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Abstract 

Traumatic injury to the spinal cord interrupts ascending and descending 

pathways leading to severe functional deficits of sensory motor and autonomic 

function which depend on the level and severity of the injury. There are 

currently no effective therapies for treating such injuries and the adult central 

nervous system has very limited capacity for repair so that recovery is very 

limited and functional deficits are usually permanent. Cell transplantation is a 

potential therapy for spinal cord injury and a range of cell types are being 

investigated as candidates. Mesenchymal stem cells (MSCs) obtained from bone 

marrow are one cell type quite extensively studied. When transplanted into 

animal models of spinal cord injury these cells are reported to affect various 

aspects of repair and in some cases to improve functional outcome according to 

behavioural measures. However, the use of these cells has several limitations 

including the need for an invasive harvesting procedure, variability in cell 

quality and slow expansion in culture. This project therefore had two main aims: 

Firstly to investigate whether MSC-like cells closely equivalent to bone marrow 

derived MSCs could be reliably and consistently differentiated from human 

embryonic stem cells (hESCs) in order to provide an “off the shelf” cellular 

therapy product for spinal cord injury and secondly, to transplant such cells into 

animal models of spinal cord injury in order to, determine whether hESC-derived 

MSCs replicate or improve on the repair mechanisms reported for bone marrow 

MSCs. 

To accomplish the first aim of the study, hESCs (H1) were repeatedly 

differentiated into MSC-like cells in several runs performed in duplicate, using an 

optimize protocol based on a non embryoid body (EB) based method previously 

described. Mesenchymal-like stem cells were reproducibly derived from hESCs 

after 28 days of differentiation and repeated passaging for 10-15 days. The cells 

were characterized according to morphology and adherence capacity to plastic, 

surface marker expression (eg. CD73 and CD105), gene expression and functional 

differentiation into adipocytes and osteoblasts. The MSC-like cells from this 

study grew very robustly and displayed a better proliferation capacity than is 

generally repeated for MSCs. Cells from each of the differentiation runs of were 

cryopreserved and five of them were recovered later for use in cell 
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transplantation in an animal model of SCI. Re-characterization of these cells 

indicates that they retain their MSC-like properties and ability to grow robustly 

even after being cryopreserved. The data from this part of study indicates that 

MSC-like cells can be generated reproducibly from hESCs, will proliferate more 

rapidly than adult cells and can be cryopreserved without detriment to their 

properties. This part of the work therefore provides proof of principle for the 

idea that hESC derived MSCs could be developed as an “off the shelf” cell 

therapy product. 

In the second part of the project, the hESC-MSCs that were differentiated and 

characterised in the first part of the project were tested in vivo by transplanting 

cells into an animal model of traumatic spinal cord injury. Cells were 

transplanted three weeks after a contusion injury. In some animals an additional 

operation was performed to inject a tract tracer in order to assess axonal 

regeneration. All animals were perfusion fixed and the spinal cord removed and 

processed for immunocytochemistry using antibodies for different combinations 

of markers before being examined using fluorescence and confocal microscopy. 

The cells showed good survival within the injury provided that 

immunosuppressive treatment was used. They usually filled the injury area so 

that the cavities present in non-transplanted animals were never seen in 

transplanted spinal cords. There was no evidence that the cells differentiated 

into neurons or glia though their morphology could differ from that in culture 

especially for cells outwith the transplant area. There was some glial activation 

in response to the cells but the glial scar around the injury did not differ 

obviously in transplanted compared to non-transplanted animals. Laminin was 

frequently found at the injury site in both transplanted and non-transplanted 

animals but blood vessels were more numerous in transplanted animals as judged 

from both laminin and smooth muscle actin staining. The transplants supported 

axonal regeneration which included ascending dorsal column but not 

corticospinal fibres.  

Cells were frequently seen outwith the injury site and could form tracks leading 

rostral and/or caudal to the injury.  These tracks appeared to clear endogenous 

glial cells and in the white matter also axons yet also provided an environment 

which could encourage very modest regeneration of dorsal column axons beyond 

the rostral margins of the injury site. 
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Introduction 

1.1 Overview of spinal cord injury 

Spinal cord injury (SCI) is a devastating condition which can cause loss of 

sensory, motor and autonomic function rendering long-term personal difficulty 

to the sufferers. The majority of spinal cord injuries lead to paralysis and this 

loss of function is normally permanent due to the limited capacity of the spinal 

cord for repair and a lack of effective treatment to either prevent the secondary 

damage or to promote the repair (Di Giovanni, 2006; Luo et al., 2009). In the 

long run, this condition is associated with a higher risk of developing 

cardiovascular complications, deep vein thrombosis, osteoporosis, pressure 

ulcers, autonomic dysreflexia and neuropathic pain (Vawda et al., 2012). 

Additionally, patients are also very likely to suffer emotional and social problem 

which are primarily attributed to their immobility. Spinal cord injury tends to 

affect people in their 3rd decade of life, a time usually associated with prime 

earning potential which further contributes to the significant economic strain, 

on top of the necessity to provide lifelong healthcare (Baptiste et al., 2007). The 

suffering as a result of permanent neurological deficits also extends to the 

patient’s family who endure emotional, physical and financial burdens that are 

directly or indirectly related to the patient’s immobility. The effort to reverse 

paralysis following SCI is among the most difficult challenges in neuroscience 

research and the damage to the spinal cord cannot currently be repaired by any 

available therapy.  

The current best available treatment for SCI includes early surgical intervention, 

methylprednisolone and hypertensive therapy with vasoactive agents (Oliveri et 

al., 2013). Methylprednisolone was previously introduced as a standard care for 

acute treatment of SCI but the American College of Surgeons subsequently 

declared there was insufficient evidence for it to be routinely used in SCI 

(Lammertse, 2012). A further systematic review conducted by a committee of 

experts from various fields following the request of the Canadian Spine Society 

and the Canadian Neurological Society have also concluded that there is 

insufficient evidence to support the use of high-dose methylprednisolone as a 

standard treatment due to weak clinical evidence but could still be regarded as 

an option for SCI treatment (Canadian Association of Emergency 
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Physicians,2009).  Another treatment which is also regarded as one of the 

current standards of care is decompression surgery despite uncertainty regarding 

the appropriate timing (Furlan et al., 2011). However, neither of these 2 

treatments is able to prevent the progression of the pathological events 

following SCI. Other supporting treatments which have also been tested in 

clinical trials like GM1 ganglioside and 4-aminopyridine also so far produced 

marginal benefits with adverse side effects (Geffner et al., 2008).  

It is estimated that there are 130,000 new cases of spinal cord injury around the 

world each year (Illes et al., 2011). According to the National Spinal Cord Injury 

Statistical Centre (NSCISC), there are around 40 cases of new spinal cord injury 

per million of population worldwide (Forostyak et al., 2013). In the UK alone, 

there are approximately 1000 new cases each year which contribute a total of 

40,000 people living with SCI. In the USA, the annual incidence is about 12,000 

cases (40 cases per million), not including those who died immediately after the 

accident (National Spinal Cord Injury Stastitical Centre, 2012). While long term 

survival after injury keeps improving in developed countries, the figures of 

patients with chronic SCI will inevitably increase. Despite the tremendous efforts 

being made towards the development of new treatment strategies, this 

devastating injury remains one of the most challenging areas in neuroscience 

research and an extremely difficult clinical condition to manage. 

1.2  Anatomy of the spinal cord 

The spinal cord is a cylindrical elongated caudal extension of the brain and its 

function is to transmit and integrate the different signals of sensory, motor and 

autonomic function. It is located inside the bony vertebral column which 

supports and protects the spinal cord. It is covered by three layer of meninges 

and further surrounded by cerebral spinal fluid which gives added protection. In 

the human adult, it occupies the upper two-thirds of the vertebral canal and is 

divided into 31 segments: 8 cervical, 12 thoracic, 5 lumbar, 5 sacral 1 coccygeal. 

The spinal cord varies in diameter in different parts where there are two areas 

of enlargement, located in the mid cervical and lumbosacral segments. The 

cervical enlargement is from the third cervical to the first or second thoracic 

segments representing the sites of neurons that innervate the upper limb. The 

lumbosacral enlargement is from the first lumbar to the third sacral segments 
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and corresponds where the origin of the neurons that innervate the lower limbs 

(Afifi and Bergman, 2005). The cord then gradually tapers to form the conus 

medullaris which continues with the filum terminale. 

The spinal cord is the major pathway containing millions of neuronal and glial 

cells for transmitting information toward and from the limb, trunk and organ of 

the body. The sensory nerve roots enter the dorsal aspect and the motor nerve 

roots exit from the ventral aspect and they combine peripherally to form spinal 

nerves (Figure 1-1). The spinal nerves exit from each segment of the spinal cord 

in pairs and are numbered following the corresponding spinal segment. Spinal 

nerves carry information from the spinal cord to the whole body. In general 

cervical nerves are responsible for movement and sensation in the arms, neck 

and upper trunk. Thoracic nerves transmit signals to and from the trunk and 

abdomen. The remaining lumbar and sacral nerves transmit information to and 

from the legs, the bladder, bowel and sexual organs (Afifi and Bergman, 2005). 
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Figure 1-1. Structure of the spinal cord: 

 Diagram of the spinal cord which illustrates the surrounding vertebral column and the meninges 
(dura mater, arachnoid mater and pia mater) together with a centrally located butterfly shaped 
region of grey matter, surrounded by white matter. Also shown are the anterior (ventral) roots and 
posterior (dorsal) roots which carry motor and sensory signals respectively. (Adapated from 
www.mcgill.ca, 2008) 

 

1.3 Anatomy of the rat spinal cord 

Since this thesis involves work on the laboratory rodent, including tract tracing 

of specific pathways, an introduction to some of the anatomy of rat spinal cord 

is useful. The rat spinal cord is divided into 8 cervical segments, 13 thoracic 

segments, 6 lumbar segments, 4 sacral and 3 coccygeal. The grey matter which 

is located centrally contains the cell bodies of neurons which are further divided 

into the dorsal horn, the intermediate grey, the central grey and the ventral 

horn. The white matter embraces ascending and descending pathways and is 

divided into dorsal, dorsolateral, ventrolateral and ventral funiculi. From dorsal 

to ventral, the grey matter can be subdivided into 10 laminae (Molander et al., 

1984; Molander et al.,1989). 

http://www.mcgill.ca/
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1.3.1 Corticospinal tract 

The corticospinal tract (CST) is one of the main descending pathways which is 

found only in the mammalian CNS. It is an important descending pathway and 

particularly associated with fine control of the hand in human and non-human 

primates (Afifi and Bergman, 2005). Experimentally, the CST has been commonly 

chosen for the assessment of regeneration studies due to the relative ease with 

which it can be anatomically traced. 

1.3.1.1 The origin and course of the CST in the rat 

Corticospinal neurons are called pyramidal neurons and located in layer 5 of 

sensorimotor cortex. Corticospinal fibres have been shown to send collaterals to 

various brain stem nuclei which include the red nucleus, pontine nuclei, inferior 

olivary nuclei and dorsal column nuclei (O'Leary and Terashima, 1988) 

The CST is divided into a crossed and uncrossed component where the crossed 

components form the majority (Terashima, 1995). The axons cross to the 

contralateral side in the medulla oblongata (pyramidal decussation) to descend 

through the dorsal column of the spinal cord. The majority of the main crossed 

component (90% of fibres) are located in the ventromedial aspect of the dorsal 

funiculus (Hicks and D'Amato, 1975; Miller, 1987; Rouiller et al., 1991). The 

minor components are found in the ipsilateral dorsal, contralateral lateral and 

ipsilateral ventral funiculi (Casale et al., 1988; Brosamle and Schwab, 1997; 

Rouiller et al., 1991; Liang et al., 1991).  

1.3.2 Ascending pathways in the dorsal column 

Ascending pathways in the spinal cord conduct information from sensory 

receptors in the trunk and limbs to the brain. There are essentially two main 

groups of ascending fibres in the dorsal columns of the spinal cord, a direct 

dorsal column pathway and a postsynaptic dorsal column pathway (Tracey and 

Waite, 1995). 

The direct dorsal column pathway is comprised of the ascending branches from 

primary afferents of sensory neurons. The cell bodies of sensory neurons within 

the dorsal root ganglia give rise to axons that bifurcate to form 2 major branches 
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(Figure 1-2). There is one branch which innervates receptors in the skin, muscle 

and viscera while the other branch enters the spinal cord via the dorsal roots. 

This central branch bifurcates again into descending and ascending fibres (Willis 

and Coggeshall, 2004). The descending fibres usually maintain a less organised 

topographic distribution and only a small number of fibres descend two segments 

from their entry site (Smith and Bennett, 1987). Only a fraction of the ascending 

branches of primary afferents reach the dorsal column nuclei while other fibres 

end in the grey matter at some level of the spinal cord. A much larger number of 

dorsal root ganglion cells in the cervical enlargement project to the dorsal 

column nuclei compared with lumbar dorsal root ganglion cells (Smith and 

Bennett, 1987, Giuffrida and Rustioni, 1992). Axons which travel within the 

dorsal columns may give rise to collateral braches and terminate in various 

region of grey matter, including dorsal horn, intermediate region, and ventral 

horn (Willis and Coggeshall, 2004)(Figure 1-2).  

The ascending branches of primary afferents are topgraphically organized in the 

dorsal columns such that fibres from the tail project close to the midline while 

fibres from the hindlimb, trunk and forelimb are added to the lateral border of 

the column at progressively more rostral levels (Willis and Coggeshall, 2004; 

Smith and Bennet, 1987). 

About 25% of primary afferents in the dorsal columns are shown to be 

unmyelinated in the rat (Chung et al., 1987). It is suggested that these 

unmyelinated afferents in the dorsal columns might carry information from 

nociceptors or visceral receptors to the dorsal column nuclei (McNeill et al., 

1988; Tamatani et al., 1989; Patterson et al., 1990). 

The postsynaptic dorsal column pathway is formed by the axons of spinal 

neurons in the spinal cord projecting to the dorsal colum nuclei (Giesler et al., 

1984). The cells are in the nucleus proprius that is located ventral to the 

substantia gelatinosa. The axons of postsynaptic dorsal column neurons 

terminate at all rostrocaudal levels of the gracile and cuneate nuclei as well as 

in the external cuneate nucleus (de Pommery et al., 1984). 
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Figure 1-2. Schematic representation of the anatomy of a primary afferent fibres: 

 Diagram showing the organization of dorsal root ganglion neurons and their central processes. 
The cell bodies of sensory neurons are located in the dorsal root ganglia and give rise to both 
peripherally and centrally directed axons. The central axons of large myelinated sensory neurons 
enter the dorsal columns via the dorsal roots where they bifurcate into ascending and descending 
branches. These give off axon collaterals at regular intervals which arbourize in the grey matter. A 
proportion of the ascending axons travel to the brain to terminate in the dorsal column nuclei 
(Adapted from Brown et al, 1981). 
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1.4 Pathophysiology of spinal cord injury 

1.4.1 Overview 

The primary injury of traumatic SCI is usually caused by vertebral fracture or 

dislocation resulting in either contusion or compression injury to the spinal cord 

(Kigerl and Popovich, 2009). The cellular and molecular events following SCI 

have been studied in various different animal models and contusion and crush 

models in animals have been shown to demonstrate a histological picture that 

mimics the typical pathology in human SCI (Sahni and Kessler, 2010). Spinal cord 

contusion injury in both rodent and human directly induces damage ranging from 

membrane disruption, vascular damage and haemorrhage (Sahni and Kessler, 

2010). While haemorrhage is immediately grossly visible, the microscopic signs 

of axon and myelin damage are delayed for about 24-48 hours after the injury 

(Rosenberg and Wrathall, 1997; Balentine, 1978) except in the event of axotomy 

where they appear immediately. In general, SCI presentation in human is highly 

variable depending on the location, extent and duration after the injury even 

though the major pathological signs are similar.  

1.4.2 Phases of SCI responses after injury 

Principally, SCI occurs in three phases of responses which range from acute, 

secondary and chronic responses following the injury event (Hulsebosch, 2002). 

1.4.2.1 Acute phase 

 In the acute phase, there is immediate mechanical damage to neural and other 

soft tissues including endothelial cells of the vasculature, causing instantaneous 

necrosis and cell death (Hulsebosch, 2002). This leads to a variable degree of 

cell loss including neuronal and oligodendrocyte death due to necrosis in the 

immediate hours (Di Giovanni, 2006). Over the next few minutes, the affected 

nerve cells respond with an injury-induced barrage of action potentials 

accompanied with significant electrolyte shifts leading to functional neural 

failure and spinal shock (Hulsebosch, 2002). In addition, haemorrhage which is 

accompanied by oedema, loss of microcirculation by thrombosis, vasospasm and 
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mechanical damage and loss of auto regulation further aggravate the neural 

injury. The acute phase usually persists for hours up to days before being 

subsequently resolved into the subacute phase. 

1.4.2.2   Secondary phase   

The secondary and chronic injury phases are strategically feasible therapeutic 

targets. The secondary injury is the pathologic outcome of the cascades of 

cellular and molecular events intrigued by mechanical trauma (Lu et al., 2000). 

In the secondary phase of SCI, ischaemic cellular death, electrolyte shifts and 

oedema occur. The ischaemic cell death or necrosis is an accidental cell death, 

characterized by swelling, energy loss, intense mitochondrial damage and 

homeostasis disturbance which collectively lead to cell rupture (Lu et al., 2000). 

Cell lysis causes the release of intracellular constituent which evokes further 

inflammatory processes (Cohen, 1993). Subsequently, extracellular 

concentrations of glutamate and other excitatory amino acids reach toxic levels 

(Hulsebosch, 2002) due to cell lysis and synaptic and non synaptic transport. 

Later on, apoptosis will take place associated with increased expression of glial 

fibrillary acidic protein (GFAP) and astrocytic proliferation. Apoptosis, a 

programmed cell death, plays a major role in oligodendrocyte cell death (Crowe 

et al., 1997; Liu et al., 1997) that leads to axonal demyelination. Invading 

inflammatory cells such as neutrophils and lymphocytes increase the local 

concentration of cytokines and chemokines (Hulsebosch, 2002) which cause more 

cellular necrosis and apopotosis. Meanwhile, inhibitory factors and barriers to 

axonal regeneration begin to be expressed in the perilesion area. This is 

subsequently followed by enlargement of the lesion size/cavity leading to a 

larger amount of cell death. 

1.4.2.3    Chronic phase 

 In the chronic phase, which occurs from weeks to years, apoptosis continues 

bidirectionally orthogradely and retrogradely and several different types of  

receptors and ion channels become altered in their expression levels and 

activation states (Hulsebosch, 2002). In penetrating injury, scarring and 

tethering of the cord occurs. These events will eventually lead to demyelination 

which results in conduction deficits and there will also be formation of a CSF-
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filled cyst or cysts which continue to enlarge . Neural circuits are altered due to 

disruption in excitatory and inhibitory function which can cause permanent 

hyper excitability, resulting in chronic pain syndromes (Christensen and 

Hulsebosch, 1997; Christensen et al., 1996). 

1.4.3 Main Pathology following SCI 

 

1.4.3.1 Axonal degeneration following SCI 

Axonal degeneration is an extremely important pathology in many diseases of 

the nervous system (Vargas and Barres, 2007) as the axon represents the largest 

functional element in many neuronal populations (Lingor et al., 2012) including 

the human spinal cord. In most cases, traumatic spinal cord injury would result 

in a partial transection of ascending and/or descending tracts causing an 

incomplete impairment of sensory or motor functions while only a small 

percentage may result in complete transections (Rowland et al., 2008). By 

definition, it is an active, tightly controlled and versatile process of self-

destruction of an axon segment (Wang et al., 2012) leading to sequential 

degeneration. Axonal degeneration usually involves rapid blebbing and 

fragmentation of an entire axonal stretch which is subsequently removed by 

phagocytic cells (Wang et al., 2012). The axonal degeneration following a 

traumatic lesion is the most extensively studied (Lingor et al., 2012). In 

traumatic SCI, the injury force or lesion would cause membrane disruption which 

eventually results in calcium influx, calpain-mediated cleavage and axonal 

transport breakdown (Lingor et al., 2012). These events would finally lead to 

axonal degeneration in the vicinity of the lesion and distal to the lesion site, 

characterised by distinct morphological and chemical changes. The axonal 

degeneration distal to the lesion is also known as Wallerian degeneration (Wang 

et al., 2012). While the primary damage or the direct lesion induces Wallerian 

degeneration of the distal axons that project to the spinal cord, the 

neighbouring axons which have not been primarily injured may also degenerate 

after time due to secondary damage as a result of a local increase of Iba-1-

positive microglia (Lingor et al., 2012). The above described events in axonal 

degeneration are responsible for the sensory-motor dysfunction following spinal 

cord injury. Being the largest functional entity in neuronal populations, the 

effort to repair and regenerate the injured axon has been regarded as the 
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ultimate way to restore the function of the injured spinal cord by reconnecting 

the severed long tracts for motor and sensory function (Tuszynski and Steward, 

2012). Furthermore, an increasing amount of data nowadays supports the 

concept of axonal degeneration as the initial pathological mechanism so the 

consideration of axonal degeneration as a major event to be targeted and 

prevented by neuroprotective strategies is therefore crucial for the development 

of successful SCI treatments (Lingor et al., 2012).  

1.4.3.2 Axonal demyelination following SCI 

Demyelination of the axon is a loss of the myelin sheath surrounding the axons 

and tends to happen early in the event of SCI. Chronic and progressive 

demyelination is a persistent feature in spinal cord injury (Totoiu and Keirstead, 

2005). This pathology has been investigated in various studies of different animal 

species (Siegenthaler et al., 2007) where oligodendrocyte death was identified 

as the main immediate and delayed event contributing to demyelination after 

SCI (Siegenthaler et al., 2007).  Functionally, demyelination of intact axons 

would result in impaired signal conduction and attenuated action potential 

propagation (Cao et al., 2005).  The malfunction is also due to the exposure of 

voltage-gated ion channels at the internodes of the demyelinated axons 

following spinal cord injury (Nashmi and Fehlings, 2001) which may finally lead 

to overt nerve conduction block.  

Demyelination usually starts at the epicentre of the injured spinal cord and 

slowly progresses into adjacent white matter (Wu and Ren, 2008). One study has 

demonstrated that demyelination is a persistent feature of SCI. The overall 

numbers of demyelinated axons after SCI were highest at day one post injury, 

declining by 7 to 14 days following injury before again progressively increasing 

up to 450 days (Totoiu and Keirstead, 2005). Despite the endogenous 

remyelination that often follows demyelination in SCI (Smith and Jeffery, 2006; 

Lasiene et al., 2008; Siegenthaler et al., 2007), several studies have revealed 

that this process is incomplete and abortive (Salgado-Ceballos et al., 1998; 

Siegenthaler et al., 2007), and thus is unable to achieve the desired level of 

recovery. In addition, other studies have also demonstrated that 

oligodendrocytes which survive within a region of demyelination do not divide to 

expand their numbers to produce sufficient myelin, and are thus unable to 
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effectively contribute to remyelinating injured axons (Keirstead and Blakemore, 

1997).  

    

1.5   Endogenous regenerative repair after SCI 

The classical dogma in neuroscience is that injured CNS neurons are incapable of 

regeneration. However, numerous studies have revealed that this is not 

necessarily the case. This classical view has been revised and challenged 

following several observations which revealed evidences of axonal regeneration 

after SCI. Early observations by Liu and Chambers in 1958 demonstrated that the 

central projections of primary afferent fibres are able to sprout after injury (Liu 

and Chambers, 1958). Subsequent research by Richardson et al in the 1980s 

using grafts of peripheral nerve tissue showed that central axons could 

regenerate if the nature of their environment was changed with peripheral type 

tissue (Richardson et al., 1980). These studies showed that it was the CNS 

environment that is non-permissive to axon regeneration and not that axons 

cannot regenerate. At a molecular level, there is an increase in the expression 

of regeneration associated genes in the damaged neurons (Gardiner et al., 2005; 

Filbin, 2003), as well as a surge in proliferation of local adult stem cells and 

progenitor cells which form the basis of the endogenous regeneration. However, 

these regenerative inputs are limited by growth inhibitors present on 

oligodendrocyte myelin debris and on cells forming the scar tissue (Nandoe 

Tewarie et al., 2009) while certain populations of regenerating axons do not 

express certain key proteins like GAP-43 which is involved in neurite elongation 

(Hulsebosch, 2002). Furthermore, the newly regenerating endogenous stem cells 

and progenitors fail to functionally integrate into the damaged spinal cord to 

support a meaningful endogenous regeneration that is able to repair the injured 

spinal cord (Nandoe Tewarie et al., 2009). These limiting or inhibiting factors 

result in inadequate endogenous regeneration to support a meaningful or 

efficient axonal regeneration thus necessitating an external supporting 

treatment.   

Endogenous regeneration may contribute to the modest recovery seen in 

incomplete SCI patients although most of this probably involves plastic 

reorganisation in the brain (Baptiste et al., 2007). There is some activation of 
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endogenous spinal cord ependymal progenitors (Foret et al., 2010, Ruff et al., 

2012) which occurs over the rostro-caudal extent of the cord.  Ependymal and 

sub-ependymal cells are known to be an endogenous source of neural stem cells 

in the adult spinal cord and proliferation of these cells increases dramatically 

after spinal cord injury forming oligodendrocytes and astrocytes (Meletis et al., 

2008).  

1.6 Factors preventing efficient axonal regeneration 

There are several limiting factors which are thought to affect the ability of 

injured neurons in the adult spinal cord to regenerate far enough to re-establish 

lost function. These factors include 1) inhibitory molecules in the environment 

of the injured spinal cord, 2) glial scarring and 3) cavity formation. 

There are various inhibitory factors that have been identified that contribute to 

regeneration failure. Amongst them are the inhibitory factors from 

oligodendrocyte-derived CNS myelin. There are major myelin components that 

have been identified as inhibitors to the regeneration process in CNS (Schwab 

and He, 2007). One of the factors is Nogo, which has been shown to inhibit 

axonal growth. The administration of a function blocking antibody which 

targeted Nogo was shown to promote sprouting and was reported to result in 

long distance fibre growth in the adult CNS (Bregman et al., 1995, Schnell and 

Schwab, 1990, Thallmair et al., 1998). These studies verify the involvement of 

Nogo in limiting axonal regeneration. In addition to Nogo, myelin-associated 

glycoprotein (MAG) is another major inhibitory protein in the myelin which has 

been shown to limit axonal regeneration in vitro (Li et al., 1996, Mukhopadhyay 

et al., 1994; Tang et al., 1997). The inhibitory effect was shown to be reduced 

after MAG denaturation in vitro (Li et al., 1996) and the axonal regeneration 

significantly increased in MAG deficient knockout animals (Schafer et al., 1996). 

Another major inhibitor in CNS myelin is oligodendrocyte myelin glycoprotein 

(OMgp) which has been shown to be a potent inhibitor for neurite outgrowth in 

in vitro and OMgp knockout animal studies (Wang et al., 2002; Ji et al., 2008). 

These three myelin-associated inhibitors are thought to account for the majority 

of the inhibitory effect associated with CNS myelin and block of axonal 

regeneration in the adult spinal cord (Wang et al., 2002). 
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Regenerating fibres are typically blocked by the glial scar reaction that forms 

around the injury (Schwab and He, 2007). A glial scar is composed of glial cells 

and tissue elements (Fawcett and Asher, 1999; Silver and Miller, 2004; Stichel 

and Muller, 1998a) and forms after the injury to seal off the lesion as well as 

reduce the exit of cytotoxic molecules (Rolls and Schwartz, 2006). This scar is 

thought to act as a mechanical barrier which is impenetrable to the regenerating 

axon thus preventing regeneration. Further study however has revealed that the 

glial scar contains components which are able to disrupt axon regeneration such 

as the glycoprotein tenascin-C and chondroitin sulphate proteoglycans (CSPGs) 

(Davies et al., 1997; Davies et al., 1999; Grimpe and Silver, 2002; McKeon et al., 

1991).  CSPG consists of a repeated disaccharide glycosaminoglycan chain which 

forms a barrier to axonal regeneration (Asher et al., 2002; Dou and Levine, 

1994). Following the injury, the expression of several different CSPGs is 

increased and the enzymatic degradation of these molecules by chondroitinase 

ABC (ChABC) has been shown to enhance axonal regeneration and functional 

recovery (Bradbury et al., 2002; Moon et al., 2001) verifying the inhibitory 

effect of the CSPGs. 

A cerebrospinal fluid-filled cavity develops in the injured tissue following the 

necrotic and apoptotic events (Willerth and Sakiyama-Elbert, 2008). The 

formation of this cystic cavity creates another physical barrier to the 

regenerating axons (Radojicic et al., 2005). Cell transplantation could 

potentially overcome this problem by either bridging the lesion or by secreting 

factors that help promote regeneration and cell migration as exhibited by recent 

studies using different type of cells (Ohta et al., 2004; Wu et al., 2003; 

Tuszynski et al., 1994). 
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1.7  Treatment strategies in spinal cord injury 

Delayed pathology which occurs during secondary and chronic phases due to 

secondary injury could be diminished by inhibiting one or more secondary injury 

cascades. The strategies for intervention in SCI need to address a whole list of 

various underlying pathologies or issues: 

 Reduction of oedema and free radicals 

 Rescue of neural tissues at risk of dying in secondary processes 

 Control of inflammation 

 Rescue of neuronal/glial populations at risk of continued apoptosis 

 Repair of demyelination and conduction deficits 

 Promotion of neurite growth through improved extracellular environment 

 The issues or pathologies mentioned are addressed via four main strategies. 

These strategies are by 1) promoting neuroprotection and repairing or supporting 

pre-existing/spared pathways, 2) promoting axonal regeneration, 3) promoting 

remyelination and 4) cell replacement therapies. 

    

1.7.1  Neuroprotection and trophic support/ support spared 
pathway 

Neuroprotection is a first line therapeutic strategy that could lead to an 

improved neurological outcome. It is a loose term referring to any process which 

prevents the spinal cord from continuously degenerating after the injury as a 

result of the secondary process. Several neuroprotective agents are currently 

being studied and one of the earliest discovered was methylprednisolone. It is 

thought to provide a neuroprotective effect through downregulation of pro-

inflammatory genes and inhibition of peroxidation related processes (Almon et 

al., 2002; Fu and Saporta, 2005; Hall, 1992).  Stem cells have been shown to be 

able to provide neurotrophic support which would promote survival of injured 
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nerves as well as prevent cell atrophy and loss of neurons (Sahni and Kessler, 

2010). Stem cells can secrete a variety of useful factors like nerve growth 

factors (NGF) or brain derived neurotrophic factors (BDNF) which apart from 

promoting axonal regeneration, have also been shown to promote 

neuroprotective effects in animal model of SCI (Mori et al., 1997; Tobias et al., 

2003; Tang and Low, 2007).  

NGF, BDNF and NT-3 are the best investigated neurotrophins in normal and 

injured spinal cord (Widenfalk et al., 2001; Dougherty et al., 2000; Dreyfus et 

al., 1999; Nieto-Sampedro et al., 1982; Finklestein et al., 1988; Zvarova et al., 

2004; Tokumine et al., 2003; Uchida et al., 2003; Ikeda et al., 2001; Li et al., 

2007). Neurotrophic factors have been demonstrated to enhance mechanisms 

involved in regeneration after SCI such as vascular proliferation, regeneration of 

transected axons, sprouting from intact axons and prevention of retrograde 

death of axotomized brainstem spinal projections neurons (Hardy et al., 2008; 

Hawryluk, 2012). By providing these useful factors, transplanted cells may 

establish a permissive environment for axonal regeneration and further enhance 

functional recovery.  

1.7.2  Promoting axonal regeneration 

Axonal regeneration is regarded as the only way to restore the original lost 

function of the injured spinal cord and is probably one of the most desirable 

goals to be achieved (Tuszynski and Steward, 2012). Adequate and meaningful 

axonal regeneration would enable the severed axons to re-connect with their 

target neurons in order to restore function in ascending and descending spinal 

projections and provide functional recovery. Axonal regeneration refers to re-

growth of transacted axons from the distal stump of a crushed or transacted 

nerve to re-innervate its normal target (Tuszynski and Steward, 2012). This is 

distinct from axon sprouting which can be defined as any growth arising from 

spared and intact axons (Tuszynski and Steward, 2012).  

Following spinal cord injury, severed axons attempt to regenerate during the 

first 6-24 hours but they fail to achieve complete regeneration due to their 

failure to navigate into the right direction (Kerschensteiner et al., 2005) and 

because of inhibitory factors which prevent their growth. Regeneration of an 
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injured CNS axonal projection depends on a series of events which can be 

regarded as a recapitulation of those occurring during normal development. This 

series of events includes 1) regrowth (spontaneous sprouting) of the damaged 

axon, 2) passage through the lesion site, 3) elongation in the correct direction, 

4) topographic reinnervation of the normal target, and 5) restoration of former 

electrophysiological properties (Stichel and Muller, 1998b). It is clear from 

several recent studies that an external factor or treatment would be required to 

achieve such precise regeneration and several studies have showed that 

different types of cell transplants could promote different levels of axonal 

regeneration (Bonner et al., 2010; Gu et al., 2010; Sasaki et al., 2009; Lu et al., 

2003a; Lu et al., 2012). Without effective treatment to support regeneration, 

the restoration process will cease prior to any circuit reconnection leading to 

atrophy of the nerve sprouts (Ramon y Cajal, 1928). 

1.7.3 Promoting axonal remyelination 

Axonal demyelination is another important pathological event to be targeted 

which could have a major therapeutic effect in treating SCI. Apart from being 

essential for functional recovery, remyelination processes also have a role in 

protecting the axons and supporting regeneration of the injured axons. 

Therefore any treatment to either halt the continuing process of demyelination 

or promote the post injury remyelination would potentially lead to significant 

improvement in neural function. Amongst potential treatments which have been 

shown to promote remyelination is cell transplantation. Oligodendrocyte 

progenitor cells (OPC) show the potential to promote remyelination as they are 

able to form central myelin on demyelinated axons (Xu and Onifer 2009). They 

were shown to differentiate into mature oligodendrocytes after being 

transplanted into injured spinal cord (Cao et al., 2005). Another study by 

Hawryluk et al. has revealed some degree of  remyelination of the injured spinal 

cord following endogenous and exogenous NPC transplantation which contributed 

towards functional recovery of the injured animal (Hawryluk et al., 2013). 

 

1.7.4  Cell replacement 

 Treatment of SCI by replacing damaged and cut cells with functional cells, in 

order to either reconnect severed long tracts or remyelinate spared and 
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regenerating axons would require pre-differentiated high purity populations of 

desired cells or in situ differentiation of transplanted cells. Stem cells offer 

great promise as a source of new neurons or glial cells due to their ability to 

differentiate into multiple lineages, including neural cells. The best documented 

specific cell replacement study is using myelinogenic cells to form new myelin 

sheath (Rossi and Keirstead, 2009). This followed the successful derivation of 

high purity oligodendrocyte populations, which when transplanted were shown 

to remyelinate the demyelinated axons of the injured spinal cord (Nistor et al., 

2005; Izrael et al., 2007; Keirstead et al., 2005; Totoiu et al., 2004). It has been 

suggested that the gliogenic nature of the lesion area further supports the 

remyelination ability of the transplanted cells in SCI (Cao et al., 2002; Cao et 

al., 2001; Horky et al., 2006), while reducing the neuronal differentiation. 

Studies have shown that transplantation of NSCs into the injured spinal cord 

results in only 38% neuronal differentiation as compared 95% when transplanted 

into normal spinal cord (Tarasenko et al., 2007; Wu et al., 2002).  

 

1.8  Stem cell-based transplants for treatment of spinal 
cord injury 

      
There is evidence that cell transplants have the ability to promote 

neuroprotection, reduce the glial scar, reduce inflammation, induce or perform 

remyelination and promote axonal regeneration. With advances in stem cell 

biology, there are now a large number of different cell types that are candidates 

for transplant mediated repair after SCI (Rossi and Keirstead, 2009). The 

benefits of stem cell-based treatments have been well documented in the pre-

clinical literature. Stem cells-based therapies offer several therapeutic promises 

through different mechanisms which could increase anatomical plasticity and 

sensorimotor recovery (Ruff et al., 2012). These 2 elements are the key factors 

in promoting tissue repair and functional recovery following spinal cord injury. 

Plasticity could be loosely defined as an adaptive reorganisation of connectivity 

through axonal regeneration, collateral sprouting, unmasking of existing 

synapses, and activation of ascending and descending pathways (Ruff et al., 

2012). Stem cell transplants could increase and permit anatomic plasticity 

through lesion modification and glial scar degradation, improved growth and 
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survival through trophic signalling and removal of inhibitory signalling (Lu et al., 

2007; Lakatos et al., 2003; Lopez-Vales et al., 2006; Karimi-Abdolrezaee et al., 

2010). Apart from those elements of anatomical recovery, several investigations 

of cell therapies in SCI have also shown some degree of functional recovery 

(Abrams et al., 2009; Boido et al., 2012; Toft et al., 2007; Tarasenko et al., 

2007). Functional recovery after spinal cord injury is defined as a return in the 

conductance and physiology of the spinal cord and improved motor and sensory 

function based on repair factors. In SCI transplant studies, functional recovery 

would usually be measured through electrophysiological and behavioural 

assessments.  

Stem cell based therapies could be performed using either allogenic or 

autologous cells. Autologous cells have the advantage of avoiding host rejection 

and the need for immunosuppression. Stem cell based therapies have been in 

use since early 1968 following the first successful bone marrow transplant 

(Carpenter et al., 2009; Bach et al., 1968; Gatti et al., 1968). Since then, it has 

been further developed  clinically as one of the treatment options in leukaemia 

and other types of cancer (Tabbara et al., 2002).  

 
 

1.8.1   Embryonic stem cells/induced pluripotent stem 
cells(ESCs/iPSCs) 

ESCs are a population of pluripotent cells derived from the inner cell mass of a 

pre-implantation blastocyst (Thomson et al., 1998; Mountford, 2008; Rossi and 

Keirstead, 2009). Originally, ESCs were derived from the pre-implantation mouse 

embryo in the early 1980s (Evans and Kaufman, 1981) and then followed by the 

establishment of embryonic germ cell lines from primordial germ cells (Stewart 

et al, 1994). The successful isolation of hESCs by Thompson et al, has further 

heightened the interest in the field of ESCs (Thompson et al., 1998) and has 

evoked tremendous discussion concerning the potential application of hESCs in 

regenerative medicine. At the laboratory level, ESCs can be prepared from pre-

implantation or blastocyst stage embryos, by somatic cell nuclear transfer or by 

parthenogenetic egg activation (Bhattacharya et al., 2004). In general, ESCs are 

characterized by two unique features which are the ability of unlimited self-

renewal and the capacity to differentiate into all lineages. This type of cells also 
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can be grown in virtually unlimited numbers as they do not undergo senescence, 

are able to retain high telomerase activity (an enzyme which causes the cells to 

become immortal in culture without inducing any malignant transformation) and 

normal cell cycle signalling (Coutts and Keirstead, 2008). Amongst the currently 

available stem cells, hESCs show the greatest potential for the broadest range of 

cell replacement therapies as they were regarded as commercially viable. This is 

because they could be propagated in vitro almost indefinitely, stabley banked 

while maintaining a normal karyotype and differentiation potential even after 

very long duration in culture (Coutts and Keirstead, 2008).  

One strategy is to derive differentiated cells from hESCs. Several studies have 

demonstrated that both rodent and human ESCs can be differentiated into 

neuronal or glial cells with some studies reporting that they support 

regeneration and remyelination after SCI (Finley et al., 1996; Liu et al., 2000; 

Reubinoff et al., 2001; Carpenter et al., 2001; Lang et al., 2004; Li et al., 2005; 

Keirstead et al., 2005; Nistor et al., 2005; Billon et al., 2006). These studies 

demonstrate the possibility of directed differentiation of hESCs into high purity 

neural populations which enhance the therapeutic potential in treating SCI while 

reducing the risk of tumorigenesis as compared to direct application of hESCs 

into the lesion.  

Induced pluripotent stem cells (iPSCs) are an interesting alternative to hESCs as 

they circumvent the ethical issues as well as reducing the risk of immunological 

rejection yet could act like hESCs. They can be produced from mouse and human 

fibroblasts by introducing Sox2, Klf4, Oct3/4 and c-Myc in culture (Takahashi and 

Yamanaka, 2006; Takahashi et al., 2007). Human iPSCs have been shown to be 

similar to hESCs in morphology, proliferation, surface antigens, gene expression, 

epigenetic status of pluripotent cell-specific genes and telomerase activity 

(Takahashi et al., 2007). These cells offer another possibility for providing an 

unlimited supply of cells for therapy. More interestingly, they have been shown 

to differentiate into functional neurons, astrocytes and oligodendrocytes (Miura 

et al., 2009). However, the same study also indicated that iPSCs could form 

teratocarcinomas. The association with teratocarcinomas warrants a rigorous 

safety evaluation before treatment based on iPSCs is translated into the clinic. 

Recently, Fujimoto et al. have reported that iPSCs which were pre-

differentiated into neuroepithelial like stem cells (hips-lt-NES) are able to 
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support the reconstruction of CST pathways, promote endogenous neuron 

survival and promote functional recovery of hind limbs in mice (Fujimoto et al., 

2012). 

1.8.2 Neural stem/progenitor cells(NSPCs) 

Neural stem cells or neural progenitor cells (NSPCs) are another interesting 

candidate for cell transplantation in SCI. NSPCs are endogenous stem cells which 

were found to exist within the central nervous system and can be isolated from 

different regions of the developing and adult brain and spinal cord (Synder et al, 

1992; Reynolds and Weiss, 1992; Lois and Alvarez-Buylla, 1993; Mayer-Proschel 

et al, 1997; Uchida et al, 2000). These cells have been amplified as 

neurospheres with epidermal growth factor (EGF) and/or fibroblast growth 

factor (FGF) for several rounds of passages. EGF and FGF are two vital 

nutritional growth factors which can promote NSPC growth (Lee et al., 2009; 

Tureyen et al., 2005). The neurosphere culture system is the main method of 

NSPC study, developed by Reynold and Weiss (Reynolds and Weiss, 1992). They 

contain precursors for neurons, astroglia and oligodendrocytes. Being of 

exclusively neural origin, NSPCs are believed to be highly committed to a neural 

fate and thus easier to differentiate into mature neural phenotypes while very 

unlikely to become neoplastic. Human NSPCs are taken from cadavers which 

significantly and restricts the potential supply (Coutts and Keirstead, 2008). In 

rodents, the NSPCs can be obtained from the CNS of embryos (Tetzlaff et al., 

2011).  

Following their isolation, these cells can be expanded by exposure to different 

growth factors. They maintain some capacity for self-renewal even after several 

freeze-thaw cycles and are capable of generating differentiated and mature 

neural cells which repair the injured CNS (Caldwell et al., 2001; Nunes et al., 

2003; Cummings et al., 2006; Ogawa et al., 2002; Iwanami et al., 2005). They 

have been shown to protect against excitotoxicity and secrete neurotrophic 

factors (Llado et al., 2004; Lu et al., 2003b). There have been several 

transplantation studies using NSPCs in therapeutic studies of SCI with evidence 

of axonal regeneration and functional improvement (Tarasenko et al., 2007; Yan 

et al., 2007; Yasuda et al., 2011; Hwang et al., 2009; Alexanian et al., 2011b).  

In most cases, transplanted NSCs tend to differentiate into glial lineages in vivo, 
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especially into astrocyes (Cao et al., 2001) which partly limit the efficiency of 

direct transplantation of NSCs without prior pre-differentiation into more 

committed lineages. Studies by Hwang et al and Alexanian et al have 

demonstrated a significant improvement in locomotor and sensory functional 

recovery following transplantation of pre-differentiated NSCs (Hwang et al., 

2009; Alexanian et al., 2011b). Both studies indicated that oligodendrocyte 

differentiation from NSPCs is absolutely vital to the functional recovery likely 

promoted by remyelination. Another study demonstrated large-scale 

differentiation into neurons, axon regeneration with extensive synaptic contacts 

formed with host neurons in the lumbar cord of adult nude rats following 

transplantation of NSCs from human fetal spinal cord (Yan et al., 2007). This 

study indicates the possibility of neural circuit restoration by implanting the 

NSCs in the injured spinal cord. 

Nevertheless, despite some promising studies involving NSPCs, they have been 

associated with certain limitations which could restrain their application in a 

clinical setting. Firstly, their derivation from either human cadaver or foetuses 

(Coutts and Keirstead, 2008) would significantly restrict their supply. Secondly, 

the NSPCs from adult sources have been shown to divide less frequently so 

maybe difficult to expand into the large numbers required for clinical 

applications (Doetsch et al., 1999; Morshead et al., 1998). There is also evidence 

of a reduction in their differentiation potential after time in culture (Wright et 

al., 2006) which further limits their therapeutic potential. 

1.9 Other type of cells 

1.9.1   Schwann Cells                                                                 

Schwann cells (SCs) have become one of the most intensely studied cell types in 

the context of spinal cord injury repair. These cells are the myelinating cells of 

the peripheral nervous system (PNS), and play a crucial role in endogenous 

repair of peripheral nerves by contributing to axon regeneration and 

remyelination (Park et al., 2010a). They have the ability to dedifferentiate, 

migrate, proliferate and express growth promoting factors which contribute 

toward their therapeutic properties (Xu et al., 1997; Tuszynski et al., 1998; 

Weidner et al., 1999). SCs have been shown to produce different neurotrophic 
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factors such as NGF, BDNF and CNTF which can stimulate the survival and 

intrinsic regeneration ability of injured neurons (Park et al., 2010a). They can 

also generate several cell adhesion molecules and extracellular matrix proteins 

to support axonal growth (Pierucci et al., 2009; Ghosh et al., 2012). 

One of the great advantages of Schwann cells is that they can be readily isolated 

from peripheral nerves and easily purified and expanded in culture to generate a 

large number of cells, from both rat and human tissue. More recently, SCs were 

shown to be derived from other categories of stem cells including MSCs, adipose-

derived stem cells, and skin-derived stem cells (Park et al., 2010a; Xu et al., 

2008; Biernaskie et al., 2007). Previous studies have demonstrated that Schwann 

cells can help to re-myelinate axons as well as promote regeneration (Li and 

Raisman, 1994; Tuszynski et al., 1998; Kohama et al., 2001). However these 

cells seems to provoke a robust astrocytic reaction that results in a less effective 

integration into the host spinal cord (Baron-Van Evercooren et al., 1992; Shields 

et al., 2000; Lakatos et al., 2000). In addition, their in vitro expansion may take 

several weeks which imposes a delay in the intervention.  

1.9.2 Olfactory ensheathing cells (OECs) 

OECs are a unique glial population which are present only in the olfactory system 

and are derived from precursors originating from ectoderm in the olfactory 

placode (Ramón-Cueto and Avila, 1998; Chuah and Au, 1991). They are support 

cells that wrap olfactory axons and facilitate their regeneration throughout the 

life of mammalian species (Coutts and Keirstead, 2008). They are found to exist 

as two distinct cell sub-types in vivo namely a spindle-like cell that ensheaths 

the axons of ORNs and traverses from the mucosa to within the olfactory bulb 

and a cell that does not ensheath ORN axons. They have been reported to 

display an exceptional plasticity and could allow neurons to cross a glial scar 

including the PNS-CNS boundary (Richter and Roskams, 2008; Raisman and Li, 

2007). OECs are relatively easy to isolate from nasal biopsies and could 

potentially provide an autologous source for cell transplantation. There have 

been various outcomes reported following experimental studies using OECs in SCI 

with some studies describing evidence of remyelination and regeneration of 

damaged axons while other groups have failed to reproduce these results 

(Ziegler et al., 2011; Takeoka et al., 2011).  
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1.10  MSCs for transplant in SCI 

 

1.10.1  Introduction 

MSCs could loosely be defined as heterogenous multipotent mesenchymal 

stromal cells that proliferate in vitro as plastic adherence cells, have fibroblast 

like morphology, form colonies in vitro and can be differentiated into bone, 

cartilage and fat cells (Uccelli et al., 2008; Horwitz et al., 2005). 

Developmentally, they originated from the embryonic mesodermal layer 

(Eftekharpour et al., 2008). These cells are located in adult tissues such as bone 

marrow and other connectives tissues like adipose tissue, cartilage and dermis. 

MSCs are also found in the developing embryo, in umbilical cord blood, amniotic 

fluid and the foetal liver. In addition, MSCs are also found in synovial fluid and 

muscle tissue (Barberi et al., 2006; Olivier et al., 2006; Eftekharpour et al., 

2008). In the laboratory, cells with MSC-like characteristics have been isolated 

or derived from almost every tissue that have been analysed so far (da Silva 

Meirelles et al., 2006). MSCs derived from human bone marrow are the best 

studied and characterized so far but there are still several biological aspects of 

MSCs which remain elusive and require further investigation.   

 

1.10.2  The origin and location of MSCs 

Although they were initially isolated from bone marrow, further research has 

demonstrated the existance of MSCs in other tissues. As a result, MSCs have been 

regarded as a cell that is lacking tissue specificity compared with other  tissue–

specific stem cells such as neural stem cells or intestinal stem cells where these 

cells progeny will usually develop to become the tissue of residence (Zipori, 

2009). The embryonic origin of mesenchyme or MSCs in particular is also unclear. 

There are different views on the embryonic origin of MSCs with one suggesting 

that MSCs could be generated through epithelial-mesenchymal transformation 

(EMT) at different time points in embryogenesis (Hay, 2005; Prindull and Zipori, 

2004). Another justified opinion is that an ancestral MSC may already exist in 

early development and later on give rise to the widely distributed MSCs in the 

adult body (Zipori, 2005). There were other studies which imply divergent 
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sources of MSCs including a study which found that MSCs start to appear in Sox1-

positive neuroepithelium during embryogenesis instead of mesoderm (Takashima 

et al., 2007). While this study adds to the puzzle in determining the exact origin 

of the MSCs, it could explain the potential of MSCs for regenerative therapies, 

particularly in relation to their axon growth promoting effect in SCI.    

 

1.10.3  MSCs and therapeutic properties for SCI 

The application of MSCs in SCI is favoured because they have several advantages 

as therapeutic agents compared to other type of cells. 1) they are relatively 

easy to isolate and to expand in culture, up to 50 population doublings in 10 

weeks with only subtle potency loss (Jiao et al., 2011); 2) they are able to 

produce various cell types including neuronal like cells (Kassem, 2004; Alexanian 

et al., 2008a; Uccelli et al., 2008); 3) they have immunomodulatory properties 

(Aggarwal and Pittenger, 2005b; Uccelli et al., 2008; Tasso and Pennesi, 2009); 

4) they are relatively free from the risk of developing into tumours (Lee et al., 

2010) following experimental transplant surgery and 5) they have not yet been 

found to cause adverse immune responses in both autologous (Pedram et al., 

2010) and allogenic transplantation recipients (Jiao et al., 2011). Additionally, 

their safety in human subjects has been demonstrated following earlier clinical 

trials involving 15 patients receiving the infusion of the MSCs (Lazarus et al., 

1995). 

Both autologous and allogenic MSCs have been shown to have positive 

therapeutic outcome in haematological, cardiovascular, neurological and 

inherited disease in pre-clinical studies (Le Blanc et al., 2004; Ringden et al., 

2006). The first transplantation of MSCs for CNS repair was reported by Chen et 

al in 2000 where cells from bone marrow combined with BDNF were 

administered into an animal model of middle cerebral artery occlusion and 

demonstrated some degree of motor recovery (Chen et al., 2000).  In the field of 

SCI research, MSCs from bone marrow are the most widely studied cells and have 

been tested in rodents, large mammals and primates (Tetzlaff et al., 2011).  

Furthermore, both human and rodent BM-MSCs have been equally well studied 

and both demonstrate some degree of functional improvement in many rodent 

model of SCI (Lee et al., 2007; Abrams et al., 2009; Boido et al., 2012). However 
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there is a knowledge gap regarding the exact physiological and therapeutic role 

of transplanted MSCs in SCI and mechanisms through which the transplanted 

MSCs promote recovery remain elusive.  

1.10.3.1 MSCs: survival, proliferation, differentiation and interaction with 
the host tissues 

There are mixed reports on the survival and differentiation ability of MSCs 

following their transplantation into the injured spinal cord. Some studies have 

reported a low survival rate of grafted cells (Sheth et al., 2008; Boido et al., 

2012; Hofstetter et al., 2002; Zhou et al., 2013) with only 1% of transplanted 

cells survived at 4 weeks after a 1 week delayed or later transplantation. In one 

study, delayed transplants were found to improve the cells survival compared 

with to an acute transplant which resulted in a fewer cells surviving (Hofstetter 

et al., 2002). This was attributed to encountering a more hostile environment in 

the injured spinal cord comprising of ischaemia, necrosis and potentially toxic 

compounds such as oxygen radicals.  However, even though less than 1% of MSCs 

survived after 4 weeks or later, it was suggested that this was adequate to 

promote functional recovery (Hofstetter et al, 2002; Zhou et al, 2013).  

Despite being controversial, there have been several  studies which have 

reported the ability of transplanted MSCs to differentiate into neuronal lineages 

(Akiyama et al., 2002; Azizi et al., 1998; Song et al., 2004; Chiba et al., 2009; 

Kang et al., 2012). In one study, the transplanted MSCs were shown to express 

different markers for different neuronal lineage phenotypes such as NeuN, CC-1 

and GFAP (Kang et al., 2012).  However there were other studies which indicate 

the absence of neural differentiation (Castro et al., 2002; Ankeny et al., 2004; 

Parr et al., 2008; Sheth et al., 2008; Gu et al., 2010; Zhou et al., 2013) 

following transplantation of MSCs into SCI. In these later studies recovery of 

function was seen which was suggested to be due to secretion of neurotrophic 

factors or neuroprotection. 

1.10.3.2 MSCs and remyelination 

As previously mentioned, apart from being essential for functional recovery, 

remyelination has also been found to play a role in protecting axons to further 

supporting regeneration. MSCs have been reported to promote axonal 



44 
 

remyelination following transplantation into spinal cord injury in rodents (Bizen 

et al., 2003; Zhang et al., 2012; Liu et al., 2011; Chopp et al., 2000). In one of 

the earliest experimental studies in the rat spinal cord using the ethidium 

bromide/X-irradiation demyelination model, transplantation of MSCs from bone 

marrow were reported to promote extensive remyelination (Bizen et al., 2003). 

A further study by Liu et al. has also revealed an increase in remyelination as 

demonstrated by the increased expression of MBP, after transplantation of bFGF 

gene modified MSCs into spinal cord-injured rats (Liu et al., 2011). More 

importantly the enhancement of the remyelination was consistent with 

significant axonal regeneration and associated with an improvement in 

neurological function.   

 

1.10.3.3 MSCs and axonal regeneration 

There have been many studies addressing the ability of MSCs to promote axonal 

regeneration (Hofstetter et al., 2002; Chiba et al., 2009; Sheth et al., 2008; Lu 

et al., 2005; Sasaki et al., 2009; Zhou et al., 2013; Ankeny et al., 2004; Gu et 

al., 2010).  These have proposed different mechanisms that might underlay the 

axonal regeneration-promoting abilities of MSCs including production of growth 

factors and physical guidance of the regenerated axons through the formation of 

a biological scaffold acting as a regeneration permissive bridge (Hofstetter et 

al., 2002). In this later study, it was reported that the transplanted MSCs formed 

bundles which bridged the epicentre of the lesion and the regenerating host 

neuropil was associated with these MSC aggregates in the bridge. Further work 

by Ankeny et al. supports the notion that transplanted MSCs can serve as a 

scaffold after partially filling in cysts thus supporting extensive axon growth 

(Ankeny et al., 2004). In addition, immature astrocytes have been found to 

populate MSCs bundles which could be another mechanism by which a growth–

permissive surface is promoted (Hofstetter et al., 2002). 5-HT-positive nerve 

fibres have been identified in such MSCs bundles and these have been suggested 

to contribute to the observed behavioural improvement as the 5-HT-system of 

the spinal cord has been shown to be important in functional recovery after SCI 

(Hofstetter et al., 2002; Nygren et al., 1974; Bregman et al., 1993).  Chiba et 

al., 2009 have made remarkable claims of axonal regeneration following BM-

MSCs transplantation. This group used anterograde tract tracing and claimed 
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that the number of fibres of the dorsal corticospinal tract (dSCT) which 

positively stained for Fluoro-ruby (FR) caudal to the injury site were significantly 

higher in animals receiving MSCs compared with vehicle-treated animal. They 

also claimed that some of the GFP positive cells co-localized neuronal markers 

such as NeuN and MAP2. 

A study by Sheth et al concluded that the transplanted MSCs are able to promote 

linear axonal growth, possibly due to the production and secretion of growth 

factors (Sheth et al., 2008). A recent study comparing the efficacy of using MSCs 

from human bone marrow and human adipose tissue (Zhou et al., 2013) reported 

that regeneration was better in animals that received hADSCs with large 

numbers of NF200 positive fibres and more 5-HT positive fibres. The anatomical 

findings were further supported by functional improvement and were attributed 

to increased BDNF levels in the injured spinal cord. It was also demonstrated 

that there was higher level of BDNF and better functional improvement in animal 

receiving hADSCs compared with animals receiving hBMSCs. There have been 

other studies which indicate the role of BDNF as an important mediator of the 

action of MSCs in promoting axonal regeneration, as well as synapse formation 

and plasticity (Sasaki et al., 2009; Lu et al., 2005).  

 
 

1.10.3.4 MSC and anti-inflammatory/immunosuppressive/immune-
modulatory properties 

         

The inflammatory response that occurs following SCI has been extensively 

investigated and the 3 inflammatory mediators IL-1, il-6 and  TNF-α are 

inflammatory mediators commonly upregulated (Hawryluk, 2012). MSCs have 

been reported by several different groups to possess anti-inflammatory or 

immunosuppressive properties after being transplanted in injured spinal cord 

(Wright et al., 2011). These properties are thought to reduce the acute 

inflammatory process after SCI and thus reduce the cavity formation and 

decrease astrocyte and microglia/macrophage reactivity (Neuhuber et al., 2005; 

Himes et al., 2006). Studies have also demonstrated the ability of transplanted 

MSCs to lessen  the chronic inflammatory response in the injured spinal cord 

(Abrams et al., 2009; Tyndall et al., 2007). One of the possible mechanisms of 
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their immune modulatory properties is thought to be the upregulation of certain 

anti-inflammatory factors like TGF-β1 which has been shown to be dominant 

over the other pro-inflammatory cytokines (Hawryluk, 2012). In addition, the 

transplantation of MSCs after SCI has also been shown to modify the 

inflammatory environment through shifting the macrophage phenotype from M1 

(pro-inflammatory) to M2 (anti-inflammatory) as well as sparing the axons and 

myelin (Nakajima et al., 2012). The immunomodulatory properties of MSCs could 

therefore create a more favourable environment for regeneration which limits 

tissue damage and promotes regeneration (Aggarwal and Pittenger, 2005a; Noel 

et al., 2007). 

 MSCs have also been shown to possess the ability to target injured spinal cord 

tissue (Kang et al., 2012a) even when adminstered by intravenous injection. The 

homing ability of the MSCs to injured tissues depends on the state of both local 

and systemic inflammation which is under the control of a large range of 

receptors, tyrosine kinase growth factors and chemokines (Ponte et al., 2007). 

This particular homing ability is thought to offer the possibility of avoiding the 

more invasive direction injection approach.   

 

1.10.3.5 MSCs reduce lesion cavity 

Different studies using MSCs in SCI report the ability of grafted MSCs to reduce 

the size of the lesion cavity via reduction of the glial cyst and increased sparing 

of white matter (Ankeny et al., 2004; Boido et al., 2012; Gu et al., 2010; Ohta 

et al., 2004). This is suggested to be due to the neuroprotective properties of 

transplanted MSCs (Ankeny et al., 2004). Boido et al suggested that the ability of 

transplanted MSCs to penetrate into the glial cyst and reduce its volume could 

enhance axonal regeneration and degrade the nerve-inhibitory molecules at the 

injury site (Boido et al., 2012). MSCs have also been shown to secrete different 

matrix components which support nerve regeneration such as laminin, which can 

contribute to further reduction of the lesion cavity (Wu et al., 2003; Ankeny et 

al., 2004). 
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1.10.3.6 MSCs promote angiogenesis 

MSCs have been shown to provide support for the reestablishment of blood 

vessels (da Silva Meirelles et al., 2009; Quertainmont et al., 2012), which is 

likely to be important to the recovery process following injury. Several pro-

angiogenic factors such as bFGF and VEGF have been detected in both 

conditioned medium from MSCs and around transplanted cells (Kinnaird et al., 

2004). Another study demonstrated the ability of MSCs to support the formation 

of blood vessel-like structures by endothelial cells in vitro (Sorell et al., 2009). 

In the field of SCI, MSC transplantation has been shown to promote angiogenesis 

evidenced by a significantly enhanced density of vWF positive blood vessels 

(Zhou et al., 2013). The angiogenic effect of transplanted MSCs in this study was 

thought to be one of the contributing factors toward recover of motor function. 

1.10.3.7 MSCs promote functional recovery 

 There have been several studies demonstrating the ability of transplanted MSCs 

to promote different levels of functional recovery in animal models of SCI 

(Abrams et al., 2009; Osaka et al., 2010; Boido et al., 2012; Alexanian et al., 

2011a; Lee et al., 2007; Pal et al., 2010; Kang et al., 2012b). In one study using 

allogenic hMSCs, Kang et al., showed that transplanted hMSCs promote 

functional improvement in a completely transected SCI animal assessed 

behaviourally and electrophysiologically and ascribed the results to neuronal 

differentiation of the transplanted cells (Kang et al., 2012b).  A recent study by 

Boido et al demonstrated improvements in several measurements of behavioural 

function including general posture, sensory functions and coordination (Boido et 

al., 2012). In addition, there was also no allodynia-like hypersensitivity in their 

study, a complication which usually occurs following NSCs transplantation. Boido 

et al hypothesized that the improvement in functional outcome could be 

attributed to the reduction of the size of the cystic cavity (Boido et al., 2012). 

However, another study reported that hMSC transplantation after SCI in rats was 

not sufficient to recover locomotor and bladder function despite evidence of a 

reduced inflammatory reaction (Park et al., 2010b). 
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1.10.4  Modification of MSCs for treating SCI 

1.10.4.1 Neurotrophic factor secretion: 

One of the interesting features of stem cells, including MSCs is that they could 

be genetically modified to achieve a specific desired therapeutic action. Recent 

studies have shown that MSCs can be genetically modified to over-express or 

secrete neurotrophic factors like BDNF and GDNF which can promote better 

therapeutic effects including promoting cell survival and axonal regeneration. 

The fact that MSCs have a stable genetic background with exogenous genes 

which could be easily imported and transported make them suitable for gene 

therapy and modification (Liu et al., 2011). In a study performed by Sasaki et al, 

the MSCs were genetically modified to secrete brain-derived neurotrophic 

factors (BDNF). These genetically modified (BDNF-hMSCs) cells were able to 

survive and demonstrate a better outcome in treating rats with SCI compared 

with non-genetically modified hMSCs (Sasaki et al., 2009) both functionally and 

anatomically. In this study, these cells were shown to improve locomotor 

recovery and showed increased survival of CST neurons in the primary cortex at 

5 weeks (Sasaki et al., 2009). The ability of MSCs to secrete neurotrophic factors 

would be of great advantage as the efficacy of these neurotrophic factors 

depends on their continuous supply which could be offered by MSCs as opposed 

to treatment using neurotrophic factors alone which would necessitate periodic 

injection. 

 

1.10.4.2 Differentiation/transdifferentiation ability: 

 

Recent work also indicates that MSCs could be neurally induced or genetically 

modified to improve their therapeutic potential (Alexanian et al., 2008b). These 

neurally-induced modified MSCs could be a potential and better source of cells 

to replace damaged neurons and glia in injured spinal cord and/or to promote 

axonal growth of host tissue as compared to naïve MSCs (unmodified MSCs).  

There have been several studies that have claimed that adult MSCs can 

differentiate into neurons or neuron-like cells in vitro (Black and Woodbury, 

2001; Sanchez-Ramos et al., 2000; Kim et al., 2002; Long et al., 2005) despite 

the absence of a neural phenotype in their undifferentiated state.  
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Studies have also reported that undifferentiated mesenchymal stem cells (MSCs) 

transplanted into the central nervous system (CNS) can survive and differentiate 

into neurons and glia (Thuret et al., 2006; Phinney and Isakova, 2005; Coutts and 

Keirstead, 2008) but these findings also remain controversial. There has been a 

lively debate regarding the ability of MSCs to transdifferentiate into neurons 

with several studies strongly opposing the idea particularly of in vivo 

transdifferentiation. It is claimed that the appearance of cells with those 

characteristics is a tissue culture artefact (Phinney and Prockop, 2007) or a 

result of cell fusion (Terada et al., 2002; Wumser and Gage 2002).  

 

1.10.5  MSCs and clinical trials 

The above mentioned properties of MSCs gathered from various clinical studies 

combined with long standing experience in the treatment of haemato-

oncological diseases, has led to the use of MSCs in various clinical trials. The 

application of MSCs in treating CNS diseases has been progressively expanding 

and has moved into phase I/II clinical trials (Venkataramana et al., 2010; 

Forostyak et al., 2013). There are presently more than 200 clinical trials 

involving human MSCs for several different indications (National Institute of 

Health, 2013). MSCs have been thought to have a good translational potential 

into spinal cord injury based on the positive outcome from extensive animal 

studies (Tetzlaff et al., 2011).  

The safety of MSC transplantation in human SCI was demonstrated in one of the 

earliest clinical trials involving 42 patients in Prague in 2005 (Sykova et al., 

2006). The result of this trial also showed significant improvements in 10 

patients. Results from other clinical trials are consistent with the idea that the 

procedure can be safe in both acute and chronic SCI and with some evidence of 

recovery (Park et al., 2005; Cristante et al., 2009).  
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1.10.6 Limitations and issues with MSC transplantation in SCI 

 
There are several issues and concerns which need to be carefully addressed by 

current and future researchers in relation to the use of MSCs in SCI. Little is still 

known of how exactly the transplanted MSCs lead to functional recovery and how 

they interact with the host tissues. Despite a few demonstrable therapeutic 

effects and very few reports of adverse events, there have been large 

differences in outcomes and the treatment efficacy is yet to be  established 

(Tetzlaff et al., 2011; Harrop et al., 2012; Amano et al., 2009). 

There is still limited knowledge on the exact mechanisms regarding how MSCs 

provide neuroprotection and improve behavioural outcomes as the histological 

data are highly variable (Tetzlaff et al., 2011). Several studies involving MSCs 

transplantation in SCI have documented histological observations ranging from 

good survival of grafted cells, accompanied by a degree of MSCs differentiation 

into neural cells to poor survival and no convincing evidence to suggest a MSCs 

differentiation toward neural cells (Tetzlaff et al., 2011). 

Additionally, human mesenchymal stem cells (hMSCs) from bone marrow have 

been reported to be associated with various disadvantages. They have been 

reported in various studies to be associated with poor proliferation capacity, 

limited life span and gradual loss of stemness during their expansion in vitro 

(Ringe et al., 2002). Their properties also were shown to correlate negatively 

with age which implies that BM-MSCs from elderly people could be too 

inefficient to be used clinically. This is demonstrated by a study which shows 

that MSCs from old donors exhibited a reduced life span and increased numbers 

of senescent cells compared with MSCs from young donors (Stenderup et al., 

2003). In addition, their isolation requires invasive procedures which are 

associated with pain and morbidity and may only yield low cell numbers (Huang 

et al., 2009). Some previous studies have also shown that MSCs derived from SCI 

donors can be of poor quality which further undermines the option of performing 

autologous cell transplants using the patient’s own bone marrow derived MSCs 

(Minaire et al., 1984; Wright et al., 2011; Wright et al., 2008; Klein-Nulend et 

al., 2005; Hill et al., 1991).  Because of these limitations an alternate source is 

considered desirable and hESCs could be an excellent alternative from which to 
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derive MSCs. This source could circumvent some of the limitations of adult MSCs, 

while retaining the various therapeutic properties of their adult counterparts.  

However, so far there have been no studies done on hESC-MSC transplantation in 

SCI despite numerous studies in which MSCs have been derived from hESCs. This 

study is therefore the first to assess the effect of hESC-MSCs transplanted into an 

animal model of SCI.  

1.11  Summary of study aims 

The general aims of this study were as follows: 

1. The first aim of this thesis was to derive MSCs or mesenchymal like-stem 

cells from undifferentiated hESCs using a method suitable for generating 

large numbers of cells for testing in animal models of SCI. 

2. The second aim of this thesis was to evaluate the ability of hESC-MSCs to 

promote the general/supporting therapeutic properties: survival, 

differentiation and ability to promote axonal regeneration and 

remyelination in the injured spinal cord using anatomical approaches.  
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2 Derivation and characterization of MSCs from 
hESC 

2.1 Introduction 

The ease in isolating adult MSCs and their availability in most human tissues (da 

Silva Meirelles et al., 2006; Mosna et al., 2010) has lead to their frequent use in 

both basic scientific research and clinical applications. There are presently more 

than 200 clinical trials involving human MSCs in a variety of different conditions 

(National Institute of Health, 2013). Results vary but some promising outcomes 

have been reported. Mesenchymal stem cells (MSCs) are the main non-neural 

cells that have been extensively investigated in SCI research and are suggested 

to have translational potential based on various positive results in preclinical 

research (Tetzlaff et al., 2011).  MSCs have been reported to promote functional 

recovery by different mechanisms, such as axonal remyelination and 

regeneration, reducing neural inhibitory molecules, reducing the lesion volume 

and increasing the spared surviving tissues (Hofstetter et al., 2002; Bizen et al., 

2003; Sasaki et al., 2009; Gu et al., 2010; Boido et al., 2012). In addition, they 

are considered to have immunomodulatory effects (Hawryluk, 2012). MSCs 

derived from bone marrow are so far the most commonly used in the study of SCI 

with a more limited number of studies on cells derived  from other sources such 

as adipose tissue and human umbilical cord. Apart from being the best 

characterized MSCs,  evidence of safe and successful transplantation of bone 

marrow derived MSCs in other different diseases has led to them being 

considered attractive in the field of SCI research.  

However, the use of adult MSCs has some limitations that limit their potential 

for clinical translation. Human mesenchymal stem cells (hMSCs) from adult 

sources have been reported to be associated with low proliferation, finite life 

span and gradual loss of stem cell-like properties during their in vitro expansion 

(Ringe et al., 2002). Like other adult stem cells, the bone marrow derived MSCs 

(BM-MSCs) have been shown to decline in number and reduce in differentiation 

capacity as the cells age (Mueller & Glowacki, 2001). In addition, their isolation 

usually requires an invasive procedure which may be associated with pain and 
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morbidity and may yield only limited cell numbers (Huang et al., 2009). Some 

previous studies have also shown that MSCs derived from spinal cord injured 

donors were of poorer quality than that from non-spinal cord injured donors and 

this may be a further problem which in particular, may limit autologous 

transplantation of bone marrow MSCs (Minaire et al., 1984; Hill et al., 1991; 

Klein-Nulend et al., 2005; Wright et al., 2008; Wright et al., 2011). Because of 

these various limitations, an alternate source of MSCs could be a considerable 

advantage for clinical treatments. Derivation of MSCs from hESC is one potential 

source which might be developed to overcome some of the less desirable 

characteristics displayed by adult MSCs.  

hESC-derived cells potentially offer several advantages over cells derived from 

adult sources. 1) hESCs avoid the need for harvesting cells from patients or 

donors using an invasive approach, 2) cells can be prepared from a single cell 

line with strict uniformity, thus avoiding the large degree of inter-sample 

variation seen when using primary material from human donors, 3) hESC derived 

cells show rapid proliferation and grow robustly and so can potentially be 

prepared on a large scale 4) hESC derived cells offer the potential for an ‘off the 

shelf’ product for acute transplantation. In comparison, autologous cells derived 

from adult tissues will require time for isolation and expansion in culture, 5) 

cells derived from hESCs could be engineered so that they combine optimal 

features tailored to the treatment of SCI.  

Several different methods have now been successfully used to derive relatively 

homogenous populations of hESC-MSCs from hESC (Barberi et al., 2005; Olivier et 

al., 2006; Lian et al., 2007; Trivedi & Hematti, 2008; Lee et al., 2010; Gruenloh 

et al., 2011; Wu et al., 2013). However, MSCs derived using these methods have 

never been tested in SCI animal models so that the repair potential of hESC 

derived MSCs remains to be investigated. 

2.2 Aims  

The aim of this cell biology part of the study was to derive MSCs from hESCs 

using methods that could be shown to be reproducible and suitable for 

generating large numbers of cells for testing in animal models of SCI.  



55 
 

The first aim of this part of the study was to optimize a protocol for deriving 

MSCs or mesenchymal like-stem cells from undifferentiated hESCs. The starting 

point for this was a non embryiod body (EB) based protocol previously developed 

by Olivier et al. (2006) and Olivier & Bouhassira (2011). The H1 cell line 

(Thomson et al., 1998) was chosen as the hESC line for the starting population. 

This cell line has been extensively studied and characterized by stem cell 

researchers worldwide and is regarded as one of the gold standard cell lines. 

This population was grown and maintained under feeder free condition in order 

to minimize the involvement of animal related products in the protocol. We also 

aimed to carefully characterize the MSCs–like cells prepared by this method by 

evaluating their morphology, adherence to a plastic surface, growth profile, 

surface markers and gene expression profile.  

The second aim of this part of the study was to demonstrate the reproducibility 

of the optimized differentiation protocol through repeated derivation of MSCs 

from hESCs (i.e. by performing several different runs of differentiation in 

duplicate).  

The third aim was to show that the derived MSCs could be stored in liquid 

nitrogen and that when later thawed and re-cultured, they would proliferate 

robustly and maintain similar MSC characteristics to those of cultures examined 

prior to cryopreservation. In addition, we aimed to show at this stage that the 

MSCs could be differentiated into bone and fat, as is characteristic of bone 

marrow MSCs.  
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2.3 Method and Material 

2.3.1 Equipment 

Standard laboratory equipment used included: water baths, vortex mixers, 

centrifuges, refrigerators:-4ºC, 20ºC, -80ºC, -180ºC liquid N2 tank; tissue culture 

plastics, sterile and non-sterile glass pipettes, bottles and tubes (Corning 

Incorporated), flasks and 6-well plates (Corning Incorporated) and beakers; 

aluminium foil, cling film and plastic wrapping; laboratory digital balance and 

pH meters. 

 Inverted light microscope (Olympus) 

 Axiovert 200M fluorescent microscope with Axio Vision software (Carl 

zeiss) 

 BD FACSCaliburTM flow cytometer with BD CellQuest ProTM software-

version (Becton Dickinson (BD) Ltd, Oxford, UK) 

 7300 Real-Time PCR system (Applied Biosystem Ltd, Warrington, UK) 

 ND-1000 spectrophotometer with ND-1000 software-version (NanoDrop 

Technologies, Wilmington, USA) 

 2100 Bioanalyser and Expert 2100 software (Agilent Technologies Ltd, 

West Lothian, UK) 

 Cryo 1ºC “Mr Frosty” freezing container 

2.3.2 Cells lines and materials for hESC culture and hESC-
MSC derivation and maintenance 

 hESC: H1 cell line from Wicell which was grown in feeder free conditions. 

 StemPro hESC SFM Growth supplement (Life Technologies) 

 High Glucose Dulbeco Modiefied Eagles’s medium(DMEM) with L-Glutamine 

(Life technologies (Life Technologies) 

 DMEM/F12 with L-Gutamine (Life Technologies) 

 Bovine serum albumin (BSA) (Life Technologies) 
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 FGF-basic (Life Technologies) 

 2-mercaptorthanol (Life Technologies) 

 Fetal bovine serum (FBS) Hyclone (Thermo Scientific) 

 Non essential amino acid (NEAA) (Life Technologies) 

 Penicillin and Streptomycin (Life Technologies) 

 TrypLE Select (Invitrogen) 

 PBS (with Mg2+ and Ca2+) (Life Technologies) 

 PBS (without Mg2+ and Ca2+) (Life Technologies) 

2.3.3 Media Formulations 

2.3.3.1 hESC medium (StemPro hESC SFM complete medium) 

Reagent Amount Concentration 

DMEM/F12 +GlutaMAX (with Sodium Bicarbonate+ 

Sodium Pyruvate) (1X) 454ml 1X 

StemPro® hESC SFM Growth Supplement (50X) 10ml 1X 

BSA 25% 36ml 1.8% 

FGF-basic (10µg/ml) 400µl 8ng/ml 

2-mercaptoethanol (55mM) 909µl 0.1nM 

 

 



58 
 

2.3.3.2 MSC medium (D10 medium) 

Reagent Amount Concentration 

D-MEM high glucose, sodium pyruvate and GlutaMAXTM 450ml 1X 

FBS 50ml 10% 

NEAA 5ml 1% 

Penicillin+Streptomycin 5ml 1% 

 

 

2.3.3.3 Adipogenic differentiation medium 

Reagent for IBMX method Amount Concentration 

DMEM/F12 +GlutaMAX (with Sodium Bicarbonate+ 

Sodium Pyruvate) supplemented with 10% FBS 
200ml 1X 

Dexamethasone (100µM) 2 ml 1µM 

Indomethacin (140mM) 285.6µl 0.2mM 

Insulin (10mg/ml) 200µl 10µg/ml 

3-isobutyl-1-methylxanthine (500mM) 200µl 0.5mM 

 

 

 



59 
 

Reagent for SWH method Amount Concentration 

DMEM/F12 +GlutaMAX (with Sodium Bicarbonate+ 

Sodium Pyruvate) 

200ml 1X 

Serum Replacer (KoSR) 40ml 20% 

 

2.3.3.4 Osteogenic differentiation medium 

Reagent Amount Concentration 

D10 medium 200ml 1X 

Dexamethasone (100µM) 200µl 100nM 

Ascorbic acid-2-phosphatase (50mM) 200µl 50µM 

Β-glycerophosphate (1M) 2ml 10mM 

 

2.3.3.5 MSC cryopreservation medium 

Reagent Amount Concentration 

DMEM/F12 +GlutaMAX (with Sodium Bicarbonate+ 

Sodium Pyruvate) 

30ml 1X 

Serum Replacer (KoSR) 10ml 20% 

DMSO 10ml 20% 
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2.3.4 Flow Cytometry Reagents 

 FITC-conjugated Mouse IgG1, k Monoclonal Isotype Control (BD 

Bioscience, 55748) 

 R-PE-conjugated Mouse IgG1, k Monoclonal isotype Control (BD 

Bioscience, 555398) 

 APC- conjugated Mouse IgG1 Monoclonal isotype Control (BD Bioscience, 

555751) 

 APC-Conjugated IgM Monoclonal Antibody (BD Bioscience, F0117) 

 R-PE conjugated Mouse Anti-Human CD13 Monoclonal Antibody (E-

Bioscience, 12-0138-42) 

 FITC conjugated Mouse Anti-Human CD34 Monoclonal Antibody (BD 

Bioscience, 555821) 

 FITC conjugated Mouse Anti-Human CD44 Monoclonal Antibody (BD 

Bioscience-555478) 

 R-PE conjugated Mouse Anti-Human CD45 Monoclonal Antibody 

(ebioscience, 12-0459) 

 FITC conjugated Mouse Anti-Human CD71 Monoclonal Antibody (BD 

Bioscience, 555536) 

 R-PE conjugated Mouse Anti-Human CD73 Monoclonal Antibody (BD 

Bioscience, 550257) 

 R-PE conjugated Mouse Anti-Human CD90 Monoclonal Antibody (R&D 

system, 17-1057) 

 FITC conjugated Mouse Anti-Human CD106 Monoclonal Antibody (BD 

Bioscience, 551146) 

 R-PE conjugated Mouse Anti-Human CD166 Monoclonal Antibody (BD 

Bioscience, 559263) 

 R-PE conjugated Mouse Anti-Human CD271 Monoclonal Antibody (BD 

Bioscience, 557196) 

 Purified Mouse Monoclonal IgM Clone STRO-1(anti-hSTRO-1) (R&D system, 

MAB1038) 
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2.3.5 MSC Differentiation Reagents and staining 

 Dexamethasone (Sigma) 

 Indomethacin (Sigma) 

 Insulin (Sigma) 

 3-isobutyl-1-methylxanthine (Sigma) 

 Knockout serum Replacer (KoSR) (Life Technologies) 

 Ascorbic acid-2-phosphatase (Sigma) 

 Β-Glycerophosphate (Sigma) 

 Alizarin Red S (Sigma) 

 Oil Red O (Sigma) 

2.3.6 Senescence Study 

Senescence β-Galactosidase Staining Kit: Fixative, Staining Solution, Solution A, 

Solution B, X-Gal (Cell Signalling TECHNOLOGY®, 9860) 

2.3.7 Quantitative Real Time PCR 

PCR Mastermix (Life Technologies) 

Target primer/probe (Life Technologies): 
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2.3.8 Chemical 

 Glycerol (Sigma) 

 Isopropanol (Fisher Chemical) 

 Β-Mercaptoethanol (Life Technologies) 

 Dimethyl sulfoxide (DMSO) (Sigma) 

 Formalin solution (37% Formaldehyde) 

2.3.9 Software 

 Graphpad Prism® 4 for basic biostastistics and graphing 

 BD FACSDiva version 6.1.3 for Flow Cytometry data analysis 
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2.3.10 hESC culture 

The original Wisconsin hESC line H1 (Thomson et al., 1998) was used as a starting 

population in all 20 different runs of the differentiation protocol. The hESCs 

were grown on murine embryonic fibroblast (MEF) cells when originally acquired. 

From passage 28 they were switched to feeder free conditions in which they 

were cultured on 6 well plates pre-coated with extracellular matrix (ECM; 

CellStart, Life Technologies) in StemPro hESC HFM media. The cells were 

passaged a further 10 to 20 times in feeder free conditions, in order to ensure 

the absence of MEF cells, before being used as a starting population for 

differentiation into MSCs. During this time the hESCs were fed daily with 

StemPro hESC HFM media until they attained confluency. When about 90% 

confluent the cells were mechanically detached using Stempro EZPassage 

disposable passage tool (Invitrogen) and vigorously pipetted in order to 

dissociate remaining cell clumps. The dissociated cells were then re-plated, cells 

from each well being split among 6 wells for maintenance and further expansion. 

All of the above cultures were maintained in an incubator at 37ºC and 5% CO2.  

2.3.11 Differentiation of hESCs to MSCs. 

A concise diagram showing the differentiation protocol used is shown in figure 2-

2 and the detail work flow is illustrated in figure 2-3. For each run of 

differentiation, 2 confluent wells of hESCs were selected from a 6 well-plate and 

used as the starting population for the differentiation. One of the 2 wells was 

labelled sample A and the other sample B. and a third well of cells was taken for 

RNA extraction in order to perform analysis using qRT PCR. The RNA extracted 

from this well was used to obtain data for day 0 of the differentiation protocol. 

The duplicate cell samples (A and B) selected for differentiation were 

mechanically detached from these wells (as described above in 2.3.10) and 

dissociated by pipetting vigorously. Cells from each well were divided into 4 

equal portions. Each portion was transferred into a T25 flask to give 4 flasks 

each of sample A and sample B. The cells were then kept at 37ºC and 7.5% CO2 

incubator for approximately 28 days in D10 (DMEM+FBS 10%+NEAA+P/S) medium. 

The medium was changed every 7 days. After 28 days, the cells were dissociated 
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by adding TrypLE Select to the flasks and incubating for 2-4 hours. Subsequently, 

cells from one of the 4 flasks containing sample A and one of the 4 flasks 

containing sample B were re-plated into T25 flasks (usually 2). One flask from 

each of the replicates (A and B) was used for RNA extraction at day 5, day 10 

and day 28 (see 2.3.15.4). However, qRT PCR analysis was subsequently 

performed only on the day 28 sample (i.e. corresponding to completion of the 

differentiation protocol. 

 

2.3.12 Maintenance and expansion of hESC-MSCs 

The MSC-like cells derived from the 28 day differentiation protocol were initially 

plated in 2 T25-cm2 flasks in D10 media and this was designated passage 0. Once 

they had attained 90% confluency (usually after 5-10 days in culture), the cells 

were again dissociated by adding 2ml of TrypLE Select and returning the flask to 

the incubator for 5 minutes and then replated at a density of 1X104 cells/cm2 in 

T25-cm2 flask. They were maintained D10 (DMEM+FBS+NEAA+P/S) at 37ºC and 5% 

CO2. This was designated passage 1. The flasks were observed daily under a light 

microscope and passaged when they attained 90% confluency, typically every 3 

to 4 days. The cells were usually maintained in T25-cm2 flasks except at passage 

3, when T75-cm2 flasks were used to obtain the larger numbers of cells required 

for characterization and to provide a stock of cells for cryopreservation (flow 

cytometry, qRT-PCR, see below). The media was changed every 2 -3 days with 

pre-warmed media (5 ml for T25-cm2 flask, 12-15ml for T75-cm2 flasks). 

2.3.13 Cell counting and viability 

At the end of every passage, a cell count was manually performed using a 

haemocytometer (Hawksley BS.748 improved Neubauer counting chamber). 

About 10µl of cell suspension which had been trypsinized and dissociated was 

collected and mixed with 10µl of Trypan Blue. The cells were then transferred to 

the haemocytometer and counted under an inverted phase contrast light 

microscope at X10 magnification. Viable cells were distinguished from non-viable 

cells by their bright appearance while non-viable cells stained blue. Viable cells 

were counted on 4 outer large squares and averaged. The volume within each 
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large square is 0.1mm3 (each large square is 1mm X 1mm and the area between 

the slide and the coverslip is 0.1mm so the volume is 0.1mm3). This gives an 

averaged cell count in a volume of 0.1mm3. To obtain the number of cells in 1 

ml, this value was multiplied by 10,000. This value was then multiplied by 2 to 

account for the dilution with the Trypan Blue solution. In summary, the total 

number of viable cells in 1 ml in this study was calculated using the formula: 

Average cells counted from 4 large square X 10,000 X 2 (dilution factor). 

2.3.14 Cryopreservation protocol for hESC-MSCs 

4-6 vials of hESC-MSCs from each different run (2-3 vials each of the A and B 

samples) were cryopreserved at passage 3. Cells were detached and re-

suspended in MSC media at 2 X 106 cells per ml. An equal volume of freezing 

media was then added so that the final concentration of DMSO was 10%. After 

mixing, the 1 ml of cell suspension was transferred to a CryoTubeTM and placed 

in a “Mr Frosty”. These were stored overnight at -80ºC and subsequently 

transferred into a liquid nitrogen tank for long term storage. 

2.3.15 Characterization of hESC-MSCs 

The derived MSC-like cells were characterized using several of the standard 

approaches described in the literature (Olivier et al., 2006; Chamberlain et al., 

2007; Uccelli et al., 2008). 

2.3.15.1 Morphology and adherence ability 

Following the differentiation protocol, the cells were regularly checked under a 

phase contrast microscopy for the appearance of a spindle like and elongated 

morphology indicative of healthy cells of a mesenchymal lineage. The 

morphology of the cells was more carefully examined at passage 1 and passage 3 

and images collected in order to compare the morphology with the classical 

appearance reported for MSCs.  

2.3.15.2 Growth profiles 

To analyse the growth profile of our hESC-MSCs, they were passaged each time 

they attained 90-100% confluency. At each passage they were re-plated at the 



66 
 

same initial density (1 x105 per cm2) and at the end of each passage the cells 

were counted. These counts were used to calculate cumulative cell numbers. 

The cumulative cells numbers is a predicted cell doubling over a set period of 

time and was calculated by multiplying the end number of cells with the 

amplification fold of each passage. The growth profile was then determined 

from the cumulative growth chart which was established by series of cumulative 

cells numbers of each passage.  

The growth profiles were further analysed by calculating the population doubling 

time using the online calculator: Roth V. 2006 <http://www.doubling-

time.com/compute.php> 

2.3.15.3 Flow cytometry analysis (surface marker expression) 

This is a technique that uses detection of fluorescence to detect cell surface 

markers and thereby provide quantitative information on the combinations of 

markers and numbers of cells that express them. The first stage is to select the 

viable cell population. The equipment provides a plot in which each cell is 

represented by a dot. The position on the y axis is determined by cellular 

granularity and is referred to as side scatter (SSC). The position on the x axis is 

determined by cell size and referred to as forward scatter (FSC). The 

distribution of the cells on this scatter plot can be inspected and a gate placed 

around the main population of cells, excluding debris and dead cells that are 

usually seen in the lower left corner of the plot (Figure 2.1-A). The cells within 

the gate are those included in further analysis.   
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Figure 2-1.Example dot plots with gated population (A) and isotype control (B).  

The red dots in plot A indicate viable cells to be included in the analysis. The red dots in graph B 
represent the isotype controls (including autofluorescence and non-specific background staining) 
which were placed in the first log. (SSC: side scatter intensity value which is proportional to 
flouresecent intensity; FSC: forward scatter which is proportional to the diameter of the cell). 

 

The cells were then analysed by generating log scale dot plots for different 

combinations of surface markers included in the analysis. Initially, isotype 

controls were used to determine auto-fluorescence and other non-specific 

background staining and the cell population were positioned within the first log 

of the axis (Figure 2.1-B). In addition, positive controls were used to compensate 

for the overlapping emission spectra of different fluorochromes. Once the 

optimal compensation was achieved, the test cells were run and ten thousand 

gated events were collected for each different cell sample. All flow cytometry 

analysis in this study was performed on a BD FACSCaliburTM.  

A series of markers which have consistently been reported to be expressed by 

adult MSCs and other markers which are usually negative in MSCs populations 

were used to characterize our derived MSCs. The flow cytometry was performed 

at passage 1 and passage 3.  

2.3.15.3.1  Preparation of cells for flow cytometry 
Passaged cells were dissociated and re-suspended in DPBS+SR 5% at 1 X 106 cells 

per ml. Then, 100µl of the cell suspension was added to eppendorf tubes and 

mixed with different combinations of antibodies (1µl of each). The tubes were 

left for about 30 minutes in the dark environment at 4ºC. They were then 
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washed and subjected to 2 cycles of centrifugation and resuspension before 

finally being transferred into FACS tubes and loaded one by one in the 

FACSCalibur machine. The following antibodies were used: 

 

Table 2-1-List of different antibody combinations used in flow cytometry  

 

2.3.15.4 Quantitative real time-PCR (gene expression) 

qRT-PCR was performed on samples obtained at 3 time points: 1) at the 

beginning of the differentiation protocol i.e undifferentiated hESCs which 

extracted on day 0; 2) on completion of the differentiation protocol i.e day 28 

and 3) when the cells had acquired a homogenous mesenchymal-like morphology 

(i.e. at passage 3). This analysis was performed as part of the characterization 

process to compare the properties of hESC-MSCs with those of undifferentiated 

hESCs, as well as to analyze gene expression levels at different time points in 

the protocol. The mRNA expression level of different groups of genes typical of 

pluripotent stem cells, early mesodermal/epithelial-mesenchymal cells, MSCs 

and genes not expected to be present were quantified. The selected genes for 

pluripotency were Nanog and Oct4 (Bhattacharya et al., 2004; Hyslop et al., 

2005; Cai et al., 2006; Adewumi et al., 2007; Mountford, 2008) while COL1A1 

and CD105 were selected to re-present genes highly expressed in adult MSCs 

(Silva et al., 2003; Barry & Murphy, 2004; de Peppo et al., 2010; Menicanin et 

al., 2010). Twist1 was chosen as an MSC/epithelial-mesenchymal transducing 

marker (Cakouros et al., 2010) while Brachury (T) and Goosecoid(GSC) (Lee et 

al., 2010) were selected for an early mesodermal lineage. Finally, CD45 and 

CD31 were selected as markers which should not be expressed in MSCs. 
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2.3.15.4.1 RNA extraction 
Total RNA was extracted from cells using the Qiagen RNeasy mini kit according 

to manufacturers instructions. Cells were lysed directly in the flask by adding 

700µl of RLT buffer to approximately 80% confluent T25 flasks. The lysates were 

then either directly processed or stored at -80ºC to be used later. Lysates were 

then homogenised by putting them through QIAshredder spin columns placed in a 

Heraeus BIOFUGE pico for 2 minutes at 13000 rpm. An equal volume of 70% 

ethanol was then added to the RNA and the sample was subsequently passed 

through an RNAeasy spin column for 15 seconds at 11000 rpm. The RNAeasy spin 

column contains a membrane that binds the RNA. Following this, 700µl RW1 

buffer was added into the membrane bound RNA and spun for 15 second at 

11000 rpm. The RNA was then washed twice with 500µl RPE buffer by spinning 

for 15 seconds at 11000 rpm for the first wash and 2 minutes at 11000 rpm for 

the second. Finally the RNA was eluted with 20-40µl of RNase free water passed 

through the spin column at 11000 rpm for 1 minute. The eluate was either 

immediately processed or frozen at -80ºC. 

2.3.15.4.2 DNase treatment 
Removing the contaminating DNA was done using the Ambion Turbo DNA free kit. 

2µl buffer, 12µl water and 1µl DNase were added to 5µl RNA eluate and this 

mixture were incubated for 30 minutes at 37ºC. Following that, the mixture 

were briefly centrifuged and another 1 µl DNase added for another 30 minutes 

incubation at 37ºC. After that, 2µl stop solution was added to the samples and 

were placed at room temperature for 2 minutes. Samples were then centrifuged 

for 5 minutes at 11000 rpm. Subsequently, the supernatant which contains the 

DNased RNA was transferred into a new eppendorf and could either be processed 

to become cDNA or stored at -80ºC. 

2.3.15.4.3 RNA quality control 
RNA concentration and quality was assessed using the Nanodrop and 

Agilent®2100 bioanalyser respectively.  

2.3.15.4.4 Nanodrop ND-1000 Spectrophotometer 
The nanodrop measures RNA concentrations over a range of 2-3000ng per µl. The 

instrument automatically calculates the RNA concentration and absorbance. The 

instrument was calibrated with a blank (using RNAse free water) followed by 

1.5µl of RNA sample. The absorbance spectrum (OD260:280 ratio) and RNA 
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concentrations were measured and displayed. An absorbance between 2.0 and 

2.2 was regarded as a measure of acceptable quantity of RNA to be used for 

further processing in this project. 

2.3.15.4.5 Agilent 2100 Bio-analyser 
The integrity of the RNA was assessed using an Agilent 2100 Bio-analyser and 

RNA 6000 LabChipTM. The RNA is electrophoretically separated in the LabChip 

using strategically located electrodes. 1µl of DNased RNA sample per well is 

required for analysis of each different sample. The RNA components are 

detected by fluorescence and translated into virtual images, sized and 

quantified in relation to internal standards. The software will then analyse and 

generate an RNA integrity number (RIN). RIN values of more than 7 are regarded 

as indicating RNA of high quality. 

2.3.15.4.6  cDNA synthesis 
cDNA synthesis was performed by adding 10µl of DNase treated RNA into a 

reaction consisting of 1µ of 10mM dNTPs and 1µl of random hexamers(300ng/µl). 

The samples were then heated to 65ºC for 5 minutes followed chilling on ice and 

brief centrifugation. A mixture of 4µl of buffer, 2µl DTT and 1µ RNaseOUT were 

then added into the samples, which were then left at room temperature for 2 

minutes. Finally, 1µl of superscript II (Invitrogen) was added to the samples 

before they were exposed to a temperature cycle of 25ºC for 10 minutes, 42ºC 

for 50 minutes and 70ºC for the remaining 15 minutes. The samples were either 

used immediately for analysis or frozen at -80ºC. 

2.3.15.4.7  TaqMan qRT-PCR transcript analysis 
TaqMan based qRT-PCR is an efficient and reproducible method of analysing 

gene expression. It uses small sequence specific probes for genes of interest that 

have a reporter fluorophore at the 5’ end and a quencher molecule at the 3’ 

end. If the target sequence is present during the amplification process, the 

probes anneal and the quencher is then cleaved by the enzyme Taq polymerase, 

functioning in the 5’ to 3’ direction. The cleavage of the quencher molecule 

allows the detection of the reported fluorophore. The signal intensity increases 

after every successful amplification cycle. The fluorescence signal can be 

normalised to a housekeeping gene expression levels of which are not affected 

by the procedures used to quantify the genes of interest. The housekeeper gene 

GAPDH was used throughout the procedure. Samples were prepared for analysis 
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by adding 5µl of a 1 in 64 dilution of cDNA into a reaction consisting of 2.2µl 

water, 7.5µl 2X Master Mix(Invitrogen) and 0.3µl primer. The reactions were  

performed in Optical 96-well Reaction plates with technical and biological 

replicates. 

Data is analysed by comparing the cycle threshold (Ct) for each targeted probe 

to that of a housekeeper gene. Ct is measured as the reporter dye emission 

intensity rises above that of the background level which occurs during the 

exponential phase of the PCR. The Ct values are used to calculate ΔCt which is 

the difference between the target gene Ct and the housekeeper Ct. The mean 

ΔCt between technical replicates is calculated and used to calculate the 

expression value using the formula: 2ΔCt x 1000. The expression values were 

plotted on graphs to illustrate the expression levels of the tested genes in 

different samples.  

2.3.16 Senescence staining of hESC-MSCs 

Senescence associated β-galactosidase (SA β-Gal) activity is a useful biomarker 

for detection of senescent cells in culture (Itahana et al., 2007). SA β-Gal is a 

lysosomal protein found predominantly in active fibroblasts and MSCs (Dimri et 

al., 1995; Wagner et al., 2008). It is the most widely used biomarker for 

senescent and aging cells because it is easily and rapidly detected. SA β-Gal 

activity at pH 6 is regarded as indicative of senescent cells (Itahana et al., 

2007). The Senescent β-Galactosidase Staining Kit (Cell Signalling) was used in 

this study according to the manufacturers instructions. 

Passaged hESC-MSCs were re-plated at 2-5 X 104 cells in 35-mm dishes (6 well 

plate) and were cultured for 1-3 days. The media was then removed and the 

cells washed with D-PBS once and then fixed with 1X fixative solution for 10-15 

minutes at room temperature. While waiting for the incubation, β-Galactosidase 

staining solution was prepared. For each well of cells, a mixture containing 

930µl 1X staining solution, 10µl Staining Supplement A, 10µl Staining Supplement 

B and 50µl 20mg/ml X-gal in DMF was  prepared. The final pH of this solution has 

to be between 5.9-6.1. After removing the fixatives, the cells were rinsed twice 

with D-PBS and 1 ml of β-Galactosidase staining solution was added to each well. 

The cells were incubated overnight in a dry incubator (no CO2) at 37ºC. A blue 
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colour could be detected within 2 hours but was usually maximal in 12-16 hours. 

Blue cells representing senescent cells were viewed under an inverted light 

microscope at 10X magnification. For analysis purposes, at least 100 cells in 4 

random fields were counted and the percentage of β-Galactosidase positive cells 

were calculated through the formula: (Total of positive cells/ Total cells) X 100 

2.4 Expansion and preparation of cells for transplantation 

2.4.1 Protocol for thawing hESC-MSCs 

Cells were usually thawed approximately 3 weeks before they were required for 

transplantation. A cryotube containing around 1 X 106 cells was taken out of 

liquid nitrogen and placed in a water bath at 37ºC. Once most of the cells had 

thawed, the outside of the tube was disinfected with 70% ethanol and the cells 

were carefully transferred into a 15ml falcon tube followed by drop wise 

addition of 10ml of culture medium over 5 minutes to dilute residual DMSO. They 

were then centrifuged at 1200 rpm for 3 minutes to pellet the cells. Following 

that, the supernatant was discarded and the cells were resuspended in culture 

medium and divided equally between 2 T25 corning flasks. They were regarded 

as passage 3+1 at this point. They were kept in an incubator at 37ºC and 5% CO2 

and were repeatedly expanded, up to passage 3+5 to achieve the required 

number of cells for transplantation and re-characterisation. 

2.4.2 Re-expansion of hESC-MSCs 

After initial plating at passage 3+1 (see above), the cells were passaged each 

time they attained 80-90 % confluency. From this point onward (P3+2), cell 

numbers were carefully calculated at each passage in and a lower initial cell 

density (between 3500 and 4000 cells/cm2) was used compared to that used 

prior to cryopreservation in order to maximise the proliferation capacity of the 

cells. The cells were passaged when approximately 80-90% confluent until 

passage 3+5. They were then prepared for transplantation. The growth profile of 

the cells was evaluated throughout this expansion process to compare it with the 

growth profile prior to cryopreservation. 
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2.4.3 GFP Labelling of hESC-MSCs 

At 24 hours after the first passage i.e P3+2, the cells were infected with 

lentivirus expressing a gene that encodes the green fluorescent protein (GFP) to 

allow in vivo tracking after transplantation. In this study, three different 

lentiviruses were used at different stages of the study: 1) a Lentivirus donated 

by Dr George Smith from University of Kentucky, Titre: 5.72 X 108 IFU/ml), 2) 

GFP (Bsd) AMSBIO lentivirus (AMSBIO, LVP001, Titre: 1 X 108 IFU/ml) and 3) Null 

GFP lentivirus (was prepared by John McCabney in the Mountford Lab, using 

cDNA from Clontech, 631982, and 3rd generation lentivirus production plasmids, 

Titre: 8X108 IFU/ml). The virus infection was performed at a MOI (Multiplicity of 

Infection) of 50 for viruses 1 and 2 and a MOI of 20 for the third. The MOI was 

decided based on prior testing using 4 different MOIs: 10, 20, 50 and 100. The 

lowest MOI that resulted in 70-100% was chosen for the study i.e. to infect cells 

to be transplanted. The amount of virus (IFU=infectious units) needed to achieve 

the desired MOI was calculated by multiplying the number of cells to be infected 

by the desired MOI. The volume of virus required was then calculated by dividing 

the original titre of virus (available IFU in set volume) with the amount of virus 

needed (IFU needed). In this study, the infection was performed on 

approximately 130,000 cells in 2.5 ml D10 media in T25-cm2 flask. Another 2.5 

ml of new media was added on the next day without removing the old media. 

The cultures were kept for 72 hours and then were dissociated for further 

expansion. The infection efficiency was checked by examining the presence of 

GFP positive cells using both fluorescent microscopy and flow cytometry. 

2.4.4 Re-characterization of hESC-MSCs 

At passage 3+5 cells were re-characterized using the same methods as was used 

to characterise the cells prior to the cryopreservation. These include 1) 

morphology and adherence to plastic (2.3.15.1), 2) growth kinetics/profile 

(2.3.15.2), 3) surface marker expression (2.3.15.3), 4) gene expression 

(2.3.15.4). This was done in order to confirm that the process of 

cryopreservation, thawing and repeated expansion did not affect their MSC-like 

properties (see above). 
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2.4.5 Functional differentiation into adipocytes and 
osteoblasts  

Since the ability to form osteoblast and adipocytes is considered a characteristic 

of MSCs, the cultures prepared after cryopreservation were tested for this ability 

at P3+5, corresponding to the day of transplantation. This was performed using 

cells which were not infected with GFP lentivirus. 

2.4.5.1 Adipogenic differentiation 

Cells were re-suspended in D10 media and seeded at approximately 2.0 x 104 

cells/cm2 (about 2.0 x 105 cells/well of 6 well plate). One well of cells was 

prepared for differentiation and another prepared as a control. The cells were 

incubated until they were 90-100% confluent. They were then exposed to the 

differentiation medium while the control cells were kept in D10 media for 21 

days and the media were replaced twice a week.  Two different methods of 

adipogenic differentiation were used. The first, a commonly used method, used 

D10 medium supplemented with 1µM Dexamethasone, 0.2 mM Indomethacin, 

10µg/ml insulin and 0.5mM 3-osobutyl-1-methyl-xanthine (Pittenger et al., 1999; 

Sekiya et al., 2004).  The other, a serum withdrawal hypoxia method (SWH), 

used DMEM/F12 supplemented with knock out 10% serum replacer (KoSR) and 

incubation in partially hypoxic conditions (5% oxygen) (Olivier et al., 2006). Both 

methods lasted for 21 days and cells were regularly observed for the appearance 

of lipid vacuoles in the cytoplasm. After 21 days, the media was aspirated and 

the cells were washed three times with D-PBS. The cells were then fixed by 

adding 0.5ml 10% formalin to each well and kept at room temperature for 1-2 

hours. The cells were again washed 3 times with D-PBS followed by one wash 

with 70% ethanol. Afterwards, cells were stained with fresh Oil Red-O staining 

solution by adding 1ml of staining solution to each well. After approximately 15 

minutes, the cells were further washed several times with 70% ethanol to clear 

excess dye and were covered with water to be viewed under the microscope. 

2.4.5.2 Osteogenic differentiation 

Cells were re-suspended in D10 media and seeded in 2 wells at 4 X 103 cells/ cm2 

(about 4 X 104 cells/well of 6 well plate). One well was used for differentiation 

and the other for control and tested when about 70% confluent. Cells for 
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differentiation were placed in D10 medium supplemented with 100 nM 

Dexamethasone, 50 µM Ascorbic Acid-2-phosphatase, and 10 mM β-

glycerophosphate (Colter et al., 2001). The control cells were placed in D10 

media. Both groups of cells were incubated at 37ºC in 5% CO2 for 21 days. Media 

was replaced every 3-4 days and the cells were regularly inspected for increasing 

granularity in the cytoplasm. Upon 21 days, the media was aspirated and 

discarded. Each well of cells was washed 3 times with 0.5ml of D-PBS followed 

by fixation with ice cold 70% ethanol for about 1 hour. The cells were then 

washed 3 times and stained with 1 ml of 40mM Alizarin Red for 10 minutes. 

Finally the cells were again washed 2-3 times before being viewed under a light 

microscope. 

2.5 Statistical analyses 

When appropriate, numerical data is presented as mean ± standard error of the  

mean (SEM). Comparisons involving 2 groups were performed using Student’s 

paired t-test and comparisons between multiple groups by one-way ANOVA. The 

statistical analysis was performed using GraphPad Prism software.
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Figure 2-2. Diagram illustrating the optimized differentiation protocol and expansion protocol. 
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Figure 2-3. Detailed work flow for differentiation protocol (hESC to MSCs).  

The dissociated H1 cells from the A and B wells were divided into 4 aliquots and each aliquot (a 
quarter well of cells) were switched to D10 media in new T25 flask. They were kept for 28 days in 
an acidic environment and then again dissociated and re-plated in D10 at 37ºC and 5% CO2 during 
which they differentiate towards MSCs. RNA extraction was performed on day 0 (from one well of 
H1 cells) and from day 28 (from both samples A and B). 

 

hESC H1 
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2.6 Results 

2.6.1 SSEA-4 expression in hESCs (starting population) 

In order to prove the effectiveness, consistency and reproducibility of the 

method for differentiation of hESCs into MSC-like cells, 20 independent runs of 

the protocol were performed and each run was performed in duplicate (labelled 

as A and B). Each run began with dissociation of the hESCs starting population 

and ended on day 28 of the differentiation protocol (Figure 2-2 and Figure 2-3). 

Each different run was performed in duplicates where 2 different replicates of 

the process were performed in parallel on the same cells which were divided 

into two samples: sample A and sample B. The starting populations of hESCs 

(Figure 2-5) were tested for the presence of SSEA-4, a marker for pluripotency, 

prior to the initiation of the differentiation protocol. All the starting populations 

were shown to be approximately 80-90% SSEA-4 positive (Figure 2-4).  

 

Figure 2-4.  SSEA-4 expression in each population of H1 cells used as a starting population 
for the 20 differentiation runs.  

The bar graph shows the consistently high percentage of cells stained for SSEA-4 in all starting 
populations used. hESCs ranging from passage 38 to passage 57 were used in different runs.  
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Figure 2-5. Images of hESC: 

Image A shows an example of confluent undifferentiated H1 hESCs which were used as the 
starting population for the differentiation protocol. Image B shows hESCs that have been 
mechanically cut with the easytool in order to facilitate dissociation of the cells. (X10 magnification, 
both images, scale bar=100µm and applicable to both panels). 
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2.6.2 Successful runs of differentiation 

A full list of the 20 differentiation runs performed is shown in table 2-2. Out of 

these, 12 runs were considered successful based on the following criteria: 1) 

cells of both replicates A and B demonstrated relatively similar morphology and 

grew almost equally robustly 2) the cells produced displayed the main surface 

markers considered characteristic for MSCs and 3) the cells produced exhibited a 

gene expression pattern consistent with that expected for MSCs. The other runs 

which did not fulfill these criteria were not included further in the study even 

though in some cases the cells had a morphology suggestive of MSCs. The cells 

from run 2C, 14C, 17C and 18C were excluded due to fungal contamination while 

cells from run 6C, 8C, 10C and 11C were excluded because the rate of growth of 

replicate A and B were significantly different. 

 

Table 2-2. List of 20 runs of differentiation performed and those selected for further study. 
Each run was coded from 1C to 20C. A tick indicates those runs selected for further study. 

 

2.6.3 Morphology and ability to adhere to a plastic surface 

The cell morphology was regularly checked and evaluated from the beginning of 

each differentiation protocol to gain an appreciation of the morphological 

change associated with differentiation from hESCs (Figure 2-5) into MSC-like 

cells. In all 12 successful runs, the cells display a mono-layered elongated 
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looking morphology (Figure 2-6) at the end of the differentiation period i.e. by 

day 28. At passage 1 (i.e. around day 40-45), the cells show a heterogeneous 

spindle shaped morphology which is characteristic of MSCs (Figure 2-7). At 

passage 3 (Figure 2-8), the cells have a similar appearance to passage 1. 

 

Figure 2-6.  Morphology of cells at the end of the differentiation protocol (day 28): 

Representative image from 2 replicates of run 1C. The images show a monolayer of elongated 
looking cells (Upper panel magnification: X4, scale bar=40µm; lower panel: X10, scale bar=100µm) 
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Figure 2-7. Morphology of hESC-MSCs at passage 1:  

Representative image of hESC-MSCs from 2 replicates of run 1C at passage 1 before attain 
confluent. Both examples demonstrate a spindle shape and elongated morphology. (Upper panel 
magnification: X4, scale bar=40µm; lower panel: X10, scale bar=100µm) 

 

 

Figure 2-8. Morphology of hESC-MSCs at passage 3: 

 Representative image of hESC-MSCs from 2 replicates of run 1C at passage 3 before attain 
confluent. Both examples demonstrate a mesenchymal looking cells. Both images from replicate A 
and B display a characteristic of spindle shape and elongated morphology. (Upper panel 
magnification: X4, scale bar=40µm; lower panel: X10, scale bar=100µm) 
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The cells were strongly attached to the plastic surface of the culture flasks, 

which were not coated, by 3- 5 days after re-plating following the 

differentiation protocol.  

2.6.4 Growth kinetics of hESC-MSCs 

To determine the growth profiles of the cells derived in this experiment, cells 

from the 12 successful runs were counted each time they were passaged. The 

counts were used to produce cumulative growth charts from passage 1 to the 

maximum passage reached. The 12 cell cultures demonstrated a characteristic 

exponential growth pattern (Figure 2-9). Cells from 5 runs (1C, 4C, 5C, 15C and 

16C) grew to passage 28 - 30 and the before the culture was intentionally 

brought to an end. The cultures of cells from other successful runs were 

terminated at earlier passages due to fungal contamination or other technical 

reasons. None of the runs were eliminated due to significant reduction in growth 

or significant numbers of senescent cells. The mean cumulative growth charts 

from the 12 successful runs demonstrated an exponential growth pattern up to 

passage 30 (Figure 2-10). Further analysis through calculation of the mean 

population doubling time (PDT) was also performed to objectively determine the 

changes in proliferation after prolonged culture and repeated passage. Graphs 

for the mean population doubling time (PDT) revealed a gradual small increment 

in doubling time with repeated passages and time in culture until passage 26. 

After passage 26 there was a steep increase in doubling time indicating a 

significant reduction in the cell’s proliferative capacity (Figure 2-11). 

Additionally, the mean population doubling time for every five passages, 

beginning from passage 3 was also calculated in order to compare the PDT of the 

earlier passages to the later passages. This comparison was statistically tested 

using one way anova and the graph is shown in figure 2-12. The PDT significantly 

increased between passage 13 and 18 compared to the earlier passages (i.e 

passage 3 to 5).  
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Figure 2-9. Cumulative growth chart for 12 successful differentiation runs:  

The graphs represent the cumulative growth charts for each culture calculated from means of cell 
counts of samples A and B. Each of the cultures demonstrated an exponential growth pattern. The 
cumulative growth count is a prediction of cell doubling over a set period of time and is calculated 
by multiplying the end number of cells with the amplification fold of each passage. 
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Figure 2-10. Mean Cumulative growth chart:  

Mean Cumulative growth chart for 12 successful differentiation runs. The error bar shows the 
standard error. 

 

Figure 2-11. Population doubling time from passage 3 to passage 30:  

The mean population doubling time from 12 different successful runs is plotted. 
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Figure 2-12. Mean population doubling (PDT) for every 5 passage: 

 The PDT from 12 runs are plotted in the chart (mean, standard error).  (NS=not significant, *= P 
value <0.05). 

 

 

 

2.6.5 Expression of Senescence Associated (SA) β-
Galactosidase in hESC-MSCs 

The presence of senescent cells in hESC-MSCs was determined using the 

Senescence β-Galactosidase Staining Kit (Cell Signalling). The result was 

calculated from the mean percentage of 3 different samples collected from 1C, 

4C and 5C. Enlarged cells with a blue stained cytoplasm were regard as positive 

for SA β-Gal staining (Fig 2-13 top). The mean percentage of positive cells at 

passage 20 was 14.99% and this increased to around 27% at passage 3 (Figure 2-

13 below).   
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Figure 2-13. Senescence Associated β-Gal staining.  

Representative images of positive SA-β gal staining of hESC-MSCs at passage 20 (upper left 
panel) and passage 30 (upper right panel, X10 magnification). The scale bar represent 100µm and 
applicable to both image of X10. The inset panels show cells with a large senescent morphology 
and peri-nuclear staining at X40 magnification. The scale bar represent 20µm and applicable to 
both inset panels. The lower panels show the percentage of positively stained cells in 3 different 
isolates of cells together with the mean of the 3. The bars represent the percentage of senescent 
cells 

 

 

2.6.6 Surface Marker Profile 

Surface marker expression expression was analysed using flow cytometry in order 

to determine the presence of MSC related markers as well the absence of the 

haematopoetic markers. This analysis was performed for each of the 12 

successful differentiation runs at passage 1 and 3 using both replicates A and B. 

Passage 1 was chosen as this is the earliest point at which the cells are 

mesenchymal-like in appearance and an adequate number of cells are available 

to enable analysis with different combinations of markers. Analysis was 

performed at passage 3 to determine any change in surface marker expression 
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with time in culture and repeated passaging. In addition, passage 3 was chosen 

for qRT-PCR analysis as this is when the cells were cryopreserved for a later use.  

The majority of surface markers tested were relatively consistently expressed by 

cells from each of the 12 successful runs, across both replicates. Most of the 

markers were also similarly expressed at passage 1 and 3, though with some 

changes which are detailed below. The percentage of cells positive for each 

surface marker, calculated as a mean of all 12 successful runs (including 

replicates A and B) and determined at passage 1 and 3 are shown in figure 2-17. 

The cells were highly positive (70-90 %) for CD44, CD73, CD105, HLA ABC, CD13 

and CD166 which are markers characteristic of MSCs. They also expressed other 

MSC markers like CD71 and CD90 at lower levels (35-50 %). However, CD271, 

CD106 and Stro-1 were expressed by only 5-20% of cells. The haematopoietic 

markers CD45 and CD34 were expressed in no more than 2 % of cells tested. 

Figures 2-14 to 2-16 show representative dot plots from flow cytometry for each 

of the markers investigated (including the isotypes). 

To determine the consistency in the surface marker profiles between passage 1 

and passage 3, the mean percentages of positive cells at passage 1 and passage 3 

were compared using Student’s paired t-test (Table 2-3). This revealed a 

significant increase in the percentage of cells which expressed CD105 (P 

value:0.021) and CD13 (P value:0.014) at passage 3 compared to passage 1. In 

addition, there was a significant reduction in the cells that expressed CD271 (P 

value:0.034) at passage 3 compared to passage 1.  
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Figure 2-14. Representative dot plots for flow cytometry analysis of different surface 
markers performed on hESC-MSCs at passage 3.  

The majority of hESC-MSCs are positive (range between 70-90%) for important MSC markers: 
CD44, HLA-ABC (class 1). Dot plots for replicates A and B are similar in appearance. The red dots 
above the line represent the positively stained cells. (SSC: side scatter intensity value which 
proportional to fluorescent intensity; FSC: forward scatter is roughly proportional to the diameter of 
the cell). (Example from culture 1C; staining with FITC antibodies):   
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Figure 2-15. Representative dot plots for flow cytometry analysis of different surface 
markers performed on hESC-MSCs at passage 3. 

The majority of hESC-MSCs are positive (range between 80-90%) for important MSC markers: 
CD73, CD13 and CD166 (80-90). Dot plots for replicates A and B are similar in appearance. The 
red dots above the line represent the positively stained cells. (SSC: side scatter intensity value 
which proportional to fluorescent intensity; FSC: forward scatter is roughly proportional to the 
diameter of the cell). (Example from culture 1C; staining with PE antibodies). 

 

 

 

 

Figure 2-16. Representative dot plot for flow cytometry analysis of surface markers at 
passage 3.  

The majority of hESC-MSCs express CD105 while only a small percentage express STRO 1. The 
red dots above the line represent the positively stained cells. (SSC: side scatter intensity value 
which is proportional to fluorescent intensity; FSC: forward scatter is roughly proportional to the 
diameter of the cell). (Example from 1C; staining with APC antibodies). 
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Figure 2-17.  Surface marker expression at 2 different passages 

 Flow cytometry analysis performed at passage 1 and passage 3 demonstrated a consistent 
pattern of surface marker expression for most markers but some differences in CD13, CD105 and 
CD271. Mean and SEM, n=12. Statistical analysis was performed using students paired t-test. 
Asterisk (*) indicates p value <0.05 and is considered significant.  

 

 

Table 2-3. Comparison of surface marker profile at passage 1 and passage 3:  

The mean percentage and standard deviation calculated for the 12 different runs of cells is shown 
with P value for difference between passage 1 and passage 3. (N.S = not significant). 
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2.6.7 Gene expression profile 

Quantitative real time PCR (RT-PCR) was performed in 11 successful runs using 

samples from day 0 and 28 (beginning and end of the differentiation protocol) 

and passage 3 of the expansion protocol. This was performed in order to look for 

changes in the mRNA expression levels of genes of interest, including those 

specific for MSCs at different stages of the protocol. In addition, this also 

allowed comparison of gene expression in hESC-MSCs compared to 

undifferentiated (day 0) hESCs. If the cycle threshold (Ct) of the targeted gene 

was more than 15 cycles greater than that for the housekeeper gene, then this 

was considered to represent no expression and the results were not included in 

further calculations and analysis. Results were normalised relative to expression 

of a housekeeper gene, GAPDH, using the formula: 2ΔCt x 1000 (Schmittgen & 

Livak, 2008). Using this formula, a high value (e.g. 500) would indicate that the 

Ct for the targeted gene is within within 1 cycle of housekeeper gene whilst a 

low value (e.g. 0.1) would indicate that amplification of target gene required ≥ 

15 cycles more than the housekeeper for signal detection and therefore equates 

to very low expression. ΔCt values (Ct housekeeper gene – Ct target gene) from 

different time points were analysed statistically using one way anova. The 

results obtained are shown graphically in Figure 2-18. 

The gene expression pattern at passage 3 was consistent with an MSCs 

phenotype. Both replicates of the 11 runs expressed relatively high levels of MSC 

related genes and low levels of pluripotent genes, compared with day 0 samples. 

Both OCT4 and Nanog (pluripotency genes) were highly expressed at day 0 within 

the starting population of hESCs. Their expression levels were then significantly 

downregulated at later time points: by at least 40 fold at day 28 and more than 

3000 fold at passage 3. The mesenchymal gene, COL1A1 was significantly 

upregulated (by 35 fold) at day 28 and then slightly (but not significantly) 

downregulated at passage 3. CD105 expression was upregulated at day 28 and 

further significantly upregulated (by 35 fold) at passage 3. Another potential 

mesenchymal gene, Twist1 was significantly upregulated at day 28 compared 

with day 0. The Twist1 expression was significantly downregulated at passage 3 

compared with day 28 but was still significantly expressed compared with day 0. 

Additionally, there was either extremely low or no expression of CD31 and CD45 
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genes in all samples tested and these data are not shown. Further analysis of 

mesodermal markers showed very minimal expression of GSC in all samples 

without any pattern to suggest any biological relevence. There was either 

extremely minimal expression or no expression of brachyury in all samples which 

were analyzed (data not shown). 

 

Figure 2-18. Gene expression analysis from qRT-PCR performed before cryopreservation. 
Gene expression calculated using the formula 2ΔCt x 1000 and presented as mean and standard 
error calculated from 11 different isolates. The upper panels (A) show the downregulation of 2 
pluripotency genes: OCT4 and Nanog. The middle panels (B) show 2 early mesodermal/epithelial-
mesenchymal transition genes: GSC and Twist1. There is minimal expression of GSC at all time 
points. Twist1 is significantly upregulated at day 28 but subsequently decreased at passage 3. 
The lower panels (C) demonstrate the upregulation of 2 mesenchymal lineage genes: COL1A1 and 
CD105 at later time points. Statistical comparisons of ∆Ct was performed using one way anova . 
Asterisks (*) indicate p values <0.05 which are considered significant.  
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2.6.8 Re-characterization 

In order to determine whether the cells retain their properties following 

cryopreservation, the cells were re-characterized using the same methods as 

prior to cryopreservation. This was performed on cells from replicates A of 5 

different runs (1C (A), 4C (A), 7C (A), 9C (A) and 13C (A)) at passage 3+5 (5 

passages after they were recovered from liquid nitrogen). These are cells which 

were selected for transplanting into the animal model of SCI. 

2.6.8.1 Morphology and adherence capacity 

The cells showed a similar morphological appearance after they were recovered 

from liquid nitrogen and re-cultured under similar conditions to prior to 

cryopreservation. They displayed an elongated and spindle shaped morphology 

when regularly examined from passage 3+1 up to passage 3+5 (Figure 2-19). 

There were no noticeable cells of large size which would have suggested the 

development of senescence. In addition, all cell isolates retained the capacity to 

adhere to plastic surfaces.  

 

 

Figure 2-19. Image of hESC-MSC after cryopreserved and re-culture.  

Representative image of hESC-MSCs from run 1C at passage 3+5. The cells display MSC-like 
features (elongated and spindle shaped) which are similar to earlier passages (Left image:X4, right 
image: X10). 
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2.6.8.2 Growth profile 

Cell counts were performed at the end of every passage (passage 3+1 to passage 

3+5) of all 5 isolates recovered from cryopreservation for transplantation (1C 

(A), 4C (A), 7C (A), 9C (A) and 13C (A)) in order to determine their growth 

profile following cryopreservation. The cumulative cell growth chart for the 

cryopreserved cultures demonstrated an exponential growth pattern which was 

either similar to or better than that for the cells not cryopreserved but 

maintained in culture to passages 4 to 8 (Figure 2-20). A comparison of the 

population doubling time of cryopreserved cells at passage 3+2 to passage 3+5 

with cells grown on in culture to passage 5 to passage 8, revealed a shorter and 

more consistent doubling time than in the samples which were analysed before 

cryopreservation (Figure 2-21). A Student’s paired t-test was performed to 

compare the mean population doubling time (calculated from passage 5 to 

passage 8 versus passage 3+2 to passage 3+5) of each cell isolate before and 

after cryopreservation. This revealed a significant reduction in the mean 

population doubling time of cryopreserved cells for 1C and 7C in comparison to 

none cryopreserved cells of the same populations (Figure 2-22). There was no 

significant difference in the mean population doubling time of 4C and 9C but the 

value tended to be lower for the cells which had been frozen (Figure 2-22). A 

Students paired t-test was used to compare the mean population doubling time 

of cryopreserved and non-cryopreserved cells of all four isolates and revealed a 

significant reduction for the mean PDT after cryopreservation (Figure 2-23). In 

summary, the results suggest that the proliferation capacity of hESC-MSCs does 

not deteriorate and in fact may improve following cryopreservation, although 

other factors such as potential differences in the initial density and final density 

when passaging need to be taken into consideration. 

Cells from 13C (A) were not included in the above calculation as they were re-

cultured using a higher cell density (10,000 cells/ cm2) than the other cultures. 

In addition, cells from 13C (A) were only passaged up to passage 3+3 before they 

were then prepared for transplantation (see chapter 3). There was a slightly 

higher PDT displayed in 13C (A) after cryopreservation (Figure 2-24).  
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Figure 2-20. Cumulative growth chart (cryopreserved compared to non-cryopreserved). 

Growth charts for 4 different cell isolates showing cumulative growth numbers  over 5 different 
passages (from passage 4 to 8 versus passage 3+1 to 3+5).  
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Figure 2-21. Population doubling time (PDT) chart (cryopreserved compared to non-
cryopreserved).  

Graphs of population doubling time for 4 different isolates comparing PDT for cryopreserved and 
non-cryopreserved cells over 4 different passages (from passage 5 to 8 versus passage 3+2 to 
3+5).  
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Figure 2-22. Mean population doubling time (PDT) calculated over 4 passages for 4 isolates 
of cryopreserved compared to non-cryopreserved cells.  

Mean and standard error. NS= not significant, asterisk (*) indicates p value of <0.05. 

 

 

Figure 2-23. Comparison of population doubling time for cryopreserved compared to non-
cryopreserved cells.  

The values are a mean calculated for 4 isolates i.e. 1C-A, 4C-A, 7C-A and 9C-A over 4 passages. 
(Mean, standard error; NS= not significant, asterisk (*) indicates p value of <0.05). 
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Figure 2-24. Population doubling time (PDT) of cell run 13C (cryopreserved compared to 
non-cryopreserved ).  

(A) Mean PDT calculated from passage 5 to passage 6 (non frozen) compared to mean from 
passage 3+2 to passage 3+3 (after freezing). (Mean, standard error). (B) Population doubling time 
over 2 passages  
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2.6.8.3 Surface marker expression 

The flow cytometry analysis was performed on cells recovered from liquid 

nitrogen to determine the consistency of surface marker expression between 

cells at passage 3 (before cryopreservation) and cells at passage 3+5 (after 

cryopreservation) for the same set of surface markers. 5 different isolates of 

cells (replicate A) were tested and the results show a highly consistent marker 

expression at the 2 passages tested. The mean percentage positive cells for each 

marker at each passage is shown in in figure 2-25. Use of Student’s paired t-test 

showed there was no significant difference between cryopreserved and non-

cryopreserved cells except for CD34 which was significantly reduced after 

cryopreservation (table 2-3). But the percentage of cells positively stained for 

CD34 was in any case low in both passages, suggesting it may be of little 

biological significance. 

 

Figure 2-25. Surface marker expression at 2 different passages (passage 3 and passage 
3+5).  

Flow cytometry analysis performed at 2 different passages demonstrated a consistent pattern of 
surface marker expression with the only significant difference occurring for the non MSC marker 
CD34. (Mean, standard error, n=5. Statistical analysis was peformed using Student’s paired t-test. 
An asterisk ( *) indicates a p value <0.05. 
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Table 2-4. Comparison of surface marker profile at passage 3 and passage 3+5:  

The mean percentage and standard deviation calculated for 5 different isolates of cells is shown 
with P the value for the difference between passage 3 and passage 3+5. (N.S = not significant). 
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2.6.8.4 Gene expression 

Gene expression analysis for these 5 different isolates was performed in order to 

examine the effect of cryopreservation. This was performed by comparing the 

expression in samples at passage 3+5 (which had been extracted from thawed 

cryopreserved samples), with samples from passage 3 and day 0 which had not 

been subject to cryopreservation. To ensure better consistency for comparison, 

cDNA from cryopreserved and non-cryopreserved samples was prepared in 

parallel using the same stocks of reagents (e.g. mastermix and GAPDH). Mean 

gene expression levels were calculated for data from the 5 different samples and 

a one way ANOVA was performed in order to statistically compare the expression 

between the three different time points (Figure 2-26).  

The MSC related genes COL1A1 and CD105 were significantly upregulated at both 

passage 3 and passage 3+5 compared to day 0 samples but were not significantly 

different from each other. The pluripotentency genes OCT-4 and Nanog were 

significantly downregulated at both passage 3 and passage 3+5 compared to day 

0. Twist-1 was significantly upregulated at passage 3 compared with day 0. It 

was down-regulated at passage 3+5 compared to passage 3 but still significantly 

upregulated compared to day 0. This may suggest that the cells become more 

committed toward MSCs by passage 3+5. There was minimal expression of GSC in 

the samples and this showed a tendency for down-regulation at passage 3+5. In 

addition, there were no significant differences between the expression of genes 

tested in passage 3 and passage 3+5 samples except for Twist1. The other genes 

tested were either expressed at very low level or absent and these data are not 

shown. In summary, the gene expression level after cryopreservation at passage 

3+5 demonstrate a pattern of expression consistent with passage 3 samples 

suggesting that cryopreservation does not affect gene expression at the 

transcription level in hESC-MSCs.  
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Figure 2-26. Gene expression analysis performed after cryopreservation.  

Test performed using 5 different samples from passage 3+5 (extracted from samples which have 
been cryopreserved, thawed and re-cultured for transplantation) in comparison to samples from 
passage 3 and day 0 which were extracted prior to cryopreservation. Statistical analysis used is 
one way anova performed using the ΔCt value and asterisks (*) indicate p values of <0.05. 

 

 

2.6.8.5 Functional differentiation 

The differentiation ability of our hESC-MSCs following cryopreservation was 

determined by inducing some samples from all 5 different runs to form 

adipocytes and osteoblast. They were cultured at passage 3+5 in either 
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adipogenic or osteogenic medium for 21 days. Adipogenic differentiation was 

confirmed using both IBMX and SWH methods in all 5 samples by cytoplasmic 

lipid vacuoles staining red with Oil Red O (Figure 2-27). There were more and 

larger red stained vesicles using the SWH method. Osteogenic differentiation was 

also confirmed in all samples tested by the appearance of calcium deposits 

which stained red with Alizarin Red S (Figure 2-28). This staining was very 

homogenous and covered a very large area in contrast to the more 

heterogeneously and sparsely red stained cytoplasmic lipid vacuoles after 

adipogenic differentiation. 

 

 

Figure 2-27. Adipogenic differentiation.  

Representative Images at X10 magnification showing positively stained adipocytes in 2 different 
isolates of cells: 1C (A) upper panel and 4C (A) lower panels, after 3 weeks differentiation using the 
IBMX and SWH methods. The inset shows higher power (X40) images of adipocytes with red 
stained vesicles. The scale bar represent 100µm for all X10 images and 20µm for all inset images. 

 
 
 

 

                                          
 



108 
 

 

Figure 2-28. Osteogenic differentiation:  

Representative images of cells from 3 different isolates: 1C (A) uppermost panels, 7C (A) middle 
panels and 9C (A) lower panels, positively stained by Alizarin Red S after 3 weeks differentiation 
period (X10 magnification, scale bar=100µm and applicable to all panels). 
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2.7 Discussion 

There are various methods for the differentiation of MSCs from hESCs that have 

been reported in the literature by different groups (Barberi et al., 2005; Olivier 

et al., 2006; Lian et al., 2007; Trivedi & Hematti, 2008; Lee et al., 2010; 

Gruenloh et al., 2011; Wu et al., 2013). Among those reported are methods 

based on manual dissection of populations of cells in the culture, one version of 

which involves the formation of embroid bodies in the initial phase of the 

differentiation protocol (Bielby et al., 2004; Lee et al., 2010) and another 

version which omits this step (Olivier et al., 2006). These two methods have 

been used successfully to derive MSCs from hESCs and have the advantage of 

being relatively simple compared to other established methods and also avoid 

using complicated techniques like fluorescence-activated cell sorting or 

extensive genetic manipulation which could potentially damage the cells. 

However neither of these 2 particular methods is free from animal products. The 

inclusion of animal products in the cell culture protocol risks contamination with 

animal pathogens and precludes the use of the cell product in humans. Lian and 

colleagues claim to have developed a protocol to derive clinical grade MSCs from 

undifferentiated hESCs which does not require serum, use of feeder cells of 

animal origin or genetic manipulation (Lian et al., 2007). Another recent study 

by Wu et al also reported a successful derivation of MSCs from hESCs using 

chemically defined conditions without requiring any feeder layer, serum or SR of 

animal origin (Wu et al., 2013). Such methods would be more clinically 

translatable but beyond the scope of this project due to time constraints and the 

desire to transition into the project’s second phase which is transplanting the 

hESC derived MSCs into an animal model of spinal cord injury. Therefore a 

protocol developed by Olivier et al. (2006) the “raclure” method, was chosen 

owing to its relative simplicity, the cells obtained using this method still have a 

normal karyotype and can robustly grow up to 20-25 passages, while displaying 

MSC characteristics and not requiring any feeder layer. The “raclure” method 

was originally based on the mechanical dissection of a small population of 

spontaneously differentiated hESCs. These cells give rise to a homogenous 

culture of MSCs when placed in appropriate growth conditions (Olivier et al., 

2006). However, further observations (Olivier & Bouhassira, 2011) showed that 
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cells produced the same MSC populations as those from the raclure method, 

even if they were sourced from a confluent, undifferentiated hESC culture, as 

long as they were plated at low density. This relatively simple option of plating 

undifferentiated hESCs at low density was chosen in my experiment to avoid 

selective mechanical scraping, a difficult technique that requires considerable 

expertise to accomplish reliably. In this way, unnecessary damage to the cells 

was also avoided. The use of undifferentiated hESCs is also improves the 

uniformity of the starting cell population. DMEM+FBS+NEAA+P/S  (D10) was used 

as the only differentiation medium as it is an established medium with proven 

effectiveness in differentiating hESCs to MSCs (Olivier et al., 2006). Instead of 

using hESC cultured on MEF as my starting population, we used hESC which had 

been cultured on a feeder-free surface to further minimize the involvement of 

animal products. The starting populations of hESCs were tested for the presence 

of a pluripotency marker SSEA-4 prior to the initiation of the differentiation 

protocol to indicate their pluripotency. A high percentage (80-90%) of all the 

different starting populations expressed SSEA-4 indicating an ability to 

differentiate into any type of tissue.    

Our derivation method appears to be consistent and reproducible as 12 

independent runs yielded similar populations of MSC-like stem cells as judged by 

their morphology, surface marker expression and functional differentiation, as 

described in previous studies (Pittenger et al., 1999; Olivier et al., 2006; 

Pittenger, 2008). It is also supported by the analysis of gene expression in these 

cells (de Peppo et al., 2010). In each successful run, both replicates (A and B) 

also showed a closely similar morphology and cell surface marker expression. 

The cells from other runs of differentiation were rejected due to either fungal 

contamination or significantly unequal proliferation of replicate A compared to 

B. This difference could be due to a difference in the number of cells used as 

the starting population, and these inconsistencies may have occurred 

particularly in the early phase of this study. In other words, the failure could be 

attributed to the contamination issue and my personal consistency rather than 

the method. The data obtained also supports the idea that the cells produced 

exhibit an MSC-like phenotype and could reasonably be categorized as MSCs. The 

evidence for this includes a cell morphology and ability to adhere to plastic in 

culture typical of MSCs, together with a characteristic surface marker and gene 
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expression profile and their ability to form osteoblast and adipocytes (discussed 

below; (Pittenger et al., 1999; Dominici et al., 2006; Olivier et al., 2006; 

Pittenger, 2008). 

2.7.1 Surface Marker expression 

No single specific and definitive surface marker which defines MSCs and can be 

used to ensure their homogeneity has so far been described, even though a great 

number of surface markers have been investigated by different groups in an 

effort to define such markers (Beyer Nardi & Silva Meirelles, 2006). Deans and 

Moseley have documented a long list of candidate markers (Deans & Moseley, 

2000) but none can be considered a single reliable marker of culture purity. 

Therefore characterization of cells as MSCs by surface marker depends on 

examining a combination of markers or a panel of markers selected from those 

that have been consistently reported to be present (positive markers) or absent 

(negative markers) in adult MSCs. It is widely accepted that MSCs do not express 

haematopoietic markers like CD34 and CD45 but that they do express markers 

like CD13, CD44, CD73, CD90, CD105 and CD166 (Uccelli et al., 2008). The 

Mesenchymal and Tissue Stem Cells Committee of the International Society for 

Cellular Therapy (ISCT) has proposed three minimal criteria to define MSCs 

including certain specific surface markers (Dominici et al., 2006). The 

committee proposed that the cells must express CD73, CD90 and CD105 and lack 

expression of CD14, CD34, CD45 or CD11b, CD79α or CD19 and HLA class II. The 

hESC-MSCs from this study were 70-90% positive for the majority of the proposed 

positive markers (CD44, CD73, CD105, CD166 and HLA-ABC) and approximately 

40% positive for other markers like CD71 and CD90. In addition, they were less 

than 2% positive for the negative (hematopoietic) markers.  

The relatively low population of CD90 (Thy-1; about 42%) suggested that the 

surface marker profile of hESC-MSCs in this study is not absolutely identical to 

that reported for MSCs from bone marrow which are usually more than 90% CD90 

positive and do not therefore strictly fulfill all of the criteria from the ISCT that 

define MSCs. In addition, expression of some other markers was lower than in 

some previous reports on MSCs but these appear in any case to be more variably 

expressed and depend on the tissue of origin of the cells examined.  
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For example, CD271 has been found to be more specific to bone marrow derived 

cells (BÜHring et al., 2007; Jarocha et al., 2008) while CD106 is mix variably 

expressed in bone marrow derived MSCs, absent in MSC’s derived from cord 

blood but highly expressed in MSCs from adipose tissue (Gronthos et al., 2001; 

Gang et al., 2004; Niehage et al., 2011). In addition, only a small percentage of 

the hESC-MSCs population in this study expressed Stro-1. Stro-1 was one of the 

earliest markers suggested to be associated with MSCs (Simmons & Torok-Storb, 

1991; Kolf et al., 2007). It has been used in a very large number of studies on 

various types of MSCs but most do not report high proportions of Stro-1 positive 

cells (Lin et al., 2011).  So the low population of Stro-1 positive cells in this 

study is consistent with the majority of previous studies. In summary, since the 

classification of MSCs is based on a set of markers rather than a single definitive 

marker, the relatively low expression of certain markers does not necessarily 

preclude defining the cells produced here as hESC-MSCs. 

There are variations in the expression of surface markers among MSCs from 

different sources (Strioga et al., 2012) even though the main markers (e.g. CD73 

and CD105) are relatively constantly expressed (Musina et al., 2005). Differences 

in the methods used to derive and maintain hESC-MSCs in this study compared to 

others will contribute to inevitable differences in marker expression between 

studies (Terada et al., 2002). This is because marker expression is readily 

influenced by the culture duration and environment. This is a well known issue 

affecting the comparability of data regarding MSCs between different labs. 

There are further variables that need also to be considered such as cell density, 

number of culture doublings, proliferative stage of the cells in culture and other 

factors that could affect the ability to compare MSCs from different laboratories 

(Katz et al., 2005; Ho et al., 2008; Pevsner-Fischer et al., 2011; Lee et al., 

2013). 

A comparison of the surface marker expression of hESC-MSCs tested at passage 1 

and passage 3 reveal a highly consistent profile between these 2 different 

passages which indicates that repeated passaging does not significantly affect 

the surface marker expression of the cells in this study. There was however a 

significantly larger population which was positively stained for 2 important MSC 

markers, CD13 and CD105, in passage 3 as compared to passage 1. This could 

reflect a larger and more purified MSC population at passage 3 as those cells 
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which did not acquire MSC features might have failed to attach themselves to 

the surface and subsequently died. CD105 is one of the common surface markers 

for MSCs, and has been used in many studies that have successfully defined MSC 

populations which are able to form adipocytes, osteoblasts and chondrocytes 

(Haynesworth et al., 1992; Majumdar et al., 1998; Barry et al., 1999; Pittenger 

et al., 1999). On the other hand, there was a significant reduction in the 

population of cells positive for CD271 at passage 3 compared to passage 1. This 

could just indicate that this marker is not sustained after repeated passaging 

rather than indicating any deterioration of MSC features. 

2.7.2 Gene expression 

Quantitative real time PCR was included as part of the characterization method 

in order to analyze changes in the expression of a set of genes, including MSC 

related genes, at a mRNA level at different stages of the protocol. RT-PCR is 

regard as a useful method for identifying markers for MSCs derived from 

different sources as they will most likely to exhibit unique genomic profiles (Tsai 

et al., 2007). By examining the expression pattern of the selected gene markers, 

we also aimed to determine the effectiveness of our protocol in inducing a 

mesenchymal lineage specification at an earlier time point than cannot be 

determined using flow cytometry because of limited cell numbers. The results of 

the real time PCR demonstrate that the optimized protocol for derivation of 

MSCs from hESCs promotes a mesenchymal lineage specification pattern as early 

as day 28. There is significantly decreased transcription of OCT4 and NANOG as 

the cells progress to become mesenchymal cells. Both are pluripotent genes 

which are known to be specifically expressed in hESCs (Bhattacharya et al., 

2004; Hyslop et al., 2005; Adewumi et al., 2007; Pan & Thomson, 2007). 

Therefore down regulation of these genes is part of the molecular evidence for 

commitment towards a mesnchymal lineage in cells of the day 28 and passage 3 

samples compared with day 0 samples. Furthermore, COL1A1 was shown to be 

significantly upregulated at day 28 and passage 3 which again supports the 

lineage commitment toward a mesenchymal phenotype which is consistent with 

a previous study (de Peppo et al., 2010). COL1A1 is a gene characteristic for 

mesodermal tissues and is highly abundant in MSCs (Silva et al., 2003). In 

addition, Twist1 and CD105 were also upregulated in day 28 samples providing 

another sign of mesenchymal lineage commitment. Some studies have shown 
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that Twist1 is highly expressed in adult MSCs and these studies also collectively 

suggested that this transcriptional regulator is a potential key molecular 

mediator of the maintenance, growth and development of MSCs from different 

sources (Menicanin et al., 2010). In addition, Twist1 is regarded as an epithelial-

mesenchymal inducing transcription factor and this role is probably more 

consistent with our finding of a high expression on day 28 which was then 

downregulated at passage 3. The twist-1 expression pattern in this experiment 

may demonstrate epithelial-mesenchymal transition (EMT) around day 28 

followed by the appearance of more committed MSCs after repeated passaging 

and longer time in culture. However, further studies on twist-1 expression at 

several time points (before day 28) are probably required before any conclusion 

can be drawn in relation to EMT in this study. Our test demonstrated that CD105 

is significantly upregulated at passage 3 which indicates a more committed 

population of MSCs.  CD105 (endoglin) is another consistent marker for MSCs 

from flow cytometry analysis but previous data at the mRNA level is very 

limited. CD105 is a highly expressed surface antigen in MSCs with numerous flow 

cytometry analyses from several different studies of different types of MSCs in 

close agreement. This is the first data on CD105 expression at the mRNA level in 

MSCs. There is no expression of CD45 which suggests no undesired differentiation 

into haematopoetic cells (data not shown). The analysis on CD31 also showed 

extremely minimal expression at day 28 and passage 3, suggesting no significant 

endothelial differentiation (data not shown). The negative expression of 

brachyury and minimal expression of GSC indirectly support the MSC phenotype. 

In a previous study, both genes were shown to be raised at early time points i.e. 

day 7 to 10 of the differentiation period, rather than on day 28 (Lee et al., 

2010). Otherwise, further analysis of these early mesodermal genes at several 

earlier time points (before day 28) are required to determine their expression 

pattern. It is important to note that an absolute comparison between different 

genes is not possible due to the differences in efficiency of the respective 

primers and probes. 

2.7.3 Cells growth kinetics 

In practical terms, the ability of the cells to continue growing up to passage 20-

30 is a vital property since it suggests that they could be produced in large 

amounts compared to MSCs from adult sources which are associated with low 
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numbers upon isolation and limited life span in culture. In general all cells from 

the 12 different runs in this study reached confluency after 3-4 days in culture 

with a starting density of 1 X 104 cells/cm2 (plated in T-25 cm2). This indicates 

that a starting population of 2.5 X 104 of hESC-MSCs could potentially generate 

up to 1 X 1016 cells and this quantity of cells would be much more difficult to 

attain from BM-MSCs as they can stop growing as early as passage 7 (Kern et al., 

2006). In another study on BM-MSCs it was reported that the same starting 

density i.e. 1 X 104 cells/cm2, generated only between 1 X 108 to 1 x 1011 cells 

although since no information on flask size was given a direct comparison is not 

possible (Wagner et al., 2008). A more careful analysis of proliferation capacity 

of the cells prepared in this study using the population doubling time 

demonstrated a fairly consistent and only very slowly increasing mean 

population doubling time up to around passage 26 when the time significantly 

increased, suggesting a significant reduction in proliferation (Figure 2-11). A 

serial comparison of mean PDT indicated a significant increase of PDT by passage 

13 to 18 compared with passage 3 to 8 but the values were still relatively low in 

comparison to the BM-MSCs, which may to stop growing as early as passage 11-12 

(Jin et al., 2013). The hESC-MSCs derived in this study display a shorter and 

consistent population doubling time in the first 13 passages (40-50 hours and P 

value of mean P3-P8 vs P8-P13 was not significant) (Figure 2-12) compared with 

MSCs from bone marrow which has been shown to increase significantly after 

passage 6 (Lu et al., 2006). This indicates a better preservation of proliferation 

capacity by hESC-MSCs. Several reports have highlighted the high proliferation 

potential and self renewal capacity of the MSCs as an important property for 

biomedical applications (Colter et al., 2001; Lee et al., 2006; Pricola et al., 

2009). In a recent study, the proliferation rate was reported to be associated 

with a better functional regenerative potential (Deskins et al., 2013). Deskins et 

al claimed that when transplanted into a murine tissue wound model, cells with 

a better growth rate and cell viability in culture were able to create better 

vascularized granulation tissue and more longer graft survival. Therefore based 

on their proliferation capacities, hESC-MSCs offer better therapeutic potential 

compared to adult MSCs. 
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2.7.4 Senescence 

Studies have shown that the biological properties of adult MSCs are not 

everlasting and will gradually diminish with time (Kretlow et al., 2008). The 

deterioration is largely attributed to replicative senescence. Senescent cells are 

live cells which stop dividing in culture (Campisi & d'Adda di Fagagna, 2007). 

There are many factors which have been identified as a cause of senescence 

such as irreversible DNA damage, reactive oxygen species (ROS) and shortening 

of telomeres (Mamidi et al., 2012). In our study, the hESC-MSCs could be 

passaged up to passage 20-30 before noticeable development of senescent 

features i.e relatively larger cells and positive staining for Senescence 

Associated β-Galactosidase. As observed in this study, an increase in the 

percentage of cells positive for this marker was associated with a decrease in 

proliferation capacity (see section 2.6.4 and 2.6.5). However, the percentage of 

cells showing the senescence marker at late passages is relatively low in 

comparison to adult MSCs (Stenderup et al., 2003; Wagner et al., 2008; Heo et 

al., 2009) suggesting a slower development of senescence in hESC-MSCs. In a 

study of MSCs from bone marrow, 20-30% of cells were found to be senescent as 

early as passage 6-10 (Stenderup et al., 2003). Studies in adult MSCs at passage 

9-10 have also revealed 50-80% senescent cells (Stenderup et al., 2003; Wagner 

et al., 2008; Heo et al., 2009). The low percentage of senescent hESC-MSCs at 

late passages indicates a longer life span and is another advantage of these cells 

which may contribute to providing a better quality and higher volumes of cells 

for clinical application. 

2.7.5 Re-characterization after cyropresevation 

The future clinical application of hESC-MSCs would require expansion and 

cryopreservation before preparation for cell transplantation. Previous studies 

have demonstrated that cryopreservation for a single time using 10% DMSO, as in 

this study, should not affect the viability and functionality of MSCs from bone 

marrow and adipose tissues (Pittenger et al., 1999; Kotobuki et al., 2005; Liu et 

al., 2008). This has not so far been studies for hESC-MSCs. When cryopreserving, 

the freezing solution is routinely supplemented with DMSO in order to protect 

the cells and their membranes from damage. In principle, the cryopreservation 

and thawing process may have important effects on all aspects of cellular 
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phenotype (the cell’s morphology, viability, growth profile, gene expression and 

differentiation capabilities). Therefore, cells from 5 different runs which were 

selected to be used for transplantation were re-characterized in order to show 

that the onetime cryopreservation of hESC-MSCs does not affect their biological 

and functional properties.  

2.7.5.1 Morphology  

This study revealed that all hESC-MSCs which were examined after 

cryopreservation showed the typical elongated and spindle shaped morphology 

and strong adherence to plastic surfaces which is the most obvious evidence of 

retention of MSC-like features (Figure 2-19).  

2.7.5.2 Surface marker expression 

The pattern of expression of surface markers in the hESC-MSCs post-thawing was 

consistent to that before cryopreservation suggesting that repeated passaging 

and onetime cryopreservation does not affect these indicators of phenotype. 

Comparison of flow cytometry data for passage 3 (prior to cryopreservation) with 

that for passage 3+5 (5 passages after thawing) show fairly consistent expression 

of the positive cell surface markers tested (the only difference being for CD34) 

(Figure 2-25). In addition, the consistency of certain MSC markers like CD166 

excludes the possibility of transformation into fibroblast as low CD166 expression 

has been associated with contamination with fibroblast like cells (Haflon et al., 

2011). 

2.7.5.3 Growth kinetics 

The hESC-MSCs derived in this study retain the ability to grow with an 

exponential growth pattern after being thawed and re-cultured (Figure 2-20).  

Analysis of population doubling time revealed a shorter and more consistent 

population doubling time in cells which had been cryopreserved (Figure 2-21, 

Figure 2-22, Figure 2-23). While the data confirm the ability of the hESC-MSCs to 

retain their growth capacity, other factors might have contributed to improving 

the population doubling time in the cryopreserved samples such as unintentional 

use of a lower initial plating density and final density when passaging the cells.  

Although it was not systematically investigated, it was observed that a higher 
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initial plating density and a more confluent state tended to reduce proliferation 

capacity and result in a relatively longer population doubling time for cells in 

culture. This is consistent with previous reports that MSCs in low density cultures 

contain a subpopulation of rapidly self-replicating cells that lead to a better 

capacity to generate more cells as compared to MSCs in high density cultures 

(Digirolamo et al., 1999; Colter et al., 2001; Smith et al., 2004; Lee et al., 

2006). 

2.7.5.4 Gene expression  

Gene expression analysis was performed on samples collected from 5 different 

cells isolates, 1C, 4C, 7C, 9C and 13C, after they were recovered from liquid 

nitrogen and re-cultured up to passage 3+5 to be used in transplantation. This 

revealed results consistent with those seen at passage 3. The cryopreserved cells 

appear to retain the higher expression of MSC markers and lower expression of 

pluripotency markers that distinguish them from the hESCs. The consistent gene 

expression before and after cryopreservation shows it is not affected by the 

cryopreservation process and this is consistant with previous studies on adult 

MSCs (Mamidi et al., 2012). Apart from suggesting maintainance of MSC-like 

features, the consistent expression of MSC-related genes in the cryopreserved 

cells may also be important for therapeutic application. For instance, the 

expression of CD105 is associated with a better healing performance in cardiac 

regeneration (Gaebel et al., 2011). In this study, the transplantation of CD105 

purified MSCs  into an animal model of myocardial infarction resulted in 

significant preservation of left ventricular function compared with animals that 

received low CD105 MSCs. 

2.7.5.5 Functional differentiation 

In addition to other parameters like cell morphology and surface marker 

expression, functional differentiation remains as the gold standard for 

characterizing MSCs in culture. Many groups working on MSCs regard the ability 

of cells to differentiate into bone, fat and cartilage as necessary properties for 

defining the cells as MSCs (Bruder et al., 1997; Digirolamo et al., 1999; Pittenger 

et al., 1999; Muraglia et al., 2000; Barry et al., 2001). Adipogenic and 

osteogenic differentiation were performed on 5 different isolates of our cells, 
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subsequently used for transplantation, in order to determine their 

differentiation potential. The tests were performed using samples at passage 

3+5 (i.e. after being passaged 5 times following thawing). All tests showed a 

positive outcome with the formation of both adipocytes and osteoblast after 

induction in appropriate differentiation media for 3 weeks.  This finding is 

consistent with the outcome of the functional differentiation study on hESC-

MSCs derived by Olivier and colleagues (Olivier et al., 2006), as well as other 

studies performed on adult MSCs (Pittenger et al., 1999). Consistent with the 

report by Olivier et al (2006), the SWH method in our study seemed to promote 

better adipogenic differentiation with more and larger vesicles (Olivier et al., 

2006; Olivier & Bouhassira, 2011) compared to the classical IBMX method 

(Pittenger et al., 1999; Colter et al., 2001; Neubauer et al., 2004; Sekiya et al., 

2004). The SWH method was developed based on the finding that hypoxia 

enhances lipid accumulation and FGF enhances PPAR-γ ligand-induced 

adipogenesis of MSCs (Wada et al., 2002; Neubauer et al., 2004). Following 

osteogenic differentiation, a large proportion of cells showed a homogenous red 

staining with Alizarin Red S indicated that osteoblasts were formed. In summary, 

our results show that hESC-MSCs can be differentiated into osteoblasts and 

adipocytes even after cryopreservation. Due to time limitations in our study, we 

could not explore the ability of our cells to form chondrocytes but there is a high 

possibility that they would form chondrocytes as there have been numerous 

studies describing the derivation of MSCs from hESCs with the ability to form 

chondrocytes (Barberi et al., 2005; Boyd et al., 2009; Gruenloh et al., 2011; Wu 

et al., 2013) 

2.8 Conclusion 

We were able to derive MSC-like cells from hESCs after 28 days of differentiation 

followed by repeated passaging for 10-15 days. The differentiation method used 

in this study is shown to be reproducible based on several successful runs of 

differentiation producing closely similar population cells in two replicates. The 

hESC-MSCs from this study grew very robustly, adhered to a plastic surface, have 

several MSC related surface markers including some of the main MSC markers 

like CD73 and CD105, express MSC-related genes and are able to form adipocytes 

and osteoblast. Re-characterization data indicate that our hESC-MSCs retain 
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their MSC properties and the ability to grow robustly after being cryopreserved 

which further enhances their potential for therapeutic application. 
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3 Therapeutic effects of hESC-MSCs transplant 
following spinal cord injury 

3.1 Introduction 

The use of MSCs in the treatment of SCI is considered promising because they 

have been reported to promote functional recovery by different mechanisms 

promoting axonal remyelination and regeneration, reducing neural inhibitory 

molecules, reducing the lesion volume and increasing the spared surviving 

tissues (Hofstetter et al., 2002; Bizen et al., 2003; Sasaki et al., 2009; Boido et 

al., 2012). Furthermore, MSCs are considered to have immunomodulatory effects 

which may contribute to an environment that is permissive for axonal extension 

and functional recovery (Hawryluk, 2012; Nakajima et al., 2012). However, most 

studies have used MSCs from bone marrow which have some limitations that 

could limit their use in the clinical setting. They are reported to be associated 

with low proliferation, limited life span and gradual loss of stem-like properties 

during in vitro expansion (Ringe et al., 2002) and other limitations which have 

been discussed previously (in Chapters 1 and 2). Because of these limitations 

other sources of MSCs may be more useful for clinical applications. Amongst the 

other potential sources of MSCs are hESCs and several studies have demonstrated 

successful derivation of MSCs from hESCs. These cells could circumvent some of 

the limitations of adult MSCs including variability, limited proliferation capacity 

and the need for invasive procedures. However, MSCs derived from hESCs have 

never been tested in animal models of SCI.  

A cervical contusion injury model was chosen in this study as this model is the 

most clinically relevant (Zhang et al., 2008; Anderson et al., 2009), occurring 

most frequently in human injuries and closely reflecting the sequelae seen in 

clinical cases. At the experimental level, the Infinite Horizons device allowed 

the injury to be performed consistently and without the level of variation seen 

with other injury models. Additionally this type of injury has the added 

advantage of allowing the assessment of the corticospinal tract as it has been 

shown to completely interrupt the main dorsal column component of the 

corticospinal tract (Riddell and Toft, unpublished observations) when a force of 

175 kdyn was applied to C6. As well as contusion injury, dorsal column lesions 

(wire-knife) were also performed in a small group of animals in order to 
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selectively examine the regeneration of primary sensory axons. This partial 

transection model is useful for the assessment of axonal regeneration across the 

lesion site (Martinez et al., 2009).  

The aim of the work in this chapter was to determine whether hESC-MSCs 

transplanted into an animal model of spinal cord injury could promote repair 

through different mechanisms reported in studies using adult MSCs. It was also 

hypothesized that based on a better proliferation capacity compared to BM-

MSCs, that hESC-MSCs might even demonstrate additional properties.  

3.2 Materials and Method 

3.2.1 Cell preparation for transplantation 

3.2.1.1 Preparing cells for surgery 

On the day of transplantation, the cells to be transplanted were observed under 

the light microscope to assess the general appearance and confluency (80% 

confluency was expected and was achieved in all different sets of transplants). 

The cells were trypsinised according to the usual protocol where the old media 

was removed and the cells were washed with PBS. TrypLE Select (Life 

Technologies) was then added to the cells in the flask and the flask placed in the 

incubator at 37ºC and 5% CO2 for 5-6 minutes. After 5-6 minutes, the flask was 

taken out and was gently tapped to detach the cells from the flask surface. Once 

the cells were detached and dissociated, they were filtered through a 70µm cell 

strainer into a 50ml falcon tube and were counted using a haemocytometer (see 

Chapter 2, section 3.2.4). The cells were then spun down at 1200 rpm for 3 

minutes and the supernatant discarded. The cells were re-suspended in 100µl of 

fresh media and transferred into a small sterile 200µl eppendorf tube. The 

eppendorf was again centrifuged at 1200 rpm for 3 minutes. After re-

centrifugation, the remaining supernatant was carefully removed from the cell 

pellet. Depending on the cell concentration (cells count), the cells were again 

re-suspended in 50-100 µl of fresh media. The cells in the tube were placed on 

ice and transported to the CRF for transplantation. The typical time from 

preparation of the cell suspension to transplantation ranged from 10-20 minutes. 
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3.2.2 Animal surgery 

All experimental procedures carried out on animals were approved by the Ethical 

Review Panel of the University of Glasgow and performed in accordance with the 

UK Animals Scientific Procedures Act 1986 under the restrictions and regulations 

stipulated by the relevant Home Office personal, project and site licenses. All 

injury and transplantation surgery were performed by Dr John Riddell with the 

assistance of my colleagues Dr. Syed Hamid Syed Habib (PhD student) or Mr 

Andrew Toft (research assistant) or myself and the animal house technical staff. 

The observations reported in this chapter are based on investigation of 101 male 

Sprague Dawley rats. Of these 101 animals, 4 were non-lesioned animals from 

which normal data was obtained for comparison with lesioned and transplanted 

animals. 3 animals were non-lesioned  and were transplanted with hESC-MSCs. 

73 rats were subjected to a cervical contusion injury and were allowed to 

recover for 3 weeks. Of these, hESC-MSCs were transplanted into 49 animals. 

The remaining 24 contusion injury animals were not transplanted with cells. 

Finally, a further group of 21 animals were subjected to dorsal column lesions at 

L5/L6 with conditioning lesions being performed concurrently on 7 of them. All 

these 21 animals were acutely transplanted with hESC-MSCs into the lesion site. 

All of the animals used were treated with daily cyclosporine from 2 days prior to 

transplant until the end of procedure, except the non-lesioned animals and a 

few animals that were subjected to contusion injury only. 

3.2.3 Perioperative care 

Animals subjected to surgery were administered 1ml/kg saline (Baxter 

Healthcare, UK) to prevent dehydration and 0.3mg/kg. Buprenorphin 

(vetergesic®; Alstoe Animal Health, UK) were given to control acute pain due to 

the surgical procedure. Lacrilube eye ointment was applied to prevent dryness 

during the procedure. 

All the above mentioned drugs were administered in all operations: contusion 

injury, dorsal column injury, delayed cell transplantation and tracer injections. 
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3.2.4 Contusion injury 

Rats were anaesthetised by induction with 5 % isofluorane in oxygen followed by 

1-2% for maintenance. The fur overlying the target area was shaved and the skin 

was treated with 20% chlorhexidine solution (ECOLAB). For this particular type of 

injury, the contusion targeted the C6 segment. The overlying skin was then 

incised followed by dissection of the muscles to expose the cervical vertebra. A 

dorsal laminectomy was carefully performed by removing the C5 and C6 

vertebrae to expose the spinal cord without damaging the dura layer. 

Subsequently, the vertebral column was held stable by clamping the C4 and C7 

vertebrae using Adson’s forceps. After C6 was identified, a 175 kilodyne 

contusion injury was performed using the Infinite Horizon (IH) impactor device 

(Precision System & Instrumentation, LLC, Nottinghill, US, Figure 3-1 and 3-2). 

This is a microprocessor controlled force feedback device which is capable of 

producing injuries at different levels of severity following the pre-set force 

combined with a high degree of consistency. When activated, the device 

lowered the impactor tip at approximately 120 m/s to contuse the spinal cord 

until the 175 kilodyne force was reached and it then immediately retracted.  

A suture 10-0 (Ethicon) was then placed in the dura mater at the injury level to 

allow accurate identification during the subsequent cell transplantation three 

weeks later. Finally, wounds were closed in layers. 

3.2.5 Delayed cell transplantation 

49 animals underwent a further operation 3 weeks after the contusion injury was 

performed in order to transplant cells. 2 days prior to procedure, all the animals 

were started on cyclosporine (20mg/kg), subcutaneous, Norvartis) which was 

continued daily until the end of the procedure, except in 6 animals which were 

used to establish that immunosuppresion was required to promote survival of the 

transplanted hESC-MSCs.  

Some degree of fibrous scar was usually observed over the contusion injury site 

but the surgeon was able to identify the injury location by localising the 10/0 

non-absorbable (silk) sutures previously placed on either side of the lesion. In 

addition to that, the lesion site could also be identified from its visible relatively 
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darker area. Cell suspensions were concentrated to approximately 200,000 

cells/µl and injected into the injury cavity site using a bevelled glass pipette of 

appropriate diameter (55µm-70µm) which was mounted on the microdrive of an 

arc manipulator and inserted into the lesion through a slit in the dura. The tip of 

the pipette was lowered to a depth of approximately 1000µm-1200µm. Cells 

were then carefully injected by applying brief (20-40 ms) pressure pulses 

(Picoinjector, WPI, Sarasota FL, USA) over several minutes as the pipette was 

gradually raised  upward. The cells injection would be performed until they 

overflowed out of the lesion which usually required up to 40µl of suspension for 

each single animal, equivalent to approximately 8 X106 cells per animal. Wounds 

were closed in layers and analgesic was given. 

3.2.6 Cortical tracer injection 

4 weeks after cell transplantation (2 weeks prior to perfusion), 10 animals which 

had received C6 contusion injuries were then subjected to a tract tracer 

injection (BDA; 10,000 MW, product no. D-1956, Life Technologies) in order to 

label the corticospinal tract. The tracer was prepared by preparing a solution of 

20% BDA in 0.1 M phosphate buffer (PB) with 2% fast green dye to detect 

spillage, (R.A. Lamb supplies, UK; product 42053). All of the cortical BDA tracer 

injections were performed by Mr. Andrew Toft with assistance from myself. The 

scalp was incised and a small window was drilled through the skull to expose the 

right sensorimotor cortex using bregma as an anatomical landmark for reference 

point (Figure 3-3). The BDA was injected using pressure injection through a fine 

glass pipette (tip diameter 30-40µm) into 10 injection sites in a grid pattern 

ranging from 1mm rostral of bregma to 2mm caudal and up to 4mm laterally. 

Approximately 300nl of BDA was delivered at each injection site. The pipettes 

were introduced in turn at each injection site to a depth of 1.8mm below the 

surface of the cortex and the BDA was continuously injected as the pipette was 

raised to 1.0 mm depth. The pipettes were then maintained at this depth for 1 

minute before they were removed from the cortex. The scalp incision was then 

sutured and closed 
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3.2.7 Dorsal column lesion (wire-knife) 

Animals were anaesthetised and maintained as described previously (see section 

3.2.5). The lumbar spinal cord was exposed and a dorsal column lesion was made 

at the L3/L4 spinal segmental border. The location was identified based on the 

vicinity to the T13 and L1 vertebral junctions. The lesion was performed using a 

wire knife (David Kopf Instrument, Tujunga, USA; Figure 3-4(A)) made of a 100 

µm diameter tungsten wire ensheathed within a Teflon cannula so that when the 

wire was protruded from the cannula, it coiled to form an arc. The wire knife 

was mounted on a manipulator arc fitted with a stepper motor and then inserted 

through a slit in the dura at approximately 700 µm to the left of the spinal cord 

midline and lowered to a depth of 950 µm. At that position, it was protruded to 

form a 1.5mm diameter arc under the dorsal columns. This was then raised 

against a glass rod placed on the surface of the cord to transect the dorsal 

columns without damaging the surface blood vessels (Figure 3-4 (B-C)). To 

ensure the most superficial fibres were transected while preserving the integrity 

of the dorsal vein, a pointed cotton bud or glass rod was pressed into the arc 

created by the wire knife for approximately 20 seconds. This manoeuvre was 

found to produce an accurate and reproducible lesion of the dorsal column white 

matter. After retracting the wire knife into its sheath and raising it out of the 

spinal cord tissue, it was rotated 180 degrees. The wire knife was re-inserted 

again into the spinal cord through the same slit in the dura to a depth of 850-900 

µm and another lesion was performed extending the original dorsal column 

lesion to include the extreme left portions of the dorsal columns.  

3.2.8 Conditioning lesions 

Conditioning lesions were performed on 7 of the 15 animals subjected to dorsal 

column lesion. Immediately after the wire knife lesion was made at L3/L4, the 

left sciatic nerve was exposed at a mid-thigh level and isolated from surrounding 

tissues. The nerve was then ligated and cut at approximately 2-3mm distal to 

the ligature. The wounds at the thigh were closed with 3-0 vicryl.   

3.2.9 Acute cell transplantation 

Animals that received a dorsal column lesion were acutely injected with the 

cells into the lesion site using a glass pipette of appropriate diameter (55µm-
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70µm). The glass pipette was filled with thick suspension of cells (100,000 

cells/µl). It was then mounted on a stereotaxic arc and inserted into the lesion 

through a slit in the dura at 15º on each side. The tip of the pipette was lowered 

to a depth of approximately 1000µm-1200µm and the cells were then carefully 

injected by applying brief (20-40 ms) pressure pulses (Picoinjector, WPI, 

Sarasota FL, USA) over several minutes as the pipette was gradually raised  

upward. Cells were injected until they could be seen to overflow out of the 

lesion site which usually required between 30 to 36µl of cells suspension. 

Wounds were then closed in layers.   

3.2.10 Spinal nerve tracer injection 

4 weeks after cell transplantation (2 weeks prior to perfusion date), all the 

animals receiving dorsal column lesions were subjected to another operation to 

inject the tract tracer biotin dextran amine (BDA; 10,000 MW, product no. D-

1956, Life Technologies) into L4 and L5 spinal nerves (Figure 3-5). Both targeted 

spinal nerves were exposed outside the vertebral column at the level of the tip 

of the iliac crest. Then the BDA was injected into each spinal nerve through a 

glass pipette with a bevelled tip (internal diameter around 50µm). 

Approximately, 3-4µl was injected using repeated 40 ms pressure pulses. 

3.2.11 Cells transplantation into normal spinal cord 

In addition to the injured animals, cells were also injected into the spinal cords 

of 3 uninjured animals to assess the interaction between the cells and host 

tissue in the absence of an injury. This group of animals was also treated with 

cyclosporine at 2 days prior to cell transplantation daily until the end of the 

procedure. The animals were anaesthetized and a laminectomy was performed 

(as described in 3.2.4). Cells were concentrated at approximately 100,000 cells/ 

µl and pressure injected using glass pipettes into 5-6 injection sites in the spinal 

cord (C5-C6). 1µl of cells were injected at each site and the injection sites were 

located lateral to the midline on the left and right sides of the cord at an angle 

25º pointing medially (3 sites on left and 2-3 sites on right). 
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3.2.12 Perfusion and histological processing  

In total 92 animals successfully reached the end of the procedure and were 

perfused and fixed, while 9 animals were perfused earlier due to autophagy of 

the hindlimb. These 9 animals were excluded from the study. The remaining 

animals were perfused at the following time points, depending on the 

experimental aims: 

1. To assess the appearance of the spinal cord in normal animals, 4 non injured 

animals were perfused as normal controls. 

2. To assess the direct interaction between the transplanted hESC-MSCs and 

host astrocytes, 3 uninjured animals that received cells were perfused at 1 

week post transplant. 

3. To assess the lesion cavity appearance corresponding to the post injury time 

at which cells were transplanted, 6 injured animals which did not receive any 

cells were perfused 3 weeks after the injury. 

4. To assess the survival, migration and differentiation of transplanted cells- 3 

animals were perfused at 5 days post-transplantation, 3 animals at 2 weeks 

post-transplantation, 3 animals at 4 weeks post-transplantation and 5 animals 

at 6 weeks post- transplantation. Additionally, in order to assess the effect of 

immunosuppression on cell survival, 6 animals which were not treated with 

cyclosporine were perfused at 3 different time points: 2 animals at 1 weeks 

post-transplantation, 2 animals at 2 weeks post-transplantation and 2 animals 

at 4 weeks post-transplantation. 

5. To assess the proliferation of transplanted cells– 3 animals were perfused at 5 

days post-transplantation, 2 animals were perfused at 2 weeks post 

transplantation and 1 animal at 6 weeks post transplantation. 

6. The remaining animals were perfused for various other aims: the cells’ ability 

to fill in the injury cavity, extracellular matrix formation, promotion of  

angiogenesis, and effects on astrogliosis in response to injury, promotion of 
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axonal regeneration and evidence of myelination. They were all perfused at 6 

weeks post transplantation. 

In order to avoid any potential problems associated with differences between 

cell isolates and the possibility that observation might be specific for one batch 

of cells, we attempted to examine each of the issues using transplants of at 

least 3 different cell isolates. The animals were anaesthetised and injected 

intraperitoneally with 300 mg sodium pentobarbital (Euthatal, 200mg/ml, Merial 

Animal Health Ltd, UK). They were perfused through the left ventricle with 

gravity fed mammalian Ringer’s solution which contained 0.1% lidocaine until 

the liver became relatively clear. The animal was then immediately perfused 

with 1 l of 4% paraformaldehyde in 0.1 M phosphate buffer, pH 7.4. 

Subsequently, relevant parts of spinal cord were removed after identification of 

the injury site using the distinct brownish scar on the dorsal surface of the cord, 

as well as the 10/0 marking suture close to it. For the dorsal column lesioned 

animals, the lesion site was verified as being located at or just rostral to the L4 

dorsal root entry zone. This was done by locating the L4 and L5 dorsal root 

ganglia and then following the L4 and L5 dorsal roots proximally to the L4 and L5 

spinal cord segments.  

From each animal, a portion of spinal cord of approximately 18 mm in length 

was extracted and immersed overnight in the same fixative solution with the 

addition of 30% sucrose for post-fixation and cryoprotection. The next day, the 

cord was prepared for cutting tissue sections. The cord would initially be 

segmented into approximately 6 mm length tissue blocks which spanned the 

lesion site. Whenever required, a 6mm tissue block rostral and caudal to the 

lesion block would also be prepared to provide more information on the extent 

of the transplanted cells distribution.   

Tissue blocks were cut into 60 µm sagittal sections (transverse sections for 

normal transplanted animals) on a cryostat and washed in 0.1 M phosphate 

buffered saline before being incubated in 50% ethanol for 30 minutes. They were 

then washed 2-3 times in phosphate buffered saline 0.3 M (double salt PBS) 

followed by incubation at 4ºC for 72 hours in various combinations of the primary 

antibodies as listed in the table 3.1:  
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Antibody 
Catalogue 
Number Species Specificity Supplier Concentration function 

GFP AB13970 chicken 
all fluorescent protein made by Aequorea 
victoria Abcam 1:1000 to label transplanted cells 

NF200 N0142 mouse Human, monkey, pig,rabbit, hamster, rat, mouse Sigma 1:1000 
to label axon intermediate 
filaments 

NF200 N4142 rabbit wide species (including pig and rat) Sigma 1:1000 
to label axon intermediate 
filaments 

GFAP Z0334 rabbit human, cow, cat, dog, mouse, rat, sheep DAKO 1:1000 
to label astrocyte intermediate 
filaments 

GFAP G3893 mouse human, pig, rat Sigma 1:1000 
to label astrocyte intermediate 
filaments 

Laminin L9393 rabbit 
human, mammal, avian, reptilian , amphibian 
source Sigma 1:100 

to label extracellular matrix 
basal lamina protein(laminin) 

NeuN MAB377 mouse 
avian, salamander, chicken, ferret, human, 
mouse, porcine Millipore 1:1000 to label neuronal nuclei 

SMA A5228 mouse 
human, rabbit, rat, mouse, bovine, frog, goat, 
guinea pig, dog Sigma 1:400 

To label endothelial smooth 
muscle in blood vessels 

ED1/CD68 MCA341R mouse rat AbD Serotec 1:400 to label macrophages/microglia 

Nestin MAB358 mouse mouse and rat (not human) Millipore  1:400 to label reactive astrocytes 

Ki67 ab15580 rabbit 
mouse, rat, sheep, rabbit, horse, cow, dog, 
human Abcam 1:500 to label proliferating cells 

CASPR ab34151 rabbit mouse, rat, human Abcam 1:500 to label paranodal junctions 

Table 3-1. List of primary antibodies used to stain different targeted structures 
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The tissues from animals which were subjected to spinal nerve or cortical tracer 

injection were stained with streptavidin conjugated to the Alexa fluor 568 

fluorophore (1:1000) which was substituted for one of the primary antibodies, in 

order to detect the BDA in traced axons. 

After incubating for 72 hours, the tissue sections were again washed 3 times for 

about 10 minutes each in double salt PBS and incubated for 3-4 hours at room 

temperature with appropriate species specific secondary antibodies: Alexa 488 

(1:500), Rhodamine (1:100), and Cy5 (1:500). All antibodies were diluted in PBS 

double salt with 0.3% Triton X-100. After incubation in secondary antibodies, 

sections were rinsed in PBS double salt 3 times for 10 minutes each to remove 

excess antibody. The sections were finally mounted on glass slides in anti-fade 

medium (Vectashield; Vector laboratories) to be observed under the microscope. 

For long term storage, all tissue slides were stored at -20ºC. 

3.2.13 Post-processing analysis 

3.2.13.1 Preliminary analysis on all sections 

In general, all sections were examined using a Nikon Eclipse E600 

epifluorescence microscope (Nikon, Japan) before selected sections were 

scanned using either a Bio-Rad Radiance 2100 or Zeiss LSM 710 confocal system 

using X20 or X40 (oil immersion) objective lenses. Laser excitation lines used for 

scanning included combinations of the following: 405 nm (blue diode, far violet), 

488 nm (argon ion, blue), 543 nm (helium-neon, green) and 637 nm (red diode, 

red). Tissue was scanned as a single field of view or tiled composite of multiple 

fields depending on which features were to be illustrated. All sections were 

scanned through the full thickness of stained tissue, accumulating a series of z-

section stacks with z spacing intervals from 0.5 to 2µm. Stacked images were 

projected into 2D builds using either Image J software (NIH, USA) or Zeiss Zen 

software (Zeiss, Germany). Images were exported to Adobe Photoshop CS6 

(Adobe Systems, USA) and prepared for illustration by making minor changes to 

brightness and contrast. 
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3.2.14 Appearance in normal animals 

Tissue sections were stained with 3 different combination of primary antibodies: 

GFAP and nestin, SMA and laminin, and ED1 and Ki67. 1 or 2 sections from close 

to the midline from these different combinations, were selected to be compared 

with injury sections at a similar location. The selected sections were then 

scanned using Zeiss LSM 710 confocal microscope.  

3.2.15 Survival and distribution of transplanted cells 

Cell survival was only assessed in animals receiving transplants in which GFP 

expression in the cells was 60-90% as determined prior to transplantation (see 

Chapter 2, section 2.4.3). Sections from animals perfused at different time 

points after transplantation were examined using a ZeissAxioplan 2 epifluoresce 

microscope to view GFP-Alexa488. Selected sections were scanned using 

confocal microscopy. Selected sections from animals that were not treated with 

cyclosporine were also examined to determine the survival of GPP labelled cells 

as well as to examine the co-localization of nestin and GFAP.   

Additionally, all of the transplanted animals processed 6 weeks after 

transplantation (irrespective of GFP labelling level) were closely examined to 

document the distribution of the cells in relation to the injury area. A few 

sections from close to the midline and therefore also corresponding to the 

middle of the injury site were chosen from each animal. From observation of 

these sections the cell distribution within the injury was placed into three 

categories: 1) animals containing cells occupying most ( >50%), of the injury area 

2) animals in which cells partially occupied the injury area (25 - 50%) or 3) 

animals with a minimal region of cells (<25%). The presence of cells outside the 

injury area was also documented including whether they occurred rostrally and 

/or caudally and whether they formed solid tracks of cells or were scattered in 

distribution. 

 



134 
 

3.2.16 Proliferation and differentiation of transplanted cells in 
vivo 

In order to determine whether the transplanted cells continue to proliferate in 

vivo, tissue sections stained with Ki67 were examined for any co-localization of 

Ki-67 labelling with the GFP labelled transplanted cells with particular emphasis 

on early time points after transplantation i.e. 5 days. The evidence for Ki-67 

labelling in other types of cells was also determined by looking for co-

localization with ED-1 (macrophage/microglia), GFAP (astrocyes) and NeuN 

(neurons). All sections from each animals were carefully reviewed under the 

fluorescence microscope and sections containing both GFP labelled cells and 

Ki67 immunoreactivity were selected for confocal microscopy (x20, multiple 

field views, 30-40 z sections). Areas of interest identified in these low power 

confocal images were then imaged at higher power (X40, 40-48 z sections). The 

area of interest was carefully scanned i.e. with spectral separation, at Z depth 

that would resolve multiple sections through to the structure of interest and 

without fluorescent flare. These aspects are very crucial to determine a 

potentially genuine co-localization if the labelled structures are in the same z-

plane or not and was achieved by the assistance of more experienced operator, 

Andrew Toft. The extent of any co-localization was finally semiquantitatively 

determined by selecting multiple nuclei labelled with one fluorophore and the 

other colour channel was then checked to see if it also labelling the same 

structure of interest. This was performed using Zeiss Zen software. The co-

labelling of colour channels on the same structure i.e. nuclei suggesting 

potential co-localization without depending on the number of pixels detected 

but would give a simple yes or no answer. The examination was further verified 

on the selected single z stack in the Image J software. 

To examine the ability of transplanted hESC-MSCs to differentiate in vivo, the 

typical morphology of the GFP labelled cells were examined at different time 

points i.e. from 5 days post transplantation up to 6 weeks post transplantation. 

Any similarities or differences were determined using confocal microscopy at 

high power (X40  or greater). In addition, any similarities or differences were 

also determined between 3 different cells isolates of hESC-MSCs that were used 

for transplantation. The GFP labelled cells were also examined for any co-

localization with other markers which are not typically expressed by MSCs such 
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as GFAP, NeuN, P75, Nestin, SMA, Laminin and NF200 which would suggest 

phenotypic changes and possible differentiation into other types of cells. 

3.2.17 Secretion of extracellular matrix and promotion of 
angiogenesis 

The ability of transplanted hESC-MSC to secrete extracellular matrix was 

examined using sections stained for laminin and were compared with tissues 

from non-transplanted animals. The laminin distribution within the cell-filled 

cavities was compared with the infilled cavities of non-transplanted animals. 

The ability of the transplanted hESC-MSCs to promote angiogenesis was 

determined by examining the distribution of blood vessel (SMA) labelling within 

the transplant sites compared with the distribution within the matrix infilling of 

non-transplanted animals.  

3.2.18 Effect of transplanted cells on host tissue astrocytosis 

The glial reaction was assessed in normal (non-injured) transplanted with cells 

as a small bolus to determine the effect of transplanted cells with host 

astrocytes. This was assessed by examining the Nestin and GFAP appearance 

around the GFP labelled cell in normal animals so that the reaction to the injury 

did not complicate the assessment.  

In addition, the glial scar surrounding the transplant area in sections from 

transplanted animals was compared with that around the injury in non-

transplanted animals.  

3.2.19 Quantitative analysis of injury/cavity 

3.2.19.1 Measurement of the injury size  

 
An attempt was made to quantify the injury dimensions of 3 week survival 

control animals (corresponding to the timing of cell transplants), 9 week survival 

control animals (corresponding the end of procedure for transplanted animals) 

and transplantated animals. Each section from each animal was observed using a 

fluorescence microscope and the section (near the midline) with the largest 
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injury site (i.e. cavity in case of non-transplanted animals and glial scar and/or 

other markers in case of transplanted animals) was selected for confocal 

imaging. The selected section was scanned as a tiled 2 field view (2 X 1) at X4 

magnification through 1-3 z sections. The length of the injury/cavity was then 

measured in photoshop based on a known scale factor. The rostral and caudal 

margins of injury cavities and injured tissue (judged by GFAP immunolabelling or 

other markers and lack of normal tissue integrity) were drawn using the ruler 

facility in Photoshop. From this the length of the injury and the length of injury 

that had become a cavity were determined by multiplying with the known scale 

factor. In addition, the maximal width of the injury was calculated by counting 

the number of (sagittal) sections in which areas of injured tissue occurred and 

multiplying this by 60 (section thickness). 

3.2.19.2 Measurement of the extent of glial reaction 

To obtain an indication of the effect of cell transplants on the astroglial 

reaction, the thickness of the glial reaction (glial scar) surrounding the injury 

region in both transplanted and non transplanted animals was estimated. In 

addition the glial reaction in non-transplanted animals at the 3 week and 9 week 

postinjury time points was compared. This analysis was performed using the 

confocal images acquired to measure the injury cavity and transplanted injury 

site dimensions. However, further selection of these images was performed to 

exclude animals in which GFAP staining was not optimal and to select those 

animals where there were no cells or minimal numbers of cells extending out of 

the injury area. Animals with large numbers of cells immediately outside the 

injury were excluded because of the glial reaction that the cells were shown to 

produce whan injected into normal tissue. Measurements of the width of the 

glial reaction were made on 3 sides of the injury/cavity; rostrally, caudally and 

ventrally. The widest region of each of these sides was measured using the ruler 

in photoshop CS3 and multiplied with a known scale factor.        

3.2.20 Interaction of transplanted cells with host tissues 
outside the injury site 

Tissues with tracks of cells caudal or rostral to the injury were selected and 

examined to see whether the GFAP labelling suggested mingling of the 
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transplanted cells with host astrocytes or that the astrocytes were displaced and 

walled off from the transplanted cells. 

3.2.21 The ability of cells to provide a substrate for 
regeneration of dorsal column axons 

In order to determine the ability of transplanted cells to support axonal 

regeneration of ascending dorsal column fibres, sections from dorsal column 

lesioned animals were examined for evidence of axonal regeneration by 

observing the extent of BDA labelled fibres. Sections with good BDA labelling and 

close to the midline were chosen for further analysis with the confocal 

microscope at X20 (tile 6 X3 to 12 X6) to verify the extent of the axonal 

regeneration.  

3.2.22 The ability of cells to provide a substrate for 
regeneration of CST axons 

In order to determine the cells ability to support axonal regeneration of the 

cortico-spinal tract, sections from contusion injury animals that received cortical 

tracer injections of BDA were examined for evidence of axonal regeneration 

through the extent of the BDA labelled fibres. Sections with good BDA labelling 

close to the midline were chosen for further analysis with the confocal 

microscope at X40 (tile) to verify the extent of the axonal regeneration.The 

extent of axonal regeneration was also compared with that in non-transplanted 

animals. 

3.2.23 Do regenerating axons become myelinated? 

The ability of cells to promote axonal remyelination was determined by 

examining the evidence of myelination regenerating axons. This was performed 

by assessing the distribution of CASPR (paranodal junctions) and compared with 

the non-transplanted animals. The myelin markers were examined in relation to 

other co-labels: GFP (transplanted cells), NF200 (Axons) and P0 (peripheral 

myelin. This analysis need to be performed using the confocal microscope at low 

power X20 to determine the distribution of the myelin and at high power X40 for 

greater detail because one of the marker was detected using a fluorochrome 

outside the visible spectrum. 
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Figure 3-1. The Infinite Horizons Impactor.  

The support arms were positioned and locked and forceps used to clamp the animal into position. 
The impactor tip was then moved and lowered into position just above the spinal cord. Once in 
position, the computer-controlled stepping motor is activated, driving the impactor downwards to hit 
the targeted area of the spinal cord. (Image taken from the PSI-IH Impactor user manual). 
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Figure 3-2. Contusion injury.  

The injury procedure involved performing a dorsal laminectomy to remove the C5 and C6 vertebra 
to expose the spinal cord followed by fixing the C4 and C7 vertebrae using Adson forceps. Then, 
the impactor tip of the IH impactor was positioned over the exposed C6 and a computer-controlled 
contusion injury was performed. 
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Figure 3-3. Location of cortical injection sites for BDA tracer delivery. 

 (A) A small window was drilled into the skull to expose the right sensorimotor cortex . The 
anatomical landmark bregma was used as a reference point from which each of 10 injection sites 
were measured. The injection sites (black dots) formed a grid, within the left cortex. (B) These 
injection sites encompass the main forelimb and hindlimb areas of the sensorimotor cortex. 
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 Figure 3-4. Diagram to illustrate the procedure for making a wire knife lesion.  

A) The wire knife protruded from the cannula and formed an arc. B) The wire knife in its cannula 
was inserted through a slit in the dura at left of the dorsal columns up to a depth of 950 µm. C) The 
wire knife was then protruded from the cannula which forming an arch encompassing the dorsal 
columns and raised against a glass rod. D) This procedure transect the dorsal column but preserve 
the dorsal vein. E) Finally, the wire knife was retracted in its ensheath and raised out of the cord. 
(Images B-E adapted from original images from Dr John Riddell). 
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Figure 3-5.  BDA tracer injection into spinal nerve. 

Tracer was injected into the L4 and L5 spinal nerves and the tracer then travelled through to the 
dorsal root ganglion to label central branch. B) Image B shows the discoloration of the L4 and L5 
after the injection. (Images modified from the original images prepared by Dr John Riddell). 
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3.3 Results 

 

3.3.1 Injury characteristics at time of transplant 

 

In order to obtain some understanding of the nature of the injury site into which 

transplants were made, 8 animals were perfused 3 weeks after the injury, which 

is equivalent to the delay between injury and transplantation. Spinal cords from 

these animals were processed with different combinations of antibodies. The 

combinations were chosen to show mainly the glial scar (GFAP and nestin), 

deposition of extracellular matrix (laminin) and blood vessels (SMA, laminin). 

The animals used in this part of the study are shown in Table 3-2.  

No Animal ID Survival Immunocytochemistry 

1 R2412 3 weeks 
GFAP+NF200 
GFAP+ED1 

2 R10413 3 weeks 
GFAP+Nestin 

GFAP+Laminin 

3 R16813 3 weeks 
GFAP+Nestin 

GFAP+Laminin 

4 R16913 3 weeks 
GFAP+Nestin 

GFAP+Laminin 

5 R17013 3 weeks 
GFAP+Nestin 

GFAP+Laminin 

6 R18013 3 weeks 
GFAP+Nestin 

GFAP+Laminin 

7 R9214 3 weeks SMA+GFAP 

8 R9314 3 weeks SMA+GFAP 

Table 3-2.  Summary of animals used to investigate the injury site 3 weeks after contusion. 

This time point is equivalent to the time of delayed transplantation in animals receiving cells. 

 

 

Representative examples of sections from these animals to illustrate the main 

features of the injury site are shown in Fig.3.8. The injury site in all animals was 

extensive and encompassed large parts of both the white and grey matter. It 

typically consisted of one or more fluid filled cavities. Where there was more 

than one cavity (i.e. the cavity was septated) these were generally divided by 

very strands of tissue (trebeculae) which could be very fragile and did not always 

survive the cutting and immunohistological processing.  A glial scar formed 

around the cavities as indicated by denser immunolabelling for GFAP than areas 
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beyond the injury but nestin, which is co-localised with GFAP in reactive 

astrocytes, was only quite weakly and sparsley expressed (Fig 3.8 A and B).   

 

There was deposition of a variable amount of extracellular matrix within areas 

of the injury. The distribution of this gave the impression that it may have been 

part of the cavity at one stage or destined to become cavity if the matrix had 

not formed. The matrix was very variable in extent (in Fig. 3.8 it increases for 

sections A to D) and was enriched for laminin (Fig 3.8 B and D). There was 

minimal SMA immunolabelling in the injury area and surrounding tissue (this was 

judged by eye to be less than in 9 week survival animals and transplanted 

animals, see below). Astrocytes (GFAP labelling) were rarely found within this 

matrix but regenerating axons revealed by neurofilament labelling (not 

illustrated) could be seen in the one animal in which this antibody was examined 

and this is consistant with this finding in longer survival animals without 

transplants which were investigated more fully. EDI labelling was also 

investigated in one animal (not illustrated) and ED1 labelled profiles were seen 

at two main locations. They formed a thin “layer” of cells around the rim of the 

cavity with a distribution which appeared to roughly correspond to the glial scar 

of reactive astrocytes. In addition, they were very extensively distributed 

throughout the extracellular matrix where this occupied part of the injury area. 

Expansion of the width of the central canal was also sometimes evident beyond 

the rostral and caudal margins of the injury. Information on the dimensions of 

the injury cavities is provided in Section 3.3.9 

 

3.3.2 Testing the requirement for immunosuppression 

In order to determine whether transplanted cells could survive in the injured 

spinal cord without any immunosuppressive treatment and if so, for how long, 

transplants were made into animals 3 weeks after a contusion injury and 

surviving cells looked for at 1, 2 and 4 weeks after transplantation. Two animals 

were examined at each time point and two different cell batches were used at 

each time point. GFP expression for most of the transplanted cells was 60 or 90 

%. A summary of the animals used in this part of the study is shown in Table 3.3. 
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Animal 
ID 

Cell 
batch 

GFP 
% ICC 

  Post- 

No 
Evidence of cells 
survival? 

transplant  
survival 
time 

1 R11413 
MSC 9C 
A(II) 60 

GFP/Nestin/ 
 No (a few atypical GFP 
cells)  

1 weeks GFAP   

2 R19613 
MSC 4C 
A(II) 90 

GFP/Nestin/ 
 No (some amount of 
atypical GFP profile) 

1 weeks GFAP   

3 R11513 
MSC 9C 
A(II) 60 

GFP/Nestin/  No GFP labelled cells 

2 weeks GFAP   

4 R19713 
MSC 4C 
A(II) 90 

GFP/Nestin/  No GFP labelled cells 

2 weeks GFAP   

5 R4113 
MSC 7C 
A(II) 22 

GFP/Nestin/  No GFP labelled cells 

4 weeks GFAP   

6 R11613 
MSC 9C 
A(II) 60 

GFP/Nestin/  No GFP labelled cells 

4 weeks GFAP   

Table 3-3. Summary of animals used to assess the survival of transplanted cells without 
immunosuppression 

 

The results indicated that there is dramatically poor survival of hESC-MSCs when 

they are transplanted 3 weeks after a contusion injury without any 

immunosuppressive treatment. Some GFP labelled profiles were seen in the one 

week survival animals but virtually none could be observed in the 2 week 

animals and they were completely absent at 4 weeks. 

In one of the animals examined 1 week after transplantation GFP labelled 

profiles were extremely sparse and formed a small localised pocket of cells 

within the injury site (see Fig. 3.9 A). In the other animal the GFP labelled cells 

were more numerous and were located in two main regions. They formed a rim 

of cells around the perimeter of a small otherwise empty cavity (Fig. 3.9 B) and 

the also occurred as a small compact bolus of cells (see Fig. 3.9C). In both of 

these animals the GFP labelled cells had a very different appearance from that 

in culture (or in subsequent animals where immunosuppression was used), being 

rounded and devoid of any processes. Both the size and morphology of these GFP 

labelled profiles closely resemble that of macrophages that can be observed by 

their autofluorescence and by ED1 labelling, though this was not tested further. 

It is therefore possible that the GFP profiles are macrophages that have 
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phagocytosed the dead GFP expressing transplanted MSCs and therefore contain 

GFP. If this is the case then it is likely that virtually no cells survive by 7 days 

after transplantation without immunosuppression. Apart from a handful of GFP 

profiles of similar morphology seen in one of the 2 week animals, none of the 

animals examined at 2 and 4 weeks contained any GFP labelled cells (Fig. 3.10). 

Although there was little if any survival of transplanted cells in these six animals 

without cyclosporine treatment, there was also less evidence of extensive fluid 

filled cavities at the injury (Fig. 3.9 and Fig 3.10). Most of the injury sites were 

filled with an extracellular matrix and only small occasional cavities were seen 

(e.g. Fig. 3.9 B). This was clearly different from most of the animals investigated 

at the 3 week post-injury time point equivalent to when the cells were 

transplanted. It is also in contrast to most of the 6 week survival cells which 

were treated with cyclosporine but were not transplanted with cells, many of 

which showed extensive cavitation (see below). This suggest that the 

transplanted cells or cells attracted to the area by the cells and perhaps part of 

the process by which the cells were killed and/or the cellular debris cleared 

from the site, may have produced an extracellular matrix. 

In addition to examining GFP labelling, these animals were also immunolabelled 

for GFAP and nestin (Fig. 3.9 and 3.10). Nestin immunoreactivity, although not 

intense was more evident than in animals examined 6 weeks after injury, with or 

without cell transplants.  

3.3.3 Testing the adequacy of immunosuppression 

Having established that transplanted cells did not survive without 

immunosuppression, we next investigated whether an immunosuppression 

regime based on daily injections of cyclosporine (20mg/kg s.c.) would be 

adequate to prevent rejection of the transplanted cells and promote their 

survival for a duration sufficient to investigate their effect on the injured spinal 

cord. Animals were transplanted 3 weeks after a contusion injury but in this case 

cyclosporine administration was begun 2 days before the transplants and 

continued until the end of the procedure. Cell survival was assessed at 5 days, 2 

weeks and 4 weeks in two animals at each time point transplanted with cells 

from different differentiation batches and the cells were 60 or 90% GFP 
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expressing. The animals used in this part of the study are summarised in Table 

3.4. 

No 
Animal 

ID Cell batch 
GFP 
% Surviving cells detected? 

Post-
transplant 
survival 

time 

1 R11313 
MSC 9C 

A(II) 60% 
Many: in injury area, rostral 

and caudal 5 days 

2 R18113 
MSC 4C 

A(II) 90% 
Many: in injury area, rostral 

and caudal 5 days 

3 R2512 MSC 13C B 90% 
Many: in injury area, rostral 

and caudal 2 weeks 

4 R18213 
MSC 4C 

A(II) 90% 
Moderate numbers in injury 

area only 2 weeks 

5 R2712 MSC 13C B 90% 
Many: in injury area, rostral 

and caudal 4 weeks 

6 R10613 
MSC 9C 

A(II) 60% 
Many: in injury area, rostral 

and caudal 4 weeks 

Table 3-4. Summary of animals used to assess survival of transplanted cells in animals 
treated with daily injections of the immunosuppressant cyclosporin 

 

Examination of sections from all of the animals investigated demonstrated 

excellent survival of GFP expressing transplanted cells at all time points. 

Examples of sections from these animals are shown in Fig. 3.11. Large numbers 

of GFP expressing cells were observed throughout the injury area and often 

beyond. Because of the small sample and considerable variability in the injury 

site morphology and pattern of distribution of labelled cells it was not possible 

to determine whether there were differences in the numbers of surviving cells at 

2 weeks and 4 weeks. At both time points there were large numbers of cells 

which filled the injury site leaving no cavitation. However, gaps in the 

distribution of cells were evident but this was in cases where part of the injury 

site was occupied by extracellular matrix (Fig. 3.11 A and D).  

 

 

3.3.4 Distribution of transplanted cells 

Having established that good survival of cells could be obtained when cells were 

transplanted 3 weeks after an injury if cyclosporine treatment was provided 

through-out the survival period, further studies were conducted using a 6 week 

post-transplant survival time. Twenty-six animals were transplanted with hESC-

derived MSCs. All of these were transplanted 3 weeks after the contusion injury 
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and were treated with cyclosporine. The transplanted animals received one of 

the 5 independently prepared batches of cells (i.e. from 5 different runs of the 

differentiation protocol) in order to avoid the possibility that use of a single 

batch differing from the rest could bias the results. The spinal cords from these 

animals were processed using different combinations of antibodies to investigate 

different aspects of the injury site but most sections were processed using 

antibodies to GFAP or NF200 in addition to GFP. These antibodies show the 

structure of the spinal cord and sections from these animals were used to 

examine the distribution of transplanted cells. The data is summarized in Table 

3.5 (page 148-149).
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No ID Cell batch GFP(%) 
Surviving 

cells 
cells in the 

injury Most or part 
cells outside 

injury cells rostral cells caudal 

1 R15312 MSC 4C A 90 yes Yes part minimal yes -scattered yes -scattered 

2 R15512 MSC 4C A 90 yes Yes most many yes -scattered yes-scattered 

3 R29412 MSC 1C A 74 yes Yes part many yes -scattered yes-scattered 

4 R34012 MSC 7C A 48 yes Yes minimal minimal yes-in track yes-scattered 

5 R29612 MSC 1C A 74 yes Yes part many yes-in large ball yes-scattered 

6 R33612 MSC 7C A 48 yes Yes minimal minimal no yes-in track 

7 R50512 MSC 1C A 74 yes Yes minimal minimal no no 

8 R29712 MSC 1C A 74 yes Yes most many yes-in track yes-in track 

9 R2913 
MSC 7C 

A(II) 22 yes Yes part no cells no no 

10 R33912 MSC 7C A 48 yes Yes part many yes-scattered yes-scattered 

11 R10813 
MSC 9C A 

(II) 60 yes Yes part minimal yes-scattered yes-scattered 

12 R33812 MSC 7C A 48 yes Yes part many outside the cord 
outside the 

cord 

13 R3013 
MSC 7C 

A(II) 22 yes Yes minimal no no no 

14 R50612 MSC 1C A 74 yes Yes minimal no no no 

15 R2713 
MSC 7C 

A(II) 22 yes Yes part minimal yes-scattered yes-scattered 

16 R3313 
MSC 7C 

A(II) 22 yes Yes part many yes-in track yes-in track 

17 R33712 MSC 7C A 48 yes Yes part many yes-scattered yes-scattered 

18 R29212 MSC 1C A 74 yes Yes most many yes-in track yes-in track 

19 R50412 
MSC 1C A 

(II) 90 yes Yes minimal no no no 
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20 R50112 
MSC 1C 

A(II) 34 yes yes part minimal no no 

21 R50212 
MSC 1C 

A(II) 34 yes Yes part many yes-in track yes-in track 

22 R50312 
MSC 1C 

A(II) 34 yes Yes part many yes-scattered yes-scattered 

23 R2413 
MSC 7C 

A(II) 22 yes Yes part many yes-scattered no 

24 R2513 
MSC 7C 

A(II) 22 yes Yes part many yes-scattered yes-in track 

25 R2613 
MSC 7C 

A(II) 22 yes Yes part minimal yes-scattered yes-scattered 

26 R10513 
MSC 9C 

A(II) 60 yes Yes part minimal yes-scattered yes-scattered 

      

3 most 13 many 4 in track 5 in track 

      

17 part 9 minimal 13 scattered 13 scattered 

      

6 minimal 4 no cells 1 in large ball 7 no cells 

      

    6 no cells   

 

  

Table 3-5. Summary of the distribution of cells in animals transplanted with hESC-MSCs three weeks after a contusion injury and investigated using 
immunocytochemistry 6 weeks after transplantation. 
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The data in Table 3-4 show that surviving GFP labelled cells were found in all 

animals (26 of 26 animals, 100%) and in all cases could be seen in the injury 

area. However, their distribution varied from animal to animal.  Only a small 

proportion of animals had cells throughout the whole of the injury area (3 

animals, 11%). Most animals (20 of 26; 74 %) had cells occupying approximately 

25 to 50 % of the injury area with the remaining area occupied with extracellular 

matrix. In the few remaining animals (4 animals; 15%) GFP labelled cells 

occupied only a small area (less than 25%) of the injury site. Examples of 

sections from animals sacrificed 6 weeks after transplantation are shown in 

several figures which also illustrate other features of the investigation. See 

Figures 3-16, 3-17, 3-18 and 3-23. All animal was essentially devoid of cavities. 

Either the labelled cells or cells together with areas of extracellular matrix 

completely filled the injury area. In comparison, the injury sites of the 17 

control animals showed extensive cavitation with varying amounts of infilling 

with extracellular matrix. Examples of the injury site in these control animals 

are shown in Fig. 3-12 and Fig. 3-22. 

 

Cells were also seen distributed outside the injury area in most transplanted 

animals (23/26; 85%). Labelled cells could be observed in the host spinal cord 

rostral to the injury, caudal to the injury or on both sides of the injury. In the 

majority of animals (21/23 animals; 91%), cells were seen extending in both 

directions i.e. rostral and caudal to the injury site. The cells outside the injury 

site often formed continuous tracks of cells leading away from the injury (10/23 

animals; 43%). These were typically close to the midline, just dorsal to the 

central canal. In the remaining animals, cells outside the injury site were seen 

to be scattered and dispersed rather than forming a track (13/23 animals; 48%). 

In the majority of these animals, the cells did not extend to the end of the 

section i.e. 3 mm rostral and caudal of the injury centre. For some animals 

sections were cut from blocks each side of the injury block. Cells were not seen 

in any of the 6 rostral blocks examined but a few cells were seen in 3 of 6 caudal 

blocks.  
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One interesting feature associated with the spread of cells beyond the lesion 

was clear evidence that the transplanted cells displaced host astrocytes. This 

was evident from the immunolabelling with GFAP, which in areas where GFP 

labelled cells were detected was largely absent (Fig. 3-11 D, Fig. 3-13, 3-31, 3-

32, 3-33). This suggests that the transplanted cells interact with host astrocytes 

and this was confirmed in other sections of the study where cells were 

transplanted into normal non-injured spinal cord and into dorsal column injuries 

(see below,). 

In 4 animals there was evidence of cells outside the spinal cord (on the dorsal 

surface) suggesting some leakage or overflow of cells. 

 

 

3.3.5 Differentiation and proliferation of transplanted cells in 
vivo 

In order to investigate whether the hESC-MSCs continue to proliferate in vivo, 

immunostaining for Ki67, a nuclear protein which is thought to be necessary for 

cellular proliferation and is widely considered a reliable marker for this process. 

It was assumed that proliferation, if it continued to occur, was most likely to be 

seen at an early time point after transplantation before other signalling 

potentially shut the process down. On the other hand, a few days are required 

for transplanted cells to be integrated and physically anchored within the tissue 

for processing. A survival period of 5 days was therefore chosen. Table 3.6 

summarises the animals that were used in this part of the study. 

 

No Animal ID 
Cell 

batch GFP % Immunocytochemistry 
Time post- 
transplant 

1 R2813 
MSC 7C 

A(II) 22 GFP/Ki67/GFAP 5 days 

2 R11313 
MSC 9C 

A(II) 60 GFP/Ki67/GFAP 5 days 

        GFP/Ki67/ED1   

        GFP/Ki67/NeuN   

3 R18113 
MSC 4C 

A(II) 90 GFP/Ki67/GFAP 5 days 

        GFP/Ki67/ED1   

        GFP/Ki67/NeuN   

4 R17613 None   GFP/Ki67/GFAP 5 days 

        GFP/Ki67/ED1   

        GFP/NeuN/GFAP   

5 R17713 none   GFP/Ki67/GFAP 5 days 
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        GFP/Ki67/ED1   

        GFP/NeuN/GFAP   

6 R3313 
MSC 7C 

A(II) 22 GFP/Ki67/GFAP 6 weeks 

Table 3-6. Summary of animals used to investigate whether transplanted cells proliferate in 
vivo. 

 

Ki67 immunolabelling was widespread throughout sections containing the 

transplanted injury sites. It was especially prevalent in areas of extracellular 

matrix surrounded by cells and at the edge of small cavities within the cell 

transplant (Fig. 3-13 A and B). However, it was less prevalent in areas where the 

transplanted cells were highest in density and it was not seen co-localised with 

GFP. This was confirmed by examining individual z sections in high power 

confocal images obtained from areas containing GFP and Ki67 immunolabelled 

structures of potential interest. Five fields of view, from 3 animals were 

examined and each of these contained multiple profiles. Only 2 z sections 

showed any potential co-localization and these examples were not convincing 

(Fig. 3-13 C, D, E, F and G). This suggests that hESC-MSCs do not proliferate in 

vivo but that other cell types within the injured spinal cord do. 

 

The morphology of transplanted cells was investigated using confocal microscopy 

at 2 weeks and 4 weeks after transplantation. Examples of these observations 

are illustrated in Fig 3-14 and 3-15. Cells within the main area of the transplant 

showed a main spindle shaped simple morphology whereas cells which had 

spread out of the main injury site tended to develop a more complex 

morphology. This may reflect a mainly paracrine effect within the injury and a 

wider influence from host cells out-with the injury.    

 

3.3.6 Extracellular matrix and blood vessel formation within 
the transplanted injury 

In animals transplanted with cells, the injury site was remarkably well filled 

even when variable numbers of cells with varying distributions remained and this 

was in stark contrast to the extensive cavitation that typified the injury site of 

non-transplanted animals. Laminin is an extracellular matrix molecule commonly 

secreted by cells and immunocytochemistry was therefore used to investigate 

the extent to which laminin was a constituent of the tissue filling the injury site. 
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Table 3.7 summarises the animals used in this part of the study. All of the 

animals were investigated 9 weeks after the injury or 6 weeks after 

transplantation.  

 

No Animal ID Cell batch GFP % Immunocytochemistry 

1 R29312 MSC 1C A 74 GFP/Laminin/GFAP 

2 R29412 MSC 1C A 74 GFP/Laminin/GFAP 

3 R34012 MSC 7C A 48 GFP/Laminin/GFAP 

4 R2313 no - GFP/Laminin/GFAP 

5 R3113 no  -  GFP/Laminin/GFAP 

Table 3-7. Table summarising the animals used to investigate laminin within the injury site 
of transplanted and control injured animals. 

 

Fig. 3-16 shows examples of the distribution of laminin immunolabelling in two 

of the transplanted animals investigated. There was intense immunolabelling 

throughout the transplanted injury site in areas containing cells and those where 

cells were absent. The labelling was particularly intense where the transplanted 

cells were sparse or absent. In addition to a very dense labelling within the 

injury, where the labelling was lighter it was possible to see some of the details 

of labelled structures. This revealed numerous laminin positive blood vessels in 

and around the injury site. Examples of these are shown in Fig. 3-17. 

 

Angiogenesis at the transplanted injury site was also investigated by performing 

immunocytochemistry for SMA which is a constituent of the walls of resistance 

vessels. For all animals the time point post-injury was nine weeks and 6 weeks 

after transplantation. Table 3.8 summarises the animals used for this purpose. 

 

 

 

No  Animal ID Cell batch GFP % Immunocytochemistry 

1 R15412 MSC 4C A 90 SMA/GFAP/GFP 

2 R29612 MSC 1C A 74 SMA/GFAP/GFP 

3 R2713 MSC 7C A(II) 22 SMA/GFAP/GFP 

4 R17213 None 
 

GFP/SMA/GFAP 

5 R19813 None 
 

GFP/SMA/GFAP 

Table 3-8. Table summarising the animals used to investigate angiogenesis using  SMA 
immunolabelling. 

 

Fig. 3-18 shows examples of the distribution of SMA immunolabelled blood 

vessels in sections from two animals. Numerous vessels were found in and around 

the injury site producing a network which appeared but developed at the injury 

site than in distant tissue. The vessels were not specifically associated with 
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regions containing transplanted cells but were also seen in extracellular matrix 

and beyond the borders of the injury. SMA labelled blood vessels were also seen 

in non-transplanted animals examined at an equivalent time point i.e. 9 weeks 

after injury (see Fig. 3-12 B and C) but they were fewer number and distributed 

mainly in the matrix deposited in the injury cavities. 

 

3.3.7 Interaction between host glia and transplanted cells 

To assess the integration of hESC-MSCs with spinal cord tissue and whether there 

is any reactivity between the cells and host glia, small bolus injections of cells 

were made into the spinal cords of normal non-injured animals so that the 

transplant-host interaction could be assessed without interference from the 

reaction to the injury. Immunoreactivity to GFAP and nestin which are 

upregulated in reactive astrocytes was used to assess glial reactivity 7 days after 

injection. Table 3.9 summarises the animals used to study this. 

 

 

No Animal ID Cell batch GFP % 
Immuno-

cytochemistry 
Time post- 
transplant 

1 R7013 MSC 7C A(II) 22 Nestin/GFAP/GFP 1 week 

2 R22013 MSC 4C A (II) 90 Nestin/GFAP/GFP 1 week 

3 R22113 MSC 4C A (II) 90 Nestin/GFAP/GFP 1 week 

Table 3-9. Table summarising animals in which nestin was used in combination with GFAP 
to assess glial reactivity in response hESC-MSCs injected into normal non-injured spinal 
cord. 

 

Fig. 3.19 shows examples of the results obtained. The small bolus of cells 

injected into the dorsal columns was surrounded by enhanced GFAP and nestin 

immunoreactivity while astrocytes were largely excluded from the area occupied 

by the transplanted cells. These observations suggest a significant interaction 

between the transplanted cells and host astrocytes.  

 

 

3.3.8 The effect of transplants on the glial scar 

To assess whether the transplanted cells had a similar effect to that indicated by 

bolus injections into normal animals, when transplanted into the injured spinal 

cord, GFAP and nestin immunoreactivity were observed in transplanted and 

control animals. The animals used in this part of the study are summarised in 

Table 3.10.  
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No Animal ID Cell batch GFP % Immunocytochem. Time P-T 

1 R3213 MSC 7C A(II) 22 GFP/Nestin/GFAP 2 weeks 

2 R15212 MSC 4C A 95 GFP/Nestin/GFAP 6 weeks 

3 R50612 MSC 1C A 74 GFP/Nestin/GFAP 6 weeks 

4 R4413 None   GFP/Nestin/GFAP 2 weeks 

5 R2113 None   GFP/Nestin/GFAP 6 weeks 

6 R2213 none   GFP/Nestin/GFAP 6 weeks 

Table 3-10.  Summary of animals used to investigate glial activation in response to 
transplanted cells. 

 

Fig. 3-20 shows examples from a transplanted and a control animal. Although a 

glial reaction around the injury site remained prevalent 9 weeks after the injury, 

there was very little nestin immunolabelling in either the control or transplanted 

animals and the two groups did not differ obviously in this respect. This suggests 

that the reaction of host glial cells to the transplanted cells may not persist at 

longer time points after transplantation or have little impact on the wider 

injury. The exclusion of astrocytes from the bolus injection site is, however, a 

feature that is equally obvious at the injury transplant site. 

 

3.3.9 Quantification analysis of the injury 

In order to carefully study the effect of hESC-MSCs on the morphology of the 

contusion injury, the injury dimensions and the thickness of the glial reaction 

(glial scar) surrounding the injury region of 3 week survival control animals 

(corresponding to the timing of cells transplant), 9 week survival control animals 

(corresponding the end of procedure for transplanted animals) and 

transplantated animals was measured and compared. 

3.3.9.1 Injury size 

Table 3.11 shows the results of the quantification analysis of the injury extent of 

these animals at 3 weeks after injury. The length of the injury area was usually 

3mm or more (mean 3.68 mm ± 0.21) and most of this was occupied by a cavity 

and matrix in-filling. The width of the injury at epicentre of cavity was usually 

around 2mm (mean width 2.04 mm ± 0.06).  
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Animal ID 
Length of Injury 

(mm) Width of injury(mm) 

R2412 3.62 2.04 

R10413 3.32 2.04 

R16813 3.24 2.10 

R16913 3.69 2.04 

R17013 3.16 2.10 

R18013 3.29 1.62 

R9214 4.75 2.22 

R9314 4.39 2.16 

mean 3.68 2.04 

Table 3-11. Dimensions of the injury 3 weeks after contusion.  

This time point is equivalent to the time of delayed transplantation in animals receiving cells and 
this information is presumed to be representative of the injury into which transplants were made in 
these animals. The table shows measurements of the maximal length of the injury area and the 
length occupied by cavity determined by inspection of saggital sections of the spinal cord at the 
injury site. The width of the injury was determined from the number of 60um sections containing 
injured tissue.  

 

The 3 week post-injury time point examined here is equivalent to the time point 

at which transplants were made into animals receiving cells and the histology of 

the injury site is presumed to reflect the nature of the tissue into which the 

transplants were made. This indicates that transplants were made largely into 

fluid filled cavities but that in some cases the deposition of extracellular matrix 

will reduce the volume of cells required and prevent the spread of cells 

throughout the injury area. Representative images at 3 week post-injury which 

were used for measurements are shown in figure 3-21. 

A similar approach was used to assess the dimensions of the injury sites 

(cavities, disrupted tissue, GFAP or other marker enhancement) in both 

transplanted and control non-transplanted animals. This data is shown in table 

3.12 and table 3.13 respectively with representative images of the injury site 

shown in figure 3-22 and 3-23. The dimensions of the injury in control animals at 

9 weeks after the injury were very similar to those of animals examined 3 weeks 

after the injury suggesting that the injury site is already at its greatest extent by 

3 weeks. The slight reduction in cavity length at 9 weeks compared to 3 week 

post-injury animals may reflect increased infilling and accumulation at the injury 

site of extracellular matrix at the later time point. Further comparison of these 

control animals with transplanted animals revealed a significant reduction of the 

injury extent (length and width) in the transplanted animals. The data from 

these 3 different groups of animals were compared and tested statistically using 
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one way anova with post-hoc turkey comparison test and is illustrated in figure 

3-6 (A) and (B). The length of the injury area in control animals was usually 3mm 

or more (mean 3.57mm ±0.07) compared with the transplanted animals which 

ranged between 1.47-2.99 (mean 2.15mm ±0.11) (p value=<0.001). The width of 

the injury in control animals was around 1.6 to 2.1mm (mean 1.9mm ±0.04) 

while in transplanted animals was between 0.8 to 1.8mm (mean width 

1.34mm±0.05) (p value=<0.001). In comparison, the injury sites of the 17 control 

animals showed extensive cavitation with varying amounts of infilling with 

extracellular matrix. Examples of the injury site in these control animals are 

shown in Fig. 3.12. 

The injury area of the control animals was either occupied by a single large 

cavity, multiple small cavities and/or matrix infilling. On the other hand, the 

injury area of the transplanted animals was either completely filled with cells, 

partially filled with cells or a mixture of cells and matrix with almost no visible 

cavities in any of the animals. Further calculation on the aspect ratio of the 

injury sites (length/width) reveal a relatively smaller aspect ratio for the 

transplant (mean 1.60 ±0.11) compared with the control animals at 9 weeks post 

injury (mean 1.81 ±0.05) and 3 weeks post injury (mean 1.60 ±0.09) but not 

significantly different (p value>0.05 for transplanted versus 3 week and 

transplanted versus 9 week) upon tested using one way anova with post-hoc 

turkey comparison test. The data was illustrated in figure 3-6. The smaller 

aspect ratio for the transplanted animals suggest that the injury is not the same 

proportional shape as the injury in 3 and 9 week post injury eventhough the 

injury is shorter and less wide in transplanted animals. The larger aspect ratio of 

the 3 and 9 weeks control animals may suggest that rostro-caudal elongation is a 

greater contributor to cavity volume than medio-lateral and the cell transplant 

inhibit this elongation and lead to the overall outcome of the injury volume. 

Apart from figure 3-23, examples of the injury site in transplanted animals are 

also shown in many other figures: figure 3-16, 3-18. 3-20, 3-27, 3-28 and 3-30.  
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No 
Animal 
ID 

Length of 
injury 
(mm) 

Width of 
injury 

1 R2313 3.42 1.68 

2 R3113 3.47 2.28 

3 R17213 4.09 1.98 

4 R19813 3.82 1.86 

5 R19913 3.98 1.86 

6 R11013 3.21 1.98 

7 R18913 3.21 1.80 

8 R17113 3.66 1.98 

9 R19413 3.31 1.68 

11 R2113 3.57 1.80 

12 R2213 3.69 2.10 

13 R3413 3.96 2.04 

14 R4213 3.04 1.68 

15 R17313 3.56 1.86 

16 R17413 3.59 1.92 

17 R17513 3.87 1.68 

18 R33512 3.60 2.16 

  Mean 3.57 1.9 

Table 3-12. Quantification of injury/cavity dimensions (maximal length and width of the 
injury area) in control animals 9 weeks after contusion injury 
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No ID 
Length 
(mm) width (mm) 

1 R15312 1.57 0.84 

2 R15512 1.73 1.14 

3 R29412 1.84 1.32 

4 R34012 1.95 1.20 

6 R29612 2.76 1.62 

7 R33612 2.27 1.56 

8 R50512 1.97 1.44 

9 R29712 2.43 1.68 

10 R2913 2.73 1.68 

11 R33912 1.80 1.50 

12 R10813 2.70 1.44 

13 R33812 1.48 1.62 

14 R3013 2.00 1.26 

15 R50612 2.33 1.80 

16 R2713 2.92 1.14 

17 R3313 2.91 1.08 

18 R33712 2.30 1.14 

19 R29212 1.47 1.80 

20 R50412 2.99 1.26 

21 R50112 1.82 1.32 

22 R50212 2.10 1.08 

23 R50312 1.76 0.96 

24 R2413 1.93 1.38 

25 R2513 2.00 0.96 

26 R2613 1.68 1.20 

27 R10513 2.63 1.44 

  Mean 2.15 1.34 

Table 3-13. Quantification of injury/cavity dimensions (maximal length and width of the 
injury area) in transplanted animals 6 weeks after transplantation 
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Figure 3-6. Comparison of length, width and aspect ratio of injury region. 
Bar chart represent the length of the injury region taken from control animals (3 weeks and 9 weeks 

survival) and transplanted animals (A, right). The left bar chart represent the width of the injury 

region (B) and another bar chart represent the aspect ratio of the injury region. The error bars 

represent standard error of mean (SEM). Statistical analysis used is one way anova and asterisks 

(*) indicate p values of <0.05. 

 

3.3.9.2 Dimension of glial scar 

Tables 3-14, 3-15 and 3-16 show measurements of glial scar thickness/width 

based on GFAP immunolabelling which identifies the astroglial reaction to the 

injury, and possibly to the cells transplantated cells. Representative images of 

astroglial reaction in these 3 different groups (i.e. 3 weeks control, 9 weeks 

control and transplanted animals) are shown in the figures 3-24, 3-25 and 3-26. 

The width of the glial extent in control animals was 0.4mm or more (mean 

0.49mm ±0.04) 3 weeks after injury (Table 3-14) and reduced to approximately 

0.30 to 0.48mm (mean 0.35 ±0.03) at  9 weeks after injury (Table 3-15).   
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No ID Treatment rostral caudal ventral 
Mean 
(um) 

mean 
(mm) 

1 R2412 no 793.19 669.68 229.25 564.04 0.56 

2 R10413 no 512.96 968.91 209.60 563.83 0.56 

3 R16813 no 451.22 531.94 176.85 386.67 0.38 

4 R16913 no 375.23 572.33 216.15 387.90 0.38 

5 R17013 no 493.96 512.96 176.85 394.59 0.39 

6 R18013 no 721.94 911.92 271.64 635.17 0.63 

7 R9314 no 598.44 517.71 311.13 475.76 0.47 

   
563.85 669.35 227.35 Mean(um) 0.49 

Table 3-14. Thickness of glial scar in control animals 3 weeks after injury 

No ID 
Cell 
batch rostral caudal ventral Mean(um) 

mean 
(mm) 

1 R2313 no 470.20 156.03 157.20 261.14 0.26 

2 R17213 no 797.94 479.63 153.93 477.17 0.48 

3 R19813 no 289.73 246.97 134.28 223.66 0.22 

4 R2113 no 408.46 489.21 286.56 394.74 0.40 

5 R17313 no 470.20 531.94 248.90 417.02 0.42 

6 R17413 no 479.70 379.98 160.36 340.01 0.34 

7 R17513 no 332.47 408.46 189.95 310.29 0.31 

   

464.10 384.60 190.17 
Mean 
(um) 0.35 

Table 3-15. Thickness of glial scar in control animals 9 weeks after the injury 

 
The data from these 3 groups of animals was compared using one way anova, 

illustrated in figure 3-7. There was a significant increase in glial thickness 

surrounding the injury region of the transplanted animals, ranging from 0.54 to 

1.04 (mean 0.72mm ±0.04) (p value<0.001 for transplants versus 3 week and 

transplant versus 9 week)(Table 3-16) compared with both group of control 

animals. This finding suggests a strong glial reaction of the host tissue toward 

the transplanted cells which supports the previous finding with cell injections 

into non-injured (see section 3.3.7). 
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No ID 
Cell 
batch rostral caudal ventral 

Mean 
(um) 

mean 
(mm) 

1 R34012 MSC 7C A 1505.63 1320.38 291.48 1039.16 1.04 

2 R29612 MSC 1C A 1106.65 1099.90 304.58 837.04 0.84 

3 R33612 MSC 7C A 1142.66 915.96 370.08 809.57 0.81 

4 R50612 MSC 1C A 926.48 997.42 298.03 740.64 0.74 

5 R2713 
MSC 7C 

A(II) 854.93 945.18 517.11 772.41 0.77 

6 R33712 MSC 7C A 1011.67 1059.16 271.83 780.89 0.78 

7 R29212 MSC 1C A 845.43 643.79 307.64 598.95 0.60 

8 R50412 
MSC 1C A 

(II) 702.94 916.67 343.88 654.50 0.65 

9 R50112 
MSC 1C 

A(II) 598.44 717.19 301.30 538.98 0.54 

10 R2413 
MSC 7C 

A(II) 631.70 774.18 209.45 538.44 0.54 

11 R2513 
MSC 7C 

A(II) 1111.40 869.18 238.91 739.83 0.74 

12 R2613 
MSC 7C 

A(II) 1068.66 717.19 265.09 683.65 0.68 

13 R10513 
MSC 9C 

A(II) 755.18 997.42 212.09 654.90 0.66 

      943.21 921.05 302.42 
Mean 
(um) 0.72 

Table 3-16. Thickness of glial scar in transplanted animals 6 weeks after transplantation 

 

 

 

Figure 3-7. Comparison of the glial reaction surrounding the injury region. 
Bar chart showing the thickness of the glial reaction surrounding the injury site of control animals (3 

weeks and 9 weeks survival) and transplanted animals (A). Error bars represent standard error of 

mean (SEM). Statistical analysis used is one way anova and asterisks (*) indicate p values of 

<0.05. 
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3.3.10 Axonal regeneration promoted by cell transplants 

Axonal regeneration within transplants of hESC-MSCs was investigated by using 

NF200 immunolabelling which reveals the neurofilament within myelinated 

fibres. When this is detected at the centre of a transplanted injury site which 

would otherwise be cavity or extracellular matrix deposited after tissue 

necrosis, this labelling can reliably be interpreted as representing regenerating 

fibres. Table 3.14 summarises the animals in which this approach was taken.      

3.3.11 Neurofilament immunolabelling of axons 

No Rat No 
Cell 

Batch GFP% Markers 
Post-

transplant 

1 R2512 MSC 13C  90 GFP/NF200/GFAP 2 weeks 

2 R2712 MSC 13C  90 GFP/NF200/GFAP 4 weeks 

3 R18213 
MSC 4C A 

(II) 90% GFP/NF200/GFAP 4 weeks 

4 R33912 MSC 7C A 48 GFP/NF200 6 weeks 

5 R10813 
MSC 9C A 

(II) 60 GFP/NF200 6 weeks 

6 R18413 
MSC 4C A 

(II) 90 GFP/NF200 6 weeks 

7 R33812 MSC 7C A 48 GFP/NF200 6 weeks 

8 R10613 
MSC 9C 

A(II) 60 GFP/NF200 4 weeks 

9 R15312 MSC 4C A 90 GFP/NF200/GFAP 6 weeks 

10 R15512 MSC 4C A 90 GFP/NF200/GFAP 6 weeks 

11 R29712 MSC 1C A 74 GFP/NF200/GFAP 6 weeks 

12 R2913 
MSC 7C 

A(II) 22 GFP/NF200/GFAP 6 weeks 

13 R19213 
MSC 4C 

A(II) 90% GFP/NF200/GFAP 6 weeks 

14 R3413 no   GFP/NF200/GFAP 9 weeks  

15 R4213 no   GFP/NF200/GFAP 9 weeks  

16 R11013 no   GFP/NF200 6 weeks 

17 R18913 no   GFP/NF200 6 weeks 

18 R17113 no   GFP/NF200 6 weeks 

19 R19413 no   GFP/NF200 6 weeks 

 

Table 3-14 Table summarising the animals used to investigate regenerating fibres in hESC-
MSC transplants using NF200 immunoreactivity. 

 

An example of neurofilament labelling in a transplanted injury site is shown in 

Fig. 3-27. In this example transplanted cells are distributed throughout the 

injury site which is delineated by the GFAP immunolabelling. There is, however, 

no obvious gap in the NF200 immunolabelling demonstrating the density of 
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regeneration within the transplant. Since regenerating axons can enter the 

transplant from all directions and are numerous, single axons cannot be followed 

for any appreciable length, but there is clear evidence that NF200 

immunolabelled axons infiltrated the region inside the injury cavity associated 

with transplanted cells. This feature is shown in figure 3-28. In non-transplanted 

animals, there was also some evidence of NF200 immunolabelled axons entering 

the matrix filled area but not the injury area devoid of matrix as shown in figure 

3-29. It is not possible using this immunocytochemical approach to determine 

whether fibres cross from one side of an injury to another. This information can 

only be obtained using a tract-tracing approach.  

 

3.3.12 Investigation of corticospinal tract axons by tract 
tracing  

Contusion injuries at C6 using 175 kdyn force results in injuries which completely 

interrupt the main component of the corticospinal tract (Riddell and Toft, 

unpublished observations) which travels in the ventromedial aspect of the dorsal 

columns. Injection of BDA into the sensorimotor cortex was therefore used to 

label corticospinal fibres and investigate their regenerative response to hESC-

MSC transplants. Table 3.15 summarises the animals used in this part of the 

study. 

 

No Animal ID Cell batch  GFP % Markers 

1 R50112 
MSC 1C 

A(II) 34 GFP/BDA/GFAP 

2 R50212 
MSC 1C 

A(II) 34 GFP/BDA/GFAP 

3 R50312 
MSC 1C 

A(II) 34 GFP/BDA/GFAP 

4 R2413 
MSC 7C 

A(II) 22 GFP/BDA/GFAP 

5 R2513 
MSC 7C 

A(II) 22 GFP/BDA/GFAP 

6 R2613 
MSC 7C 

A(II) 22 GFP/BDA/GFAP 

7 R10513 
MSC 9C 

A(II) 60 GFP/BDA/GFAP 

8 R17313   None          GFP/BDA/GFAP 

9 R17413   None          GFP/BDA/GFAP 

10 R17513   None          GFP/BDA/GFAP 

 

Table 3-15 Summary of animals used for tract tracing of corticospinal fibres.  
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The results from all 7 animals were consistant and unequivocal. In all of the 

animals fibres belonging to the main component of the corticospinal tract 

approached the transplanted injury sites. Typically these axons reached the 

interface of the transplant but only very rarely did axons overlap with the cells. 

In no case was there any appreciable regeneration within the transplant (Fig 3-

30 A-F). There was also no evidence that transplantation reduced the die back of 

corticospinal fibres. In control injured animals without a transplant, 

corticospinal fibres approached the rim of the injury cavity with equal proximity 

and in at least equal numbers (Fig 3-30 G-L). 

 

3.3.13 Investigation of ascending dorsal column fibres by 
tract tracing 

The ability of hESC-MSCs to support and promote the regeneration of dorsal 

column axons was investigated in 7 animals in which the dorsal columns were 

injured using a wire knife device. Transplants were made into these animals 

acutely and regenerating fibres were visualised using tract racing with BDA. A 

further 5 animals were investigated in the same way but also received 

conditioning injuries which were produced by sectioning the sciatic nerve. A 

summary of the animals used to study dorsal column axonal regeneration is 

shown in Tables 3.16 (no conditioning injury) and 3.17 (transplants combined 

with conditioning injury).  

No Animal ID Cell batch GFP %  Markers 

1 R23612 MSC 4C A 90% GFP/BDA/GFAP 

2 R23712 MSC 4C A 90% GFP/BDA/GFAP 

3 R31412 MSC 1C A  74% GFP/BDA/GFAP 

4 R31512 MSC 1C A  74% GFP/BDA/GFAP 

5 R35612 MSC 7C A  48% GFP/BDA/GFAP 

6 R35712 MSC 7C A  48% GFP/BDA/GFAP 

7 R35812 MSC 7C A  48% GFP/BDA/GFAP 

 

Table 3-16   Summary of animals used to investigate dorsal column axon regeneration 
through hSEC-MSC transplants. 
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No Animal ID Cell batch GFP % Markers 

1 R23512 MSC 4C A 90% GFP/BDA/GFAP 

2 R31212 MSC 1C A  74% GFP/BDA/GFAP 

3 R1113 MSC 1C A (II) 60% GFP/BDA/GFAP 

4 R1413 MSC 1C A (II) 60% GFP/BDA/GFAP 

5 R1513 MSC 1C A (II) 60% GFP/BDA/GFAP 

Table 3-17.  Summary of animals used to investigate dorsal column axon regeneration 
through hSEC-MSC transplants combined with a conditioning injury. 

 

 

Six of the 7 animals without a conditioning lesion showed good BDA labelling of 

sensory fibres allowing assessment of axonal regeneration but one animal was 

excluded from further analysis because the BDA labelling of sensory fibres was 

too poor. In all of the 6 animals with good BDA labelling the transplanted cells 

filled the lesion site and in 5 of these animals, variable numbers of cells formed 

a track extending rostral of the injury site. These cells were typically distributed 

near the midline in an area dorsal to the central canal. In all 6 animals analysed 

BDA labelled fibres could be seen within the transplanted lesion site (Figs. 3.31, 

3.32 and 3.33). In each case the fibre growth was disorganised and rather than 

being directed across the lesion site in an ordered fashion. Fibres were often 

tortuous and clearly different from normal dorsal column axons and they 

penetrated the transplant region for varying distances with some fibres reaching 

the rostral margins of the injury site. However, despite the presence of a rostral 

track of cells in 5 of the animals, in 4 of the 5, none of the fibres projected 

rostral of the injury site even within this cellular track. An example of 

regenerating fibres in one of these animals in shown in Fig. 3.31.  Despite 

numerous regenerating axons at the rostral injury margin, none entered the 

densely populated track of transplanted cells leading rostral to the injury. 

However, for one of the animals (R23612) conditions appeared to combine 

particularly favourably. A broad rostrally directed track of cells provided a path 

leading away from the transplanted injury site and in this animal numerous 

fibres could be seen within the transplanted injury and some could also be seen 

within the cell track rostral to the injury. Regenerating fibres were measured 

extending up to 1.06mm from the rostral edge of the injury region (measured 

from a section with the most rostral regenerating axons seen). An example 

section from this animal is shown in Fig. 3.32. This however, was the only animal 
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in which there was any significant degree of axonal regeneration beyond the 

injury in animals without conditioning lesions.  

 

Of the five animals in which transplants were combined with conditioning 

injuries to the sciatic nerve, one was excluded due to poor BDA labelling. The 

remaining 4 animals all had cells which spread rostral to the injury site but only 

one showed clear regeneration of fibres rostral to the injury (R1413). In this 

animal, the regenerating fibres (also measured from the section with the most 

rostral regenerating axons) was seen to be extending up to 0.69mm from the 

rostral edge of the injury region. The regeneration observed in this animal is 

illustrated in Fig. 3.33. 

 

A noticeable feature of each of the animals with rostrally directed cell tracks, 

which was seen when confocal microscopy was performed to reveal GFAP 

immunolabelling, was that astrocytes were largely absent from an area 

corresponding to the distribution of GFAP labelled cells. This suggests that 

transplanted cells spreading beyond the injury into the host spinal cord tissue 

may exclude host astrocytes. This can be seen in Figs. 3.31, 3.32 and 3.33, 

where axons also appear to be displaced from the caudal cell track where BDA 

labelled fibres would be expected.  
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3.3.14 Myelination at transplanted injury sites 

To investigate whether regenerating fibres become myelinated sections from the 

transplanted injury site of 5 animals were immunoreacted with antibodies to 

CASPR which is a contactin-associaed protein found at the paranodal secions of 

myelin sheaths. This was used to look for evidence of Nodes of Ranvier within 

the centre of transplants indicative of myelination of regenerating fibres within 

the transplant. Neurofilament immunolabelling was also used to label 

regenerating fibres and look for associations with CASPR. Most of the animals 

were processed 6 weeks following transplantation. Table 3.18 summarises the 

animals used to investigate myelination using CASPR. 

No Animal No Cell batch 
GFP 
% Immunocytochem. 

Post-
transplant 

1 R33812 MSC 7C A 48 
GFP/CASPR/NF200/
P0 6 weeks 

2 R10613 MSC 9C A(II) 60 
GFP/CASPR/NF200/
P0 4 weeks 

3 R10313 MSC 9C A(II) 60 
GFP/CASPR/NF200/
P0 6 weeks 

4 R10713 MSC 9C A(II) 60 
GFP/CASPR/NF200/
P0 6 weeks 

5 R17113 None   
GFP/CASPR/NF200/
P0 6 weeks 

6 R19413 None   
GFP/CASPR/NF200/
P0 6 weeks 

Table 3-18. Summary of animals used for investigating myelination of regenerating fibres 
using the expression of the paranodal protein CASPR 

 
Sections from all of the animals examined showed evidence of numerous nodes 

of Ranvier in the centre of transplanted injury sites. Fig. 3.34 shows examples 

from one of the animals. The axons on which these nodes are located cannot be 

spared fibres since they are in the middle of the injury and the presence of 

CASPR therefore indicates that these regenerating fibres have acquired a myelin 

sheath. The presence of a paranodal protein such as CASPR further indicates 

that this myelination is functional and the fibres could be expected to propagate 

impulses. Some of the CASPR immunolabelling was associated with NF200 

positive fibres but, interestingly, much of it was not.  
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Figure 3-8. Injury site appearance 3 weeks after contusion. 
The injury site was examined three weeks after contusion to assess tissue 
reactivity and cavity morphology at the time of cell transplantation. All sections 
showed a strong gliotic reaction to injury, evidenced by intense astrocyte 
labelling with GFAP (A-D, green). There was also some expression of nestin but 
this was not co-localised to astrocytes (A & D, red). The appearance of the 
injury site depended on the extent to which it was occupied by endogenous 
matrix (which was enriched for laminin, red in B & C). The sequence of examples 
from A to D show examples that range from a large single cavity (A) though 
multiple cavities (B) to those partly filled (C) or largely filled (D) by extracellular 
matrix. All images represent composites of multiple x20 fields of view from 60 
µm thick tissue sections and projected from 15-20 z-sections. Scale bar = 500 
µm, applicable to all panels. 
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Figure 3-9. Cell survival at one week post-transplant in animals without 
immunosuppression. 

Saggital sections showing examples of the GFP labelled profiles seen in animals 
one week after injury. A, a small pocket of GFP labelled cells and scattered cells 
within the injury site. B, GFP labelled cells forming a rim around around a 
moderately sized injury cavity. C, a small area of cells within the extracellular 
matrix filling the injury site. Note that the cells are rounded in morphology. All 
sections show a strong gliotic reaction (GFAP, blue A-D) and some expression of 
nestin (A-D, red). Despite the poor survival of cells there is minimal cavitation 
due to extensive matrix infilling of the injury site (A-D). All images represent 
composites of multiple x20 fields of view from 60 µm thick tissue sections and 
projected from 15-20 z-sections. Scale bar (A) = 500 µm, applicable to all 
panels. 
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Figure 3-10. Absence of surviving cells at 2 and 4 weeks post-transplant in 
animals without immunosuppression.  

GFP labelled cells were virtually absent from sections from 2 week (A and B) and 
4 week (C and D) animals. All sections showed a strong gliotic reaction to injury 
as showed by intense astrocyte labelling with GFAP (A-D, blue) and expression of 
nestin (A-D, red). There was extensive matrix infilling of the injury site in all 
animals (A-D). All images represent composites of multiple x20 fields of view 
from 60 µm thick tissue sections and projected from 15-20 z-sections. Scale bar 
(A) = 500 µm, applicable to all panels. 
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Figure 3-11. Cell survival in immunosuppressed animals at different time points.  

Sections from the transplant site of immunosuppressed animals 5days after 
transplantation (A, 60% GFP) two weeks after transplantation ( B; 90% GFP) and 
4 weeks after transplantation (C and D, 90% and 74% GFP). Numerous surviving 
cells are seen widely distributed within the injury site and over varying distances 
beyond the injury. In A and D cells are absent from some areas of the injury site 
occupied by extracellular matrix. All images represent composites of multiple 
x20 fields of view from 60 µm thick tissue sections and projected from 14-18 z-
sections. Scale bar = 500 µm. 
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Figure 3-12. Characteristics of contusion injury sites 9 weeks after injury in 
immunosuppressed animals.   

A, B and C show three examples of parasaggital sections through the injury site 
of control non-transplanted animals at a 9 week post-injury survival time 
equivalent to the animals examined 6 weeks after transplantation. The sections 
illustrate the extensive cavitation shown by these animals with varying degrees 
of matrix infilling. An intense glial scar remains around the injury cavities (GFAP, 
blue). All images represent composites of multiple x20 fields of view from 60 µm 
thick tissue sections projected from 16-24 z-sections. Scale bar = 500 µm, 
applicable to all panels. 
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Figure 3-13. Ki67 immunolabelling at a transplanted injury site 5 days after 
transplantation.  

A and B, parasaggital section through an injury site transplanted with hESC-MSCs 
five days earlier showing the distribution of Ki67 immunolabelling. Labelled 
profiles were concentrated in areas occupied by extracellular matrix rather than 
cells. High power confocal scanning of areas containing transplanted cells (C and 
D) showed that Ki67 immunoreactivity never colocalised with GFP. A further 
analysis on single z stack images from 3 different animals ( E, F and G) also  
revealled no genuine evidence of  co-localization. Images A and B represent 
composites of multiple x20 fields of view from 60 µm thick sections projected 
from 16-20 z-sections. Scale bar = 500 µm. Images C and D represent single field 
views projected from 35-39 z sections. Images E, F and G represent a single field 
of view in single z sections. Scale bar = 100 µm.  
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Figure 3-14. Cell morphology 2 weeks after transplant into the injured spinal 
cord 
A and D show two different parasagittal sections from the same animal. The 
boxed area indicated on each is shown at high magnification in B-C and E-F 
respectively. B-C shows the morphology of cells located outside the main 
transplant area while E-F shows the morphology of cells at the centre of the 
transplant. Images A and D represent composites of multiple x20 fields of view 
and images B-C and E-F represent one field view from 60 µm thick tissue sections 
and are projected from 30-35 z-sections. Scale bar = 500 µm (A and D) 200µm (B-
C and E-F). GFP expression=90%. 
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Figure 3-15. Cell morphology 4 weeks after transplantation into the injured 
spinal cord 
A and D show two different parasagittal sections from the same animal. The 
boxed area indicated on each is shown at high magnification in B-C and E-F 
respectively. B-C shows the morphology of cells located outside the main 
transplant area while E-F shows the morphology of cells at the centre of the 
transplant. Images A and D represent composites of multiple x20 fields of view 
and images B-C and E-F represent one field view from 60 µm thick tissue sections 
and are projected from 30-35 z-sections. Scale bar = 500 µm (A and D) 200µm (B-
C and E-F). GFP expression=90%. 
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Figure 3-16.  Extracellular matrix distribution in the injured spinal cord at 6 
weeks after transplantation.  

A and B are parasaggital sections through the injuries transplanted with hESC-
MSCs 6 weeks earlier. The images show the very dense distribution of laminin 
(red) which is especially intense in regions of the injury where cells (green) are 
absent. All images represent composites of multiple x20 fields of view from 60 
um thick tissue sections and projected from 18-20 z-sections. Scale bar = 500 
µm, applicable to all panels. (GFP expression; A 48%, B 74%) 
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Figure 3-17.  Immunolabelling with laminin showing blood vessels around the 
injury site.  

A and B show parasaggital sections through a transplanted cord. The sections are 
lateral to the main injury and transplant site where the laminin staining is less 
dense. This enables visualization of some of the details of the laminin 
immunolabelling which includes numerous blood vessels which are particularly 
numerous at a level equivalent to the injury. Both images represent composites 
of multiple x20 fields of view from 60 um thick tissue sections and projected 
from 15-16 z-sections. Scale bar = 500 µm, applicable to all panels. (GFP 
expression 60%) 
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Figure 3-18. Distribution of blood vessels immunolabelled with SMA in the 
injured spinal cord 6 weeks after transplantation.  

1 A,B and  2,A,B show two examples of saggital sections through transplanted 
injuries where SMA (red) reveals development of a profuse network of resistance 
vessels at the injury site. The vessels are distributed in and around the injury 
site and are not associated specifically with transplanted cells. All images 
represent composites of multiple x20 fields of view from 60 µm thick tissue 
sections and projected from 18-20 z-sections. Scale bar = 500 µm, applicable to 
all panels. (GFP expression 74%) 
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Figure 3-19. Assessment of the reaction of host glial cells to hESC-MSCs 
injected into the non-injured spinal cord.  
Each row of images illustrates the astroglial reaction (nestin in red, GFAP in 
blue) surrounding a small bolus injection of cells made into the dorsal columns in 
normal animals. The images in column 1 A to 4A were taken at X10 magnification 
while all remaining images are X20 magnification. Column 1B to 4B illustrates 
the relationship of injected cells to the glial cells. Column 1C to 4C illustrates 
the nestin immunoreactivity surrounding the transplanted cells. Column 1D to 4D 
illustrates the glial reaction around the transplanted cells and the exclusion of 
glial cells from the cell bolus. All images represent one field of view from 60 µm 
thick tissue sections and are projected from 30-40 z-sections.  Scale bars: 1A-4A 
= 200 µm, note scale bar in 1A applicable to 2A and 4A. 1B-D to 4B-D = 100 µm, 
note scale bar in 3B applicable to 3B-D and scale bar in 1B applicable to all 
others. Row 3 field of view digital zoom set to a factor of 0.7. ( GFP 
expression=90 %) 
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Figure 3-20. Nestin & GFAP for glial reaction.  

A and B, parasaggital sections through the injury site in a transplanted and 
control non-injured animal processed using immunocytochemistry for GFAP 
(blue) and nestin (red). Neither section shows much nestin immunoreactivity 
which would be indicative of glial activation although GFAP remains upregulated 
around both injury sites. All images represent composites of multiple x20 fields 
of view from 60 µm thick tissue sections and projected from 14-16 z-sections. 
Scale bar = 500 µm, applicable to all panels. (GFP expression 60%) 
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Figure 3-21. Quantitative analysis of the Injury dimensions 3 weeks after 
contusion.  
The figure shows measurements (indicated by the white line) of the maximal 
length of the injury area for the lesion sites of 8 different animals. The sequence 
of images illustrate examples  of the range of injury site types, from large single 
cavities with minimal extracellular matrix( A-D) to relatively small multiple 
cavities, more significantly filled with extracellular matrix (E-H). All images 
represent composites of 2 fields of view at X4 magnification from 60 µm thick 
tissue sections and are projections of from 1-3 z-sections. Scale bar = 600µm, 
applicable to all panels. 
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Figure 3-22.  Quantitative analysis of the Injury dimensions 9 weeks after 
contusion (corresponding to 6 weeks after transplantation).  
The figure show measurements (indicated by the white line) of the maximal 
length of the injury area for the lesion sites of 10 different animals. The 
sequence of images  demonstrated an examples of the  of injury site types, from 
large single cavity without noticeable extracellular matrix (A-B) and with 
minimal extracellular matrix( C-D) to relatively smaller and multiple cavities and 
more occupied by extracellular matrix (E-J). All images represent composites of 
2 fields view of X4 objective from 60 µm thick tissue sections and projected from 
1-3 z-sections. Scale bar = 600 µm, applicable to all panels. 
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Figure 3-23. Quantification analysis of the Injury dimensions 6 weeks after 
transplantation.  
The figure show shows measurements of the maximal length of the injury area 
(as indicated by the white line) of 20 different transplanted animals. The various 
examples demonstrated a fairly consistent size of injury region that ranging from 
relatively larger and filled with less cells and extracellular matrix to smaller 
extent of injury and filled with more cells and extracellular matrix (A-T) and 
ingrowth axons (M-T).  All images represent composites of 2 fields view of X4 
objective from 60 µm thick tissue sections and projected from 1-3 z-sections. 
Scale bar = 600 µm, applicable to all panels. 
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Figure 3-24. Quantitative assessment of the exent of the glial scar 3 weeks 
after injury 
Confocal micrographs of parasagittal sections (A-G, taken from 7 different 
animals) showing the extent of the glial reaction to injury as assessed using the 
GFAP immunoreactivity (blue) surrounding the injury cavity/area. The dotted 
white line indicates an estimate of the outer border of the glial thickening. 
Measurements were made between this line and the inner border of the injury at 
three positions (red arrows) corresponding to the thickest regions of the rostral, 
caudal and ventral edges of the injury. All images represent composites of 2 
fields view of X4 magnification from 60 µm thick tissue sections and are 
projections of 1-3 z-sections. Scale bar = 600 µm, applicable to all panels. 
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Figure 3-25. Quantitative assessment of the extent of the glial scar  9 weeks 
after injury 
Confocal micropgraphs of parasagittal sections (A-G, taken from 7 different 
animals) showing the extent of the glial reaction to injury as assessed using the 
GFAP immunoreactivity (blue)  surrounding the injury cavity/area as seen 
previous images i.e. of 3 weeks animals. The dotted white line indicates an 
estimate of the outer border of the glial thickening. Measurements were made 
between this line and the inner border at three positions (red arrows) 
corresponding to the thickest region of the rostral, caudal and ventral edges of 
the injury. All images represent composites of 2 fields  view of X4 magnification 
from 60 µm thick tissue sections and are projections of 1-3 z-sections. Scale bar 
= 600 µm, applicable to all panels. 
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Figure 3-26. Quantitative assessment of the extent of the glial scar 6 weeks 
after transplantation 
Confocal micropgraphs of parasagittal sections (A-M, taken from 13 different 
animals) showing the extent of the glial reaction to injury. There was a greater 
glial reaction seen in each images based on  the GFAP (blue) immunoreactivity 
surrounding the injury cavity/area compared with both group of previous images 
i.e. of 3 week  and 9 week after injury of control animals. The dotted white line 
indicate an estimate of the outer border of the glial thickening. Measurements 
were made between this line and the inner border at three positions (red 
arrows) corresponding to the thickest region of the rostral, caudal and ventral 
edges of the injury. All images represent composites of 2 fields  view of X4 
magnification from 60 µm thick tissue sections and are projection of 1-3 z-
sections. Scale bar = 600 µm, applicable to all panels. (GFP expression=22%-90%) 
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Figure 3-27. Neurofilament immunolabelling of regenerating axons in hESC-MSC 
transplants. 

 A, B and C, parasaggital section through a transplanted injury site 4 weeks after 
transplantation showing the distribution of transplanted cells (GFP, A), glial cells 
(GFAP, A and B) and axons (NF200, A and C). Note that NF200 immunolabelling 
(C) is virtually uninterrupted at the injury site reflecting dense axonal 
regeneration. D and E show a higher power scan of the boxed area in A to 
illustrate the detail of regenerating fibres (D) growing amongst the transplanted 
cells (E). Images A, B and C represent composites of multiple x20 fields of view 
and images D and E represent one field view from 40 µm thick tissue sections 
and projected from 30-35 z-sections. Scale bar = 500 µm (A,B and C) ,50 µm (D 
and E ). GFP expression=90% 
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Figure 3-28. Neurofilament immunolabelling of regenerating axons entering 
matrix/cell filled area in hESC-MSC transplanted animal. 

 A-D, parasaggital sections through a transplanted injury site 6 weeks after 
transplantation showing the axons  clearly entering the injury area filled with 
either matrix or cells. A1, A2, B1, B2, C1, C2, D1 and D2  show a higher power 
scan of the boxed area to illustrate the detail of regenerating fibres (D) growing 
amongst the transplanted cells and matrix. Images A ,B, C and D represent 
composites of multiple x20 fields of view and images A1, A2, B1, B2, C1, C2, D1 
and D2  represent one field view from 40 µm thick tissue sections, projected 
from 30-35 z-sections. Scale bar = 500 µm ( A,B, C and D) ,50 µm (A1, A2, B1, 
B2, C1, C2, D1 and D2 ). GFP expression=90% 



GFP NF200 GFAP

A

A1 A2

B

B1 B2



C

GFP NF200 GFAP

C1 C2

D

D2D1



192 
 

Figure 3-29. Neurofilament immunolabelling of regenerating axons only 
entering matrix filled area in non transplanted animals. 
 A and B , parasaggital section through an injury site 9 weeks after injury 
showing the axons fail to enter an injury area  without matrix ( A) but do enter 
the injury area filled with matrix (B). A1, A2, B1, and B2  show a higher power 
scan of the boxed area to illustrate the detail of regenerating fibres (D) growing 
amongst the matrix and not to the area without matrix (A1 And A2). Images A 
and B represent composites of multiple x20 fields of view and images A1, A2, B1, 
and B2 represent one field view from 40 µm thick tissue sections, projected from 
30-35 z-sections. Scale bar = 500 µm (A, B, C and D), 50 µm (A1, A2, B1, B2, C1, 
C2, D1 and D2). 
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Figure 3-30. Corticospinal tract axons fail to regenerate in hESC-MSC 
transplants.  

A-L, parasaggital sections from close to the midline in two animals transplanted 
with hESC-MSCS (A-C and D-F) and two control injured but non-transplanted 
animals (G-I and J-L). The sections show corticospinal fibres of the main 
component anterogradely labelled with BDA (red). Axons either stop short of the 
GFP labelled cells in the injury site, or grow as far as the cells but do not grow 
into them. The image in D shows the density of corticospinal fibres a few mm 
rostral to the injury site for comparison. Corticospinal fibres in non-transplanted 
animals (G-L and J-K) approached cavities in similar numbers and with similar 
proximity to the fibres approaching transplants (A-D and D-E).  
Images A, G and J represent composites of multiple X20 fields while all other 
images are composites of multiple X40 views. The images are projections of 26-
34 z-sections. Scale bar = 500 µm for A and applies to all X20 panels, 200µm for 
B and applies to all X40 panels. (GFP expression=34% for A, B, C and 22% for E 
and F). 
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Figure 3-31. Axonal regeneration of dorsal column fibres in a transplanted 
animal without a conditioning injury.  

Parasagittal section from an animal in which the transplanted cells filled the 
injury and formed a track of cells extending rostral to the injury site. Despite 
the presence of this track of cells and numerous regenerating fibres within the 
injury site, none of the fibres projected rostral to the injury. Note the absence 
of GFAP immunolabelling in a region corresponding to the transplant and also 
the cells that have become distributed rostral to the injury. All images represent 
composites of multiple x20 fields of view from 60 µm thick tissue sections and 
projections from 20 z-sections. Scale bar = 500 µm, applicable to all panels (GFP 
expression 48%). 
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Figure 3-32. Axonal regeneration of dorsal column fibres in a transplanted 
animal without a conditioning injury.  

Parasagittal section from an animal in which the transplanted cells filled the 
injury and formed a track of cells extending rostral to the injury site. In this 
case, regenerating fibres do project into the rostral cell track, extending several 
100s of microns beyond the injury site. Note the absence of GFAP 
immunolabelling in a region corresponding to the transplant and also the cells 
that have become distributed rostral to the injury.  All images represent 
composites of multiple x20 fields of view from 60 µm thick tissue sections and 
projected from 16 z-sections. Scale bar = 500 µm, applicable to all panels (GFP 
expression 90%). 
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Figure 3-33. Axonal regeneration of dorsal column fibres in a transplanted 
animal with a conditioning injury.  

Parasagittal section from an animal in which the transplanted cells filled the 
injury and formed a track of cells extending both rostral and caudal to the injury 
site. In this case, regenerating fibres project into the rostral cell track, 
extending several 100s of microns beyond the injury site. Note the absence of 
GFAP immunolabelling in a region corresponding to the transplant and also the 
cells that have become distributed rostral and caudal to the injury. Note also 
the absence of BDA labelled fibres in the cell track caudal to the injury despite 
numerous labelled fibres immediately dorsal to the cells. Images A and B 
represent composites of multiple x20 fields of view from 60 µm thick tissue 
sections and projected from 16 z-sections. Scale bar A and B = 500 µm. C and D 
are enlarged images of the boxed areas. Scale bars = 200 µm (GFP expression 
60%). 
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Figure 3-34.  Immunolabelling for CASPR within a transplanted injury site 
indicative of myelination of regenerating fibres.  

A and B show high power scans of an area of the dorsal columns above an injury 
site while C and D shows an area within the centre of a transplanted injury. Both 
regions contain numerous CASPR immunoreactive profiles but those in the dorsal 
columns are much more numerous as would be expected as this is outside the 
injury area and will contain many spared fibres. The CASPR labelled paranodal 
regions in C and D will be on regenerating fibres. Some of the CASPR is 
associated with NF200 positive fibres. All images represent composites of 
multiple x40 fields of view from 60 µm thick tissue sections and projected from 
25-30 z-sections. Scale bar = 50 µm, applicable to all panels.  
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3.4 Discussion 

3.4.1 Injury model 

A contusion injury model is the most clinically relevant (Zhang et al., 2008; 

Anderson et al., 2009) and the Infinite Horizons device is recognised as a state of 

the art device providing the best level of consistency. Nevertheless there is a 

large degree of variation in the morphology of the injury sites that are produced  

and this is probably due to biological factors such as the pattern of the blood 

supply as much as operator variability. The variation on the injury site 

morphology, does however mean that relatively large group sizes are required to 

make meaningful observations. This together with the limit to the number of 

antibodies which can be used at one time and the need for a three dimensional 

picture of the pattern of immunolabelling from sections throughout the whole 

cord means that to obtain  a detailed picture over several issues requires a large 

number of animals and is highly labour intensive. 

Although there is variability in the histological picture, a clear feature of the 

injuries is that by 3 weeks after a C6 175 kdyn contusion injury damage extends 

throughout the grey and white mater of the spinal cord. There is the formation 

of one or more fluid cavities which extend for more than 3mm longitudinally, 

and occupy some 2/3rds of the width of the spinal cord at that level. Although 

not quantified it also extends more than 2/3rds of the dorso-ventral height of 

the cord.  A further common feature is that a variable degree of matrix infilling 

occupies part of the injury area and this rich in laminin. A comparison of the 

dimensions of the injury site at 3 weeks compared with 9 weeks post-injury 

suggests that the injury site and cavity is already at is greatest extent by this 3 

week time point and this time point can probably be considered a chronic injury. 

The existence of large cavities means that cell transplants at this time point are 

often made into fluid filled spaces of considerable volume and his explains why 

large numbers of cells could often be injected before any evidence of overflow 

from the injection site could be seen. Because of the variable degree of infilling 

with extracellular matrix, the volume of cavity within the cord available to 

accommodate transplanted cells will vary from one animal to another and 

cannot be readily judged or predicted. Our strategy to overcome this difficulty 
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was to avoid transplanting a fixed “dose” of cells but to inject what appeared to 

the required to fill the injury site (the point at which overflow was seen) at the 

time of transplantation. This will inevitably lead to variation in the numbers of 

cells that are seen at the end point of the experiments. There are two further 

sources of variability regarding the distribution of the cells which will arise from 

the variable nature of the injury site. One is that in some animals multiple 

cavities rather than a single unified cavity occur and it is possible that if the 

septa dividing the cavities are robust enough, cells may enter one cavity but not 

another, especially since cells were usually injected at a single point. The other  

is that cells will not be able to  occupy areas already occupied by extracellular 

matrix and this will mean that there will be areas of the injury site which will be 

devoid of cells for this reason.   

3.4.2 hESC-MSC transplants require immunosuppression for 
survival in rodent models 

A common problem in preclinical studies of transplant  therapies in SCI is graft 

survival. Many studies have reported limited survival of transplanted cells and 

the factors that may influence this have been widely debated (Patel et al., 

2010). The problem is exacerbated  when human cells are transplanted into 

rodent models (i.e. by xenografting). Investigation of animals transplanted with 

hESC-MSCs without any form of immunosuppression showed that the cells die 

within days of being transplanted. Although various factors may influence the 

survival of cells including the immune response to the injury itself and the 

inhospitable environment created by the injury this is unlikely to be the major 

factor here as the transplants were made at a delayed time point when some of 

the hostile conditions will have abated. The much better survival seen with 

subsequent transplants performed with immunosuppression tends to confirm 

this. The rapid death of the cells is probably mainly attributable to that fact 

that the transplanted cells represent a xenograft and will therefore elicit an 

immune response resulting in transplant rejection. It is nevertheless, notable 

that their demise is so spectacularly rapid occurring within just days and these 

observations may have implications for other studies since immunosuppression or 

use of immunocompromised animals has not been universally employed even 

when transplanting human cells into animals in preclinical studies of MSC 

transplantation. This is likely to complicate interpretation of outcome in such 
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studies and leads to some doubt regarding some of the positive outcomes 

reported, especially where cell survival was not well monitored. In subsequent 

experiments, daily injections of 20mg/kg cyclosporine s.c. promoted much 

improved survival. It may not however, be an entirely adequate level of 

immunosuppression for longer term studies since the cell numbers a 6 weeks 

appeared to be reduced compared to the few animals investigated at shorter 

time points. 

The regime used for immunosuppression though adequate may not be ideal. The 

requirement for daily injections is labour intensive and the  plasma levels of 

cyclosporine are likely to fluctuate considerably with 24 hourly administration. 

However, this is a compromise between maintaining adequate plasma levels to 

provide immunosuppressive cover and not inflicting  stress on the animals with 

more frequent injections. In general this regime appeared to be well tolerated 

by the animals and there was no incidence of animals becoming sick as a result 

of the cyclosporine treatment. The use of cyclosporine is realistic in the sense 

that immunosuppression is likely to be required in any clinical translation. In 

further preclinical studies the use of nude rats would be an alternative but then 

the injury would not be realistically modelled as there would not be the usual 

immune response. In our experiments cyclosporine treatment was started well 

after the injury pathology had developed. Other immunosuppression regimes 

involving slow release pellets or microspheres may be developed in future and 

might provide more stable plasma levels that would further improve survival of 

the cells (Sevc et al., 2013).  

3.4.3 Transplanted cells fill the injury site and significantly 
reduce the extent of the injury 

One of the most dramatic outcomes of the transplantation was the consistency 

with which transplantation lead to solid filling of the injury site and the contrast 

between this and the extensive tissue disruption and cavitation seen in control 

non-transplanted animals. The injury site in the transplanted animals in this 

study tended to consist of a combination of both cells and matrix, with few 

lesions fully occupied by GFP labelled hESC-MSCs. The areas where cells were 

absent could represent areas already filled with endogenous matrix at the time 

of transplantation or also be as a result of cell migration or cell death, leaving 
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spaces in which extracellular matrix could form. Additionally, the transplanted 

cells themselves could further promote extracellular matrix formation. 

Otherwise, this filling of the injury site is consistent with other reports using 

transplants of bone marrow derived MSCs, though generally performed acutely or 

with shorter delays after injury (Wu et al., 2003; Ankeny et al., 2004). In 

agreement with the data from previous studies which have used adult MSCs, our 

data also show a significant injury size reduction in the animals that received 

different batches of hESC-MSCs (Ankeny et al., 2004; Boido et al., 2012; Gu et 

al., 2010). This could potentially be attributed to a neuroprotective effect of the 

transplanted cells, preventing further damage to spared tissue following the 

injury, as suggested by Ankeny et al (2004). Apart from that, it could also be due 

to the modest axonal growth promoting effect which may further reduce the 

injury extent. Additionally, this data could also be a good indicator of the 

consistency of different batches of hESC-MSCs prepared in this study to 

consistently provide a neuroprotective and modest growth promoting effect 

leading to a meaningful therapeutic outcome.  

In addition the cells frequently spread variable distances from the injury site. 

There was no fixed pattern to this but the cells tended to be distributed close to 

the midline and around or above the central canal and rarely extended beyond 

3mm from the midsagittal line of the section. Although not systematically 

investigated, this spread of cells was also seen at early time points (e.g. 5 days 

two animals) so that it may be an artefact of the transplant process rather than 

migration of the cells. As has been discussed previously (Lu et al., 2006) injected 

cells tend to move through tissues down a pressure gradient (Lu et al., 2006). It 

is possible that the cells may, for example track down the central canal, 

especially if this is broadened following injury. 

Where the cells had spread in appreciable numbers beyond the injury site, it was 

notable that they displaced resident glial cells. This is a behaviour that has been 

noted before for bone marrow MSCs in rodent models (Lu et al., 2006). A similar 

behaviour was observed when bolus injections of cells were made into normal 

cord and under these conditions an intense glial reaction to the transplanted 

cells was also revealed. This sort of glial reaction has been noted before (Toft et 

al., 2013) for different cell types even when transplants were syngeneic so that 

it is unlikely to be a result of xenografting. This property could be considered 
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undesirable in a cell intended for transplantation in the context of a spinal cord 

injury therapy though it may be possible to control this by engineering in the 

longer term (Santos-Silva et al., 2007).  

The transplanted cells clearly produced or encouraged the production of an 

extracellular matrix throughout the injury site which was rich in laminin. This is 

known to be a good substrate for axonal regeneration. There was also evidence 

from both laminin and SMA immunolabelling of the development of a profuse 

network of blood vessels in the transplant and surrounding the injury site. This 

may be important in ensuring the survival of the grafted cells and indeed the 

size of the cavities that need to be filled by the transplanted cells is likely to 

pose a significant problem in terms of sustain the transplanted cells. 

Angiogenesis must be an important factor in this process but may also contribute 

to a general improvement in the vascularisation of the spinal cord in the vicinity 

of the injury which could aid repair (Fassbender et al., 2011). There was no 

clear evidence that the cells continued to proliferate or differentiate in vivo and 

there was no evidence of any teratogenic effects.   

3.4.4 Transplants support regeneration of some fibre types 

Tract tracing of corticospinal fibres showed no evidence that hESC-MSCs could 

support regeneration of this type of fibre. The fibres did not enter the 

transplanted injury area and there was no indication when compared to non-

transplanted animals that the cells reduced die back of the coricospinal fibres. 

This is consistant with other reports using bone marrow MSCs (Lu et al., 2006). 

Corticospinal fibres have proved in general to be poor at regenerating within cell 

transplants, possibly because they have a low intrinsic growth capacity. The 

ability of hESC-MSCs to support or indeed promote regeneration of ascending 

dorsal column fibres was investigated because these fibres have greater capacity 

for regeneration than corticospinal fibres. Their regeneration can also be 

boosted by carrying out a conditioning injury to the peripheral branch of the 

axons by sectioning the appropriate peripheral nerve. Sensory axons are less 

easily visualised than corticospinal fibres because BDA labelling does not work 

well when injections are made into peripheral nerve such as the sciatic nerve. 

Ctb is often used as an alternative tract tracer but while it efficiently labels the 

terminals of sensory fibres it is only weakly seen in the parent axons. For this 
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reason, a new technique has been developed in the lab which involves the 

injection of BDA into the spinal nerves and making the injury at a lumbar rather 

than the more usual cervical level. The combined effect of injecting closer to 

the spinal cord and making the injury close to where the labelled fibres enter 

the spinal cord is that the BDA present in the dorsal column fibres is strong 

enough to provide very clear labelling of the dorsal column fibres at the injury 

site.  The injury to the lumbar dorsal columns was made using a wire knife 

device. This method ensures that all axons projecting rostral to the injury which 

would be labelled by the tracer injections are interrupted and that spared fibres 

cannot therefore be confused with regenerating fibres. This was a common 

problem in early studies of axonal regeneration and lead to several false reports 

of bridging axonal regeneration (Steward et al., 2003). The wire knife was used 

in such a way that not only axons in the dorsal columns but also the dorsal roots 

entering immediately above the injury site were transected so that any fibres in 

these roots which were inadvertantly labelled would not be confused with 

regenerating fibres. Consistant with the evidence from neurofilament labelling 

and from previous studies, numerous regenerating dorsal column fibres were 

seen within hESC-MSC transplants. However, in most cases, even where a track 

of transplanted cells extended rostrally from the injury site, there was no 

regeneration beyond the injury site. That is the axons did not cross from one 

side to another – so called bridging axonal regeneration. However, in two of the 

animals examined one with a conditioning injury and one without, there was 

clear evidence of fibres crossing the injury site. Whether this can be considered 

true bridging regeneration, however, is debatable. A consistant feature 

associated with the distribution of cells outwith the injury area was the absence 

of immunolabelling for GFAP. This suggests that the transplanted cells had in 

effect replaced astrocytes so that the environment within the cord within the 

cell tracks may then be an extension of the environment within the transplanted 

injury site where the axons regenerate successfully rather than an essentially 

host environment within which transplanted cells have integrated and mingled. 

The rostral cell tracks then simply become an extension to the cell transplant. 

This may be less useful than if the presence of the cells modified the host 

environment since the axons ma then simply be trapped within the rostral cell 

track rather than at the transplant site. 
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3.4.5 Regenerating fibres acquire a myelin sheath 

Myelination of regenerating fibres will be an important aspect of ensuring they 

are functionally useful if they can negotiate the hostile environment of the 

injury site to reach the opposite side and form useful connections. Evidence for 

myelination of the regenerating fibres within hESC-MSC transplants was obtained 

by showing that the paranodal protein CASPR is found in the centre of hESC-MC 

transplants. In the middle of the transplanted injury site these can only 

represent regenerating fibres and this can therefore confidently be considered 

evidence for myelination of these fibres. Interestingly not all of this CASPR 

immunolabelling was association with neurofilament immunolabelling and this 

might be a technical issue or it may suggest that not all regenerating myelinated 

fibres contain neurofilaments. The myelination will be of little functional 

consequence in the current study because the regenerating fibres are “blind” 

and end largely within the transplanted injury (in the case of dorsal column 

fibres at least). The cells responsible for this myelination could be Schwann cells 

dedifferentiated rom the dorsal roots or arising from OPC progenitors (Zawadzka 

et al., 2010) or they could be oligodendrocytes. This could potentially be 

investigated using immunocytochemistry for P0 (peripheral type myelin formed 

by Schwann cells) or MBP (central type myelin).  Remyelination of spared but 

demyelinated fibres was not investigated in this project. P0 immunolabelling 

could again be used to obtain evidence of peripheral type myelin which if around 

central axons would indicate remyelination. Remyelination with central type 

myelin is more difficult to detect but this could be investigated using Electron 

Microscopy and examination of thickness and nature of myelin sheaths (Totoiu 

and Keirstead, 2005) 
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4  General discussion and conclusion 

4.1 Discussions 

4.1.1 Implications of cell biology results for use of MSCs in 
cell transplantation 

In this present study, we have reproducibly differentiated MSC like cells from 

hESCs and expanded these cells efficiently to produce large volumes of cells of 

fairly similar phenotype. These hESC-MSCs closely resemble adult MSCs that were 

obtained from tissues such as bone marrow according to a number of criteria 

which include morphology, adherence, cell surface markers, gene expression and 

ability to differentiate into osteoblasts and adipocytes. Although MSCs have been 

derived from hESCs previously this is the first time that it has been shown that 

cryopreservation has minimal effect on the properties of the cells. The ability to 

generate large number of cells of reproducible phenotype with minimal effect 

after cryopreservation provide proof of principle that it should be possible to 

produce an “off the shelf” MSC cell for therapeutic interventions. Additionally, 

cryopreserved cells would offer several advantages for clinical applications such    

as easier transportation compared to cells in culture. 

4.1.2 Advantages of hESC-MSCs over adult MSCs 

hESC-MSCs offer several advantages over MSCs from adult sources such as bone 

marrow and adipose tissues. Firstly, hESC-MSCs can be prepared in greater 

consistency compared with those from adult sources such as derivation of cells 

from the patient themselves. This is because MSCs from patients have been 

shown to vary in quality and therapeutic properties (Minaire et al., 1984, Klein-

Nulend et al., 2005, Wright et al., 2008). Secondly, hESC-MSCs also have the 

benefit over the autologus strategies by facilitating early intervention which may 

be beneficial (see below). An autologous transplantation strategy would require 

the cells to be harvested from the patient themselves and there is likely to be 

some delay in deciding whether this is an appropriate treatment as this would 

involve obtaining patient consent and then arranging for the tissue harvesting 

operation. There would also be delay while the cells were expanded up to the 

point where there were sufficient for transplantation. The longer the delay, the 

more cells are likely to be required as cystic cavities form and need to be filled. 
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Early intervention may be important in maximising the benefits of 

transplantation of these cells in the context of an application in the treatment 

of spinal cord injury. There is evidence that two main therapeutic mechanisms 

of MSC cells transplants include a neuroprotective effect and an 

immunomodulatory (Abrams et al., 2009, Ankeny et al., 2004)(see below). 

However, the neuroprotective mechanism is likely to be of decreasing value with 

time after injury as the pathological processes triggered by the injury progress. 

Similarly, the immune response to traumatic injury develops over the first few 

days of injury and peaks within 2 weeks of the injury. This means that the 

benefit to be derived from a transplant of MSCs in terms of modifying the 

immune response in a therapeutically beneficial way may also decline with time 

after this point as the damage and secondary injury processes as well as the 

block on regeneration may already be largely established and irreversible. 

Although early intervention may be desirable and would be facilitated by the 

availability of an “off the shelf” cell product there are likely to be formidable 

problems associated with early transplantation of cells. It will be necessary to 

assess the patients suitability for treatment using a cellular therapy, to allow 

them time to consider whether they wished to have this treatment and then to 

wait until they were fit enough (i.e. had recovered from other injuries which 

may have been sustained) until transplantation could be performed. 

It is likely that the transplant would need to be performed by an invasive 

surgical process. Although there have been studies in which cells have been 

injected systemically into the vascular system and some of these have claimed 

that cells reach the injury site and have a therapeutic effect (Osaka et al., 

2010), the evidence that that this would be a successful approach is not yet very 

compelling. A further advantage of the use of hESC derived MSCs over adult stem 

cells in therapeutic application would be the avoidance of an invasive procedure 

which would be required to harvest the cells. In the case of an autologous 

transplantation strategy, this would be an invasive procedure that would need to 

be performed on the patient themselves as soon feasible after the injury. 
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4.1.3 Disadvantages of hESC-MSCs and iPSCs as a potential 
alternative cell source 

One potential disadvantage of the use of hESC-MSCs is that they will require use 

of immune suppression. Although there has been some discussion of hESCs being 

immune privileged this is controversial and the differentiation process might also 

affect the expression of antigens. We found that when transplanted into the 

spinal cord of our animal model, treatment with immunosuppressive drugs was 

essential to the survival of the transplanted cells. However, the complicating 

factor here is that these transplants are xenograft (i.e. human cells into the rat) 

and this alone is likely to result in an immune response. Therefore producing 

MSCs from induced pluripotent stem cells (iPSCs) may offer another alternative. 

This alternative source of stem cells from which to derive MSCs has the 

advantage over hESCs as immunesuppression may not be required since such 

cells could be obtained from the patient. Use of these cells as a starting 

population, as for hESCs should have the advantage that a consistent product 

can be produced. Additionally, the use of iPSCs would avoid the ethical issues 

that are associated with hESC. This is because hESCs are obtained from human 

embryos, although usually they are derived from excess eggs from in vitro 

fertilization clinics. iPSCs have also been shown to differentiate into functional 

neurons, astrocytes and oligodendrocytes (Miura et al., 2009) and were recently 

reported able to support the reconstruction of CST pathways, promote 

endogenous neuron survival and promote functional recovery of hind limbs in 

animal study(Fujimoto et al., 2012). However, in comparison to hESCs it would 

not have the advantage of avoiding an invasive procedure to obtain the cells 

(though this may be less invasive than for adult cells) and it would also not have 

the advantage of an “off the shelf” product in terms of allowing an early 

intervention since the cells would need to be re-programmed to iPSCs, 

differentiated to MSCs and then expanded. 

4.1.4 Implications of in vivo testing of hESC-MSCs 

Mesenchymal stem cells obtained from bone marrow are extensively investigated 

in animal models of SCI and have now even been used in clinical trials (Tetzlaff 

et al., 2011, Harrop et al., 2012, Forostyak et al., 2013). The results from pre-

clinical work are variable but a number of reports claim functional benefits 
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especially following transplantation at acute time points and a number of 

different mechanisms which may contribute to these beneficial effects have 

been reported. However this is the very first time to our knowledge that hESC 

derived MSCs have been investigated. Consistent with the fact that the hESC-

MSCs cultured and characterised in the first part of this study have many 

properties as bone marrow derived MSCs, we found that when transplanted in 

vivo hESC-MSCs showed many of repair properties of adult MSCs. hESC-MSCs in 

this study were shown to have good survival in the immunosuppressed animals, 

filling the injury area, supporting angiogenesis and promoting axonal 

regeneration. However it is notable that hESC-MSCs did not appear to have any 

clear advantage in terms of promoting axonal regeneration. Consistent with 

observations made in studies using MSCs from other sources, numerous 

regenerating axons were observed within the transplant environment and some 

of these could be shown by tract tracing to originate from sensory fibres 

travelling in the dorsal columns. However, there was little evidence of genuine 

bridging axonal regeneration. Also consistent with previous observations, 

corticospinal tract axons did not grow into the transplant environment. These 

observations suggest that in principle hESC derived MSCs should be at least as 

therapeutically beneficial as adult MSCs but as with other cells, their main 

mechanism of action when transplanted alone will not be through promotion of 

bridging axonal regeneration. However the functional benefits of hESC-MSCs 

transplant have not yet been investigated. 

4.2 Future work 

4.2.1 A GMP grade cell product 

There are several aspects of the current work which it would be useful to follow 

up in future studies. Firstly, although the works in this thesis provide proof of 

principle that it should be possible to produce an “off the shelf” MSC cell for 

therapy in SCI, the current cell culture method is not entirely free of the use of 

animal products. Clinical application of the use of hESC derived MSCs would 

require that the whole process is made free from the use of animal products 

including culturing of hESCs, differentiation into MSCs and maintenance of hESC-

MSCs.  This could potentially be achieved by performing a serum free 

differentiation method as reported by Lian et al and Wu et al (Lian et al 2007; 
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Wu et al, 2013) or by replacing the animal serum with human serum. In addition, 

the cells could then be maintained and expanded in GMP media rather than 

using media supplemented with animal serum. The MSCs derived using this 

method would be more clinically translatable but beyond the scope of this 

project due to time limitations.  

4.2.2 Potential anti-inflammatory actions of hESC-MSCs 

MSCs of bone marrow origin are reported to have an immune modulator effect 

and this may be an important mechanism contributing to their potential 

beneficial therapeutic actions in spinal cord injury. There is some evidence that 

MSCs transplant can influence the population of macrophages at the site of a 

spinal cord injury (Nakajima et al., 2012). It has been shown that when 

transplanted into animal models, bone marrow derived MSCs (from human) skew 

the phenotype of MSCs towards the pro-reparative M2 rather than the harmful 

M1 phenotype. In the current study, we did not investigate this potential effect 

of hESC-MSCs and this is something that could be investigated in future work. 

One complication with the assessment of this mechanism of human cells using in 

vivo transplantation in animals is the need for immunosuppression in order to 

prevent immune rejection of the cells. This could potentially interfere with 

reliable investigation of this mechanism. It is possible that an in vitro approach 

could be used as an alternative. 

4.2.3 Mechanisms of actions of hESC-MSCs at a cellular and 
molecular level 

Although there is a body of work that suggests various mechanisms of repair are 

promoted by MSCs transplants and that functional outcome can be improved as a 

result, the precise cellular properties that are important in providing this 

therapeutic effect are not understood. It is known that MSCs from adult sources 

produce a large number of secreted factors in vitro and it is likely that they do 

so in vivo although information on this is much less clear because of the 

technical difficulty of examining this question. The in vitro secretome of MSCs 

has been most extensively studied for bone marrow MSCs (BM-MSCs) which have 

been shown to produce various cytokines and growth factors, some of the main 

ones being BDNF, VEGF and IL-6 (Seo et al., 2011, Wilkins et al., 2009, Kinnaird 
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et al., 2004). Some of these factors are likely to be involved in the beneficial 

repair properties of MSC although some of the cytokines might be expected to 

have a detrimental effect since they are pro-inflammatory. There is some 

variability in reports on the factors produced by BM-MSCs and this likely reflects 

differences in the precise cell populations in different studies in different labs 

because of the differences in cell donors and preparation methods. It is quite 

likely that there will be differences between the secretome of MSCs from 

different tissues. For example, it has been reported that MSCs from human 

lamina propria in the nose produce a cytokine which enhances myelination in 

vitro but this factor is not produced by BM-MSCs (Lindsay et al., 2013). An 

important area for future study will therefore be one directed at gaining a 

better understanding of the properties of transplanted cells which are important 

for the their positive repair effects. A better understanding of the factors 

secreted by cells may be a contribution towards this process. At present it is not 

clear what factors are produced by hESC-MSCs and how they compare to those 

produced by adult cells and this would therefore be a useful area to investigate. 

For example, a comparative study on the factors that are produced by BM-MSCs 

and hESC-MSCs could be performed in vitro using microarray or quantitative RT-

PCR (Kwan Sze et al, 2007). The study would reveal whether hESC-MSCs also 

produce secretomes that are potentially useful for spinal cord injury repair and 

the data could give indications of how they might affect the SCI environment. 

Should the study reveal that hESC-MSCs do not produce any useful factors for SCI 

repair compared to BM-MSCs, the option to genetically modifiy the hESC-MSCs to 

over-express or secrete neurotrophic factors like BDNF and GDNF could be 

considered. These 2 factors were shown to promote better therapeutic effects 

including promoting cell survival and axonal regeneration in SCI (Sasaki et al 

2009). The ability of MSCs to secrete neurotrophic factors would be of great 

advantage as the efficacy of these neurotrophic factors depends on their 

continuous supply which could be offered by transplanted cells. 

4.3 Conclusion 

In conclusion, the first section of this work in this thesis indicates that it should 

be possible to produce MSC-like cells from hESC that sharing many properties of 

bone marrow derived MSCs (BM-MSCs) on a consistent and reliable basis and in 

large quantities. The second section of this work in this project shows that when 
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transplanted into animal models of spinal cord injury, hESC-MSCs can survive and 

fill the injury site. They also appear to have most of the beneficial actions 

previously reported for MSCs of bone marrow origin. 

The fact that hESC-MSCs appear very similar in effect to bone marrow derived 

cells is promising but their actions have yet to be investigated using functional 

outcome measures and this is the next important area of investigation that 

should be addressed in future work. However, like MSCs and cells from other 

sources, hESC-MSCs are not able to promote bridging axonal regeneration. The 

implications of this are that when MSCs are transplanted alone with the aim of 

treating spinal cord injury, any beneficial effects they have will not be due to 

functional axonal regeneration but will be due to other mechanisms such as 

improved blood supply, neuroprotection, immune modulation and perhaps 

promotion of remyelination and plasticity. This has implications for the degree 

of functional recovery that can be expected, the type of patient that might 

benefit and potentially also practical aspects of any therapy. Without the 

promotion of axonal regeneration, functional benefits arising from the 

alternative mechanisms are likely to be quite modest. Without axonal 

regeneration, only those with incomplete spinal cord injuries are likely to 

benefit from the treatment. The timing of the treatment may also be an 

important issue as the neuroprotective and immune modulatory mechanisms may 

be of greatest benefit in the early stages after injury. 
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