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Abstract 
African trypanosomes, the causative agent of sleeping sickness in humans, and 

nagana in cattle, are typically transmitted by the bite of an infected tsetse fly. 

The nature of the mammalian innate immune response during and immediately 

after the bite of an infected tsetse fly remains poorly understood. Previous 

studies characterising the events occurring in the skin post-infected tsetse fly 

bite have mainly focussed on the development of the chancre, which occurs 

from day 5 post-infection. Additionally, most immunopathological studies on 

trypanosomes have used intravenous or intraperitoneal injections of blood stage 

parasites, therefore bypassing relevant inoculation routes (tsetse fly), site 

(skin), and parasite life cycle stages (metacyclics). It is known that following 

tsetse fly bites, trypanosomes leave the skin via the host lymphatic system in 

order to initiate a blood stage infection. However, how the host responds to this 

challenge and how the parasite negotiates the anatomy of the host immune 

system remains unclear. In the present study, I have built on existing intravital 

microscopy tools to visualise T. b. brucei infections in the dermis and lymphatics 

of an infected mouse ear after transmission. I have also characterised by flow 

cytometry, taqman low density arrays and depletion studies the magnitude and 

kinetics of the early innate immune response in the skin, as well as the 

functional role of neutrophils, by examining infections in the context of the 

natural route of infection- the bite of a tsetse fly. Neutrophils were identified to 

be the predominant responders at the bite site, the neutrophil response was 

rapid, and they were recruited independent of the infection status of the tsetse 

flies. Taqman low-density arrays, which measured expression levels of 

inflammation-associated genes, suggested that neutrophil recruitment was 

mediated by CXCL1/CXCL2 release in the skin following mechanical trauma by 

the tsetse fly, in addition to the release of pro-inflammatory cytokines- IL-1β 

and IL-6. Following the identification of neutrophils by flow cytometry, I then 

applied intravital microscopy to visualise influx of neutrophils, which was rapid, 

directed at the bite site, and did not form dynamic clusters. To further test the 

functional role of neutrophils very early in infection, neutrophils were depleted 

using a monoclonal antibody and mice infected via tsetse fly bites. Neutrophil 

depleted mice had no effect on pathogenesis in vivo. Using Prox-1 mOrange 

reporter mice, I also examined the interaction of bloodstream trypanosomes 

with lymphatic vessels in the skin in the period immediately following 
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inoculation using intravital imaging. I imaged metacyclic trypanosomes in situ 

and demonstrated that they had significantly higher velocity in the extravascular 

matrix compared to bloodstream forms. Additionally, my data showed 

bloodstream parasites actively migrating towards lymphatic vessels, and intra-

lymphatic T. b. brucei were also observed, enabling comparison of trypanosome 

motility in the extravascular matrix and lymphatic vessels; in lymph vessels 

trypanosomes were moving in a more directional and rapid manner. This work 

revealed the early cellular and molecular responses to T. b. brucei infection and 

investigated interactions of parasites with the anatomy and cells of the host 

immune system. These studies demonstrate that furthering our understanding of 

the very early events in trypanosome infections is essential to understand how a 

systemic trypanosome infection is established.  
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Figure 5.4.  Metacyclic T. b. brucei migrate faster than blood stream   
  forms 
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Figure 5.5 Neutrophils do not swarm following inoculation of   
  metacyclic T. b. brucei 
Figure 5.6. Visualising lymphatic vessels in Prox-1 mOrange mice 
Figure 5.7. T. b. brucei demonstrate tropism for lymphatic vessels 
Figure 5.8. There is no chemotaxis of T. b. brucei towards CCL21 
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1 General Introduction
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1.1 Introduction to African trypanosomes 

African trypanosomes belong to the family Trypanosomatidae, order 

Kinetoplastida, they live and multiply extracellularly in the blood and tissue 

fluids of mammals [1, 2]. The main species of African trypanosomes that cause 

human and animal disease are Trypanosoma congolense, Trypanosoma vivax, and 

Trypanosoma brucei. T. congolense and T. vivax infect a range of livestock in 

which they cause nagana or African Animal Trypanosomiasis (AAT). Other 

pathogenic species of African trypanosomes of agricultural importance are T. 

equiperdum and T. evansi. Two subspecies of T. brucei, T. b. gambiense and T. 

b. rhodesiense, also infect humans and cause Human African Trypanosomiasis 

(HAT), also known as sleeping sickness [3, 4]. AAT and HAT are transmitted by 

the bite of infected tsetse flies. Consequently, the distribution of tsetse flies 

across much of sub-Saharan Africa renders swathes of land unavailable for the 

productive raising of cattle, and a large human population vulnerable to 

infection.  

AAT is endemic to 37 sub-Saharan countries with over 46 million cattle at risk, 

over an estimated 8.7 million km2 [5, 6]. Currently, it is estimated that fewer 

than 12 000 HAT cases are reported per year. HAT is a disease of the poor, 

affecting remote and poor parts of Africa. Disease is transmitted in areas of 

Africa where the people thrive on farming, hunting, fishing, or live and carry out 

their activities near streams [3]. Direct economic losses from AAT in cattle has 

been estimated to be approximately US $2.5 billion in east Africa alone [7]. 

Further studies estimated that the economic cost of trypanosomiasis in Africa 

was about US $4.5 billion. In addition to economic losses from contracting AAT, 

it also has indirect impact on crop agriculture, human welfare and economic 

development in afflicted areas [6].  

1.1.1  Life cycle of Trypanosoma brucei  

African trypanosomes have a complex digenetic lifecycle (Figure 1.1), occurring 

in mammalian and tsetse fly hosts [8]. In each host, T. brucei undergoes specific 

developmental stages, involving proliferation, expression of specific proteins on 
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their surface, and distinct morphologies in order to adapt to different 

environments.  

 

Figure 1-1 Life cycle of Trypanosoma brucei. 
The different life cycle stages of T. brucei in the tsetse fly and mammalian hosts are shown by 
scanning electron micrographs. The circular arrows indicate the stages that are capable of cell 
division. Mammalian hosts are infected through the deposition of metacyclic stage trypanosomes in 
the skin. Metacyclic stage parasites differentiate into long slender forms also known as 
bloodstream stage. For tsetse fly transmission to occur, the blood stream form parasites 
differentiate into stumpy forms, which are then taken up during a tsetse fly feed. Figure adapted 
from [9].   
 

The T. brucei lifecycle in mammals starts through the bite of its vector, the 

tsetse fly, which deposits metacyclic stage trypanosomes in the skin [10]. In 

cattle and humans, deposition of trypanosomes in the skin is followed by the 

development of a skin lesion called the chancre at the site of inoculation, its 

diameter varying in size from a few millimetres to several centimeters appearing 

as from day 5 post infection [11]. The chancre is characterised by an intense 

host inflammatory reaction, more frequent in T. b. rhodesiense HAT and 

disappearing within two to three weeks [12]. However, chancre appears to be 

absent in rodents challenged with infected tsetse flies [13]. The chancre was 

also found to serve as a site for proliferation and establishment of trypanosomes 
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in the skin, and also represents the parasitic invasion phase of the lymphatic 

organs in stage 1 HAT. Following the deposition of the metacyclic stage 

trypanosomes, they differentiate into the bloodstream forms, that swim freely in 

the blood and tissue fluids of mammals [14]. Bloodstream trypanosomes express 

variant surface glycoproteins (VSG) on their cell surface in order to survive the 

host immune assault and continue to thrive in its host (see section 1.12.1 for 

further details) [9, 15, 16]. At peak parasitemia, most of the surviving 

trypanosomes undergo terminal differentiation to a stage of the parasite that 

can survive in the tsetse fly when it takes a blood meal. These terminally 

differentiated trypanosomes are described as short stumpy form trypanosomes, 

which are adapted for survival in the tsetse fly [17]. Some of the changes 

include a switch in the parasites metabolic requirement from a glucose rich 

environment in the bloodstream of mammals, to the proline rich environment in 

the tsetse fly midgut [18], other biochemical and morphological changes also 

occur in the parasites [2, 19]. Despite the changes the bloodstream form 

parasites undergo in order to survive in the tsetse fly, about 99% of the ingested 

parasites do not survive the initial phase of development, including stumpy 

forms [20], although pre-adapted for life in the tsetse fly [18].  

Once the parasites arrive in the midgut of the tsetse, the stumpy trypanosomes 

differentiate into procyclic trypanosomes. The procyclic trypanosomes change 

expression of their surface coat from the VSG to a less dense coat comprised of 

the surface antigens, EP (characterised by an internal repeat of glutamic acid E 

and proline P) and GPEET (characterised by an internal repeat of glycine G, 

proline P, glutamic acid E, and Threonine T) procyclin [21]. Colonization of the 

midgut of the tsetse fly is accompanied by an expansion of procyclic 

trypanosomes in the ectoperitrophic space of the midgut and parasite 

elongation, progressing from the posterior to the anterior ends. Long 

trypomastigote forms found in the anterior position of the midgut, in the 

ectoperitrophic space of the tsetse fly near the proventriculus, are called the 

mesocyclic forms [18]. The mesocyclic forms have undergone a cell cycle arrest 

and are at the G0/G1 phase of development, which represents the endpoint in 

parasite establishment in the midgut. The transformation into mesocylic stage 

parasites is also crucial for migration into the lumen of the proventriculus, and 

subsequently to travel into the foregut and proboscis, where they undergo the 
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next stage of differentiation into epimastigote forms. The incoming mesocyclic 

cells produce two types of morphologically identical epimastigote forms during 

asymmetric division; long and short epimastigotes, and both types have diploid 

DNA contents [22]. The short epimastigote forms have reduced motility due to a 

short flagellum, and heteronuclear kinetoplast, resembling the attached 

epimastigote stage in the salivary gland. In order for the parasites to swim from 

the proboscis through the hypopharynx and reach the salivary glands, only the 

highly asymmetrical, highly motile and dividing epimastigote parasites succeed 

in migrating [20]. Once they succeed in migrating, the short epimastigote forms 

are now in a convenient location for attachment with their flagellum. The series 

of differentiation the parasites undergo at this phase are irreversible. In the 

salivary gland of the tsetse fly, the parasites attach to epithelial surfaces as 

epimastigote forms [23]. The epimastigote forms are proliferative and eventually 

generate the non-proliferative metacyclic trypanosomes, which have reacquired 

the VSG coat, which can then be transmitted into its new mammalian host 

during a tsetse feed/probe [18, 19, 23, 24]. The post-mesocyclic forms 

represents an essential bridge between the procyclic and metacyclic production 

phase in the salivary glands [20].   

1.2 Clinical features of Trypanosomiasis 

1.2.1  Animal African Trypanosomiasis 

Livestock affected by AAT show extensive immune mediated pathology, cardiac 

involvement and severe anemia [25], and are weak and unproductive particularly 

in the chronic stage of disease. Animals show intermittent fever, weight loss and 

lymphadenopathy. They also exhibit reduced milk production, herd size, growth 

and work output. Deaths are common in chronically infected animals, and 

animals that recover may relapse when stressed. This loss in animal productivity 

has important socio economic implications for people whose livelihood depends 

on these animals [26]. Anemia is a consistent observation in HAT patients [27] 

and AAT affected animals [28]. Anemia is present in the acute and chronic stages 

of infection in animals. During the acute phase of infection, anemia has been 

associated with the immune response of the host, due to binding of immune 

complexes to erythrocytes [25]. While during the chronic phase when the 
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animals are immunosuppressed multiple factors are involved such as 

splenomegaly, sensitisation of erythrocytes by immune complexes, and 

haemodilution [25].   

1.2.2  Human African Trypanosomiasis 

HAT or sleeping sickness is caused by two subspecies of T. brucei, T. b. 

rhodesiense and T. b. gambiense (Figure 1.2 for distribution).  

 

Figure 1-2 Human African Trypanosomiasis 
Diagram adapted from http://www.who.int/csr/resources/publications/CSR_ISR_2000_1tryps/en/. 
The map of Africa depicting the cases of HAT in Africa and areas of Africa that are free from HAT. 
Cases of HAT above 100 persons are predominantly located in West Africa. 
 

The course of infection of HAT is dependent on the sub-species infecting 

humans. T. b. rhodesiense is found in eastern and southern parts of Africa and 

results in an acute form of infection (weeks-months) whereas T. b. gambiense, 

found in west and central Africa, causes more chronic infections (months-years).  
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1.2.2.1 Clinical features 

HAT appears in two stages, the first is the haemolymphatic stage, characterised 

by restriction of the parasites to the blood and lymph, and Stage 2, the 

meningoencephalitic stage characterised by the invasion of the central nervous 

system (CNS). Trypanosomes are thought to penetrate the blood brain barrier 

and enter the CNS in an active manner, at or near intracellular junctions of the 

endothelia [29]. The resulting encephalitis from Stage 2 disease produces the 

symptoms of sleeping sickness and is the major cause of death in patients 

infected with both sub-species of T. brucei. Death from T. b. rhodesiense usually 

occurs within weeks or months of infection due to its acute nature [30]. 

During infection with T. b. rhodesiense there can be the appearance of a 

chancre at the tsetse fly bite site, which is a persistent swelling found in about 

19% of patients and disappears in about two to three weeks [12], whereas 

chancres are rarely seen in T. b. gambiense infections [3]. In addition, clinical 

signs associated with Stage 1 HAT include chronic and intermittent fever, 

headache, lymphadenopathy, joint pains and itching. Fevers in stage 1 HAT may 

last from a day to a week, separated by intervals of a few days to a month or 

longer, and are rarely present in Stage 2 disease [31, 32].  

The leading symptom of stage 2 of disease is the sleep disorder experienced by 

patients. At this stage, infection causes a dysregulation of the circadian rhythm 

controlling the host’s sleep/wake cycle, and consequently fragmentation of the 

sleep pattern. The degree of disruption of the 24 hrs sleep/wake cycle of 

patients is proportional to the severity of clinical symptoms. Patients also 

experience neurological symptoms such as tremor, general motor weakness, 

hemiparesis, limb paralysis, abnormal movements and ultimately death if 

untreated [33, 34].  

1.2.3  Diagnosis 

Different approaches are used in diagnosis of T. b. gambiense and T. b. 

rhodesiense infection. The reasons for these differences are that firstly, there is 

no serological test available for T. b. rhodesiense. Secondly, there is the 

presence of permanent parasitemia in T. b. rhodesiense compared to T. b. 
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gambiense where there are few parasites in peripheral circulation, except at 

periods of chronic disease [35]. Therefore, thin or thick blood smears are usually 

sufficient to diagnose T. b. rhodesiense (Figure 1.3). 

 

Figure 1-3 Photomicrograph of a Giemsa stained Trypanosoma brucei 
Diagram adapted from http://www.cdc.gov/parasites/sleepingsickness/epi.html. A thin blood smear 
(x1000 magnification) of Trypanosoma brucei spp. Image approved for reproduction by the Centres 
for Disease Control and Prevention. 
 

Currently, the card agglutination test for trypanosomes (CATT) which can be 

performed on serum, blood from impregnated filter papers, or blood obtained 

from finger pricks using a blood lancet is commonly used in T. b. gambiense 

diagnosis [20, 36, 37]. The CATT test is a rapid test that can be used to screen 

hundreds of individuals daily, and is the most efficient screening method 

available to date. CATT has also been reported to have a sensitivity of about 87-

98% and specificity of 93-95% [38, 39]. In non-endemic countries, other 

serological tests such as immunofluorescence assay, or enzyme linked 

immunosorbent assays detecting parasite-specific IgG subclasses (IgG1 and IgG3) 

and IgM isotypes in serum and cerebrospinal fluid of individuals with suggestive 

clinical features of HAT are carried out [39-43]. Serological tests are not 100% 

sensitive in the detection of HAT, because of the high capacity for the parasite 

to switch its VSGs, which are the antigens used in serological tests [44, 45]. 
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Consequently, microscopic examination is still employed in addition to other 

diagnostic methods to search for trypanosomes in individuals that have chancre 

or symptoms of HAT [39, 40]. Microscopic confirmation of parasites in lymph 

node aspirates, cerebrospinal fluid (CSF) or blood remains the gold standard for 

parasitological confirmation [3].  

 

Staging of HAT patients is important because of substantial differences in the 

drugs administered in the two stages of HAT. According to the World Health 

Organisation (WHO) recommendations, the presence of more than five white 

blood cells per µl in the CSF or increased protein content (>370 mg/L) confirms 

the second stage of the disease [37, 46, 47]. Some researchers have suggested 

that there may be an intermediate stage of infection with a CSF WBC of < 20/µl, 

where the parasites penetrate the blood brain barrier and are treated with early 

stage drugs. The notion of an intermediate stage requires caution in its approach 

[35, 48]. Research is currently on-going through the organisation, Foundation for 

Innovative New Diagnostics (FIND) to improve the diagnosis and staging of HAT, 

including using recombinant trypanosome native antigens for development of 

rapid diagnostic tests [49]. These new diagnostic tests could be used for 

screening populations that are at risk of infection. Improved methods of 

confirming cases of HAT, using a LED fluorescence microscope and evaluation of 

a molecular test based on Loop-Mediated Isothermal Amplification of DNA 

(LAMP) are also in development [50].   

1.3  Prevention and control of Animal and Human African 
Trypanosomiasis 

The prevalence of animal and human African trypanosomiasis could be controlled 

via approaches targeted at the vector, parasite and the host described below.  

1.3.1  Host 

Genetic resistance to African trypanosomes has been identified in certain breeds 

of livestock, and these animals are described as trypanotolerant. Exploiting the 

inherent genetic properties of the host to control disease has been applied in 

AAT, where some breeds of cattle such as N’dama and Muturu remain infected 
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with trypanosomes, but do not suffer the severe clinical signs of susceptible 

counterparts [51]. The ability of N’dama cattle to limit anemia has been linked 

to the presence of hematopoietic tissue of trypanotolerant origin. T cells and 

antibodies were described not to contribute to trypanotolerance, hence a role 

for erythropoiesis was proposed [52]. In some trypanosome endemic areas, it has 

been advised to selectively breed from trypanotolerant cattle in order to 

maintain productivity in the face of infection [53, 54]. In the past, wild game 

that served as reservoirs for trypanosomes, have also been targeted by culling, 

in order to reduce the overall prevalence of the parasite and reduce the ratio of 

infected tsetse flies in such areas. This approach is no longer considered 

acceptable and no longer in practice. More recently, the expression of a 

trypanosome resistance gene, APOL1, in transgenic livestock is currently been 

investigated with the aim of reducing susceptibility of animal reservoirs. The 

presence of the primate APOL1 is sufficient to confer resistance in these 

animals, as observed in transgenic mice expressing human APOL1 [55]. So it is 

expected that expression of baboon APOL1 in transgenic cattle would also confer 

resistance against T. b. brucei and T. b. rhodesiense. These studies are currently 

ongoing and it is hoped that these would provide a new avenue to control 

African trypanosomes [56]. 

1.3.2  Vector 

Approaches targeted at the vector are aimed either at indirectly reducing the 

available habitat for the tsetse fly to thrive, or directly by reducing the tsetse 

population in such areas. Traditional methods employed include bush clearing 

and application of insecticides. However, insecticides are clearly indiscriminate 

and kill both the tsetse fly and other insects in the ecosystem, in addition to 

other undesirable effects the insecticides may have. Currently, the use of traps 

is more acceptable because its more environmentally friendly and does not kill 

other insects in the population. The pan African Tsetse and Trypanosomiasis 

Eradication Campaign (PATTEC), has in addition to the use of traditional 

methods of control of tsetse flies, also included the use of sterile insect 

technique in tsetse fly control. The sterile insect technique involves the release 

of sterile males, which mate unproductively with females, and has been 
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effective in contributing to the elimination of Glossina austeni from the island of 

Unguja in Zanzibar [57, 58].  

1.3.3  Parasite 

The sole method of control available at the parasite level currently is limited to 

chemotherapy. The drugs for treatment of both AAT and HAT are currently 

limited and few new drugs have been formulated over recent decades, largely 

because of a combination of the cost of developing new drugs and the fact that 

trypanosomiasis occurs in a region of the world that does not represent a 

sufficiently profitable market [59]. The drugs currently in use for treatment of 

HAT are donated by pharmaceutical companies to the World Health 

Organisation.  

1.3.4  Drugs for treatment of Human African Trypanosomiasis 

For Stage 1 or the haemolymphatic stage of HAT, there are only two licensed 

drugs, pentamidine and suramin for treatment of T. b. gambiense and T. b. 

rhodesiense infections, respectively. For Stage 2 disease, melarsorprol and 

difluoromethlyornithine, Ornidyl ® (DFMO), and nifurtimox-eflornithine 

combination therapy (NECT) are the drugs currently in use [60-63]. In addition to 

the drugs currently in use, new drug candidates are also been investigated in the 

treatment of HAT. One of such novel drugs with great potential is 

nitroimidazole, an analogue of fexinidazole rediscovered by Drugs for Neglected 

Diseases Initiative (DNDi) [64]. This drug has been shown to have potential 

against both strains of HAT in the two stages, and it is administered orally. Other 

promising candidates in development include the oxaboroles [65] administered 

orally, and DB75 (Furamidine), a diamidine analogue of pentamidine [59]. Some 

other trypanocidal drugs currently used in anti-cancer therapies are also been 

tested but are yet to undergo full scale clinical trials, and examples include 

cordycepin, deoxycoformycin and lodamine, a known oral anti-cancer agent 

[65]. The main drugs currently in use are described below. 
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1.3.4.1  Pentamidine 

Pentamidine is the drug of choice for treatment of T. b. gambiense for patients 

in the first stage of disease. Resistance to pentamidine has been unreported 

since the introduction of the drug in 1940 and it has remained the first line 

treatment drug for T. b. gambiense sleeping sickness for more than 60 years. 

Treatment failures from pentamidine are uncommon, and believed to be due to 

misdiagnosis of the stage of disease. The mode of action of pentamidine has 

been linked to the high accumulation of the drug by the parasite, while its likely 

mode of resistance based on work carried out on laboratory selected isolates is 

linked to efflux of the drug or decreased uptake [66].  

1.3.4.2  Suramin 

Suramin can also be used for treatment of Stage 1 T. b. rhodesiense and 

gambiense, although it is not used against T. b. gambiense in western and 

central Africa. Suramin is not used in second stage treatment of HAT because it 

does not cross the blood-brain barrier. The use of suramin in west and central 

Africa is avoided due to the presence of Onchocerca spp. in these areas, as the 

activity of suramin against Onchocerca spp. can increase the risk of allergic 

reactions. Suramin presents with toxic side effects such as nephrotoxicity, 

peripheral neuropathy, bone marrow toxicity with agranulocytosis and 

thrombocytopenia. Suramin is a large polyanion and exerts inhibitory properties 

on a wide spectrum of enzymes such as fumarase, dihydrofolate reductase, 

hexokinase, thymidine kinase, trypsin and dehydrogenase [67, 68]. 

1.3.4.3  Melarsoprol 

Melarsorprol was introduced in 1950 to replace earlier organo-arsenics that were 

ineffective. This remains the drug of choice in the treatment of second stage 

HAT caused by T. b. gambiense, especially in poor countries where eflornithine 

is not available. Second stage HAT caused by T. b. rhodesiense is only treated 

with melarsorprol. Adverse reaction to melarsoprol is frequent and is often life 

threatening, with between 4% and 12% of patients who receive melarsoprol dying 

from side effects associated with the drug [69, 70]. Treatment failures and 
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resistance to melarsorprol have also been on the increase in the last decade in 

endemic areas such as southern Sudan, Congo and Angola [3, 71]. 

1.3.4.4  Eflornithine 

In the last 50 yrs, Eflornithine also known as DFMO is the only new molecule that 

has been introduced for the treatment of HAT. Eflornithine has been 

demonstrated to show reduced mortality in the treatment of second stage HAT 

more than melarsoprol. Eflornithine is recommended as first line drug in the 

treatment of T. b. gambiense disease, but is not recommended in the treatment 

of T. b. rhodesiense, which is less innately susceptible to eflornithine [72, 73]. 

1.3.5  Drugs used for Animal African trypanosomiasis (AAT) 

Chemotherapy of AAT faces similar challenges to those in treatment of HAT. 

These challenges include the limited availability of drugs due to reluctance of 

the pharmaceutical companies to invest in research and development of new 

drugs for a neglected disease, in addition to resistance development against the 

drugs by the parasite. The drugs currently used in the treatment of AAT in 

cattle; diminazene aceturate (Berenil®), ethidium bromide and isometamidium 

chloride (Samorin®, Trypamidium®), while cymelarsan is used for treating T. 

evansi infection in camels. Diminazene aceturate and isometamidium chloride 

have been widely used as therapeutic and prophylactic trypanocides, 

respectively. However, cases of resistance by trypanosomes against these drugs 

have been reported [74-77]. 

1.3.6  Drug resistance 

The control of human and animal African trypanosomiasis principally relies on 

chemotherapy, owing to the absence of vaccines and effective vector control 

strategies. Resistance to commonly used animal trypanocides such as suramin, 

the preferred drug for treatment of camel trypanosomiasis, diminazene 

aceturate, cymelarsan, homidium and isometamidium chloride has been 

reported in the field [78, 79]. More recently, mutations in T. b. gambiense 

aquaglyceroporin gene in field isolates were demonstrated to be responsible for 

resistance to melarsoprol and pentamidine [80]. Also, some researchers have 
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recently carried out genome scale RNA interference target sequencing (RIT-seq) 

screens on all five known HAT drugs to identify transporters, metabolic pathways 

and enzymes in T. brucei that function to enable antitrypanosomal drug action. 

Furthermore the use of RIT-seq analysis also revealed over 50 genes that 

enhance drug susceptibility. This study further corroborated the role of 

aquaglyceroporin in pentamidine and melarsoprol cross resistance [81]  

1.4  The Tsetse fly: Vector of African trypanosomes 

The tsetse fly (Figure 1.4) belongs to the genus Glossina, family Glossinidae and 

order Diptera; there are 22 different species currently recognised, and their 

distribution is restricted to sub-Saharan Africa. Tsetse flies are classified into 

three main groups, the Morsitans, the Palpalis and the Fusca groups. Both male 

and female tsetse flies are capable of transmitting trypanosomes.   

 

Figure 1-4 Photomicrograph of a tsetse fly 
Diagram adapted from http://www.cdc.gov/parasites/sleepingsickness/epi.html. A recently fed 
tsetsefly with an engorged abdomen.. 
 

1.4.1  Distribution of Tsetses 

The three main groups of tsetse differ in their distribution according to the 

availability of their preferred type of vegetation. The distribution of tsetse flies 

in Africa is described using the map below (Figure 1.5). 
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Figure 1-5 Tsetse fly distribution in Africa 
Image from http://www.genomics.liv.ac.uk/tryps/images/africamap3.gif. The distribution of tsetse 
flies and cattle in Africa, and areas that are susceptible to cattle infection by tsetse flies are shown 
in the map. 
 
 

1.4.1.1  Morsitans group 

Morsitans group species are found in the savannah regions of Africa, and are not 

present in rain forests or swampy areas. The distribution of Morsitans species is 

also limited by colder climatic conditions in southern Africa, hot and dry 

conditions in the north-west and central Africa. In this group, G. morsitans 

morsitans is the most widespread; other members of importance to transmitting 

trypanosomes include G. m. centralis, G. pallidipes, G. longipalis. 

 

1.4.1.2  Palpalis group 

This group of tsetse flies are present in humid areas of Africa, including 

mangrove swamps, rain forest, lakeshores and along rivers. Members of this 

group important in transmitting trypanosomes include G. palpalis, G. fuscipes, 
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G. tachinoides, G. caliginea and G. pallicera. G. caliginea and G. pallicera, and 

are mainly limited to areas of West Africa. 

1.4.1.3  Fusca group 

There are three main types of the Fusca group, which differ in their distribution. 

Glossina longipennis is found in rather dry countries such as Sudan (south east 

corner), Ethiopia (southern border), Somalia, Kenya, and northeastern Tanzania. 

The second group Glossina brevipalpalis is scattered through the eastern parts of 

Africa e.g. Ethiopia and Somalia. The last group is limited to more thickly 

forested areas of Africa, with similar distribution to G. papalis/G. fuscipes.  

1.5 The skin  

The skin is a highly complex organ composed of the epidermis, dermis and 

subcutaneous fatty layers. These layers accommodate various structures such as 

hair follicles, sweat glands in humans (absent in mice), blood vessels and 

lymphatics. The layers of the skin are populated by cells involved in immune 

surveillance and innate immune responses to infection. The skin serves as 

protective interface against environmental toxins, and physical stresses [82]. 

The cellular components of the skin, the layers that cells are present are 

described in section 1.7, and the description of the lymphatic system is given in 

section 1.12. 

1.6  The Innate Immune system 

Skin and mucosal surfaces provide a barrier function to protect the host from 

infection through contact with pathogens. However on breach of this barrier, the 

ability to fight these pathogens relies on the efficacy of the immune system. The 

immune system can be divided into the innate and adaptive arms. The adaptive 

arm of immunity is specific and slow to develop on first encounter with 

pathogens. The innate arm of immunity on the other hand is very critical during 

the first few hours of pathogen encounter, and plays an important role in 

initiating and shaping the subsequent adaptive immune response that provides 

long lasting immunity.  
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Innate immune responses are relatively non-specific for pathogens, and rely on 

germ-line encoded receptors expressed on immune cells that recognise certain 

Pathogen Associated Molecular Patterns (PAMPs). The innate arm of immunity 

can also be triggered by various physical or metabolic insults, which produce 

soluble mediators of inflammation known as Danger Associated Molecular 

Patterns (DAMPs). The inflammatory responses produced mostly resolve once the 

source of inflammation has been eliminated, though in some instances this can 

persist or there can be aberrant resolution of the inflammatory response [83, 

84]. Preformed, soluble components of the innate immune system include the 

complement system, the coagulant and fibrinolytic cascades and antimicrobial 

peptides [85, 86]. Innate immune cells include resident cells, such as 

macrophages, dermal dendritic cells, mast cells and Langerhans cells, and also 

recruited cells, such as eosinophils, basophils, neutrophils and monocytes. These 

innate immune cells respond to PAMPs as well as host derived DAMPS, and 

products of the complement cascade [87]. This activates innate cells with the 

concomitant release of pro-inflammatory cytokines/chemokines, which initiate 

inflammation and recruitment of immune cells to the site of injury. The skin also 

serves as the main interface for encounter with pathogens, through Pattern 

Recognition Receptors (PRRs). The crucial role PRRs play in recognition of PAMPs 

and DAMPs, activation/recruitment of cells in the skin, and the complement 

system has been detailed.  

1.6.1 Pattern recognition receptors (PRRs) 

PRRs are germ-line encoded and play a crucial role in sensing the presence of 

foreign objects via PAMPs and also endogenous molecules released from 

damaged cells (DAMPS) in the body. There are four families of PRRs that have 

been identified to date. These families include transmembrane proteins like 

Toll-like receptors (TLRs) and C-type lectin receptors (CLRs), cytoplasmic 

proteins such as retinoic acid-inducible gene (RIG)-I-like receptors (RLRs) and 

the NOD-like receptors (NLRs). PRRs are expressed on professional (macrophages 

and dendritic cells) and non-professional immune cells such as epithelial cells, 

fibroblasts and endothelial cells [84]. The sensing of PAMPs by PRRs results in 

the upregulation of gene transcripts involved in inflammation.  
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Table 1-1 PRRs, their ligands and pathogens that express them 
PRRs Localisation Origin of the 

Ligand 

TLR   

TLR1 Plasma membrane Bacterial triacyl 
lipoprotein 

TLR2 Plasma membrane Lipoprotein e.g. 
bacteria, parasites, 
viruses 

TLR3 Endolysosome Viral dsRNA 

TLR4 Plasma membrane LPS e.g. bacteria 

TLR5 Plasma membrane Bacterial flagellin 

TLR6 Plasma membrane Bacteria and viral 
diacyl lipoprotein 

TLR7 Endolysosome ssRNA e.g. virus and 
bacteria 

TLR9 Endolysosome CpG DNA e.g. 
protozoa, and 
bacteria  

TLR10 Endolysosome Unknown 

TLR11 Plasma membrane Protozoa profilin-like 
molecule 

 

RLR 

RIG-I Cytoplasm Short dsRNA e.g. RNA viruses 

MDA5 Cytoplasm Long dsRNA e.g. RNA viruses 

LGP2 Cytoplasm RNA viruses, ligands unknown 

 

NLR 

NOD1 Cytoplasm iE-DAP from bacteria 
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NOD2 Cytoplasm MDP from bacteria 

 

CLR 

Dectin-1 Plasma membrane β-Glucan e.g. Fungi 

Dectin-2 Plasma membrane β-Glucan e.g. Fungi 

MINCLE Plasma membrane SAP130 e.g. Fungi 

 

TLRs are the most studied PRRs and are involved in the sensing of pathogens 

outside the cell, and in the intracellular endosomes and lysosomes of 

phagocytes. They have a vital role in triggering innate immunity and 

orchestrating the adaptive immune response. Table 1.1 gives a summary of the 

families of PRRs and the PAMP ligands they recognise. 

1.6.2  Complement 

In addition to the cells of the innate response, the complement system is one of 

the major effector mechanisms of the innate immune system [88]. Its name was 

derived by its ability to ‘complement’ the antibacterial properties of antibodies 

in the heat stable fraction of the serum. Complement is made up of more than 

30 proteins that constitute approximately 15% of the globular fraction of plasma 

and can respond efficiently, and produce tightly regulated inflammatory and 

cytolytic immune responses to pathogens. Activation of the complement system 

occurs via three main pathways; classical, lectin and alternative pathways [85, 

86]. The initiation, activation and termination of the three main pathways is 

summarised in figure 1.6. Although the proteins involved in the initiation of 

complement activation are different, the three pathways converge with the 

generation of C3 convertase. The classical pathway is immunoglobulin 

dependent as it involves the binding of the C1 complex (C1q in complex with C1r 

and C1s serine proteases) to the Fc region of complement fixing antibodies [88]. 

The lectin pathway, though similar to the classical pathway, is immunoglobulin 

independent in its mechanism of action. 
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Figure 1-6  The Complement pathway 
Complement can be activated through three ways: classical, lectin and alternative pathways. 
Complement activation through the classical pathway is initiated when C1q binds to antibody 
attached to an antigen, which then activates C1r and C1s, which then cleaves C4 and C2. In the 
lectin pathway, activation begins when mannose- binding lectin (MBL) comes in contact with 
conserved pathogenic motifs, which then proceeds through C4 and C2 which produce activated 
complement proteins further down the cascade. In contrast to the classical pathway, the lectin 
pathway does not recognize antibody bound to antigen. The alternative pathway is activated 
through spontaneous hydrolysis of C3, which forms the initial products of the alternate pathway, C3 
convertase, (C3(H20)Bb. Formation of C3 convertase allows the binding of plasma proteins Factor 
B and Factor D, to cleave to Ba and Bb and formation of C3bBb and C5 convertase C3bBbC3b. 
The three complement pathways ultimately result in the formation of convertases, which generate 
the major effectors of the complement system such as anaphylatoxins, the membrane attack 
complex (MAC), and opsonins. Figure adapted from [88]. 
 

The lectin pathway employs PRRs, mannose binding lectin (MBL) and ficolins, for 

nonself recognition. The lectin pathways uses these PRRs to recognise PAMPs 

associated with microorganisms [89, 90]. The alternative pathway on the other 

hand is distinct from both the classical and lectin pathways. It is initiated by 

spontaneous hydrolysis of C3, which is abundant in blood plasma. Hydrolysis of 

C3 to the C3b analog, C3(H2O) enables binding to Factor B, in turn allowing 

cleavage of Factor B into its two components Bb and Ba by factor D. This forms 

the initial alternative pathway C3 convertase, which then forms the basis of the 

amplification loop at later stages of the cascade. In summary, irrespective of the 

pathway of complement activation, it basically serves to carry out the following 

broad effector functions; These functions include the direct lysis of targeted 
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surfaces, generating a potent proinflammatory reaction through anaphylatoxins, 

opsonisation and phagocytosis of targeted surfaces through the engagement of 

complement receptors on phagocytic cells such as macrophages and neutrophils 

[85, 86, 88]. 

1.7  Immunity in the skin 

The skin is arguably the largest organ of the human body, composed of 1.8 m2 of 

diverse habitats, consisting of folds, invaginations and specific niches that 

support a wide range of microorganisms. The skin serves as a physical barrier to 

protect the human body from the assault of foreign organisms or toxic 

substances. The skin also serves as an interface between the body and the 

outside environment. It is therefore very important in interactions involving 

pathogenic organisms that rely on the skin as a route of entry for establishment 

and dissemination throughout the body. Pathogenic protozoa that enter via the 

skin include the vector-borne protozoa T. brucei, Plasmodium spp., and 

Leishmania spp. The skin also consists of a plethora of cell types that are 

resident, together with other structures, such as sweat glands (absent in mice), 

nerves, blood vessels, and lymphatics [82]. These small organs contribute to 

functions such as temperature regulation, barrier maintenance and immunity. 

The skin is composed of the epidermis and the dermis (Figure 1.7). The 

epidermis is attached to the basement membrane, beneath which lie the dermis 

and a subcutaneous fatty region. Structurally, the epidermis comprises several 

layers of keratinocytes. During physical damage to the skin such as vector bite, 

or needle, keratinocytes can become activated via the TLR pathway where they 

release IL-1α [91, 92].  
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Figure 1-7 Mouse skin resident immune cells 
The epidermis is made up of Langerhans cells, and resident memory CD8+ T cells.  The dermis 
comprises CD4+ T cells (effector and memory), γδ T cells, NKT cells, dermal DCs and 
macrophages. Figure adapted from [82]. 
 

As well as responding to physical trauma, the ability of keratinocytes to 

recognise various pathogen molecules and activate the TLR pathway makes them 

a formidable force for frontline protection against pathogen invasions. 

Keratinocytes may also produce cytokines such as interleukin 22 (IL-22), IL-1α 

and IL-1β, IL-6, IL-10, IL-18 and IL-33, chemokines including CXCL9, 10, 11 and 

CCL20, or antimicrobial peptides such as β-defensins [93, 94]. The epidermis 

also contains Langerhans cells (epidermal dendritic cells), and CD8+ T cells.  

Beneath the epidermis is the dermis composed of elastin fibres, collagen and 

other extracellular matrix proteins produced by fibroblasts. The dermis also 

contains blood vessels, and draining lymphatics begin in the dermis and 

penetrate deeper into the skin to access the lymph nodes. Immunologically 

important cells of the dermis include the mast cells, dermal DCs (DDCs), 

macrophages, γδT cells, and NK cells. DDCs are evenly dispersed across the 

dermis and can be distinguished from Langerhans cells through lack of expression 

of epithelial cell adhesion molecule (EpCAM) [95]. A certain group of T cells 
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referred to as unconventional or innate like T cells (γδT and NK cells) are also 

present in the epidermis and dermis, and perform immunosurveillance roles.  

1.7.1  Skin resident immune cells 

1.7.1.1  Dendritic cells  

Langerhans cells are positioned in the epidermis above the basal keratinocytes 

and are found in both humans and mice. The role of Langerhans cells has been 

extensively studied, and recent evidence suggests that they contribute to 

priming adaptive immunity to skin pathogens such as Candida albicans, and 

bacteria such as Staphylococcus aureus [96, 97]. During infection or topical 

application of allergens, LCs can transit from the epidermis via afferent 

lymphatics to the LN, and can be distinguished from other cutaneous DCs based 

on high surface expression of EpCAM [98]. Langerhans cells can also sample 

bacterial toxins in order to generate humoral immunity, and have also been 

demonstrated to possess immunosuppressive effects, either through induction of 

T cell deletion or activation of regulatory T cells that dampen skin responses 

[99, 100].  

CD103+ dermal DCs have a well-defined role in immunity, particularly in anti-

viral immunity [98, 101, 102]. CD103+ dermal DCs have also been shown to 

efficiently cross present self-antigens to CD8+ T cells, which suggest a potential 

role in self-tolerance in the steady state. CD11b+ DCs are also present in the skin 

and represent a highly heterogeneous group of DCs. CD11b+ migratory DCs in the 

mouse skin have been linked to TH17 cell-mediated immunity [103]. In addition, 

intradermal injection of Leishmania spp. has revealed an important role for 

CD11b+ DCs in antigen presentation [104]. 

1.7.1.2  Macrophages  

Macrophages are a highly plastic and heterogeneous population of professional 

phagocytes involved in tissue homeostasis through clearance of senescent cells 

and tissue repair after inflammation [105, 106]. Macrophages are present in the 

normal skin at a low density of 1-2 per mm2. Tissue resident macrophages are 

well known for their role as immune sentinels, and also for being amongst the 
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cells that participate early in the immune response. They engulf apoptotic cells 

and pathogens and release immune effector molecules, and can also present 

antigens. Resident tissue macrophages have been implicated to have a role in 

tissue repair and remodelling [107]. Resident skin macrophages are thought to 

scan the skin and participate in the early detection of, and response to 

pathogens entering the body through the skin. After an initial recognition of 

microbial challenge, resident macrophages, alongside other resident cells, 

release inflammatory mediators to drive recruitment of innate cells, initially 

neutrophils within a few minutes, followed by monocytes as early as six hours.  

During tissue repair following an insult, the tissue formation phase, which is the 

mid stage in the restoration of skin integrity and homeostasis post injury, 

requires the presence of macrophages. The other two stages involved in wound 

repair are inflammation and maturation phases. Depletion of macrophages 

during the tissue formation phase leads to haemorrhage, failure of wound 

closure, and transition to the tissue maturation phase [106, 108-113]. The pro-

inflammatory role of resident macrophages has been described in studies in 

which depletion of macrophages impacted chemokine production and neutrophil 

influx [114-116]. Depletion of resident macrophages through clodronate 

liposomes led to a reduction in host protection to infection, loss of inflammatory 

mediators such as chemokines, cytokines and altered inflammatory cell 

recruitment [115-117].  

In summary, dermal macrophages lack migratory capabilities to the draining 

lymph node, poor antigen presentation properties, involved in maintaining tissue 

homeostasis, repair and might have an immunosurveillance role in the skin in 

sensing foreign invaders [106].  

1.7.1.3  Skin resident T cells 

The normal human skin contains more than 2 x 1010 skin-resident T cells, which 

is more than twice the total number of T cells in the blood [118]. In the 

epidermis, T cells are mostly CD8+ αβ T cells that are distributed in the basal and 

suprabasal keratinocyte layer, in close proximity to Langerhans cells. In the 

dermis, T cells are often clustered around postcapillary venules and the 

proportion of CD4+ and CD8+ T cells are almost the same, with most of the T 
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cells displaying a memory phenotype and expressing cutaneous lymphocyte 

associated antigen (CLA), CCR4 and CCR6 skin homing addressins that interact 

with E-selectin [118]. Specifically, CLA is thought to be a ligand for E-selectin, 

while other vascular addressins CCR4 and CCR6 contribute to selective 

trafficking from circulation into the skin. Most of the skin resident T cells have a 

Th1 effector memory phenotype, although T regulatory and central memory cells 

are also present [118]. T cells present in the skin (~80%), lacked expression of 

CCR7 and CCR4, while those that were present in the skin and expressed CCR7 

and L-selectin, but also had expression of CLA have been identified as an 

intermediate phenotype capable of accessing the skin and secondary lymphoid 

organs [118]. Most of the CLA+ T cells (~80%) are resident in the skin even in the 

absence of inflammation.  

Until recently skin resident T cells have received less attention than those T 

cells that migrate between the skin draining lymph node and the peripheral 

tissue. The preferential accumulation of CLA+ effector memory T cells in the skin 

highlights their importance in cutaneous immunosurveillance in the skin, and 

also in responding immediately to antigenic challenges. Skin resident T cells 

form a large pool of cells capable of interacting with dermal DCs for prompt 

response against microbial invasion, although it could contribute to the 

perpetuation of inflammatory diseases [119]. 

In addition to the presence of conventional T cells resident in the skin, there is 

also another group of T cells described as unconventional or innate-like T cells 

[120, 121]. Invariant NKT cells (iNKT) in the skin have been demonstrated to 

recognise bacterial glycolipids, hence play a protective role as antimicrobial 

immune sentinels [121]. In summary, T cells in the skin have a diverse 

repertoire, are Th1 biased, comprised primarily of effector memory cells, and 

subpopulations of central memory and T regulatory cells are also present. 

1.8 Cytokines in inflammation 

Cytokines are small-secreted proteins that have specific effects on interactions 

and communication of cells of the immune system. The name cytokine is a 

general name, which includes lymphokine (cytokines made by lymphocytes), 
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monokine (cytokines made by monocytes), chemokines (cytokines with 

chemotactic activities, described in section 1.9), interleukins (cytokines made 

by one leukocyte acting on other leukocytes). Cytokines carry out their action by 

acting directly on cells that secrete them (autocrine), on nearby cells 

(paracrine), or at cells at a distance from where they are released (endocrine) 

[122, 123]. Cytokines exhibit redundancy in their activity, that is one or more 

cytokines may carry out the same function, and they may act synergistically or 

antagonistically. Cytokines are mostly produced by helper T cells (Th) and 

macrophages, although other cell populations may also produce cytokines. 

During inflammation, cytokines released may play a pro or anti-inflammatory 

role in tissues [122]. 

Proinflammatory cytokines are produced by activated macrophages, and other 

immune cells such as fibroblasts and endothelial cells during tissue injury, 

infection, invasion and inflammation. This class of cytokines include IL-1β, Il-6, 

TNF-α, IL-15, and Il-18. Their classification as proinflammatory is based on the 

observation that this class of molecules are upregulated during inflammation 

[123]. For example during inflammation, IL-1 and TNF-α are upregulated, which 

are inducers of endothelial adhesion molecules, which is essential for leukocyte 

adhesion to endothelial surfaces prior to extravasation into tissues [123]. In the 

intracellular parasite Trypanosoma cruzi that is capable of replicating in a 

variety of host cells including macrophages, efficient control of T. cruzi during 

the first few weeks of infection was found to depend on macrophage activation 

by cytokines. In vitro data available suggests that treatment of macrophages 

with IFN-γ [124, 125] and/or TNF-α [126, 127], resulted in more efficient 

parasite killing. In vivo experiments further suggested that injection of IFN-γ 

into mice resulted in increased resistance [128], consistent with in vitro data. In 

malaria, studies in mice suggested that mice treated with anti-TNF-α, took 

longer to clear infection, suggesting that TNF-α was important early in infection 

[129]. Similar results have also been obtained when P. chaubaudi chaubaudi was 

injected into mice to investigate the role of IFN-γ, suggesting their importance 

in protection during infection [130]. In humans and animal trypanosomiasis, 

studies in mouse models have revealed that TNF-α was found to be crucial for 

parasite control through its trypanolytic effects on T. b. brucei and T. b. 

gambiense [131]. In T. b. rhodesiense and T. congolense, a role has been 
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proposed for TNF-α to carry out its trypanolytic activity in conjunction with IFNγ 

and NO. Studies in IFNγ knock out (KO) mice has also revealed a role for this 

cytokine in clearing infection, with these KO mice infected with T. brucei 

experiencing early mortality due to excessive parasitemia. Hence, TNF-α and 

IFNγ have been described to be involved in controlling parasitemia early in 

infection, but also involved in infection associated inflammatory complications 

[132].  

1.9 Chemokines and their receptors 

Chemokines, also known as chemotactic cytokines, are a group of over 50 

proteins with a molecular weight of about 8-10 kDa. Chemokines play a principal 

role in the recruitment and guidance of cells in development, homeostasis and 

inflammation. This group of proteins have about 20-70% homology at the amino 

acid sequence level, and are subdivided into four families based on the relative 

position of their cysteine residues. The cysteine residues in chemokines are 

important for maintaining their structural integrity.  

1.9.1  Nomenclature and classification of chemokines 

The chemokine sequences are characterized by having four conserved cysteine 

residues, and are classified based on the position of the first two cysteines. They 

are divided into four subfamilies; α (CXC), β (CC), γ (C), CX3C (δ). Chemokines 

bind to their receptors, which are G-coupled seven transmembrane domain 

receptors. Chemokine receptors have been named based on the chemokine class 

i.e. CXCR1, 2, 3, 4, and 5 (bind CXC chemokines); CCR1-9 (bind CC chemokines), 

XCR1 (binds C chemokine), and CX3CR1 (binds CX3C chemokine, fractalkine) 

[133, 134]. When chemokines are secreted, cells respond in a rapid and transient 

manner. Some chemokines do not partake in the recruitment of cells, for 

example the promiscuous chemokine receptor D6 and the duffy antigen-related 

chemokine receptor (DARC) but rather scavenge chemokines [135]. 
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1.9.2  Homeostatic and Inflammatory chemokines 

 Chemokines, in addition to being classified based on structure, can also be 

classified based on function. A group of chemokines known as inflammatory 

chemokines control the recruitment of effector leucocytes in infection, 

inflammation, tissue injury, and tumours. Inflammatory chemokines have a 

broad spectrum of activity and play a significant role in the innate immune 

system, through attraction of neutrophils, monocytes, macrophages, dendritic 

cells and natural killer cells [136]. A second group of chemokines that has been 

described are the homeostatic chemokines that help navigate leukocytes during 

hematopoiesis in the bone marrow, thymus, and during the initiation of an 

adaptive immune responses in secondary lymphoid organs such as the spleen and 

lymph nodes. Homeostatic chemokines are also involved in immune surveillance 

functions of healthy peripheral tissues [135].  

1.9.2.1  Homeostatic chemokines 

Homeostatic chemokines also known as constitutively expressed chemokines are 

also important for migration of antigen presenting cells (APCs) and lymphocytes 

to lymphoid organs, and can also be expressed under inflammatory conditions 

[137, 138]. For example, CCL17 and 27 are involved in skin homing, while CCL21 

which is expressed on the luminal side of high endothelial venules is involved in 

homing of T and B cells to the lymphoid organs. However, under inflammatory 

stimuli, CCL21 could be induced in the afferent lymphatics, hence boosting the 

numbers of DCs that arrive at the lymph node [139]. Homeostatic chemokines 

are important for regulation of basal leukocyte trafficking and regulate immune 

surveillance processes in the tissues such as homing of DC to the draining lymph 

node (dLN) [140-142]. In sum, homeostatic chemokines have a more 

monogamous receptor usage compared to inflammatory chemokines. 

1.9.2.2  Inflammatory chemokines in innate immunity 

Initiation of the innate immune system through the recognition of PAMPS or 

DAMPS by PRR results in production of inflammatory cytokines such as IL-1, 

interferons, IL-4, 5, 6, 13, 17 and chemokines. [143, 144]. Phagocytic cells such 

as neutrophils, monocyte/macrophages are recruited in the inflammatory 
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response through expression of chemokine receptors and respond to different 

chemoattractants (Figure 1.8). 

 

 

Figure 1-8 The role of chemokines in innate cell recruitment in the skin 
Chemokines orchestrate events that impact on cellular recruitment during the early phase of a 
microbial challenge or trauma to the skin. This results in the release of inflammatory cytokines or 
chemokines, which activates the endothelium, followed by the recruitment and activation of 
leukocytes critical for the innate immune responses such as neutrophils, monocytes, DCs, and NK 
cells. Some chemokines may also act directly on the pathogens as antimicrobial peptides e.g. 
CCL20, CXCL9, 11. Figure adapted from [144]. 
 

Neutrophils, which are the cells that arrive first at inflammation sites, respond 

to CXC ligands such as CXCL1, 5 and 8 via their expression of CXCR1 and CXCR2 

receptors. On the other hand, monocytes and other mononuclear cells express 

CCR1, CCR2, and CCR5 receptors and respond to their chemokine ligands CCL2, 3 

and 5 and arrive at sites of inflammation at later time points [137]. 

1.10  Cell recruitment during inflammation 

During tissue damage and inflammation, leukocytes are recruited from the 

blood, by mechanisms that involve selective leukocyte endothelial cell 
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recognition. This process is highly specific for the inflammatory stimuli, the 

stage of the inflammatory response and the tissue site involved. Examples 

include the specific recruitment of neutrophils during acute inflammation, and 

tissue selective interaction of lymphocyte subsets with high endothelial venules. 

Hence, activation of the endothelium plays an important role during leukocyte 

recruitment. This process has been demonstrated to occur both in vivo and in 

vitro [145], and in mouse models leukocyte accumulation is influenced by the 

endothelial stimulus [146]. Activation of the endothelium occurs through signals, 

delivered by receptors that recognize inflammatory, traumatic stimuli or 

oxidants. The vascular endothelium is diversified at different levels, consisting 

of large vessels, which differ from small vessels and capillaries, while the 

venular endothelium also differs from the arterial endothelium [147]. Leukocytes 

preferentially migrate through postcapillary venules due to lower shear stress, 

which is more favourable for leukocyte attachment than in capillaries or 

arterioles. Also the abundance of selectins such as P –selectin, induction of E-

selectin and vascular adhesion molecule-1 (VCAM-1), which are much more 

expressed during inflammation on postcapillary venules makes them preferred 

by leukocytes [148, 149]. The display of these selectins following activation of 

the endothelium mediates the other stages of leukocyte extravasation; capture, 

tethering and rolling.  

A summary of some of the leukocyte adhesion receptors and the ligands they 

bind to on activated endothelial cells are provided in table 1.2. The subsequent 

sections then give a description of the cells that are recruited in inflammation 

and their functions. 

Table 1-2 Leukocyte adhesion receptors and their ligands on activated 
endothelial cells 
Leukocyte adhesion 

receptor 

Endothelial ligand Function(s) 

PSGL-1 P-selectin Capture, Rolling 

L-selectin P-selectin, E-selectin,  Capture 
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α4β7 (unactivated) MadCAM-1 Rolling 

α4β7 (activated) VCAM-1/MAdCAM-1 Firm adhesion 

α4β1 (unactivated) VCAM-1 Rolling 

PECAM-1 PECAM-1 Emigration 

CD11a/CD18 (LFA-1) ICAM-1, ICAM-2 Firm adhesion, 

Emigration 

 

1.10.1 Neutrophils 

Neutrophils are the first line of defense and play a key role in the elimination of 

pathogens [150]. In addition to their microbicidal role, neutrophils are also 

crucial in wound healing and tissue repair [151, 152]. As a key component of the 

inflammatory response, neutrophils play an important role in recruitment, 

activation and interaction with APCs. Neutrophils also release chemotactic 

signals to attract monocytes and DCs, and influence the differentiation of 

macrophages either to a pro or anti-inflammatory state. Neutrophils follow 

chemotactic gradients produced by host (IL-8) and pathogens (e.g. fMLP; N-

Formylmethionyl leucyl-phenylalanine) in order to reach sites of infection [151]. 

Neutrophils have also been implicated in immune regulation, as a source of 

cytokines, such as IL-12, IL-10, IFNg and TNF-α, suggesting that they help bridge 

the innate and adaptive immune system [153]. Neutrophils are known to express 

PRRs e.g. FPR1 (Formyl peptide receptor 1), which is a seven transmembrane G-

coupled receptor that helps in neutrophil chemotaxis to sites of tissue damage 

and recognition of microbial moieties. Other PRRs expressed by neutrophils 

include all members of the TLR family, excluding TLR3, C-type lectin receptors 

dectin 1 (CLEC7A), CLEC2 (absent in mouse neutrophils), and cytoplasmic sensors 

of ribonucleic acids (RIG-1 and MDA5). These PRRs expressed by neutrophils are 

essential together with other lymphoid cell-derived signals to sense tissue 

damage and pathogens, which then activates the effector functions of 

neutrophils.  
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Neutrophils carry out their killing functions either through intra or extracellular 

means. When neutrophils encounter pathogens, they can phagocytose them, and 

the pathogens become encapsulated in the phagosomes. Following 

encapsulation, the pathogens are then killed using reactive oxygen species or 

antibacterial proteins such as cathepsins, defensins, lactoferrin and lysozyme 

[154, 155]. These antibacterial proteins are released from neutrophil granules 

either into phagosomes or the extracellular milieu. Hence, they can act both on 

intracellular or extracellular pathogens. In some infections, neutrophils can 

become highly activated and eliminate extracellular microorganisms through the 

formation of neutrophil extracellular traps (NETs) [156]. NETs are composed of 

core DNA elements bound to histones, proteins and enzymes such as 

myeloperoxidase and neutrophil elastase. NETs can trap pathogens, preventing 

their spread and subsequently exact a direct killing effect through antimicrobial 

histones and proteases [157]. NETs have been described to be formed in 

Staphylococcus aureus [158], Candida albicans [159], and Leishmania infections 

[160]. 

In addition to their innate immune functions, individuals with insufficient 

neutrophils (neutropenia) have been shown to have wounds that heal poorly or 

with lethal outcomes [161], and total absence of neutrophils could lead to 

death. Inherited neutrophil defects such as severe congenital neutropenia (SCN), 

chronic granulomatous disease (CGD) and myeloperoxidase (MPO) deficiency 

exemplify the importance of neutrophils in various infectious and non-infectious 

conditions. For example in CGD caused by mutations in the genes encoding the 

subunits of NADPH oxidase complex, has an incidence around 1/200, 000 [162]. 

These individuals have phagocytes that are fail to kill ingested pathogens, due to 

inability to effectively produce superoxide, leading to severe infections mainly 

by Aspergillus and Staphylococcus species [162, 163]. CGD patients also exhibit a 

state of chronic immune activation, making them more prone to autoimmune 

disorders such as rheumatoid arthritis, and systemic lupus erythematous [163, 

164].  

In intracellular parasitic infections such as Leishmania major in mouse models, 

neutrophils recruited to sites of infection have been described to enhance 

pathogenesis. Depletion of neutrophils in vivo using a monoclonal antibody (anti-

Ly6G), appeared to decrease the parasitemia in mouse models of Leishmania 
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major infections [165, 166]. This suggested that despite the fact that the 

primary role of neutrophils was killing foreign substances, and they were the 

first cells to be recruited during tissue injury, inflammation, or infection, some 

parasites have evolved mechanisms to by-pass neutrophil killing functions and 

use them to thrive in its host. 

1.10.2  Monocytes 

Monocytes are mononuclear leukocytes with a bilobed nucleus, which are bone 

marrow derived and along with other cells such as neutrophils, eosinophils, mast 

cells and natural killer cells, are part of the innate immune system. In addition 

to the bone marrow, the spleen also serves as an important reservoir of 

monocytes, and in myocardial infarctions, the spleen and not the bone marrow is 

the source of monocytes [167-170]. Monocytes can also migrate to other tissues 

of the body such as the lungs, spleen, lymph nodes, liver, subcutaneous tissue 

and peritoneal cavity [168, 171]. Recruited, inflammatory monocytes may also 

support dendritic cells in the transport of antigens to the draining lymph nodes 

[172]. In mice, monocytes express the lineage markers CD11b, F4/80 and in 

humans CD11b, CD14, and CD11c [167]. Monocytes express MHC class I and II and 

can also present antigen to T cells in infection [170]. The plasticity of monocytes 

has been shown by their ability to produce different subsets of inflammatory DCs 

such as Tumour necrosis factor and Inducible nitric oxide synthase (iNOS)-

Producing (Tip)-DCs, and Ly6Chi DCs [171]. Two monocyte subsets have been 

characterized in mice using adoptive transfer technology, based on their 

expression of the lineage marker GR1 (Ly6C and Ly6G), CCR2 and the fractalkine 

receptor (CX3CR1). These two classes of monocytes in mice were similar to those 

identified in human blood, and are summarised in table 1.3 with the phenotypic 

markers they express. Inflammatory monocytes in mice, which home to sites to 

injury, have the classical expression Ly6Chi CCR2+ CX3CR1lo, which is similar to 

CD14+ monocytes in humans.  

Table 1-3 Monocyte subsets in Mouse and human blood 
 Mouse monocyte subsets Human monocyte 

subsets 

Subsets   
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Inflammatory 

Resident/ patrolling 

CD11b+Ly6Chi CCR2+ 
CX3CR1- 

CD11b+Ly6Clo CCR2- 
CX3CR1+ 

CD14++ CD16- 

CD14dim CD16+ 

Percentage of cells 

Inflammatory 
monocytes 

Resident monocytes 

 

50% 

 

50% 

 

90% 

 

10% 

Morphology and size 

Inflammatory 
monocytes 

Resident monocytes 

 

Granular, 10-14 µm 

 

Less granular, 8-12 µm 

 

Granular, ~18 µm 

 

Less granular,~14µm 

 

Non-classical or resident murine monocytes have the expression Ly6Clo CCR2- 

CX3CR1hi, similar to CD14dim CD16+ human monocytes. Patrolling or non-classical 

monocytes are involved in tissue surveillance roles in the absence of 

inflammation, and they detect infection or injury [173]. In protozoan infections 

such as orally transmitted toxoplasmosis, rapid influx of inflammatory monocytes 

to the gastrointestinal tract acts as the first line of defence in infection (see 

table 1.4 for summary). Mice that were CCR2- deficient were more susceptible to 

infection by T. gondii, which further supports the evidence that CCR2 was 

crucial for emigration of inflammatory monocytes to sites of infection [174]. In 

African trypanosomiasis, inflammatory monocytes appeared to have a pathogenic 

role. Inflammatory monocytes were observed to accumulate in the liver, spleen, 

and lymph nodes of infected mice [175].  

Table 1-4 The role of monocytes during protozoan infections 
Protozoan 
parasite 

Localisation 
in host cells 

Disease caused Site of 
infection 

Role of 
monocytes 

T. Extracellula African Liver Tip-DCs 
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brucei[176] r trypanosomiasis 

P. 
chaubaudi 
[177] 

Intracellular Malaria  Spleen TNF and iNOS 
producing 
monocytes 

L. major[178] Intracellular Cutaneous 
leishmaniasis 

Skin Effector 
monocytes/ 

iNOS 
producing 
DCs 

Toxoplasma 
gondii[179] 

Intracellular Oral 
toxoplasmosis 

Peritoneum Inflammatory 
macrophages 
and DCs, TNF 
and iNOS 
producing 
monocytes 

 Adapted from [175-180] 

During trypanosomiasis, the presence of Tip DCs in the liver caused necrosis and 

apoptosis, which resulted in the exacerbation of disease and reduced survival of 

infected mice. In the absence of CCR2, there was reduced pathology in infected 

mice, due to lower numbers of Tip DCs, which was related to an increase in the 

number of inflammatory monocytes in the bone marrow and decrease in the 

liver [181]. The role of inflammatory monocytes in other parasitic infections 

such as, Plasmodium chaubaudi, visceral, and cutaneous leishmaniasis have also 

been studied in vivo using mice models [177, 182]. 

1.11  Host parasite interactions in the skin  

Studies with a number of pathogen models have identified that pathogenesis is 

critically influenced by the earliest interactions between host and pathogen. 

This has been particularly true in experimental Plasmodium infections, where 

analysis of the initiation of infection and the associated host response has 

provided novel and fundamental biological insights challenging existing dogma. 

Imaging mosquito delivered, Plasmodium berghei infections in mice has revealed 

that sporozoites are initially deposited in skin and subsequently find and invade 

blood vessels through their ‘gliding’ behaviour [183]. These studies also reveal 
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the surprising quantity of sporozoites that progress to the lymphatic system 

where they can undergo extra-hepatic transformation to merozoites [184], and 

have identified the skin draining lymph node as the site where the host’s 

adaptive immune response is initiated [185].  

1.11.1  Current knowledge about events in the skin following 
 African trypanosome deposition 

In African trypanosomes, very little is known about the key events at the bite 

site following the bite of an infected tsetse fly. Most research on trypanosome 

infections have used intravenous or intraperitoneal injections of the bloodstream 

stage of the parasite into mice, which is not the route of infection in nature, and 

also not the appropriate infective stage of the parasite. These studies have also 

focussed on what happens when the parasite is in the blood, hence information 

that we have in abundance about the immune response is mostly on adaptive 

immunity.  

 Following the bite of an infected tsetse fly, metacyclic stage trypanosomes are 

released into the dermis of the skin, along with the saliva of the tsetse fly that 

contains immunomodulatory factors and anticoagulants, which are important in 

tsetse feeding and infection of its host [186, 187]. Data suggests that the tsetse 

saliva biases the host immune system towards a Th2 associated cytokine 

response (IL-4, and IL-10), inhibiting proinflammatory cytokines (TNF-α, IL-6, IL-

12) that have trypanocidal effects in vivo [188]. While the infective metacyclic 

trypanosomes are in the dermis of the skin, they proliferate and become 

established. A local skin reaction about 2-3 mm in diameter, described as a 

chancre develops within 5-7 days following infected tsetse bites in humans and 

ruminants. The chancre also serves as a focal point for interactions between 

trypanosomes and host immune cells, as evidenced by the presence of 

neutrophils, macrophages, lymphocytes and trypanosomes in the chancre of 

infected mammals [13].  

Previous reports on the cellular infiltrate in the skin following infected tsetse 

bite have observed the cellular events in the skin after the onset of the chancre 

(from day 5). In experiments that have been carried out in large animals such as 
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goats, T. congolense was still present in the dermis of the skin at day 8 post 

tsetse bite, with parasites occasionally found between hair follicles [189]. During 

day 8 post infected tsetse bite, histological characterisation reveals the cellular 

infiltrate in the skin to comprise of small lymphocytes, numerous neutrophils, 

but few macrophages and very few trypanosomes. At day 11 post infection, 

aspirates taken reveal the presence of predominantly large lymphocytes, 

lymphoblasts, numerous macrophages, trypanosomes and few neutrophils [11, 

190]. To date, the information we have on the events in the skin following 

interactions of the parasite with the host mostly relates to events that coincide 

with the appearance of the parasites in the blood. Therefore information is 

lacking on the very initial interactions of parasites, and host cells at the bite 

site. 

1.11.2  How do African trypanosomes get into the 
 bloodstream? 

Following the deposition of the metacyclic trypanosomes in the skin and 

proliferation in the skin, trypanosomes begin to appear in large numbers in the 

lymph, 2-3 days before detectable parasitemia. Cannulation of afferent and 

efferent lymphatics in large animals such as goats has been able to establish the 

importance of the lymphatics in parasite dissemination into the blood stream 

from the site of inoculation. These observations of parasites in the lymph before 

detection in the blood have been demonstrated using T. congolense and T. b. 

brucei infected tsetse flies [11, 189, 191, 192]. Hence, the lymphatic system has 

been postulated to be a principal route of parasite entry into the bloodstream 

when establishing infections with cyclically transmitted parasites. 

1.12  Lymphatic system 

The lymphatic system is a uni-directional system of conduits that helps in 

draining excess fluids in the interstitial, and also serves immunological 

functions. The draining function of the lymphatic system helps to regulate tissue 

fluid balance, which then complements the functions of the blood vascular 

system. Although there is an interdependence of the blood and lymphatic 

vasculatures for maintenance of tissue homeostasis, they are structurally and 
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functionally distinct entities. Lymphatic vessels help direct leukocytes and 

antigens in tissues to the lymph nodes, which is critical for the initiation of an 

immune response [193]. However, we now know that the diverse structure of 

lymphatic capillaries may explain some of the differences observed between the 

migratory patterns of cells. 

1.12.1  How the structure of lymphatic capillaries relates to 
 its function 

Lymphatic capillaries are blind ended vessels, bounded by an endothelial cell 

layer and optimised for uptake of fluid, macromolecules, and cells [194]. 

Compared with blood capillaries, lymphatic capillaries have a more irregular 

morphology with a very narrow endothelium (Figure 1.9), and an incomplete 

basement membrane with sparsely populated pericytes. A distinguishing trait of 

lymphatic capillaries is their overlapping junctions or button-like junctions, 

formed by the superimposition of adjacent lymphatic endothelial cells.  
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Figure 1-9 Comparison of the structure and function of lymphatic vessels 
Comparison of the structure of the blood vessel to the lymphatic vessel reveals that the basement 
membrane (BM) of lymphatics is incomplete with few pericytes (P). APC, antigen presenting cell; T, 
T cell; D, dendritic cell, AF; anchoring filaments. Adapted from [194]. 
 

These button-like junctions can open due to increases in interstitial fluid, 

thereby permitting the passage of fluid and particles into the vessels. Once fluid 

enters the vessels, the pressure in the vessel decreases, the junctions close and 

this prevents a back flow of the fluid into the interstitium [195, 196]. 

1.12.2  Leukocyte migration through lymphatic vessels 

The cells that migrate through the lymphatics to the lymph node include T cells 

and myeloid cells [197-199], the majority of which are DCs. Due to their 

importance in the initiation of adaptive immunity, DC trafficking towards the 
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lymph node has been extensively studied [200]. Under steady state, epidermal 

resident CD206+ Langerhans cells, as well as dermal resident DCs continuously 

migrate to the LN at modest intensities.  

During inflammation, migration of DCs to lymphatics is significantly increased in 

response to chemotactic signals induced by the products of inflammation [201]. 

The migration of DCs to the lymphatic vessels is largely driven by CCR7, and the 

expression of its ligand, CCL21 on lymphatic vessels is strongly upregulated in 

the presence of pro-inflammatory cytokines such as TNF-α [202]. There is also 

experimental evidence to suggest that as lymph flow increases during 

inflammation, there is also a concomitant increase in CCL21 expression [202]. 

The ingress of DCs into the lymphatic vessels occurs through the basement 

membrane of initial lymphatics in close proximity to CCL21 depots. Inside the 

lymphatics, DCs crawl directionally on the luminal side of the capillary [203]. 

These data provide a strong correlation with DC migration along areas of dense 

CCL21 depots on lymphatic vessels [204]. 

1.13 Host- trypanosome interactions 

African trypanosomes spend a large part of their life in the mammalian 

bloodstream [205], being extracellular parasites and interact with the host 

immune system. In HAT caused by T. b. rhodesiense and T. b. gambiense, the 

parasites are able to evade lysis by human serum apolipoprotein (APOL1), which 

is crucial in innate immunity against African trypanosomes. APOL1 resides in two 

fractions, trypanolytic factors 1 (TLF-1) and 2 (TLF-2) [206]. APOL1 kills 

trypanosomes after insertion into lysosomal membrane. TLF-1 binds to the 

parasite through interaction with the haptoglobin-related protein (HPR) and the 

haptoglobin haemoglobin receptor (HpHbR) in the flagellar pocket of the 

parasite, while TLF-2 interacts with HpHbR through an alternative route [207, 

208]. T. b. rhodesiense evades killing in human serum through interaction of 

serum resistance associated gene (SRA) with APOL1 in the lysosome preventing 

lysis [60]. While in T. b. gambiense, resistance to TLFs is via a hydrophobic β 

sheet of the T. b. gambiense specific glycoprotein (TgsGP), which prevents 

APOL1 toxicity and induces the stiffening of the membranes [209]. In AAT caused 

by T. b. brucei and most trypanosomes, these paraistes are susceptible to serum 
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killing by APOL1. The section below highlights some of the mechanisms 

employed by T. brucei in evading the immune response.  

1.13.1 Variant Surface Glycoprotein Coat 

As a result of being exposed, a trypanosome’s cell surface serves as the primary 

target against immune responses from the host. African trypanosomes are 

completely covered with a monomolecular layer of a single species of a 

glycoprotein coat [210]. Trypanosomes are able to persist in the bloodstream of 

mammals by replacing this monolayer of VSG coat that shields it from the 

immune effectors of the host [211, 212]. The switching of their VSG coat is a 

mechanism that has been employed in order to thrive for long-lasting periods, 

enhancing transmission to the tsetse fly, although also resulting in pathological 

manifestations. Trypanosomes undergo VSG switching, up to 10-3 switches per 

cell division, allowing it to produce unique VSGs that the immune system cannot 

recognise when antibodies against the currently expressed VSGs are produced 

[213]. The high switch rate of the VSG coat has also made it difficult to develop 

effective vaccines against human and African animal trypanosomiasis. 

1.13.2  Immune suppression in African trypanosomes 

Immunosuppression has been observed in humans and mammals, although most 

of our understanding of immunosuppression comes from experimental data in 

mice. African trypanosomiasis, whether in humans or experimental inoculations 

in animals, presents with numerous alterations in the normal functioning of T 

and B cells. Immune suppression in African trypanosome infected livestock 

results in a reduced ability to mount an effective humoral response against non-

trypanosome antigens, depressed T cell proliferation, reduced cytokine 

production, most notably IL-2 and phenotypic changes to monocyte effector 

functions [214, 215]. Also, immune suppression in African trypanosome infected 

mice is also responsible for the inefficacy of other administered vaccines such as 

diphtheria, tetanus and pertussis. Failure to control parasitemia levels and 

ineffective vaccination regimes against other infections are hallmarks of immune 

suppression in African animal trypanosomiasis [216].  
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1.14  African Trypanosomes are highly motile 

African trypanosomes derived the name of their genus Trypanosoma from two 

Greek words Trypanon and soma, meaning auger and body, respectively. The 

name was based on the observation of their corkscrew motion in mammalian 

blood. Trypanosomes have an undulating membrane, which is the flagellum and 

their motility has been the subject of interest over the years [19, 217-219]. The 

flagellum of T. brucei has the canonical ‘9+2’ axoneme, which serves as the 

platform for the assembly of dynein motors that regulate the flagellar beat 

[220]. Motility of African trypanosomes is driven by the flagellar wave that is 

initiated at the tip of the flagella towards the base of the flagellum [221]. The 

importance of motility for parasite transmission has also been recently 

demonstrated in T. brucei, where the propulsive motility of the parasite is 

essential for infection of the tsetse fly [22]. Owing to the fact that the flagellum 

is an essential organelle, which has also been directly linked to parasite 

pathogenesis, chemotherapeutic approaches have also begun to investigate the 

possibility of the flagellum as a drug target [220, 222-224]. Trypanosomes move 

through the propagation of the flagellar wave along the cell, allowing the cell to 

move in the surrounding fluid through the beat propagation of the flagellum in 

the opposite direction. Thus, three classic descriptions of trypanosome motility 

have been described, which presumably confer advantages to the parasite in 

particular scenarios. However the exact mechanisms guiding motility has yet to 

be understood. In the first model, using state of the art high-speed microscopy 

imaging, analyses of the movement of bloodstream form T. brucei parasites 

were carried out in liquid cultures, and by simulating the bloodstream 

environment. In their experiments, it was shown that the tip of the flagellum 

moves faster than the posterior of the cell [225, 226]. In the second model, 

mathematical models were used to propose a plane rotational model of motility 

in African trypanosomes. This was based on the observation that the cell body 

rotates as it moves forward, with the rotation of the cell body occurring 

uniformly in an anticlockwise direction. The plane rotational model suggests that 

the flagellum beats in a planar fashion, and the beats become helical as it moves 

forward due to physical constraints from the attached cell body [227]. This 

proposition of a planar model contrasts previous reports of a helical model for T. 

brucei and other flagellated protists [226]. The third model for trypanosome 
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motility was described as a bihelical model. In this model, the flagellar 

waveform alternates between left-handed and right-handed helical waves, 

which cause the trypanosome body to alternate in anti-clockwise, and clockwise 

directions [226]. Bihelical motility has also been observed in the bacterium 

Spiroplasma melliferum and Plasmodium berghei [228, 229].  

1.14.1 The role of motility in African Trypanosomes 
 pathogenesis 

In the tsetse fly, trypanosomes have to traverse between different 

environments, e.g. from the midgut to the salivary gland [18]. In order to arrive 

at the salivary gland from the alimentary canal, parasites travel a distance that 

is estimated to equal the entire body length of the tsetse fly, and must 

penetrate the proventriculus and peritrophic membranes. Available data 

suggests that some of the crossing events in the tsetse fly require active parasite 

motility [230]. In the mammalian host, following the deposition of motile 

metacyclic parasites into the skin, the parasites need to navigate their way 

through the crowded environment of the skin [226, 231]. The role of the 

flagellum very early on is yet unclear, but might be crucial for entry into the 

lymphatic vessels. Despite the potential role of the flagellum in pathogenesis, 

only one study to date has directly investigated the contribution of motility 

mutants in establishing infection [232].  

One major challenge in studying the role of motility mutants in trypanosome 

infections has been the inability to generate viable mutants. However, using loss 

of function point mutants, instead of depleting proteins through RNAi, a mutant 

with a defect in motility was generated. This technique allowed the generation 

of bloodstream form mutants that had its outer dynein structure intact and 

viable. Using this mutant, it was demonstrated that mutants that had their 

motility fundamentally altered, showed no difference in patency, gross 

pathology, and lethality between motility mutants and wild type blood stream 

form T. b. brucei 427 strain. However, a major limitation of this study was that 

infection was carried out using the intraperitoneal route of injection; secondly 

the mutants still retained some residual motility, which may be sufficient for the 

parasites to establish infection [232]. Despite these findings, trypanosome 
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motility is generally agreed to be essential for penetration of the blood brain 

barrier, and invasion of the central nervous system (CNS) [233-237]. Also, 

parasite uptake by the tsetse fly may require motility, in addition to migration 

through the tsetse fly in order to establish mature infections in the salivary 

gland [22, 238, 239].  

In addition, through the flagellar pocket and endosomal system, T. brucei has 

optimised endocytosis and recycling of VSGs as an adaptation to its unique 

lifestyle. During infection in the blood stream, anti-VSG antibodies bind the 

surface of the parasite, which can effectively kill the parasite via complement-

mediated lysis. Parasites can use the hydrodynamic forces generated by the 

flagella to sweep anti-VSG antibodies to the posterior of the cell into the 

flagellar pocket where they are endocytosed [240]. Anti-VSG complexes are then 

degraded and intact VSGs recycled back to the surface via RAB11b recycling 

endosomes [241, 242]. In bloodstream form T. brucei, the parasites are able to 

turn over back to the parasite’s surface the entire VSG pool in approximately 12. 

5 mins [243]. 

1.14.2 Flagellar pocket and host-parasite interactions 

The flagellar pocket is the site of exchange of macromolecules between the 

parasite and its environment. For example, the parasite takes up host transferrin 

as a source of iron, but can also take up trypanolytic factors that are present in 

the host serum [207, 244, 245]. The flagellum also releases proteins that 

modulate virulence in the mammalian host. For example, 

glycophosphatidylinositol-phospholipase C (GPI-PLC) is required for virulence in 

pleomorphic trypanosomes (parasites that can differentiate from the 

bloodstream form and complete its life cycle in the tsetse fly). The role of GPI-

PLC in virulence was demonstrated in mice infected with parasites lacking GPI-

PLC, which survived longer and gave lower parasitemia [246]. GPI-PLC also 

facilitates differentiation of parasites from blood stream form to the tsetse 

procyclic stage [247]. Other flagellar proteins, which also serve as virulence 

factors, such as calflagins, metacaspase 4, and the expression site associated 

gene 4 (ESAG4) have further shed light on flagellar and host-parasite interactions 

[248-250]. 
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1.15  Imaging host-parasite interactions in vivo 

Advances in molecular biology through the use of fluorescent protein reporter 

genes coupled with advances in microscopy, have facilitated further 

understanding of parasite behaviour in vivo and in vitro. The availability of 

transgenic mice expressing cell specific fluorescent reporters have also helped in 

understanding the interaction of parasites with host cells in vivo [251]. These 

approaches are important in identifying new strategies to solve the disease 

burden posed by protozoan parasites such as Leishmania spp., Plasmodium spp., 

and Trypanosoma spp. Conventional approaches for immunological studies, such 

as immunohistochemistry and flow cytometry, only give a snap shot of the 

events that occur and are unable to give exact spatiotemporal information. 

Microscopy provides tools to enable dynamic analysis of the cellular events that 

take place; in the case of a vector bite, specifically providing the ability to 

analyse aspects such as parasite entry into the skin and egress from the bite 

site, and similarly, location and dynamics of interactions with host immune cell 

populations.  

1.15.1 Bioluminescence imaging 

Bioluminescent imaging has been applied in testing drug efficacy and drug 

discovery for African trypanosomiasis and Leishmaniasis. Introducing firefly 

luciferase into protozoan parasites has made it possible to assess their 

localisation in their hosts, their proliferation over time and clearance when 

drugs are administered. The reaction of the luciferase enzyme with its substrate 

luciferin culminates in the release of photons, which is then detected by a high 

sensitivity cooled charge-coupled device (CCCD) camera. This approach is 

sensitive enough to allow whole body imaging of mice and localisation of the 

signal in specific tissues and organs. For example, testing efficacy of drugs in 

models of Stage 2 African trypanosomiasis takes approximately 180 days, but 

with in vivo bioluminescent imaging, the time can be reduced to 30 days [252]. 

In addition, novel information has been gained through these approaches on the 

dissemination of African trypanosomes and the location and dynamics of 

recrudescence after incomplete drug therapy [237, 252, 253]. In vivo 

fluorescence imaging has also been applied in similar ways to perform drug 
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screening, using GFP expressing L. major or L. donovani, and EGFP expressing L. 

amazonensis [254, 255]. Bioluminescent imaging has also been applied in 

understanding the development of Leishmania through its sand fly host using 

RFP-expressing L. major parasites [256, 257]. The introduction of red-shifted 

luciferase and fluorescent proteins has also helped in reducing loss of signal due 

to tissue absorption [258, 259]. The inability to image deeper into tissues with 

this technique, and the lack of resolution to visualise interactions at the cellular 

level, means that to address both of these issues necessitates the use of an 

optimised fluorescent microscopy approach such as multiphoton laser scanning 

microscopy (MPLSM).  

1.15.2 Fluorescence microscopy 

In order to overcome the challenges posed using bioluminescent approaches in 

imaging, fluorescence microscopy has provided a viable alternative. In contrast 

to bioluminescence approaches that require the availability of a substrate to 

execute the enzymatic reaction resulting in photon emission, fluorescent 

microscopy uses a single wavelength to excite a fluorescent molecule, and then 

as the excited electrons decay back to their ground state, detects emitted 

photons at a specific wavelength.  

1.15.3 Epi-fluorescent microscopy 

Epifluorescence microscopy allows the visualisation of cells or parasites using a 

broad excitation and detection system to capture fluorescence emission from 

samples. However this approach also collects out of focus light emitted above 

and below the focal plane, making quantitative cell tracking impossible. While 

software deconvolution does allow some correction for out of focus light this is 

very difficult to apply in complex 3- dimensional (D) specimens and is prone to 

artefact generation [260, 261]. This limits its use for investigating in vivo 

parasite host interactions for immunological studies. 

1.15.4 Confocal microscopy 

Confocal microscopy allows the visualisation of interactions both in 3 and 4 

dimensions, that is, in space and time. This approach relies on high power (laser) 
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illumination of the specimen, and uses a pinhole to reject out of focus light 

emitted from the sample [262]. While laser scanning microscopy and 

subsequently high-speed spinning disk confocal microscopy have been used for in 

vivo imaging of host/parasite interactions [183], the high energy excitation light 

required due to the low efficiency recovery of light due to the pinhole causes 

cell damage and is limited in depth to 50 microns below the tissue surface [262].  

1.15.5 Multiphoton laser scanning microscopy (MPLSM)  

The development of MPLSM has been an important tool, which allows long term 

in vivo imaging, at deeper penetration depths, without the issue of phototoxicity 

associated with other single photon imaging approaches. MPLSM employs the 

physical property of a fluorochrome to be excited by near simultaneous 

absorption of two lower energy, longer wavelength photons [263]. The only 

place that the sample photon density is sufficient to achieve this process is at 

the focal point of the objective lens. This allows the MPLSM to recover all of the 

emitted light from the sample, with the knowledge that it was emitted from a 

single point in space, negating the requirement for a pinhole. Furthermore, 

longer wavelength, infra red light penetrates tissue more effectively allowing 

imaging depths of hundreds of microns into tissue, with minimal tissue damage 

[264]. As with other in vivo microscopy approaches, MPLSM also requires surgical 

exposure of the tissue of interest. MPLSM has helped in understanding of the 

anatomy and architecture of the immune system, and the role that the immune 

architecture may play in infectious diseases. MPLSM has been applied in 

visualising cellular interactions in Leishmania, Plasmodium, as well as viral and 

bacterial infections. Conventional techniques such as flow cytometry and 

immunohistochemistry have revealed the identity of inflammatory cells, but 

MPLSM has been able to reveal the spatial and temporal nature of single cells in 

vivo. For example, MPLSM studies in Leishmania have demonstrated that 

neutrophils were rapidly recruited to the bite site, where they formed a plug to 

close the sand fly bite, irrespective of the infection status of the sand fly, [165, 

265]. With the MPLSM, the role of LCs and DDCs were investigated in a bacteria 

model of infection in the skin, using CD11cYFP transgenic mice. It was 

demonstrated that LCs were static, but carry out immunosurveillance functions 
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with their dendrites, and that DDCs migrate and respond to infection through its 

tissue surveillance activities [266].  

1.16  Project aims 

As already discussed, the very early immunological events following tsetse 

deposition of trypanosomes in skin have yet to be investigated in detail. In 

addition, the host parasite interactions that occur in the skin and cell to cell 

interactions/migration of the parasites through the lymphatic vessels as a result 

of the deposition of trypanosomes remains unknown. Understanding these 

interactions/events is important in designing new therapeutic approaches and 

also gaining an in-depth understanding of how trypanosomes disseminate into 

the bloodstream. In order to illuminate these grey areas, I hypothesised that 

‘mammals mount a potentially effective innate immune response against 

trypanosomes at the site of tsetse bite, and understanding these events would 

help promote our understanding of parasite dissemination. To test this 

hypothesis, the following aims were set out: 

1. To establish a model for infecting tsetse in vitro and demonstrate that the 

ear pinna is a valid route of infection in mouse models. Following the 

establishment of the model, I set out to quantify parasite dissemination 

from the bite site to the draining lymph node prior to systemic infection. 

The results from these experiments are discussed in chapter 3. 

2. To evaluate the inflammatory profile in the skin, characterising the 

mediators of inflammation and the cells that are recruited following 

tsetse fly bites. The results are described in chapter 4. 

3. To visualise the parasites in the skin, examine their interactions with 

lymphatic vessels to attempt to understand the mechanisms of entry into 

the lymphatics in vivo. The results are described in chapter 5. 

4. To reveal functional importance of the cells identified in aim 2 through 

depletion studies. The results are described in chapter 4. 
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2.1 Mice 

For all immunological studies, female C57Bl/6 6-10 weeks old mice were 

obtained from Harlan laboratories (Bicester, UK). For obtaining infected mouse 

blood for tsetse fly feeds, female ICR or BALB/c mice aged 6-10 weeks 

purchased from Harlan were used. Mice were given one week to acclimatise in 

either the Joint Research Facility or Central Research Facility of the University 

of Glasgow and kept in conventional cages. LysM-GFP [267] and Prox-1 mOrange 

mice [268, 269] used for intravital microscopy were bred in house. Transgenic 

mice (Prox-1 mOrange, and LysM-GFP) used in these study had constitutive 

expression of the fluorescent reporters. All procedures were carried out in 

accordance with the United Kingdom Home Office regulations under the 

authority of the appropriate project and personal licenses. This study complied 

with the Animal Research: Reporting of In vivo Experiments (ARRIVE) guidelines 

[270]   

 

2.2 Trypanosome strains and culture 

2.2.1 Trypanosome strains  

Pleomorphic T. b. brucei strains STIB247 (hereafter referred to as ‘STIB247’), 

isolated in 1971 in the Serengeti national park (Tanzania) from a hartebeest 

(Alcelaphus buselaphus), and GVR35 were both used in this study [271, 272]. 

GVR35 was isolated from a wildebeest also in Serengetei in 1966, and this 

stabilate produces chronic infection in mice, and has been used to test the 

trypanocidal effects of drugs on trypanosomes in the CNS [272, 273]. Transgenic 

247 and GVR35 expressing mCherry [234, 252] were supplied as a kind gift from 

Dr Elmarie Myburgh and Prof Jeremy Mottram, Wellcome Trust Centre for 

Molecular Parasitology (WTCMP), University of Glasgow.  

 

2.2.2 Culturing bloodstream (BSF) T. b. brucei 

In vitro culture of bloodstream form T. b. brucei 247 was carried out at 37 °C in 

a humidified 5% CO2 incubator using modified HMI-9 medium [274] (see appendix 

I for details of media and general solutions) supplemented with 20% Serum Plus 
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(Sigma-Aldrich, Dorset, UK), 20% FBS gold (PAA Laboratories, Buckinghamshire, 

UK), and T. b. brucei 247 mCherry were maintained in culture media in the 

presence of puromycin (0.15 µg/ml). Parasites were allowed to grow to a cell 

density of 1-2 x 106, at which point the parasites were sub-passaged by adding 1-

2 x 105 trypanosomes to 5 ml of fresh culture media. Blood stream form (BSF) 

cell density was determined microscopically using a bright line haemocytometer 

(Hausser Scientific, Horsham, USA). The number of parasites in a 10 µl aliquot of 

culture was determined by counting the parasites under a 1 mm square area and 

multiplying by 104 to obtain the number of cells per ml.  

 

2.2.3 Trypanosome stabilate preparation 

For long-term storage of trypanosomes, stabilates were prepared by addition of 

10% w/v sterile glycerol to culture with a cell density of approximately 2 x 106 

cells /ml. One ml aliquots were then placed in 1.2 ml cryotubes (Nunc, Paisley, 

UK), wrapped in cotton wool, frozen at -80 °C overnight and then transferred to 

liquid nitrogen. Records were entered with the appropriate stabilate numbers in 

the stabilate database. For stabilate retrieval from liquid nitrogen, frozen cells 

were defrosted at 37 °C, and placed in 5 ml modified HMI-9 culture media for 3-

4 days before continuous passage as described above.  

 

2.3 Maintenance and infection of Tsetse flies 

2.3.1 Tsetse Flies (Glossina morsitans morsitans) 

Tsetse fly- Glossina morsitans morsitans pupae were purchased from the 

Institute of Zoology, Slovak Academy of sciences, Slovakia (the contact person 

was Dr Peter Takac; Peter.Takac@savba.sk). Pupae were dispatched wrapped in 

cotton wool and placed in a sealed petri dish with holes on the lid to allow 

breathing. When pupae arrived, usually in batches of 400, approximately 50 

pupae per meshed cage were kept at 25 °C and 70% relative humidity until 

eclosion. Newly emerged tsetse flies were then fed with blood meals (uninfected 

or infected with T. b. brucei). 
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2.3.2 Membrane feeding of tsetse flies 

The membrane feeding system for tsetse flies used in this project has been 

previously described [275] (Figure 2.2). Newly hatched flies were fed within 24-

48 hrs with the first infected blood meal. Two – three ml of fresh infected blood 

or thawed cryostabilates containing a majority of short stumpy stage 

trypanosomes was mixed with 18 ml of defibrinated horse blood (TCS 

Biosciences, Buckingham, UK) to feed 6 cages containing 50 tsetse flies each. 

Trypanosome infected blood meals were repeated thrice at one-day intervals, 

using a mixture of fresh infected blood and frozen fly feeds.  

 

2.3.3 Maintenance of tsetse flies 

The tsetse fly room (Figure 2.1) was maintained at a temperature of 25 °C, 

relative humidity 65%. The lights in the room are on 12 hours on/12 hours off 

cycle. Following the T. b. brucei infected feeds, tsetse flies were then 

maintained on defibrinated sterile horse blood by feeding 3 times a week 

(Mondays, Wednesdays and Fridays). This was carried out by pouring the 

defibrinated horse blood on a pre-sterilised metal tray on a hot plate pre-heated 

to 37 °C, covering with a silicone membrane, and tsetse flies in meshed drum 

cages were then fed [276]. 
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Figure 2-1 Tsetse fly facility 
Tsetse flies are kept in meshed drum cages, and placed in trays within a confined room at 65% 
relative humidity, 25 °C. 
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Figure 2-2 Tsetse fly feeds. 
In order to feed the tsetse flies routinely post infected blood feeds, a hot plate was pre-heated to 37 
°C, trays sterilised, and 20 ml defibrinated horse blood poured on each tray, covered with silicone 
membrane and tsetse flies in drum cages placed on the trays for feeds. 
 
 

 

Figure 2-3 Tsetse fly screening for infection 
Following 27 days post-infected feeds, tsetse flies were separated into universal tubes by cooling 
down at 4 °C for 5 mins in a refrigerator, and tsetses allowed to recover in the universal tubes at 
room temperature. Tsetse flies were then fed the day after separation into universal tubes with 
defibrinated horse blood. Two days post separation, tsetses were made to probe for approximately 
10 mins on a warm glass slide, on a hot plate pre-heated to 37 °C, so that tsetse flies may extrude 
their saliva on the glass slide. Saliva containing extruded saliva was then viewed under the 
brightfield microscope. 
 
Tsetse flies were maintained for 27 days for infections to mature before 

screening commenced. Once the 27 day period of maturation of parasites was 

over, tsetse flies were fed a day before, then cooled at 4 °C for 5 mins, and 

separated into universal tubes using forceps. Twenty-four hours post separation 

into universal tubes, tsetse flies were fed again with sterile defibrinated horse 

blood, and feeding of tsetse flies was increased to daily intervals, because tsetse 

flies were inclined to feed less when in individual tubes. Additionally, leaving 
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the tsetse flies in individual tubes for at least 10 mins on the hot plate greatly 

increased the number of tsetse flies that successfully fed as opposed to leaving 

for a shorter period of 5 mins.  

 

2.3.4 Screening tsetse flies for Trypanosome infections 

On days 28-30 the tsetses were induced to probe on microscope slides warmed 

on a hot plate pre-heated to 37 °C (Figure 2.3). The saliva that was expelled 

onto the slides was checked under a brightfield microscope at x20 magnification 

for the presence of metacyclic trypanosomes. Some of the tsetse flies also 

regurgitated the proventicular (PV) stage in the saliva when screened. These PV 

trypanosomes are recognisably morphologically distinct from metacyclics, being 

significantly longer. For tsetse flies infected with mCherry-expressing 

trypanosomes, warm modified HMI9 culturing media (100 µl) was added to warm 

slides, and after tsetse flies made to probe, a coverslip was sealed over the area 

and examined under the Zeiss Axioskope using epifluorescent illumination for 

identification of fluorescent trypanosomes under the x63 oil immersion objective 

excitation/emission at 450nm and 550 nm respectively. Pictures were taken 

using a x63 oil immersion objective. 

 

2.4 Infection of mice with Trypanosomes 

2.4.1 Inoculation and monitoring mice infections 

Mice were inoculated through the intraperitoneal route using blood straw 

stabilates resuspended in 200 µl phosphate buffered saline (PBS) (Sigma-Aldrich, 

Dorset, UK). Mice infections were maintained until they reached about 108 

parasites within 10 days using the matching method [276], and then euthanised 

and blood collected by cardiac puncture method in a syringe containing 100 µl 

CBSS/heparin. Blood collected was used for either tsetse fly feeds or for 

preparation of blood straw stabilates. 
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2.4.2 Enumeration of parasite burden 

To determine parasitemia for preparation of tsetse feeds, tail tips of mice were 

pricked with blood lancets and blood was collected using a 100 µl pipette 

(Gilson, Bedfordshire, UK). A drop of blood was then transferred to glass slides 

and sealed with a cover slip to estimate parasitemia using the matching method 

[276]. The matching method approach was used during preparation of tsetse 

feeds, and blood stabilate preparation. For a more precise determination of 

parasite burden post infected tsetse exposure, ten microliter of blood was lysed 

in equal volume of 0.8% ammonium chloride in PBS, and parasites counted using 

a haemocytometer (Hausser scientific, Pensylvannia, USA) as described in 

section 2.2.2.  

 

2.4.3 Preparation of tsetse fly feeds from mice 

Female ICR or BALB/c mice were infected with the STIB247 T. b. brucei to be 

used to infect the tsetse flies approximately 10 days before the estimated hatch 

date of the tsetse flies. Mice were inoculated and parasitaemia was measured as 

described in sections 2.4.1 and 2.4.2. In the cases where the parasitemia of the 

mice became patent and there were sufficient short stumpy T. b. brucei to make 

tsetse fly feeds (approximately 70%), but the tsetse flies were yet to hatch, 

cryostabilates were made by adding 10% glycerol to the volume of infected blood 

that could be extracted from the mouse after euthanasia and cryostabilated as 

described in section 2.2.3.  

 

2.5 Nucleic acid analysis 

2.5.1 DNA extraction from trypanosome culture 

Trypanosome cultures at approximately 1 x 106 cells/ml was centrifuged at 1, 

000 x g for 10 mins, supernatant removed and discarded, and pellets 

resuspended in RLT buffer provided in the kit for extraction of genomic DNA 

from blood and tissue (Qiagen, 7104, Manchester, UK). The samples were then 

processed following the manufacturer’s instructions. 
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2.5.2 Isolation of genomic DNA from ear tissue and cervical 
lymph nodes 

Mouse ear and cervical lymph node samples draining the ear inoculation site 

were processed following Qiagen kit extraction protocol, except for a slight 

modification when extracting from ear tissue, of doubling the concentration of 

proteinase K added for overnight digestion to allow complete lysis and removal 

of any tissue clumps. All other steps were carried out according to the 

manufacturer’s instructions (Qiagen, 7104, Manchester, UK). To collect cervical 

draining lymph nodes, mice were euthanased post tsetse exposure at the 

respective time points. Mice were dissected with scissors, and forceps used to 

harvest the cervical draining lymph node and placed in PBS prior to DNA 

extraction. While mice ears were collected by euthanasing mice with a schedule 

1 procedure and ears removed with a pair of scissors. 

 

2.5.3 RNA Isolation  

Ear or cervical lymph node tissues for RNA isolation were removed at the 

appropriate time points and transferred to sterile DNase/RNase free 

microcentrifuge tubes containing 500 µl RNAlater (Qiagen, 74104, Manchester, 

UK). For ear samples, the tissue was fragmented using a sterile scalpel blade 

prior to placing in the microcentrifuge, to allow RNAlater to more efficiently 

diffuse into the tissue. Samples were then transferred into M-tubes (Miltenyi, 

Surrey, UK) containing 600 µl RLT buffer + β-mercaptoethanol. The tube was 

then spun on a gentleMACS dissociator (Miltenyi) using a 40s spin. Following the 

homogenisation of the tissue, subsequent steps were then carried out using the 

RNeasy mini kit according to the manufacturer’s instructions (Qiagen, 74104, 

Manchester, UK). RNA samples were quantified using a nanodrop and frozen at -

80 °C until needed for use. 

 

2.5.3.1  Measuring concentration of nucleic acids 

Nucleic acid (DNA or RNA) concentration was measured photospectrometrically 

using a NanoDrop 2000 spectrophotometer (ThermoScientific, Paisley, UK). 
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DNA/RNA samples were quantified using 1.2 µl volume of samples, and elution 

buffer as blank control. 

 

2.5.3.2  Agarose gel electrophoresis 

DNA separations were performed on 1.5-2% agarose gels (Invitrogen), made with 

1 x TAE buffer (40mM Tris, 19 mM acetic acid, 1 mM EDTA), and SYBRSafe 

(Invitrogen). DNA/ RNA samples were electrophoresed in 1 x TAE buffer at 100 V 

for 1 hr. A 100 bp ladder (NEB, Herts, UK) was used as molecular base pair size 

marker. DNA samples were then visualised on a GelDoc system (BioRad) using 

ultraviolet light. 

2.5.3.3  Measurement of RNA quality 

The quality of RNA extracted from tissue was determined using the Agilent 2100 

Bioanalyser (Agilent Technologies, Edinburgh, UK), using approximately 100-200 

ng/µl of sample. The RNA concentration was determined and RNA integrity 

number (RIN) calculated [277]. RIN values of (<5) were considered to be 

degraded RNA and RIN values >8 were considered to be very good quality RNA 

suitable for other experimental purposes.  

 

2.5.3.4  Complementary DNA (cDNA) synthesis for Taqman low density 
arrays 

For cDNA synthesis, 1 µg RNA was reverse transcribed using the Precision™ 

nanoscript reverse transcription kit (Primer design). RNase free water, oligo-dT 

and random nonamer primers were combined in a master mix to a final volume 

of 10 µl (Table 1.1). 

 

Table 2-1 CDNA synthesis mix 
Nanoscript 10X buffer 2 µl 

 

dNTP mix 10 mM each 1 µl 

 

DTT 100 mM 2 µl 
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Nanoscript enzyme 1 µl 

 

RNase free water 4 µl 

 

 

1 µg RNA was made up to a volume of 10 µl with RNase free water, denatured in 

a hot water bath at 65 °C for 5 mins, and immediately transferred on ice. Ten 

microlitres master mix was added to the RNA, to make up a total volume of 20 

µl. Reverse transcription was carried out using a PCR machine at the following 

conditions: 25 °C for 5 mins, 55 °C for 20 mins and then 75 °C for 15 mins for 

heat inactivation.  

2.6 Taqman low-density array (TLDA) 

Taqman® low-density array microfluidic cards (Applied Biosystems) were 

designed using two different formats: 32 and 64 genes of interest. The TLDA 

microfluidic cards with 32 genes were used for the analysing the ear tissue 

samples and contained probes for chemokines, and inflammatory chemokines. 

The 64 gene microfluidic card contained murine probes for all murine 

chemokines with the exclusion of CCL10, CXCL4, CXCL7 and CXCL11. The 

microfluidic card also contained probes for 9 inflammatory cytokines, 4 pattern 

recognition receptors, 2 transcription factors and 8 interferon inducible genes. 

The microfluidic card consisted of 384 wells, which were already customised 

with the probes and primers for each gene. Two samples were analysed per 32 

well card, and four samples per 64 well card respectively. The samples were 

loaded through the wells present in the microfluidic cards. Each loaded well-

contained 100 µl of the reaction mix, prepared in 200 µl volume consisting of 20 

µl of RNase free water and cDNA (1 µg total RNA equivalent), and 160 µl of 

Taqman Universal PCR master mix (Applied Biosystems, Paisley, UK). The 

Taqman array cards were run on a 7900HT fast real time machine (Applied 

Biosystems) according to the cycling conditions below:  

 

95 °C 2 mins 

95 °C 15 s 

65 °C 60 s 
40 cycles  
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Data was analysed using SDS 2.2 software and RQ manager version 1.2.2 (Applied 

Biosystems), following the manufacturer’s instructions. The relative amount of 

each target gene was normalised against the chosen endogenous reference gene 

(18S) in untreated ear or lymph node samples. For lymph node analysis, cervical 

lymph nodes proximal to the ear skin were collected for processing. Results were 

reported as fold changes that gives an indication of how much more or less a 

gene in the experimental group is expressed compared to its expression in the 

calibrator group or control. 

 

2.7 Parasite quantitation 

2.7.1 Polymerase chain reaction (PCR) of tsetse fly bite site tissue 

PCR was performed on DNA extracted from tissue following infected tsetse fly 

bites. Primers were designed that targeted the paraflagellar rod 2 gene, because 

it is expressed in all the lifecycle stages of T. b. brucei [252]. PCR was 

performed using 100-200 ng template DNA from infected tissue or T. b. brucei 

DNA added to 14.5 µl reddymix PCR master mix with 1.5 mM MgCl2 

(Thermoscientific, Paisley, UK), 0.5 µl each of forward and reverse primers (100 

mM), and made up with distilled water in a 25 µl reaction volume. The cycling 

conditions used were an initial 95°C for 15 mins, followed by 45 cycles of 94°C 

for 15 s, 60°C for 30 s and 72°C for 1 min 30 s, with a final incubation of 72°C 

for 10 mins. PCR products were routinely stored at -20°C. 

 

2.7.2 PFR2 primers and probe 

Gene sequences were downloaded from TriTrypDB Kinetoplastid genomics 

(www.tritrypDB.org). Primers for qRT-PCR designed using the Applied Biosystems 

qRT-PCR primer design software and supplied as a kind gift by Dr. Jean Rodgers 

[252]. PFR2 probe was tagged with FAM and TAMRA at its 5’ and 3’ ends. 

Oligonucleotides were then synthesised by Eurofins MWG Operon 

(www.eurofinsdna.com) as listed in table 2.2. Primers were stored as stock 

solutions (100 pmol/µl) at -20°C and diluted to a working concentration of 10 

pmol/µl when needed. 
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Table 2-2 Oligonucleotide sequences used for quantification of T. b. brucei 
Oligonucleotide name Sequence 

PFR2 primers Forward: AAGTGCTTTCCCATCGCAACT 

Reverse: GACGCACTAAACCCCTCCAA 

PFR2 probe FAM-CGGTTCGGTGTGTGGCGCC 

 

2.7.3 Preparation of dilutions for standard curve 

A plasmid kindly provided by Dr Jean Rodgers was used as standard to estimate 

the number of copies of PFR2 present in the tissue samples at the different time 

points quantified [252]. The standard containing 107 copies/ 5 µl of the PFR2 

gene was serially diluted with sterile DNase/RNase free water to give dilutions 

ranging from 106 to 101 copies per 10 µl. All standard dilutions were prepared 

fresh for each PCR reaction, and used immediately. An example of a standard 

curve is given in figure 2.4. 
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Figure 2-4 Standard curve for quantitation of T. b. brucei.  
Plasmids were diluted from 106 to 101 copies and loaded on 384 well PCR wells for analysis on a 
7900HT Fast Real-Time machine. Red squares indicate the plasmid dilutions.  
 

 
2.7.4 Quantitation of parasites in the skin and draining lymph 

node by QPCR 

In order to quantify parasites in the ear skin and cervical draining lymph node 

(dLN), a taqman semi-quantitative PCR approach was used which was based on 

designing a taqman probe that relies on the 5’-3’ exonuclease activity of Taq 

polymerase to cleave the PFR2 probe when it binds to its complementary 

sequence. The QPCR reaction consisted of 12.5 µl Taqman Brilliant II master 

mix, 0.05 pmol/µl (final concentration) of each primer, 0.1 pmol/µl of the probe 

(final concentration), 300 ng template DNA, and made up to the final volume of 

a 25 µl reaction with sterile DNase/RNase fee water. Each sample was analysed 

in duplicates. The QPCR reaction was performed in an Applied Biosystem, 7900 

HT thermocycler. After an initial denaturation step at 95°C for 10 mins, followed 
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by 95°C for 15 s, 60°C for 1 min for annealing to occur, and finally temperature 

raised to 72°C for 0.1 s. The reaction consisted of a total of 45 cycles. 

2.8 Flow cytometry 

2.8.1 Infecting mice ears 

Mice to be used for flow cytometry analysis were anesthetized using 

Hypnorm/Hypnovel injectable anesthesia (10 mL/Kg of a mix of 

fentanyl/fluanisone/midazolam/H20 at 1:1:2 by volume) administered 

intraperitoneally, and placed in a hot box to maintain the body temperature at 

37 °C. One infected tsetse fly per universal bottle with a wire gauze underneath 

to allow probing, was then placed on the ear of the mice for approximately 20 

mins or tsetse fly removed once a blood spot was observed on the ear of the 

mouse (see Figure 2.5 and 2.6).  

 

 

Figure 2-5 Tsetse probe on mouse ear. 
Infected tsetse fly separated into single universal tubes was used to probe on a C57Bl/6 mouse 
anesthetised with hypnorm/hypnovel. Tsetse fly was exposed to mouse ear for approximately 20 
mins in a hot box pre-heated to 37 °C. Following tsetse exposure, mice were recovered in 
conventional cages and kept till the time point needed. 
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Figure 2-6 Mouse ear post tsetse exposure.  
Once tsetse exposure described in figure 2.5 was over, visible blood spots were observed in the 
ear of C57Bl/6 mouse as indicated by the black arrow. 
 

2.8.2 Ear tissue preparation  

The ear samples for flow cytometry were collected by euthanising the mice by a 

schedule 1 procedure, and ears removed using scissors (FST, Foster city, USA) at 

the required time points and immersed in PBS. Ears were then transferred to 

microcentrifuge tubes (Eppendorf, Stevenage, UK) containing 500 µl, 4 mg/ml 

collagenase IV (Sigma-Aldrich, Dorset, UK), 2 mg/ml hyaluronidase (Sigma-

Aldrich, Dorset, UK)) and DNaseI (Sigma-Aldrich, Dorset, UK) in a 37 °C 

incubator, 1 hr. The digestion was stopped after an hour by the addition of 1 ml 

Iscove’s modified Dulbecco’s medium (Sigma-Aldrich, Dorset, UK) to the 

samples. Samples were then digested using the program B (2 x 30 s spin) of the 

MACS dissociator (Miltenyi, Surrey, UK). The tissue suspension was then passed 

through 40 µm cell strainers (BD, Oxford, UK) and cells were processed for 

fluorescent activated cell sorting (FACS) antibody staining as described in 

section 2.8.4.  

 

2.8.3 Flow cytometry analysis of samples 

Cell preparation for flow cytometry was performed in 12x75 mm, polystyrene 

tubes (BD Falcon, Oxford, UK). Cell suspensions were incubated in Fc-receptor 

blocking agent for 15 mins, at 4 °C cells, resuspended in FACS buffer at 400 g, 4 
°C for 5 mins, and washed twice. Cells were stained with viability dye e450 
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(eBioscience, Hatfield, UK), antibodies at 1/100 dilution except for MHCII FITC 

antibody (see Appendix II for list of antibodies), which was stained using a 1/300 

dilution. Cells were then resuspended in 200 µl volume FACS buffer containing 2 

mM EDTA. Data were acquired using a MACSQuant flow cytometer (Miltenyi) and 

analysed using FlowJo software (Tree Star Inc., Oregon, USA). 

 

2.9 Neutrophil depletion in vivo 

In order to deplete the neutrophils in mice, 1 mg of anti-Ly6G IA8 clone 

(BioXcell, West Lebanon, USA) was injected IP into mice 16 hrs before the mice 

were infected. IgG2a isotype controls (BioXcell, West Lebanon, USA) were 

injected IP into mice as control in all experiments carried out. 

 

2.10 Imaging the ear using the multiphoton microscope 

Multiphoton imaging was performed with a Zeiss LSM7 MP system equipped with 

both a 10X/0.3 NA air and 20X/1.0NA water-immersion objective lens (Zeiss) and 

a tunable titanium/ sapphire (Ti-S) solid-state 2-photon excitation source 

(Chameleon Ultra II; Coherent, Santa Clara, USA) from 700 nm to 1050 nm. To 

extend the wavelength, the output of the Ti-S laser passed through an optical 

parametric oscillator (OPO, Coherent). When pumped by the Ti-S laser at about 

800 nm, outputs up to 1200 nm were obtained. It was also possible to use part of 

the pump wavelength (800 nm) simultaneously with the OPO output. The 

intensity of the Ti-S beam bypassing the OPO was regulated by an acousto-

optical modulator controlled by an imaging software (Zen 2010, Zeiss). The scan 

head (Zeiss, LSM7 MP) had a maximum rate of 8 frames per second. The 

multiphoton had five detectors of non-descanned fluorescence available, three 

multialkali photodiodes and two GaAsP detectos. All imaging was carried out 

using the 20X/1.0NA water-immersion objective lens. Image files were analysed, 

and videos prepared using Volocity (Perkin-Elmer, Coventry, UK). 

  

2.10.1 Mouse preparation 

Mice to be used for imaging were anesthetised using freshly prepared 

hypnorm/hypnovel, injected IP at 10 µl/g of mice, and were anesthetised for a 
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maximum of 8 hrs and then euthanased using a schedule 1 procedure. The hair 

on the mouse ear to be imaged was then removed, by applying a hair removal 

cream (Nair ®) to the mouse hair for 2 mins, and then excess removed with a wet 

tissue. The mouse was then placed on a heat mat on a custom built imaging 

platform (Figure 2.7), and a rectal thermometer inserted to maintain the body 

temperature of the mouse following anaesthesia, and mice was monitored to 

ensure body temperature remained at 37 °C. The mouse ear was immobilised on 

the imaging platform using glue (3M Vetbond) and copious amounts of phosphate 

buffered saline was added to set the glue (see Figure 2.7 for set up 

requirements).  

 

 

Figure 2-7 Setup required for imaging mouse ears. 
The figure shows the hair cream, vetbond glue, stage with the rectal thermometer, grease and wet 
tissue required in setting up the mouse. 
 

 

2.10.2  Injection of mCherry T. b. brucei 

Prior to setting the mice under the microscope, mouse ear was exposed to 

infected tsetses as described in section 2.8.1 or 10 µl microvolumes of blood 

stream form T. b. brucei injected intradermally into the ear skin of anesthetised 

mice. Mice were anesthetised, ears rolled and adhered on to the bottle top 

cover of their water bottle, using a double-sided adhesive tape, in order to have 

a good surface area for precise injections. Intradermal injections were carried 

out using a 0.3 ml insulin syringe (BD, Oxford, UK) containing 106 bloodstream 

form trypanosomes in 10 µl volume which express mCherry. When infected 

tsetse was used to inoculate trypanosomes, the tsetse was left on anesthetised 

mouse ear for approximately 30 mins, with the mouse lying on a heat mat to 

keep its body warm. 
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2.10.3 Exogenous fluorescent labels 

For imaging trypanosome interactions in C57Bl/6 wild type mice i.e. metacyclic 

T. b. brucei in the ear skin following tsetse bites, or via inoculation of blood 

stream parasites intradermally into the ear skin, mice were prepared as 

described in section 2.10.1, post tsetse inoculation/injection of 1 x 106 blood 

stream form parasites in the ear skin (section 2.10.2). Blood plasma was labelled 

by intravenous injection of dextran 70 kD, 50-70 µl of 100 mg.ml-1 conjugated 

with fluorescein isothiocyanate (Sigma-Aldrich, Dorset, UK), or with quantum 

dots (QTracker, Invitrogen, Paisley, UK) in 30 µl volume using 0.3 ml insulin 

syringes (BD, Oxford, UK). Mice were then imaged under the multiphoton 

microscope within 30 mins post intravenous labelling of blood plasma. Exogenous 

labelling of blood plasma was not carried out on transgenic mice used in this 

study. 

 

2.10.4  Placing the mouse under the microscope 

Following injection of trypanosomes into the ear of mice, a ring of vacuum 

grease was made using a syringe around the edge of the ear. The ring was then 

filled with PBS for imaging under the dipping lens of the multiphoton microscope 

(Figure 2.8). 
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Figure 2-8 A mouse already prepared for imaging. 
This is an example of a mouse set up for imaging under the microscope, with a ring of grease 
made around the ear (red arrow), which served as a well filled with PBS when the dipping lens of 
the multiphoton laser scanning microscope was used for imaging. 
 

2.11 Hematoxylin and Eosin staining 

Whole ears from infected/uninfected mice were removed and fixed in 10% 

formalin for 24-48 hrs. The samples were then placed into metal moulds and 

embedded in paraffin wax blocks for sectioning. Tissue sections were cut at 8 

µm thick and mounted on Super Frost® Plus slides (VWR, Lutherworth, UK)). 

Hematoxylin and eosin (H&E) staining was then performed on the slides. 

Hematoxylin is a dye that forms complexes with metal cations, while eosin is an 

acidic dye. So when the sections are stained, the there is a reaction between 

the positively and negatively charged components, resulting in the staining of 

basophilic cell components such as nucleic acid blue by haematoxylin. While, 

eosin reacts negatively with the positively charged components acidophilic 

components of the cell such as the cytoplasm, to give a pink coloration. Prior to 

H&E staining, sections are deparaffinised and then rehydrated in decreasing 

ethanol concentrations. The sections were then rinsed in water for 3 min and 

stained in haematoxylin (Cell Path, Newton, UK) for 5 min. Excess stain was 

removed under running tap water. Then the slides were immersed in 1% acid 

alcohol, for few seconds, rinsed in water and placed in Scott’s tap water for 30s, 

followed by another round of rinsing in tap water. Sections were then counter 
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stained with 1% Eosin Y (Cell Path, Newton, UK) for 2 mins. Excess stain was 

washed off under running tap water. The stained sections were then dehydrated 

in a series of increasing ethanol concentrations, and cleared using xylene. 

 

2.12 Transmigration assay 

The Bare filter transmigration assay [278] was used to assess the chemotaxis of 

T. b. brucei towards the chemokine CCL21 (R&D, Abingdon, UK)). Transwell 

transmigration plate (Corning® 3 µm) was pre-incubated for 10 mins, 37 °C with 

600 µl CCL 21 (50-500 ng) diluted in chemotaxis buffer (0.5% Bovine serum 

albumin in Iscove’s modified Dulbecco’s medium). Following incubation with 

CCL21, the polycarbonate wells of the transwells were then loaded with 100 µl 1 

x 105 T. b. brucei resuspended in chemotaxis buffer, incubated at 37 °C, 5% CO2, 

7 hrs. After 7 hrs, incubation, cells at the bottom of the well were then counted 

using a haemocytometer under a light microscope. 
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3 Development of an experimental tsetse fly 
infection system 

 

 

 

 

 

 

 

 

 

 



Chapter 3  86 
 

3.1 Introduction 

Tsetse flies (male and female) are obligate haematophagous arthropods, and are 

the only cyclical vector of many trypanosome species in Africa, with both sexes 

capable of transmitting infection [279]. Sites of maturation of trypanosomes in 

the tsetse fly vary depending on trypanosome species (Table 3.1). For example, 

T. vivax develops exclusively in the mouthparts, T. brucei has its initial 

establishment in the midgut, matures in the tsetse fly salivary gland, and T. 

congolense also has an initial establishment in the midgut, with further 

maturation in the mouthparts [280, 281]. Development of trypanosomes within 

tsetse flies involves a switch from a glycolytic pathway in its mammalian host to 

a Krebs cycle pathway in the tsetse fly [18, 23, 282]. T. brucei when taken up by 

the tsetse fly are freely motile, and those that survive the immune assault of the 

tsetse fly, and the new milieu in which they find themselves eventually migrate 

to the salivary gland. Following migration, the parasites in the salivary gland 

attach to the microvilli, and multiply as attached epimastigotes. Attachment to 

the microvilli by the epimastigotes is no longer maintained during differentiation 

to the mammalian-infective metacyclic trypomastigote, which undergo further 

metabolic changes and a reacquisition of the metacyclic VSG coat (MVSG) as a 

pre-adaptation for life in the mammal, before inoculation during a blood feed 

[18, 20, 283].  

 

Table 3-1 Developmental sites of African trypanosomes in Glossina spp. 
Species Trypomastigotes Epimastigotes Metacyclics 

T. brucei spp. Midgut Salivary gland Salivary 

glands 

T. congolense Midgut Proboscis Proboscis 

T. vivax Proboscis Proboscis Proboscis 

 

The duration of trypanosome development in the tsetse fly to achieve mature 

infections is approximately 27 days in T. brucei, 5 days in T. vivax and 15 days in 

T. congolense [281]. However, recently it has been shown using fluorescent 

trypanosomes in a study investigating mating in tsetse flies, that T. brucei could 

appear early in the salivary glands, as early as 13 days post infected feed [284]. 

Once trypanosomes arrive in the salivary glands, a tsetse fly is capable of 
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producing hundreds of metacyclic parasites per day and remains infective 

throughout its life span ~ 3 months [285]. 

 

Table 3-2 Factors reported to affect successful trypanosome infection rates 
in the laboratory using experimentally infected tsetse flies. 
Tsetse Trypanosome 

Species/laboratory colony [279] Species/strain [286] 

Fly sex [287-289] Stage of infection in host [290, 291] 

Fly age during first infected feed [292-

294] 

 

Degree of starvation [295]  

Temperature of incubation of pupae 

[296] 

 

Temperature of incubation of adult 

flies [297] 

 

Host blood for infective 

feed/maintenance [281, 298, 299]  

 

Midgut haemolymph lectin activity 

[286, 300, 301] 

 

Midgut haemolymph lectin activity 

[286, 300, 301] 

 

  

 

Natural Infections of tsetse flies with trypanosomes in the field have been 

investigated. This has been achieved by trapping tsetse flies with nets, 

dissecting, and examining the gut and mouthparts for parasites. Though this 

approach is crude and cannot discriminate between trypanosome subspecies e.g. 

in T. brucei, data collected suggests that mature infection in the tsetse salivary 

gland was generally less than 1% in the field [281, 302]. Various reasons have 

been attributed for low infection rates of tsetse flies both in the field, and in 

the laboratory. The factors listed in table 3.2 give a summary of the main 

challenges encountered in initiating successful experimental trypanosome 

infections in tsetse flies. These factors influencing transmissibility can 

collectively be expressed as transmission index (TI) [303, 304]. However, for the 

purpose of this project, it will be necessary to expand on three key factors that 

were optimised for successful experimental infections.  
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The first two are the tsetse fly species, and trypanosome combination. Tsetse fly 

species and trypanosome combination are important factors that determine the 

success rate of obtaining mature tsetse fly infections in the laboratory. Taking 

the tsetse fly species for instance, G. m. morsitans has been demonstrated to be 

susceptible to T. b. brucei J10, with 11.3% of flies becoming infected. In 

contrast, other tsetse fly species, G. austeni, G. pallidipes and G. brevipalpis 

were more refractory to infection with the same strain of T. b. brucei, with only 

1.3% of flies developing mid gut infections [305]. Also, with T. congolense stock 

1/148, G. m. morsitans produced 100% midgut infections, while in G. p. palpalis, 

mature infections where rarely obtained with the same stock [306]. The sex of 

the tsetse species has also been described to contribute to increase in successful 

transmission, with male tsetses producing higher infections than females [287-

289]. Inherent strain effects also affect maturation in the salivary gland of tsetse 

flies. For example, there are significant differences in infection between stocks 

of T. b. rhodesiense, which gave much lower infection rates, than T. b. brucei in 

G. m. morsitans. Maturation of T. b. gambiense is also very rare in any tsetse 

species, and there could also be great variation between stocks of T. congolense 

in the same tsetse species [286], highlighting that the species of the tsetse fly 

and the trypanosome strain combination are crucial for successful infections in 

the laboratory. 

  

Thirdly, the time of feeding the tsetse flies post eclosion with infected blood 

meal is crucial for obtaining mature infections. This has been described as the 

teneral phenomenom. Tsetse flies have been demonstrated in various studies to 

show increased susceptibility to infection when fed within the first 24 hrs post 

eclosion with an infected blood meal [292, 293, 296, 307, 308], although some 

workers have argued that this makes little difference to infection rates [295]. 

The teneral phenomenom has been argued to enhance infections in tsetse flies, 

because from time points 48 hrs onwards post eclosion age, trypanosome midgut 

susceptibility decreases due to increasing maturity of the peritrophic matrix, 

and disappearance of the milk gland protein a constituent of the larval meal 

remaining in the mid-gut upon eclosion [292].  
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The ability to achieve experimental infections of tsetse flies in the laboratory is 

a critical step in enabling investigation of previously uncharted areas in host-

trypanosome interactions, using T. b. brucei as a model. For the purpose of this 

project, two strains of T. b. brucei, STIB247 and GVR35 [271, 272] were selected 

because I had access to transgenic parasites for the two strains. Hence, this 

chapter aims to describe how an experimental tsetse fly infection was set up, 

used to demonstrate trypanosome kinetics from the skin to the draining lymph 

node, and establish patency via the ear pinna in mouse models. G. m. morsitans 

were used in combination with tsetse fly transmissible T. b. brucei STIB 247 and 

GVR35 strains. 

 

3.2 Experimental infections of Glossina spp. 

3.2.1 Tsetse Fly infections  

Blood meals for feeds to tsetses were prepared from mice infected with 

stabilates of T. b. brucei STIB247 WT and STIB247 mCherry. At a parasitemia of 

approximately 1 x 108 ml-1, when most (approximately 70%) of the parasites were 

short stumpy stage as identified by light microscopy, mice were euthanased and 

blood collected with CBSS/Heparin. The first teneral feed was carried out within 

24-48 hrs post eclosion, and repeated twice with an interval of one day between 

feeds, followed by maintenance on sterile defibrinated horse blood. Following 

27 days post exposure, screening was carried out by inducing tsetses to spit on 

warm glass slides, and examination of extruded saliva by light microscopy for the 

presence of trypanosomes. 

3.2.1.1 Glossina palpalis and G. pallidipes do not produce mature infections 
when supplemented with N-acetyl-D-glucosamine 

In order to obtain mature infections in the salivary glands of tsetse flies, I 

attempted to use two different species of tsetse flies combined with a 

nutritional supplement N-acetyl-D-glucosamine (NAG). NAG is an inhibitor of 

tsetse midgut lectin, and the decision to add NAG to infected blood was based 

on previous data indicating tripled infection rates [300, 309]. G. pallidipes, and 

G. palpalis were fed with T. b. brucei STIB247 WT infected blood meals as 
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described in section 3.2.1, and modified by addition of sterile 10 mM NAG in 

order to improve infection rates. Tsetses of each species were given at least two 

infective feeds through a silicone membrane 24-48 hrs post eclosion [310]. 

Following infective feeds, tsetse flies were maintained on defibrinated horse 

blood containing 10 mM NAG, while a batch of 50 flies in a cage for each species 

of flies were infected without the addition of 10 mM NAG. 200 tsetse 

flies/species were used for experimental infections with 10 mM NAG. 

3.2.1.2 Infection rates and fly survival 

After 27 days post infective blood feeds, tsetse flies were separated into single 

tubes for screening infected flies as described in section 3.2.1. Of the starting 

batch of tsetses, only 50% of G. pallidipes and 55% of G. palpalis survived till 

screening. For control tsetse flies fed with infected blood meals without addition 

of 10 mM NAG, mortality was at 35-40%. Of all the surviving tsetses, including 

controls not fed with 10 mM NAG, no positive tsetses with mature salivary gland 

infections were obtained following saliva screening. These experiments, which 

included repeated trials by myself and Dr. Marc Ciosi (unpublished), suggested 

that in our hands G. pallidipes and G. palpalis were refractory to infection with 

T. b. brucei strain STIB247 so further trials were stopped. This led to the 

conclusion that independent of NAG or with the addition of NAG I could not 

achieve mature salivary gland infections using these two species of tsetse flies.  

3.2.1.3 Combination of Glossina species and strain of T. b. brucei are crucial 
for infection in tsetse flies  

Following the unsuccessful attempts at infecting G. pallidipes and G. palpalis, 

which I thought would give better infections than G. m. morsitans, I switched 

back to G. m. morsitans - a species that has had previous success in the lab with 

tsetse fly infections, though at very low infection rates. Also, there was the 

inclusion of two extra strains of T. b. brucei (GVR35mCherry and GVR35WT). 

Blood feeds were prepared in the same manner as previously described, with the 

exclusion of NAG as a supplement in the infective blood meals. NAG was 

excluded because of unsuccessful fly infections when the supplement was 

added, and also previous success we had with G. m. morsitans was without the 

addition of NAG. Tsetse flies were fed within 24-48 hrs post eclosion, and 
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infected blood meals were repeated twice at one-day intervals, and screened 27 

days post feed. Tsetse flies were made to spit on to warm glass slides, and 

extruded saliva examined under the light microscope (Figure 3.1).  

 

Figure 3-1 Screening for metacyclic trypanosomes.  
Tsetse flies fed with infected blood meals, were screened 27 days post feed by probing on warm 
glass slides for approximately 10 mins on a hot plate pre-heated to 37 °C. Metacyclic 
trypanosomes can be visualised in (A) positive slide showed T. b. brucei in saliva, while (B) 
showed an example of the saliva of an uninfected tsetse probe lacking trypanosomes.  
 

Of the surviving tsetses, surprisingly a success rate (mature salivary gland 

infections) of 40% was recorded with G. m. morsitans infected with STIB247 WT, 

19 and 20% success with STIB247 mCherry and GVR35 mCherry, no success with 

GVR35 WT (Table 3.3). It is important to mention that in this study, I did not 

examine the percentage of flies that had mid gut infections of T. b. brucei.  

 

Table 3-3 Summary of tsetse fly infections using different strains of T. b. 
brucei 
T. b. brucei strain Number of G. m. 

morsitans 

Number of 

surviving tsetse 

flies 27 days post 

infected feed 

Percentage of 

salivary gland 

infection (%) 

247 wild type 200 148 40 

247 mCherry 200 145 20 

GVR35 mCherry 200 135 19 

GVR35 wild type 200 129 0 

 

The mortality rate of G. m. morsitans prior to screening for infected tsetse flies 

was between 25-30%. In subsequent experiments, I obtained similar mortality 

rates, except when there was a problem during dispatch of the pupae from the 

A B 
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suppliers. Using these approach I achieved mature salivary gland infections of at 

least 15% consistently during the project. Tsetse fly infections with T. b. brucei 

GVR35 WT was also discontinued. 

 

3.2.1.4 Metacyclic stage T. b. brucei express mCherry when passed through 
tsetse flies  

Once tsetses were established to have mature salivary gland infections of T. b. 

brucei, I then examined if the tsetses infected with mCherry expressing 

parasites maintained fluorescence expression. In order to test retention of 

fluorescence expression, tsetses were probed on warm slides, and extruded 

saliva examined by epifluorescence microscopy using a x63 oil immersion 

objective. I found that all the metacyclics of STIB247 mCherry seen under the 

bright field objective demonstrated mCherry fluorescence (Figure 3.2). On the 

other hand, it was observed that approximately 50% of the GVR35mCherry 

parasites retained fluorescence.  

 

Figure 3-2 mCherry expressing metacyclic T. b. brucei. 
Infected tsetse flies were made to probe on glass slides, containing 100 µl of warm HMI-9 medium 
without antibiotics. Immediately tsetses probed, a cover slip was placed on the glass slides and 
visualised under the microscope within 10-15 mins before the metacyclics die, hence losing 
mCherry expression. Metacyclic T. b. brucei expressing mCherry (STIB247) were visualised in 
HMI-9 using epi-fluorescence microscopy, excitation/emission at 450nm and 550 nm respectively. 
Pictures were taken using a x63 oil immersion objective. 
 

In all, the data here demonstrates that T. b. brucei STIB247 mCherry passed 

through tsetses and retained fluorescence expression, and would be suitable for 

intravital imaging studies. Further trials with GVR35 mCherry were also 

discontinued, because not all parasites retained fluorescence expression. 
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3.3 Does infected tsetse bites result in patency via the 
ear pinna of mice? 

In vivo studies in mouse models of African trypanosome infections have been 

mostly carried out through intraperitoneal and intravenous injections of known 

numbers of blood stage parasites in order to achieve parasitemia. Hence, it was 

essential to test the ear pinna if it would be appropriate for establishing patency 

in mice. For this study, tsetse flies with confirmed T. b. brucei 247 wild type 

infections were used to test if the ear pinna of mice would result in patency in 

mouse models for subsequent in vivo experiments. Anesthetised mice (C57Bl/6) 

were placed in a 37 °C incubator and the ventral ear pinna of each mouse was 

exposed to single tsetse fly probes using diferent tsetse flies per mouse for 

approximately 20 mins. Following tsetse probe on the ear pinna, confirmed by 

visible blood spots in the ear, mice were recovered, and blood parasitemia 

monitored over 25 days by counting using a haemocytometer. It was observed 

that within 4 days post tsetse exposure, parasites became apparent in the blood 

(Figure 3.3).  

 

 

Figure 3-3 Kinetics of parasitemia in C57Bl/6 mice infected with T. b. brucei post tsetse 
exposure to ear pinna of mice. 
Five Mice were anesthetised, and ear pinna exposed to infected tsetse probes, that is one tsetse 
fly per mouse using a separate tsetse fly for each mouse for approximately 20 mins. Following 
infected tsetse exposure, anesthetised mice were recovered and parasitemia monitored. T. b. 
brucei parasitemia was assessed over 25 days, using the tail prick method to collect 10 µl volume 
of blood with a Gilson pipette, lysed in equal volume of 0.8% NH4Cl and parasites counted using a 
haemocytometer. Lines represent individual mouse, and one mouse was uninfected out of the five 
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mice post infected tsetse fly exposure. Data shows four infected mice and the kinetics of 
parasitemia in each mouse. 
 

The data demonstrates that the ear skin is a valid route of infection to analyse 

early host-parasite interactions following vector-mediated transmission of 

infection. 

 

3.4 Quantifying T. b. brucei in mice 

Now that I had established a successful and reproducible model for experimental 

infection of tsetse flies in the laboratory, I next sought to quantify the number 

of T. b. brucei deposited in the skin and the kinetics of appearance in other 

tissues. Infected tsetse flies were exposed to the ear pinna of C57Bl/6 mice, ear 

and lymph node (LN) tissue samples collected at time points 0, 6, 24 and 48 hrs 

post exposure. Genomic DNA was extracted from tissue and Taqman quantitative 

PCR (qPCR) was performed on ear and cervical LN samples targeted at PFR2. Ear 

tissue from tsetse exposed mice for qPCR analysis was standardised by weighing 

the ears, so approximately 15 mg of ear tissue was used for extraction 

throughout the studies. For all qPCR analysis, 300 ng of DNA (ear or LN) was 

used, and copy numbers of PFR2 in total DNA extracted from ear/LN tissue was 

then computed. Copy numbers of PFR2 were calculated from qPCR values using a 

standard curve as described in materials and methods (Figure 3.4 & 3.5). Within 

0-6 hrs, parasites were already detected in the proximal draining lymph node 

(dLN) of mice, and the copy numbers of PFR2 in the dLN increased with time 

peaking at 48 hrs.  
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Figure 3-4 T. b. brucei kinetics in the ear. 
Infected tsetse flies (T. b. brucei 247 wild type) in universal bottles with a wire gauze for feeding, 
were exposed to mice ear pinna (one tsetse fly per mouse) for approximately 20 mins. Mice were 
euthanased and ears harvested with a scissors. Ear issue was weighed and approximately 15 mg 
of tissue was used for genomic DNA extraction throughout the studies. QPCR was then performed 
as described in the materials and methods. A taqman quantitative qPCR approach determined 
levels of PFR2 gene in tissue and copy number determined against a standard plasmid diluted 
from 106 to 101. Data represents 3 mice per group pooled for two independent experiments ± SEM.  
 

 

Figure 3-5 T. b. brucei kinetics in the draining lymph node. 
Infected tsetse flies (T. b. brucei 247 wild type) in universal bottles with a wire gauze for feeding, 
were exposed to mice ear pinna (one tsetse fly per mouse) for approximately 20 mins. Mice were 
euthanased and cervical LNs draining the inoculation site in the ear were harvested with forceps 
and placed in PBS prior to genomic DNA extraction. QPCR was then performed as described in the 
materials and methods. A taqman quantitative qPCR approach determined levels of PFR2 gene in 
tissue and copy number determined against a standard plasmid diluted from 106 to 101. Data 
represents 3 mice per group pooled for one independent experiment ± SEM.  
 

The numbers of T. b. brucei parasites detected in the skin within the first 48 hrs 

was variable across the time points. However 6 hrs post infection, the levels of 

parasites present in the dLN increased suggesting rapid metastasis of the 

parasites from the inoculation site. After this period, the level of infection in the 

dLN continued to increase up to 48 hrs. In all, the data describes the kinetics of 

egress of parasites from the skin to the dLN. 

 

3.5 General summary 

This chapter demonstrated the establishment of a protocol for experimental 

infections in the tsetse fly, validating the ear pinna of mice as a route of 

infection, and the use of qPCR to quantify parasites released via exposure of 

tsetse flies to mice ears. I show that the tsetse fly and trypanosome species, and 

optimisation of infected blood feeds was crucial for obtaining mature tsetse fly 
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salivary gland infections. The quantitation of parasites in the skin was a novel 

attempt describing when parasites appear in the dLN between 0-6 hrs. Also, this 

study demonstrates that some trypanosomes remain in the skin, and some 

drained rapidly to the LN. The detection of parasites in the dLN, suggests that 

the lymphatic vessels were involved in rapid drainage of the parasites from the 

skin to the blood via the dLN. The mechanisms involved in parasite drainage 

through the lymphatics, whether it is an active process through its flagella, 

chemotaxis or through the free flow of the lymph, remain yet unclear. These 

observations would serve as a good background to investigate the role of the 

lymphatics in dissemination of African trypanosomes from the skin, which I 

describe in chapter 5. 

3.6 Discussion 

3.6.1 Infection rates 

Maturation of African trypanosomes from ingestion in a blood meal into 

infectious stages in the salivary gland of tsetse flies is a tortuous journey for the 

parasite, both in the field and experimentally in the laboratory. Consequently, a 

significant outcome of this project was to establish a reliable and reproducible 

means of infecting tsetse flies experimentally. This experiment was carried out 

by testing the hypothesis that blocking the trypanocidal effects of the midgut 

lectins using NAG, could potentially improve the establishment of trypanosomes 

in the ecto-peritrophic space, and subsequently, maturation in the salivary gland 

of the tsetse fly [311]. In order to achieve this, I set out to establish infections 

of tsetse flies using different species (G. pallidipes, G. m. morsitans and G. 

palpalis) and the use of a supplement, NAG to enhance infections. The two 

species of tsetse flies (G. pallidipes and G. palpalis) previously reported to be 

permissive to infection [300, 309] were first applied in this study, however 

successful infections were not achieved.  

Previous reports have established that blocking the midgut lectin had resulted in 

dramatic increases in midgut establishment of T. brucei using different tsetse fly 

and trypanosome combinations [286, 311]. The tsetse species (G. pallidipes and 

G. palpalis) that were used, have previously been infected with T. brucei in 



Chapter 3  97 
 
other studies so were clearly susceptible [312]. The results achieved suggests 

that in vivo blocking of the midgut lectin using NAG did not result in mature 

infections in G. pallidipes and G. palpalis. Another lectin found in the 

haemolymph when blocked by α-D-melibiose, in addition to inhibiting the midgut 

lectin by NAG has been demonstrated to enhance maturation rates in male 

tsetse flies [288]. However, addition of α-D-melibiose and NAG was not 

considered in this study due to time constraints for optimisation studies. Of note 

in this study was also the high mortality rate reported here when NAG was added 

to infected blood feeds. High mortality rates observed were consistent with 

what has been reported by other workers that have used NAG in optimising 

experimental infections in tsetse flies. Mortality of tsetses have been reported 

to begin from the first day post tsetse feed, and was not associated to the sex of 

the tsetse fly, similar to the observations here [300].  

Following the unsuccessful attempts at obtaining mature salivary gland 

infections using G. pallidipes and G. palpalis in combination with the addition of 

NAG to the infected blood meal, I switched to optimising a different tsetse 

species, G. m. morsitans as the host. Infected blood feeds were optimised to 

contain sufficient numbers of the stumpy stage of the parasite, which is pre-

adapted for life in the tsetse midgut and ready for transmission. Differentiation 

of the slender form parasites to stumpies is an irreversible cell cycle arrest 

involving morphological and metabolic changes to the life of the parasite [313]. 

Stumpy form parasites are more tolerant to stresses of the tsetse fly uptake, 

more sensitive to environmental cues such as cis-aconitate [314, 315], and it is 

thought that they are the only ones capable of differentiation to procyclic forms 

in the midgut of the tsetse fly [316], although other reports suggests that 

slender form parasites may be capable of doing same [317]. The tsetse fly strain 

used for optimisation, G. m. morsitans has been reported to have a weak barrier 

to infection with T. b. brucei strain J10 [279], and has previously been used 

successfully in the lab, albeit with a low rate of mature infection. Optimisation 

of infected blood feeds involved ensuring that at least 70% of the parasites in 

the blood were at the stumpy stage, which were identified visually based on 

their morphology and prepared the infected feed with warm defibrinated horse 

blood. To my surprise, the first attempt at achieving mature infections using the 

new strategy described gave over 40% infection success with T. b. brucei STIB247 
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and less mortality was observed compared to G. pallidipes or G. palpalis. This 

affirmed previous reports that the tsetse and trypanosome strain combination 

was essential for mature salivary gland infections. In addition to the tsetse 

species/trypanosome strain combination used for infection, some workers have 

used different blood meal sources e.g. goat and pig blood, and reported higher 

midgut infectivity, compared with tsetse flies fed on other mammalian blood 

[298, 299]. Although there has been a suggested link between blood source and 

tsetse infections, only defibrinated horse blood has been used throughout to 

prepare blood meals in this study. This produced comparable rates of infection 

in G. m. morsitans to those obtained using other blood meal sources for 

infections [298]. Host blood meal contains species-specific factors that could 

improve the chances of obtaining mature infections. For example, it has been 

demonstrated that blood from goats, pigs, and rats enhance infections in most 

tsetse-trypanosome combinations, whereas, blood from cattle and wild bovidae 

diminishes infections [299]. Goat blood in particular has been shown to 

consistently enhance infections better in tsetse flies than blood from other 

animals, and these results have been repeatable even at lower parasitaemias, 

and lower incubation temperatures [299]. 

Another important observation in this study was that not all T. b. brucei GVR35 

mCherry screened from infected tsetse flies retained expression of mCherry, 

compared to 100% transmission stability of the mCherry construct when T. b. 

brucei 247 mCherry was passed through tsetse flies. This raised the possibility 

that it was likely that some form of recombination event was occurring in the 

tsetse fly. Migration of T. brucei from the midgut to the salivary gland is a 

tortuous process in which the parasite encounters pronounced bottlenecks, 

which creates the opportunity for genetic exchange between parasites [318]. 

Mating or genetic exchange between the parasites has been demonstrated to 

occur in the salivary gland of the tsetse using fluorescent trypanosomes [284]. In 

T. brucei fly transmission, interclonal mating has been identified to occur, which 

makes it highly likely that the parasite has been genetically altered. Also, 

intraclonal mating in T. brucei and T. congolense has also been described to 

result in recombination events in the parasite [319]. The presence of 

recombination events in the fly suggests a likely reason why some of the T. b. 
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brucei GVR35mCherry parasites had lost the mCherry construct during 

development in the tsetse fly.  

 The data presented here did not attempt to investigate midgut infections, the 

role of tsetse fly sex in obtaining mature infections, although some studies have 

suggested there may be a sex bias in infections. These studies generally seem to 

suggest that male tsetse flies give higher salivary gland infections compared to 

females, although females survive longer [288, 300]. However, no differences 

were observed in midgut infections in the tsetse flies when different 

trypanosomes species (T. b. brucei, T. congolense and T. rhodesiense) were 

compared in both male and female tsetse flies [288]. These observations 

supported the view that midgut infection in the tsetse fly is a maternally 

inherited trait, while salivary gland infections is sex linked trait [320]. 

Susceptibility of G. m. morsitans to infection in this study was variable, and the 

success reported here for T. b. brucei is considerably higher to rates of infection 

observed in the closely related human pathogenic T. b. rhodesiense strains 

[286].  

3.6.2 The ear pinna is a valid route of infection 

Following the successful experimental infection of tsetse flies, I next sought to 

determine if infected tsetse fly feeds on the ear pinna of mice was sufficient to 

allow the establishment of blood parasitemia. The ear pinna was chosen as the 

site of inoculation because of its convenience for examining the behaviour of 

parasites [321-323], host immune cells in the skin [165, 324], and it is a well 

established technique within our group, that is an amenable site for intravital 

imaging studies [325]. In addition to its accessibility for intravital imaging 

studies, this would also serve as an accessible tissue site to investigate cellular 

recruitment to the skin post tsetse exposure, as already demonstrated in 

Leishmania following sand fly bites [166, 326].  

Previous reports on innate and adaptive immune responses during trypanosome 

infections in mice have been focussed on intravenous or intraperitoneal routes of 

infection with bloodstream form T. b. brucei [132, 327]. However, natural 

infections occur through the deposition of infective metacyclic stage 

trypanosomes into the dermis of the skin, after a tsetse fly feed. The feed by a 
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tsetse fly, injects the parasite along with the saliva. The saliva contains 

glycosylated proteins, which possess immunomodulatory and enzymatic functions 

[328-330]. The saliva of the tsetse fly has also been indicated to contribute to 

the onset of infections in mouse models, suggesting that they contain substances 

that could contribute to virulence in vivo [330]. These findings are not unique to 

the tsetse fly, as other vector delivered parasites such as Leishmania, have 

salivary components that modulate transmission dynamics [331, 332]. The 

outcome of the importance of using the vector for in vivo studies as 

demonstrated in other parasitic infections such as malaria and cutaneous 

leishmaniasis necessitated the use of the tsetse fly for this study.  

Most studies that have attempted to use tsetse flies for infection have focussed 

on the flank of mammals for feeds because of the preponderance of blood 

vessels, and a larger surface area [13, 191, 333, 334]. So the attempt here at 

using the ear pinna for trypanosome infections was novel, providing a limited 

surface area, fewer blood vessels, and needed to be tested to determine 

whether it was sufficient to result in patency in mice. When tsetse flies were 

exposed to the ear pinna, they were unable to obtain a blood feed as they would 

on other parts of the mice. Instead, most of the tsetse flies used in this study 

probed on ear pinna of mice making visible blood spots, or blood pools. The 

results here demonstrate that probing of the ear pinna post tsetse exposure was 

sufficient to cause patency, and this confirms previous observations that probing 

and not necessarily a blood feed was sufficient to establish trypanosome 

infection in mammals [335]. Mice lacking parasitemia following probes by 

infected tsetse flies were suspected to occur as a result of unsuccessful tsetse 

exposures. Both sexes of tsetse flies (male and female) were also established to 

be capable of transmitting T. b. brucei.  

The principal conclusion from this part of my study was that tsetse fly probes in 

the ear pinna of mice, was sufficient to initiate infection despite inability to 

achieve blood feeds. The findings here was important in order to determine if 

the ear pinna was a valid route of infection that could be used to characterise 

immune responses/parasite behaviour by conventional techniques and intravital 

imaging through the bite of the tsetse fly. The study demonstrates that the ear 

skin was suitable for establishment and dissemination of parasites into the 

blood. 
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3.6.3 T. b. brucei kinetics 

To my knowledge, the dose of T. brucei spp. delivered by tsetse fly vector to the 

mammalian skin has not been quantified. Interestingly, studies on African 

trypanosomes have generally focussed on injecting sufficient numbers of 

parasites to generate patency in their hosts, rather than the physiological 

relevance of this process. Therefore, in addition to the approximate numbers of 

trypanosomes used, the use of blood stages rather than transmission stages of 

parasite, the route of inoculation, as well as the loss of impact of the vector bite 

makes it difficult to fully appreciate the host/parasite response in infection. In 

particular, the earliest events that occur within the first few hours of 

inoculation into the skin by the tsetse fly, and parasite dissemination 

systemically has yet to be quantified in vivo.  

In order to quantify the parasites in vivo, the paraflaggellar rod 2 (PFR2) gene of 

T. b. brucei was an attractive target because it is highly conserved and 

expressed throughout the life cycle in T. brucei and T. cruzi [336]. Furthermore, 

PFR2 has been successfully applied to quantify trypanosomes in mouse models, 

for example in stage 2 HAT [252], and comparing chemotherapy of T. b. brucei 

GVR35 sensitive and drug resistant strains (Amy Jones, University of Glasgow 

thesis 2011). Therefore, I optimised a taqman qPCR approach targeting PFR2 

using an oligonucleotide probe designed to a section of PFR2 to estimate the 

copy numbers of parasites following a single tsetse fly probe per mouse over the 

course of 48 hrs at the bite site and the dLN. At the bite site there was 

variability within tissues in the copy numbers of parasites recovered back 

immediately after a tsetse probe. This is likely due to the different probing 

behaviour of tsetse flies, which would result in injection of different sizes of 

parasite inoculum. Also, the numbers of metacyclic T. b. brucei produced in the 

salivary glands of tsetse flies varies from one tsetse fly to another. In addition, 

PCR studies of parasites in the blood at the respective time points was not 

investigated, so there could be the likelihood of parasites entering the blood 

stream via routes excluding the LN. Within 0-6 hrs post infected tsetse exposure, 

parasites were detected in the dLN, and some were still detected at the bite 

site. The migration of parasites towards the dLN increases over the course of 

time, with more parasites detected in the dLN by 48 hrs. It was observed that 
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some of the parasites remained at the bite site and could have differentiated to 

long slender forms, which are capable of proliferation [14]. Although there is no 

direct evidence for differentiation of metacyclic T. b. brucei in this chapter, P. 

berghei and P. yoelii have been demonstrated to differentiate from sporozoites 

to exoerythrocytic forms in the skin, and may remain in the skin and serve as a 

secondary reservoir of infective merozoites [183, 184].  

Quantification of intracellular parasites such as Leishmania and Plasmodium has 

given us an understanding of how the inocula injected into the skin by the their 

vectors- sand fly and mosquito, contribute to pathogenesis [183, 337]. In 

Leishmania for instance, real time PCR approach has demonstrated that between 

10-100,000 parasites could be deposited in the skin following a sand fly probe 

[257]. The transmission efficiency of sand flies during a probe has been directly 

linked to the infection levels in the midgut. This simply means that a heavily 

infected sand fly would deposit large inocula during a feed into the skin of its 

host [257]. A direct correlation between infection burden in the tsetse fly 

salivary gland and numbers of metacyclic T. b. brucei deposited in the skin has 

not been established in this study. But it may be appropriate to speculate that 

variation in numbers of parasites deposited in the dermis through the probe of a 

tsetse fly could also be linked to the degree of parasitosis in the tsetse salivary 

gland. The variability in the numbers of parasites transmitted following tsetse 

fly bites further underscores the need to apply the natural route of infection in 

understanding the earliest events in pathogenesis.   

Here, I have also been able to provide direct evidence that parasites go into the 

LN via which they may enter into the bloodstream from the skin post tsetse 

exposure. In Plasmodium berghei sporozoites ~30% of the parasites take the 

lymphatic route and arrive at the first draining LN, where most of the parasites 

die [183]. In African trypanosomes, most of the parasites that find their way into 

the LN do not die and have been suggested to replicate in the paracortex of the 

LN based on intravital imaging studies within our group (unpublished). The 

detection of trypanosomes very early in the dLN post infected tsetse exposure 

strongly supports the idea that parasites enter the LN via the lymphatics as 

shown previously [13, 191]. These findings are fundamental for understanding 

the earliest events that occur following inoculation of metacyclic T. b. brucei in 

the skin, and might apply to other African trypanosomes. 



Chapter 4  103 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4 Characterising the skin immune response to the 
bite of trypanosome infected tsetse fly 
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4.1 Introduction 

Many of the most serious parasitic infectious diseases in the world, ranging from 

malaria to more neglected tropical parasitic diseases such as filariasis, 

trypanosomiasis, leishmaniasis, and onchocerciasis, are transmitted by arthropod 

vector bites during blood feeds [338]. In as much as we know that the 

transmission of these parasites rely on the vector, most studies investigating the 

dynamics of parasite transmission and immunity in mammalian hosts have failed 

to consider the contribution of the vector. Most studies have assumed that 

parasites transmitted by injection through a syringe adequately reflect vector 

transmission. However, recent studies have made it very clear that these 

approaches do not mimic what happens in reality, raising doubts about the 

applicability of data obtained from such approaches in fully appreciating the 

host response to infection [165, 339].  

 

Arthropod saliva has been demonstrated to enhance infectivity for several 

pathogens in their mammalian hosts, for example, sand fly transmission of 

Leishmania, tick transmission of viruses, mosquito transmission of viruses and 

Plasmodium sporozoites [338, 340, 341]. The saliva of arthropod vectors such as 

mosquito, ticks, tsetse fly and sand fly, has been shown to contain a large 

number of substances that have pharmacologically important effects on the 

host, such as anti-haemostatic, vasodilatory, anti-coagulant and anti-

inflammatory or immunosuppressive activity [342-351]. Immunologically, the 

arthropod saliva also has profound consequences on the immune system of its 

host and on parasite dissemination from the bite site. In Leishmania spp, the 

sand fly vector has been used to demonstrate the early inflammatory processes 

that occur following inoculation in the ear of mice models. Through sand fly 

transmission of Leishmania it was revealed that the early recruitment of 

neutrophils to the inoculation site resulted in phagocytosis of parasites, which 

were still viable, hence transported into macrophages, promoting disease 

establishment [165, 352]. The saliva of sand flies has also been demonstrated to 

inhibit T cell activation, macrophage activation, IFN-γ, IL-12, and iNOS 

production [353-355]. Studies of Chikungunya virus transmission revealed that 

mosquito bites skewed the host immune response towards a Th2 phenotype 

through a significant upregulation of IL-4, possibly due to the contribution of 
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mosquito saliva. In contrast, needle injected Chikungunya virus induced a Th1 

immune response as evidenced by the significant upregulation of IFN-γ and IL-2, 

while Th2 cytokines such as IL-4 and IL-10 did not show significant changes in 

transcript levels [356]. These findings further emphasised differences in the 

immune responses elicited between mosquito and needle inoculations. In 

addition to the contribution of the arthropod saliva to the immune response, 

mechanical damage from the bite of arthropods or injection via a needle will 

induce a response from skin-resident immune cells such as Langerhans cells in 

the epidermis, αβ T cells, γδ T cells, mast cells, natural killer cells, 

macrophages and dendritic cells in the dermis. The mechanical damage in the 

skin produces endogenous signals that trigger an immune response in order to 

sterilise and also repair the damaged tissue [357].  

 

In studies carried out using mouse models of trypanosome transmission in the 

presence or absence of tsetse saliva via needle injections, it was demonstrated 

that the absence of saliva delayed the progress of parasites into the blood 

stream and that the saliva biases the host immune response towards a Th2 

phenotype, through the production of cytokines IL-4 and IL-5 [330]. What we 

know about how African trypanosomes interact with its host has been mostly 

based on intravenous or intraperitoneal injections of bloodstream form parasites 

into mammals [358-362], which clearly does not represent what happens in 

nature via the tsetse fly bite. A recent study has used modern analytical tools to 

analyse the events occurring in mammals in response to African trypanosome 

infection via the skin, and this was performed using intradermal needle injection 

of known numbers of bloodstream form parasites. The study demonstrated using 

B cell deficient mice, that low numbers of T. b. brucei and T. congolense 

parasites injected intradermally could be eliminated by the innate immune 

response [327]. The authors showed that B cell deficient mice exhibited the 

same degree of resistance when compared to wild type mice injected with the 

same number of parasites. In contrast, iNOS-/- and wild type mice treated with 

antibody to TNF-α were more susceptible to infection. This study clearly 

outlined a role for the innate immune response in controlling low parasite 

infections. As informative as the study was, it still missed a key part of the 

parasite’s life cycle, which is the metacyclic stage present in the salivary gland 
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of the tsetse, as well as the contribution of the tsetse fly bite and saliva to the 

host immune response, and parasite dissemination.  

 

Hence, this study arose out of a need to find answers to some of the questions 

unanswered regarding the earliest events post tsetse fly bite in the skin of 

mammals. These questions include, what are the kinetics of earliest events at 

the bite site following infected and uninfected tsetse fly exposure, does the 

presence of parasites have an effect on the magnitude of the immune response, 

what interactions occur between African trypanosomes and immune cells, and 

what functional role(s) do the cells recruited following inflammation play in 

pathogenesis. To address these questions, I hypothesised that infections using 

trypanosome infected tsetse fly would elicit the rapid infiltration of immune 

cells, and manipulating these immune cells would be important in limiting 

parasite establishment, and dissemination via the skin into the blood stream. 

Therefore, this chapter aims to fill in some significant gaps in our knowledge by 

incorporating the contribution of the tsetse fly in studying the earliest 

inflammatory processes and how this may relate to parasite dissemination into 

the bloodstream.  

 

4.2 Kinetics of cellular recruitment in the skin following 
tsetse fly bite 

In order to address the questions mentioned above, a flow cytometry analysis 

was undertaken of the cells recruited to the skin of T. b. brucei infected and 

uninfected tsetse exposed mice. Prior to characterising the immune cells by flow 

cytometry, I carried out histological analysis of mice ear samples that had been 

exposed to tsetse flies to assess whether host cells were recruited to the bite 

site post infected and uninfected tsetse exposure. For the study in this chapter, 

all infected tsetses refer to flies infected with T. b. brucei 247 wild type. 

4.2.1 Cells were recruited to the bite site following tsetse 
exposure 

Infected and uninfected tsetses were exposed to mice ears for 6 hrs, ears were 

collected and processed as described in materials and methods for Hematoxylin 
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and Eosin staining (H&E). H&E staining revealed the bite site, and the influx of 

cells post tsetse exposure. Cells were shown to infiltrate the lesion post-bite in 

both infected and uninfected ear samples, and appeared to congregate towards 

the dermal papillary lesion (Figure 4.1).  
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Figure 4-1 Infected and uninfected tsetse exposure caused recruitment of cells  
Mice were anesthetised, ears were exposed to feeding by infected and uninfected tsetses, ears 
harvested 6 hrs post tsetse exposure and stained with hematoxylin and eosin for morphological 
examination, as described in materials and methods. (A) Post exposure to infected tsetse, (B) post 
exposure to uninfected tsetse, (C) untreated ear control. Images were acquired using x40 
magnification on a Zeiss Axiostar Plus microscope fitted with AxioVision software; arrow points to 
the dermal papillary lesion (DPL) in response to tsetse fly bites, DE = dermis, EP = epidermis.  
 

4.2.2 Flow cytometry for identification of recruited leukocytes 

Once it was established by H&E that cells were indeed recruited to the tsetse 

bite site, I next sought to characterise the phenotype of cells that were 

recruited. In order to characterise the cells recruited, a flow cytometry 

approach was applied. This was carried out by processing tissues to isolate 

single-cell suspensions, by digestion of ear tissue, and staining with fluorescent 

antibodies. Once the process of isolation of cells from tissues was optimised for 

concentration of enzymes (Hyaluronidase and collagenase IV) with minimal 

damage to isolated cells, a gating strategy for identification of leukocytes was 

set up. The approach used here first involved drawing a gate on all cells using 

the forward scatter and side scatter plot, followed by the use of a live dead 

stain for exclusion of dead cells. For standardisation of total cell numbers in 

tissue samples, isolated cell suspensions were resuspended in 200 µl FACS buffer, 

and 100 µl volume taken up and analysed by the Miltenyi seven colour flow 

cytometry machine (MACSQuant analyzer) with automatic calibration features. 

The MACSQuant has an automated cell counter software, so by drawing a gate on 

viable cells as described below (Figure 4.2), the absolute number of cells was 

automatically calculated by the flow cytometry software. The number of cells 
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counted in 100 µl volume by the MACSQuant was then multiplied by two to get 

the total number of viable cells per ear tissue. For analysis of cell numbers in 

the refined populations of cells analysed, the same approach was applied by 

drawing a gate on the subset of cells I was interested in using the MACSQuant 

analyser. Leukocytes were gated by use of the CD45 marker. The CD45+ cell 

population was subsequently refined into leukocytes such as neutrophils, 

macrophages and monocytes using the appropriate lineage markers as described 

in Figure 4.2. Figure 4.2 shows that after tsetse exposure to a single mouse, 

approximately 3.73% of the viable cells expressed the CD45 marker. Further 

refinement of the CD45+ viable cells revealed that neutrophils constituted 27.4% 

of the cell type present in the skin post tsetse exposure. The gating strategy 

described in figure 4.2 was then applied throughout this study for 

characterisation of leukocytes post tsetse exposure in all cases. The percentage 

of CD45hi cells observed here was lower than what I expected following tsetse 

exposure. I anticipated a much more significant recruitment of cells to the bite 

site, this observation suggested that the tsetse bites did not induce excessive 

inflammation to the inoculation site.  

For this analysis and others, it should be noted that untreated controls refer to 

ear or lymph node samples not exposed to tsetses (naïve controls), while 

infected tsetse samples refers to mice tissues exposed to tsetses carrying T. b. 

brucei 247 wild type strain infections, and uninfected tsetse samples refers to 

mice tissue exposed to tsetses not infected with T. b. brucei 247. 
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Figure 4-2 Example plots of the flow cytometry-gating strategy for identification of 
leukocytes in the ear skin.  
Following tsetse exposure to mice ears, ears were harvested and samples were processed for 
isolation of single-cells and then stained with appropriate antibodies as described in the materials 
and methods. (A) Intact cells were identified based on size and granularity, (B) followed by 
selecting viable cells with a viability dye, and then identification of leukocytes based on CD45hi 
expression. (C) Identification of the different leukocyte populations was performed using CD11b+ 
and Ly6C+ expression to distinguish the three populations: neutrophils (CD11b+Ly6Chi), 
macrophages (CD11b+Ly6Cint) and monocytes (CD11b+Ly6Clo). (D) The expression levels of 
different populations could also be distinguished using a histogram to show Ly6G purity levels. 
Data is representative of 3 mice exposed to tsetse bites. 
 

4.2.3 CD45+ cells were identified post tsetse exposure by flow 
cytometry 

Inflammation is a fundamental process in mammals for removal of substances 

that are foreign or injurious to its host. A key event in the inflammatory 

response is the localised recruitment of leukocyte subsets. CD45 is a pan-

leukocyte marker expressed by all bone marrow derived cells except 

erythrocytes and platelets [363]. Hence, to allow for identification and 

quantification of leukocytes by flow cytometry, CD45 expression was used for 

phenotypic analysis. There was recruitment of cells to the inoculation site post 

tsetse exposure (Figure 4.3). However, no significant differences in CD45+ cells 
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recruited between infected and uninfected tsetse exposed samples (P>0.05; One 

way ANOVA with Tukey’s test). Tsetse exposed samples showed that there was 

recruitment of cells to the bite site.  
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Figure 4-3 Total leukocyte populations in the ear skin post tsetse exposure.  
Mice were anesthetised and ears exposed to infected/uninfected tsetse bites, and ears harvested 
at the respective time points. Following ear sample processing to isolate single-cell suspensions 
post tsetse exposure, processed samples were resuspended in 200 µl volumes FACS buffer. For 
flow cytometry analysis, 100 µl of cell suspension was analysed on the MACSQuant analyser, and 
the total number of cells present in the sample tube was estimated by Miltenyi software, and 
number obtained multiplied by two to calculate the total number of cells in the ear tissue. Total 
absolute numbers of CD45+ cells present over 48 hrs were quantified and plotted. Example plots at 
the time points analysed for infected and uninfected tsetse samples are presented: infected and 
uninfected tsetse ears at 2 hrs (A), 6 hrs (B), 12 hrs (C), 24 hrs (D), 48 hrs (E), and untreated naïve 
ear control (F), respectively. (G) Line graph depicts the absolute numbers of CD45+ cells in the skin 
post tsetse exposure, ± SEM. Data represents pooled data from 3 mice per group from 3 
independent experiments. No difference was observed between uninfected and infected tsetse 
samples (P>0.05; not significant, ns) carried out using a One-way ANOVA with Tukey’s post test. 
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Leukocyte subtypes accumulating post tsetse exposure were further refined 

based on expression of neutrophil, macrophage, and monocyte markers in the 

subsequent sections. 

4.2.4 Neutrophils were recruited within the first 24 hrs post tsetse 
exposure 

Neutrophils are rapidly recruited through blood vessels to sites of inflammation 

or sterile injury, through a series of steps tightly regulated by integrins [364]. 

They are usually the first immune cells that extravasate from the blood to tissue 

sites in inflammation. Hence, the kinetics of neutrophil influx post infected and 

uninfected tsetse exposure to mice ears was characterised. Following the 

identification of CD45+ cells in the skin, neutrophils were analysed through their 

combined expression of CD11b+ and Ly6Ghi. Consistent with their role as early 

responders at sites of tissue damage, neutrophils were detected in the ear pinna 

within the first 2 hrs in both infected and uninfected tsetse samples. Neutrophil 

recruitment at the time points analysed (2, 6, 12 and 24 hrs) was compared 

between infected and uninfected tsetse samples, and was found to be 

statistically insignificant (P>0.05; One way ANOVA with Tukey’s post test). 

However, comparison of either infected or uninfected tsetse exposed samples 

with untreated controls gave statistically significant results (P<0.05; One way 

ANOVA with Tukey’s post test) for the time points analysed in all samples, 

except for uninfected tsetse sample at 24 hrs, which showed no difference 

(Figure 4.4).  

Overall the data suggests that there was transient recruitment of neutrophils, 

with peak influx into the bite site occurring within the first 2 hrs, and there was 

no significant difference between infected and uninfected tsetse samples 
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Figure 4-4 Estimation of the kinetics of neutrophil recruitment in the ear post tsetse 
exposure 
Mice were anesthetised and ears exposed to infected/uninfected tsetse bites, and ears harvested 
at the respective time points. Following ear sample processing to isolate single-cell suspensions 
post tsetse exposure, processed samples were resuspended in 200 µl volumes FACS buffer. For 
standardisation of absolute cell numbers, 100 µl of cell suspension was analysed on the flow 
cytometry machine, and the total number of cells present in the sample tube was estimated by 
Miltenyi software, and number obtained multiplied by two to calculate the total number of cells in 
the ear tissue. Neutrophils were gated as described in Figure 4.2. Neutrophils (CD11b+Ly6G+) are 
present in the top right hand quadrant of the live CD45+ cells gate. Representative dot plots of an 
infected and uninfected tsetse sample at 2 hrs (A), 6 hrs (B), 12 hrs (C) 24 hrs (D), and (E) 
untreated ear controls from naïve mice. (F) Bar graph summarised the mean neutrophil numbers, 
and (G) the proportion of neutrophils in infected, uninfected tsetse and untreated ears. Statistical 
test was estimated by comparing either infected or uninfected samples with untreated (UT) ear 
controls (*P<0.05, **P<0.01), and between infected and uninfected tsetse samples (P>0.05; not 
significant, ns) using One way ANOVA with Tukey’s post test. Data represents the mean ± SEM, 
pooled together from 3 mice per group for three independent experiments. 
 

4.2.5 Macrophage numbers in the ear skin do not change 
following tsetse exposure 

Macrophages belong to the professional phagocyte pool comprising monocytes, 

DCs, mast cells and neutrophils, due to their efficiency at phagocytosis. They are 

described as professional phagocytes due to the expression of receptors such as 

scavenger receptors or TLRs that can detect signals not normally found in 
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healthy tissues, non-self or damage responses [365]. During tissue injury, 

macrophages develop a pro-inflammatory phenotype and secrete inflammatory 

mediators such as TNF-α, NO and IL-1, which participate in the activation of 

antimicrobial mechanisms that contribute to the killing of microorganisms in vivo 

[366]. The significance of macrophages during inflammation led to the analysis 

of macrophages in ear skin post tsetse exposure, to ask if there were changes in 

numbers during inflammation in tsetse exposed samples. Macrophages were 

gated on live CD45+ CD11bint, and examined for the combined expression of 

F4/80+ and CD11b+ (Figure 4.5). Comparison of macrophage numbers in the skin 

of infected and uninfected tsetse exposed samples clearly shows that there was 

no statistically significant difference (P>0.05; One way ANOVA with Tukey’s post 

test). Further comparison of tsetse exposed samples with untreated controls also 

revealed no statistically significant changes in macrophage numbers (P>0.05; 

One way ANOVA with Tukey’s posttest). Overall, the data suggests no 

differences in macrophage numbers in the skin post tsetse bites at the time 

points analysed. 
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Figure 4-5 Kinetics of macrophage numbers following tsetse exposure.  
Following ear sample processing to isolate single-cell suspensions, processed samples were 
resuspended in 200 µl volumes FACS buffer. For flow cytometry analysis, 100 µl of cell suspension 
was analysed on the MACSQuant analyser, and the total number of cells present in the sample 



Chapter 4  118 
 
tube was estimated by Miltenyi software by drawing gates on cells phenotyped to be macrophages. 
Identification of macrophages was carried out on live CD45+ cells that were double positives for 
CD11b and F4/80. Example dot plots for macrophages at the time points in infected and uninfected 
tsetse samples at 2 hrs (A), 6 hrs (B), 12 hrs (C) and 24 hrs (D), respectively. (E) Example plot of 
macrophages in untreated ear skin of naïve mice. (F) Bar graph represents mean macrophage 
numbers ± SEM, and (G) the proportion of macrophages in tissue. Statistical analyses were carried 
out by comparing either infected or uninfected samples to untreated controls, also between infected 
and uninfected tsetse samples (P>0.05; not significant, ns), using One way ANOVA with Tukey’s 
post test. Data represents the mean ± SEM, pooled together from 3 mice per group for three 
independent experiments. 
 

4.2.6 Inflammatory monocytes do not appear within 24 hrs post 
tsetse exposure.  

At sites of inflammation, inflammatory monocytes may be recruited from the 

blood, characterised by the expression of CD11b+ and Ly6Chi cells. Recruitment 

of inflammatory monocytes to the skin following tsetse exposure was therefore 

examined, and it was demonstrated that inflammatory monocytes were not 

recruited in the first 24 hrs post tsetse exposure (Figure 4.6). Rather, monocytes 

resident in the skin characterised by the expression of CD11b+, Ly6Clo, and Ly6G- 

were identified. Statistical comparisons of infected and uninfected tsetse 

exposed samples at each time point, suggests no significant difference (P>0.05; 

One way ANOVA with Tukey’s post test), and there was also no difference when 

infected and uninfected tsetse exposed samples were compared to untreated 

controls. 
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Figure 4-6 Kinetics of resident monocytes in the skin post tsetse bites.   
Following ear sample processing to isolate single-cell suspensions, processed samples were 
resuspended in 200 µl volumes FACS buffer. For flow cytometry analysis, 100 µl of cell suspension 
was analysed on the MACSQuant analyser, and the total number of monocytes present in the 
sample tube was estimated by Miltenyi software, by drawing gates on monocytes and number of 
cells counted multiplied by two. Identification of monocytes was carried out on live CD45+ cells that 
were double positives for CD11b+ and Ly6Clo. Example dot plots for monocytes at the time points in 
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infected/uninfected tsetse samples at 2 hrs (A), 6 hrs (B), 12 hrs (C) and 24 hrs (D), respectively. 
(E) Absolute cell counts were carried out and mean cell numbers depicted, and (F) the proportion 
of monocytes in tissue, were summarised in the bar graph. Statistical analyses was carried out by 
comparing infected/uninfected samples to untreated controls (UT), and between infected and 
uninfected tsetse samples. No statistically significant (ns) result was obtained using One way 
ANOVA with Tukey’s post test. Data represents the mean ± SEM, pooled together from 3 mice per 
group for three independent experiments.  
 

Together, the monocyte data here suggests that only skin resident monocytes 

were still present in the skin very early post tsetse exposure to mice ears. 

 

4.2.7 Activation of macrophages in the skin post tsetse exposure 

In African trypanosome infections, a type I cytokine environment typically 

predominates which fuels the generation of classically activated macrophages 

[131, 367-371]. Classically activated macrophages are developed in response to 

IFN-γ and exposure to microbes or microbial products such as LPS [372]. 

Classically activated macrophages secrete nitric oxide as well as costimulatory 

molecules such as CD86, upregulate MHCII, possess an enhanced antigen 

presenting capability and intracellular pathogen destruction [373]. MHCII is 

expressed on antigen presenting cells (APCs) such as macrophages and helps 

APCs in presenting antigens on their surface to cognate cells following processing 

in the lysosomal compartment of the cell [374]. Since the markers I used in 

phenotypic characterisation of macrophages post tsetse exposure consisted of 

anti-MHCII antibody, I measured the upregulation of MHCII on macrophages 

following tsetse exposure to determine its activation status. The data here was 

analysed using the mean fluorescent intensity (MFI) numbers to plot the 

expression levels of MHCII on macrophages in infected, uninfected tsetse 

samples, and untreated controls (Figure 4.7). At 2, 6, and 12 hrs MHCII MFI 

values on macrophages was significantly different compared to untreated 

controls (P<0.05; One way ANOVA with Tukey’s post test) in infected and 

uninfected tsetse samples with the exception of infected tsetse samples at 2 and 

12 hrs (P>0.05; One way ANOVA with Tukey’s post test). At 24 hrs infected and 

uninfected tsetse samples, were not significantly different from untreated 

controls (P>0.05; One way ANOVA with Tukey’s post test).  
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Figure 4-7 Upregulation of MHCII on macrophages in the ear skin post tsetse exposure.  
Following the processing of tissue and identification of macrophages (gated as described in Figure 
4.2), expression levels of MHCII was investigated. (A) Bar graph depicting MFI values of MHCII 
expression on macrophages. Histogram plots for macrophage expression of MHCII at the time 
points in infected and uninfected tsetse exposed samples at 2 hrs (B), 6 hrs (C), 12 hrs (D) and 24 
hrs (E), respectively. Statistical analysis was carried out using One-way ANOVA with Tukey’s post 
test (*P<0.05, **P<0.01). No significant (ns) difference was observed between infected and 
uninfected tsetse samples. Data represents the mean ± SEM, pooled together from 3 mice per 
group for three independent experiments. Green, yellow, red and grey lines represent a single 
mouse. 
 

4.2.8 Characterisation of the inflammatory profile in the ear  

4.2.8.1 Assessment of RNA quality from ear and draining lymph node of 
mice exposed to tsetse  

Following the identification and characterisation of the kinetics of cells 

recruited post tsetse exposure to ear samples, I next sought to characterise the 

expression profile of inflammation-associated genes in the skin and draining 

lymph node of C57Bl/6 mice. Two and twelve hours were identified as 
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appropriate time points based on the kinetics of neutrophil recruitment to the 

skin post tsetse exposure. Characterisation of inflammation associated genes was 

carried out by exposing infected and uninfected tsetses to mice ears, sampling 

tissues at 2 and 12 hours post exposure, extracting total RNA, and analysing the 

RNA obtained on a custom Taqman Low-Density Array (TLDA) microfluidic card. 

Prior to the TLDA analysis, the quality of RNA obtained from tissues was analysed 

using the Agilent 2100 Bioanalyser platform. The Agilent 2100 Bioanalyser 

provides the RNA integrity number (RIN), a ratio of 28S/18S, as well as an 

electrophoregram that gives information on the degree of noise and low 

molecular weight contamination [277], as shown in Figure 4.8. The 

electrophoregram also showed distinct and clear 18S and 28S bands, which was 

also an indicator of RNA quality. Only samples with RIN > 8.0 were used for 

downstream TLDA analysis. After confirmation of the quality of RNA to be used 

for analysis in the TLDA assay, approximately 1500 ng of total RNA was used for 

complementary DNA (cDNA) synthesis and downstream TLDA analysis.  

TLDA is a customised 384-well microfluidic card (Applied Biosystems) containing 

primers and probes for pre-selected chemokines and inflammatory cytokines. In 

all, the format selected was able to allow profiling for 32 genes for total RNA 

from skin, and 64 genes for total RNA from lymph node implicated in 

inflammatory responses. All gene expression levels were firstly normalised to 

18S, and then calibrated to untreated controls to obtain fold changes (ΔΔCT, 

where CT is the threshold cycle). Therefore for these studies, a fold change of ≥1 

or ≤1, meant that exposure to tsetse (infected and uninfected) induced 

upregulation or downregulation in that gene’s expression compared to untreated 

controls respectively. To allow a direct comparison of the modulation of gene 

expression in response to infected and uninfected tsetse exposure, fold changes 

were plotted on a logarithmic scale. Statistical significance for differences in 

fold change in expression of each gene was calculated using a 2-tailed Mann 

Whitney U test. 
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Figure 4-8 Assessment of RNA quality isolated from mouse ear skin and draining lymph 
node tissues isolated post tsetse exposure.  
Total RNA was isolated from mouse ears, and draining lymph nodes (dLN) exposed to tsetses or 
untreated control tissues as described in materials and methods. RNA quality was assessed using 
the Agilent 2100 Bioanalyser. (A) Representative gel image of total RNA isolated from ears of 
infected tsetse exposed ear samples (lanes 1-3, 6-7), uninfected tsetse exposed ears (lanes 4-5, 8-
9) isolated 12 hrs post probes, untreated controls (UT) (lanes 10-11), lane 12 is the internal control 
for the assay, Lane L: size marker (nucleotides, nt). (B) Electrophoregrams for each sample in the 
gel (A) is shown. The x-axis represents amplicons size (nt), while the y-axis represents the 
fluorescence units (FU). The electrophoregrams shows two peaks, 18S and 28S.  
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4.2.8.2 Inflammatory profile in the ear at 2 and 12 hrs post tsetse exposure 

To better understand the mechanisms guiding leukocyte recruitment to the skin 

post tsetse exposure, an assessment of inflammation-associated genes in the skin 

was carried out by TLDA. The TLDA microfluidic card consisted of 32 genes, and 

the genes analysed were cytokines: TNF-α, IL-6, IL-10, IL-13, CD45, GM-CSF, CC 

chemokines: CCL2, 3, 4, 6, 7, 19, 27, CXC chemokines: CXCL1, 2, 3, 5, 10, 11, 

12, 13, CC receptors: CCR2, 3, 4, 5, 7, 10, CXC receptors: CXCR2, 4, 5 and 

Fractalkine receptor, comprising wells preloaded with reagents for qPCR to 

detect the cDNA, therefore expression level of an array of 32 genes. Samples 

were analysed as described in section 4.2.8.1. 

4.2.8.3 CC chemokine upregulation in mice ears at 2 and 12 hrs post tsetse 
exposure 

The CC chemokines that were upregulated at 2 hrs were CCL2, CCL4 and CCL7 

(Figure 4.9A). For CCL2 gene expression in the skin following tsetse exposure, 

there was a <10-fold increase in infected and uninfected tsetse samples. For 

CCL4, there was a 10-fold change in gene expression in both infected and 

uninfected tsetse samples. Lastly, at 2 hrs CCL7 gave a fold change in expression 

of <10 in both infected and uninfected tsetse samples. In all, the CC chemokines 

upregulated at 2 hrs were not statistically different between infected and 

uninfected tsetse exposed samples (P>0.05; 2-tailed Mann Whitney U test).  

Next, I investigated infected and uninfected tsetse samples post exposure at 12 

hrs. CCL2, CCL5 and CCL7 were the three CC chemokines upregulated (Figure 

4.9B). At 12 hrs, CCL2 and CCL7 gave fold change in gene expression ≥1≤10 in 

both infected and uninfected tsetse samples, while CCL5 fold change in gene 

expression was only observed in uninfected tsetse samples (Figure 4.9B). Fold 

changes in gene expression of CCL2, CCL5 and CCL7 post tsetse exposure were 

not significant (P>0.05; 2-tailed Mann Whitney U test).  

In summary, the presence or absence of T. b. brucei in the tsetse fly made no 

significant impact on inflammatory CC chemokines upregulation. 



Chapter 4  126 
 

 

 

Figure 4-9 CC-chemokine expression did not differ at 2 and 12 hrs in infected and 
uninfected samples post tsetse exposure to the ear skin.  
Infected and Uninfected tsetses were exposed to ears of C57Bl/6 mice, and ears collected at 2 and 
12 hrs for total RNA isolation. 1500 ng of total RNA was used for cDNA synthesis diluted 1:5 and 
then used for chemokine gene analysis using Taqman Low Density Analysis. Gene expression was 
normalised with the housekeeping gene 18S, then RQ (relative quantification) values were set to 1 
using an untreated ear control to calibrate samples and work out gene expression levels to obtain 
fold changes (ΔΔCT). RQ values in the plots were depicted as fold changes. Each sample was 
tested in triplicate and data represents the mean ± SEM. (A) Bar graph show CC genes that gave 
fold changes ≥ 1 at 2 hrs were CCL2, CCL4, and CCL7. (B) CCL2, CCL5, and CCL7 gave fold 
changes ≥ 1 at 12 hrs. Statistical analysis to compare fold changes in gene expression induced 
following tsetse exposure was carried out using 2-tailed Mann-Whitney U test. No significant (ns) 
differences (P>0.05) were observed between infected and uninfected tsetse samples with the 
exception of CCL5 at 12 hrs (*P<0.05). Data depicts fold changes of pooled values from 3 mice per 
group. 
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4.2.8.4 CXC chemokine upregulation in mice ears at 2 and 12 hrs post tsetse 

exposure 

The CXC chemokine signatures followed a similar differential regulation pattern 

to the CC chemokines. At 2 & 12 hrs, CXCL1 and CXCL2 were the CXC 

chemokines that were upregulated post tsetse exposure. At 2 hrs, CXCL1 in 

uninfected tsetse exposed samples gave fold change values >10 fold in both 

infected and uninfected tsetse samples with no statistically significant 

difference (P>0.05; 2-tailed Mann Whitney U test) between infected and 

uninfected tsetse samples. At 12 hrs post tsetse exposure, CXCL1 expression was 

at base line level (similar to untreated controls i.e. gave a value of 1) in infected 

and uninfected tsetse exposed samples.  

For CXCL2 expression in infected tsetse samples at both time points (2 and 12 

hrs), fold changes were at base line level. While uninfected tsetse gave fold 

change values of ~1.5 and 6.5 respectively at 2 and 12 hrs (Figure 4.10). 

 

Figure 4-10 CXC-chemokine expression did not differ at 2 and 12 hrs in infected and 
uninfected samples post tsetse exposure to the ear skin. 
Infected and Uninfected tsetses were exposed to ears of C57Bl/6 mice, and ears collected at 2 and 
12 hrs for total RNA isolation. 1500 ng of total RNA was used for cDNA synthesis diluted 1:5 and 
then used for chemokine gene analysis using Taqman Low Density Analysis. Gene expression was 
normalised with the housekeeping gene 18S, then RQ (relative quantification) values were set to 1 
using an untreated ear control to calibrate samples and work out gene expression levels to obtain 
fold changes (ΔΔCT). RQ values in the plots were depicted as fold changes. Each sample was 
tested in triplicate and data represents the mean ± SEM. (A) Bar graph show fold changes ~12 at 2 
hrs for both CXCL1 and CXCL2. (B) At 12 hrs, CXCL2 expression was detected only in uninfected 
tsetse samples with fold change of ~6.5. Statistical analysis to compare fold change in gene 
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expression induced following tsetse exposure was carried out using 2-tailed Mann-Whitney U test. 
No significant (ns) differences were observed between infected and uninfected tsetse samples 
(P>0.05) with the exception of CXCL2 (*P<0.05) in both infected samples at 2 and 12 hrs. Data 
depicts fold changes of pooled values from 3 mice per group. 
 

4.2.8.5 CX3CL1 expression in mice ears at 12 hrs post tsetse exposure 

CX3CL1 a potent chemoattractant of T cells and monocytes was investigated at 2 

and 12 hrs. At 2 hrs, in infected and uninfected tsetse exposed samples, CX3CL1 

was expressed at levels similar to naïve controls, while at 12 hrs fold changes 

were ~ 1.5 in both infected and uninfected tsetse samples (Figure 4.11). Hence 

at 12 hrs, CX3CL1 expression was not significantly different between infected 

and uninfected tsetse samples (P>0.05; 2-tailed, Mann Whitney U test).  

 

Figure 4-11 CX3CL1 expression in the ear skin at 12 hrs post tsetse exposure. 
Infected and Uninfected tsetses were exposed to ears of C57Bl/6 mice, and ears collected at 12 
hrs for total RNA isolation. 1500 ng of total RNA was used for cDNA synthesis diluted 1:5 and then 
used for chemokine and cytokine gene analysis using Taqman Low Density Analysis. Gene 
expression was normalised with the housekeeping gene 18S, then RQ (relative quantification) 
values were set to 1 using an untreated ear control to calibrate samples and work out gene 
expression levels to obtain fold changes (ΔΔCT). RQ values in the plots were depicted as fold 
changes. Each sample was tested in triplicate and data represents the mean ± SEM. Bar graph 
shows CX3CL1 gene expression, fold changes ~ 1.5 at 12 hrs in both infected and uninfected 
samples. No significant (ns) difference (P>0.05) was observed between infected and uninfected 
tsetse samples, 2-tailed Mann-Whitney U test. Data depicts fold changes of pooled values from 3 
mice per group. 
 
 

4.2.8.6 Inflammatory cytokine expression post tsetse exposure at 2 and 12 
hrs 

The cytokine genes upregulated at 2 hrs in response to infected and uninfected 

tsetse exposure were IL-1β, macrophage colony stimulating factor (M-CSF) and 

IL-6 (Figure 4.12A). IL-1β gave fold change expression of <10 fold in both tsetse 

exposed samples, while IL-6 gave ~100 fold increase in infected and uninfected 

tsetse samples. M-CSF fold change values of <10 was also observed in infected 
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and uninfected tsetse exposed samples at 2 hrs, with no statistically significant 

difference in cytokine fold changes between infected and uninfected tsetse 

exposed samples at 2 hrs (P>0.05; 2-tailed, Mann Whitney U test). 

At 12 hrs only IL-1β was upregulated (Figure 4.12B), following infected and 

uninfected tsetse exposure. IL-1β gave fold changes ~8 and 12 fold in infected 

and uninfected tsetse samples respectively. No statistically significant difference 

was observed when both tsetse-exposed groups were compared (P>0.05; 2-

tailed, Mann Whitney U test). Unexpectedly, I observed a 30-fold change in the 

anti-inflammatory cytokine IL-10 in infected tsetse sample at 2 hrs, which was 

completely undetected in uninfected tsetse samples. Further analysis to 

investigate the upregulation of IL-10 at 12 hrs, or absolute quantification by 

qPCR did not detect its expression. 
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Figure 4-12 Inflammatory cytokine expression at 2 and 12 hrs in the ear skin post tsetse 
exposure.  
Infected and Uninfected tsetses were exposed to ears of C57Bl/6 mice, and ears collected at 2 and 
12 hrs for total RNA isolation. 1500 ng of total RNA was used for cDNA synthesis diluted 1:5 and 
then used for chemokine and cytokine gene analysis using Taqman Low Density Analysis. Gene 
expression was normalised with the housekeeping gene 18S, then RQ (relative quantification) 
values were set to 1 using an untreated ear control to calibrate samples and work out gene 
expression levels to obtain fold changes (ΔΔCT). RQ values in the plots were depicted as fold 
changes. Each sample was tested in triplicate and data represents the mean ± SEM. (A) Bar graph 
showing IL-1β, IL-6, IL-10 and M-CSF fold changes at 2 hrs. (B) At 12 hrs, bar graph shows IL-1β 
fold change. No significant (ns) difference was observed using 2-tailed Mann-Whitney U test, 
P>0.05, with the exception of IL-10 (*P<0.05). Data depicts fold changes of pooled values from 3 
mice per group. 
 
A summary of the results of all the genes analysed is given in Table 4.1 below. 

Table 4-1. Summary of the results of bar graphs presented for genes analysed 

at 2 and 12 hrs. 

Genes analysed at 

2 and 12 hrs 

Infected tsetse 

Upregulated/downregulated 

(+/-) 

Uninfected tsetse 

Upregulated/downregulated 

(+/-) 

CCL2 + + 

CCL4 + + 

CCL5 - + 

CCL7 + + 

CXCL1 + + 

CXCL2 - + 

CXC3CL1 + + 

IL-1β + + 

IL-6 + + 
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IL-10 + - 

MCSF + + 

+ = upregulated, - = downregulated 
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4.2.9 Summary of gene upregulation in the skin post tsetse 
exposure 

The aim of this section was to characterise the inflammatory profile in the skin 

following T. b. brucei infected and uninfected tsetse exposure, and also 

investigate whether there were differences between infected and uninfected 

tsetse samples. There were no statistically significant differences in 

inflammatory chemokine and cytokine genes upregulated between infected and 

uninfected tsetse exposed samples at the time points analysed.  

 

Figure 4-13 Summary of total genes analysed by Taqman Low Density Arrays at 2 and 12 
hrs in the ear skin post tsetse exposure.  
Infected and Uninfected tsetses were exposed to ears of C57Bl/6 mice, and ears collected at 2 and 
12 hrs for total RNA isolation. 1.5 µg of total RNA was used for cDNA synthesis diluted 1:5 and 
then used for chemokine and cytokine gene analysis using Taqman Low Density Analysis. Gene 
expression was normalised with the housekeeping gene 18S, then RQ (relative quantification) 
values were set to 1 using an untreated ear control to normalise samples and work out gene 
expression levels to obtain fold changes (ΔΔCT). Fold change values were computed as an 
increment over untreated controls. The expression data obtained from all the genes analysed at 2 
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and 12 hrs post tsetse bites are summarised above. The scoring system for classifying the colours 
is also indicated above. Genes that were undetectable on the TLDA microfluidic card are coloured 
black.  
 

Chemokines are important for leukocyte trafficking to sites of inflammation, and 

perform immunosurveillance roles in the skin. In this study, it has been shown 

that the CXC chemokines CXCL1, CXCL2, and CXCL5 were in the skin post tsetse 

bites. The pro-inflammatory chemokines CXCL1, CXCL2, and CXCL5 are 

associated with neutrophil extravasation from blood and bind the receptor 

CXCR1/CXCR2 during infection. CXCL1 and CXCL2 together with other 

proinflammatory CC chemokines upregulated in this study, such as CCL2, CCL4, 

CCL5 and CCL7 are important for neutrophil, macrophage and monocyte 

recruitment during inflammation. The presence of neutrophils in my model post 

tsetse exposure as confirmed by flow cytometry lends credence to the role of 

these pro-inflammatory chemokines in neutrophil extravasation [375]. Also, the 

fractalkine receptor CX3CL1 was upregulated at 12 hrs, and has been indicated 

to induce the accumulation of mature mast cells in the skin during inflammation. 

In the course of the transcript analysis from the skin post tsetse bites, I also 

identified the upregulation of pro-inflammatory cytokines IL-6 and IL-1β. IL-1β 

which can be produced by activated cells such as monocytes and macrophages, 

or non-immune cells such as fibroblasts and endothelial cells during injury, 

infection or inflammation, was consistently secreted at the two time points (2 

and 12 hrs) used for TLDA studies. The production of IL-1β, which was present in 

both infected and uninfected tsetse samples, may be likely due to the damage 

from the tsetse proboscis to the skin. IL-6 a pleiotropic cytokine was 

upregulated, albeit only at 2 hrs. The role of IL-6 has described to be essential in 

the differentiation of Th17 cells and it is involved in a wide range of biological 

activities such as immune regulation, hematopoiesis, inflammation and 

oncogenesis. Interestingly, there was also the upregulation of an anti-

inflammatory cytokine IL-10 in the infected tsetse sample at 2 hrs, which was 

significant when compared with the uninfected tsetse sample, which showed no 

upregulation. Anti-inflammatory cytokines dampen the expression of pro-

inflammatory cytokines. In the context of this infection model, IL-10 may 

dampen the production of pro-inflammatory cytokines in order to allow for 

parasite establishment in the skin, prior to dissemination into the blood stream 

[122]. Other chemokines such as CCL5 and CXCL2 were also downregulated in 
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the infected tsetse samples only. This might suggest that the presence of 

parasites in the tsetse was contributing to some form of anti-inflammatory role 

following tsetse bites. The upregulation of an anti-inflammatory cytokine IL-10 

and the downregulation of monocyte/neutrophil chemokines CCL5 and CXCL2 in 

infected tsetse samples, suggests that T. b. brucei may possess an anti-

inflammatory role. 

Taken together, the gene expression data here agrees with the flow cytometry 

data that there were no significant differences between infected and uninfected 

samples post tsetse exposure. The data here aso suggests a significant 

downregulation of chemokines involved in leukocyte chemotaxis (CCL5 and 

CXCL2) and a significant upregulation of an anti-inflammatory cytokine (IL-10) in 

infected tsetse samples. This suggests that inflammation events very early in the 

skin may be triggered by the tsetse damage and the presence of parasites in the 

skin might contribute to an anti-inflammatory role in vivo.  

4.2.10 Inflammatory profile of the lymph node post tsetse 
 exposure  

Following the analysis of the inflammatory genes triggered post tsetse exposure 

to mice ears, the inflammatory profile of the draining lymph node (LN) of mice 

was also analysed using TLDA. This was carried out using a customised TLDA 

microfluidic card that consisted of 64 customised genes, and was kindly supplied 

as a gift by Dr. Clive McKimme. The TLDA microfluidic card contained CC ligands 

(CCL) 1-28, CXC ligands (CXCL) 1-17, CX3CL1, XCL1, innate immunity genes TNF-

α, IL-6, IL-1α, IFN-α, IFN-β, IL-1β, adaptive immune genes and pathogen 

recognition receptors, comprising wells preloaded with reagents for qPCR to 

detect the cDNA, therefore expression level of an array of 64 genes. The 

housekeeping gene, 18S that was constitutively expressed in the LN was used to 

normalise gene expression levels prior to determining fold expression changes by 

calibrating with untreated control samples. Analysis was carried out in a similar 

manner to TLDA analysis of skin data as described in section 4.2.8.1. 
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4.2.10.1 Expression of chemokines in the draining lymph node at 2 and 

 12 hrs post tsetse exposure 

At 2 hrs, the chemokines and cytokines analysed suggested that there were no 

fold changes in gene expression above base line levels (i.e. untreated controls) 

in the lymph node.  

At 12 hrs, only 7 of the 64 genes analysed on the TLDA microfluidic cards were 

upregulated following exposure to infected and uninfected tsetses. Those genes 

upregulated were CC ligands; CCL7, CCL20, CCL28, and CXC ligands; CXCL2, 

CXCL5, CXCL10, and CXCL17. For CCL7 and CCL20, fold changes of <10 were 

observed in infected and uninfected tsetse exposed samples (Figure 4.14A). For 

CCL28, infected and uninfected tsetse exposed samples gave fold change values 

>500 at 12 hrs. No statistically significant difference between infected and 

uninfected tsetse samples was observed in the CC chemokines that were 

upregulated (P>0.05; 2-tailed, Mann Whitney U test). 

The CXC chemokines that were upregulated following infected and uninfected 

tsetse exposure at 12 hrs were CXCL2, CXCL5, CXCL10, and CXCL13 (Figure 

4.14B). CXCL2, CXCL5 and CXCL10 gave fold changes ≥10<100 in infected and 

uninfected tsetse samples. CXCL17 gave fold change values of >10<100 in 

infected and uninfected tsetse samples. No statistically significant difference 

(P>0.05; 2-tailed, Mann Whitney U test) was observed for CXC chemokine fold 

change gene expression between infected and uninfected tsetse samples in the 

draining LN at 12 hrs.  
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Figure 4-14 CC and CXC-chemokine upregulation at 12 hrs in the draining lymph node post 
tsetse exposure  
Infected and Uninfected tsetses were exposed to ears of C57Bl/6 mice, and ears collected at 12 
hrs for total RNA isolation. 1500 ng of total RNA was used for cDNA synthesis diluted 1:5 and then 
used for chemokine and cytokine gene analysis using Taqman Low Density Analysis. Gene 
expression was normalised with the housekeeping gene 18S, then RQ (relative quantification) 
values were set to 1 using an untreated lymph node control to calibrate samples and work out gene 
expression levels to obtain fold changes (ΔΔCT). RQ values in the plots were depicted as fold 
changes. Each sample was tested in triplicate and data represents the mean ± SEM. (A) Bar 
graphs show CCL7, CCL20 and CCL28 fold changes, (B) CXCL2, CXCL5, CXCL10 and CXCL17. 
No significant (ns) difference (P>0.05) was observed between infected and uninfected tsetse 
samples using 2-tailed Mann-Whitney U test. Data depicts fold changes of pooled values from 3 
mice per group. 
. 
 
In summary, the chemokine genes that were upregulated in the draining LN at 12 

hrs post tsetse exposure were not significantly different between infected and 

uninfected tsetse samples.  

4.2.11 Summary of gene upregulation in the draining LN post 
 tsetse exposure 

At 12 hrs, it was demonstrated that only inflammatory CC chemokines CCL7, 

CCL20 and CCL28 were upregulated, while CXC chemokines, CXCL2, CXCL5, 

CXCL10 and CXCL17 were upregulated in both infected and uninfected tsetse 

exposed samples.  

CXCL10, which was upregulated in the LN at 12 hrs, is an agonist for CXCR3, 

which is expressed on Th1 cells, and also antagonizes CCR3 expressed on Th2 

cells. This suggests that the upregulation of CXCL10 in the lymph node post 

tsetse exposure could contribute to the polarisation of the immune response to a 



Chapter 4  137 
 
Th1 type [376]. CXCL5 an LPS-induced CXC chemokine could have been 

upregulated in the lymph node as a result of the bacteria released from the 

saliva components of the tsetse fly. CXCL5, similar to CXCL2 binds CXCR2 a 

neutrophil receptor, and has a role in neutrophil recruitment, as it has been 

described to be involved in neutrophil recruitment in lungs of mice infected with 

M. tuberculosis [377]. 

 In all, temporal upregulation of inflammation-associated genes in the draining 

LN was < 100 fold in almost all the genes analysed, and there was no difference 

between infected and uninfected tsetse exposed LN samples, similar to the 

findings reported in tsetse exposed mice ears.  

4.2.12 Depletion of neutrophils  

4.2.12.1 Establishing the protocol for neutrophil depletion 

From section 4.2.4, it was established that neutrophils were the first cells that 

were recruited very early to the bite site, either in infected or uninfected tsetse 

exposed samples. The aim of this section was to investigate the depletion of 

neutrophils and the functional consequence of depletion in parasite 

dissemination from the bite site to the blood stream. In order to deplete 

neutrophils from C57Bl/6 mice, a well-established model for neutrophil 

depletion was applied [378, 379]. Following administration of anti-Ly6G or 

isotype control antibodies, mice were kept for 16 hrs prior to infections. The 

first experiment was to test that depletion of neutrophils using anti-Ly6G was 

successful. Sixteen hours post administration of anti-Ly6G and setting up the 

appropriate controls, mice were treated with 10 µg/ml LPS to observe the 

recruitment of neutrophils for 6 hrs, when neutrophils were previously reported 

to be observed in the skin in our lab. LPS was used as a model to test the success 

of neutrophil depletions in mice, because it is a well-established model of 

inflammation in tissues [380-382]. As shown in Figure 4.15 neutrophils were 

successfully depleted in anti-Ly6G treated mice post LPS treatment. 
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Figure 4-15 Setting up the neutrophil depletion study.  
C57Bl/6 mice were injected intraperitoneally with 1 mg anti-Ly6G or isotype control antibodies and 
left for 16 hrs. Sixteen hours post injection of mice with antibodies, ear pinna of anti-Ly6G (1A8) 
and isotype treated mice were injected subcutaneously with 10 µg/ml of LPS. Six hours later, ear 
skin was collected and digested using hyaluronidase and collagenase type IV, and ground in a 
tissue-lysing machine. Cell suspension was spun down and passed through a 40- µm cell strainer 
to collect cells. Cells were then prepared for leukocyte staining as described in the materials and 
methods. The gating strategy described in figure 4.2 was applied, and neutrophils identified by the 
markers CD11b and Ly6G. Representative plots of neutrophils in the top right hand quadrant in (A) 
naïve control, (B) isotype control, and (C) anti-Ly6G treated mice. Data representative of 3 mice 
per group. 
 

4.2.12.2 Impact of Neutrophil depletion on African trypanosome 
 infection via tsetse transmission 

Once it was established that depletion of neutrophils was successful, it was then 

applied to T. b. brucei infection model. One mg anti-ly6G or isotype antibody 

was administered 16 hrs prior to T. b. brucei infected tsetse exposure to mice 

ear skin. Parasitemia was observed on a daily basis for the first 9 days. Mice 

treated with anti-ly6G showed parasitemia, as early as 2 days post infected 

tsetse exposure compared with isotype control antibody treated and naive 

controls. Isotype and untreated controls gave parasitemia from 3 and 4 days post 

infection in C57Bl/6 mice. Statistical analyses to compare the parasitemia in 

mice from the three groups revealed no statistically significant difference across 

the time points analysed (P>0.05; One way ANOVA with Bonferroni multiple 

test). Together, the data suggests that neutrophil depletion resulted in a minor 

increase in the appearance of parasites with no further impact on parasite 

dissemination. 
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Figure 4-16 Depletion of neutrophils causes an early appearance of parasitemia.  
Mice were administered anti-Ly6G or isotype control 2A3 antibodies for 16 hrs prior to infection via 
tsetse flies. Untreated control mice were also included in the infections. Parasitemia was monitored 
over 9 days with neutrophil depleted mice producing an earlier appearance of parasites from day 2 
compared with isotype controls and untreated mice. Statistical analyses to compare differences in 
parasitemia between the three groups were carried out using one-way ANOVA (Bonferroni multiple 
test) [(Data pooled from 4 mice per group for 2 independent experiments)]. No significant 
differences were observed (P>0.05).  

 

4.3 General summary 

At the start of this study, it was hypothesised that tsetse exposure to the skin 

would cause a rapid influx of inflammatory cells to the bite site, which would 

differ significantly between infected and uninfected tsetse exposed samples. To 

test the hypothesis, I set out to carry out flow cytometry to characterise the 

kinetics, and identity of cells that were recruited to the bite site, followed by a 

transcript analysis to identify inflammatory mediators. The findings here suggest 

that the presence or absence of infection in the tsetse did not impact on the 

recruitment of cells to the bite site when infected and uninfected tsetse 

exposed samples were compared statistically. However, in both groups (infected 

and uninfected tsetse exposed), there were statistically significant differences 

in cellular recruitment compared to untreated controls. This suggested that 

mechanical trauma from probing, and the saliva of the tsetse fly may be 

responsible for the influx of neutrophils into tissue. Transcript analysis of 

inflammatory mediators revealed the fold changes of chemokines and cytokines 

during tsetse induced inflammation. Overall, the TLDA data here followed a 

similar pattern with the flow cytometry data indicating no significant difference 
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between infected and uninfected tsetse exposed samples in most of the 

chemokines and cytokines analysed. However, I observed the downregulation of 

leukocyte attracting chemokines such as CCL5 and CXCL2, and an upregulation of 

IL-10 in infected tsetse samples. CXCL1/CXCL2, chemokines associated with 

neutrophil extravasation were also upregulated. The transcript data agree with 

the findings from my flow cytometry data that it was the impact of the vector, 

and not the parasites that mediated inflammation in the skin. A summary of the 

earliest events in the skin and draining lymph node post tsetse exposure is 

described in figure 4.17. 

The identification of neutrophils as the main immune cell type recruited within 

the first 24 hrs, led to further investigation of its role in pathogenesis. Hence the 

need to ask how mechanical trauma caused by tsetse probing would have an 

impact on parasite dissemination from the skin into the blood via the 

lymphatics. To address this, infections were carried out via the tsetse fly in 

neutrophil depleted mice. Depleting neutrophils from mice prior to infection 

gave similar parasitemia in neutrophil replete and deficient mice. A general 

discussion of the key findings of the results section and how it relates to 

pathogenesis are discussed below. 
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Figure 4-17 Summary of the earliest events in the skin and draining lymph node at the 
molecular and cellular level post tsetse exposure.  
Disruption of mice skin barrier by infected or uninfected tsetse exposure triggers a coordinated 
immune response to maintain skin homeostasis. Keratinocytes, which are normally present in the 
epidermis, can respond through production of pro-inflammatory cytokines such as IL-1β, and IL-6, 
that were upregulated within the first 12 hrs as shown by TLDA. Langerhans cells (not 
characterised by flow cytometry) present in the epidermis also act as key immunological sentinels. 
Macrophages and monocytes in the skin were activated and released pro-inflammatory 
chemokines such as CCL2, CCL4, CCL5, CCL7 and the fractalkine receptor (CX3CL1), which are 
involved in the recruitment of cells to sites of inflammation or infection post tsetse exposure. 
Dermal DCs which express CCR7 and have migratory capabilities can are also present in the skin 
(not characterised by flow cytometry). Neutrophils were recruited from the blood within the first 2 
hrs post tsetse exposure (as shown by flow cytometry) through the blood vessels to the site of 
tissue damage- most likely in a CXCL1/CXCL2 dependent manner based on the upregulation of 
these chemokines by TLDA. Metacyclic T. b. brucei injected into the dermis can also navigate 
through the anatomy and migrate into the lymphatics (see chapter 5 for further details) and access 
the draining LN within the first 6 hrs. In the LN, the molecular events within the first 12 hrs involved 
upregulation of pro-inflammatory chemokines such as CXCL2, CXCL5, CXCL10, CCL7, CCL20 
and CCL28. The chemokines upregulated in the draining lymph node can promote recruitment of 
neutrophils and monocytes. Green arrow= upregulated, red arrow= downregulated chemokines/ 
cytokines in the skin/LN. 

 

4.4 Discussion of the molecular and cellular events in the 
skin post tsetse bites 

To my knowledge, no study has been carried out to investigate the very earliest 

events (within 24 hrs) at the inoculation site using the tsetse, and 

characterisation of the kinetics of these events. Most studies on the immune 

response in African trypanosomes have been based on intravenous or 

intraperitoneal routes of infection, which investigated the downstream immune 

events [359, 361, 362, 383, 384]. Other studies have focussed on events in the 

stage 2 of the disease in mouse models, especially invasion of the central 

nervous system [237, 385-387]. As important as these studies are, most have 

neglected the skin stage of disease, which is the first step in parasite entry into 

mammals, where parasites encounter cells and interact with host anatomy prior 

to dissemination into the blood.  

This study identified the leukocytes recruited to the skin, and the kinetics of 

recruitment within the first 24 hrs in response to tsetse exposure. Temporal 

analysis of the events in the skin revealed that neutrophils were the 

predominant responders post tsetse exposure. As early as 2 hrs following tsetse 

exposure, neutrophils rapidly influxed the bite site, with maximum neutrophil 

numbers at that time point. Neutrophil recruitment appeared to be initiated by 
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damage caused by the tsetse fly probe rather than parasite entry into the skin, 

as demonstrated by lack of any statistically significant difference between 

infected and uninfected tsetse exposed samples. The early influx of neutrophils 

at the bite site is in agreement with the role of neutrophils as the first 

responders during wound healing, and clearance of pathogenic substances from 

tissues [388]. Neutrophils as key players of innate immunity carry out their 

primary function, which is to protect against bacteria or parasitic infections 

through their ability to recognize, phagocytose, and destroy pathogenic 

organisms via the release of proteases and reactive oxygen species [389-392]. 

Neutrophils also regulate the immune response through the release of IL-1, IL-3, 

IL-6, IL-12 and TNF-α, as well as chemokines such as CCL2, CCL3, CCL19 and 

CCL20. Neutrophil recruitment to sites of inflammation could be in response to 

endogenous factors released from the site of tissue damage, as demonstrated in 

the influx of neutrophils to laser induced brain injury [393]. This suggests that 

the initial influx of neutrophils to the bite site may be in response to endogenous 

factors released following mechanical trauma to the skin by the tsetse fly, the 

presence of tsetse derived factors in the saliva which could mimic a tissue 

damage signal, or possibly activate chemokine/chemokine receptor pathway to 

cause neutrophil recruitment [394].  

In cutaneous leishmaniasis delivered by the bite of the sand fly vector, 

neutrophils recruited to the site of tissue damage have been implicated in two 

roles in vivo- in protecting the host during infection, and also promoting disease 

following transmission of parasites [395-400]. The use of sand fly in initiating 

Leishmania spp. infection also demonstrated the persistence of neutrophils at 

the inoculation site when infected and uninfected sand flies were used for 

pathogen delivery [165, 339]. In this study however, using infected and 

uninfected tsetse flies, I do not observe a persistence of neutrophils following 

tsetse exposure, as observed in cutaneous leishmaniasis. However, the findings 

here were consistent with the Leishmania model, where the vector bite was 

sufficient to drive in a rapid and robust neutrophil influx irrespective of the 

infection status of the vector [166].  

The saliva of the tsetse fly is made up of a number of substances capable of 

initiating cellular recruitment, aiding tsetse fly feed, and parasite establishment 

in the skin of mammals. The tsetse fly saliva constituents include tsetse 
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thrombin initiator which facilitates blood feeding [401], putative endonucleases 

such as tsetse salivary gland proteins 1 and 2 [402], and an antigen5 related 

allergen [403]. The tsetse fly saliva also contains a number of proteins with 

unknown functions which are essential for the haematophagous behaviour of the 

tsetse fly by antagonising mammalian host responses such as vasoconstriction, 

platelet aggregation and coagulation reactions [329, 401, 404]. In the tsetse fly, 

an anti inflammatory role for the saliva has been described where it biases the 

host immune response towards a Th2 associated cytokine response, and also 

enhanced an early onset of infection in mouse models, when blood stage T. b. 

brucei were coinjected with tsetse saliva, compared to wild-type control mice 

infected without tsetse saliva [186, 188]. The occurrence of a Th2 associated 

cytokine response due to the saliva components of the vector has also been 

described in ticks [405, 406]. Similar observations of host immune modulation 

have been made with the saliva of sand flies in promoting parasite 

establishment. For example, salivary gland homogenates of Lutzomyia 

longipalpis induced the expression of CCL2, which led to the recruitment of 

macrophages, while saliva from Phlebotomus papatasi also attracted 

macrophages with increased parasite loads in order to aid parasite dissemination 

[394, 407]. In general, the saliva of vectors seems to produce an anti-

inflammatory response, inhibiting pro-inflammatory responses that help to 

promote parasite establishment. 

T. b. brucei being extracellular parasites, which release a number of proteases, 

and with rapid motility in vivo was hypothesised to trigger the innate immune 

response generated by the host post tsetse exposure. To my surprise this was not 

the case, it appeared that the presence of these extracellular free-living 

parasites in the skin, which are highly motile did not influence the outcome of 

the innate immune response within the time points analysed. The findings here 

are similar to observations in cutaneous leishmaniasis studies using the sand fly, 

suggesting there is no significant impact of T. b. brucei parasites in modulating 

the early inflammatory response [388, 408]. Although I report in this part of my 

study that there was no significant difference between infected and uninfected 

tsetse samples, there is the likelihood that the sample sizes used in this study 

was not sufficient enough to produce statistically significant difference between 
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the two groups. Hence, it is important to note this limitation in sample size 

when considering the findings in this part of the study. 

The functional role of neutrophils in pathogenesis, has been described in 

Leishmania spp. infections, where the use of neutrophil replete and deficient 

mice have been used to describe the Trojan horse hypothesis for Leishmania 

pathogenesis [166, 395]. Depleting neutrophils in our model suggests that the 

absence of neutrophils at the bite site was not sufficient to impair parasite 

dissemination or promote host resistance contrary to reports in Leishmania 

major sand fly transmitted infections [166]. T. b. brucei parasites did not 

demonstrate any difference in neutrophil deficient mice compared to neutrophil 

replete mice, with parasitemia in both groups adopting a similar pattern later on 

in infection. Neutrophil depletion in cutaneous leishmaniasis promotes host 

resistance to infection, hence restricting pathogenesis [166]. However, 

dissemination of T. b. brucei from the skin post tsetse exposure appears to be 

independent of the presence or absence of neutrophils. However, this neutrophil 

response when present in mice appears to be ineffective in limiting pathogenesis 

or could potentially suggest that T. b. brucei have efficient mechanisms of 

evading the early neutrophil response [409, 410]. Neutrophils despite possessing 

a potent arsenal against pathogens, quite a few pathogens have evolved 

mechanisms to avoid direct killing. These pathogens include Helicobacter pylori, 

Francisella tularensis, and Anaplasma phagocytophilum [411, 412]. The 

possibility of such mechanisms in T. b. brucei is yet to be investigated.  

African trypanosomes being parasites with a digenetic lifecycle, have adapted to 

surviving in harsh environmental conditions of its hosts i.e. in both the tsetse fly 

and mammals. A well-defined mechanism for evading the host immune response 

is the expression of VSGs [9, 15, 16, 205], however, this is only one of several 

mechanisms employed by African trypanosomes in evading the host immune 

system. In addition to the switching of the VSG coat, bloodstream form 

trypanosomes are known to evade host complement activity through the 

expression of a protein GP63 on its surface, and its rapid motility through its 

flagellum [220, 233, 237, 240, 413]. The rapid motility of T. b. brucei 

characteristic of the metacyclic and bloodstream stages, which is crucial for 

infection in the tsetse fly [230], and possibly pathogenesis in mammals, has been 

described as an immune evasion strategy employed by the parasite to wade off 
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immune cells [414]. T. b. brucei being an extracellular parasite is in constant 

contact with host tissues, and moves in an ordered sequence in the tsetse fly- 

travelling from the midgut to the salivary gland, and in mammals travelling from 

the skin to the bloodstream via the lymphatics [13, 191, 334]. This motility 

process is an active one, and motility mutants were unable to proceed beyond 

the midgut of the tsetse fly [230]. In the context of this work, rapid motility by 

T. brucei has been hypothesised to thwart phagocytic processes, in a manner 

similar to what happens in the bloodstream, where the flagellum removes host 

immunoglobulin bound to surface VSGs through hydrodynamic forces generated 

by its rapid movement [240]. Furthermore, in blood stream form T. b. brucei 

there is high-level expression of GP63. GP63 has been identified and extensively 

studied in Leishmania [415, 416] and Crithidia [417], prior to the identification 

of a homologue in T. b. brucei [418]. In Leishmania spp., GP63 has been 

described to play a role in the interaction between infective promastigotes and 

macrophages. GP63 contributes to the entry and survival of Leishmania 

promastigotes in macrophages [413]. This suggests that metacyclic T. b. brucei, 

like blood stages may also have high expression levels of GP63. Hence, GP63 may 

likely have a potential role in parasite evasion of host neutrophil response in the 

mammalian skin, in order for metacyclic T. b. brucei to establish itself. 

Other recruited cells such as inflammatory monocytes and DCs, which have been 

observed very early in other parasitic infections such as Leishmania [166] and 

Plasmodium spp., [379] following vector bites were absent in this model at the 

time points analysed. Intradermal injection of Plasmodium sporozoites into the 

skin, describes a two wave inflammatory response, characterised first by the 

appearance of neutrophils, followed by the onset of Ly6Chi cells (inflammatory 

monocytes) from 24 hrs [379, 419]. Inflammatory monocytes were not detected 

in this study within the first 24 hrs, but might likely appear at latter time points.  

In order to understand the inflammatory events occurring at the molecular level, 

this study identified two chemokine ligands, CXCL1 and CXCL2 that were 

differentially upregulated in the skin following transcript analysis, and act 

selectively on neutrophil recruitment [420, 421]. CXCL1 and CXCL2 bind the 

CXCR2 receptor, which is abundantly expressed on natural killer cells and 

granulocytes [422, 423]. CXCL1 and CXCL2 are both constitutively expressed in 

the epithelia and on endothelial cells [424, 425]. The transcript analysis in this 
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study demonstrated the upregulation of CXCL1 and CXCL2 in the skin post tsetse 

exposure, suggesting they have a role in neutrophil recruitment, although CXCL2 

was downregulated in infected tsetse samples. Pro-inflammatory cytokines such 

as IL-1 and TNF-α were also upregulated, and have been demonstrated in vitro 

to induce CXCL2 expression in murine endothelial cells [426]. IL-1 has also been 

demonstrated in vivo to be an important inducer of CXCL2 expression and 

subsequently hepatic neutrophil recruitment [427]. CXCL1 and CXCL2 can also 

act locally to mobilize neutrophils from the bone marrow. This has been 

demonstrated in a study where CXCL2 was injected into the blood, and resulted 

in a response that was similar to acute peritonitis when the peripheral 

neutrophil blood count was analysed [428]. So in the model described in this 

study, it is most likely that there could be a release of CXCL1 and CXCL2 in the 

skin through activation of the endothelia, which drives in neutrophils post tsetse 

exposure to the bite site. It would be interesting to investigate if the absolute 

copy numbers of the transcripts upregulated in tissues samples, and protein 

expression levels in tissues would be different between infected and uninfected 

tsetse samples. This would further define the molecular events occurring in the 

skin post tsetse bites. It is also important to note that a major limitation of using 

mouse models is the absent of the chancre at the bite site post inoculation by 

tsetse flies. However, how the absence of the chancre would impact on the 

outcome of immune responses when compared to that of cattle/humans is yet 

unclear. 

Taken together, the data here suggests there is no difference in the very earliest 

immune events in the skin between infected and uninfected tsetse exposed 

samples. This led me to propose that the very earliest immune events in the skin 

are driven by mechanical damage caused by the tsetse fly rather than the 

presence of metacyclic T. b. brucei. The findings here using flow cytometry, and 

transcript analysis of inflammatory mediators support this view. The data here 

also suggests that neutrophil depletion does not have a significant impact on 

pathogenesis in mice models. Further studies to identify the components of the 

tsetse saliva involved in neutrophil recruitment would shed more light on the 

temporal events occurring in the skin, and how this could be manipulated to 

further understand the earliest events in African trypanosome pathogenesis in 

vivo. 
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5 Imaging African trypanosomes and host 
interactions 
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5.1 Introduction 

In order to investigate the dynamics of what happens in vivo in the skin during 

the infection process, it is necessary to have transgenic parasites, and 

genetically modified mice, which can be used for visualisation of the events 

[266, 429-432]. The first demonstration of the applicability of imaging infection 

dynamics in mouse models was in the malaria parasite [322, 433-435]. Using 

fluorescent sporozoites injected by infected mosquitoes into the skin of 

anesthetised mice and imaged using a wide field fluorescent microscope, the 

authors were able to follow the fate of injected sporozoites in vivo [434]. 

Further studies have also shown the egress of the sporozoites from the skin into 

blood vessels or the LN via the lymphatics where sporozoites were degraded 

[183]. In vivo imaging approaches have also helped in understanding the motility 

behaviour of sporozoites, and how sporozoites invade the liver through Kupffer 

cells [322, 337, 436]. These observations have provided new insights about our 

understanding of the infection process in the malaria parasite. 

 

In Leishmania spp., a sand fly delivered pathogen that is the cause of cutaneous 

and visceral leishmaniasis, which has been studied in detail to provide insights 

into the events in the skin, direct entry of Leishmania into macrophages was 

thought to occur following deposition by the sand fly [437]. However, through 

intravital imaging, it has been revealed that neutrophils were recruited to the 

skin in both infected/uninfected sand fly bites. The neutrophils that were 

recruited to the skin were found to be infected by Leishmania, and these 

parasites remained viable [165]. Intravital imaging studies revealed that when 

Leishmania infected neutrophils were taken up by macrophages, they could 

potentially serve as a means of dissemination [165].  

 

In addition to understanding the events that occur in relation to parasite 

dissemination, intravital imaging has also revealed how the hosts’ innate and 

adaptive immunity is activated. The draining of pathogens from the bite site to 

the LN has been suggested to initiate an innate immune response, analogous to 

that seen in non-lymphoid tissues in the LN following the arrival of lymph borne 

parasites [438]. In Toxoplasma gondii infection, neutrophils recruited form 

dynamic swarms around the foci of infection in the subcapsular sinus of the LN. 
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This was then followed by the appearance of larger number of neutrophils later, 

which also formed swarms, suggesting a chemoattractant effect was in operation 

[152]. Intravital imaging has also helped assess how antigen specific T cells 

interact with APCs [439-441]. CD4+ T cell effector responses have been visualised 

in the skin of L. major infected animals, which defined two physiologic modes of 

antigen recognition by activated CD4+ T cells. In the first instance, there was a 

stable interaction in which T cells were completely arrested, and secondly, the 

interactions were dynamic during which T cells maintained a scanning behaviour 

[439]. The study also highlighted the limitations in CD4+ T cell responses to L. 

major, by demonstrating that antigen specific T cell responses in the skin was 

highly variable, suggesting lack of T cell accessibility in some areas [439]. 

Together, these studies have demonstrated through intravital imaging important 

immunological information that would otherwise have been near impossible 

using conventional techniques. 

 

The life cycle of African trypanosomes begins with an infected tsetse fly 

injecting metacyclic trypanosomes into the skin. African trypanosomes have 

been described to be established in the skin, egress from the skin to the 

lymphatics, and into the blood [189, 191, 442]. T. b. brucei were observed to 

appear in the lymph in goats that were cannulated within 24-48 hrs prior to 

detection of blood parasites, and prior to the onset of the chancre [191]. A 

similar observation has also been made in T. vivax, suggesting that the lymph is 

the principal route of dissemination [334]. The damage or wounding to the skin 

by the tsetse fly also generates the first wave of immune cells that infiltrate the 

bite site, similar to observations in sterile inflammation and in the sand fly [165, 

357, 443].  

 

The Multiphoton Laser Scanning Microscope (MPLSM) can been applied to provide 

further optical resolution of parasites, and also complement information about 

the precise location, behaviour, and interactions that occur within host tissues 

[444, 445]. MPLSM also provides deep tissue imaging, superior spatiotemporal 

resolution [446], and has been used to reveal that T. b. brucei GVR35 invade the 

meninges as early as day 5 post infection [252].  
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As already mentioned T. b. brucei enter the lymphatics from the skin following 

tsetse fly bite, but the exact mechanisms of entry and possibility of tropism for 

lymphatics have not been investigated to date. The detection of parasites in the 

LN before appearance in the blood by qPCR in chapter 3, and also the detection 

of T. b. brucei in the lymph prior to blood through the cannulation of goats 

[191], led us to hypothesise that African trypanosomes may exhibit tropism for 

lymphatics. Here, I used MPLSM to visualise the motility of mCherry tagged T. b. 

brucei in the skin, trafficking of neutrophils to the bite site in response to tsetse 

fly bites, and egress of T. b. brucei from the skin to the lymphatic vessels. All 

image files were then analysed and movies prepared using Volocity. This was 

possible through the use of the tsetse fly infection model set up in chapter 3, 

C57Bl/6 mice, transgenic mice (Prox-1 mOrange and LysM-GFP) and reporter 

dyes.  

 

5.2 Metacyclic stage T. b. brucei can be visualised in the 
skin 

In order to visualise metacyclic stage T. b. brucei in the skin of C57Bl/6 mice 

following successful infection of tsetse flies, anesthetised mice ears were probed 

using one infected tsetse fly per mouse ear. Mice were placed on a heat mat to 

keep the body temperature warm, or the microscope stage was pre-heated to 37 

°C and used as the base for tsetse fly probes. Tsetse flies were allowed to probe 

on mice ears until a blood spot/obvious puncture in the skin was visible – for 

approximately 30 mins. Mice were then prepared and imaged as described in 

materials and methods.  

Once the infected tsetse flies had probed mouse ears, mice were placed under 

the MPLSM for imaging. T. b. brucei were found to be injected into the 

extracellular matrix, and metacyclic T. b. brucei detected using the dermal 

puncture in the skin as a landmark. Metacyclic T. b. brucei were readily found 

near areas in the skin were the tsetse fly probe was carried out and was 

visualised approximately 30 mins post tsetse bite. Approximately 5-10 

metacyclic T. b. brucei were visualised at the bite site, and parasites were 

spread over the different areas of the skin were tsetse fly probes had taken 

place. Metacyclic T. b. brucei were located in the dermis of the skin and 
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exhibited vigorous cell motility (Figure 5.1A). T. b. brucei motility might be 

driven by the flagella from the tip to the base, and the cells moved for extended 

periods in one direction, tumbled or occasional spinning as previously described 

[447].  

                      

            

      

 

Figure 5-1 Visualising metacyclic T. b. brucei in the skin 
Following infected tsetse fly bites in the ear pinna of anesthetised C57Bl/6 mice, mouse ear was 
prepared for imaging immediately after tsetse fly probe. T. b. brucei were imaged in the skin within 
30 mins post tsetse fly bite. Image acquisition under the MPLSM was carried out for ≥ 20 mins. 
Laser generation of the second harmonic signal shows collagen as green. (A) Representative 
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image of metacyclic T. b. brucei, (B) volocity software was used to track metacyclic T. b. brucei to 
allow calculation of, (C) velocity, (D) displacement rate, and (E) meandering index. Values 
represent data showing the median as indicated using the horizontal bar. Data represents tracks 
pooled from 2 independent animals, scale bar denotes 14 µm. No significant differences were 
observed between the two independent animals (P>0.05; 2 tailed Mann Whitney U test). 
 

In vitro experiments on blood stream form African trypanosomes have reported 

high swimming velocities of 20 µm/s, and that trypanosomes are capable of 

highly directional cell motility [447]. The tracking of T. b. brucei in the skin 

(Figure 5.1B) enabled the calculation of motility parameters related to 

metacyclic T. b. brucei in the skin, such as the meandering index, displacement 

and velocity using Volocity software (Improvision). Motility of T. b. brucei in the 

skin gave median velocity of 57.42 µm/min (Figure 5.1C), and median 

displacement rate (shortest distance between two positions at two time points) 

of 13.56 µ/min (Figure 5.1D). The meandering index (the total 

displacement/path length of a cell track) allowed for a more detailed analysis of 

the straightness of T. b. brucei with a value of 1 representing a completely 

linear track. As shown in Figure 5.1E, metacyclic T. b. brucei had a median 

meandering index of 0.25.  

Entry of malaria sporozoites into blood vessels following Anopheles mosquito 

injection into the dermis in P. yoelii and P. berghei has been reported [321]. 

Given the previous data indicating that trypanosomes migrate via lymphatics, I 

speculated that I would not be able to detect T. b. brucei entering skin blood 

vessels following tsetse fly bite. To test this, blood vessels of C57Bl/6 mice were 

labelled intravenously (i.v.) using a vascular tracer dye, by injection of 70 Kda 

dextran conjugated with fluorescein isothiocyanate (FITC). I report here that 

metacyclic T. b. brucei imaged were highly motile, and no parasites were 

detected inside blood vessels (Figure 5.2A).  
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Figure 5-2 Metacyclic T. b. brucei parasites do not enter skin blood vessels 
Following infected tsetse fly bites in the ear pinna of anesthetised C57Bl/6 mice, mouse ear was 
prepared for imaging immediately after tsetse fly probe. C57Bl/6 mice were injected i.v. with FITC 
dextran to label blood vessels. Blood vessels (green) and laser induced second harmonic signal 
appears green for collagen. T. b. brucei were imaged in the skin within 30 mins of tsetse fly bite. 
Image acquisition under the MPLSM microscope was carried out for ≥ 20 mins. (A) Metacyclic T. b. 
brucei in the skin with labelled blood vessels, (B) velocity, (C) displacement rate, and (D) 
meandering index. Horizontal bar shows the mean. Data represents tracks pooled from 2 
independent animals, scale bar denotes 50 µm. 

From the movies acquired, blood flow was still apparent indicating that the 

mouse was alive. Also in the movies of the mice acquired, I could visualised cells 

moving through the blood vessls potentially leukocytes. Metacyclic T. b. brucei 

had mean velocity of 59.46 ± 30.41 µm/min (Figure 5.2B), and displacement rate 

of 21.33 ± 20.08 µm/min (Figure 5.2C) respectively. Meandering index of 

metacyclic T. b. brucei was 0.33 ± 0.19 (Figure 5.2D). 
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Figure 5-3 Bloodstream form T. b. brucei parasites do not enter skin blood vessels 
Following injection of bloodstream form T. b. brucei intradermally into the ear pinna of anesthetised 
C57Bl/6 mice, mouse ear was prepared for imaging. C57Bl/6 mice were injected i.v. with FITC 
dextran to label blood vessels. Blood vessels (green) and laser induced second harmonic signal 
appears green for collagen. T. b. brucei were imaged in the skin within 10 mins of intradermal 
injection. Image acquisition under the MPLSM microscope was carried out for ≥ 30 mins. (A) T. b. 
brucei in the skin with labelled blood vessels, (B) tracked T. b. brucei to allow for calculation of, (C) 
velocity, (D) displacement rate, and (E) meandering index. Horizontal bar shows the mean. Data 
represents tracks pooled from 2 independent animals, scale bar denotes 50 µm. 

 As a control in this study, I also injected 1 x 106 blood stream form parasites 

into the skin, and no blood stage T. b. brucei were detected in blood vessels in 

the skin (Figure 5.3A). Blood stream form T. b. brucei had a mean velocity and 

mean displacement rate of 34.94 ± 16.04 (Figure 5.3C) and 18.19 ± 15.32 

µm/min (Figure 5.3D), respectively, and mean meandering index of 0.46 ± 0.32 

(Figure 5.3E). Mean velocity of metacyclic T. b. brucei was significantly different 

from blood stream form T. b. brucei (Figure 5.4A; P<0.0001), while the 

displacement rate and meandering index were not significantly different (Figure 

5.4B & 5.4C). 
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Figure 5-4 Metacyclic T. b. brucei migrate faster than blood stream forms.          
 Statistical analysis was carried out on velocity, displacement rate and meandering index of 
Metacyclic and blood stream form T. b. brucei injected into mice ears. (A) velocity (***p<0.0001), 
(B) displacement rate (not significant) & (C) meandering index (not significant). Data were pooled 
from 3 independent animals, and a 2 tailed unpaired t-test used for statistical analysis. 
 

These results suggested that rapid motility might be a crucial step for metacyclic 

T. b. brucei dissemination from the skin. Furthermore, the absence of T. b. 

brucei metacyclics or bloodstream forms in skin blood vessels suggested that 

lack of penetration of blood vessels might not be dependent on the life cycle 

stage of T. b. brucei injected into the skin, and that T. b. brucei may not 

disseminate via skin blood vessels, consistent with previous studies. A few 

parasites were also observed in the dermis near hair follicles (data not shown), 

which are immune privileged sites. 

It is also important to mention that metacyclic T. b. brucei could still be 

visualised in the skin for at least 2 hrs post tsetse transmission. In summary, T. 

b. brucei was not detected in the blood vessels of C57Bl/6 mice when both 

metacyclic and blood stream stages were injected via the tsetse fly and needle. 

T. b. brucei exhibited tumbling motion with significantly higher velocity in 

metacyclic T. b. brucei than blood stream stages in the skin. MPLSM imaging was 
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carried out using 800 nm and 1200 nm excitation wavelengths for imaging 

parasites and blood vessels in vivo.  

5.3 Neutrophils can be imaged in the skin following 
infected tsetse fly bites and do not form dynamic 
clusters 

In chapters 3 & 4, it was established that T. b. brucei remained in the skin and 

neutrophils were recruited to the bite site following tsetse fly probe in the skin.  

My findings were in agreement with previous work that skin wounding was 

sufficient to cause recruitment of phagocytes to site of injury [448]. It was also 

shown that there were no significant differences in neutrophil absolute numbers 

between ears exposed to infected and uninfected tsetse flies. Through intravital 

imaging, the previous section has also established that indeed, T. b. brucei were 

present in the skin and could differentiate into long slender forms in the skin 

based on preliminary experiments carried out in the lab. So I sought to ask if I 

could visualise the trafficking of neutrophils to the bite site, investigate the 

behaviour of neutrophils, and possibly image the interactions between T. b. 

brucei and neutrophils using LysM-GFP reporter mice. Although I had previously 

established that neutrophil recruitment was independent of the presence of 

trypanosomes, I carried out further investigations with neutrophils to examine if 

there was formation of NETs, which is found in other intracellular parasites and 

bacteria infections. 
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Figure 5-5 Neutrophils do not swarm following inoculation of metacyclic T. b. brucei.  
Following infected tsetse fly bites in the ear pinna of anesthetised LysM-GFP reporter mouse, 
mouse ear was prepared for imaging 3 hrs post tsetse fly probe. Laser generation of second 
harmonic signals was used to visualise collagen (blue). Neutrophils were imaged for ≥ 20 mins. (A) 
Neutrophils migration to the bite site, hair follicle (HF), (B) neutrophil tracks to allow calculation of, 
(C) velocity, (D) displacement rate, and (E) meandering index. Data represents tracks from 2 
independent animals, horizontal bar shows the mean. Scale bar denotes 28 µm. 
 

LysM-GFP mouse expressed a green fluorescent protein under the control of the 

lysozyme M (LysM) promoter [267]. LysM is expressed specifically by 

macrophages and neutrophils [449], and the LysM-GFP mouse is well established 

in investigating neutrophil recruitment. In this mouse, endogenous neutrophils 

are brightly labelled, while macrophages and monocytes are labelled to a lesser 

extent [267, 450]. LysM-Gfp mice has been used in investigating leukocyte 

trafficking in pulmonary inflammation, where the neutrophils recruited formed 

dynamic clusters [451], in intracellular infections such as Toxoplasma gondii, 

where the parasites invade neutrophils recruited to the small intestine and use 

as a potential mechanism for spreading infection [452], and also in Leishmania 

infections for investigating the behaviour of neutrophils following sand fly bites 

[326]. 

Within 3 hrs of tsetse fly probe to the ear, neutrophils were rapidly recruited to 

the site of tissue damage, visualised and movies acquired. As shown in Figure 
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5.5A, there was migration of neutrophils in a directed manner, with a mean 

velocity of 5.45 ± 4.08 µm/min (Figure 5.5C) and displacement rate of 3.75 ± 

3.90 µm/min (Figure 5.5D). Migrating cells exhibited very little deviation from 

their path, indicated by the meandering index as a measure of directionality: 

0.64 ± 0.38 (Figure 5.5E), and recruited cells remained around the site of injury. 

In other models of inflammation, neutrophil swarms have been reported [431]. I 

observed that there was no formation of neutrophil swarms at the site of tissue 

injury. I was however unable to visualise T. b. brucei and neutrophils together 

simultaneously, due to spectral overlap. However, neutrophils were detected in 

the same plane as T. b. brucei. 

In summary, these results reveal a notable behaviour of neutrophils in African 

trypanosome infections, which is absence of neutrophil swarms and rapid 

recruitment of neutrophils to the site of tsetse fly probe.  

5.4 African trypanosomes migrate towards lymphatic 
vessels 

To date no study has demonstrated whether T. b. brucei have preference for 

lymphatics in mammalian hosts. From my data in chapter 3 where T. b. brucei 

were detected in the LN within 6 hrs, I postulated that African trypanosomes 

might have tropism for lymphatic vessels. To test this hypothesis, I began by 

injecting lymphatic vessel endothelial hyaluronan receptor-1 (Lyve-1) antibodies 

to label lymphatics. This was unsuccessful, and I subsequently switched to the 

use of Prox-1 mOrange mice to investigate interactions of T. b. brucei with 

lymphatic vessels.  

5.4.1.1 Imaging lymphatic vessels using Prox-1 mOrange 

Following the unsuccessful application of lyve-1 antibody in imaging lymphatic 

vessels and fluorescent trypanosomes, a transgenic reporter mouse, Prox-1 

mOrange was then used. These transgenic mice have a lymphatic endothelial 

cell specific Prox1 promoter-driven fluorescent reporter, and Prox1 is faithfully 

expressed on lymphatic endothelial cells [268, 269]. In Prox-1 knockout mice, 

lymphatics do not develop, whereas blood vessels appear normal [453]. The use 
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of transgenic constructs under Prox1 transcripional control has been used in 

studies of dendritic cell migration, lymphatic vessel morphology during the early 

phases of cutaneous inflammation and in lymphangiogenesis [454]. In this study, 

the first set of experiments performed was to visualise lymphatic vessels under 

the MPLSM prior to infection studies.  

 

Figure 5-6 Visualising lymphatic vessels in Prox-1 mOrange mice. 
 Prox-1 mOrange mice was anesthetised and prepared for ear imaging as previously described in 
the materials and methods. Lymphatics in the ear of Prox-1 mOrange mice were imaged at 800nm 
and 1200 nm excitation wavelengths. The distinctive oak leaf patterning of lymphatic endothelial 
cells in the lymphatic vessels was detected shown in white, lymphatic vessels reveal blind endings 
and lymphatic vessels in the skin have irregular sizes compared to blood vessels (e.g. Figure 
5.2A), Scale bar: 120 µm. Representative image of several images collected. 
 

Lymphatic vessels were visualised in the ear skin of Prox-1 mOrange mouse. 

Lymphatic vessels appeared wider and more irregular shaped than blood vessels 

(Figure 5.2A), and formed a network of vessels (Figure 5.6). Lymphatic vessels 

displayed lack of uniformity in size compared to blood vessels, and possessed 

blind endings.  
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In summary the ear skin of Prox-1 mOrange mouse has irregular anastomoses of 

lymphatic vessels with blind endings in the dermis of the skin, and were wider 

than blood vessels.  

5.4.1.2 T. b. brucei penetrate skin lymphatic vessels 

In the previous section, it was established that Prox-1 mOrange mice lymphatic 

vessels were sufficiently bright for MPLSM imaging and the settings optimised.  

           

       

 

Figure 5-7 T. b. brucei migrates into lymphatic vessels.  
1x106 bloodstream T. b. brucei were injected intradermally into the ear pinna of mice and imaged 
after 1 hr. Mouse ear was prepared for imaging as described in the materials and methods. 
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Collagen was visualised using second harmonic signal from the laser, indicated as green (A) Intra 
and Extra lymphatic T. b. brucei (B) dotted lines indicate the outline of the lymphatics, tracked to 
calculate (C) velocity, (D) displacement rate, and (E) meandering index for intra/extra lymphatic T. 
b. brucei respectively. Data presented in the plots show mean as indicated with the horizontal bar, 
[(***P<0.0001; not significantly different (ns), statistical analysis was calculated using 2-tailed, 
unpaired t-test)]. 
 

The next approach was to ask if I could image the lymphatic vessels and mCherry 

T. b. brucei simultaneously, and possibly visualise trypanosomes entering 

lymphatics. To answer this question, Prox1-mOrange mice were intradermally 

injected with 1 x 106 blood stream form T. b. brucei in the ear pinna. Following 

injection, mice were left for approximately 1 hr, before MPLSM imaging. Once 

the mice ears were prepared and imaged, I observed that most of the parasites 

injected into the skin remained extra lymphatic, residing in the extracellular 

matrix of the skin. However, to my surprise, I observed that a few parasites 

were intra lymphatic, and all parasites imaged were in the same plane with the 

lymphatic vessels. 

Hence, through intravital imaging and single cell tracking it was revealed that T. 

b. brucei parasites were both intra and extra lymphatic, and were highly motile 

in the lymphatic vessels (Figure 5.7A&B). It was surprising to detect intra 

lymphatic T. b. brucei, because previous imaging experiments carried out using 

infected tsetse flies and intradermal injection of blood stream form T. b. brucei 

had not shown the presence of parasites in the lymphatics. T. b. brucei were 

tracked (Figure 5.7B), and the following motility parameters computed: velocity, 

displacement rate and meandering indices. Following extrapolation of the 

parameters, and relating each parameter to parasites individually tracked, I 

found that T. b. brucei within the lymphatics had a significant increase in 

velocity than those that were extra lymphatic (24.25 ± 1.3 and 11.01 ± 1.32 

µm/min; P<0.001, Figure 5.7C). The mean displacement rate (6.29 ± 0.81 and 

4.51 ±1.52 µm/min; Figure 5.7D), and mean meandering index (0.28 ± 0.03 and 

0.35 ± 0.06; Figure 5.7E) for both intra and extra lymphatic T. b. brucei were 

not significantly different. 

The detection of T. b. brucei in the lymphatics in this study is novel, and 

demonstrated that there may be a tropism for lymphatics by T. b. brucei due to 

the movement of some of the parasites towards the lymphatic vessels. Hence, 
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these observations led to further investigate whether the entry into lymphatics 

was chemokine mediated, specifically CCL21. 

5.4.1.3 T. b. brucei do not migrate towards CCL21 in vitro 

Following the detection of intra lymphatic T. b. brucei within 2 hrs of 

intradermal ear injections, I then attempted to decipher how these 

trypanosomes gain access to lymphatic vessels. To address this question, I 

investigated the role of a chemokine, CCL21, in chemotaxis of T. b. brucei 

towards lymphatic vessels. CCL21 is a chemokine involved in lymphocyte 

recruitment and is highly expressed on high endothelial venules (HEVs) and 

lymphatics [455, 456]. CCL21 was chosen as the chemokine to be tested because 

of the role it plays in lymphocyte recruitment to LNs via HEVs, and in DC 

transmigration through lymphatic vessels. This was tested in vitro using a 

transmigration assay (see materials and methods) that was set up to include 

different concentrations of recombinant CCL21, and 1 x 105 T. b. brucei added 

to the wells to assess chemotaxis.  

 

Figure 5-8 There is no chemotaxis of T. b. brucei towards CCL21.  
Chemokine concentrations of 0, 100, 300 and 900 ng of CCL21 were added to media, and 
incubated with the transmembrane for 10 mins at 37 °C, 5% CO2 for equilibration to occur.  105 T. b. 
brucei was added to the different chemokine concentration gradients and incubated for 7 hrs. Using 
a haemocytometer to count parasites, 10 µl of media containing transmigrated parasites was 
added and counted under a compound microscope. There were no statistically significant (ns) 
differences when compared to untreated controls (0 ng), statistical analyses was carried out using 
2-tailed unpaired t test. Data presented in the bar graphs were mean ± SEM, n=3, for 3 
independent experiments.  
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Following incubation for 7 hrs, the data suggests no statistically significant 

difference between T. b. brucei that were incubated in at the different CCL21 

concentrations (Figure 5.8). Seven hours incubation was chosen because at later 

time points, T. b. brucei began to die and exhibit reduced motility, while at earlier 

time points only few parasites had migrated across the membrane. In the absence 

of CCL21, T. b. brucei were still able to migrate across the membrane at a similar 

rate compared to when 300 ng CCL21 was added.  

Together, the data suggests that there is no chemotaxis of T. b. brucei towards 

CCL21.  

5.5 General summary 

In this chapter I started by stating that I had shown in chapter 3 that T. b. brucei 

was detected in the LN from 6 hrs, and in chapter 4, neutrophils trafficked to 

the bite site following tsetse fly bites (infected and uninfected). Here, I have 

gone a step further to visualise interactions of T. b. brucei and its host 

spatiotemporally using the MPLSM. Firstly, metacyclic T. b. brucei were 

visualised for the first time directly in the extracellular matrix of the skin after 

tsetse fly probes, and these parasites were very motile (significantly more so 

than bloodstream forms). I also demonstrated that T. b. brucei were not 

detected in blood vessels in the skin immediately after a tsetse fly probe or 

intradermal needle injection of blood stream stage T. b. brucei. In addition, it 

was shown using LysM-GFP reporter mice that the recruitment of neutrophils to 

the bite site was rapid and did not result in the formation of swarms.  

 

Lastly, using the Prox-1 mOrange mice, it was demonstrated that T. b. brucei 

that were intra lymphatic behaved differently from those that were extra 

lymphatic, and also present data suggesting CCL21 is not involved. The data here 

may also suggest the possibility of tropism for lymphatic vessels by T. b. brucei, 

when injected into the skin. Altogether, in this chapter I present novel data 

specifically shedding light on T. b. brucei dissemination from the skin to 

lymphatic vessels in Prox-1 reporter mice through intravital imaging studies. The 

key findings of this chapter are discussed below. 
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5.6 Discussion 

To evaluate interactions that occur between T. b. brucei and its host following 

tsetse fly bites, I used the 247 strain of T. b. brucei that was pleomorphic and 

had been successfully used to infect tsetse flies in chapter 3. This strain was also 

used in characterising the nature of the early immune events in the skin, which 

identified neutrophils as the main cells recruited. Once infected tsetse flies had 

probed into the skin, metacyclic T. b. brucei were imaged under the MPLSM. T. 

b. brucei metacyclics were actively motile and navigated rapidly through the 

skin. Motility in African trypanosomes has been a subject of interest, as parasite 

movement in specific host tissues are key events in pathogenesis, immune 

evasion and disease transmission. Motility in African trypanosomes is driven by a 

single flagella that runs across the cell, laterally connected to the cell body 

[220], and is important for the establishment of infection in the tsetse fly and 

possibly in mammalian hosts.  

In the blood stream, rapid motility of T. b. brucei helps to evade antibody 

clearance. Antibodies that bind the VSGs expressed on T. b. brucei were sorted 

from the surface to the flagellar pocket where they are internalized and 

endocytosed [240]. The hydrodynamic forces required for sorting antibodies from 

the surface of trypanosomes are produced by forward motility of T. b. brucei. 

This was described through RNAi mediated transcript depletion of genes to 

inactivate trypanosome endocytosis (by targeting clathrin) [457], cell 

directionality (by targeting flagellum adhesion glycoprotein, fla1) [458], or 

plasma membrane recycling (by targeting actin) [230]. Of significance was that 

the removal of fla1 resulted in a loss of antibody-VSG complex sorting to the 

posterior, consequently blocking the first step of antibody clearance [240]. 

Hence besides antigenic variation as the well known mechanism applied by 

trypanosomes to evade immune responses [9], directional cell motility and 

plasma membrane recycling functions cooperate in removing host antibodies 

[240]. The findings established that physical flow forces generated by the beat 

of the flagella while swimming were essential not only for motility but also 

survival in the blood stream of mammals. This further suggested that high 

cellular motility might be essential for parasite survival [219, 223, 224].  
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In the tsetse fly, motility is important for infection of the salivary glands to 

occur. T. b. brucei forward motility is essential for migration in the tsetse fly 

[230]. Inducible RNAi silencing of the dynein intermediate chain (DNAI1) of the 

flagella axoneme led to a loss of trypanosomes ability for propulsive wave and 

forward motility [217]. Motility impaired trypomastigote parasites were unable 

to complete the first crucial step in infection, which was migrating from the 

foregut to the midgut, although they could still proliferate, albeit at half the 

normal duplication rates [230]. This observation of the importance of motility in 

the tsetse fly has led to investigations of the potential impact of motility 

mutants in pathogenesis in mammals [232]. In order for African trypanosomes to 

migrate from the skin into the lymphatics and then the draining LN, motility is 

most likely essential. My data suggests that metacyclic T. b. brucei have a 

significantly higher velocity than bloodstream form T. b. brucei, which may 

serve an advantage in establishing and migrating rapidly to the skin lymphatics.  

In addition, intra lymphatic T. b. brucei showed a significant increase in 

velocity, compared to extra lymphatic T. b. brucei, which is a key step in 

systemic dissemination [191, 334]. However, it was also observed that the mean 

velocity of blood stage parasites in the extravascular matrix of Prox-1 mOrange 

was slightly more than those on C57Bl/6 mice. This difference though not 

significant, could be due to the differences associated with the use of transgenic 

mice in this study, or possibly suggests the need for more replicates to further 

verify my findings. Data here shows that T. b. brucei may need to navigate 

quickly through the skin in order to survive the immune assault of the host, 

thrive in its new environment, and disseminate into the blood, via the 

lymphatics. In stage 2 of HAT, penetration of the vascular endothelium or the 

CNS by blood stream form T. b. brucei requires actively motile parasites [252]. 

In a study to decipher the role of motility mutants in vivo with blood stream 

form T. brucei 427 (monomorphic parasites), it was shown that T. b. brucei 

propulsive motility was dispensable for blood stream form infections [232]. The 

authors concluded that motility made no difference in their model through 

intraperitoneal injections. However their study has some drawbacks, which 

include; the use of an acute infection T. b. brucei model, so migration of T. b. 

brucei into the brain could not be monitored. Secondly, the route of infection 

was intraperitoneal, hence neglecting the skin stage as well as lacking the 
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appropriate parasite life cycle stages (i.e. metayclics), resulting in a model that 

does not accurately mimic establishment of infection and parasite dissemination 

[191]. So in the context of my work, I would argue that motility mutants of T. b. 

brucei transmitted through the tsetse fly into the skin might be unable to 

establish parasitemia in mammalian hosts. Motility mutants of metacyclic T. b. 

brucei may become trapped in the skin, allowing the immune system to clear 

the infection.  

The data in this study also did not detect T. b. brucei in blood vessels following 

tsetse fly. This is in contrast to what has been seen in Plasmodium spp 

sporozoites injected by the mosquito bites. Sporozoites were shown to rapidly 

migrate into both blood and lymphatic vessels [183, 434]. Most of the 

sporozoites released by the mosquito enter into the dermis of the skin and glide 

into blood vessels, while the few that migrate into lymphatics, remain in the LN 

where they were killed [183]. The lymphatic route of sporozoite dissemination 

for malaria parasites appeared to be a dead end. In contrast, in this study, I 

report the presence of T. b. brucei into only the lymphatics; T. b. brucei were 

not detected in blood vessels (either metacyclic or blood stream forms of T. b. 

brucei), despite repeated trials using both tsetse fly inoculation and needle 

injection of blood stream form T. b. brucei. The absence of T. b. brucei in blood 

vessels post tsetse fly bite reflects the importance of the intravital imaging tools 

in understanding T. b. brucei pathogenesis in vivo. It also agrees with previous 

reports that the lymphatics is a route of dissemination of parasites [191, 334].  

 In mammals, apart from laboratory rodents that have been used for 

experimental T. brucei infection studies via the tsetse fly, there is the 

development of a chancre (skin lesion) in the skin within 4-5 days [333]. In the 

chancre, T. b. brucei were observed to proliferate, and neutrophils detected at 

day 11-post infection [13, 191, 333, 459]. Although there was no chancre 

observed in our mouse model, which might suggest a difference in immune 

response in humans or cattle. This difference is a limitation of the study in using 

mice models for analysing the earliest interactions in the skin. T. b. brucei also 

remain in the skin as detected by MPLSM imaging for at least 24 hrs post tsetse 

fly bites and qPCR data in chapter 3, suggesting that the skin may be a 

‘reservoir’ for T. b. brucei. In Plasmodium spp., sporozoites have been shown to 

remain and differentiate into merozoites in the skin, and serve as a potential 
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source of parasitemia in relapsing infections [337]. Though there is no direct 

evidence to prove a similar phenomenom happens in T. b. brucei, this possibility 

can’t be ruled out. Here, I observed that some T. b. brucei remain in the skin 

and differentiate into blood stages within 20 hrs post infected tsetse fly bites, 

though the fate of these parasites in the skin is yet unclear.  

Next, I investigated the recruitment of neutrophils to the bite site following 

tsetse fly bites, since they were already identified as the first cells recruited to 

the tsetse fly bite site. Neutrophil recruitment from the blood to infectious sites 

or in response to tissue damage is a key feature of the early innate immune 

response [460, 461]. Further investigation on neutrophil recruitment was to 

determine if the presence of neutrophils at the bite site resulted in NET 

formation, which is used in killing parasites or bacteria in vivo. In my model, the 

recruitment of neutrophils to the bite site did not result in swarm formation as 

observed in inflamed, infected or sterilely wounded tissues [326, 408, 450, 451, 

462-469]. In a model to demonstrate the formation of neutrophil swarms in 

extravascular spaces, and the molecular events guiding swarm formation, it was 

reported that neutrophil cell death initiated dramatic neutrophil swarm 

formation. Leukotriene B4 (LTB4) was shown to play a key role as a unique 

intercellular communication signal between neutrophils, allowing a rapid 

integrin-independent neutrophil recruitment through the tissue [470]. This 

suggests that the absence of neutrophil swarms in my model could possibly be 

due to the absence of LTB4 needed at sites of cell death in order to mediate 

neutrophil swarm formation [470]. Parasite infections such as T. gondii and L. 

major have been described to form dynamic neutrophil clusters in the LN and 

skin respectively [408, 471]. The absence of neutrophil swarms was a novel 

observation of the behaviour of recruited neutrophils during T. b. brucei 

infection in the skin. The recruitment of neutrophils to the bite site was rapid, 

and directed towards the site of injury, suggesting chemotactic factors such as 

CXCL1/CXCL2 were at play. In a model of liver injury, neutrophil migration was 

found to depend on an intravascular CXCL2 gradient for migration to sites of 

tissue necrosis [472]. The role of neutrophils in carrying out its phagocytic 

functions have been described in bacterial and parasitic infections, where 

antigens are transported through lymphatic vessels to the draining lymph node 

[473]. From the intravital data on neutrophils described here, this suggests that 
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at sites of T. b. brucei deposition/tsetse fly probe, neutrophils rapidly migrated 

from the blood to phagocytose parasites.  

The lymphatic vessels are responsible for draining excess fluid, soluble proteins, 

migratory DCs and antigens through lymphatic vessels into the LN. The draining 

function of lymphatic vessels is important for maintaining tissue homeostasis, 

and in inflammatory conditions there is increased fluid and cellular activity [194, 

195, 474]. Dissemination of T. b. brucei through the lymphatics has been 

described for over three decades [191, 333], but the likely mechanisms involved 

have yet to be described. Based on the observation of intra lymphatic T. b. 

brucei, and extra lymphatic parasites migrating towards the lymphatic vessel, it 

led me to propose that the mechanism of entry of T. b. brucei into lymphatic 

vessels may be similar to leukocyte transmigration into lymphatics, in particular 

DC entry into lymphatics. Transmigration of leukocytes through endothelial cell 

junctions occurs in a tightly regulated manner, requiring integrins such as 

PECAM, CD99 and other proteins [430, 475-477]. This process involves sequential 

interactions between adhesion molecules on the leukocytes and the endothelial 

cell, and during acute inflammation there is an increase in vascular permeability 

to fluid, without an alteration to the barrier functions which prevents the exit of 

solutes [475].  

Dendritic cells (DCs), described as professional APCs, unlike other leukocytes do 

not require an integrin mediated cell-cell and cell-matrix interactions to enter 

the lymphatics in mouse dermis [478]. DCs enter lymphatics through expression 

of chemokine receptor CCR7, while CCR7 non-expressors DCs are unable to 

migrate into the lymphatics [193, 479]. CCR7 is upregulated on migratory DCs 

and acts as a gatekeeper during their mobilization [480, 481]. CCR7 deficient 

DCs can crawl as fast as CCR7 sufficient DCs, but do not enter the lymphatics, 

and fail to gain access to LNs [203]. CCR7 recognizes the ligands CCL19 and 

CCL21, which together coordinate the trafficking of DCs and T cells to, and 

within secondary lymphoid organs under steady and inflammatory conditions 

[479]. CCL21 is a chemokine associated with lymphocyte ingress into LNs, and 

DCs have been described to migrate directionally along CCL21 gradients [482, 

483]. Two types of CCL21 are expressed (CCL21-ser and CCL21-Leu). CCL21-Leu 

is expressed on lymphatic endothelial cells and CCL21-Ser on fibroblastic 

reticular cells [484]. DCs gain access into lymphatics through perforations or 
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button like junctions that are present in the initial lymphatics. These button-like 

junctions are equipped with flap valves to allow entry but prevent exit of solutes 

and small particles [204]. Hence, to access the lymphatics, DCs seek out areas 

with sparse basement membrane on initial lymphatics, where they are able to 

squeeze in, at or near blind-ended tips of initial lymphatics [204], and localize in 

the subcapsular sinus of the LN [485-487].  

From my observation of intra lymphatic T. b. brucei, some of the extra 

lymphatic T. b. brucei were observed to migrate towards lymphatic vessels in a 

CCL21 independent manner as shown from the transwell assay. Hence, T. b. 

brucei may interact with lymphatic vessels through its rapid motility, seeking 

out perforations through which they may gain entry. The architecture of the 

lymphatics being a one-way drainage system may also favour the entry of T. b. 

brucei. DCs also interact with the endothelium using their lamellipodia, and are 

guided by lymph flow and other cues, which lead them to the LN [203]. T. b. 

brucei appear to behave similarly, traversing at significantly higher velocities 

compared to extra lymphatic parasites in a random manner, probably due to the 

weak current of the lymph flow and rapid flagella motility. Cells migrate in the 

direction of lymph possibly due to chemotactic cues produced by the lymphatics 

or endothelial cells [488]. In the intracellular parasite T. cruzi, a closely related 

parasite to T. b. brucei, it has been described to bind CCL2. Injection of CCL2 

into the air pouch of infected mice increased T. cruzi migration to different 

tissues and leukocyte recruitment in a concentration dependent manner [489]. 

The run and tumble behaviour of T. b. brucei in vivo which is characteristic of 

bacterial chemotaxis [490, 491], also raises the intriguing possibility of T. b. 

brucei migrating in a chemotactic manner both in the lymphatics and the skin.  

Although the data presented here is novel with respect to the observation of 

parasites in the extravascular matrix, intralymphatic parasites and neutrophil 

migration to the bite site post infected tsetse exposure. The experiments 

described in this study have some drawbacks. Firstly is the suggestion that I was 

unable to detect parasites in blood vessels using tsetse flies (metacyclics) and 

needle injections of blood stream form parasites. Inability to detect parasites in 

the blood vessels could possibly be due to direct injection of parasites into the 

blood vessels or rapid transit of the parasites into the blood stream of the mouse 

from the skin, hence making it undetectable. Although the injection of parasites 
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directly into blood vessels is atypical of dipteran vectors, hence it is highly 

unlikely this was the case. Secondly, the observation of intralymphatic parasites 

was carried out using blood stream form parasites without sufficient replicates. 

Parasites in the Prox1 mOrange mice also had higher velocities compared to 

their counterparts imaged in wild type mice. This suggests that the phenotype of 

the mouse used could be attributed to the difference in velocities, and the need 

to carry out more replicates to properly draw conclusions regarding the 

migration of parasites towards lymphatic vessels and also account for the 

difference in velocities. Furthermore, there is the need to carry out these 

studies using infected tsetse flies (i.e. with metacyclics injected into the skin), 

to decipher whether the results obtained with blood stream injections would be 

similar or different. The use of infected tsetses for inoculation during lymphatic 

imaging would however pose considerable challenges with imaging due to the 

low numbers of parasites injected with the strain used in this study. I was also 

unable to compare the behaviour of neutrophils in uninfected tsetse and 

infected tsetse exposed mice. This would also be necessary to account for the 

contribution of the parasite to neutrophil behaviour in vivo. It would be 

interesting to find out whether uninfected tsetse exposed mice would form 

neutrophil swarms which was absent in infected tsetse exposed mice. Hence 

further studies taking note of these limitations, need to be carried out, and also 

taking into account that these observations have been made in mice, which 

might be different in humans/cattle. So interpretations of data from mice 

models have to been done with caution when drawing conclusions on 

trypanosome host interactions occurring in the skin post tsetse exposure. The 

limitations outlined here, however does not diminish the novelty of the data 

presented in this chapter.  

  

Overall, my findings in this study outline the events observed following the 

injection of T. b. brucei into the dermis of the skin via the tsetse fly bite, and 

the host cellular recruitment that follows. Metacyclic T. b. brucei were highly 

motile in the skin, migrating rapidly in the dermis of the skin, and blood stream 

forms rapidly migrating towards lymphatics. Intravital imaging also revealed that 

the damage to the skin by the tsetse fly caused the recruitment of neutrophils, 

which do not form swarms and maintain directionality towards the site of injury. 
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A thorough understanding of the molecular mechanisms guiding this process 

would deepen our understanding of the pathogenesis of African trypanosomes in 

mammals.  
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6 General Discussion 
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6.1 Introduction    

For arthropod delivered parasites, the skin represents the first contact the 

vector and parasites have with the mammalian host. This serves an opportunity 

for the parasite to establish itself, and also for the host to mount an innate 

immune response to clear or control infection [492]. In African trypanosomes, 

transmitted by the bite of the tsetse fly, the skin is needed for the parasites to 

establish and disseminate to other organs of the mammal [18, 23]. The skin also 

serves as a physical barrier to prevent the entry of parasites, and it is also host 

to a plethora of immune cells [82, 93]. The bite of the tsetse fly is capable of 

eliciting an immune response as observed in other arthropod delivered parasites 

such as Leishmania spp [166]. During infection, the first line of cellular defence 

is the recruitment of neutrophils within minutes, which is followed later by 

monocytes, which can differentiate into macrophages and DCs, and are recruited 

by chemotaxis through local production of CCL2, CCL3, CCL4 and CCL5 [488]. 

Once the parasites are established, next is dissemination from the bite site, 

which for some intracellular parasites such as Leishmania involves capture and 

dissemination by neutrophils [165, 166].  

 

In African trypanosomes infected cattle, cannulation of the flank of these 

animals indicates the presence of trypanosomes in the lymph prior to blood 

detection. This suggests that parasites may use the lymphatics as a principal 

route of dissemination [13, 191]. In mammals, leukocytes transmigration into 

lymphatics has been described extensively, especially that of DCs [430, 475]. 

Migratory DCs express CCR7, which recognize the ligands CCL19 and CCL21 that 

participate in trafficking DCs into the lymphatics along CCL21 gradients [193, 

479, 486]. This suggests that DC entry into lymphatics involves cells following a 

chemotactic gradient. In African trypanosomes, it has yet to be established 

whether chemokines, active parasite motility or events similar to leukocyte 

transmigration are involved in parasite ingress into lymphatics. Dissecting the 

events in the skin would help shape our understanding of parasite dissemination 

and interactions that may occur within host tissues. This present study has 

described some of those very early events in the host occurring in the skin post 

tsetse fly bites, at the molecular and cellular level, using conventional 

techniques and intravital imaging studies.  
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6.2 Tsetse fly infections and T. b. brucei egress from the 
skin to the lymph node 

In this study, I successfully established a method for experimental infections of 

mice via trypanosome infected tsetse flies in the laboratory. This was important 

in order to carry out studies in vivo that mimic the natural route of infection in 

the field through injection of the right dose and life cycle stage (metacyclics) of 

parasites via the tsetse fly. My method of infecting tsetse flies by optimising the 

blood meal, trypanosome and tsetse strain combination (T. b. brucei 247 and G. 

m. morsitans) was consistent with previous reports that optimising these 

parameters could enhance successful salivary gland infections in tsetse flies 

[298, 493]. This approach gave a consistently high level of mature infections in 

tsetse flies. Following tsetse infections, mice ear pinna was then exposed to 

infected tsetse flies, which demonstrated the successful establishment of T. b. 

brucei in mice. There was detection of parasitemia, and this validated that the 

route of infection (ear pinna) was appropriate for further in vivo studies. 

 

I also report here the establishment/proliferation of parasites in mouse skin by 

qPCR, which is consistent with what has been observed in goats [11, 13, 191, 

192]. Also, the presence of parasites in the LN suggested that the lymphatics 

were used to transit into the blood stream. The presence of parasites in the skin 

for up to 48 hrs suggests the importance of the skin stage in pathogenesis, and 

points to other critical roles it may play in infection yet to be identified. The 

lymphatics drain antigens and excess fluid from the skin and maintain normal 

tissue homeostasis. In relation to this study, this suggests lymphatics are 

important in trafficking T. b. brucei as observed for immune cells e.g. dendritic 

cells from tissues to the LN. Other vector-transmitted parasites such as 

Plasmodium sporozoites have also been demonstrated to transit to the LN 

through the lymphatics, although the LN is a dead end for these parasites [184]. 

In African trypanosomes following infections initiated by the bite of infected 

tsetse flies on the flanks of cattle, parasites multiply at the bite site, followed 

by the onset of a localised skin reaction (chancre). Lymph collected from the 

nodes of these mammals via the efferent lymphatics were shown to contain 

parasites, preceding the appearance of parasites in the blood, suggesting that 
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the LN also serves for proliferation of trypanosomes and a passage route for 

dissemination into the blood [11, 494].  

 

In all, the data presented shows that African trypanosomes migrates towards the 

lymphatics, and enters the lymphatics during infection as previously described 

[191], but further studies are needed to prove there is tropism for lymphatics. 

 

6.3 Identification of the molecular and cellular events in 
the skin post tsetse fly bites 

The very early events following the bite of infected/uninfected tsetse flies 

remained an area that was uncharted prior to this study. African trypanosomes 

inject metacyclic stage parasites into the skin, and as previously discussed, the 

damage to the skin itself from the probe caused the recruitment of cells to the 

bite site. The first cells identified to enter the skin from the blood post tsetse 

bite were neutrophils, which were CD11b+ and Ly6G+. The presence of 

neutrophils in the skin post tsetse fly bite was consistent with the recruitment of 

neutrophils in other arthropod transmission models such as Phlebotomous 

duboscqi [326, 396]. However, the presence of neutrophils was not different in 

infected or uninfected tsetse fly bites, suggesting that the break in the skin 

caused by the probe was responsible for the early influx of cells.  

 

Neutrophils are recruited to sites of inflammation or sterile injury to either clear 

invaders or participate in the tissue repair process in the skin [462, 495]. 

Neutrophils can become primed by chemokines and cytokines such as TNF-α, IL-

8, and become mobilized to sites of infection, releasing proteases and reactive 

oxygen species for clearing pathogens [496]. Neutrophil derived proteases could 

also be responsible for proteolytic activation of IL-1β and IL-6, and both 

cytokines were upregulated in the skin post tsetse fly exposure. Membrane-

associated proteinase 3 could cleave IL-1β, while neutrophil elastase could play 

a role in degradation of soluble IL-6 [497]. At sites of infection, neutrophils 

could also release cytokines, chemokines and anti-microbial peptides in order to 

carry out its phagocytic function [498]. The recruitment of neutrophils to the 

bite site during infection results in immunity against the invading pathogens, 

through phagocytosis [152].  



Chapter 6  176 
 
 

TLDA analysis in the skin also revealed the upregulation of two chemokines 

associated with neutrophil recruitment, CXCL1 and CXCL2, which bind the 

chemokine receptors CXCR1/2 that are involved in neutrophil extravasation from 

the blood [499]. The saliva of Anopheles stephensi contains a 200 Kda neutrophil 

chemotactic factor, which serves as a chemoattractant for neutrophils [500]. 

The saliva of the tsetse fly is highly heterogeneous, with several proteins with 

hypothetical functions. These saliva components could contain substances that 

modulate the innate immune response, which is characteristic of the saliva of 

vectors [501, 502]. The tsetse fly saliva has been suggested to modulate the T 

helper response in African trypanosome infections towards a Th2 phenotype, 

when injected with or without trypanosomes intraperitoneally [186]. 

Furthermore, neutrophils have been effective in clearing Trypanosoma 

congolense in the chancre formed after a tsetse fly bite, confirming their 

phagocytic role in Trypanosoma infections [13]. The presence of neutrophils in 

the chancre at day 11-post infection suggests they are beneficial to the host 

during infection [503]. In contrast to the protective roles of neutrophils in 

infection, neutrophils have been demonstrated through depletion studies to 

facilitate the onset of parasitemia in Leishmania major [339]. Given the 

contrasting activity of neutrophils it was important to establish their role in 

tsetse mediated trypanosome infection. Using antibody mediated neutrophil 

depletion, there was no difference observed in parasitemia.  

 

Overall, the data here seems to suggest that the very earliest immune events 

post tsetse fly bite resulted in the influx of neutrophils to the skin, which may 

play a protective role in clearing parasites. However, sufficient parasites were 

able to evade neutrophil killing and successfully establish parasitemia. This 

study also shows that it is the impact of the vector probe and its saliva that 

drives and sustains the migration of neutrophils from the blood to the skin, 

rather than the presence of trypanosomes. 
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6.4 Proposed mechanism for T. b. brucei dissemination 
through the lymphatics 

The life cycle of African trypanosomes in mammals begins in the skin where 

parasites are deposited, gain access into the blood via the lymphatics, and 

continue through parasite uptake from the skin during a tsetse fly feed. At each 

stage of T. b. brucei infection, the parasites possess unique features for 

adapting to its new environment [18, 23]. The first stage during the tsetse bite is 

the release of metacyclic T. b. brucei, which then differentiate into long slender 

forms present in the blood stream, which then differentiate into short stumpy 

stages that are taken up in the skin during tsetse fly feeds. The very early events 

in parasite dissemination from the skin have yet to be investigated. This led me 

to investigate intravitally the spatiotemporal events in the skin stage of the 

lifecycle of T. b. brucei in mammals.  

 

Metacyclic T. b. brucei injected into the skin via tsetse bites were actively 

motile with a higher velocity than bloodstream forms, and moved randomly in 

the skin. Metacyclic parasites were not detected in blood vessels. I also observed 

the presence of T. b. brucei in the ear skin lymphatic vessels using Prox-1 

mOrange, lymphatic vessel reporter mice. Intralymphatic parasites were clearly 

motile and moved rapidly within the lymphatic vessel. During leukocyte 

trafficking, DCs enter the lymphatics through the initial lymphatic vessels 

present in the dermis, through the interaction of the chemokine receptor CCR7 

with the ligand CCL21 expressed on lymphatic vessels [482, 504]. However, CCR7 

deficient DCs have been found to still gain access into the T cell area of the LN 

though in lower numbers, possibly through other chemokine receptors CXCR4 

[505] or CCR8 [506] which partially overlap with CCR7 signalling. CCR7 and 

CCL21 have not been identified to be involved in migration towards lymphatics 

for T. b. brucei, but the use of host chemokine receptors by the parasite can’t 

be ruled out, and needs to be investigated further. 

 

Parasite derived chemokine homologues have also been described which could 

induce cell migration. For example parasite macrophage migratory inhibitory 

factor has been isolated from nematodes [507, 508], and protozoa [509, 510]. 

Also, Strongyloides stercoralis can interact with chemokine receptors to induce 
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eosinophil migration [511]. Through these homologues, parasites have evolved 

mechanisms to prolong survival and dissemination in their hosts. This suggests it 

is likely that T. b. brucei secrete molecules that could bind host factors in order 

to gain access to the lymphatics.  

 

I also observed T. b. brucei parasites migrating towards the lymphatic vessels in 

the skin, suggesting they might penetrate by seeking out perforations in the 

lymphatics. DCs actively crawl along the endothelium and their migration in the 

initial lymphatics was not due to lymph flow current alone [203]. My findings 

seem to mimic that, with parasites actively migrating in lymphatic vessels and 

not appearing to be pushed along by the weak lymph current. Here, I also report 

that the crawling movement along the endothelium reported for DCs is absent in 

our T. b. brucei model [203]. The study presented in this thesis is the very first 

intravital observation of the migrationof T. b. brucei towards lymphatic vessels 

and observation of intralymphatic parasites.  

 

I propose that African trypanosomes may gain access into the lymphatics using a 

mechanism similar to DCs, by seeking areas on the lymphatics with perforations. 

Once in the initial lymphatics, through a combination of active motility by their 

flagella and by sensing direction of lymph flow they migrate towards larger 

collecting vessels where they may now be sufficiently pushed by the shear force 

of the lymph [512, 513].  

 

6.5 Conclusions 

The aim of this thesis was to characterise the very early immune events in the 

skin post tsetse fly bites with infected/uninfected tsetse flies, and also visualise 

the events that occur in the skin using T. b. brucei as a model for African 

trypanosomes. The study presented here draws the following conclusions: 

 

1. The recruitment of cells to the bite skin post tsetse bite is independent of 

the presence or absence of parasites. The damage caused by the tsetse fly 

drives the influx of host cells, which were predominantly neutrophils. 
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2. T. b. brucei are detected in the LN prior to blood dissemination, and 

infection of tsetse flies is best achieved through optimisation of the 

infected blood feed, trypanosome strain and tsetse fly combinations. 

3. Metacyclic T. b. brucei are actively motile in the skin 

4. T. b. brucei migrates towards lymphatic vessels and gain entry.  

 
Overall the data presented in this thesis demonstrates that chemokines drive 

neutrophil influx to the skin, specifically CXCL1 and CXCL2. Also, neutrophil 

behaviour in the skin in African trypanosome infections was unique in that 

neutrophil swarms were absent during intravital imaging studies. T. b. brucei 

were also detected, and could possibly gain access to the initial lymphatics 

through gaps in the basement membrane where they could squeeze in. The data 

presented here also excludes the possibility of CCL21 contributing to T. b. brucei 

ingress into lymphatic vessels. 

 

6.6 Future work 

In the light of the findings from this thesis as outlined above, it would be 

interesting to carry out the following studies to provide more insights into the 

very early events in African trypanosome infections. Firstly, the characterisation 

of the factor(s) present in the tsetse fly salivary gland that could potentially 

drive neutrophil influx to the bite site - this would shed more light on the 

neutrophil influx data I have presented in chapter 4 of my thesis. Secondly, it 

would also be interesting to dissect the molecular mechanisms underlying the 

entry of African trypanosomes into the lymphatics, first through in vitro 

chemotaxis assays using a broad range of chemokines, and followed by the use of 

mice deficient in skin lymphatics in order to define the impact this would have 

on pathogenesis.  

 

In summary, these studies together with the data from my thesis would 

undoubtedly provide further insights into African trypanosome dissemination 

through the skin, hence uncovering the ‘black box’ of the very earliest events in 

the skin. 
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Appendices 

I General solutions 
 

Complete medium: 500 mL IMDM [Iscove’s Modified Dulbecco’s Medium, 

(Invitrogen, Paisley, UK)] containing 4%v/v foetal calf serum (FCS), penicillin 

(100 units/mL), streptomycin (100 µg/mL), and 2 mM L-Glutamate. 

 

Hanks’ Balanced Salt Solution 1x with CaCl2 and MgCl2 (1x HBSS): 1x HBSS was 

purchased from Life Technologies (Paisley, UK). 

 

Chemotaxis buffer: 0.5% w/v Bovine Serum Albumin (BSA) in IMDM 

 

Fluorescence activated cell sorting (FACS) buffer: 500 ml of 1x DPBS 

containing 4% v/v FCS, 2 mM EDTA and 0.09% w/v Sodium Azide. 

 

Dulbecco’s Phosphate Buffered Saline, 1x (1x DPBS) without CaCl2 & MgCl2: 1x 

DPBS was purchased from Life Technologies (Paisley, UK). 

 

Modified HMI-9 for culturing Pleiomorphic T. b. brucei  
 

ßBCPT comprises of the components below: 

 

Bathocuproinedisulfonic acid disodium salt           14.1mg (5 mM) – final 0.5 mM 

Distilled water (d.H20)                                          5 ml 

 

Thymidine       19.5 mg (16 mM) – final 0.16 mM 

d.H20        5 ml 

 

Sodium Pyruvate      110 mg  

d.H20        5 ml 

 

ß-mercaptoethanol      7ul (200 mM) – final 2 mM 

d.H20        5 ml 
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L-cysteine C3H7NO2S     91.0 mg (100 mM) – final 1mM 

d.H20        5 ml 

 

Filter sterilise and add to medium as directed below, or store at -20oC until 

needed. 

 

For 500 ml HM19 add in the following order: 

 

Iscoves modified Dulbecco’s medium  + glutamax     365 ml 

Hypoxanthine (stored at 40 oC)        5 ml 

Kanamycin (10mg/ml -20 oC)        1.5 ml 

Pen/Strep (5000 Units each -20 oC)  (or 2.5 ml of 10 000 U/ml)  5 ml 

ßBCPT (5 ml of each component mixed together as above)   25 ml 

Glucose           500 mg 

Adenosine           67 mg 

Guanosine           71 mg 

Methyl cellulose          0.55 g 

 

Leave overnight on stirrer in cold room 

 

Add 133 ml Serum Plus (20%) + 133 ml PAA Gold FCS (20%) to 400 ml Mod-HMI-9 

 

Filter sterilise and store at 4 oC  
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II List of antibodies 
 
Antibody Clone Company 
Ly6G Gr1 BD 
F4/80 BM8 eBioscience 
CD45 30-F11 BD 
CD11b M1/70 BD 
IA/IE (MHC II) 2G9 BD 
Ly6C RB-8C5 eBioscience 
Viability  eBioscience 
Ly6G IA8 BioXcell 

 
 

  



183 
 

List of References 

 
1. Turner, C.M., N. Aslam, and C. Dye, Replication, differentiation, growth 

and the virulence of Trypanosoma brucei infections. Parasitology, 1995. 
111 ( Pt 3): p. 289-300. 

2. Vassella, E., et al., Differentiation of African trypanosomes is controlled 
by a density sensing mechanism which signals cell cycle arrest via the 
cAMP pathway. J Cell Sci, 1997. 110 ( Pt 21): p. 2661-71. 

3. Brun, R., et al., Human African trypanosomiasis. Lancet, 2010. 
375(9709): p. 148-59. 

4. Burri, C., Chemotherapy against human African trypanosomiasis: is there 
a road to success? Parasitology, 2010. 137(14): p. 1987-94. 

5. Ilemobade, A.A., Tsetse and trypanosomosis in Africa: the challenges, the 
opportunities. Onderstepoort J Vet Res, 2009. 76(1): p. 35-40. 

6. Kuzoe, F.A., Perspectives in research on and control of African 
trypanosomiasis. Ann Trop Med Parasitol, 1991. 85(1): p. 33-41. 

7. Shaw, A.P., et al., Mapping the economic benefits to livestock keepers 
from intervening against bovine trypanosomosis in Eastern Africa. Prev 
Vet Med, 2014. 113(2): p. 197-210. 

8. Urbaniak, M.D., M.L. Guther, and M.A. Ferguson, Comparative SILAC 
proteomic analysis of Trypanosoma brucei bloodstream and procyclic 
lifecycle stages. PLoS One, 2012. 7(5): p. e36619. 

9. Barry, J.D. and R. McCulloch, Antigenic variation in trypanosomes: 
enhanced phenotypic variation in a eukaryotic parasite. Adv Parasitol, 
2001. 49: p. 1-70. 

10. Genome sequence of the tsetse fly (Glossina morsitans): vector of African 
trypanosomiasis. Science, 2014. 344(6182): p. 380-6. 

11. Akol, G.W. and M. Murray, Early events following challenge of cattle with 
tsetse infected with Trypanosoma congolense: development of the local 
skin reaction. Vet Rec, 1982. 110(13): p. 295-302. 

12. Malvy, D., et al., Guess what! Human West African trypanosomiasis with 
chancre presentation. Eur J Dermatol, 2000. 10(7): p. 561-2. 

13. Taiwo, V.O., et al., Role of the chancre in induction of immunity to 
tsetse-transmitted Trypanosoma (Nannomonas) congolense in goats. Vet 
Immunol Immunopathol, 1990. 26(1): p. 59-70. 

14. Matthews, K.R., The developmental cell biology of Trypanosoma brucei. J 
Cell Sci, 2005. 118(Pt 2): p. 283-90. 

15. Pays, E., L. Vanhamme, and D. Perez-Morga, Antigenic variation in 
Trypanosoma brucei: facts, challenges and mysteries. Curr Opin 
Microbiol, 2004. 7(4): p. 369-74. 

16. McCulloch, R., Antigenic variation in African trypanosomes: monitoring 
progress. Trends Parasitol, 2004. 20(3): p. 117-21. 

17. Matthews, K.R., J.R. Ellis, and A. Paterou, Molecular regulation of the 
life cycle of African trypanosomes. Trends Parasitol, 2004. 20(1): p. 40-7. 

18. Vickerman, K., Developmental cycles and biology of pathogenic 
trypanosomes. Br Med Bull, 1985. 41(2): p. 105-14. 

19. Tyler, K.M., K.R. Matthews, and K. Gull, The bloodstream differentiation-
division of Trypanosoma brucei studied using mitochondrial markers. Proc 
Biol Sci, 1997. 264(1387): p. 1481-90. 



184 
 
20. Van Den Abbeele, J., et al., Trypanosoma brucei spp. development in the 

tsetse fly: characterization of the post-mesocyclic stages in the foregut 
and proboscis. Parasitology, 1999. 118 ( Pt 5): p. 469-78. 

21. Roditi, I. and M. Liniger, Dressed for success: the surface coats of insect-
borne protozoan parasites. Trends Microbiol, 2002. 10(3): p. 128-34. 

22. Rotureau, B., et al., A new asymmetric division contributes to the 
continuous production of infective trypanosomes in the tsetse fly. 
Development, 2012. 139(10): p. 1842-50. 

23. Vickerman, K., et al., Biology of African trypanosomes in the tsetse fly. 
Biol Cell, 1988. 64(2): p. 109-19. 

24. Matthews, K.R. and K. Gull, Commitment to differentiation and cell cycle 
re-entry are coincident but separable events in the transformation of 
African trypanosomes from their bloodstream to their insect form. J Cell 
Sci, 1997. 110 ( Pt 20): p. 2609-18. 

25. Amole, B.O., A.B. Clarkson, Jr., and H.L. Shear, Pathogenesis of anemia 
in Trypanosoma brucei-infected mice. Infect Immun, 1982. 36(3): p. 
1060-8. 

26. Connor, R.J., The impact of nagana. Onderstepoort J Vet Res, 1994. 
61(4): p. 379-83. 

27. Woodruff, A.W., et al., Anaemia in African trypanosomiasis and 'big 
spleen disease' in Uganda. Trans R Soc Trop Med Hyg, 1973. 67(3): p. 329-
37. 

28. Sadun, E.H., et al., Experimental infections with African trypanosomes. 
V. Preliminary parasitological, clinical, hematological, serological, and 
pathological observations in rhesus monkeys infected with Trypanosoma 
rhodesiense. Am J Trop Med Hyg, 1973. 22(3): p. 323-30. 

29. Masocha, W., M.E. Rottenberg, and K. Kristensson, Migration of African 
trypanosomes across the blood-brain barrier. Physiol Behav, 2007. 92(1-
2): p. 110-4. 

30. Odiit, M., F. Kansiime, and J.C. Enyaru, Duration of symptoms and case 
fatality of sleeping sickness caused by Trypanosoma brucei rhodesiense in 
Tororo, Uganda. East Afr Med J, 1997. 74(12): p. 792-5. 

31. Duggan, A.J. and M.P. Hutchinson, Sleeping sickness in Europeans: a 
review of 109 cases. J Trop Med Hyg, 1966. 69(6): p. 124-31. 

32. Blum, J., C. Schmid, and C. Burri, Clinical aspects of 2541 patients with 
second stage human African trypanosomiasis. Acta Trop, 2006. 97(1): p. 
55-64. 

33. Kennedy, P.G., Human African trypanosomiasis-neurological aspects. J 
Neurol, 2006. 253(4): p. 411-6. 

34. Buguet, A., et al., [Sleeping sickness: major disorders of circadian 
rhythm]. Med Trop (Mars), 2001. 61(4-5): p. 328-39. 

35. Kennedy, P.G., Human African trypanosomiasis of the CNS: current issues 
and challenges. J Clin Invest, 2004. 113(4): p. 496-504. 

36. Chappuis, F., et al., Field evaluation of the CATT/Trypanosoma brucei 
gambiense on blood-impregnated filter papers for diagnosis of human 
African trypanosomiasis in southern Sudan. Trop Med Int Health, 2002. 
7(11): p. 942-8. 

37. Noireau, F., P. Force-Barge, and P. Cattand, Evaluation of Testryp CATT 
applied to samples of dried blood for the diagnosis of sleeping sickness. 
Bull World Health Organ, 1991. 69(5): p. 603-8. 

38. Penchenier, L., et al., Evaluation of LATEX/T.b.gambiense for mass 
screening of Trypanosoma brucei gambiense sleeping sickness in Central 
Africa. Acta Trop, 2003. 85(1): p. 31-7. 



185 
 
39. Noireau, F., et al., Serodiagnosis of sleeping sickness in the Republic of 

the Congo: comparison of indirect immunofluorescent antibody test and 
card agglutination test. Trans R Soc Trop Med Hyg, 1988. 82(2): p. 237-
40. 

40. Lejon, V., et al., A semi-quantitative ELISA for detection of Trypanosoma 
brucei gambiense specific antibodies in serum and cerebrospinal fluid of 
sleeping sickness patients. Acta Trop, 1998. 69(2): p. 151-64. 

41. Knobloch, J., et al., Evaluation of immunoassays for diagnosis and 
management of sleeping sickness in Liberia. Tropenmed Parasitol, 1984. 
35(3): p. 137-40. 

42. Lambert, P.H., M. Berney, and G. Kazyumba, Immune complexes in serum 
and in cerebrospinal fluid in African trypanosomiasis. Correlation with 
polyclonal B cell activation and with intracerebral immunoglobulin 
synthesis. J Clin Invest, 1981. 67(1): p. 77-85. 

43. Whittle, H.C., et al., IgM and antibody measurement in the diagnosis and 
management of Gambian trypanosomiasis. Am J Trop Med Hyg, 1977. 
26(6 Pt 1): p. 1129-34. 

44. Van Meirvenne, N., E. Magnus, and P. Buscher, Evaluation of variant 
specific trypanolysis tests for serodiagnosis of human infections with 
Trypanosoma brucei gambiense. Acta Trop, 1995. 60(3): p. 189-99. 

45. Barry, J.D. and C.M. Turner, The dynamics of antigenic variation and 
growth of African trypanosomes. Parasitol Today, 1991. 7(8): p. 207-11. 

46. Lejon, V., et al., Neuro-inflammatory risk factors for treatment failure 
in "early second stage" sleeping sickness patients treated with 
pentamidine. J Neuroimmunol, 2003. 144(1-2): p. 132-8. 

47. Balasegaram, M., et al., Treatment outcomes and risk factors for relapse 
in patients with early-stage human African trypanosomiasis (HAT) in the 
Republic of the Congo. Bull World Health Organ, 2006. 84(10): p. 777-82. 

48. Kennedy, P.G., Diagnostic and neuropathogenesis issues in human African 
trypanosomiasis. Int J Parasitol, 2006. 36(5): p. 505-12. 

49. Sternberg, J.M., et al., Evaluation of the diagnostic accuracy of prototype 
rapid tests for human African trypanosomiasis. PLoS Negl Trop Dis, 2014. 
8(12): p. e3373. 

50. Wastling, S.L., et al., LAMP for human African trypanosomiasis: a 
comparative study of detection formats. PLoS Negl Trop Dis, 2010. 4(11): 
p. e865. 

51. Naessens, J., A.J. Teale, and M. Sileghem, Identification of mechanisms 
of natural resistance to African trypanosomiasis in cattle. Vet Immunol 
Immunopathol, 2002. 87(3-4): p. 187-94. 

52. Anosa, V.O., L.L. Logan-Henfrey, and M.K. Shaw, A light and electron 
microscopic study of changes in blood and bone marrow in acute 
hemorrhagic Trypanosoma vivax infection in calves. Vet Pathol, 1992. 
29(1): p. 33-45. 

53. Murray, M., et al., Genetic resistance to African Trypanosomiasis. J Infect 
Dis, 1984. 149(3): p. 311-9. 

54. Roelants, G.E., et al., Identification and selection of cattle naturally 
resistant to African trypanosomiasis. Acta Trop, 1987. 44(1): p. 55-66. 

55. Molina-Portela, M.P., M. Samanovic, and J. Raper, Distinct roles of 
apolipoprotein components within the trypanosome lytic factor complex 
revealed in a novel transgenic mouse model. J Exp Med, 2008. 205(8): p. 
1721-8. 



186 
 
56. Thomson, R., et al., Hydrodynamic gene delivery of baboon trypanosome 

lytic factor eliminates both animal and human-infective African 
trypanosomes. Proc Natl Acad Sci U S A, 2009. 106(46): p. 19509-14. 

57. Vreysen, M.J., et al., Sterile insects to enhance agricultural 
development: the case of sustainable tsetse eradication on Unguja Island, 
Zanzibar, using an area-wide integrated pest management approach. 
PLoS Negl Trop Dis, 2014. 8(5): p. e2857. 

58. Vreysen, M.J., Principles of area-wide integrated tsetse fly control using 
the sterile insect technique. Med Trop (Mars), 2001. 61(4-5): p. 397-411. 

59. Barrett, M.P., Potential new drugs for human African trypanosomiasis: 
some progress at last. Curr Opin Infect Dis, 2010. 23(6): p. 603-8. 

60. Barrett, M.P., et al., The trypanosomiases. Lancet, 2003. 362(9394): p. 
1469-80. 

61. Paine, M.F., et al., Diamidines for human African trypanosomiasis. Curr 
Opin Investig Drugs, 2010. 11(8): p. 876-83. 

62. Barrett, M.P. and S.L. Croft, Management of trypanosomiasis and 
leishmaniasis. Br Med Bull, 2012. 104: p. 175-96. 

63. Yun, O., et al., NECT is next: implementing the new drug combination 
therapy for Trypanosoma brucei gambiense sleeping sickness. PLoS Negl 
Trop Dis, 2010. 4(5): p. e720. 

64. Babokhov, P., et al., A current analysis of chemotherapy strategies for 
the treatment of human African trypanosomiasis. Pathog Glob Health, 
2013. 107(5): p. 242-52. 

65. Jacobs, R.T., et al., Benzoxaboroles: a new class of potential drugs for 
human African trypanosomiasis. Future Med Chem, 2011. 3(10): p. 1259-
78. 

66. Bronner, U., et al., Pentamidine concentrations in plasma, whole blood 
and cerebrospinal fluid during treatment of Trypanosoma gambiense 
infection in Cote d'Ivoire. Trans R Soc Trop Med Hyg, 1991. 85(5): p. 608-
11. 

67. Delespaux, V. and H.P. de Koning, Drugs and drug resistance in African 
trypanosomiasis. Drug Resist Updat, 2007. 10(1-2): p. 30-50. 

68. Vansterkenburg, E.L., et al., The uptake of the trypanocidal drug suramin 
in combination with low-density lipoproteins by Trypanosoma brucei and 
its possible mode of action. Acta Trop, 1993. 54(3-4): p. 237-50. 

69. Burri, C., et al., Efficacy of new, concise schedule for melarsoprol in 
treatment of sleeping sickness caused by Trypanosoma brucei gambiense: 
a randomised trial. Lancet, 2000. 355(9213): p. 1419-25. 

70. Matovu, E., et al., Drug resistance in Trypanosoma brucei spp., the 
causative agents of sleeping sickness in man and nagana in cattle. 
Microbes Infect, 2001. 3(9): p. 763-70. 

71. Brun, R., et al., The phenomenon of treatment failures in Human African 
Trypanosomiasis. Trop Med Int Health, 2001. 6(11): p. 906-14. 

72. Balasegaram, M., et al., Melarsoprol versus eflornithine for treating late-
stage Gambian trypanosomiasis in the Republic of the Congo. Bull World 
Health Organ, 2006. 84(10): p. 783-91. 

73. Checchi, F., et al., Nifurtimox plus Eflornithine for late-stage sleeping 
sickness in Uganda: a case series. PLoS Negl Trop Dis, 2007. 1(2): p. e64. 

74. Chitambo, H. and A. Arakawa, Trypanosoma congolense: manifestation of 
resistance to Berenil and Samorin in cloned trypanosomes isolated from 
Zambian cattle. Zentralbl Bakteriol, 1992. 277(3): p. 371-81. 



187 
 
75. Osman, A.S., F.W. Jennings, and P.H. Holmes, The rapid development of 

drug-resistance by Trypanosoma evansi in immunosuppressed mice. Acta 
Trop, 1992. 50(3): p. 249-57. 

76. Peregrine, A.S., et al., Variation in resistance to isometamidium chloride 
and diminazene aceturate by clones derived from a stock of Trypanosoma 
congolense. Parasitology, 1991. 102 Pt 1: p. 93-100. 

77. Roy Chowdhury, A., et al., The killing of African trypanosomes by 
ethidium bromide. PLoS Pathog, 2010. 6(12): p. e1001226. 

78. Baker, N., et al., Drug resistance in African trypanosomiasis: the 
melarsoprol and pentamidine story. Trends Parasitol, 2013. 29(3): p. 110-
8. 

79. Barrett, M.P., et al., Drug resistance in human African trypanosomiasis. 
Future Microbiol, 2011. 6(9): p. 1037-47. 

80. Graf, F.E., et al., Aquaporin 2 mutations in Trypanosoma brucei 
gambiense field isolates correlate with decreased susceptibility to 
pentamidine and melarsoprol. PLoS Negl Trop Dis, 2013. 7(10): p. e2475. 

81. Alsford, S., et al., High-throughput decoding of antitrypanosomal drug 
efficacy and resistance. Nature, 2012. 482(7384): p. 232-6. 

82. Heath, W.R. and F.R. Carbone, The skin-resident and migratory immune 
system in steady state and memory: innate lymphocytes, dendritic cells 
and T cells. Nat Immunol, 2013. 14(10): p. 978-85. 

83. Farrar, C.A., J.W. Kupiec-Weglinski, and S.H. Sacks, The innate immune 
system and transplantation. Cold Spring Harb Perspect Med, 2013. 3(10): 
p. a015479. 

84. Takeuchi, O. and S. Akira, Pattern recognition receptors and 
inflammation. Cell, 2010. 140(6): p. 805-20. 

85. Walport, M.J., Complement. First of two parts. N Engl J Med, 2001. 
344(14): p. 1058-66. 

86. Walport, M.J., Complement. Second of two parts. N Engl J Med, 2001. 
344(15): p. 1140-4. 

87. Medzhitov, R., Recognition of microorganisms and activation of the 
immune response. Nature, 2007. 449(7164): p. 819-26. 

88. Dunkelberger, J.R. and W.C. Song, Complement and its role in innate and 
adaptive immune responses. Cell Res, 2010. 20(1): p. 34-50. 

89. Medzhitov, R. and C. Janeway, Jr., Innate immunity. N Engl J Med, 2000. 
343(5): p. 338-44. 

90. Medzhitov, R. and C.A. Janeway, Jr., Decoding the patterns of self and 
nonself by the innate immune system. Science, 2002. 296(5566): p. 298-
300. 

91. Sumikawa, Y., et al., Induction of beta-defensin 3 in keratinocytes 
stimulated by bacterial lipopeptides through toll-like receptor 2. 
Microbes Infect, 2006. 8(6): p. 1513-21. 

92. Akira, S. and K. Takeda, Toll-like receptor signalling. Nat Rev Immunol, 
2004. 4(7): p. 499-511. 

93. Nestle, F.O., et al., Skin immune sentinels in health and disease. Nat Rev 
Immunol, 2009. 9(10): p. 679-91. 

94. Meephansan, J., et al., Regulation of IL-33 expression by IFN-gamma and 
tumor necrosis factor-alpha in normal human epidermal keratinocytes. J 
Invest Dermatol, 2012. 132(11): p. 2593-600. 

95. Borkowski, T.A., et al., Expression of gp40, the murine homologue of 
human epithelial cell adhesion molecule (Ep-CAM), by murine dendritic 
cells. Eur J Immunol, 1996. 26(1): p. 110-4. 



188 
 
96. Igyarto, B.Z., et al., Skin-resident murine dendritic cell subsets promote 

distinct and opposing antigen-specific T helper cell responses. Immunity, 
2011. 35(2): p. 260-72. 

97. Haley, K., et al., Langerhans cells require MyD88-dependent signals for 
Candida albicans response but not for contact hypersensitivity or 
migration. J Immunol, 2012. 188(9): p. 4334-9. 

98. Bursch, L.S., et al., Identification of a novel population of Langerin+ 
dendritic cells. J Exp Med, 2007. 204(13): p. 3147-56. 

99. Shklovskaya, E., et al., Langerhans cells are precommitted to immune 
tolerance induction. Proc Natl Acad Sci U S A, 2011. 108(44): p. 18049-54. 

100. Kautz-Neu, K., et al., Langerhans cells are negative regulators of the 
anti-Leishmania response. J Exp Med, 2011. 208(5): p. 885-91. 

101. Poulin, L.F., et al., The dermis contains langerin+ dendritic cells that 
develop and function independently of epidermal Langerhans cells. J Exp 
Med, 2007. 204(13): p. 3119-31. 

102. Ginhoux, F., et al., Blood-derived dermal langerin+ dendritic cells survey 
the skin in the steady state. J Exp Med, 2007. 204(13): p. 3133-46. 

103. Henri, S., et al., CD207+ CD103+ dermal dendritic cells cross-present 
keratinocyte-derived antigens irrespective of the presence of Langerhans 
cells. J Exp Med, 2010. 207(1): p. 189-206. 

104. Ritter, U., et al., CD8 alpha- and Langerin-negative dendritic cells, but 
not Langerhans cells, act as principal antigen-presenting cells in 
leishmaniasis. Eur J Immunol, 2004. 34(6): p. 1542-50. 

105. Martinez-Pomares, L. and S. Gordon, Antigen presentation the 
macrophage way. Cell, 2007. 131(4): p. 641-3. 

106. Davies, L.C., et al., Tissue-resident macrophages. Nat Immunol, 2013. 
14(10): p. 986-95. 

107. MacDonald, K.P., et al., An antibody against the colony-stimulating 
factor 1 receptor depletes the resident subset of monocytes and tissue- 
and tumor-associated macrophages but does not inhibit inflammation. 
Blood, 2010. 116(19): p. 3955-63. 

108. Heredia, J.E., et al., Type 2 innate signals stimulate fibro/adipogenic 
progenitors to facilitate muscle regeneration. Cell, 2013. 153(2): p. 376-
88. 

109. Henson, P.M. and D.A. Hume, Apoptotic cell removal in development and 
tissue homeostasis. Trends Immunol, 2006. 27(5): p. 244-50. 

110. Gautier, E.L., et al., Systemic analysis of PPARgamma in mouse 
macrophage populations reveals marked diversity in expression with 
critical roles in resolution of inflammation and airway immunity. J 
Immunol, 2012. 189(5): p. 2614-24. 

111. Lucas, T., et al., Differential roles of macrophages in diverse phases of 
skin repair. J Immunol, 2010. 184(7): p. 3964-77. 

112. Raes, G., et al., Alternatively activated macrophages in protozoan 
infections. Curr Opin Immunol, 2007. 19(4): p. 454-9. 

113. Mirza, R., L.A. DiPietro, and T.J. Koh, Selective and specific macrophage 
ablation is detrimental to wound healing in mice. Am J Pathol, 2009. 
175(6): p. 2454-62. 

114. Cailhier, J.F., et al., Conditional macrophage ablation demonstrates that 
resident macrophages initiate acute peritoneal inflammation. J Immunol, 
2005. 174(4): p. 2336-42. 

115. Maus, U.A., et al., Role of resident alveolar macrophages in leukocyte 
traffic into the alveolar air space of intact mice. Am J Physiol Lung Cell 
Mol Physiol, 2002. 282(6): p. L1245-52. 



189 
 
116. Ajuebor, M.N., et al., Role of resident peritoneal macrophages and mast 

cells in chemokine production and neutrophil migration in acute 
inflammation: evidence for an inhibitory loop involving endogenous IL-10. 
J Immunol, 1999. 162(3): p. 1685-91. 

117. Kolaczkowska, E., et al., Resident peritoneal leukocytes are important 
sources of MMP-9 during zymosan peritonitis: superior contribution of 
macrophages over mast cells. Immunol Lett, 2007. 113(2): p. 99-106. 

118. Clark, R.A., et al., The vast majority of CLA+ T cells are resident in 
normal skin. J Immunol, 2006. 176(7): p. 4431-9. 

119. Kupper, T.S. and R.C. Fuhlbrigge, Immune surveillance in the skin: 
mechanisms and clinical consequences. Nat Rev Immunol, 2004. 4(3): p. 
211-22. 

120. Hayday, A. and R. Tigelaar, Immunoregulation in the tissues by 
gammadelta T cells. Nat Rev Immunol, 2003. 3(3): p. 233-42. 

121. Kronenberg, M., Toward an understanding of NKT cell biology: progress 
and paradoxes. Annu Rev Immunol, 2005. 23: p. 877-900. 

122. Zhang, J.M. and J. An, Cytokines, inflammation, and pain. Int Anesthesiol 
Clin, 2007. 45(2): p. 27-37. 

123. Dinarello, C.A., Proinflammatory cytokines. Chest, 2000. 118(2): p. 503-
8. 

124. Plata, F., et al., Synergistic protection by specific antibodies and 
interferon against infection by Trypanosoma cruzi in vitro. Eur J 
Immunol, 1984. 14(10): p. 930-5. 

125. Wirth, J.J., et al., Enhancing effects of gamma interferon on phagocytic 
cell association with and killing of Trypanosoma cruzi. Infect Immun, 
1985. 49(1): p. 61-6. 

126. De Titto, E.H., J.R. Catterall, and J.S. Remington, Activity of 
recombinant tumor necrosis factor on Toxoplasma gondii and 
Trypanosoma cruzi. J Immunol, 1986. 137(4): p. 1342-5. 

127. Wirth, J.J. and F. Kierszenbaum, Recombinant tumor necrosis factor 
enhances macrophage destruction of Trypanosoma cruzi in the presence 
of bacterial endotoxin. J Immunol, 1988. 141(1): p. 286-8. 

128. Reed, S.G., In vivo administration of recombinant IFN-gamma induces 
macrophage activation, and prevents acute disease, immune suppression, 
and death in experimental Trypanosoma cruzi infections. J Immunol, 
1988. 140(12): p. 4342-7. 

129. Looareesuwan, S., et al., Polyclonal anti-tumor necrosis factor-alpha Fab 
used as an ancillary treatment for severe malaria. Am J Trop Med Hyg, 
1999. 61(1): p. 26-33. 

130. Favre, N., et al., The course of Plasmodium chabaudi chabaudi infections 
in interferon-gamma receptor deficient mice. Parasite Immunol, 1997. 
19(8): p. 375-83. 

131. Magez, S., et al., Tumor necrosis factor alpha is a key mediator in the 
regulation of experimental Trypanosoma brucei infections. Infect Immun, 
1999. 67(6): p. 3128-32. 

132. Magez, S. and G. Caljon, Mouse models for pathogenic African 
trypanosomes: unravelling the immunology of host-parasite-vector 
interactions. Parasite Immunol, 2011. 33(8): p. 423-9. 

133. Luster, A.D., Chemokines--chemotactic cytokines that mediate 
inflammation. N Engl J Med, 1998. 338(7): p. 436-45. 

134. Locati, M., R. Bonecchi, and M.M. Corsi, Chemokines and their receptors: 
roles in specific clinical conditions and measurement in the clinical 
laboratory. Am J Clin Pathol, 2005. 123 Suppl: p. S82-95. 



190 
 
135. Moser, B., Chemokines: role in immune cell traffic. Eur Cytokine Netw, 

2003. 14(4): p. 204-10. 
136. Zimmermann, N., et al., Chemokines in asthma: cooperative interaction 

between chemokines and IL-13. J Allergy Clin Immunol, 2003. 111(2): p. 
227-42; quiz 243. 

137. Rot, A. and U.H. von Andrian, Chemokines in innate and adaptive host 
defense: basic chemokinese grammar for immune cells. Annu Rev 
Immunol, 2004. 22: p. 891-928. 

138. Charo, I.F. and R.M. Ransohoff, The many roles of chemokines and 
chemokine receptors in inflammation. N Engl J Med, 2006. 354(6): p. 
610-21. 

139. MartIn-Fontecha, A., et al., Regulation of dendritic cell migration to the 
draining lymph node: impact on T lymphocyte traffic and priming. J Exp 
Med, 2003. 198(4): p. 615-21. 

140. Muller, G. and M. Lipp, Concerted action of the chemokine and 
lymphotoxin system in secondary lymphoid-organ development. Curr Opin 
Immunol, 2003. 15(2): p. 217-24. 

141. Forster, R., A.C. Davalos-Misslitz, and A. Rot, CCR7 and its ligands: 
balancing immunity and tolerance. Nat Rev Immunol, 2008. 8(5): p. 362-
71. 

142. Ohl, L., et al., Chemokines as organizers of primary and secondary 
lymphoid organs. Semin Immunol, 2003. 15(5): p. 249-55. 

143. Kopp, E. and R. Medzhitov, Recognition of microbial infection by Toll-like 
receptors. Curr Opin Immunol, 2003. 15(4): p. 396-401. 

144. Esche, C., C. Stellato, and L.A. Beck, Chemokines: key players in innate 
and adaptive immunity. J Invest Dermatol, 2005. 125(4): p. 615-28. 

145. Zimmerman, G.A., T.M. McIntyre, and S.M. Prescott, Adhesion and 
signaling in vascular cell--cell interactions. J Clin Invest, 1996. 98(8): p. 
1699-702. 

146. Ley, K., Pathways and bottlenecks in the web of inflammatory adhesion 
molecules and chemoattractants. Immunol Res, 2001. 24(1): p. 87-95. 

147. Springer, T.A., Traffic signals on endothelium for lymphocyte 
recirculation and leukocyte emigration. Annu Rev Physiol, 1995. 57: p. 
827-72. 

148. McEver, R.P., et al., GMP-140, a platelet alpha-granule membrane 
protein, is also synthesized by vascular endothelial cells and is localized 
in Weibel-Palade bodies. J Clin Invest, 1989. 84(1): p. 92-9. 

149. Bevilacqua, M.P., Endothelial-leukocyte adhesion molecules. Annu Rev 
Immunol, 1993. 11: p. 767-804. 

150. Summers, C., et al., Neutrophil kinetics in health and disease. Trends 
Immunol, 2010. 31(8): p. 318-24. 

151. Amulic, B., et al., Neutrophil function: from mechanisms to disease. 
Annu Rev Immunol, 2012. 30: p. 459-89. 

152. Chtanova, T., et al., Dynamics of neutrophil migration in lymph nodes 
during infection. Immunity, 2008. 29(3): p. 487-96. 

153. Mantovani, A., et al., Neutrophils in the activation and regulation of 
innate and adaptive immunity. Nat Rev Immunol, 2011. 11(8): p. 519-31. 

154. Borregaard, N., Neutrophils, from marrow to microbes. Immunity, 2010. 
33(5): p. 657-70. 

155. Hager, M., J.B. Cowland, and N. Borregaard, Neutrophil granules in 
health and disease. J Intern Med, 2010. 268(1): p. 25-34. 

156. Brinkmann, V., et al., Neutrophil extracellular traps kill bacteria. 
Science, 2004. 303(5663): p. 1532-5. 



191 
 
157. Papayannopoulos, V. and A. Zychlinsky, NETs: a new strategy for using old 

weapons. Trends Immunol, 2009. 30(11): p. 513-21. 
158. Yipp, B.G., et al., Infection-induced NETosis is a dynamic process 

involving neutrophil multitasking in vivo. Nat Med, 2012. 18(9): p. 1386-
93. 

159. Menegazzi, R., E. Decleva, and P. Dri, Killing by neutrophil extracellular 
traps: fact or folklore? Blood, 2012. 119(5): p. 1214-6. 

160. Guimaraes-Costa, A.B., et al., Leishmania amazonensis promastigotes 
induce and are killed by neutrophil extracellular traps. Proc Natl Acad Sci 
U S A, 2009. 106(16): p. 6748-53. 

161. Kuijpers, T.W., R.S. Weening, and D. Roos, Clinical and laboratory work-
up of patients with neutrophil shortage or dysfunction. J Immunol 
Methods, 1999. 232(1-2): p. 211-29. 

162. Winkelstein, J.A., et al., Chronic granulomatous disease. Report on a 
national registry of 368 patients. Medicine (Baltimore), 2000. 79(3): p. 
155-69. 

163. van den Berg, J.M., et al., Chronic granulomatous disease: the European 
experience. PLoS One, 2009. 4(4): p. e5234. 

164. Segal, B.H., et al., NADPH oxidase limits innate immune responses in the 
lungs in mice. PLoS One, 2010. 5(3): p. e9631. 

165. Peters, N.C., et al., In vivo imaging reveals an essential role for 
neutrophils in leishmaniasis transmitted by sand flies. Science, 2008. 
321(5891): p. 970-4. 

166. Ribeiro-Gomes, F.L., et al., Efficient capture of infected neutrophils by 
dendritic cells in the skin inhibits the early anti-leishmania response. 
PLoS Pathog, 2012. 8(2): p. e1002536. 

167. Geissmann, F., S. Jung, and D.R. Littman, Blood monocytes consist of two 
principal subsets with distinct migratory properties. Immunity, 2003. 
19(1): p. 71-82. 

168. van Furth, R. and Z.A. Cohn, The origin and kinetics of mononuclear 
phagocytes. J Exp Med, 1968. 128(3): p. 415-35. 

169. Geissmann, F., et al., Unravelling mononuclear phagocyte heterogeneity. 
Nat Rev Immunol, 2010. 10(6): p. 453-60. 

170. Randolph, G.J., C. Jakubzick, and C. Qu, Antigen presentation by 
monocytes and monocyte-derived cells. Curr Opin Immunol, 2008. 20(1): 
p. 52-60. 

171. Sheel, M. and C.R. Engwerda, The diverse roles of monocytes in 
inflammation caused by protozoan parasitic diseases. Trends Parasitol, 
2012. 28(10): p. 408-16. 

172. Jakubzick, C., et al., Minimal differentiation of classical monocytes as 
they survey steady-state tissues and transport antigen to lymph nodes. 
Immunity, 2013. 39(3): p. 599-610. 

173. Auffray, C., et al., Monitoring of blood vessels and tissues by a 
population of monocytes with patrolling behavior. Science, 2007. 
317(5838): p. 666-70. 

174. Dunay, I.R., et al., Gr1(+) inflammatory monocytes are required for 
mucosal resistance to the pathogen Toxoplasma gondii. Immunity, 2008. 
29(2): p. 306-17. 

175. Bosschaerts, T., et al., Tip-DC development during parasitic infection is 
regulated by IL-10 and requires CCL2/CCR2, IFN-gamma and MyD88 
signaling. PLoS Pathog, 2010. 6(8): p. e1001045. 

176. Stijlemans, B., et al., The central role of macrophages in 
trypanosomiasis-associated anemia: rationale for therapeutical 



192 
 

approaches. Endocr Metab Immune Disord Drug Targets, 2010. 10(1): p. 
71-82. 

177. Sponaas, A.M., et al., Migrating monocytes recruited to the spleen play 
an important role in control of blood stage malaria. Blood, 2009. 
114(27): p. 5522-31. 

178. De Trez, C., et al., iNOS-producing inflammatory dendritic cells 
constitute the major infected cell type during the chronic Leishmania 
major infection phase of C57BL/6 resistant mice. PLoS Pathog, 2009. 
5(6): p. e1000494. 

179. Goldszmid, R.S. and G. Trinchieri, The price of immunity. Nat Immunol, 
2012. 13(10): p. 932-8. 

180. Goldszmid, R.S., et al., NK cell-derived interferon-gamma orchestrates 
cellular dynamics and the differentiation of monocytes into dendritic 
cells at the site of infection. Immunity, 2012. 36(6): p. 1047-59. 

181. Guilliams, M., et al., IL-10 dampens TNF/inducible nitric oxide synthase-
producing dendritic cell-mediated pathogenicity during parasitic 
infection. J Immunol, 2009. 182(2): p. 1107-18. 

182. Goncalves, R., et al., Platelet activation attracts a subpopulation of 
effector monocytes to sites of Leishmania major infection. J Exp Med, 
2011. 208(6): p. 1253-65. 

183. Amino, R., et al., Quantitative imaging of Plasmodium transmission from 
mosquito to mammal. Nat Med, 2006. 12(2): p. 220-4. 

184. Yamauchi, L.M., et al., Plasmodium sporozoites trickle out of the 
injection site. Cell Microbiol, 2007. 9(5): p. 1215-22. 

185. Chakravarty, S., et al., CD8+ T lymphocytes protective against malaria 
liver stages are primed in skin-draining lymph nodes. Nat Med, 2007. 
13(9): p. 1035-41. 

186. Caljon, G., et al., Tsetse fly saliva accelerates the onset of Trypanosoma 
brucei infection in a mouse model associated with a reduced host 
inflammatory response. Infect Immun, 2006. 74(11): p. 6324-30. 

187. Ribeiro, J.M. and I.M. Francischetti, Role of arthropod saliva in blood 
feeding: sialome and post-sialome perspectives. Annu Rev Entomol, 2003. 
48: p. 73-88. 

188. Caljon, G., et al., Tsetse fly saliva biases the immune response to Th2 
and induces anti-vector antibodies that are a useful tool for exposure 
assessment. Int J Parasitol, 2006. 36(9): p. 1025-35. 

189. Gray, A.R. and A.G. Luckins, The initial stage of infection with cyclically-
transmitted Trypanosoma congolense in rabbits, calves and sheep. J 
Comp Pathol, 1980. 90(4): p. 499-512. 

190. Mwangi, D.M., J. Hopkins, and A.G. Luckins, Cellular phenotypes in 
Trypanosoma congolense infected sheep: the local skin reaction. Parasite 
Immunol, 1990. 12(6): p. 647-58. 

191. Barry, J.D. and D.L. Emergy, Parasite development and host responses 
during the establishment of Trypanosoma brucei infection transmitted by 
tsetse fly. Parasitology, 1984. 88 ( Pt 1): p. 67-84. 

192. Mwangi, D.M., J. Hopkins, and A.G. Luckins, Immunohistology of lymph 
nodes draining local skin reactions (chancres) in sheep infected with 
Trypanosoma congolense. J Comp Pathol, 1991. 105(1): p. 27-35. 

193. Forster, R., A. Braun, and T. Worbs, Lymph node homing of T cells and 
dendritic cells via afferent lymphatics. Trends Immunol, 2012. 33(6): p. 
271-80. 

194. Pepper, M.S. and M. Skobe, Lymphatic endothelium: morphological, 
molecular and functional properties. J Cell Biol, 2003. 163(2): p. 209-13. 



193 
 
195. Schmid-Schonbein, G.W., Microlymphatics and lymph flow. Physiol Rev, 

1990. 70(4): p. 987-1028. 
196. Ikomi, F. and G.W. Schmid-Schonbein, Lymph pump mechanics in the 

rabbit hind leg. Am J Physiol, 1996. 271(1 Pt 2): p. H173-83. 
197. Drexhage, H.A., et al., A study of cells present in peripheral lymph of 

pigs with special reference to a type of cell resembling the Langerhans 
cell. Cell Tissue Res, 1979. 202(3): p. 407-30. 

198. Pugh, C.W., G.G. MacPherson, and H.W. Steer, Characterization of 
nonlymphoid cells derived from rat peripheral lymph. J Exp Med, 1983. 
157(6): p. 1758-79. 

199. Mayrhofer, G., P.G. Holt, and J.M. Papadimitriou, Functional 
characteristics of the veiled cells in afferent lymph from the rat 
intestine. Immunology, 1986. 58(3): p. 379-87. 

200. Brenner, I.K., et al., Immune changes in humans during cold exposure: 
effects of prior heating and exercise. J Appl Physiol (1985), 1999. 87(2): 
p. 699-710. 

201. Kripke, M.L., et al., Evidence that cutaneous antigen-presenting cells 
migrate to regional lymph nodes during contact sensitization. J Immunol, 
1990. 145(9): p. 2833-8. 

202. Johnson, L.A. and D.G. Jackson, Inflammation-induced secretion of CCL21 
in lymphatic endothelium is a key regulator of integrin-mediated 
dendritic cell transmigration. Int Immunol, 2010. 22(10): p. 839-49. 

203. Tal, O., et al., DC mobilization from the skin requires docking to 
immobilized CCL21 on lymphatic endothelium and intralymphatic 
crawling. J Exp Med, 2011. 208(10): p. 2141-53. 

204. Pflicke, H. and M. Sixt, Preformed portals facilitate dendritic cell entry 
into afferent lymphatic vessels. J Exp Med, 2009. 206(13): p. 2925-35. 

205. Vanhamme, L., et al., An update on antigenic variation in African 
trypanosomes. Trends Parasitol, 2001. 17(7): p. 338-43. 

206. Raper, J., et al., Trypanosome lytic factors: novel mediators of human 
innate immunity. Curr Opin Microbiol, 2001. 4(4): p. 402-8. 

207. Vanhollebeke, B., et al., A haptoglobin-hemoglobin receptor conveys 
innate immunity to Trypanosoma brucei in humans. Science, 2008. 
320(5876): p. 677-81. 

208. Bullard, W., et al., Haptoglobin-hemoglobin receptor independent killing 
of African trypanosomes by human serum and trypanosome lytic factors. 
Virulence, 2012. 3(1): p. 72-6. 

209. Capewell, P., et al., The TgsGP gene is essential for resistance to human 
serum in Trypanosoma brucei gambiense. PLoS Pathog, 2013. 9(10): p. 
e1003686. 

210. Turner, C.M., Antigenic variation in Trypanosoma brucei infections: an 
holistic view. J Cell Sci, 1999. 112 ( Pt 19): p. 3187-92. 

211. Pays, E., Regulation of antigen gene expression in Trypanosoma brucei. 
Trends Parasitol, 2005. 21(11): p. 517-20. 

212. Morrison, L.J., L. Marcello, and R. McCulloch, Antigenic variation in the 
African trypanosome: molecular mechanisms and phenotypic complexity. 
Cell Microbiol, 2009. 11(12): p. 1724-34. 

213. Turner, C.M. and J.D. Barry, High frequency of antigenic variation in 
Trypanosoma brucei rhodesiense infections. Parasitology, 1989. 99 Pt 1: 
p. 67-75. 

214. Sileghem, M., et al., Dual role of macrophages in the suppression of 
interleukin 2 production and interleukin 2 receptor expression in 
trypanosome-infected mice. Eur J Immunol, 1989. 19(5): p. 829-35. 



194 
 
215. Sileghem, M., et al., Different mechanisms account for the suppression of 

interleukin 2 production and the suppression of interleukin 2 receptor 
expression in Trypanosoma brucei-infected mice. Eur J Immunol, 1989. 
19(1): p. 119-24. 

216. Radwanska, M., et al., Trypanosomiasis-induced B cell apoptosis results in 
loss of protective anti-parasite antibody responses and abolishment of 
vaccine-induced memory responses. PLoS Pathog, 2008. 4(5): p. 
e1000078. 

217. Branche, C., et al., Conserved and specific functions of axoneme 
components in trypanosome motility. J Cell Sci, 2006. 119(Pt 16): p. 
3443-55. 

218. Baron, D.M., Z.P. Kabututu, and K.L. Hill, Stuck in reverse: loss of LC1 in 
Trypanosoma brucei disrupts outer dynein arms and leads to reverse 
flagellar beat and backward movement. J Cell Sci, 2007. 120(Pt 9): p. 
1513-20. 

219. Broadhead, R., et al., Flagellar motility is required for the viability of 
the bloodstream trypanosome. Nature, 2006. 440(7081): p. 224-7. 

220. Ralston, K.S., et al., The Trypanosoma brucei flagellum: moving parasites 
in new directions. Annu Rev Microbiol, 2009. 63: p. 335-62. 

221. Walker, P.J., Organization of function in trypanosome flagella. Nature, 
1961. 189: p. 1017-8. 

222. Ralston, K.S. and K.L. Hill, The flagellum of Trypanosoma brucei: new 
tricks from an old dog. Int J Parasitol, 2008. 38(8-9): p. 869-84. 

223. Ginger, M.L., N. Portman, and P.G. McKean, Swimming with protists: 
perception, motility and flagellum assembly. Nat Rev Microbiol, 2008. 
6(11): p. 838-50. 

224. Ralston, K.S. and K.L. Hill, Trypanin, a component of the flagellar Dynein 
regulatory complex, is essential in bloodstream form African 
trypanosomes. PLoS Pathog, 2006. 2(9): p. e101. 

225. Uppaluri, S., et al., Impact of microscopic motility on the swimming 
behavior of parasites: straighter trypanosomes are more directional. 
PLoS Comput Biol, 2011. 7(6): p. e1002058. 

226. Rodriguez, J.A., et al., Propulsion of African trypanosomes is driven by 
bihelical waves with alternating chirality separated by kinks. Proc Natl 
Acad Sci U S A, 2009. 106(46): p. 19322-7. 

227. Heddergott, N., et al., Trypanosome motion represents an adaptation to 
the crowded environment of the vertebrate bloodstream. PLoS Pathog, 
2012. 8(11): p. e1003023. 

228. Wilson, L.G., L.M. Carter, and S.E. Reece, High-speed holographic 
microscopy of malaria parasites reveals ambidextrous flagellar 
waveforms. Proc Natl Acad Sci U S A, 2013. 110(47): p. 18769-74. 

229. Shaevitz, J.W., J.Y. Lee, and D.A. Fletcher, Spiroplasma swim by a 
processive change in body helicity. Cell, 2005. 122(6): p. 941-5. 

230. Rotureau, B., et al., Forward motility is essential for trypanosome 
infection in the tsetse fly. Cell Microbiol, 2014. 16(3): p. 425-33. 

231. Weisse, S., et al., A quantitative 3D motility analysis of Trypanosoma 
brucei by use of digital in-line holographic microscopy. PLoS One, 2012. 
7(5): p. e37296. 

232. Kisalu, N.K., et al., Mouse infection and pathogenesis by Trypanosoma 
brucei motility mutants. Cell Microbiol, 2014. 16(6): p. 912-24. 

233. Hill, K.L., Biology and mechanism of trypanosome cell motility. Eukaryot 
Cell, 2003. 2(2): p. 200-8. 



195 
 
234. Jennings, F.W., et al., The brain as a source of relapsing Trypanosoma 

brucei infection in mice after chemotherapy. Int J Parasitol, 1979. 9(4): 
p. 381-4. 

235. Mulenga, C., et al., Trypanosoma brucei brucei crosses the blood-brain 
barrier while tight junction proteins are preserved in a rat chronic 
disease model. Neuropathol Appl Neurobiol, 2001. 27(1): p. 77-85. 

236. Wolburg, H., et al., Late stage infection in sleeping sickness. PLoS One, 
2012. 7(3): p. e34304. 

237. Frevert, U., et al., Early invasion of brain parenchyma by African 
trypanosomes. PLoS One, 2012. 7(8): p. e43913. 

238. Roditi, I. and M.J. Lehane, Interactions between trypanosomes and tsetse 
flies. Curr Opin Microbiol, 2008. 11(4): p. 345-51. 

239. Sharma, R., et al., The heart of darkness: growth and form of 
Trypanosoma brucei in the tsetse fly. Trends Parasitol, 2009. 25(11): p. 
517-24. 

240. Engstler, M., et al., Hydrodynamic flow-mediated protein sorting on the 
cell surface of trypanosomes. Cell, 2007. 131(3): p. 505-15. 

241. Grunfelder, C.G., et al., Endocytosis of a glycosylphosphatidylinositol-
anchored protein via clathrin-coated vesicles, sorting by default in 
endosomes, and exocytosis via RAB11-positive carriers. Mol Biol Cell, 
2003. 14(5): p. 2029-40. 

242. Pal, A., et al., Rab5 and Rab11 mediate transferrin and anti-variant 
surface glycoprotein antibody recycling in Trypanosoma brucei. Biochem 
J, 2003. 374(Pt 2): p. 443-51. 

243. Engstler, M., et al., Kinetics of endocytosis and recycling of the GPI-
anchored variant surface glycoprotein in Trypanosoma brucei. J Cell Sci, 
2004. 117(Pt 7): p. 1105-15. 

244. Kieft, R., et al., Mechanism of Trypanosoma brucei gambiense (group 1) 
resistance to human trypanosome lytic factor. Proc Natl Acad Sci U S A, 
2010. 107(37): p. 16137-41. 

245. Hager, K.M., et al., Endocytosis of a cytotoxic human high density 
lipoprotein results in disruption of acidic intracellular vesicles and 
subsequent killing of African trypanosomes. J Cell Biol, 1994. 126(1): p. 
155-67. 

246. Webb, H., et al., The GPI-phospholipase C of Trypanosoma brucei is 
nonessential but influences parasitemia in mice. J Cell Biol, 1997. 
139(1): p. 103-14. 

247. Grandgenett, P.M., et al., A function for a specific zinc metalloprotease 
of African trypanosomes. PLoS Pathog, 2007. 3(10): p. 1432-45. 

248. Paindavoine, P., et al., A gene from the variant surface glycoprotein 
expression site encodes one of several transmembrane adenylate cyclases 
located on the flagellum of Trypanosoma brucei. Mol Cell Biol, 1992. 
12(3): p. 1218-25. 

249. Emmer, B.T., et al., Identification of a palmitoyl acyltransferase 
required for protein sorting to the flagellar membrane. J Cell Sci, 2009. 
122(Pt 6): p. 867-74. 

250. Proto, W.R., et al., Trypanosoma brucei metacaspase 4 is a 
pseudopeptidase and a virulence factor. J Biol Chem, 2011. 286(46): p. 
39914-25. 

251. Millington, O.R., et al., Imaging of the host/parasite interplay in 
cutaneous leishmaniasis. Exp Parasitol, 2010. 126(3): p. 310-7. 



196 
 
252. Myburgh, E., et al., In vivo imaging of trypanosome-brain interactions and 

development of a rapid screening test for drugs against CNS stage 
trypanosomiasis. PLoS Negl Trop Dis, 2013. 7(8): p. e2384. 

253. Claes, F., et al., Bioluminescent imaging of Trypanosoma brucei shows 
preferential testis dissemination which may hamper drug efficacy in 
sleeping sickness. PLoS Negl Trop Dis, 2009. 3(7): p. e486. 

254. Okuno, T., et al., Applications of recombinant Leishmania amazonensis 
expressing egfp or the beta-galactosidase gene for drug screening and 
histopathological analysis. Exp Anim, 2003. 52(2): p. 109-18. 

255. Lang, T., et al., Bioluminescent Leishmania expressing luciferase for 
rapid and high throughput screening of drugs acting on amastigote-
harbouring macrophages and for quantitative real-time monitoring of 
parasitism features in living mice. Cell Microbiol, 2005. 7(3): p. 383-92. 

256. Akopyants, N.S., et al., Demonstration of genetic exchange during 
cyclical development of Leishmania in the sand fly vector. Science, 2009. 
324(5924): p. 265-8. 

257. Kimblin, N., et al., Quantification of the infectious dose of Leishmania 
major transmitted to the skin by single sand flies. Proc Natl Acad Sci U S 
A, 2008. 105(29): p. 10125-30. 

258. Shapiro, E., C. Lu, and F. Baneyx, A set of multicolored Photinus pyralis 
luciferase mutants for in vivo bioluminescence applications. Protein Eng 
Des Sel, 2005. 18(12): p. 581-7. 

259. Loening, A.M., A.M. Wu, and S.S. Gambhir, Red-shifted Renilla reniformis 
luciferase variants for imaging in living subjects. Nat Methods, 2007. 
4(8): p. 641-3. 

260. Kupfer, A., et al., The specific direct interaction of helper T cells and 
antigen-presenting B cells. Proc Natl Acad Sci U S A, 1986. 83(16): p. 
6080-3. 

261. Monks, C.R., et al., Three-dimensional segregation of supramolecular 
activation clusters in T cells. Nature, 1998. 395(6697): p. 82-6. 

262. Dunbar, K.B. and M.I. Canto, Confocal laser endomicroscopy in Barrett's 
esophagus and endoscopically inapparent Barrett's neoplasia: a 
prospective, randomized, double-blind, controlled, crossover trial. 
Gastrointest Endosc, 2010. 72(3): p. 668. 

263. Squirrell, J.M., et al., Long-term two-photon fluorescence imaging of 
mammalian embryos without compromising viability. Nat Biotechnol, 
1999. 17(8): p. 763-7. 

264. Cahalan, M.D., et al., Two-photon tissue imaging: seeing the immune 
system in a fresh light. Nat Rev Immunol, 2002. 2(11): p. 872-80. 

265. Andrade, B.B., et al., Role of sand fly saliva in human and experimental 
leishmaniasis: current insights. Scand J Immunol, 2007. 66(2-3): p. 122-7. 

266. Ng, L.G., et al., Migratory dermal dendritic cells act as rapid sensors of 
protozoan parasites. PLoS Pathog, 2008. 4(11): p. e1000222. 

267. Faust, N., et al., Insertion of enhanced green fluorescent protein into the 
lysozyme gene creates mice with green fluorescent granulocytes and 
macrophages. Blood, 2000. 96(2): p. 719-26. 

268. Hong, Y.K., et al., Prox1 is a master control gene in the program 
specifying lymphatic endothelial cell fate. Dev Dyn, 2002. 225(3): p. 351-
7. 

269. Hagerling, R., et al., Intravital two-photon microscopy of lymphatic 
vessel development and function using a transgenic Prox1 promoter-
directed mOrange2 reporter mouse. Biochem Soc Trans, 2011. 39(6): p. 
1674-81. 



197 
 
270. Kilkenny, C., et al., Improving bioscience research reporting: the ARRIVE 

guidelines for reporting animal research. PLoS Biol, 2010. 8(6): p. 
e1000412. 

271. Jenni, L., et al., Hybrid formation between African trypanosomes during 
cyclical transmission. Nature, 1986. 322(6075): p. 173-5. 

272. Jennings, F.W. and G.D. Gray, Relapsed parasitaemia following 
chemotherapy of chronic T. brucei infections in mice and its relation to 
cerebral trypanosomes. Contrib Microbiol Immunol, 1983. 7: p. 147-54. 

273. Jennings, F.W., Chemotherapy of CNS-trypanosomiasis: combination 
chemotherapy with a 5-nitroimidazole (MK 436), an arsenical 
(Cymelarsan) and suramin. Trop Med Parasitol, 1991. 42(3): p. 157-60. 

274. Hirumi, H. and K. Hirumi, Continuous cultivation of Trypanosoma brucei 
blood stream forms in a medium containing a low concentration of serum 
protein without feeder cell layers. J Parasitol, 1989. 75(6): p. 985-9. 

275. Wetzel, H. and G. Thiemann, [Effect of bacterial infections and 
antibiotics on tsetse flies (Diptera, Glossinidae) (author's transl)]. 
Zentralbl Bakteriol Orig A, 1979. 245(4): p. 534-43. 

276. Herbert, W.J. and W.H. Lumsden, Trypanosoma brucei: a rapid 
"matching" method for estimating the host's parasitemia. Exp Parasitol, 
1976. 40(3): p. 427-31. 

277. Schroeder, A., et al., The RIN: an RNA integrity number for assigning 
integrity values to RNA measurements. BMC Mol Biol, 2006. 7: p. 3. 

278. Weber, C., et al., Role of alpha L beta 2 integrin avidity in 
transendothelial chemotaxis of mononuclear cells. J Immunol, 1997. 
159(8): p. 3968-75. 

279. Peacock, L., et al., The influence of sex and fly species on the 
development of trypanosomes in tsetse flies. PLoS Negl Trop Dis, 2012. 
6(2): p. e1515. 

280. Dyer, N.A., et al., Flying tryps: survival and maturation of trypanosomes 
in tsetse flies. Trends Parasitol, 2013. 29(4): p. 188-96. 

281. Aksoy, S., W.C. Gibson, and M.J. Lehane, Interactions between tsetse and 
trypanosomes with implications for the control of trypanosomiasis. Adv 
Parasitol, 2003. 53: p. 1-83. 

282. van Grinsven, K.W., et al., Adaptations in the glucose metabolism of 
procyclic Trypanosoma brucei isolates from tsetse flies and during 
differentiation of bloodstream forms. Eukaryot Cell, 2009. 8(8): p. 1307-
11. 

283. Rotureau, B., I. Subota, and P. Bastin, Molecular bases of cytoskeleton 
plasticity during the Trypanosoma brucei parasite cycle. Cell Microbiol, 
2011. 13(5): p. 705-16. 

284. Gibson, W., et al., The use of yellow fluorescent hybrids to indicate 
mating in Trypanosoma brucei. Parasit Vectors, 2008. 1(1): p. 4. 

285. Otieno, L.H. and N. Darji, Abundance of Pathogenic African Trypanosomes 
in the Salivary Secretions of Wild Glossina-Pallidipes. Ann Trop Med 
Parasitol, 1979. 73(6): p. 583-588. 

286. Maudlin, I. and S.C. Welburn, The role of lectins and trypanosome 
genotype in the maturation of midgut infections in Glossina morsitans. 
Trop Med Parasitol, 1988. 39(1): p. 56-8. 

287. Dale, C., et al., The kinetics of maturation of trypanosome infections in 
tsetse. Parasitology, 1995. 111 ( Pt 2): p. 187-91. 

288. Maudlin, I., S.C. Welburn, and P. Milligan, Salivary gland infection: a sex-
linked recessive character in tsetse? Acta Trop, 1990. 48(1): p. 9-15. 



198 
 
289. Moloo, S.K., C.L. Sabwa, and J.M. Kabata, Vector competence of Glossina 

pallidipes and G. morsitans centralis for Trypanosoma vivax, T. 
congolense and T. b. brucei. Acta Trop, 1992. 51(3-4): p. 271-80. 

290. Rico, E., et al., Bloodstream form pre-adaptation to the tsetse fly in 
Trypanosoma brucei. Front Cell Infect Microbiol, 2013. 3: p. 78. 

291. MacGregor, P. and K.R. Matthews, New discoveries in the transmission 
biology of sleeping sickness parasites: applying the basics. J Mol Med 
(Berl), 2010. 88(9): p. 865-71. 

292. Walshe, D.P., M.J. Lehane, and L.R. Haines, Post eclosion age predicts 
the prevalence of midgut trypanosome infections in Glossina. PLoS One, 
2011. 6(11): p. e26984. 

293. Welburn, S.C. and I. Maudlin, The nature of the teneral state in Glossina 
and its role in the acquisition of trypanosome infection in tsetse. Ann 
Trop Med Parasitol, 1992. 86(5): p. 529-36. 

294. Walshe, D.P., et al., Prolonged gene knockdown in the tsetse fly Glossina 
by feeding double stranded RNA. Insect Mol Biol, 2009. 18(1): p. 11-9. 

295. Kubi, C., et al., The effect of starvation on the susceptibility of teneral 
and non-teneral tsetse flies to trypanosome infection. Med Vet Entomol, 
2006. 20(4): p. 388-92. 

296. Otieno, L.H., et al., Some observations on factors associated with the 
development of Trypanosoma brucei brucei infections in Glossina 
morsitans morsitans. Acta Trop, 1983. 40(2): p. 113-20. 

297. Dipeolu, O.O. and K.M. Adam, On the use of membrane feeding to study 
the development of Trypanosoma brucei in Glossina. Acta Trop, 1974. 
32(3): p. 185-201. 

298. Olubayo, R.O., et al., Dynamics of host blood effects in Glossina 
morsitans sspp. infected with Trypanosoma congolense and T. brucei. 
Parasitol Res, 1994. 80(3): p. 177-81. 

299. Mihok, S., et al., The influence of host blood on infection rates in 
Glossina morsitans sspp. infected with Trypanosoma congolense, T. 
brucei and T. simiae. Parasitology, 1993. 107 ( Pt 1): p. 41-8. 

300. Mihok, S., et al., Influence of D(+)-glucosamine on infection rates and 
parasite loads in tsetse flies (Glossina spp.) infected with Trypanosoma 
brucei. Acta Trop, 1992. 51(3-4): p. 217-28. 

301. Maudlin, I. and S.C. Welburn, Lectin mediated establishment of midgut 
infections of Trypanosoma congolense and Trypanosoma brucei in 
Glossina morsitans. Trop Med Parasitol, 1987. 38(3): p. 167-70. 

302. Okoth, J.O. and R. Kapaata, Trypanosome infection rates in Glossina 
fuscipes fuscipes Newst. in the Busoga sleeping sickness focus, Uganda. 
Ann Trop Med Parasitol, 1986. 80(4): p. 459-61. 

303. Maudlin, I. and S.C. Welburn, Maturation of trypanosome infections in 
tsetse. Exp Parasitol, 1994. 79(2): p. 202-5. 

304. Welburn, S.C., I. Maudlin, and P.J. Milligan, Trypanozoon: infectivity to 
humans is linked to reduced transmissibility in tsetse. I. Comparison of 
human serum-resistant and human serum-sensitive field isolates. Exp 
Parasitol, 1995. 81(3): p. 404-8. 

305. Gibson, W. and M. Bailey, The development of Trypanosoma brucei within 
the tsetse fly midgut observed using green fluorescent trypanosomes. 
Kinetoplastid Biol Dis, 2003. 2(1): p. 1. 

306. Welburn, S.C. and I. Maudlin, Lectin signalling of maturation of T. 
congolense infections in tsetse. Med Vet Entomol, 1989. 3(2): p. 141-5. 

307. Gingrich, J.B., et al., Trypanosoma brucei rhodesiense 
(Trypanosomatidae): factors influencing infection rates of a recent 



199 
 

human isolate in the tsetse Glossina morsitans (Diptera: Glossinidae). J 
Med Entomol, 1982. 19(3): p. 268-74. 

308. Distelmans, W., et al., The susceptibility of Glossina palpalis palpalis at 
different ages to infection with Trypanosoma congolense. Ann Soc Belg 
Med Trop, 1982. 62(1): p. 41-7. 

309. Macleod, E.T., et al., Factors affecting trypanosome maturation in tsetse 
flies. PLoS One, 2007. 2(2): p. e239. 

310. Mews, A.R., In vitro feeding of tsetse flies [proceedings]. Trans R Soc 
Trop Med Hyg, 1980. 74(2): p. 276-7. 

311. Welburn, S.C., I. Maudlin, and D.H. Molyneux, Midgut lectin activity and 
sugar specificity in teneral and fed tsetse. Med Vet Entomol, 1994. 8(1): 
p. 81-7. 

312. Harley, J.M.B., Comparison of Susceptibility to Infection with 
Trypanosoma-Rhodesiense of Glossina-Pallidipes, G-Morsitans, G-Fuscipes 
and G-Brevipalpis. Ann Trop Med Parasitol, 1971. 65(2): p. 185-&. 

313. Shapiro, S.Z., et al., Analysis by flow cytometry of DNA synthesis during 
the life cycle of African trypanosomes. Acta Trop, 1984. 41(4): p. 313-23. 

314. Nolan, D.P., et al., Slender and stumpy bloodstream forms of 
Trypanosoma brucei display a differential response to extracellular acidic 
and proteolytic stress. Eur J Biochem, 2000. 267(1): p. 18-27. 

315. Robertson, M., Notes on the polymorphism of Trypanosoma gambiense in 
the blood and its relation to the exogenous cycle in Glossina palpalis. 
Proceedings of the Royal Society of London Series B-Containing Papers of 
a Biological Character, 1912. 85(582): p. 527-539. 

316. Vickerman, K., Polymorphism and mitochondrial activity in sleeping 
sickness trypanosomes. Nature, 1965. 208(5012): p. 762-6. 

317. Bass, K.E. and C.C. Wang, The in vitro differentiation of pleomorphic 
Trypanosoma brucei from bloodstream into procyclic form requires 
neither intermediary nor short-stumpy stage. Mol Biochem Parasitol, 
1991. 44(2): p. 261-70. 

318. Oberle, M., et al., Bottlenecks and the maintenance of minor genotypes 
during the life cycle of Trypanosoma brucei. PLoS Pathog, 2010. 6(7): p. 
e1001023. 

319. Peacock, L., et al., Intraclonal mating occurs during tsetse transmission 
of Trypanosoma brucei. Parasit Vectors, 2009. 2(1): p. 43. 

320. Maudlin, I. and P. Dukes, Extrachromosomal inheritance of susceptibility 
to trypanosome infection in tsetse flies. I. Selection of susceptible and 
refractory lines of Glossina morsitans morsitans. Ann Trop Med Parasitol, 
1985. 79(3): p. 317-24. 

321. Amino, R., et al., Quantitative imaging of Plasmodium sporozoites in the 
mammalian host. C R Biol, 2006. 329(11): p. 858-62. 

322. Amino, R., R. Menard, and F. Frischknecht, In vivo imaging of malaria 
parasites--recent advances and future directions. Curr Opin Microbiol, 
2005. 8(4): p. 407-14. 

323. Tavares, J., et al., Role of host cell traversal by the malaria sporozoite 
during liver infection. J Exp Med, 2013. 210(5): p. 905-15. 

324. Shannon, J.G., C.F. Bosio, and B.J. Hinnebusch, Dermal Neutrophil, 
Macrophage and Dendritic Cell Responses to Yersinia pestis Transmitted 
by Fleas. PLoS Pathog, 2015. 11(3): p. e1004734. 

325. Gibson, V.B., et al., A novel method to allow noninvasive, longitudinal 
imaging of the murine immune system in vivo. Blood, 2012. 119(11): p. 
2545-51. 



200 
 
326. Peters, N.C., et al., In vivo imaging reveals an essential role for 

neutrophils in leishmaniasis transmitted by sand flies. Science, 2008. 
321(5891): p. 970-974. 

327. Wei, G., et al., Intradermal infections of mice by low numbers of african 
trypanosomes are controlled by innate resistance but enhance 
susceptibility to reinfection. J Infect Dis, 2011. 203(3): p. 418-29. 

328. Van Den Abbeele, J., et al., The Glossina morsitans tsetse fly saliva: 
general characteristics and identification of novel salivary proteins. 
Insect Biochem Mol Biol, 2007. 37(10): p. 1075-85. 

329. Caljon, G., et al., Identification of a tsetse fly salivary protein with dual 
inhibitory action on human platelet aggregation. PLoS One, 2010. 5(3): p. 
e9671. 

330. Van Den Abbeele, J., et al., Trypanosoma brucei modifies the tsetse 
salivary composition, altering the fly feeding behavior that favors 
parasite transmission. PLoS Pathog, 2010. 6(6): p. e1000926. 

331. Belkaid, Y., et al., Development of a natural model of cutaneous 
leishmaniasis: powerful effects of vector saliva and saliva preexposure on 
the long-term outcome of Leishmania major infection in the mouse ear 
dermis. J Exp Med, 1998. 188(10): p. 1941-53. 

332. Titus, R.G. and J.M. Ribeiro, Salivary gland lysates from the sand fly 
Lutzomyia longipalpis enhance Leishmania infectivity. Science, 1988. 
239(4845): p. 1306-8. 

333. Emery, D.L. and S.K. Moloo, The Sequential Cellular-Changes in the Local 
Skin Reaction Produced in Goats by Glossina-Morsitans-Morsitans Infected 
with Trypanosoma-(Trypanozoon)-Brucei. Acta Trop, 1980. 37(2): p. 137-
149. 

334. Emery, D.L., J.D. Barry, and S.K. Moloo, The Appearance of Trypanosoma 
(Duttonella) Vivax in Lymph Following Challenge of Goats with Infected 
Glossina-Morsitans-Morsitans - Short Communication. Acta Trop, 1980. 
37(4): p. 375-379. 

335. Maudlin, I. and S.C. Welburn, A single trypanosome is sufficient to infect 
a tsetse fly. Ann Trop Med Parasitol, 1989. 83(4): p. 431-3. 

336. Deflorin, J., M. Rudolf, and T. Seebeck, The major components of the 
paraflagellar rod of Trypanosoma brucei are two similar, but distinct 
proteins which are encoded by two different gene loci. J Biol Chem, 
1994. 269(46): p. 28745-51. 

337. Gueirard, P., et al., Development of the malaria parasite in the skin of 
the mammalian host. Proc Natl Acad Sci U S A, 2010. 107(43): p. 18640-5. 

338. Titus, R.G., J.V. Bishop, and J.S. Mejia, The immunomodulatory factors 
of arthropod saliva and the potential for these factors to serve as vaccine 
targets to prevent pathogen transmission. Parasite Immunol, 2006. 28(4): 
p. 131-41. 

339. Peters, N.C., et al., Vector transmission of leishmania abrogates vaccine-
induced protective immunity. PLoS Pathog, 2009. 5(6): p. e1000484. 

340. Donovan, M.J., et al., Uninfected mosquito bites confer protection 
against infection with malaria parasites. Infect Immun, 2007. 75(5): p. 
2523-30. 

341. Vaughan, J.A., et al., Infectivity of Plasmodium berghei sporozoites 
delivered by intravenous inoculation versus mosquito bite: implications 
for sporozoite vaccine trials. Infect Immun, 1999. 67(8): p. 4285-9. 

342. Kovar, L., Tick saliva in anti-tick immunity and pathogen transmission. 
Folia Microbiol (Praha), 2004. 49(3): p. 327-36. 



201 
 
343. Nuttall, P.A., et al., Vector-host interactions in disease transmission. J 

Mol Microbiol Biotechnol, 2000. 2(4): p. 381-6. 
344. Schoeler, G.B. and S.K. Wikel, Modulation of host immunity by 

haematophagous arthropods. Ann Trop Med Parasitol, 2001. 95(8): p. 755-
71. 

345. Wikel, S.K. and D. Bergman, Tick-host immunology: Significant advances 
and challenging opportunities. Parasitol Today, 1997. 13(10): p. 383-9. 

346. Brossard, M. and S.K. Wikel, Immunology of interactions between ticks 
and hosts. Med Vet Entomol, 1997. 11(3): p. 270-6. 

347. Wikel, S.K., et al., Infestation with pathogen-free nymphs of the tick 
Ixodes scapularis induces host resistance to transmission of Borrelia 
burgdorferi by ticks. Infect Immun, 1997. 65(1): p. 335-8. 

348. Champagne, D.E., Antihemostatic strategies of blood-feeding arthropods. 
Curr Drug Targets Cardiovasc Haematol Disord, 2004. 4(4): p. 375-96. 

349. Desbarats, J., et al., Rapid early onset lymphocyte cell death in mice 
resistant, but not susceptible to Leishmania major infection. Apoptosis, 
2000. 5(2): p. 189-96. 

350. Gillespie, R.D., M.L. Mbow, and R.G. Titus, The immunomodulatory 
factors of bloodfeeding arthropod saliva. Parasite Immunol, 2000. 22(7): 
p. 319-31. 

351. Bowman, A.S., et al., Tick saliva: recent advances and implications for 
vector competence. Med Vet Entomol, 1997. 11(3): p. 277-85. 

352. Teixeira, C., et al., Characterization of the early inflammatory infiltrate 
at the feeding site of infected sand flies in mice protected from vector-
transmitted Leishmania major by exposure to uninfected bites. PLoS Negl 
Trop Dis, 2014. 8(4): p. e2781. 

353. Soares, M.B., et al., The vasoactive peptide maxadilan from sand fly 
saliva inhibits TNF-alpha and induces IL-6 by mouse macrophages through 
interaction with the pituitary adenylate cyclase-activating polypeptide 
(PACAP) receptor. J Immunol, 1998. 160(4): p. 1811-6. 

354. Morris, R.V., et al., Sandfly maxadilan exacerbates infection with 
Leishmania major and vaccinating against it protects against L. major 
infection. J Immunol, 2001. 167(9): p. 5226-30. 

355. Hall, L.R. and R.G. Titus, Sand fly vector saliva selectively modulates 
macrophage functions that inhibit killing of Leishmania major and nitric 
oxide production. J Immunol, 1995. 155(7): p. 3501-6. 

356. Thangamani, S., et al., Host immune response to mosquito-transmitted 
chikungunya virus differs from that elicited by needle inoculated virus. 
PLoS One, 2010. 5(8): p. e12137. 

357. Chen, G.Y. and G. Nunez, Sterile inflammation: sensing and reacting to 
damage. Nat Rev Immunol, 2010. 10(12): p. 826-37. 

358. Mansfield, J.M. and D.M. Paulnock, Regulation of innate and acquired 
immunity in African trypanosomiasis. Parasite Immunol, 2005. 27(10-11): 
p. 361-71. 

359. Beschin, A., et al., Trypanosoma brucei infection elicits nitric oxide-
dependent and nitric oxide-independent suppressive mechanisms. J 
Leukoc Biol, 1998. 63(4): p. 429-39. 

360. Roelants, G.E. and M. Pinder, Immunobiology of African trypanosomiasis. 
Contemp Top Immunobiol, 1984. 12: p. 225-74. 

361. Askonas, B.A., Macrophages as mediators of immunosuppression in 
murine African trypanosomiasis. Curr Top Microbiol Immunol, 1985. 117: 
p. 119-27. 



202 
 
362. Tabel, H., R.S. Kaushik, and J.E. Uzonna, Susceptibility and resistance to 

Trypanosoma congolense infections. Microbes Infect, 2000. 2(13): p. 
1619-29. 

363. Germena, G., et al., Mutation in the CD45 inhibitory wedge modulates 
integrin activation and leukocyte recruitment during inflammation. J 
Immunol, 2015. 194(2): p. 728-38. 

364. Craig, A., et al., Neutrophil recruitment to the lungs during bacterial 
pneumonia. Infect Immun, 2009. 77(2): p. 568-75. 

365. Mantovani, B., M. Rabinovitch, and V. Nussenzweig, Phagocytosis of 
immune complexes by macrophages. Different roles of the macrophage 
receptor sites for complement (C3) and for immunoglobulin (IgG). J Exp 
Med, 1972. 135(4): p. 780-92. 

366. Murray, P.J. and T.A. Wynn, Protective and pathogenic functions of 
macrophage subsets. Nat Rev Immunol, 2011. 11(11): p. 723-37. 

367. Baetselier, P.D., et al., Alternative versus classical macrophage 
activation during experimental African trypanosomosis. Int J Parasitol, 
2001. 31(5-6): p. 575-87. 

368. Schleifer, K.W. and J.M. Mansfield, Suppressor macrophages in African 
trypanosomiasis inhibit T cell proliferative responses by nitric oxide and 
prostaglandins. J Immunol, 1993. 151(10): p. 5492-503. 

369. Schleifer, K.W., et al., Characterization of T helper cell responses to the 
trypanosome variant surface glycoprotein. J Immunol, 1993. 150(7): p. 
2910-9. 

370. Hertz, C.J., H. Filutowicz, and J.M. Mansfield, Resistance to the African 
trypanosomes is IFN-gamma dependent. J Immunol, 1998. 161(12): p. 
6775-83. 

371. Hertz, C.J. and J.M. Mansfield, IFN-gamma-dependent nitric oxide 
production is not linked to resistance in experimental African 
trypanosomiasis. Cell Immunol, 1999. 192(1): p. 24-32. 

372. Nathan, C., Mechanisms and modulation of macrophage activation. 
Behring Inst Mitt, 1991(88): p. 200-7. 

373. Mosser, D.M., The many faces of macrophage activation. J Leukoc Biol, 
2003. 73(2): p. 209-12. 

374. Landsverk, O.J., O. Bakke, and T.F. Gregers, MHC II and the endocytic 
pathway: regulation by invariant chain. Scand J Immunol, 2009. 70(3): p. 
184-93. 

375. White, G.E., A.J. Iqbal, and D.R. Greaves, CC chemokine receptors and 
chronic inflammation--therapeutic opportunities and pharmacological 
challenges. Pharmacol Rev, 2013. 65(1): p. 47-89. 

376. Loetscher, P., et al., The ligands of CXC chemokine receptor 3, I-TAC, 
Mig, and IP10, are natural antagonists for CCR3. J Biol Chem, 2001. 
276(5): p. 2986-91. 

377. Nouailles, G., et al., CXCL5-secreting pulmonary epithelial cells drive 
destructive neutrophilic inflammation in tuberculosis. J Clin Invest, 2014. 
124(3): p. 1268-82. 

378. Daley, J.M., et al., Use of Ly6G-specific monoclonal antibody to deplete 
neutrophils in mice. J Leukoc Biol, 2008. 83(1): p. 64-70. 

379. Mac-Daniel, L., et al., Local immune response to injection of Plasmodium 
sporozoites into the skin. J Immunol, 2014. 193(3): p. 1246-57. 

380. Ganz, M., et al., Lipopolysaccharide induces and activates the Nalp3 
inflammasome in the liver. World J Gastroenterol, 2011. 17(43): p. 4772-
8. 



203 
 
381. Pawlinski, R., et al., Regulation of tissue factor and inflammatory 

mediators by Egr-1 in a mouse endotoxemia model. Blood, 2003. 101(10): 
p. 3940-7. 

382. Ishikawa, Y., et al., Local skin response in mice induced by a single 
intradermal injection of bacterial lipopolysaccharide and lipid A. Infect 
Immun, 1991. 59(6): p. 1954-60. 

383. Magez, S., et al., Interferon-gamma and nitric oxide in combination with 
antibodies are key protective host immune factors during trypanosoma 
congolense Tc13 Infections. J Infect Dis, 2006. 193(11): p. 1575-83. 

384. Dagenais, T.R., et al., Processing and presentation of variant surface 
glycoprotein molecules to T cells in African trypanosomiasis. J Immunol, 
2009. 183(5): p. 3344-55. 

385. Bafort, J.M., H. Schmidt, and D.H. Molyneux, Development of 
Trypanosoma brucei in suckling mouse brain following intracerebral 
injection. Trans R Soc Trop Med Hyg, 1987. 81(3): p. 487-90. 

386. Mogk, S., et al., The lane to the brain: how African trypanosomes invade 
the CNS. Trends Parasitol, 2014. 30(10): p. 470-7. 

387. Mogk, S., et al., Cyclical appearance of African trypanosomes in the 
cerebrospinal fluid: new insights in how trypanosomes enter the CNS. 
PLoS One, 2014. 9(3): p. e91372. 

388. Peters, N.C. and D.L. Sacks, The impact of vector-mediated neutrophil 
recruitment on cutaneous leishmaniasis. Cell Microbiol, 2009. 11(9): p. 
1290-6. 

389. Nathan, C., Neutrophils and immunity: challenges and opportunities. Nat 
Rev Immunol, 2006. 6(3): p. 173-82. 

390. Tateda, K., et al., Early recruitment of neutrophils determines 
subsequent T1/T2 host responses in a murine model of Legionella 
pneumophila pneumonia. J Immunol, 2001. 166(5): p. 3355-61. 

391. Romani, L., et al., An immunoregulatory role for neutrophils in CD4+ T 
helper subset selection in mice with candidiasis. J Immunol, 1997. 
158(5): p. 2356-62. 

392. Mocsai, A., Diverse novel functions of neutrophils in immunity, 
inflammation, and beyond. J Exp Med, 2013. 210(7): p. 1283-99. 

393. Kim, J.V. and M.L. Dustin, Innate response to focal necrotic injury inside 
the blood-brain barrier. J Immunol, 2006. 177(8): p. 5269-77. 

394. Teixeira, C.R., et al., Saliva from Lutzomyia longipalpis induces CC 
chemokine ligand 2/monocyte chemoattractant protein-1 expression and 
macrophage recruitment. J Immunol, 2005. 175(12): p. 8346-53. 

395. van Zandbergen, G., et al., Cutting edge: neutrophil granulocyte serves 
as a vector for Leishmania entry into macrophages. J Immunol, 2004. 
173(11): p. 6521-5. 

396. McFarlane, E., et al., Neutrophils contribute to development of a 
protective immune response during onset of infection with Leishmania 
donovani. Infect Immun, 2008. 76(2): p. 532-41. 

397. Tacchini-Cottier, F., et al., An immunomodulatory function for 
neutrophils during the induction of a CD4+ Th2 response in BALB/c mice 
infected with Leishmania major. J Immunol, 2000. 165(5): p. 2628-36. 

398. Ribeiro-Gomes, F.L., et al., Macrophage interactions with neutrophils 
regulate Leishmania major infection. J Immunol, 2004. 172(7): p. 4454-
62. 

399. Ribeiro-Gomes, F.L., M.T. Silva, and G.A. Dosreis, Neutrophils, apoptosis 
and phagocytic clearance: an innate sequence of cellular responses 



204 
 

regulating intramacrophagic parasite infections. Parasitology, 2006. 132 
Suppl: p. S61-8. 

400. Laskay, T., G. van Zandbergen, and W. Solbach, Neutrophil granulocytes 
as host cells and transport vehicles for intracellular pathogens: apoptosis 
as infection-promoting factor. Immunobiology, 2008. 213(3-4): p. 183-91. 

401. Cappello, M., et al., Tsetse thrombin inhibitor: bloodmeal-induced 
expression of an anticoagulant in salivary glands and gut tissue of 
Glossina morsitans morsitans. Proc Natl Acad Sci U S A, 1998. 95(24): p. 
14290-5. 

402. Caljon, G., et al., Tsetse salivary gland proteins 1 and 2 are high affinity 
nucleic acid binding proteins with residual nuclease activity. PLoS One, 
2012. 7(10): p. e47233. 

403. Caljon, G., et al., Identification of a functional Antigen5-related allergen 
in the saliva of a blood feeding insect, the tsetse fly. Insect Biochem Mol 
Biol, 2009. 39(5-6): p. 332-41. 

404. Cappello, M., et al., Isolation and characterization of the tsetse thrombin 
inhibitor: a potent antithrombotic peptide from the saliva of Glossina 
morsitans morsitans. Am J Trop Med Hyg, 1996. 54(5): p. 475-80. 

405. Kopecky, J., M. Kuthejlova, and J. Pechova, Salivary gland extract from 
Ixodes ricinus ticks inhibits production of interferon-gamma by the 
upregulation of interleukin-10. Parasite Immunol, 1999. 21(7): p. 351-6. 

406. Kovar, L., J. Kopecky, and B. Rihova, Salivary gland extract from Ixodes 
ricinus tick polarizes the cytokine profile toward Th2 and suppresses 
proliferation of T lymphocytes in human PBMC culture. J Parasitol, 2001. 
87(6): p. 1342-8. 

407. Zer, R., et al., Effect of sand fly saliva on Leishmania uptake by murine 
macrophages. Int J Parasitol, 2001. 31(8): p. 810-4. 

408. Peters, N.C., In vivo imaging reveals an essential role for neutrophils in 
leishmaniasis transmitted by sand flies (vol 321, pg 970, 2008). Science, 
2008. 322(5908): p. 1634-1634. 

409. Cassatella, M.A., The production of cytokines by polymorphonuclear 
neutrophils. Immunol Today, 1995. 16(1): p. 21-6. 

410. Galligan, C. and T. Yoshimura, Phenotypic and functional changes of 
cytokine-activated neutrophils. Chem Immunol Allergy, 2003. 83: p. 24-
44. 

411. Allen, L.A. and R.L. McCaffrey, To activate or not to activate: distinct 
strategies used by Helicobacter pylori and Francisella tularensis to 
modulate the NADPH oxidase and survive in human neutrophils. Immunol 
Rev, 2007. 219: p. 103-17. 

412. Carlyon, J.A. and E. Fikrig, Mechanisms of evasion of neutrophil killing by 
Anaplasma phagocytophilum. Curr Opin Hematol, 2006. 13(1): p. 28-33. 

413. El-Sayed, N.M. and J.E. Donelson, African trypanosomes have 
differentially expressed genes encoding homologues of the Leishmania 
GP63 surface protease. J Biol Chem, 1997. 272(42): p. 26742-8. 

414. Langousis, G. and K.L. Hill, Motility and more: the flagellum of 
Trypanosoma brucei. Nat Rev Microbiol, 2014. 12(7): p. 505-18. 

415. Brittingham, A., et al., Role of the Leishmania surface protease gp63 in 
complement fixation, cell adhesion, and resistance to complement-
mediated lysis. J Immunol, 1995. 155(6): p. 3102-11. 

416. Campbell, D.A., U. Kurath, and J. Fleischmann, Identification of a gp63 
surface glycoprotein in Leishmania tarentolae. FEMS Microbiol Lett, 1992. 
75(1): p. 89-92. 



205 
 
417. d'Avila-Levy, C.M., et al., Crithidia deanei: influence of parasite gp63 

homologue on the interaction of endosymbiont-harboring and 
aposymbiotic strains with Aedes aegypti midgut. Exp Parasitol, 2008. 
118(3): p. 345-53. 

418. LaCount, D.J., et al., Expression and function of the Trypanosoma brucei 
major surface protease (GP63) genes. J Biol Chem, 2003. 278(27): p. 
24658-64. 

419. Amino, R., et al., Host cell traversal is important for progression of the 
malaria parasite through the dermis to the liver. Cell Host Microbe, 2008. 
3(2): p. 88-96. 

420. Lukacs, N.W., et al., Chemokines: function, regulation and alteration of 
inflammatory responses. Chem Immunol, 1999. 72: p. 102-20. 

421. Baggiolini, M., Chemokines and leukocyte traffic. Nature, 1998. 
392(6676): p. 565-8. 

422. Bozic, C.R., et al., The murine interleukin 8 type B receptor homologue 
and its ligands. Expression and biological characterization. J Biol Chem, 
1994. 269(47): p. 29355-8. 

423. Faunce, D.E., K.H. Sonoda, and J. Stein-Streilein, MIP-2 recruits NKT cells 
to the spleen during tolerance induction. J Immunol, 2001. 166(1): p. 
313-21. 

424. Zhao, M.Q., et al., Alveolar epithelial cell chemokine expression 
triggered by antigen-specific cytolytic CD8(+) T cell recognition. J Clin 
Invest, 2000. 106(6): p. R49-58. 

425. Mancardi, S., et al., Evidence of CXC, CC and C chemokine production by 
lymphatic endothelial cells. Immunology, 2003. 108(4): p. 523-30. 

426. Liu, Q., Y. Wang, and H. Thorlacius, Dexamethasone inhibits tumor 
necrosis factor-alpha-induced expression of macrophage inflammatory 
protein-2 and adhesion of neutrophils to endothelial cells. Biochem 
Biophys Res Commun, 2000. 271(2): p. 364-7. 

427. Kato, A., et al., Specific role of interleukin-1 in hepatic neutrophil 
recruitment after ischemia/reperfusion. Am J Pathol, 2002. 161(5): p. 
1797-803. 

428. Craciun, F.L., E.R. Schuller, and D.G. Remick, Early enhanced local 
neutrophil recruitment in peritonitis-induced sepsis improves bacterial 
clearance and survival. J Immunol, 2010. 185(11): p. 6930-8. 

429. Chong, S.Z., M. Evrard, and L.G. Ng, Lights, camera, and action: 
vertebrate skin sets the stage for immune cell interaction with 
arthropod-vectored pathogens. Front Immunol, 2013. 4: p. 286. 

430. Roediger, B., et al., Visualizing dendritic cell migration within the skin. 
Histochem Cell Biol, 2008. 130(6): p. 1131-46. 

431. Ng, L.G., et al., Visualizing the neutrophil response to sterile tissue 
injury in mouse dermis reveals a three-phase cascade of events. J Invest 
Dermatol, 2011. 131(10): p. 2058-68. 

432. Ariotti, S., et al., Tissue-resident memory CD8+ T cells continuously 
patrol skin epithelia to quickly recognize local antigen. Proc Natl Acad Sci 
U S A, 2012. 109(48): p. 19739-44. 

433. Frevert, U., et al., Intravital observation of Plasmodium berghei 
sporozoite infection of the liver. PLoS Biol, 2005. 3(6): p. e192. 

434. Vanderberg, J.P. and U. Frevert, Intravital microscopy demonstrating 
antibody-mediated immobilisation of Plasmodium berghei sporozoites 
injected into skin by mosquitoes. Int J Parasitol, 2004. 34(9): p. 991-6. 



206 
 
435. Frischknecht, F., et al., Imaging movement of malaria parasites during 

transmission by Anopheles mosquitoes. Cell Microbiol, 2004. 6(7): p. 687-
94. 

436. Baldacci, P. and R. Menard, The elusive malaria sporozoite in the 
mammalian host. Mol Microbiol, 2004. 54(2): p. 298-306. 

437. Peters, N. and D. Sacks, Immune privilege in sites of chronic infection: 
Leishmania and regulatory T cells. Immunol Rev, 2006. 213: p. 159-79. 

438. Coombes, J.L. and E.A. Robey, Dynamic imaging of host-pathogen 
interactions in vivo. Nat Rev Immunol, 2010. 10(5): p. 353-64. 

439. Filipe-Santos, O., et al., A dynamic map of antigen recognition by CD4 T 
cells at the site of Leishmania major infection. Cell Host Microbe, 2009. 
6(1): p. 23-33. 

440. Schaeffer, M., et al., Dynamic imaging of T cell-parasite interactions in 
the brains of mice chronically infected with Toxoplasma gondii. J 
Immunol, 2009. 182(10): p. 6379-93. 

441. Wilson, E.H., et al., Behavior of parasite-specific effector CD8+ T cells in 
the brain and visualization of a kinesis-associated system of reticular 
fibers. Immunity, 2009. 30(2): p. 300-11. 

442. Morrison, W.I. and M. Murray, Trypanosoma congolense: inheritance of 
susceptibility to infection in inbred strains of mice. Exp Parasitol, 1979. 
48(3): p. 364-74. 

443. Kolaczkowska, E. and P. Kubes, Neutrophil recruitment and function in 
health and inflammation. Nat Rev Immunol, 2013. 13(3): p. 159-75. 

444. Stutzmann, G.E. and I. Parker, Dynamic multiphoton imaging: a live view 
from cells to systems. Physiology (Bethesda), 2005. 20: p. 15-21. 

445. Sumen, C., et al., Intravital microscopy: visualizing immunity in context. 
Immunity, 2004. 21(3): p. 315-29. 

446. Garbow, J.R., Z. Zhang, and M. You, Detection of primary lung tumors in 
rodents by magnetic resonance imaging. Cancer Res, 2004. 64(8): p. 
2740-2. 

447. Hutchings, N.R., J.E. Donelson, and K.L. Hill, Trypanin is a cytoskeletal 
linker protein and is required for cell motility in African trypanosomes. J 
Cell Biol, 2002. 156(5): p. 867-77. 

448. Li, W., et al., Wound-healing perspectives. Dermatol Clin, 2005. 23(2): p. 
181-92. 

449. Cross, M., et al., Mouse lysozyme M gene: isolation, characterization, and 
expression studies. Proc Natl Acad Sci U S A, 1988. 85(17): p. 6232-6. 

450. Chtanova, T., et al., Dynamics of neutrophil migration in lymph nodes 
during infection. Immunity, 2008. 29(3): p. 487-496. 

451. Kreisel, D., et al., In vivo two-photon imaging reveals monocyte-
dependent neutrophil extravasation during pulmonary inflammation. 
Proc Natl Acad Sci U S A, 2010. 107(42): p. 18073-18078. 

452. Coombes, J.L., et al., Motile invaded neutrophils in the small intestine of 
Toxoplasma gondii-infected mice reveal a potential mechanism for 
parasite spread. Proc Natl Acad Sci U S A, 2013. 110(21): p. E1913-22. 

453. Wigle, J.T. and G. Oliver, Prox1 function is required for the development 
of the murine lymphatic system. Cell, 1999. 98(6): p. 769-78. 

454. Bianchi, R., et al., A transgenic Prox1-Cre-tdTomato reporter mouse for 
lymphatic vessel research. PLoS One, 2015. 10(4): p. e0122976. 

455. Worbs, T., et al., CCR7 ligands stimulate the intranodal motility of T 
lymphocytes in vivo. J Exp Med, 2007. 204(3): p. 489-95. 



207 
 
456. Gunn, M.D., et al., A chemokine expressed in lymphoid high endothelial 

venules promotes the adhesion and chemotaxis of naive T lymphocytes. 
Proc Natl Acad Sci U S A, 1998. 95(1): p. 258-63. 

457. Kohl, L., D. Robinson, and P. Bastin, Novel roles for the flagellum in cell 
morphogenesis and cytokinesis of trypanosomes. EMBO J, 2003. 22(20): p. 
5336-46. 

458. Sun, S.Y., et al., An intracellular membrane junction consisting of 
flagellum adhesion glycoproteins links flagellum biogenesis to cell 
morphogenesis in Trypanosoma brucei. J Cell Sci, 2013. 126(Pt 2): p. 520-
31. 

459. Roberts, C.J., M.A. Gray, and A.R. Gray, Local Skin Reactions in Cattle at 
Site on Infection with Trypanosoma Congolense by Glossina Morsitans and 
G Tachinoides. Trans R Soc Trop Med Hyg, 1969. 63(5): p. 620-&. 

460. Nathan, C., Points of control in inflammation. Nature, 2002. 420(6917): 
p. 846-852. 

461. Ley, K., et al., Getting to the site of inflammation: the leukocyte 
adhesion cascade updated. Nature Reviews Immunology, 2007. 7(9): p. 
678-689. 

462. Ng, L.G., et al., Visualizing the Neutrophil Response to Sterile Tissue 
Injury in Mouse Dermis Reveals a Three-Phase Cascade of Events. Journal 
of Investigative Dermatology, 2011. 131(10): p. 2058-2068. 

463. Bruns, S., et al., Production of Extracellular Traps against Aspergillus 
fumigatus In Vitro and in Infected Lung Tissue Is Dependent on Invading 
Neutrophils and Influenced by Hydrophobin RodA. PLoS Pathog, 2010. 
6(4). 

464. Yipp, B.G., et al., Infection-induced NETosis is a dynamic process 
involving neutrophil multitasking in vivo. Nat Med, 2012. 18(9): p. 1386-
+. 

465. Liese, J., et al., Intravital two-photon microscopy of host-pathogen 
interactions in a mouse model of Staphylococcus aureus skin abscess 
formation. Cell Microbiol, 2013. 15(6): p. 891-909. 

466. Harvie, E.A., et al., Innate Immune Response to Streptococcus iniae 
Infection in Zebrafish Larvae. Infect Immun, 2013. 81(1): p. 110-121. 

467. McDonald, B., Intravascular danger signals guide neutrophils to sites of 
sterile inflammation (October, pg 362, 2010). Science, 2011. 331(6024): 
p. 1517-1517. 

468. McDonald, B., et al., Intravascular Danger Signals Guide Neutrophils to 
Sites of Sterile Inflammation. Science, 2010. 330(6002): p. 362-366. 

469. Lammermann, T., et al., Rapid leukocyte migration by integrin-
independent flowing and squeezing. Nature, 2008. 453(7191): p. 51-+. 

470. Lammermann, T., et al., Neutrophil swarms require LTB4 and integrins at 
sites of cell death in vivo. Nature, 2013. 498(7454): p. 371-+. 

471. Chtanova, T., et al., Dynamics of T Cell, Antigen-Presenting Cell, and 
Pathogen Interactions during Recall Responses in the Lymph Node. 
Immunity, 2009. 31(2): p. 342-355. 

472. McDonald, B., et al., Intravascular danger signals guide neutrophils to 
sites of sterile inflammation. Science, 2010. 330(6002): p. 362-6. 

473. Abadie, V., et al., Neutrophils rapidly migrate via lymphatics after 
Mycobacterium bovis BCG intradermal vaccination and shuttle live bacilli 
to the draining lymph nodes. Blood, 2005. 106(5): p. 1843-50. 

474. Ryan, T.J., Structure and function of lymphatics. J Invest Dermatol, 
1989. 93(2 Suppl): p. 18S-24S. 



208 
 
475. Muller, W.A., Mechanisms of transendothelial migration of leukocytes. 

Circ Res, 2009. 105(3): p. 223-30. 
476. Petri, B. and M.G. Bixel, Molecular events during leukocyte diapedesis. 

FEBS J, 2006. 273(19): p. 4399-407. 
477. Sage, P.T. and C.V. Carman, Settings and mechanisms for trans-cellular 

diapedesis. Front Biosci (Landmark Ed), 2009. 14: p. 5066-83. 
478. Lammermann, T., et al., Rapid leukocyte migration by integrin-

independent flowing and squeezing. Nature, 2008. 453(7191): p. 51-5. 
479. Randolph, G.J., Dendritic cell migration to lymph nodes: cytokines, 

chemokines, and lipid mediators. Semin Immunol, 2001. 13(5): p. 267-74. 
480. Dieu, M.C., et al., Selective recruitment of immature and mature 

dendritic cells by distinct chemokines expressed in different anatomic 
sites. J Exp Med, 1998. 188(2): p. 373-86. 

481. Saeki, H., et al., Cutting edge: secondary lymphoid-tissue chemokine 
(SLC) and CC chemokine receptor 7 (CCR7) participate in the emigration 
pathway of mature dendritic cells from the skin to regional lymph nodes. 
J Immunol, 1999. 162(5): p. 2472-5. 

482. Weber, M., et al., Interstitial dendritic cell guidance by haptotactic 
chemokine gradients. Science, 2013. 339(6117): p. 328-32. 

483. Murphy, P.M., Double duty for CCL21 in dendritic cell trafficking. 
Immunity, 2010. 32(5): p. 590-2. 

484. Chen, S.C., et al., Ectopic expression of the murine chemokines CCL21a 
and CCL21b induces the formation of lymph node-like structures in 
pancreas, but not skin, of transgenic mice. J Immunol, 2002. 168(3): p. 
1001-8. 

485. Baluk, P., et al., Functionally specialized junctions between endothelial 
cells of lymphatic vessels. J Exp Med, 2007. 204(10): p. 2349-62. 

486. Randolph, G.J., V. Angeli, and M.A. Swartz, Dendritic-cell trafficking to 
lymph nodes through lymphatic vessels. Nat Rev Immunol, 2005. 5(8): p. 
617-28. 

487. Randolph, G.J., G. Sanchez-Schmitz, and V. Angeli, Factors and signals 
that govern the migration of dendritic cells via lymphatics: recent 
advances. Springer Semin Immunopathol, 2005. 26(3): p. 273-87. 

488. Swartz, M.A., J.A. Hubbell, and S.T. Reddy, Lymphatic drainage function 
and its immunological implications: from dendritic cell homing to vaccine 
design. Semin Immunol, 2008. 20(2): p. 147-56. 

489. Yamauchi, L.M., et al., The binding of CCL2 to the surface of 
Trypanosoma cruzi induces chemo-attraction and morphogenesis. 
Microbes Infect, 2007. 9(1): p. 111-8. 

490. Turner, L., W.S. Ryu, and H.C. Berg, Real-time imaging of fluorescent 
flagellar filaments. J Bacteriol, 2000. 182(10): p. 2793-801. 

491. Wadhams, G.H. and J.P. Armitage, Making sense of it all: bacterial 
chemotaxis. Nat Rev Mol Cell Biol, 2004. 5(12): p. 1024-37. 

492. Sinnis, P. and F. Zavala, The skin: where malaria infection and the host 
immune response begin. Semin Immunopathol, 2012. 34(6): p. 787-92. 

493. Welburn, S.C. and I. Maudlin, A simple in vitro method for infecting 
tsetse with trypanosomes. Ann Trop Med Parasitol, 1987. 81(4): p. 453-5. 

494. Akol, G.W. and M. Murray, Parasite kinetics and immune responses in 
efferent prefemoral lymph draining skin reactions induced by tsetse-
transmitted Trypanosoma congolense. Vet Parasitol, 1986. 19(3-4): p. 
281-93. 

495. Kennedy, A.D. and F.R. DeLeo, Neutrophil apoptosis and the resolution of 
infection. Immunol Res, 2009. 43(1-3): p. 25-61. 



209 
 
496. Wright, H.L., et al., Neutrophil function in inflammation and 

inflammatory diseases. Rheumatology (Oxford), 2010. 49(9): p. 1618-31. 
497. Baici, A., et al., Action of collagenase and elastase from human 

polymorphonuclear leukocytes on human articular cartilage. Rheumatol 
Int, 1982. 2(1): p. 11-6. 

498. Scapini, P., et al., The neutrophil as a cellular source of chemokines. 
Immunol Rev, 2000. 177: p. 195-203. 

499. Lee, J., et al., Chemokine binding and activities mediated by the mouse 
IL-8 receptor. J Immunol, 1995. 155(4): p. 2158-64. 

500. Owhashi, M., et al., The role of saliva of Anopheles stephensi in 
inflammatory response: identification of a high molecular weight 
neutrophil chemotactic factor. Parasitol Res, 2001. 87(5): p. 376-82. 

501. Haddow, J.D., et al., Identification of major soluble salivary gland 
proteins in teneral Glossina morsitans morsitans. Insect Biochem Mol Biol, 
2002. 32(9): p. 1045-53. 

502. Fontaine, A., et al., Implication of haematophagous arthropod salivary 
proteins in host-vector interactions. Parasit Vectors, 2011. 4: p. 187. 

503. Taiwo, V.O., J.O. Adejinmi, and J.O. Oluwaniyi, Non-immune control of 
trypanosomosis: in vitro oxidative burst of PMA- and trypanosome-
stimulated neutrophils of Boran and N'Dama cattle. Onderstepoort J Vet 
Res, 2002. 69(2): p. 155-61. 

504. Schumann, K., et al., Immobilized chemokine fields and soluble 
chemokine gradients cooperatively shape migration patterns of dendritic 
cells. Immunity, 2010. 32(5): p. 703-13. 

505. Kabashima, K., et al., CXCL12-CXCR4 engagement is required for 
migration of cutaneous dendritic cells. Am J Pathol, 2007. 171(4): p. 
1249-57. 

506. Qu, C., et al., Role of CCR8 and other chemokine pathways in the 
migration of monocyte-derived dendritic cells to lymph nodes. J Exp Med, 
2004. 200(10): p. 1231-41. 

507. Tan, T.H., et al., Macrophage migration inhibitory factor of the parasitic 
nematode Trichinella spiralis. Biochem J, 2001. 357(Pt 2): p. 373-83. 

508. Pennock, J.L., et al., Rapid purification and characterization of L-
dopachrome-methyl ester tautomerase (macrophage-migration-inhibitory 
factor) from Trichinella spiralis, Trichuris muris and Brugia pahangi. 
Biochem J, 1998. 335 ( Pt 3): p. 495-8. 

509. Han, Z.F., D.D. Shao, and H. Wang, [Cloning and expression of a 
homologue of human macrophage migration inhibitory factor from P. 
falciparum 3D7]. Zhongguo Yi Xue Ke Xue Yuan Xue Bao, 2004. 26(5): p. 
515-8. 

510. Sommerville, C., et al., Biochemical and immunological characterization 
of Toxoplasma gondii macrophage migration inhibitory factor. J Biol 
Chem, 2013. 288(18): p. 12733-41. 

511. Stein, L.H., et al., Eosinophils utilize multiple chemokine receptors for 
chemotaxis to the parasitic nematode Strongyloides stercoralis. J Innate 
Immun, 2009. 1(6): p. 618-30. 

512. Dadiani, M., et al., Real-time imaging of lymphogenic metastasis in 
orthotopic human breast cancer. Cancer Res, 2006. 66(16): p. 8037-41. 

513. Hayashi, K., et al., Real-time imaging of tumor-cell shedding and 
trafficking in lymphatic channels. Cancer Res, 2007. 67(17): p. 8223-8. 

 



210 
 
 


