized glass dish. It was then sonicated for 2 minutes and de-

aerated in a vacuum for 30 minutes prior to curing in an oven for 3 hours at 70 °C. The cured PDMS 

slab was cut into individual patterned 15 x 15 mm squares. 

3.2.9 Sacrificial layer for lift-off of patterned devices 

To aid the release of photopatterned features (Figure 3-1) a sacrificial layer is needed, PAA was used 

in this application as a water soluable layer. PAA solutions of various Mn were spun at 4000 rpm for 

30 s onto a 15 mm x 15 mm silicon wafer of 525 μm thickness and allowed to settle at room 

temperature for 2 minutes. The spin speed vs. thickness were determined for varying molecular 

weights of PAA are shown previously in Figure 2-31. The spun film of PAA was then heated to 90 °C 

and maintained for 3 minutes to remove residual solvent [190]. The dehydrated samples were 

placed into an Obducat NIL 2.5 nanoimprinter, a patterned qz master was placed on top, and pattern 

transfer was then carried out as follows. The master and wafer stack was set to preheat to 105 °C 

under a pressure of 3bar for 5 minutes. The temperature was then raised to 115 °C and a pressure of 

15 bar for duration of 6 minutes before dropping to 10 bar at which point the sample was air-cooled 

to 60 °C under a constant pressure. De-moulding of the master was carried out at room 

temperature.  
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3.2.10 Thermal nanoimprint lithography (Thermal NIL) 

NIL was performed using an OBDUCAT NIL-2.5 thermal Nanoimprinter for patterning of sacrificial 

layers and master transfer and replication. The sample was placed facing up and the master stamp 

facing down on top of it, in a sandwich of two aluminium sheets, to produce an even temperature 

distribution within the tool, and to accommodate slight overpressures (which was problematic on 

every occasion). Peak temperatures for PAA thermal NIL was 105 °C at 15 bar for 6 minutes, samples 

were pre pressurized to 5 bar during the temperature ramp. PMMA was imprinted at 180 °C at the 

same pressures, but held for 8 minutes. 

3.2.11 Photolithography 

3.2.11.1 Photomask design 

Photomasks were designed in Corel Draw Suite X3 and printed on acetate. Files were exported in 

vector format to preserve resolution.  The files were printed by Micro Lithography Services 

(Chelmsford, UK) onto A4 sized acetate sheets.  

3.2.11.2 Metal deposition 

Metal deposition was done in a Plassys MEB 550S Electron Beam Evaporator for Au, Ti and Ni-Cr 

deposition up to 100 nm in thickness. These were used as charge dissipation layers for SEM imaging 

and EBL exposure, photomasks, selective etch masks and as etch stops. 

3.2.11.3 NiCr masks 

NiCr permanent masks (Figure 3-2) were made on glass slides using a modification of the standard 

JWNC protocol for mask preparation to replicate the Acetate master masks onto glass slides. Glass 

slides were washed in acetone, methanol and isopropanol for 5 minutes in each. The slides were then 

dried in a 120 °C oven for 15 minutes and ashed in 100 W O2 plasma for 2 minutes prior to spin coating 

with Shipley Microposit S1818 Series Photo Resists, spun at 4000 rpm for 30 seconds to achieve a final 

thickness of 1.5 µm according to the manufacturer’s guidelines [192]. The coated substrate was baked 

on a hotplate at 115 °C for 120 seconds. Slides were exposed under the acetate mask in the MA6 for 

A B C 

Figure 3-1 – Optical microscopy images of demonstrated lift-off of photopatterned components from a PAA sacrificial 
layer. One edge submerged in water causing gradual washing away of the water-soluble polymer. A) Hydrogel features 
on PAA being approached by a wetting front (B-C). Scale bars: 200 µm  
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18 seconds to accommodate the transparent substrate. This was followed by development with 

MF319 for 75 seconds and an RO water wash. A post wash descum was carried out in O2 plasma for 3 

minutes under 100 W, and sputtered with 50-80 nm of nickel-chrome (NiCr) in a Plassys evaporation 

coating chamber. The slides were then stripped of any remaining S1818 with ethyl lactate (EC Solvent) 

and isopropanol. Optimum conditions were found through trial and error and minor changes to 

manufacturer’s guidelines. 

 

3.2.11.4 Mask alignment for sequential photolithography 

Photolithography was performed with a SUSS MA6 Mask Aligner in top side alignment mode, 

operating a narrow band light source at 365 nm and intensity of 7.2 mW/cm2. Photolithography is 

achieved by exposing a photosensitive substrate to light through a pre made mask, which isolates 

certain areas for the exposure the process is shown in Figure 3-3. 

 

Figure 3-3 - Mask alignment process. A) MA6 mask aligner during lithography. B) Process of 'alignment' where features are 
positioned using microscope and x-y stage. C) Process of photolithography, and D) photolithography with lift-off process. 

Figure 3-2 - NiCr photomasks on glass slides, scale bar 10 mm. 

A B C D 
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3.2.11.5 Hydrogel photolithography 

Silicon wafers with a pre-patterned PAA sacrificial layer were placed in a Suss MA6 mask aligner with 

a patterned nichrome (NiCr) mask. A drop of polythyleneglycoldimethacrylate (PEGDMA) solution 

was applied immediately followed by hard contact with the mask. The sample was exposed to a dose 

varying from 59.2 mJ/cm2 to 118.4 mJ/cm2 to produce sheets of varying curvature. The photo 

crosslinked sheets were developed in Isopropanol followed by rehydration overnight in RO water, 

which facilitated the dissolution of the sacrificial layer and lift-off of nanopatterned films. 

3.2.12 Hydrogel synthesis 

Different types of hydrogels were prepared in this thesis, ranging from ‘neutral’ to ‘active’ gels. The 

primary role of neutral or structural hydrogels was the structural support of photolithographically 

defined structures, and no environmentally triggered response. These neutral gels consisted of 

PEGDMA or HEMA, which is easily crosslinked by a variety of processes. PEG is known for being 

unresponsive to stimuli and does not readily absorb protein [93], allowing permeation of chemical 

signals, waste and nutrients. Active hydrogels were used to define the environmentally responsive 

layer of the hydrogel bilayers which came in the form of thermally and pH responsive gels based on 

two widely used monomers of n-isopropylacrylamide (NIPAAm) and acrylicacid (AAc). There were 

many possible combinations of crosslinkers, monomers and copolymers, with some that yielded far 

too sticky gels for the formation of homogenous solid hinges. Recipes were also fine-tuned for spin 

coating and photolithography under a mask aligner, as well as for use with imprinted soluble 

sacrificial layers. 

3.2.12.1 Neutral non-responsive hydrogels 

In the area of structural or neutral hydrogels, several gel formulations have been attempted, and all 

suffer from one drawback, which is the spinability of the pre-polymer. Spinability refers to the ease 

of forming a thin film by spin coating and is the most widely used method of photo resist application. 

With gel mixtures it was observed that while HEMA beads and flies straight off the wafer substrate, 

PEGDMA and PEGDA spin well initially but then segregate and form voids in the film. To prevent this, 

surface pre-treatment with Ti Prime (MicroChemicals GMBH, Germany) was used and seems to be a 

suitable solution but is not permanent and will only hold the PEG films for 5 minutes. A far more 

permanent treatment was found to be the deposition of a nanolayer of gold/palladium. These 

techniques are not necessary on PAA pre-spun surfaces due to the hydrophilicity of the OH groups 

present on the surface. Hydrogel films spun on polyacrylicacid sacrificial layers showed no shrinking 

over time due to the excellent wetting, but solvent still evaporated, limiting the amount of time 

available between spinning on a resist layer and having to perform the photolithography. 
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Table 3-1 - Neutral hydrogel recipes investigated in this work used both HEMA and EGDMA, two commonly used monomers 
for contact lens manufacture[47], a consumer product with significant strength and low protein absorption. Recipes 
resulted out of numerous trial and error experiments to achieve a reasonably stable flexible and well defined film, the 
PEGDMA based gel is a modification of a structural gel used by the Gracias group at Johns Hopkins [24] a different initiator 
(LTPO) was also used which according to BASF is less susceptible to oxygen inhibition than I2959 [115]. 

Pre polymer 
solution 

0.1 –0. 5 g/ml 
PEGDMA + and  1-
4 % initiator I2959 

90-50 v/v % 
PEGDMA + 1 
w/v % LTPO  

0.5 g/ml HEMA + 
1 % Crosslinker 
and 1 % Initiator 
LTPO 

0.2 g/ml 
PHEMA+1 % 
Crosslinker 
TMPTMA + 1-4 % 
Initiator I 2959 

Inertion Nitrogen Purge Nitrogen Purge No Nitrogen No Nitrogen 

Solvent RO water vs. 1:1 
EtOH/H20  

EtOH EtOH EtOH 

Application Spin or Cast Spin or Cast Cast Spin or Cast 

Exposure 15-90 s  5-20 s  40-90 s  40-90 s  

Observation Longer exposure 
times due to poor 
I2959 absorbance 
at 365 nm. 

Forms transparent 
and strong gel 

Transparent Gel, 
but brittle if 
EGDMA cross 
linker is used 

More flexible gel 
when made with 
TMPTMA. 

 

To create the photo sensitive pre-polymer PEGDMA solution, photoinitiator was dissolved in ethanol 

(EtOH) at a ratio of 1:10 w/v and vortexed for 1 hour followed by 5 minutes sonication. PEGDMA was 

then combined with the prepared initiator solution at a ratio of 10:1 v/v resulting in an initiator 

concentration of 1:100 w/v. The whole solution was then agitated with nitrogen for 10 minutes, at 

which point the glass container was sealed and left for 18 hours before use. Photo-exposures were 

carried out in accordance with gelling times which varied with application. Photo-patterning was 

done using photolithography through a NiCr or acetate mask. 

3.2.12.2 Thermo responsive hydrogels 

Many hydrogel recipes exist in literature, ranging from bilayers prepared by [24] where PEGDA-

NIPAAm-AAc, and NIPAAm-HEMA gels were prepared to close a ‘Venus-flytrap’ style drug device 

[24]. The approach in this thesis is similar, but uses different monomer combinations and less toxic 

solvents. One other feature is the fabrication method differs from where gels are used for 

encapsulation of cells such as [73] by the amount of initiator used. Gels which polymerize while in 

contact with living tissue need shorter exposures and less initiator to avoid compromising the cell 

with the radicals they generate. In this thesis the structure comes into contact with cells after 

fabrication, and any residual initiator can be washed away with titration prior to cell encapsulation. 

Lastly the gels used here focus on resolution and pattern ability as well as their actuation capacity. 

NIPAAm is easily crosslinked with acrylic acid, and was used to make bi-active hydrogels which shrink 

and expand depending on pH and temperature as mentioned before. While these pose great 

interest, the synthesis of a good thermo responsive hydrogel was a primary objective. The trial was 



Iskandar Vasiev “3D Self-folding tissue scaffold origami”  127 

used to look at the effect of synthesis temperature on the homogeneity of the gel. Two main recipes 

which possessed good swelling properties, the ability to incorporate a pH responsive group and that 

were mechanically stable enough to handle. 

3.2.12.2.1 PNIPAAm-co-PEGDMA, 

Table 3-2 - Recipe for original PNIPAAm-co-PEGDMA hydrogel created for thermo responsive hinge manufacture. 

Component Concentration/mass Function 

PEGDMA (Mn 550 g mol-1) 1 ml Polymer 

IPA 0.1 ml Solvent 

LTPO 1 w/v % Initiator 

TEA 0.01 v/v % Oxygen scavenger 

NIPAAm 400 mg Thermo responsive monomer 

3.2.12.2.2 PNIPAAm-co-MBAAm 

Table 3-3 - Recipe for MBAAm crosslinked PNIPAAm based gel, with the recipe adopted from the Gracias group work at 
Johns Hopkins Institute. Recipe for this formulation was adopted from [24]. 

Component Concentration/mass Function 

NIPAAm 500 mg Thermo responsive monomer 

MBAAm 25 mg Crosslinker 

PNIPAAm 25 mg Thermo responsive polymer 

LTPO 5 mg Initiator 

1-Butanol 1.5 ml Solvent 

3.2.12.3 Cationic Hydrogels 

N,N-Diethyl-amino-ethyl-methacrylate (DEAEMA) is a functional methacrylate and tertiary amine 

that can be used as a synergist to generate free radicals similarly to TEA, as it acts as an oxygen 

scavenger in photoinitiated reactions. It is water-soluble, can improve adhesion of formulations and 

responds to aqueous pH. The recipe using this monomer is the same as those of the two recipes in 

the previous section 3.2.12.2 with the NIPAAm component replaced with DEAEMA monomer in a 1:1 

mol/mol ratio, giving roughly a 0.61:1 w/w substitution. 

3.2.12.4 Ionic Hydrogels 

PAA and AAc were dissolved in HEMA, NIPAAm and PEGDMA to make a range of pH and 

pH+temperature responsive gels. No successful recipe exists for making blocks of PAA-co-PEGDMA 

gels, and the Gracias formulation [24] was used for making bi responsive hybrid gels, in which case 

0.5 ml of acrylic acid (AAc) was added to  both ‘Cationic’ and ‘Thermal’ recipes shown previously, 

yielding gels that were sufficiently strong and stayed intact for up to 3 swelling de-swelling cycles.  
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3.2.13 Hydrogel bilayers 

Bilayers consist of two materials with different properties being physically or chemically bound 

together. They are often used as cantilever actuators as the different properties on the two surfaces 

create asymmetric behaviour when the bilayer is stimulated in a certain way. 

3.2.13.1 pH responsive bilayers 

There are two ways of producing pH sensitive bilayers; the first is surface grafting and the second is 

bulk copolymerization such as the one used by Bassik et al [24]. The polymers and monomers which 

have been used to bind with the pH sensitive carboxyl groups mentioned previously are shown in 

Table 3-4. 

Table 3-4 - Monomers and available functional and crosslinking pairs 

Base (poly)mer Co-polymer Optional Crosslinker 

HEMA and PHEMA AA,PAA, PEGDMA or TMPTMA 

NIPAAm and PNIPAAm AA,PAA ,MAA,P(AAm-co-AAc) MBAAm or EGDMA 

PEG based polymers PAA,PMAA  EGDMA 

 

PAA is a superabsorbent polymer with a 3D network filled with hydrophilic (COOH) groups at low pH. 

Any absorbed H2O is therefore hard to release. By binding these groups to a surface of similarly 

acrylated hydrogel leads to a bilayer bi-functional film. This method of manufacture can offer a 

different response from a normal bulk gel network. They can be made very thin, by the novel 

method of “proximity graft polymerization”.  

When the pH is below the pKa of the acidic carboxyl pendant groups of the polymer, they are in their 

protonated state (COOH). As the pH increases above the pKa, the (COOH) pendant groups dissociate 

to their deprotonated (COO−) state [95]. This causes an interaction with the polar charge of water 

binding H2O molecules to the chain and propagating a swelling reaction. PAA (50000 Mw, 25 % Aq) 

was purchased from PolySciences. PAA (1800 Da, 63 w/v %, and 100000 Da 12 w/v % aqueous) 

PMAA (100000 Da) along with AA monomer were obtained from Sigma Aldrich, UK. 

3.2.14 Hydrogel actuator triggering 

After development in isopropanol and rehydration in RO water the samples of free floating gel 

would then be triggered to roll and unroll by applying aqueous pH 7 and pH 4 buffer respectively. pH 

values above the critical pKa of the acid groups bound to the gel, undergo a deprotonation causing 

them to absorb or ‘bind’ water. This leads to a triggered osmotic differential across the thickness of 

the gel, and leads to subsequent rolling or folding of the gel films. Thermally responsive gels have 
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the additional contraction of thermo-responsive groups further increasing the differential between 

the bilayer surfaces [108]. 

3.2.15 Hydrogel analysis 

Correlational factors attributed to hydrogel behaviour were analysed by the methods listed in the 

previous section. These included contact angle measurement to record hydrophobic-to-hydrophilic 

switching of responsive gels. Swelling ratios and behaviour were recorded for various gels to identify 

the actuation of different compositions. Finally rheological and mechanical testing of cured gels was 

carried out to identify synthesis techniques with a beneficial effect on hydrogel mechanical 

properties.  

3.2.15.1 Hydrogel swelling ratio 

Gels were cast into 500 µl caps in a polystyrene mould, they were then exposed to UV light on an 

MA6 mask aligner under 365 nm UV light for a pre-set time between 6 and 120 seconds. The 

crosslinked gels were then allowed to dry and shrink for 24 hours before being removed from the 

casting mould, this is done to avoid damaging the puck. They were then rehydrated in RO water for 

48 hours prior to weighing and drying out to obtain fully swollen and dry weights. 

The rehydrated gels were removed from aqueous solution and gently swabbed to remove any 

surface liquid. These were then weighed and dehydrated in a vacuum for 24 hours. The dehydrated 

gel slabs were weighed again to determine their dry mass. In the case of stimuli responsive gels, an 

additional ‘actuated’ measurement was taken in the fully shrunken state, and in the fully hydrated 

state (pH 7 and 4 for ionic and cationic gels inversely, 22 °C and 40 °C for thermo-responsive gels.) Q 

is the equilibrium volume swelling ratio or gel fraction and q is the equilibrium mass swelling ratio 

[109].  

 
𝑄 =

𝑉𝑠

𝑉𝑑
= 1 +⁡

𝜌𝑝

𝜌𝑠
(𝑞 − 1) 

Eq. 3- 1 

 

Where 𝜌𝑝 is the density of the polymer and 𝜌𝑠 is the density of the solvent. Thus q gives a more 

useful equation (Eq. 3-2) where a differential measurement of the equilibrium swollen mass (Ms) 

and the dry polymer mass 

 
𝑞 =

𝑀𝑠

𝑀𝑑
 

Eq. 3- 2 

 

Where q is a function of the crosslinking density and the polymer–solvent interaction parameters, 

which can be converted to porosity using the Flory-Rehner equation for a swollen hydrogel [193]: 
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 1

𝑀𝑐
=

1

𝑀̅𝑛

−
𝑣̅

𝑉1̅
∙
[ln(1 − 𝜑2,𝑠) +  𝜑2,𝑠 +  𝜒𝜑2,𝑠

2]

𝜑2,𝑠

1
3 −

𝜑2,𝑠

2

 Eq. 3- 3 

Where 𝑀𝑐 is the molecular weight of the average crosslink [97], 𝑀̅𝑛is the number average molecular 

weight in the absence of crosslinking,⁡𝑣̅ is the specific volume of polymer, 𝑉1̅ the molar volume of 

solvent,  𝜑2,𝑠 is the equilibrium polymer volume fraction of the swollen matrix and 𝜒 is the solvent 

interaction parameter. 

From this the gel crosslink mesh size 𝜉 can be expressed as [97]: 

 
𝜉 = ⁡𝜑2,𝑠

1
3 ∙ 𝑙 ∙ (

2𝐶𝑛𝑀̅𝑐

𝑀𝑟
)⁡⁡ Eq. 3- 4 

 𝑜𝑟⁡𝑠𝑖𝑚𝑝𝑙𝑦:   𝜑2,𝑠
−
1

3√𝐶𝑣 ∙ 𝑙 ∙ 𝑛  Eq. 3- 5 

Where 𝐶𝑛 is the Flory characteristic ratio (4 for PEG), 𝑀𝑟is the average molar mass of the repeat unit 

of the polymer [97], 𝑙 is the length of the intermolecular bonds (0.154 nm for C-C bonds) and n is the 

number of bonds between crosslinks.⁡This relation is used to estimate the mesh size or porosity of 

homogenous gels based on the volume fraction of monomer used in synthesis by correlating the 

swelling ratio of that gel. This porosity directly correlates to the transport or ease of diffusion of 

species through a gel. The diffusivity (Ds) of any given solute through the hydrogel matrix can then 

be estimated from: 

 𝐷𝑠
𝐷0

= (1 −
𝑟𝑠
𝜉
) 𝑒

−𝑌
𝜑2,𝑠

1−𝜑2,𝑠  Eq. 3- 6 

 and,  𝐷𝑜 =
𝑘𝐵𝑇

6𝜋𝜂𝑟𝑠
 Eq. 3- 7 

Where D0 is the diffusivity of the solute in water and Y is a ratio of critical volume required for a 

successful translational movement of the solute molecule to the average free volume per molecule 

of liquid, and is in this case assumed to be unity, 𝜉 is the distance between crosslinks. Finally kB is the 

Boltzmann constant, T is absolute temperature, 𝜂⁡is the viscosity (of water) at temperature T and rs is 

the Stokes-Einstein hydrodynamic radius of the solute. 

3.2.15.2 Rheological analysis of hydrogels 

Rheology was performed using an Anton Paar MCR 301 Rheometer, a thin layer of gel was placed 

between a flat circular rheology probe and a 10 cm petri dish. The rheometer performed sweeps of 

rotational frequency, temperature by stage heating (to 42 °C) and displacement.  
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Rheology was used to replace dynamic mechanical analysis to determine the dynamic material 

properties of the soft hydrogel films. The defining principle of the parallel plate method is the 

application of a dynamic shear stress on a film of known thickness. In this setup a disk of 20 mm in 

diameter oscillates in contact with the thin sample film, which is held on the stage by a pre applied 

normal load of 0.5 N.  The hydrogel samples were first synthesized in a Corning 10 cm petri dish, of 

measured thickness.  If the engineering stress on a material is defined as the force F acting per initial 

unit area and will produce a deformation or strain, in viscoelastic materials this is represented by the 

shear storage and loss moduli (G’ and G” respectively), where purely elastic shear G is defined as: 

 𝐺⁡ = ⁡𝜏⁡/⁡𝛾 

and⁡the⁡complex⁡modulus⁡𝐺∗ ⁡= 𝐺′ + 𝑗𝐺" 

Eq. 3- 8 

Where γ is the shear strain, and 𝜏 the shear stress and j is an imaginary unit. To determine the 

viscoelastic shear moduli, a parallel plate setup was used where the sample is placed in a petri dish 

to allow it to stay hydrated as illustrated in Figure 3-4. The stress was first calibrated by performing a 

sweep to find the possible range of loading which does not exceed the yield stress of the gel. A 

torsional frequency sweep was applied and the strain was measured as a change in dimensions or a 

displacement. Ideal gels have an almost purely elastic response where the elastic modulus is much 

higher than the viscous modulus and is independent of frequency [194]. In gel networks with 

imperfections, the response of the polymer gel will depend on frequency with both shear moduli 

increasing with frequency. To correct for the presence of the dish, the measured modulus is adjusted 

for the measured height, subtracting the depth of the dish to find the real vertical distance of the gel 

over which the shear is applied. 

 

Figure 3-4 – A) Illustration of a parallel plate rheometer setup, the application of load and rotation rate used by the 
rheometer when the gel specimen is in a petri dish. B) The correction necessary to remove the thickness of the petri dish 
from the shear modulus calculation and obtain the true modulus of the material being tested. 

The correction factor used to adjust the measured modulus for the true thickness of gel is based on 

a ratio between real and measured thickness of the sample: 

A B 

ω  

Force 
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𝐺𝑟𝑒𝑎𝑙 = 𝐺𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 (

ℎ𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 − ℎℎ𝑜𝑙𝑑𝑒𝑟
ℎ𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑

) Eq. 3- 9 

Where 𝐺𝑟𝑒𝑎𝑙  is the shear modulus of the sample and, 𝐺𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 is the measured modulus based on a 

combination of the sample and holder thickness, ℎ𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑  is the overall thickness and ℎℎ𝑜𝑙𝑑𝑒𝑟 is 

the thickness of the sample holding dish.  Flat plate rheology can be used to investigate various 

length scales by adjusting the frequency of the applied oscillation to probe relaxation dependent 

viscous parameters [194]. At low frequencies (0.1-1 rad/s); the polymeric chains making up the gel 

are undergoing Brownian motion so the measured properties reflect the elastic deformation of the 

gel network, where physical entanglements are created and broken quickly compared to the rate of 

deformation; so they do not store elastic energy. At high frequencies the polymer does not have 

time to rearrange, so physical entanglements persist longer than the oscillation frequency so they 

physically constrain or pin the polymers, thus storing elastic energy and contribute to viscous 

dissipation produced by the gel [195]. Amorphous polymers have different glass transition 

temperatures, above which the material will have rubbery instead of glassy behaviour and the 

stiffness of the material will drop dramatically with a more viscous-dominated response. At the glass 

transition, the storage modulus decreases dramatically and the loss modulus reaches a maximum. 

Temperature-sweeping DMA is often used to characterize the glass transition temperature of a 

material. In this thesis temperature sweep was used to determine the lower critical solution 

temperature (LCST) of NIPAAm above which it switches to a hydrophobic insoluble state. 

3.2.15.3 Tensile testing of hydrogels 

Tensile tests were performed on gels using a Zwick-Roell mechanical tensile machine with a 2kN load 

cell. Hydrogel dumbbell specimens were manufactured in a PDMS mould to size specifications given 

in ASTM D412 type A [196]. A half size specimen mould was cut from 3mm thick Perspex® from 

which a PDMS replica was made by casting. Samples were 59 x 12 x 30 mm gauge length (Figure 3-5), 

the PDMS mould was filled with a pre-gel solution and illuminated under the MA6 mask aligner for a 

pre-set duration of time from 5 seconds to 2 minutes to polymerize the gel into the sample shape.  
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The finished tensile specimens were washed in IPA and ethanol, and air dried for 24 hours to remove 

residual solvent.  The as-cast specimens were tested under tension in a Zwick-Roell mechanical 

tensile machine with a 2 kN load cell and clamp grips in displacement controlled loading at 0.5 

mm/min. Prior to each test the grip opening displacement was recorded and load cell set to zero to 

remove preload, as only the gradient of the loading curve during the elastic regime was of interest. 

The force displacement curve was converted to a stress strain curve to obtain elastic modulus 

(assumed to be very low), as the gradient of the stress plotted against elastic strain [197]. 

 Engineering Stress :  𝜎 = 𝐹/𝐴 Eq. 3- 10 

Where the tensile force (F) is adjusted for sample cross sectional area (A) and strain is represented 

as the unitless measure of change in length against the original length of the sample [197]. 

 Strain : 𝜀 = ⁡
∆𝑙

𝑙0
=⁡

𝑙−𝑙0

𝑙0
 Eq. 3- 11 

Plotting the stress and strain results in a linear segment at the start of the loading arc which is 

elastic. As hydrogels typically exhibit several modes of convoluted viscoelastic, poroelastic and 

hyperelastic behaviour later in the loading curve, only the initial elastic segment will be compared to 

determine the effects of formulation on the mechanical properties of a gel sheet to verify material 

behavioural changes. 

3.2.15.4  Fourier transform infrared spectroscopy 

Fourier transform infrared spectroscopy attenuated total reflection (FTIR-ATR) was performed using 

a PerkinElmer Universal ATR sampling accessory thin films were compressed prior to a spectrum 

from 400 to 4000 cm-1 being sampled over 12 scans per sample. Samples were compressed under 

F, σ 

δ, ε 

A B 

C 

Figure 3-5 – A) Gel tensile specimen after rupture, B) The standard ASTM D412 type A sample schematic. C) The expected 
relationship from a perfectly linear sample as a force-displacement or stress-strain plot. It should be noted that with 
hydrogels a perfectly elastic response is highly unlikely given the multi-phase porous structure. 
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the optical crystal element usually in thin film form after dehydration, a background measurement 

was performed between tests. Hydrogels were analysed by FTIR-ATR to confirm crosslinking extents, 

presence of functional groups and effects of additives for free radical polymerization and oxygen 

scavenging. While the presence of PAA in the hydrogel films can be confirmed visually by placing 

hydrated sheets in a 0.1 w/v % toluidine blue O 1 w/v % borax solution where staining of PAA 

carboxyl groups was confirmed. Films with and without a PAA sacrificial layer present during 

manufacture were also dried and examined with FTIR-ATR to investigate the changes in hydrogel 

composition.  

3.2.15.5 Ultraviolet-Visible spectrophotometry 

Photoinitiator properties were quantified by dilution assays in a Nanodrop UV-VIS 

spectrophotometer. Solutions of varying concentration (w/v %) were placed as 2 µl drops (in RO 

H2O) onto the spectrometer after calibration to a baseline standard of embryo transfer water 

(Sigma). Concentrations were used to plot absorbance vs. aqueous concentration of various 

photoinitiators. Ethanol was sometimes used as a substitute depending on photoinitiator solubility, 

in these cases an ethanol baseline was used. To confirm the functionality of the various photo 

initiators used, solutions of each were analysed by Ultraviolet-Visible (UV-Vis) spectrophotometry to 

identify the key absorption spectra and absorptivity, and also to test the susceptibility to photo-

bleaching of the various peaks present. 

3.2.15.6 Contact angle measurement and wettability 

Contact angles were measured with an Attension (Biolin Scientific) Theta series Optical Tensiometer. 

The method is similar to that described in section 2.2.2.7. A 5 µl droplet was applied to the substrate 

and allowed to equilibrate until the contact angle ceased to decrease rapidly. On highly porous 

surfaces such as hydrogels the measurement had to be taken more quickly to accommodate the 

rapid absorption of the contact angle droplet.  
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3.3 RESULTS 

3.3.1 Photo initiator efficiency and suitability 

UV-Vis spectrophotometry of photoinitiators showed absorption peaks and molar extinction 

coefficients of various commercial photoinitiators, providing an indication of which was most 

suitable for fast photolithography in the MA6 system.  The measured molar absorption spectra and 

absorbance with concentration are shown in Table 3-5, these are then used to determine the 

initiator molar extinction coefficient, a measure of initiator light attenuation. A peak and high 

absorbance near 365 nm is key for effective use with the MA-6 mask aligner system. 

The results indicate that Lucirin LTPO and the other phenyl based photoinitiator Irgacure I819 had 

absorption spectra centered between 300-368 nm with distinct peak at 368 nm adjacent to that 

emitted by the MA6 mask aligner. Phenyl based photo initiators also showed the highest molar 

extinction coefficients, indicating efficient absorption compared to other alternatives (Table 3-5). 

Table 3-5 - Absorption peaks, and molar extinction coefficients of implemented photoinitiators as measured by UV-VIS 
spectroscopy. 

Initiator Main absorption peak (nm) Molar extinction coefficient ε (M-1 cm−1) 

Lucirin TPO 380 532.4  

Irgacure 819 368 566.49 

Irgacure 2959 280 110 

Darocur 1173 330 121.433 

Figure 3-6- Absorption with concentration at various absorption peaks for LTPO photoinitiator. Distances in mm are the 
working distance of the UV-Vis spectrophotometer. Outside of the 380 nm peak for LTPO, curves show molar absorption 
coefficient decreases nonlinearly with concentration at the other prominent absorption peaks. 
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It was found that LTPO and I819 are the most suitable for quick lithography at 365 nm UV 

wavelengths. The measured absorbance closely matched the theoretical data from the extinction 

coefficient (Figure 3-5). 

3.3.2 Hydrogel properties 

3.3.2.1 Hydrogel swelling behaviour 

Swelling behaviour dictates the actuation of gel hinges, and stronger swelling extent, in combination 

with an overall crosslinked and stable gel are key to a robust gel scaffold. 

3.3.2.1.1 Conventional Hydrogels 

The swelling behaviour and permeability to nutrients of the conventional hydrogels were 

determined by their swelling ratio, and observed structural stability. The Flory-Rehner parameters 

used to estimate gel crosslink mesh size, and thereby diffusivity [109]. The swelling ratio obtained 

for a range of exposure doses for structurally stable gels is shown in Figure 3-7. An increase in 

swelling is seen with reduced exposure dose and decrease in initial monomer concentration. This 

increase in swollen weight is attributed to longer distances between the crosslinks within the gel due 

to the high solvent fraction. In addition to a weaker gel, the large mesh size and long chains between 

crosslinks shift the swelling to elasticity equilibrium as the crosslinking density is reduced thereby 

reducing the resistance to swelling. The swelling alone does not determine the quality of a gel, 

especially in the case of structural materials, therefore the mechanical properties of the gels are 

investigated later in Section 3.3.2.2.  

 

Figure 3-7 - Swelling ratios of PEGDMA based hydrogels with exposure dose and monomer concentration. Values measured 
by weighing swollen samples incubated for 24 hours in RO H2O for 24 hours after synthesis, and after dehydration by drying 
in a 120 °C oven, followed by placing in a 100 mTorr vacuum for 12 hours. 
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The estimation yielded an expected pore size variation between 6-350 nm in PEGDMA hydrogels 

(Figure 3-8) with between 10 % and 90 % monomer content, suggesting permeability for larger 

dissolved species could be a problem for the less solvent laden gels. The Flory-Rehner constants for 

PEGDMA based gels for this calculation were obtained from the paper by Zustiak et al. [97] and Bush 

et al. [198] are listed in table Table 3-6 and have been used to estimate the expected nutrient 

permeability of PEGDMA structural gels after various exposure doses and monomer concentrations. 

Table 3-6 - Variable or Flory-Rehner equations for estimating hydrogel mesh size from swelling ratios. Values found from 
previous work by Zustiak et al. [97] and Bush et al. [198]. 

Description Variable Value 

Molar volume of the solvent V1 (H2O) 18.018 cm3/mol 

Polymer-solvent interaction parameter PEG-H2O Χ1 0.426  

Characteristic ratio of the polymer (PEG) Cn  4 

Chain bond length (PEG) l 0.146 nm 

Molecular weight of the repeat unit (PEG) Mr 44 g mol-1 

Polymer-solvent density ratio (PEG) ρp / ρs 1.12 

Polymer average molecular weight Mn 550 g mol-1 

 

Using equation 2-6 and the constants for a hydrogel network constructed out of PEGDMA (Mn = 550  

g mol-1) repeat units obtained from the volume fraction of the gel are related to the porosity of the 

gel by the Flory-Rehner relationship described in Section 1.3.4.  

 

To convert mesh sizes into relative diffusion coefficients of cell culture specific media components 

and metabolites, the diffusion coefficients in water of several ions and metabolites were used, these 

are shown in Figure 3-9. 
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Figure 3-9- Adapted values for Stokes radii and baseline diffusion coefficients (D0)at tissue culture temperatures for 
dissolved species in water at in vitro temperature (37 °C, nu=0.682) [199, 200] 

The resulting species diffusion coefficients were correlated with the predicted pore (mesh) size with 

monomer concentration are shown in Figure 3-10. 

 

Figure 3-10 - Diffusion correlation to hydrogel mesh size for PEGDMA gels synthesized at various exposure doses and 
monomer concentrations as illustrated in Figure 3-7. 

3.3.2.1.2 Thermo-responsive Hydrogels 

Thermo-responsive and bi-responsive hybrids of NIPAAm and AAc were synthesized by 

photolithography early in this work. To identify key factors for the behaviour of the responsive gels a 

number of controlled variables were changed using a randomized Taguchi analysis [201]. 
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Table 3-7 - NIPAAm with Acrylic Acid copolymerization with I2959 acting as photo Initiator. Mixtures were prepared in 
water with exposure of 5 minutes under a 300 W broad spectrum UV bulb. 

No Synthesis 

Temperature 

(°C) 

NIPAAm 

concentration 

(mol/l) 

Initiator 2959 

concentration

(w/v %) 

Acrylic Acid 

concentration 

(w/v %) 

Polymerized 

Condition 

Temp 

induced 

swelling 

time (s)1 

pH 

induced 

swelling 

time (s)1 

1 25 1 1%  2% Stable 3 18 

2 25 1 2%  4% Stable 6 15 

3 60 1 3 %  6 % Dense  15 8 

4 60 1 4 %  8 % Dense 25 15 

5 25 1.5 1 % 8 % Low gelation 30 15 

6 25 1.5 2 % 6 % Dense 26 15 

7 60 1.5 3 % 4 % Heterogeneous 8 10 

8 60 1.5 4 % 2 % Heterogeneous 7 4 

 

This initial study narrowed the range of factors to be excluded, such as temperature which cannot 

readily be controlled in the MA6, also seeming impractical as more homogeneous gels formed at 

room temperature (optical transparency is a beneficial factor as subsequent processing is involved 

or monitoring from inside containers is necessary). Overly high AAc concentrations were also 

excluded as these contributed to heterogeneity while not offering sufficient boost to swelling 

response. A second Taguchi analysis used levels of each factor to look for the most influential 

parameter as a function of gel swelling.  

Table 3-8 – levels for Taguchi study into synthesis factors for a NIPAAm based gel prepared under a 300 W broad spectrum 
UV bulb. 

Factor Level 1 Level 2 

Monomer (NIPAAm) 35 w/v % 50 w/v % 

Photoinitiator (I2959) 2 w/v % 4 w/v % 

Crosslinker (MBAAm) 1 w/v % 2 w/v % 

UV Dose 5 minutes  7 minutes  

Solvent  1-Butanol EtOH 

Nitrogen atmospher on off 

Volume during polymerization 200 µl 400 µl 

 

                                                           
1 Times measured by visual opacity change of gels in response to stimulus, gels placed n aqueous container and allowed to equilibrate, 
they were then shrunken by exposure to acidic environment or temperature, and allowed to re-swell by immersion in swelling medium. 
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Table 3-9 - Synthesis parameters for Taguchi study into synthesis factors for NIPAAm based gels. 1 and 2 indicate levels of 
that particular variable shown previously. When a change in level of a particular variable has a strong effect on the output 
variable (swelling) this is considered to have a strong effect on the overall system. 

Mix Monomer Crosslinker Initiator UV dose Solvent Nitrogen Volume Swelling 
(q) 

1 1 1 1 1 1 1 2 8.08 

2 1 1 1 2 2 2 1 6.99 

3 1 2 2 1 1 2 1 5.66 

4 1 2 2 2 2 1 2 5.19 

5 2 1 2 1 2 1 1 5.21 

6 2 1 2 2 1 2 2 5.50 

7 2 2 1 1 2 2 2 4.41 

8 2 2 1 2 1 1 1 4.11 

 

The array was quantified to swelling ratio determined by weight of swollen, actuated and dry gels. 

This allowed the use of ANOVA to eliminate non-contributing factors, as those with a low degree of 

variance caused by up or down regulation of the controlled factors could be eliminated as non-

critical. 

 

Figure 3-11 - Swelling ratio with recipe for NIPAAm based gels, Correlation of levels at each swelling ratio used to interpret 
effect on gel network. Error bars: 1SD from 2 measurements. 

Although swelling is only one gel characteristic, if a gel is intact, and can withstand manufacture and 

lift-off and also offers a good swelling ratio, it has the opportunity of being a good actuator, these 

values are not critical they provided an indication of the critical parameters to control. The most 

favourable mixtures were then optimized for photolithography and compatibility with the lift-off 

surfaces by changing photoinitiator type to the most effective from the previous study, and adjusting 

the solvent to avoid dissolution of the sacrificial layer prematurely. In the end the pure NIPAAm 

based gels did not make it to hinge applications due to crystallization after spinning due to solvent 

evaporation. 
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Figure 3-12 - Taguchi plot of mean value and associated variance for up and down regulation of certain synthesis 
parameters. (Red): variable at low level 1, (Blue) variable at high level 2. Error bars: 1SD from n=4 values. 

A drastic reduction of swelling ratio is visible (Figure 3-12) in cases of increased monomer 

concentration, crosslinker concentration and initiator concentration, with four other factors serving 

a synergistic role, and while having an effect do not produce as high a deviation, although solvent 

type does appear to play a role in the conversion of free chains to crosslinked network. These 

combinations were reattempted with varied solvents ranging from EtOH to MtOH and acetone, a 

50/50 blend of EtOH and water or pure EtOH gave the most homogenous gels, especially at lower 

temperatures of synthesis near 20 °C (Figure 3-12). However due to the incompatibility of water with 

the sacrificial layers, isopropanol, 1-butanol and ethanol were chosen, to avoid dissolution of the 

sacrificial layer by the resist. 

For the manufacture of a fully transparent and strong thermal hydrogel actuator, NIPAAm monomer 

was crosslinked with PEGDMA to form a partially interpenetrating polymer network similar to those 

of Peerani et al [202]. The performance was later compared to a MBAAm crosslinked all PNIPAAm 

hydrogel recipe obtained and was modified for my process from [24] to see the effect this would 

have on the swelling (Figure 3-14). The results showed a strong correlation in the swelling of 

different gel recipes and processes, the major factor as expected was monomer concentration in the 

solvent, which in turn defines how much empty space exists in the crosslinked network and thus 

how much water it can hold. This tendency shows the volume ratio of swollen gel to initial casting 

nearing unity as exposure dose increases, suggesting density of crosslinking is so high that it resists 

the ingress of water into the mesh. Differences were also seen when comparing actuation in gels 

primary composed of NIPAAm and its polymer, and NIPAAm copolymerized with PEGDMA shown in 

Figure 3-15 (PEGDMA preferable as it evaporates slowly keeping NIPAAm from crystalizing). 
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Figure 3-13 – Conversion  ratio with exposure dose of MBAAm crosslinked PNIPAAm gels with LTPO as initiator, cast weight 
prior to development against fully swollen state, shows correlation between overexposure and loss of swelling potential as 
gel network is so rigid it barely accommodates any liquid other than that replacing unreacted monomer and solvent used in 
synthesis (n=1). 

 

Figure 3-14- Swelling ratio of MBAAm crosslinked PNIPAAm gels compared with PNIPAAm-co-PEGDMA gels (n=1). 
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Figure 3-15 – PNIPAAm gel actuation ratios (weight fraction of water displaced above the hydrogel LCST) of the two 
thermo-responsive PNIPAAm hydrogel recipes (n=1). 

The gels were dehydrated at 120 °C for 24 hours to expel all the trapped water after being 

equilibrated in RO water for 48 hours. While this is a good measure of hydrogel network density it 

does not give much information on how much water the network can expel on its own, and a second 

test needs to be done to measure water ejected upon heating to 36 °C. One issue which is prevalent 

when working with crystalline monomers like NIPAAm is that they revert back to an ordered 

structure when a critical portion of the solvent evaporates. This means that the time taken to get a 

pre-spun substrate in to do photolithography is in the range of 5 minutes. 

3.3.2.1.3 Ionic and cationic gels 

Ionic and cationic gels were synthesized by the addition of functional groups to the standard gels. 

The intention was to use them as active layers in bilayer folding or as a locking mechanism by ionic-

cationic attraction. PAA ionic gels were used as described previously in a lift-off layer method. The 

cationic gels based on N,N-Diethylaminoethyl methacrylate (DEAEMA) were made by substitution 

into the NIPAAm 1-butanol recipe as a direct replacement for NIPAAm. DEAEMA based cationic gels 

were found to undergo a hydrophobic to hydrophilic switch (Figure 3-16) in acidic environments 

causing a swelling at low pH and ejection of fluid at elevated pH. This is due to the presence of 

amine groups in the DEAEMA monomer, in contrast to carboxyl groups in the PAA ionic gels as 

confirmed by FTIR. 
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Figure 3-16- N,N-Diethylaminoethyl methacrylate (DEAEMA) cationic gel swelling as it varies with exposure dose (n=1).  

Gels which had undergone a shorter exposure had a less ‘mature’ network and thus absorbed more 

water, they also showed increasing opacity in their collapsed state as shown in Figure 3-17.  

  

Figure 3-17 - Transition in Cationic gel homogeneity.  Left to right: doses of exposure varying from A) 15 seconds, B) 30 
seconds, C) 45 seconds, D) 60 seconds and E) 75 seconds at 7.2 mW/cm2, scale bar 10 mm. 

The immersion of cationic gels into RO H2O showed the actuation potential dropping with increasing 

exposure dose, highly shrunken gels were formed at lower doses, with homogeneity retained above 

650 mJ/cm2. The gels also lost their swelling ability as a result of extended UV exposure (Figure 3-18) 

as had been seen in neutral gels (Figure 3-7). 
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Figure 3-18 - The swelling ratios of DEAEMA and 1-butanol solvent gel, as a result of changes in exposure dose under the 
MA6 mask aligner. Error bars 1 SD from (n=3) measurements. 

3.3.2.2 Rheology 

Hydrogels when operating as an actuator in their swollen state are soft, swollen and have non-linear 

mechanical properties. Traditional tensile test therefore cannot be performed, other than on fully 

dry samples. Results were limited to one sample in this short investigation due to time constraints 

and limited access. 

3.3.2.2.1 Neutral gel rheology 

Hydrated mechanical properties were found by parallel plate rheology as described in 3.2.15.2. 

Initially the operating torque was found to be in the range of 1-90 µNm for hydrogel samples which 

showed linearity at constant angular frequency ω = 10 rad/s (where frequency⁡𝑣⁡ = ⁡𝜔/2𝜋). Torque 

values above 90 µNm tore the thin gel films, strain amplitude sweep from 0.05 % to 5 % was 

performed with the lowest value 0.05 % used in subsequent tests (Figure 3-19). 

 

Figure 3-19 - Torque sweep of PEGDMA (90 % monomer concentration in EtOH with added 0.01 % TEA synergist) hydrogel 
thin film at angular frequency 10 rad/s. Storage and loss moduli corrected for the extra thickness of the sample holding 
plate. (T = 21 °C). 
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The sensitivity to loss of solvent was also apparent as both storage and loss moduli increased over 

the course of 5 minutes as solvent evaporated from the matrix (Figure 3-20). An increase in modulus 

is seen as the gel begins to dry, in agreement with tensile tests on dry specimens. This is likely due to 

the reduction of chain mobility due to the absence of the liquid interface between chains, increasing 

chain pinning. Subsequent tests were performed with RO H2O applied to the edges of the hydrogel 

disk after compression in the rheometer. 

 

Figure 3-20 - Effect of drying as seen in the storage and loss moduli of the same gel sample- PEGDMA (90 % monomer 
concentration in EtOH) at 108 mJ/cm2 exposure. (T = 21 °C) 

 

Figure 3-21 - Averaged storage and loss moduli of polymerized 90 v/v % PEGDMA films, a drop off in storage modulus is 
seen with reducing exposure dose, with an inverse relationship seen for the loss modulus (T = 21 °C, 1-100 rad/s). This was a 
short investigation, with repeat experiments were not conducted due to time constraints and limited access. 
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Looking at several doses for the most frequently used 90 % PEGDMA2 in Ethanol showed a drop in G’ 

and slight increase in G’’ near the ideal exposure dose of 55 mJ/cm2. Comparing this dose with and 

without a chain propagating agent yielded a very similar non-linear response. This is attributed to 

the relatively low conversion at this exposure dose, with the partially polymerized network showing 

more viscoelastic behaviour. 

 

Figure 3-22 - Comparison of PEGDMA 90 v/v % with (red) and without 0.01 v/v % TEA (blue) polymerization chain transfer 
agent. 

Presence of TEA increases the modulus slightly due to oxygen scavenging during polymerization and 

acting as a chain transfer agent, producing longer lengths between crosslinks and a potentially 

stronger and more elastic gel. However the relationship is still non-linear suggesting beneficial 

folding properties are maintained with the addition with such synergists. 

3.3.2.2.2 Thermoresponsive gels. 

NIPAAm based gels with MBAAm crosslinker were analysed in a temperature sweep, to identify the 

location of the formulation LCST and identify the change in mechanical properties above the LCST of 

NIPAAm. 

                                                           
2 90% PEGDMA refers to the monomer concentration, the remaining % are taken up by solvent (in this case 
ethanol) and some minute quantities of synergist and photoinitiator as specified. 
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Figure 3-23 - Changes in PNIPAAm based gel storage and loss moduli during a temperature sweep. As the gel passes the 
LCST an increase in Loss modulus is visible due to the expulsion of fluid from the gel network. Values are corrected for the 
sample holder thickness. Only one sample was tested due to time constraints. 

In Figure 3-23 distinct changes were seen to occur leading up to and immediately after the LCST, 

including a drop off of complex viscosity, similar to that predicted for determining the glass 

transition temperature of polymers and is adjacent to the LCST values seen in literature [103]. This 

LCST dependent transition is also seen in the drop of the complex (frequency dependent) viscosity 

η* (Figure 3-24) at 32 °C.  A gradual increase in damping factor can be seen to occur around 32 °C 

indicating the gel is transitioning through its LCST and ejecting water from the network3 as shown in 

Figure 3-25. The damping factor is recorded from feedback to the torsional load applied across the 

gel.  

 

                                                           
3 Ejected water refers to the free water filling the hydrogel network, which is released as the hydrophilic 
groups on the NIPAAm molecule undergo a hydrophobic transition.  
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Looking at the NIPAAm based hydrogel before and after the hydrophobic to hydrophilic transition at 

constant temperatures of 22 °C and 40 °C shows a perceivable increase in modulus and a more 

uniform incline in line with a pure gel. 

 

Figure 3-26 - A distinct difference can be seen between a hydrated cool NIPAAm gel sheet and one which has equilibrated at 
a point above the LCST. Above the LCST water is absent from the matrix, resulting in a higher modulus in the 40 °C gel. 

The result gives further evidence that PEGDMA and NIPAAm hydrogels are physical gels. In addition 

to increasing G’ and G” after the LCST, there are no observed crossover points between storage and 

loss moduli indicating that the gels do not undergo a sol-gel transition.  

3.3.2.3 Contact Angle 

Contact angle measurements were performed to investigate the hydrophilic to hydrophobic switch 

of the NIPAAm laden gels. Passing the LCST causes the surface to become more hydrophobic, it is 

the shrunken state that the surface can immobilize cells, with the swollen state causing detachment 

[70]. 
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Figure 3-27 - Contact angle image capture at A) 22 °C, and B) 40 °C PNIPAAm films. 

The transition in contact angle measurements with temperature for different thermally responsive 

gel surfaces that had been synthesised is shown in Table 3-10 and represents the availability in that 

gel of functional NIPAAm groups, although this is not as a comparative measure, as the quantity of 

NIPAAm monomer used in the synthesis of each is not equal in the pre-polymer mixture, thus 

conclusions on which is more functionalised cannot be drawn from this. The result does confirm 

temperature response in both gel recipes that had been produced, and a lack thereof in the all 

PEGDMA hydrogels. 

Table 3-10 - Contact angles on NIPAAm and PEGDMA based gels as well as hybrid with response to temperature (n=1).  

Hydrogel Temperature (°C) Contact angle (ᵒ) 

PNIPAAm-co-MBAAm 
20 40.6 

40 65.9 

PNIPAAm-co-PEGDMA 
20 36.0 

40 61.0 

 
The measurements show the hydrophobic switch is present both in both gels where NIPAAm is 

copolymerized, this behaviour is the one that leads to the contraction of the gels in response to 

elevated temperatures, as polymer-to-polymer interactions dominate above the LCST. 

3.3.2.4 Tensile tests 

Tensile tests performed on cast and dry gel specimens as these were sufficiently strong enough to 

register a measurable reading on the 2 kN load cell of the Zwick-Roell. The force-displacement 

output was converted into stress and strain by taking the cross sectional area of the samples along 

with the initial gauge length and displacement until failure. This produced a comparative analysis of 

the Young’s modulus of gels (Figure 3-28) with certain modifications, such as TEA addition (Figure 

3-29) and monomer concentration (Figure 3-30). 

A B 
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Figure 3-28- Effect of monomer concentration on two samples of PEGDMA gel under tensile load. A lower gradient for the 
50 % monomer concentration gel, shows a lower elastic modulus with a reduction in monomer concentration, possibly due 
to the reduced density of the gel network, longer distances between crosslinks and higher fluid portion resulting in less 
resistance to elastic deformation. 

 

Figure 3-29 - The addition of TEA as an oxygen scavenger and copolymer even at very low concentration shows an increased 
elasticity of the gel (blue), with samples contracting rather than breaking and eventually sliding out from the tensometer 
grips, while the sample numbers are low it is assumed to give an indication of the modifications oxygen scavengers give to 
the gel structure, with a potentially more mature network with fewer oxygen terminated connections. 
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Figure 3-30- Effect of TEA polymerization chain transfer agent on low monomer content gels shows a somewhat different 
characteristic of the oxygen scavenger. In these very soft gels the addition appears to increase the modulus, again this is 
suggested to be due to a more mature network structure, with fewer oxygen terminated connections. Signal noise due to 
load cell sensitivity. 

 

Figure 3-31 – Figure shows the effect of UV exposure dose on PEGDMA hydrogel Young's modulus, with an increase directly 
correlated to exposure dose. All samples were dried prior to testing to facilitate the ability to be gripped in the crosshead. 

Comparing the Young’s modulus of PEGDMA gels subjected to three exposure doses (Figure 3-31) 

yields the confirmation that exposure dose dictates the stiffness of the material, and produces the 

rigidity which counteracts the folding action of the bilayer swelling. The testing also highlighted the 

transition from mechanically weak to brittle  of the hydrogels with exposure dose, as the hydrogel 

network continues to crosslink chain mobility is reduced and the overall structure becomes brittle 

and loses its significant ductility obtained at the intermediate exposure doses. 

y = 294734x

y = 117224x

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

0 0.02 0.04 0.06 0.08 0.1

St
re

ss
 (

kP
a)

Strain

PEGDMA 50% monomer (108mJ/cm2 

dose) modulus with and without TEA

PEGDMA 50% + 0.1TEA 15s

PEGDMA 50% 15s

0

5

10

15

20

25

30

50 100 150 200 250 300

Yo
u

n
g'

s 
m

o
d

u
lu

s 
(M

P
a)

Exposure dose (mJ/cm2)

Dry PEGDMA 90% polymer - Young's modulus

0

50

100

150

200

250

300

350

E 
(k

P
a)



Iskandar Vasiev “3D Self-folding tissue scaffold origami”  153 

 

Figure 3-32- Figure shows the effect of exposure dose on Yield stress and elongation at failure of 90 v/v % PEGDMA 
hydrogels. There is a large shift from the softer weaker gels to a strong but brittle state, and a middle dose at which the 
network appears to have the most beneficial properties of both. 

 

3.3.3 Fourier transform infrared spectroscopy 

Fourier transform infrared spectroscopy – attenuated total reflection (FTIR-ATR) was performed on 

photolithographically defined hydrogel films and bilayers. The key functional groups and 

quantification of crosslinking density are derived from the intensity and any shift in specific 

absorption peaks. 

3.3.3.1 DEAEMA cationic gel FTIR analysis 

The FTIR spectrum of cationic DEAEMA hydrogels (shrink in elevated pH) is shown in Figure 3-33. The 

analysis was performed to confirm the presence of cationic N-H groups but also crosslinking state of 

the DEAEMA monomer. The spectrum shows a peak of acryl stretch at 1719 cm-1 is attributed to 

(C=O) absorption from the acryl group, additionally a peak at 2865-2979 cm-1 (saturated C-H 

stretching vibration). The large peak at 1103 cm-1 is in close proximity to the (C-C) stretching 

vibrations, but the large absorption is attributed to (C-N) vibrations due to the large polarity on the 

tertiary amine present in DEAEMA [203]. These gels were later used in attempted locking 

mechanisms relying on ion interaction between anionic and cationic gels, therefore making the 

pendant group presence an important confirmation prior to undertaking their integration in a 

photolithographic process. 
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Figure 3-33- FTIR spectrum of cationic gel containing N,N-diethylaminoethylmethacrylate (DEAEMA). 

3.3.3.2 NIPAAm thermoresponsive gel FTIR analysis 

Thermo-responsive NIPAAm hydrogels were analysed using FTIR to confirm the crosslinking of the 

NIPAAm monomer into the MBAAm and PEGDMA copolymer hydrogel matrix, and being responsible 

for the LCST phase transitions. The presence of NIPAAm and its polymer in these gels was compared. 

In the poly(MBAAm-co-NIPAAm) MBAAm crosslinked gels seen in Figure 3-34, there is a more typical 

amide carbonyl (C=O) vibration at 1640 cm-1 [110]. There is also more prominent (N-H) bending at 

1535 cm-1 and a sharp peak of (N-H) stretch at 3286 cm-1, in addition to the broad plateau starting at 

3400 cm-1 [203]. The overall presence of NIPAAm monomer is much higher as a solid fraction of the 

gel, so the prominence of these peaks is attributed to the higher concentration of active pendant 

groups responsible for the LCST transition in these gels. 

 

Figure 3-34- FTIR Transmittance spectrum of PNIPAAm co MBAA hydrogel when dry. 
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NIPAAm presence in the pNIPAAm-co-pEGDMA copolymer gels is confirmed in FTIR spectra shown in 

Figure 3-35. There is a main carbonyl (C=O) stretching vibration at 1717 cm-1, and barely noticeable 

amide I band stretching as a shoulder of the same peak roughly by 1680 cm-1 [203]. N–H stretching 

vibration of the NIPAAm repeat units represented as a broad plateau at 3402 cm-1, and a double 

peak of symmetric and asymmetric C–H vibration of the –CH(CH3)2 alkyl group at 1388cm-1 and 

1452cm-1 is also confirmed in accordance with literature [110, 203].  

 

Figure 3-35 - FTIR Transmittance spectrum of n-isopropylacrylamide (NIPAAm) co PEGDMA hydrogel 

3.3.3.3 FTIR analysis of PEGDMA gels produced with and without PAA lift-off 

The presence of PAA copolymer graft on the underside of PEGDMA hydrogel sheets was confirmed 

with FTIR spectroscopy by comparing lift-off layers from polyacrylicacid (PAA) sacrificial surfaces and 

clean silicon. All sheets had received the same UV exposure dose. Absorption spectra were 

considered for all PAA layers (lift-off from 100,000, 50,000, and 1800 Da sacrificial films) against a 

pure PEGDMA hydrogel film seen in Figure 3-36. The extent of polymerization is also identifiable by 

looking at C-C groups present due to the long chains of PAA in comparison with the 700 Mn PEGDMA 

bulk gel.  



Iskandar Vasiev “3D Self-folding tissue scaffold origami”  156 

 

Figure 3-36- FTIR absorbance spectrum of PAA modified and unmodified films. Blue- Unmodified,  with the Light Blue-PAA 
Mw 1800, Purple PAA Mw 50,000,  Red PAA Mw  100,000 all coinciding in the elevated trace. 

An increased absorbance at 1720 cm-1 could suggest presence of the C=C-COOH groups of PAA. No 

carboxylate peak is visible due to the gel sheet being in the flat protonated form during FTIR. A jump 

in (C-C) bending at 500 cm-1 and (C-C) stretch at 1095 cm-1 [203] is visible. This is likely corresponding 

to the significantly longer chain lengths of PAA compared to the 700 repeat unit PEGDMA, as this 

also increases with PAA Mw.  

3.3.3.4 FTIR analysis of PEGDMA polymerization with TEA synergist 

The spectrum obtained from polymerized hydrogels containing a TEA polymerization chain transfer 

agent/ oxygen scavenger is shown in Figure 3-37. An increase in crosslinking is seen by the relative 

increase in absorption for the C-C bond at 1096 cm-1 an increase is confirmed by higher absorption at 

the 520 cm-1 corresponding to C-C bending vibration. The increase is due to higher crosslink maturity 

and average chain length caused by the dual effect of TEA as a radical initiation synergist. 
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Figure 3-37- FTIR spectrum of PEGDMA hydrogels (blue) with addition of 0.25 w/w % TEA (yellow) and 1 w/v % TEA (red). 

3.3.3.5 FTIR analysis of PEGDMA Polymerisation at different UV-exposure doses 

Gels were found to have a peak shift in the C=O group from 1716.5 to 1730.1 cm-1 between 6 s and 

80 s exposure time where almost full conversion is expected as the local conditions change 

surrounding the DMA C=O bonds. A sharp increase in peak shift is seen in Figure 3-38a between a 6 

and 8 second exposure dose, with the peak starting to settle at longer exposures, this continues the 

observed trend that lightly exposed gel bilayers (6 seconds to  8 seconds at 7.2 mW/cm2) have very 

different properties from their fully crosslinked counterparts, this is in agreement with the observed 

changes in rheological properties of gels at lower exposure doses as seen in sub-section 3.3.2.2.1. 

 

Figure 3-38 - Polymerization extent with exposure dose A) W shift in C=O peak in methacrylated PEG polymer (red = 6 s, purple = 
8 s, blue = 40 s, green = 80 s). B) The shift in peak is thought to occur due to increasing crosslink density changing local 
conditions and thus harmonics of the pendant group by the proximity of local chains. 

A B 
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3.3.4 Bilayer actuation and predicted ideal conditions 

The combinational process of patterning and functionalization created very thin bilayers, tuneable in 

their folding actuation by the exposure dose, as demonstrated by increasing the modulus of the 

material, in relation to the swelling potential of the functionalized surface. The grafting or 

interpenetrating network of PAA on one side of the gel surface, results in unequal osmotic pressure 

at the two interfaces as the pH rises above its pKa value. PAA is hydrophilic resulting in less 

hydrodynamic resistance. If the PAA layer is thick enough as the pH rises it will swell and absorb 

water faster than the PEG layer to which it is bound.  Figure 3-39 shows the minimum measured 

radius of curvature of dissected hydrogel bilayer rolls as determined by SEM imaging. Rolls were 

fractured in liquid nitrogen after vacuum drying, radius is that from the roll centroid to the nearest 

internal roll edge. The variation in hydrogel bilayer curvature can be used to increase or decrease 

the central roll capillary diameter, as well as adjust the substrate stiffness for tissue culture 

applications where cell proliferation depends on substrate stiffness (Chapter 5). 

 

Figure 3-39 - PEGDMA 550 hydrogel film roll radius of curvature after scaffold lift-off from PAA 50,000 Da spun at 4000 rpm 
for 30 s and buffered at pH 7 at different UV exposure doses. Error bars = 1SD from n=5 measurements of minimum 
curvature radius in the centre of SEM cross-section of gel rolls. Reproduced  from Vasiev et al. [1]. 

Hydrogel bilayer rolling can be predicted with the Timoshenko equation. The equation stems from 

metal bilayer applications [132] but has been modified for predicting hydrogel curvature relates the 

curving tendency of the hydrogel bilayer actuator [129], where: 
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1
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And E1,E2 are Young’s modulus, h1, h2  are the layer thicknesses, t is the total thickness of the bilayer, 

and ε1,2 are the actuation strains of the two layers, and R is the radius of curvature[132]. 

A prediction of ideal conditions for folding emerges giving the required bilayer thickness ratio 

between actuating and passive layers shown in Figure 3-40. In the case of PAA-co-PEGDMA diffusion 

based hydrogel bilayers, this ratio is very small due to the slow diffusion of PAA in PEGDMA[45]. As 

the distance of diffusion could not be established by staining and optical microscopy, it is assumed 

to be under 500 nm in depth, which is the size of nanofeatures that can be achieved by PAA layer 

embossing, it is thought that if the diffusion exceeded this the feature quality would be degraded 

due to the absorption and migration of the sacrificial PAA layer into the PEGDMA resist. From the 

Timoshenko equation the optimum thickness ratio of active to passive bilayer layers is shown to be 

in the region of 1:2 irrespective of the overall difference in layer swelling and thereby strain (dε). 

 

Figure 3-40 – Effect of bilayer thickness ratio (active/passive) as well as active gel actuation ratio on relative curvature. 
Young’s modulus and base swelling kept constant (8 kPa, 0.3 ε respectively), only actuator thickness and actuation strain 
varied, resulting in most efficient curvature achieved at thickness ratio of 0.125-1, peak at 0.375. 

There is difficulty in the fitting of this model to the hydrogel films due to coupling between hydrogel 

crosslinking density, modulus and swelling ratio. This coupling means that the actuation strain is 

inversely proportional to the Young’s modulus of the material, both of which change at different 

rates depending on exposure dose. It is this reason and the additional lack of information on the 

diffusive PAA bilayer thickness distribution which means no real data comparison is made to the 

Timoshenko model. Predictions can however be made based on this model to determine the factors 

which play a dominant role in bilayer folding such as the effect of gel modulus (Figure 3-41) and total 

bilayer thickness (Figure 3-42). 
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Figure 3-41 - Effect of bilayer actuation strain differential (dstrain) on the curvature (K) and modulus relationship for an 
idealized gel bilayer at constant thickness ratio (m=8) 

 

Figure 3-42 - Effect of bilayer thickness (microns) on curvature K=1/R (µm) for bilayers of varying Young’s modulus E. 

The gel films resulting from this fabrication method possess a sensitivity to environmental pH and 

will roll when exposed to pH 7 solution. The rolling of these structures as a result of changes in 

aqueous pH is caused by a differential swelling. The swelling differential is a product of differences in 

water absorption between the PAA and PEGDMA layers due to protonation or deprotonation of the 

PAA pendant carboxyl groups when exposed to pH 7 solution. PAA is an anionic polymer at pH values 

above the polymers pKa value of 5.5-6.5 and is fully ionized at pH > 9.5 and fully de-ionized at pH 4 

[204], thus the side chains of PAA will deprotonate and acquire a negative charge resulting in rapid 

swelling and water absorption at which point hydrogen bonding interaction become dominated by 

polymer interactions with the polar aqueous environment. As PEGDMA is neutral it does not 

experience a change in swelling when exposed to pH 7 buffer.  
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The rolled sheet of 5mm square can create spiral tubes of 

varying thickness with a varied inter-sheet spacing, 

reducing further when the scaffold was dried. The rolled 

sheet can be unrolled on exposure to pH 4 buffer with 

some agitation as the layers tend to stick in acidic pH due 

to preferential polymer-to-polymer molecular interaction. 

The sheets were subsequently rolled and unrolled over 

many cycles by switching the aqueous pH from 4 to 7. 

This behaviour was still observable in sheets which had 

been stored in RO water for 7 days.  

3.4 CONCLUSIONS 

This chapter is intended to lay out the framework for producing hydrogel actuators, capable of 

assembling 2D patterned components into 3D micro containers. Initially a qualitative approach was 

used to find gel recipes that showed promise by forming well defined flexible films. During this phase 

numerous recipes were tested, with some of the most practical combinations listed in Table 3-1. 

While listing every possible recipe and combination of crosslinked monomer and initiator is equally 

impractical, the most dominant variables in gel formulation were found by a Taguchi study of 

thermorespoinsive/pH responsive PNIPAAm-co-AAc gels. This sensitivity study (Figure 3-12) showed 

that monomer, crosslinker and initiator concentration affect overall gel swelling capability the most. 

The same applies to non-actuating gels, as it is those components which create the structural 

crosslinking connections responsible for the strength and flexibility of a given gel.  

Initiators were chosen based on efficiency, determined by UV-visual spectrophotometry, and by 

their ability to dissovle in ethanol and IPA. Solubility was a factor because they had to be soluable in 

the gel pre-mixture, but also have a solvent other than water to avoid dissolving the sacrificial layer 

prematurely. Lucirin TPO was chosen as a candidate initiator in part due to its efficiency at the 365 

nm wavelength produced by the MA6 maskaligner (photolithography tool), and due to its resistence 

to oxygen inhibition. 

Structural gels were streamlined to use PEGDMA, which offered a wide variety of commercially 

available molecular weights, low protein absorption, good mechanical properties and acrylate 

chemistry suitable for crosslinking by photoinitiated free radial polymerisation. The PEGDMA gels 

were analysed by weighing, thereby determining their swelling ratios, these would give an indication 

of mesh size, and thereby gas and nutrient diffusion rates. High diffusion rates would be beneficial 

for cell surfvival, while large pores would allow the chemical microclimate to escape. It was found 

Figure 3-43 - SEM image of hydrogel film roll 
after actuation in pH7 buffer and drying at room 
temperature. 
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that PEGDMA gels with a monomer concentration of 80-90 % should have a mesh size of under 10 

nm (Figure 3-8), providing a good compromise between permeability and patternability of the gel. 

Significant amounts of time went into trying to make thermoresponsive bilayers work, these were 

intended to use NIPAAm monomer with various copolymers. The gels were analysed by rheology, 

contact angle and swelling ratios to determine their transition temperature, where the gel begins to 

collapse and expel free water. While gels could be produced which were photopatternable and 

thermoresponsive, we were unable to produce a thin film of this gel, and producing a functioning 

bilayer was only possible at cumulitive thicknesses near 200 µm. These surfaces remain useful and 

could be used within the scaffold or as a grafted layer on the surface (polymer brushes) to selectively 

attach and detach cells as seen in Tsuda et al [70] 

A sucessful gel-bilayer was obtained in the form of a pH responsive thin film of PEGDMA-co-PAA, 

produced by photolithographically patterning PEGDMA gels on a PAA sacrificial layer. It is proposed 

by this author that partial diffusion of the PAA chains into the gel above, and diffusion of initiators 

into the PAA layer below result in a tethering and partial crosslinking of this polyacid to the PEGDMA 

chains. This diffusion should be short in time scale and may extend to the top surface of the gel. It is 

therefore likely a resulting gradient of polymerisation formed during short exposures which creates 

a gradient of swelling ability through the gel thickness. This bilayer formation resulting in pH 

responsive thin films which roll on exposure to elevated pH (above pKa of PAA) as seen in Figure 

2-37. The presence of PAA pendant groups were confimed by FTIR-ATR (Figure 3-38) with an 

increase in peaks corresponding to the PAA chain backbone when the PAA molecule Mw was 

increased, slight increases in carboxylic O-H bending was also observed, while FTIR could confirm the 

presence of certain groups (within reason) the thickness of the diffuse PAA layer could not be 

determined by this or by optical methods. 

Tensile tests performed on on thin hydrogel tensile specimens produced by solvent casting into a 

laser cut PDMS mould, were used to determine optimum formulations for improving the robustness 

and mechanical properties of these PEGDMA bilayers. One key issue was thought to be oxygen, as 

much of the patterning procedure resulted in the gel thin spun film being exposed to atmosphere. In 

order to scavenge the dissolved oxygen in the resist layer, TEA (an oxygen scavenger) was added to 

the solution, this markedly improved the toughness of the gels thought to be due to an improved 

chain completion rate, by reducing the number of chains ending disconected by oxygen termination. 

The addition of TEA leads to an increase in crosslinking extent (Figure 3-29), with the gel eventually 

becoming more brittle, but undergoing a favourable toughening and improved strain at break at 

lower concentrations of added TEA synergist.   
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The optiumum exposure dose for actuation was found to be 8 s or 57.6 mJ/cm2, values below this 

yielded sticky films which were too soft to retain shape, crosslinking density increased, but at 

intermediate values facilitated suitable curvature rates for use as hydrogel hinges discussed further 

in Chapter 4. 

It was estimated from a modified Timoshenko equation for a bilayer folding mechanism shown in 

Figure 3-40, that peak folding potential would be obtained when the active layer constitutes 1/3rd of 

the overal gel sheet thickness, irrespective of the modulus of the overall film. Because the gels 

change constantly during exposure, parameters were not controllable to the extent where this 

model could be validated, it is used rather as an indicator of the ideal film folding conditions. 

Additionally cationic gels were trialled, and were thought to be a means of locking containers by 

attaching ionic and cationic gels to one another, these gels could be patterned in structurally intact 

blocks, but the logistics of integrating them into a 3D container, and as a photolithographic stage 

proved to be difficult. The details of this are discussed in Chapter 4. 
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4 DESIGN AND MANUFACTURE OF 3D STRUCTURES 

4.1 INTRODUCTION 

This chapter covers my attempts made to combine hydrogel synthesis with micro- and nanoscale 

manufacture. The established and novel 2D patterning methods outlined in Chapter 2 where epoxy 

and polymeric films were patterned by NIL and UV-NIL and combined with gel chemistry from 

Chapter 3. The end result is nanopatterned micro features linked together by photolithographically 

defined hydrogel hinges, which fold these layers up into 3D structures, thereby creating 

nanopatterned, self-folding niches. While any cell work and demonstration thereof is in Chapter 5 

the resulting containers are really the culmination of this work, and where the title “cell origami” 

ultimately originates.  

Many 3D containers exist in literature such as those created by the Gracias group at Johns Hopkins 

University [23, 24, 27], who are leaders in the field of self-assembly, and many others [22, 124, 126, 

128-130]. However, they are yet to demonstrate nanoscale patternability and actuation methods 

which are compatible with cell culture. Quite often thermo-responsive hinges will work by swelling 

in cool conditions, these then while possibly suitable for yeast culture cannot be used with cells, at 

least not in the longer term. Others which are pH responsive require high ionic concentrations or 

highly elevated pH [71]. 

This work rather than focusing on the maximum folding potential of these gel hinges, focus on their 

geometric arrangement and utilization at cell friendly pH neutral conditions. It is a primary objective 

for these devices to close in milder pH conditions such as cell culture media, and one means of doing 

this is to lengthen the hinge size, and use the more conservative folding at lower ionic 

concentrations and less extreme pH to best utilise the minute degrees of curvature available, thus 

producing a folded structure.  

Optimum folding geometries using platonic polyhedral will be manufactured, to find a best balance 

of hinge number, and hinge folding angle necessary to fold the structure. The number of faces 

ultimately leads to uncertainty, with more potential areas to fail, however by increasing the number 

of faces, the overall radius of curvature at each hinge decreases. The design of hinge arrangements 

that has been opted for follows the idea that “less is more” with the most simple constructions 

expected to cause the least issues in assembly, this is in agreement for the optimum folding 

geometries found by Pandey et al. [26], where containers that have a central axis of symmetry are 

expected to be optimal at folding into 3D structures. 
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In addition to folding, one aspect which is novel in this work is the incorporation of nanopatterns to 

the folded container faces, such as those seen in Chapter 2. This is something which to the author’s 

knowledge has not previously been done, and certainly has not been combined with self-folding 

hydrogel hinges. Nanopatterns used for contact guidance, to aid cell proliferation as shown by 

Seunarine et al. [148], and potentially stem cell differentiation, as shown to be the case with MSCs in  

Dalby et al. [39], will be incorporated into the structures with the ambition of using these to 

topographically control cell behaviour in a specifically tailored 3D environment. NIL and UV-NIL 

techniques will be utilised to create nanopatterned surfaces in commercially used photoresists such 

as SU8 and a number of potentially useful thermoplastic films of polymethylmethacrylate (PMMA), 

polycaprolactone (PCL) and poly-l-lactide (PLLA), these materials are selected due to their 

biocompatibility [56] and in the case of PMMA for its known use in nanotechnology manufacturing 

as an electron beam resist. These polymers (with exception of PCL which can be semi-crystalline) are 

amorphous thermoplastics and should retain their imprinted shape and pattern on solidification and 

result in less residual stress after forming. 

Nanopatterned stamps, and replica stamps reproduced in PDMS and FEP will be utilised as detailed 

in Chapter 2, to imprint these polymeric surfaces in between subsequent, photopatterning, etching 

and development steps to produce nanopatterned containers, to be folded by defined hydrogel 

hinges. The PAA sacrificial films will be used as detailed in Chapters 2 and 3, to aid in the lift-off of 

final devices prior to actuation, as this would involve much more toxic chemicals, and more 

laborious processes if these sacrificial films are to be done without [190]. It is also an amorphous 

thermoplastic and retains its imprinted shape as it cools after imprinting. This chapter will outline 

the difficulties encountered in the combination of these two streams of work, primarily in material-

material interactions, incompatibility of processes and solvents, and various artefacts of the 

manufacturing process. 

Novel methods of etching and fixating containers to the solid substrate underneath the sacrificial 

film will also be discussed, as these would allow the containers to be localised to a precise point and 

potentially be used in lab-on-a-chip type applications, where an array could be produced that had 

specific patterns and stimuli in a traceable location. I will aim to demonstrate successfully actuating 

containers, and several design aspects found during this work which aid the manufacture and 

application of nanopatterned self-folding 3D cellular niches. 

4.2 MATERIALS AND METHODS 

In this chapter methods of combining previously covered surface nanopatterning with the swelling 

nature of hydrogels to create self-folding 3D architectures were used. The manufacturing, triggering 
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and release mechanisms for creating these 3D self-folding micro scaffolds will be covered. This 

section of the work is a pilot study into various fabrication techniques, device usability and 

compatibility with cell culture techniques. 

4.2.1 Materials 

SU8 Negative Epoxy Series Resists (SU8 – 3005, 3010 and 3050) were obtained from Micro Chem and 

used as received. Shippley microposit S1818 was obtained from the manufacturer and used as 

received. Polyacrylic acid (PAA) (1800, 15000 (neutralized), 50000 and 100000 Da) were obtained 

from Sigma Aldrich and Polysciences (50000 Da) respectively. Polymethylemethacrylate (PMMA)  

84,000 Da was received from DuPont (Elvacitate 2010) and diluted in o-xylene (8 % and 2.5 %). Poly-

l-lactic acid (PLLA) PURASORB PL 18 (1.8 dl/g) was obtained from Corbion-Purac and washed twice 

with heptane, before oven drying and full dissolution in chloroform at 7.5 w/v %. PCL 65,000 Da was 

also dissolved in chloroform obtained from Sigma-Aldrich. All solvents and developers (acetone, 

methanol, acetone, ethyl lactate (EC-SOLVENT), tetramethylammonium hydroxide 2.2 % Aq. (MF 

319), N-methyl-2-pyrrolidone (NMP) were obtained from Farnell and used as received.  

4.2.2 Software 

4.2.2.1 Mask design 

Photomasks for producing the containers were designed using Corel Draw X3 and ordered and 

obtained from Microlithography services Ltd as acetate masks, which were subsequently transferred 

to Glass be photolithography and Ni-Cr evaporation, this process is outlined in Chapters 2 and 3. 

4.2.2.2 Computer aided modelling. 

Models of diffusion in closed containers was done using COMSOL Multiphysics V4.2, and the results 

of this are shown in Appendix A. 

4.2.3 Methods 

4.2.3.1 Photolithography 

Photolithography was done using a SÜSS MA6 mask aligner photolithographic system at 365 nm and 

350 W lamp. An array of nickel-chrome (NiCr) masks on glass, quartz and acetate flexible masks were 

used (Chapter 3). 

4.2.3.2 Nanoimprint Lithography 

Nano imprint lithography was performed in an Obducat NIL 2.5 Nanoimprinter. Section 4.2.3.5 

provides the details, and Chapter 2 gives a full overview of the process. 



Iskandar Vasiev “3D Self-folding tissue scaffold origami”  167 

4.2.3.3 Metal deposition 

Sputtering of gold, titanium and palladium coatings was done in a Plassys MEB 550S Electron Beam 

Evaporator. A crucible of the desired metal was sputtered in a vacuum at the sample target on a 

rotating stage to produce a uniform film.  

4.2.3.4 Surface metrology 

Depth measurements were obtained by scanning profilometry on a Veeco Dektak 6M Height 

Profiler, for smaller features, and patterned surface profiles were scanned using an atomic force 

microscope (AFM), in tapping mode with a silicon nitride tip. Samples were placed with pattern 

facing upwards, in scanning profilometry, a tip was drawn across the surface recording irregularities 

in surface height, detected by a laser reflecting on the stylus cantilever arm, resulting in timing shifts 

in this reflection as the stylus traversed up and down. The AFM was used in scanning mode, with a 

conical cantilever tip, operating in a similar manner, however it instead taps out the surface at a pre-

set frequency, with any attenuation recorded by a laser reflected from the cantilever tip. The 

reflected laser beam strikes a photo-detector consisting of four-segment array. The differences 

between the signals indicate the position of the laser spot on the detector and thus the angular 

deflections of the cantilever scanning the surface. 

4.2.3.5 Nanoimprint lithography (NIL) 

Devices were constructed in layers by standard MEMS processes. The layers started with lift-off 

layer, boundary layer, solid surface layer and finally a hydrogel actuator film, although a case is 

discussed where this was performed in reverse order with hydrogel applied first, the pitfalls of this 

method are discussed in Section 4.4.5. 

4.2.3.6 Sacrificial film application 

PAA sacrificial layers were created by spinning solutions of varying Mw (1800, 50000, and 100000) at 

different dissolutions (63 %, 25 % and 25 % in H2O, respectively). The sacrificial films were embossed 

by the use of a PDMS, FEP or qz stamp at 105 °C. (Details of the manufacture of PDMS, FEP and qz 

stamps, as well as PAA spin thickness are given in Chapter 3). The process of transferring 

nanopatterns into sacrificial PAA films is shown in Figure 4-1.  
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The process chain for nanopattern transfer by embossing in the Obducat NIL tool is as follows: 

1. Pre-heat step: 100 °C preheat ramp over 2 minute duration at 3 bar. 

2. Imprint step: 15 bar at 110 °C for a 6 minute duration. 

3. Cool down step: Maintained pressure of 15 bar until temperature drops to 60 °C  

4.2.3.7 SU8 structures 

SU8 features were applied by spinning onto a 500 µm thick silicon wafer or glass slide pre-coated 

with a PAA layer as described previously. Subsequently two methods existed for patterning the film, 

either a post exposure emboss instead of post bake, which created features in the SU8 surface, or 

the modular mastering approach outlined in Chapter 3 using FEP masters in both cases. 

Two thinner spinning SU8 resists were used the SU8 3005 series and SU8 3010 series due to lack of 

supply and short expiration time of the resist. 

Table 4-1 – Photolithographic processes for two low thickness SU8 formulations, the 3005 and 3010 series resists. The 10 is 
a more viscous formulation of the 3005, and spins a thicker film. Both resists were used as received. 

Resist: SU8 3005 SU8 3010 

Thickness 5 µm (3000 rpm) 5.5 µm (6000 rpm) 

Soft bake 2 minutes at 95 °C 3 minutes at 95 °C 

Exposure dose 24s on Glass and Au 

15s on uncoated Si 

30s on Glass and Au 

21s on uncoated Si 

Post bake (Thermal NIL) Stage 1: 1min at 65 °C  

Stage 2: 2minutes at 95 °C 

Stage 1: 1min at 65 °C 

Stage 2: 3 minutes at 95 °C 

Development 3 min 3.5 min 

0

20

40

60

80

100

120

0

5

10

15

20

0 2 4 6 8 10

Te
m

p
ar

at
u

re
 (
◦с

)

P
re

ss
u

re
 (

B
ar

)

Time (Minutes)

P

T

Figure 4-1 – A) Obducat nano-imprint lithography (NIL) tool, and B) the imprinting routine for PAA patterning. Colour 
spectrum line shows heating cycle, blue line illustrates the variation of pressure through the imprinting cycle. 
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4.2.3.8 Boundary layer films 

SU8 was found to require a boundary layer film applied in either gold or PMMA. Gold was sputtered 

to a depth of 50 nm prior to SU8 Spinning. This was etched after SU8 development with a 4:1 

potassium iodide and Iodine solution in IPA:MeOH (50:50). PMMA was applied by spinning at 5000 

rpm for 60 seconds of a 2.5 % solution of 84,000 Da PMMA in o-xylene followed by a 30 second bake 

at 95 °C. The films were developed by the same ethyl lactate developer used for SU8. Samples were 

ashed after normal SU8 development to remove any PMMA film remaining, this method is 

considerably cheaper, but the gold boundary layer stays on the containers after lift-off, which has 

merits in terms of surface chemistry and the possibility of integrating circuitry. 

4.2.3.9 PLLA application and patterning. 

PLLA was spun onto the sacrificial film from chloroform, a solvent with which PAA does not react 

[205]. The spun film PLLA film was covered in a layer of S1818 in which the photo-patterns were 

defined, and the subsequent layer was ashed in O2 Plasma for up to 20 minutes to define the 

necessary microfeatures. O2 ashing unlike wet or dry etching is a relatively slow process preventing 

the PAA film underneath from getting damaged by more caustic etchants. Patterning was performed 

in a similar fashion just above the PLLA melting temperature of 160 °C and 15 bar [206]. 

4.2.3.10 Hydrogel hinge application. 

Thin films of hydrogel could be spun onto substrates in the case of PEGDMA and PEGDA 

preparations (Chapter 2) NIPAAm and DEAEMA formulations showed issues with crystallization due 

to solvent evaporation, unless dissolved in PEGDMA. There was some substrate dissolution due to a 

small concentration of water present in the PAAc and AAc solutions (including HEMA-co-AAc). 

Hinges would operate on the principle covered in Chapter 1 and illustrated in Figure 4-2.  
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Figure 4-2 - Illustration of ionic hydrogel bilayer swelling in elevated pH, resulting in film rolling by an uneven swelling 
differential between top and bottom surfaces. Reproduced from Vasiev et al. [1]. 

The issue with spinning is the difficulty it poses for repeatability due to waiting time between spin 

and exposure, as well as causing oxygen diffusion problems, solvent evaporation problems and 

issues with substrate dissolution. It also makes it difficult to perform proper mask alignment, as the 

mask spears the solution after making working distance contact measurements. It was therefore 

replaced with a solvent solution applied by pipette at 25 µl per square cm of substrate, allowing a 

film of roughly 250 µm in height before hard contact mode, which was allowed to further displace 

the fluid for 5 seconds prior to exposure. The SU8 features act as a limiting spacer in the gel 

thickness, which would have to be at least higher than the existing features on the substrate. Initially 

the mask aligner base was coated with a sticky vinyl wrap film to cover the vacuum ports and 

prevent the hydrogel solution from fouling the machine. Secondly a carbon cement tab used for SEM 

sample adhesion was placed in the middle of the vinyl film on the sample holder chuck, and the 

sample was placed on top, to hold it during alignment. Once applied to the cement tab, alignment 

was performed as usual, with the drop of hydrogel applied prior to exposure during an unload cycle, 

carefully without shifting sample position. A second quick adjustment was performed just before 

exposure to check the feature positions. 

4.2.3.11 TPM modification for hydrogel anchoring 

For permanent hydrogel bonding to glass or silicon surfaces, a methacrylated monomer based 

coating of 3-(trimethoxydsilyl)propyl methactylate (TPM) was utilized. The coating can be applied to 

surfaces containing silicon (Si) atoms at their surface. Two methods of applying this coating were 

used. 
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Figure 4-3 - Illustration of hydrogel anchoring to methacrylate groups of TPM coated surface. Attachment works for acrylic 
monomers and polymers, and can be used to semi-permanently bond the hydrogel photopatterns or structures to a glass 
slide or silicon wafer. 

4.2.3.12 Liquid application of TPM  

In the first process, silicon or glass substrates were treated for 5 min, at room temperature, in a 1 

mM heptane solution of TPM, followed by washing with heptane, acetone, methanol, IPA and water 

each for 3 minutes in that order. The surface showed a hydrophobic tendency after the coating had 

been applied.  

4.2.3.13 TPM deposition by evaporation. 

Substrates (glass or silicon) were first ashed in O2 plasma for 3 minutes at 80 W. They were then 

placed in an inert N2 atmosphere (a glass petri dish with glass cover plate) with a drop of TPM (liquid, 

as obtained) applied to opposite corners of the volume. The sealed and inert container containing 

the samples was then placed on a hotplate at 150 °C for 15 minutes. After this time the volume was 

flushed with nitrogen and allowed to cool, a drop test with RO water would show a hydrophobic 

surface if the coating had been successfully applied. 
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4.3 DESIGN OF CONTAINERS 

4.3.1 Hinge design 

Hinges were designed using the hydrogel formulations available for the sacrificial layer technique, as 

this was quick to manufacture, thin and tested for photolithographic manufacture. Initially the hinge 

actuating radius was checked for thickness effects, with gels spun to different film thicknesses and 

exposed to two of the most promising energy levels, to test/measure the radius of curvature. This 

added to the previous knowledge that curvature of PEGDMA-co-PAA bilayer film depends on the 

exposure dose (Chapter 3) due to increasing modulus. The thickness of these gels can be further 

controlled to augment folding potential as shown by the spin thickness curve in Figure 4-4. 

 

Figure 4-4 - PEGDMA plot of thickness against spin speed for 90 % PEGDMA in EtOH resist. Spin durations: 10s. Layers were 
exposed in proximity mode with 25 µm Teflon spacer between mask and gel surface. Thickness measured by profilometry on 
developed gels after development in IPA, while the gels were still adhered to the glass surface. Error bars: 1SD from 3 
measurements.  

The resulting thickness has an effect on hinge actuation, complying with the assumptions of 

Timoshenko equation, as the thickness reduces the bilayer proportion of active and passive layer 

thickness reaches closer to the key folding at thickness ratios at approximately 0.5, as the diffusive 

layer of PAA is very low, and thinning of the overall PEGDMA film increases its overall proportion in 

the bilayer film. Thickness was measured by profilometry of the developed gels prior to lift-off, with 

the resulting curl radius for a given layer thickness shown in Figure 4-5. 
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 Figure 4-5  - Gel thickness and radius of curvature for PEGDMA hydrogel films with grafted PAA from the lift off layer. 
Thickness was measured by profilometry immediately after development of hydrogel squares. Radius of curvature was 
measured from minimum cross-sectional diameter in optical microscopy images. Two exposure doses of 8s and 6s at 
7.2mW/cm2. Gel thickness modified by spin speed. Error bars: 1SD from 3 measurements of each representative sample. 

Breaking apart an idealised arc created by each hydrogel roll to suggests that the diameter of the 

polyhedral was well within reach for gels under 10 µm in thickness, at which point it was predicted 

that the roll curvature radius will exceed the 1 mm threshold for micro container diameter set at the 

beginning of the project to allow them to be transported through a syringe needle.  This was 

produced mainly in the 6-8 second exposure time (43.2-57.6 mJ/cm2), above this little actuation was 

visible. The first stage in implementing a design which would work was finding a hinge size which 

provides sufficient curvature to mate adjoining faces on the polyhedral containers. Geometric 

constraints for various polyhedrons dictate the hinge dimensions, as the inter-face angle varies 

between geometries. 
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Figure 4-6- Possible uses of hydrogels as hinges in folding solid structure. Solid material is indicated in this case as the 
photo-crosslinkable epoxy SU8. Version 1) a thermally constricting gel based on PEGDMA-Co-PNIPAAm with a PAA 
activated base. 2) A similar design but with elongated thermal ‘pulling’ actuator to give it more actuating leverage. 3) 
PEGDMA hinge with PAA activated base, and 4) Double hinge design where two layers of gel are separated by a rigid block. 

4.3.2 Box design 

The various 3D devices and manufacturing methods in this work can be broken down into several 

subsets, depending on their level of manufacturing complexity, robustness and characteristics which 

can be incorporated within them. The use of hybrid construction where the function of each 

component is modular, i.e. hydrogel hinges for folding and solid elements for patterning and cell 

interaction, offer an advantage because each aspect can be changed without necessarily impacting 

the quality of the others. The use of more complex structures also offers a larger toolset for possible 

material and pattern selection. During the course of this work the apparent advantages and 

disadvantages of each method of construction, application and versatility of the various devices will 

be outlined. The breakdown of design criteria is shown in Figure 4-7. 

 

Figure 4-7 - Radial plot of various container designs, shows the effect of falling versatility and complexity with rising 
robustness, or the susceptibility of a structure to fail when in use.  
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The various container designs are shown in Figure 4-8 moving from most to least ‘complex’ in terms 

of the relative ease with which they can be manufactured. The hinge sizes were estimated from the 

roll curvature for hydrogel rolls made in the previous chapter. A hinge width for the desired radius of 

curvature is shown in Section 4.3.2.1 along with the angle of actuation. Those highlighted in red show 

hinge sizes which qualify for the desired geometry. The Idea was to separate them into two beneficial 

streams, the dodecahedral boxes utilized a smaller radius of curvature to achieve the desired angle of 

bend between adjacent faces. The radius of curvature required from the dodecahedron gel hinges was 

significantly lower than would be the case for simpler geometries such as triangular tetrahedrons, 

which would have wasted internal area on hinge and adhesive overlap space. In terms of robustness 

the tetrahedrons were ideal because they contained only 3 moving hinges making alignment 

potentially easier with less components to fail.  

A lotus multi petal design was finally implemented allowing control over the number of faces, the 

folding angle and more importantly symmetry which was lacking in the dodecahedrons, while 

retaining the low curling angle required for closure by having many dissections through the shape of 

an ideal sphere. 

4.3.2.1  Shape and hinge optimization 

The required hinge curvature that would work for given polyhedron shapes was found analytically 

from roll curvatures in the previous chapter (Figure 3-39), the swollen radius was later confirmed 

with optically measured actuated rolls. The triangular, square and pentagonal polyhedral conditions 

are shown in this subsection with the optimum condition outlined for each. An arc angle of 360˚ 

indicates a full roll, with arc angles greater than this indicating a rolling up or coiling of the hinge. 

Coiling is however not necessary and it is the more minute actuation arc angles that are of interest. 

 

 

 

A B C 

Figure 4-8 - Various container designs, left to right: 'Lotus' multi-symmetry containers, 'Dodecahedron' type containers 
and finally hydrogel rolls, showing square windows for cell movement and oxygen permeability. Scale bars: 500µm. 
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4.3.2.1.1 Triangular Polyhedron required angle between faces = 120°  

 

 

 

 

  

The optimum hinge dimensions for the triangular polyhedron are shown in Table 4-2, with the 

dimensions of the hinge affecting triangle spacing in Layer 1 and the hinge thickness in layer 2b. In 

the case of the overlapping hydrogel layer, this would be adjusted for an increased triangle spacing. 

Table 4-2- . Ideal hinge dimensions for triangular polyhedron, red indicates the ideal hinge angles, with yellow being 
acceptable in the case of some extra adhesive force before closing the faces.  

 

 

 Hinge radius of curvature (µm) 

Hinge Length (µm) 30 45 70 150 360 

50 95.49 63.66 40.93 19.10 7.96 

60 114.59 76.39 49.11 22.92 9.55 

70 133.69 89.13 57.30 26.74 11.14 

80 152.79 101.86 65.48 30.56 12.73 

90 171.89 114.59 73.67 34.38 14.32 

100 190.99 127.32 81.85 38.20 15.92 

110 210.08 140.06 90.04 42.02 17.51 

120 229.18 152.79 98.22 45.84 19.10 

130 248.28 165.52 106.41 49.66 20.69 

140 267.38 178.25 114.59 53.48 22.28 

150 286.48 190.99 122.78 57.30 23.87 

160 305.58 203.72 130.96 61.12 25.46 

170 324.68 216.45 139.15 64.94 27.06 

180 343.77 229.18 147.33 68.75 28.65 

190 362.87 241.92 155.52 72.57 30.24 

200 381.97 254.65 163.70 76.39 31.83 

210 401.07 267.38 171.89 80.21 33.42 

220 420.17 280.11 180.07 84.03 35.01 

230 439.27 292.85 188.26 87.85 36.61 

240 458.37 305.58 196.44 91.67 38.20 

250 477.46 318.31 204.63 95.49 39.79 

Figure 4-9 - Triangular polyhedron mask design stack. (A) The SU8 solid elements comprising the faces of the finished 
structure, which are non-flexible. (B) A potential all over coating with hydrogel for improved SU8/ hydrogel interface 
and bonding strength. (C) The lighter hydrogel hinge alternative. 
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As the closure of the container depends on the hinges displacing the solid faces through a sufficient 

fold angle, Figure 4-10 illustrates the ideal fold angle of curvature and possible hinge dimensions to 

achieve the necessary angle for a closed container configuration. 60 -90 µm were found to be the 

range of possible hinge size attainable with the current hinge material. Overexposure of the film and 

subsequently larger radii of curvature would mean a box that failed to close fully. 
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Figure 4-10 Hinge dimensions - triangular polyhedral container. Plots indicate the expected hinge angle of hydrogel hinges 
given a set hinge size and radius of curvature (Chapter 3). 360 degree arc angle indicates full rolling (tube). 
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4.3.2.1.2 Square Polyhedron required angle between faces = 90° 

The square container was thought to be structurally unstable due to the relatively large folding 

angles and parallel faces which would be easy to topple in shear. A mask for this box set was thus 

never attempted, but potential hinge designs were manufactured and are shown in  and Figure 4-11. 

Plotting ideal hinge angle shows the possible choices, with 50 µm being the smallest possible size of 

hinge to attain a closed cube container. 

Table 4-3 – Ideal hinge dimensions for box polyhedron. Red indicates the ideal hinge angle, with yellow being acceptable in 
the case of some extra adhesive force then closing the faces. 

 

 

 

 

 

 

 Hinge radius of curvature (µm) 

Hinge length (µm) R=30 45 70 150 360 

50 95.49 63.66 40.93 19.10 7.96 

60 114.59 76.39 49.11 22.92 9.55 

70 133.69 89.13 57.30 26.74 11.14 

80 152.79 101.86 65.48 30.56 12.73 

90 171.89 114.59 73.67 34.38 14.32 

100 190.99 127.32 81.85 38.20 15.92 

110 210.08 140.06 90.04 42.02 17.51 

120 229.18 152.79 98.22 45.84 19.10 

130 248.28 165.52 106.41 49.66 20.69 

140 267.38 178.25 114.59 53.48 22.28 

150 286.48 190.99 122.78 57.30 23.87 

160 305.58 203.72 130.96 61.12 25.46 

170 324.68 216.45 139.15 64.94 27.06 

180 343.77 229.18 147.33 68.75 28.65 

190 362.87 241.92 155.52 72.57 30.24 

200 381.97 254.65 163.70 76.39 31.83 

210 401.07 267.38 171.89 80.21 33.42 

220 420.17 280.11 180.07 84.03 35.01 

230 439.27 292.85 188.26 87.85 36.61 

240 458.37 305.58 196.44 91.67 38.20 

250 477.46 318.31 204.63 95.49 39.79 
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While the square polyhedron lies between the triangular polyhedron and the dodecahedron in terms 

of complexity, it has an asymmetric folding profile, having 6 sides, the sixth is always affixed to one 

of the other faces, which says that if each hinge has the same folding potential, one of the four walls 

will have a 100 % increase in surface area, this imbalance suggests a potential cause for error. The 

triangular polyhedron pyramid meanwhile has three symmetric faces which move from the base, 

however the angle of curvature required by the triangular polyhedron is significantly higher and 

would mean it has to have a longer hinge length, wasting cell adhesive space. The optimum hinge 

dimensions for these pentagonal polyhedrons are shown in Table 4-4. 
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Figure 4-11 - Hinge dimensions - box polyhedral container. Plots indicate the expected hinge angle of hydrogel hinges given 
a set hinge size and radius of curvature (Chapter 3). 360 degree arc angle indicates full rolling (tube). 
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4.3.2.1.3 Pentagonal Polyhedron required angle between faces = 72° 

 

Figure 4-12 - Mask design of a single pentagonal polyhedron container. The container involves two stages, the creation of 
rigid elements with the first mask (left) and the addition of slightly overlapping hinges (right) for better adhesion. This is 
fabricated on asacrificial PAA film for lift-off. 

 

Table 4-4 – Ideal dimensions for pentagonal polyhedron Red indicates the ideal hinge angle, with yellow being acceptable in 
the case of some extra adhesive force then closing the faces 

 

 

 

 

 Hinge radius of curvature (µm) 

Hinge length (µm) R= 30 45 70 150 360 

50 95.49 

 

63.66 40.93 19.10 7.96 

60 114.59 76.39 49.11 22.92 9.55 

70 133.69 89.13 57.30 26.74 11.14 

80 152.79 101.86 65.48 30.56 12.73 

90 171.89 114.59 73.67 34.38 14.32 

100 190.99 127.32 81.85 38.20 15.92 

110 210.08 140.06 90.04 42.02 17.51 

120 229.18 152.79 98.22 45.84 19.10 

130 248.28 165.52 106.41 49.66 20.69 

140 267.38 178.25 114.59 53.48 22.28 

150 286.48 190.99 122.78 57.30 23.87 

160 305.58 203.72 130.96 61.12 25.46 

170 324.68 216.45 139.15 64.94 27.06 

180 343.77 229.18 147.33 68.75 28.65 

190 362.87 241.92 155.52 72.57 30.24 

200 381.97 254.65 163.70 76.39 31.83 

210 401.07 267.38 171.89 80.21 33.42 

220 420.17 280.11 180.07 84.03 35.01 

230 439.27 292.85 188.26 87.85 36.61 

240 458.37 305.58 196.44 91.67 38.20 

250 477.46 318.31 204.63 95.49 39.79 
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In this extrapolation of useful area and low angle of folding necessary to attain a fully closed 

container: the dodecahedron requires the least actuating hinge curvature to fold and has two 

symmetric hemispheres which then rely on a single hinge as a source of symmetry, while also prone 

to failure due to an imbalance of loads, it is thought that this could be designed around by placing a 

longer and stronger hinge between the two domes if it were an issue. Plotting the hinge angles 

shows a hinge size of 40 µm can be used. A range of hinge sizes were created on one mask to 

investigate the optimum hinge dimensions for device closure. 
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Figure 4-13 - Ideal hinge dimensions for pentagonal polyhedron. Plots indicate the expected hinge angle of hydrogel 
hinges given a set hinge size and radius of curvature (Chapter 3). 360 degree arc angle indicates full rolling (tube). 

 



Iskandar Vasiev “3D Self-folding tissue scaffold origami”  182 

 

 

 

 

 

 

 

 

 

 

 

 

 

In addition to the classic polyhedral shapes a more symmetric flower or ‘lotus’ design was made, 

where the design is symmetric around one central point, and the subsequent faces are arranged in a 

flower like arrangement, curling up toward the central axis. The idea was to maximize symmetry to 

produce evenly distributed loads between adjacent faces. These loads limit over closure, where one 

face is obstructing the others from closing, and in these symmetric system faces limit their 

neighbours. 
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Figure 4-15 - Left to right: two smaller container sizes with two hinge widths of 20 and 40 µm. Far right: largest container 
with hinge dimension of 80 µm. 

Figure 4-14 - Pentagonal polyhedrons in their two stages with the 
design incorporating three hinge thicknesses of (left to right) 20 µm, 
40 µm and 60 µm respectively. Several box dimensions were also 
designed, ranging from 200 µm faces up to 600 µm to cover 
possible future applications. 
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4.3.2.2 Lotus polyhedral containers 

To combine the benefits of the dodecahedron, and the triangular prism, a ‘lotus’ shaped container 

design was made (Figure 4-16), which uses the symmetry of the triangular prism, but also the 

increased number of facets of the dodecahedron to reduce the required angle of curvature at each 

hinge. These ‘lotus’ style boxes have equidistant hinges and less critical dependents for each hinge, 

so the box can come together as planned even if one branch folds before the others. 

 

Figure 4-16 - New ‘lotus’ containers with varying hinge numbers, both have six folding surfaces but one consists of the 
decagonal arrangement with 5 hinges per extremity while on the right is an octagonal arrangement with four hinges per 
extremity. The decagonal arrangement benefits from lower required hinge angles, while the octagonal structure benefits 
from fewer hinges and thus fewer things to fail should an alignment or exposure deviate from that required. 

The design of these containers was based on selection of the number of petals to dissect a sphere 

with, and also to choose the correct number of hinges to produce the curvature of each petal. In the 

end the minimal arrangement of 6 petals and 4 hinges was chosen to increase the overall surface 

area of the box, improve circularity and limit the number of hinges which potentially could go wrong 

compared to the 8 petal, 5 hinge designs (Table 4-5). 
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Table 4-5 - Petal chord widths for a 1mm diameter “lotus” container, allowing the  selection of the number and 
arrangement of petals to optimize the folding of these containers into a sphere of relevant size. 

  

Calculation of the petal sizes was done using Excel, and the required face widths and heights for 

boxes of 1 mm, 500 µm and 300 µm are shown in Figure 4-17 and Figure 4-18 respectively. The 

shape refers to the number of hinges present in one curvature. Whether a sphere is cut as a 

hexagon, octagon or decagon will dictate the number of hinges, being 6, 8 and 10 respectively. While 

having the minimum moving hinges reduces the risk of the box not closing correctly, having more 

requires a smaller angle of curl, and makes the box less sensitive to hinge exposure dose and 

variations in thickness. A 1 mm diameter box was chosen in this table as this is the maximum size of 

box to fit into a large diameter syringe needle (under Gauge 17). 

Petals number: 5 6 8 

Hinge lengths in Hexagonal cross-section (numbered from center) 

Hinge 1 length (µm): 293.89 250 191.34 

Hinge 2 length (µm): 587.78 500 382.68 

Hinge 3 length (µm): 293.89 250 191.34 

Hinge lengths in Octagonal cross-section (numbered from center) 

Hinge 1 length (µm): 224.94 191.34 146.45 

Hinge 2 length (µm): 363.95 331.41 270.60 

Hinge 3 length (µm): 363.95 331.41 270.60 

Hinge 4 length (µm): 224.94 191.34 146.45 

Hinge lengths in Decagonal cross-section (numbered from center) 

Hinge 1 length (µm): 181.64 154.51 118.26 

Hinge 2 length (µm): 475.53 404.51 309.60 

Hinge 3 length (µm): 587.79 500 382.68 

Hinge 4 length (µm): 475.53 404.51 309.60 

Hinge 5 length (µm): 181.64 154.51 118.26 
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Figure 4-17 - Comparing leaf dimensions over length from tip to median for different numbers of petals on ‘lotus’ form. 

 

Figure 4-18 - Comparing leaf dimensions over length from tip to median for different numbers of petals on ‘lotus’ form. 

4.3.2.3 Locking mechanisms 

It was found through trials, that the main issue with folding a container in aqueous media is the 

density and shear forces of the fluid greatly overpower the weak swelling forces and low modulus of 

the hydrogel hinges. Similar to an anemone or seaweed at the bottom of the ocean, these structures 

will roll, and flex if any fluid turbulence s present. A locking mechanism is therefore required to lock 

up the box and allow it to sustain these forces as a 3D structure, where faces provide support to one 

another and stabilise the structure.  One attempted locking mechanism was the addition of positive 

(+ve) and negative (-ve) polarity gel elements to the inner faces of the box. These elements or ‘dots’ 

were composed of anionic or cationic gel using AA and DEAEMA gels respectively. To achieve this a 

sub mask was needed to pattern the locking features after the main box features had been defined 
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(Figure 4-19). The resulting mask designs for the locking elements or ionic ‘dots’ are shown below, 

with the pictures in order showing faces, hinges and locking supports added respectively. 

 

In the case of locks which lack sufficient force to connect based on ionic charge alone, overlapping 

locks were also designed as illustrated in Figure 4-20c. These would jam adjoining faces together, to 

transfer loads between the various faces and prohibit individual relative motions, in what is believed 

by the author to make the structure stronger. 

 

 

 

Figure 4-19 Mask split to create negative and positive polarity hydrogel elements. (A) The full array of locking points to 
be patterned in magnetic resist or self-adhesive hydrogel. (B) Half of an negative to positive locking mechanism, with half 
the array to be made of an ionic hydrogel and the other half of a cationic one respectively. 

A      B                                       C 

  

A      B                                       C 

  

Figure 4-20 - Photomask design for new ‘lotus’ containers. (A) faces of container to be patterned in SU8 or other 
‘structural’ material. (B) Hydrogel hinges to be patterned during a second stage of photolithography. (C) The locking 
mechanism to be patterned out of another layer of structural material, or a self-adhesive hydrogel. 
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4.4 RESULTS 

4.4.1 Roughness of PAA  

To achieve good patterning of the sacrificial film, film uniformity is crucial, although rougher surfaces 

adhere subsequent layers better, a uniform film makes more uniform contact with an imprinting 

stamp, and reduces contact stress concentrations. PAA becomes rougher with O2 plasma ashing 

(Figure 4-21), this roughness which is also independent of spin speed (Figure 4-22) is not ideal for 

patterned surfaces, it does however, increase surface area of the sacrificial layer. Larger surface area 

improves adhesion in subsequent layers minimizing feature detachment. An increased surface 

roughness also means a larger area of functionalised PAA is available for gel interaction. 

 

Figure 4-21 – Surface roughness plotted for increasing doses of oxygen plasma ashing of the PAA sacrificial films. It can be 
seen that the surface roughness increases at a non-linear rate with increasing exposure to O2 plasma.  AFM profilometry 
performed on three random locations on ashed samples. PAA Mw 1800 spun at 4000 rpm. Error bars: 1SD from n=5 AFM 
measurements of n=5 separate 20 x 20 µm square areas. 

 

Figure 4-22 - Surface roughness Ra plotted against spin speed for PAA Mw 1800 spun at increasing RPM. It can be seen that 
the roughness of the surface does not vary greatly with increasing spin speed. Error bars: 1SD from n=5 measurements of 20 
x 20 µm AFM scans. 

The measured surface roughness of PAA was found to be in line with data from the Whitesides 

group covering the water soluble sacrificial layer process [190]. 
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Figure 4-23 - Surface roughness of four different molecular weights of PAA. All surfaces dried on a hotplate at 90 °C for 5 
minutes prior to measurement by AFM.  It can be seen that while the roughness is fairly consistent between different 
molecular weights, it does increase dramatically when the PAA is in its neutralised state (buffered with NaOH). Error bars: 
1SD of n=5 measurements of 20 x 20 µm square AFM scan. 

To see the effect of neutralization on the PAA and if this procedure affected its characteristics for 

nanopatterning; PAA of Mw 15,000 which had been neutralized to pH 7 by the addition of NaOH (as 

obtained from Sigma-Aldrich) was spun onto a clean silicon surface as stated in the previously 

outlined processes (section 4.2.3.6). The roughness was found to be considerably higher than that of 

normal non-neutralized PAA (Figure 4-23). This PAA additionally exhibited lower wetting of the Si 

substrate causing ruptured and beading, oxygen plasma ashing of the silicon wafer prior to 

application the deprotonated PAA resolved this issue, but poor adhesion to the substrate and no 

visible actuation in gels lifted off from this surface deemed it incompatible with the desired stream 

of processing. 

4.4.1.1 Material Application 

Several structural materials were tested in the construction of the patternable solid facets and act as 

the solid reinforcing structure in the self-folding devices. The first was SU8 the commercial epoxy 

based negative photo resist. The spinability and patternability of two biocompatible materials was 

also tested: Poly-l-lactide (PLLA) and polycaprolactone (PCL). While both polymers spun had similar 

thicknesses to SU8 3005 (Figure 4-24) the uniformity was a key factor in patterning requirements, 

PCL in this case showed a film uniformity an order of magnitude lower than PLLA and SU8 (Figure 

4-25), this was confirmed in literature for other diluting solvents [207]. 
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Figure 4-24 - Spin curves for SU8, PLLA 7 % w/v in CHCL3 and PCL 8 % w/v in CHCL3 films measured by profilometry. Error 
bars 1SD from 5 measurements. 

.  

Figure 4-25 – Mean values for film uniformity in spun polymer films, Roughness Ra value collected from 20 x 20 µm AFM 
surface topography scans. Error bars: 1SD from n=5 measurements. 

PCL was ruled out due to film non-uniformity (3 orders of magnitude higher Ra, PCL: 34nm, PLLA: 

0.21 and SU: 8: 0.204) for further patterning (Figure 4-25), PCL also exhibited peeling from PAA films, 

making it unfavourable for layered fabrication. Surface AFM scans of PLLA and PCL in chloroform 

spun at 4000 rpm and 6000 rpm are shown in Figure 4-26. 
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4.4.2 Patterning of SU8 surfaces 

SU8 is an epoxy resin which returns to a flowing state upon heating (only prior to crosslinking), it is 

during this phase of heating that the photo acid crosslinking groups generated during exposure can 

migrate and crosslink the resin into a solid. Double sided nanopatterning of SU8 was achieved by hot 

embossing of PAA sacrificial layers at 15 bar and 110 °C and subsequent hot post exposure hot 

embossing of the SU8, by a novel method. A variety of stamps ranging from PDMS to quartz and 

silicon have been used with varying degrees of success. The images below show a hexagonal 

honeycomb structure reproduced with a PDMS stamp onto the top surface of a dodecahedral 

container patterned out of SU8 (Section 4.4.2). Post exposure bake-embossing (PEBE) is to the 

author’s knowledge a novel way of introducing nano- and micropatterns into SU8 without the need 

for complicated UV-Nil setups. If as stamp is introduced to a pre exposed layer of SU8 during post 

baking the SU8 will flow into the stamp features and solidify within those constraints, reproducing 

the pattern. The unexposed areas can be washed away after development to create micro patterned 

features on nanopatterned surfaces. A hierarchical pattern can also be introduced by the method 

outlined in Chapter 3. 

 

 

A            B 

 

 

 

 

C            D 

Figure 4-26 - Spun polymer films considered as an alternative to traditional SU8 photoresist. A: PLLA spun at 
6000 rpm, B: PLLA spun at 2000 rpm (both solutions 8 w/v % solution in chloroform). C: PCL spun at 4000 rpm 
D: PCL spun at 2000 rpm (both solutions 6 w/v % in chloroform) 



Iskandar Vasiev “3D Self-folding tissue scaffold origami”  191 

 

Figure 4-27 – Top left to right: 24 µm hexagonal pattern embossed into SU8 Dodecahedral container surface with a pre-
embossed PAA layer creating double sided patterning. Bottom left to right: Devices with and without hinges after PAA 
dissolution. Scale bars: 100 µm, 50 µm. 200 µm and 300 µm respectively. 

 

4.4.3 Patterning of PLLA surfaces 

One alternative to using SU8 which shows promise as a biodegradable alternative is PLLA (Poly-L-

lactide). This natural polymer is degradable by hydrolysis with varying degrees depending on chain 

length and crosslinking groups. Work was carried out to investigate the ease of patterning the 

material, and the results were very promising (Figure 4-28). Above its Tg of 65 °C the polymer flows 

well and holds patterns well upon cooling. Fabrication is extremely compatible with PAA lift-off, the 

PLLA ligands dissolve in chloroform in which PAA is insoluble, and so any subsequent spinning steps 

will not affect a pre patterned PAA sacrificial layer.  Additionally the temperature at which PLLA can 

be shaped and formed is far below that necessary to damage or crosslink the PAA underneath. The 

two chemicals are similar and no complexation should be seen as with SU8, so there is less risk of a 

boundary film forming and affecting the hinge closing dynamics. This method however requires 

shaping into container faces by dry etching rather than lithography alone. 

A                                                            B                                        

 

 

 

 

C                                                            D   
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To form the nanopatterned PLLA film into the individual faces of the microcontainers it has to be cut, 

as the film is a thermoplastic and not a cross linkable epoxy like SU8. Dry etching by oxygen plasma 

was tested on PAA and PLLA films spun on silicon substrates. The etch rates are outlined in Figure 

4-29 the PLLA etches significantly faster, allowing for some selectivity in the process, so that damage 

to PAA features can be avoided. 

 

Figure 4-29 - Shown are the dry etch rates for PLLA and PAA thin films. The data shows a dry etching selectivity ratio in 
oxygen plasma of almost 2:1 between PLLA and PAA Mw 50,000. Point mean of n=3 profile scans. 
A thin layer of S1818 is applied to the PLLA and can either be used as an etch-stop directly with a 

selectivity of roughly 2:1 [208] or by applying an Au mask over the S1818 and then removing it with 

MF-319, the Au can be used with the potassium iodide in IPA based etch which does not damage the 

underlying PAA sacrificial layer. The process is more time consuming compared to SU8, but as PLLA 

can be blended with PLGA to adjust dissolution rate [209] it is a useful component in a potential 

toolbox. When fabricated these PLLA boxes will degrade by hydrolysis in aqueous environment, 

allowing for safe disposal within the body and no need for manual scaffold removal or monitoring.  

Figure 4-28 – SEM images of nanopatterned PLLA film with 2500nm diameter 1:1 aspect pits on 200 nm pitch. Left to right 
decreasing magnification. Scale bars 500 nm and 5 µm respectively. 
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Additionally the PLLA is significantly cheaper than SU8 photoresist, and would be more economically 

viable in a scaled process. 

4.4.4 Manufacture of all-hydrogel 3D microcontainers 

Using a number of photolithographic approaches it is possible to create all hydrogel micro-

containers in a single or double lithographic step, with articulating faces rather than the rolling 

motion demonstrated in chapter 3. An all hydrogel container with the appropriate immobilized ECM 

proteins for cell adhesion would be capable of immobilizing cells while providing a permeable and 

non-fouling membrane for oxygen and nutrients as well as waste to migrate through. This should 

avoid common problems such as starvation and hypoxic conditions within the micro-container. 

The ‘double exposure’ method, where a scaffold structure is created out of self-folding hydrogel 

film, but then through a second mask certain areas are over exposed to make them rigid, this creates 

structures with different extents of curvature to produce a folded round shape. Spinning of resist 

was attempted to limit thickness variation, the resulting quick spun gel mixture was then exposed 

through a photo mask.  

In the ‘double exposure method’ micro containers are created as one sheet with faces defined in the 

second photolithography Figure 4-30. The result of the first lithography is shown in Figure 4-31 

where the container takes an unrestricted form upon folding and is too uniformly flexible to fold into 

the desired shape. For the box to work certain parts need to be made rigid by a second exposure, 

while leaving the hinge areas masked off to remain flexible.  
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Figure 4-30 - Dual exposure patterning method. The hydrogel film is exposed once to take it to the initial gelling state, it is 
then sequentially exposed to light through a different mask to further crosslink some sections, but leave others under-
exposed. This heterogeneous exposure produces differential swelling effects across the film causing it to fold. 

 

Figure 4-31 - A, Double exposure pentagonal polyhedrons prior to lift-off. B, Post lift-off but without second exposure the 
films roll up in a unrestricted way. Note that the second exposure was not effective at creating solid sections, as the 
active components Scale bars: 300 µm. 
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The overexposure method is slightly different in that the hinge is made by indirect crosslinking. The 

faces of the box are exposed through a mask but the gaps in between form as a result of the 

reaction pouring out during the crosslinking stage, and adjoining neighbouring faces producing a 

flexible actuating hinge connection as shown in Figure 4-32 it is not limited to gels as it occurs in SU8 

also, but the result with hydrogel photo curable resist is far more pronounced. This secondary 

crosslinking is caused by the diffusion of radicals unlike that directly in the path of UV light (Figure 

4-33), creating a differentially flexible structure capable of folding at these under-exposed regions. 

The product of this type of hinge is shown below in Error! Reference source not found.. 

 

 

Figure 4-33 - The over-exposure method for producing self-folding hydrogel containers. The exposure undercuts the mask by 
way of diffusion, and produces a crosslinking gradient underneath the mask feature. If correctly spaced, these under-
exposed undercuts meet to produce a hinge which folds by differentia swelling. 

 

Figure 4-32 - SU8 micro containers attempting to close by PAA immobilized SU8 epoxy at the hinges. Scale bars: 500 µm 
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The process of optimizing the hydrogel container folding methods is time consuming and batch 

specific (yield of successful all-gel containers estimated as 20-30 %). It depends on hinge spacing, 

solvent concentration and polymerisation rate, as too little initiator in the solution and the reaction 

is killed off by oxygen dissolved in the solution acting as a radical scavenger.  

Several iterations were used to determine the containers which fold more often (Figure 4-35). When 

the reaction rate is too high, the faces do not have time to become rigid before the structure merges 

together creating an inflexible webbed sheet. If the reaction is too slow the gel is too weak and the 

hinges have problems holding faces together, creating boxes which are too weak to stand up to the 

fluid shear forces. Two hinge widths of 20 and 40 µm were attempted with the ideal hinge 

polymerisations occurring at 6-8 seconds for the 200 µm hinges and 10 and 12 seconds for 400 µm 

hinges. The designs fluctuated between insufficient and excessive angle of curvature with little 

control over the interfacial angle, yield of sucessfully actuating all-gel containers in a batch is 

typically in the region of 20-30 %. 

 

A                           B                                  C           D                                            

   

Figure 4-34 – Over-folded boxes made by overexposure method for the 20 µm length hinges, faces exposed for (A) 43.2 
mJ/cm2 and (B) 57.6 mJ/cm2. And 40 µm length hinges exposed to: (C) 72 mJ/cm2 and (D) 86.4 mJ/cm2. This folding results 
due to underexposure of the PEGDMA hydrogel in the container faces, making the whole structure flexible and unable to 
hold the shape properly. In instances where the structure is solid enough, the hinges are too rigid to attain the necessary 
folding angle. Scale bars: 500 µm. 
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4.4.5 Manufacture of hybrid containers 

Boundary layers between the PAA and SU8 layer interfered with early attempts to make SU8 and 

hydrogel hybrid containers shown in Figure 4-37 below. The interaction of SU8 with the sacrificial 

PAA films occurred when attempting to bind hydrogel hinges to the PAA below the SU8 faces, as it 

was crosslinked and contaminated with a less flexible and reactive film. The crosslinked films is thin, 

flexible and sticks to faces and stops them from moving freely, it also acts as a boundary between 

the gel and the PAA OH- groups which are needed to make the bilayer function correctly. Several 

methods were trialled in an attempt to resolve the issue, and expose the active PAA layer 

underneath, involving the use of stronger solvents, over development, the use of oxygen plasma, 

under baking and applying a barrier layer. 

Acetone or N-Methyl-2-pyrrolidone (NMP) solvents were used, but while these removed much of 

the film they also severely damaged the surfaces of the SU8 structures, creating residual stress 

fractures and pitting after a 40second etch (Figure 4-36). This was not acceptable if the prime 

objective is to have well defined nanopatterns on these surfaces, as these would be stripped from 

Figure 4-35 - SU8 micro-container layer before (left) and after wet etching with NMP  (right) to remove the inter-facial 
film that had been affecting the performance of the subsequent hydrogel hinges. Excessive cracking can be seen after 
overdevelopment in NMP. Scale bars: 300 µm 

Figure 4-36 - SU8 and Hydrogel hybrid containers affected by a thick boundary film, stress marks are visible after 
dissolution of PAA. Scale bars: 300 µm. 
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the surface. Based on these results, a gentler or more selective process was considered to get 

through the films but limit the damage to the top surface of the SU8. 

Over development in EC Solvent (ethyl lactate) developer for SU8 was not observed to break the 

films, suggested to be caused by the PAA chains being insoluble in ethyl lactate. The result again was 

damage to the SU8 structures with no visible effect on the film problem resulting in pitting and 

excess surface roughness (Figure 4-37) without fully removing the film. 

 

Figure 4-37 - SU8 showing the effects of overdevelopment after 6 minutes in EC solvent. Scale bar: 300 µm. 

The use of oxygen plasma was attempted as a less damaging alternative. Samples were ashed in O2 

plasma for 2-3 minutes at 200 W. This setting appeared to get rid of the film at times, but as the PAA 

is ashed more easily than the SU8 hybrid, thinner lift-off layers were prone to be etched too deep by 

the time the rest of the interface film was degraded, resulting in uneven surfaces and hence 

variability in bending after the hinges were manufactured. To see if the process is linear and 

predictable various durations of dry etch time were tested (Figure 4-38). The etch rate of PAA is seen 

to be linear, suggesting sample heating at elevated ash durations (>10mins) did not drastically 

change the etch rate with only a noticeable rise after 20 minutes. 
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Figure 4-38 - PAA oxygen plasma dry etch depth with time, process was very time consuming with practical etch depths in 
the region of a micron taking approximately 15 minutes. . Depths measured by profilometry. Error bars: 1SD (n=3). 

Another approach to avoid the film is to avoid long baking of the SU8. This yielded better results 

with limited film formation. The reason for the result is it limits the diffusion and reaction between 

the SU8 and the underlying PAA. Post exposure baking was limited to 2 minutes at 90 °C for 5 µm 

SU8 films, this is half of the recommended bake time. This rapid process is harder to achieve in a 

non-commercial clean-room environment as booking schedules between the different stages of the 

process meant the film would spend uncontrolled periods of time idle, making it hard to achieve 

repeatable results.       

To investigate the occurrence of films features were washed away straight after development using 

the standard recipe performed within 2 hours. A lapse of feature lift off in Figure 4-40 shows the 

release of structures from PAA which were manufactured by this rapid processing, while they 

generally are clean of overall film, areas close to one another stick and move as a chain rather than 

individual objects. 
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One method of avoiding this issue was to combine a rapid method for SU8 with an upside-down 

approach, where the hydrogel hinges were made in the beginning, to allow them to be 

functionalised by the untainted PAA surface.  This method yielded good closure (Figure 4-40), but 

the flexibility of the hydrogel made it easy for hinges to blow away during SU8 spinning, or be 

damaged during processing and solvent washing, the resulting losses would be too high for any 

reasonable yields. The resulting containers show good closure demonstrating the potential for 

hybrid structures, but a new method of separating the SU8 and hydrogel processes would have to be 

found. A good candidate was using a boundary layer to prevent contact between the two until 

completely necessary. 

 

Figure 4-40 - Containers made by the reverse process. A) The hinge integration into the SU8 face, and B) the closed 
containers in pH 7 solution. Scale bars: 50 µm and 300 µm respectively. 

4.4.6 Boundary layers 

One way of avoiding contact between acidic polymer groups in the PAA and the photo-acid 

mediated crosslinking epoxy that SU8 consists of, is to introduce a boundary layer such as PMMA, 

which is fully compatible with both processes. There is however an issue with an undercut forming in 

the PMMA film when it is thick (>500 nm), as it etches in EC solvent (ethyl lactate) at the same time 

as the SU8. This visible undercut occurs very rapidly beneath the structures (Figure 4-41), causing 

problems for consistency and also pattern transfer from the PAA, as the layer on the outside of the 

boxes is damaged. It is shown to be remedied by reducing PMMA layer thickness to under 200 nm.    

A                            B                  

Figure 4-39 - Release of structures from PAA which were manufactured by this rapid processing Scale bars: 400 µm  

A                         B       C                  
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Figure 4-41 - SU8 structures patterned onto a 1 µm thick PMMA layer. The PMMA is undercut by EC solvent development, 
creating voids at the patterned edges, thinner layers do not suffer from the same issues, and 80 nm films spun from o-
xylene proved to be a suitable candidate for this method of fabrication. Scale bar: 300 µm. 

An alternative would be a different thin film which can be processed by several dry and wet means, 

such as metals and oxides. Gold is a good candidate although it is highly expensive, costing orders of 

magnitude more than PMMA or some other boundary layer polymeric film. Overall this would be a 

disproportionate part of the overall container cost, but does offer the potential for integrated 

circuits, sensors and gold specific surface modifications such as cell repelling surfaces. Gold is also 

biocompatible and etched by a number of very specific wet and dry processes. There are several 

technical issues with gold the first is the available wet etches for gold, which consists of water and 

either acids or dissolved iodine salt and ions, as water attacks PAA and would make it impossible to 

achieve bilayer hydrogel hinges afterwards.  A novel modified gold etch was made using methanol as 

the carrier solvent (Figure 4-43).  

Figure 4-42- Gold etch with time A) 10, B) 30 and C) 60 seconds with 30 nm gold barrier film a slight undercut below the SU8 
features is visible. Ratio of potassium iodide to iodine is 2:1 with 4 g and 2 g in every 80 µl of MeOH:IPA 1:1 mix. Scale bars: 
300 µm. 

A                          B        C                  
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As the concentrations of potassium iodide and iodine that this solvent can carry was significantly 

reduced, it resulted in a slower etch rate, useful for precision etching of a 50 nm thick layer. 4 g of 

potassium iodide and 1 g of iodine were dissolved in 40-80 ml of Isopropanol and stirred for half an 

hour before use. The first resulting and subsequent etches are shown in As the concentrations of 

potassium iodide and iodine that this solvent can carry was significantly reduced, it resulted in a 

slower etch rate, useful for precision etching of a 50 nm thick layer. 4 g of potassium iodide and 1 g 

of iodine were dissolved in 40-80 ml of Isopropanol and stirred for half an hour before use.. Ashing 

the SU8 after development was noted to be critical to get rid of fouling which can block the wet etch 

process and result in ‘snowflake’ style defects.  

The recipe was sensitive to iodine concentration with the etch rate reducing sharply as this was 

reduced to a 1:1 ratio and 1 gram of iodine in 80ml of IPA:MEOHas shown in Table 4-6. 

Table 4-6 - Modified gold etch rates with different concentrations of potassium iodide and iodine, shown are the respective 
etch rates as determined by the duration necessary to strip through a 50 nm and 80 nm gold layer. Rates are measured by 
profilometry of etch depth at single time points over 5 discreet areas, overall etch depth then divided by etch duration. 

Potassium iodide (g) Iodine (g) Solvent IPA:MEOH (1:1) (ml) Etch rate (nm/s) 

4 2 80 1.34 

4 1 80 2.67 

2 2 80 0.90 

2 1 80 0.62 

1 1 80 N/A 

 

Figure 4-43 - Containers made by the gold boundary layer process. A) etch attempt prior to cleaning with O2 plasma. B) 
etch with pre-clean. C)  Hinges applied. Scale bars: 500 µm. 

A                         B         C                  
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(Figure 4-44c) and resulted in successful actuation of containers in pH 7 buffer solution. The resulting 

free-floating gold coated dodecahedrons were allowed to fold fully before imaging with optical 

microscopy. 

The containers made by this method were far more visible and may result in improved capture of 

these devices. Some difficulty was seen in the container pivoting around the central hinge 

connecting the two domes of the dodecahedron. It is thought that this occurred due to a 

proportionally greater load on this hinge, extra time to swell resolved this initial issue. While the 

containers did not capture cells in this experiment, it was a successful proof of concept, and a step 

forward as a repeatable solution to the thin film issues had been found. The ability to assemble 

layers shown in Figure 4-45 into a functional device allowed more complex geometries to be trialed 

in future experiments. This lead to the design of a ‘lotus’ design mask, which had more axes of 

symmetry and was expected to be a more robust and reliable alternative to the dodecahedrons. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-44 - Containers made by the gold boundary layer process. A,B,D) closed containers, C) container in 
the process of folding. Scale bars: 500 µm. 

A                           B  

                       

C                           D  
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Functional dodecahedron containers at an estimated yield of 10-30 % were obtained in the following 

process:  

1. Spinning of PAA at 4000 rpm followed by drying at 90 °C for 2 minutes,  

2. Sputtering of gold onto the PAA to a 50 nm thickness  

3. SU8 3005 spun at 4000 rpm followed by a 5 minute pre-bake at 90 °C by hotplate, followed 

by a 45 second UV exposure, 3 minute post-bake and finally 3 minute development in EC 

solvent followed by a 20 second O2 plasma ash . 

4. Gold etched in 4:2 w/w  I/PI iodine etch in 1:1 v/v IPA/MeOH for 40 seconds 

5. Sample ashed in O2   

6. PEGDMA 90 v/v % in IPA applied as hinges in a 6 second UV exposure. 

Detailed process optimisation and improved controls as part of future work may improve yields 

further. No distinct pattern in the location of defective containers was seen on the wafer, however 

from 50-70 % of containers which were undamaged and began to actuate, only 10-30 % achieved 

near full closure. One area of weakness appeared to be the central hinge which had to hold two 

domes of this dodecahedron together, resulting in more noticeable deformities than if a petal hinge 

were to fail. 

Variation is thought to occur due to film non-uniformity, variation in exposure, oxygen concentration 

within the gel, and possibly due to damage during mask separation from the gel resist. This could be 

improved by: 

 Processing the gel and gel thin film in an inert atmosphere prior to and during exposure.  

 An automated method of applying the gel precursor solution immediately prior to exposure 

would also improve film uniformity. 

 Mask-substrate vertical tilt alignment during contact and disengagement from the gel would 

improve uniformity and limit damage to the gel during mask removal 

 Flushing of the substrate prior to mask removal to reduce hydrostatic forces from 

unexposed gel precursor solution. 

 Limiting edge bead formation by spinning in a vacuum or laminar flow spinner would also 

help reduce photomask pivoting on substrate irregularities. 

Many of these features can be implemented in a commercial photolithographic system.  
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4.4.7 Lotus structures 

4.4.7.1 Assembly 

Lotus structures were attempted to be manufactured utilizing PMMA and Au boundary layers during 

SU8 manufacture. The stages of assembly shown in Figure 4-46. PMMA was easier to use as a 

boundary layer, but prone to early lift-off if the ethyl lactate was allowed to etch an undercut 

beneath the SU8 faces. Sputtered Au was first etched with the modified gold etch outlined 

previously in Table 4-6 in the highest concentration 4:2g of PI:I in 80ml of IPA:MeOH gold etch. 

Hinges were subsequently applied in a second photolithography stage using PEGDMA 90 % 

monomer in IPA with 1 w/v % LTPO as photoinitiator. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-45 - Lotus container made with the gold boundary layer method. (A) SU8 features of the lotus are 
created on a gold coated PAA surface. (B) The gold is etched in areas where it is not covered with SU8 
features, exposing the PAA surface underneath, in preparation for hinge addition. Scale bars: a) 200 µm, 
b) 400 µm and c) 100 µm respectively. 

A                              B   

                      

C                         
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This process can also be achieved by a 200 nm PMMA based boundary layer process using o-xylene 

dissolved polymer described in 4.2.3.6 which is identical to that of the gold except the PMMA is spun 

on and automatically removed by EC-Solvent during the SU8 development (accommodated by extra 

15 s of development time) shown in Figure 4-46. With the actuating container shown in Chapter 5 - 

Figure 5-45. After dissolution of the surrounding PAA in H2O samples were ready for cell seeding. 

       

Figure 4-46 – PMMA boundary layer formed 'lotus' containers manufactured from SU8 before (left) and after (right) the 
application of hydrogel hinges. Scale bars = 500 µm. 

4.4.7.2 Actuation 

As previously polyhedral were triggered by the addition of pH 7 buffer, DMEM or PBS. The actuation 

process was tracked in successfully formed devices by using the time points on the images captured.  

The petal tip to centre distance was calculated from optical microscopy in ImageJ software and 

plotted against the registered time stamp to track the extent of container closure over time as 

shown in Figure 4-48. The time in seconds after the addition of pH 7 buffer to containers lifted off in 

RO H2O.  

Figure 4-47 - A gold covered 'lotus' container undergoing folding in pH 7 buffered solution. The position of the tips relative to 
the box centroid can be tracked in consecutive images to record container folding dynamics. Showing A) t=0, B) t=4 minutes 
C) t=10 minutes. Scale bars: all 500 µm. 

A                          B        C 
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Figure 4-48 - Distance between the petal tip and the centroid of 'lotus' containers with time (centroid is axis in z-axis 
through central hexagonal face on x-y plane, where petals lie in the x-y plane), the transitional folding can be seen as the tip 
is folded and curled inwards to meet at the centroid of the container mask (the central hexagon to which all the petals 
attach). Error bars: 1SD from n=3 measurements. 

The fully folded container would reach an equilibrium state when the hinges became fully hydrated. 

The swelling rates of PEGDMA based hydrogels were measured by looking at the weight at discreet 

time intervals in RO H2O.  Equilibrium was found to occur at about 30 minutes (Figure 4-49). 

 

Figure 4-49 - Swelling kinetics of PEDGDMA hydrogels for various monomer concentrations and exposure doses. , n=1 per 
sample. 
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4.4.7.3 Locking Mechanism  

Interweaving elements were used as a comb type structure which catch each other when they are in 

close proximity by ionic interaction. Ionic locking elements use oppositely charged ionic and cationic 

gels to attract neighbouring faces to each other and hold them in place in the operational pH range. 

The cationic locking side was produced by photolithography similar to the recipe for NIPAAm hinges 

mentioned in previous reports, however a cationic NH2 bond containing monomer was added to the 

pre-polymer mixture to create gels with an inverted swelling response at elevated pH and created a 

positively charged surface. This positive charge allows them to stick to negatively charged gels such 

as those made with acrylic acid and poly acrylamide. The gel constituent responsible for cationic 

swelling was DEAEMA. The DEAEMA component making the bulk of the gel swells in pH 4 and 

shrinks in pH 6 and above. This swelling is accompanied by a surface chemistry transition where the 

gel becomes positively charged. After several attempts it was found that the gel was difficult to 

apply in such small elements and no visible bonding was seen between the cationic and ionic gels 

elements. Mechanically Interweaving elements were intended instead to be used as a comb type 

structure which catch each other when they are in close proximity (Figure 4-51),  

 

Figure 4-50 - Interlocking mechanism design as applied to a 'lotus' container. The protrusions are created to overlap 
and thus reinforce adjoining faces, and limiting over-closure, where one face moves further inward than its 
neighbours, blocking them in the process. Scale bar: 300 µm. 
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4.4.8 Device immobilization 

Various methods were tested to create voids in the sacrificial film, thereby anchoring the structures 

to the substrate underneath via a small window. Wet etching of PAA through a photopatterned port 

was attempted, but yielded a large undercut which was not ideal as the areas immediately next to 

this port were no longer of equal thickness.  

 

Figure 4-51 - Etch rate of PAA in different concentrations of methanol diluted with isopropanol. Methanol was found to 
dissolve PAA readily, but did so in a more controlled manner when diluted by an unreactive solvent such as IPA or EtOH. 
Depths measured by profilometry. Error bars: 1SD from n=5 measurements. 

Anchoring of lotus and dodecahedron containers was done by the prior patterning of the substrate 

with S1818 features, which were spun over with a layer of PAA. The PAA was ashed to expose the 

S1818 corners underneath, followed by development and lift-off of the S1818 in ethyl lactate over 1 

minute, etch rate was found to be roughly 1.9 µm/min. Following lift-off substrates were ashed 

again to descum and a layer of TPM was applied to the surface to immobilize the gels and or SU8 

faces positioned above. 

 

Figure 4-52 - Lift-off of S1818 from under PAA to provide an adhesive point to anchor devices. Showing the development of 
S1818 with etch duration in Ethyl lactate. A) Non-etched surface, B) 45 seconds etch, C) 2 minutes etch. Scale bars: 100 µm. 
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Figure 4-53- A) TPM anchoring agent evaporated to slot dissolved through PAA by a S1818 mask coating glass underneath) 
hydrogel roll patterned above this slot is permanently anchored to the glass surface. Scale bars: 400 µm.  

This technique is also used for the immobilization of NIPAAm based smart gel, cell capture and 

release surfaces. The same process can be used for polyhedron manufacture. To look at the 

optimum coating conditions, contact angle measurements were taken of silicon substrates exposed 

to TPM vapour in an inert N2 environment at discrete time points. A plateau can be seen after 10 

minutes at 150 °C. The standard protocol used which gave good coverage was 15 minutes 

evaporation in an enclosed nitrogen rich atmosphere at 150 °C followed by an N2 gas flush, to 

displace the toxic silane vapour. 
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The results show an optimum coating time of 15 minutes, after which no extra hydrophobicity was 

produced. It was noted that after long periods in silane TPM vapour, substrates became opaque and 

patchy, this is considered to be due to deposition of secondary and tertiary layers of TPM, which 

subsequently polymerise. 

4.5 CONCLUSIONS 

This chapter successfully demonstrates that it is possible to create self-folding containers out of 

hydrogel hinges and nanopatterned polymeric structure. Several different kinds of structure have 

been demonstrated, ranging from the all polymeric container, comprised of differentially swelling 

zones of PEGDMA hydrogel, as well as those which are novel hybrid constructions.  

Of the available materials, PCL was found to not spin smoothly enough to be compatible with 

nanopatterning (Figure 4-25), as film uniformity is key. Of the remaining polymers, SU8 and PMMA 

remained the most compatible with PAA processing due to their lower temperatures during 

patterning. Of these SU8 was the simplest to use due to the ease of photopatterning, while PMMA 

required etching to define the microfeatures. 

Of the sacrificial film polymers used, it was found that PAA was much rougher if using neutralised 

PAA as suggested in the pioneering paper by Linder et al. [190]. Where deprotonated or ‘neutralised’ 

PAA allows for more selective dissolution using calcium salts, non-neutralised PAA was used, which 

created issues with subsequent SU8 patterning and lift-off as the SU8 sets as a result of a photo-acid 

generated during exposure to UV light. The acidity of the PAA substrate caused problems with 

insoluble films forming at the interface with PAA.  

These interface issues were successfully resolved by the use of PMMA and Au boundary layers, 

etched away prior to the addition of box hinges. A novel Au etch was developed to remove the Au 

boundary layer, and relied on a solution of iodine and potassium iodide in an isopropanol solution, 

unlike the traditional and much faster water based iodine etch. 

Containers were also successfully immobilised on the substrate surface by a single joining 

connection, allowing them to fold but stay in a predefined point on the substrate, done by etching 

through the sacrificial layer at a finite spot, prior to patterning the container above. For hydrogel 

containers this was achieved by using TPM to selectively bind them to the silicon underneath the 

etched sacrificial layer.  

While some problems remain, and gaps can occasionally be seen in the container walls, this proof of 

concept can be used as a platform for future development and complexity. Both the dodecahedral 
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and lotus containers showed promise in this respect, and can be used for similar or different 

applications, such as the gripper made by the Gracias research group, which utilises a dissected 

sphere claw for attaching to bio-tissue in the intestines for drug delivery [29]. 

Additional issues still remain with yield, as many devices still suffer from incorrect folding and 

problems with structural integrity. It was also noted that the cationic locking mechanism, containing 

gels of different charge, did not photo polymerise successfully on the devices, and soon fell apart. It 

also failed to provide sufficient force to lock adjacent faces together, this could be resolved in the 

future by attempting to integrate DNA based adhesive regions [210] on the container edges, which 

have shown great promise as a means of selective adhesion and assembly. However the equipment 

and facilities were not available during the time of the current work being carried out. 
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5 CELL CULTURE IN 2D AND 3D 

5.1 INTRODUCTION 

This chapter covers the cell culture work undertaken in part at the University of Glasgow with hTERT 

immortalised fibroblasts, seeded onto nanopatterned 2D surfaces, and the work performed during 

one month secondment to the University of Oslo School of Medicine, using hESCs seeded on feeder 

free nanopatterned 2D surfaces and the 3D nanopatterned containers discussed in Chapter 4. The 

intent of the work in this chapter was to take a step ahead and investigate what patterns could be 

applied to the internal surfaces of the self-folding containers to aid them in the formation of a 

specific cell type. This is particularly important if we consider that stem cells were intended to be 

used in this organelle formation using topographical cues. It was a proof of principle pilot study, and 

aimed to push ahead with a very ambitious aim of stem cell differentiation on nanopatterns in 3D 

within a very short period of time. 

Initially hTERT fibroblasts were used to determine any cytotoxic effects, resulting from the 

microfabrication processes involved in making the 3D cellular niches. The fibroblasts, which multiply 

quickly and are relatively cheap compared to human stem cells, were used to look at cell-surface 

attachment, and check that modifications made to hydrogel containers, composed of PEGDMA and 

certain ECM constituents (vitronectin, collagen and Matrigel®) were effective in improving cell 

attachment on these hydrogel surfaces. PEG is known to not immobilise proteins, and thereby non-

biocompatible as a culture surface [27] unless modified with RGD or somehow incorporating binding 

sites. For the hTERT fibroblast studies, cells were seeded on nanopatterned surfaces developed 

during previous work by the Bio Interfaces Group (BIG) at the University of Glasgow, and the work by 

Dalby and Gadegaard et al. [39]. These surfaces (square, near-square 50, planar and random 

configurations of nanopits) were reproduced in SU8, the material chosen as a means of 

manufacturing 3D containers in Chapter 4. The nanopatterned SU8 surfaces were seeded with 

hTERTs to see if cells began to proliferate after 24 hours, or if mass apoptosis followed the initial 

seeding. This pilot study aimed to identify any issues before the container materials and design 

moved forward. Hydrogels (PEGDMA) were also tested for cell attachment, by adding collagen to the 

PEGDMA hydrogel pre-polymer solution which was then photo polymerised onto TPM coated glass 

slides, to keep the hydrogel films adhered to the surface of the glass. hTERT fibroblasts were 

passaged onto the gel pads. The cells were counted at the 24 hour time point after washing with 

PBS, and immune stained with rhodamine phalloidin and DAPI (4', 6-diamidino-2-phenylindole) to 
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see if any cells were adhering to the hydrogel pads as the collagen concentration within the gels 

increased. 

In Oslo the same collagen treated gels were tested on a human H2 ESC line (WiCell Inc., Detroit USA), 

with and without further treatment with ECM proteins (vitronectin and Matrigel®). The 3D 

patterned containers were then seeded with H2 hESCs to confirm the cells could adhere to the faces 

of the containers successfully, and ultimately to attempt to release the container and fold it into a 

3D conformation with hESCs contained inside. The final stages of this chapter look at a proof of 

concept pilot study into what kind of topographical stimuli could in principle be applied to the inside 

walls of these 3D cellular niches, with the objective of differentiating the hESCs in vitro. Several 

established nanotopographies from the group including the NSQ, SQ and planar injection moulded 

surfaces from a previous study by Dalby et al. [39] on MSC differentiation into bone were tested. In 

addition to nanopit covered inserts, pillar arrays, comprising gradients of pillars with variable height, 

were used to investigate hESC affinity and colony size as a function of substrate feature height 

(Figure 5-1). These gradient arrays had previously been used to segregate cells by their respective 

type, based on cellular preferences on topographical cues [211]. 

 

Figure 5-1 - A nanopillar gradient, where pillars increase in height along one axis of the 1cmx1cm pattern area. As a result 
of this topographical gradient cells selectively adhere to certain areas. This topographical preference was used to 
distinguish different cell types that would otherwise be difficult to identify. Images were analysed with cell profiler which 
output cell concentration, increases in a certain fluorescence probe over a region of pattern and overall cell number on 
particular areas of the gradient. Reproduced from  Reynolds et al. [211]. 

Similarly to the gradient arrays, some ultra-high aspect ratio (UHAR) pillar arrays which simulated 

substrates with varying stiffness were also tested on hESCs to look for conformation changes as a 

function of substrate stiffness (as opposed to feature height previously). The relative stiffness at the 

pillar tips decreased with their overall height and thickness, which changed four times on one 

substrate (from tall and short pillars of 100 nm and 150 nm diameter), providing cells with four 

different substrate stiffness. The resulting cell attachment was quantified with cell profiler to give 

cell density and cluster size information, and thereby determine preferences amongst the 
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undifferentiated hESCs. The objective was to find clues as to what kind of stimuli dominated the 

differentiation processes of hESCs, as this had not been studied in this way previously. Should any 

successful topographical controls be found, these could then be incorporated into the walls of self-

folding 3D cellular niches, provided these could release and fold in cell culture media at the correct 

time. 

5.2 MATERIALS AND METHODS 

5.2.1 Materials 

All hESCs used in this study were H2 hESCs (WiCell Inc., Detroit USA) which were maintained at 37⁰C 

and 5 % CO2 in feeder-free conditions in E8 culture Medium, with routine passaging performed at a 

1:3 ratio using 0.5 mM EDTA or Acutase and ROCK-inhibitor (all Life Technologies, Oslo, Norway)  in 

the case of cultures referred to as “single cell” seeded. qPCR markers for OCT4, SOX2 and NANOG 

FOXA2, MIXL, T, GSC and ACTB (Life Technologies, Norway) were used as received with TaqMan fast 

universal PCR master mix (Thermo Fisher Scientific, Oslo, Norway). DMSO 99.9 % (Sigma-Aldrich, 

Norway) was used in 1 v/v % working concentration in media. For differentiation of hESCs RPMI 

1640 and B27 supplement, GlutaMAX, 2-mercaptoethanol, and MEM non-essential amino acids (all 

from Life Technologies, Oslo, Norway) were used with CHIR99021 (Stemgent, USA). hTERT 

fibroblasts (ATCC, UK) were obtained in P5 with a routine passage of 1:10 using Trypsin-Versene® 

solution with 500 mg/L litre Trypsin 1:250 and 200 mg/L Versene (EDTA) in PBS.  hTERTs were 

cultured in DMEM complete media (all Life Technologies, UK) with added 100 μg/mL Penicillin and 

100 μg/mL of Streptomycin.  For fluorescence microscopy VECTASHIELD anti-fade mounting medium 

with DAPI (Vectorlabs, UK) and rhodamine phalloidin (Life Technologies, UK) were used. Sulfo-

SANPAH crosslinker (Thermo Fisher Scientific, Oslo, Norway) 

5.2.2 Cell freezing and defrosting  

To facilitate continuity of the cell lines utilized during these experiments, early passages were stored 

at -80 °C in 10 % DMSO, in E8 or DMEM (depending on cell line, stem cells and fibroblasts 

respectively) and defrosted in their relevant media (E8 or DMEM complete) with frequent media 

changes, first three changes every 6 hours, followed by 12 hours followed by 24 hours as normal to 

remove residual DMSO. 

5.2.3 Nano patterned insert preparation 

To create surfaces for testing cellular responses to topographical cues, a high volume of 

nanopatterned surfaces was necessary for the relevant proliferation and phenotype studies. To 

achieve this high volume and consistency between samples nanopatterned surface substrates were 
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produced by injection moulding in polycarbonate (NSQ, FSQ and Planar) and (UHAR (polystyrene) 

and pillar gradient arrays (polycarbonate)) of which the specific pitch and feature size of the pattern 

arrays is described in previous publications by the BIG research group of the University of Glasgow 

[162, 185]. Samples were prepared by Paul Reynolds and Johnny Stormonth-Darling of the BIG 

research group. 

Prior to use, nanopatterned inserts were placed in a 6-well Corning cell culture tray. The tray was 

illuminated with UV for 10 minutes for sterilization, Inserts were then coated with vitronectin or 

Matrigel® (section 5.2.6). The rhVTN or Matrigel plating was then aspirated and the surface was 

seeded with cells using a dry-plating technique (Cells applied in a drop seated on the patterned 

region, the well was only fully filled with media 12 hours after cell seeding to aid attachment to the 

substrate) which limits cell attachment outside the patterned insert. Various dilution concentrations 

and surfaces were tested with both to identify both minimum plating requirements for future box 

constituent materials, but also the stem cell morphological behaviour when seeded on various 

surfaces. Matrigel is a blend of ECM proteins and does not have a precisely ordered or controllable 

ligand type, but offers a versatile base for attaching stem cells to a variety of substrates without the 

use of a feeder layer. It offers a wide variety of ECM proteins for the attachment of cells which are 

known to be difficult to adhere, and have a specific or unknown preference for certain ECM binding 

sites. However inevitable batch variation and uncertainty as to proportional quantities of select 

binding proteins means that repeatability and full environmental control are diffiucult. Vitronectin is 

a key ECM binding protein and has the advantage of being known and quantifiable so the amount of 

binding sites and coating density can be more precisely controlled.  

5.2.4 Contact angle 

Contact angle analysis of polycarbonate inserts with and without nanotopographical patterning was 

carried out in the same manner as outlined in Chapter 3. It was postulated that contact angle could 

have an effect on plated vitronectin density which is necessary for cell adhesion. For each pattern 

type 3 copies of each substrate were measured four times to obtain a mean contact angle value for 

NSQ, SQ and flat surface topographies. 

5.2.5 Matrigel coating 

The presence of ECM proteins is necessary for cellular attachment to surfaces, and would certainly 

be necessary if cells were to adhere to the patterned surfaces of the aforementioned 2D inserts and 

3D container walls. Matrigel is a mix of ECM proteins which offers a convenient but non-specific 

cover-all of possible ECM binding sites. The plating procedure for Matrigel was done in media at 

reduced temperatures to avoid a sol-gel transition of the Matrigel: plates were coated with a 1:48 
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dilution in Advanced DMEM-F12 (Life Technologies) and incubated at 37 °C and 5 % CO2 for 1 hour 

prior to use [172], the full protocol was as follows: 

1. Matrigel (Geltrex - Life Technologies) was kept cool at 4 °C and separated into 1 ml aliquots. 

2. Each 1 ml aliquot was combined with 23 ml of Gibco DMEM Advanced F12 (Life 

Technologies, Oslo, Norway) to make a working plating solution. 

3. Samples were separated to well trays to which plating media was applied (The plating 

volumes are outlined in the method for vitronectin plating above in Section 5.2.6). 

4. The wells were incubated at 37 ᵒC for 45 minutes. 

5. Cells were passaged and ‘dry-plated’ directly onto the Matrigel® coated inserts and 

incubated for 1 hour at 37 ᵒC with further media added to fill the well once the cells had 

adhered to the insert surface. This is done to prevent cells being swept off the patterned 

inserts.  

In the case of fast swelling gel scaffolds on glass, the gel sheet was first immobilized by the 

application of a stainless steel ring to pin it down, the ring was present until plating and seeding 

were complete, at which point the ring could be removed and the cell sheet allowed to roll into its 

3D conformation. 

5.2.6 Vitronectin coating 

Vitronectin was one of the ECM proteins tested for hESC adhesion to nanopatterned surfaces, it 

offers an advantage to Matrigel by being of known composition, and was a standard ECM coating 

used in the culture of hESCs on tissue culture plastic at the lab at the University of Oslo. The 

truncated recombinant human vitronectin (rhVTN-N) purified from inclusion bodies and refolded for 

use as a substrate for the feeder free culture was obtained from Life Technologies, UK. The 

vitronectin thawed at room temperature and was split into 60 µL aliquots, then frozen at -80°C. For 

plating, 60 µL of thawed rhVTN was diluted into a 15 mL conical tube containing 6 mL of sterile DPBS 

at room temperature and re-suspended by pipetting. This results a concentration of 5 μg/mL which 

is split further to create a dilution series. 0.5 mL of the diluted rhVTN solution is then gently pipetted 

to the centre of each insert (Inserts seated in individual wells of a 6-well plate), covering the 

nanopattern and producing a droplet of roughly 18 mm in diameter and a coating area of 2.54 cm2. 

1. Coated plates incubated at room temperature for 1 hour. 

2. Vitronectin solution aspirated and discarded. 

3. Cells passaged directly onto the vitronectin-coated substrates. 
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For hydrogel samples (process the same for Matrigel plating, section Error! Reference source not 

found.); when coating vitronectin, anchoring of the scaffold is necessary to prevent premature 

separation from their glass carrier slide, as the plating takes place in PBS solution which is well above 

the pKa of poly(acrylic acid) and poly(methacrylic acid), resulting in rapid swelling and folding. The 

anchoring was done by placing an autoclave sterilized titanium washer (ID: 4mm) over the corners of 

the hydrogel sheet, to pin it down for plating and subsequent cell seeding. The optimal working 

concentration of vitronectin is more critical for ESCs than other cells, as mentioned in Chapter 1, and 

has to be adjusted depending on surface area being coated. A median concentration of 0.5 μg/cm2 

was used as a baseline for TCP as suggested by Life Technologies, UK. Where for nanopatterned 

surfaces the dilutions are adjusted based on the stock concentration and the area needing plated, 

where: 

 𝐶𝑤 = 𝐶𝑃 ⁡× ⁡
𝐴

𝑉
   and  𝐹𝐷 =⁡

𝐶𝑆

𝐶𝑤
 Eq. 5- 1 

𝐶𝑤, 𝐶𝐶, 𝐶𝑆 are the working, plating and stock concentrations respectively, 𝐹𝐷 is the dilution factor, 𝐴 

is the surface area to be coated and 𝑉 the required volume of plating solution. The optimal working 

concentration of vitronectin is cell line and substrate dependent, ranging from concentration of 1 

μg/cm2 on TCP surfaces and dropping to 0.01 μg/cm2 on nanopatterned substrates as will be shown 

further in this chapter (section 5.3.4.3). A working concentration of vitronectin was made using the 

formula below to dilute the stock into subsequent aliquots (Table 5-1). Adjusting this for the droplet 

volume used to cover an injection moulded nanopatterned insert: 

 
𝑊𝑜𝑟𝑘𝑖𝑛𝑔⁡𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛⁡ = ⁡𝐶𝑜𝑎𝑡𝑖𝑛𝑔⁡𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛(𝐼𝑛𝑠𝑒𝑟𝑡) ⁡⁡×⁡

2.54⁡𝑐𝑚2

0.5⁡𝑚𝑙
 

Eq. 5- 2 

Table 5-1 - Vitronectin dissolved concentration with concentration per unit area and effective dilution ratio from working 
stock. 

Working Concentration µg/ml Coating Concentration µg/cm2 Dilution Factor 

5 1 100x 

2.5 0.5 200x 

1 0.2 500x 

0.5 0.1 1000x 

0.25 0.05 2000x 

0.1 0.02 5000x 

0.05 0.01 10000x 
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The dilution series was used to reduce the plating quantities necessary on nanopatterned 

topographies when compared with planar surfaces as will be demonstrated later. This is in part due 

to the smaller surface area of the insert requiring less media, but even at similar dispensations 

nanopatterned inserts appear to show better cell attachment. 

5.2.7 Sulfo-SANPAH modification of hydrogel rolls 

Due to a concern that the ECM proteins would adhere poorly to both the polymer inserts and 

especially the protein non-binding PEG the use of a commercial crosslinker for ECM attachment was 

trialled in the hope that this would improve cell attachment. Sulfo-SANPAH crosslinker (Thermo 

Fisher Scientific, Oslo, Norway) is capable of tethering ECM proteins to a number of surfaces [212], 

and was tested as a means of attaching pendant ECM proteins to the surface of otherwise un-

adhesive PEGDMA hydrogel scaffolds, or improving plating ECM coverage and adhesion on injection 

moulded samples at lower concentrations of ECM protein. The method of using sulfo-SANPAH was 

[213]: 

1. PEGDMA gel roll scaffolds in 6 well plates were soaked in HEPES or PBS for 24 hours prior to 

coating with 0.2 mg/ml of Sulfo-SANPAH which was dissolved in 50 nM HEPES buffer pH 8.5.  

2. Roughly 0.5 ml of solution applied per well (6 well) or enough to cover the gel rolls in sulfo-

SANPAH solution. 

3.  Well plate illuminated by UV source for 10 minutes to crosslink followed by rinsing with 1ml 

of 50 mM HEPES to eliminate unreacted S-SANPAH.  

4. rhVTN or Matrigel dissolved in HEPES buffer or PBS was added to the wells and incubated 

overnight at 37 ⁰C.  

5. The wells were then washed with 1 ml of PBS twice and sterilized under UV hood for 10-20 

minutes. Seeding of cells was done by the standard process described in section 5.2.9. 

5.2.8 Anchoring inserts in 6-well trays with a cell repelling hydrogel 

Injection moulded substrates were immobilized in a PEGDMA hydrogel cast within the wells of a 6 

well TCP tray (Figure 5-2). This was done to limit wasted volume and prohibit cells from adhering 

outside the main patterned area, thus interfering with the qPCR markers, collected from insert and 

cells sitting on the planar TCP plastic underneath.  
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Well coating brings base of well to same level as sample height or more if excess is carefully added 

to well liquid onto sample. PEGDMA should not bind with Matrigel or vitronectin plating, preventing 

cell attachment. Optical clarity is improved for microscopy removing sample base/ media/ styrene 

well interference. Sample is fixed in place and cushioned, reducing movement (Figure 5-3). Less 

media is used in covering samples. 

5.2.9 Cell seeding procedure 

Cells were seeded in 4 quantities to find the optimum size of colonies for a two to three day culture 

period. Sufficient size is judged on the premise that a critical mass of cells is required for 

differentiation, which is short of confluence, but robust enough to undergo differentiation into 

definitive endoderm at later steps. This stage is hard to quantify and depends largely on the cell 

viability, and experienced judgment, typically a working concentration ≥200,000 cells/ml is sufficient 

to get sustainable hESC colonies on Matrigel coated TCP 6 well plates. A conversion for the reduced 

seeding area of the injection moulded inserts is shown in Table 5-2. 

Figure 5-2- Process tree for immobilizing injection moulded inserts in PEGDMA gel to limit wasted volume and create a 
cell repellent surface on periphery of injection moulded slides. Refer to Chapter 2 for gel formulations. 

1. Polycarbonate 6 well exposed to Plasma (80 W – 20 sec) or 

exposed to 365 nm UV 180 W bulb (5-10 minutes) 

2. Injection moulded inserts placed in wells. 

3. Edges filled with 600 µl of 90 % PEGDMA + 9 % EtOH + 1 % 

LTPO photoinitiator. 

4. UV Cure for 10 minutes at 90 W (6 x 15 W tubes) – from  

High power trans-illuminator 

5. Soak for 48 hours in PBS to remove unreacted initiator LTPO 

is toxic to cells. Cell friendly initiator I2959 can be 

substituted but may not bind styrene as LTPO, advised 

concentration is 2-3 w/v %. 

Figure 5-3 - PEGDMA fixated nanopatterned insert after 24 hours soaking in PBS, gel ends at edges of upper nanopatterned 
surface. 
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Table 5-2 - Cells per unit area were adjusted for a standard 500ml drop of media covering an approximate area of 2.55 
square centimetres based on observed average droplet diameter on injection moulded inserts. 

Seeding solution concentration cells/ml 
Seeded cells/cm2 when seeding on injection 

moulded slides 

500,000 100,000 

400,000 80,000 

200,000 40,000 

100,000 20,000 

 

Seeding densities were adjusted to accommodate lack of attachment on poorly coated surfaces 

(Section 5.3.4.1). Two different passaging protocols were carried out to obtain these cell numbers, 

one after detachment of cells from substrate with EDTA and subsequent washing and re-suspension 

in media to then be seeded in clumps. The second protocol lifted the cells with Acutase and re-

suspended after filtration and subsequent washing to separate colonies out into single cells. All 

passages were done in a 3:1 ratio, with one well of a 6 well plate providing sufficient cells to cover a 

further 3 well plates. 

5.2.10 Initial screening with hTERT immortalized cell lines 

Due to the expense of human embryonic stem cells (hESCs) and more so induced pluripotent stem 

cells (IPSCs), screening of the nanopatterned cell culture surfaces and hydrogels discussed in Chapter 

1 was done using an easy to maintain and cheaper immortalized hTERT fibroblast cell line. hTERT 

fibroblasts were initially seeded on hydrogel rolls to test the hydrogel biocompatibility, by counting 

adhered cells after a 24 hour culture period. Counting was done manually with the substrate split 

into 1mm2 hydrogel islands, the cell count was then averaged per island over the four gel types 

tested. In this proof of concept investigation; devices were immobilized in 2D on a glass slide to test 

doping of the hydrogel scaffolds with collagen (Rat tail – Sigma Aldrich, UK) to aid further ECM 

immobilization (Figure 5-4). Subsequent tests were performed using hESCs, which as described in 

Chapter 1. The preliminary attachment of hTERTs was used as a pilot study to judge the surface 

biocompatibility and look for markers of cytotoxicity prior to switching to the stem cell line. 
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Figure 5-4 - Structure of hydrogel sheet with added dissolved collagen at three concentrations. Acetic acid solution contains 
0.1 M acetic acid and collagen added to stated concentration. Gel mixtures had to be kept cool prior to photolithography to 
limit clumping and polymerization of collagen mixture. 

To test cell adhesion to pure PEGDMA and collagen laden hydrogel scaffolds, sheets were fixed to 

glass substrates by a 3-(trichlorosilyl)propyl methacrylate (TPM) methacrylated silane based binding 

agent[113]. The resulting sheets were permanently bound to the surface of the glass allowing for cell 

seeding and long term proliferation studies.  

5.2.11 hESC small molecules initiated differentiation into hepatocytes 

Cells were seeded at between 80,000 and 40,000 cells/cm2 onto the relevant substrate coated in 

vitronectin or Matrigel® inside a 6-well plate. This was done in E8 medium as before in a 1:3 split 

ratio and allowed to adhere for 24 hr at 37 °C and 5 % CO2 prior to changing the media. An optimum 

cell density for each line needed to be established (up to 72 hours). Prior to changing to media 

containing small molecules in the form of the GSK-3 inhibitor CHIR99021 (Stemgent, USA),  cells 

were washed three times with PBS before being treated with differentiation media in a well-

established process adjusted for small molecules use and outlined in a recent paper by Siller et 

al.[172]. Differentiation of hESCs required media was swaps in three phases, of which two were 

attempted. For Phase 1 of differentiation RPMI 1640 GlutaMAX + B27 supplement, both from Life 

Technologies, Oslo, Norway plus 3–4 μM CHIR99021 (Stemgent, USA) were applied for a 24 hour 

period followed by RPMI-B27 alone for a further 24 hours to push the cells towards definitive 

endoderm. Phase 2 or the hepatic specification had a 5 day duration with DMEM containing 20 % 

knockout serum replacement, 2 mM GlutaMAX, 100 μM 2-mercaptoethanol, 1× MEM non-essential 

amino acids (Life Technologies, Oslo, Norway), and 1 % DMSO as the small molecule (Sigma-Aldrich, 

Norway). The small molecules stimulate the cells into a state of differentiation, only the initial two 
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stages of the three stages could be attempted during the limited time frame. The process is lengthy 

and in its full duration requires three stages over a longer time frame than could be attempted 

during the visit to Oslo. This approach and the subsequent results are a proof of concept to see how 

the process can be used with nanopatterned inserts and furthermore with nanopatterned self-

folding 3D scaffolds. 

5.2.12 cDNA preparation for Real Time - qPCR 

To quantify cell gene expression with preliminary Real Time-qPCR cDNA was prepared using the High 

Capacity Reverse Transcription kit (Life Technologies, Oslo, Norway) and PCR thermo-cycler from 

collected RNA samples. RNA was first isolated from cells using TRIzol according to the 

manufacturer’s instructions and quantified using a spectrophotometer (NanoDrop, Oslo, Norway). 

RNA was extracted as follows: 

1. Cells were scraped into PBS and pelleted by centrifugation in a 1.5ml Eppendorf tube, with 

the supernatant removed manually by careful pipetting. 

2. 1 ml of TRIzol® reagent was added to lyse the cells, which were re-suspended by pipetting. 

3. The samples were incubated for 5 minutes at room temperature. 

4. 0.2 mL of chloroform was added to the 1 mL of TRIzol® used for homogenization for 15s. 

5. 3 minutes at room temperature incubation. 

6. Samples were then centrifuged at 12000 × g for 15 minutes at 4°C.  

7. The aqueous transparent phase of the sample was pipetted and moved to a new Eppendorf. 

8. To precipitate the RNA, 0.5 mL of 100 % isopropanol was added to the aqueous phase and 

incubated at room temperature for 10 minutes. 

9. The mixture was again centrifuged at 12000 × g for 10 minutes at 4°C. 

10. The supernatant from the centrifugation step was removed by pipetting. 

11. The RNA pellet that remained was washed with 1 mL of 75 % ethanol for every 1 mL of 

TRIzol® used in the initial homogenization step. 

12. The sample was centrifuged at 7500 × g for 5 minutes at 4 °C and the supernatant discarded. 

13. The RNA pellet was air dried for 5–10 minutes. 

14. The washed RNA pellet was re-suspended in RNase-free water (20–50 μL depending on 

volume and quality) by pipetting followed by a vortex prior to testing, and after every 

subsequent defrost (to homogenize the solution). 

15. The yield of RNA was determined using absorbance at 260 nm and 280 nm in a UV-VIS 

spectrophotometer (NanoDrop, Oslo Norway), with the absorbance was correlated to 

concentration.  
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cDNA was reverse-transcribed from RNA using a High Capacity Reverse Transcription kit and thermal 

cycler (Life Technologies, Oslo, Norway). 

5.2.13 Real-time quantitative PCR 

To determine cell gene expression and indications of cell phenotype after exposure to 

nanopatterned surfaces, real-time quantitative PCR (RT-qPCR) was performed using RNA reverse-

transcribed to cDNA with a TaqMan VIIA 7 Real Time PCR system using Taqman Fast reagents and 

TaqMan Gene Expression Master Mix (Life Technologies, Oslo, Norway). The cDNA was diluted to a 

standardized concentration (Section 5.2.12). TaqMan assays were used to assess markers of interest 

with three replicates per normalized against an ACTB Actin endogenous control (i.e. three cell 

culture samples being studied for OCT4 levels would require 9 wells total with OCT4 hybridization 

reagents and fluorescent probes).  The diluted cDNA was mixed in a 96 well with a polymerase and 

fluorescent probe marker, as the 96 well tray cycled through ramping temperature cycles, a 

polymerase chain-reaction took place, increasing the fluorescent signal in each well, the cycle at 

which the reaction begins to accelerate indicates the concentration of the target mRNA expression 

amongst the cells harvested in that sample (Error! Reference source not found.). ACTB Actin was 

used as the endogenous control in all tests, with data normalized against H2 seeded undifferentiated 

cells on tissue culture plastic (TCP). The expression levels were calculated using the ΔΔCT method for 

relative quantification, output from the VIIA 7 software. The melt curves for the TaqMan primers 

and gels are not available to verify product sizes. Primer efficiency was determined for each primer 

(found to be in the range of 95-100 %) and accounted for in the determination of RQ. 

 

 

 

 

 

 

 

 

 

 



Iskandar Vasiev “3D Self-folding tissue scaffold origami”  225 

5.2.14 Estimating substrate stiffness of tall pillar arrays 

An injection moulded array of ultra-high aspect ratio pillars (UHAR) were manufactured by injection 

moulding [185] to perform cell substrate interaction studies on substrates with effectively varying 

stiffness. The inlays were 2cm2 with 4mm2 arrays of four pillar sets with varied height and thickness 

(Figure 5-5). The adjustment of the pillar aspect ratio allows for a fine tuning of the deflection at the 

pillar tip when it is subject to a load, thus emulating a bulk material substantially less stiff than that 

of the injection moulding material (polystyrene). 

 

Figure 5-5 – UHAR Pillars and insert arrangement  produced by injection moulding in polystyrene (PS) using the technique of  
Stormonth-Darling et al. [185]. 

The pillar compliance was estimated using the standard cantilever beam deflection equations [197]. 

Assuming small deflections and linear elasticity the displacement at the UHAR pillar tip can be 

defined as: 

 
𝛿 =

𝐹𝐿2

2𝐸𝐼
 

Eq. 5- 3 

Where F is the force, L is the length of the beam, E is the Young’s modulus and I is the second 

moment of area. The deflection angle of the pillar tip: 

 
𝜃 =

𝐹𝐿3

3𝐸𝐼
 

Eq. 5- 4 

2 mm 
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Polystyrene has a Young’s modulus 𝐸⁡of 3.25  GPa, and Poisson’s ratio of 0.35 [214] with the other 

factors derived for the pillar geometry. The area moment of inertia for a circular cross section is 

[197]: 

 𝐼𝑥 =
𝜋

4
𝑟4 Eq. 5- 5 

Table 5-3 - UHAR pillar array dimensions from SEM imaging measurements. 

Pillar type Height (m) Diameter (m) Area moment of 

inertia (m4) 

D150 Short 5x10-7 1.5x10-7 2.485x10-29 

D100 Short 1.1x10-6 1x10-7 4.909x10-30 

D150 Tall 1.7x10-6 1.5x10-7 2.485x10-29 

D100 Tall 2 x10-6 1x10-7 4.909x10-30 

 

Assuming that 𝐹 = 𝑘 ∙ 𝛿 where 𝛿 is the displacement of the pillar top and 𝑘 is the equivalent 

stiffness if the cantilever were to be represented as tension spring. This only takes into account the 

bending at the pillar base [215] with⁡𝑘𝑏𝑒𝑛𝑑 for a bottom fixed elastic cantilever of circular cross-

section in pure bending defined as: 

 
𝑘𝑏𝑒𝑛𝑑 =

3𝜋𝐸𝐷4

64𝐿3
 

Eq. 5- 6 

However according to Schoen et al.[215]; accounting for shear, tilt and base displacement yields 

more accurate results for soft substrates: 

 𝛿 = 𝛿𝑏𝑒𝑛𝑑 + 𝛿𝑡𝑖𝑙𝑡 + 𝛿𝑠ℎ𝑒𝑎𝑟 + 𝛿𝑏𝑎𝑠𝑒  Eq. 5- 7 
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Figure 5-6- Different components responsible for overall deflection of anchored pillars. Reproduced from Schoen et al. [215]  

Inserting the notation produced by Schoen et al.[215] separates the total tip deflection into its 

components (Figure 5-6). The effective spring constant kt of an elastically founded pillar is then 

found from the constant of pure bending kbend multiplied by a geometric correction factor Corr [215] 

defined as: 

 

𝐶𝑜𝑟𝑟⁡ = ⁡

16
3 (

𝐿
∅
)
3

16
3 (

𝐿
∅
)
3

+
7 + 6𝑣

3 (
𝐿
∅
) + 8𝑇𝑡𝑖𝑙𝑡(𝑣) (

𝐿
∅
)
2⁡ 

Eq. 5- 8 

 

Where the tilting coefficient⁡𝑇 corrects for the amount of substrate tilt when a force is applied to the 

pillar tip. 

 
𝑇𝑡𝑖𝑙𝑡(𝑣) = 𝜃 ∙

𝐸

𝜎𝑚𝑎𝑥
= 𝑎

(1 − 𝑣)

2𝜋
{2(1 − 𝑣) + (1 −

1

4(1 − 𝑣)
)} 

Eq. 5- 9 

A plot of the dependence of substrate Poisson’s ratio to the tilt component of pillar deflection is 

shown in Figure 5-7. 
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Figure 5-7 - Tilt correction factor with respect to substrate Poisson’s ratio. Tilt significantly reduced in rubbery materials 
(where v tends to 0.5). 

The fitting parameter is specified as 𝑎 = 1.3  for the pillar geometry [215] although the pillars are 

substantially thinner than those analysed by Schoen et al. [215], the parameter is consistent given 

the aspect ratio similarity between their work and those pillars used in the UHAR study in this work. 

Incorporating these terms provides a corrective factor for pillar deflection [215] to account for 

substrate interaction with true stiffness⁡𝑘𝑡: 

 𝑘𝑡 = 𝑐𝑜𝑟𝑟 ∙ 𝑘𝑏𝑒𝑛𝑑 Eq. 5- 10 

The pillar stiffness equation then becomes the combined notation, incorporating a tilt and shear 

component of the pillar deflection: 

 𝐹 = 𝑘𝑡 ∙ 𝛿 Eq. 5- 11 

The resulting plots of stiffness as well as extrapolations of the stiffness with pillar height and 

diameter are given in the next section. 

5.2.14.1 Estimating pillar array stiffness using COMSOL® multiphysics simulation 

Pillars were modelled in COMSOL® 4.2a a finite element multi-physics package to confirm empirically 

derived stiffness values. The pillars were represented in a static loading study. Output was recorded 

as a linear elastic deformation for load step of 10nN applied to the pillar tips while the base was 

considered an encastré boundary as substrate tilt is not expected in stiffer materials such as 

polystyrene with the results shown in Table 5-5 (page 257). 

5.2.15 Quantifying cell colony size and area coverage with Cell profiler™ 

H2 hESC colonies, and overall cell coverage were analysed with Cell Profiler™ for trends in cluster 

size in relation to the substrate topography, as well as to quantify cell attachment and proliferation. 

A pipeline was used to sort images (Figure 5-8), pre-set with the relevant background correction and 
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threshold to identify cell covered areas. This information was then output as either cluster size with 

centroid location, or for confluent topographies, as percentage area coverage (Figure 5-9). The 

confluence and size of colonies was stipulated to correlate to how easy it was for hESCs to thrive on 

a given surface at a discreet time interval after passage.  

 

Figure 5-8 - Cell profiler pipeline tree for hESCs colony cluster analysis, and cell area coverage analysis. 

 

Figure 5-9 - Area coverage output and the threshold mask image after background subtraction and the subsequent edge 
identification and area segregation to calculate the total area covered by hESC colonies. Field of view is 1800x2200 µm, 
area coverage worked out as contrast between occupied and empty pixels.  

1. Imput image
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background
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background
Sharpen

Threshold Identify objects measure objects Output
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To optimize the cell seeding and ECM plating densities area coverage data was then correlated to 

vitronectin coating concentration for those particular substrates (NSQ, FSQ and Planar). In the case 

of the nanopillar gradient arrays, due to their relatively large area in relation to the microscope field 

of view; an aggregate was made of 12 sets of low magnification 4x images taken across the gradient 

pattern and analysed with Cell Profiler™ to identify correlations in cell coverage shown in Figure 

5-10. 

 

Figure 5-10 - Left to right: Original microscopy montage of images spanning the nanopillar gradient (bottom to top, from 
highest to lowest), Centre: Threshold applied to identify cell clusters, Right: Individual cell colony clusters identified. Scale in 
pixels, x axis distance 9mm. Scale bar: 1mm 
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5.3 RESULTS 

5.3.1 Contact angle 

Topographies were analysed by water contact angle measurement to identify changes in surface 

wetting as an indicator of their suitability for cell and protein adhesion. The polycarbonate inserts 

used in all the subsequent cell studies showed an increased contact angle on nanopatterned 

substrates when compared to planar surfaces, as would be expected for the reduced wetted area on 

patterned surfaces (Figure 5-11). 

 

Figure 5-11 - Contact angles of injection moulded (IM) nanopatterned polycarbonate substrates covered with Full Square 
(FSQ), Near-Square (NSQ 50) topographies and planar control. Error bars SD from 15 measurements. 

The wetting of the substrates was to ascertain the ability for hESCs to settle on the fabricated self-

folding tissue scaffolds outlined in Chapter 4, as both FSQ, NSQ would later be applied to the 

container surfaces. The wettability of SU8 was found to improve drastically after ashing and retained 

this for a prolonged period depending on the ash extent (Table 5-4). 

Table 5-4 – Water contact angles on SU8 before and after plasma ashing for 20 s at 80 W (n=12). 

Material Contact angle ( ᵒ) 

SU8 Planar 87.55 ± 18.35 

SU8 Planar 24 hours post ash 7.06 ± 5.16 

SU8 Planar 48 hours post ash 18.37 ± 8.98 
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5.3.2 Fibroblast attachment to hydrogel surfaces 

Before the devices are used on more expensive and difficult to culture cell types, the adhesion and 

materials they incorporate were tested using human fibroblast hTERT cells. These cells are 

immortalized, grow quickly and adhere to many surfaces, making them a good test subject to 

determine the adhesion and cytotoxic effects of the hydrogel and structural materials comprising 

the 3D self-folding containers, it is assumed that while hESCs are known to be much more difficult to 

culture that the fibroblast hTERTs were a good starting point for initial testing. 

To enable the adhesion of embryonic stem cells, the surfaces of any scaffold need to be treated with 

ECM like proteins or peptides to allow for cell attachment. ESCs are known to not stick easily to 

substrates and usually require Matrigel® coatings or feeder layers [172]. The problem of adhesion 

with PEG and HEMA hydrogels only exacerbates this issue as these gels are known for being cell 

repellent by not immobilizing the native ECM. A collagen treatment of PEGDMA gels was attempted 

by mixing a 0.1 v/v % collagen/acetic acid solution into the pre-polymer at various levels, to both 

increase porosity and permeability, but also to line the gel with something into which the cell can be 

immobilized. The concentrations were 33, 25 and 17 % (0.1 v/v % collagen in acetic acid) in the pre-

polymer mixture prior to photolithography, this is slightly higher than that used for coating cell 

culture dishes. Gels were patterned into individual 1mm square islands with 100 µm pits to see if 

cells landed simply by fluid entrapment or actual attachment onto the island surface. While being a 

significantly cheaper method to make gels cell adhesive than RGD immobilization by pegylation, or 

by the use of SULFO-SANPAH, the dilution of collagen offers a workable modification to peg based 

hydrogels to immobilize fibroblasts. The culture of cells on hydrogels showed a contrast to cells 

grown on solid substrates however, with cells in a much tighter conformation and in much lower 

numbers, this could be due to the mechanical properties of the gel, compounded by the normal 

difficulty of adhering to PEGDMA and HEMA based gels.  
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Figure 5-12 - Cells stained with DAPI and phalloidin, attached to a collagen modified PEGDMA hydrogel sheet. (A): Cell has 
fallen into window of hydrogel sheet appearing more compacted, (B) Cell spreading on solid hydrogel section. Cells seeded 
at 10,000 cells/cm2.  Boxes are photolithographically defined windows in the hydrogel sheet. Scale bars 100 µm. 

hTERT fibroblasts cultured on hydrogels showed similar levels of elongation across all collagen 

treatments but the number of viable cells attached on the hydrogel islands showed a trend of 

improvement with collagen concentration (Figure 5-13), suggesting that this method could work to 

modify the surfaces for cell attachment. Future modifications used Matrigel® and vitronectin plating 

based surface modification. hTERT fibroblasts cultured on gels showed a significant increase in cell 

attachment when collagen is applied to the pre-polymer, expressed mostly in a jump in the numbers 

of successfully attached cells. 

 

Figure 5-13 - Average hTERT fibroblast count per hydrogel square on 100 square array, with various degrees of collagen 
modification in the pre-polymer. Fibroblasts seeded at 10,000 cells/cm2and counted manually after 24 hours of incubation 
in DMEM media. All hydrogel surfaces were soaked for 24 hours in PBS and 12 hours in DMEM prior to seeding of cells. 
Unmodified PEGDMA gel used as negative control. Only one replicate was run as a pilot study. 
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5.3.3 Fibroblast attachment to SU8 epoxy surfaces 

Unlike the hydrogel surfaces where increasing the concentration of collagen in the hydrogel films 

improved the visible cell adhesion, the SU8 epoxy surfaces showed an overwhelming improvement 

in attachment and proliferation of hTERT fibroblasts simply by ashing (Figure 5-14). Cell adhesion 

was improved by a post ash of SU8 surfaces for 20 seconds at 80 W resulting in reduced contact 

angle (Table 5-4)This is thought to be due to increased surface roughness according to work by 

Vernekar et al. [216]. 

    

    

Figure 5-14 – hTERT fibroblasts stained with DAPI (green) and phalloidin (teal) attached to (A) SU8 surfaces patterned with 
NSQ50 patterned nanopits, (B) SU8 simply ashed for 30 seconds at 80W in O2 plasma, (C) SU8 patterned with FSQ nanopits 
and (D) SU8 patterned with a randomized series of nanopits. Untreated SU8 without patterns showed very poor cell 
attachment after 24 hours. Scale bars: 200 µm. 
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5.3.4 hESC proliferation on patterned surfaces 

5.3.4.1 Effect of Rock inhibitor on hESC survival and proliferation 

The hESCs used (H2 cell line) preferentially form clusters in absence of Rho-associated protein kinase 

inhibitor (ROCK-i) with size playing large role in 48 hour viability, smaller clusters and individual cells 

quickly undergo apoptosis [9, 172]. The behaviour was irrespective of substrate pattern and was 

consistent on all substrates used including polycarbonate culture plastic and planar injection 

moulded polycarbonate. Comparisons of normal seeding protocol was carried out, where tissue was 

passaged and redistributed without ROCK-i, resulting in cell proximity and colony size as the key 

factor for cell survival.  

 

Figure 5-15 – H2 hESCs seeded as clumps on Matrigel coated FSQ surface. Cells seeded at roughly 20,000 cells/cm2 and 
cultured in Advanced DMEM. Phase contrast microscopy. Scale bars 600 µm 

5.3.4.2 hESC morphology changes with ECM density 

To identify the minimum possible ECM concentration on nanopatterned substrates, a factorial 

concentration series was used. The comparison of single-cell and clump seeding protocols 

demonstrated morphological and coverage differences between hESCs seeded on Matrigel® and 

Vitronectin coated surfaces at the maximum of 20,000 cells/cm2. Cell distribution was more uniform 

when seeding ‘single cells’, and allowed for a more controlled coverage of the nanopatterned 

substrates. Minor differences were seen in subsequent cell density on the different topographies but 

this can be attributed to differences in cell concentration, fluid flow artefacts and sample defects, as 

well as a lack of data points for quantifying full substrate coverage. However a distinct difference 

was observed between ‘planar’ non-patterned inserts and those with a nanopit array, this is 

attributed to lower ECM conformation to planar surfaces, and discussed in the subsequent sections. 
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The difference in cell viability lead to the later study of minimum ECM concentration on patterned 

and non-patterned surfaces, with a hundred-fold improvement in ECM adhesion on artificially 

roughened surfaces.  

 

Figure 5-16 - H2 hESCs on NSQ patterned inserts. A) Matrigel (standard protocol – 23ml DMEM+1ml Matrigel Aliquot) 24hrs 
- Adherence of H2 hESCs to planar substrates was visibly reduced, perhaps due to poorer Matrigel® coating of the non-
patterned surface. In relation to this result vitronectin coating of the polymer inserts showed significantly improved promise 
and greater cell attachment on all surfaces shown below. B) Vitronectin (0.5 µg/cm2 – Standard) 24 hrs. C) Standard 
matrigel coatings 24hrs on three injection moulded topographies 24hrs after seeding at 40,000 cells/cm2. D) Standard 
Vitronectin coatings on an identical set of injection moulded topographies 24hrs after seeding shows high density layer of 
cells in all samples. Phase contrast microscopy. Scale bars: 300 µm. 

The morphology at 48 hours varied but the formation of colonies became more distinct between 

ROCK inhibited and clump seeded hESCs. A sharp drop off was especially visible on Matrigel coated 

planar surfaces. Inhibition significantly improved the adhesion in all cases, with little difference seen 

between the three topographies. 

 

 

 

 

A          B  

 

C          D  
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Seeded cell clumps showed little or no visible changes in cell morphology, with colony size also 

practically invariant. Long term cell attachment may however, be dependent on more that critical 

colony size as large colonies on the planar surface later underwent apoptosis or delaminated. 

Patterned surfaces showed better colony viability, reaching confluence at 4-5 days after seeding. 

 

Figure 5-17  - A1-3: The morphology of single cell seeded H2 hESCs onto a Matrigel coated surface with rock inhibitor. B1-3 
Cells seeded in ‘clumps’ after separation in EDTH onto Matrigel surface and shows distinct lack of cell viability In contrast 
to vitronectin where coverage was higher on average. C1-3: Show samples covered in vitronectin and seeded with single 
ROCK inhibited cells. D1-3: Clump seeded cells on vitronectin. Scale bar: 600 µm. 

1: FSQ                               2: NSQ                             3: Planar 
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Figure 5-18 - Phase contrast microscopy of H2 hESCs clustering 24 hours after seeding in clumps on vitronectin coated FSQ, 
NSQ and Planar injection moulded insert respectively, little change in morphology is visible at 20x magnification. Scale bars: 
300 µm. 

qPCR collected from single cells 72 hours after seeding on various surfaces was compared for 

pluripotency and lineage markers ( Figure 5-19) RQ is the relative quantification in relation to actin 

as a reference sample. The chosen markers OCT-4, SOX-2 and NANOG all shown to positively 

regulate transcription of all pluripotency circuitry proteins in the LIF pathway[217], and all interact 

and form complexes with NPM-1 a transcriptional regulator involved in cell proliferation[218]. SOX-2 

and OCT-4 show an amplified joint expression and are shown to act together in relation to regulating 

pluripotency[172]. A significant spike in NANOG was seen in all cases compared with TCP controls. A 

slight but not statistically significant under expression of SOX-2 was also seen. 

As NANOG is a proliferation and self-renewal factor in undifferentiated stem cells[172], it can be 

assumed that this indicated a maintained pluripotency and continued cell proliferation on the 

inserts. This could be attributed to factors such as initial wettability, surface chemistry, oxygen 

concentration, as the inserts tend to maintain cells slightly closer to the surface of the fluid in the 

well, this factor also appears in cycles, and it could be that cells were harvested during a peak in its 

expression. In the case of SOX-2 the difference is considered negligible at this stage, both due to 

possible errors, and the apparent ability of OCT-4 to continue its function in situations of under 

expressed SOX-2 [219]. 

Cofactors which can in concert with NANOG expression play a role in differentiation of H2 hESCs into 

the three germ layers during embryonic development were not analysed on this occasion as no 

morphological changes were yet observed in culture, the extent of maintenance of pluripotency is 

described in section 5.3.4.5. A slight up-regulation of NANOG can be seen on insert surfaces 

primarily on Matrigel® in relation to the planar control ( Figure 5-19). 

1: FSQ                                                 2: NSQ                                                3: Planar 
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 Figure 5-19 - H2 hESC gene expression study with cells seeded as single cells from Acutase passage onto vitronectin (VTN) 
and Matrigel® coated nanopatterned inserts with NSQ50, FSQ patterned, with both planar polycarbonate and TCP controls. 
Cells collected after 72 hours in culture, after seeding at an initial concentration of 40,000 cells/cm2. RQ is the relative 
quantification to Actin ACTB endogenous control, all normalized to H2 undifferentiated TCP control. Error bars: 1SD. 

This expression is in contrast to clumped cells collected at 120 hours after seeding (Figure 5-20). At 

120 hours the larger colonies reached confluence and showed an opposite relationship, where SOX2 

appears to be significantly upregulated. A slight but not statistically significant down-regulation of 

SOX2 can be seen on patterned surfaces primarily on NSQ. This down-regulation could be attributed 

to normal fluctuations and potentially an artefact of minor changes in cell density between samples.  

72 hours 
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Figure 5-20 – H2 hESC gene expression study with cells seeded as clumps from EDTA passage onto vitronectin (VTN) and 
Matrigel® coated nanopatterned inserts with NSQ50, FSQ patterned, with both polycarbonate planar controls and TCP 
controls. Cells collected after 120 hours in culture, after seeding at an initial concentration of 40,000 cells/cm2. RQ is the 
relative quantification to Actin ACTB endogenous control, all normalized to H2 undifferentiated TCP control. Error bars: 1SD. 

 

 

 

 

120 hours 
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5.3.4.3 hESC morphology changes with seeding density. 

Optical microscopy looked at cell attachment at lower concentrations of both cells and ECM coating 

media. The 24hour cell proliferation on NSQ, FSQ, Planar and PS control samples is shown in Figure 

5-21 and Figure 5-22. Injection moulded substrates With NSQ and FSQ pattern morphologies were 

compared at similar rhVTN plating concentrations. Little observable difference was visible on all 

substrates, which was anticipated due to the similar contact angle and surface area coverage of 

nanopits. No visible changes in this relationship were seen, even when vitronectin concentrations 

were reduced to a minimum concentration of 0.25 µg/cm2. Cell coverage only improved with cell 

plating concentrations (≥80,000 cells/cm2) but did not show improvement as the vitronectin 

concentration was increased from 0.25 to 1 µg/cm2 (Figure 5-21). Nanopatterned inserts showed 

significantly better cell coverage at both low and high cell seeding densities (Figure 5-22). 

 

 

 

Figure 5-21 – H2 hESCs 24 hrs after seeding. Cells cultured on TCP controls (polycarbonate) coated at progressively lower 
concentrations of vitronectin. A) Cells seeded at 40,000 cells/cm2.  B) Cells seeded at 80,000 cells/cm2. Similar behaviour 
was seen at 0.5 and 1 µg/cm2 rhVTN concentration.  Scale bars: 500 µm. 

Figure 5-22 – H2 hESCs 24hrs after seeding on vitronectin coated NSQ substrates at various seeding densities and rhVTN 
concentrations. A: NSQ at 40,000 cells/cm2. B: NSQ at 80,000 cells/cm2. Similar behaviour was seen on FSQ substrates and 
at 0.5 and 1 µg/cm2 rhVTN concentrations. Scale bars: 500 µm. 

 A               B 

 

 

 

A            B 
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At 48 hours post seeding changes in colony size and distribution became apparent (Figure 5-23). The 

dominant effect of seeding with ROCK-I diminished after the first media change, resulting in 

substantial cell death as cell-to-cell interaction began to mediate cell survival leading to far more 3D 

aggregations of hESCs.  

Unlike TCP controls showed a sharp drop off in cell coverage at the 48 hour time point, even after 

successful aggregation into colonies over the previous 24 hour period (1st 24 hours after seeding). 

Critical vitronectin concentration was found to be near 0.25 µg/cm2 at which cells had difficulty 

adhering to TCP. 

Figure 5-24 - H2 hESCs on rhVTN coated NSQ injection moulded substrates at 48hrs after seeding at various plating 
and seeding densities. A) NSQ 40,000 cells/cm2. B) NSQ 80,000 cells/cm2. Similar behaviour was seen on FSQ 
substrates in these conditions. Scale bars: 500 µm.  

0.25 µg/cm2                0.5 µg/cm2                      1 µg/cm2 

 

   0.25 µg/cm2                0.5 µg/cm2                        1 µg/cm2 

 

0.25 µg/cm2               0.5 µg/cm2                     1 µg/cm2 

 
                                        

A 

 

 

 

B 

 

 

Figure 5-23 – H2 hESCs on PS TCP controls at 48hrs after seeding: A) Seeding done at 40,000 cells/ cm2. B) Seeding done at 
80,000 cells/cm2.Scale bars: 500 µm 
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Planar samples at 48 hours had no living cell colonies remaining and could not be documented, 

suggesting the ECM concentration or adhesion was too low and lead to subsequent colony 

detachment. 

The qPCR from the 96 hours culture on the rhVTN dilution gradient for cells seeded at 400,000 

cells/ml (80,000 cells/cm2) and 200,000 cells/ml (40,000 cells/cm2) is shown in Figure 5-25. 

Substrates were coated in the standard concentration of rhVTN at 5, 2.5, and 1.25 µg/ml (1, 0.5 and 

0.25 µg/cm2) Variations in seeding density and VTN concentration were split across the two 

reference genes showing the slight up-regulation in SOX-2, although up-regulation in OCT-4 tended 

to follow. The difference is not large enough to gauge and significant changes, but can be used to 

confirm pluripotency at this stage in the culture process, with the highest levels seen in the more 

densely coated substrates in both NSQ and FSQ. 
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Figure 5-25 – H2 hESC gene expression study with varying vitronectin concentration and cell seeding density. Cells collected 
after 96 hours in culture. 1.25, 2.5 and 5 represent plating density in µg/ml. 200 and 400 represent seeding density of 200k 
and 400k cells/ml. C represents TCP controls and N represents NSQ nanopatterned surfaces. Results are split by expression 

of Oct-4 and Sox-2 respectively which are common pluripotency markers for hESCs. RQ is the relative quantification to Actin 
ACTB endogenous control, all normalized to H2 undifferentiated TCP control. Error bars: 1SD. 

Subsequent broader spectrum analysis was conducted to investigate peculiar morphological 

patterns in cell culture. The qPCR data showed slight but significant down-regulation of MIXL1 and T 

with slight up-regulation of FOXA2 (Figure 5-26) 

96 hours 
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Figure 5-26 – H2 hESC gene expression study combining 3x96 well plates containing triplicates of cDNA from 9 culture wells 
and endogenous control. Substrates with varying plating concentration of vitronectin and seeding density. Cells collected 
after 96 hours in culture, after seeding at an initial concentration of 200,000 cells/cm2. The results are showing common 

pluripotency and lineage markers for H2 hESCs RQ is the relative quantification to Actin ACTB endogenous control, 
normalized to undifferentiated H2 TCP control. Up-regulation of FoxA2 can be seen on all patterned substrates, with a 

down-regulation of T and MIXL1. The cells had been imaged showing nodular 3D architecture after 84 hours of incubation 
(a day prior). All cells kept in E8 culture medium. Error bars 1SD. 

 

 

96 hours 
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5.3.4.4 hECS morphology at extreme vitronectin concentrations 

Cells were seeded at constant cell density (40,000 cells/cm2) with vitronectin concentrations 

reduced further and varied between 0.25 and 0.1 µg/cm2 or roughly 10 times less than the 

recommended concentration by Life Technologies Figure 5-27.  

 

Figure 5-27 - H2 hESCs 12 hours post seeding on A ) NSQ B) TCP controls coated with 0.1 µg/cm2 rhVTN and C) uncoated 
TCP. All seeded with 40,000 cells/ cm2. Images taken using phase contrast microscopy. Similar correlation was seen in the 
range of 0.25 and 0.1 µg/cm2 rhVTN in increments of  0.05. All scale bars: 300 µm. 

Compared to TCP controls treated with extremely low dilutions of vitronectin, the injection moulded 

substrates showed significantly improved in cell adhesion down to concentrations of 0.01 µg/cm2. In 

contrast at this cell dilution non-patterned surfaces showed no cell attachment. 

 

Figure 5-28 - H2 hESCs seeded on 0.01 µg/cm2 rhVTN plated FSQ after 24 hrs 40,000 cells/ cm2. Similar results were seen on 
NSQ substrates at this concentration regardless of cell seeding density. Scale bar: 300 µm. 

Quantification of area coverage was done by cell profiler analysis. A threshold was applied to phase 

contrast images for data from the 24 hour culture, individual cell colonies labelled, and total cell area 

coverage extracted (Figure 5-29). A sharp decline in cell are coverage is seen as rhVTN is reduced to 

a critical concentration of 0.01 µg/cm2. This suggests that the use of nanopatterned surfaces can 

improve the yield of rhVTN coatings for hESC culture, reducing the necessary amount of rhVTN to 

100x dilution compared to planar surfaces. 

A B C 

A                                                    
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Figure 5-29 - Cell area coverage with vitronectin coating concentration. Error bars: 1SD from n=5 measurements 

5.3.4.5 Forced and random differentiation of hESCs on nanopatterned surfaces 

The effect of topography and coating density on random and directed differentiation of H2 hESCs 

was also evaluated. Conditions were changed after 48 hours of normal culture when colonies had 

grown to a sufficient size (50-60 % area coverage).  

Several cases were studied with relevant TCP controls with and without induced differentiation: 

1.) hESCs differentiated by a standard small molecule protocol [172] on TCP.  

2.) hESCs differentiated by a standard small molecule protocol [172] on nanopatterned inserts. 

3.) hESCs left on nanopatterned inserts for random differentiation in RPMI B27. 

4.) hESCs left on TCP surfaces for random differentiation in RPMI B27. 

5.) Some of the samples from 3) and 4) progressed to phase 2 in DMSO. 
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Random differentiation on nanopatterned inserts in the same 24 hour period showed a distinctly 

more 3D structure (Figure 5-30). This 3D heterogeneous clustering was reminiscent of the behaviour 

seen in the small molecules differentiation procedure in RPMI+B27[172] (Figure 3-31), except for 

one key difference: the small molecule cell cultures on both TCP controls and the patterned surfaces 

show closely packed 3D colonies of cells with a new and slightly coarser cell type emanating out 

from the clusters, thought to be primitive streak given the short duration after swapping out the 

pluripotency maintaining E8 media. The primitive streak emanating out is a transitional state before 

a differentiation pathway is fixed. Controls on TCP undergoing random differentiation appeared to 

be highly 2D and homogenous (Figure 5-32). This homogeneous structure is indicative of sustained 

pluripotency, and is thought to be the result of the hESCs conditioning the media, even in the 

absence of E8 media [172]. The self-conditioning of the media is also apparent in random 

differentiation of hESCs on nanopatterned surfaces when large cell densities are present (Figure 

5-33). The sustained pluripotency persisted well into differentiation, with high densities of cells 

undergoing phase 2 of differentiation in DMSO also showing a largely planar and homogeneous 

structure (Figure 5-34). 

 

A               B  

 

  

 

 

  

C               D 

    

 

Figure 5-30 - Phase contrast imaging at 24 hours after start of random differentiation of H2 hESCs on  FSQ at A) 0.02, B) 0.05, 
C) 0.1 and D) 0.25 µg/cm2 of vitronectin respectively. NSQ showed a similar trend and 3D morphology. All scale bars: 600 µm. 
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Figure 5-31- Phase contrast imaging of induced differentiation of H2 hESCs in small molecules 24 hours post media swap, 72 
hours total culture duration.  0.1 µg/cm2 rhVTN. Cells seeded at 40,000 cells/cm2. Similar heterogeneous morphology was 

seen at concentrations of 0.02 to 0.5 µg/cm2 rhVTN on both FSQ and NSQ. Scale bar: 600 µm. 

 

Figure 5-32 - Phase contrast imaging of H2 hESCs in E8 media on TCP coated with 0.5 µg/cm2 rhVTN at 72 hours total, 24 
hours after the differentiation of all sample sets started. Similar 2D flat and homogenous morphology was seen on 1 µg/cm2 

TCP controls in the same conditions. All cells seeded at 40,000 cells/cm2.  Scale bar: 600 µm. 
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Figure 5-33 - H2 hESCs in E8 media on: A) FSQ 0.05 µg/cm2, B:) FSQ 0.1 µg/cm2, C) FSQ 0.25 µg/cm2. D) NSQ 0.05 µg/cm2 E): 
NSQ 0.1 µg/cm2, F) NSQ 0.5 µg/cm2 rhVTN. Cells seeded at 40,000 cells/cm2. All scale bars: 750 µm: 

 

 

 

Figure 5-34 - Phase contrast imaging of H2 hESCs after differentiation in RPMI+B27 with small molecules, 48hrs after media 
swap: H2 hESCs in E8 media on: A) FSQ 0.05 µg/cm2, B:) FSQ 0.1 µg/cm2, C) FSQ 0.25 µg/cm2. D) NSQ 0.05 µg/cm2 E): NSQ 

0.1 µg/cm2, F) NSQ 0.5 µg/cm2 rhVTN. Cells seeded at 40,000 cells/cm2. All scale bars: 750 µm . 

A        B                                C 

D         E                    F 

A         B                    C 

D         E                    F 
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Figure 5-35 - Phase contrast imaging of H2 hESCs on immersion in SRDMSO media after the small molecules procedure, 24 
hours after this second media swap. Samples died due to contamination at 48 hours. A) Small molecules induced 

differentiation on NSQ with 0.1 µg/cm2 rhVTN coating. B)  Random differentiation on NSQ with 0.1 µg/cm2 rhVTN coating. 
Similar results were seen on higher density rhVTN up to 0.25 µg/cm2. All cells seeded 40,000 cells/cm2. Scale bars: 600 µm. 

The presence of nanopatterned surfaces appeared to influence hESC pluripotency, with cells 

showing increasingly heterogeneous structure even without the use of forced ‘small molecule’ 

differentiation (Figure 5-35). Similar 3D behaviour with a distinctly different second phenotype was 

noticed on nanopatterned substrates after 84 hours. 

 

Figure 5-36 - Differentiation seen in H2 hESCs on nanopatterned insert substrates after 84 hours in E8 media. The pattern 
morphology, highly 3d structure and what appears as a changed cell phenotype is reminiscent of the behaviour seen in 

small molecule induced differentiation. All cells seeded at 40,000 cells/cm2. Scale bars: A) 400 µm B) 300 µm. 
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5.3.4.6 hESC behaviour on UHAR pillar arrays 

Cells cultured on the Ultra-high aspect ratio (UHAR) pillars [185] showed distinct changes in 

adhesion depending on pillar height and aspect ratio (Figure 5-37). This modulation of cell adhesion 

is thought to be caused by changes in mechanical properties and equivalent surface stiffness. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-37 – Images taken of H2 hESCs 48 hours after seeding with Rock-, all cells seeded at 25,000 cells/cm2. Right 
untreated, Left 0.1 µg/cm2 VTN coating A, B) D100 Short, C, D) D100 Tall, E, F) D150 Short, G, H) D150 Tall. It can be seen 
that cells attach to the D100 short surface even without coating.  All scale bars: 300 µm. 
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G              H 

E              F 

C               D 
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Figure 5-38 - A-C: D150 Short at 0.05, 0.25 and 0.5 µg/cm2 rhVTN at 24 hours. D-F: D150 Tall at 0.05, 0.25 and 0.5 µg/cm2 
rhVTN at 24 hours. G-I: D100 Short at 0.05, 025 and 0.5 µg/cm2 rhVTN at 24 hours. J-L: D100 Tall at 0.05, 0.25 and 0.5 
µg/cm2 rhVTN at 24 hours. All scale bars: 300 µm. 

Results suggest cells prefer the intermediate stiffness D100 tall pillars (Figure 5-38), with cell 

concentration falling off sharply at both higher and lower stiffness surfaces. Higher could be due to 

height effect, whereas lower due to softness (Figure 5-39).  

A         B                        C 
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G         H                    I 

J         K                    L 



Iskandar Vasiev “3D Self-folding tissue scaffold origami”  254 

 

Figure 5-39 – hESC colony area coverage with pillar type and coating density at 24 hours. D100T, D150T, D100S and D150S 
refer to the Diameter 100 nm tall, 150 nm tall, 100 nm short and 150 nm short respectively. Error bars: SE. 

As stated earlier the UHAR arrays offer a programmable surface flexibility, the result of which have 

been calculated using v = 0.35 and E = 3.25 GPa (values for polystyrene) [220] to give the deflection 

plots for the 4 pillar arrays found on the UHAR slides (Figure 5-40).

 

Figure 5-40 - Correlation of loading plotted against deflection for the four UHAR pillar geometries as determined from 
calculations. D100T, D150T, D100S and D150S refer to the Diameter 100 nm tall, 150 nm tall, 100 nm short and 150 nm 
short respectively. 

Additionally the pillar angle of deflection under load was extrapolated for different geometric 

combinations (Figure 5-41). 
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Figure 5-41 - Angle of inclination at pillar tip in relation to the non-deformed axis with varied tip loading compared for the 
four UHAR pillar geometries as determined from calculations with decreasing accuracy above 5⁰ pillar deflection. D100T, 
D150T, D100S and D150S refer to the Diameter 100 nm tall, 150 nm tall, 100 nm short and 150 nm short respectively. 

Optimum pillar dimensions were found by extrapolating the pillar height and diameter, to provide 

possible combinations of input parameters to provide the desired stiffness value (Figure 5-42). This 

confirms that the UHAR pillars used in this work do cover a range of stiffness values commonly seen 

in the work of Tritchet at al. [158] of between 1 and 100 nN/µm where ‘Stiff’ > 30. These values were 

then correlated to equivalent substrate stiffness to identify what modulus of a bulk material the 

pillars were capable of simulating. 

 
𝐸𝑒𝑓𝑓 =

9𝑘

4𝜋𝑎
 

Eq. 5- 12 

 

Where k is the pillar stiffness and a is a scaling constant dependent on pillar radius or FA area as the 

pillar radius was significantly larger in the calculation of the pillars used in the source paper, we 

assume that unlike the large pillars used in the work of Ghibaudo et al. [221], the 100 and 150 nm 

diameter UHAR pillars respectively will not be holding all the force of a 1 µm diameter focal 

adhesion, but rather be sharing the loading from one attachment. In this case it is easier to use the 

linear extrapolation to roughly estimate the equivalent stiffness under a shared predicted loading. 
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Figure 5-42 - Pillar stiffness’s of interest between 5 and 100 nN/µm for pillars of 500 nm, 1000 nm, 1500 nm and 2000 nm in 
height (h), as a way of tuning substrate stiffness for cell attachment. 1000-2000 have the largest useful range for cell 
culture applications. 

The bending simulations of pillars used in the study are shown in Table 5-5 (p 257), along with an 

extrapolation to effective Young’s modulus as seen in Ghibaudo et al. [221]. 
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Table 5-5 - UHAR Pillar type with corresponding cantilever stiffness as linear material, corrected, linear FEA model and 
equivalent stiffness for a flexible flat substrate. Load applied in model 10 nN.  Effective modulus determined from 
approximations by Trichet et al. [158]. 

FEA Model image output 

Pillar 

type 

Radius 

(µm) 

kcorr 

(nN/µm) 

k 

(nN/µm) 

kFEA 

(nN/µm) 

Eeffective 

(kPa) 

 

D150 

Tall 
0.075 45.85 49.32 51.15 35.3 

 

D100 

Tall 
0.050 5.74 5.98 6.03 4.28 

 

D150 

Short 
0.075 1499.06 1938.34 1855.30 1390.00 

 

D100 

Short 
0.050 33.35 35.96 36.10 25.80 
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The equivalent and actual stiffness of the pillar arrays is given in Table 5-5. This variety of stiffness 

highlights the variation in hESC attachment on the substrates of varying stiffness and height. A drop 

off is seen above and below a substrate stiffness roughly equal to 25.8 kPa. 

5.3.4.7 Adhesion of hESCs on hydrogel scaffold surfaces 

H2 hESCs seeded at 400,000 cells/ml as single cells from a 3:1 passage with Acutase showed very low 

adhesion on the hydrogel roll surfaces, with cells initially spreading over the surface of the gel in the 

first 24 hours in the presence of ROCK inhibitor (see Chapter 4) but subsequently underwent 

apoptosis before 48 hours. Those that stayed alive formed large colonies, as the cell-to-cell 

interaction became preferable to the surface of the gel (Figure 5-43).  

The cause of this is thought to be that the aforementioned surface modulus was too low to maintain 

viable cell attachment. While encapsulation with the rolls was possible, the large colonies detached 

during the rolling process, and those stained with live-dead stain showed some signs of life but 

cannot be called a proliferating colony. 

A B 

D C 

Figure 5-43 - A.B.) PEGDMA-Collagen (33 %) hydrogel rolls unfolded by pinning with thin PAA layer on Glass. Scale bars 400 
μm C.) Cells at 24 hours Scale bar 400 μm and D.) 48 hours forming cell colonies to escape gel sheet Scale bars 400 µm. 
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5.3.4.8 Adhesion of hESCs on hard scaffold surfaces 

Adhesion was very good on the hard epoxy scaffold structures (Figure 5-44), similar to the injection 

moulded inserts. This provides the justification for the hybrid containers, as an all hydrogel roll lacks 

the structural support necessary to adhere hESCs and allow them to proliferate so that a 

downstream differentiation can be attempted in 3D. 

Capturing cells in these containers was a partial success during a proof of concept seeding, but was 

only successful while working with hTERT fibroblasts (Figure 5-45) after the hESC experiments were 

complete. Regrettably the containers failed to work, or when they did the cells had started to die 

due to infection or other reasons. The low maintenance schedule of the hTERTs meant more 

attempts could be made until one proved to be fruitful.  

Figure 5-44 - '6 petal octagonal Lotus' folding scaffolds with overlapping lock mechanism (see Chapter 4). Device seated 
on 250 nm PAA lift-off layer, slowing down release rate long enough to seed H2 hESCs. Lift-off time confirmed as 5 days 
post seeding. hESCs seeded as single cells after Acutase 3:1 passage in a 200,000 cell/cm2 concentration. Cells were 
“dry-plated” onto containers immobilized on glass slide. Slide and containers previously washed in EtOH and irradiated 
with UV for 10 minutes, they were then soaked for 12 hours in PBS and 12 hours in E8 media. Prior to cell seeding the 
slide was plated with vitronectin in a 1 µl/cm2 concentration for 30 minutes at room temperature. All scale bars: 250 
µm 

D C 

A B 
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5.3.5 hESC colony formation on Pillar Gradient Array 

Patterning hard surfaces was looked into as a means of controlling hESC colony size and location 

within the 3D scaffolds by adjusting their ability to attach in certain areas. Calculation of the pillars 

on the gradient array slides, showed that the range off pillars all fall well within the range of ‘stiff’ 

pillars and substrate stiffness likely plays little role in cell behaviour on these patterns. The 

composite manually produced from optical microscopy over the 9 x 9 mm array square is shown in 

Figure 5-46. 

 

 Figure 5-46 - Compiled manual scan of the 9 x 9 mm square containing the nanopillar array. Some areas not imaged, 
however each strip is representative of a range of the array showing increasing colony size in each section. Scale bar: 1mm. 

High Pillars 

(250nm) 

Nearing planar 

Figure 5-45 - Optical microscopy image of a closed 'lotus' container with hTERT fibroblast cells visible on the inside surface, 
cells visibly stressed however by lack of feeding schedule to allow container to fully detach and fold without being torn 
apart by frequent fluid changes. hTERTS seeded at 20,000 cells/cm2. Image taken 72 hours after seeding of cells on glass 
slide bound tetrahedrons on 400 nm thick PAA sacrificial layer. ‘6 petal octagonal Lotus’ containers manufactured by 
PMMA lift-off process from Chapter 3-4 with container design outlined in Chapter 4. Scale bars: 250 µm 

A B 
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Following a prolonged incubation with no change in media from the Advanced DMEM E8 standard 

the pillar gradient at 94 hours showing highly 3D morphology (Figure 5-47), all substrates were 

covered in a 0.5 µg/cm2 vitronectin coating. 

Figure 5-47 Phase contrast microscopy 10x magnification. Images showing  H2  hESC forming highly 3D colonies on pillar 
gradient array.  These were found to occur in random differentiation conditions, with no induced differentiation (Small 
molecules), cells incubated in E8 media. Scale bars: 250 µm. 

The occurrence of these 3D colonies is a good indicator for being able to control colony size, and fine 

tune the critical density at which selective differentiation pathways are chosen. A 3D colony is also 

crucial in achieving the critical mass necessary to differentiate into mesoderm[172]. 

5.3.5.1 Pillar stiffness gradient calculation 

The gradient arrays had pillars of varying height from flat to 250 nm tall, but this height change did 

not significantly alter their flexibility, due to their low aspect ratio (Figure 5-48). Thus all the pillars 

on the array could be considered ‘stiff’, with changes in cell attachment assumed to correlate with 

the height of features rather than emulating a changing substrate stiffness, as was the case with the 

UHAR arrays covered previously. The variation in pillar stiffness (1x109 to 1x103) from one side of the 

array to the other is shown in Figure 5-48, calculated using equations 5.3-5.11. 

A                                            B 
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The variation in pillar height (and corresponding stiffness) decreases on the Y-axis of Figure 5-49 

below. Pillar gradients showed repeated correlations in cell coverage at various ECM coating 

concentrations. Substrates were coated in 0.25 µg/cm2 and 0.5 µg/cm2 of vitronectin and seeded 

with a cell density of 40,000 cells/cm2. 

                  

Figure 5-49 - Cell profiler labelled colonies shown as different coloured blobs, colony size and position plotted in Matlab 
script, correlating colony position and overall size in pixels (px) 

Correlating cell colony position with their relative size (as represented by the amount of pixels from 

the centre of the colony to its outermost edge) a scatter plot is shown in Figure 5-52. 
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Figure 5-48 - Pillar stiffness with varying height over the nanopillar gradient array. 
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Most cell clusters fell in the range of being under 150 µm in diameter, a colony size histogram is 

shown in Figure 5-50. 

 

Figure 5-50 – hESC cluster area histogram, showing the tally of cell colonies by their area of coverage, data post-processed 
from Cell Profiler® colony labelling. 

With the colonies being oddly shaped their radius was correlated to the overall cell cluster area and 

showed an almost linear relationship between the two as shown by the heat-map (Figure 5-51). 

 

Figure 5-51 - Plot of cluster area against maximum radius from centroid as analysed by cell profiler and post-processed in 
Matlab. A linear relationship can be seen between the two. 

The cell colony area was therefore used to map the level of cell-to-cell interaction and aggregation 

with increasing pillar height. This trend is better represented by producing a heat map of the cell 

cluster area and distribution, obtained from processing image data in Matlab, the resulting trend of 

cell cluster size and position is shown where yet again the distance x-axis represents the y-axis of the 
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labeled colony image in Figure 5-49. The colour represents concentration of adjacent points. Section 

lines between images show large concentrations of small colonies as these were cut by the image 

border, however a trend of increasing peak colony area can be seen moving to the origin. Generally 

the nanopillar gradients showed visible changes in hESC proliferation over the pillar range at all ECM 

concentrations.  FEA and mechanical calculations show that pillars would be rigid enough to exclude 

substrate stiffness as the reason for these variations. The changes in distribution are rather likely the 

result of the changes in height of the pillars and the ability for the cell to interact with the underlying 

surface. 

 

 

 

Figure 5-52 – Joined heat map scatter plot, where intensity (red) indicated several data points overlapping one another. The 
key trend to note is the average cluster area is higher where distance -> 0 with it dropping off on average moving along the 
x-axis. The converted location and cluster area in µm is shown in the lower plot. 

5.4 CONCLUSIONS 

A partial success in achieving cell encapsulation in a self-folding nanopatterned cellular niche has 

been demonstrated.  Initially cell seeding on collagen modified hydrogel inserts showed a trend of 

improvements in cell attachment, when compared to the pure PEGDMA negative control. It was a 

time sensitive pilot study, and succeeded in answering the question regarding PEGDMA gel 

modification with co cast collagen in the pre polymer solution, as evident from Figure 5-3. SU8 

surfaces showed successful cell attachment as seen in Figure 5-14 and Figure 5-44. The one 

dominant factor was not so much the type of nanotopography but oxygen plasma ashing of the 

surface, which is thought to be caused by surface chemistry modification, and partial roughening of 

the surface after etching, as evident in Chapter 4. 
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Following seemingly successful attachment of hTERT fibroblasts in a trial prior to beginning work 

with hESCs, several sets of nanopatterned inserts manufactured by injection moulding were taken to 

Oslo for experimentation with human embryonic stem cells (hESCs). The use of injection moulded 

substrates aimed at minimising the cost during this pilot study, as nanopatterned container samples 

were still in the low batch manufacturing stage, and took substantial resources and time to 

manufacture, when compared to the hundreds of samples that can be injection moulded in one 

afternoon. 

Testing of hESC seeding began by calibrating the necessary ECM coating concentration, seeding 

density, ECM type and procedure for coating and culturing cells on these substrates. It was found 

that vitronectin maintained prolonged attachment of hESCs to the substrates when compared to the 

commercially available Matrigel® as evident in sub section 5.3.4.2. It was also found that cells 

remained attached to the surfaces even at very low concentrations of vitronectin (up to 100 times 

dilution) (Figure 5-29) when compared to TCP controls. 

Cells cultured on hydrogel sheets showed poor long term attachment, and formed larger colonies, in 

what is believed to be a survival tactic. These large colonies broke off from the substrate, and when 

compared to the rhVTN coated glass in the images (Figure 5-43), the soft hydrogel surfaces are not 

favoured by the hESCs. This issue is circumnavigated by the hybrid faced containers which did 

successfully immobilise cells and remain anchored to the surface long enough to seed (achieved by 

using a very thin PAA release coating), the immobilised cells are shown in Figure 5-44. Sadly the 

seeded containers suffered from infection before lift-off of the containers could be achieved, and 

those that did had the hinges damaged by successive media changes. Successful capture of cells 

from culture by the gradual release of containers after cell seeding was only successfully achieved at 

the end of this work with hTERT fibroblasts in the University of Glasgow lab, as seen in optical 

microscopy of closed containers containing fibroblast layers (Figure 5-45). 

The lack of hESC attachment to hydrogel containers was confirmed by their poor adhesion on the 

softer UHAR pillar arrays as seen in Figure 5-48, this is in agreement with literature, where softer 

substrates were not favoured by human embryonic and induced pluripotent stem cells [173]. 

Further work is necessary to see if pillar height and thereby substrate stiffness changes gene 

expression in hESCs, and can be used as a means of selective substrate induced differentiation, as 

has been demonstrated on MSCs by the past work of Dalby et al.[39] for bone formation. The 

gradient pillar array meanwhile showed a decrease in hESC attachment as the pillar height increased 

as demonstrated by the FEA analysis shown in Table 5-5 (p 257). It was observed that smaller 

colonies formed on the high pillar region as shown in the cell coverage densities in Figure 5-52. This 
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correlates in cell profiler analyses of cell proliferation (as colony size) on the various regions of the 

gradient pillar array in Figure 5-50. These gradients can potentially be used in the future as a means 

of controlling cell colony size on different faces of the 3D nanopatterned containers in Chapter 4.  

This was a pilot study to assess if it would be possible to seed hESCs on 3D nanopatterned containers 

and influence their behaviour by changes in substrate topography. It has demonstrated that this 

technique could be possible, with the colony formation of hESCs successfully controlled, and even 

signs of spontaneous differentiation observed in the 3D clustering behaviour seen in Figure 5-30.  

While no hESCs could be transitioned successfully in a closed 3D container due to issues with 

infection and problems with manufacturing, hTERT fibroblasts could be captured in cell media by 

slow lift-off of these self-assembling containers. Had more time been available, with the newly 

learned techniques and lessons from subsequent failures it is entirely possible that hESCs could be 

captured within these containers, although this would have required more time in Oslo. There were 

also difficulties in that the manufacturing of the boxes took place in another country, limiting the 

available stocks that could be accessed and accounted for. Whether they could be maintained in this 

configuration, and even influenced down a certain differentiation pathway remains to be seen, and 

would be an excellent candidate for future work on this subject. However the tool box and approach 

to creating these niches has now been established. 
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6 OVERALL DISCUSSION AND CONCLUSIONS 

The desire to design and construct micro- and nanoscale systems for tissue engineering originates 

from the need for sustained and precise control over cellular proliferation, function and 

differentiation. This task is a vital milestone in moving from materials which are “observed to 

function”, to those which are “made to function”. This ‘design’ process reflects the main factors 

controlling cell function in vivo, such as: architecture, chemical and mechanical stimuli, gradients and 

cross talk between diverse cell types. A multi-stimuli and multi-dimensional environment is 

therefore desirable if we are to emulate the complex biological systems. 

The aim of this work was to create 3D structures using traditional 2D nanopatterning techniques 

which could be used in cell culture to create tailored and nanopatterned niches. This has been 

demonstrated as a proof of concept work. While the differentiation of stem cells or prolonged 

culture of cells in the 3D containers has not been achieved, the tool box and the ability to apply it 

have been demonstrated. However given sufficient time, with the new understanding of the process 

and nuances of cell culture that this task would be possible by building on this work.  

The success of the project in creating the self-folding containers, is achieved by the use of a number 

of novel manufacturing techniques listed in Chapter 2 which aim to limit the difficulties in 

throughput, created by brittle and costly imprint stamps, and coping with the occasional film non 

uniformity which is an inevitable by-product of spinning multiple layers to produce complex 

structures. The first of these novel fabrication methods is the hierarchical patterning using FEP two 

tier stamps shown in Figure 2-21, which can be used to add an extra level of adjustable and tailored 

complexity to the surfaces cells interact with inside the scaffolds, and secondly to the patterning of a 

3D curved surface seen in Figure 2-26, as the increased toughness of the FEP films allows them to 

conform to more complex geometries. This flexibility in turn allows the application of patterns 

traditionally produced by stamping using qz and Si stamps on planar 2D surfaces to 3D, curved and 

non-planar, non-uniform surfaces, providing greater throughput, easier replication and significant 

cost reductions when compared to lithographically manufactured stamps. For medium sized 

nanotopographies in the region of 500 nm, it has been shown that the FEP films can be combined 

with traditional EBL resists and metal evaporation to recreate low aspect master stamps on Si 

surfaces, (Section 2.3.3). The ability to pattern non planar surfaces with FEP stamps, leads into the 

proposed novel technique of modular NIL (Section 2.2.3.6). Combinational mastering provides a tool 

for creating any combination of nano- and micropatterned hierarchical structures on surfaces by UV-

NIL to have greater control of cell segregating patterns as shown in Figure 2-25, and thereby 
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controlled contact guidance of cells in culture. Although this final claim has not been demonstrate 

experimentally due to a lack of time, it is worthy of future study. 

A key achievement has been the hybrid containers described in Chapter 4, in the form of 

dodecahedral containers, and the flower shaped “lotus containers” shown in Figure 4-48. These 

containers combine hydrogel synthesis by photolithography, with a number of nanofabrication 

techniques including NIL and UV-NIL described In Chapter 2 to create self-folding nanopatterned 

structures by a simple and quick method. The containers created during this work differ from those 

seen in literature, such as those from created by Bassik et al. [24] and in the work Py et al. [222] on 

capillary folding, in that they can be nanopatterned by conventional means, and fold in cell culture  

media as shown in Figure 5-45. These advantages do not stem from novel hydrogel chemistry but 

the way the devices are manufactured and used.  

The container construction hinges on the creation of the bilayer as a by-product of lift-off from a pH 

responsive PAA sacrificial layer underneath, as shown in Figure 4-2 [1]. This method of creating 

hydrogel bilayers has two distinct advantages compared to serial lithography as seen in the bilayers 

produced by Bassik et al. [24] in their greater simplicity and faster production speed and in the 

exposure gradient hydrogels produced by Jamal et al[27], in that these bilayers can incorporate 

patterning in the same step by the novel method of sacrificial layer embossing shown in Chapter 2 - 

Figure 2-32. 

These novel bilayer films are much thinner, suggesting better permeability to dissolved species, they 

have also been demonstrated as a stand-alone self-rolling scaffold, much like a Swiss-roll, which can 

incorporate spacer pillars, patterns and photopatterned windows to aid cell migration and reinforce 

the roll structure. The patterned rolls while easily foldable in cell culture media and pH buffer 

solution had to be modified to allow for cell attachment, by the incorporation of collagen in the pre-

polymer mixture which was markedly improved by the dissolution of collagen, and then further 

coated by dry plating vitronectin for the attachment of hESCs. While the all hydrogel scaffolds were 

not ideal in their present form, they were the justification for the use of hybrid containers composed 

of solid patterned faces, and flexible hydrogel hinged as a “best of both worlds” approach. The 

issues with cell attachment to the hydrogels could potentially be improved by modification with RGD 

or by tethering a ECM protein to the gel [36], this could be attempted in future work to improve the 

usability of the all hydrogel rolls. 

In the hybrid container construction it was demonstrated that these hydrogel bilayer films can be 

utilized as photolithographically defined thin hinges in a process almost identical to 

photolithography and UV-NIL performed on conventional micro fabrication photoresists. They also 
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require less preparation [23], and are not sensitive to atmospheric oxygen due to the incorporation 

of minute amounts of TEA as an oxygen scavenger. This allows for the hinges to be applied in a 

conventional photolithographic setup, provide the potential to be scaled up to roll-to-roll printing 

and screen printing manufacturing, where keeping a deoxygenated polymer mixture over large areas 

does not have practical merit. 

The hybrid container designs limited the necessary folding angle, by increasing the number of faces 

of which the spheroid was constructed, as seen in Chapter 4. By doing this, the gel chemistry was 

less of an issue, as the containers would form semi-confluent and confluent containers even at 

modest hinge deflections. By limiting the required gel swelling, the overall strength of the hinges 

could be improved thus reducing the fragility of the 3D containers, as the swelling ability of the gel is 

inversely proportional to its strength due to the crosslinking network being sparser as seen in 

rheological data in section 3.3.2.2.1. In creating mechanically stronger hinges there is therefore a 

trade-off of actuation potential as demonstrated by the Timoshenko relation (Figure 3-41). 

While many designs were proposed in Chapter 4 not all were achieved, the key demonstrators 

became the dodecahedral container and that of the symmetrical lotus. Key difficulties that had to be 

overcome were interactions between various layers. For instance the sacrificial nanopatterned PAA 

lift-off layer could not be combined with solvents that could dissolve it, limiting all gel hinge 

formulations to those using ethanol (EtOH) as a solvent. There were also artefacts in the form of 

insoluble films (Figure 4-37). These were eventually overcome by introducing a boundary layer, that 

is removed in the hinge areas by development or etching prior to hydrogel hinge application, to give 

it a clear path to the pH responsive PAA layer underneath. It was assumed that this insoluble film 

that affected manufacture was a result of a reaction between the acidic underlying PAA layer, and 

the SU8 photoresist above, as the SU8 is crosslinked by a photo-acid generated during photo 

exposure. The assumption was that the acidic shorter chains in the PAA partially crosslinked the 

interface, or were somehow bound by ionic bonding to the SU8 epoxy chains. The introduction of a 

PMMA boundary layer which was later removed by ethyl-lactate during SU8 development solved 

this issue, as did a more costly Au boundary layer, removed by a novel slow iodine etch using 

isopropanol instead of water, to avoid damaging the PAA layer below. 

The containers were tested on hTERT fibroblasts cultured in complete DMEM and also in Oslo on 

hESCs obtained from the Oslo Centre for Stem Cell Research. The cell encapsulation and behaviour 

on nanopatterned surfaces was intended to follow on from  Siller et al. [172] where hESC 

differentiation was directed towards endoderm and subsequent hepatic tissue formation by the use 

of a proprietary small molecules technique. The inspiration was to attempt to recreate the 
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topography induced differentiation seen in MSCs in  Dalby et al. [39], however in this case it would 

be done with hESCs and hepatic tissue rather than bone. 

It was noted that the use of nanopatterned surfaces significantly reduced the amount of ECM 

necessary for substrate coating, thereby reducing overall cost of cell culture (Section 5.3.4.4). The 

hESCs also showed the spontaneous formation of much more 3D structures, similar to those seen in 

small molecule induced differentiation but perhaps not as pronounced. This was done in the 

absence of any differentiation inducing media (Section 5.3.4.5). 

A foundation for discovering desirable nanopatterns for hESC proliferation control has been 

established, as have the means of producing these patterns on the surfaces of foldable containers, 

produced by simple photolithographic methods. These containers have been shown to be able to 

fold in the native cell culture environment, by the use of permeable hydrogel hinges. The folding of 

these containers is controlled by the thickness of lift-off sacrificial layer, which is also responsible for 

the folding of the containers, and when patterned produces a nanopattern on both internal and 

external surfaces of the container, something entirely novel.  

The 3D containers produced within this work, have been shown to be able to capture cells and 

transfer them from a 2D culture surface to a 3D environment. While the merit of this, and any 

possible effect on cell differentiation, proliferation and organelle metabolism remains to be 

determined, this pilot study and proof of concept design provide the tool box for it to be attempted 

in future work. 
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7 FUTURE WORK 

A number of ways exist which could add to and broaden the existing understanding of these 3D 

cellular niches and patterning techniques. While a proof-of-principle tool-box has been created and 

demonstrated, many areas require additional statistical verification through repeat studies. In 

addition to expanding the existing knowledge, a number of additional investigations would be of 

great interest: 

 A structural investigation of 3D container triggering and release could help improve their 

versatility. While the hinges close the boxes successfully, it was found that it is the anchoring 

duration to the substrate (before the box detaches and floats away) that would play a key 

role in cell survival, premature detachment is detrimental to cell survival while late 

detachment is inefficient and potentially costly. A sacrificial layer which dissolves as a result 

of cell released metabolites could be a key to their autonomous operation, once sufficient 

cell density and attachment is achieved the colony would begin to dissolve the sacrificial 

film, releasing the container and causing it to fold automatically. 

 

 Having shown that these containers can in principle capture cells from culture media, and 

potentially keep them alive in the long term, more work is necessary to understand the 

survivability of cells in containers of different sizes and the metabolomics of IPS and ESC cells 

on various nanotopographical patterns in 2D and in the 3D containers. This could lead into a 

full differentiation from embryonic state through to definitive endoderm liver and ultimately 

hepatic tissue in a 3D patterned cellular niche. 

 

 Having relied on photo patternable epoxies, photo resists and touched on some 

biodegradable polymers such as PLLA and their patternability by embossing, creating a 

polymer blend with tunable degradation rate could introduce biodegradability into the 

containers, to allow them to dissolve and leave a cell cluster behind after the cells have 

formed a confluent colony. This degradation would allow applications in vivo and the 

potential for cell therapies where a container remaining indefinitely is not desirable. 

 

 It has been shown that containers can be made incorporating conductive layers such as gold 

on one or both surfaces, introducing sensory circuitry into the surface of the container and a 

miniaturized gel power supply to allow for their use as internal sensors and grippers, or for 

stimulation of cardiac and/or neuronal tissue.  
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APPENDIX A – SIMULATION OF OXYGEN CONCENTRATION IN CELL CULTURE 

MICROCONTAINERS 

To investigate the oxygen consumption of cells in an enclosed container, and ultimately to see if they 

were likely to undergo rapid cell death; COMSOL models were created to look at the rate of diffusion 

into a container with permeable slots or hinges, and solid faces. The model is based on a simulation 

by Buchwald [223] for the simulation of pancreatic islets. Here the geometry is adjusted to that of an 

enclosed container. Hinge lengths were 40 µm with box faces varying between 125, 250 and 500 µm. 

The cell layer was 20 µm thick and 10 µm clear of the box face edges. The model (Appendix figure 2) 

is a 2D representation of a 3D container. While the cells used in literature are different from those 

hESCa, the dynamics of cells being in enclosed architectures was a pilot study to gain insight into 

how cultures in these niches would operate and survive. While diffusion and consumptions rates 

may differ, the overall combination of these and the laws governing the oxygen concentration 

remain the same, experimental consumption rates and dissolved gas concentrations can be fed into 

the model in the future, as can diffusion coefficients. To simulate the problem COMSOL physics used 

were the time dependent diffusion relationship: 

𝜕𝑐

𝜕𝑡
+ ∇ ∙ (−𝐷∇𝑐) = 𝑅 − 𝑢 ∙ ∇𝑐 

Where, c denotes the concentration in mol·m-3 of oxygen and D the diffusion coefficient m2·s-1 

thereof. R the reaction rate in mol·m-3·s-1, and 𝑢 is the diffusion velocity field in m·s-1, where ∇ is the 

standard del operator [223]. 

For oxygen consumption, Buchwald [223] assumes a Michaelis-Menten-type consumption rate (R < 

0) where a step-down function decreases the oxygen consumption rate when a critical concentration 

is reached, this simulates hypoxic conditions where the cell metabolism is slowed down to limit 

consumption is reduced in the face of a dwindling oxygen supply. While Butchwald [223] used this in 

applications for pancreatic islets with relatively large cellular mass, we are applying this to thin cell 

films on the walls of an inert container, the step function is useful though as the species transport 

into these containers is limited by the faces of the box, and only the hydrogel hinge and closure 

areas openly allow gas diffusion to occur. The governing equation of cell oxygen consumption from 

Butchwald [223]: 

𝑅𝑂2 = 𝑅𝑚𝑎𝑥,𝑂2 (
𝐶𝑂2

𝐶𝑂2 + 𝐶𝑀𝑀,𝑂2

) ∙ 𝛿(𝐶𝑂2 > 𝐶𝑐𝑟) 
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Where, Rmax is the maximum oxygen consumption rate, CMM,O2 the Michaelis-Menten concentration 

constant at which O2 consumption rate drops by 50 % of its maximum, Ccr is the critical oxygen 

concentration below which necrosis is assumed to occur after a sufficiently long exposure, these 

areas are highlighted in the output as hypoxic zones. Here δ is the step-down function to account for 

the reduced O2 consumption rate in those cells where the oxygen concentration fell below the 

critical levels. To define the reduced oxygen consumption in hypoxic conditions the COMSOL's inbuilt 

smoothed Heaviside function flc1hs was used, in the same way as with Butchwald’s islet simulation 

[223]: 

δ (c) = flc1hs(c-1.0 × 10-4, 0.5 × 10-4). 

The other parameters used are shown in Appendix Table 1. A schematic of the model is shown in 

Appendix Figure 2. The construction remains the same for the three sizes, with a hexagonal 

construction also attempted. In this model influx oxygen diffusion occurs only from the atmosphere 

into cell media solution, with the oxygen sink in the model remaining within the containers in the 

form of thin cell sheets adhered to the container walls. 

  

 

 

 

Oxygen flux from atmosphere 

Impermeable substrate interface 

Appendix Figure 1 - Schematic of COMSOl model forl ooking at oxygen consumption by cells in an 
enclosed space. 
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Appendix Table 1 – Variable definitions assigned to the model and assumptions made. Values were adapted from Buchwald 
paper on pancreatic islets[223]. Definitions were added to model the hydrogel containers, and islets replaced with thin cell 
layers lining the walls of the container. [223] 

 

Variable Description COMSOL variable Value 

CMM,O2 Cut-off concentration of O2  CMM_O2 1E-3 mol/m3 (1 µM) 

PMM,O2 Partial pressure O2 PMM_O2 0.7 mm/Hg 

Ccr Concentration limit O2 C_cr 1E-4 mol/m3 (1 µM) 

Rmax Rate consumed O2 max Rmax 0.034 mol/s/m3 

DO2 Diffusion of O2 in water DO2 3E-9 m2/s 

Dcells Diffusion of O2 in cell layer Dc 2E-9 m2/s 

Dg Diffusion of O2 in gel hinge Dg 2E-9 m2/s 

Catm Atmospheric O2 

concentration 

C_atm 0.23  mol/m3 

Ccells Concentration in cell layer C_cell 0.16 mol/m3 

 

Two models are shown one for a hexagonal container (Appendix figure 2) showing the oxygen 

diffusion flux and the steady state oxygen level within the container (Appendix Figure 4). The 

resulting areas of hypoxia are shown as white regions in Appendix Figure 5, and show the result 

when the cells are evenly distributed (A) and if a single colony of cells 5 layers thick forms on the 

container floor (B). 
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Appendix Figure 2 - Model as seen in COMSOL interface, hexagonal container with cells modelled on the inside surfaces 
consuming oxygen which is diffusing into the culture medium from the above atmosphere. Contour lines indicate direction 
of oxygen flux in system. 

 

Appendix Figure 3 - Oxygen concentration minimum value within the container over time, a steady state is reached near 
10000 seconds. 

Oxygen diffusion flux vector 
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Appendix Figure 4 - Simulation of two containers positioned adjacent, the top container has a 20 µm thick layer of cells 
spread over every face, the bottom container has one cell block 80 µm  thick placed on the bottom face. White zones 
indicate what can be called hypoxic conditions. This illustrates that the containers could generate a similar nutrient gradient 
as seen in hepatic lobules, discussed in Chapter 1. 

 

A 

B 
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Appendix Figure 5 - Time = 1000 s when the oxygen concentration has not yet reached a steady state. For a cell sheet two 
layers thick (3000 cells per surface) in containers of three different sizes ranging from 1000 to 500 to 250 µm respectively. 

 

Appendix Figure 6 – Oxygen concentration at t=10000 seconds when steady state has been reached.  

A B C 

A B C 
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Appendix Figure 7 - Steady state oxygen levels achieved with changing container size, as the diameter of the container 
drops from 1000 to 500 and 250 µm. As the size of the container drops the hinge is proportionally a larger part of the 
container surface area, while the area populated by cells is decreasing. Smaller containers therefore have a benefit in 
providing greater oxygen permeability. 

This simulation shows (Appendix Figure 5) that with oxygen diffusing at the 3D container hinges and 

face edges, each face, seeded with cells effectively reproduces a nutrient and oxygen concentration 

gradient, it also suggest that larger hinges are needed on larger containers to maintain sufficient 

oxygen  diffusion  into the container.  

One other suggested benefit of these hypoxic conditions may be the in situ effects on differentiation 

of human embryonic stem cells (hESCs) with Prado-Lopez et al. [224] suggesting that hypoxia 

promotes endothelial differentiation. Keeping containers with different sizes and conditions in co-

culture could create different lineages depending on oxygen saturation, forming a co culture in 

solution.  

 

 

C 

B 
A 
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