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Abstract 

Communication between the immune system and the central nervous system 

(CNS) is becoming increasingly topical as evidence suggests the two systems are 

intricately linked. Although the brain is considered an ‘immune-specialised’ 

tissue, it is not free from the influences of the periphery. Recent data indicate 

that peripheral immune stimulation can significantly affect the CNS, and 

patients with chronic inflammatory diseases, including rheumatoid arthritis (RA) 

and psoriasis, are often further burdened by the onset of neuropsychiatric 

conditions such as major depressive disorder (MDD), schizophrenia and anxiety. 

However, despite increases in our understanding, the precise mechanisms 

underpinning this relationship remain unclear. Therefore, the aim of this thesis 

is to investigate the communication pathways that exist between the immune 

system and the nervous system and to enhance our understanding of this 

bidirectional relationship. 

Using a well-characterised animal model of psoriasis-like skin inflammation, I 

have investigated the effects of cutaneous, peripheral inflammation on the 

brain. Psoriasis-like skin inflammation was induced in female C57BL/6 mice via 

the repeated application of Aldara cream to the shaved dorsal skin. Twenty-four 

hours after the fifth application, the transcriptional response in the brain was 

assessed and compared with mice treated with an aqueous control cream, using 

Affymetrix GeneChip arrays. The induction of target genes, identified using 

microarray analysis, was confirmed in an independent model using QPCR and was 

compared to the gene induction following a number of other inflammatory 

models, including a sterile model of cutaneous inflammation.   

Transcriptional profiling techniques allowed me to identify a number of 

differentially expressed genes in the brains of Aldara- and Imiquimod (IMQ)- 

treated mice when compared with the brains of control mice. This response 

included a range of interferon-stimulated genes (ISGs) and chemokines that were 

not induced in the peripheral blood leukocytes (PBL), and occurred 

independently of an overt cytokine response in the PBL. The brain ISG and 

chemokine response was not detected following a sterile model of cutaneous 

inflammation or following the intraperitoneal administration of Imiquimod. 
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The central induction of a number of chemokines prompted the evaluation of 

immune cell infiltration into the brain parenchyma. In addition, the functional 

consequences of topical Aldara treatment, and the involvement of inflammatory 

chemokines, were determined by assessing dentate neurogenesis and burrowing 

behaviour in wild-type and ACKR2-deficient mice. 

The transcriptional response following cutaneous IMQ-induced inflammation is 

indicative of a peripherally triggered inflammatory response in the brain. In 

addition, the data described in this thesis demonstrate a functional consequence 

of peripheral immune stimulation and suggest that cutaneous inflammation 

could modulate the recruitment of leukocytes to the brain. These data highlight 

a potential mechanism of TLR-dependent communication between the periphery 

and the brain that could be mediated through the activation of the afferent 

vagus nerve. 
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1 Introduction 

1.1 Inflammation and depression 

Major depressive disorder (MDD) and other psychiatric illnesses, including 

schizophrenia and anxiety, are a significant burden to our society. These 

conditions are not only associated with a negative psychosocial outlook but they 

are also a growing concern for the economy, as the cost of long-term treatment 

and loss of earnings is extensive1-3. Neuropsychiatric diseases are commonly 

associated with chronic inflammatory conditions and appear to have a close, and 

often co-morbid, relationship with inflammation and, in particular, with 

inflammatory cytokines4-6. However, the mechanisms underpinning this 

relationship are largely unknown and it remains to be understood how 

inflammation in the periphery can influence the brain and lead to the onset of 

neurological conditions.  To try to understand this relationship, studies have 

been performed in which peripheral inflammation was induced in rodents to 

analyse the onset of sickness behaviours and depressive-like symptoms7, 8. 

However, in addition to many unanswered questions remaining, most of these 

studies have used potent systemic inflammatory stimuli that are not 

representative of the human, tissue-specific conditions that correlate with 

neuropsychiatric disorders. Therefore, the aim of this thesis is to investigate the 

brain response to tissue-specific, peripheral inflammation and to try to identify 

the mechanisms driving this relationship. It is hoped that in doing so, new 

therapeutic targets can be identified and novel treatment strategies can be 

established.  

This introduction will provide an overview of the relevant components of the 

immune system and central nervous system (CNS), before going into detail about 

the current literature with regards to the mechanisms and implications of 

communication between the brain and the periphery.     

1.2 The immune system 

We live in a world surrounded by microorganisms which we come into contact 

with on a daily basis. The term microorganism refers to bacteria, viruses, 

parasites and fungi, and whilst a lot of these pose no threat to a healthy 
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individual, many have the potential to cause disease and are thus referred to as 

pathogenic microorganisms, or pathogens. Pathogens are often kept ‘at bay’ by 

a number of physical and chemical barriers, including epithelial barriers and 

mucous membranes of the gastrointestinal tract and respiratory system. 

However, should these barriers be breached, the immune system acts as our 

internal defence system ready to respond to, and neutralise, any threat. If a 

pathogen enters the tissues or circulation, it will encounter cells of the innate 

immune system. The innate immune system is considered the first line of 

defence and is always primed for a rapid response. As such, innate cells are 

constantly circulating between the blood, tissues and lymph, acting as a 

surveillance system to detect infection by pathogens9. In such circumstances, 

these first responders will target the pathogen for removal using a number of 

mechanisms, and will induce the recruitment of additional effector cells to the 

site of infection. If an infectious organism resists the initial defences of the 

innate response, these cells are also able to initiate an adaptive immune 

response. Unlike the innate immune system, which is both rapid and dynamic, an 

adaptive immune response takes days to develop and is there to support the 

innate immune system should it become overwhelmed. The adaptive immune 

response relies on lymphocytes to mount a pathogen-specific response through 

the activation of an array of T cell subsets and the generation of a diverse 

antibody repertoire. Uniquely, the adaptive immune system is able to generate 

immunological memory via highly specialised antigen receptors. Thus a faster, 

stronger, response will be mounted if the same pathogen is encountered in the 

future. The innate and adaptive immune systems work in concert to identify and 

overcome infectious agents, whilst minimising the damage caused to the body. 

These systems are essential to our survival and both will be discussed in more 

detail in the following sections.   

1.2.1 Innate immune system  

As mentioned, the innate immune system is considered to be the first line of 

defence and is always ready to mount a response when a pathogen has breached 

the body’s physical barriers. This response, unlike that of the adaptive immune 

system, is non-specific and does not lead to long term immunological memory. 

The acute, innate, inflammatory response is characterised by a number of 

physical changes including pain, redness and oedema that are the result of 
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vascular dilation in the local area10, 11. This vasodilation causes an increase in 

blood flow but a decrease in blood velocity and thus allows an influx of 

leukocytes that will clear the pathogens and repair the area. In addition, the 

release of clotting factors will prevent the internal spread of a pathogen or 

serve to minimise blood loss depending on the nature of the insult.  

1.2.1.1 Cells of the innate immune system 

There are many cell types that are hallmarks of the innate immune system, 

including neutrophils, macrophages, dendritic cells (DCs) and natural killer (NK) 

cells10. With the exception of NK cells, which are of lymphoid lineage, innate 

cells are generated from myeloid progenitor cells derived from multipotent 

haematopoietic stem cells of the bone marrow12.  

Neutrophils 

Neutrophils are considered the first immune cell to be recruited to sites of 

damage or microbial infection10. As first responders, neutrophils have a multi-

faceted approach to fighting infection, including phagocytosis, cytokine 

secretion and degranulation13. Another mechanism that neutrophils have evolved 

to combat pathogens is the release of neutrophil extracellular traps (NETs). First 

descried by Brinkmann et al. in 200414, neutrophils can release their granule 

contents along with chromatin to form long fibres, or NETs, through the process 

of NETosis15. NETs help contain pathogens and inactivate their ‘virulence 

factors’ that they use to modify the function of host cells. They also contain 

several proteins that can kill or inhibit microbes16.   

Monocytes 

Large reservoirs of monocytes reside in the spleen and bone marrow and 

circulate through the blood17. Upon sensing appropriate signals, monocytes can 

extravasate through the endothelium and into the tissues where they 

differentiate into either macrophages or monocyte-derived DCs. Monocytes 

therefore serve to replenish the pool of tissue-resident cells in both steady state 

and inflammation.  
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Macrophages 

Macrophages reside in various tissues throughout the body and their turnover is 

reliant on derivation from infiltrating monocytes. However, with the deletion of 

several transcription factors, some tissue-resident macrophages may have the 

capacity to self-renew18. Macrophages, like neutrophils, ingest and consume 

dead cells, host cell debris and foreign material through the process of 

phagocytosis, and are also able to present antigen to cells of the adaptive 

immune system10. Under steady state conditions, macrophages produce large 

amounts of IL-10 in order to maintain tissue homeostasis; however when they 

sense danger, through an array of pattern recognition receptors (PRRs) or in 

response to certain cytokines, macrophages become activated. Activated 

macrophages have been divided into two subsets based on their function in 

aiding specific T-helper (Th) responses, however these M1 and M2 macrophages 

are not mutually exclusive and have demonstrated a degree of plasticity in their 

ability to switch from one to the other in response to environmental signals of 

the local milieu19, 20.       

Dendritic Cells 

DCs possess extensive dendrites that are efficient in sampling the local 

environment in the search for pathogens. DCs share many of the antimicrobial 

qualities of neutrophils and macrophages and are important for innate immune 

defence. However, they are best known for their role as professional antigen 

presenting cells (APC). DCs are present in almost all tissues and organs and are 

capable of migrating out of the tissue, through the lymphatic vessels and into 

organised lymphoid tissues where they can present antigen to T cells10. As such, 

DCs are important for the activation of an adaptive immune response21. 

Increasing literature has highlighted the heterogeneity of this group of cells and 

a number of different classifications of DC subsets now exist based on their 

function and location; however the various classifications and their specific 

functions will not be discussed further and are reviewed by Merad et al22.    
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Natural Killer Cells 

NK cells are able to identify, and target, infected host cells and are activated in 

response to interferons (IFNs) and macrophage-derived cytokines10. NK cells 

produce perforin, allowing them to perforate local infected cells, and 

subsequently use these pores to insert granzymes into the target cell and induce 

apoptosis23. This is important with regards to virus-infected cells to insure that 

they are degraded from the inside, rather than being lysed and their potentially 

harmful contents exposed to the environment.   

1.2.1.2 Pattern recognition receptors 

It is important that the innate immune system can readily identify pathogens 

and other harmful agents. Should the immune system make an incorrect 

judgement, a misdirected immune response would be harmful to the host, as is 

the case in many autoimmune disorders. As such, the innate immune system has 

developed a method of identification that relies on a number of pattern 

recognition receptors10, 24. PRRs have evolved to recognise repeating patterns of 

molecular structure that are only found in pathogens, called pathogen- 

associated molecular patterns (PAMPs), as well as endogenous molecules 

released from damaged cells known as danger-associated molecular patterns 

(DAMPs)25. Binding of PRRs can lead to a number of responses depending on the 

type of receptor and the nature of binding. These include the induction of 

phagocytosis, chemotaxis to the site of infection, the production of effector 

molecules and the initiation of adaptive immunity26. There are four classes of 

PRR families; NOD-like receptors (NLRs), retinoic-acid inducible gene (RIG)-1-like 

receptors (RLRs), C-type lectin receptors (CLRs) and Toll-like receptors (TLRs)25. 

These families, along with their respective ligands, are outline in Table 1-1. 

NLRs and RLRs, which are found in the cytoplasm, are essential for recognising 

virus infected cells and result in the production of anti-viral IFNs27. CLRs are 

membrane bound receptors characterised by the presence of a carbohydrate- 

binding domain. CLRs recognise carbohydrate structures of bacteria, viruses and 

fungi28. With regards to this thesis, TLRs are the most important PRRs and are 

discussed in detail here.  
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Toll- like receptors 

Arguably one of the most important features of the innate immune system is the 

TLR family. Charles Janeway coined the term PRR and first hypothesised that 

cells devised a mechanism of pathogen recognition in 198929, 30, but it wasn’t 

until almost 10 years later that this system was identified. TLR4 was the first to 

be described as a human ortholog of Drosophila Toll, based on the presence of 

the Toll/interleukin-1 receptor (TIR)31 motif. It is the extracellular leucine rich 

repeats (LRRs) of TLRs that allow these type 1 transmembrane glycoproteins to 

bind to PAMPs. As highlighted in Table 1-1, TLRs are found on both the plasma 

membrane and the membrane of endosomes/lysosomes, allowing them to 

recognise both intra- and inter- cellular PAMPs. Upon ligation of TLRs with their 

corresponding ligand, the TIRs will dimerise and will undergo a conformational 

change that is required for the recruitment of downstream signalling 

molecules32, 33. This triggers an intracellular signalling cascade that culminates in 

the transcription of genes encoding necessary mediators, such as inflammatory 

cytokines and chemokines. With the exception of TLR3, all TLRs signal in a 

MyD88-dependent manner to activate NF-κB and other transcription factors via a 

number of protein kinases; however some TLRs, including TLR4 and TLR7, have 

also developed alternative, MyD88-independent signalling pathways33, 34. TLRs 

recognise PAMPs and DAMPs not only to initiate an innate immune response. 

Through MyD88 deficiency, it has been shown that TLR signalling is necessary for 

mounting an effective Th1 adaptive immune response35.  
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Table 1-1 PRRs, their cellular localisation and their known ligand 
Pattern Recognition Receptor Localisation Ligand 

TLRs   

TLR1 Plasma Membrane Triacyl lipoprotein 

TLR2 Plasma Membrane Lipoprotein  

TLR3 Endolysosome dsRNA 

TLR4 Plasma Membrane LPS  

TLR5 Plasma Membrane Flagellin  

TLR6 Plasma Membrane Diacyl lipoprotein 

             TLR7 (hTLR8) Endolysosome ssRNA 

TLR9 Endolysosome CpG-DNA 

TLR10 Endolysosome Unknown 

TLR11 Plasma Membrane Profilin 

TLR12 Plasma Membrane Profilin 

NLRs   

NOD1 Cytoplasm iE-DAP 

NOD2 Cytoplasm MDP 

RLRs   

RIG-1 Cytoplasm Short dsRNA, 5’triphosphate dsRNA 

MDA5 Cytoplasm Long dsRNA 

LGP2 Cytoplasm Unknown 

CLRs   

MINCLE Plasma Membrane SAP130 

Dectin-1 Plasma Membrane Β-Glycan 

Dectin-2 Plasma Membrane Β-Glycan 

 

1.2.2 Adaptive immune system    

The adaptive immune system is not as evolutionarily ancient as the innate 

immune system. Present only in vertebrates, the adaptive immune system is a 

lymphocyte-dependent, specific response and therefore takes days to develop10. 

The adaptive immune system combats pathogens which have overcome the 

innate immune response, using more ‘pathogen-specific’ targeting. Initiating an 

adaptive immune response relies on the presentation of pathogenic antigens in 

the context of major histocompatibility complex (MHC), along with a specific set 

of co-stimulatory molecules and cytokines, to T cells in the secondary lymphoid 

organs36. Antigen presentation subsequently activates the differentiation of a 

number of T cells, some of which have the potential to initiate the production of 

a pathogen-specific humoral (antibody) response. One key advantage of the 
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adaptive immune response is that it leads to immunological memory. As 

mentioned, this highly specialised phenomenon means that subsequent 

encounters with a pathogen will induce a much stronger and faster response.  

1.2.2.1 Cells of the adaptive immune response 

 T cells 

The field of T cell biology has been an area of great interest in recent years and 

has led to a marked expansion in our understanding. As such, many different 

subsets of T cells have now been identified that are characterised and grouped 

based on their diverse effector functions and molecular phenotype. The main 

groups are naïve T cells, cytotoxic T lymphocytes (CTL), regulatory T cells 

(Treg), memory T cells (Tm) and helper T cells (Th), and within each group more 

than one subset may exist10. To go into detail about all the subsets and their 

corresponding functions would be lengthy, and is not of specific relevance to this 

thesis, therefore a very brief overview will be given.  

Most effector T cell subsets will differentiate from CD4+ naïve T cells into Th 

cells, and their fate will depend on the cytokines present during polarisation37, 

38. Amongst these subsets are the well-characterised Th1, Th2 and Th17 cells as 

well as Th22 and Th9 effector cells, which have been more recently described39. 

Th22 cells, although yet to be fully defined, have already been implicated in a 

number of inflammatory skin diseases40-42, whereas Th9 cells produce IL-9 and 

are thought to be involved in the defence against extracellular parasites 

including nematodes43-45. The differentiation of CD8+ cells into effector T cells is 

somewhat more straightforward. These cells will become CTLs and will produce 

perforin, granzymes and IFNγ to direct the killing of infected or transformed 

cells46. As such, they are particularly important with regards to viral infections 

and cancer immunology.    

B cells and antibodies 

B lymphocytes are formed in the bone marrow and are characterised by the 

possession of a B cell receptor (BCR), which exhibits specificity to one particular 

Ag10. B cells are not able to penetrate target cells directly so they are not useful 
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for virus-infected cell targeting or cancerous transformed cells. Instead, B cells 

are responsible for the production of large volumes of Ag-specific antibodies 

(Ab), or immunoglobulins (Ig), which are released into the circulation47. B cells 

can either be short lived Ab-producing cells that survive only a few days, long- 

lived plasma cells that compete for a space in survival niches in the bone 

marrow and spleen, or memory B cells that continue to circulate in the blood. 

The immunological memory conferred by long-lived plasma cells and memory B 

cells allows for rapid antibody secretion during secondary infections. 

1.2.3 Cytokines of the innate and adaptive immune system 

Cytokines are protein messengers that together act as an intercellular 

communication pathway10. They can be produced by both immune- and non- 

immune cells (including endothelial cells and fibroblasts) and they evoke a 

variety of biological activities by binding to receptors on responsive target 

cells48. Cytokines can be both pro- and anti- inflammatory and any one cytokine 

can act on many different cell types. Cytokines can act on the cell that 

produced them (autocrine), on nearby cells (paracrine) or, in some cases, on 

distant cells (endocrine). Cytokine is the name given to these proteins as a 

superfamily; however other names can be given based on particular cell targets 

or presumed functions of the individual cytokines. For example, lymphokines are 

cytokines produced by lymphocytes (T and B cells)49 whereas the term 

interleukin (IL) refers to proteins produced by leukocytes that regulate immune 

responses50. As this thesis relates to the immune response in experimental 

models of inflammation, we will focus only on cytokines relevant to immune 

function and leukocyte migration.  

1.2.3.1 Inflammatory Cytokines 

There are three classic inflammatory cytokines that are characteristic of early 

immune activation; IL-1β, IL-6 and TNFα. These cytokines act in autocrine, 

paracrine and endocrine manners to amplify and maintain the immune 

response10. Inflammatory cytokines influence the accelerated release of 

leukocytes from the bone marrow reserves and TNF upregulates vascular 

adhesion molecules on the endothelium, promoting the extravasation of 

circulating leukocytes into the inflamed tissues11, 51. In addition, inflammatory 



 
 

 30 

cytokines are able to activate leukocytes, and non-immune cells, to produce 

more inflammatory proteins, thereby enhancing the local response. IL-1 and TNF 

are endogenous pyrogens which stimulate prostaglandin synthesis leading to a 

rise in body temperature52. This fever response can help evade thermosensitive 

pathogens and can also speed up certain metabolic processes. Inflammatory 

cytokines, specifically IL-6, are also able to induce the synthesis of acute-phase 

proteins by hepatocytes in the liver53, 54. These include C reactive protein (CRP), 

fibrinogen and serum amyloid A (SAA) protein, all of which are thought to 

promote the inflammatory response and the elimination of microbes.  

Inflammatory cytokines can also induce a number of changes to subjective 

experience and behaviour to allow an ill individual to reorganise their priorities 

during acute inflammation55. These changes, which include fever, lethargy, 

hyperalgesia, social withdrawal and increased anxiety, are the result of a 

reorganisation of actions and perceptions and are together called sickness 

behaviours56. The involvement of these cytokines in the induction of sickness 

behaviours is evident from a number of studies6, 8, 57, the details of which will be 

discussed in section 1.6.2.  

1.2.3.2 Interferons 

First discovered in 1957 by Isaac and Lindenmann58, IFNs represent a number of 

proteins that are secreted by cells and are so called on the basis of their ability 

to interfere with viral proliferation in cells. IFNs were the first of the cytokines 

to be discovered and were among the first to be used therapeutically. There are 

three groups within the IFN family, differentiated by their receptor complexes; 

type I-, type II- and type III IFNs. To date, there are nine type I IFNs, four type III 

IFNs and only one type II IFN, IFNγ59. 

IFNγ production is restricted mainly to immune cells but it binds to the widely 

expressed IFN-γ receptor (IFNGR) and plays a number of important roles in 

immune regulation60. These include the activation of macrophages, the 

facilitation of Ag presentation and the differentiation of Th1 effector cells. Thus 

IFNγ is an important mediator of both the innate and adaptive immune systems. 

The importance of this type II IFN is demonstrated using genetic strains in which 

IFNγ production, or signalling, is inhibited61. Deficiency leads to increased 
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susceptibility to a number of intracellular pathogens, as well as loss of tumour 

control62-64.  

There are seven classes of Type I IFNs; IFNα, of which there are 13 human 

subtypes, IFNβ, IFNκ, IFNε, IFNο, IFNδ and IFNτ65. All type I IFNs bind to the IFN 

α/β receptor (IFNAR) and together exhibit a greater degree of complexity as 

they can have different effects in response to different pathogens. For example, 

Type I IFNs induce a protective inflammatory response to pathogens such as 

Escherichia Coli and S. pneumonia66. However, they have been shown to 

increase susceptibility to the likes of L. monocytogenes67-69, Salmonella 

enterica70 and Staphylococcus aureus71 by supressing the innate immune 

response. This range of activity is primarily due to the multiple cellular 

responses that can result from the activation of IFN-stimulated genes (ISGs) and 

their downstream effectors72. Amongst other functions, Type I IFNs have the 

ability to mediate cellular damage and inflammation, induce differentiation and 

migration and inhibit proliferation and angiogenesis73, 74.  

Type III IFNs are the most recent to be discovered and are known to bind to the 

IFN-λ receptor (IFNLR) expressed on epithelial cells, but are not as well 

characterised as type I and II IFNs75. There are three type III IFNs; IFNλ1, IFNλ2 

and IFNλ3, although a fourth member of the group, IFNλ4, has been recently 

described76. Type III IFNs are thought to share a number of common biological 

functions with type I IFNs, including anti-proliferative and anti-viral properties, 

which is perhaps surprising as type I and type III IFNs are produced in response to 

different stimuli and bind different receptors expressed on different cell types75.  

Interferon Stimulated Genes 

The production of IFNs, as the result of PRR ligation, leads to the activation of 

the JAK-STAT signalling pathway and the transcription of a broad set of genes 

called interferon stimulated genes77. Hundreds of these genes have been 

identified using oligonucleotide arrays, however few have been extensively 

characterised in terms of their effector functions and those that have are mainly 

reliant on in vitro data78. In vivo experimentation, even with the use of knock-

out mice, has been hindered by the redundancy of the ISG family, which has 

made it more difficult to decipher the specific functions of an individual gene. 
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Broadly however, ISGs and their products exhibit many antiviral functions and 

together they are able to interrupt almost any step of the viral lifecycle79. Those 

that have been further investigated include the IFN-inducible transmembrane 

(IFITM) family, that block endolysosomal-mediated virus entry into cells80, 81, 

SOCS proteins and USP18 that are negative regulators of IFN signalling and zinc-

finger antiviral protein (ZAP)82, 83, and the IFN-induced protein with 

tetratricopeptide repeats (IFIT) family, the OAS-RNaseL pathway, and PKR which 

all interfere with viral translation80, 84.   

1.2.4 Chemokines 

Chemokines, or chemotactic cytokines, are a family of cytokines that are 

defined by the presence of a highly conserved cysteine motif85. To date, more 

than 50 chemokines and receptors have been identified making the chemokine 

family the largest family amongst cytokines. Chemokines have been divided into 

four subfamilies based on the number and spacing of their conserved cysteine 

motif and are named CCL, CXCL, XCL and CX3CL (Figure 1-1)86. In 1987, the 

chemoattractant activity of CXCL8 in the recruitment of neutrophils was 

established, and subsequently chemokines have become best known for their 

ability to mediate directed chemotaxis87-90. Chemokines are classically involved 

in the regulation and migration of leukocytes; however they have been widely 

implicated in a number of other essential processes including angiogenesis91, 

embryogenesis92 and tissue repair93. Between 1995 and 1996 chemokines were 

also implicated in the pathogenesis of HIV when it was discovered that CCR5 and 

CXCR4 act as co-receptors for viral entry into host cells94-98. A chemokine 

receptor binding to its cognate ligand leads to a classical signalling cascade and 

downstream cellular changes. As well as being divided based on their structure, 

chemokines can be divided into two groups based on the context in which they 

function. Homeostatic chemokines are involved in a number of essential 

processes that help maintain the body in its steady state, whereas inflammatory 

chemokines are upregulated during an immune response and ensure the 

trafficking of leukocytes to and from sites of infection. However, it is important 

to note that this classification is not absolute as a number of chemokines exhibit 

dual-functions.   
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Figure 1-1 Structure of the conserved cysteine motif of the chemokine family 
The chemokine family is based on the presence of a conserved cysteine motif. The four sub-
groups of the chemokine family are so named based on the number and spacing of the cysteine 
residues as shown.  

 

1.2.4.1 Homeostatic chemokines 

Homeostatic chemokines are constitutively expressed in the steady state and are 

essential for regulating a number of key developmental and homeostatic 

functions. These include, but are not limited to, the homing of haematopoietic 

stem cells to their bone marrow niches99, the direction and distribution of 

immature lymphocytes within lymphoid organs100 and the control of stem and 

progenitor cell migration during organ development92. For example, CCL19 and 

CCL21 are constitutively expressed in the secondary lymphoid organs and, 

through their receptor, CCR7, serve to mediate interactions between DCs and T 

cells within lymphoid follicles101, 102. Such interactions are essential for 

regulating the immune system in the steady state and the importance of these 

chemokines is confirmed in the phenotypes of mutant mice. Mice deficient in 

CCR7 present with disruption in the spatial organisation of lymphoid organs, as 

well as a disruption in T cell and DC migration and an impaired ability to mount 
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an antigen-specific inflammatory response102-104. The CXCL12:CXCR4 axis is 

another important relationship with regards to homeostatic function. CXCL12, 

also known as stromal cell-derived factor 1 (SDF-1), was the first chemokine to 

evolve and is highly conserved across many species105. CXCL12 is essential for 

development as mice deficient in CXCL12, or its receptor CXCR4, die perinatally 

as the result of abnormalities in cerebellar neuronal migration and 

haematopoiesis106, 107. In addition to its involvement in development, CXCL12 

regulates a number of essential steady-state processes in the mature CNS, and 

functions to maintain haematopoietic stem/progenitor cell (HSPC) 

homeostasis108.     

1.2.4.2 Inflammatory chemokines 

Inflammatory chemokines are significantly upregulated in response to infection 

and inflammation, and are best known for their role in regulating the migration 

of appropriate leukocytes to sites of inflammation109. The chromosomal 

clustering of inflammatory chemokines suggests that they evolved rapidly in 

response to new pathogens, for example CC chemokines ligands 1-5 are found on 

chromosome 17, whereas CXC chemokine ligands 1-11 are clustered on 

chromosome 4110. Generally, inflammatory chemokines bind many receptors, 

conferring greater promiscuity than their homeostatic counterparts, which are 

normally restricted to just one or two receptors. For example, CCL5, which is of 

relevance to this thesis, binds three receptors, CCR1, CCR3 and CCR585. This 

means that any cell type expressing any one of these receptors, which includes 

specific monocyte and T cell subsets, will be responsive to this chemokine 

ligand. Thus the expression of any inflammatory chemokine will result in the 

recruitment of a range of different cell types. Similarly, chemokine receptors 

are not necessarily restricted to any one chemokine ligand. Chemokines CXCL9-

11 are IFN-inducible genes that all bind to the same receptor, CXCR385. This 

receptor is predominantly expressed on activated T cells and so these 

chemokines are normally secreted during Th1 cell-mediated immune 

responses111.    
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1.2.5 Chemokine receptors 

Chemokines exert their function by binding to chemokine receptors. Chemokine 

receptors are G protein-coupled receptors which contain a seven 

transmembrane-spanning domain (Figure 1-2)10. All chemokine receptors have an 

approximate length of 350 amino acids and consist of an extracellular N-

terminus and an intracellular C-terminus109. The N-terminal end, which binds to 

the chemokine, is important for ligand specificity, whereas the C-terminal end 

confers the intracellular signalling cascade following ligation. The DRYLAIV 

motif, found on the second intracellular loop of the receptor, is important for 

the coupling of G-proteins, which are necessary for mediating downstream 

signalling112. To date, 18 chemokine receptors have been identified which, like 

chemokines, are divided into four sub-families (CCR, CXCR, XCR and CX3CR) 

based on the ligands they can bind to113. Chemokine receptors will only bind to 

ligands from one sub-family; however they can bind to several individual 

chemokines within that family. Receptors, like the ligands, can be divided into 

two groups based on their function; homeostatic and inflammatory. 

Inflammatory receptors bind to many different ligands, for example CCR5 and 

CXCR2 can both bind to as many as seven different ligands85. In contrast, 

homeostatic chemokine receptors are more faithful, often binding only one or 

two ligands. The full complexity of chemokine: receptor interaction is shown 

diagrammatically in Figure 1-3. 
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Figure 1-2 Schematic of a chemokine receptor 
Chemokines exert their functions through ligation with chemokine receptors, which are seven 
transmembrane-spanning G protein-coupled receptors. Interactions involve multiple regions of the 
ligand and the receptor, with particular relevance for the N-terminal domains.   

 

1.2.5.1 Atypical chemokine receptors 

In addition to the chemokine receptors already mentioned, there are four 

receptors that are considered ‘atypical’ due to their lack of classical 

downstream signalling114. These atypical chemokine receptors (ACKRs) are called 

Duffy antigen receptor for chemokines (DARC), D6, CXCR7 and CCRL1, although a 

standard nomenclature has recently been developed and they are now known as 

ACKR1, ACKR2, ACKR3 and ACKR4, respectively115. ACKRs have a seven 

transmembrane spanning domain structure; however they are unable to couple 

with G-proteins due to the missing, or modified, DRYLAIV motif of the second 

intracellular loop116. Although ACKRs are considered ‘silent’, Boronni et al and 

Rajagopal et al have recently reported that ACKR2 and ACKR3, respectively, are 

able to signal downstream in a β-arrestin-dependent, G-protein-independent 

manner117, 118. However, this signalling is unable to induce the classical cellular 

responses we see as the result of ligand binding to other chemokine receptors, 

such as cellular migration. ACKR1 and ACKR2 bind a large number of chemokine 

ligands that are exclusively inflammatory in function. As such, these ACKRs fine 
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tune chemokine ligand gradients by scavenging, storing or transpresenting 

ligand116. 

 

ACKR2 

ACKR2, formerly known as D6, is one of four atypical chemokine receptors and is 

expressed on lymphatic endothelial cells (LECs), trophoblasts and some 

leukocytes119, 120. It binds many CC chemokines (Figure 1-3), all of which are 

classically inflammatory in nature. Upon ligation, ACKR2 will internalise and 

destroy its ligand before circulating back to the cell surface121. For this reason, 

its effects are considered anti-inflammatory, acting as a scavenger to clear 

inflammatory chemokines from the local milieu120. This proposed role of ACKR2 

has been supported by a number of studies in a range of disease models. For 

example, ACKR2-deficient mice have been shown to be more susceptible to a 

range of skin based inflammatory pathologies122, including chemically induced 

skin tumours123.   

With regards to the CNS, ACKR2 is highly expressed in the dentate gyrus of the 

hippocampus, a region of the brain that is classically associated with adult 

neurogenesis. However, its role in this location is unclear, with no clear 

abnormalities being seen in the ACKR2-null mice.  
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Figure 1-3 Complexity of chemokine family interactions 
Chemokine receptor: ligand interactions and atypical chemokine receptor: ligand interactions, 
highlighting the complexity and promiscuity of the chemokine family. The colour corresponds to 
specific receptor subfamilies: CCR (blue), CXCR (purple), CX3CR/ XCR (orange) and ACKR 
(green). 

 

 



 
 

 39 

1.2.6 Chemokines in disease  

Chemokines and chemokine receptors are essential for the coordinated 

movement of leukocytes during inflammation and infection. During an acute 

response, the work of the chemokine family is, predominantly, beneficial to the 

host. However, in some cases of chronic inflammation or infection, chemokines 

can be detrimental and are therefore implicated in the pathogenesis of many 

diseases. The role of chemokines in CNS inflammation, which is particularly 

relevant to this thesis, is discussed in more detail in Section 1.4.3. In order to 

demonstrate the importance of chemokines, their role in some of the most 

prominent chemokine-mediated diseases is discussed here. 

Human immunodeficiency virus (HIV)  

HIV was isolated for the first time in 1983124; however it took over a decade for 

the mechanisms of transmission to be identified. To gain entry into host cells, 

the HIV-1 envelope glycoprotein 120 (gp120) must bind to CD4, along with one of 

two chemokine receptors that function as co-receptors125. CXCR4 and CCR5 were 

identified as the co-receptors that facilitate HIV entry into host cells after it was 

discovered that CCL3, CCL4 and CCL5, produced by CD8+ cells, were HIV-

suppressive factors94-98, 126, 127. HIV-1 variants that use only CCR5 for entry are 

called R5, whereas those that use only CXCR4 as a co-receptor are referred to as 

X4. If a virus can use both chemokines as co-receptor, they are considered to be 

dual tropic and are called R5/X4128. During early infection, R5 tropic viruses 

dominate and are preferentially transmitted between hosts, whereas X4 viruses 

are more common during the later stages of the disease when patients progress 

towards AIDS129.  

 

A small percentage of the population have a naturally occurring mutation in the 

gene encoding for CCR5, called CCR5Δ32. Around 1% of the Caucasian population 

of European origin are homozygous for this 32bp deletion and are resistant to 

HIV as they do not express a functional CCR5 required for viral entry into host 

cells130. This mutation does not appear to have any adverse effects in healthy 

humans; however people possessing this mutation are thought to be more 

susceptible to severe forms of WNV131. 

 



 
 

 40 

Multiple Sclerosis and EAE 

Multiple sclerosis (MS) is an autoimmune disease characterised by the loss of 

motor and sensory functions as a result of demyelination and axonal damage132. 

MS can be either progressive or relapsing-remitting, with the latter 

characterised by periods of remyelination and amelioration; however MS will 

ultimately lead to paralysis. The pathogenesis of MS has been widely studied 

through the use of animal models, the most common of which is experimental 

autoimmune encephalomyelitis (EAE).  This model is induced using myelin 

specific Th1 and Th17 cells, produced in response to immunisation with myelin 

oligodendrocytes glycoprotein (MOG) in combination with adjuvant, and is 

characterised by the influx of inflammatory leukocytes into the CNS133.  

Chemokines are important in the pathogenesis of MS and EAE, as discussed in 

Section 1.4.3. In brief, many chemokines and their receptors are highly 

upregulated in the brains of MS patients and in EAE mice. Mice deficient in the 

chemokine receptors CCR1, CCR2 and CCR6 display increased resistance to EAE, 

experiencing delayed onset of disease134, 135. However, Gaupp et al have 

suggested that the promiscuity of chemokines means CCR2 deficiency is 

compensated for with the increased expression of other chemokines136.  

1.3 Components of the central nervous system 

The central nervous system consists of the brain and spinal cord, which are 

protected by the skull and vertebral column, respectively, along with three 

layers of membrane called the meninges. The CNS is the processing centre for 

the nervous system and it is responsible for relaying information to, and from, 

the peripheral nervous system. The brain controls both a number of very basic 

functions, including appetite, temperature regulation and coordination of 

movement, as well as more sophisticated functions such as cognition and 

memory. The CNS was once considered “immune-privileged”, meaning it was 

isolated from events in the periphery, including those of the immune system. 

Nowadays, the CNS is thought to be “immune-specialised”, the main difference 

being that people no longer consider the CNS separate from the rest of the body 

but rather unique, or specialised. This is for several reasons; it is protected from 

the periphery by a number of barriers, including the blood-brain-barrier (BBB) 
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and the blood-cerebrospinal fluid-barrier (BCSFB)137 (Section 1.3.2), under 

steady-state conditions, it contains fewer APCs than other peripheral tissues138 

and, until very recently, it was thought to lack a lymphatic network139, 140.  

1.3.1 Cells of the central nervous system 

1.3.1.1 Neurons 

All cells in the nervous system interact with neurons and they are therefore 

considered the basic unit of the system. Neurons consist of a cell body 

containing the nucleus and organelles, branching dendrites, which communicate 

with neighbouring neurons and an axon, along which electrochemical nerve 

signals are conducted. There are three types of neuron, sensory neurons, motor 

neurons and interneurons, which differ in structure and location, but all function 

to carry nerve signals. Individual axons called nerves, along which information is 

transmitted, are protected by a layer of Schwann cell-produced myelin, which 

increases transmission speed. As mentioned earlier, the breakdown of myelin is 

a hallmark of multiple sclerosis, a debilitating neurodegenerative disease132. 

Neurons are generally considered to be terminally differentiated and unable to 

renew, highlighting the importance of their protection. However, it has been 

shown that adult neurogenesis does occur within specific brain regions141, 142. 

This will be discussed further in section 1.6.4. 

1.3.1.2 Glia 

Glial cells are distinguishable from nerves as they are not directly involved in 

synaptic transmission and electrical signalling, although they do function to 

support neurons in this role. In addition, glial cells modulate the response to 

neural injury, maintain the ionic milieu of nerve cells and provide a scaffold for 

certain aspects of neural development. The three subtypes of glia are discussed 

below.    

Microglia 

Representing around 10% of the adult brain cell population, microglia are tissue-

resident macrophages that are found throughout the parenchyma. Like 

macrophages, microglia are phagocytic cells which possess the capacity to 
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become activated in response to various triggers and express low levels of many 

classic macrophage markers, including CD45, CD11b, F4/80 and MHC143. 

However, unlike conventional myeloid immune cells, terminally differentiated 

parenchymal microglia are thought to be derived from cells originating in the 

yolk sac in an IRF8- and PU.1- dependent manner, and are present in the 

embryonic brain from as early as E9.5144. Conventional CNS-microglia, derived 

from blood monocytes, can be found around the boundaries of the brain, for 

example in the choroid plexus, the meninges and the perivascular space145. 

Microglia are the only immune cells found within the parenchyma and are 

responsible for monitoring the intraneuronal space, which they do so by 

screening the local environment for damage every few hours with motile 

processes. When damage is sensed, perhaps via adenosine triphosphate (ATP) 

release by neighbouring cells or extracellular calcium, microglia enter an 

activated state and, like macrophages, can polarise towards M1- or M2- like 

phenotypes146.    

Microglia express many PRRs, including TLRs 1-9 and various scavenger 

receptors, and are thus able to respond to a wide range of pathogens, both viral 

and bacterial147. PRR ligation in microglia induces the synthesis of a number of 

pro-inflammatory cytokines including IL-1β, IL-6, IL-12 and TNFα as well as 

inflammatory chemokines147. Activated microglia are able to kill neurons directly 

or indirectly through the actions of these pro-inflammatory mediators. Their 

broad and generalised response to pathogens means that microglial activation is 

a hallmark of most CNS pathologies. To ensure that microglial activation itself is 

regulated, interactions between the neuronal CD200 receptor and the microglial 

CD200 ligand maintains microglia in a quiescent state148, 149. Mice deficient in 

CD200 show signs of spontaneous microglial activation and a disordered 

arrangement150. CX3CL1 is also thought to play an important role in maintaining 

microglia in a quiescent state under homeostatic conditions151. Cross-talk 

between neurons and microglia in a CX3CL1-dependent manner is thought to 

regulate neurogenesis (Section 1.6.4), synaptic plasticity, motor learning and 

cognitive function152. Aged rodents present with a reduced level of CX3CL1 

expression, along with a reduction in neurogenesis and an increase in 

inflammation. When supplemented with CX3CL1, hippocampal neurogenesis is 

restored and microglia return to a resting state153.   
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Astrocytes 

Astrocytes, which are restricted to the brain and the spinal cord, are the most 

numerous and heterogeneous glia in the brain and are found in the extracellular 

spaces between neurons. In the healthy CNS, astrocytes are primarily 

responsible for maintaining a homeostatic chemical environment within these 

spaces in order to support neuronal signalling, and do so by regulating the 

concentration of substances including potassium ions154, 155. The expression of 

membrane neurotransmitter receptors, their ability to remove excess glutamate 

and their secretion of a number of gliotransmitters means that astrocytes are 

important for regulating neurotransmission and synapse function156. In addition, 

their close proximity to blood vessels, and their ability to produce proteins such 

as prostaglandins of the E2 series (PGE2) and nitric oxide (NO), allows them to 

control blood flow as well as to regulate energy exchange between the blood 

and surrounding cells157, 158. 

In the event of CNS injury or disease, astrocytes undergo a number of functional 

and cellular changes that together comprise the process of reactive astrogliosis. 

During reactive astrogliosis, astrocytes can lose, or gain, certain functions which 

can consequently exert either beneficial or detrimental effects on the 

environment, including glial scar formation159. Many intercellular components 

are capable of triggering reactive astrogliosis. These include, but are not limited 

to, inflammatory cytokines, TLR ligands, neurotransmitters, purines, reactive 

oxygen species (ROS), hypoxia and products of neurodegeneration, such as β-

amyloid160-162. All of these factors can be released by other CNS cells in response 

to a variety of insults. Activated actrocytes produce monocyte and neutrophil 

chemoattractants including CCL2, 3, 4 and 5 and CXCL1 and 2 respectively161, 163. 

Astrocytes may also upregulate adhesion molecules upon TLR ligation which, due 

to their anatomical location, can promote the ingress of circulating leukocytes 

from the perivascular space into the parenchyma.    

Oligodendrocytes 

Mature, myelin-producing oligodendrocytes derive from oligodendrocyte 

precursor cells (OPC) and are responsible for coating axons with the protective 

layers of membrane that are together called the myelin sheath164. Found only in 
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the CNS, oligodendrocytes can contribute to the myelination of several axons. 

Oligodendrocytes share many similarities with Schwann cells; however Schwann 

cells are found in the peripheral nervous system (PNS) and can myelinate only a 

single axon165. Myelin, which is distributed across the length of axons, with the 

exception of certain areas called the ‘Nodes of Ranvier’, provides electrical 

insulation and speeds up action potential propagation166. Therefore, 

disturbances in the myelin sheath, as the result of injury or disease, can have a 

profound effect on normal neural transmission167, 168.   

1.3.2 Barriers in the brain 

As mentioned previously, the CNS is considered to be immune-specialised, in 

part due to the physical barriers that isolate it from the periphery. These 

barriers differ in terms of their anatomical location and cellular properties, and 

are discussed here.   

1.3.2.1 The blood-brain-barrier 

The BBB, found along the capillaries, is a highly selective barrier that protects 

the brain from noxious chemicals, variations in blood composition and 

breakdown of concentration gradients169. The BBB restricts the entry of certain 

molecules into the parenchyma based on their size and polarity.  

The cellular components of the BBB are the cerebral capillary endothelial cells, 

pericytes and astrocytic feet (also known as glia limitans); however the most 

important functional component is the endothelial tight junctions which serve as 

a diffusion barrier. BBB endothelial cells are distinct from their peripheral 

counterparts for a number of reasons. They possess a relatively low number of 

vesicles, they lack fenestrae, have higher electrical resistance and they have 

evolved specialised transport systems170. Molecules and some cells can traverse 

the BBB either through the endothelial cell (transcellular passage) or between 

the cells (paracellular passage). Both the passive diffusion of neutral lipophilic 

substances (with a molecular weight less than 450) and the active transport of 

small and large hydrophilic molecules occurs transcellulary. In addition, many 

essential nutrients that are not able to diffuse are transported by specialised 

membrane proteins. Conversely, ions and solutes diffuse paracellulary down a 
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concentration gradient through the tight junctions171. These tight junctions are 

found between neighbouring endothelial cells and mediate gate function; 

preventing substances with a molecular weight greater than 180 from traversing 

the BBB through paracellular diffusion172, 173.  

In the healthy individual, most toxic substances and antigens are unable to 

traverse the BBB due to its tightly constrained intercellular junctions ; however 

its permeability increases during inflammation. This dysregulation, which allows 

the influx of leukocytes and causes brain oedema, is a characteristic of a 

number of CNS pathologies, including the archetypical neurodegenerative 

disease, MS174, 175.   

1.3.2.2 The blood-cerebrospinal fluid-barrier 

Cerebrospinal fluid (CSF), secreted primarily by the choroid plexus, is important 

for buoyancy and protecting the brain, maintaining chemical balance and 

clearing waste and toxins176. Adults will normally have a total volume of 

between 80 and 150ml of CSF, which is continually being produced and 

reabsorbed, and which circulates within the ventricular system of the brain177, 

178.  

The BCSFB comprises the choroid plexus epithelial cells, found in the vascular 

tissue of all cerebral ventricles, and the arachnoid membrane of the 

meninges179. The barrier is formed by epithelial cells and the tight junctions that 

link them. This barrier allows the free movement of small molecules across the 

endothelial cells of the choroid plexus capillaries through fenestrations and 

intercellular gaps. The BCSFB allows not only free diffusion, but also mediates 

facilitated diffusion and the active transport of molecules into the CSF.  

CSF production is driven by the active ion transport of sodium into the lateral 

ventricles, creating osmotic pressure that draws in water to the CSF space180. 

Electroneutrality is maintained by negatively charged chlorine ions which follow 

positively charged sodium ions. Thus CSF contains higher concentrations of 

sodium and chlorine than plasma, which are the main ionic constituents of CSF.         
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1.3.2.3 The circumventricular organs 

The circumventricular organs (CVO) are structures that allow the passage of 

polypeptide hormones out of the brain without disrupting the BBB181. 

Characterised by their small size, high permeability and fenestrated capillaries, 

CVOs are found around the third and fourth ventricles of the brain. The 

fenestrated nature of the endothelium means that microglia and neurons may be 

exposed to circulating mediators directly. Several hypothalamic peptide 

hormones leave the brain through the CVOs and go on to affect the anterior 

pituitary, or act peripherally following release into the circulation181. These 

include a number of hormones involved in the HPA axis (section 1.6.1) as well as 

vasopressin and oxytocin. In addition to regulating the secretion of hormones out 

of the brain, CVOs allow other substances to trigger changes in brain function. 

Hormones that are unable to cross the BBB can sometimes exert their actions on 

CVO neurons which span the BBB and project into the brain parenchyma. 

1.3.2.4 The meninges 

The meninges are a triple layer of membrane that surrounds the brain and spinal 

cord. The outer membrane, called the dura mater, is fixed to the skull and 

forms a protective sac around the inner membrane. The inner membrane, or 

leptomeninges, is formed by two thin membranes called the arachnoid mater 

and the pia mater182. The meninges are filled with CSF and are best known for 

offering protection to the CNS. Not only do they constitute a physical barrier 

around the CNS, but the fluid-filled cavity within the meninges cushions the 

brain from damaging events. The meninges are also thought to be important for 

maintaining CNS homeostasis and are able to secrete a number of trophic factors 

such as growth factors and cytokines, including fibroblast growth factor (FGF) 2, 

CXCL12 and retinoic acid183-185. During embryogenesis, the meninges are 

essential for correct CNS development, although the exact mechanisms by which 

they contribute remain to be fully understood.     

1.3.3 Immune surveillance and antigen drainage 

Although the CNS is protected by the BBB and BCSFB, the healthy brain is under 

continual surveillance. The sentinel duties of a limited number of cells involved 
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in immune surveillance under steady-state conditions ensures that homeostasis is 

maintained186.  

As mentioned in Section 1.3.1.2, microglia are one of the key cell types involved 

in immune surveillance of the CNS. Due to their expression of a number of PRRs, 

microglia are sensitive to a wide range of insults and their activation leads to 

the production of pro-inflammatory agents that heighten the inflammatory 

response. Thus, microglia are able to efficiently sample the local environment 

and respond effectively to danger. 

Present in small numbers, leukocytes including T cells, macrophages and DCs 

patrol specialised areas of the CNS, outwith the parenchyma, for harmful 

agents. These are all possible sites of extravasation and include the non-

fenestrated vascularised stroma of the BCFSB surrounded by choroid plexus 

epithelial cells, the perivascular space and the postcapillary venules that enter 

the parenchyma directly. Perivascular macrophages are a minor, bone-marrow 

derived, CNS population found within the perivascular spaces adjacent to small 

and medium blood vessels187. PVMs can shroud local blood vessels with long 

processes and are activated in response to neural injury or death as well as 

cytokines or LPS in peripheral blood. Upon becoming activated, these cells can 

synthesise IL-1 production and function as APCs188. DCs, although not detected in 

the parenchyma, are abundant throughout the meninges and choroid plexus of 

healthy rodents and humans, and are found at low levels in the CSF189-192. The 

strong upregulation of MHC and co-stimulatory molecules in the CNS following 

infection and other CNS pathologies suggests that many cells in the CNS possess 

the ability to present antigen193. However, around 80% of immune cells found in 

the CSF are T cells, the majority of which are CD4+ central memory T cells (TCM), 

whose passage into the CSF is facilitated by CCR7, CXCR3, L-selectin and a 

number of other adhesion molecules194. TCM cells remain in the CSF for several 

hours sampling antigen presented on central APCs, before returning to the 

bloodstream. Activation of TCM cells by encountering their specific antigen 

initiates a neuroinflammatory response through T cell effector functions194.  

Some reports have suggested that resident memory T cells can remain in the CNS 

for up to a year after initial infection, far longer than TRM cells in other 

peripheral organs, suggesting the CNS is isolated from recirculating memory 
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pools195, 196. This is most commonly reported following viral infection and it is 

therefore possible that the CNS has a specialised ability to retain CD8+ TRM cells 

that are primed to respond to a secondary insult with their cognate antigen197. It 

is also possible that low levels of activated T cells can enter the brain 

parenchyma. Wekerle et al have used encephalitogenic T cells to show that 

activated T cells are able to cross the BBB in Lewis rats, whereas naïve T cells 

cannot198. If these cells do not find their antigen they simply traffic back into 

the blood or die.       

Prior to June 2015, it was presumed that the CNS lacked a lymphatic network; 

however, using injectable tracers such as Indian ink199 and quantum dot 655200, 

routes by which antigens and cells can traffic out of the brain were identified201. 

In animals and humans, CSF, containing free antigen, drains from the 

subarachnoid space to the nasal mucosa and cervical LNs via a number of 

channels that pass through the cribriform plate of the ethmoid bone202. 

Conversely, interstitial fluid (ISF) and solutes from the brain parenchyma drain 

to the cervical LNs via a separate route, first by diffusion through the 

extracellular spaces and then along the walls of the cerebral capillaries and 

arteries203. Recently, studies by Louveau et al attempted to investigate the 

mechanisms of meningeal immune surveillance and uncovered the existence of a 

functional CNS lymphatic network140. Using sophisticated techniques, whole 

mount meningeal immunohistochemistry revealed the presence of classical 

Prox1+ CD31+ LYVE-1+ Podoplanin+ VEGFR3+ CCL21+ lymphatic endothelial cells 

lining the dural sinuses. Furthermore, ligation studies suggest a physical 

connection between meningeal lymphatic vessels and the deep cervical LNs. The 

presence of T cells, B cells and DCs in meningeal lymphatic vessels under normal 

conditions suggests this system participates in steady-state immune cell 

trafficking through the CNS. The discovery of this network has led to the re-

evaluation of the mechanisms of immune surveillance in the CNS and could 

implicate malfunctioning meningeal lymphatics in a variety of neurological 

diseases204. To ensure that the CNS responds appropriately to insult, cells must 

be able to monitor the local environment and present antigen to T cells when an 

adaptive immune response is required. It is clear that there are a number of 

systems in place that allow continual immunosurveillance and antigen drainage, 
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demonstrating that, in addition to its complex physical barriers, the cells of the 

CNS represent a tightly controlled surveillance system.       

1.4 Chemokines in the CNS 

Chemokine expression throughout the brain differs depending on the context in 

which it is assessed. Many chemokines, particularly homeostatic chemokines, are 

essential during development and continue to be important throughout life for 

maintaining a number of steady state functions205. Of course, during 

inflammation and CNS disease, the chemokine repertoire changes as 

inflammatory chemokines are produced by activated cells206. In addition, all 

major cell types in the brain have been shown to express a range of chemokine 

receptors and possess the ability to produce a number of chemokines 

themselves207. This suggests there is an independent chemokine signalling circuit 

within the brain, indicating that their role within the CNS may extend beyond 

localised immune cell mobilisation.   

1.4.1 Development 

Appropriate cellular migration and organisation is essential for the developing 

CNS and relies upon a number of chemokines that have been shown to play a 

role in regulating such processes. The most prominent of these chemokines is 

CXCL12, and its receptor CXCR4, which have already been mentioned briefly. 

CXCL12, considered the primordial chemokine, is extensively expressed 

throughout the developing CNS208. Its importance is demonstrated in mice 

deficient for CXCL12 or CXCR4, which die perinatally and often present with 

developmental abnormalities of the brain, specifically disorganisation of the 

cerebellum. Cerebellar development in the normal embryo is an organised 

process of CXCL12-dependent migration and maturation of precursor cells which 

results in the formation of cerebellar granule neurons208. Without the guidance 

from this chemokine, migration is impaired and the granule neurons form 

ectopically. As well as regulating the migration of granule progenitors, CXCL12 is 

thought to hold them in a proliferative environment and facilitate their 

proliferation by interacting with a particular mitogen, Sonic hedgehog209. Thus, 

not only does the CXCL12-CXCR4 interaction ensure the appropriate organisation 

of the cerebellar granule neurons, they also regulate proliferation. In a similar 
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fashion, the granule layer of the dentate gyrus is impaired in CXCR4 KO mice and 

fails to develop properly210. These mice do possess dentate granule neurons; 

however they are fewer in number and can be found ectopically within the 

normal migratory stream, which extends from the dentate neuroepithelium. This 

suggests that the absence of CXCR4 has an effect on both the proliferation and 

migration of the precursor cells. Although heavily implicated in development, 

CXCL12 and CXCR4 continue to be expressed by granule neurons and precursor 

cells in adult animals, suggesting that the role of this chemotactic pair does not 

cease with development211.  

CXCR2 has also been implicated in spinal cord development by mediating the 

migration of oligodendrocyte precursors. These precursor cells originate in the 

ventricular zone and migrate to the white matter where they proliferate and 

differentiate212. Their arrest in the white matter is thought to be dependent on 

CXCL1 signalling through its receptor CXCR2 as the spinal cords of CXCR2 null 

mice exhibited a reduction in the number of oligodendrocytes, many of which 

were found abnormally clustered at the periphery213.   

1.4.2 Homeostasis 

The expression of certain chemokine receptors and ligands in the brain continues 

into adulthood irrespective of the presence of inflammatory stimuli, suggesting 

that these chemokines may have a role in maintaining certain brain processes in 

the steady state.  

A number of studies have suggested a role for chemokines in regulating several 

neuroendocrine functions such as feeding, temperature and water balance207, 214, 

215. A drawback of a lot of these studies is that they involved either injection of 

lipopolysaccharide (LPS) or injection of a chemokine directly and are therefore 

not ‘steady-state’. However, the fact that an inflammatory stimulus or an 

increase in expression can induce a change in these functions suggests that 

chemokines are homeostatic regulators. For example, CXCL8, CCL3, CCL4 and 

CCL5 have all been shown to induce hyperthermia216-219 and CXCL8, CXCL10, 

CCL2 and CCL5 can reduce short term food intake when injected 

intracerebroventricularly (i.c.v)220, 221.  
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It has also been suggested that certain chemokines could function as 

neurotransmitters. To help define neuropeptide ability as neurotransmitters, a 

list of five criteria was established to which they should comply. The list 

stipulates that they should be localised at nerve terminals, they should co-

localise with other neurotransmitters at the nerve terminal vesicles, they should 

show release following membrane depolarisation, they should exhibit 

electrophysiological effects and the receptors for the peptide should be 

expressed both pre- and post-synaptic222. Although chemokines do not adhere to 

all five of the stipulations, they do present a strong case for acting as 

neurotransmitters. It has been shown in rats that CXCL12 and CCL2 are able to 

co-localise with both cholinergic and dopaminergic neurons, depending on the 

brain region of interest223, 224. The spatial distribution of chemokine receptors in 

relation to the cells that synthesise their ligands suggests that they must be 

released by nerve endings or dendrites. For example, CX3CR1, located on 

neurons and microglia, is stimulated by its ligand CX3CL1, which is expressed 

only by neurons225. In cultured mouse hippocampal and hypothalamic neurons, 

Guyon et al showed that CXCL12 can directly modulate voltage-dependent 

membrane currents, the effects of which can be blocked using the CXCR4 

antagonist AMD3100226. In addition, patch-clamp recording of cultured rat spinal 

cord neurons showed that CCL2 could regulate neurophysiology by modulating 

GABAergic neurotransmission227. Together, these findings demonstrate that 

chemokines can have electrophysiological effects in the CNS. Chemokine 

receptors can be expressed on pre-synaptic neurons that also synthesise the 

ligand. Like classical neurotransmitters such as dopamine, the dual expression of 

both a ligand and its cognate receptor by the same neuron suggests some kind of 

autocrine function. Interestingly, Callewaere et al showed that, in rats, CXCL12 

not only co-localises with arginine vasopressin, but also inhibits its release from 

hypothalamic dendrites through autocrine mechanisms involving pre-synaptic 

CXCR4228.   

1.4.3 Infection and inflammation 

In the event of inflammation or disease, either within the CNS or in the 

periphery, the chemokine repertoire in the brain is altered. The primary role of 

chemokines during neuroinflammation is facilitating the transmigration of 

leukocytes across the physical barriers of the brain229. In this way, using the 
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process which is described in detail in section 1.5.1, certain inflammatory 

chemokines have been shown to induce the infiltration of certain leukocyte 

subsets. For example, CCL2, CCL3, CCL4 and CCL5 induce the activation and 

chemotaxis of T cells and monocytes230-232. In addition, blocking certain 

chemokines and receptors changes the leukocyte repertoire within the CNS231, 

233. Although to an extent chemokine involvement in CNS inflammation appears 

to differ between pathologies and may be specific to the nature of the insult, 

there is a degree of overlap and certain conditions have provided a generalised 

insight into chemokine involvement in neuroinflammation.  

Michlmayr et al have used models of viral encephalitis to show that many, but 

not all, inflammatory chemokines are upregulated in the brains of treated 

mice234. They report that, 7 days following infection with Semliki forest virus 

(SFV), inflammatory chemokine ligands, in particular CCL2, CCL5, CXCL9 and 

CXCL10, are significantly upregulated, in some cases with a 90-fold increase. 

This expression pattern coincides with the influx of a number of leukocyte cell 

types into the brain, including NK cells, myeloid cells, B cells and, most notably, 

CD3+ T cells. Using a series of chemokine receptor blockers, they showed that 

this cellular migration into the CNS was mainly reliant on the actions of CCR5, 

CCR2 and CXCR3. Others have reported, both in vivo and in vitro, that at earlier 

time points following infection, inflammatory chemokines are secreted by 

activated, or virally infected, cells in the CNS including astrocytes, microglia and 

endothelial cells235, 236. Moreover, neutrophil infiltration is said to occur in 

several viral models through the CXCR2/CXCL1 axis237, 238. This reportedly 

heightens CNS inflammation by increasing the permeability of the BBB239.     

It is well documented that leukocyte infiltration is a pivotal event in the 

pathogenesis of MS. Several chemokines have been shown to help mediate this 

process through their expression on the vascular endothelial lumen240. Studies 

have reported the incidence of CCR7+ cells in MS lesions, which are likely 

infiltrating in response to the ligands CCL19 and CCL21241. There is still some 

debate regarding the phenotype of these cells; however 90% of leukocytes in the 

CSF of MS patients are thought to be CCR7-expressing central memory T cells. 

Elevated levels of CCL2, CCL3, CCL4, CCL5, CCL7, CCL8, CXCL1, CXCL9 and 

CXCL10 have been described in MS, and the corresponding mouse model 

experimental autoimmune encephalomyelitis240. The expression pattern of these 
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proteins is thought to differ temporally and spatially adding to the complicated 

nature of the disease. With regards to EAE specifically, CCL2 is thought to be of 

particular importance. One of the major cellular infiltrates in EAE is monocytes, 

which are recruited into the CNS in a CCR2-dependent manner, and which are 

able to differentiate into microglia242. Many studies have confirmed the 

involvement of CCR2 and CCL2 using KO mice136, 243-245. However, reports have 

suggested that depleting monocyte infiltration is compensated for by 

supplementary neutrophil infiltration, indicating that chemokines work in 

concert to ensure that a range of leukocyte subsets can access the brain 

parenchyma136.    

Although very little has been done to investigate the chemokine repertoire in 

the CNS in response to peripheral inflammation, D’Mello et al have reported that 

monocytes are recruited into the brain during hepatic inflammation. They have 

shown that cerebral microglia, activated by peripherally induced TNFα, recruit 

monocytes in a CCL2:CCR2-dependent fashion230.  

Together, reports suggest that CNS inflammation, and perhaps also peripheral 

inflammation, leads to increased expression of many chemokines and cytokines 

which can mediate cellular influx into the brain. Chemokines and their receptors 

are therefore potential therapeutic targets for the regulation of inflammatory 

pathologies of the CNS. 

1.5 Routes of immune-to-brain communication 

Under homeostatic conditions, the barriers described in section 1.3.2 are 

sufficient to ensure that the CNS environment is protected and maintained. 

However, it must be possible for the CNS to respond to inflammation in the 

periphery, otherwise the manifestation of sickness behaviours in response to 

systemic infection would not occur. There are many different routes by which 

the immune system can communicate with the brain6. Most, at least on some 

level, can be mediated by inflammatory cytokines and the secondary mediators 

that they induce5, 246. The different methods of communication will be described 

below.   
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1.5.1 Leukocyte infiltration 

Inflammation normally requires the extravasation of leukocytes from the blood 

into the tissue through the endothelial cell barrier, which occurs via a multi-step 

process called the leukocyte adhesion cascade247. Inflammatory cytokines, 

including IL-1β and TNFα, LPS and histamine activate the endothelium resulting 

in the release of selectins51. The prototypical interaction is between P-selectin, 

which is released from Wiebel-Palade bodies and platelet granules, and the 

carbohydrate structure P-selectin glycoprotein 1 (PSGL-1) found on activated 

leukocytes. This interaction leads to the rolling of leukocytes along the surface 

of the endothelium. Immobilised chemokines expressed on the surface of the 

endothelium will bind leukocytes that express the corresponding receptor, 

initiating an intracellular signalling cascade which results in a conformational 

change and the activation of integrins. These cell-surface integrins will bind to 

cell adhesion molecules expressed by endothelial cells, including intracellular 

adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1), 

and will result in the firm adhesion of selected leukocytes.  Finally, these 

leukocytes will undergo diapedesis and will transmigrate across the endothelium 

into the tissues, either directly through the cells or through the junctions 

between them. Entry into the CNS normally relies on transcellular migration 

alone due to the tight junctions found between the endothelial cells of the 

BBB248.   

Under steady state conditions, this process is tightly regulated by the BBB and 

BCSFB and few leukocytes are able to enter the parenchyma. However, in the 

event of peripheral or central inflammation, this selection process becomes 

more relaxed. Leukocyte infiltration and BBB disruption are classic hallmarks of 

many inflammatory conditions of the CNS including MS, stoke, traumatic brain 

injury (TBI) and viral encephalitis249-252. Mechanisms regulating BBB permeability 

and cellular infiltration are incompletely understood, but are thought to involve 

the effects of inflammatory cytokines and chemokines on BBB endothelial cells.  

Many of the findings regarding leukocyte infiltration into the brain have 

implicated factors involved in normal cellular migration, suggesting an increase 

in activity rather than a change in mechanism. In the steady state, the adhesion 

molecules ICAM-1 and VCAM-1 are barely detectable in normal brain cells; 
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however they are upregulated on endothelial cells and glia under a number of 

inflammatory conditions including stroke, LPS challenge and TBI253, 254. In vivo 

and in vitro studies using ICAM-1-deficient mice have shown a definitive role for 

ICAM-1 in facilitating leukocyte migration into the CNS following TBI255. It is 

thought that ICAM-1 signalling induces cytoskeletal alterations in brain 

endothelial cells that facilitate a change in the BBB permeability. In a mouse 

model of acute cytokine-induced meningitis, increased BBB permeability and 

leukocyte accumulation in the CSF are seen. However, both of these phenotypes 

are almost completely abolished when the model is applied to mice doubly 

deficient in P- and E-selectin256. The upregulation of cellular adhesion molecules 

on brain endothelium and trafficking leukocytes appears to be induced by 

inflammatory agents and cytokines directly. Wong et al have used primary 

cultures of human brain microvessel endothelial cells to show that treatment 

with LPS or inflammatory cytokines upregulated ICAM-1 in a concentration- and 

time-dependent manner257. Similarly, Roe et al used cultures of human brain 

microvascular endothelial cells to show that infection with West Nile virus (WNV) 

upregulated ICAM-1, VCAM-1 and E-selectin expression and enhanced leukocyte 

adhesion252. In MS, Th1 inflammatory cytokines, including IFNγ, TNFα, IL-1β and 

IL-6, are involved in the pathogenesis of the disease and can activate the 

expression of endothelial cell adhesion molecules258. Together, these findings 

suggest that inflammatory components promote the interaction of leukocytes 

with brain endothelium by inducing elevated adhesion molecule expression.  

Some studies have suggested that changes in BBB permeability and facilitated 

leukocyte transmigration may involve alterations in tight junction integrity259, 

260. Indeed, the breakdown of tight junctions has been noted in the vicinity of MS 

lesions249, and in vitro studies have shown that stimulation of cultured 

endothelial cells with serum isolated from relapsing MS patients provokes a 

downregulation of occludin and VE-cadherin, proteins that are important for 

tight junction integrity261. 

Whatever the mechanism, there is a plethora of literature indicating that 

leukocyte infiltration into the CNS is a key process during many inflammatory 

conditions. The consequence of this appears to differ depending on the nature of 

the insult. A model of TBI in Wistar rats found T cell infiltration and microglia 

activation to be indicative of the acute response and were capable of 
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contributing to the classic brain oedema often seen following such injury262. In 

stroke, there is mounting evidence to suggest that post-ischemic tissue damage 

in the brain is mediated by infiltrating leukocytes, including neutrophils263, 

macrophages (and activated microglia)264 and T cells265, 266. However, Fassbender 

et al have shown that infiltrating cells may not actually influence infarct size 

following transient occlusion of the middle cerebral artery267. Using histology 

and flow cytometry, these cell types were shown to have differing temporal 

recruitment patterns268, 269 which may explain the conflicting data concerning 

their effects if timing is a crucial variable. Determining whether or not leukocyte 

infiltration is beneficial or detrimental in stroke is difficult since, although these 

cell types have a damaging effect to the local tissue, immune cells are also 

important for the removal of dead neurons from the ischemic core and for 

promoting astrocytosis250.         

1.5.2 Cytokine transport 

The BBB provides a physical barrier between the brain and the periphery and is 

characterised by its highly selective nature. Under steady state conditions, the 

BBB uses specialised transport mechanisms to mediate the transendothelial 

migration of certain proteins and peptides, ensuring that the CNS is not flooded 

by humoral neurotransmitters and blood elements179.  

During CNS inflammation, cytokines can be directly secreted in the CNS by TLR 

activation in an array of cell types. However, it is also possible for cytokines 

circulating in the periphery, including those produced by cells at the CVOs and 

choroid plexus, to enter the brain by active transport. This has been 

demonstrated in a number of studies using radiolabelled inflammatory cytokines 

that have been induced in the periphery270-273. Their active transport across the 

BBB into the parenchyma occurs without disruption of the BBB itself, 

demonstrating that this mechanism of transport does not rely on a loss of 

structure. Peripheral administration of large quantities of unlabelled cytokine 

leads to the rapid saturation of this transport system, suggesting that this 

cytokine-specific transport mechanism is not the only route of communication 

between the periphery and the brain273.     
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Inflammation can influence the permeability of the BBB, with leukocyte influx 

being a characteristic of many CNS pathologies. Breakdown of BBB integrity, 

perhaps mediated through astrocytic activation, is thought to aid in the 

pathogenesis and progression of many neurological diseases, including seizure 

disorders274, Alzheimer’s disease (AD)275 and MS174. The function of active 

cytokine transporters, which normally operate at low levels, can also be altered 

by pathological conditions. Interestingly, stroke and spinal cord injury both lead 

to an increase in activity of the TNFα transporter272, 273.  

1.5.3 Humoral pathway  

The humoral pathway of communication is slower than the neural pathway and 

involves cells found within the CVOs and brain endothelial cells. Blood-borne 

proteins, including inflammatory cytokines, are able to activate brain 

endothelium directly to relay information across the BBB, or they can activate 

specific brain regions independently of the BBB, namely the CVOs276.  

Circulating cytokines are able to activate cells found within the BBB, specifically 

brain endothelial cells and perivascular macrophages (PVMs)277. Stimulation of 

these cells by inflammatory agents will lead to the release of secondary 

mediators such as PGE2, which are able to diffuse freely across the BBB278. In 

addition to activating BBB components, circulating proteins are able to enter 

into the parenchyma at areas lacking an intact BBB, namely the CVOs. As 

discussed previously (section 1.3.2.3), hormones which are capable of activating 

the hypothalamic-pituitary-adrenal (HPA) axis may come into direct contact with 

neurons and microglia due to the fenestrated nature of the endothelium181. The 

activation of neurons at the CVOs can be confirmed by c-Fos induction279, 280. In 

addition to neuronal activation, activated microglia can initiate a wave of 

stimulation to neighbouring structures, spreading the response throughout the 

brain parenchyma281. 

1.5.4 Neural pathway and the cholinergic anti-inflammatory 
pathway 

Immunity is coordinated by neural circuits that operate reflexively. The afferent 

arc, consisting of nerves that sense injury or inflammation, activates the 

efferent neural circuits that modulate immune responses and the progression of 
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inflammatory disease282.  The vagus nerve is the main nerve of the 

parasympathetic division of the autonomic nervous system which regulates 

metabolic homeostasis. The vagus nerve exits the brain from the medulla 

oblongata and descends vertically within the carotid sheath postlateral to the 

carotid arteries. From there, the branches of the vagus nerve innervate the gut 

and peripheral organs including the lungs, spleen, kidneys and liver. It controls 

heart rate, gastrointestinal motility and secretion, hepatic glucose production 

and other visceral functions283. It is also a major constituent of the inflammatory 

reflex; a physiological mechanism that functions on the path between immunity 

and metabolism. Recent evidence has shown that the efferent vagus nerve can 

control local and systemic inflammatory responses using a process termed “the 

cholinergic anti-inflammatory pathway”284. 

The vagus nerve can be activated by inflammatory cytokines. In addition, the 

afferent branches of the vagus nerve contain macrophages and DCs in the 

perineural sheath that express TLRs and can be activated by PAMPs282. Much of 

the information regarding the role of the vagus nerves in immune-to-brain 

transmission comes from vagotomy experiments. Many people have used rodent 

models to show that intraperitoneal injections of LPS can stimulate c-fos 

expression in neurons285. However, when vagotomys are performed under the 

diaphragm, so as not to disturb cardiac and pulmonary function, expression of 

this early activation gene is attenuated. This has also been shown by Marvel et al 

in a model of reversible inactivation of the vagus nerve using anaesthetic. They 

found that non-responsiveness of the dorsal vagus complex blocked the social 

withdrawal and c-fos upregulation normally seen in LPS injected rats286. These 

findings suggest that the neuronal activation of the brainstem, the hypothalamus 

and limbic structures that normally follows peripheral intraperitoneal LPS 

stimulation is dependent on vagus nerve transmission287. In addition, surgical 

transection of the vagus nerve in rodents, preventing immune signalling at 

peripheral nerve endings, is able to attenuate sickness behaviours caused by 

peripheral immune stimulation56, 288, 289. However, this suppression is thought to 

be dose-dependent and can be overcome with the administration of a large dose 

of IL-1β290. In this manner, the administration of cytokine can induce fever and 

sickness behaviour by bypassing neural circuitry and acting through the CVOs via 

the humoral pathway.  
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The actions of the neural pathway are thought to be mediated through the 

production of acetylcholine (ACh) from the stimulated afferent arm291. 

Acetylcholine, an important neurotransmitter and neuromodulator, signals 

through two different kinds of receptor; muscarinic and nicotinic292. RNA analysis 

of these receptors shows that they are expressed on mixed populations of 

lymphocytes as well as other cytokine producing cell types, most of which are 

also capable of producing acetylcholine293. Via post-transcriptional mechanisms, 

acetylcholine can suppress the production of a number of pro-inflammatory 

cytokines, including TNF and IL-1β, by LPS- stimulated human macrophage 

cultures294.       

Although this is clearly an important mechanism of immune-to-brain 

communication, it seems to be more essential for some processes than for 

others. For example, vagotomised LPS- or IL-1β- injected rodents may have 

attenuated sickness behaviours, but they do still present with a fever 

response295. These results confirm that the neural pathway is not the only 

communication pathway between the immune system and the brain. It seems 

likely that the afferent arc is particularly important for relaying information to 

the brain in response to mild to moderate peripheral inflammation. 

1.6 CNS responses to peripheral stimulus 

The major routes of immune-to-brain communication have been highlighted in 

the previous section and demonstrate that peripheral components of the 

immune system, namely inflammatory cytokines, are able to stimulate the CNS. 

There are a number of ways in which the brain will respond to such stimuli, 

activating a central response to try to eliminate the threat; however there are 

also several routes through which peripheral stimulation can mediate 

behavioural changes which may, in severe cases, result in the onset of 

neuropsychiatric disorders. The routes implicated, although presented as 

independent pathways, likely work in parallel and will be discussed in detail.      

1.6.1 The HPA axis 

The hypothalamic-pituitary-adrenal axis is a major part of the neuroendocrine 

system and is based on the feedback interactions of three endocrine glands; the 
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hypothalamus, the pituitary gland and the adrenal glands296. The HPA axis 

regulates many essential processes such as energy exchange, the immune 

system, digestion and mood. In addition, the HPA axis is responsible for directing 

the response to stress through the production of glucocorticoids (GCs)222. The 

stress system is always active and is characterised by circadian variations, but in 

circumstances where physical or emotional stressors exceed a critical threshold, 

the activities of the stress system intensify. This response is necessary to try and 

reinstate homeostasis by instigating behavioural adaptations, the redistribution 

of energy and inhibition of the inflammatory response. Being able to 

appropriately and efficiently respond to stress confers a survival advantage by 

controlling the ‘fight or flight’ response297. 

As shown diagrammatically in Figure 1-4, when physical or psychological stress is 

experienced, corticotropin-releasing hormone (CRH) is produced by the 

paraventricular nucleus (PVN) of the hypothalamus. This acts on the anterior 

pituitary gland, stimulating the production and release of adrenocorticotrophic 

hormone (ACTH), which in turn activates the adrenal glands. The adrenal glands 

subsequently release GCs (cortisol in humans or corticosterone in rodents), as 

well as stimulating the production of other stress hormones including 

noradrenaline and adrenaline222. GCs bind glucocorticoid receptors (GCRs) which 

are ubiquitously expressed throughout many tissues and on almost all immune 

cell subsets. As well as controlling growth and metabolism, GCs can act as 

neuromodulators and exert inhibitory effects on the immune system298. For 

example, through either direct inhibition or inhibition of key transcription 

factors, GCs can interfere with the production of a number of inflammatory 

cytokines, including IL-1β and IL-6299. Glucocorticoids not only inhibit 

inflammatory cytokines, but they also upregulate the synthesis of anti-

inflammatory cytokines including IL-10. In addition, it has been shown that GCs 

can increase the phagocytic potential of macrophages to stimulate the clearance 

of debris and other harmful elements300. The combined actions of the HPA axis 

result in a potent anti-inflammatory response that aims to return the body to its 

homeostatic state. Should the HPA axis become impaired in some way and 

homeostasis lost, a chronic stress response may ensue leading to the onset of 

neuropsychiatric symptoms. This is often indicated in patients suffering from 

depression, who present with raised levels of cortisol301. 
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Whilst the HPA axis works to control inflammatory responses by modulating 

cytokine production, this system itself is sensitive to a number of inflammatory 

cytokines. This is interesting as long-term sufferers of MDD have elevated levels 

of inflammatory cytokines, which may be the driving force behind chronic HPA 

axis activation302, 303. Several studies have demonstrated an important role for 

inflammatory cytokines in the hyper-activation of the HPA axis and the severity 

of MDD5, 304. Moreover, using either direct administration of Il-1 into rats or by 

using viral infection, studies have shown that IL-1 is able to stimulate the 

production of CRH, which in turn will upregulate ACTH305. Andreis et al have 

shown that this effect is mediated through the direct action of IL-1β on the 

adrenal gland306.   
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Figure 1-4 The HPA axis 
Stress induces the production of CRH from the PVN of the hypothalamus. This, in turn, stimulates 
the release of ACTH from the pituitary gland which activates the adrenal glands of the kidneys to 
produce glucocorticoids. The HPA axis works as a negative feedback loop, whereby 
glucocorticoids suppress further production of CRH and PVN by the hypothalamus and pituitary, 
respectively. 

 

1.6.2 Neurotransmitter modulation  

The monoamine neurotransmitters dopamine, serotonin (5-HT) and 

noradrenaline (NA) are released from neurons in the CNS and the periphery222. 

They are thought to be involved in a wide range of physiological and homeostatic 

functions including learning and memory, concentration and attention and blood 

pressure regulation. The relationship between monoamines and depressive 
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disorders were seen with the use of a monoamine oxidase inhibitor, which was 

originally developed for other purposes, but was quickly found to have anti-

depressive effects and, as such, drugs that augment the effects of monoamines 

are often used in the treatment of psychiatric conditions. The current treatment 

for MDD is the use of selective serotonin reuptake inhibitors (SSRIs). However, 

30% of patients do not respond to each given treatment which suggests that 

monoamines alone do not explain the pathogenesis of MDD307.   

Tryptophan (Trp) is a circulating essential amino acid that serves as the 

precursor to many metabolic pathways308. Trp may be used for the synthesis of 

5-HT, although around 90-95% of it is metabolised via the kynurenine (KYN) 

pathway (KP). This pathway facilitates the oxidative degradation of Trp into 

KYN, which is able to cross the BBB and enter the parenchyma where it can be 

metabolised by microglia, astrocytes and perivascular macrophages309. 

Metabolism of KYN is compartmentalised depending on the cell type and can 

lead to the production of both neurotoxic and neuroprotective substances. 

Kynurenic acid (KA), which is favoured by astrocytes, is thought to be 

neuroprotective, whereas quinolinic acid (QA), the preference of microglia, 

causes oxidative stress and is thought to be neurotoxic310. Microglia and 

infiltrating macrophages are the only cell types in the CNS that possess all the 

necessary enzymes for QA production311, and studies have suggested that QA 

production is the favoured path in patients suffering neuropsychiatric 

disorders312, 313 or acute inflammation314. The oxidation of Trp which is the 

initiating step in the KP is catalysed by the enzyme idoleamine 2,3-dioxygenase 

(IDO). IDO can therefore control the levels of 5-HT and stimulate the production 

of neuromodulators, both positive and negative315. 

Trp, as an essential amino acid, is important for the survival of many infectious 

microbes and its consumption is frequently seen during infection. Therefore the 

breakdown of Trp is actually a variant of the antimicrobial response which 

restricts its availability for infectious agents316. It has been shown that a number 

of factors involved in immunity can influence the levels of IDO. Pro-

inflammatory cytokines including, IL-2, IFNγ and TNFα, as well as secondary 

mediators such as PGE2, are potent activators of IDO, whereas the cytokines IL-4 

and IL-10 inhibit IDO317. Regulatory DCs and macrophages, which favour 

tolerance, express IDO as an immunosuppressive mechanism to catabolise Trp 
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degradation318. IDO expression is thought to be induced by IFNγ produced by 

activated T cells, which subsequently induces IDO-dependent arrest or apoptosis 

of T cells in a negative feedback fashion319. Patients suffering from MDD 

metabolise Trp at a higher rate than non-depressed controls, and a number of 

inflammatory conditions have been linked with higher expression of IDO320.    

 

Figure 1-5 The kynurenine pathway of tryptophan degradation 
IDO, which is upregulated by a number of inflammatory cytokines, is an enzyme which catalyses 
the oxidation of TRP into KYN. KYN is then further metabolised into either KA, which exhibits 
neuroprotective properties, or QA which is neurotoxic.  This pathway, initialised by the actions of 
IDO, prevents TRP from facilitating the production of serotonin, an important neurotransmitter.    

  

1.6.3 Peripheral inflammation and behavioural changes 

There is now an abundance of literature that links inflammation with changes in 

behaviour. These findings come from both human and animal studies and involve 

a number of arms of the inflammatory response. Along with human clinical data, 

in which chronic inflammatory diseases are associated with the onset of 

neuropsychiatric conditions including depression and anxiety, there are also 

rodent studies which have shown the same correlation using administration of 

immune stimuli and assessment of sickness behaviours5, 55, 246, 321, 322. Numerous 

behavioural tests for rodents have been developed and, although a degree of 
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scepticism will always remain with regards to the interpretation of the ‘mood’ of 

rodents, these have allowed us to specifically test the effects of inflammation 

on behavioural changes.  

It is now broadly accepted that rodents receiving inflammatory stimuli 

experience the onset of sickness behaviours, which serve as an ‘immunological’ 

model of MDD. The peripheral administration of recombinant cytokines or 

inflammatory cytokine inducers, such as LPS, triggers the classic symptoms of 

sickness including fever, reduction in food intake and activation of the HPA axis7, 

55, 56. Set-point body temperature is controlled by neurons in the preoptic 

hypothalamus; however pyrogenic cytokines can mediate changes to instigate a 

fever response. To do this, cytokines, which cannot freely pass through the BBB, 

must be able to communicate with the brain. I have already highlighted the 

numerous methods of communication between the periphery and the CNS 

(Section 1.5), be it neural, humoral or via the activation of the HPA axis, which 

could mediate the behavioural adaptations presented with immune modulation.        

With regards to human clinical data, there are a number of non-CNS diseases in 

which cytokine administration or cytokine blockage is used as a form of 

treatment. This has provided scientists with a suitable cohort for studying the 

effects of inflammatory cytokines on neurological wellbeing. The treatment of 

Hepatitis C patients with IFNα has implicated cytokine therapy in the onset of 

neuropsychiatric disorders including depression, anxiety and anger/hostility323. 

Kraus et al found that 35% of patients receiving IFNα treatment experienced the 

onset of clinically relevant depressive symptoms using the well-validated 

Hospital Anxiety and Depression Scale (HADS)324. They found that this was 

exacerbated when treatment was combined with the anti-viral drug Ribavirin, 

although a more recent evaluation by Udina et al showed a lower depression 

onset rate of 1 in 4325. These neuropsychiatric symptoms described by Kraus et al 

subsided in 15% of patients 4 weeks after IFNα treatment was terminated324. 

However, other studies have reported the incidence of interferon-induced 

depression as being anywhere between 0% and 90%326, 327. Similar findings have 

been reported in a double-blind study involving IFN-α treatment of patients with 

malignant melanoma, whereby the authors suggest that different mechanisms 

may govern the different manifestations that fall under the ‘umbrella’ of 

cytokine-induced sickness behaviours328. Psoriasis is another peripheral disease 
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that is commonly associated with the onset of neuropsychiatric symptoms such 

as depression, as well as substance abuse and suicidality. Published in The 

Lancet in 2006, Tyring et al noted some interesting findings from a phase III 

clinical trial involving the treatment of psoriasis patients for a 12 week period 

with the anti-TNF drug Etanercept329. 50% of patients experienced an 

improvement in their secondary symptoms of depression, measured using the 

Hamilton rating scale for depression (Ham-D) and the Beck depression inventory 

(BDI)329. These improvements in depressive symptoms did not significantly 

correlate with an improvement in psoriatic disease score as measured using the 

psoriasis area and severity index score (PASI). This suggests that TNFα is, on 

some level, associated with the neurological symptoms that are often presented 

by psoriasis patients. In addition to the knowledge gained from specific diseases, 

Reichenberg et al have performed studies in which humans were injected with 

endotoxin. Administration of LPS or Salmonella was found to induce depressive 

mood, anxiety, reduced food consumption and mild fever, phenotypes that were 

directly proportional to the levels of circulating inflammatory cytokines322, 330.  

1.6.4 Neurogenesis and plasticity 

Adult neurogenesis, which was identified in human tissue for the first time in 

1998141, occurs primarily at two specific sites within the brain. These are the 

subgranular layer of the dentate gyrus of the hippocampus and the 

subventricular zone of the lateral ventricle, although recent reports have 

suggested there may be new neuron formation in other areas142. In mice, it takes 

several days to weeks for new cells in the granule layer of the dentate gyrus to 

be fully incorporated into hippocampal circuitry and express mature neuronal 

markers, going through a four stage process of proliferation, migration, 

differentiation and survival331. This process is thought to take significantly longer 

in humans and non-human primates. There is still some debate regarding the 

function and necessity of new neurons but, due to their increased plasticity in 

comparison with mature neurons, they are thought to have a role in maintaining 

brain regions by replacing dead or dying cells. Furthermore, neurogenesis is 

positively correlated with increased cognition, memory and spatial learning332, 

333. Specifically, mice with increased levels of neurogenesis were found to excel 

in pattern separation tasks332. However, very recent publications have suggested 

that increased neurogenesis erodes memory, likened to the phenomenon of 
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infantile amnesia, which coincides, with the highest period of neuronal 

turnover334, 335.   

1.6.4.1 Inflammation and neurogenesis 

Several studies have shown that peripheral inflammation, MDD, ageing and 

neurodegenerative diseases can have a negative impact on the degree of adult 

neurogenesis336, which can be evaluated using either BrdU or doublecortin (DCX) 

immunostaining. Interestingly, a proportion of sufferers of MDD or other 

psychiatric conditions present with reduced hippocampal volume, measured 

using magnetic resonance imaging (MRI)337, 338. This reduction in volume is 

thought to inhibit neurogenesis and restrict neuronal plasticity. In agreement, 

Malberg et al have reported that long term anti-depressant treatment of rodents 

leads to a significant increase in adult neurogenesis in the hippocampus339 as 

does voluntary exercise, running and environmental stimulation340, 341. Sufferers 

of chronic depression also have reduced levels of brain derived neurotrophic 

factor (BDNF), an important factor in the regulation of synaptic plasticity342, 

which is rescuable with anti-depressant treatment343. It is thought that BDNF is 

particularly important during the stress response as it confers cognitive 

flexibility and the ability to adapt to environmental change344. Microglia can be 

both supportive and harmful to neurogenesis depending on their activation 

state345. In steady state conditions, ramified microglia ingest dying neurons in a 

manner that avoids the release of DAMPS, preserving brain homeostasis346. In 

addition, microglia are thought to release several factors that promote the 

proliferation and survival of new neurons. However, central or peripheral 

administration of LPS leads to microglial activation and a decrease in new 

neuron survival347. The survival of neurons negatively correlated with the 

number of activated microglia, an effect that could be blocked with the 

administration of the microglial inhibitor, minocycline348.  

Together, these findings highlight just how much of an effect immune-mediated 

processes can have on adult neurogenesis, an event that appears to be important 

for cognitive function, memory and plasticity.  
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1.7 Peripheral inflammation and the CNS 

There are unquestionable correlations between long term sufferers of chronic 

inflammatory illnesses of the periphery and a decline in mental health and 

quality of life. However, it has been very difficult to identify the biological 

mechanisms of these symptoms due to the outdated assumption that the CNS is 

devoid of influence from the periphery. As mentioned previously, the use of 

cytokine therapy has now provided solid evidence that certain diseases normally 

associated with the periphery can have a measurable and reversible biological 

effect on an individuals’ psyche.  

1.7.1 Psoriasis 

Although there are many chronic inflammatory diseases associated with the 

onset of neuropsychiatric conditions, psoriasis is of particular relevance to this 

thesis and will be focused on as a representative peripheral disorder with a 

negative correlation with MDD.  

Psoriasis is a debilitating, recurrent skin disease that affects around 2% of the 

Caucasian population. The most common type of psoriasis is characterised by 

silver plaque-like formations on the skin that are variform, sharply demarcated, 

raised and itchy. A strong genetic risk factor for psoriasis has been identified349-

352 and it is thought that the disease responds to a number of triggers including 

stress, infections, smoking and injury. The immune component of psoriasis was 

first noted with the success of treatment with general immunosuppressive drugs 

including cyclosporine and methotrexate and it was subsequently thought that 

psoriasis was driven by IFNγ-producing Th1 cells. However, it was later found 

that DCs and keratinocytes in psoriatic lesions overproduced IL-23353, which in 

turn implicated Th17 cells as the main drivers of the disease. IL-23 is considered 

the “master regulator” of the Th17 pathway and is essential for the survival and 

proliferation of these cells. As such, it is now known that T-cell mediated 

hyperproliferation of keratinocytes, thought to be driven primarily by IL-23-

dependent Th17 cell-produced IL-17 and IL-22, induces the classic pathology 

seen in psoriasis354. Recently, a new subset of T cells has emerged which, like 

Th17 cells, produce IL-22, but they do not produce IL-17 or IFNγ41. These cells, 

subsequently name Th22 cells, are found in high levels in inflammatory skin 
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lesions and are characterised by their expression of homeostatic chemokine 

receptors, CCR4 and CCR640, 355. IL-22 induces keratinocyte proliferation and 

epidermal hyperplasia and promotes the production of antimicrobial 

mediators356. As such, Th22 cells are now defined as pivotal in the pathology of 

psoriasis and are a new potential target in this, and many other, inflammatory 

skin diseases.  

In addition to the effects of psoriasis itself, there is also a high risk association 

between psoriasis and other inflammatory conditions including arthritis and 

inflammatory bowel diseases (IBD)357. More than 10% of psoriasis patients also 

present with arthritis. As mentioned, psoriasis is one of many chronic 

inflammatory disorders that are strongly associated with debilitating 

neurological side effects. It is therefore an interesting disease to study with 

regards to co-morbid associations and neurological correlations.   

1.7.2 Animal models of peripheral inflammation 

There are very few successful animal models of chronic peripheral inflammation 

that exhibit a true reflection of a human disease. Of the models that have been 

developed, most are of course used to study the pathology itself and thus focus 

on the affected tissue, and perhaps the response in the periphery, rather than 

the response in the CNS. Most of the peripheral inflammation models that have 

been used to study the CNS response have relied upon the systemic injection of 

inflammatory agents and have failed to reflect a specific disease state. Rather, 

they utilise the ability to activate the systemic immune system by introducing 

bacterial components directly into the blood. Although this allows us to visualise 

the response in the CNS, it is not as applicable to discerning the relationship 

between peripheral diseases and neuropsychiatric disorders in humans, as these 

comorbidities are often presented with tissue-specific chronic disorders.     

1.7.2.1 The Aldara model of skin inflammation 

Aldara cream is a prescription drug that is used topically for the treatment of 

actinic keratosis358, genital warts359 and superficial basal cell carcinoma360. 

Aldara cream contains 5% imiquimod (IMQ) as its active component, which 

activates TLR8 in humans and TLR7 in rodents. Over a short period of time, its 
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application to the skin causes a localised skin inflammation361, 362, and can 

trigger flare-ups in psoriasis patients363, and it has now been developed by 

scientists into a commonly used rodent model of psoriasis-like skin inflammation.  

The earlier animal models of psoriasis relied on either transgenic mice or 

xenotransplantation, both of which are costly and time consuming364. The mouse 

model of IMQ induced psoriasis on the other hand is favoured for its simplicity 

and is characterised by epidermal hyperplasia, acanthosis and leukocyte 

infiltration that are thought to be mediated through the IL-23/ IL-17 axis365. 

Mirroring human psoriasis, IL-23 and Th17 cell-associated cytokines are 

upregulated in lesions in the skin, and blockade of IL-23 is able to supress the 

inflammation366. Plasmacytoid DCs (pDCs), which express high levels of TLR7367 

and infiltrate the skin in a CCL2-dependent manner following IMQ application368, 

are considered by some to represent the main source of the type I IFN response 

seen in this model369, 370. However, others have reported that pDCs are 

dispensable for the localised effects to IMQ371. The initial skin response is 

associated with the upregulation of inflammatory cytokines in the skin, including 

IL-1β and IL-6, along with neutrophil infiltration and keratinocyte activation372. 

Interestingly, Aldara cream contains another active component in addition to the 

TLR7/8 ligand IMQ. Isostearic acid, which is present in the vehicle, has been 

shown to activate the inflammasome via NALP3 pathway independently of IMQ 

and can induce the production of the inflammatory cytokines IL-1β and IL-18372. 

Although some of the early effects of Aldara are thought to involve both active 

components, the requirement for TLR7 ligation and MyD88 signalling suggests a 

primary role for IMQ in driving the full response371, 372.   

This model provides a pathology very similar to that seen in human psoriasis, and 

allows us to investigate the effects of peripheral, tissue-based inflammation on 

brain biology to try to identify possible mechanisms that underpin the 

relationship between chronic inflammatory conditions and neuropsychiatric 

disorders.  
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1.8 Justification and thesis aims 

Having ruled out the previous misconception that the brain is isolated and 

protected from the periphery, it is clear that immune activation outwith the CNS 

can have a profound effect on the brain. The importance of this relationship has 

been highlighted in a number of studies in which the inflammatory cytokine 

profile has been manipulated. As such, it is clear that inflammation originating 

in the periphery can have a very fundamental effect on the neuropsychological 

state of patients. However, much remains to be elucidated with regards to the 

biological mechanisms underpinning this relationship. Using a well-characterised 

animal model of psoriasis-like skin inflammation, it is hoped that we can 

increase our understanding of how the immune system and the central nervous 

system are linked. Developments in this field have the potential to allow for 

better directed treatment that will improve both chronic inflammatory illness 

and neurological wellbeing.   

As such, the primary aim of this thesis is: 

• To investigate the effect of peripheral inflammation on the brain using a 

well characterised model of psoriasis-like skin inflammation. 

As this thesis progressed, further specific aims were established. Once we had 

identified the distinct transcriptional response in the brains of treated mice, we 

sought to determine, in more detail, the mechanisms driving the response to 

skin-based inflammation. This was done using a range of peripheral inflammatory 

models, both TLR-dependent and TLR-independent, or ‘sterile’. We also aimed 

to determine whether transcriptional chemokine expression in the brain could 

induce immune cell recruitment and we sought to evaluate what role, if any, 

atypical chemokine receptor ACKR2 had in the brain response to cutaneous 

inflammation (using ACKR2 knock-out mice). Finally, we wanted to understand 

whether peripheral inflammation could induce a functional output. The two 

parameters we chose to examine were behaviour, due to the well-described 

relationship between inflammation and sickness behaviour, and neurogenesis. 

Neurogenesis is sensitive to many other inflammatory insults and this, along with 

the much-localised expression of ACKR2 at known sites of adult neurogenesis, 

highlighted neurogenesis as an interesting function to assess in our studies.  
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2 Materials and Methods 

2.1 General materials & reagents 

Plastics: All plastics were purchased from Gibco (Invitrogen, Paisley UK) or BD 

Biosciences (Oxford, UK) unless stated otherwise. 

Tips: All tips were sterile filter tips purchased from Starlab 

EDTA: 186.1g ethylenediaminetetraacetic acid (EDTA) (Sigma Aldrich) and 20g 

sodium hydroxide (NaOH, Sigma Aldrich) was dissolved in 900ml distilled H20 

(dH20), and adjusted to pH8 using hydrochloric acid (HCl, Sigma Aldrich). This 

was subsequently made up to 1 litre (L) using dH20. 

1% acid alcohol: 1% concentrated HCl was added to 100ml of 70% Ethanol (EtOH) 

Citrate buffer (0.1 M): 2.1g citric acid monohydrate (Sigma Aldrich) was 

dissolved in 700 ml dH2O. 2M NaOH was added to adjust the solution to pH6. The 

total volume was made up to 1L of buffer with addition H2O. 

Eosin Y solution: 1% Eosin Y (Cell Path) was added to tap water 

ELISA wash buffer: 1x Phosphate buffered saline (PBS) (Invitrogen) was mixed 

with 0.5% Tween 20 (Sigma Aldrich) 

Tris-acetate EDTA (TAE) Buffer: A 50x stock solution of TAE buffer was made by 

dissolving 242g Tris base (Sigma Aldrich) in 750ml dH20. 57.1ml glacial acetic 

acid (Sigma Aldrich) and 100ml 0.5M EDTA was then added and the buffer was 

made up to 1L with dH20. Before use, stock buffer was diluted 1:50 in dH20. 

Scott’s tap water: 3.5g sodium hydrogen carbonate (NaHCO3) and 20g 

magnesium sulphate (MgSO4) were added to 1L of distilled H2O. Thymol (Sigma) 

was added to prevent mould formation.  

10x Tris Buffered Saline with Tween 20 (TBST): For 1L of buffer, 24.23g Tris 

base (200mM), 87.66g sodium chloride (NaCl, 1.5 M) and 10ml Tween® 20 (1%) 
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were added to 800ml of distilled H2O. The solution was adjusted to pH 7.6 using 

concentrated HCl and diluted 1/10 to obtain 1x TBST. 

2.2 In Vivo Procedures 

2.2.1 Animals 

C57BL/6 WT mice were either bred at the Central Research Facility at the 

University of Glasgow or purchased from Harlan Laboratories. GGDKB mice 

(ACKR2 KO mice) were bred at the Biological Services Unit at the Beatson 

Institute, University of Glasgow and were transferred to the Central Research 

Facility prior to being put on procedure. All mice were given at least one week 

to acclimatise to the facility before being used and were maintained in specific 

pathogen free conditions. Mice were age and sex matched and used between 6 – 

9 weeks of age. All experiments received ethical approval and were performed 

under the authority of UK Home Office Licences.  

2.2.2 Induction of Peripheral Inflammation 

2.2.2.1 Aldara Model 

C57BL/6 female mice were shaved on their dorsal skin. 24 hours later mice were 

treated with either Aldara cream (MEDA, 5%v:v Imiquimod, 1/3 of a sachet per 

mouse, 80mg) or aqueous control cream (Boots, UK, Liquid paraffin B.P. 6% w/w, 

White Soft Paraffin B.P. 15% w/w, Purified Water, Emulsifying Wax, Chlorocresol 

0.1% w/w) of the same quantity which was applied to the area of shaved skin. 

Treatment was repeated every 24 hours for 5 days. Mice were weighed after 

each application. Mice were euthanised 24 hours after the final application by 

CO2 inhalation. 

2.2.2.2 Aldara Timecourse Model 

C57BL/6 female mice were were treated with Aldara cream as described. Mice 

were euthanised by CO2 inhalation 24 hours following the first, third or fifth 

application of Aldara depending on their group (D1, D3 and D5, respectively).  
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2.2.2.3 TPA Model 

C57BL/6 female mice were shaved on their dorsal skin. 24 hours later mice were 

treated with either 12-O-Tetradecanoylphorbol-13-acetate (TPA) (Sigma, 150µl 

100µM per mouse) or equivalent volume acetone (VWR International) which was 

applied to the area of shaved skin. Treatment was repeated every 24 hours for 5 

days. Mice were weighed after each application. Mice were euthanised 24 hours 

after the final application by CO2 inhalation. 

2.2.2.4 TPA Timecourse Model 

C57BL/6 female mice were treated with TPA (150µl 100µM per mouse) as 

described. Mice were euthanised by CO2 overdose 24 hours following the first, 

third or fifth TPA application depending on their group (D1, D3 and D5, 

repectively). 

2.2.2.5 Soluble Imiquimod Model 

C57BL/6 female mice were injected intraperitoneally (I.P) with either soluble 

Imiquimod (Source Bioscience, 100µl 1mg/ml per mouse) or equivalent volume 

PBS. Treatment was repeated every 24 hours for 5 days. Mice were weighed 

after each application. Mice were euthanised 24 hours after the final application 

by CO2 inhalation. 

2.2.2.6 Topical Imiquimod Model 

C57BL/6 female mice were shaved on their dorsal skin. 24 hours later they were 

treated with 80mg aqueous control cream supplemented with 5% v:v soluble 

Imiquimod, or equivalent volume aqueous control cream alone. Treatment was 

repeated every 24 hours for 5 days and mice were weighed after each 

application. Mice were euthanised 24 hours following the final application by 

CO2 inhalation.  
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2.3 Tissue Isolation following In Vivo Models 

2.3.1 Perfusion 

The right atrium of the heart was cut to allow blood to drain into the chest 

cavity without compromising the circulation. Perfusions were performed by 

injecting 20ml of PBS, warmed to 37°C, into the left ventricle of the beating 

heart using a 23G needle.  

2.3.2 Isolation of plasma from peripheral blood 

Mice were culled by CO2 inhalation. An incision was made in the right atrium and 

blood was collected in a 1ml syringe flushed with EDTA. Blood was immediately 

transferred to a 1.5ml eppendorf tube containing 20µl EDTA. Plasma was 

isolated by centrifugation at 300g for 10 mins. Taking care not to disturb the 

pellet, plasma was transferred to a fresh 1.5ml eppendorf tube before being 

centrifuged again at 10,000g for 5 mins. Platelet-free plasma (supernatant) was 

collected and was stored in a fresh 1.5ml eppendorf tube at -80°C. 

2.3.3 Isolation of leukocytes from peripheral blood 

Mice were culled by CO2 overdose; a recognised schedule 1 technique. An 

incision was made in the right atrium and blood was collected in a 1ml syringe 

flushed with EDTA. Blood was immediately transferred to a 1.5ml eppendorf 

tube containing 20µl EDTA. After the removal of the plasma, cells were 

incubated in a 15ml falcon tube in 5ml of 1X red cell lysis buffer (Miltenyi) for 10 

mins at room temperature. Tubes were centrifuged for 10 mins at 300g to allow 

the cells to pellet, and the supernatant was poured off. Cells were washed with 

10ml PBS, centrifuged as before and then transferred to a fresh 1.5ml eppendorf 

tube. Cells were washed for a final time with 500µl PBS and centrifuged at 600g 

for 3 mins. The supernatant was poured off and the pellet was resuspended in 

350µl of RLT buffer. PBL samples were stored at -80°C until they were processed 

for RNA purification.      
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2.3.4 Brain Dissection 

Following perfusion, mice were decapitated and the skin on the head was cut 

back to reveal the skull. Scissors were carefully inserted under the 

interhemispheric fissure and the skull was cut open. Forceps were used to pull 

the skull apart allowing for the brain to be dissected out. The olfactory bulb, 

brainstem and the meninges were carefully removed. Dissected brains were 

either submerged in formalin for 24 hours prior to processing or were ‘snap-

frozen’ in liquid nitrogen and stored at -80°C. 

2.3.5 Skin Dissection 

Following perfusion, an incision was made along the base of the shaved and 

treated area of the dorsal skin of the mice. Skin was gently lifted away from the 

underlying muscle and the patch of treated skin was cut off. This area was cut in 

two and one half was ‘snap-frozen’ in liquid nitrogen and stored at -80°C. The 

other half was laid out flat on filter paper (epidermis-side up) to prevent it from 

folding, and was then inserted into a bijoux containing 10% neutral buffered 

formalin. Tissue was fixed overnight in formalin before being processed, as 

described later.   

2.3.6 Recovery of Spleens 

The spleens of perfused mice were extracted and were stored in PBS on ice. 

Subsequently, spleens were weighed and photographed. 

2.4  Gene Expression Analysis 

2.4.1 Lysate preparation and phase separation of animal tissue 

Tissue samples were homogenised in 1ml of QIAzol Lysis Reagent (Qiagen) using a 

TissueLyser LT (Qiagen) homogeniser for 10 minutes. Lysate was then incubated 

for 5 minutes at room temperature before 0.2ml chloroform was added. Tube 

was shaken vigorously by hand, incubated for 2-3 minutes and then centrifuged 

at 12,000g for 15 minutes at 4°C. The colourless upper phase (containing the 

RNA) was transferred to a fresh eppendorf tube prior to RNA extraction.   
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Cells were lysed in 350µl (>1 x 105 cells) of RLT buffer and stored at -80°C until 

required. Prior to RNA purification, cells were thawed and were passed through 

a QIAshredder (Qiagen) by centrifugation at full speed for 1min. 

2.4.2 RNA extraction using silica-gel membrane technology 

RNA was extracted following the RNeasy Mini Kit protocol (Qiagen) as described 

in the manufacturer’s handbook. RNA was precipitated by adding 1 volume of 

70% EtOH in RNase-free H2O. RNA from each sample was collected by 

centrifugation through an RNeasy spin column (Mini Kit). Genomic DNA was 

digested on-column as described in the protocol. Briefly, a stock solution of 

DNase I enzyme (in buffer RDD, diluted 1/8) was prepared and 80µl was added to 

each sample and incubated for 15mins. Spin columns were washed several times 

to remove any protein impurities and then air dried. RNA was eluted from the 

columns in30- 50µl RNase-free H2O. 

2.4.3 Assessment of RNA Integrity 

The quality of RNA was assessed by the University of Glasgow Polyomics Facility 

using a Bioanalyzer 2100 (Agilent) on a Nano chip in accordance with 

manufacturer’s instructions. All chips and reagents used were supplied in the 

RNA 6000 Nano kit (Agilent). Nuclease-free H2O was used to dilute the RNA to 

the following concentration:  

Nano chip  

Total RNA   5-500 ng/ml  

mRNA    25-250 ng/ml 

To prime the chip, the micro-channels were filled with a sieving polymer matric 

and fluorescent dye. Pressure was applied using a priming syringe (supplied) to 

disperse the gel-dye mix throughout the microfluidics of the chip. 9µl was also 

applied to an additional 2 wells as described in the protocol.  

After priming, 5µl of RNA 6000 marker was applied to each of the wells. 

Subsequently, 1µl of RNA 6000 nano-ladder was pipetted into the ladder well 

and 1µl of each diluted RNA sample was added to each of the sample wells. 
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Chips were vortexed briefly to mix contents and then RNA was separated in a 

microchannel according to size using the Bioanalyzer 2100. 

 
2.4.4 Affymetrix GeneChip Arrays 

Microarray assays were performed by the Sir Henry Wellcome Functional 

Genomics Centre at the University of Glasgow. The quality of total RNA samples 

was assessed using an Agilent 2100 Bioanalyzer in accordance with 

manufacturer’s instructions. 1µg of purified total RNA was amplified by in vitro 

transcription and converted to sense-strand cDNA using a WT Expression kit 

(Ambion).  cDNA was then fragmented and labelled using an Affymetrix 

GeneChip WT Terminal Labelling kit. Fragmented cDNA samples were quality-

checked using the 2100 Bioanalyzer and then hybridized to Affymetrix GeneChip 

Mouse Gene 1.0 ST Arrays. Procedures were carried out as described by the 

manufacturers. 

Data were pre-processed and analysed using GeneSpring GX software and were 

normalised using RMA 16. Prior to analysis, background correction was 

performed. Background correction is arguably the most important step in probe 

level processing and is a non-linear correction performed on a chip-by-chip 

basis. Background signal may be caused by non-specific binding and optical noise 

and needs to be accounted for in order to determine the true signal intensity. 

The Affymetrix GeneChip array used in this study utilises an innovative design 

and includes 17,000 generic background probes that cover the full range of GC 

content.  The modified GC-RMA algorithm was selected as the favoured method 

to correct this array for background noise. Using the signal intensity from the 

17,000 anti-genomic probes to determine the background, the GC-RMA algorithm 

corrects for it using three sequential steps: 

1. Optical background correction: to account for optical noise introduced by 

the scanner that measures the hybridisation efficiency 

2. Adjustment of probe intensity through non-specific binding using the 

background probe signal intensities 
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3. Adjustment of probe intensity through gene-specific binding where the 

signal intensities are corrected for the effect of PM probe affinities. 

Essentially, by following these three steps, the median signal intensity of the 

background probes possessing an equal GC content is subtracted from the signal 

intensity of the probe set. This provides what is considered to be the true signal 

intensity.     

Normalised and corrected data was subsequently analysed using unpaired t-tests 

to determine the significance of each gene in Aldara-treated mice compared to 

control mice. P-values were adjusted for multiple comparisons using the 

Benjamini Hochberg multiple comparison method. Microarray profiling data were 

deposited in the National Center for Biotechnology Information Gene Expression 

Omnibus database with the series entry identifier GSE72214. Functional 

clustering was performed using the Database for Annotation, Visualization and 

Integrated Discovery (DAVID) v6.7.  

2.4.5 cDNA Synthesis from RNA 

RNA was converted to complementary DNA (cDNA) using Precision nanoScript RT 

kit (Primerdesign). Following quantification using a Nanodrop (ThermoFisher), 

RNA was diluted to equal concentrations (100-2000ng, depending on experiment) 

with RNase-free H2O. The following components were added to 200µl thin-walled 

PCR tubes and incubated at 65°C for 5 minutes: 

RNA (100-2000ng)    9µl 

Oligo DT Primer Mix    1µl 

Total Reaction Volume   10µl 
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The reactions were cooled to room temperature, allowing the primers to anneal 

to the RNA. The following components were added from a master mix: 

10X Reaction Buffer    2µl 

dNTP mix (25mM each dNTP)  1µl 

100mM DTT     2µl 

dH2O      4µl 

Reverse Transcriptase    1µl 

Total Reaction Volume   20µl 

A ‘-RT’ control was included during cDNA synthesis in which the reverse 

transcriptase enzyme was substituted with 1µl of nuclease- free H2O. Reactions 

were incubated for 10 minutes at 25°C to extend the primers then for 20 

minutes at 65°C to synthesise cDNA. The reactions were then terminated by 

incubating at 75°C for 15 minutes. cDNA was diluted 1/10 with distilled H2O and 

stored at -20°C. 

2.4.6 Polymerase chain reactions 

Polymerase chain reactions (PCRs) were performed using pre-made red PCR 

master mix (Rovalab) as described below: 

Red PCR mastermix  45µl 

Forward primer   0.5µl 

Reverse primer   0.5µl 

Template cDNA   1-2µl 

Nuclease-free H2O* 

Total Volume   50µl 

*Reaction made up to 10µl in H20. 
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PCR reactions were run in a thermocycler set for the following programme: 

1. 95°C 3 minutes 

2. 95°C 15 seconds 

3. 60°C 15 seconds   35-40 cycles 

4. 72°C 45 seconds 

5. 72°C 5 minutes 

6. 4°C forever 

2.4.6.1 Gel electrophoresis of PCR products 

Following PCR reactions, products were separated on a 2% agarose gel containing 

ethidium bromide. To make the gel, the appropriate quantity of agarose (Sigma) 

was weighed out and dissolved in TAE buffer by heating in a microwave. 

Ethidium bromide was added to the solution before it was poured into a gel 

cassette. ‘Combs’ were used to create wells of an appropriate size and the gel 

was left to set. Once samples were loaded, the gel was left to run in TAE buffer 

for approximately 1hr at 100 volts. PCR products were visualised under 

ultraviolet (UV) light using an Alpha 2200 Digital UV-Visphoto Imager (Alpha 

Innotech). In order to verify the size of the products, samples were run alongside 

one of two DNA ladders; Hyperladder I for products <10 kilo bases (kb) or 

Hyperladder IV (both Bioline) for products <1000 base pairs (bp).  

2.4.7 Quantitative Real-Time PCR 

2.4.7.1 Primer design 

In order to detect and quantify genes of interest using SYBR green quantitative 

real- time PCR (qRT-PCR), two sets of primers were designed. ‘Inner’ primers, or 

QPCR primers, were necessary for the amplification of the target gene whereas 

the ‘outer’ primers (Table 2-2) were designed to function as standard templates. 

Standard primers flank the amplicon targeted by the qRT-PCR primers, along 

with 20bp’s either side, amplifying this region. Primers were designed using 

Primer3 Input software version 4.0.0 (http://primer3.ut.ee/), adhering to the 

following conditions to ensure their specificity and efficiency.    
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Specification for QPCR primers: 

Primer size      18 to 24 bp (20bp optimal) 

Melting temperature (Tm)    59.5°C to 61°C (60°C optimal) 

GC content      40% to 65% (50% optimal) 

Max self-complementarity    3 (≤2 optimal) 

Max 3’ complementarity    1  

Amplicon size     ≤150bp  

Standard primers were designed to the same stringent criteria, however the 

amplicon size could range from 100bp to 2000bp and, if need be, the self- 

complementarity could be increased to 5.  

2.4.7.2 Primers preparation for quantitative PCR 

Primers were synthesised by Integrated DNA Technologies (IDT, Belgium) by 

standard DNA synthesis and desalination, to remove any impurities. Standard and 

QPCR primers were resuspended in nuclease- free H2O to a concentration of 

100µM and forward and reverse primers were subsequently mixed 1:1 to obtain a 

final primer concentration of 50µM. The specificity of the primer sequences was 

assessed using Basic Local Alignment Search Tool (http://blast.ncbi.nlm.nih.gov/ 

Blast.cgi), before being confirmed by PCR using cDNA known to contain the 

region of interest. All reconstituted primer pairs were stored at -20°C 
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Table 2-1 Primer sequences used for RT-PCR 

Gene Forward Sequence Reverse Sequence 

TBP 5’ TGC TGT TGG TGA TTG TTG GT 3’ 5’ AAC TGG CTT GTG TGG GAA AG 3’ 

CXCL10 5’ GCT CAA GTG GCT GGG ATG 3’ 5’ GAG GAC AAG GAG GGT GTG G 3’ 

Gbp2 5’ CCA AGC GAG ATG CCT TTA TC 3’ 5’ TTC TTC TTC CAG GGG TCC A 3’ 

Gbp3 5’ ACC CAT TTG TCT GGT GGA AA 3’ 5’ GAG GCT GTG CTA TCT GCT CAA 3’ 

Gbp4 5’ CCT CTT CCT CTT TCT TCT TCC TTT 3’ 5’ GTG TTT CTA TGG GGG TGT GG 3’ 

Gbp6 5’ AAA CAC ACT CCC TCT CCC AGT 3’ 5’ TGA AGC CAG TCA ACA TCC AG 3’ 

Ifit1 5’ ACC ATG GGA GAG AAT GCT GAT GGT 3’ 5’ TGA TGT CAA GGA ACT GGA CCT GCT 3’ 

Ifitm3 5’ CGC TCC ATC CTT TGC CCT TCA GTG 3’ 5’ GCC CCC ATC TCA GCC ACC TCA T 3’ 

Igrm1 5’ AGT TCA GCA GGT AGC CCA GA 3’ 5’ TCA GCC TCA GTT TCC AGT CC 3’ 

Irf7 5’ GAA GAG GCT GGA AGA CCA ACT 3’ 5’ AGA TAA AAC GCC CTG TGC TG 3’ 

Lgals3bp 5’ ATT CCT GTG TCC CCT CCT TC 3’ 5’ GTG AGT GCT GGC TGA AAC CT 3’ 

Oasl2 5’ AGA AAG GGA TGG GAA CAG GTG GCT 3’ 5’ GGGTCGGGGACTAAGCAGGGTT3’ 

Rtp4 5’ GCA TCT TTG GGT GAG AAG GT 3’ 5’ ATG GGG AGG AAC TCT TTG GT 3’ 

Sp100 5’ CAT CAT TTT CCT TGG CTG GT 3’ 5’ CAT TTT GGT TGG TCC TTG CT 3’ 

Stat1 5’ GAA AAA CGC TGG GAA CAG AA 3’ 5’ CGA CAG GAA GAG AGG TGG TC 3’ 

CCL3 5' CAG CCA GGT GTC ATT TTC CT 3' 
5' CAG GCA TTC AGT TCC AGG TC 3' 

 

CCL5 5' CTG CTG CTT TGC CTA CCT CT 3' 5' ACA CAC TTG GCG GTT CCT T 3' 
 

CCL9 5' CTC ACA ACC ACG GAC CTA CA 3' 5' CAC TGG GGA AGA CCA AAG AA 3' 
 

CXCL13 5' CAT ACC CAA CCC ACA TCC TT 3' 
5' GCC TGT TCT CAA ATA GCC TTT C 3' 

 

CXCL16 5' TGC TGA CCC TTT GCC TCT AC 3' 5' GGC TGG CTT GGA CTA AAT AAC A 3' 
 

CCR5 5' TTT GTT CCT GCC TTC AGA CC 3' 5' TTG GTG CTC TTT CCT CAT CTC 3' 
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Table 2-2 Standard sequences used for RT-PCR 
Gene Forward Sequence Reverse Sequence 

TBP 5’ GAG TTG CTT GCT CTG TGT GCT G 3’ 5’ ATA CTG GGA AGG CGG AAT GT 3’ 

CXCL10 5' CGA TGG ATG GAC AGC AGA GAG CCT 3' 5' GAC AAG GAG GGT GTG GGG AGC A 3' 

Gbp2 5’ TTT GTG GGC TTC TTT CCA AC 3’ 5’ CTT TGC TGC CTC TGT GAG TG 3’ 

Gbp3 5’ CCC CAG AGA GGA CAA AGT GA 3’ 5’ ACC CCC CAG GAA CAG AGA AAG 3’ 

Gbp4 5’ TTG GTT TTG TGA GGG CAT TT 3’ 5’ ATC CAG TAA GGG GAG GCA GT 3’ 

Gbp6 5’ GTC TTC TCT TCC CCC ACC TC 3’ 5’ GGC TCC CAA TAA AAC CGC AC 3’ 

Ifit1 5’ GCA AGA GAG CAG AGA GTC AAG GCA 3’ 5’ GCA GGG TTC ATT TCC CCA GTG AGC 3’ 

Ifitm3 5’ TCT GAG AAA CCG AAA CTG CCG CA 3’ 5’ TGT AGG GAG GGG CAA GGA GGG A 3’ 

Igrm1 5’ CTG CTC CAC TAC TCC CAA C 3’ 5’ CTC TCC AGC CCA AAA ACA AA 3’ 

Irf7 5’ CTG TGA CCC TCA ACA CCC TAA 3’ 5’ GAG CCC AGC ATT TTC TCT TG 3’ 

Lgals3bp 5’ TGG TCA TAC GCC CCT TCT AC 3’ 5’ CAC AGG AAA TCC CAC AGG AC 3’ 

Oasl2 5’ AGA AAG GGA TGG GAA CAG GTG GCT 3’ 5’ GGG TCG GGG ACT AAG CAG GGT T 3’ 

Rtp4 5’ AGA CAG TGC TTG GCA GGT TC 3’ 5’ CTA TGG GGA AGG GCA TTT TT 3’ 

Sp100 5’ CCG AAT GGG TCA TCC TTA GA 3’ 5’ TCT TTT TCT GCG TCG TTG TG 3’ 

Stat1 5’ CCT ATG AGC CCG ACC CTA TT 3’ 5’ GGA AGC AGG TTG TCT GTG GT 3’ 

CCL3 5' CCA CGC CAA TTC ATC GTT 3' 5' TAT GCA GGT GGC AGG AAT GT 3' 

CCL5 5' CCC TCA CCA TCA TCC TCA CT 3' 5' TCA GAA TCA AGA GGC CCT CTA TCC 3' 

CCL9 5' GCC CTC TCC TTC CTC ATT CT 3' 5' GCC CTC TCC TTC CTC ATT CT 3' 

CXCL13 5' AAC GCT GCT TCT CCT CCT G 3' 5' CCA TCT CGC AAA CCT CTT GT 3' 

CXCL16 5' CGC CTA CAG CAA GAG TGG A 3' 5' AAG AGT GTT CCC CAA GAG CA 3' 

CCR5 5' ACC CAT TGA GGA AAC AGC AA 3' 5' CCT CTG AGG GGC ACA ACA AC 3' 

 

2.4.7.3 Generation of standard templates 

The expression levels of target genes can be quantified by comparing them 

against a standard curve. This was generated by performing a PCR reaction 

(described in section 2.4.6) using cDNA known to contain the target amplicon, 

the products of which were separated using gel electrophoresis (2.4.6.1). The 

relevant band, whose size corresponded with that of the desired product, was 

subsequently cut from the gel using a scalpel. The bands were then purified 

using a QIAquick Gel Extraction Kit (Qiagen) in accordance with the 

manufacturer’s instructions and the quantity of DNA was assessed using the 
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Nanodrop 1000. The following calculation was used to assess the absolute 

number of amplicon copies:  

Copies (per µl) =  (Concentration (g/µl) X Avogadro’s Constant)  

    Molecular weight of amplicon  

where the molecular weight of the amplicon is equal to the size of the amplicon 

in base pairs, multiplied by 660 Daltons, the average molecular weight of one 

base paired nucleotide. Purified standards were diluted in 1 X 10-2 TE buffer and 

stored at -20°C until use. 

2.4.7.4 Quantitative real-time PCR 

qRT-PCR was performed using a Prism® 7900HT Sequence Detection System 

(Applied Biosystems) in accordance with manufacturer’s guidelines. qRT-PCR 

amplifications were performed in triplicate within wells of a 96-well or 384-well 

PCR plate (both StarLab). Along with biological samples, each plate was 

performed with the addition of a –RT (2.4.5) and non- template control (NTC). 

NTCs were void of cDNA, substituting nuclease- free H2O in its place. Each 

reaction contained the following: 

      96-Well  384-Well 

SYBR® Green FastMix1   7.5µl   5µl 

RNase-free H2O    5.7µl   3.85µl 

Forward Primer2    0.15µl   0.075µlReverse 

Primer2     0.15µl   0.075µl 

cDNA (from a 1/10 dilution3)  1.5µl   1µl 

  

                                         
1 Purchased from Quanta Bioscience 
2 Primers listed in Table 2-1 
3 Diluted in nuclease-free H2O prior to experiment 
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2.4.9 Determining relative gene expression 

QPCR results were analysed using Sequence Detection System 2.4 software, 

whereby an absolute copy number for each target gene was generated based on 

the values of the standard curve. Comparative studies were previously 

performed in our lab to evaluate housekeeping gene expression across different 

tissues and found that tata binding protein (TBP) was the most consistent within 

the brain. Therefore, to eliminate variations caused by differences in starting 

RNA concentrations, the absolute copy numbers were normalised against TBP as 

follows: 

Normalised Copy Number = Target Gene Copy Number ÷ TBP Copy Number   

Subsequently, the normalised copy number was then used to calculate 

magnitudes of fold change by comparing treatment groups against relevant 

control groups.  

2.5 Protein Expression Analysis 

2.5.1 Enzyme-linked immunosorbent assay 

Cytokine levels in murine plasma were analysed using Duoset enzyme- linked 

immunosorbent assay (ELISA) Development System kits (R&D Systems). Frozen 

samples were thawed thoroughly before use, and were diluted appropriately 

using the relevant reagent diluent. The protocol was followed as outlined in the 

manufacturers’ handbook using half volume plates (Costar, Corning 

International), so all sample and reagent volumes used were half of that outlined 

in the protocol. Plates were read using a TECAN plate reader to provide optical 

density (O.D) readouts which were then converted to protein concentration 

values based on the standard curve of known quantities. 

2.5.2 Histology 

2.5.2.1 Tissue Preparation 

Samples for histological analysis were dissected as previously described. Samples 

were immediately submerged in formalin and kept at room temperature for 24 

hours before being processed. 
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2.5.2.2 Tissue Processing 

Following fixation in neutral buffered formalin for 24 hours, tissues were 

processed using an automated Shandon Citadel 1000 processor (ThermoFisher), 

whereby they were dehydrated over increasing concentrations of ethanol, 

submerged in xylene and infiltrated with paraffin wax (see details below).  

1. 70% Ethanol   1 hour 

2. 90% Ethanol   1 hour 

3. 95% Ethanol   1 hour 

4. 100% Ethanol   1x 1 hour, 1x 2 hours, 1x 2.5 hours 

5. Xylene    2x 1 hour and 1x 1.5 hours 

6. Molten paraffin wax  2x 4 hours (60-65°C)  

Following processing, samples were inserted into metal moulds and embedded in 

paraffin wax using a Shandon Histocentre 3 (ThermoFisher). Wax blocks were 

subsequently cooled on an integrated cold plate until set hard, and were stored 

at room temperature until use.  

2.5.2.3 Tissue Sectioning 

Sections of skin and brain, at 5µm and 7µm thickness respectively, were cut 

using a Shandon Finesse 325 microtome (ThermoFisher). Cut sections were 

floated onto a water bath at a temperature of 40°C to smooth out wrinkles 

before being adhered to Microslide Superfrost Plus slides (VWR International). 

Slides were left on a Raymond A Lamb Hotplate (ThermoFisher) set to 55°C for 

approximately 1 hour to dry. Slides were stored at room temperature until use. 

2.5.2.4 Haematoxylin & eosin (H&E) staining 

Tissue sections were deparaffinised by being submerged in absolute xylene (VWR 

International) for 3 minutes before being rehydrated across a gradient of 100% 

and 70% ethanol solutions for 20 seconds each. Sections were rinsed in running 

water for 2 minutes before being transferred to Haematoxylin Z Stain (CellPath) 

for 6 minutes. Sections were rinsed under running water for 2 minutes, 

differentiated in 1% acid alcohol for 30 seconds and then rinsed again. Sections 

were immersed in Scott’s tap water for 2 minutes and were then rinsed, prior to 
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being counterstained in Putt’s Eosin (CellPath, diluted 1:4 with dH2O) for 6 

minutes. Sections were rinsed for a final 2 minutes and were then dehydrated 

along a gradient of 70%, 90% and 100% ethanol solutions for 20 seconds each. 

Finally, sections were placed in absolute xylene for 3 minutes before being 

mounted in DPX (Leica Biosystems).   

2.5.2.5 Doublecortin (DCX) Fluorescent Staining 

Brains were cut sequentially along the midsaggital plane (from the inside to the 

outside) to 7µm thick sections. Sections were deparaffinised in absolute xylene 

for 5 minutes before being dehydrated across a gradient of 100%, 90% and 70% 

ethanol solutions for 2 x 3 minutes each. Sections were rehydrated in H2O for 5 

minutes before being washed in TBST for 5 minutes. Antigen retrieval was 

performed using citrate buffer, in which the sections were boiled for 8 minutes. 

Slides were left to cool for 15 minutes at room temperature, before being 

washed in H2O and TBST for 5 minutes each. Sections were blocked for 1 hour at 

room temperature using 20% normal horse serum (Vector Laboratories) in TBST 

containing 4 drops of Avidin (Vector Laboratories) block, before being washed 

again in TBST. Primary antibody (Polyclonal goat anti-mouse DCX (Santa Cruz 

Biotechnology) 1:100/ 2.5% normal horse serum/ 2.5% mouse serum (Invitrogen) 

in DAKO diluent (DAKO) + 4 drops Biotin (Vector Laboratories) block/ml) or 

isotype (Goat IgG (Vector Laboratories) 1:2500/ 2.5% normal horse serum/ 2.5% 

mouse serum in DAKO)/ negative control was added to the slides and incubated 

overnight at 4°C. The following day, slides were brought to room temperature, 

washed twice in TBST and were incubated with the secondary antibody (Horse 

anti-goat IgG 1:200/ 2.5% normal horse serum/ 2.5% mouse serum in DAKO) for 

30 minutes at room temperature. Cells were washed in TBST, incubated with 

FITC-Avidin D (1:500 in PBS, pH 8.0) (Vector Laboratories) for 40 minutes in the 

dark at room temperature, washed once again and then mounted with 2 drops of 

Vectashield Hardset containing DAPI (Vector Laboratories).  

2.5.3 Luminex 

Plasma samples from skin inflammation models were isolated as described 

previously, and were stored at -80°C until use. The mouse cytokine 20-plex 

panel was used, along with the extracellular protein buffer reagent kit (Life 
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Technologies), to determine the concentration of 20 cytokines in the plasma 

samples (Table 2-3). Assay was carried out in accordance with the 

manufacturer’s instructions. Briefly, samples were diluted 1:4 with assay diluent 

and were added in triplicate to a 96-well filter plate coated with premixed 

beads, along with an appropriate standard curve and blanks. Plates were 

wrapped in tin foil and were left on a plate shaker at room temperature for 2 

hours. Subsequently, plates were washed, Biotinylated Antibody mix was added 

and the plates were incubated for 1 hour at RT. Following another wash step, 

Streptavidin-RPE was added and plates were left shaking at room temperature 

for 30 minutes. Plates were washed for a final time before results were read 

using a Bio-Rad Bio-Plex machine and analysed with Bio-Plex Manager 4.1 

software. 

Table 2-3 Cytokines and chemokines analysed using Luminex 

 

2.6 Behavioural Models 

2.6.1 Burrowing Model with Aldara Treatment 

Burrowing tubes were commissioned to a local model maker who constructed 

twenty identical tubes to the dimensions and specification outlined in the Nature 

Protocol373 and shown in Figure 2-1. 200g of normal food pellets were deposited 

into each tube, which were then placed individually into large cages, against the 

back right corner. Mice were acclimatised overnight in group cages, whereby one 

burrowing tube containing 200g of food was left in a cage of 5 mice overnight. 

The tubes were removed the following morning. Baseline tests were carried out 

at for a 2hr and a 24hr time-point. To do so, mice were individually caged and 

left between 2pm and 4pm. At 4pm the contents of each tube was weighed and 
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returned to the respective tube. Mice were then left overnight in their single 

cages until the next morning when the remaining food pellets were weighed 

again. Baseline texts were carried out 48hrs prior to mice being put on 

procedure. Mice were put on procedure and treated in the morning with either 

80mg Aldara cream or equivalent control cream as described in section 2.2.2.1. 

Four hours later, coinciding with the 2hr baseline time period, burrowing tests 

were performed over 2hrs. Again, mice were caged individually in the same cage 

they had been in for the baseline tests and the remaining food was weighed at 

the end of the 2hr window. Mice were then returned to their group cages. 

Individual cages were cleared of burrowed food pellets between each test. Both 

the treatment and the burrowing tests were repeated for a total of 3 

consecutive days to coincide with the peak of the Aldara treatment.  

Figure 2-1 Burrowing Tubes 
Behavioural analysis of treated mice was performed using a burrowing model of anhedonia. This 
required the use of burrowing tubes of a particular dimension and specificity, as shown.  

  

2.6.1.1 Compound 21   

CXCR3 Blocker, or Compound 21, a kind gift from Amgen Inc. (Thousand Oaks, 

CA, US), was first prepared as a stock solution by being dissolved in 100% DMSO 

to a concentration of 7.9mg/ml. This was stored at -20°C until further use. 500µl 

of 50% PEG400 (Sigma) and 500µl of dH2O were added to 1ml of the Compound 

21 stock solution. Water was added very slowly to prevent the compound from 

falling out of solution. Mice were injected subcutaneously (s.c) with 50µl 

(10mg/kg) of Compound 21 for four consecutive days, starting one day prior to 
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the initiation of Aldara treatment (24hrs after baseline tests). Control mice were 

treated with the vehicle minus Compound 21 at the same concentration. 

2.6.1.2 Use of DAPTA 

D-ala-peptide T-amide (DAPTA), a CCR5 antagonist, was dissolved in H2O to a 

concentration of 1mg/ml. Mice were injected s.c with 200µl (1mg/kg) of DAPTA 

daily for four consecutive days, starting one day prior to the initiation of Aldara 

treatment (24hrs after baseline tests).   

2.7 Statistical Analysis 

Data were analysed using GraphPad Prism software (San Diego, CA). Depending 

on the experiment, analysis was performed using a Student’s unpaired t test or a 

one- or two- way ANOVA with Bonferroni post-tests, as outlined in figure 

legends. A probability value (p-value) of p<0.05 was considered statistically 

significant.  

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
  
 



  

 

 

 

 

 

 

Chapter 3 

Transcriptional profiling of the brain following 
cutaneous inflammation induction with Aldara 
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3 Transcriptional profiling of the brain following 
cutaneous inflammation induction with Aldara  

3.1 Introduction 

It is clear that events in the periphery can have a profound effect on the CNS. 

However, the mechanisms by which peripheral inflammation can influence the 

brain remain to be fully understood. Evidence suggests that immune 

components, particularly inflammatory cytokines, may mediate some of the 

neurological conditions that are often presented alongside chronic inflammatory 

diseases5, 55, 302, 322. These conditions include major depressive disorder, anxiety 

and schizophrenia321, 374. Trying to understand the relationship between 

inflammation and mood disorders in the human brain is difficult due to the 

obvious ethical and practical restrictions and for this reason many have turned 

to animal models. Animal models have helped confirm this correlation and have 

shown that immune activation in the periphery can induce a set of depressive-

like behaviours called ‘sickness behaviours’55, 56, 375. These behaviours are a way 

of conserving energy and are often short lived, coinciding with the duration of 

illness. However it is thought that in some cases, inflammation fails to resolve 

and these behaviours become chronic, resulting in the emergence of long term 

mood disorders. Generally speaking however, animal models used to try to 

further our understanding in this respect have relied on rather crude methods of 

instigating large scale systemic inflammation, rather than focusing on disease 

models that are arguably more reflective of human conditions. This makes it 

difficult to gauge just how relevant these studies are with regards to the 

relationship that exists between the immune/inflammatory system and the CNS 

in humans. In addition, the models that have been studied have so far failed to 

reveal the underlying mechanisms of this co-morbid relationship and as such, 

further investigation is required.  

The aim of this thesis was to investigate the effects of peripheral inflammation 

on the brain using a tissue- specific model of peripheral inflammatory disease 

that reflects the human disease, psoriasis. Aldara cream, described in detail in 

section 1.6.2.1, has been shown to induce psoriasis- like skin inflammation when 

applied repeatedly to the dorsal skin of mice363. Extensive reviews of this model 

suggest that it is one of the most accurate mouse models of human psoriasis as it 
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functions through the IL-17/ IL-23 axis366, 376. This, along with its simplicity and 

reproducibility, made it an appropriate model to use for this study. The aim of 

this chapter was to investigate if and how the Aldara model of psoriasis-like skin 

inflammation affects the brain in control and Aldara treated mice. To do so, 

Affymetrix GeneChip arrays were used to derive a full transcriptional profile of 

the brain. In addition, a basic behavioural test was performed to determine 

whether or not Aldara treatment can induce a functional CNS phenotype.     

3.2 The Aldara model of skin inflammation 

To induce the psoriasis-like pathology, Aldara cream was applied daily to the 

shaved dorsal skin of 6-8 week old female c57BL/6 mice. This was repeated over 

5 consecutive days. Alternatively, age and sex matched mice were treated with 

a water based control cream. Mice were terminally anaesthetised 24 hours after 

the final application and tissues harvested for analysis.     

3.2.1 Model Validation 

Prior to carrying out microarray analyses, the suitability of Aldara as an inducer 

of reproducible skin inflammation was confirmed. To do this, mice treated with 

Aldara cream, or control cream, every 24 hours were weighed following each 

application. In addition, spleens were collected, weighed and measured. Dorsal 

skin samples from the area of application were removed from the mice after the 

final application, sectioned and stained with H&E. Consistently, mice treated 

with Aldara cream lost a significant amount of weight compared with control 

cream treated mice (Figure 3-1A). This loss was apparent 24 hours following the 

first treatment and was most pronounced between the third and fifth 

treatments. Between the fourth and fifth applications, the Aldara treated mice 

showed signs of recovery; however their weight remained lower than the control 

group. The spleens of the treated mice were consistently larger than those of 

the control mice, often more than twice the weight and size (Figure 3-1B-C). 

Finally, H&E staining of the skin sections revealed a psoriasis-like skin 

inflammation in mice treated with Aldara. This was characterised by epidermal 

hyperplasia, dermal thickening and inflammation and flaking of the skin (Figure 

3-1D). These results demonstrate that, in agreement with the literature, Aldara 

cream induced a psoriasis- like skin inflammation at the site of application. The 
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corresponding weight loss and splenomegaly suggest that this model is also 

associated with a systemic response. To investigate this, 24hr after the fifth 

application of Aldara cream, plasma was isolated from mouse whole blood 

obtained by cardiac puncture. ELISA was used to assess the protein expression of 

three prominent inflammatory cytokines, IL-1β, IL-6 and TNFα (Figure 3-2A-C). 

Plasma from LPS- treated mice was used as a positive control (Figure 3-2D). 

After the fifth application of Aldara, none of the cytokines were present in 

measurable concentrations in the plasma as all fell below the minimum 

detection level of the kits. The positive controls confirmed that the assay 

worked. However, the lack of cytokine induction seen in the periphery may be 

due to the timing of the analysis.  
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Figure 3-1 Evaluation of the phenotypic response to Aldara- induced skin inflammation 
Mice treated with ~80mg Aldara cream, or equivalent volume control cream, were weighed 
following each application (A). In addition, spleens were removed and were weighed (B) and 
photographed (C). H&E staining was performed using 5µm thick sections of Aldara- or control- 
treated skin which were visualised at 200X magnification (D). (A & B) n = 10/ group from two 
independent experiments (C & D) n = 5/ group. Significance was measured using two-way ANOVA 
with Bonferroni multiple comparison post-tests *** = p ≤ 0.001.   
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Figure 3-2 Expression of inflammatory cytokines in the plasma of Aldara-treated mice  
Plasma was isolated from mice treated with ~80mg Aldara cream, or equivalent volume control 
cream, 24hrs after the fifth application. ELISAs were used to assess the expression of three key 
inflammatory cytokines, IL-1β (A), IL-6 (B) and TNF-α (C). To ensure the integrity of the assay, 
plasma from LPS- injected mice was included as a positive control. Group size of n = 5 for Control 
cream and Aldara- treated mice, n = 3 for LPS- treated mice. Minimum level of detection 
represents the lowest sensitivity for each kit. 

  

3.2.2 Processing of RNA samples 

RNA was extracted from the right hemisphere of brains taken from mice 24 hours 

after the fifth, and final, application of Aldara cream. Before microarray 

analysis could be performed, the integrity of the RNA samples was assessed. This 

analysis, which was performed by the University of Glasgow Polyomics facility, 

was done using an Agilent 2100 Bioanalyser, which assesses nucleotide fragments 

separated by size and evaluates them quantitatively on microfluidic chips via 

laser induced fluorescent detection (fluorescent units, FU). Screening each 

sample generates an electropherogram that allows RNA integrity to be visually 

assessed. In addition, using a mathematical algorithm, an RNA integrity number 

(RIN) can be generated. RIN is a software tool that has been designed to 

estimate RNA integrity based on the presence or absence of degraded RNA 

products and the ratio of 28S:18S ribosomal ‘RNA species’. RIN values are 

between 1 and 10, where 1 is a completely degraded sample and 10 is a 
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perfectly intact sample. RIN software algorithm ensures repeatability of 

electropherogram interpretation by removing user-dependent visual 

interpretation. An example of an electropherogram from a completely intact 

RNA sample with an RIN of 10 is shown in Figure 3-3A. This eletropherogram 

contains three peaks which represent the RNA marker (1), the 18S rRNA (2) and 

the 28S rRNA (3). Very little background signal should be present outwith these 

three peaks as this would indicate the presence of RNA degradation products. 

The integrity of the RNA from each brain sample was assessed. One 

representative electropherogram of RNA integrity from control mice (B) and one 

from Aldara treated mice (C) are shown. The RIN of each sample is shown in 

Table 3-1. An RIN of 8 or above is considered sufficient for performing 

microarray analysis, thus all samples met the requirement. In addition, Table 3-1 

shows the ratio of 28S to 18S rRNA species in each sample. In the mouse, a ratio 

>2 is considered good quality RNA, with an optimal ratio of 2.5. Therefore, the 

28S:18S ratio, high RIN, low background and clear peaks demonstrate that all 

RNA samples were of high enough quality to proceed to microarray analysis.      

Having confirmed the integrity of the RNA, samples were amplified by in vitro 

transcription and reverse-transcribed to generate sense-strand cDNA. This was 

then fluorescently labelled and fragmented. The Agilent 2100 Bioanalyzer can 

measure the efficiency of cDNA fragmentation using a DNA chip, which generates 

an electropherogram by measuring the fluorescence intensity over time.  

Figure 3-3(D-E) show representative fragment electropherograms from control 

mice (D) and Aldara treated mice (E). Each shows one peak next to the DNA 

marker, denoted on the electropherogram by the number 1, indicating that the 

DNA fragments in each sample were of similar size. The speed with which they 

passed through the investigative electrophoretic microchannel suggested that 

the fragments were relatively small and together these data indicate that the 

RNA samples were of high quality and were successfully fragmented. 
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Figure 3-3 Electropherograms to show RNA integrity  
RNA isolated from Aldara-treated brains and control cream-treated brains was prepared for 
microarray analysis. Prior to the array, RNA integrity and the efficiency of sense-strand DNA 
fragmentation were measured using an Agilent 2100 Bioanalyzer. An electropherogram was 
generated for each sample. This was used to assign an RIN value between 1 and 10. Data are 
shown as Fluorescent units (FU) over time. (A) Representative high integrity RNA sample with RIN 
of 10. (B-C) Integrity of whole brain RNA from; (B) control mice and (C) Aldara treated mice. (D-E) 
Fragmented DNA samples from (D) control mice and (E) Aldara treated mice. (B-E) Data are 
shown as one representative from each group. n=5/ group.   
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Table 3-1 RNA integrity of brain samples  
Sample ID RIN Value Ribosomal 28s:18S ratio 

Control 1 9 2.5 

Control 2 8.9 2.5 

Control 3 9.1 2.5 

Control 4 9.1 2.5 

Control 5 9.1 2.5 

Treatment 1 8.8 2.5 

Treatment 2 8.9 2.4 

Treatment 3 9.0 2.4 

Treatment 4 9.0 2.2 

Treatment 5 8.9 2.4 

  

 

3.3 Determining the effect of Aldara treatment on the 
transcriptional profile of the brain 

To determine the transcriptional effect of cutaneous Aldara treatment on the 

brain, the transcriptional profiles of the brains from 5 Aldara treated mice were 

compared with those from the brains from 5 control cream treated mice. The 

Affymetrix GeneChip Mouse Gene 1.0 Array has been extensively validated and 

was selected for this transcriptomic analysis. This array provides a 

comprehensive expression profile, using 770,317 distinct probes distributed 

across the full length of about 28,853 specific coding transcripts.      

3.3.1 Pre-processing of Affymetrix chip data using GeneSpring  

Microarray experiments were carried out by the Glasgow Polyomics facility 

(http://www.polyomics.gla.ac.uk), a core University facility. In order to control 

the effects of systematic error from dye efficiencies, uneven hybridisation or 

other extraneous factors, whilst still retaining biological variance, the quality of 

the raw data was assessed and pre-processed with the following steps:   

• Background correction: this is to adjust for the hybridisation effects that 

are not directly related to the interactions between the probes and the 

DNA. The details of this step are outlined in Section 2.4.4. 
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• Normalisation: this allows multiple chips to be compared with one another 

by removing systematic error and bias. This unifies the distribution of the 

perfect match values across the different chips, assuming that they have 

approximately the same distribution. 

• Perfect match probe correction and summarisation: this summarises the 

11 perfect match (PM) probe intensity values providing a normalised value 

of RNA expression for each gene. 

Agilent GeneSpring GX software was used for pre-processing and data analysis, 

utilising a modified version of Robust Multi-array Analysis (RMA), RMA 16, for the 

normalisation and summarisation of probe-level intensity measurements. 

3.3.2 Signal histogram of normalised data 

Following data normalisation and prior to formal analysis of the array, sample 

hybridisation was monitored for differences in efficiency. This was to check for 

variations between the chips that may affect the quality and reproducibility of 

the array, which can result from user error or differences in chip manufacturing. 

To do so, fragmented cDNA is first added to a hybridisation control cocktail 

containing a set of 4 control transcripts; BioB, BioC, BioD and cre. These control 

transcripts are prepared to staggered standard concentrations of 1.5pM, 5pM, 

25pM and 100pM, respectively. To ensure consistency of hybridisation efficiency 

between chips, the signal intensities of the four hybridisation control transcripts 

on each of the 10 GeneChips used in this study are plotted on the histogram 

shown in Figure 3-4, where the red lines represent the treatment samples and 

the green lines represent the control samples. The similar intensity values for 

the four hybridisation controls would suggest that there is little variation in 

hybridisation efficiency between each chip.       
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Figure 3-4 Signal histogram showing normalisation of microarray data  
To determine the transcriptional response in the brain following Aldara treatment and control cream 
treatment, microarray analysis was performed. Labelled sense-strand cDNA, generated from 
amplified RNA samples as described, was hybridised to 10 different chips along with 4 control 
transcripts at known standard concentrations. Signal histograms were generated for sample and 
control hybridisation, allowing the signal intensities to be compared. The histogram shown here 
depicts the normalised signal intensities of the hybridization controls; bioB, bioC, bioD and cre. 
Each line on the histogram represents an individual GeneChip, where the red lines are the 
treatment samples and the green lines are the control samples.  

 

3.3.3 Principle component analysis 

Principle component analysis (PCA) is a level of analysis that identifies patterns 

in the observed differential transcriptomic data. PCA uses a mathematical 

method that allows multidimensional data from the array to be transformed into 

a lower dimensional output using a minimal set of variables, called principle 

components (PC). The resulting PCA graph allows for visual analysis to be 

performed so that trends in the data, and outlying samples, can be identified.  

Figure 3-5 shows the PCA map of the normalised microarray data from this study. 

Each circle represents one sample and each colour represents a different group, 

where green is the control group and red is the Aldara treated group. The graph 

shows variation between samples within the same group, indicated by the lack 
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of tight clustering, which suggests that there are slight differences in the 

transcriptomic profile of the brains of both groups. None of the samples was 

identified as an outlier and thus all samples were included for subsequent 

analysis. The PCA graph shows a separation between the control and treatment 

groups, suggesting a differential gene response to the two different stimuli.   

 
Figure 3-5 Principle component analysis mapping of microarray samples 
To determine the transcriptional response in the brain following Aldara treatment and control cream 
treatment, microarray analysis was performed. Principle component analysis (PCA) was performed 
on normalised data from all samples included in the microarray study to identify trends in the data. 
Samples clustered in the same area are considered to be genetically similar. Each circle 
represents one sample and the different colours represent the different groups; where green is the 
control group and red is the Aldara treated group. n=5/group. 

 

3.3.4 Analysis of Affymetrix GeneChip data 

The various steps of quality control outlined above were applied to the GeneChip 

arrays to rule out sources of variation from differences in RNA quality, 

background signal noise and efficiency of hybridisation. As such, it can be 

assumed that any subsequent differences in signal intensity are representative of 
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differences in the transcriptional profile of the samples. In order to focus our 

investigation and to determine the biological relevance of transcriptional 

changes, differentially expressed genes had to be identified by order of 

significance. Thus, normalised signal intensities from the GeneChip array, 

generated using the GCRMA algorithm, were subject to statistical analysis. 

3.3.4.1 Filtering entities on expression 

Pre-processing the array chips using the RMA16 algorithm assigns the 28,853 

entities with a normalised signal intensity value. As an additional control, and to 

remove background, each entity had to have a signal intensity value between 

20% and 100%. By ensuring the entities outwith the upper 80% of all chip values 

were removed, background signal was eliminated. In addition, each entity had to 

satisfy this parameter in all five samples of each group in order to pass quality 

control and be included for analysis. The entities that remained following the 

filtration on gene expression are shown in the profile plot in Figure 3-6. This 

graph shows the normalised signal intensity of the entity, where the signal is 

normalised to the median value of that entity across all the samples, and allows 

entities with very high or very low signal values to be visualised on the same 

graph. The normalised signal intensity value of each entity is shown for both 

control samples and Aldara-treated samples. It is clear from the plot that the 

relative expression of many of the entities is much higher in the Aldara-treated 

samples, indicative of gene induction in these samples.   
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Figure 3-6 Profile plot showing normalised intensity values of entities following filtration 
This graph shows the change in the signal intensity value of each entity in control samples (left 
hand side) and treatment samples (right hand side). Each line represents one entity and the colour 
of the line denotes the signal intensity of that entity in the treatment group, ranging from -0.3 to 2.1, 
as outlined in the legend. 

 

3.3.4.2 Genes identified by GeneSpring as being differentially expressed in 
the brains of Aldara treated mice 

Differentially expressed genes were identified using a paired t-test along with 

Benjamini-Hochberg multiple testing correction (MTC) with a false discovery rate 

(FDR) of 0.1.  

MTC should be performed where possible in order to reduce the number of false 

positive results. Statistical analysis performed on large scale arrays like this one 

will use one test per entity. With many thousands of variables, and thus many 

thousands of tests being performed, the number of random events falsely being 

determined significant will increase. The p-value is the likelihood or probability 

of the null hypothesis being true and the more often the p-value is calculated 

from a single dataset, the higher the frequency of false positive results. For 

example, to analyse 1000 genes, 1000 statistical tests would be performed. If 

each has a p-value of 0.05, 50 of these genes would be considered false positives 

(0.05*1000). MTC is a statistical method that reduces the rate of error by taking 

into consideration the number of genes being tested, subsequently calculating a 

corrected p-value. Whilst MTC reduce the occurrence of false positives, they 
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also increase the chance of false negatives, thus the least stringent, Benjamini-

Hochberg, MTC method was ideal for this relatively small study.  

This method of statistical analysis generated a list of genes that were 

differentially expressed in the brains of the treatment group compared to the 

control group which satisfied a p-value ≤ 0.05. 7381 entities fell into this 

category; therefore a stringent fold change cut off ≥ 3 was applied to the 

dataset. The full list of genes that were differentially expressed in the brains of 

the treatment group, and which satisfied a p-value ≤ 0.05 and a fold change cut 

off ≥ 3 are listed in Appendix 1. In line with these criteria, 210 differentially 

expressed entities were found to be upregulated in the brains of the treatment 

group, which are shown in the volcano plot in Figure 3-7. In this plot, entities in 

red and green satisfied a p-value ≤ 0.05 and, in addition, the green samples 

were upregulated with a fold change ≥ 3. Since it was not feasible to validate all 

210 genes, we next categorised them according to gene ontology.   

 
Figure 3-7 Volcano plot of microarray data 
To determine the transcriptional response in the brain following Aldara treatment and control cream 
treatment, microarray analysis was performed. All of the entities evaluated in this array were 
plotted on a volcano plot that was generated using GeneSpring GX software. Red and green plots 
satisfy a p value ≤ 0.05 and, in addition, green plots adhere to a fold change cut off of 3 or above. 
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3.3.5 Gene ontology clustering using the Database for annotation, 
visualisation and integrated discovery (DAVID) 

Following the statistical, and fold change, analysis of the brain samples, further 

analysis was performed to functionally group the genes which were differentially 

expressed in the treatment brains. This analysis can help define patterns in the 

differentially expressed genes by grouping them according to their function. 

Often, this type of analysis is more informative than studying each gene 

individually and may provide insight into the mechanisms involved in the brain 

response to Aldara treatment. 

To apply biological relevance to the dataset of differentially expressed genes 

and to identify which groups of functionally related genes were enriched, gene 

ontology was assigned using the Database for Annotation, Visualization and 

Integrated Discovery (DAVID) Bioinformatics Resources. This publicly available 

software tool allows the visualisation of significantly enriched biological 

pathways based on the upregulated gene profile obtained from the microarray 

analysis. DAVID software uses a modified Fisher‘s exact test and Benjamini-

Hochberg MTC to determine which groups of functionally related genes are 

enriched, and groups with a p value < 0.05 were considered to be specifically 

associated with the gene list. DAVID analysis takes into consideration that each 

gene is represented by more than one probe on the Affymetrix GeneChip and 

will only analyse each gene once, irrespective of how many times it appears in 

the gene list.  

The most enriched pathways are shown in Figure 3-8, amongst which are 

‘Chemokine signalling pathway’, ‘Inflammation mediated by chemokine and 

cytokine signalling pathway’ and ‘Leukocyte transendothelial migration’. This 

strongly associates chemokines with the brain response and suggests that 

leukocyte migration into the brain may be mediating the distal response to 

Aldara treatment. In addition, the third most enriched process is ‘Toll-like 

receptor signalling pathway’, which may be the result of the TLR ligand, 

Imiquimod, directly stimulating cells in the brain.  
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Figure 3-8 Top 10 enriched biological processes identified using DAVID software 
Following microarray analysis, the list of differentially expressed genes in the brain were uploaded 
into DAVID software in order to identify enriched biological pathways. This figure shows the ten 
most enriched pathways in order of significance of the - log of their p-value. 

 

3.3.6 Comparing the brain response in models of TLR-induced 
peripheral inflammation 

Statistical analysis of the microarray dataset identified 210 differentially 

expressed genes in the brains of Aldara-treated mice that satisfied a p-value ≤ 

0.05 and a fold change cut-off ≥ 3. As it was not feasible to validate this number 

of genes using individual QPCR, a subset of target genes had to be identified. 

Since ‘Toll-like receptor signalling pathway’ was one of the pathways found to 

be enriched in the brains of Aldara-treated mice, we compared our data set to 

that of other models of peripherally induced TLR stimuli. LPS challenge has been 

studied extensively in the context of the brain response to peripheral 

inflammation. In one such study by Thomson et al, microarray analysis was 

performed following I.P. LPS administration, which allowed for the identification 

of a panel of 24 differentially expressed genes in the brains of treated mice377. 

Upon comparing our dataset with theirs, we found that 23 out of the 24 genes 

were also induced following Aldara treatment (Figure 3-9), a number of which 

were ISGs. Since both TLR4 and TLR7 signalling can induce an IFN response, the 

ISGs were an appropriate focus for our investigation. Figure 3-10 shows the 15 

ISGs in order of their fold change induction in the brain following Aldara 

treatment, presented as a heatmap which was generated using GeneSpring GX 

software. The fold change and p-value for each of the ISGs is shown in Table 3-2.    
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Figure 3-9 Venn diagram showing common genes between LPS and Aldara models 
Differentially expressed genes identified in the brain following an LPS model of systemic 
inflammation were compared to the list of differentially expressed genes generated following 
microarray analysis of brains from Aldara treated mice. Interestingly, 23 out of the 24 genes 
identified in the LPS model were also upregulated following the Aldara model, providing a focus for 
investigation in this chapter.  

 

 
Figure 3-10 Heatmap of differentially expressed ISGs identified by microarray analysis 
Microarray analysis was performed using RNA from brains of Aldara treated and control mice. 
Following statistical analysis, the list of differentially expressed genes was compared to the list of 
genes identified in the brain following systemic LPS stimulation. A heatmap was generated using 
GeneSpring GX software to depict the 15 differentially expressed ISGs in Aldara treated and 
control brains that were identified previously in an LPS model of systemic inflammation. The five 
treatment samples are shown in red and the five control samples in green. 
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Table 3-2 A list of the 15 ISGs that were upregulated in the Aldara model  
 Symbol Gene name Fold change p-value 

Oasl2 2'-5' oligoadenylate synthetase-like 2 14.91 1.68E-08 

Ifit1 interferon-induced protein with 
tetratricopeptide repeats 1 14.15 2.26E-07 

Irf7 interferon regulatory factor 7 13.70 3.23E-08 

Ifitm3 interferon induced transmembrane 
protein 3 7.91 6.25E-09 

Rtp4 receptor transporter protein 4 7.32 3.52E-07 

Ctsc cathepsin C 7.22 2.65E-10 

Irgm1 immunity-related GTPase family M 
member 1 6.98 4.35E-07 

Gbp3 guanylate binding protein 3 6.91 3.71E-06 

Gbp2 guanylate binding protein 2 6.51 3.34E-06 

Stat1 signal transducer and activator of 
transcription 1 5.20 2.13E-06 

Gbp4 guanylate binding protein 4 4.33 1.37E-06 

CXCL10 chemokine (C-X-C motif) ligand 10 4.25 1.27E-04 

Gbp6 guanylate binding protein 6 4.08 1.01E-05 

Lgals3bp lectin, galactoside-binding, soluble, 3 
binding protein 4.06 3.03E-06 

Sp100 Sp100 nuclear antigen 3.67 4.49E-07 
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3.5 QPCR analysis of the transcriptional profile in 
response to Aldara treatment  

Microarray analysis provided the data set of genes that were differentially 

expressed in the brains of Aldara treated mice. To confirm the upregulation of 

these genes, individual SYBR Green QPCR was performed using RNA from an 

independent model of Aldara-induced skin inflammation. To focus our 

investigation, this was restricted to the 15 ISGs of interest that have been shown 

to be induced in the brains of mice challenged with systemic LPS, the majority 

of which were identified in the microarray.   

3.5.1 QPCR validation of differentially expressed genes in the 
brain 

Specific primer pairs were designed for each gene as described in section 

2.4.7.1. SYBR Green QPCR was performed using RNA from brains from an 

independent Aldara model. With the exception of Gbp4, all of the ISGs evaluated 

were significantly elevated in the brains of Aldara treated mice compared with 

the brains of control mice (Figure 3-11). With regards to the significant genes, 

the upregulation ranged from around 2- to >60 fold induction, with CXCL10 

exhibiting the greatest induction of 64-fold. 

3.5.2 QPCR validation of the peripheral blood response 

To determine whether or not the ISG response was induced systemically, the ISG 

induction in the brain was compared with induction in peripheral blood 

leukocytes (PBL) using SYBR Green QPCR. If an ISG response was identified in the 

PBL, it may be that the expression seen in the brain was the result of a 

contaminating signal from the blood. Therefore, this part of the study would 

ensure that blood contamination was not a factor in the brain response. PBL 

were harvested from Aldara treated and control mice 24 hours following the 

fifth Aldara application. The results show that none of the ISGs assessed was 

significantly elevated in the PBL of the treatment group. The only genes to show 

an upward trend in the PBL were Gbp3, IFITm3 and Oasl2, although the 

induction is very slight and not significant. Of note, several genes appeared to 

be downregulated in the PBL (Figure 3-11).  
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3.5.3 Comparison of central brain response with peripheral blood 
response 

Having established the differential expression of the ISGs in the brain and the 

PBL by comparing them to control tissues using individual student’s t tests, we 

next sought to determine the significance of the fold change induction when 

comparing between the two tissues. This was done using two-way ANOVA with 

Bonferroni multiple comparison post-tests. The fold change induction in the 

brain was significantly greater than the fold change induction in the PBL for all 

15 ISGs examined (Figure 3-11), highlighting the differential response between 

the periphery and the brain.   
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Figure 3-11 QPCR analysis of ISGs in brains and PBL 
Mice were treated with 80mg Aldara cream or control cream every 24hrs for 5 consecutive days. 
Mice were euthanised 24hrs after the final application. Cardiac puncture was performed to retrieve 
PBLs and perfused brains were extracted. RNA was isolated from both tissues. QPCR analysis of 
the target ISG genes identified in the microarray was performed for both tissues (A-O). n= 5 mice 
per group. Significance was measured using individual students t test or two-way ANOVA with 
Bonferroni multiple comparison post-tests *** (+++) = p ≤ 0.001 **(++) = p ≤ 0.01 *(+) = p ≤ 0.05 
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3.6 Assessment of burrowing behaviour 

Having identified a number of transcriptional changes in the brains of Aldara 

treated mice, it was important to determine what, if any, functional effect 

these transcripts may mediate. Neuroinflammatory components are key 

candidates for triggering the behavioural changes often presented in tandem 

with chronic inflammatory disorders of the periphery. To determine whether or 

not topical Aldara treatment could induce a functional output, a simple 

behavioural model was employed. This model used custom made burrowing 

tubes to assess the extent to which mice burrow during a 2 hour period following 

treatment373. Burrowing is an instinctive and natural behaviour in rodents. To 

test this behaviour, mice were first acclimatised to the presence of a burrowing 

tube overnight prior to baseline tests being carried out. The groups were then 

divided to ensure that the best, and worst, burrowers were split evenly between 

the two groups. Mice were treated at the same time each morning with 80mg of 

either Aldara cream or control cream as described previously and were then 

single housed for the testing period 4 hours later. Each single cage contained 

one burrowing tube prefilled with a fixed weight of food pellets. The mice were 

then left undisturbed to burrow at their leisure for a two hour period, before 

being returned to group cages. The weight of food remaining in each tube was 

recorded. Figure 3-12(A) shows the setup of the burrowing tube containing 200g 

of food pellets in a large cage before and after the burrowing test period. The 

weight of food left in the tube was significantly lower in the control group than 

the Aldara treated group, meaning that control mice ‘burrowed’ more of the 

contents than the Aldara treated mice (B). Both groups showed a range of 

burrowing activity during the baseline tests, however even after the first 

application, the activity of Aldara treated mice was significantly reduced. This 

trend continued over the three testing days with some mice failing to burrow at 

all after only one treatment. In contrast, control mice appeared to burrow more 

with time suggesting an improvement in this behaviour. When presented as a 

percentage of the baseline activity for each individual mouse, where the 

baseline burrowing is considered 100%, it is apparent that some of the Aldara 

treated mice do display enhanced burrowing activity. However, the burrowing 

activity of Aldara treated mice is increased to a lesser extent than that of the 

control mice (C). Similarly, one out of the five mice in the control group 
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burrowed less on day 3 than it did in the baseline tests; however the trend lines 

show a clear separation between the two groups. These results show that 

burrowing behaviour was impaired in Aldara treated mice, an effect that could 

be seen after only one treatment. The motor functions of these mice did not 

appear to be a factor as they displayed normal activity levels and the burrowing 

tubes were large enough that they did not come into contact with, and 

potentially irritate, the affected area of skin. However, motor functions were 

not directly tested.     
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Figure 3-12 Burrowing activity of Aldara treated mice 
Aldara treated or control treated mice were assessed for burrowing activity on three consecutive 
days. Four hours following treatment application, mice were single caged with a burrowing tube 
containing 200g of food pellets for 2 hours. At the end of this time point, mice were caged again in 
groups and the remaining weight of food pellets in the tubes was recorded. (A) shows the setup of 
the burrowing tubes before and after burrowing activity. The weight left in the tube following the 2 
hour period is shown (B) or presented as a percentage of baseline tests, where baseline readings 
were considered 100% (C). n=5 per group. Significance was measured using two-way ANOVA with 
Bonferroni posttests *** = p ≤ 0.001 *= p ≤ 0.05.     
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3.7 Discussion 

In order to determine the effect of peripheral, tissue-specific inflammation on 

the brain, the Aldara model of psoriasis-like skin inflammation was used362. This 

model, in which mice were treated with a daily dose of cutaneous Aldara cream, 

was first validated to ensure its reproducibility before microarray analysis of the 

brains was performed. This study identified a large number of differentially 

expressed genes in the brains of the treatment group, which satisfied a p-value ≤ 

0.05 and a fold-change cut off of 3. Amongst the upregulated genes was a 

distinct panel of ISGs that have previously been identified in the brain in a 

model of peripheral LPS injection377. To determine the likelihood that this ISG 

response is a generic consequence of TLR driven peripheral inflammation, these 

ISGs served as the focus of this chapter. These genes of interest were validated 

in an independent Aldara model to confirm their induction in the brain and, in 

order to determine whether the response was systemic, the transcriptional 

profile of the PBL was also assessed. A basic behavioural model was used to 

determine whether, or not, Aldara treatment was sufficient to induce impaired 

burrowing activity, a behaviour that is instinctive to rodents.  

QPCR analyses confirmed that all 15 ISGs, which were commonly upregulated in 

response to Aldara and LPS, were significantly induced in the brains of the 

Aldara treatment group. In addition, the fold change induction in the brain was 

significantly greater than the fold change induction in the PBL for all genes. This 

suggests that the response in the PBL differs in kinetics and magnitude to the 

response in the brain. Importantly, this also rules out the possibility of blood 

contamination in the brain being responsible for the transcriptional changes 

observed.  

CXCL10 is the gene that exhibits the greatest fold change induction in the brain 

when analysed using QPCR. With an upregulation of almost 64-fold, its 

expression change is significant, allowing it the potential to play a prominent 

role in the CNS response to peripheral inflammation. CXCL10 is a classic ISG that 

is commonly expressed in the brain in response to a range of inflammatory 

stimuli, including traumatic brain injury (TBI)251, EAE and MS243, 378-380, and a 

number of viral infections234, 381-383. CXCL10 binds to the receptor CXCR3 and can 

mediate the migration of receptor expressing leukocytes. This mechanism has 
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been shown to induce the influx of leukocytes into the brain during 

inflammation. It is possible that, with such a strong induction in response to 

Aldara treatment, CXCL10 could be mediating the recruitment of leukocytes into 

the brain in this model. This is supported by the DAVID analysis which identified 

‘Chemokine signalling pathway’, ‘Inflammation mediated by chemokine and 

cytokine signalling pathway’ and ‘Leukocyte transendothelial migration’ as 

significantly enriched biological pathways in the brain. Therefore, leukocyte 

infiltration into the CNS, as a consequence of Aldara-mediated peripheral 

inflammation, is plausible.  

In addition to the transcriptional response, Aldara treatment also induced a 

functional response in the brain, in the form of impaired behaviour. Although 

this cannot be directly associated with the increased ISG production, the 

burrowing model has been shown to be sensitive to a number of treatments in 

which the inflammatory profile of the brain has been altered384, 385.  

The specific actions of Aldara cream, through which this brain response is 

mediated, remain unknown. However, Aldara cream works as a therapeutic 

agent due to its active component, IMQ, which binds to TLR7/8 and stimulates 

an IFN-driven anti-viral response.TLR7/8, which recognise single-stranded RNA, 

can signal canonically through MyD88 to activate the transcription factor NF-κB 

and lead to the production of inflammatory cytokines. In addition, it can also 

signal through an independent, IRF7-mediated pathway leading to the activation 

ISRE7 and the production of IFNα. These signalling pathways drive a specific 

anti-viral immune response that is characterised by the production of type I IFNs 

and is amplified by the transcription of ISGs386. This response has been described 

in a number of publications reporting human, primate and rodent studies, both 

in vitro and in vivo, and using natural as well as synthetic agonists387-390.  

It is therefore predictable that we see an IFN stimulated response following 

TLR7-mediated immune stimulation. However, what is surprising about the data 

from this study is that the ISG response appears to be localised in the brain, 

independently of an ISG response in the PBL. Furthermore, there was no 

evidence of an overt inflammatory cytokine response in the plasma. The 

presence of such a pronounced transcriptional response in the brain 24 hours 
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after the fifth application of Aldara suggests that the response in the brain is 

long-lived and perhaps ensues beyond the response in the periphery.   

To our knowledge, the CNS response to topical Aldara treatment has not been 

examined before. However its active component, IMQ, has been used to 

investigate the brain response following various different routes of 

administration. Butchi et al. have shown that intracerebroventricular inoculation 

with Imiquimod in developing mice leads to microglia and astrocyte 

activation391. They have reported that protein levels of certain proinflammatory 

cytokines are upregulated in response to TLR7 ligation, along with a strong IFNβ 

response. Damm et al. used IMQ to investigate how TLR ligation, and different 

routes of administration, can cause the manifestation of inflammation at distant 

sites, including the brain7. They found that a high dose of peripherally 

administered IMQ (subcutaneous and intraperitoneal) induced a milder brain-

controlled illness response than other TLR ligands have been shown to, but did 

induce a moderate fever, peripheral and hypothalamic cytokine induction and 

inflammatory transcription factor activation. Although there was a marked 

upregulation of IFNs in the periphery, they reported no change in the levels of 

IFN in the brain. However, topical application to the skin was not investigated in 

either of these studies, nor did they evaluate the expression of ISGs, thus it is 

difficult to make direct comparisons with the analysis performed in this thesis.  

In addition to the IMQ-based studies, others have shown an ISG response in the 

brain following different inflammatory stimuli; however the route of 

administration used in these studies is more direct, either through the nasal 

cavity or by intracranial injection. Wacher et al used intranasal West Nile Virus 

(WNV) and intracranial lymphocytic choriomeningitis virus (LCMV) to show the 

upregulation of several ISGs in the brain at different time-points392.  Similarly, 

van der Pol et al used the intranasal administration of vesicular stomatitis virus 

(VSV) and cytomegalovirus (CMV) to demonstrate the upregulation of ISGs at four 

distinct sites throughout the brain, highlighting the long-range of IFN signalling. 

In addition, they showed that viral RNA was below the level of detection in some 

of the distant brain regions, indicating that the ISG response was not dependent 

on the localised presence of viral stimuli393. Analysis was also performed 

following the intravenous injection of VSV. Here, an ISG response was found in 

all tissues examined, including the brain, irrespective of the presence of virus 
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RNA. However it should be noted that only two ISGs, OAS and IFIT2, were 

analysed as being representative of the ISG response. The work by Thomson et 

al377, upon which our selection of target ISGs was based, showed the induction of 

a distinct panel of ISGs in the brain in response to both acute and chronic LPS 

stimulation. In addition, this response was not mimicked in the PBL and could 

not be induced with the administration of inflammatory cytokines directly, or 

with an alternative TLR ligand, lipoteichoic acid (LTA). Interestingly, a 

commonality between Aldara and LPS is that their receptors, TLR7 and TLR4, 

respectively, both have an alternative, non-canonical, signalling pathway that 

can lead to the production of type I IFNs. It is therefore possible that the brain 

response we see in both of these models is the result of NF-κB-independent 

downstream signalling. There is considerable evidence linking type I IFNs to 

psychiatric disorders, including sequencing data that showed a significant 

association between MDD and genes involved in the IFN α/β signalling pathway394 

and the onset of MDD in patients with Hepatitis C and cancer following IFN 

treatment323, 327, 328, 395-397. Therefore, we hypothesise that TLR-mediated type I 

IFN production could lead to a distinct ISG response in the brain and the 

subsequent onset of behavioural deficits.  

Although it is clear from the results that topical, cutaneous Aldara treatment 

can induce a distinct brain response, the mechanisms by which this response is 

mediated remain to be established. It may be possible that, provided IMQ was 

able to cross the BBB, the IFN response is induced by the direct activation of 

glial cells within the brain parenchyma. To our knowledge, no one has looked 

specifically at whether or not IMQ is able to do so, however the microarray did 

not show any evidence of an upregulated expression of IFN itself. If IMQ is not 

able to traverse the BBB, the response must be initiated first in the periphery, 

whereby peripherally-induced IFNs could be travelling to, and interacting, with 

the brain.  

In summary, through studies described in this chapter we have identified a 

transcriptional profile in the brain in response to Aldara treatment. In addition, 

this treatment induces a behavioural abnormality that is associated with 

impaired neurological well-being. However, the mechanisms by which this 

response is driven remain to be established. We have yet to determine whether 
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this response is TLR-dependent, or what the role of the initial localised skin 

response is. Thus further investigation is required.    

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

 

 

 

 

 

 

Chapter 4 

Defining the mechanism of the brain response to 
peripheral cutaneous inflammation 
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4 Defining the mechanism of the brain response 
to peripheral cutaneous inflammation 

4.1 Introduction 

The results in Chapter 3 identified a brain response to peripherally induced 

cutaneous inflammation in the Aldara model of skin inflammation. However, the 

mechanisms involved in establishing this response remain unclear and many 

questions remain unanswered. For example, although the ISG response was 

consistent across two TLR-mediated models, LPS and Aldara, it is not clear if the 

brain response was TLR-dependent. During this study in 2013, Walter et al 

published a Nature Communications article showing that Aldara cream could also 

activate a TLR7-independent cutaneous immune response372. It was reported 

that isostearic acid alone, a component of the vehicle, could induce 

keratinocyte cell death and inflammasome activation. They concluded that the 

full immune response required both IMQ and isostearic acid, however, the 

systemic response was largely dependent on TLR7 and type I IFN signalling. 

These findings highlighted the importance of determining the separate 

contributions of IMQ and isostearic acid in generating the brain response 

described in Chapter 3.  

The QPCR analysis of the PBL, and the ELISA analysis of the plasma, in Chapter 3 

suggested that the brain response was occurring independently of a peripheral 

inflammatory response; however this was only analysed following 5 repeated 

applications of Aldara cream, which may be considered quite late in the 

response. Therefore, it may be that a peripheral response has driven the CNS 

response but that it is generated at a much earlier time point. 

This Chapter set out to address these issues in an attempt to understand more 

about the mechanisms of the brain response to cutaneous inflammation. To do 

so, the TPA model of skin inflammation was first used398. TPA is a chemical 

irritant which activates protein kinase C (PKC) and, when applied repeatedly to 

the dorsal skin, induces a similar psoriasis-like phenotype to Aldara398, 399. 

However, TPA does not function through TLRs and is therefore considered a 

‘sterile’ model of inflammation. Thus, using this model, we hoped to determine 

the involvement of TLR stimulation in the generation of the brain response. In 
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addition, to determine whether or not the brain ISG response could be the result 

of an ISG response in the periphery, present at an earlier time-point, a time 

course model of both Aldara and TPA was assessed. Finally, to understand the 

individual contribution of IMQ, an additional two IMQ models were analysed.  

4.2 The TPA model of skin inflammation 

To induce peripheral skin-specific inflammation, 12-O-Tetradecanoylphorbol-13-

acetate (TPA) was applied daily to the shaved dorsal skin of 6-8 week old female 

c57BL/6 mice. This application was repeated over 5 consecutive days. As a 

control, age and sex matched mice were treated in a similar way with acetone 

vehicle. Mice were terminally anaesthetised 24 hours after the final application. 

4.2.1 Model Validation 

In order to compare the TPA response to the Aldara response examined in 

Chapter 3, the same parameters were assessed as a method of validating the 

model. Mouse weights were recorded following each application, spleens were 

collected to be weighed and photographed and H&E stained sections from the 

treated dorsal skin were analysed. Unlike Aldara treated mice, TPA treated mice 

did not lose any weight over the course of the treatment and in fact, like control 

mice, gained weight (Figure 4-1A). The mice did however show signs of 

splenomegaly as the spleens from the treated group were significantly bigger 

than the spleens from the control group and weighed almost twice as much 

(Figure 4-1B+C). When the H&E staining of the control and treated areas of skin 

was analysed, it was clear that TPA induced an inflammatory response 

characterised by epidermal hyperplasia, dermal expansion, erythema and 

inflamed lesions (Figure 4-1D). Again, ELISA analysis was used to assess the 

plasma concentrations of three key inflammatory cytokines, IL-1β, IL-6 and TNFα 

(Figure 4-2A, B+C, respectively). All samples fell below the minimum level of 

detection of the ELISA kits for each of the three cytokines. To ensure the 

robustness of the assays, plasma from LPS-treated mice was included on each 

plate as a positive control (Figure 4-2D).   
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Figure 4-1 Evaluation of the phenotypic response to TPA induced skin inflammation 
Mice treated with 150µl 100µM TPA, or equivalent volume acetone, were weighed following each 
application (A). In addition, spleens were photographed (B) and weighed (C). H&E staining was 
performed using 5µm thick sections of TPA- or acetone- treated skin which were visualised at 200X 
magnification. n = 5/group. Significance was measured using two-way ANOVA or student’s t test. 
*** = p ≤ 0.001. 
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Figure 4-2 Expression of inflammatory cytokines in the plasma of TPA-treated mice 
Plasma was isolated from mice treated with 150µl 100µM TPA, or equivalent volume acetone, 
24hrs after the fifth application. ELISAs were used to assess the expression of three key 
inflammatory cytokines, IL-1β (A), IL-6 (B) and TNF-α (C). To ensure the integrity of the assay, 
plasma from LPS- injected mice was included as a positive control. Group size of n = 5 for 
TPA/acetone treated mice, n = 3 for LPS- treated mice. Minimum level of detection represents the 
lowest sensitivity for each kit. 

 

4.2.2 QPCR analysis of ISG expression in response to TPA 
treatment  

To determine the expression of the 15 target ISGs (described in Chapter 3) 

following TPA treatment, QPCR analysis was performed using RNA from brains 

and PBL isolated 24 hours after the final TPA treatment. Expression of each gene 

was normalised to the housekeeping gene, TBP, and each treatment group was 

compared to the corresponding control group, values from which were 

normalised to a fold change value of 1. The fold change induction of each gene 

in the brain and PBL is shown in Figure 4-3.   

4.2.2.1 QPCR analysis of ISG response in the brain 

The results of the QPCR analysis show that none of the ISGs was significantly 

upregulated in the brain in response to TPA treatment. All genes exhibited a fold 
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change induction of 1 or below. Four of the genes, Ctsc, Gbp2, Gbp6 and Stat1, 

showed a significant downregulation of expression in the brains of TPA treated 

mice compared with the control brains. However, the CT values of some of the 

samples were high and close to what would be considered the level of detection, 

therefore it is difficult to determine if the downregulation was real or if it was 

the result of inaccuracy resulting from low expression. This inaccuracy could also 

account for the high standard deviation present in many of the groups. 

Regardless, it is clear that cutaneous TPA treatment fails to induce a similar ISG 

brain response to cutaneous Aldara treatment.     

4.2.2.2 QPCR analysis of the ISG response in the peripheral blood  

To determine whether or not TPA treatment induces a transcriptional response 

in the periphery, QPCR analysis was performed using RNA from the PBL. This 

comparison also ensured that the expression levels in the brain were not the 

result of blood contamination. Again, none of the ISGs were significantly induced 

in the PBL of the treatment group. Some of the genes, for example Rtp4, 

showed a difference, however these did not reach significance and the variation 

within these groups is high, again suggesting that the low expression levels have 

introduced inaccuracies. The expression of Gbp4 in the PBL is significantly 

reduced following TPA treatment, with a fold change of 0.5 (Figure 4-3).     

4.2.2.3 Comparison of brain response with the peripheral blood response 

When comparing between the two tissues, it is obvious that neither exhibits a 

significant ISG induction following cutaneous TPA treatment. Only three genes 

are significantly differentially expressed between the brain and PBL; Gbp2, Rtp4 

and Stat1 (Figure 4-3). With only very minimal fluctuations in expression and 

high standard deviation, it was apparent that the response to TPA treatment is 

minimal in comparison with the response to Aldara treatment described in 

Chapter 3.  
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Figure 4-3 QPCR analysis of ISGs in brains and PBL following TPA treatment 
Mice were treated with 150µl 100µM TPA, or equivalent volume of acetone, every 24hrs for 5 
consecutive days. Mice were euthanised 24hrs after the final application. Cardiac puncture was 
performed to retrieve PBLs and perfused brains were extracted. RNA was isolated from both 
tissues. QPCR analysis of the 15 target ISG genes was performed for both tissues (A-O). n= 5 
mice per group. Significance was measured using individual unpaired students t tests for individual 
tissues (control vs treated) or two-way ANOVA with Bonferroni multiple comparison post-tests for 
comparisons between tissues (PBL vs brain). *** (+++) = p ≤ 0.001 **(++) = p ≤ 0.01 *(+) = p ≤ 0.05 
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4.3 Temporal response following cutaneous Aldara 
treatment 

Work described in Chapter 3 established that repeated treatment with Aldara 

cream induces a brain ISG response. This appears to be independent of an overt 

inflammatory response in the periphery. However, it may be that the brain 

response is driven by a peripheral response which is initiated at a much earlier 

time point and which has dissipated by the fifth application. To investigate this, 

a time course of Aldara treatment was used. 80mg of Aldara cream was applied 

daily to the shaved dorsal skin of 6-8 week old female c57BL/6 mice for 1, 3 or 5 

applications. As a control, age and sex matched mice were treated with an equal 

quantity of water based control cream. Mice were terminally anaesthetised 24 

hours after the final application.  

Consistent with previous results, the Aldara treated mice lost a significant 

amount of weight over the course of the treatment, with the most significant 

weight loss occurring between the third and fifth applications. The mice had 

regained some of their weight by the end of the treatment period; however they 

remained significantly lighter than the control mice (Figure 4-4A). Areas of the 

treated dorsal skin were sectioned and H&E stained. The control skin remained 

uninflamed throughout the five day period; however the Aldara treated mice 

showed epidermal thickening even after one application. The skin inflammation 

was most pronounced after the third and fifth applications, where distinct 

epidermal hyperplasia was evident (Figure 4-4B).     
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Figure 4-4 Model validation of Aldara time course  
Mice were treated with 80mg of Aldara, or an equivalent quantity of control cream, for 1, 3 or 5 
consecutive applications. Mice were weighed following each application (A). H&E staining was 
performed using 5µm thick sections of Aldara- or control cream- treated skin from each time point 
and sections were visualised at 200X magnification (B). n = 4/group. Significance was measured 
using two-way ANOVA *** = p ≤ 0.001 * = p ≤ 0.05 
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4.3.1 QPCR analysis of the transcriptional ISG profile at different 
time points in response to Aldara treatment  

To assess the time course of the ISG response to Aldara treatment, SYBR Green 

QPCR analysis was performed using RNA from brains and PBL isolated 24 hours 

after 1, 3 or 5 treatments. Each gene was normalised to the housekeeping gene, 

TBP, and each treatment group was compared to the corresponding control 

group, which were normalised to a fold change value of 1. The fold change 

induction of each gene in the brain and PBL is shown in Figure 4-5 

4.3.1.1 QPCR analysis of ISG response in the brain 

The results of the QPCR analysis of the control and Aldara-treated brains show 

that all 15 genes are induced in the brain at day 3 following Aldara treatment 

when compared with the control brains. Although the response at day 1 was less 

pronounced than the other time points, six of the ISGs, Gbp2, IFIT1, IFITm3, 

IRF7, Sp100 and Stat1, were significantly induced (Figure 4-5C,G,H,J,N and O, 

respectively). It is evident from the results that day 3 is the peak of the ISG 

response in the brain following cutaneous Aldara treatment, as all 15 ISGs were 

significantly induced. This ranged from a 20-fold induction to a striking 1000-fold 

induction for CXCL10, which was the most highly induced (Figure 4-5B). By day 

5, all of the genes remained elevated in the brain and, with the exception of 

IFIT1, Gbp2 and CXCL10; the expression levels were statistically significant 

compared with the controls. These data show that the brain response to Aldara 

treatment is initiated during the early stages of the model and persists 

throughout the time-course; however this response appears to peak after the 

third treatment before beginning to diminish. With the exception of Sp100, the 

induction at day 3 is significantly higher than it is at day 5, confirming that the 

response dissipated beyond day 3.       

4.3.1.2 QPCR analysis of the ISG response in the peripheral blood  

The QPCR analysis of the PBL from both Aldara-treated and control mice 

indicated the presence of an ISG response in the periphery at the earlier time 

points. 11 out of the 15 genes were significantly induced in the PBL of the 

treatment group compared with the control group at day 1. None of the ISGs 

expressed in the PBL was induced more than 20-fold. By day 3, only 4 genes 
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remained significantly induced; Ctsc, CXCL10, Rtp4 and Stat1, and by day 5 this 

was down to only one gene; IFITm3. However, IFITm3 was not significantly 

induced on day 3 and appeared to have fluctuated in the PBL over the time 

course. These data suggest that an early ISG response is induced in the PBL after 

the first treatment; however this response dissipates over time, and is minimal 

by day 5. 

4.3.1.3 Comparison of central brain response with the peripheral blood 
response following Aldara treatment 

When comparing the brain and PBL in Aldara-treated mice, there is a clear 

separation in the magnitude and temporal pattern of the two responses. The 

response in the brain is much stronger than in the PBL, with fold-change 

inductions in the hundreds or even thousands. Although there appears to be an 

initial PBL response at day 1, only with Ctsc is the fold change induction in the 

PBL higher than in the brain. Using statistical analysis, the induction of all 15 

ISGs is significantly higher in the brain than in the PBL at day 3. By day 5, 

although all genes still show a fold change induction, this is only significant in 

comparison with the PBL for two of the genes; Ctsc and Stat1. By comparing 

these two tissues, it would appear that the PBL response differs in magnitude 

and temporal pattern to the brain response. This indicates that the strong 

response which lingers in the brain following cutaneous Aldara treatment cannot 

be attributed to the ISG response in the PBL.    
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Figure 4-5 QPCR analysis of ISGs in the brain and PBL during the Aldara time course 
Mice were treated with 80mg of Aldara cream, or an equivalent volume of control cream, every 
24hrs for 1, 3 or 5 days. RNA was then isolated from the brain and PBL 24hrs after the final 
treatment. Gene expression analysis of (A) Ctsc, (B) Cxcl10, (C) Gbp2, (D) Gbp3, (E) Gbp4, (F) 
Gbp6 (G) Ifit1, (H) Ifitm3, (I) Irgm1, (J) Irf7, (K) Lgals3bp, (L) Oasl2, (M) Rtp4, (N) Sp100 and (O) 
Stat1 was performed using QPCR and was normalised to TBP. Data are expressed as fold change 
induction, relative to the controls, which have a fold change value of 1. Data represent the mean +/- 
SD. Significance was calculated for individual tissues (control vs treated, d1 vs d3 vs d5), between 
tissues (treated only, PBL vs brain) and between time-points (treated only, d1 vs d3 vs d5) using 
two-way ANOVA with Bonferroni multiple comparison post-test. *** p ≤ 0.001. ** p ≤ 0.01, * p ≤ 
0.05. n = 4/group 

 

4.3.2 Luminex analysis of the temporal response following Aldara 
treatment  

Luminex analysis was performed in order to determine the cytokine response in 

the plasma at the different time points following cutaneous Aldara treatment. 

The mouse 20-plex panel covered a range of key cytokines (Figure 4-6), 

chemokines and growth factors (Figure 4-7). In order to include the appropriate 
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number of technical replicates, where each sample was analysed in triplicate, 

samples were diluted 1:4 prior to analysis. However, as a result, many of the 

readings were below the level of detection of the assay. To enable statistical 

analysis, any sample which failed to obtain an expression value was assigned a 

concentration equal to the minimum level of detection for each protein. Three 

of the proteins failed to obtain a value for any of the samples included on the 

assay; therefore IL-1α, IL-10 and IFNγ were omitted from further analysis. 

8 out of the 17 remaining proteins were significantly induced in the treated 

group when compared with the control group at day 1. These included 4 

cytokines; IL-2, IL-5, IL-6, IL-12 (Figure 4-6B, D, E, F) and 4 chemokines; CCL2, 

CXCL1, CXCL9 and CXCL10 (Figure 4-7A, C, D, E). Several of these were highly 

expressed, at around 1000 pg/ml, including all four chemokines. By day 3, the 

expression of the cytokines failed to reach significance when compared to the 

controls, however CXCL1, CXCL9, CXCL10, VEGF and GM-CSF were significantly 

induced in the Aldara treated mice compared with control mice (Figure 4-7). At 

day 5, IL-1β and IL-17 levels were significantly higher in the control group 

compared with the treated group, indicating a downregulation following 

cutaneous Aldara treatment. The only proteins significantly induced in the 

Aldara treated mice at day 5 were VEGF and GM-CSF, the expression of which 

appeared to be higher than the control mice at the later time points in this 

model. Interestingly, IL-1β, IL-6 and TNFα were detected at day 5 in this assay 

despite being below the level of detection when investigated using ELISA earlier 

in this thesis. This was perhaps due to the increased sensitivity of the Luminex 

assay. In summary, the results of the Luminex analysis suggest that topical 

Aldara treatment can induce an early peripheral inflammatory response, 

characterised by the expression of cytokines and chemokines, which dissipates 

over the course of the treatment. This response appears to be temporally 

different to the central response.  

 



 

 140 

 
Figure 4-6 Cytokine expression in the plasma 1, 3 or 5 days following Aldara treatment 
Mice were treated with 80mg of Aldara cream, or an equivalent volume of control cream, every 
24hrs for 1, 3 or 5 days. Plasma was isolated 24hrs after the final treatment. Luminex analysis of 
(A) IL-1β, (B) IL-2, (C) IL-4, (D) IL-5, (E) IL-6, (F) IL-12 (G) IL-13, (H) IL-17 and (I) TNFα was 
performed. Data are expressed as concentration in pg/ml. Data represent the mean +/- SEM. 
Significance was calculated using two-way ANOVA with Bonferroni multiple comparison post-tests: 
*** p ≤ 0.001. ** p ≤ 0.01, * p ≤ 0.05. n = 4/group 
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Figure 4-7 Chemokine/ growth factor expression in the plasma 1, 3 or 5 days following 
Aldara treatment 
Mice were treated with 80mg of Aldara cream, or an equivalent volume of control cream, every 
24hrs for 1, 3 or 5 days. Plasma was isolated 24hrs after the final treatment. Luminex analysis of 
(A) CCL2, (B) CCL3, (C) CXCL1, (D) CXCL9, (E) CXCL10, (F) VEGF (G) FGF-Basic and (H) GM-
CSF was performed. Data are expressed as concentration in pg/ml. Data represent the mean +/- 
SEM. Significance was calculated using two-way ANOVA with Bonferroni multiple comparison 
post-tests: *** p ≤ 0.001. ** p ≤ 0.01, * p ≤ 0.05. n = 4/group 
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4.4 Temporal response following TPA treatment 

Analysis of the temporal response to Aldara treatment, described in Section 4.3, 

showed that topical Aldara treatment induced an early peripheral cytokine 

response, skin inflammation that worsened over the course of the treatment and 

a brain ISG response that peaked at day 3. Conversely, the TPA model of 

cutaneous inflammation failed to induce an ISG response in the brain after 5 

applications. To determine whether or not the TPA model can induce a brain ISG 

response at earlier time-points, a time-course was set up. TPA was applied daily 

to the shaved dorsal skin of c57BL/6 mice for 1, 3 or 5 days. As a control, age 

and sex matched mice were treated with an equal quantity of acetone. Mice 

were terminally anaesthetised 24hrs following the final application and plasma 

and perfused tissues collected.  

Mice did not lose any weight over the course of the treatment and, like acetone-

treated control mice, TPA-treated mice gained weight with time (Figure 4-8A). 

H&E analysis of the treated dorsal skin sections showed that TPA treatment 

induced skin inflammation following just one application, indicated by epidermal 

hyperplasia, which worsened with repeated doses. Skin inflammation was most 

pronounced after the third and fifth treatments (Figure 4-8B).  
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Figure 4-8 Model validation of TPA time-course 
Mice were treated with 150µl 100µM TPA, or equivalent volume acetone, for 1, 3 or 5 consecutive 
applications. Mice were weighed following each application (A). H&E staining was performed using 
5µm thick sections of TPA- or acetone- treated skin from each time point and sections were 
visualised at 200X magnification (B). n = 4/group. Significance was measured using two-way 
ANOVA 
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4.4.1 QPCR analysis of temporal ISG expression following TPA 
treatment  

To assess the time course of the ISG response to TPA treatment, QPCR analysis 

was performed using RNA from brains and PBL isolated 24 hours after 1, 3 or 5 

treatments. Each gene was normalised to the housekeeping gene, TBP, and each 

treatment group was compared to the corresponding control group, which were 

normalised to a fold change value of 1. The fold change induction of each gene 

in the brain and PBL is shown in Figure 4-9.  

4.4.1.1 QPCR analysis of ISG expression in the brain 

The results of the QPCR analysis of ISG expression in control and TPA-treated 

brains showed that this treatment failed to induce an ISG response in the brain 

at any of the time points examined. Only one gene, Gbp3, was significantly 

induced in the brains of the treated group and this was only at day 3. Several 

other genes, including Irgm, Lgals3bp, Stat1, IFITm3 and CTSC, were 

downregulated in the brain in response to TPA treatment at various time points, 

but particularly at day 5. It is clear from these data that the brain ISG response 

following TPA treatment is minimal and, in fact, many of the genes appear to be 

downregulated. This is in stark contrast to the distinct ISG response seen 

following Aldara treatment.        

4.4.1.2 QPCR analysis of the ISG response in the peripheral blood  

The QPCR analysis of the PBL from both TPA-treated and control mice indicated 

the presence of a mild ISG response in the periphery (Figure 4-9). Only one gene, 

Gbp4, was significantly induced at day 1, however by day 3, 10 out of the 15 

ISGs were significantly induced in the PBL of the treatment group compared with 

the control group (CTSC, Gbp2, Gbp3, IFITm3, IFIT1, IRF7, Lgals3bp, Oasl2, Rtp4 

and Stat1). This response was considered mild as none of the ISGs expressed in 

the PBL was induced more than 4-fold. By day 5, only one gene remained 

significantly induced; Sp100. These data suggest that TPA treatment can induce 

a moderate ISG response in the PBL, particularly at day 3; however the response 

is short lived. 
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4.4.1.3 Comparison of central brain response with the peripheral blood 
response following TPA treatment 

When comparing the brain and PBL from TPA-treated mice, the ISG response 

appeared to be greater in the PBL than in the brain (Figure 4-9). The fold change 

induction of six of the genes; CTSC, Gbp2, IFITm3, Oasl2, Rtp4 and Stat1, is 

significantly greater in the PBL than in the brain at day 3. Although the induction 

of ISGs in the PBL is not particularly strong, with fold-change inductions of 4 or 

less, many of the ISGs were downregulated in the brain, highlighting the 

difference between the peripheral and central response. Much of the ISG 

response in both tissues had dissipated by day 5, however two ISGs, Stat1 and 

Sp100, were significantly induced in the PBL compared with the brain. By 

comparing these two tissues, it appeared that the PBL response to TPA is 

stronger than the brain response to TPA, when evaluated using ISG induction. 

These findings are in contrast to the response following Aldara treatment, for 

which the opposite is true.   
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Figure 4-9 QPCR analysis of ISGs in the brain and PBL during the TPA time-course 
Mice were treated with 150µl 100µM TPA, or equivalent volume of acetone, every 24hrs for 1, 3 or 
5 days. RNA was then isolated from the brain and PBL 24hrs after the final treatment. Gene 
expression analysis of (A) Ctsc, (B) Cxcl10, (C) Gbp2, (D) Gbp3, (E) Gbp4, (F) Gbp6 (G) Ifit1, (H) 
Ifitm3, (I) Irgm1, (J) Irf7, (K) Lgals3bp, (L) Oasl2, (M) Rtp4, (N) Sp100 and (O) Stat1 was performed 
using QPCR and was normalised to TBP. Data are expressed as fold change induction, relative to 
the controls, which have a fold change value of 1. Data represent the mean +/- SD. Significance 
was calculated for individual tissues (control vs treated, d1 vs d3 vs d5), between tissues (treated 
only, PBL vs brain) and between time-points (treated only, d1 vs d3 vs d5) using two-way ANOVA 
with Bonferroni multiple comparison post-test. *** p ≤ 0.001. ** p ≤ 0.01, * p ≤ 0.05. n = 4/group 

 

4.4.2 Luminex analysis of the temporal cytokine response 
following TPA treatment 

Luminex analysis was again performed to determine the cytokine levels in the 

plasma at the different time points following TPA treatment. As before, samples 

were diluted 1:4 prior to use in the assay. As a result, many of the cytokines 

were below the level of detection of the assay and in this case, IL-1α, IL-6, IL-

10, IFNγ and GM-CSF were omitted from further analysis. The remaining eight 
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cytokines, five chemokines and two growth factors are shown in Figure 4-10 and 

Figure 4-11, respectively.   

Only two of the cytokines, IL-5 and IL-13, were significantly induced following 

TPA treatment. The expression of IL-5 was significantly higher in the treatment 

group than in the control group at day 1 (Figure 4-10D), whereas the expression 

of IL-13 was significantly higher at both day 1 and day 3 (Figure 4-10F). None of 

the other cytokines was found to be significantly induced at any other time-

point. TNFα was found to be significantly downregulated in the treatment group 

at day 5 when compared with the control group. With regards to the chemokines 

and growth factors, only CCL2 (Figure 4-11A) and CXCL10 (Figure 4-11E) were 

significantly induced at day 1 and day 3, respectively. CCL2 showed the highest 

induction following TPA treatment with an expression of around 200pg/ml after 

day 1. Together, these data suggest that TPA treatment does not induce a strong 

inflammatory response in the periphery. Although the expression of certain 

cytokines and chemokines at the earlier time points indicates a response, this 

appears to be mild and short-lived.     
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Figure 4-10 Cytokine expression in the plasma 1, 3 or 5 days following TPA treatment 
Mice were treated with 150µl 100µM TPA, or an equivalent volume of acetone control, every 24hrs 
for 1, 3 or 5 days. Plasma was isolated 24hrs after the final treatment. Luminex analysis of (A) IL-
1β, (B) IL-2, (C) IL-4, (D) IL-5, (E) IL-12 (F) IL-13, (G) IL-17 and (H) TNFα was performed. Data are 
expressed as concentration in pg/ml. Data represent the mean +/- SEM. Significance was 
calculated using two-way ANOVA with Bonferroni multiple comparison post-tests: *** p ≤ 0.001. ** 
p ≤ 0.01, * p ≤ 0.05. n = 4/group 
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Figure 4-11 Chemokine/ growth factor expression in the plasma 1, 3 or 5 days following TPA 
treatment 
Mice were treated with 150µl 100µM TPA, or an equivalent volume of acetone control, every 24hrs 
for 1, 3 or 5 days. Plasma was isolated 24hrs after the final treatment. Luminex analysis of (A) 
CCL2, (B) CCL3, (C) CXCL1, (D) CXCL9, (E) CXCL10, (F) VEGF and (G) FGF-Basic was 
performed. Data are expressed as concentration in pg/ml. Data represent the mean +/- SEM. 
Significance was calculated using two-way ANOVA with Bonferroni multiple comparison post-tests: 
*** p ≤ 0.001. ** p ≤ 0.01, * p ≤ 0.05. n = 4/group 
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4.5 The response to systemic Imiquimod 

Cutaneous Aldara treatment leads to the expression of a distinct, brain 

transcriptional ISG response. This response appears to peak after the third 

application and is induced independently of an overt inflammatory profile in the 

periphery. In addition, it has been shown that this response cannot be induced in 

the brain following a sterile, non-TLR-mediated, model of skin inflammation, 

TPA. Together, these findings suggest that the ISG response is TLR7-dependent 

as it is only induced following treatment with Aldara, which contains the TLR7 

antagonist, Imiquimod. However, as mentioned above, studies have suggested 

that Aldara can mediate an immune response in a TLR7-independent manner, 

through the actions of isostearic acid372. Therefore, it is difficult to establish 

whether the brain response is generated as a result of the stimulation of TLR7 by 

IMQ or the activation of the inflammasome by isostearic acid. In an attempt to 

understand the effect of IMQ treatment alone, c57BL/6 mice were injected I.P 

with soluble IMQ every 24 hours for five consecutive days. Alternatively, control 

mice were injected I.P with an equal volume of saline. As before, the model was 

characterised by monitoring mouse weights throughout the treatment and 

evaluating spleen size 24 hours after the final administration.  

Mice treated with I.P IMQ did not lose any weight over the course of the 

treatment and, consistent with the control mice, appeared to gain weight over 

time (Figure 4-12A). Although there was a slight difference in the spleen 

weights, this did not reach significance, and the administration of IMQ via this 

route did not cause splenomegaly (Figure 4-12B + C).    
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Figure 4-12 Evaluation of the phenotypic response following intraperitoneally administered 
Imiquimod 
Mice were treated with 100µl 1mg/ml IMQ, or equivalent volume of PBS, every 24hrs for five 
consecutive days. Mice were weighed following each application (A). In addition, spleens were 
removed and were weighed (B) and photographed (C). n = 5/group. Significance was measured 
using two-way ANOVA (weights) or student’s t test (spleens). 

 

4.5.1 QPCR analysis of ISG expression in response to 
intraperitoneal Imiquimod  

To determine whether or not I.P administration of IMQ could stimulate the 

expression of ISGs in the brain and the periphery, QPCR was performed using 

brains and PBL isolated 24 hours after the final injection. Each of the 15 ISGs 

was normalised to the housekeeping gene, TBP, and each treatment group was 

compared to the corresponding control group, which were normalised to a fold 

change value of 1. The fold change induction of each gene in the brain and PBL 

is shown in Figure 4-13.   
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4.5.1.1 QPCR analysis of the ISG response in the brain 

The results of the QPCR revealed that only 6 out of the 15 ISGs were significantly 

induced in the brain following I.P IMQ administration. Gbp3, IFIT1, IFITm3, IRF7, 

Lgals3bp and Rtp4 were all significantly induced in the brains of treated mice 

compared with the control brains; however the fold change induction was low in 

comparison to the induction following Aldara treatment and the maximum 

induction was 3-fold. Unlike the brain response following TPA, none of the genes 

was found to be downregulated in the brain following IMQ treatment. The brain 

response to I.P. IMQ appears to lie somewhere between the response to Aldara, 

where a strong ISG profile is seen, and the response to TPA, in which none of the 

ISGs was induced in the brain. It would appear from these results that I.P. IMQ 

treatment induced only a moderate ISG response in the brain.     

4.5.1.2 QPCR analysis of the ISG response in the peripheral blood  

With regards to the peripheral ISG response to IMQ treatment, 9 out of the 15 

ISGs were significantly induced in the PBL, including many of the genes which 

were also induced in the brain. Gbp6, IFIT1, IFITm3, Irgm, IRF7, Lgals3bp, Oasl2, 

Rtp4 and Sp100 were all significantly induced in the PBL of the treated group 

when compared with the control group. Again, none of the ISGs was significantly 

downregulated in the PBL following IMQ treatment.     

4.5.1.3 Comparison of central brain response with the peripheral blood 
response 

Two-way ANOVA was performed to determine the significance of the differential 

expression of the ISGs between the brain and the PBL. 7 genes were significantly 

differentially expressed between the brain and the PBL; Gbp3, Gbp6, IFIT1, 

Irgm, IRF7, Oasl2 and Sp100. With the exception of Gbp3, all of these genes 

were induced to a greater extent in the PBL than in the brain, suggesting that 

the peripheral ISG response to I.P. IMQ is greater than the central ISG response. 

Together, the results of the QPCR suggest that treatment with I.P. IMQ fails to 

induce an ISG response in the brain. This is in contrast to the data which show 

that treatment with topical Aldara, which contains IMQ as its active component, 

leads to a strong and distinct ISG response in the brain. It may suggest that the 
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transcriptional response is driven by IMQ-independent mechanisms, or that it is 

reliant on a cutaneous route of administration.      
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Figure 4-13 QPCR analysis of ISGs in brains and PBL following IMQ injections 
Mice were treated with 100µl 1mg/ml IMQ, or equivalent volume of saline, every 24hrs for 5 
consecutive days. Mice were euthanised 24hrs after the final application. Cardiac puncture was 
performed to retrieve PBLs and perfused brains were extracted. RNA was isolated from both 
tissues. QPCR analysis of the 15 target ISG genes was performed for both tissues (A-O). n= 5 
mice per group. Significance was measured using individual unpaired students t tests for individual 
tissues (control vs treated) or two-way ANOVA with Bonferroni multiple comparison post-tests for 
comparisons between tissues (PBL vs brain). *** (+++) = p ≤ 0.001 **(++) = p ≤ 0.01 *(+) = p ≤ 0.05 
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4.5.2 Luminex analysis following intraperitoneal Imiquimod 
treatment 

The results of the QPCR analysis showed that I.P. IMQ treatment leads to a 

higher ISG response in the PBL than in the brain and a higher PBL response when 

compared with the PBL response following topical Aldara application. To see if 

this was a direct result of a general inflammatory response in the periphery, 

Luminex analysis was again performed to determine cytokine expression in the 

plasma. As with previous Luminex data presented in this thesis, the samples 

were diluted 1:4 prior to use and, as a result, many of the readings were below 

the level of detection of the assay. In this case, IL-1α, IL-6, IL-10, IL-13, IFNγ, 

CXCL1, CCL2 and GM-CSF were omitted from further analysis. Levels of the 

remaining seven cytokines, three chemokines and two growth factors are shown 

in Figure 4-14 and Figure 4-15, respectively.   

Interestingly, none of the cytokines examined was significantly induced in the 

plasma following I.P. IMQ treatment. Although certain cytokines, including IL-1β, 

IL-2 and IL-17 (Figure 4-14A, B + F), appeared to be increased in the treated 

group, there was a high degree of variability within the biological replicates, 

thus the inductions failed to reach significance. Two of the chemokines, CXCL9 

and CXCL10 (Figure 4-15B + C), were significantly induced in the plasma 

following IMQ treatment. CXCL10, in particular, was highly upregulated with an 

expression value of around 250pg/ml. The results would suggest that the ISG 

response in the PBL, identified using QPCR, is not a direct result of a general 

inflammatory profile in the periphery, although it may be possible that a 

peripheral cytokine response is present earlier in this model.     
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Figure 4-14 Cytokine expression in the plasma following intraperitoneal IMQ treatment 
Mice were treated with 100µl 1mg/ml IMQ, or equivalent volume of saline, every 24hrs for 5 
consecutive days. Plasma was isolated 24hrs after the final treatment. Luminex analysis of (A) IL-
1β, (B) IL-2, (C) IL-4, (D) IL-5, (E) IL-12, (F) IL-17 and (G) TNFα was performed. Data are 
expressed as concentration in pg/ml. Data represent the mean +/- SEM. Significance was 
calculated using unpaired student’s t tests: *** p ≤ 0.001. ** p ≤ 0.01, * p ≤ 0.05. n = 5/group 
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Figure 4-15 Chemokine/ growth factor expression in the plasma following intraperitoneal 
IMQ treatment 
Mice were treated with 100µl 1mg/ml IMQ, or equivalent volume of saline, every 24hrs for 5 
consecutive days. Plasma was isolated 24hrs after the final treatment. Luminex analysis of (A) 
CCL3, (B) CXCL9, (C) CXCL10, (D) VEGF and (E) FGF-Basic was performed. Data are expressed 
as concentration in pg/ml. Data represent the mean +/- SEM. Significance was calculated using 
unpaired student’s t tests: *** p ≤ 0.001. ** p ≤ 0.01, * p ≤ 0.05. n = 5/group 

 

4.6 Topically applied Imiquimod as a model of skin 
inflammation 

Results in Section 4.5.1, in which soluble IMQ was injected intraperitoneally, 

demonstrated that IMQ administered in this way was not sufficient to induce the 

brain ISG response that was seen following topical Aldara treatment. These 

results suggested that the central response may be driven by IMQ-independent 

mechanisms, perhaps via the actions of isostearic acid. However, using a 

different route of administration was not an ideal method of comparison, as the 

initial tissue response in the skin may be an important factor in the generation 
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of the remote response in the CNS. In order to test the importance of the local 

tissue response, soluble IMQ was first dissolved in PBS before being reconstituted 

into the water based, non isostearic acid containing, control cream. This was 

applied topically to the shaved dorsal skin of c57BL/6 mice daily for 5 

consecutive days. As a control, mice were treated with an equal volume of 

aqueous control cream alone. This model eliminated the potential actions of 

other components found in the Aldara vehicle, and meant that any response 

would be the result of IMQ-induced mechanisms.     

Mice were weighed daily following each application. Weights are shown as 

percentage of initial weight in Figure 4-16A, where the initial weight was 

considered 100%. IMQ treated mice lost a significant amount of weight, evident 

after the first application. Weight loss ceased and mice began to regain some of 

their weight after the third application, however they remained significantly 

lighter than the control mice. The IMQ- treated mice showed signs of 

splenomegaly, whereby their spleens weighed more than 2.5 times that of the 

control mice (Figure 4-16B + C). Surprisingly, the H&E analysis of the treated 

dorsal skin showed that topical IMQ failed to induce psoriasis-like skin 

inflammation.  
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Figure 4-16 Evaluation of the phenotypic response to IMQ induced skin inflammation 
Mice treated with 80mg IMQ cream (5% v:v in aqueous control cream), or equivalent volume 
control cream, were weighed following each application (A). In addition, spleens from IMQ-treated 
mice were photographed (B) and spleens from control and treated mice were weighed (C). H&E 
staining was performed using 5µm thick sections of IMQ- or control-treated skin which were imaged 
at 200X magnification. n = 5/group. Significance was measured using two-way ANOVA. *** = p ≤ 
0.001. 
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4.6.1 QPCR analysis of ISG expression in response to topical 
cutaneous Imiquimod  

To determine whether or not the topical administration of IMQ could stimulate 

the expression of ISGs in the brain and the periphery, QPCR was performed using 

RNA from brains and PBL isolated 24 hours after the final application. Each of 

the 15 ISGs were normalised to the housekeeping gene, TBP, and each treatment 

group was compared to the corresponding control group, which were normalised 

to a fold change value of 1. The fold change induction of each gene in the brain 

and PBL is shown in Figure 4-17.   

4.6.1.1 QPCR analysis of the ISG response in the brain 

To identify ISGs that were significantly induced in the brain following topical IMQ 

treatment, the brains from IMQ treated mice were compared with control 

brains. With the exception of Ctsc, all 15 ISGs were significantly upregulated in 

the brains of the IMQ treated group compared with the control group. The 

transcriptional induction in the brain was quite striking, with many of the genes 

exhibiting 10-100 fold change increases. Sp100 was of particular note, with a 

fold change increase in excess of 1000-fold (Figure 4-17N). It was clear from 

these results that topical IMQ treatment can lead to a strong ISG response in the 

brain, indistinguishable from the brain response following topical Aldara 

application.    

4.6.1.2 QPCR analysis of the ISG response in peripheral blood leukocytes  

In order to identify whether or not topical IMQ treatment could also induce an 

ISG response in the periphery, the expression of the genes in the PBL was 

evaluated for both the treated group and the control group. Interestingly, 9 out 

of the 15 ISGs were significantly downregulated in the PBL of the IMQ treated 

group compared with the PBL of the control group. Only two genes, Oasl2 and 

Rtp4 (Figure 4-17L + M), were significantly induced in the PBL following topical 

IMQ treatment with an approximately 8-fold increase. The remaining genes, 

Gbp3, IFIT1, Irgm and Lgals3bp, remained consistent between the control PBL 

and the treated PBL. These results indicated that topically applied IMQ did not 

induce a distinct ISG response in the periphery.  
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4.6.1.3 Comparison of central brain response with the peripheral blood 
response 

Two-way ANOVA was performed to determine the significance of the differential 

expression of the ISGs between the brain and the PBL. The fold-change induction 

of all 15 ISGs was significantly greater in the brain when compared with the PBL. 

With the exception of Ctsc, the differential expression between the ISGs in the 

brain and PBL was highly significant and satisfied a p-value <0.001. This 

confirmed that the ISG response in the brain was not the result of blood 

contamination. These findings also highlighted the differential nature of the 

peripheral response when compared with the central response, suggesting that 

ISG induction in the brain was not a general consequence of peripheral immune 

stimulation. 

When compared with the other models, the ISG response following topically 

applied IMQ is similar to the ISG response following topical Aldara treatment, 

both of which were characterised by a distinct brain response and a mild PBL 

response. This implies that the actions of the TLR7 ligand, IMQ, and the initial 

localised skin response are important for the generation of the brain ISG 

response.      
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Figure 4-17 QPCR analysis of ISGs in the brain and PBL following topical IMQ application 
Mice were treated with with 80mg IMQ cream (5% v:v in aqueous control cream), or equivalent 
volume control cream, every 24hrs for 5 consecutive days. Mice were euthanised 24hrs after the 
final application. Cardiac puncture was performed to retrieve PBLs and perfused brains were 
extracted. RNA was isolated from both tissues. QPCR analysis of the 15 target ISG genes was 
performed for both tissues (A-O). n= 5 mice per group. Significance was measured using individual 
unpaired students t tests for individual tissues (control vs treated) or two-way ANOVA with 
Bonferroni multiple comparison post-tests for comparisons between tissues (PBL vs brain). *** 
(+++) = p ≤ 0.001 **(++) = p ≤ 0.01 *(+) = p ≤ 0.05 
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4.7 Discussion 

The results presented in Chapter 3, in which transcriptional profiling techniques 

were used, identified a distinct ISG response in the brain following topical 

cutaneous Aldara application. However, the mechanisms of induction remained 

to be fully understood. It was widely assumed that the response to Aldara cream 

was mediated through the actions of the active component, IMQ, which binds to 

TLR7/8. One signalling pathway initiated by TLR7/8 ligation is the activation of 

IRF7 and the production of Type I IFNs. Therefore, this mechanism seemed a 

likely candidate for driving the production of an ISG response in the brain 

following treatment. Recently, however, Walter et al. published a report 

showing that Aldara cream can also function in a TLR-independent mechanism, 

through the actions of isostearic acid, which is a component of the vehicle372. 

They propose that some features of the response may be driven by the ability of 

isostearic acid to activate the inflammasome. Thus, it seemed important to 

establish the involvement of TLR stimulation in the generation of the brain ISG 

response and to determine the individual roles of IMQ and isostearic acid. The 

aims of this chapter were to investigate the mechanisms driving the brain 

response following cutaneous inflammation and to determine the importance of 

TLR stimulation using a number of different inflammatory models.  

Utilising a sterile model of skin inflammation, results suggested that TLR ligation 

was indispensable for the brain ISG response. Topical TPA administration induced 

a psoriasis-like skin inflammation consistent with that seen following Aldara 

application; however TPA failed to stimulate an ISG response. It has been shown 

that both Aldara and LPS administration377 lead to the induction of an ISG 

response in the brain. Both of these TLR ligands can signal in an NF-κB-

independent manner, leading to the production of Type I IFNs, thus making it a 

likely pathway in the generation of a downstream ISG response. This hypothesis 

is strengthened by results showing that a similar ISG response cannot be 

generated following sterile inflammation, in the form of TPA, or by the direct 

administration of inflammatory cytokines into the circulation377. Together, these 

results suggest that the ISG response following Aldara application is not simply a 

response to peripheral inflammation. 
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ISGs were not induced in the PBL following cutaneous Aldara or TPA stimulation; 

however these results were obtained following 5 consecutive applications. To 

better understand the temporal pattern of the responses, and to identify 

whether or not an ISG response is initiated in the periphery at an earlier time-

point, time course models of Aldara treatment and TPA treatment were 

performed. The Aldara time course experiment revealed that the ISG response 

peaked in the brain following the third treatment, although the genes remained 

elevated in the brain after the fifth treatment. The model also showed that the 

ISG response was not mimicked in the PBL at any of the time-points. With 

regards to the PBL, several ISGs were induced at day 1; however the PBL 

response was short-lived and had largely dissipated by day 3. This also allowed 

us to confirm that the brain response was not due to contamination with 

peripheral blood. In contrast to the Aldara model, the TPA time course model 

confirmed that this sterile model of skin inflammation failed to induce an ISG 

response in the brain, even at the earlier time-points. These data strengthened 

the hypothesis that TLR stimulation may be important for the generation of a 

brain ISG response following cutaneous inflammation and highlight the 

difference in expression kinetics between the brain and the PBL. To confirm the 

role of TLR stimulation, it would be preferable to run both models using TLR7-/- 

or MyD88-/- mice.    

To investigate the role of TLR stimulation further, and to rule out the effects of 

isostearic acid in the Aldara vehicle, two other inflammatory models were used. 

The first, which involved repeated intraperitoneal stimulation with IMQ, induced 

a relatively mild ISG response in the brain in comparison with the brain response 

to topical Aldara treatment. It did, however, cause a more pronounced response 

in the PBL, although there was a high degree of variability within the treated 

group. It is important to note that the dose of IMQ injected I.P was lower than 

the dose applied to the dorsal skin, which may be the reason we do not see a 

brain response with this model. It is also possible that IMQ could be sequestered 

in the gut, which would therefore prevent it from entering the circulation. The 

second model utilised soluble IMQ reconstituted into aqueous control cream as a 

vehicle, which was subsequently applied daily to the shaved dorsal skin of the 

mice. This model retained the route of administration used in previous models 

but eliminated any effects of isostearic acid. Following this treatment, a very 
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striking ISG response was seen in the brain, with fold-change inductions 

substantially greater than those seen following Aldara treatment. This response 

was not mimicked in the PBL, which showed a mixture of up- and down-

regulations in the treated group. Intriguingly, this treatment did not appear to 

induce an inflammatory phenotype in the skin suggesting that, as reported in the 

literature, the IMQ and isostearic acid may be responsible for different aspects 

of the response. Walter et al suggested that, in the absence of IMQ, treatment 

with vehicle cream induced inflammasome activation, keratinocyte cell death 

and IL-1 production372. In keeping with our findings, they report that the local 

effects on the skin are largely due to IMQ-independent mechanisms, as they too 

failed to induce the full skin phenotype in vivo following treatment with IMQ in 

‘softcream’. These findings would explain why, in Section 4.6, H&E analysis of 

skin treated with IMQ reconstituted in aqueous control cream showed few signs 

of inflammation.  

With such a potent brain response following topically administered IMQ; it would 

appear that the response was indeed TLR-driven. However, intraperitoneal 

administration of IMQ failed to induce an ISG response in the brain. Damm et al. 

used IMQ to investigate how TLR ligation, and different routes of administration, 

can cause the manifestation of inflammation at distant sites, including the 

brain7. They reported that a high dose of peripherally administered IMQ 

(subcutaneous and intraperitoneal) induced a moderate fever, peripheral and 

hypothalamic cytokine induction and inflammatory transcription factor 

activation. In keeping with our study, they found the response to be more 

pronounced with subcutaneous administration; however topical administration 

onto the dorsal skin was not investigated. Although an upregulation of 

inflammatory markers in the hypothalamus was reported, there was no change in 

brain levels of IFNs. It is difficult, however, to directly compare the results of 

their study to the results in this thesis as Damm et al focused on only one 

specific brain region at an earlier time point.  

The results from this Chapter would suggest that the ISG response is TLR-driven 

but also dependent on some component of the localised skin response. The 

problem with this hypothesis is that, as I have already mentioned, the localised 

skin response is predominantly reliant on the effects of isostearic acid and not 

IMQ. Therefore this makes it hard to establish what, if any, aspect of the skin 
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response is necessary for the generation of the brain ISG response. To better 

understand the role of each component in the generation of the brain ISGs, 

isostearic acid alone should be used to treat the mice, which would allow for a 

direct comparison of the two active components of Aldara cream. In addition, it 

would be interesting to inject soluble IMQ subcutaneously, as this, in theory, 

should stimulate a similar response in the skin to topical application.         

One proposed mechanism of peripheral immune signal transduction into the 

brain is via the activation of vascular endothelial cells by circulating cytokines, 

such as IL-1β and TNFα. To determine whether or not such cytokines were 

induced in the circulation following Aldara application, Luminex analysis was 

performed using plasma isolated from the time course model. According to the 

literature, TLR7 stimulation should lead to the production of inflammatory 

cytokines in the periphery, however it is also possible that cytokines, 

particularly IL-1β, could be produced as a result of inflammasome activation by 

isostearic acid. The Luminex data showed that four cytokines and four 

inflammatory chemokines were induced in the Aldara model following the first 

application; however IL-1β and TNFα were not detected. Luminex analysis was 

also performed using plasma from the TPA time course and the I.P. IMQ model, 

neither of which induced an ISG response in the brain. The Luminex results 

showed that the peripheral inflammatory cytokine response in both of these 

models was minimal, with very few cytokines being significantly induced. The 

lack of a peripheral cytokine response in a range of models, irrespective of their 

ability to induce an ISG response in the brain, indicated that the brain response 

was independent of the peripheral cytokine response and was driven by another 

mechanism. In addition, the expression of IFNγ was below the minimum level of 

detection of the kit in all of the models examined. This was interesting, since 

IFNs would normally be produced as a prerequisite to an ISG response. TLR7/8 

stimulation does, however, lead to the production of IFNα, which unfortunately 

was not included in the panel of cytokines on the kit used in this study. 

Therefore, the production of Type I IFNs in the periphery following Aldara 

treatment cannot be ruled out. It is important to bear in mind however, that 

some cytokine expression may have been diluted out in this assay, and firm 

conclusions would require the assay to be repeated using undiluted samples.   
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The absence of an overt peripheral cytokine response indicated that cytokines 

may not be driving the brain response following Aldara treatment. An alternative 

mechanism for generating the ISG response in the brain is through TLR7/8 

stimulation. This could occur in two ways; either by TLR ligation in the skin and 

the localised production of Type I IFNs that subsequently traffic to the brain and 

act in an endocrine fashion, or via the direct activation of TLR7/8 in the brain 

parenchyma or peripheral nerves. As mentioned, the ability of IMQ to cross the 

BBB is not known. Butchi et al have shown that intracerebroventricular 

inoculation of IMQ in developing mice leads to microglia and astrocyte 

activation391. They reported that protein levels of certain proinflammatory 

cytokines and chemokines, including CXCL10, IL-1β and IL-5, are upregulated in 

response to TLR7 ligation, as well as a strong IFNβ response. Their data suggest 

that, should IMQ be able to cross the BBB, it would induce a sufficiently strong 

inflammatory response to generate an ISG response. Interestingly, Damm et al 

have shown that, following IMQ administration, several transcription factors 

were activated in regions of the brain devoid of intact BBB, including the CVOs7. 

This suggests that areas protected by an intact BBB are less susceptible to IMQ, 

perhaps because it is not able to cross into the brain. According to the 

literature, dermal DCs, pDCs and Langerhans cells in the skin are activated 

following IMQ treatment and are the primary source of Type I IFN, specifically 

IFNα368, 400, 401. In addition, it has been reported that IFNα can mediate 

neurological effects by crossing the BBB by diffusion or by a facilitated saturable 

transport system402, 403. Therefore, if IMQ cannot cross the BBB, this would be a 

viable mechanism by which distal immune activation by Aldara/IMQ could 

mediate an ISG response in the brain. However, it does raise the question as to 

why an ISG response was not seen in the periphery if the response was induced 

by circulating Type I IFNs. As such, it may be the case that in this model, IFNs 

are produced directly in the brain. To test this hypothesis, QPCR and ELISA could 

be used to determine the expression of Type I IFNs in the brain at the various 

time-points following immune stimulation.  

In summary, both topical Aldara and topical IMQ application to the skin induced 

a distinct ISG response in the brain. This response appeared to be dependent on 

TLR stimulation, and differed in kinetics and magnitude to the PBL response. In 

addition, this response was generated independently of an inflammatory 
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cytokine profile in the periphery. The results suggest that the remote brain 

response may be driven by the production of TLR-dependent Type I IFNs, 

highlighting a potential mechanism of transcriptional regulation in the brain 

following peripheral immune stimulation.     

 



  

 

 

 

 

 

 

Chapter 5 

Transcriptional chemokine response in the brain 
following cutaneous immune stimulation 
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5 Transcriptional chemokine response in the brain 
following cutaneous immune stimulation  

5.1 Introduction 

The results in Chapter 3 provided a transcriptional profile of the brain response 

following topical Aldara treatment. Microarray analysis revealed a number of 

ISGs that were induced in the brain following treatment, which were validated 

and assessed in a range of inflammatory models. However, the microarray also 

identified a number of other genes as being differentially expressed in the brain 

but these were not further investigated. DAVID ontology analysis of the 

microarray dataset identified the most enriched biological pathways, amongst 

which were ‘Chemokine signalling pathway’, ‘Inflammation mediated by 

chemokine and cytokine signalling pathway’ and ‘Leukocyte transendothelial 

migration’. These pathways strongly implicated a chemokine response in the 

brain following Aldara treatment.  

Chemokines, described in detail in Chapter 1, regulate cellular migration and are 

thought to be involved in maintaining certain homeostatic and developmental 

processes in the brain109, 215. In many inflammatory models, both peripheral and 

central, chemokines are commonly upregulated in the brain. It is thought that 

this induction not only drives immune cell infiltration into the brain, but perhaps 

also disrupts key homeostatic functions. It is therefore possible that chemokine 

induction in the brain could be a prerequisite for chronic neuroinflammation and 

changes in brain biology that lead to the onset of neuropsychiatric phenotypes.  

To establish whether or not cutaneous Aldara treatment could lead to a 

chemokine response in the brain, the microarray dataset from Chapter 3 was 

revisited to identify the significantly induced chemokine genes. These genes 

were subsequently validated in the range of inflammatory models previously 

employed. Immunohistochemistry was performed to explore immune cell 

infiltration into the brain and finally, to try to correlate the chemokine response 

with a functional consequence, burrowing behaviour was investigated alongside 

the use of chemokine receptor antagonists.  
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5.2 Identifying the differential chemokine response in the 
brain following topical Aldara application 

Upon revisiting the microarray data detailed in Chapter 0, 7 chemokines and 1 

chemokine receptor were identified as being differentially expressed in the 

brains of the treatment group. GeneSpring GX software was used to generate a 

heat map showing the expression of the 8 genes, which is shown in Figure 5-1. 

The fold change induction and the p-value for each of the chemokine genes is 

shown in Table 5-1, where genes are presented in order of their fold-change 

induction.  

 

 
Figure 5-1 Heatmap of differentially expressed chemokines identified by microarray analysis 
Microarray analysis was performed using RNA from brains of Aldara treated and control mice. 
Following statistical analysis, differentially expressed chemokine genes were identified. A heatmap 
was generated using GeneSpring GX software to depict the 7 differentially expressed chemokines 
and 1 chemokine receptor in Aldara treated and control brains. The five treatment samples are 
shown in red and the five control samples in green. 
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Table 5-1 A list of the chemokine genes that were upregulated in the Aldara model 
Symbol Gene name Fold change p-value 

CCL5 chemokine (C-C motif) ligand 5 25.65 1.17E-09 

CXCL13 chemokine (C-X-C motif) ligand 13 21.38 1.53E-09 

CCL3 chemokine (C-C motif) ligand 3 18.67 4.10E-10 

CXCL9 chemokine (C-X-C motif) ligand 9 6.40 1.57E-06 

CXCL16 chemokine (C-X-C motif) ligand 16  5.46 1.30E-07 

CCL9 chemokine (C-C motif) ligand 9 4.52 2.91E-07 

CXCL10 chemokine (C-X-C motif) ligand 10 4.25 1.27E-04 

CCR5 chemokine (C-C motif) receptor 5  3.74 
 

4.31E-08 

 

5.2.1 QPCR verification of the chemokine signature in the brain 
and PBL in response to Aldara treatment  

To verify the expression of the 8 target chemokine genes following Aldara 

treatment, SYBR Green QPCR analysis was performed using RNA from brains and 

PBL isolated 24 hours after the final Aldara treatment. If a chemokine response 

was identified in the PBL, it may be that the expression found in the brain was 

the result of a contaminating signal from the blood. Therefore, by using the PBL 

as a comparator, this part of the study would ensure that blood contamination 

was not a factor in the brain response. Although the microarray data 

demonstrated significant induction of the gene encoding CXCL9, this appeared to 

be below the detection limit of the QPCR assay and could not be validated in the 

PBL and the brain (data not shown). It was therefore excluded from further 

analysis. Expression of each gene was normalised to that of the housekeeping 

gene, TBP, and each treatment group was compared to the corresponding 

control group, which were normalised to a fold change value of 1. The fold 

change induction of each gene in the brain and PBL is shown in Figure 5-2. 
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The results of the QPCR confirmed that the 6 chemokines and 1 chemokine 

receptor were significantly induced in the brains of Aldara treated mice when 

compared with the control brains. The fold-change induction of the genes 

ranged from around 2-fold to 200-fold. Both CCL5 and its receptor, CCR5, 

exhibited the highest inductions in the brain, upwards of 200-fold (Figure 5-2B + 

G).  

With regards to the PBL, only one of the genes, CCL9, was significantly induced 

following Aldara treatment (Figure 5-2C). In addition, one of the genes, CXCL16, 

was significantly downregulated in the PBL of the treated group when compared 

with the control group (Figure 5-2F). The expression levels of the remaining 5 

genes were consistent between the control and treated groups.  

To determine whether or not the response in the brain was significantly greater 

than the response in the PBL, data were analysed using two-way ANOVA. With 

the exception of CCL9, the induction of all of the genes was higher in the brain 

than in the PBL, with the most significant difference being seen with expression 

of CXCL10 and CXCL16.  

Together, the results of the QPCR analysis confirmed the presence of a distinct 

chemokine response in the brain following Aldara treatment when compared 

with controls. Although this treatment led to the induction of CCL9 in the 

periphery, the overall chemokine response was not mimicked in the PBL.     
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Figure 5-2 QPCR analysis of chemokines in brains and PBL following Aldara treatment 
Mice were treated with 80mg Aldara cream or control cream every 24hrs for 5 consecutive days. 
Mice were euthanised 24hrs after the final application. Cardiac puncture was performed to retrieve 
PBLs and perfused brains were extracted. RNA was isolated from both tissues. QPCR analysis of 
the target chemokine genes identified in the microarray was performed for both tissues (A-G). n= 5 
mice per group. Significance was measured within each tissue using individual students t test or 
between the tissues using two-way ANOVA with Bonferroni multiple comparison post-tests *** 
(+++) = p ≤ 0.001 **(++) = p ≤ 0.01 *(+) = p ≤ 0.05 
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5.3 QPCR analysis of the chemokine signature in the 
brain and PBL in response to TPA treatment  

Having confirmed the induction of chemokine genes in the brain following Aldara 

treatment, the same genes were assessed following TPA treatment, to again 

establish whether or not TLR ligation was a prerequisite for this response. To 

determine the expression of the 7 chemokine genes following TPA treatment, 

SYBR Green QPCR analysis was performed using RNA from brains, and PBL, 

isolated 24 hours after the fifth and final treatment. Each gene was normalised 

to the housekeeping gene, TBP, and each treatment group was compared to the 

corresponding control group, which were normalised to a fold change value of 1. 

The fold change induction of each gene in the brain and PBL is shown in Figure 

5-3. 

The results of the QPCR showed that none of the chemokine genes were 

significantly induced in the brains of TPA-treated mice when compared with 

control mice. Some of the genes showed a slight downwards trend in the treated 

brains, including CCL3, CCL5 and CXCL10, however none of these reached 

significance.  

With regards to the PBL, again none of the chemokine genes was significantly 

induced in the treated mice when compared with the control mice. The cycle 

threshold values for many of the samples were high (data not shown) which is 

perhaps why there was such a high degree of variability within the groups, 

indicated by the size of the error bars. CXCL16 expression in the PBL of both 

control and TPA treated mice was below the level of detection (Figure 5-3F).  

Two-way ANOVA was used to compare the brain and the PBL to establish 

whether the responses were significantly different. CCL9 was the only gene to 

reach significance, whereby the induction in the PBL following TPA treatment 

was significantly greater than the induction in the brain (Figure 5-3C). None of 

the other genes was significantly differentially expressed between the brain and 

the PBL. 

Together, the results of the QPCR analysis showed that topical TPA treatment 

failed to induce a similar chemokine response in the brain, or in the PBL, to that 
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seen with Aldara. These results are consistent with the ISG expression in the 

brain, reported in Chapter 4, despite TPA application inducing a similar 

inflammatory skin phenotype. These results highlight the differential response 

between mice treated with an “infective” model versus a “sterile” model and 

strengthen the hypothesis that the brain response following Aldara treatment is 

TLR driven.       
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Figure 5-3 QPCR analysis of chemokines in brains and PBL following TPA treatment 
Mice were treated with 150µl 100µM TPA, or equivalent volume of acetone, every 24hrs for 5 
consecutive days. Mice were euthanised 24hrs after the final application. Cardiac puncture was 
performed to retrieve PBLs and perfused brains were extracted. RNA was isolated from both 
tissues. QPCR analysis of the target chemokine genes identified in the microarray was performed 
for both tissues (A-G). n= 5 mice per group. Significance was measured within each tissue using 
individual students t test or between the tissues using two-way ANOVA with Bonferroni multiple 
comparison post-tests *** (+++) = p ≤ 0.001 **(++) = p ≤ 0.01 *(+) = p ≤ 0.05 
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5.4 QPCR analysis of the chemokine signature in the 
brain and PBL during the Aldara time-course  

The previous two sections confirmed the presence of a chemokine response in 

the brain following topical Aldara and established that such a response was not 

generated following TPA application. This differential pattern of expression 

between the two models mirrors the pattern of the ISG response that was 

reported in Chapter 4. It was also established that, rather than the day 5 time-

point studied initially, the peak of the ISG response in the brain appeared to be 

day 3. Therefore, to determine whether or not the expression of the 7 

chemokine genes followed the same temporal pattern as the ISGs, SYBR Green 

QPCR analysis was performed using RNA from brains and PBL isolated 24 hours 

after 1, 3 and 5 applications of Aldara. Each gene was normalised to the 

housekeeping gene, TBP, and each treatment group was compared to the 

corresponding control group, which were normalised to a fold change value of 1. 

The fold change induction of each gene in the brain and PBL is shown in Figure 

5-4. 

The results of the QPCR suggested that the chemokine response shared the same 

temporal pattern in the brain as the ISGs, as the peak of the response appeared 

to be at day 3. All 6 chemokines and 1 chemokine receptor analysed were 

significantly induced in the brains of Aldara treated mice at day 3 when 

compared with control mice. CCL3, CCL5 and CXCL10 (Figure 5-4A, B + D) 

showed striking upregulations, with around 1000-fold inductions in the brain at 

this time-point. None of the chemokine genes was significantly induced at day 1 

and by day 5, 5 out of the 7 genes remained significantly induced in the brain. 

The induction of CCL5 at day 5 was still very high, at around 800-fold, whereas 

all other genes were 100-fold or less. 

With regards to the PBL, the response at all time-points remained below a 20-

fold induction. CCL3 was the only gene to be significantly induced in the PBL at 

all three time-points, with a consistent 3-4-fold upregulation (Figure 5-4A). Both 

CXCL10 and CCR5 were significantly induced at day 1 when compared with the 

PBL from control mice. At day 3, CCL5 and CCR5 were significantly induced in 

the treated group. With the exception of CCL3, none of the chemokine genes 

were significantly induced at day 5. 
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Statistical comparisons were performed to determine whether the induction in 

the brain was significantly different to the induction in the PBL in Aldara-treated 

mice. At day 3, the induction in the brain was significantly greater than the 

induction in the PBL for all 7 chemokine genes. With the exception of CCL3 and 

CXCL10, this remained true for all genes at day 5. None of the genes was 

significantly induced in the brain at day 1 when compared with the induction in 

the PBL; however one gene, CCR5, was induced in the PBL to a significantly 

greater extent at day 1 than it was in the brain. This was the only gene to be 

more strongly induced in the PBL than the brain at any of the time-points 

analysed.  

The results suggested that, like the ISG response detailed in Chapter 4, the 

chemokine response in the brain following Aldara treatment appeared to peak at 

day 3. This response, which was particularly strong with respect to CCL3, CCL5 

and CXCL10 at day 3, persisted in the brain at day 5, in accordance with the 

results shown in Section 5.2.1. Aldara treatment did appear to induce a 

chemokine response in the PBL but, with the exception of CCR5, the chemokine 

response was significantly higher in the brain than it was in the PBL. These data 

highlighted how the response in the brain and PBL differed, both in kinetics and 

magnitude, and suggested that the brain response was independent of the PBL 

response.    
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Figure 5-4 QPCR analysis of chemokines in brains and PBL following Aldara treatment 
Mice were treated with 80mg Aldara cream or control cream every 24hrs for 1, 3 or 5 days. Mice 
were euthanised 24hrs after the final application. Cardiac puncture was performed to retrieve PBLs 
and perfused brains were extracted. RNA was isolated from both tissues. QPCR analysis of the 
target chemokine genes identified in the microarray was performed for both tissues (A-G). n= 4 
mice per group. Significance was calculated for individual tissues (control vs treated), between 
tissues (treated only, PBL vs brain) and between time-points (treated only, d1 vs d3 vs d5) using 
two-way ANOVA with Bonferroni multiple comparison post-test. *** p ≤ 0.001. ** p ≤ 0.01, * p ≤ 0.05 

 

5.5 QPCR analysis of the chemokine signature in the 
brain and PBL during the TPA time-course  

It has been demonstrated in this Chapter that peripheral Aldara treatment leads 

to a distinct transcriptional chemokine response in the brain, which peaks 

following the third application. This response does not appear to be induced 

following TPA treatment; however the earlier time-points were not investigated. 

Therefore, to determine whether or not any of the 7 chemokine genes could be 

found in the brain or PBL at an earlier time, SYBR Green QPCR analysis was 

performed using RNA from brains and PBL isolated 24 hours after 1, 3 and 5 

applications of TPA or acetone. Each gene was normalised to the housekeeping 

gene, TBP, and each treatment group was compared to the corresponding 

control group, which were normalised to a fold change value of 1. The fold 

change induction of each gene in the brain and PBL is shown in Figure 5-5. 

With regards to the brain, none of the chemokine genes was significantly 

induced in the TPA treated mice compared with the control mice at any of the 

time-points. Several of the genes showed a slight downregulation in the brain; 

however none of the reductions reached significance.  
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The same was true of the PBL analysis, where the QPCR results confirmed that 

none of the genes was significantly induced in the treated group when compared 

with the control group. Many of the apparent downwards trends in expression 

coincided with a high degree of error, suggesting that the expression levels were 

close to the minimum detection levels of the assay.  

As none of the genes was significantly differentially expressed between the 

control and treated groups of each tissue, there was no significant difference 

between the treated groups of the brain and PBL. The expression levels were 

quite consistent ‘across the board’, both control versus treated and brain versus 

PBL.  

These results confirmed that topical TPA application failed to induce a 

transcriptional chemokine response in the brain or PBL 1, 3 or 5 days following 

treatment. In addition, this experiment showed that the chemokine response 

appeared to be similar in kinetics to the ISG response identified in Chapter 4.  
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Figure 5-5 QPCR analysis of chemokines in brains and PBL following TPA treatment 
Mice were treated with 150µl 100µM TPA, or equivalent volume of acetone, every 24hrs for 1, 3 or 
5 days. Mice were euthanised 24hrs after the final application. Cardiac puncture was performed to 
retrieve PBLs and perfused brains were extracted. RNA was isolated from both tissues. QPCR 
analysis of the target chemokine genes identified in the microarray was performed for both tissues 
(A-G). n= 4 mice per group. Significance was calculated for individual tissues (control vs treated) 
and between tissues (treated only, PBL vs brain) using two-way ANOVA with Bonferroni multiple 
comparison post-test. 
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5.6 QPCR analysis of the chemokine signature in the 
brain and PBL following intraperitoneal IMQ treatment  

To determine the importance of a localised skin response in the generation of a 

transcriptional chemokine response in the brain, the 7 chemokine genes were 

evaluated following the intraperitoneal injection of IMQ. SYBR Green QPCR 

analysis was performed using RNA from brains and PBL isolated 24 hours after 

the fifth administration of I.P. IMQ or saline. Each gene was normalised to the 

housekeeping gene, TBP, and each treatment group was compared to the 

corresponding control group, which were normalised to a fold change value of 1. 

The fold change induction of each gene in the brain and PBL is shown in Figure 

5-6. 

With regards to the brain, only two of the chemokine genes, CCL5 and CCR5 

(Figure 5-6B + G, respectively), were significantly induced in the brains of IMQ-

injected mice compared with the brains of saline-injected mice. The expression 

of many of the genes in the brain, particularly CXCL10, CXCL13 and CXCL16, was 

highly variable, as shown by the large error bars, perhaps indicating that the 

expression of the genes was very low.   

Only one gene was significantly induced in the PBL of the treated group when 

compared with the control group. CCL5 was upregulated 3-fold in the PBL of the 

treated mice, an almost identical fold-induction to that of the brain (Figure 

5-6B). Again, many of the chemokine genes had a high degree of error, 

suggesting that the expression levels were close to the minimum detection levels 

of the assay.  

CCL9 was the only gene found to be significantly differentially expressed 

between the brain and the PBL (Figure 5-6C). The results suggested that the 

fold-change induction of CCL9 in the brain was greater than the induction in the 

PBL; however the induction of this gene failed to reach significance in the 

individual tissues.  

These results indicated that I.P. administered IMQ was not able to induce a 

transcriptional chemokine response in the brain or PBL similar to that seen 

following topical IMQ administration.  
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Figure 5-6 QPCR analysis of chemokines in brains and PBL following I.P IMQ injection 
Mice were treated with 100µl 1mg/ml IMQ, or equivalent volume of saline, every 24hrs for 5 
consecutive days. Mice were euthanised 24hrs after the final application. Cardiac puncture was 
performed to retrieve PBLs and perfused brains were extracted. RNA was isolated from both 
tissues. QPCR analysis of the target chemokine genes identified in the microarray was performed 
for both tissues (A-G). n= 5 mice per group. Significance was measured within each tissue using 
individual students t test or between the tissues using two-way ANOVA with Bonferroni multiple 
comparison post-tests *** (+++) = p ≤ 0.001 **(++) = p ≤ 0.01 *(+) = p ≤ 0.05 
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5.7 QPCR analysis of the chemokine signature in the 
brain and PBL following topical IMQ treatment  

Results from Chapter 4 showed that I.P administration of IMQ failed to induce an 

ISG response in the brain. In agreement, section 5.6 of this chapter showed that 

this model also failed to induce the upregulation of the target chemokine genes. 

This could be due to the lack of isostearic acid; however topically applied IMQ 

did induce an ISG response in the brain (shown in Chapter 4); indicating that the 

more likely reason for the lack of a brain response was due to the route of 

administration. To determine whether IMQ alone could induce a chemokine 

response if it was applied topically, SYBR Green QPCR was performed on RNA 

from the brain and PBL of mice treated with topical IMQ in aqueous cream.  

The results of the brain analysis showed that all seven of the chemokine genes 

were significantly induced in the brains of IMQ-treated mice compared with 

control mice. The induction of three of the genes, CCL3, CCL5 and CCR5, was 

extremely high in the brain with increases of around 10,000-fold (Figure 5-7A, B 

+ G).  

In stark contrast, none of the genes was significantly induced in the PBL of the 

IMQ-treated mice. Interestingly, four of the seven genes, CCL5, CCL9, CXCL10 

and CXCL16, were significantly downregulated in the PBL, highlighting the 

difference between the response in the brain and the response in the periphery.  

This difference was emphasised following statistical analysis of the brain 

response compared with the PBL response. Results showed that the fold-change 

induction in the brain was significantly greater than the induction in the PBL for 

all seven chemokine genes analysed. 

Together, the results showed that topically applied IMQ induced a significant 

chemokine response in the brain that was not mimicked in the PBL. Along with 

ISG data from Chapter 4, the results indicated that this model was the most 

potent at inducing a transcriptional brain response out of all the models studied 

in this thesis.   
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Figure 5-7 QPCR analysis of chemokines in brains and PBL following topical IMQ 
Mice were treated with 80mg IMQ (5%v:v), or equivalent quantity of control cream, every 24hrs for 
5 consecutive days. Mice were euthanised 24hrs after the final application. Cardiac puncture was 
performed to retrieve PBLs and perfused brains were extracted. RNA was isolated from both 
tissues. QPCR analysis of the target chemokine genes identified in the microarray was performed 
for both tissues (A-G). n= 5 mice per group. Significance was measured within each tissue using 
individual students t test or between the tissues using two-way ANOVA with Bonferroni multiple 
comparison post-tests *** (+++) = p ≤ 0.001 **(++) = p ≤ 0.01 *(+) = p ≤ 0.05 
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5.8 CD3 T cell infiltration into the brain following Aldara 
treatment 

A fundamental function of chemokines is to mediate immune cell migration404. 

Chemokine expression in the brain has been shown to induce the influx of 

inflammatory cells including monocytes and T cells229, 233, 234. Following Aldara 

treatment, we have shown that several inflammatory chemokines have been 

significantly upregulated in the brain. Thus we next sought to investigate 

whether or not Aldara treatment led to immune cell infiltration into the brain. 

Several of the chemokines induced in the brain following treatment are ligands 

for chemokine receptors expressed by different subsets of CD3+ T cells, 

therefore this was the cell type thought to be most likely recruited. To 

investigate this, mice were treated with Aldara cream or control cream every 24 

hours for 1, 3 or 5 consecutive days. Perfused brains were extracted and 

formalin fixed before being sectioned and stained for CD3.  

Representative images from control and Aldara-treated mice at the different 

time-points are shown for the cerebellum (Figure 5-8A) and hippocampus (Figure 

5-8B). It was immediately clear that Aldara treatment induced the influx of CD3+ 

cells after the third and fifth treatments. The positive cells were found 

throughout the brain parenchyma and did not appear to have any localised, 

region-specific anatomical distribution. Very few CD3+ cells were seen in the 

control mice, as was expected. The number of CD3+ cells in the brain was 

quantified by performing blind cell counts of whole brain sections. Three whole 

sagittal sections from the brain were counted for each mouse (Figure 5-8C). The 

cell counts confirmed that Aldara-treatment induced a significant influx of CD3+ 

cells into the brain following the third and fifth applications, averaging around 

300 cells on day 3 and 550 cells on day 5.  

These data confirmed that topical Aldara treatment induced the influx of CD3+ T 

cells into the brain parenchyma, which was likely due to the distinct chemokine 

response identified in the brain following treatment.     
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Figure 5-8 CD3+ T cell infiltration into the brain following Aldara treatment 
Mice were treated with 80mg Aldara cream or control cream every 24hrs for 5 consecutive days. 
Perfused brains were formalin fixed and embedded in wax. Brain sections were stained for CD3 
and representative 200X magnified images from cerebellum (A) and hippocampus (B) are shown. 
Inserts on each image show respective field of view at 50X magnification. Cell counts were 
performed blind on 3 sections per brain (C). n=4 mice/group. Significance was measured using 
two-way ANOVA with Bonferroni multiple comparison post-tests *** = p ≤ 0.001 
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5.9 Assessment of burrowing behaviour with chemokine 
blockade 

The results presented in this thesis have, so far, shown that topical Aldara 

treatment induced a chemokine response in the brain, the influx of immune cells 

into the brain parenchyma and a reduction in burrowing behaviour. Next, we 

wanted to determine whether blocking inflammatory chemokine responses would 

have an effect on burrowing behaviour to see if this functional output was being 

mediated by chemokine expression. If chemokines were mediating the 

behavioural changes, perhaps burrowing activity could be restored if responses 

to these chemokines were blocked.  

Two different pharmaceutical agents were used to test this hypothesis, both of 

which have been used to investigate the role of chemokine receptors in viral 

encephalitis405. CCR5 blockade would inhibit the effects of CCL3, CCL4, CCL5 

and CCL8, whereas CXCR3 blockade would inhibit CXCL9, CXCL10 and CXCL11 

activity. Mice were treated with topical Aldara or control cream every 24 hours 

for 3 consecutive days. Aldara-treated mice were, in addition, treated with 

either CCR5 blocker, CXCR3 blocker or a CXCR3 mimic control. Burrowing 

behaviour was evaluated in each of the groups as previously described (Section 

3.6).  

The results showed that co-treatment with CCR5 blocker reduced burrowing 

behaviour in Aldara-treated mice (Figure 5-9A). By the second and third 

treatment days, mice burrowed very little. The withdrawal from burrowing 

behaviour appeared to be more rapidly induced than in Aldara-treated mice that 

did not receive the blocker, particularly at day 1; however the difference did 

not reach significance. As has been shown previously, the burrowing activity of 

control mice increased over the course of the treatment period. These data 

suggested that blocking the activity of CCR5, and its corresponding chemokine 

ligands, could not restore burrowing activity.  

The same study was performed using a CXCR3 blocker (Compound 21). The 

results showed that mice treated with Aldara along with blocker experienced 

reduced burrowing activity (Figure 5-9B). However, the blocker itself had no 

effect on this response as the suppression of burrowing activity was in line with 
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that seen in Aldara-treated mice without blocker and in mice that received the 

CXCR3 mimic. These results again suggested that the activity of CXCR3, and its 

ligands, was not directly mediating the behavioural response to Aldara 

treatment.  
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Figure 5-9 Burrowing activity of Aldara-treated mice with chemokine blockade 
WT mice were treated with ~80mg Aldara cream, control cream or Aldara cream along with CCR5 
blocker, CXCR3 blocker or mimic. Mice were assessed for burrowing activity on three consecutive 
days. Four hours following treatment application, mice were single caged with a burrowing tube 
containing 200g of food pellets for 2 hours. At the end of this time point, mice were caged again in 
groups and the remaining weight of food pellets in the tubes was recorded. The weight left in the 
tube following treatment with CCR5 blocker (A) and CXCR3 blocker (B) is shown. n=5 mice per 
group.  
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5.10 Discussion 

The aim of this chapter was to investigate the chemokine response that was 

identified following microarray analysis and gene ontology clustering of brains 

from Aldara-treated mice. QPCR analysis was used to assess the chemokine 

response in the brain and PBL following Aldara treatment, TPA treatment, I.P. 

IMQ administration and topical IMQ treatment. In addition, immune cell 

infiltration into the brain parenchyma was assessed in Aldara-treated mice to 

determine whether or not peripheral cutaneous inflammation could induce the 

recruitment of cells. Finally, chemokine blockers were used in conjunction with 

the burrowing model to investigate whether inflammatory chemokines were 

driving the behavioural phenotype in response to cutaneous Aldara treatment.      

The results of the QPCR analysis confirmed the presence of a distinct chemokine 

profile in the brain in response to Aldara treatment and topical IMQ treatment, 

but not in response to TPA or I.P. administered IMQ. This was in keeping with the 

ISG data shown in Chapter 4 and it would appear that ISG induction and 

chemokine induction were two aspects of a general brain response since they 

followed the same temporal pattern. Similar patterns of chemokine upregulation 

have been described in studies using LPS-induced immune stimulation. Both 

Erikson et al and Thomson et al report a specific chemokine response in the 

brain following peripheral inflammation which is not mimicked in the PBL377, 406. 

It is therefore possible that the transcriptional response we see in the brain may 

be the result of general TLR stimulation in the periphery.    

Many of the inflammatory chemokines induced in the brain are involved in 

immune cell migration. Specifically, CCL3, CCL5 and CXCL10 are important in 

mediating CD4+ and CD8+ T cell migration, as these cells express the 

corresponding receptors, CCR5 and CXCR3. Several groups have shown that 

chemokine induction in the brain can induce immune cell infiltration, both under 

neuroinflammatory conditions234, 244, 407-409 and in response to peripheral 

inflammation230. Here, we have shown that, consistent with the literature, 

peripheral immune stimulation led to the infiltration of CD3+ T cells into the 

brain parenchyma. To our knowledge, we are the first to show this following 

cutaneous inflammation. These infiltrating T cells were found throughout the 

brain parenchyma and did not appear to be restricted to any specific anatomical 
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region, or regions, of the brain. To confirm that this influx was the direct result 

of chemokine upregulation, the experiment would have to be repeated in the 

models that did not show a chemokine response in the brain or through the use 

of chemokine blockers. However, it is plausible to hypothesise that this response 

was a direct consequence of inflammatory chemokine expression in the brain.   

We next sought to establish whether chemokine induction in the brain could be 

driving the behavioural phenotype described in Chapter 0. To investigate this, 

burrowing activity was assessed in Aldara-treated mice co-treated with 

chemokine blockers. Two different chemokine receptor antagonists were used in 

this experiment, a CCR5 blocker and a CXCR3 blocker. Neither was found to have 

an effect on the behavioural response to Aldara treatment as all groups, both 

with and without the administration of blocker, showed a similar suppression of 

burrowing activity. These blockers have been used previously to demonstrate the 

role of chemokines in viral encephalitis, with their administration leading to a 

reduction in immune cell infiltration into the brain405. It would therefore be 

useful to investigate whether the numbers of CD3+ T cells in the brain is reduced 

following co-treatment with chemokine blockers. Nonetheless, the results from 

this experiment suggest that, although inflammatory chemokines may be 

important for initiating the response to Aldara treatment, modulating their 

function does not appear to affect the consequential phenotypes.  

Although we can show that Aldara treatment caused a transcriptional chemokine 

response in the brain and T cell infiltration into the parenchyma, we have been 

unable to identify the exact mechanisms by which this response is generated. 

Further analysis would be required to try to better understand the relationship 

between the different aspects of this response.        

In summary, the results in this Chapter have identified a distinct chemokine 

profile in the brain and have linked peripheral skin inflammation with immune 

cell infiltration into the brain and impaired burrowing activity that could not be 

rescued using chemokine blockers. This study has demonstrated that peripheral, 

tissue-specific skin inflammation can induce both a transcriptional and 

functional response in the brain and highlights the importance for further 

investigation into the role of inflammatory chemokines as potential mediators of 

ensuing CNS inflammation. 



  

 

 

 

 

 

 

Chapter 6 

ACKR2 in the brain 
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6 ACKR2 in the brain 

6.1 Introduction 

Data presented in Chapter 5 have shown that treatment with topical Aldara and 

topical IMQ induced a chemokine response in the brain. Amongst the chemokine 

genes induced, CCL3 and CCL5, along with their receptor, CCR5, were the most 

highly upregulated in the brain following treatment. Both of these inflammatory 

chemokines bind to ACKR2, an atypical chemokine receptor which was described 

in detail in Chapter 1115. ACKR2 acts as a scavenger, binding to inflammatory CC 

chemokines and removing them from the microenvironment, and is therefore 

considered to have anti-inflammatory properties114.  

Interestingly, ACKR2 is expressed throughout the adult brain, as well as in 

specific structures including the dentate gyrus and the olfactory bulb (Figure 

6-1). The distinct anatomical distribution of ACKR2 in the brain could suggest 

that the scavenging receptor is there to regulate inflammatory chemokine 

function. In addition, since these regions of expression are also sites of adult 

neurogenesis, ACKR2 may have a role to play in regulating the generation and 

maintenance of new neurons. Therefore, the aim of this Chapter was to 

investigate the regulatory role of ACKR2 in the brain response to cutaneous 

inflammation using ACKR2 KO mice. We hypothesised that the inflammatory 

response would be exacerbated in the absence of ACKR2.   
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Figure 6-1 Expression of ACKR2 in the adult mouse brain 
Images showing the anatomical distribution of ACKR2 in the mouse brain (A), highlighting the 
concentrated expression in the dentate gyrus of the hippocampus (B). Images taken from the Allen 
Brain Atlas http://www.brain-map.org/  

 

6.2 Aldara model of skin inflammation in ACKR2 KO mice 

The model was first validated, whereby mouse weights, spleen weights and 

treated skin were evaluated in Aldara-treated wild-type mice and Aldara-treated 

ACKR2 KO mice (Figure 6-2). The results showed that the weight loss was similar 

between WT and ACKR2 KO mice for the first three treatment days; however 

ACKR2 KO mice started to recover some weight between day 3 and day 4, 

whereas WT mice continued to lose weight (A). ACKR2 KO mice were 

significantly heavier than WT mice at day 5, suggesting that they recovered 
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more quickly than the WT mice. There was no significant difference between the 

spleen weights of WT and KO mice, although the WT spleens were more variable 

(B), and they were visually very similar in size (C). With regards to the treated 

skin, both WT and KO skin showed signs of inflammation with marked epidermal 

hyperplasia and hyperkeratosis (D). It should be noted that many hair follicles 

were seen in the skin, indicative of hair cycle, which can alter the response to 

inflammation, however the presence of hair follicles was consistent between the 

two strains of mice. As no overt differences between WT and KO mice were 

observed, these results suggested that ACKR2 was not integral to the regulation 

of the cutaneous response to Aldara treatment.  
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Figure 6-2 Evaluation of the response to Aldara treatment in WT and ACKR2 KO mice 
WT mice and ACKR2 KO mice were treated with ~80mg Aldara cream every 24hrs for five 
consecutive days and were weighed following each application (A). In addition, spleens were 
removed and were weighed (B) and photographed (C). H&E staining was performed using 5µm 
thick sections of Aldara- or control- treated skin which were visualised at 200X magnification (D). (A 
& B) n = 10/ group from two independent experiments (C & D) n = 5/ group. Significance was 
measured using two-way ANOVA with Bonferroni multiple comparison post-tests *** = p ≤ 0.001.   
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6.2.1 QPCR analysis of the chemokine response to Aldara 
treatment in ACKR2 KO mice 

Although ACKR2 did not appear to be regulating the response in terms of the 

phenotypes examined in Section 6.2, it may be regulating other aspects of the 

response. For example, immune cell infiltration into the skin is dependent on 

chemokines, which may be under the influence of ACKR2. Indeed, it has 

previously been shown that ACKR2 KO mice have an exacerbated skin response 

following TPA treatment410, 411. A heightened local response may result in an 

increased response in the brain, thus the panel of chemokine genes examined in 

Chapters 3 and 4 were evaluated in the brain and PBL of ACKR2 KO mice 

following topical Aldara treatment (Figure 6-3). ACKR2 should not directly 

influence chemokine transcript expression as it functions at the protein level; 

therefore the absence of ACKR2 should not, in theory, affect chemokine levels in 

the brain under steady state conditions. Any differences in chemokine expression 

would likely be a secondary effect as the result of a heightened inflammatory 

response.  

The QPCR results showed that, with the exception of CXCL10, all of the 

chemokine genes were significantly induced in the brains of ACKR2 KO Aldara 

treated mice when compared with control ACKR2 KO mice. CCL5 was the most 

highly induced, with an upregulation of around 100-fold (Figure 6-3B).  

With regards to PBL, three of the genes, CCL5, CCL9 and CXCL13, were 

significantly induced in the PBL of the treated mice. Interestingly, two of the 

genes, CXCL10 and CXCL16, were significantly downregulated in the PBL of 

ACKR2 KO treated mice (Figure 6-3D + F).  

When the two tissues were compared, the fold-change induction in the brain was 

significantly greater than that of the PBL for all seven genes analysed. Although 

CXCL10 had not been significantly induced in the brain, it was significantly 

downregulated in the PBL, accounting for the differential expression between 

the two tissues.  

These results suggested that topical Aldara treatment induced a chemokine 

response in the brains of ACKR2 KO mice, similar to that seen in WT mice. 
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Despite some of the genes being significantly induced in the PBL, this was to a 

lesser extent than in the brain. Although it has been reported that ACKR2 KO 

mice are more sensitive to inflammation in a number of models, and we would 

therefore expect to see a heightened response to Aldara treatment, if we look 

back to the results in Figure 5-2, the induction of chemokines in the brain 

appears to be somewhat comparable to that of the WT mice. This would suggest 

that the response to Aldara cream is not dependent on the actions of ACKR2, 

either as a modulator or an inducer.  
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Figure 6-3 QPCR analysis of chemokines in brains and PBL of ACKR2 KO mice following 
Aldara treatment 
ACKR2 KO mice were treated with 80mg Aldara cream, or equivalent quantity of control cream, 
every 24hrs for 5 consecutive days. Mice were euthanised 24hrs after the final application. Cardiac 
puncture was performed to retrieve PBLs and perfused brains were extracted. RNA was isolated 
from both tissues. QPCR analysis of the target chemokine genes identified in the microarray was 
performed for both tissues (A-G). n= 4 mice per group. Significance was measured within each 
tissue using individual students t test or between the tissues using two-way ANOVA with Bonferroni 
multiple comparison post-tests *** (+++) = p ≤ 0.001 **(++) = p ≤ 0.01 *(+) = p ≤ 0.05 
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6.2.2 The effect of Aldara treatment on neurogenesis in WT and 
ACKR2 KO mice 

Neurogenesis continues throughout adult life at distinct anatomical locations 

within the brain, including the dentate gyrus and the olfactory bulb. It has been 

shown that this process is sensitive to inflammation, suggesting that disrupted 

neural generation and plasticity could be a mechanism by which immune 

stimulation can cause neurological phenotypes412. As shown in Figure 6-1, ACKR2 

expression in the brain is centralised to the dentate gyrus and olfactory bulb; 

however its function in the CNS has yet to be identified. Such anatomical 

specificity highlighted the possibility that ACKR2 may function as a regulator of 

neurogenesis by minimising local inflammation. Therefore the aim of this section 

was two-fold. First, to investigate whether or not topical Aldara treatment 

impaired neurogenesis and, second, to determine the importance of ACKR2 in 

maintaining adult neurogenesis. 

Doublecortin (DCX), which is expressed only by neural precursor cells, was 

assessed in the dentate gyrus of the hippocampus in WT and ACKR2 KO mice 

treated with topical Aldara or control cream. DAPI (blue) was used to stain the 

nuclei of the cells and FITC (green) was used to identify DCX-expressing cells. 

Figure 6-4A shows representative DCX staining of the dentate gyrus in WT control 

mice (I), WT Aldara-treated mice (II), ACKR2 KO control mice (III) and ACKR2 KO 

Aldara-treated mice (IV). A negative control and an isotype control were 

included to ensure the specificity of the staining and are shown in Figure 6-4B. It 

was immediately clear from the images that treated mice, both WT and ACKR2 

KO, had reduced DCX staining, however quantification was required in order to 

determine whether the differences were significant.  
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Figure 6-4 Doublecortin staining of the dentate gyrus  
WT and ACKR2 KO mice were treated with ~80mg Aldara cream, or an equal volume of control 
cream, every 24 hours for 5 consecutive days. Perfused brains were extracted, formalin fixed and 
embedded in wax before being cut into 7µm sections. Sections were stained for DCX and were 
imaged at 400X magnification (A). Negative and isotype staining controls were included (B). n=4 
mice per group.   
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6.2.2.2 Quantification of DCX staining 

In order to quantify the DCX staining, slides were ‘blinded’ and a counting 

strategy was determined. As such, DCX+ cells were counted in three areas of the 

dentate gyrus for each section, one from the top, one from the middle and one 

from the bottom, as indicated in Figure 6-5A. A mean of these three areas was 

then calculated. A minimum of 11 sections from at least 3 mice were counted 

for each group and the results are plotted in Figure 6-5B. The results showed 

that treatment with Aldara caused a significant reduction in the number of DCX+ 

cells in both WT and ACKR2 KO mice. This indicated that peripheral immune 

stimulation with Aldara caused impaired neurogenesis in the dentate gyrus. 

However, there was no significant difference between the two mouse strains 

suggesting that ACKR2 is not a major regulator of this CNS process.  
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Figure 6-5 Counting strategy and DCX+ counts  
WT and ACKR2 KO mice were treated with ~80mg Aldara cream, or an equal volume of control 
cream, every 24 hours for 5 consecutive days. Perfused brains were extracted and were stained for 
DCX. Cell counts were performed on 3 different areas of the dentate gyrus for each section (A) and 
a minimum of 11 sections from at least 3 mice were counted (B). Significance was measured using 
unpaired two-tailed student’s t tests. ** p ≤ 0.01 *** p ≤ 0.001. n=3/4 mice per group. 
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6.2.4 Assessment of burrowing behaviour in Aldara-treated 
ACKR2 KO mice  

Having established that ACKR2 KO mice responded to topical Aldara treatment in 

a similar fashion to WT mice in terms of the chemokine response in the brain and 

in terms of neurogenesis, we next sought to establish if this treatment could also 

diminish burrowing activity. As detailed in Chapter 3, this model was used to 

assess the extent to which mice burrow during a 2 hour window following 

treatment. ACKR2 KO mice were treated at the same time each morning with 

~80mg of either Aldara cream or control cream, as described previously, and 

were then single-housed for the testing period 4 hours later.  

The results showed that, as seen previously in WT mice, ACKR2 KO mice treated 

with Aldara cream burrowed less than those treated with control cream. Figure 

6-6A shows that control mice burrowed more over time, as the weight of food 

left in the tubes declined over the three day period, whereas the burrowing 

activity of Aldara-treated mice was minimal. ACKR2 KO mice treated with Aldara 

appeared to burrow slightly more actively after the third application, a trend 

that was not seen with WT mice in Chapter 3; however this was still significantly 

less than the ACKR2 KO mice treated with control cream. The results were also 

portrayed as a percentage burrowing activity based on baseline measurements, 

which were considered 100% (B). This showed the variation in burrowing activity 

within the two groups and more clearly showed the increase in burrowing 

activity of the treated group after the third Aldara application. The results from 

the ACKR2 KO mice were compared with those from WT mice to determine if a 

lack of ACKR2 significantly affects the burrowing response to Aldara cream. 

Figure 6-6C shows a clear separation between the control mice and the treated 

mice; however there was no apparent difference between the WT mice and the 

ACKR2 KO mice. These results add to the evidence suggesting that the response 

of ACKR2 KO mice to Aldara treatment was very similar to that of WT mice. It 

would suggest that, whilst inflammatory CC chemokines may be important for 

generating the response to Aldara application, the response is not being overtly 

regulated by the scavenging receptor ACKR2.     
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Figure 6-6 Burrowing activity of ACKR2 KO Aldara-treated mice 
ACKR2 KO and WT mice were treated with ~80mg Aldara cream or control cream and were 
assessed for burrowing activity on three consecutive days. Four hours following treatment 
application, mice were single caged with a burrowing tube containing 200g of food pellets for 2 
hours. At the end of this time point, mice were caged again in groups and the remaining weight of 
food pellets in the tubes was recorded. The weight left in the tube following the 2 hour period is 
shown (A) or presented as a percentage of baseline tests, where baseline readings were 
considered 100% (B). To identify differences in burrowing activity between the two strains of mice, 
ACKR2 KO mice were compared with WT mice (C). n=4/5 per group. Significance was measured 
using two-way ANOVA with Bonferroni posttests *= p ≤ 0.05.     
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6.4 Discussion 

The results in Chapter 5 identified a distinct chemokine response in the brain 

following topical Aldara treatment. To further investigate the functional 

consequences of the response, and to determine whether inflammatory 

chemokines in the brain were regulated by scavenging receptor ACKR2, the 

Aldara model of cutaneous inflammation was repeated using ACKR2 KO mice. 

QPCR analysis was used to determine the chemokine response in the brain and 

burrowing behaviour was assessed as a functional output. In addition, due to the 

specific nature of ACKR2 expression in the brain, neurogenesis was measured in 

both WT, and ACKR2 KO, Aldara-treated mice.  

The results suggested that the phenotypic, cutaneous response to topical Aldara 

application was similar between WT and ACKR2 KO, as no overt differences in 

skin pathology were identified. Subsequently, the transcriptional chemokine 

response in the brain and PBL was assessed in the mutant mice. Although this 

gene deletion should not directly affect the transcript levels of chemokines as it 

functions at the protein level, Jamieson et al and Baldwin et al have suggested 

that cutaneous inflammation is exacerbated in ACKR2 KO mice410, 411. Thus, the 

tissue-specific, or systemic, inflammatory response to Aldara treatment may be 

heightened in these mice, which may in turn cause a greater response in the 

brain. However, the results showed that the transcriptional chemokine 

upregulation in the brains of ACKR2 KO mice followed a similar pattern when 

compared with WT mice, suggesting that ACKR2 was not an essential regulator of 

the chemokine response in the brain. 

The distinct anatomical distribution of ACKR2 in the brain, which is localised to 

the dentate gyrus and the olfactory bulb, indicated that it may be involved in 

regulating adult neurogenesis. As mentioned in Chapter 1, the process of 

neurogenesis is thought to be important for synaptic and neural plasticity and 

increased cognitive function332, 413. Therefore, using DCX staining, neurogenesis 

was assessed in Aldara-treated WT and ACKR2 KO mice. The results showed that 

neurogenesis was significantly impaired in mice treated with topical Aldara when 

compared with control mice. Although neurogenesis has been shown to be 

modulated by immune stimulation414-416, this is the first report to show that 

distal, cutaneous inflammation can have a negative effect. However, the results 
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presented in this Chapter suggested that, whilst cutaneous inflammation 

significantly impaired neurogenesis, ACKR2 did not appear to regulate this 

response as neurogenesis was reduced to a similar extent in WT and KO mice.    

In summary, the results in this Chapter suggest that ACKR2 KO mice respond in a 

similar fashion to topical Aldara-treatment as WT mice. The transcriptional 

chemokine response in the brain, the impairment of adult neurogenesis and the 

reduction in burrowing behaviour is consistent between the two different mouse 

strains. It may be that the scavenging effects of ACKR2 are subtle and the 

redundancy of the chemokine family and the magnitude of the brain response 

overwhelmed the regulatory effects of ACKR2 in this system. However, taken 

together, the results indicate that ACKR2-dependent regulation of inflammatory 

CC chemokines is not an essential mechanism in the brain response to peripheral 

inflammation.  
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7 Discussion 

Neuropsychiatric conditions are commonly associated with chronic inflammatory 

diseases that affect the periphery417, 418. However, the mechanisms underpinning 

this relationship are unclear, not least because the brain is an ‘immune-

specialised’ tissue137, 179. Studies have attempted to investigate this and, 

although our understanding of the communication between the brain and the 

periphery has increased in recent years, many unanswered questions remain. In 

addition, a large proportion of these studies have relied upon the administration 

of potent systemic inflammatory agents, inflammatory models that are unlike 

the tissue-specific conditions affecting humans. To try to further our knowledge 

with regards to the mechanisms underpinning the relationship between 

peripheral inflammation and the onset of neurological conditions, this thesis 

used a pathologically relevant mouse model of cutaneous inflammation to 

investigate the brain response to peripheral inflammation.  

The Aldara model of psoriasis-like skin inflammation is well documented363, 372, 

401, but has never before been used to investigate the central response to 

peripheral inflammation. In the studies described in Chapter 3, this model was 

used to determine the brain response to cutaneous inflammation using 

transcriptional profiling techniques. The microarray analysis identified a 

distinct, and pronounced, ISG response in the brain following Aldara treatment. 

This brain response was confirmed using QPCR and was found to correlate with a 

reduction in burrowing behaviour, indicating behavioural dysfunction in Aldara-

treated mice. In Chapter 4, the ISG response in the brain was evaluated in a 

number of different inflammatory models and was found to be induced following 

topical IMQ treatment, the TLR-specific active component of Aldara cream. The 

brain signature was not, however, identified following TPA-induced skin 

inflammation or following I.P. administration of IMQ. The temporal pattern of 

the response to Aldara application was also investigated and it was discovered 

that the brain response, which peaked following the third application, was not 

mimicked by a similar response in the PBL. In Chapter 5, the microarray dataset 

was revisited and a chemokine signature in the Aldara-treated brains was 

identified. When compared with the other models, we found that the chemokine 

response followed the same temporal expression pattern as the ISG response and 

was present in the topical IMQ model, but not in the TPA model or the I.P IMQ 
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model. In addition to the transcriptional response, topical Aldara treatment also 

induced the influx of CD3+ T cells into the brain parenchyma. We showed, 

through the use of two chemokine receptor blockers, that impaired burrowing 

behaviour did not appear to be dependent on the individual activity of 

chemokine receptors CCR5 or CXCR3. Finally, the role of ACKR2 was investigated 

through the use of ACKR2 KO mice. The data presented in Chapter 6 indicated 

that ACKR2 was not an important mediator in the response to cutaneous 

inflammation as results from the transcriptional analysis of the brain, and results 

from the two functional studies, were consistent between WT and KO strains. 

Although no strain difference was observed, analysis of emerging neurons in the 

dentate gyrus showed that cutaneous inflammation caused a reduction in adult 

neurogenesis. Whilst some debate remains as to the functional relevance of 

adult neurogenesis413, it is thought to promote learning and memory and support 

cognition419.          

It is difficult to determine the role of an ISG and chemokine response in the 

brain, and whether or not their induction would be beneficial or detrimental to 

the host. Although we have shown that Aldara treatment, and the subsequent 

transcriptional response in the brain, correlate with decreased burrowing 

activity and impaired neurogenesis, we have been unable to identify the causal 

relationship between these observations. The role of many specific ISGs remains 

unknown; however their purpose as a whole is to mediate a potent anti-viral 

response. This has been shown following the intranasal administration of viruses 

and, although the viruses only infected the olfactory bulb, the subsequent ISG 

response was found throughout the brain and in distant, uninfected sites393. It is 

therefore possible that the brain ISG response that we see following cutaneous 

TLR7 stimulation is the same classic response to virus infection that one would 

expect to see in the localised area, but is somehow projected to this distant 

tissue. More recent studies performed in our lab have investigated the 

transcriptional response to topical Aldara treatment in other tissues including 

the liver, spleen and lungs. Interestingly, the gene induction in these tissues was 

minimal, which suggests enhanced chemokine expression following cutaneous 

inflammation may be unique to the brain (Louis Nerurkar, unpublished data). It 

would be interesting to determine if an ISG response is present in other tissues, 

such as the liver and spleen following Aldara and IMQ treatment. Evidence as to 
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how ISGs in the brain might affect homeostatic functions are limited, therefore 

it is difficult to hypothesise whether or not the ISGs are the direct cause of any 

of the functional outputs we observed.  

It is likely that the induction of CCL3, CCL5, CXCL9 (identified in the microarray 

only) and CXCL10 were driving the influx of CD3+ T cells into the brain as these 

are ligands for chemokine receptors expressed by T cells. Indeed, this has been 

shown in a model of viral encephalitis234. If time had allowed, this mechanism 

could have been confirmed by performing CD3 immunohistochemistry on brains 

from Aldara-treated mice co-treated with the CXCR3 blocker and CCR5 blocker. 

It remains unclear as to whether or not chemokines in the brain could drive the 

behavioural changes and suppression of neurogenesis identified following Aldara 

treatment. Although the use of ACKR2 KO mice did not appear to alter the 

results in any way, this genetic modification would only impact on two of the 

chemokines induced in the brain, CCL3 and CCL5, as ACKR2 is a scavenging 

receptor for inflammatory CC chemokines. Chemokines are thought to be 

involved in the regulation of neurogenesis, both during development and in 

adulthood153, 414. In particular, CXCR4-directed migration of neuronal precursors 

and CX3CL1-dependent crosstalk between neurons and microglia are thought to 

be important152, 210. These data would suggest that if the levels of chemokines 

were altered in the brain, this in turn could impact the level of neurogenesis. 

However, none of the key chemokines reported to be involved in neurogenesis 

were identified as being differentially expressed in the brain following Aldara 

treatment. As mentioned in Chapter 1, it has been suggested that chemokines 

can act as neurotransmitters, supporting the communication between neurons 

and glial cells and modulating GABAergic neurotransmission211, 215, 224. However, 

there is a lot of contradictory literature regarding the role of chemokines within 

the healthy adult brain and CCL5 was the only chemokine upregulated in 

response to cutaneous Aldara treatment that has been reported to act as a 

neurotransmitter. Furthermore, despite numerous studies into the role of 

chemokines in neuropsychiatric conditions, findings are often inconsistent and 

mainly focus on two prototypical inflammatory chemokines, CXCL8 and CCL2374, 

neither of which were induced in the brain following Aldara treatment. It would 

therefore appear that the chemokines induced in the brain in response to Aldara 

treatment have the primary role of promoting an inflammatory response through 
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the recruitment of immune cells into the brain. To link chemokines to the other 

functional outputs, the reduction in neurogenesis and impaired burrowing 

activity, would require further studies.       

7.1 Hypotheses 

The mechanisms by which tissue-specific cutaneous inflammation can affect the 

brain remain to be established, therefore we can only speculate as to the 

potential mechanisms based on the evidence we have obtained. The results in 

this thesis implicate TLR ligation and ‘non-canonical’ TLR signalling as one 

potential mechanism driving the brain response. For example, although a brain 

response was detected following topical Aldara and topical IMQ application, a 

similar but non-TLR based stimulus, TPA, failed to induce an ISG or chemokine 

response in the brain. These findings are in agreement with previous studies that 

have shown an ISG and chemokine response in the brain following LPS 

administration; a response which could not be reproduced following systemic 

cytokine administration377. As mentioned in Chapter 1, TLR ligation leads to a 

downstream signalling event which results in the activation of the transcription 

factor NF-κB and the production of inflammatory cytokines33. However, certain 

TLRs can signal through alternative pathways to activate different transcription 

factors33, 387. Interestingly, in addition to the ‘classical’ TLR signalling pathway, 

TLR4 and TLR7, which bind LPS and IMQ respectively, can also signal through 

non-canonical pathways which lead to the production of Type I IFNs (Figure 

7-1)420. These ‘alternative’ signalling pathways provide us with a mechanism 

through which LPS and IMQ could mediate an ISG response in the brain following 

peripheral stimulation. We have shown that LTA, a ligand for TLR2, which can 

only signal through the ‘classical’ pathway, was unable to induce an ISG 

response in the brain, again suggesting that the ISG response is the result of the 

‘alternative’ TLR signalling pathways377.  
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Figure 7-1 TLR4 and TLR7 signalling pathways  
Diagram showing the signalling pathways following TLR4 and TLR7 ligation. Both signal through 
‘alternative’ signalling pathways that lead to Type I IFN production, in addition to the the NF-κB-
dependent ‘classical’ pathway that leads to the production of inflammatory cytokines.     

  

However, the results presented in this thesis provide a number of caveats that 

need to be considered. For example, the plasma levels of inflammatory 

cytokines following topical Aldara and topical IMQ treatment were low and 

variable and diminished over the course of the treatments. It was apparent from 

the results that the brain response did not correlate with a strong inflammatory 

cytokine profile in the periphery and, most notably, we did not find high 

expression of IFNγ, although Type I IFNs were not assessed. This was surprising 

as pro-inflammatory cytokines and Type I IFNs are classically induced following 

TLR7 stimulation. Some cytokines may be produced early in the acute response 

and it may be the case that expression levels would be higher had they been 

assessed at an earlier time point; however, if we propose that circulating 

cytokines are driving the brain response we see at day 3 and day 5, we would 

expect detectable levels in the blood plasma.  
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In addition, if the brain response was dependent on non-canonical TLR signalling, 

we would have expected to see a similar brain response following intraperitoneal 

administration of IMQ to that seen following topical IMQ. However, only a very 

mild response was detected in the brain following I.P. IMQ compared with mice 

treated with topical IMQ. This less severe response to intraperitoneal TLR7 

agonists has also been reported in the literature421 and, although it could simply 

be a consequence of the dose used in this thesis, it could imply that the brain 

response to IMQ was dependent on the localised skin response. However, we 

have also shown that topical IMQ failed to induce cutaneous inflammation as this 

aspect of the response was likely caused by the vehicle component, isostearic 

acid. Independently of overt tissue inflammation in the skin, topical IMQ 

treatment induced the most striking brain response out of all of the models 

investigated. In light of this, we propose a second hypothesis to serve as an 

alternative mechanism by which the effects of topical IMQ are being mediated; 

through the inflammatory reflex291.  

One way in which the presence of IMQ in the skin might be detected is through 

the activation of the vagus nerve. Like all tissues highly exposed to the external 

environment, the skin is innervated with sensory nerve fibres that are sensitive 

to heat, pain and touch. These sensory neurons are responsive to danger and 

inflammatory stimuli via the expression of three different types of receptor, 1) 

receptors that recognise PAMPS, including TLRs and NLRs 2) receptors that 

recognise DAMPS and 3) receptors for inflammatory cytokines422. As mentioned in 

Chapter 1, the afferent branches of the vagus nerve are also surrounded by 

macrophages and DCs that can be activated in response to inflammatory 

cytokines or PAMPs282. Through the use of vagotomy studies, it has been shown 

that, in order to sense inflammatory stimuli in the periphery, an intact vagus 

nerve is required288, 423, 424. This transmits signals directly to the brain and can 

mediate responses including cytokine-induced fever425 and sickness behaviours423 

and is therefore considered key in maintaining immunological homeostasis. In 

addition, electrical stimulation of the vagus nerve has been shown to attenuate 

inflammation through the cholinergic anti-inflammatory pathways284, 424. This 

mechanism of immune-to-brain communication might help explain our findings, 

that topically applied IMQ induced a brain response without the need for an 

overt inflammatory response in the periphery. If IMQ was directly activating the 
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peripheral nervous system, there would not be the need for high levels of 

inflammatory cytokines or for a localised inflammatory response in the skin. In 

this way, the response would still rely on the function of TLR7, but the action of 

local inflammatory mediators would be complemented by the direct 

communication with the brain.  

7.2 Conclusions  

The results in this thesis demonstrate that peripheral inflammation can induce a 

profound response in the brain. We have shown that cutaneous inflammation 

leads to the induction of an ISG and chemokine response in the brain, along with 

impaired dentate neurogenesis, a reduction in burrowing behaviour and the 

influx of inflammatory cells into the brain parenchyma. We hypothesise that 

these functional changes may be mediated through the TLR7-dependent 

activation of the afferent vagus nerve, conferring direct communicating with the 

brain. Despite being considered an ‘immune-specialised’ tissue, these findings 

highlight the sensitivity of the brain to peripheral, tissue-specific immune 

stimulus. These results could help forward our understanding as to how 

peripheral inflammatory diseases are so commonly associated with the onset of 

neuropsychiatric conditions. However, to fully understand the mechanisms that 

define this relationship, further investigations would be required.      

7.3 Future directions 

The work in this thesis has generated some interesting and novel data; however 

many of the findings are observational and would require further investigation to 

clarify the relationships and identify the underlying mechanisms. Several 

experiments could be performed to help advance our understanding.  

The results have relied upon the analysis of global gene expression in the brain, 

rather than focusing on distinct brain regions and specific neural cell types. To 

my knowledge, this was the first study to investigate the brain response to 

cutaneous Aldara treatment; therefore it made sense to begin with an unbiased, 

broad-spectrum approach. However, these results would be complemented with 

the use of fluorescent in-situ hybridisation (FISH) techniques that would allow us 

to identify the regional and cellular specificity of the gene expression, focusing 
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on our identified panel of genes of interest. This would help us to determine 

whether the transcriptional response was the result of infiltrating immune cells 

or whether it was the direct activation of glial cells. It would also be beneficial 

to look for a wider panel of infiltrating immune cells in the brains of Aldara-

treated mice. Although our focus was CD3+ T cells, the chemokines induced in 

the brain also regulate the chemotaxis of other immune cells, particularly 

neutrophils and monocytes.    

To test our hypotheses, that the brain response is mediated by non-canonical 

TLR signalling through the activation of the vagus nerve, several studies could be 

performed. To identify the involvement of the different TLR signalling pathways, 

IRF7-deficient mice or NF-κB inhibition could be used426, 427. In addition, the role 

of Type I IFNs in behaviour and neurogenesis could be assessed using IFNAR-

deficient mice428. To determine whether or not the brain response to cutaneous 

inflammation was generated via the afferent vagus nerve, vagotomy experiments 

could be performed. Alternatively, the vagus nerve could be directly, and 

specifically, stimulated using IMQ and a non-TLR stimulus in order to compare 

the responses.  

Finally, this study would benefit from more in depth behavioural analyses to 

fully profile the functional output of topical Aldara treatment. The burrowing 

behavioural test is a basic model that was selected for this thesis as it satisfied 

the constraints of our animal license. However, there are other models that 

could be used in order to identify specific impairments in memory, learning, 

cognitive function and depression-like sickness behaviours55, 429, 430. 
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Appendices 
Appendix 1 List of genes identified using microarray analysis 

Gene Symbol Gene Name Fold 
Change p-value  

Cd72 CD72 antigen 28.13216 2.30E-11 

Ccl5 chemokine (C-C motif) ligand 5 25.649666 1.17E-09 

Gm11428 predicted gene 11428 23.267797 1.74E-10 

Ms4a6c membrane-spanning 4-domains, subfamily A, 
member 6C 22.076183 1.19E-09 

Cxcl13 chemokine (C-X-C motif) ligand 13 21.38037 1.53E-09 

Ccl3 chemokine (C-C motif) ligand 3 18.673525 4.10E-10 

Ms4a7 membrane-spanning 4-domains, subfamily A, 
member 7 16.419401 1.11E-09 

Clec4a1 C-type lectin domain family 4, member a1 15.462207 6.18E-10 

Oasl2 2'-5' oligoadenylate synthetase-like 2 14.909811 1.68E-08 

Ifi44 interferon-induced protein 44 14.84326 8.11E-07 

Ifit1 interferon-induced protein with tetratricopeptide 
repeats 1 

14.149096
5 2.26E-07 

AI607873  13.953218 4.32E-09 

Ifit3 interferon-induced protein with tetratricopeptide 
repeats 3 13.801712 3.73E-08 

Irf7 interferon regulatory factor 7 13.696917 3.23E-08 

Cybb cytochrome b-245, beta polypeptide 13.394899 7.46E-11 

Emr1 EGF-like module containing, mucin-like, hormone 
receptor-like sequence 1 12.654873 6.06E-10 

Usp18 ubiquitin specific peptidase 18 12.629435 8.64E-07 

H2-K1 histocompatibility 2, K1, K region 12.393708 4.71E-11 

Cd52 CD52 antigen 12.29611 1.60E-09 

Lyz2 lysozyme 2 12.252241 4.53E-10 

0 MHC class I like protein GS10 | histocompatibility 2, 
Q region locus 5 11.900996 8.21E-09 

Ms4a6d membrane-spanning 4-domains, subfamily A, 
member 6D 11.575372 7.73E-09 

Ms4a4c membrane-spanning 4-domains, subfamily A, 
member 4C 11.117746 1.64E-06 

Plbd1 phospholipase B domain containing 1 10.889762 6.35E-09 

Fcgr4 Fc receptor, IgG, low affinity IV 10.599809 1.14E-08 

C3ar1 complement component 3a receptor 1 10.397596 3.88E-10 
H2-
Q6|LOC68395 

histocompatibility 2, Q region locus 6 | 
histocompatibility 2, Q region locus 6-like 10.238313 2.92E-08 

Clec12a C-type lectin domain family 12, member a 9.760899 1.91E-10 

Clec4a3 C-type lectin domain family 4, member a3 9.502658 1.55E-08 

Trim30 tripartite motif-containing 30 9.322903 7.06E-07 

Lgals3bp lectin, galactoside-binding, soluble, 3 binding protein 8.6376915 5.24E-09 
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Fcer1g Fc receptor, IgE, high affinity I, gamma polypeptide 8.5139475 8.67E-11 

Gm885 predicted gene 885 8.477824 1.39E-09 

Ptprc protein tyrosine phosphatase, receptor type, C 8.296488 3.43E-09 

Tgfbi transforming growth factor, beta induced 8.292485 4.72E-09 

Cd180 CD180 antigen 7.9570346 6.19E-10 
Sirpb1b| 
Sirpb1a| 
LOC100038947 
|LOC630976| 
LOC641195 

signal-regulatory protein beta 1B | signal-regulatory 
protein beta 1A | signal-regulatory protein beta 1-like 
| similar to SIRP beta 1 isoform 3 | similar to SIRP 
beta 1 isoform 1 

7.933538 8.64E-09 

Ifitm3 interferon induced transmembrane protein 3 7.9153414 6.25E-09 

I830012O16Rik RIKEN cDNA I830012O16 gene 7.8779535 2.29E-05 

Fyb FYN binding protein 7.656857 2.61E-10 

Pilra paired immunoglobin-like type 2 receptor alpha 7.5580826 9.62E-10 

H2-D1|H2-L histocompatibility 2, D region locus 1 7.542797 6.61E-11 

Rtp4 receptor transporter protein 4 7.315761 3.52E-07 

Pld4 phospholipase D family, member 4 7.2694716 2.81E-10 

AW112010  7.258376 2.05E-10 

Ctsc cathepsin C 7.220582 2.65E-10 

Saa3 serum amyloid A 3 7.173075 2.25E-06 

Apobec1 apolipoprotein B mRNA editing enzyme, catalytic 
polypeptide 1 7.168513 5.67E-10 

Acp5 acid phosphatase 5, tartrate resistant 7.1567636 4.93E-08 

C4b|C4a complement component 4B (Childo blood group) | 
complement component 4A (Rodgers blood group) 7.0189023 2.26E-10 

Irgm1 immunity-related GTPase family M member 1 6.9834146 4.35E-07 

Gbp3 guanylate binding protein 3 6.911741 3.71E-06 

Ms4a6b membrane-spanning 4-domains, subfamily A, 
member 6B 6.896093 4.91E-08 

Ifi204|Mnda interferon activated gene 204 | myeloid cell nuclear 
differentiation antigen 6.8321 1.04E-05 

Gbp2 guanylate binding protein 2 6.5060687 3.34E-06 

Serpina3n serine (or cysteine) peptidase inhibitor, clade A, 
member 3N 6.447621 1.85E-10 

Cxcl9 chemokine (C-X-C motif) ligand 9 6.4027085 1.57E-06 

Gm4951 predicted gene 4951 6.300047 2.04E-05 

  6.2691884 7.58E-06 

Igsf6 immunoglobulin superfamily, member 6 6.205959 1.68E-09 

Mpa2l|Gbp10| 
EG634650|Gbp8 

macrophage activation 2 like | guanylate-binding 
protein 10 | predicted gene, EG634650 | guanylate-
binding protein 8 

6.181138 1.17E-06 

Lilrb4 leukocyte immunoglobulin-like receptor, subfamily 
B, member 4 6.1702504 3.61E-07 

Mpeg1 macrophage expressed gene 1 6.138617 1.42E-11 

Oas1g|Oas1a 2'-5' oligoadenylate synthetase 1G | 2'-5' 
oligoadenylate synthetase 1A 5.8706975 1.18E-05 
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H2-Q7|H2-
Q6|H2-Q8 

histocompatibility 2, Q region locus 7 | 
histocompatibility 2, Q region locus 6 | 
histocompatibility 2, Q region locus 8 

5.8335204 2.45E-11 

Ifi27l2a interferon, alpha-inducible protein 27 like 2A 5.8044176 8.40E-07 

Tlr13 toll-like receptor 13 5.718304 6.51E-09 

Ddx58 DEAD (Asp-Glu-Ala-Asp) box polypeptide 58 5.7036858 3.45E-06 

Ctsh cathepsin H 5.6594315 8.12E-10 

  5.598447 1.10E-05 

Cxcl16|Zmynd15 chemokine (C-X-C motif) ligand 16 | zinc finger, 
MYND-type containing 15 5.4621305 1.30E-07 

Rnf213 ring finger protein 213 5.451237 5.37E-06 

  5.329549 9.26E-06 

Gpnmb glycoprotein (transmembrane) nmb 5.3048334 6.56E-07 

Cd53 CD53 antigen 5.291279 2.81E-10 

Cyp4f18 cytochrome P450, family 4, subfamily f, polypeptide 
18 5.2113914 2.80E-07 

Stat1 signal transducer and activator of transcription 1 5.2003345 2.13E-06 

  5.1890216 1.68E-05 

Pik3ap1 phosphoinositide-3-kinase adaptor protein 1 5.1737046 1.50E-09 

Klra2 killer cell lectin-like receptor, subfamily A, member 2 5.165078 2.34E-08 

Ctss cathepsin S 5.161943 1.94E-10 

AI451617  5.0858283 1.23E-05 

Il2rg interleukin 2 receptor, gamma chain 5.0607347 1.28E-07 

Ms4a4a membrane-spanning 4-domains, subfamily A, 
member 4A 4.9973893 1.52E-08 

  4.9876914 1.59E-05 

  4.9528537 1.64E-05 

  4.9109077 3.17E-05 

Irgm2|Igtp immunity-related GTPase family M member 2 | 
interferon gamma induced GTPase 4.905407 1.01E-06 

Lcp1 lymphocyte cytosolic protein 1 4.82637 1.62E-08 

  4.824545 1.84E-05 

H2-T22|H2-
T9|H2-T10 

histocompatibility 2, T region locus 22 | 
histocompatibility 2, T region locus 9 | 
histocompatibility 2, T region locus 10 

4.7803392 2.80E-07 

Iigp1 interferon inducible GTPase 1 4.7393727 5.79E-05 

Oas1b 2'-5' oligoadenylate synthetase 1B 4.6943526 2.57E-05 
Sirpb1a|Sirpb1b| 
LOC100038947| 
LOC630976 

signal-regulatory protein beta 1A | signal-regulatory 
protein beta 1B | signal-regulatory protein beta 1-like 
| similar to SIRP beta 1 isoform 3 

4.6814513 1.42E-08 

Samd9l sterile alpha motif domain containing 9-like 4.6794043 2.95E-05 

Ddx60 DEAD (Asp-Glu-Ala-Asp) box polypeptide 60 4.6703634 2.19E-05 

Itgb2 integrin beta 2 4.578407 6.79E-08 

Ly86 lymphocyte antigen 86 4.5482535 1.10E-09 
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Sh2d1b1 SH2 domain protein 1B1 4.548108 1.29E-06 

  4.5266757 2.33E-05 

Ccl9 chemokine (C-C motif) ligand 9 4.517743 2.91E-07 

Aoah acyloxyacyl hydrolase 4.4741716 6.13E-09 

D14Ertd668e DNA segment, Chr 14, ERATO Doi 668, expressed 4.4590044 7.04E-04 

C3 complement component 3 4.4247837 2.86E-08 

Lcn2 lipocalin 2 4.392422 2.19E-09 

Ms4a14 membrane-spanning 4-domains, subfamily A, 
member 14 4.35078 2.38E-06 

Gbp4 guanylate binding protein 4 4.3316245 1.37E-06 

Hck hemopoietic cell kinase 4.327205 1.56E-07 

Eif2ak2 eukaryotic translation initiation factor 2-alpha kinase 
2 4.2970195 3.46E-05 

  4.283881 7.76E-05 

Rnf213 ring finger protein 213 4.264224 1.62E-05 

Cxcl10 chemokine (C-X-C motif) ligand 10 4.246946 1.27E-04 
Sirpb1b|Sirpb1a| 
LOC100038947| 
LOC641195 

signal-regulatory protein beta 1B | signal-regulatory 
protein beta 1A | signal-regulatory protein beta 1-like 
| similar to SIRP beta 1 isoform 1 

4.2158923 1.83E-08 

Gpr65 G-protein coupled receptor 65 4.1929426 1.23E-09 

Psmb8 proteasome (prosome, macropain) subunit, beta 
type 8 (large multifunctional peptidase 7) 4.1857376 6.08E-06 

Vav1 vav 1 oncogene 4.172101 3.47E-08 

H2-Q8 histocompatibility 2, Q region locus 8 4.132269 6.47E-07 
Tgtp1|Tgtp2| 
Gm12185 

T-cell specific GTPase 1 | T-cell specific GTPase 2 | 
predicted gene 12185 4.123084 3.62E-05 

Ube2l6 ubiquitin-conjugating enzyme E2L 6 4.117248 4.18E-05 
Tgtp1|Tgtp2| 
Gm12185 

T-cell specific GTPase 1 | T-cell specific GTPase 2 | 
predicted gene 12185 4.114396 2.22E-05 

Ifit2 interferon-induced protein with tetratricopeptide 
repeats 2 4.1017013 9.34E-05 

Gbp6 guanylate binding protein 6 4.0850587 1.01E-05 

Unc93b1 unc-93 homolog B1 (C. elegans) 4.079613 5.62E-10 

Rac2 RAS-related C3 botulinum substrate 2 4.0723453 6.72E-08 

Lgals9 lectin, galactose binding, soluble 9 4.061534 3.03E-06 

H2-t9|EG547347 MHC class Ib T9 | predicted gene, EG547347 4.0322742 7.58E-09 
H2-T23| 
C920025E04Rik 

histocompatibility 2, T region locus 23 | RIKEN 
cDNA C920025E04 gene 3.994959 4.41E-07 

Naip2 NLR family, apoptosis inhibitory protein 2 3.9914474 1.63E-07 

Rsad2 radical S-adenosyl methionine domain containing 2 3.9893818 9.71E-05 

Cd48 CD48 antigen 3.9850123 7.09E-08 

Xaf1 XIAP associated factor 1 3.9349377 1.86E-05 

Arhgdib Rho, GDP dissociation inhibitor (GDI) beta 3.9166377 4.25E-08 

Bst2 bone marrow stromal cell antigen 2 3.9156516 1.18E-05 



 

 227 

Casp8 caspase 8 3.900089 7.32E-09 

Ifih1 interferon induced with helicase C domain 1 3.8993988 4.05E-05 

Irf9 interferon regulatory factor 9 3.8860035 7.60E-08 

Slfn4 schlafen 4 3.8827317 5.75E-04 

Cd68 CD68 antigen 3.8816974 1.55E-09 

Itgam integrin alpha M 3.8755326 5.37E-08 

Ifi30 interferon gamma inducible protein 30 3.872788 4.07E-07 

Tyrobp TYRO protein tyrosine kinase binding protein 3.807827 3.37E-11 

Pyhin1 pyrin and HIN domain family, member 1 3.7786415 4.61E-06 
9930111J21Rik2
| 
9930111J21Rik1
| 
Gm5431 

RIKEN cDNA 9930111J21 gene 2 | RIKEN cDNA 
9930111J21 gene 1 | predicted gene 5431 3.7734895 7.22E-08 

Slc11a1 solute carrier family 11 (proton-coupled divalent 
metal ion transporters), member 1 3.761288 3.36E-07 

Ifi203 interferon activated gene 203 3.7605247 1.28E-05 

Gm5431 predicted gene 5431 3.750554 3.24E-06 

Ccr5|Ccr2 chemokine (C-C motif) receptor 5 | chemokine (C-C 
motif) receptor 2 3.7445805 4.31E-08 

Tap1 transporter 1, ATP-binding cassette, sub-family B 
(MDR/TAP) 3.7434745 3.13E-07 

Ccr5|Ccr2 chemokine (C-C motif) receptor 5 | chemokine (C-C 
motif) receptor 2 3.7419653 4.14E-08 

C1qc complement component 1, q subcomponent, C 
chain 3.691437 9.21E-09 

Cyba cytochrome b-245, alpha polypeptide 3.6912851 2.94E-08 

Fcrl5 Fc receptor-like 5 3.6699855 2.10E-05 

Sp100  3.6670215 4.49E-07 

Sfpi1 SFFV proviral integration 1 3.6336854 5.97E-08 
9930111J21Rik2
| 
9930111J21Rik1
| 
Gm5431 

RIKEN cDNA 9930111J21 gene 2 | RIKEN cDNA 
9930111J21 gene 1 | predicted gene 5431 3.624132 5.27E-08 

Cd84 CD84 antigen 3.619827 6.09E-08 

Parp12 poly (ADP-ribose) polymerase family, member 12 3.6093345 4.74E-06 

C1qa complement component 1, q subcomponent, alpha 
polypeptide 3.5933928 1.21E-09 

Lcp2 lymphocyte cytosolic protein 2 3.5550501 1.57E-08 

Dock2 dedicator of cyto-kinesis 2 3.542894 2.29E-07 

Tagap T-cell activation Rho GTPase-activating protein 3.5305424 4.78E-08 

C1qb complement component 1, q subcomponent, beta 
polypeptide 3.4979184 2.85E-10 

Laptm5 lysosomal-associated protein transmembrane 5 3.4805212 8.98E-10 

Itgax integrin alpha X 3.4801943 3.22E-06 

Nckap1l NCK associated protein 1 like 3.4672332 1.23E-09 
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Cd93 CD93 antigen 3.434816 5.93E-07 

Tlr1 toll-like receptor 1 3.4326348 8.31E-07 

Slamf7 SLAM family member 7 3.408035 3.06E-05 

AB124611  3.40638 1.79E-07 

Pik3cg phosphoinositide-3-kinase, catalytic, gamma 
polypeptide 3.3917887 1.08E-07 

Glipr1|Krr1 
GLI pathogenesis-related 1 (glioma) | KRR1, small 
subunit (SSU) processome component, homolog 
(yeast) 

3.3862197 6.39E-08 

Serping1 serine (or cysteine) peptidase inhibitor, clade G, 
member 1 3.3831935 2.65E-07 

  3.3748608 0.00102
2 

Grn granulin 3.3616664 1.59E-09 

Ly6a lymphocyte antigen 6 complex, locus A 3.3566322 6.88E-09 

Slfn8 schlafen 8 3.346721 1.03E-04 

Gfap glial fibrillary acidic protein 3.312322 8.63E-11 

Arpc1b|Gm5637 actin related protein 2/3 complex, subunit 1B | 
predicted pseudogene 5637 3.3091986 5.15E-09 

Dtx3l|Parp9 deltex 3-like (Drosophila) | poly (ADP-ribose) 
polymerase family, member 9 3.2979794 2.54E-06 

Alox5ap arachidonate 5-lipoxygenase activating protein 3.2976754 5.21E-09 

Gp49a|Lilrb4 glycoprotein 49 A | leukocyte immunoglobulin-like 
receptor, subfamily B, member 4 3.2844298 1.17E-04 

Il10ra interleukin 10 receptor, alpha 3.2723858 1.31E-08 

Dhx58 DEXH (Asp-Glu-X-His) box polypeptide 58 3.2714343 6.17E-05 

Slamf9 SLAM family member 9 3.2574503 1.06E-06 

Tlr7 toll-like receptor 7 3.2499063 1.90E-07 

Apobec3 apolipoprotein B mRNA editing enzyme, catalytic 
polypeptide 3 3.2438989 7.50E-08 

  3.2321565 2.57E-05 

Neurl3 neuralized homolog 3 homolog (Drosophila) 3.2239246 5.04E-08 

Nkg7 natural killer cell group 7 sequence 3.2131076 1.10E-05 

Myo1f myosin IF 3.205457 1.74E-08 

Isg20 interferon-stimulated protein 3.1826715 4.01E-04 
Bcl2a1a| 
Bcl2a1d| 
Bcl2a1b| 
Bcl2a1c 

B-cell leukemia/lymphoma 2 related protein A1a | B-
cell leukemia/lymphoma 2 related protein A1d | B-
cell leukemia/lymphoma 2 related protein A1b | B-
cell leukemia/lymphoma 2 related protein A1c 

3.1532354 6.08E-05 

Gm11711|Clm3 predicted gene 11711 | CMRF-35-like molecule 3 3.1490738 2.86E-08 

Fcgr1 Fc receptor, IgG, high affinity I 3.1478186 8.17E-07 

Oas2 2'-5' oligoadenylate synthetase 2 3.1414037 5.05E-05 
Trim12| 
LOC100048060 

tripartite motif-containing 12 | similar to tripartite 
motif protein TRIM12 3.1135898 5.97E-05 

Aif1 allograft inflammatory factor 1 3.112917 2.21E-06 

BC013712  3.102906 7.42E-08 
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F11r F11 receptor 3.092533 5.43E-10 

Herc5 hect domain and RLD 5 3.0876677 4.30E-05 

Lyn Yamaguchi sarcoma viral (v-yes-1) oncogene 
homolog 3.0821068 6.15E-09 

Top2a topoisomerase (DNA) II alpha 3.0800803 4.27E-07 

Ly9 lymphocyte antigen 9 3.0745974 8.18E-09 

Arpc1b actin related protein 2/3 complex, subunit 1B 3.0633452 3.34E-09 

Tlr8 toll-like receptor 8 3.0540376 4.50E-07 

Mki67 antigen identified by monoclonal antibody Ki 67 3.0507367 7.68E-08 

Gm11711|Clm3 predicted gene 11711 | CMRF-35-like molecule 3 3.0498946 4.06E-08 

Fcgr2b Fc receptor, IgG, low affinity IIb 3.0432014 9.66E-08 

Msn moesin 3.0280933 2.14E-09 

Parp9|Dtx3l poly (ADP-ribose) polymerase family, member 9 | 
deltex 3-like (Drosophila) 3.0247502 1.85E-05 
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