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Abstract 
 
Recent research has indicated that variability of antecedent flows is a fundamental 

control on the entrainment and transport of sediment in river systems. Specifically, the 

low flows between successive floods appear to have a far greater influence on the 

stability of a river bed than previously assumed. Increased durations of low flows 

increase sand-gravel bed stability so as to delay entrainment and significantly reduce 

transport. Although a degree of quantification of “memory stress” effects has been 

attempted by previous researchers, their applied methodology precludes development 

of appropriate mathematical relationships implicit to correcting existing sediment 

transport equations. The overall aim of this thesis is therefore to address this deficiency 

via robust physical and mathematical modelling. 

In total, 84 flume experiments were carried out in a flume. Two poorly sorted (g ≥1.6) 

sand-gravel mixtures of unimodal and bimodal distribution were compared and 

contrasted for sensitivity of modality to memory effects upon bedload and entrainment 

threshold. Five memory timescales (10, 30, 60, 120 and 240 minutes) were tested and 

contrasted with baseline data obtained for runs performed without any memory. 

Experiments employed a stepped discharge hydrograph covering sub-threshold to fully 

mobile conditions. A reference transport based approach was employed to determine 

entrainment threshold, and to develop mathematical descriptors of memory effects. 

Results show that increasing memory timescales up to 240 minutes increases 

entrainment thresholds (
*
50c ) by up to 49% whilst subsequent transport decreases by up 

to 97%. The memory effect prevails non-linearly for the range of low flows of non-

dimensional transport )( *q  between 10-6 to 10-1. Using these flume data, novel 

mathematical functions for bedload are developed to account for the influence of 

memory timescales. Here, memory is described via rising exponents of the function to 

quantify degree of non-linearity of transport to shear stress, and changes in the 

structure of the bed due to memory are represented within a lumped coefficient. 

Trends in the suite of exponents and coefficients indicate that changes in bed structure 

are of greater importance than the shift in non-linearity of bedload. Hence, the first 

framework for correcting existing graded sediment formulae for memory stress has been 

effectively developed using a scaling of the granular scale roughness parameter, An. 

Predicted results are calibrated and validated against available memory stress datasets 

from both field and laboratory based studies. Results show that without memory 

correction, over 80% of estimates fail to predict measured bedload effectively; once An 

based correction is applied, 100% of data are predicted effectively. 

Key words: Memory stress, entrainment threshold, graded sediment, fractional 

transports  
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Definitions/Abbreviations 
 

Symbol/ 
abbreviation Description 

 
Dimension 
 

A, A1, A2 Area  L2 

An Roughness parameter related to bed-material 
size composition 

- 

ASCE American Society of Civil Engineers - 

A*  Coefficient in Einstein bedload function - 

a Mobility parameter in Shvidchenko bedload 
transport relation 

- 

a1  Coefficient of proportionality; depends on grain 
shape and packing 

- 

a2  Coefficient of proportionality; depends on fluid 
flow, pressure and viscous force  

- 

b Exponent in regression relations - 

B* Coefficient in Einstein bedload function - 

BM Bimodal sediment mixture - 

BM_SH_10 Bimodal mixture experiment in memory 
condition for 10 minutes memory duration (other 
memory experiment notations for 30, 60, 120 
and 240 minute follow same format for notation) 

- 

C Constant - 

c Coefficient term in regression relations - 

CD Drag force coefficient - 

CL Lift force coefficient - 

c1 Coefficient to account for particle shape - 

c2 Coefficient to account for geometry and packing 
of the grains 

- 

D, Di, Dj, D1, 
D2, Dm   

Particle’s diameter; and same for size class i, j, 
1, 2, and mean (arithmetic) respectively  

L 

Dr A reference size class L 

D16 Grain size, by weight 16% finer than this size in a 
distribution 

L 

D35 Grain size, by weight 35% finer than this size in a 
distribution 

L 

D50 Median grain size, by weight 50% finer than this 
size in a distribution 

L 

D60 Grain size, by weight 60% finer than this size in a 
distribution 

L 

D84 Grain size, by weight 84% finer than this size in a 
distribution 

L 

Dc, Df Particle size of the coarse and fine modes in 
bimodal mixture respectively 

L 

*D  Dimensionless particle number - 

e Dimensionless in Ackers and White’s reference 
transport number, which varies according to 
grain size 

 

EC European Commission - 

EF Efficiency Factor: ratio of predicted and - 
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observed bedload 

EPSRC The Engineering and Physical Sciences Research 
Council  

- 

FRMRC 1 Flood-Risk Management Research Consortium, 
phase 1 

- 

FRMRC 2 Flood-Risk Management Research Consortium, 
phase 2 

- 

FD Fluid drag force M LT-2 

FG Gravity force M LT-2 

fi Fractional proportion of the ith subrange in 
mixture 

- 

fj Fractional proportion of the jth subrange in 
mixture 

- 

fa1, fa2 Fractional proportion for a particular fraction 
from area 1 and 2 

- 

fai Fractional proportion for size class i - 

g Acceleration due to gravity LT-2 

Ggr Ackers and White reference transport parameter - 

Pei and  Phi,  Exposure and hiding probability for ith grain 
class 

- 

Fi Fractional proportion for ith size class in bulk 
mix 

- 

Fr Dimensionless Froude number for representing 
flow regime for sub-critical, critical and super-
critical flow 

- 

LWEC Living with Environmental Change - 

m Exponent in hiding function - 

MPM Meyer-Peter and Muller - 

NERC The Natural Environment Research Council - 

N Total number of grain classes in Wu’s hiding 
function 

- 

n, nb, nw Manning’s roughness coefficient, same for bed 
and wall 

L-1/3T 

n  Manning’s roughness coefficient for grain’s skin L-1/3T 

n   Manning’s roughness coefficient for bed form L-1/3T 

P, Pb, Pw Hydraulic radius; same of bed and wall L 

pi 
Fractional proportion for ith size class in 
bedload samples  

- 

Pei Exposure probability of grain class i - 

Phi Hiding probability of grain class i - 

pm Fractional proportion of the two modes in 
bimodal mixture 

- 

P(τ) Probability density function of bed shear stress 
(τ) 

- 

Q Rate of water flow/discharge L3T-1 

qci, qcr Unit discharge for size class I and reference size 
class r 

L2T-1 

qb Volumetric bedload per unit width L2T-1 

*
iq  Non-dimensional bedload transports per unit 

width for ith size class, also called Einstein 
bedload parameter  

- 
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*q  
Non-dimensional bedload transports per unit 
width, also called Einstein bedload parameter 

- 

R, Rb Hydraulic radius; same for bed L 

Re*, Re*c Dimensionless boundary or Shear Reynolds 
number 

- 

R2 Coefficient of determination - 

Rep Dimensionless Particle Reynolds number - 

Rep50 Dimensionless Particle Reynolds number for 
median size (D50) class of sediment 

- 

RP Return Period, for use of extreme flood event - 

S Flume bed slope - 

s Submerged specific gravity of sediment - 

SH Stress history; used as a prefix to memory time 
scales 

- 

T Memory time  T 

Tb Dimensionless bedload transport function - 

t Sediment counting time period in Yalin’s visual 
approach  

T 

t1, t2 Sediment counting time period in visual 
approach for area 1 and area 2 respectively 

T 

u Flow velocity LT-1 

UK United Kingdom - 

UKCIP United Kingdom Climate Impacts Programme - 

UM Unimodal sediment mixture - 

UM_SH_10 Unimodal mixture experiment in memory 
condition for 10 minutes memory duration (other 
memory experiment notations for 30, 60, 120 
and 240 minutes follow same format for 
notation) 

- 

u* , 
*
cu  Shear velocity and critical shear velocity 

respectively 
LT-1 

W* Dimensionless bedload transport - 

*
iW  Dimensionless bedload transport for ith grain 

size subrange 
- 

X Used to represent return period for extreme 
flood event; e.g., 2 and 100 represents 1 in 2 
year and 1 in 100 year return period flood event 
respectively 

- 

x  Number of particles in motion in general - 

x1, x2 Number of particles in motion in general from 
area 1 and 2 respectively 

- 

xi Number of particles in motion for ith size class - 

z Water depth above bed L 

z0 Roughness height (height above bed where 
velocity becomes zero) 

L 

  Particle’s pivot angle Degree 

γ Unit weight of water ML-2T-2 

γs  Unit weight of sediment ML-2T-2 

g Sorting coefficient of sediment mixture - 

θ Bed slope angle  Degree 

μ  Dynamic viscosity of fluid ML−1T−1 
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ν Kinematic viscosity of fluid L2T-1 

i  
Hiding function ( *

50
* / rii  ) - 

κ von Karman’s constant, dimensionless - 

ρ  Density of water ML-3 

ρs Density of sediment ML-3 

   Bed shear stress  ML-1T-2 

50c  Bed shear stress at critical condition of sediment 
motion for median (D50) size class 

ML-1T-2 

c , ci   Bed shear stress at critical condition of sediment 
motion; same at critical condition for ith size 
class 

ML-1T-2 

50, rri   Reference bed shear stress for ith size class and 
median size class (D50)  respectively  

ML-1T-2 

w  Instantaneous bed shear stress  ML-1T-2 

wc  Instantaneous bed shear stress  required to put 
the particle in motion (equal to the resisting 
force) 

ML-1T-2 

*  
Dimensionless bed shear stress, also known as 
Shields parameter 

- 

*
c  Dimensionless bed shear stress at threshold 

motion of sediment  
- 

*
50c  

Dimensionless bed shear stress at threshold 
motion of sediment for median grain size (D50) 

- 

*
ci  Dimensionless bed shear stress at threshold 

motion of sediment for ith grain size subrange 
- 

*
i  Dimensionless bed shear stress for ith grain size 

subrange 
- 

*
cm  Dimensionless bed shear stress at threshold 

motion of sediment for mean (arithmetic) size 
class 

- 

*
ri  Dimensionless reference bed shear stress for ith 

grain size subrange 
- 

*
50r  Dimensionless reference bed shear stress for 

median size class (D50) 
 

- 

Length = L; Mass = M; Time = T; Force = F; Angle=Degree 

 



 
 

Chapter 1: Introduction of the Research 

1.1 Introduction 

This research thesis focuses upon graded sediment dynamics in unidirectional 

flow. Although the threshold motion of sediment (from stable to transported, 

and vice versa) is the most important parameter for understanding of the 

discipline, both its definition and method of determination remain a major 

challenge for the scientific community. This is due to complex process 

interactions between flow and the granular boundary, whose poor description 

and incomplete understanding has led to notable scatter and uncertainty in 

research datasets specific to entrainment threshold and bedload prediction. In 

seeking to address these problems, there is an emerging science dedicated to 

the temporal dependency of flow-sediment process interactions and their 

controls on entrainment and transport. This purports that, even if subjected to 

flow lower than the threshold condition, a non-cohesive sediment bed can build 

“memory stress” in a manner which stabilises the bed and increases its 

resistance to entrainment. It is to the advance of knowledge regarding the 

“memory stress” concept that this thesis is dedicated. As such, physical (flume) 

and mathematically modelling of graded sediment, and associated formula, have 

been conducted to fulfil the research objectives (Section 1.3).  

1.2 General scientific rationale  

Sediment entrainment, measurement, prediction and management remain a 

significant challenge for scientists, engineers and practitioners tasked with river 

management. Despite over a century of research into these sediment processes 

(e.g., Buffington and Montgomery, 1997 review), high uncertainties within the 

empirical equations mean that practitioners invest minimal resources into 

modelling or managing sediment-related and geomorphological problems in UK 

catchments. The recent events of sediment-related flooding (e.g., Cockermouth, 

2005, 2009; Somerset Levels, 2013-14) have, in particular, brought this issue to 

light with questions being raised over practitioner capabilities specific to e.g., 

stable channel design, reservoir sedimentation, design/maintenance of river 

training works, flow regulating structures; flood risk and defence asset design, 

ecological balance. Assessment of sediment and morphodynamic related river 
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risks are noted explicitly within the EU Floods Directive and EU Water 

Framework Directive drivers of current UK policies (e.g., WEWS, 2003, 2013, 

2014; Flood Risk Management (Scotland) Act 2009). In turn, there is a 

strengthening argument that sediment process research must be urgently 

improved in a manner appropriate to day-to-day water resource and flood risk 

assessment modelling tools; this is given ‘high priority’ research status most 

recently in the UK’s Flood and Coastal Erosion Risk Management (FCERM) (Defra 

and Environment Agency, 2015). Hence, there is increased appetite and 

momentum for fundamental research to reduce uncertainty in sediment 

transport formulae as essential for improved confidence in practitioner-based 

numerical modelling tools. 

Despite a plethora of sediment predicting formulae (e.g., Einstein, 1950; Meyer-

Peter-Muller, 1948; Bagnold, 1956; Yang, 1984; Parker, 1990a; Wilcock and 

Crowe, 2003), the universality in their application has made slow progress. 

Arguably, uncertainty in the entrainment threshold of sediment is considered the 

main challenge and 80 years of such research formed the focus of detailed 

review by Buffington and Montgomery (1997). Whilst this review raised a number 

of reasons for scatter in entrainment threshold data sets, methodological bias in 

the definition and measurement of entrainment was a key factor.  Even when 

equivalent data sets were compared (e.g., non-dimensional bedload and shear 

stress parameter plots) data showed much more sensitivity and complexity at 

low flows close to the entrainment threshold, indicating additional sensitivity of 

entrainment to spatio-temporal dynamics in bed structure and turbulent 

fluctuations. Whilst these processes have received a modicum of attention in the 

literature (Brown and Willetts, 1997; Papanicolaou et al., 2002; Marion et al., 

2003; Zanke, 2003; Aberle and Nikora, 2006; Rollinson, 2006; Cooper and Tait, 

2008; Cooper and Frostick, 2009), the specific issue of the time-dependency of 

process controls has been all but overlooked. 

Thus, it is only in the last decade that the temporal controls on sediment 

entrainment have been researched explicitly. From this small, but growing, body 

of scientific publications there is emerging evidence of “memory stress” 

developing in sediment beds subjected to prolonged exposure to sub-threshold 

flow. Studies infer that it is the time-dependency of processes specific to grain 
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arrangement and structures which act to control and enhance bed stability so as 

to alter the threshold of sediment entrainment (e.g., Paphitis and Collins, 2005; 

Monteith and Pender, 2005; Haynes and Pender, 2007; Ockelford, 2011). To 

date, there are only these few laboratory data sets specific to “memory stress”, 

performed using planar bed flume systems of uniform or graded sand-gravel 

beds. These individual research datasets are limited and comparison between 

them is precluded due to distinction in the methodological approaches applied.  

In addition, none of these studies has sought mathematical description of 

memory stress effects on entrainment in a manner appropriate to the correction 

of sediment entrainment/transport formulae used in practitioner-based models. 

Thus, the present research has been designed to overcome these deficiencies in 

a manner advancing memory stress science, reducing uncertainties in sediment 

transport modelling and providing outputs appropriate to applied river 

management practices. 

1.3 Research objectives 

This comprehensive and systematic research is designed to combine flume based 

analysis with mathematical descriptors as appropriate to quantifying the 

memory stress of water-worked sand-gravel beds. The research intends to 

develop a robust methodological framework and dataset, as specific to the 

correction of sediment entrainment and transport formulae for memory stress. 

The overall intention of this work is to reduce uncertainty in sediment transport 

modelling, as urgently required for enhanced practitioner confidence and 

increased adoption of sediment/morphodynamic simulations in flood risk, 

infrastructure design and catchment management assessments. 

 

Specific objectives that this research has been designed for include: 

 

 To develop a robust flume-based methodology for memory stress analysis 

as appropriate to physical and mathematical description and 

interpretation. 

 

 To undertake flume-based experiments to quantify the effect of memory 

stress on sediment entrainment threshold. Focus is placed on two 
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variables: (i) the duration of memory stress applied and; (ii) the grade of 

sediment used. 

 

 To analyse flume data for the effect of memory stress on bedload, 

including fractional analysis. This is strategic to both mathematical 

formulae development and providing insight into bed process controls on 

entrainment. 

 

 To develop novel mathematical relations (e.g., bedload vs. shear stress) 

capable of accounting for different temporal scales of memory stress. 

 

 To determine and test a correction factor for memory stress to existing 

graded sediment formulae. 

 

1.4 Structure of the thesis 

Whilst the Table of Contents provides the first impression of the structure of this 

thesis, a précis of each Chapter is summarised below. 

Chapter 1: Introduction of the research 

This provides the rationale of the present research, in terms of an overview of 

scientific context and background. Focus is placed upon the policy and research 

led drivers of the research, an introduction to the current state of knowledge on 

graded sediment transport (and associated uncertainties) and the emerging 

science of memory stress on a grain’s entrainment and transport. The objectives 

of the research are clearly outlined, as strategic to advancing sediment 

entrainment/transport research and modelling. 

Chapter 2:  Critical literature review 

A detailed critical review of historical research results on incipient motion of 

graded beds is provided. Given the wealth of material pertaining to this topic, 

key papers have been selected for inclusion as directly aligned with the aim of 

the thesis. The general principles, methodologies and equations of the initial 

motion of graded sediment are comprehensively documented and critiqued 

throughout. Identified research gaps, uncertainties and the overall importance 

of addressing these are noted. 
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Chapter 3: Physical Modelling: experimental set-up and methodology 

Details of the flume set-up and applied methodology for unimodal and bimodal 

experiments are documented. Methods have been designed with due reference 

to the literature and clearly state how this thesis overcomes the 

deficiencies/limitations of previous research into memory stress. 

Chapter 4: Physical Modelling Results: Unimodal sediment 

All experimental results on unimodal sediment mixtures are presented, 

compared/contrasted and discussed with previous memory stress research. 

Quantitative evidence on memory effects are provided in terms of: (i) 

entrainment threshold; ii) fractional and total transport; and iii) novel 

mathematical relationships. 

Chapter 5: Physical Modelling Results: Bimodal sediment 

This Chapter adopts an almost identical format to Chapter 4, but with focus 

upon beds of bimodal grain size distribution. Comparison of data to the unimodal 

beds of Chapter 4 is implicit. 

Chapter 6: Mathematical prediction of bedload transport: a framework for 

memory stress correction 

This Chapter presents development of a correction factor approach to including 

memory stress effects within existing graded sediment formulae. This novel 

approach has been validated against nearly 500 data points, including both field 

and laboratory data sets from previous research. Predicted results have also 

been compared against uncorrected (i.e., non-memoried) graded sediment 

transport formulae for the same studies. 

Chapter 7: Conclusion and recommendation  

A summary of the key results, importance of application and recommendations 

for future research direction are provided. 

 



 
 

Chapter 2: Critical Literature Review 

2.1 Introduction 

The entrainment threshold of particles from the river bed is the most 

fundamental parameter in the prediction, measurement and management of 

sediment transport in rivers. However, it is also a parameter which presents 

significant difficulty in measurement and is highly sensitive to complex 

interactions and influences of external controls (fluid, sediment and biological 

variables). Despite a century of research specific to prediction of entrainment 

threshold of both uniform and graded beds, there remains a high degree of 

uncertainty into both the methodological measurement and the mathematical 

prediction of the onset of motion. Given the vast body of literature pertaining to 

previous research specific to entrainment determination, the following sections 

specifically focus on the drivers, rationale and wider considerations of threshold 

research appropriate to previous and present “memory” research. Whilst this 

includes demonstration of understanding of the basic force balance underpinning 

the threshold motion, greater emphasis is placed upon discussion of the 

strengths and weaknesses of different methodologies to determine entrainment 

threshold, as essential to defence of the approaches used in the present 

experimental programme. Similarly, the mathematical approaches (in particular 

for graded sediment) are considered in detail and the small body of existing 

“memory” research is critically reviewed. Each aspect provides the rationale for 

decisions taken later in this thesis for data collection and analysis. 

2.2 Threshold motion of sediment 

2.2.1 Theory of critical threshold of entrainment 

In alluvial rivers, non-cohesive sediment is transported by the forces exerted by 

water on the particle. The force at the moment of first particle movement is the 

incipient motion of sediment usually expressed by critical shear stress, denoted 

by τ0. Forces acting on a sediment particle are easily identifiable as depicted in 

Figure 2.1; these include: i) particle weight, ii) fluid force, and iii) frictional 

force i.e. particle to particle contact force. A particle’s weight is 

straightforward to determine, as the submerged weight per unit volume, acting 
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vertically downward through the centre of mass. Conversely, fluid forces are 

much more difficult to measure; these are the resultant of drag and lift forces 

near the bed, which fluctuate according to the nature of flow (laminar or 

turbulent). Variables governing the fluid forces acting on a particle are mainly 

particle diameter, fluid viscosity, fluid density, boundary shear stress, particle’s 

shape, and its surrounding shape. As the packing geometry heterogeneity (shape 

and surrounding shape) is inherently complex, researchers tend to focus on 

mathematical description of only the other variables by way of a single 

dimensionless parameter, which is the boundary Reynolds number (Re*): 

 

 /** DuRe  .     Equation 2.1   

 

in which ρ is density of fluid, u* is shear velocity, D is particle’s diameter and μ 

is dynamic viscosity of fluid.  

 

A particle begins to move when the combined force of lift and drag out balances 

the counter force of gravity and friction and can be expressed by the following 

equation: 

 

 cossin 21 DG FaFa      Equation 2.2   

 

Here, the left hand side of the equation represents total moment due to gravity, 

and the right hand side represents total moment due to fluid drag against the 

pivot point. In Eq. 2.2, a1 and a2 are coefficient of proportionality; a1 depends 

on grain shape and packing, while a2 on fluid flow, pressure and viscous force; 

and α is the particle’s pivot angle. The gravity force: sG DcF 31  in its expanded 

definition includes c1 as a coefficient to account for particle shape and γs is the 

particle’s unit weight. Similarly, the drag force 0
2

2 DcFD   includes c2 as a 

coefficient to account for geometry and packing of the grains. Substituting FG 

and FD in the above equation, and re-writing for the critical condition where τ0 = 

τc (i.e. the applied shear stress is the same as the critical shear stress of 

entrainment threshold) means that the equation becomes: 
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 Dtan 
ca

ca
 s

1
c

22

1      Equation 2.3 

 

Equation (2.3) signifies the dependence of critical shear stress on particle’s 

geometric properties, such as its absolute size and relative position with 

neighbouring particles, and on flow dynamics or, in other words, its dependence 

on boundary Reynolds number. It is worth noting that there is an inherent 

assumption in Equation (2.1) that the bed slope effect is negligible (however, it 

is evident from the force balance of sediment that increasing bed slope will 

decrease critical shear stress). Despite this simplification for slope, Equation 

(2.3) clearly demonstrates the complexity of measurement of a number of the 

required variables; for example, the pivot angle of each grain will differ in a 

naturally packed bed, measurement would require 3D geometry information of 

the bed without disturbing the packing arrangement, and packing will 

temporally evolve due to water-working or grain displacement. As such, whilst 

theoretically robust the logistical use of Equation (2.3) in real river beds is 

flawed and more general approaches to the calculation of critical shear stress 

are therefore outlined in further sections below. 

 

 
Figure 2.1: Schematic of lift and drag forces on a bed sediment particle (from 

MIT OpenCourseWare, Chapter 9, Figure 9.4 by G.V. Middleton, web link 

provided in reference). 
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2.2.2 Calculation of shear stress   

Given the conclusion of Section 2.2.1, practically there are a number of 

alternative methods of calculating bed shear stress of Eq. 2.3: i) from the depth-

slope product (Shields, 1936; White, 1940; Paintal, 1971; Koopaei et al., 2002; 

Biron et al., 2004; Monteith and Pender, 2005; Ockelford, 2011) , ii) from the 

logarithmic relation of shear velocity and velocity profile (Ashworth and 

Ferguson, 1989; Wilcock, 1996; Robert, 1990; Bauer et al., 1992; Biron et al., 

1998; Song and Chiew, 2001; Pokrajac et al., 2006; Dey and Raikar, 2007; 

Piedra, 2010), iii) from the quadratic stress law (Thompson et al., 2003; Biron et 

al., 2004); iv) from the Reynolds stress using turbulence intensities (Kim et al., 

2000; Babaeyan-Koopaei et al., 2002; Pope, 2006); or, v) from the turbulent 

kinetic energy method (Kim et al., 2000; Williams et al., 2004). The first two 

methods (depth-slope or log-law) are the most commonly used for determining 

threshold motion (Buffington and Montgomery, 1997) and a précis of the 

method, pros and cons of each is provided below. 

 

Firstly, the depth-slope product (Eq. 2.4) is a reach-averaged approach, and thus 

hydraulic radius (R0) and slope (S) are used in the equation as representative of a 

length of channel; these parameters represent total friction, which can arise 

from grains, bed-forms, bars and planforms. 

SgRb        Equation 2.4   

 

In which, τ is bed shear stress, g is acceleration due to gravity, Rb is hydraulic 

radius, and S is flume bed slope or water surface slope (these latter two 

variables are  equivalent in case of uniform flow). The advantages of the 

approach are: easy-to-measure variables; comparability of data to other flume 

research, where it has been widely adopted; reduced-complexity approach to 

complex field data analysis. That said, its limitations are well-known in terms of: 

failure to account for spatial and temporal variation in bed roughness; failure to 

provide direct measurement of fluid velocities. Where flume-based studies are 

concerned use of the depth-slope product has, however, been widely defended 

as reach-averaging can generally be considered appropriate where there is little 

variation in the bed friction along the flume length. Similarly, the depth-slope 
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relations are also an accepted simplification of reality where turbulence 

characteristics are less extreme, e.g., screeded bed flume experiments. Thus, in 

reviewing previous flume-based entrainment threshold studies (Buffington and 

Montgomery, 1997), this is the adopted approach providing a plethora of 

comparative data against which to benchmark further studies. 

 

The second method is the Law of the Wall relation of velocity profile over the 

depth (Prandtl, 1925). Specifically, this method is based on the assumption that 

in the lowest 20% of the depth the velocity distribution has a logarithmic profile 

(Nezu and Nakagawa, 1993; Graf, 1998; Oertel et al., 2004; Wilcock, 1996): 













0*
ln

1

z

z

ku

u
      Equation 2.5   

 

In which, *u is shear velocity, k is von Karman’s constant, usually 0.3 to 0.4; z is 

depth above bed, and z0 is roughness height (height above bed where velocity 

becomes zero). 




*u       Equation 2.6   

 

From the regression of measured velocities over depth, the shear velocity ( *u ), 

shear stress (τ) and roughness height (zo) can be obtained respectively from the 

slope and intercept of the equation of the straight line (Eq. 2.5). The advantage 

of this approach is that it is a measure of local shear stress, and thus can be 

used to map the spatial patterns of shear stress and roughness height. However, 

there appears little justification or validation that the velocity profile conforms 

to logarithmic exactly within and up to the 20% flow depth threshold adopted. 

Seemingly, the value stems from sand-bed pipe flow work of Nikuradse (1933) 

rather than open-channel flow per se. Indeed, the lack of scrutiny of such a 

well-cited value receives much debate and extensive literature trawl in Piedra 

(2010), with his own flow data analysis noting that the logarithmic profile may 

be valid to notably larger depth ranges, up to 0.5-0.8 z/h (Smart, 1999; Lamarre 

and Roy, 2005; Piedra et al., 2009). Despite the recognised benefits of use of 
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direct velocity data in this type of shear stress calculation, Piedra (2010) clearly 

notes its sensitivity to the velocity data averaging process and the “goodness of 

fit” of the regression. These issues arise as the flow measurements are 

contained in the near-bed region where there is: a high degree of velocity 

fluctuations/turbulence; spatio-temporal development of bed roughness; 

difficulty in physical sampling of sufficient data points in the lower 20% of 

shallow flow depths in the flume to provide good regression. Reviewing the 

datasets on entrainment threshold in Buffington and Montgomery (1997) also 

indicates that previous studies using the Law of the Wall approach have often 

erroneously measured and regressed velocity data over the total depth, likely 

leading to inaccuracy and/or uncertainty in shear stress data. 

Recent research by Recking (2009) using several decades of measured flume and 

field data found that measured critical shear stress variations could not be 

reproduced with classical Nikuradse logarithmic velocity profile; available flow 

resistance data when used to fit a velocity profile to fit, it produced increasing 

critical shear stress due to increasing slope when used in a force balance model. 

This contradicts with usual consideration where due to gravity force, critical 

Shields stress should be smaller in increasing slopes. It was explained by the 

existence of a roughness layer which corresponds to low and uniform velocity 

profile near the bed. Without appropriate consideration of this roughness layer 

thickness, which is y/D, where y is flow depth and D is particle diameter, the 

critical shear stress would be flawed if only Nikuradse logarithmic profile be 

used.  

Thus, such sensitivity of the method and lack of clarity over its application to 

data presented in the literature mean that application of this methodology 

should be judicious. 

2.2.3 Threshold motion of sediment: Shields parameter 

From Section 2.2.1 and 2.2.2 the critical shear stress approach appears the most 

widely adopted definition for entrainment threshold. In this regard, Shields’ 

(1936) flume-based research is considered one of the earliest studies and it is his 

development of the non-dimensional approach to the shear stress parameter 

which has fostered its use as a benchmark data set for comparison of later 
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studies (e.g., Buffington and Montgomery, 1997 review). This non-dimensional 

approach continues to be commonly used in today’s research and warrants 

attention herein. In short, Shields’ non-dimensional shear stress parameter ( *
c  ) 

is also known as the Shields number (Eq. 2.7) and describes the ratio of bed 

shear stress relative to particle’s submerged weight. 

Ds

c
c

)(

*







      Equation 2.7   

 

Here, c   is bed shear stress and γ is unit weight of water; the average bed 

shear stress ( c ) is related to water depth (or hydraulic radius) and water 

surface slope (Eq. 2.4); shear stress is a measure of turbulent intensity on the 

bed and is calculated using Eq. 2.5 or 2.4. 

From his experimental results, Shields’ legacy develops from his illustration of 

an envelope (uncertainty band) of entrainment threshold, as established via a 

non-dimensional plot of Reynolds Number (Re*) versus Shields number ( *
c  ), see 

Figure 2.2. The intention of his work was to demonstrate the effect of flow 

regime on entrainment threshold and is widely recognised for indicating a 

tendency towards *
c  → Constant in hydraulically rough flow regimes (i.e. at 

high values of Re*); it is, however, notable that only one data point exists in his 

original rough regime work and extension of data specific to review of the 

Constant has been the topic of significant follow-on research (e.g., Neill, 1968; 

Parker et al., 2003).  Crucially, Shields’ data include uncertainty via a shaded 

envelope covering a band width for his dataset (Figure 2.2); this highlights well-

known problems with repeatability of 
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Figure 2.2: Shields’ own dataset on incipient motion of uniform sediment (from 

Buffington and Montgomery, 1997); the abscissa of the diagram represents 

Reynolds number (Re*), and the ordinate represents Shields number ( *
50c ) for 

median size class (D50) as in Eq. 2.7; Shields’ dataset covered a wide range of 

flow regime, from smooth to rough flow region; however, Shields had no data 

points in rough flows for Re* > 589, or in smooth flows beyond Re* < 2. 

 

experiments stemming from variability in the bed, flow fluctuations and/or user-

definition of entrainment. However, later versions of this “Shields Curve” 

erroneously reproduce the envelope of entrainment as a deterministic single 

threshold line, as drawn by Rouse (1939). This single line approach was sought to 

define the Shields number ( *
c  ) at which flow will initiate particle movement 

(above the line), from that at which the flow is unable to move any particles and 

the bed remains immobile (below the line).  The single-value threshold approach 

underpins the rationale for the Shields diagram being widely used for 

engineering practice, particularly based on the assumption that rough regimes 

(Re* > 250) tend to the constant of *
c   =0.06. Such empirical equations are 

therefore embedded within numerical flow-particle models widely used in flood 

risk, sediment transport and water quality estimates. Although Shields’ work is 

now considered pivotal in today’s practices, this actual methodological approach 

used to define and measure his own entrainment threshold has received notable 

review, critique and re-examination (Sections 2.3 and 2.4). 

 

Re* 
τ*

c
5
0
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2.3 Determination of entrainment threshold 

Given that the actual moment when there exists a balance in the forces 

promoting and resisting entrainment cannot be observed, the actual 

determination of critical shear stress still remains a challenge for scientists.  

Typically, critical shear stress is defined as the condition of flow where some 

sediment is in motion; this definition of “some sediment” tends to be when loads 

are practically measurable or visually countable. Clearly, such subjectivity has 

led to the evolution of both deterministic and statistical approaches for 

determining critical shear stress and discussion of the most common methods is 

therefore pertinent to the present thesis; these include: a) reference transport 

(e.g., Shields, 1936; Parker et al., 1982a; Shvidchenko et al., 2001); b) visual 

approach (e.g., Gilbert, 1914; Kramer, 1935; Neill and Yalin, 1969); c) stochastic 

method from probabilistic approach (e.g., Gessler, 1966 and Grass, 1970); d) 

competence or largest grain method (e.g. Andrews, 1983; Carling, 1983; 

Komar,1987a); e) theoretical approach (e.g., White, 1940 and Wiberg and Smith, 

1987). 

2.3.1 Reference transport method 

The reference transport approach is, largely, considered the most reliable 

method for determining critical shear stress for sediment movement (e.g., 

Fenton and Abbott, 1977; Parker et al., 1982a; Wilcock, 1988). It is based upon 

direct measurement of sediment transport samples over a range of flows, such 

that a well-defined relationship between shear stress and bedload transport can 

be established.  Arguably, the most influential entrainment threshold studies 

have utilised this approach (e.g., Shields, 1936; Paintal, 1971; Taylor, 1972; 

Ackers and White, 1973; Parker and Klingeman, 1982; Shvidchenko and Pender, 

2000; Shvidchenko et al., 2001), even applying it to the individual entrainment 

thresholds of graded beds. 

There are several definitions of reference transport (Shields, 1936; Ackers and 

White, 1973; Parker et al., 1982a and Shvidchenko and Pender, 2000; 

Shvidchenko et al., 2001); all definitions have different magnitudes of 

practically measurable volume of transports, which correspond to initial motion 

of uniform and graded sediment. Because of these differences, it, therefore, 
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merits a discussion here about their development, advantage, disadvantage and 

their applicability. 

Shields’ research (1936) was the most influential pioneering dataset on threshold 

motion of uniform sediment. Until the work of Taylor and Vanoni (1972) and 

Garcia (2000), it was believed that his initial motion dataset corresponded to a 

zero transport rate. It was largely understood that Shields obtained his threshold 

condition by back-extrapolating his sediment rating curve to zero transport. 

Taylor and Vanoni (1972) established the reference transports for his initial 

motion data; they established a family of contour lines of non-dimensional  

 

 

Figure 2.3: Different reference transport (
*q ) contours on Shields diagram, as 

deduced from Shields initial motion data during review and reanalysis as 

established by Taylor and Vanoni (1972). 

transports (
*q ); superimposed them on the Shields diagram (Figure 2.3), and 

demonstrated that all of Shields’ threshold motion data envelop a range of 

reference transports (
*q ) between 10-4 and 10-1; this study also used data of 

USWES (1935), Casey (1935a, b) and Taylor (1971). Later, Garcia (2000) 

demonstrated that Shields had practically measurable transport for his shear 

stress for incipient motion and there was general agreement in the research 

community that the Shields band width in his initial motion data poses a 

Re* 

τ*
c
5
0
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disadvantage to precise definition for a particular transport condition. Thus, 

Shields’ average condition has been represented by many (e.g., Miller et al., 

1977; Brownlie, 1981) to correspond to a reference transport of approximately 

*q =10-2. 

Two deterministic magnitude of reference transports were later proposed by Day 

(1980) using Ackers and White’s (1973) model (herein referred to Ackers and 

White’s reference number), and that of Parker et al. (1982a); both these 

definitions yielded a different magnitude of transport. Parker’s reference 

transports value was 
*W =0.002, and is represented by Eq. 2.8 and 2.9. Parker’s 

reference transports were based on his work with the field data of Oak Creek 

(Milhous, 1973) of unimodal sediment mixtures. Using Eq. 2.9, Parker’s 

reference transport number 
*W =0.002 can be converted to 

*q =10-5 for easier 

comparability with the aforementioned Shields reference transport (
*q ). Ackers 

and White’s reference transport, Ggr = 104 (Ackers and White, 1973) is shown in 

Eq. 2.10 (Ggr = 104 approximately equates to 
*q =5x10-3, see Figure 3, top, in 

Wilcock, 1988). Day (1980) validated this reference number to practically 

measurable transport used in laboratory experimental data for sediment 

mixtures. The magnitude of reference transport of Parker et al. (1982a) and 

Ackers and White (1973) were compared by Wilcock (1988) via further 

experimental data, to find that Ackers and White’s (1973) reference transports 

require about a 20% higher reference shear stress for the entrainment of 

sediment. 
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In Eq. 2.8 and 2.10, s is submerged specific density of sediment, qbi is volumetric 

bedload per unit width in ith grain size subrange, *
iq is non-dimenional bedload 

per unit width (Einstein bedload parameter), *
i  is Shields number in ith grain 

size subrange, qb volumetric bedload per unit width, u is mean velocity, fi is 

fractional proportion in the ith subrange, exponent e is a dimensionless 

parameter which varies according to grain size. 

The three reference transport approaches discussed above (Shields, 1936; Ackers 

and White, 1973 and Parker et al., 1982a) were all deterministic definitions of 

measurable transport; they therefore lack description of the stochastic nature of 

fluid turbulence and variability in grain geometry promoting a ‘random’ element 

in grain entrainment. As these variables require a more probabilistic approach 

(Grass 1970),  Shvidchenko and Pender (2000), Shvidchenko et al., (2001) used a 

probabilistic definition of threshold based on intensity of sediment motion for 

uniform and graded sediment, based on an extensive volume of laboratory data 

so as to propose a new reference transport value. Shvidchenko and Pender 

(2000) introduced the probability concept in their sediment mobility number (I), 

referred to as the intensity of sediment motion in a similar guise to that initially 

raised by Einstein (1942). Shvidchenko and Pender, (2000) and Shvidchenko et 

al., (2001) proposed a reference transport of 
*q  = 10-4, which they considered to 

be the practical lower limit of 
*q  which can be reliably measured. For grain size 

ranges between 1.5 and 12mm a relation between intensity of sediment motion 

(I) with 
*q was developed such that at 

*q =10-4, the sediment intensity was I=10-4.  

According to this definition of sediment intensity, 1 in 10,000 particles on the 

bed surface would be in motion in every second; this was considered the 

definition for threshold motion of sediment. They compared their sediment 

intensity curve with Parker et al.’s (1982a) reference transport value (
*q =10-5), 

for which they found I=3x10-5, i.e. 3 in 100,000 particles are in motion in every 

second. Shvidchenko et al. (2001) later developed their sediment data set for 
*q  

between 10-6 to 10-2 such that they proposed an empirical curve (Eq. 2.12), and 
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derived a relation for predicting incipient motion (Eq. 2.13) at a reference 

transport of 
*q =10-4. 
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In which a is the mobility parameter (Eq. 8 in Shvidchenko at. 2001), i  is hiding 

function ( *
50

* / rii  ) and S is flume slope. Shvidchenko et al. (2001) validated 

Eq. 2.13 to predict the threshold motion for different size classes (including a 

wide range of data compiled from several other authors), with close observation 

of their predicted values and measured values. However, this dataset revealed 

that sediment transport was possible even at lower shear stress than proposed 

by their reference definition; similar findings are also noted at low flows by 

others (e.g., Casey, 1935; USWES, 1935; Paintal, 1971, and Taylor and Vanoni, 

1972; Parker et al., 1982a). As such, focus on the sensitivity of low flows around 

the discharge appropriate to entrainment appears warranted as specific to its 

impact upon a reference transport approach. 

 

2.3.2 Visual method 

Although Shields’ work was laboratory based, researchers continued to look for 

alternative measures of entrainment threshold that were non-invasive and less 

laborious than high resolution bedload sampling. One such method was 

developed by Neill and Yalin (1969) by way of a visual approach for estimating 

critical shear stress for unisize sediment movement. Their methodology was 

based on the assumption that an equal number of grains will be displaced from 

geometrically equivalent areas (Eq. 2.14) over a kinematically equivalent time 

period (Eq. 2.15). Thus, they argued that: 

2
22

2
11 // DADA        Equation 2.14  
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22*211*1 DutDut       Equation 2.15   

 

In which A1 is the area of observation for grain size D1, and A2 is for grain size D2, 

t1 and t2 are times of observation in the corresponding areas. Eq. 2.14 provides 

scaling for determining the area, and Eq. 2.15 provides scaling for selecting time 

for equal number of grains to be displaced. It is clear from the equations that 

larger unisize grains will require a larger area and higher sampling time. 

Therefore, for equal number of grain displacement, the following must satisfy: 

 222111 tAxtAx       Equation 2.16   

The similarity ratios in Eq. 2.14-16 will lead to: 

CuxD *
3 /       Equation 2.17   

 

In which x, x1 and x2 are number of particles in motion and C = constant. Neill 

and Yalin (1969) observed that for any practical and observable sediment 

movement, the constant in Eq. 2.16 should be 10-6. However, Eq. 2.16 is not 

directly applicable to mixed size sediments for two reasons: i) the sampling 

period was scaled with grain size from the unisize bed, which is not applicable 

for mixed size sediments,  and ii) in a mixed bed, grains from each fraction do 

not cover the entire bed surface. Wilcock (1988) therefore proposed the 

following scaling relations for corrected application of the visual approach to 

mixed size sediment: 

2
2

2
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f aa       Equation 2.18  

 

where fa1 and fa2 are fractional contents from area 1 and 2 such that this 

satisfied the requirement that an equal number of grains are displaced from the 

area of same number of grains, in a way that the following must hold equal: 

2211 AxAx       Equation 2.19  
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where, x1 and x2 (Eq. 2.19) are number of particles in motion from area 1 and 2 

for a particular fraction. Hence, if Eq. 2.18 is inserted into Eq. 219, then to 

satisfy threshold motion for each fraction will lead to the following relationship: 

CfDx aiii /2      Equation 2.20   

 

where, C = constant such that Eq. 2.20 is applicable only for a specific sediment 

mixture, (rather than interchangeable from mixture to mixture) in a manner 

whereby it is not needed to know the value of the constant in Eq. 2.20 

beforehand. Although Wilcock (1988) did derive the logical relations (Eq. 2.18 to 

2.20) for sediment mixtures, he noted the severe practical limitations of visual 

approach for mixed size sediment in terms of the scaling of both area and 

sampling time. In this regard, an example of the problem is demonstrated as 

follows: because the particle displacement varies with square of the particle 

size, for a single displacement of the largest grain size of 16mm in a mixture, 

4096 finest particles (1mm) have to be displaced from the same observation area 

in the same sampling period. Additional limitations of the visual approach in 

mixtures include the temporal evolution of fai in the bulk mix due to entrainment 

during (or between) sampling periods. Thus, Wilcock (1993) noted that visual 

approach would not truly determine entrainment threshold for each fraction in 

sediment mixtures where size selective transport is key mode of sediment 

movement. That said, the visual approach has recently seen a resurgence of 

laboratory based applications in research that is specific to below-threshold or 

low transport conditions (e.g., Monteith and Pender, 2005; Paphitis and Collins, 

2005; Haynes and Pender, 2007: Ockelford, 2011) and the merits of its ease of 

use and non-invasive sampling approach should be considered when selecting 

laboratory based methodology in such studies. 

2.3.3 Other approaches 

Three alternative approaches are briefly highlighted below, primarily to justify 

why they are not widely adopted in entrainment studies and secondly to raise 
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salient points which may aid uncertainty analysis of the more common methods 

referred to in Sections 2.3.1 and 2.3.2. 

Firstly, Buffington and Montgomery (1997) provide comparative threshold data 

specific to methodological definition comparison, clearly depicting considerable 

scatter on entrainment threshold values. For example, for the same Reynolds 

number, the threshold shear stress varies by several folds from smooth to rough 

flow region. Such scatter is also significantly attributed to the nature of 

turbulent flow at the granular bed interface; instantaneous fluid forces exerted 

on a sediment particle can vary widely; as a result, even a weak flow with strong 

turbulent eddies can cause occasional sediment movement (Paintal, 1971; 

Zanke, 2003).  This is likely a facet of two effects: i) the effective boundary 

shear stress acting on a particle is higher than the time averaged boundary shear 

stress, due to instantaneous turbulence, and ii) a particle’s projection to flow 

makes it lighter than predicted, due to instantaneous lift forces. Therefore, at 

the point of incipient motion, the distribution of flow is much wider than 

considered by the deterministic approach of Sections 2.3.1 and 2.3.2. Here the 

hypothesis and findings of Diplas et al. (2008) is worth referring; through 

laboratory experiments and analytical formulation, they studied the problem of 

incipient motion; they observes that in addition to the magnitude of the 

instantaneous turbulent forces applied on a sediment grain, the duration of 

these turbulent forces is also important in determining threshold motion of 

sediment; their experimental and theoretical analyses support the hypothesis 

that impulse rather than force is the relevant parameter for the incipient motion 

of mobile sediment under the two limiting conditions of pure drag and pure lift. 

Thus, the stochastic approach to entrainment threshold definition is borne. As 

this requires high temporal and spatial data resolution to resolve adequately, it 

has not been readily adopted in sediment entrainment research; however, a 

précis of the stochastic method based upon the findings of Grass (1970) is 

important in understanding data uncertainty in other methodological approaches 

to threshold definition. That is, Grass (1970) proposed the original probabilistic 

description of shear stress acting on particles to initiate sediment motion in 

terms of two frequency distributions: i) distribution of instantaneous shear stress 

( w  ) on an area over the bed induced by the fluid, and ii) distribution of 
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instantaneous shear stress required ( wc ) to put the particle in motion (equal to 

the resisting force). His notion was, correctly, that there must be some overlap 

between these two frequency distributions for particles to move (Figure 2.4). 

Such stochastic nature of the incipient motion of sediment in uniform and 

graded sediment has since been researched by many (e.g., Einstein, 1950; 

Gessler et al., 1966, 1967; Fredsoe and Deigaard, 1994; Kleinhans and van Rijn, 

2002; Dancey et al., 2002; Papanicolaou et al., 2001, 2002; Wu and Chou, 2003), 

yet these studies not only consider the probabilities of solely the turbulence 

characteristics specific to Grass’ research, but also that the incipient motion of 

a grain in a mixture depends on its position relative to that of the surrounding 

particles. Krogstad et al. (1992) and Papanicolaou et al. (2001) provided 

evidence that bed packing in gravel bed streams affect turbulence 

characteristics, and thus the entrainment of sediment. Papanicolaou et al. 

(2001) observed that the ratio of Reynold stress to the standard deviation of 

downstream velocity is smaller in loosely packed beds than in densely packed 

beds. Thus, a threshold motion based soley upon time-averaged shear stress 

under-predicts sediment transport, particularly in loose beds (Papanicolaou et 

al., 2001). The discussion here on stochastic approach certainly indicates that 

there is a wider distribution of turbulent flows causing sediment motion, hence 

sampling in more widely adopted deterministic approaches should be undertaken 

from as minimum a flow as possible (Paintal, 1971 and Parker et al., 1982a). 
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Figure 2.4: Conceptual definition of incipient motion of sediment from frequency 

distribution of instantaneous fluid forces on bed ( w  ), and frequency 

distribution of instantaneous fluid forces required ( wc  ) for particle to begin 

movement (schematic: from Grass, 1970); top: no movement of sediment; 

middle: some overlap of two frequency distribution, and incipient movement; 

bottom: some degree of overlap, and general movement of sediment. 

 

Secondly, field data sets considering sediment entrainment consider a 

competence or largest grain method.  This approach relates the size of the 

largest mobile grains to the applied shear stress (Andrews, 1983; Carling, 1983; 

Komar, 1987a), but suffers from multiple limitations including: i) an assumption 

of availability of the largest grain class in sampled bedload, ii) sufficiently long 

sampling period, iii) sufficiently large sampling area, and iv) sufficiently long 

No movement of 
sediment 

Incipient movement 

General movement 
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period of constant flow. As a result, this approach incurs scaling issues similar to 

those raised for the visual approach (Section 2.3.2) and is limited to conditions 

of selective transport where entrainment shear stress is variable with grain size 

(Wilcock, 1988, 1992a, 1992b). Such restrictions limit the adoption of this 

technique, with preference more widely afforded to the alternative reference 

transport approach if bedload transport samples are available. 

Theoretical approach: this approach returns to fundamental force balances 

presented in Section 2.2.1. It assumes the grain’s pivot angle to be derived from 

empirical formula (Miller and Byrne 1966) such that the critical shear stress can 

be calculated for any grain size and any size class in a mixture. Wiberg and 

Smith (1987) proposed, arguably, the most cited theoretical model for 

calculating the entrainment threshold of a non-cohesive sediment as: 
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where θ is bed slope angle; α is grain’s pivot angle; CD and CL are drag and lift 

force coefficients respectively; function F= u(z)/u*, is the logarithmic function, 

which relates effective fluid velocity acting on a particle to shear velocity; here 

z is water depth above bed and z0 is roughness above bed where velocity is zero. 

Wiberg and Smith’s model is based on the key assumption of particle’s motion by 

rolling; similar recent, but more detailed work on this is by Meidema (2010), who 

considered sliding, rolling and lifting as key mechanism of particle’s motion in 

his mathematical model. Alternative theoretical approaches (and embedded 

elements) include e.g., White, 1940; Chepil, 1959; Egiazaroff, 1965; Ikeda, 

1982; Kirchner et al., 1990; Zanke, 2003. Valyrakis et al. (2013) proposed a new 

theoretical framework based on energy approach for incipient motion of coarse 

particles in saltation or rolling mode; energy balance equation was developed; 

threshold energy curves were provided for both saltation and rolling modes. 

Their theoretically predicted results perform satisfactorily with their 

experimental results performed in a series of low-mobility experiments for 

entrainment of particles. The theoretical approaches as above, however, 

oversimplifies the issues of bed heterogeneity and shear stress fluctuations in 

such a manner as to seriously over-predict threshold values. For example, at the 
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higher Reynolds’ numbers (Re* > 200) common to river beds the predicted initial 

motion by most of the theoretical approaches cited are higher than Shields 

06.0*c   threshold by around a factor of two. Such consistent and erroneous over-

predictions of threshold values had precluded general adoption. 

Discharge based approach: this approach is employed to determine threshold 

condition (Bathurst et al., 1987, Rickenmann, 1990, Bathurst, 2013) generally in 

gravel bed stream. Depths are difficult to measure in steep slope channels 

(Bathurst et al., 1987). They proposed 12.15.1
50

5.015.0  SDgqcr  to determine 

critical discharge at the initiation of sediment transport. The advantage of using 

this relation is that information on flow depth is not needed to determine the 

critical discharge. Only bed slope, sediment size and density and fluid density 

are required as input.  Rickenmann (1990) modified Bathurst et al. (1987) 

relation by including density factor (s-1), where is s relative density of sediment 

(ρs/ρ). Shields relation for critical shear stress (Eq. 2.7) developed for uniform 

sediment cannot be applied for steep slope channel without correction. 

Threshold shear stress at initial motion in steep gravel bed is difficult to 

determine than finer bed (Wiberg and Smith, 1987), and thus critical discharge 

method is useful in gravel bed stream. It is worth mentioning here that Lamb et 

al. (2008) analysing large volume of flume and field data developed an empirical 

relation explicitly dependent on slope as 25.0* 15.0 Sc  ; they considered data set 

only for the rough flow region for Reynolds Number >100, where the Shields 

Number considered constant value ranging from 0.03 to 0.06 (Buffington and 

Montgomery, 1997).  Many of the data however did not fall within this range; 

they showed that increasing slope increase the critical shear stress, and 

established an empirical relation 25.0* 15.0 Sc  . 

 

Bathurst (2013) had the most recent work on the entrainment threshold of non-

uniform sediment with interesting findings; he used critical discharge approach, 

and employed large volume of field (24 sites) and flume (37 sets) data. He 

established a generic relation for predicting entrainment threshold as: 

m
ricrci DDqq )/(/   where qci and qcr are unit critical discharge for size class i 

and the reference size class r respectively; Dr is the reference sediment class, 
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which was close to D50 in most cases of his data sets.  This exponent m is 

analogous to hiding function exponent proposed by Parker et al. (1982a) and Wu 

et al. (2000a); however, this exponent is characteristically different than the 

other authors; for Bathurst, exponent m=0 is a condition of equal mobility 

transport at entrainment, and m between 1.5 and 2.5 is representation of size 

selective transport, and in case of Parker et al. (1982a) and Wu et al. (2000a), 

m=1 represent equal mobility, ad m between 0 and 1 represents size selective 

transport. In his analysis of the data set, Bathurst, however, did not present any 

equivalent Shields number corresponding to the critical discharges, and thus 

makes it difficult to compare his results more directly with widely used Shields 

number (Buffington and Montgomery, 1997).  

 

Recent research in gravel bed stream (Bunte et al. 2004, 2013) computed critical 

discharge in gravel bed stream from flow competence curve of bedlaod data 

collected by bedload traps. Their data also shows high sensitivity of bedload at 

low flow transport, which varies with exponent upto 16.2 with discharges, 

similar to Paintal (1971) and Taylor and Vanoni (1972), who however presented 

the sediment exponent with bed shear stress. Bunte et al. (2004) also calculated 

the Shields number corresponding to the critical discharges, which are in similar 

order of magnitude like Shields original data, and thus may seem over-estimate 

of entrainment threshold (Buffington and Montgomery, 1997 and Parker et al. 

2003). Their computation of Shields number that is based on flow competence or 

critical flow approach requires bed load transport measurements that accurately 

represent the largest bed load particle size mobile at a specified flow (Wilcock, 

2001) and need to sample over a long time to catch the infrequently moving 

large particles. From flow competence curve, they determined critical discharge 

and Shields parameter for entrainment of largest grain sampled at respective 

flows. They also proposed a power relation of predicting entrainment threshold; 

for stream slope from 0.1 and above. For the 22 mountain rivers, they 

established critical discharge for the entrainment of largest grain; their relations 

however predict significantly higher threshold shear stress than proposed by 

Lamb et al. (2008). 
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2.4 Modification of Shields parameter  

2.4.1 Re-writing the abscissa 

In Section 2.2, the fundamental work of Shields (1936) was introduced in terms 

of his (Shields) Curve tending to a constant of 
*
c  =0.06 for the hydraulically 

rough regimes (Re* > 300) typical of natural sand/gravel bed rivers. However, 

Vanoni (1964) first noted a practical limitation of the curve, in that the incipient 

motion for any specific grain size could not be explicitly determined because 

bed shear stress was a variable in both axes (i.e. in the abscissa as and in the 

ordinate as  /* cu ). Thus, the original Shields curve has been subject to 

approximation for convenient use (e.g., Bonneville, 1963; Brownlie, 1981; van 

Rijn, 1984; Soulsby and Whitehouse, 1997). The advance of Brownlie (1981) is of 

particular note, as he rewrote the abscissa as particle Reynolds number (Rep) 

such that: 

]1006.022.0[5.0
)6.07.7(6.0

  epR
epc R   Equation 2.22 

 


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  

 

In which, s is submerged specific gravity of sediment and ν is kinematic viscosity 

of water. Later, van Rijn (1984) took a similar approach in terms of their 

dimensionless particle number: 

3/1* )/)1(( gsDD       Equation 2.23 

Both Brownlie’s (1981) Rep and van Rijn (1984) 
*D are functional to sediment 

and water properties and thus helped explicit determination of incipient motion 

from their curves. 
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2.4.2 Debating the constant 

Figure 2.2 clearly shows this conclusion derived solely from a single datum 

within the rough regime.  Although extrapolation of the Shields curve (e.g., 

Brownlie, 1981; van Rijn, 1984; Shvidchenko and Pender, 2000) to a constant is 

appealing for engineering practice, review of additional data and uncertainties 

in the rough regime require discussion. Thus, Miller et al. (1977) was first to 

modify and extend Shields curve (Figure 2.5) using only flume data for uniform 

sediment; this included a wider review and inclusion of similar data from Casey 

(1935a, 1935b), Grass (1970), Kramer (1935), Paintal (1971), White (1940), Neill 

(1967), and Vanoni (1964) alongside Shields’ own dataset. This yielded notable 

greater data points in the rough regime such that *
c  was revised to a constant of 

0.045. Unpicking the raw experimental data used to derive this constant 

highlights that Miller et al.’s (1977) curve was established via regression of 

entrainment data merged from two distinct methodologies, the visual and the 

reference transport approaches (Section 2.3). Thus, whilst the constant of 0.045 

is reflective of limited reference transport data, explicit consideration of visual-

only data (e.g., data set of Neill, 1967) in the region Re*> 100 reduces *
c  to (on 

average) ~0.025.  This clearly indicates methodological sensitivity of the Shields 

parameter, as recognised specifically in Buffington and Montgomery’s (1997) 

review paper and later review by Shvidchenko and Pender (2000). Figure 2.6 

exemplifies such sensitivity, in that *
c  from reference transport studies (Figure 

2.6a) sits well above visual approach (Figure 2.6b) data. Interestingly, the 

reference transport approach is also noted to suffer less scatter and uncertainty 

within and between investigations, possibly providing additional justification for 

continued, more recent investigator preference in entrainment threshold 

studies. 



49 
 

49 
 

 

 

Figure 2.5 Shields numbers compiled by Miller et al. (1977) from different 

researches on incipient motion studies (adopted from MIT Opencourseware, 

chapter 9, Figure 9-8; for further detail reference of each dataset shown in this 

Figure, please see Table 1, Miller et al., 1977, p512). Abscissa of the diagram 

represents Reynolds number (Re*), and ordinate represents Shields number by 

*
50c  as represented by Eq. 2.7. Miller et al. also showed an upper and lower 

bound of Shields number bounded by the two blue lines; however, this should be 

pointed out that this boundary is not same Shields boundary as in Figure 2.2, 

which Buffington and Montgomery drafted; more-over, Miller et al. although 

commented the blue boundary lines to cover most dataset, but to be fair, this is 

not the case for Re* > 100; here many data points remained outside Miller et al. 

lower bound. Of the two orange-dash lines, one is the Shields single curve drawn 

by Rouse (1939), and other is Miller et al. curve (1977). 
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Figure 2.6: Compilation of eight decades of incipient motion data by Buffington 

and Montgomery (1997); a) Incipient motion data from reference transport 

approach, b) Incipient motion data from visual transport approach; for more 

details of the Figure, particularly the legends for data points, please see 

Buffington and Montgomery (1997); Abscissa is critical boundary Reynolds 

number and ordinate is Shields number; incipient motion in reference transports 

lies well above the values from visual approach, particularly in rough flow region 

for Re*c > 400. 

2.4.3 Parker’s (2003) update 

A further review by Parker et al. (2003) assembled a subset of the eight decades 

of incipient motion data from Buffington and Montgomery (1997) and data set 

from three gravel bed rivers (Britain, USA and Canada; after Church and Rood, 

1983). Their work was specific to examining the transporting ability and 

morphology of gravel beds specific to field application of eight mountain gravel 

bed streams of Idaho. Analysing the Shields number at bankfull discharges they 

proposed the modification of the Shields curve as they observed that at Shields’ 
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original threshold condition, no sediment moved. In short, Figure 2.7 indicates 

that the modified regression (based on Neill, 1968) of Parker falls significantly 

below the Shields curve (Figure 2.5) such that *
c  →   0.03. In a manner similar 

to Brownlie (1981) this revised curve is described mathematically as: 

]1006.022.0[5.0
)6.07.7(6.0

  epR
epc R   Equation 2.24  

 

 
Figure 2.7: Critical shear stress vs. particle Reynolds number (n.b. Rp50 is the 

original annotation of Rep taking the median grain size of D50 Eq. 2.22 and 2.24); 

The dashed line is Shields curve approximated by Brownlie (1981) tending to 

0.06 in rough regimes; the solid line is Parker’s curve (2003) tending to 0.03 in 

rough regimes. Incipient motion data from Buffington and Montgomery (1997) is 

given by black filled circles (Mont-Buff), whilst other symbols denote bankfull 

field data (Britain-Brit; Canada: Alta; USA: Ida). This figure is after ACSE Manual 

110 (ASCE, 2007). 

 

Thus, it is clear that recent research continues to apply Shields’ approach to 

entrainment threshold analysis. Whilst the wild variability of data in the rough 

regime brings a high degree of uncertainty to description via any “constant” in 

Parker’s data, the specific *
c  →   0.03 value is increasingly receiving recognition 

in field studies and laboratory research (e.g., Church and Rood, 1983; 

τ*
c
5
0
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Shvidchenko et al., 2001, Muller et al., 2005; Yang and Wang, 2006; Haynes and 

Pender, 2007; Lamb et al., 2008; Ockelford, 2011). Lamb et al. (2008) 

particularly compiles a large volume of field and laboratory data of critical shear 

stress for Re*>100, mostly around 0.03.  This recent paper therefore raises three 

important issues for continued use of this approach in entrainment threshold 

studies: (i) possible distinction between the Shields constant appropriate for 

laboratory-based and field based data; (ii) natural variability in data for the 

rough regime; (iii) selection of methodology for determination of entrainment 

threshold, and analysis of only data of equivalent methodologies. 

 

2.5 Transport of sediment mixture 

2.5.1 Relative grain size 

It is well-known that entrainment thresholds are not a function of the flow 

properties alone, hence the character of the sediments must be embedded in 

empirical approaches. The simplest method assumes a bed of uniform grain size 

which, although viable in laboratory tests, is rather unrepresentative of natural 

river beds where mixed sizes occur. Thus, a second stage descriptor is used as 

representative size reflective of the bed. Typically, for sediment transport, this 

is taken as the median grain size (D50) in the manner already applied in Section 

2.4; it is arguable as to whether the intention of this approach is to strictly 

describe all grain sizes as behaving exactly as that of the D50 fraction, or purely 

that the D50 is a ballpark approximation of general bed dynamics. It is for this 

reason that more detailed equations have developed to specifically consider 

individual fractions or distributions reflective of the wide range of sorting in 

sediment mixtures; whilst these dictate detailed measurements (e.g., 

composition, structure, exposure, pivoting angles) of every individual fraction 

(which may be an unrealistic expectation, particularly in poorly sorted field 

settings), the insight on relative grain size effects on sediment entrainment 

threshold is important. 

In basic terms (e.g., Shields diagram, Fig.2.2) the larger the grain size, the 

heavier the grain and larger the critical shear stress for sediment movement 

expected. Whilst for a perfectly arranged bed structure of uniform grain size this 

notion may be true, a natural mixed grain size (graded) bed presents a more 
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complex structure where individual grain size fractions can be more or less 

mobile due to the influence of neighbouring grains. Thus, a grain’s relative 

particle size (i.e. that relative to its neighbour) becomes an important influence 

in predicting individual fractional transport in sediment mixtures. To account for 

this effect, additional descriptors for mixed size beds include direct sheltering 

effects of hiding and exposure functions (e.g., Egiazaroff, 1965; Ashida and 

Michiue, 1972; Parker et al., 1982b; Andrews and Parker, 1987 and Wu et al., 

2000b), sorting (Miller and Byrne, 1966; Li and Komar, 1986; Kirchner et al., 

1990; Buffington et al., 1992), structures (Nikora et al., 1998; Marion et al., 

2003; Rollinson, 2006; Aberle and Nikora, 2006; Cooper and Frostick, 2009; 

Ockelford, 2011; Mao et al., 2011), particle pivoting (Miller and Byrne, 1966; 

Fenton and Abbott, 1977; Kirchner et al. 1995) and remote sheltering  (Measures 

et al., 2008; Tait et al., 2008) etc. Although, the time-dependency for the 

development of these bed structure controls is recognised as crucial to accurate 

prediction of entrainment and transport from mixed beds (e.g., Haynes and 

Pender, 2007; Ockelford, 2011) there is, as yet, no mathematical term with 

which to account for temporal evolution of relative grain size effects (Section 

2.6). 

2.5.2 Debating the influence of ‘hiding effects’ 

The exact influence of relative grain size over entrainment threshold and 

sediment transport remains contentious, with scientists providing both field and 

laboratory-based individual fractional load (qbi) data ranging from no influence 

to highly significant influence. Descriptors such as equal mobility (Parker et al., 

1982a; Wilcock and Southard, 1988), size selective transport (Parker 1990a, 

Parker et al., 1982a; Kuhnle, 1993; Wilcock and McArdell, 1993; Wathen et al., 

1995) and size independent transport (e.g., Shields, 1936; Meyer-Peter and 

Muller, 1948) have stemmed from this work and warrant introduction, as specific 

to the mixed bed research of the present thesis. 

Einstein (1950) first proposed the effect of hiding function in transport of 

sediment mixtures. However, his work was considered to be ahead of time and 

too little data were available to robustly validate his function. Hence, the first 

accepted hiding function was introduced by Egiazaroff’s (1965) simple model 

with embedded assumption that larger particles, though harder to move because 
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of their higher submerged weight, are easier to move in mixtures because of 

their higher protrusion to flow. It is due to this higher protrusion that they 

experience higher fluid drag from the instantaneous shear stress and the lift 

component of the fluid flow (Zanke, 2003). On the other hand, smaller particles, 

though they have lower submerged weight, are harder to move due to being 

sheltered by the larger particles. Since this work, physical interpretation and 

mathematical description (e.g., White and Day, 1982; Parker et al., 1982a; 

Ashworth and Ferguson, 1989; Wathen et al., 1995; Wilcock and Crowe, 2003) 

can be summarised via two extreme scenarios: 

Firstly, it could be assumed that although a river has mixed size sediments, its 

dynamics operate without any hiding/exposure effects. Each size fraction 

therefore works independently, irrespective of neighbouring fractions, such that 

smaller particles require lower entrainment shear stresses and larger particles 

require higher entrainment shear stresses. This mode of transport is referred as 

size independent transport (Figure 2.8). In the case of size independence, 

imagining a bed of sediment mixtures, where every fraction in the mixture were 

surrounded by the grains of the same fractional size, then ci and 50c  would be 

same, i.e., 1/ *
50

* cci  . If this were true, then in an actual mixture of different 

size classes, the following holds true: 

*)( ciisci gD        Equation 2.25 

 

*
505050 )( csc gD       Equation 2.26   

 

Rearranging equation 2.25 and 2.26 would provide: 
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Equation 2.29 confirms that ci  is directly proportional to grain size; the larger 

the grain size, the higher the critical shear stress for that size fraction and is 

represented by the diagonal line passing through the origin of Figure 2.8 is thus 

marked as size independent transport. 

 

 

Figure 2.8: Mode of transport mechanisms in sediment mixtures: size 

independence, size selective and equal mobility. 

 

Alternatively, it can be considered that hiding/exposure effects operate at their 

maximum. Hence, a larger particle experiences higher exposure to the flow, in 

that its apex is susceptible to faster flow (and hence higher shear stress) higher 

in the water column and the grain area exposed to such higher shear stress is 

larger, termed ‘preferential drag’ (Einstein, 1950). This makes the larger grains 

relatively easier to entrain than if they had been in a bed of uniformly sized 

grain (where their exposure would have been relatively less). Conversely, a 

smaller particle may experience extreme hiding in the sheltered valley 

(sometimes termed wake or col) between neighbouring large grains. This would 

minimise its exposure to flow shear stresses and reduce the likelihood of it being 

mobilised in a manner where it can move over its larger neighbour. Hence, the 

Equal mobility 
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hiding effect dictates that smaller grains require a disproportionately larger 

shear stress to entrain in a mixed bed than that required from a uniform bed of 

equal grain sizes. Thus, the hiding and exposure effects counterbalance the mass 

differences of the larger and smaller particles. As a result, all fractions tend to 

mobilise at similar critical shear stress. This is commonly referred to as equal 

mobility (Figure 2.8). Mathematically, such hiding effects and the relation to 

bed shear stress can be written in its non-dimensional form by reducing Equation 

2.25 and 2.26 to: 
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Where, m=0 provides the case of size independence, with no hiding effect and m 

=1 provides the case of equal mobility. 

In reality, transport in rivers is somewhere between these two extreme scenarios 

and is thus termed size selective (Ashworth and Ferguson, 1989; Parker et al., 

l982) as described by Figure 2.8. Significant experimental research has been 

undertaken to determine the degree of size selectivity, with experimental data 

from field and flumes indicate common values of m observed between 0.43 and 

0.9 (e.g., Andrews, 1983; Komar, 1987; Ashworth and Ferguson, 1989; Parker, 

1990a; Kuhnle, 1992; Wathen et al., 1995; a full review of m values can be seen 

in ASCE, 2007 in Table 3-1, p193 ASCE Manual 110). Whilst there is limited in-

depth discussion in the literature to conclusively unravel why the m values 

obtained cover such a wide range, two points are agreed upon: (i) true size 

independence (m=0) is not found in mixed sediments, rather the lowest m value 

recorded is ~0.43; (ii) the end fractions of the grain size distribution (i.e. the 

finest and coarsest) consistently demonstrate stronger size selectivity.  Thus, 

there is general agreement that the threshold shear stress for gravel 

entrainment depends more on relative than absolute grain size, but does likely 

retain a degree of dependence on absolute size (Ashworth and Ferguson, 1989) 

for all fractions. In addition, there is general consensus that the degree of 



57 
 

57 
 

sorting of a distribution can change this parameter value (White and Day, 1982; 

Nakagawa et al., 1982; Misri et al., 1983, 1984; Samagae et al., 1986; Gomez, 

1989; Kuhnle, 1992, 1993a, 1993b; Wilcock, 1993; Pender and Li, 1995; Wathen 

et al., 1995; Patel and Ranga Raju, 1999; Shvidchenko et al., 2001). For 

example, Wathen et al. (1995) observed a shift from size selective transport in a 

gravel-only mixture (m=0.7) towards equal mobility (m=0.95) with the addition 

of sand content (i.e. a wider grain size distribution and increasingly poorly 

sorted mixture); this work was strongly supported by a plethora of studies into 

enhanced fine mobility in bimodal beds (e.g., Wilcock, 1993; Kuhnle, 1992, 

1993a; Shvidchenko et al., 2001; Saadi, 2002; Wilcock et al., 2003), including 

Wilcock and McArdell’s (1993, 1997) well-cited bed-of-many-colours research 

which specifically tackled individual fraction response to hiding. Similarly, 

Shvidchenko et al.’s (2001) laboratory-based studies highlighted that an 

individual fractions’ entrainment threshold can lower by 10-20% due to increased 

skewness towards fines in a distribution relative to skewness towards coarse. 

In summary, the majority of these hiding functions have been developed from 

regression of bedload samples, in particular from the field. The influence of 

grain size and distribution is of well highlighted importance, in particular the 

role of sands (modality and skewness) in gravel beds. However, the mathematics 

requires bed composition analysis for individual fractions and assume that the 

proportions remain static over time (such that D50 is a constant). Given that the 

very nature of entrainment threshold is the removal of grains from the bed via 

transport, the temporal evolution of the bed may dictate a non-stationary hiding 

function. However, no study of hiding functions to date specifically analysed the 

associated antecedent or evolutionary dynamics. It is also recognised in 

literature (ASCE, 2007, Chapter 3) that hiding functions cannot generally be 

expressed in simple power law, because influence of grain size on mobility 

diminishes as relative grain size decreases; some functions parameterise this in 

their relations (e.g., Proffitt and Sutherland, 1983; Wilcock and Crowe, 2003), 

but only in a static manner, without any temporal parameter in the functions. 

Church et al., (1998) drew the recommendations that threshold motion is a 

function of the bed surface architecture as well as relative grain size, the former 

superseding the latter as structure continues to develop. Recent work by Mao et 

al. (2011) also recognises that grain size characteristics of armour layers are not 
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enough to infer sediment mobility and bed roughness; rather, they 

recommended use of detailed elevation models of the bed surface for 

understanding the availability of sediment for entrainment. 

2.5.3  Threshold in sediment mixture and functions for fractional 
transports 

While the preceding Section presents and discusses the generic form of hiding 

functions, and their possible influences on transport of sediments, this Section 

presents a discussion on different specific formulae available for predicting 

fractional transport in sediment mixtures, including the use of thresholds of 

motion for individual fractions and the determination of these thresholds. Given 

the wealth of literature available on this topic, the intention of this section is 

not to précis every existing formulae, rather to highlight their development, 

discuss those most cited and target specific formulae of particular focus on 

laboratory data in graded bed research (as specific to this thesis’ objectives). 

Empirical formulae are used to determine entrainment threshold of individual 

grain classes from within a mixture. Most of the formulae are dependent on the 

hiding functions (relative grain size) introduced in the section above and 

incipient motion of the median (or mean) size class (Eq. 2.32 -36). This approach 

also includes judicious selection of the Shields value employed (i.e. 0.03 < *
50c > 

0.06), introducing subjectivity and uncertainty into the approach (Section 2.4). 

Given that sensitivity in *
50c has been attributed to differences in 

methodological determination of critical shear stress (Section 2.3) and 

characteristics of the bed material size (Nakagawa et al., 1982; Wilcock, 1993; 

Kuhnle, 1993b; Pender and Li, 1995; Patel and Ranga Raju, 1999), it is 

unsurprising that there is variability in documented work specific to fractional 

entrainment thresholds in different hiding functions (e.g., Egiazaroff, 1965; 

Ashida and Michiue, 1972; Parker et al., 1982a; Komar, 1987; Ashworth and 

Ferguson, 1989; Kuhnle, 1992; Wilcock and McArdell, 1997; Wu et al., 2000b). 

Applying the hiding functions of Egiazaroff (1965), Parker et al., (1982a), Komar 

(1987a, b), Ashworth and Ferguson (1989), Kuhnle (1992) and Wilcock and 

McArdell (1997), the work of Shvidchenko et al., (2001) predicted fractional 

threshold motion for a given Di/D50 of a natural bed. Their outcomes noted over 
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10-fold differences on the predicted incipient motion of the end fractions (in 

particular for the finer fractions), and suggest that the causes of such 

differences for the fractional shear stresses have been poorly reported (or 

misunderstood) in literature. 

Taking fractional entrainment threshold determination, Egiazaroff’s (1965) 

relation for incipient motion was one of the earliest pieces of work: 
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In which *
cm  is the Shields number for the mean (arithmetic) size class (Dm) and 

*
ci  is Shields number for ith size class in the mixture; *

cm could be considered as 

Shields’ threshold value corresponding to the size (Dm), which Egiazaroff 

considered as 0.06. Egiazaroff’s theoretical relation was developed on simple 

assumptions that increasing grain weight reduces mobility, and increasing 

protrusion of larger grains promotes mobility; his relation represents mobility 

between size independence and equal mobility. Ashida and Michiue (1972) noted 

a deficiency in Egiazaroff’s relation; they observed that finer particles 

(Di/D50<0.4) become progressively harder to be entrained, and thus Egiazaroff’s 

relation is particularly not efficient for sediment mixtures of wider distribution. 

Ashida and Michiue (1972) refined the relation of Egiazaroff (1965); their dataset 

were exclusively from experiments in sand and gravel beds, and they developed 

a two stage relation (Eq. 2.33 and 2.34) for the prediction of incipient motion of 

individual size class: 
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In which *
scg  is surface based Shields number for the mean (geometric) grain 

size class (Dg) on bed surface, and *
sci  is surface based Shields number for ith 

grain class. 

Parker et al. (1982a) and Parker and Klingeman (1982) introduced the concept of 

power relations in hiding functions as discussed in Section 2.5.2; similar power 

relations for hiding functions were subsequently proposed among others by 

Powell et al. (2001, 2003) and  Hunziker and Jaeggi (2002). The hiding function 

proposed by Parker et al. (1982a) and Parker and Klingeman (1982) is: 
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where m is an empirical exponent between 0.5 and 1.0. 

Wu et al. (2000a) introduced new hiding function, with improved performance 

on prediction of fractional entrainment and transports. They overcome the 

deficiency of Di/D50 and introduced dependence on fractional proportion for 

fractional classes for their probability of exposure and hiding, and thus on their 

entrainment and transports. They proposed the following relation: 

m

hi

ei

c

ci

p

p














*
50

*




     Equation 2.36  

 

where Pei and Phi are the exposure and hiding probabilities for the ith grain class 

(Wu et al., 2000a) mainly dependent on their fractional proportion (Wu et al., 

2000a); *
50c  is Shields number for median size class, considered as 0.03, and 

m=0.6 (calibrated value based on laboratory data). 
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However, as already discussed in the previous section (2.5.2) that power relation 

of hiding function is not ideal for predicting entrainment threshold in a bed, 

which due to water working can lead to development of mobile and static 

armour, and thus relative size effect in power form is not enough to include the 

diminishing relative size effect on entrainment threshold. In a bid to improve 

this, hiding functions were further progressed by Proffitt and Sutherland (1983) 

and Wilcock and Crowe (2003). The hiding function of Wilcock and Crowe (2003) 

replaced the constant value of the exponent m in the hiding functions by a 

continuous exponential function, Eq. 2.27: 
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     Equation 2.37 

 

Thus, the hiding function of Wilcock and Crowe (2003) is an advancement of the 

function proposed by Ashida and Michiue (1972), and by others who use constant 

exponent value to include relative size effect (Parker et al., 1982a, Wu et al., 

2000a, Powell et al., 2001, 2003; Hunziker and Jaeggi, 2002). 

A recent research by Recking (2010) using a large volume of flume and field data 

proposed a very simple hiding function as a power law of the D84/D50 ratio; from 

data analysis, they observed that for a given ratio of D84/D50, hiding effect 

increases with increasing slope, and thus, their hiding function is dependent on 

slope as SDD 18
5084 )/(   where S is river slope. Using the large bedload dataset 

and the hiding function, they also proposed a simplistic graded sediment model 

which predicts total bedload; fractional load computation is not required; 

discharge, active width, slope, and surface grain diameters D50 and D84 are the 

only data requirements; the model can predict 86% of data within the Efficiency 

Factor (EF) between 0.1 and 10, where EF is the ratio of predicted and observed 

bedload. 

2.5.4  Bed structures, pavement and armouring 

Although earlier sections have noted descriptors and controls of selective 

entrainment in terms of integration into threshold and transport equations, more 

fundamental, complementary research has been undertaken as specific to wider 
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structural arrangement of the bed particles. Of particular relevance to the 

present thesis is the effect of water-working on particle arrangement and 

structure (e.g., Komar and Li, 1986; Kirchner et al., 1990; Church et al., 1998). 

In 1990, Kirchner et al.’s research clearly noted that a deterministic value for 

incipient motion of a grain class in mixture is incorrect, as particle hiding, 

exposure and friction angles in water-worked bed are more accurately described 

as probability functions. This drew upon his earlier conclusion that grain friction 

angles depend not only on grain size but also (possibly more importantly) on 

local grain topography (Kirchner et al., 1990) which will exhibit spatial 

heterogeneity across the bed surface. Such small-scale topographic controls 

have been studied by many (e.g., Church et al., 1998; Nikora et al., 1998; 

Marion et al., 2003; Rollinson, 2006; Aberle and Nikora, 2006; Cooper and 

Frostick, 2009; Ockelford, 2011; Mao et al., 2011), and studies such as Church et 

al. (1998) suggest that entrainment thresholds may double due to the 

development of grain-scale structures under certain transport conditions for 

gravel bed rivers. 

 

Armouring is the most well-documented of bed structure controls on 

entrainment threshold (e.g., Ashida and Michiue, 1971; Hirano, 1971; Proffitt, 

1980; Gomez, 1983; Egashira and Ashida, 1990; Tsujimoto and Motohashi, 1990; 

Tait et al., 1992; Marion et al., 1997; Willetts et al., 1987; Church et al., 1998; 

Hassan and Church, 2000). It is a natural effect of water-working and partial 

transport conditions of mixed beds (Parker et al., 1982a: Wilcock, 1997a, 1997b; 

Lisle et al., 2000; Hassan and Church, 2000), in that low flows (i.e. low shear 

stresses) preferentially entrain the finer particles in a process called 

‘winnowing’; this leaves behind coarser particles as the bed surface, considered 

an ‘armour layer’. This dictates that the surface layer is usually coarser than the 

mean annual load of transported gravel (e.g., Lisle, 1995), hence a number of 

sediment transport equations (e.g., Parker, 1990a) use the finer composition of 

the sub-surface as representative of the transport potential of the bed. Yet, it is 

important to note that by over-representing coarse material on its surface via 

armour (such that it is more readily available for transport) the river gravel load 

of an equilibrium river can be transported at the same rate as its finer 

component (which is less available for transport). The principle of mobile-bed 

armour is explained in Parker et al. (1982a) and Parker and Toro-Escobar (2002), 



63 
 

63 
 

and is the most common armour condition in gravel bed rivers. That is, the 

surface has coarsened to the point necessary to move the grain size distribution 

of the mean annual gravel load through without bed degradation or aggradation.  

A mobile-bed armour gives way to a static armour as the sediment supply tends 

toward zero (Sutherland, 1991; Andrews and Parker, 1987). Of particular note is 

the study of Dietrich et al. (1989) who quantified the effect of coarsening on 

entrainment threshold, with armour layers requiring an applied shear stress of 

entrainment a factor of up to four fold greater than that of the subsurface grain 

size distribution. Similar work has been widely undertaken in laboratory flumes, 

with general agreement that water-working under partial transport conditions 

takes many hours for armour layer development (e.g., Andrews and Parker, 

1987; Tait et al., 1992; Tsujimoto, 1999; Pender et al., 2001). Such time-

dependency of this process is likely one of the undocumented uncertainties in 

the multiple entrainment threshold methodologies and studies reviewed by 

Buffington and Montgomery (1997; Sections 2.2-2.4). Although the mathematical 

descriptors of armouring are considered outwith the specific requirement of this 

thesis’ research, the reader is referred to e.g., the transport equation of Powell 

et al. (2001) for detailed explanation. 

 

During the process of armouring studies have also noted specific topographies 

and distinct patterns within the coarsening surface layer grains.  For example, 

fieldwork undertaken in the Harris Creek, British Columbia by Church et al. 

(1998) reported identifiable and repetitive patterns such as stone cells and rings 

within the gravel surface. Their findings noted that such structures specifically 

increase resistance to sediment motion by up to 60% (Church et al., 1998). This 

was due to development of reticulate structures by larger grains. That is, they 

noted from series of runs in a flume of the replicate of Harris Creek that initial 

bed surface coarsened at low flows with fines winnowed away or sifted into 

pores of larger particles; larger particles rolled, but in contact with static 

particle of similar size, and then stopped, resulting cluster development. These 

then grew into reticulate structures during long hours of water-working of the 

bed (up to 100 hours), so as to mature with characteristic structure dimensions 

of length 10D84 and width 6.5D84. Similar more recent studies into bed 

structuring include e.g., Powell (1998), Hassan and Church (2000) and Kleinhans 

(2010) who draw the general conclusion that such structures increase resistance 



64 
 

64 
 

to entrainment by an order of up to 4.  In a similar regard, the most recent study 

to consider topographical resistance to entrainment is that of Mao et al. (2011). 

Their flume-based work clearly notes by analysing armour layers that threshold 

motion of sediment may increase up to two fold due to surface coarsening and 

development of surface structures of interlocked grains or clusters; using 

topographic data, his probability density functions of the bed surface indicated 

that bed surface are more compact and highly imbricated in static armour layer. 

 

In addition, the effect of “remote” sheltering on initial motion and fractional 

transports has also received specific attention within the last few years (e.g., 

Measures and Tait, 2008). This is distinct from the direct sheltering previously 

considered in terms of hiding factors and neighbour to neighbour relative grain 

size effects (Section 2.5.2 and 2.5.3); instead, remote sheltering is the effect of 

a particular grain or structure on downstream flow structures and, thus, the 

amended shear stresses (and associated entrainment susceptibility) on 

equivalent particles downstream of the initial perturbation. Measures and Tait 

(2008) specifically studied the effect of grain scale topography for remote 

sheltering effects, observing a strong influence on a grain’s initial motion and 

fractional transport. Their data were collected near shear stress of entrainment 

threshold. However, despite inclusion of remote sheltering as a variable, the 

model they proposed only predicts entrainment adequately for selective/partial 

transport conditions and requires very detailed measurements of flow and bed 

variables so as to have generally, to date, precluded widespread adoption. 

 

Thus, in summary the water-working of the bed is accepted to alter the bed 

arrangement/structure into one more resistant to entrainment. This process is 

also accepted to be time-dependent, with full armour-layer development even 

in laboratory scaled experiment requiring many hours. Despite this, no 

entrainment threshold studies specific to fractional analysis specifically state, 

analyse or review the antecedent conditions that the bed has been subject to 

prior to the measurements taken. As such, it seems increasingly defensible that 

variability in the water-working of flume or field-based sediment beds can 

introduce wild uncertainty into entrainment threshold data and may be one 

reason why the last century of research into sediment transport has struggled to 

constrain a mathematical descriptor for entrainment threshold. 
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2.6 Stress history research 

Given the conclusions of Section 2.5, the time (and space) dependency of 

entrainment warrants further review from direct (and indirect) interpretation of 

the literature. For example, unpicking the detail of Shields’ thesis alone notes 

that he took at least more than 16 hours of experimenting period for one single 

experiment, one hour for each sediment sample for each discharge in the 

increasing discharge steps. This provides potential for these bed arrangement 

processes to be influential over his reference threshold and explanatory of its 

possible overestimate (compared to that of other studies; Section 2.4). It is for 

such reason that there is a small, emerging sub-discipline of research particular 

to examining the role of “memory stress” (alternatively referred to as “stress 

history”) in rivers. This term is specific to describing a time-dependent memory 

effect, which can change river bed stability significantly enough to influence 

subsequent entrainment threshold. This typically describes the low flow period 

between significant sediment-transporting events where sediment transport 

rates are negligible or of very low partial-transport conditions. Some authors 

(e.g., Paphitis and Collins, 2005; Haynes and Pender, 2007; Ockelford, 2011) 

term this as sub-threshold or antecedent stress and, despite discrepancies in the 

approaches taken towards such incipient research, there is gaining momentum 

that accounting for the effect of memory stress has the potential to correct 

prediction of sediment transport and minimise uncertainty in sediment budget 

assessment. 

 

Arguably, the first real insight of the effects of stress history stem from the 

field-based bedload data from 11 consecutive flood hydrographs recorded by 

Reid and Frostick (1986) in Turkey Brook; selected 9 hydrograph records shown 

in Table 2.1. 
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Table 2.1: Stress history results on entrainment threshold in Turkey Brook (after 

Reid and Frostick, 1986) 

Flood 
event 
dates 
  

Low flow variables 
between successive 
floods 

Low flow memory 
duration between 
consecutive floods 
(days) 
  

*
50c  

% higher compared to 
critical non-
dimensional shear 
stress 

Water 
depth 
(m) 

*  

Shields 
(1936): 
0.06 

Miller et 
al. (‘77): 
0.045 

10/12/1978 0.55 0.17 125 0.252 320 460 

24/12/1978 0.06 - 7 0.029   

25/01/1979 0.17 0.076 25 0.085 42 89 

13/02/1979 0.18 0.05 4 0.059 -1 31 

13/03/1979 0.27 0.076 24 0.099 65 120 

26/05/1979 0.13 0.08 18 0.059 -1 31 

09/12/1979 0.28 0.13 189 0.125 109 179 

27/12/1979 0.20 0.07 18 0.075 25 67 

12/03/1980 0.14 0.09 77 0.120 101 168 

 
Note: depth, shear stress and inter-flood duration were derived by present researcher from 
Reid and Frostick’s raw data and from hydrological (discharge and water level time series) 
data received from UK Environment Agency 

 

Although stress history relationships were not the intention of their work, later 

re-evaluation of the data (e.g., Haynes and Pender, 2007) demonstrates that 

increased memory duration (i.e. extending the inter-flood period from days to 

months) can increase the initial motion more than 5 fold (Table 2.1), as 

compared to Shields’ initial motion ( 06.0* c ), or more than 9-fold if compared 

with Parker’s empirical curve (Eq. 2.24, 03.0* c ).  These data also suggests that 

it is not only the duration of the inter-flood period but also the magnitude of 

‘low’ flows during this interval which influence the ‘memory’ effect; 

specifically, higher inter-flood discharges (operating within the partial-transport 

condition) appear to result in more resistant ‘memoried’ beds. This is 

demonstrated clearly in the Turkey Brook data; whilst the two longest inter-

flood durations (125 days and 189 days, in Table 2.1) induced the highest 

entrainment thresholds, the 125 day interval yielded the greatest effect due to 

to higher flow magnitudes during the interval period. In short, it is this data set 

which prompted wider investigation of the sensitivity of entrainment threshold 

and subsequent transport to the low flow conditions of the inter-flood periods. 
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Effect of memory stress on entrainment threshold and bedload transport is 

shown graphically in the transport of Turkey Brook in Figure 2.9. In the flood 

event of 10-11 Dec 1978 (top, left graph), initiation of sediment motion and also 

bedload transport were quite delayed in the rising limb compared to the other 

three floods. In this event, entrainment delayed considerably upto a higher 

depth (0.55m), whereas in the other three floods, entrainment and bedload 

were recorded earlier at considerably lower water depth in the rising limb. The 

main reason for this that the flood of 10-11 Dec, 1978 had a long dry period gap 

with the previous flood (125 days, also see Table 2.1) leading to development of 

a compact and stable bed; whereas in the other three floods, the gaps with the 

previous flood were very short, 5, 7 and 4 days respectively, and thus, these 

three flood events entrained sediment well early in the rising limb, which is 

fairly due to the reason that the bed structures were loosened by the immediate 

past floods. 

 

Figure 2.9. Bedload transport from three flood events in Turkey Brook (Reid and 

Frostick, 1986); in the flood event of 10-11 Dec 1978 (top left), transport is 

considerably delayed in the rising limb due to memory stress compared with the 

other three flood events. 
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The memory effect is further demonstrated in stream power (Figure 2.10) from 

the flood events recorded in Tureky Brook between 1978 and 1980 (Reid and 

Frostick, 1986). The transport database demonstrates that stream power needed 

during initiation of transport was considerably higher than the available stream 

power at the cessation of transport; in the Figure below, 0   is stream power 

at initiation of motion, and 0 is stream power at cessation of transport.  This 

indicates that the prolonged inter-flood durations developed resistance in bed, 

and delayed transport of sediment at initiation. In the Figure, also shown is 

Bagnold’s 100% efficiency,  tan/bi where α is particle’s pivot angle. 

 

Figure 2.10. Stream power ( 0 ) vs. bedload transports (ib) from Turkey Brook 

(Reid and Frostick, 1986); eleven flood events between 1978 and 1980 showing 

requirement of much higher stream power at the initiation of motion than the 

cessation of transport. 
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At low flows, one logical complexity of field data (such as Reid’s) is the inability 

to untangle the temporal development of physical sediment dynamics from the 

bio-chemical dynamics of the river bed (e.g., Gerbersdorf et al., 2005; Vignaga 

et al., 2011). Thus, recent memory research has deliberately employed flume-

based methodology to isolate the physical flow-particle controls and tightly 

control flow variables during prescribed ‘memory’ periods. All published flume 

studies (Saadi, 2002; Paphitis and Collins, 2005; Monteith and Pender, 2005; 

Haynes and Pender, 2007;, Saadi, 2008; Haynes and Ockelford, 2009; Piedra, 

2010 and Ockelford, 2011) are summarised in Table 2.2 and Figure 2.11 and show 

clear relationship between increased memory duration and increased critical 

shear stress. For example, the early work of Paphitis and Collins (2005) reported 

an increase of critical shear stresses ( *
50c ) by as much as 60% due to memory 

stress (up to 120 minutes) effect in uniform sediment of sand size for low grain 

Reynolds numbers (smooth regime), shown in Figure 2.11 and Table 2.2; (their 

critical velocities as in Figure 2.12 were converted to critical shear stress by the 

present author).  Whilst the order of magnitude is similar, memory-induced 

threshold gains are slightly lower for mixed-bed sand-gravel studies of rougher 

boundaries used in later researches. That is, Haynes and Pender (2007) observed 

an increase of critical shear stress  by up to 48% (Re* 135-290; Rep 1000-2000) for 

memory time scale of 5760 minutes in their bimodal mixture; Saadi (2002, 2008) 

observed a maximum 60% increase for his memory time scale of 540 minutes, 

and Ockelford (2011) reported gains of up to 12% in similar work (Re* 220-280) 

over a 960 minute memory timescale in her bimodal bed. Whilst the order of 

magnitude of memory related changes to entrainment threshold are in general 

agreement, differences in methodological set-up and sand content (Section 2.5) 

account for subtle variability in datasets. 
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Figure 2.11. Entrainment threshold from stress history research: higher 

entrainment threshold in stress history (SH) experiment (red markers), relative 

to baseline (B) of black markers by different researchers plotted on Shields 

diagram modified by Brownlie (1981); P+C: Paphitis and Collins (2005); HH: 

Haynes and Pender (2007); Ock: Ockelford (2011). 
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Figure 2.12. Effect of antecedent pre-threshold velocity durations on threshold 

velocities in uniform sand beds (Paphitis and Collins, 2005); the figure shows 

higher exposure duration and higher magnitude of pre-threshold velocities (70%, 

80%, 90% and 95% of critical velocity) increases threshold shear velocities (e. g., 

95% condition increases threshold velocity nearly by a factor of 1.25) 

 

Arguably the largest issue of memory stress studies is inconsistency in 

methodological framework. Although Paphitis and Collins (2005), Haynes and 

Pender (2007) and Ockelford (2011) all employed visual approaches for 

determining their initial motion (Section 2.3), there is some disparity in 

methodology which precludes direct comparison: Firstly, the magnitude of 

antecedent sub-threshold flow applied varies between studies, in that all studies 

employ a flow 50% that of the entrainment threshold of the median grain size, 

with the notable exception of Paphitis and Collins’ (2005) use of 70-95% 

threshold. Flows closer to threshold are likely to promote isolated dislodgement 

(in numbers less than the visual reference threshold value), local rearrangement 

and stronger restricting of surface grains; this may explain why their initial 

motion thresholds lie well above Shields values in Figure 2.9 (thus, suggesting an 

over  
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Table 2.2: Stress history results – comparison of present results with past studies 

Researcher 
Grain size 
D50 (mm) 

Flume 
gradient 

Sub-threshold flow 
characteristics 

Max increase 
in non-
dimensional 
critical shear 
stress (%) 

Shear 
Reynolds 

number (Re*) 

Exposure 
duration 
range 
(min) 

Exposure flow 
magnitude 
range  (%) 
relative to 
critical shear 
velocity/stress, 
baseline 

Saadi (2002, 
2008) 

5.19 0.004 
180 to 

540 
- 60 199 

Paphitis and 
Collins (2005) 

0.19, 
0.39,  
0.77 

- 5 to 120 70-95 
60 
 

3-18 

 
Ockelford 
(2011) 
 

4.8 0.005 
10 to -

960 
50 12 221-281 

 
Haynes and 
Pender (2007) 
 

4.8 0.007 
30,  to 
5760 

53 and 77 ~48 135-290 

Note: maximum increment on critical shear stress noted in this Table are all for longest exposure duration; 
Piedra (2010) results could not be presented as his comparison was against critical discharge 

 

estimated threshold). Secondly, notable distinction arises due to differences in 

investigator selection of sediment grade. Ockelford’s (2011) work specifically 

analyses the influence of grade, suggesting that increased modality decreases 

the influence of stress history. This is supported by the greater response of 

Paphitis and Collins’ (2005) unisize sand beds, underpinned by general 

acknowledgement that fines demonstrate higher packing density and stronger 

angle of repose (Kirchner et al., 1990 and general review of Saadi’s memory 

work which used far higher sand content than other memory researchers). 

Thirdly, there is subtly in the stepped hydrograph approach used to increase 

flow towards threshold (step length, discharge increments) and the type of data 

measured and quantified; for example, the pure visual particle detachment 

count approach of Paphitis and Collins (2005) was adapted to a hybrid visual-

reference transport approach by Haynes and Pender (2007) and Ockelford (2011) 

whereby it was the change in measured bedload which was analysed to quantify 

memory effects. This latter point is important, as these hybrid studies indicate 

that there is a degree of non-linearity between the response of threshold shear 

stress and bedload to stress history. In short, studies have shown that the 

bedload is more sensitive a variable. For example, Ockelford’s (2011) work in 

unimodal and bimodal beds, notes a 43 to 96% reduction in bedload (for 10 to 60 
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minute memory time scales) compared with only ~10% change in the critical 

shear stress of entrainment threshold. Thus, decisions over methodology, 

threshold definition and cross-study comparisons must be executed with care 

and require robust defence as the discipline of memory research evolves. In 

addition, it is important to note that all studies to date appear to suggest that 

the influence of memory stress has an asymptotic relationship with antecedent 

duration, indicating that longer timeframes lead to ever decreasing influence. 

This appears logical, as the bed will eventually reach its optimum structure, yet 

as the longest laboratory experiments (Haynes and Pender, 2007) run only to 4 

days antecedent flow there is no detailed research or general consensus as to 

when (or if) the timeframe of memory gains tend to zero. 

 

Such laboratory-based studies have permitted detailed observation of surface 

based grain processes during this memory period, in terms of subtle changes to 

composition (e.g., Monteith and Pender, 2005)  and specific data on changes to 

bed topography (Ockelford, 2011). All studies provide compelling evidence of 

local or in-situ grain-scale restructuring during extended memory durations, in 

terms of increased hiding effects, greater packing density of the surface and 

particle re-orientation into more streamlined/stable positions. The likelihood of 

such processes occurring below or near-threshold have long since been 

acknowledged, with even the early studies of Bagnold (1941), Chepil (1945) and 

Bisal and Nielsen (1962) reporting the importance of turbulence for critical shear 

stress in: 

 

“that erodible particles ‘oscillate or vibrate unsteadily’ before 

leaving the bed. If particles are allowed sufficient time to pass 

through this stage of vibration, they will essentially be subjected to 

the repositioning process. Madsen and Grant (1976), in a series of 

oscillatory flow threshold experiments noted that grains were 

rocking (in a ‘to and fro’ motion) about their position on the bed 

before the threshold criterion was satisfied. Hence, they argued 

that such movement might cause the bed to become more compact 

and in effect, more resistant to erosion.” (Bisal and Neilsen, 1962)” 
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In this regard, the laser displacement data of memory-modified surfaces by 

Ockelford (2011) is the only study to truly quantify these below/near-threshold 

changes at the grain scale. Specifically, Ockelford reported changes of bed 

surface topography in response to memory stress; her work observes that 

particle re-orientation (typically to streamline within 15-30° of the flow 

direction), vertical settlement and a degree of grain-to-grain structuring (via 

cluster analysis) contribute to the additional memory stress of graded beds. Of 

particular merit is her data on roughness length, which develops to a greater 

amount in bimodal beds than equivalent unimodal or uniform beds.  These 

findings from Ockelford’s detailed memory stress work on bed structure in 

steady uniform flow shows similarity with the unsteady work of Piedra (2010) 

and Mao et al. (2011). Whilst Mao’s work is summarised in Section 2.5.4, the 

work of Piedra was analysed in terms of critical discharge making direct 

comparison with shear stress based work difficult. 

 

It needs to be emphasised here the memory stress is a time scale of the duration 

of sub-threshold stress; this itself should not be considered as a process; 

however this sub-threshold time scale can induce several processes as discussed 

herein. Concept of memory stress is an emerging science, and only has been 

researched in the recent periods. Many past researches, which involved 

prolonged period of water working (e. g., Shields, 1936, and Church et al., 

1998), did not partition their findings, such as how much effect was attributed 

from sub-threshold memory stress; only future organised research could answer 

this, which will benefit the practitioners in using the appropriate effect 

(parameter), rather than lumped parameters.  The limited number of memory 

studies as mentioned in Tables 2.1-2 explicitly quantified the memory effect on 

the increase of entrainment threshold and subsequent transport. Memory of 

subthreshold stress alone increases entrainment threshold by upto 60%, and can 

reduce transport by upto 80%; if this effect not included in bedload transport 

formula, then they might over-predict the bedload in similar order of 

magnitude. Their influence on the prediction of transport, particularly the over-

estimation effect, is presented in the scope of chapter 6; effects are more 

categorically quantified due to different memory time scales. Water working of 

bed by sub-threshold stress leads to development of several key processes such 

as increasing size selective transport, vertical and horizontal winnowing of the 
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fines through particle oscillation and preferential entrainment of the smaller 

particles (Saadi, 2002; Haynes and Pender, 2007; Saadi, 2008; Ockelford, 2011); 

winnowing of the fines may lead to coarsening of the bed towards mobile 

armouring; Ockelford and Haynes (2013), due to memory stress, observed 

changes in local bed structure, particle re-arrangement, and spatial 

heterogeneity of sediment bed packing characterised by increasing vertical and 

horizontal roughness. Similar effect, not necessarily and explicitly from water-

working by sub-threshold stress, on entrainment threshold and transport was 

discussed in Section 2.5.4. Key processes developing from such water working 

include stone cells and ring, armouring (mobile and static), changes in friction 

angle, changes in hiding and exposure, bio-stabilisation etc.  Many of such water 

working studies (e.g., Komar and Li, 1986; Kirchner et al., 1990; Church et al., 

1998) might well have implicitly included the effect of memory of sub-threshold 

stress; for example, Church et al. (1998) conducted experiments upto 100 hours 

employing low shear stresses below threshold condition, and then continued 

upto 2 times of Shields threshold value, and thus clearly embed memory of sub-

threshold stress in their experiments, and thus in their overall findings. They 

noted development of stone cells in parallel to armouring of bed and observed 

that the joint effect of armouring and stone cells can increase entrainment by 2-

fold; Fenton and Abbott (1977) noted an order of magnitude of increase of 

threshold shear stress due to changes in friction angle from water working. 

Several such effects were quantified in Section 2.5.4, and thus not repeated 

here. Vignaga et al. (2011) and Vignaga (2012) studies biostabilisation of sand-

gravel bed, and observed 9-150% increase of threshold shear stress relative to 

abiotic bed. 

 

The above discussion both on laboratory and field data shows that timescale and 

magnitude of sub-threshold memory shear stress require more attention in 

future research if their influence upon, and potential reduction in uncertainty 

for, entrainment threshold and sediment transport modelling of river systems 

are to be resolved to a much higher degree. To make explicit conclusions and 

permit direct comparison between memory research, the appropriate 

methodology and measured variables need to be scrutinised and data 

normalized. Addressing the mathematical description of memory stress 

‘correction’ for entrainment threshold is also currently omitted from existing 
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studies, precluding general acceptance or adoption in standard practices 

(whether laboratory-based on modelling). These therefore form the basis of key 

objectives of the present thesis. 

2.7  Application and drivers of memory stress science 

Drivers for memory stress research focus on its impact of changes to sediment 

transport and the fluvial sediment/morphological system.  Thus, all aspects of 

river management, such as water resource management, fluvial hazard 

assessment, habitat and fluvial-linked infrastructure design are implicitly 

dependent on reducing uncertainty in entrainment threshold, bedload and 

morphological-flow models. This Section therefore seeks to summarise four 

overarching drivers, as specific to river bed memory: (i) improvement of bedload 

functions of graded sediment, and sediment transport modelling; (ii) climate 

change and management of risk on flooding and morphodynamics; (iii) flow 

regulation, river training and other man-made intervention; (iv) water quality 

and ecology. 

2.7.1 Sediment transport modelling 

Despite significant research investment into hydraulic modelling of river systems 

and connected piped systems (e.g., EPSRC’s funded consortia of FRMRC 1, 

FRMRC 2, FCERM), current river modelling practices generally suffer from 

minimal consideration of the sediment boundary parameters, variables and 

dynamics. Whilst in the UK much of this problem arises from a lack of field data 

on channel morphology, bed grain size distributions and sediment supply, it is 

exacerbated by the large uncertainty in the underpinning entrainment and 

transport formulae of sediment transport models, particularly for graded 

sediments. Sections 2.3 - 2.5 have discussed the causes for uncertainty in detail, 

documenting that existing bedload functions (e.g., Meyer-Peter-Muller, 1948; 

Bagnold, 1956; Engelund-Hansen, 1967; Ackers and White, 1973; Yang, 1973; 

Yalin, 1977; Parker et al., 1982a; Van Rijn, 1984; Parker, 1990a; Wu et al., 2000; 

Wilcock, 2001; Wilcock and Crowe, 2003) embedded within flow-sediment 

computational models lead to over estimation of bedload transport. As the 

effect of memory would appear to counter this error, the overall objective of 

this thesis (to assess the sensitivity of graded sediment transport models to 
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memory effects) is driven by the desire to recode sediment models to reduce 

uncertainty in a manner appropriate to practitioner confidence. 

Regarding the specific modelling programmes available to practitioners, it is still 

most common to employ 1D models for representing the channel. Taking the 

widely-used examples of ISIS Flood Modeller Pro (ISIS, 2015), HEC-RAS (Version 

4.1, 2015), MIKE11 (DHI, 2014) and others, these modelling technologies use a 

multi-fraction transport approach apparently implying transport of 

heterogeneous sediment. However, most technologies use uniform sediment 

formulae for predicting multi-fraction transport, and then use scaling factor for 

each size class to match fractional load with that observed. In the absence of 

calibration data, this approach can easily lead to bias towards size independent 

transport and hence brings more uncertainty to predictions; for example, a 

mixture of 10 size classes, requires 10 scaling factors. Advances on these 

commercial 1D models are found in academic level code (e.g., Wu et al., 2000, 

Parker, 2006; Peng et al., 2014; Qian et al., 2015) which employ graded 

sediment models, and thus are superior to modelling frameworks based around 

the scaling of uniform formulae. However, the exponent of the hiding functions 

in these graded approaches takes the form of a power law (Sections 2.5.1 and 

2.5.2) in which the exponent value is constant; whilst it is able to assess the 

influence of relative size, it is unable to reflect time-dependent changes and 

structural changes to the bed, which may arise from memory stress. More-over, 

whilst the software can run in (quasi-) unsteady state, it is typically employed 

only for a single design flood event. This is problematic, as memory stress is a 

product of the flow-sediment relationship between multiple events (e.g., Reid 

and Frostick, 1986; Haynes and Pender, 2007; Ockelford, 2011; Mao, 2012) thus 

requiring longer-term simulations. Whilst this recent memory research focussed 

on the combination of two high flow events separated by a variable interval, it is 

well known that morphodynamic recovery to an initial “norm” may take longer 

than the interval period, hence there is clearer requirement for multiple event 

modelling of memory effects.  The existing 1D software potential to work over 

such long time scales is generally inappropriate, as the long simulations 

compromise the time-step of the model (e.g., Pender et al., 2015) such that the 

unsteadiness of individual flood hydrographs is lost. As this hydrograph resolution 

is fundamental to accurate modelling of entrainment threshold and size 
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selective transport, standard 1D software is difficult to apply robustly to 

sediment transport modelling. 

Two-dimensional sediment morphodynamic modelling for catchment and river 

scale application has made good progress in the recent decades (Coulthard and 

Macklin, 2001; Langendoen, 2001); its strength and weakness on working at 

different spatio-temporal scale are therefore discussed. CAESAR 

(http://www.coulthard.org.uk/CAESAR.html) is a Catchment or Reach based 

two-dimensional (2D) cellular modelling technology for predicting morphological 

changes (Coulthard and Macklin, 2001; Coulthard et al., 2002). It is an extremely 

powerful tool and can predict in time scale of even thousand years. This 

technology has been applied to over 100 catchments and reaches around the 

world including Carlisle catchment in UK, for time scales upto 10,000 years. 

However, the modelling tool works on steady state conditions, which is a 

limitation for its application in flood memory driven erosion and flood risk 

because of the extreme unsteady nature of hydrology and hydraulics in memory 

driven processes. 

2.7.2 Climate change and flood risk management  

Widespread research into UK climate change (e.g., UKCP09; Jenkins et al., 

2008), concludes that over the last half century more of the winter rain has 

fallen during intense wet spells and UK seasonality effects in rainfall (less in 

summer, more in winter) are increasingly pronounced. Future projections 

suggest that by the year 2080 the wettest day of winter, relative to the baseline 

period of 1961-1990, will be -10% and +50% (Ekström et al., 2005; Kay et al., 

2006; Fowler and Ekström, 2009; Murphy et al., 2009), while summer rainfall will 

change by -50% to +30%. However, there is notable uncertainty in the effect that 

these changes will have on river response. Recent ideas are that flood frequency 

may increase particularly for the smaller floods, while extreme floods may 

decrease and thus there will be clear changes to the memory timescales and 

variables of a river system which potentially affect response-recovery cycles of 

sediment transport and morphodynamics. 

 

The inter-relationship between sediment transport, memory and sediment-

related flood risk is recently made explicit via policy and associated research. 
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For example, the Flood Risk Management (Scotland) Act 2009 was the national 

transposition of the European Parliament and Council Directive 2007/60/EC (the 

similar Flood and Water Management Act 2010 exists for England and Wales). 

Within the document there are numerous references to the role of the Scottish 

Environment Protection Agency (SEPA) including: (i) to assess change to natural 

features which “contribute to the transporting and depositing of sediment, and 

the shape of rivers” in terms of exacerbated (or altered) flood risk and; (ii) 

develop a flood risk map to “show the potential adverse consequences 

associated with … areas where floods with a high content of transported 

sediments or debris floods (or a combination of such floods) can occur”.  This is 

supported by earlier regulations derived from the Water Framework Directive 

(EC 2000/60/EC), such as the Water Environment (Controlled Activities) 

(Scotland) Regulations 2005 which lists engineering/management activities 

regulated as specific to sediment management in river systems. In short, there is 

increased awareness that the sediment controls to floodwater conveyance are 

important for flood risk management. 

 

The underpinning science is that for reaches suffering sediment accumulation, 

the ‘filling’ of the channel reduces the cross-sectional area such that, without 

maintenance (e.g., dredging), the flood risk from bank overtopping is increased 

(e.g., 2009 autumn flood of Cockermouth; 2014 winter flood of Somerset 

Levels). As the cross-section of the channel continually adjusts to the imposed 

flow, the cross-section cannot be assumed a constant. For example, following a 

major flood the channel will take months/years to ‘recover’ to the cross-

sectional ‘norm’, during this recovery there may be multiple smaller floods of 

the same return period, but each will be conveyed in a channel of different 

cross-section. Yet, this is memory effect, which is not currently accounted for in 

the design and analysis of fluvial flood defence schemes, which use a single 

survey of the river channel and floodplains with which to run flood simulations 

based on a single X-year extreme flow event. Adopting such an approach 

assumes that the capacity of the channel is identical for all X-year events 

simulated, thus failing to account for memory morphodynamics in the system. 

The recent academic work of Pender et al. (2015)  has therefore trialled 1D 

sediment-flood modelling in HEC-RAS over 50 year timescales for the River 

Caldew (a tributary of the Eden catchment of the Carlisle floods 2004, 2005, 
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2009). Although his model underestimates peak flows through use of a daily 

mean flow (daily time step; see Section 2.7.1), coupling his 1D output changes in 

channel geometry to a 2D flood inundation model (TUFLOW) demonstrates 

‘worst-case’ scenarios of 160% increase in flood extent for 1 in 2 year RP floods 

down to a 9% increase in 200 year RP events. This clearly shows the sensitivity of 

models to sediment memory–recovery cycles and the imperative need for multi-

event sediment transport modelling in flood risk assessments. Given the 

requirement of such models to incorporate entrainment, transport and memory 

effects this robustly defends the focus of the present thesis’ objectives. 

 

Further, wider research into the specific sediment-related flood risks note that 

climate change impact alone may alter UK catchment sediment yields to 

increase supply to river channels by up to 35% (Coulthard et al., 2012, CIRIA, 

2013). Such elevated risks of greater siltation and reduced floodwater 

conveyance have led to the Pitt Review update (Evans et al., 2008) highlighting 

“…river morphology and sediment supply as top priority for sediment drivers in 

the 2050s”. This has been recognised via the “urgent” research priority of 

sediment management within the national Flood and Coastal Erosion Risk 

Management (Moores and Rees, LWEC 2011) strategy document. Hence, 

sediment uncertainty in flood risk is a well-known uncertainty in flood risk 

research which is rapidly emerging in the UK to attempt to unravel the 

complexities of temporal dynamics and controls of the river sediment system. 

 

2.7.3 Flow regulation and river training  

Natural hydrology is regulated by humans for a variety of purposes, such as flood 

and erosion control, irrigation, abstraction, flow diversion, hydropower, 

environmental and ecological balance and amenity. In the UK, 95% of flows 

(taken at gauge stations) are regulated (Sear et al., 1992) via weirs, sluices, 

culverts, dams and barriers which act mainly to attenuate flood peaks and 

increase the interval between high flow events. Such river sections are likely to 

lack natural channel forming discharge due to flow control, hence can lead to 

exacerbated sediment deposition which can compromise asset design life. 

However, the over-prediction of bedload by many bedload functions (Section 

2.7.1) may erroneously reduce design life estimates, leading to mismanagement 
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of the asset in terms of e.g., higher frequency of sediment flushing events than 

required, which in themselves may reduce the water resource or hydroelectric 

economic revenue of the reservoir operation. 

Another example of thesis drivers is associated with anthropogenic design 

calculation of river bank protection, particularly that for protecting 

infrastructure (roads, rails, buildings, and services) from the scour/erosion 

processes of a morphologically active channel. There are a wide range of “hard” 

and “soft” engineering techniques that have been successfully applied, including 

rip rap, gabion baskets, willow spilling, mattresses and vegetation planting. 

Design guidance on increasingly advocated “soft” bank face protection 

techniques can be found in the Good Practice Guide for Bank Protection: Rivers 

and Lochs (SEPA, 2008) or Waterway Bank Protection: A guide to erosion 

assessment and management (EA, 1999). One specific driver of the present 

research thesis is therefore the correct calculation of the entrainment threshold 

of the bed, as employed in the calculation of basal endpoint controls on toe 

scour in bank protection measures. Similar issues arise in terms of scour risk of 

wider river infrastructure, such as bridge piers, abutments, flood 

defences/embankments and where service pipes are laid within the bed 

(Cranfield University, 1999; Melville and Coleman 2000; CIRIA C551, 2002; Sear 

et al., 2003; SEPA, 2010). 

2.7.4 Water quality and ecology 

The EC Water Framework Directive (2000/60/EC) commits the UK to achieving 

“good” water quality within our river systems as defined by criteria from 

biological, chemical, ecological and morphological conditions. Of particular 

relevance to Scottish rivers is the quality of the benthic habitats which underpin 

the lucrative sport fishing, of trout species and (most critically) Atlantic Salmon 

with the inland sport fishing industry worth £126m/year to the Scottish economy 

each year (Rivers and Fisheries Trusts of Scotland, 2010). Species such as the 

caddis fly larvae and the midge reside in gravel substrate, feeding the higher 

trophic levels of the food chain. The benthic habitat is also crucial to the 

development and protection of the eggs and fry of the Atlantic Salmon. As these 

benthic species utilise microtopographic features to avoid being entrained by 

flow (e.g., Death 1996; Effenberger et al., 2006; Rice et al., 2008) and depend 
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on appropriate bed composition and structure to permit oxygen-nutrient flows 

within the subsurface, the mobility of sediment at low or moderate flows can 

damage and dislodge benthic animals (Gibbins et al., 2007). Persistent fine 

sediment deposits smothering fish eggs are a well-known and widespread cause 

of reduced fish populations in UK rivers (e.g., Beschta and Jackson, 1979; Carling 

and Glaister, 1987). Hence, the bed consolidation and delayed entrainment 

thresholds due to memory effects are likely exacerbating the persistence of 

fines, as flushing flows may be incorrectly calculated without a memory 

correction term. 

2.7.5 Other drivers 

Hiding and size selective transport remains the key mechanism in memory bed; 

and hiding is stronger in gravel frame-work deposits with heavy minerals 

depositing in the pore spaces (Reid and Frostick, 1985). Density driven sorting 

and selective transports are major issues in conglomerates and gravel deposits. 

Heavy minerals such as placer gold and diamonds are found in gravel deposits of 

historic or active gravel bed streams (e.g., Hughes et al., 1995). Due to the 

density difference, these heavy minerals show a downstream decrease in their 

concentration, and thus their hiding factor becomes higher in the gravel 

deposits, as does the re-mobilisation threshold of these minerals. Therefore, the 

sequence (and hence memory stress) of sediment-mobilising flows is important 

in predicting the location of such deposits. 

Similarly, gravel and sand mining can influence sorting and transport of 

sediment. Large-scale, economic excavation means that mining can often 

exceed the limit of the supply, and thus influence initial motion and bed 

degradation/reprofiling (Galay, 1983). Sand and gravel mining is still considered 

an attractive source of raw material in building industry (Kondolf, 1994; Rinaldi 

et al., 2005). Such mining can have detrimental effect on channel incision 

(Rinaldi et al., 2005) and river bank erosion (Kondolf, 1997), leading to scour of 

bridges, sediment control structures and dams (Kondolf, 1997; Rovira et al., 

2005). Mining is common in western United States, and was a popular source of 

building materials in Europe during the 1950s – 1990s, before UK regulations 

(e.g., Controlled Activities (Scotland) Regulations) came into practice.  Sediment 

transport models aided with flood memory effects could, theoretically, provide 
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more robust sediment predicts and thus play an important role in the 

management of more sustainable mining-recovery cycles. 

2.8  Summary research gaps 

 Given the detailed, and critical, review of existing sediment entrainment 

and transport knowledge in previous Sections the identified research gaps 

are summarised below: Threshold motion data set from research and 

studies from nearly one century have shown significant scatter and 

uncertainty; there is emerging evidence (from a handful of recent 

research studies) that the lack of understanding of memory stress effects 

may remain a key factor for such uncertainty. 

 Methodological differences between investigators of memory stress have 

precluded detailed analysis of memory stress influence over entrainment 

and transport. There is need for a methodological framework appropriate 

for mathematical modelling (i.e. correction) of memory stress. 

 The reference transport approach is generally considered the most 

reliable method for determining threshold motion. Shields (1936), Parker 

et al. (1982a) and Shvidchenko et al. (2001) have defined practically 

measurable reference transport rates at initial motion, but do not hold 

common consensus of the reference value. 

 

 Most existing bedload functions are fitted using the critical shear stress as 

reference, generally taken from Shields higher value on the curve; 

because of higher threshold value, it makes their applicability limited in 

case of memory stress which is dominant in further low flow regime. So, 

there is scope of research to choose particular formulae which are 

applicable in low shear stress (e.g., Wu et al., 2000b), and further 

parameterise them for application in memory stress events. 

 

 Sediment load in gravel bed rivers naturally shows grade dependent 

response with control lying on transport of each fraction. Ockelford (2011) 

and Mao (2012) have demonstrated that uniform, unimodal and bimodal 

beds yield different responses to memory stress. Whilst the present 



84 
 

84 
 

science and knowledge (Section 2.5 and 2.7.1) do not have explicit 

parametrisation of predicting such disproportionate response of fractional 

transports, development of new mathematical functions to incorporate 

memory effects and their disproportionate grade and fractional responses 

would be of merit to improved sediment transport modelling. 

 

 The FCERM research priorities (and other UK drivers) suggest focus of the 

present research would be to identify areas where memory stress can 

influence sediment regime, sediment related flooding, and ecological 

balance. Improved sediment modelling and sediment-related risks have 

become increasingly important to infrastructure resilience, in light of 

both climate change and extending the design life of river structures. 
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Chapter 3: Physical modelling: experimental set-up 

3.1 Introduction 

Based on the outcomes of the literature review, it is evident that the 

examination of a single variable from river systems with any degree of precision 

requires tight control in a laboratory setting. Flume-based research has a strong 

track record of sediment transport analysis and empirical derivation, with all 

existing memory-specific research being conducted in this environment. 

Experiments were, therefore, carried out in the Hydraulic Laboratory in the 

School of Energy, Geoscience, Infrastructure and Society in Heriot-Watt 

University, Edinburgh, UK using a re-circulating Armfield tilting steel flume of 

traditional 0.3m width. With this in mind, the present Chapter discusses both 

the methodology and associated rationale used in the current thesis. 

Specifically, this addresses: (i) the choice of sediment grain size distribution, in 

terms of reality and known sensitivities from previous research; (ii) design of the 

“stability test” assessment of memory effects on entrainment threshold, in 

terms of overcoming the problems identified in existing studies; (iii) selection of 

methodology used for entrainment threshold definition, in terms of removing the 

limitations of earlier works on post-processing for mathematical descriptions. 

3.2 Experimental matrix 

Overall 84 experiments were conducted, including calibration, test runs and 

repetitions. Baseline data (i.e. that with no memory stress; referred to as non-

memoried beds henceforth in this thesis) was repeated several times in 

determining the entrainment shear stress *
50c  , and in determining the 

magnitude of memory stress, set to 60% of *
50c  . Each memory experiment was 

repeated at least three times. Two separate experimental data sets were carried 

out, specific to using unimodal and bimodal gravel sediment mixtures (Section 

3.4). Within each data set, five memory timescales (Table 3.1) were employed, 

compared with that of additional baseline runs. 
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Table 3.1: Matrix of experimental runs with unimodal and bimodal sediment 

mixtures; number of repeat for each run is generally 3 or more; median grain 

size (D50) for each mixture is 4.8mm; 64 minute stability run is identical in all 

experiments; over the period of 64 minutes, a 14 step discharge hydrograph is 

employed at an increment of 1.25 l/s from discharge 2.5 to 18.75 l/s; step of 6 

minute duration are employed at sediment sampling steps between 7.5 to 18.75 

l/s; magnitude of memory stress is 60% of entrainment threshold; each memory 

experiment is run for respective memory duration prior to stability period of 64 

minutes 

Experiment type 
Experimental 
code 

Memory 
stress time 
scale (min) 

Total experimenting 
period:  
run time in memory stress 
+ time in stability test 
(min) 

Unimodal 
mixture: Baseline 

UM_B_0 0 0+64 

Unimodal 
mixture: Memory 
experiment 

UM_SH_10 10 10+64 

UM_SH_30 30 30+64 

UM_SH_60 60 60+64 

UM_SH_120 120 120+64 

UM_SH_240 240 240+64 

Bimodal mixture: 
Baseline 

BM_B_0 0 0+64 

Bimodal mixture: 
Memory 
experiment 

BM_SH_10 10 10+64 

BM_SH_30 30 30+64 

BM_SH_60 60 60+64 

BM_SH_120 120 120+64 

BM_SH_240 240 240+64 

 
 
Repetition of experiments helped in assessing confidence limits, uncertainties 

and outliers of dataset in the experiments (Wilcock and McArdell, 1993; 

Shvidchenko et al., 2001; Saadi, 2002). Generally, repetitions were within ± 0.5% 

(based on threshold shear stress) and less than ± 10% (based on bedload); where 

outliers to these trends have been observed these have been justified in the 

relevant results sections. The variation is higher in bimodal bed than in unimodal 

bed as bimodal was more responsive to memory than other beds; this is 

discussed in detail in the results section (Chapter 5). Considering the memory 

response on bed shear stress in previous research (Section 2.6), this degree of 

variation of shear stress is expected to have little (or no) impact on the 
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assessment of memory effect on entrainment threshold (as shown in the result 

section in Chapter 4 and 5). Whilst the variation in bedload from repeatability 

may seem higher, it is comfortably in line with other studies specific to low 

flows, where bedload is extremely sensitive to minor changes in bed shear stress 

(for example, Paintal, 1971; Parker, 1989; Shvidchenko et al., 2001, Bunte et 

al., 2004). The sensitivity in terms of mathematical function of bedload vs. shear 

stress developed in this study are sensible and discussed in more detail in the 

results sections of Chapters 4 and 5. 

3.3 Flume - 0.3m wide facility 

Experiments were carried out in an Armfield recirculating rectangular flume (a 

3D schematic shown in Figure 3.1. The steel bed, and glass walled flume has 7.0 

m of working length, 0.3m width, and 0.5m height; this is considered a 

traditional flume dimension, equivalent to flumes employed in all other stress 

history studies (Paphitis and Collins, 2005; Monteith and Pender, 2005; Haynes 

and Pender, 2007; and Ockelford, 2011). Whilst a few studies note the possible 

influence of side-wall effects in the narrow channel (e.g., Shvidchenko, 2000), 

these effects are typically constrained to < 0.02 cm affected near-wall width in 

low flow experiments (such as those considered herein) and will be akin to those 

of earlier memory research (hence permitting direct comparison). The flume can 

be tilted to a prescribed slope via a mechanical jack located towards the 

upstream end of the flume. Whilst the Armfield equipment proffers a Vernier 

scale, the accuracy of manual mechanical jack is well-known to be limited and 

the present project iteratively fine-tuned the slope using surveying techniques 

(level-staff gauge survey; Figure 3.3) of the flume bed and flume rails. Given 

that the screed board used to level the initial bed and the instrument carriage 

ran on the rails, it was essential that both flume bed and flume rail were 

parallel. The instrument carriage set on the flume rails held the pointer gauge 

(for bed and water surface profiling; Section 3.5.4). 
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Figure 3.1: Top figure: 3D schematic of re-circulating Armfield flume showing 7m 

long working section with experimental sediment bed, and two immobile reaches 

prepared with much larger sediment size (25 mm) at flume inlet and flume 

outlet; immobile bed at inlet is aimed to prevent any scour due to sudden entry 

of flow, and help to generate turbulent boundary layer; the immobile bed at 

outlet is aimed to trap mobile test sediment and prevent it from being washed 

into the water tank; Bottom figure: plan view of flume bed showing 7m long 

mobile bed with test sediment, and immobile bed at each end. 

The flume re-circulated water from a tank placed at the outlet of the flume by 

an impeller pump and pipe network back to the inlet of the flume. The discharge 

of the pump through the pipe is displayed on a PortaFlow velocity and discharge 

measurement system. Two acoustic sensors are attached to the flow pipe, which 

transmits acoustic signals to the PortaFlow; velocity is calculated from these 

acoustic signals and discharge is calculated using the pipe’s flow area. The 

Recirculating 

water pipe 

0.5m 
7m 

0.5m 

Flow direction 

Mobile test section with unimodal and bimodal mixture immobile section  
immobile section  
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minimum signal strength value of the PortaFlow recommended by the 

manufacturer is 40%, while the strengths recorded during all experiments were 

above 80%. Given the accuracy and precision of the Portaflow in velocity 

measurement, which is ±0.01m/s, the discharge hydrograph for the present set 

of experiments has confidently been automated and controlled using an input 

file for the pump’s frequency (Hz) vs. discharge, giving an advantage over 

manual pump flow settings used in previous stress history research. These 

discharge-frequency rating curves were developed through several pilot 

experiments (run prior to the main experimental programme Section 3.5.3).  In 

all runs, the oscillation of the pump generated discharge was within ±2% of the 

target discharge values (Section 3.5.3). Shear stress was calculated for each 

target discharge; discharge steps were varied in incremental steps of 1.25 l/s 

between 2.5 and 18.75 l/s (Section 3.5.3). The ±2% variation over the target 

discharge translates as shear stress uncertainty of less than ±0.3%; thus, there 

was negligible impact on the derivation of shear stress and thus assessing the 

impact of memory can be assumed. 

Water was recirculated from the open water tank situated at the tailgate end of 

the flume; thus, generally the same water being maintained at ambient room 

temperature was recirculated in each experiment (except occasional minor 

refilling of the tank, probably due to evaporation or loss); thus the water 

temperature was estimated in the room temperature range between 18 and 23 

degree centigrade for the majority of the experiments. Water temperature in 

the Portaflow set-up was maintained in the above temperature range for 

discharge calculation. Significant changes in water temperature can result in 

different shear stress from same the discharge. Viscosity is a measure of 

resistance (Wikipedia) of a fluid, which is water in the present thesis; viscosity 

tends to fall as temperature rises, and thus exerts less resistance to flow. 

Therefore, same discharge, in case the water temperature is higher, will 

generate higher velocity and bed shear stress due to less resistance, and thus 

will generate higher bedload transport. Taylor demonstrated this effect by 

carrying out experiments in 210C and 360C (Taylor, 1971). Thus, the results 

section specifically includes discussion of outlier data specific to water 

temperatures in the laboratory.  
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3.4 Sediment: unimodal and bimodal mixtures  

Past work has clearly evidenced memory effects being present in both sands 

(Paphitis and Collins, 2005) and sand-gravel mixtures (Reid and Frostick, 1986; 

Monteith and Pender, 2005; Haynes and Pender, 2007; Ockelford, 2011). Given 

that most UK river beds are gravel based mixtures and Ockelford’s recent study 

indicates that modality and, possibly, the finer fraction of mixtures exhibit 

relationships with memory, the present experimental programme judiciously 

selected two grain size distributions specific to assessing these issues. Thus, two 

grades of sand-gravel mixture of unimodal and bimodal distribution, were used 

in the experiments in the present thesis. Both the mixtures comprised eight 

classes of sediment ranging from coarse sand (1 mm) to medium gravel (16 mm); 

see Figure 3.2. Two classes are medium to coarse sand (1.0 to 1.4 mm and 1.4 to 

2.0 mm); the other six classes are gravels from 2.0 to 16 mm. The geometric 

standard deviations, g, of the unimodal and bimodal mixtures are 1.65 and 1.93 

respectively, and thus, both mixtures comprised “poorly sorted” sediment (i.e. 

g ≥1.6) as calculated from g = (D84/D16)
0.5. This selection of sorting is in line 

with many other flume studies (e.g., Shvidchenko 2000; Monteith and Pender, 

2005; Haynes and Pender, 2007; Ockelford, 2011) and approximates to natural 

river beds in the UK (Ashworth and Ferguson, 1989 for Allt Dubhaig in Scotland; 

Reid and Frostick, 1986 for Turkey Brook, in England; Piedra, 2010 for Endrick 

Water in Scotland). The fractional contents of the unimodal mixture are similar 

to those used by Ockelford (2011) and Shvidchenko et al. (2001); the 

composition of bimodal mixtures is similar to Monteith and Pender (2005), 

Haynes and Pender (2007) and Ockelford (2011), except that the bimodality 

index has been made more pronounced in the present mixture for the finer class 

of gravels (2 to 2.8mm), see Figure 3.2. Bimodality index is defined by the 

relation Dc/Df *∑pm, (Eq. 4 of Wilcock, 1993), where Dc and Df are particle size of 

the coarse and fine modes respectively, and pm is the fractional proportion of 

the two modes. Accordingly, bimodality index of the present mixture is 1.22. 

Overall, the results from the present experiments will allow direct comparison 

with existing stress history research and wider flume-based research data sets. 

The subtle increase in the bimodality index as mentioned above has been made 

in the present set of experiments, compared to that of Ockelford’s research, so 
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as to better test her conclusion that modality strongly influences memory effects 

upon bedload transport and entrainment threshold. 

The distribution of the size classes in both of the mixtures is approximately 

normal for the unimodal mixture, with very minor skewness (towards larger 

fractions) noted in the bimodal distribution (see Figure 3.2). Importantly, the 

choice of the minimum size class in the sand range prohibits development of 

bedform, around the flow condition of entrainment threshold of the median size 

class particularly in gravel bed rivers (Young and Warburton, 1996). 
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Figure 3.2: Grain size distribution curves: unimodal and bimodal sediment 

mixtures; dotted line showing point of intersection for 50 percent finer at 

median grain size of D50=4.8mm, which is same for both distributions. 
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3.5 Flume Set-up 

3.5.1 Flume slope 

Preparation of the flume slope was started from horizontal bed (zero slope) of 

the flume; this was established via a mechanical screw-type jack, and slope 

reading manually from  

 

 
Figure 3.3: Flume slope preparation: Level-staff gauge survey of flume bed and 

flume rails (bottom); Vernier scale for fine tuning of slope (top)  
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the Main and Vernier Scale (Figure 3.3, top), accurate to approximately 

±0.05mm. The zero slope along entire flume length and across flume width was 

fine-tuned through a level-staff gauge survey of both the flume bed and 

instrument rails (Figure 3.3, bottom); readings were taken at every 0.5m along 

the flume length.  A flume slope of 1 in 200 was established and cross-checked 

for all runs using this technique (Figure 3.4). 

 

Figure 3.4: Flume slope of 1 in 200: a): after initial setting of slope by 

mechanical jack-screw, b); fine-tuned slope after iterative level-staff gauge 

survey. 

 
 
 
 

a) 

b
) 
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3.5.2 Flume bed 

A 60 mm thick flume bed was prepared for each experiment with the unimodal 

and bimodal sediment mixtures; based on the D50 fraction this approximates to > 

10 layers of sediment and is deemed appropriate to preclude scour to the flume 

bed during low-flow, low-transport experiments such as those employed here 

(e.g., Shvidchenko and Pender, 2000; Monteith and Pender, 2005; Ockelford, 

2011). The underpinning methodology had four stages: 

Firstly, sediment stocks of each mixture were prepared. The mixtures were 

prepared in batches and the principle was simple; the lower is the 

volume/weight of each batch, the better the mixing. As such only 5% of the total 

weight (173 kg) was taken in each batch to prepare the mixture, and finally with 

full volume of mixed sediment, the bed was screeded by a screedboad. 

Screeding of bed may have effect on the statistical distribution of bed relative 

to the bulk mix (Cooper and Tait, 2008). Thus, during screeding one operator 

was employed (researcher himself) to prepare all experimental beds to keep 

consistency of the distribution in the screeded bed; further the consistency of 

the screeded bed was checked by taking photographs after preparation of the 

bed, and by counting the coloured D50 and D84 grains in an area of 150mm by 

150mm. To aid photographing and counting of sediments on the screeded beds, 

three classes of sediments were coloured by ultra violet colour: D16: red, D50: 

yellow and D84: orange. The theoretical ratio of the fractional proportion of D50 

and D84 in the bulk mix for unimodal and bimodal bed ratio is 3.2, and 0.39 

respectively; photographic counts of the screeded bed from test runs and from 

selected experiments provided the ratio of the proportions of D50 and D84 were 

found slightly higher, less than 0.5% to the theoretical ratios. Thus, the 

screeding seems to give a similar representation of the bulk mix, and would not 

lead to any notable bias on distribution from the theoretical mix. 

Secondly, the two immobile reaches of coarser gravels (D ~25mm) as described 

in the caption of Figure 3.1, were screeded to a depth of 60mm for a 0.5m 

length near the inlet and outlet of the flume; the functionality of these two 

immobile reaches was already described in the caption of Figure 3.1. 
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Thirdly, the remaining 7m “test section” of the flume length was screeded to 

the prescribed 60mm thickness of either unimodal or bimodal sediment using a 

steel screedboard, which slides along the two rails of the flume pre-set to the 1 

in 200 slope condition. This is routine practice for sediment bed preparation 

(e.g., Haynes and Pender, 2007; Piedra, 2010 and Ockelford, 2011). 

Fourthly, for each experiment, full mixing of the bed/sediment was carried out 

for the entire 7m test length of the flume, with near-outlet material re-sieved to 

remove trapped particles and recycled them back into the test bed. An 

equivalent weight of material as that “lost” to the bedload trap was also added 

back into the test bed. All experiments had an equivalent draining period, to 

ensure that beds were of equal antecedent moisture content, as earlier studies 

(e.g., Monteith and Pender, 2005) had hypothesised that drier beds exhibited 

weaker packing arrangement, higher mobility and greater uncertainty with 

regard to stress history; the draining periods were maintained digitally in a run 

log file from the Portaflow, which helped to maintain identical draining periods 

between consecutive experiments. 

The above procedure was specifically designed to overcome well-known 

problems relating to screed-induced bias in the statistical distribution of the 

surface sediment sizes as discussed in earlier paragraph. 

3.5.3 Flow Settings and stepped discharge hydrograph 

The theoretical stepped discharge hydrograph was designed in the present thesis 

based on the research results from previous stress history experiments (Haynes 

and Pender, 2007 and Ockelford, 2011) and other past research on incipient 

motion of unimodal and bimodal sediment mixtures (Paintal, 1971; Taylor and 

Vanoni, 1972; Wilcock, 1993; Wilcock, 2001). Crucial to this was an initial 

estimate of entrainment threshold of the bed and an estimate of general 

transport conditions. This review yielded a  peak discharge of 18.75 l/s, 

considered to be sufficient for mobility of the highest grain class (11.5 -16 mm) 

in both of the unimodal and bimodal mixtures in the present thesis. The lowest 

discharge of 2.5 l/s is considered sub-threshold for the beds used (confirmation 

is provided in Section 4.5.3). And, the incremental step of 1.25 l/s induces 

approximately 2% increase in bed shear stress; given that previous stress history 
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research has recorded a minimum memory effect of a 4%  change to bed shear 

stress, a 2% step is considered appropriate resolution so as to determine 

memory-induced alteration to entrainment threshold. 

 

 

Figure 3.5: Theoretical discharge hydrograph used in the stability test (shown for 

bedload sampling steps starting at 7.5 l/s). 

Inflow discharges to the flume were operated automatically by being 

programmed through an input file (electronic/digital file) of the frequency (Hz) 

of the pump. The frequency (Hz) data of the pump is a pre-processed excel file, 

and was read from a computer to the flow control system (inverter and 

Portaflow) to run the pump; see Section 3.3. Thus, the pump’s frequency (Hz) 

needed to be calibrated to generate the discharges according to the target 

values. Pilot experiments were carried out to generate a dataset of discharge vs. 

Hz, and a rating curve was established (Figure 3.6). This rating curve was used 

to predict Hz values for the set of target discharges to the flume for all 

experiments. Respective rating curve was established for each sediment grade as 

it was observed that the rating curve developed for unimodal mixture was not 

applicable for the bimodal bed. Because experimental set-up (and instruments) 

were same in all experiments except the sediment mixtures, it is fair to assume 

that bimodal bed was likely to offer different friction to flow due to grain size 
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distribution (Ven T., Chow, 1959) with unimodal bed and thus affects discharge 

through the flume, and so affects pump’s efficiency (Hz) and necessitated a 

different rating curve for discharge vs. Hz. 

 

 

Figure 3.6: Calibration of pump discharge against pump frequency for generating 

target discharge (theoretical discharge). 

In comparison with earlier memory experiments, the advantages of the 

automated system used herein include: high precision of timing of flow changes; 

perfect equivalence of rate of flow transitions; provision of extra user capability 

for wider manual measurements e.g., bedload sampling, depth measurement 

and photographing; overall, minimisation of uncertainties and errors in data 

collection. Thus, this methodological control capability is considered a 

significant advance over earlier memory studies and the pump’s fluctuations in 

Figure 3.7 are quantified in Section 3.3 in line with defending a robust set-up. 
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Figure 3.7: Actual hydrograph used in an experiment generated by the pump 

from pre-defined Hz (derived from pump rating curves, Figure 3.6) (actual 

hydrographs for each experiment are recorded in digital log file); there is 

oscillation in pump generated discharges; range of such oscillation is more 

clearly shown in the inset of the Figure (variation of discharge is less than ±2% of 

target discharge, and the variation in shear stress is maximum upto ±0.5%). 

3.5.4 Uniform flow set-up 

Establishing uniform flow in a laboratory flume is vital. In uniform flow, gravity 

forces are in equilibrium with the frictional forces. Thus, if uniform flow can be 

established, the experimental results are free from other external disturbances 

(e.g., precluding back water effects from tailgate (downstream boundary), or 

perturbations in bed formation in the upstream reach of the flume). Thus, 

uniform flow was assessed and controlled via adjustment of the tailgate during 

pilot runs where, simultaneously, water surface elevation and bed level were 

recorded at 0.50m interval by a Mitutoyo Pointer gauge (model SD-12” A; 

accuracy of ±0.01mm) mounted on the instrument rails. Uniform flow depth 

from two reference chainages (3m and 6m) are compared for uniform flow 

performance and presented in Table 3.2. From these data, differences in depth 

between the two chainages at all discharge steps were found to be typically less 

than ± 0.5% along the test section. One setting of tailgate position for each 
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mixture (unimodal and bimodal) was determined which provided the best 

uniform flow depth. 

Table 3.2: Example data set on the uniform flow depth along the length of the 

flume 

Discharge 
(l/s) 

Flow Depth (mm) at different 
chainage along length of flume 
 

Difference with average (in 
%) 

Depth (mm)  
at ch. 3m 

Depth (mm) 
at ch. 6m 

ch. 3m ch. 6m 

2.50 80 82 -1.23 1.23 

3.75 89 88 0.56 -0.56 

5.00 92 93 -0.54 0.54 

6.25 99 100 -0.50 0.50 

7.50 104 105 -0.48 0.48 

8.75 110 110 -0.23 0.23 

10.00 113 114 -0.44 0.44 

11.25 117 119 -0.85 0.85 

12.50 121 121 0.00 0.00 

13.75 122 123 -0.41 0.41 

15.00 127 127 0.00 0.00 

16.25 130 130 0.00 0.00 

17.50 133 134 -0.37 0.37 

18.75 139 139 0.00 0.00 

 

3.5.5 Bedload transport 

Bedload transport was sampled for each step of the rising flow hydrograph, 

starting at a discharge of 7.5 l/s for unimodal experiments, and 8.75 l/s for 

bimodal experiments. The first (lowest) step for sample collection was decided 

from pilot experiments and visual observation of sediment movement; these 

deduced that sediment deposition into the sediment trap at discharge smaller 

than the above values was negligible and impractical to collect at lower 

discharges. 

The sediment trap (0.15m width x 0.03m downstream length) is located at 

chainage 5.25 m from the upstream end of the test bed (Figure 3.8). Each 

sample was collected for a duration of 6 minutes during each period of constant 

discharge on the hydrograph; this duration was decided upon with consideration 

of the time required for flow and sediment movement to stabilise within each 
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step (Shvidchenko et al., 2001) and bedload samples are collected under steady 

state uniform condition in each step. The free fall of sediment through the 

rectangular sediment slot/trap to the rectangular perspex box is controlled by a 

rotating cylindrical/axial type brass shaft (Figure 3.8) which has two holes. This 

shaft, when open, allows free fall of sediment entering the sediment trap into 

the sediment collecting box. The shaft when closed is fully blind. Axis rotation 

(open-closed/empty/replace-open) takes approx. 30 seconds. The replacement 

Perspex box was filled with water prior to re-opening and remaining air released 

via a horizontal side-valve; this precluded escaping bubbles artificially dislodging 

bed sediment local to the trap, as noted in previous stress history experiments 

as a major cause of uncertainty in collected bedload data (e.g., Monteith and 

Pender 2005). 

 

 

Figure 3.8: Bedload sediment slot/trap on the flume bed at chainage 5.25 m 

from the inlet of the flume. 

Axial shaft for 
sediment 
release to 

Perspex box 
Perspex 
sediment 
collecting box 

60 mm thick 
flume bed 
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Each sediment sample collected in the trap was oven dried, weighed and sieved 

for their analysis. Sediment mass of the dried sediment (in grams) was recorded 

to ±0.001g accuracy. Sieving at ½ phi interval provided equivalence to the initial 

grading of sediment generating the mixtures. This analysis was consistently 

controlled by use of a digital sieve shaker, using identical prescribed sieve 

settings and durations for all samples. Results from the analysis are presented in 

the Chapters 4 and 5. In all analysis (Chapters 4-5) and also in chapter 6 while 

compared with model predicted results, observed and predicted sediment load 

were converted from mass transport to volumetric transport; for conversion, 

density of natural sediment was used as 2650 kg/m3 (Shvidchenko et al. 2001; 

Recking, 2010). The present research uses sediment of the same source as 

Shvidchenko et al. (2001), who derived the density as 2600-2650 kg/m3.  

In previous memory stress research, the memory effect has been assessed on 

entrainment threshold and on bedload transport using a constant offset value of 

memory gains over a non-memory benchmark condition. In all studies to date, 

this analysis has employed a visual approach for determining entrainment 

threshold. However, the literature review (Chapter 2) clearly notes that the 

entrainment threshold can significantly differ if a reference transport approach 

is adopted, rather than a visual technique. Further, there is a recognised 

disagreement of the definition (value) of reference transport employed by 

different authors (Shields, 1936; Parker et al., 1982a; and Shvidchenko et al., 

2001). Moreover, past studies have shown that bedload transport may be 

generated in gravel bed streams at flow condition which are well below the 

reference transport value of Shields (1936), which is traditionally the most 

common reference value used in engineering practice. With these factors in 

mind, the present thesis rationalises and justifies a change in memory-based 

methodology, away from the deterministic visual definitions of Paphitis and 

Collins (2005), Monteith and Pender (2005), Haynes and Pender (2007) and 

Ockelford (2011), towards a reference transport based approach using a stepped 

hydrograph for the following reasons: (i) low flow steps permit analysis of first 

motion, progressive entrainment-transport, and general transport conditions; (ii) 

this permits examination of a range of existing reference transport thresholds, 

against the present data set; (iii) such references can be scrutinised for 

applicability and sensitivity to memory effects; (iv) references provide a directly 
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measurable, more robust and more strongly empirical approach to entrainment 

definition; (v) the holistic data set, with detail at near-entrainment values, 

allows quantification of the non-linearity of memory effect. The advantages of 

this methodology are returned in the Results sections discussions (Sections 4.7 

and 5.6). 

3.5.6 Selection of memory stress characteristics 

The aim was to choose memory time scales for which memory effect is known to 

be more sensitive, and a higher resolution of memory scales than previous 

studies, so as to allow better representation of non-linearity in the 

mathematical descriptor of memory stress, which is a key objective of the 

present thesis (Chapter 1). 

In previous memory research, shorter memory durations were observed to allow 

greater reaction to bed stability, entrainment threshold and transporting ability 

(Haynes and Pender, 2007, Ockelford, 2011).  In 10 to 60 minutes memory time 

scales, the rate of increase in entrainment threshold and rate of decrease in 

bedload were observed to be significantly higher than at longer memory time 

scales, such as 5760 minutes employed by Haynes and Pender (2007), and 960 

minutes employed by Ockelford (2011); in the longer memory time scales, the 

rate of increase (or decrease) was attenuated, and the trend line of the 

variables tends to be asymptotic with time axis as described in Chapter 2 

(Section 2.6). The present thesis, therefore, employed short memory time scales 

with a high resolution (10, 30, 60, 120, and 240 minutes) appropriate to the 

intention to develop a robust mathematical function for bedload, and to capture 

better description of memory effect on non-linearity on bedload. 

The present thesis employed a memory stress magnitude, which is 60% of the 

threshold condition of the non-memoried bed. This is in line with previous 

memory stress research, including lying central to the range employed by Haynes 

and Pender (2007) (53% of *
50c  to 77% of *

50c ). Due to the range of the pump, 

lower discharges suffer higher oscillations of flow and thus data would be 

subject to greater uncertainty. Similarly, the graded work of Haynes and Pender 

(2007) suggests that far higher memory discharges may lead to erasing of 
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memory effects, although this is controversial and counters the data of Paphitis 

and Collins (2005) in uniform beds. 

3.5.7 Sequential steps in running an experiment 

In baseline and memory experiments, the sequence of running an experiment 

was as follows: 

i) Bedding-in period: common in all experiments; prior to each 

experimental run (baseline and memory experiment), the flume is run 

with trickling flow to remove bed screeding effect and air 

bubbles/pockets from the bed; this period is referred as bedding-in 

time, and was maintained digitally for 3 minutes duration in each run 

ii) Baseline experiment run: following the bedding-in period, flow steps 

start from 2.5 l/s, and increase to 18.75 l/s. In 14 steps of discharge 

the total run time is 64 minutes. The first four steps of discharge from 

2.5 to 6.75 l/s are of 1 minute duration each, and next 10 steps from 

7.5 to 18.75 l/s are of 6 minutes duration each (so as to facilitate 

bedload collection). The 64 minutes run time during this stepped 

sequence is consistent for baseline and memory experiments (see next 

bullet); this period will be referred as the “stability test period” in 

this thesis (in line with similar terminology used in other memory 

experiments). 

iii) Memory experiment run: this comprises an equivalent bedding in-

period, as in baseline experiment. This is followed by a memory stress 

period where the flume is run at memory flow of (Q=2.5 l/s, 018.0*   

) which is 60% of *
50c ; the duration of this memory period varies (10, 

30, 60, 120 and 240 minutes). There is then the same “stability test” 

period run, as described for that of the baseline experiment. 

iv) Sediment transport sampling in baseline and memory run: in unimodal 

bed, bedload was collected at each discharge step starting from 7.5 
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l/s upto 18.75 l/s; in bimodal bed, bedload was also collected at each 

discharge step, but starting from 8.75 l/s upto 18.75 l/s   

These experiments are summarised as shown in Table 3.1. 

3.6 Summary of flume Set-up and experimental 
methodology 

In a standard flume facility, the experimental methodology has been objectively 

designed and executed to fulfil the research objectives set out in Chapter 1. In 

summary: 

  

 Flume set-up has been successfully prepared with very satisfactory setting 

of flume slope (1 in 200) and satisfactory achievement of uniform flow 

condition within ±0.5% variation on flow depth along the flume length. 

 

 Appropriate automation of flow control has been proven, with less than 

±2% variation against target discharges and minimal (or no) influence on 

shear stress analysis. 

 

 Sediment preparation of the flume bed has accounted for the effect of 

antecedent moisture, by standardising the draining timeframe. This 

overcomes well documented problems in memory runs of previous 

researchers. 

 

 The grades of unimodal and bimodal sediment mixtures have been 

justifiably chosen, which are primarily representative of natural sand-

gravel sediment beds in UK rivers. Specific selection of the proportion of 

fractions in the mixtures are comparable to other memory stress research, 

as appropriate to quantifying grade dependent response, particularly the 

known influence of fines in the bimodal bed. 

 

 Selection of five memory time scales of 10, 30, 60, 120 and 240 minutes 

are optimised appropriate to fulfilling the gaps identified in earlier 

research. The chosen time scales will help quantify the most reactive 
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response period on bed’s stability, entrainment threshold and on 

transporting ability as envisaged from earlier memory research. 

 

 Bedload sampling in the stepped discharge hydrograph enabled achieving 

the key objectives of this research in quantifying maximum memory 

effect, non-linear variation of memory effect in low flow regime and 

development of mathematical functions for bedload, which are able to 

represent memory effect. 
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Chapter 4: Physical Modelling Results: Unimodal 
Sediment 

4.1 Introduction 

The literature review in Chapter 2 has indicated that there is significant scatter 

found in the entrainment threshold of sediment movement (i.e. the Shields 

parameter). Review of the Shields parameter from the last eight decades of 

research by Buffington and Montgomery (1997) clearly highlights methodological 

biases as one of the key reasons for scatter in threshold data over many orders 

of magnitude. As this parameter is fundamental in determining the timing of the 

onset of sediment movement, and thus the volume transported during a high 

flow event, there continues to be significant merit and scope to look for 

definitive reasons to explain such scatter in a manner appropriate to removing 

this uncertainty from sediment transport modelling. Whilst Buffington and 

Montgomery’s paper considers a range of methodological uncertainties, it fails to 

consider the timescales of experimental set-up, water-working or measurement 

period. However, there is strong emerging evidence that memory stress is 

important in dictating bed structure and subsequent resistance to entrainment 

(e.g., Reid and Frostick, 1984; Reid and Frostick, 1986; Paphitis and Collins, 

2005; Haynes and Pender, 2007; Ockelford, 2011) which, coupled to wider 

interest in the time sequencing of flood clusters from recent winters’ severe 

weather in the UK (e.g., 2013/4), provides strong motivation for providing a 

detailed data set on memory effects within sediment beds subjected to flow. 

Two specific research questions within memory stress science are addressed 

within the present Chapter. Firstly, as UK Rivers are predominantly sand-gravel 

systems of mobile bed, it is appropriate that the present Chapter focusses upon 

memory effects within the transport of heterogeneous sediment (Ashida and 

Michiue, 1972; Parker, 1980; Parker et al., 1982a; Parker and Klingeman, 1982; 

Diplas, 1987; Wu et al., 2000a; Hunziker and Jaeggi, 2002; Powell et al., 2001, 

2003; Wilcock and Crowe, 2003). Implicitly, this requires analysis of fractional 

bedload such that indications of any preferential size-specific fractional 

response to memory stress can be deduced. Secondly, as memory stress science 

is still in its infancy, its effect on graded bed entrainment threshold is yet to be 

quantified in any mathematical or empirical relationship. By overcoming this 
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known deficiency, the present Chapter seeks to improve the predictive 

performances of existing graded transport functions, which are well noted to be 

still unsatisfactory for practical purpose (Gomez and Church, 1989). 

 

The present Chapter provides both definitive and quantitative evidence in a 

gravel bed mixture that: (i) the entrainment threshold of sediment movement in 

unimodal beds is responsive to memory effects; (ii) the relationship between 

memory period and subsequent sediment threshold can be mathematically 

described; (iii) the scale of such effect can be translated into the graded 

sediment transport functions leading to improvement of predictive ability. 

4.2 Matrix of unimodal experiments 

This Chapter presents results from the experiments of unimodal sediment beds 

subjected to various flow memory (sub-threshold) durations. Whilst specific 

details and the rationale underpinning experiment design is provided in Chapter 

3, the key variables and set-up specific to the unimodal runs are highlighted 

below. The  unimodal sediment mixture used has median grain size (D50) = 4.8 

mm, standard deviation σg is 1.65 calculated from the relation (D84/D16)
1/2 and 

the mixture is composed of eight classes of sediment from coarse sand (1mm) to 

medium gravel (16mm). Bedload transport was sampled throughout the rising 

stepped flow sequence of the stability test; this data were analysed in both 

dimensional (mass in grams) and non-dimensional forms, and were utlilised for 

comparison among memoried and non-memoried (baseline) bed, and with 

historical data (Shields, 1936; Meyer-Peter and Muller, 1948; Einstein, 1950; 

Vanoni, 1964; Paintal, 1971; Taylor and Vanoni, 1972; Luque and van Beek, 

1976, Parker et al., 1982a, Shvidchenko et al., 2001). These data form the basis 

for later development of mathematical entrainment threshold descriptors and 

correction factors for response to memory stress. 

The experiments have been given logical identification code/numbers for their 

easy referencing according to sediment grade and memory duration. The coded 

experimental matrix for the unimodal (UM) sediment bed is presented in (Table 

4.1). The code name UM_B_0 represents the non- memoried runs; this is the 

benchmark experiment with which to compare other experiments. UM_SH_ 

represents the application of a memory stress period; this prefix is followed by 
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the numeric value representing the duration of memory applied in minutes. For 

example, the code name UM_SH_10 represents an experiment with 10 minute 

memory of sub-threshold stress. Similar identification codes have been used for 

30, 60, 120 and 240 minutes of memory stress history experiments. 

Table 4.1: Matrix of experiments in baseline and memory stress condition in 

unimodal sediment mixtures 

Experiment 
Identification 
Code 

Median grain 
size (D50) 
(mm) 

Experimental 
condition 

Memory stress 
Run duration 
of 
experiment 
(min) 

Magnitude: % 
of baseline 

*
50c  

Exposure 
duration 
(min) 

UM_B_0 4.8 Baseline - 0 0+64 

UM_SH_10 4.8 
Memory 
experiment 

60 10 10+64 

UM_SH_30 4.8 
Memory 
experiment 

60 30 30+64 

UM_SH_60 4.8 
Memory 
experiment 

60 60 60+64 

UM_SH_120 4.8 
Memory 
experiment 

60 120 120+64 

UM_SH_240 4.8 
Memory 
experiment 

60 240 240+64 

 

4.3 Hydraulic regime of unimodal sediment experiments 

The 64 minute stability test used in all experiments employed 14 constant-

discharge steps (2.5 l/s up to 18.75 l/s). Table 4.2 notes the measurements and 

calculations made from all runs. It is clear that the condition of flow was 

hydrodynamically fully rough, based on particle Reynolds number calculations, 

as used in Shields’ diagram (Brownlie, 1981). The particle Reynolds number 

(Parker et al., 2003, ASCE, 2007, Figure 2.29) /)])1[(( 505050 DgDsRp   for 

this mixture of unimodal sediment is 1338; Rp50 can be determined when 

properties of sediment and water are known; g is acceleration due to gravity, s 

is specific density of sediment (used 2.65 in the calculation), D50 is surface 

median grain size, ν is kinematic viscosity of water (1x10-6 m2/s used in the 

calculation). Similarly, the shear Reynolds number /50**
DuRe   was also 

required to be hydrodynamically rough for this series of experiments, i.e. *eR

was larger than 100 (Rouse, 1937; Taylor, 1971). For this calculation, shear 
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velocity *u was derived from each experiment using the relation  /* u  , 

where τ is boundary shear stress, and ρ is density of water. Data are shown in 

Table 4.2; this justifies the hydrodynamic set-up as fully rough and sub-critical1 

(Fr < 1) as commensurate with the majority of UK and other natural river 

reaches at the onset of sediment entrainment. 

Table 4.2: Unimodal sediment experiments: hydraulic regime of baseline and 

memory experiment 

Experiment 
Identification 
Code 

Flow depth 
range 
(mm) 

Flow velocity 
range (m/sec) 

Froude Number 
(Fr) 

Shear Reynolds 

Number: *eR  

UM_B_0 33 - 95 0.23 – 0.66 0.40 – 0.68 175 - 297 

UM_SH_10 33 - 94 0.23 – 0.64 0.40 – 0.69 175 - 284 

UM_SH_30 33 - 95 0.23 – 0.66 0.40 – 0.69 175 - 285 

UM_SH_60 33 – 95 0.23 – 0.66 0.40 – 0.68 175 - 286 

UM_SH_120 33 - 94 0.23 – 0.66 0.40 – 0.69 175 - 284 

UM_SH_240 33 - 94 0.23 – 0.67 0.40 – 0.70 175 - 284 

 
Flow range: same ranges of flow used for all experiments: 2.5 l/s to 18.75 l/s at an 
incremental step of 1.25 l/s 
 

 

4.4 Sediment entrainment and bedload transport analysis 
of unimodal experiments: parameters and variables 

Diagrams, rating curves, empirical relationships of water discharge, sediment 

discharge and bed shear stress analysis can all help interpret changes to graded 

bed rivers (Parker, 1990a), and therefore are able to quantify the effect of 

memory stress on those parameters. Thus, the present Section focusses upon 

absolute measured data of bedload, shear stress and discharge. These data are 

then non-dimensionalised for two key variables, i.e. shear stress and bedload 

transport, as commensurate with the original idea of Shields (1936) and well-

used since for study-to-study comparison purposes. Shear stress has been non-

dimensionalised using Eq. 2.7, and bedload transport using Eq. 2.8-9. Of 

particular note here is that the non-dimensionlisation of measured total bedload 

transport required selection of representative grain size from bed surface; this 

                                         

1 ghuFr /  where u is velocity, h is water depth 
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selection has been a considerable source of debate in sediment transport studies 

of the past. Whilst some researchers have used D35 (Meyer-Peter et al., 1934; 

Haywood, 1940; Einstein, 1950; Ackers and White, 1973), others (e.g., Meyer-

Peter and Muller, 1948) have used a diameter varying between D50 to D60. 

However, the median size D50 is by far the most commonly used grain size to 

represent a sediment mixture and, herein, is also a suitable choice given the 

logarithmic grain size characterising grain size distributions. As this approach is 

commonly accepted in natural rivers of unimodal grain size and, in the present 

thesis, this median size also coincides with geometric mean and mode of the 

distribution, D50 has therefore been used to non-dimensionalise total bedload 

transport henceforth. The non-dimensional transport presented and discussed 

below is, thus, representative of the median size of the graded mixtures. 

Further, as this study analyses several definitions and relationships (i.e. 

equations) of dimensionless reference transport for entrainment, it follows that 

the magnitude of shear stress (non-dimensionalised to the Shields parameter) 

will also be different, as specifically relative to each reference transport 

approach. Therefore, significant analysis in the present thesis focusses upon 

appropriate presentation of the above variables, both in dimensional and non-

dimensional forms, as rating curves as a function of the independent variables 

(such as discharge, time, shear stress). This appears to be the first time that 

such rating relations both from absolute data and from non-dimensional 

parameters have been employed to assess quantitatively and mathematically 

how memory stress in river beds can affect the entrainment and transport of 

sediment. 

To summarise: as quantitative data specific for flow-sediment analysis were 

required, measured data have been used directly in analysis and for derivation 

of the above variables and parameters. The key hydraulic parameters which 

have been quantified in this Chapter include: 

i) Time averaged mass bedload transport ( bq , averaged over a period of 

360 seconds within each step of the incremental flow sequence) as a 

function of discharge and bed shear stress. This parameter is useful in 

snap-shot analysis for simple quantitative assessment of the 
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transporting capability for sediment under specific shear stresses 

applied and is in line with previous researchers (e.g., Ockelford, 

2011). This analysis forms the basis of the results presented in Section 

4.5 and provides quantitative values with which to compare baseline 

and memory experiments. 

ii) Integrated volumetric bedload transport (∑qb), which was obtained by 

integrating bedload over 10 time steps (∑qb) precisely over the 

duration of 60 minutes. Use of the 10 steps (rather than full 14 steps 

of the stability test) is specifically selected so as to commence 

sampling from a low value of 
*  = 0.02 (Chapter 3). This analysis is 

useful to assess how memory effect develops over time as it provides a 

growth curve showing when the effect triggers, how the effect grows 

over time in increasing discharges/shear stress, and when the effect 

diminishes. Data are discussed in Section 4.5.2 

iii) Non-dimensional parameters for bedload 
*q , and boundary shear 

stress 
* ; only non-dimensional parameters enable comparison of 

results from this study with those of previous researchers. Section 

4.5.4 considers this in detail. 

The distinction between datasets is important. The first two outputs specifically 

use directly measured data from the flume experiments, yet are case study 

specific to the flume employed; these will provide an immediate comparison 

among the dimensional numbers about the effect of memory stress within this 

research. The latter output uses non-dimensional variables more generically 

comparable to other paired data sets of shear stress and sediment transport 

from the literature and, although data are derived from standard empirical 

equations, it is underpinned by measured data. Particularly the non-dimensional 

transport data will be crucial to draw comparison with: i) reference transport 

values of Shields (1936), Parker et al. (1982a) and Shvidchenko et al. (2001) 

which are widely used as entrainment conditions (Chapter 2), ii) transport from 

other memory stress research (Saadi, 2000; Haynes and Pender, 2007; Saadi, 

2008; Ockelford, 2011), and iii) transport from other field and laboratory 
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research at low flow transport around incipient motion (Paintal, 1971; Meyer-

Peter and Muller, 1948; Taylor and Vanoni, 1972; Reid et al., 1995). 

4.5 Bedload sediment transport  

The first objective of these results is to ascertain if bedload transport rate is 

sensitive to sub-threshold flow duration (i.e. memory stress). Thus, the following 

analysis focusses on changes to the volume of bedload transport as a function of 

discharge, shear stress and time subsequent to different flow memory durations: 

The degree of non-linearity of bedload transport with discharge is significantly 

different from that of shear stress; discharge is more of a volumetric parameter 

representative of the entire width and depth of the flume, whereas shear stress 

is a more localised parameter (i.e. the force from the flowing fluid inserted on 

sediment bed over a unit area). It is well established in research that bedload 

transport in low flows is highly non-linear in response to shear stress; such non-

linearity is significantly less with discharge (Ryan, 1988; Ryan and Emmett, 2002; 

Bunte et al., 2004). Most previous research has related the entrainment 

threshold and transport of sediment to shear stress with their dimensional and 

non-dimensional forms; however, some other schools of research relate it to 

discharge and thus critical discharge for entrainment of sediment (Bathurst, 

1985; Bathurst et al., 1987; Rickenmann, 1990). Both approaches are considered 

herein. 

Time averaged sediment load ( bq ) has been analysed for mean and minimum 

values as commensurate with deciphering entrainment threshold response (Table 

4.2 and Table 4.3). Firstly, the overall idea was to identify any variability in the 

minimum discharge which triggers sediment entrainment, in response to memory 

effects; this was demonstrated using minimum load data from respective 

experiments. Secondly, analysis was intended to demonstrate that this memory 

effect not only affects transport (and entrainment) at a discrete point, but 

prevails over a range of discharges; graphical trendline analysis and mean 

transport data are therefore provided. 



  114 
 

114 
 

Sediment load sampling started at the smallest practical water discharge of 7.5 

l/s (corresponding 02.0*  ) aligned with knowledge from previous researchers 

(Haynes and Pender, 2007; Ockelford, 2011). For the same grade of sediment 

mixtures, Haynes and Pender’s (2007) critical discharge was 8.75 l/s in a steeper 

flume slope (0.0067) than the present research (0.005). Therefore, a discharge 

of 7.5 l/s as the start point for sediment sampling was a fair and conservative 

choice.  Moreover, the non- dimensional shear stresses (
* ) of the reference 

transports of Parker et al. (1982a), Shvidchenko et al. (2001) and Shields (1936) 

sit at higher values than the first sediment sampling point ( 02.0*  ) and thus, 

the transport data from the present study are appropriate for direct comparison 

with the reference transport of entrainment of others. 

4.5.1 Bedload v. discharge relationship 

The response of bedload transport to memory duration, as a function of 

discharge, is shown in Figure 4.1. Bedload transport ( bq ) is within the range 

from 1x10-9 to 1 x10-5 m2/s. Baseline (non- memoried) runs indicate higher 

bedload rates at each discharge point within the same range of sediment load 

(1x10-9 to 1 x10-5 m2/s) implying that for the same discharge the effect of 

memory yields a lower capacity (ability) of the system to transport sediment; 

this implicitly indicates that the baseline bed has become more resistant to 

entrainment due to the application of memory (Table 4.2). 

All runs with flow memory imparted (10-240 minutes) indicate negative offset in 

the trendlines of Figure 4.1. Two specific points of interest are noted from these 

Figure: 

Firstly, the memory effect on bedload rate appears larger at lower discharges; 

this is particularly notable for SH-30, 120 and 240. The difference in bedload 

transport between these baseline and memory data at the lowest discharge 

point is approximately an order of magnitude. Further review of Figure 4.1 

shows that at higher discharges this effect gradually weakens, until nearing 

convergence with baseline data towards the largest flow (18.75 l/s) in the 

present experiments. 
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Secondly, the duration of memory applied appears influential in the magnitude 

and persistence of reduced bedload rates, compared with baseline. The most 

pronounced difference is noticed for the longest memory duration of 240 

minutes (Figure 4.1) where bedload is reduced by more than an order of 

magnitude at the lowest discharges and continues to record values well below 

those of baseline even at the highest discharges tested. Analysis of the sediment 

rating curves from other memory experiments suggests that there is a general 

relationship between memory duration and the magnitude of change in bedload 

observed. Detailed review of Figure 4.1 generally shows sensitivity to memory 

response of 10, 30, 120 and 240 minutes; however, the relationship is weakened 

by the seemingly over-response of the SH_30 at low discharges (which may be a 

facet of bed screeding). Thus, to examine these trends further, statistical 

analysis is provided in Table 4.3 below. 
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Table 4.3 specifically and quantitatively analyses further the significant 

reduction in the transport of bedload in memory experiments, particularly at 

low flow ranges. Data show the range of reduction in bedload transport from 31 

to 89% (Table 4.3) at the minimum discharge. The aforementioned response of 

bedload reduction to memory duration is evident and quantified by Table 4.3, 

with the exception of the SH_60 data set as outlier. Even when data are 

reprocessed to calculate the arithmetic mean of all data (between discharge 

8.75 and 18.75 l/s) in the incremental stepped flow test, data clearly show this 

memory effect to be significant; Table 4.3 shows a 34 to 52% reduction in 

Figure 4.1 Discharge and 

bedload sediment rating 

curve from baseline and 

stress history experiments 

(10, 30, 60 120 and 240 

minutes memory duration); 

bedload data are averaged 

over a time period of 360. 

seconds 
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transport due to memory. The lower statistical values of the mean data 

(compared with minima data) are reflective of the progressive reduction in the 

memory effect at higher discharges. Further, as the mean bedload (arithmetic 

mean) is calculated over the whole range of data points, this reduction in mean 

bedload transport is also an indicator for in which experiment the memory effect 

sustains for a longer period. The percent reduction on the mean value from 

Table 4.3 then clearly indicates that in higher duration memory experiments 

(240 minutes), the memory effect sustains for longer period. 

Table 4.3: Unimodal sediment experiments: volumetric sediment transport in 

baseline and memory experiments 

Experiment 
Identification 
Code 

Bedload transport: bq  

(m3/s/m) 
Bedload transport: bq  (m3/s/m) 

minimum 

% reduction of 

bq relative to 

baseline(1) 

Mean(2) 
% reduction of bq  

relative to 
baseline 

UM_B_0 1.06E-07 - 2.86E-06 - 

UM_SH_10 7.32E-08 31 1.93E-06 33 

UM_SH_30 1.12E-08 89 2.01E-06 30 

UM_SH_60 8.25E-08 22 3.38E-06 -18 

UM_SH_120 3.34E-08 68 2.12E-06 26 

UM_SH_240 3.89E-08 63 1.37E-06 52 

Note: 
1) Bedload collection starts from 7.5 l/s (very first data point in the graph in Figure 

4.3 was not used in analysis as collection of the very first data point induces 

some manual effects, and sample mass was also too little  in most experiments) 

2) mean bedload is the arithmetic mean of all bedload at discharge points between 

8.75 and 18.75 l/s (Figure 4.1) 

 

Whilst statistical analysis of Table 4.3 is useful in quantifying snapshot data, a 

more appropriate analysis is to consider all bedload data within each experiment 

so as to permit direct comparison between experiments, as shown in  

Figure 4.2. This regression analysis (logarithmic functions with satisfactory R2 

value) uses a ‘discrepancy ratio’ factor to quantify memory effect, compared 

with baseline data. The ‘discrepancy ratio’ is defined as the ratio of bedload 

transport in baseline (qb_B) with that in the memory experiment (qb_SH), i.e., 

discrepancy ratio = qb_B/qb_SH. In short, a discrepancy ratio (y-axis) of 1 means 

that the transport in baseline and memory stress experiments is exactly the 
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same, whilst a value >1 represents the order of magnitude that bedload 

transport has reduced by as a consequence of the memory stress effect. This 

approach is sometimes used in engineering practice to compare a mathematical 

prediction of bedload with a directly measured field data set (e.g., White et al., 

1975; Yang, 1976; Alonso, 1980; ASCE, 1982; Yang, 2001). Previous research-

based evaluation of evidence from the literature often yields a discrepancy 

value ≥ 2 , indicating that mathematical entrainment/bedload equations are a 

poor fit to the measured field data and, hence, that the derived equations fail 

to consider one or more processes influential of sediment transport. Thus, using 

discrepancy analysis for comparison of memory and baseline experiments will 

provide a measure of discrepancy, comparable to literature studies, and help 

demonstrate if memory may be a possible reason for the inability of existing 

bedload transport formulae to correctly fit measured field data. 

 

 

Figure 4.2: Discrepancy ratio in bedload transports as a function of discharge (Q) 

between baseline and memory experiments of 10, 30, 60, 120 and 240 minutes 

duration. 
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All of the trend lines are expressed in logarithmic functions; the functions define 

the vertical translation of the discrepancy ratio, mainly within the domain of 

memory influence; thus the vertical translation generally remains above the x-

axis (due to the two constants (intercepts) 5.73 and 7.64). All trend lines show 

significant discrepancy ratios at low discharges; particularly the trend lines from 

SH_120 and SH_240 indicate a 2-3 fold discrepancy ratio in volume of transport 

at low discharges. This is in line with previous literature comparing bedload 

transport functions with field data, hence suggesting that memory may have 

some control over bedload processes. Given that the discrepancy ratio are 

evident in  

Figure 4.2, and the natural logarithmic functions are similar in all memory 

experiments, the functions for the distinct cases (SH_120 and SH_240) from  

Figure 4.2, are shown in Eq. 4.1-2: 

52.0,73.5)(ln39.1 2

240_,

,
 RwhereQ

q

q

SHb

baselineb  Equation 4.1  

66.0,64.7)(ln29.2 2

120_,

,
 RwhereQ

q

q

SHb

baselineb  Equation 4.2  

 

It is interesting to note from the two functions that the discrepancy ratio 

gradually diminishes as the discharge increases (→  1, i.e. minimum (or no) 

discrepancy); this trend occurs earlier for SH_10, 30, 60 and 120 than in the 

SH_240 experiments; this indicates that the memory effect is sustained for 

longer subsequent to more extended periods of applied memory. The function in 

Eq. 4.1 for SH_240 is greater (i.e., higher magnitude of discrepancy ratio due to 

smaller sediment load in this experiment) than the function in Eq. 4.2 of SH_120 

and therefore the decay (memory effect) is much higher for all discharges > 0. 

For example, for a discharge of 11 l/s, the discrepancy ratio in SH_240 is 2.3, 

while the discrepancy ratio for the same discharge in SH_120 is 2.0. Such decay 

(or growth effect of the memory condition, also see Figure 4.2) will continue for 

discharges > 0, the domain for which the logarithmic functions are defined. 

Because logarithmic function indicates slow change,  the functions gradually 
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converges around the no-discrepancy line (discrepancy =1); hence, the functions 

mathematically will likely become equal at large discharges (however, this 

cannot be easily proven as such high discharges are impractical to attain within 

the flume used in this study). As such, a preferable statistic for use would be 

where the discrepancy ratio →  1, i.e. the effect of memory has been removed 

from the system. Figure 4.3 clearly shows that this over-writing of memory is 

viable at higher discharges where full mobility of the sediment bed is found. 

Thus, the overall summary of findings from bedload versus discharge 

relationships are in line with those of Ockelford (2011) in that: (i) memory 

effects indicate up to an 80% reduction in bedload; (ii) there is, generally, a 

hierarchical reduction in bedload with increasing memory duration;(iii) a 

discrepancy ratio of 2-3 fold is found in the present data set, particularly in 

higher duration memory experiments. These findings suggest that memory is 

significant in determining entrainment/bedload. That said, all the findings are 

dependent on the use of discharge relationships which are case study specific to 

the flume used in the experiments, hence refinement of analysis to a more 

generally applicable variable is required (Section 4.5.3). Whilst the functions in 

Eq. 4.1-4.2 can be useful tools for quick assessment of whether a sediment load 

has memory, Section 4.5.4 undertakes similar analysis of these parameters in 

their non-dimensionalised form to develop generic functions appropriate to 

wider use. 

4.5.2 Integrated bedload transport 

Given that Table 4.3 provides only a snapshot quantitative analysis for a given 

discharge step and that the discrepancy ratio ( 

Figure 4.2) requires a best-fit line estimate, the data were reprocessed for 

integrated sediment volumes (∑ bq ) that quantify the effect of memory as an 

overall effect over the volumetric transport bq . As such, cumulative sediment 

volume around incipient motion has been derived by summing up the sediment 

volume collected over all the steps of discharge (Figure 4.3). Further to this, a 

derivate variable, which is rate of change in sediment load between two steps 

(Figure 4.4), has been calculated from the cumulative load. Baseline and 

memory data have been compared, as in Section 4.5.1. Thus, Figure 4.3 
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quantifies the difference in absolute magnitude of cumulative sediment volume 

between baseline and memory experiments, whereas, Figure 4.4 interprets the 

rate of change data in a manner appropriate to understanding if memory effects 

are gradually lost during rising bedload transport rate or catastrophically 

‘washed out’ at certain trigger points associated with a particular discharge 

step. Thus, importantly, the data are looking at the maximum and minimum 

rates of change for memory experiments. 

From Figure 4.3, it is evident that SH_240 transports the least volume of 

sediment; over the stability test the cumulative sediment volume for the 

baseline run is 1.44x10-2 m2 yet reduces to only 8.08x10-3 m2 following SH_240. 

This leads to ~40% reduction in sediment volume due to memory effects. Similar 

comparison of the cumulative sediment from SH_120 indicates a 24% reduction in 

sediment volume, compared with the baseline experiment. Yet, these 

percentage reductions are much smaller for the shorter memory experiments 

(SH_10, 30, 60), primarily due the filtering effect of summing of both positive 

and negative effects over time from a discrete point. Nevertheless, the 

cumulative graphs (Figure 4.3) can demonstrate the memory effect attractively. 
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Figure 4.3: Integrated 

sediment volume from 

baseline and memory 

experiments (10, 30, 60, 

120 and 240 minutes 

memory duration). 
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Whilst Figure 4.3 appears to indicate that bedload response to memory is 

gradual, progressive and non-linear, it is difficult to discern whether the 

response is more pronounced at specific flow steps so as to infer any trigger 

point of memory being erased. Thus, Figure 4.4 is meritable for more detailed 

analysis. From Figure 4.4 it is clear that within the first 30 minutes of rising flow 

stage, sediment transport is low for all experiments and memory effects, whilst 

present, do not appear to strongly influence the absolute rate of change of 

bedload. Yet, between 30-60minutes of all experiments, memory experiments 

show a far smaller rate of change than baseline runs, i.e., larger memory effect. 

For SH_10, SH_120, SH_240 runs the magnitude of the reduced rate of change 

increases until it most differs from baseline at 40 minutes (flow step 

Q=17.50l/s); this indicates a strengthening of memory effect on the bedload 

measured up until this point in the flow test. Following the subsequent flow 

step, the rate of change slowly recovers to equal that of the baseline at the 

highest  

 

 
Figure 4.4: Progressive development of memory in flume bed in baseline and 

memory stress experiment shown in incremental change in bedload transport 

rate; smaller incremental rate means less transport of volume between 

successive time step. 
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discharges at the end of the flow test. Thus, there is some implication here that 

Q=17.75 l/s at 56 minutes acts as a trigger point in starting to over-write 

memory effects, thus recovering the bed to baseline equivalence. In 

explanation, this may correlate to a specific coarser fraction of the bed now 

being mobilised under the elevated discharges. If it is therefore likely that the 

stability of a particular fraction may be responsible for memory effects, 

fractional bedload analysis (Section 4.6) is required. 

Also, it is worth noting that whilst SH_10 exhibits an equivalent trigger point at 

56 minutes, it tends more to the baseline rate of change throughout 0-40 

minutes; this may signify that very short memory durations (10 minutes) lead to 

an incomplete process of memory-related stabilisation. Whether this is 

particular fractions of the bed, or spatial regions of the bed is unclear. One 

thought is that the data in Figure 4.4 indicates behaviour similar to the baseline 

experiment occurring early in the flow test when low flows were applied, thus it 

is possible that it is the finer fractions which have failed to gain memory effects 

and are therefore lost at the same rate as baseline; this is something that will be 

further examined by fractional bedload analysis (Section 4.6). 

In summary of the findings of the cumulative bedload analysis section it is 

highlighted that: (i) memory effects indicate up to a 40% reduction in cumulative 

bedload volume; this indicates that memory effect is a progressive non-linear 

process varying over time with variation of discharge; (ii) memory effects persist 

and strengthen up to a discharge of Q=17.5 l/s (56 minutes); (iii) for all runs, a 

discharge of Q=17.5 l/s (56 minutes) appears to act as a ‘trigger point’ for the 

progressive erasing of memory, suggesting that this discharge may be responsible 

for a particular critical fraction of the bed mobilising; (iv) data suggest that the 

generation of memory effects is incomplete after 10 minutes of sub-threshold 

flow. Thus, there appears scope for fractional bedload analysis (Section 4.6) to 

further investigate the reasons for memory effect generation and erosion. 

4.5.3 Bedload vs. boundary shear stress relationships 

A more generically applicable approach to memory data sets is to present 

bedload transport as a function of bed shear stress instead of discharge (Section 

4.5.1). Bed shear stress has been calculated from depth-slope product (Eq. 4.3) 
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and the applicability, advantage and limitation of this method were discussed in 

Chapter 2. 

SgRb      Equation 4.3   

 = boundary shear stress, Rb = hydraulic radius (has been corrected for wall 

effect while used in calculation); S= flume bed/water surface slope (for uniform 

flow). The correction of the hydraulic radius has been done for glass walls in this 

relatively less narrower flume being significantly smoother than a gravel bed; 

such differential friction to flow requires correction using Manning’s-Strickler’s 

roughness formula (Strickler, 1923) in the same manner as Shvidchenko (2000) 

and Ockelford (2011). Sidewall correction procedure is based on the Manning’s 

roughness coefficients of the bed (nb) and walls (nw). The principal assumption is 

that the cross-sectional water area can be divided into bed area and wall area 

having the same energy gradient (equal to the bed slope) and mean flow velocity 

U of the total section. Applying the Manning’s formula nSRU
b

/2/13/2  to each 

part of the water area, we obtain 
3/2)/( nnRR bb   (also see Wu, 2007 for this 

derivation, and also chapter 6 in this thesis), and 

3/23/25.15.1 /)( PnPnPn wwbb  . Here R is the hydraulic radius of the total area, 

n is the equivalent Manning’s roughness coefficient, P is the wetted perimeter of 

the complete section, Pb, and Pw are the wetted perimeters associated with the 

bed and walls, respectively. The roughness of the bed is expressed by the 

Strickler formula nb = 0.048D1/6 (Carson and Griffiths 1987) and roughness of 

glass wall, nw = 0.010 (Chow, 1959). The above wall corrected Rb then have been 

used in Eq. 4.3 to calculate the shear stress.     

Using this approach, data for all experiments are presented in Figure 4.5. 

Predictably, the relationship of shear stress estimates from flow depth 

culminates in similarity of important trends equivalent to those of Section 4.5.1, 

due to discharge also having relationship to flow depth. For the sake of brevity, 

these overall trends are not restated here; instead, focus is placed on the 

magnitude of change to shear stress relationships with bedload. The memory 

effect both delays transport and requires a higher shear stress to transport the 

same load as in the baseline condition; this delay is generally up to the shear 
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stress 3.58N/m2, at which memory gradually weakens (Figure 4.5). Detailed 

analysis of individual data points on Figure 4.5 shows that transporting the same 

load in memory experiments will require up to 20% more shear stress than 

baseline. Given that such large effects are found predominantly at the lower 

discharges applied in the flow test, a more representative comparison of shear 

stress from baseline and memory experiments is presented in Table 4.4. Here 

mean sediment load has been calculated up to the discharge steps at which 

memory effect starts to diminish, i.e, up to Q=17.5 l/s. Then, corresponding to 

that reference transport line (mean load, bq  = 3.74x10-6 m2/s), shear stress has 

been derived from the x-axis for each condition of the memory experiment and 

for baseline. The derived shear stress then shows “the increment of shear 

stress”, following the memory condition, which is required to transport the same 

volume of load. This comparison also shows that up to 11 % more shear stress 

(Table 4.4) will be required in SH_240 to transport the same load (3.74x10-6 

m2/s) as transported in the baseline; this increment in shear stress may be 

considered similar to the results obtained by Ockelford (2011), who found 8% 

increment in her unimodal sediment bed for her 60 minute memory time scale. 

Table 4.4: Unimodal sediment experiments – different magnitude of shear stress 

for transporting same sediment load in baseline and memory experiment 

Experiment 
Identification Code 

Mean sediment load (m2/s): 3.74x10-6
, 

see note below  

Shear stress (N/m2) % increase in shear stress 

UM_B_0 3.23 - 

UM_SH_10 3.40 5 

UM_SH_30 3.45 7 

UM_SH_60 3.32 3 

UM_SH_120 3.48 8 

UM_SH_240 3.6 11 

Note: 
i) In column 2, these are the different magnitudes of shear stress both from 

baseline and memory experiments, but transporting the same magnitude of 

sediment, and thus showing that higher shear stress is needed to transport 

same magnitude of sediment relative to the baseline 

ii) the sediment load consider here is the mean load over the steps of 

discharges from baseline experiment; then corresponding to that magnitude 

line, the shear stress has been calculated from the x-axis of the above graph  
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It should be emphasised here the significance of such enhancement in shear 

stress on bedload transport, which is extremely non-linear (sensitive) at low 

shear stress. For the range of shear stress between 2.3 N/m2 and 3.8 N/m2 

(which is an increase of 1.6 fold), the bedload transport varied in the order of 

10-3 (from 1x10-8 m2/s to 1x10-5 m2/s, see Figure 4.5). A similar degree of non-

linearity of bedload transport was also demonstrated by other researchers; e.g., 

Taylor and Vanoni (1972) showed that a 10% increase in shear stress at low 

transport/shear stress can increase bedload by 100%. As shear stress data are 

seemingly in line with at least the order of magnitude of change from research 

Figure 4.5: Bed shear stress 

from baseline and stress 

history experiments (10, 30, 

60, 120 and 240 minutes 

memory duration). 
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by Ockelford (2011), it appears a more applicable and transferrable variable 

(than bedload vs. discharge rating curves as in Section 4.5.1) to employ for 

generic memory correction factor development (Section 4.5.4). 

Thus, in summary of this section: (i) bedload vs. shear stress relationships with 

memory demonstrate trend equivalence to those of bedload vs. discharge 

relationships; (ii) data indicate up to an 11% increase in shear stress due to 

memory; (iii) there is clear non-linearity in response of shear stress to memory, 

in that the effect is most pronounced at lower shear stresses applied; (iv) the 

order of magnitude of memory effect on shear stress is similar to that noted in 

similar studies by Haynes and Pender (2007) and Ockelford (2011); v) sediment 

transport response was extremely non-linear at low transport rates, and thus 

memory effects producing an 11% increment in shear stress show significantly 

greater sensitivity in bedload data, with about 80% decrease in transport (i.e., 

nearly about two order of magnitude). 

4.5.4 Non-dimensional analysis of sediment transport 
relationships 

The following section further analyses raw data from Sections 4.5.1-4.5.3 using 

the non-dimensional approaches of Shields parameter and reference transport 

rate, as accepted and widely employed by sediment transport researchers, 

modellers and practitioners. Non-dimensionalisation of the parameters makes 

the data set generic, to compare and contrast them with the same parameters 

from previous research. Whilst the general theory is provided in Chapter 2, the 

specific calculations and derived data are provided below. The intention of this 

Section is to calculate non-dimensional sediment rating equations as appropriate 

to determining a parameter or variable responsive to and/or inclusive of 

recognising a memory function. This is entirely novel, as no previous study has 

attempted any mathematical description of memory effects on sediment 

entrainment or transport. 

The shear stress approach (Chapter 2) is adopted herein to determine the 

incipient motion using Eq. 2.4. As recognised by Buffington and Montgomery 

(1997), the most reliable approach of parameter calculation is via the collection 

of sediment load under different fluid stresses, and then to determine the non-
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dimensional shear stress *
c (Eq. 2.7) corresponding to a certain reference 

transport, (i.e., a non-dimensional parameter represented by 
*q ). There are 

several definitions of reference transport (Chapter 2), of which three common 

equations have been used to calculate the corresponding 
*
50c in the present 

thesis; these are: Parker et al. (1982a), Shvidchenko et al. (2001), and Shields 

(1936, from Taylor and Vanoni 1972).  The rationale for selection of these 

specific definitions is as follows: 

 Parker et al. (1982a) stems from a large field data set, encompassing 

bedload vs. shear stress relationships at low shear stresses close to 

incipient motion. His work is specific to graded beds by use of unimodal 

gravel bed data from Oak Creek (Milhous, 1973). This is, arguably the 

most commonly referred to reference transport approach, implicit in most 

widely used sediment transport models.  

 Shvidchenko et al. (2001) stems from a large data set developed from only 

flume-based data. The flume dimensions and unimodal grade are 

equivalent to those used in the present thesis. Both general and incipient 

motion relationships are developed and there is analysis of data fit to 

wider field data. Whilst likely of most similarity to the present data set, 

these equations have received less attention by practitioners. 

 Shields’ (1936, from Taylor and Vanoni, 1972) reference transport to 

entrainment threshold was first developed as the Shields curve using 

scattered experimentally-derived data points. This large flume data set 

was of assumed near-uniform sediments of grain size ranging from fine 

sand to gravel. The trendlines of non-dimensional transport on the Shields 

curve are the most well-known of all reference transport curves and 

typically used to benchmark and discuss more recent alternative 

approaches. 

By use of the above methods, the non-dimensional transport (
*q ) has been 

derived according to Eq. 2.8-9 for baseline and memory stress experiments 
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(Figure 4.6 and Figure 4.7 and Table 4.5). The values of the reference transports 

(
*q ) for the above scientists are: 

 Parker et al. (1982a) reference transport, 
*q =1x10-5 (for W* = 0.002, 

where 
2/.3*** )/(qW  ). This is the lowest reference transport value of all 

compared and contrasted values. 

 Shvidchenko et al. (2001) reference value, 
*q =1x10-4; which was 

developed specific to minimum measurable sediment transport associated 

with entrainment threshold. 

 Shields’ reference transport (from Taylor and Vanoni, 1972), 
*q = 1x10-2 

(average value), although Shields’ transport generally spans between 

1x10-1 and 1x10-4 to cover the scatter of
*

50c of Shields data points. 

Given that the reference transport relationships described above represent 

transport at different levels of sediment motion, the derived Shields parameters 

(
*
50c ) are accordingly different at 0.026, 0.033 and 0.051 respectively in order 

of the above three reference transport conditions. Taking baseline data (which 

by ignoring memory effects would assume equivalence of data to previous 

studies) a comparison of the derived 
*
50c from the present thesis dataset (Table 

4.5) with the theoretical values of previous studies is possible. At Reynolds 

numbers between 200 and 300 (approximately representative of flow stage of 

7.5 l/s of the present study), baseline  compares well with that of Parker et al. 

(0.029); the result also compares well with Shvidchenko (0.034) at a 

representative flow stage of approximately 11 l/s. Thus, the ratio of the 
*
50c

from the present baseline with that of Parker et al. is 1.11, and that with 

Shvidchenko et al. is 1.03. Given that Parker et al. value is based on their 

empirical relation (Eq. 2.24), and Shvidchenko et al. formed a relation of their 

reference shear stress with that of the Parker et al. (Eq. 10 in Shvidchenko et 

al., 2001), it is neither expected nor practical that results from present research 

will be identical to them. Given the degree of non-linearity of sediment load at 

low flow, the amplification ratio of 1.11 (with Parker et al.) and 1.03 (with 
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Shvidchenko et al.) should be considered very satisfactory from the present 

study. Further, Table 4.5 shows that the expectedly higher values of the Shields 

reference transport indicate that, for the same Reynolds number, the Shields 

value  is 0.045, whereas in the present baseline this value is 0.051. As the finer 

methodological detail of Shields’ experiments is vague, the discrepancy with the 

data of the present thesis seems reasonable. Thus, overall from Table 4.5, it is 

concluded that the baseline experiment is generally acceptable as a satisfactory 

dataset when compared with others. 

Table 4.5: Unimodal sediment mixtures: entrainment threshold of median grain 

size of baseline and memory experiment 

Experiment 
Identification Code 

Shields parameter according to reference transports 
criteria of: 

Parker et al. 
(1982a):  

*q =1x10-5 

Shvidchenko et 
al. (2001):  

*q =1x10-4 

Shields (1936):  

*q  =1x10-2 

*

50c (-) 
*

50c (-) 
*

50c  (-) 

UM_B_0 0.026 0.033 0.051 

UM_SH_10 0.03 0.034 0.056 

UM_SH_30 0.03 0.035 0.055 

UM_SH_60 0.031 0.033 0.055 

UM_SH_120 0.031 0.035 0.055 

UM_SH_240 0.031 0.036 0.059 

Note:  
Minor extrapolation of rating curve needed in case of Shields and Parker et al. 
reference number; Parker et al. reference transport value of comparison is 
0.029; Shvidchenko et al. is 0.034 and Shields’ is 0.045.  

 

Although in the above tabular data, the memory effect stress effects are obvious 

in the entrainment threshold in each of the reference transport criteria,  the 

intention here is not to quantify the increment of entrainment threshold for a 

discrete data point.  Rather, memory effect appears more appropriately 

described and assessed by an overall mean value, and cumulative value over the 

low flow ranges, and can better be described by trendlines (Figure 4.2 to Figure 

4.4) and empirical relations (Eq 4.5-10); these are able to describe the growth 

and decay of memory effects. Further validation of the baseline dataset by non-

dimensional transport has, therefore, been carried out by forming mathematical 

relations as power functions (Eq. 4.5 and Figure 4.6) and by comparing them 
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with some widely used bedload relations, including Meyer-Peter and Muller 

(MPM, 1948), Einstein (1950), Paintal (1971), Luque and van Beek (1976) and 

data set of Casey (1935a, b) and USWES (1935). In justification, the relations of 

MPM, Einstein, Casey and USWES were formed for higher transport rates and are 

mainly representative of gravel beds, although for representative size; as these 

are commonly used in hydraulic-sediment models, they are presented in Figure 

4.6 to debate their (in)appropriateness for use at low transport (as in present 

study). On the other hand, Paintal (gravel bed) and Luque’s (sand and gravel) 

relationships were developed at similar low transports to the present study; 

these are therefore directly comparable with the present study dataset. Further 

rationale is discussed in Section 4.7. 

 

It is clear from Figure 4.6 that the baseline data of the present study plot at 

slightly lower 
* values than previous studies; this is likely due to meticulous 

set-up, fine control and pedantic removal of memory effects from the 

experiments from water working prior to entrainment of sediment (compared 

with the previous more general laboratory and field tests). Specifically, baseline 

data plot close to Casey (1935), Paintal (1971) and Luque and van Beek (1976); 

this is expected for the low shear stress data of Luque (2.5 <
*
50

* / c ) and 

Paintal (0.007 <
* < 0.06) , but similarity to Casey is surprising. Casey used the 

same flume as Shields (1936), i.e. a non-re-circulating 0.3m wide flume, with 

sediment fed by hand and indication that his water working was much less than 

Shields and many later standard research set-ups; as such, Casey’s Shields 

number was low (Buffington, 1999) and he recorded transport at these much 

lower shear stresses, which hold equivalence to the present thesis. 



  133 
 

133 
 

 

 

Figure 4.6: Baseline experiments: non-dimensional transport versus non-

dimensional bed shear stress from this research, and from wider literature. 

 

Of the three studies of similarity to baseline data, it is elected to compare the 

data with Paintal (1971). This is because Paintal’s relation is an extensive data 

set, widely recognised in sediment research/modelling and developed with data 

from gravel beds of size range similar to the present thesis, both uniform and 

graded (D= 2.5 to 22.2 mm, g=1.7 to 2.7). Importantly, Paintal had most of his 

data at very low transport rates as of interest to the present study on 

entrainment threshold deviations due to memory. His sediment relation is valid 

for 0.007 > 
* < 0.060; this range contains all values of the present study as 

derived in Table 4.5 and appears an appropriate comparison data set. Paintal’s 

(1971) function at low transport is shown in Eq. 4.4 and the equivalent power 
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relation of the baseline dataset from the present research is shown in Eq. 4.5; 

there is clear similarity in the exponent (16.2 in the present research) which 

provides confidence in the use of Paintal’s relationship form to describe the 

present data set. 

0.16*18* )(105.6 xq      Equation 4.4 

 

Given that the above relationships for baseline data appear comparable to 

external studies, confidence is provided in this approach. Thus, its application 

and potential for adaptation to memory experiments is explored in the section 

below. Using the form of Paintal’s power relation, a family of bedload functions 

in the form of 
bCq )(~ **  (as per the derived baseline relationship, Eq. 4.5) 

have been developed accounting for the effect of memory. These transport 

relations are shown in Table 4.6; the magnitude of both the exponent n and 

coefficient A show very systematic and hierarchical trends clearly associated 

with memory effects. 

Table 4.6: Sediment transport functions proposed for low transports around 

incipient motion in memory stress condition 

Experimental 
condition 

 Memory stress 
duration (min) 

Sediment rating Equation: 
*q  ~ C

b)( *  

UM_B_0 0 2.16*18* )(105.6 xq            Equation 4.5 

UM_SH_10 10 3.17*24* )(101 xq              Equation 4.6 

UM_SH_30 30 9.17*25* )(101 xq              Equation 4.7 

UM_SH_60 60 9.16*26* )(106 xq              Equation 4.8 

UM_SH_120 120 0.19*26* )(102 xq                Equation 4.9 

UM_SH_240 240 5.21*30* )(102 xq                Equation 4.10 

 
 

From the above Table 4.6, there is indication that longer memory durations of 

the sub-threshold applied memory stress leads to both the exponent and 

coefficient increasing systematically. From a baseline exponent of 16.2 

increasing the memory duration to SH_240 causes the exponent to rise to a value 

of 21.5. Thus, there will be less transport ( *q ) following applied memory than 

for the same value of non-dimensional shear stress (Figure 4.7) in a baseline run. 

The only exception to the hierarchical rise is SH_60 minute, which though shows 
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the effect of memory (i.e. the exponent of 16.9 > baseline (16.2)) appears to 

suffer from a significantly different coefficient value. To elucidate further, the 

growth curves are graphically shown in Figure 4.7; this clearly permits 

comparison of strengthening memory effects as memory duration increases 

through SH_10, 30 and 120. Whilst these 3 runs indicate similarity of the 

entrainment condition (i.e. the lowest 
*q  and 

* values have equivalence), 

SH_240 illustrates significant negative offset from the other plotted data, 

showing far lower bedload transport being recorded at the lowest 
*  value of 

incipient motion than in other experiments. Thus, it appears that for this 

particular run, memory effects are stronger both at incipient motion and during 

low sediment transporting conditions. 

 
Figure 4.7: Family of rating curves of non-dimensional bed shear stress versus 

non-dimensional transports from baseline experiment and memory conditions. 

For a non-dimensional transport of 
*q =1x10-4, the requirement of increased non-

dimensional shear stress due to memory is shown by drawing perpendicular lines 

(dashed lines) on the abscissa corresponding to same 
*q . Note: SH_60 is the 

outlier in the trend as seen in the exponent and coefficient from Table 4.6 lying 
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outwith the hierarchical development of mathematical memory effects; however 

given the sensitivity of bedload in low flows in natural rivers (Recking 2010), this 

trend difference is not surprising. 

 

Overall, the findings of non-dimensional analysis are that: i) the dimensionless 

parameter for transport and shear stress at low transport from the present study 

align only with similar studies specific to near entrainment conditions (e.g., 

Paintal); (ii) it is inappropriate to use alternative widely used bedload functions 

developed at higher transport conditions (e.g., Meyer-Peter and Muller) for 

describing near entrainment or memory relations; iii) it is unrepresentative to 

quantify the progressive, non-linear development of memory effects against a 

single datum point, fixed constant or specific reference transport value (e.g., 

Parker, Shvidchenko or Shields), iv) memory effects are best expressed by a 

reference transport relation specific to low transport conditions where the rising 

exponent and coefficient reflect the role of memory; v) use of Paintal’s relation 

for the present data set provides the first ever mathematical descriptor for 

memory effects in a manner highly appropriate for future development aimed at 

generic inclusion into widely used sediment transport models. 

4.6 Fractional transport 

Previous researches (Haynes and Pender, 2007; Saadi, 2008 and Ockelford 2011) 

have proposed that memory effects are dependent on the disproportionate 

response of finer material to local or in-situ rearrangement into more stable 

configurations (Haynes and Pender, 2007; Saadi, 2008 and Ockelford 2011). Finer 

grain classes smaller than the median size is thought to fill the surface pores, 

increasing the hiding effects so as to generate a better angle of repose for those 

size classes. Specific to memory, only two previous papers focus on graded beds 

in a manner appropriate to determining such fractional bed response: Haynes 

and Pender (2007) analyse fractional bedload composition over their ‘stability 

test’, yet as their flow stage is of constant discharge above entrainment 

threshold, it was noted that selective entrainment and first fractional response 

was masked by the methodological set-up. Ockelford (2011) later overcame this 

issue via use of an incremental flow step test (similar to the present study) to 

indicate selectivity of transports; however, the ability of her dataset to clearly 

distinguish the size selectivity for finer fractions was limited by the fact that her 
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experiment finished at the entrainment threshold of the median size D50, rather 

than consider the full flow range of size-entrainment relationships. The present 

data set was therefore designed with appropriate advantages such that the 

incremental increase in the flow steps was continued up to the ratio of

2*
50

* c , as specific to examining size selectivity more fully, including its 

response to memory.  From the results of fractional transport and size selective 

transport, the following key question has been addressed: Given size-selectivity 

of entrainment, can it be confirmed that the finer fractions show a 

disproportionate response to memory? 

Firstly, it is important to acknowledge the particle mechanics of hiding effects, 

in line with brief examples of trends towards entrainment via equal mobility 

(e.g., Parker et al., 1982a) versus those via selective entrainment (e.g., Wilcock 

and Southard, 1989).  In short, there are two limiting scenarios which can 

explain the significance of hiding in sediment transport: (i) the absence of 

hiding, known as size independence; (ii) equal mobility of all sizes within a 

mixture. Taking the former process of independence each grain class will have 

its own absolute shear stress such that smaller particle requires smaller absolute 

shear stress to move, and thus there will be more fractional load of the smaller 

classes (qi) than the median (and larger) classes in the measured fractional load 

than in original bulk mix, assuming the system is not supply-limited. 

Alternatively, taking the latter case of equal mobility for initiation of motion, 

every particle will move at a single absolute shear stress implying that qi in the 

measured load for each class will be the same as in the original mix. 

The most common way to examine the balance of processes is via the 

normalisation of fractional bedload transport data. Transport for each grain class 

has been normalised by dividing the transport for the class by its fraction in the 

original mix; i.e., biibi qFpq )/( , where biq  = fractional transports for ith grain 

class, pi is fraction of the ith grain class, Fi is the fraction in the bulk mix, and bq  

is total transport. Thus, in the first limiting case of independence, the ratio of 

pi/Fi will be > 1 for the grain classes Di/D50 < 1, and pi/Fi < 1 for grain classes 

greater than Di/D50 >1. In the second limiting case of equal mobility, the ratio of 

pi/Fi will be = 1 irrespective of size class, and the condition of equal mobility for 
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pi/Fi=1 may hold true at and around entrainment threshold as long the extreme 

hiding effect of the finer particle is counterbalanced by the higher mass effect 

of the larger particle, such that both move at same shear stress, and this 

condition may hold true for several steps of shear stress instead of one specific 

shear stress. Relative size effect counteract the absolute size effect by 

decreasing the mobility of finer fractions and increasing the mobility of coarse 

fractions (Wilcock and Southard, 1988). Thus, if hiding functions exist, then finer 

fractions are sheltered from the larger fractions so as to require a higher shear 

stress to move and pi/Fi are expected to be less than <1 for the finer fractions 

(Di/D50 <1); the opposite is true for the larger fractions which are more exposed 

to flow to be entrained, i.e. normalised transport will increase (pi/Fi>1) for 

larger fraction (Di/D50 > 1) (Wilcock and Southard, 1988; also see Fig. 14-9B, MIT 

OpenCourseWare, chapter 14). Thus, the plotted curve will tend to an “n-shape” 

straddling the pi/Fi = 1 axis. This approach is commensurate with that of Haynes 

and Pender (2007). It should, however, be mentioned here that in case of size 

independence bias, normalised transport may decrease as size increases (see 

Fig. 14-9A, MIT OpenCourseWare, chapter 14). 

Whilst there is notable controversy about the practicality of equal mobility 

condition since it was introduced by Parker et al. (1982a), it is now widely 

accepted that hiding effects are generally present in graded beds, and data will 

lie somewhere between size independence and equal mobility. Typically the 

conclusion of Wilcock and Southard’s (1989) flume experiment in unimodal 

sediment is accepted, in that there is more bias towards the latter scenario 

(Parker et al., 1982a, ASCE, 2007) and it is this bias which helps underpin the 

common argument of considering D50 as a representative size class (as already 

have been discussed in previous sections) for transport relationships to be 

examined. Thus, the present Section uses this approach to examine the 

transport processes and bedload fractions affected by memory and to whether 

D50 can be considered representative for use in the power relations presented in 

previous section. 

Fractional transports from the present data set have been derived from the 

integrated mass transport (later converted to volumetric transport in all 

analysis); in short, this requires dry sieving of the total mass of load transported 
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over the stability test flow steps. The shape of the pi/Fi vs. Di/D50 plots is then 

examined to determine any influence of hiding and exposure effects and 

comparison is then made between baseline and memory experiments. For 

analysis, focus is placed upon the transport of the fractions finer than the 

median size (D50 = 4.8mm) of the mixture in line with previous memory 

experiments which hypothesised that these fractions dictated memory response.  

This data is therefore provided in Figure 4.8. This clearly shows an ‘n-shaped’ 

profile suggestive of hiding effects being present; end fractions are relatively 

immobile, and middle fractions are relatively mobile, as per the typical 

characteristic feature of transport in gravel bed mixtures (Wilcock and Southard, 

1989). The transport of the three finer grain classes (1.2mm, 1.7mm and 2.4mm) 

is significantly influenced, with pi/Fi ratios ranging from <0.01 to 0.5. Whilst the 

coarsest fraction (Di = 13.6mm) also indicates less mobility than expected, this 

outcome should be treated with caution as it may be a facet of the truncation of 

the flow steps at a discharge approximating to its independent entrainment 

threshold. The mid-size fractions (five grain classes) show bias towards equal 

mobility with a horizontal line nearer to 1, which is also characteristic feature of 

transport in graded sediment mixtures (Parker et al., 1982a; Wilcock and 

Southard, 1989). 
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Figure 4.8: Normalised fractional transport rates pi/Fi vs. relative grain size 

Di/D50 showing size selective transport for finer grain classes, equal mobility 

transport bias for middle part of the classes (in literature, equal mobility 

transport are also referred for some size classes in the mixture, see Wilcock and 

Southard, 1988, and MIT OpenCourseWare, Chapter 14). 

 

Also from Figure 4.8, it is clear that memory effect leads to more pronounced 

hiding effects and there is a clear hierarchical effect of memory on the transport 

of the finer classes. The SH_240 condition induces the greatest hiding effect on 

the finer fractions. Given the earlier analysis of total bedload transport (Sections 

4.5.1 and 4.5.2), it follows that the more pronounced hiding effects of the fines 

are likely responsible for the increased overall stability of the bed and reduced 

sediment transport. 

 

The logarithmic style of the commonly drawn Figure 4.8 masks easy 

interpretation and comparison of the memory induced changes on absolute 

magnitude and the percentage reduction of transport for each fraction relative 

to that of baseline data. Thus, Figure 4.9 (absolute magnitude for each fraction) 
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and Figure 4.10 (percentage reduction for each fraction) have been provided to 

aid quantitative comparison from baseline; threshold motion for each fraction is 

also presented in Table 4.7. Data in Figure 4.9 and Figure 4.10 show that SH_240 

shows the highest reduction in the transport of finer fractions, with the two 

finest fractions being most responsive with up to a 94% reduction. For SH_120, 

60 and 30, these percentage reductions are maximum of 70, 63 and 57 

respectively. Data also show that it is the finest or 2nd finest fractions, which are 

typically the most responsive, 30-94%; the only exception to this is results found 

in the SH_10 experiment where fines are not responsive to memory effect (as 

also been noted in previous sections (4.5.1 and 4.5.2 ). 

 

Table 4.7: Threshold shear stress for different size classes in baseline and 

memory experiment; however, as baseline and memory threshold are very 

similar, then the Figure does not show any sensitivity, thus not added 

  
Di(mm) 

  
Di/D50 

UM_Base UM_SH10 UM_SH30 UM_SH60 UM_SH120  UM_SH240 

*
ci  

*
ci  

*
ci  

*
ci  

*
ci   

*
ci  

1.2 0.25 0.088 0.115 0.118 0.111 0.118 0.118 

1.7 0.35 0.062 0.081 0.083 0.079 0.083 0.083 

2.4 0.50 0.044 0.058 0.060 0.056 0.060 0.059 

3.4 0.71 0.033 0.044 0.045 0.042 0.045 0.042 

4.8 1.00 0.026 0.034 0.035 0.033 0.035 0.030 

6.8 1.42 0.021 0.027 0.028 0.026 0.028 0.021 

9.6 2.00 0.017 0.022 0.023 0.022 0.023 0.015 

13.6 2.83 0.014 0.019 0.019 0.018 0.019 0.010 

 

 

Figure 4.10 indicates that the percentage reduction approximates to a constant 

(10-40%) for fractions equal to or larger than the median size i.e. Di/D50   1; as 

no hierarchical response to memory stress is found, this may support larger 

fraction bias towards equal mobility transport (Figure 4.8) and/or bias of manual 

screeding towards some degree of artificial hiding for the largest particles 

(removal or burial due to planar screeding process). 
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Figure 4.9: Fractional transports vs. relative particle size Di/D50 showing strong 

size selectivity in transporting sediment for finer grain classes. 

The trend in Figure 4.8 and 4.9 is further discussed here, which apparently may 

look surprising due to higher pi/Fi values for larger size classes in memory 

experiments than baseline. In Figure 4.9, absolute magnitude of fractional load 

for larger size classes (for Di/D50>1) is higher in baseline than in memory 

experiments; while pi/Fi values for those size classes in Figure 4.8 tend to show 

opposite trend for the memory results. This has been explained with examples; 

let us consider the largest size class (Di=13.6 mm; Di/D50=2.83 mm). 

 

i) pi (for 13.6mm class): ratio of qb (13.6mm) with the total bedload (qT).  

ii) Fractional load for 13.6mm is referred as qb_13.6; according to Figure 4.9, 

qb_13.6_baseline > qb13.6_memory 

iii)  In all memory experiments, total bedload (qT) is smaller than the baseline 

condition (see Table 4.3) 

iv) pi (for 13.6mm class) in memory= qb_13.6_memory / qT_memory 

v) pi (for 13.6mm class) in baseline= qb_13.6_baseline / qT_baseline 

Here, qb_13.6_memory < qb_13.6_baseline and qT_memory < qT_baseline. Thus, the pi value (s) 

for the larger size classes in memory experiments are the ratio of two smaller 

numbers (bedload) as in (iv), while pi value (s) for the baseline is the ratio of 

two larger numbers as in (v); thus in the pi/Fi plot in Figure 4.8, the pi for 
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memory can still lead to a larger value (opposite trend than in Figure 4.9) due to 

the reduced total load (qT_memory) in memory condition by the disproportionate 

response (due to memory) of other size classes; thus the opposite trend in p i/Fi 

plot for larger size classes in memory experiments (Figure 4.8) may not 

necessarily be an anomaly. More-over, as the vertical settlement of finer grains 

seems to make a stable bed for coarser particles as well by creating a better 

angle of repose (Fenton and Abbott, 1977), the reduced mobility of the larger 

grain classes in memory experiments are not surprising. 

 

Figure 4.10: Percent reduction in fractional transports vs. relative particle size 

Di/D50 (compared to baseline runs), showing strong size selectivity in 

transporting sediment for finer grain classes. 

 

In summary of this Section on fractional data: (i) hiding effects of fine fractions 

of the bed appear strongly influential upon the transport process of the 

unimodal bed; (ii) the finer fractions of the bed do illustrate a disproportionate 

response to memory effects, compared with other fractions (particularly the 

middle fractions and the median size class); (iii) there is clear hierarchical 

response of hiding effects, of the fines, to memory duration. Thus, by extending 
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the applied flow sequence to higher discharges, compared with previous studies, 

clearer evidence has been provided that corroborates earlier hypotheses that 

the fine fractions’ hiding effects appear the responsible process for memory 

effects to develop in a time-dependent manner. 

 

4.7 Discussion of results 

4.7.1 Influence of memory on bed shear stress and entrainment  

Shear stress is the more generic parameter used in sediment transport and for 

entrainment of sediment. The parameter from the present research, both in its 

dimensional and non-dimensional form has been compared and contrasted with 

the similar research on memory stress. Haynes and Pender (2007) and Ockelford 

(2011) carried out stress history experiments with unimodal mixtures of gravel 

with equivalent median size (D50=4.8mm), although Haynes had a higher bias 

towards the finest classes. Whilst subtle methodological differences in ‘stability 

test’ set-up have been alluded to earlier in this Chapter, it is also worth 

highlighting that both previous studies used a visual entrainment threshold 

assessment, based upon Yalin’s approach (Yalin, 1972). As this is distinctly 

different (see e.g., Buffington and Montgomery, 1997 for discussion) from the 

reference transport definition of threshold used in the present study, this 

further limits direct comparison of data. That said, the equivalence of their 

objectives, sediment, memory and flume equipment (0.3 m width) mean that 

discussion is warranted, in terms of confidence in the present data set and 

general explanation of processes responsible for memory effects. With regard to 

absolute critical shear stresses (baseline data), the present study notes values of 

2.00 N/m2, 2.55 N/m2 or 4.00N/m2 (calculated via Parker, Shvidchenko or 

Shields’ approaches respectively); the first two of these values approximate to 

the equivalent unimodal data of Ockelford (2.82 N/m2) and Haynes (2.91 N/m2) 

with subtle differences likely reflective of the different threshold definition 

applied (Haynes and Pender, 2007; Ockelford, 2011). Discrepancy with the 

Shields value is a facet of a higher reference transport value, more akin to 

general transport than incipient motion (Shvidchenko et al., 2001). To 

investigate this further, the dimensional value of the shear stress from Haynes 
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and Pender (2007) and Ockelford (2011) studies were post-processed and 

normalised to non-dimensional values (
*
50c ). The non-dimensional critical shear 

stress values of Ockelford (0.039) and Haynes and Pender (0.038) sit well below 

the Shields reference transport of the present study (0.051), Table 4.8; this 

outcome is expected, as Buffington and Montgomery (1997) noted that reference 

transport approach entrainment value from historical researchers was biased 

towards Shields’ work and threshold values sit well above those calculated from 

visual approaches. Thus, overall baseline data from this thesis appears generally 

consistent with previous flume studies simulating near-threshold flows over 

unimodal sediments. 

 

Table 4.8: Shields number from indirectly comparable memory studies by 

previous researchers 

Researcher 
Median 
Grain size 
D50 (mm) 

Flume 
width (m) 

Flume 
gradient 

Baseline: 

*
50c  

*eR  

Approach 
of 
calculating 
threshold 
shear 
stress 

Ockelford 
(2011) 

4.8 1.8 0.005 0.027 250 
Yalin’s visual 
approach 

Ockelford 
(2011) 

4.8 0.3 0.005 0.039 260 
Yalin’s visual 
approach 

Haynes and 
Pender 
(2007) 

4.8 0.3 0.007 0.038 259 
Yalin’s visual 
approach 

This study 4.8 0.3 0.005 

0.026 175-297 
Parker ref. 
transport 

0.033 175-297 
Shvidchenko 
ref. transport 

0.051 175-297 
Shields ref. 
transport 
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Although a range of uncertainties exist within and between existing memory 

data sets, it is fair to consider that when results from a single investigator are 

presented in relative terms, the influence of uncertainties diminishes. Therefore 

comparison of relative results is more worthy than review of absolute values. As 

the incremental stability test of Ockelford is of closest equivalence to the 

present thesis methodology, it is notable that her memory experiment noted ~ 

8% increase in shear stress (absolute magnitude) at SH_60. For identical memory 

duration, the present study found this increase to be only 3%; however, the 

SH_60 datum is clearly noted as an outlier to the overall trend of Table 4.4 in 

that SH_30 and 120 minute data indicate a 7% and 8% memory effect 

respectively. Thus, it appears that both studies do show similarity in the order of 

magnitude of memory response (Figure 4.11) and confidence is afforded to the 

more advanced analysis into non-dimensional and mathematical model 

development undertaken within the present thesis. 

 

 

Figure 4.11: Response of memory stress of varying time scales on sediment’s 

threshold motion in unimodal sediment mixture. 

Results presented above are from limited number of memory studies, yet 

showing general similarity on the trend (Table 4.8 and Figure 4.11). Memory 

stress is a time scale of sub-threshold stress which leads to development of 

several key processes such as increasing size selective transport, vertical and 
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horizontal winnowing of the fines through particle oscillation and preferential 

entrainment of the smaller particles (Saadi, 2002; Haynes and Pender, 2007; 

Saadi, 2008; Ockelford, 2011, and the present thesis); winnowing of the fines 

may lead to surface coarsening of the bed towards development of mobile 

armouring. Ockelford and Haynes (2013), due to memory stress, observed 

changes in local bed structure, particle re-arrangement, and spatial 

heterogeneity of sediment bed packing characterised by increasing vertical and 

horizontal roughness. Similar effect due to water working, not necessarily and 

explicitly from water-working by sub-threshold stress,  also changes entrainment 

threshold due to development of stone cells and ring, armouring (mobile and 

static), changes in friction angle, changes in hiding and exposure, bio-

stabilisation etc. Many past researches involved prolonged period of water 

working (e. g., Shields, 1936, and Church et al., 1998), but did not partition 

their findings, such as how much effect was attributed from sub-threshold 

memory stress alone.  Many of such water working studies (e.g., Komar and Li, 

1986; Kirchner et al., 1990; Church et al., 1998) might well have implicitly 

included the effect of memory of sub-threshold stress; for example, Church et 

al. (1998) conducted long hours (upto 100 hours) of flume experiment in cobble –

gravel bed (Reynolds number range 100 to 1600, i.e., mainly gravel bed rivers); 

they noted development of stone cells in parallel to armouring of bed and 

observed that the joint effect of armouring and stone cells can increase 

entrainment by 2-fold, and sediment load decreased by the order of 103. This 

impact of this water working not only happened at *
50

* / c  <1; this also 

happened for the condition *
50

* / c > 1.  Fenton and Abbott (1977) noted an 

order of magnitude of increase of threshold shear stress due to changes in 

friction angle from water working. Several such effects were quantified in 

Section 2.5.4, and thus not repeated here. Vignaga et al. (2011) and Vignaga 

(2012) studies biostabilisation of sand-gravel bed, and observed 9-150% increase 

of threshold shear stress relative to abiotic bed. The effect of water working on 

entrainment threshold is the key parameter in sediment transport management, 

and thus partitioning the effect of memory stress from other water working, due 

to individual or collective processes development, will benefit the practitioners 

in using the appropriate parameter, rather than lumped parameters in 

prediction and management of sediment transport. This implication is discussed 
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in the follow-up sections in relation to bedload transport formulae, river flow 

regime, and areas of application, particularly in gravel bed streams. 

 

4.7.2 Role of memory on bedload transport and river bed stability 

In a similar manner, comparison of previous memory studies can be made in 

terms of bedload data. Bedload transport is directly measurable and exhibits a 

disproportionately high response to memory effects (compared with shear 

stress). In short, Ockelford (2011), Haynes and Pender (2007) and the present 

study have demonstrated that memory reduces the transporting ability of the 

flow. The present thesis notes a reduction of bedload transport by 40, 63, 44, 70 

and 80% for memory time scales 10, 30, 60, 120 and 240 minutes by applying a 

sub-threshold stress, 60% of 
*
50c  (Table 4.3, Figure 4.12); Ockelford observed 

90% reduction in her unimodal mixtures by applying a sub-threshold stress, 50% 

of 
*
50c  for memory time scale of 60 minutes. Subtle differences between the 

two studies are likely due to the longer pre-experiment ‘bedding-in’ time (30 

minutes) applied by Ockelford, compared with the 3 minute period employed 

herein; in explanation, whilst bedding in flow is of extremely low discharge and 

applied shear stress, it does constitute a small component of memory and is 

likely able to contribute to enhanced bed stability in its own right. Similarly, 

comparison with Haynes and Pender (2007) shows their data to have a 47.9% 

reduction in sediment load, but in a much longer memory time scale of 5760 

minutes using a sub-threshold stress, 53% of 
*
50c . This is distinctly less than the 

240 minutes scale of the present thesis. In justification, this is reasonably 

attributed to Haynes and Pender’s use of a constant high discharge stability test 

which likely led to a more ‘catastrophic’ failure of the bed tending to equal 

mobility transport bias, hence loss of subtle memory signals more notable at 

lower shear stresses with selective entrainment bias. Once again, when taken 

overall, it does appear that memory effects on subsequent bedload are 

significant and data from the present thesis is in line with those published by 

others, given the degree of extreme non-linearity of a bed’s response at low 

flows (See Eq. 4.5 to 4.10; and Paintal, 1971; Parker et al., 1982a, and 

Shvidchenko et al., 2001) and strong fluctuation of turbulent eddies at low flows 

(Zanke, 2003). 
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Importantly, in considering memory effects it has been found that bedloads at 

low transport rates were extremely non-linear in their response to applied shear 

stresses. Whilst the implications for generic, non-dimensional mathematical 

modelling of memory effects are discussed later (Section 4.7.5), it is worth 

noting that similar non-linearity has been found by other researchers (Paintal, 

1971; Taylor and Vanoni, 1972, and Parker, 1990a). Non-dimensional transport in 

non-memoried bed varies with a 16.2 power of the bed shear stress in the 

present thesis (Eq. 4.5); this degree of non-linearity is similar to Paintal’s 

exponent of 16, Taylor and Vanoni’s of 17.5, and Parker’s of 15.7. Specific to 

memory hierarchy, comparison of such non-linearity to previous memory studies 

(Haynes or Ockelford) is not possible due to limitations in their bedload 

sampling. However, relevance to other studies is worth discussing in terms of the 

non-linearity of the memory effect itself. Previous studies have assumed that 

memory effects tend to a constant after long memory durations. Haynes and 

Pender (2007) intimate a logarithmic relationship between memory duration and 

bedload transport tending towards a constant at memory timeframes > 24 hours; 

this stems directly from long-memory experiments (up to 4 days). Ockelford 

(2011) rejects the logarithmic relationship of Haynes and Pender, noting that 

their relationship implicitly precludes tendency towards a constant, instead 

favouring a bounded power law relationship; however, her data set memory 

periods are too short to examine the value of the proposed constant with any 

certainty. Thus, the present thesis data have been re-evaluated to ascertain the 

validity of the ‘memory →   constant’ notion and presented in Figure 4.11 

(response on entrainment threshold) and Figure 4.12 (response on bedload 

transport). 

 



  150 
 

150 
 

 

 

 

Figure 4.12: Response of memory stress of varying time scales on bedload 

transport in this thesis and in Ockelford (2011). 

 

The effect on both threshold motion presented in preceding section (Figure 4.11) 

and bedload (Figure 4.12) clearly indicates that effect of memory stress at 

longer memory time scales tends towards an asymptotic value if not towards a 

constant value. Short duration memory stresses are far more responsive (i.e. a 

faster rate of change in the Figures above) up to SH_60 minutes, and then for 

longer memory time scales the decay (for bedload) and growth (for entrainment 

threshold) shows very slow process tending towards a constant. As such, this 

holds general agreement with the previous notion of Ockelford (2011). 

A further important point that stems from the hierarchical bedload to memory 

relationship, is the two-phase response. Section 4.5.2 has shown that memory 

effects persist and strengthen with rising discharge (Phase 1), before a discharge 

of Q=17.5 l/s (56 minutes) appearing to act as a ‘trigger point’ for the 

progressive erasing of memory (Phase 2). Review of the literature for traditional 

non-memory graded entrainment/transport data sets indicates that multi-phase 

temporal development of beds/bedload is common (e.g., Proffitt and 

Sutherland, 1983; Tait et al., 1992 and Pender et al., 2001). For example, 
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research into degrading flume systems with armouring processes by Pender et al. 

(2001) suggests distinct ‘trigger points’ in the flow-sediment system; Phase 1 of 

his beds’ development exhibited loose packing and sediment easily entrained, 

before Phase 2 commenced an armouring process where the degradation 

‘memory’ starts to consolidate and stabilise the bed, leading to reduction in 

bedload transports. Essentially, the present thesis exhibits a reversal of Pender’s 

phases, due to the sub-threshold memory period applied herein. The memory 

period has been found to undergo a process ‘akin to armouring’ (Ockelford, 

2011); i.e. without active transport, alternative stabilisation processes of in-situ 

hiding and particle reorientation (Ockelford and Haynes 2013) serve to 

restructure the bed locally (Mao et al., 2011). This memory effect requires >10 

minutes (at least) to develop, as only beds SH_30-240 minutes exhibit memory 

response in the present thesis. In the present study, Phase 1 of the incremental 

flow-step period reflects this enhanced structural resistance to entrainment of 

the bed, which delays bedload until higher discharges. Phase 2 then represents 

the trigger threshold for the reversion to ‘normal’ bedload transport, when the 

applied shear stress is now sufficient to entrain the stronger structure of the 

memoried bed and begins to erase the memory effect by tending to more 

general bedload transport. Interestingly, the trigger threshold for Phase 2 occurs 

at similar shear stress, independent of memory duration; this may be: i) due to 

the mobility of the larger fractions, which were least affected by memory stress 

(Figure 4.8) hence initiate their mobility at a similar shear stress, ii) that this is 

the shear stress at which the exposure of larger particles and the hiding of the 

fines balance each other, triggering a general (equal) mobility. 

4.7.3 Fractional transports in response to memory in bed  

Based on the above speculation for trigger point mechanics, it is important that 

we consider briefly the fraction-specific processes responsible for memory 

effects. In short, the present data agrees with the long-standing principle of size 

selective transport for graded beds (e.g., Egiazaroff, 1965; Ashida and Michiue, 

1972; Parker et al., 1982a; Parker and Klingeman, 1982; Komar, 1987a, b; 

Ashworth and Ferguson, 1989; Kuhnle, 1992). Similar to Ockelford’s (2011) 

unimodal data, this study finds relative mobility of the middle fractions, relative 

immobility of end fractions and, crucially, a strong memory effect enhancing 

size selectivity. As speculated by Haynes and Pender (2007), the memory effect 
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is strongest in relation to increased hiding of the finer proportion of the bed. 

Previous literature cites vertical winnowing (Hoey et al., 1997; Ockelford, 2011) 

of these fines through the pore spaces of the larger fractions to be the hiding 

mechanism (Reid and Frostick, 1986; Marion et al., 2003; Haynes and Pender, 

2007). Under the sub-threshold flow applied herein, this process is likely induced 

via gravity, local bed vibrations, local boundary fluid inrushes and/or 

neighbouring grain rotations rearrangement. 

Data herein notes hierarchical memory effects particularly prominent in the 

finer fractions where fractional bedload reduced by 57-94% for SH_30-240 

minutes of applied memory. Ockelford (2011) also notes size selective 

entrainment in the finer fractions (1.4 to 5.6 mm) of her unimodal bed, although 

she did not quantify this specifically. Thus, given that the memory response of 

the larger fractions is typically far less (typically <20%) than that of fines, 

Haynes and Pender’s (2007) original hypothesis that increased size selectivity of 

the finer grain classes is likely the key factor for increasing stability of memoried 

bed therefore appears valid. 

More widely, this finding is supported by e.g., Frostick et al. (1984); Reid and 

Frostick (1986); Church et al. (1998); Wilcock and Crowe (2003), whose works 

also demonstrated that sand content can reduce the entrainment threshold of 

the median grain size. Ockelford’s (2011) laser data goes further, to provide 

conclusive evidence of local reorientation of surface particles, likely triggering 

“sieving” of the fines to deeper pores which would leave larger surface pores 

and freedom for coarse particles to rotate into a more stable structures (Saadi, 

2002, 2008). 

4.7.4 Normalised stress and transport: this thesis and others  

Section 4.4 has strongly detailed the derivation and comparison of non-

dimensional parameters of bedload and bed shear stress, indicating that the 

memory condition and its timescale has a significant and hierarchical effect on 

river bed stability, transporting ability, and entrainment threshold of sediment. 

Three aspects are the focus of this Section: (i) satisfactory performance of 

baseline data, compared with similar studies using non-dimensional approaches; 

(ii) detailed examination and critique of the Shields number, in light of re-
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review of his original data for memory; (iii) development of non-dimensional 

approaches for inclusion of memory effects. As much of the rationale 

underpinning the mathematical development is already discussed in Section 4.4, 

only a short discussion is noted here, as specific to demonstrating the wider 

issues surrounding the selected mathematical approach. 

4.7.4.1 Non-dimensional reference shear stress ( *
50c ) 

The threshold shear stress ( *
50c ) in this thesis was based on the reference 

transport approach of Shields (1936), Parker et al. (1982a) and Shvidchenko et 

al. (2001). From Section 4.5.4 it was found that the Shields reference 

determined was too high for use in the current data set, hence the baseline *
50c  

values in this thesis were concluded to be 0.026 and 0.033 respectively based on 

the reference of Parker et al. (1982a) and Shvidchenko et al. (2001). As such, 

discussion is warranted as to why the “pivotal” work of Shields falls short of 

capturing the entrainment threshold of the present thesis. 

 

Figure 4.13: Non-dimensional shear stress from baseline experiment and from 

other researches in gravel beds. 
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For illustration purposes, Figure 4.13 shows the baseline *
50c  data (calculated 

using Parker’s method) compared with the original Shields curve (Eq. 2.22) and 

the modified Shields curve of Parker (Parker et al., 2003; Eq. 2.24). 

 

Also shown are comparative  entrainment threshold values (non-memoried) from 

similar laboratory based studies observed in wider literature (Parker et at. 1982; 

Misri et al., 1983; Komar, 1987; Wilcock and Southard, 1988;). All these data 

show reasonable similarity with Parker’s curve for natural gravel bed rivers 

(Section 2.5, Figure 2.7), yet fail to be predicted by Shields. Thus, three notable 

problems with the Shields reference curve use in graded and memoried beds are 

raised: 

 
Firstly, Shields’ data arise from a near-uniform bed. When this method is applied 

to a graded bed the *
50c  should theoretically be lower, due to exposure effect of 

larger particles (Section 2.5.1 and 2.5.2; Eq. 2.25-2.36); because relative size 

effect counteracts the absolute size effect, and decreases mobility of finer 

fractions, and increases mobility of larger fractions (Wilcock and Southard, 

1988), and hence larger fractions have lower threshold compared with their 

uniform size threshold.  Also, in order to obtain a *
50c  similar to Shields curve 

would imply that the transport of this thesis’ unimodal mixture demonstrates 

size independence; this is not the case, as fractional transport (Section 4.6) 

showed strong size selectivity. There is hardly any evidence of mixed sediment 

showing size independence where the hiding function exponent m in Eq. 2.30 to 

2.31 approaches zero. Rather, existing literature supports the exponent value 

typically ranging between 0.4 and 1.0 indicating partial, size selective, and 

equal mobility of transport (Komar, 1987, Parker, 1990a, Carling, 1991 and 

Ashworth et al., 1992) in graded sediment as found here in the present study. 

Thus, Shields curve fails for graded sediments and Section 6.3.1 is specifically 

dedicated to detailed analysis of the size selective exponent value for memory 

effects. 

 

Secondly, Shields’ curve is likely over-estimated due to undocumented (hence 

ignored) water working effects (i.e. memory) in his original data; this factor got 

hardly any attention in the literature. Although in their review of Shields and 
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threshold data, Buffington and Montgomery (1997) noted that *
50c  could vary by 

an order of magnitude due to water-working changes in particle projection and 

angle of repose (Fenton and Abbott, 1977), they do not conclude that Shields’ 

own experiment suffered this. Thus, the present thesis has re-reviewed the 

original Shields publication (translated to English) specific to the water-working 

period(s) of his employed methodology. This clearly states that Shields (page 33, 

Shields 1936) obtained “16 different water depths by gradual increase of 

discharge; each time a state of equilibrium was awaited over an hour”. 

Therefore, to attain his perceived equilibrium state, it can be deduced that he 

took over 16 hours to complete each experiment; most likely, each experiment 

was completed over two days of time (i.e. a drained bed, stagnant body or 

flowing body was therefore left during the overnight period). This set-up holds 

equivalence to memory stress, hence Shields’ threshold motion is likely delayed 

to higher shear stresses (thus explaining his higher reference threshold curve). 

Very crude extrapolation of the present thesis’ memory stress data would 

therefore pro-rata as 44% increase in threshold due to 16 hours of memory in 

Shields experiments; however, if his runs were performed over two days with 

flowing water overnight then the increase in threshold shear stress would be 

approximately 100%. This would account for approximately an order of 

magnitude difference between the present thesis and Shields’ data. Although 

the work of Parker et al. (1982) cannot be directly unpicked for memory, the 

similar reference threshold value of Shvidchenko (2000) is certainly derived from 

non-memoried data, as all his experiments were completed within 12-15 

minutes. 

 

Thirdly, photos from Shields’ work (Figure 4.14) clearly show that bedforms 

developed in his flume bed. As the bed of Shields’ flume was near uniform 

sediment, its susceptibility to bedform development during the memory (water 

working) period appears valid, likely in response to burst-sweep turbulence 

length scales, rather than local rearrangements due to bed roughness, as found 

in graded bed research (Reid and Frostick, 1986; Church et al., 1998; Haynes and 

Pender, 2007; Ockelford, 2011). However, mechanics aside, the effect of 

bedforms on threshold (e.g., Wiberg and Smith,1989) show  that *
50c  values can 

decrease more than two fold (from 0.10 to 0.04-0.05) after adding corrections 
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for bedform friction. Thus, it is logical that bedform development during 

memoried experiments is important in explaining why Shields’ values are higher 

than alternative reference transport values and those of the present thesis. 

 

 
Figure 4.14: Shields flume: initial flat bed turning into significant bedforms 

(probably from long hours (over several days) of experiment in same bed 

(Source: photograph taken from Shields original publication, Shields, 1936). 

 

In summary, the baseline *
50c  from present thesis showed consistency and 

similarity with threshold motion of sediment mixtures in well cited literature, 

tending to Parker et al. (1982a) and Shvidchenko et al.’s (2001) reference 

values. Strong rationale for the differences to Shields’ over-estimated reference 

value have been provided, including evidence that Shields’ data suffered from 

bedform development and memory stress. 

4.7.4.2 Bedload transport relations 

In Section 4.4, non-dimensional transport of baseline experiments has been 

compared and contrasted with a number of bedload transport relations (Casey, 

1935a, b; USWES, 1935; Meyer-Peter and Muller, 1948; Einstein, 1950; Paintal, 

1971; Luque and van Beek, 1976). The outcome of the comparison was that 

relationships developed for data sets specifically including results near 

entrainment threshold were most appropriate for use, when grain size similarity 

was also present. Paintal’s power law (Eq. 4.4) matched well with the relation 
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of baseline transport from the present study, due to generation of initial data  at 

similar low transport regimes, use of gravel bed mixtures and data collection 

from flume experiments. Thus, there is logical motivation of developing power 

law functions similar to Paintal for both baseline and memory stress conditions 

(Eq.4.5 to 4.10) which are able to quantify memory effects over a range of low 

flow transport conditions. Chapter 6 is dedicated to this development, as 

specific to bedload formulae aligned to low threshold shear stress (e.g., Wu et 

al., 2000b). 

4.7.5 Significance of memory and relevance to reference 
transports in low flow 

Memory stress effects exist over a good range of low flow reference transport (

*q ) values between 10-1 to 10-5 (Figure 4.15). Inserted into this Figure were the 

reference transport based determination of entrainment threshold from Shields 

(1936, 
*q =10-2), Parker et al. (1982a, 

*q =10-5), and Shvidchenko et al. (2001, 
*q

=10-4) (Section 4.4) and the conclusions drawn from these data support the 

discussion raised in Section 4.7.4.1. In short, Shvidchenko’s reference value of 

10-4 approximates to baseline data, thus appearing a reasonable (or slight over-

estimate) reference threshold for non-memory runs. However, it is too high a 

reference for memoried runs where a more reasonable reference value would be 

towards Parker (
*q =10-5). That said, it has been shown that memory duration 

leads to hierarchical and nonlinear response in reference threshold value, and 

thus the reference threshold must also be a sliding scale which, in the present 

thesis, appears to range between 10-4 and 10-5 for memories up to 240 minutes. 

This is further complicated due to the recognised ‘trigger point’ (~3.7 N/m2 

(Q=17.5 l/s) in the present study) where memory effects erase such as to 

‘revert’ to non-memoried, baseline transport rates; this ‘trigger point’ threshold 

falls around a reference value of 
*q  = 10-2, which can be used to indicate a shift 

to full mobility and more general transport conditions as described by 

Shvidchenko (2000). 

It is clear from the above data that threshold reference of transport sits on a 

sliding scale depending on memory duration, hence its (in)correct selection will 
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affect the accuracy of sediment transport model predictions. For example, use 

of Parker et al. (1982) reference transport approach means that critical shear 

stress will increase from 15 and 19% due to memory effects from 10 and 240 

minutes memory time scales; while for Shvidchenko et al. (2001) reference 

transport, the increase is between 3 and 9%. These percentage data were 

derived from Table 4.5, while Figure 4.15 is shown only to demonstrate 

qualitatively that selection of a particular reference transport will yield 

different memory effect, which is clearly visible in this Figure as the memory 

effect gradually diminishes with the increase of shear stress. They key reason of 

Shividchenko et al. (2001) reference transport as entrainment threshold will lead 

to smaller memory effect is that this reference transport occurs at a higher 

shear stress than Parker et al. (1982), where the memory effect starts to 

weaken. Although this increase in threshold value may seem relatively small, the 

nonlinear response of bedload to shear stress means that the present study finds 

it to cause sediment load to reduce by up to 80%. 

 

 
Figure 4.15: Sediment rating from present research for baseline and 240 minute 

memory stress condition; also shown Shields reference transports (1936, 
*q =10-

2), Parker et al. (1982a, 
*q =10-5), and Shvidchenko et al. (2001, 

*q =10-4). 
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This non-linearity is well-known (e.g., Taylor and Vanoni, 1972; Paintal, 1971) 

and can be appropriately considered using reanalysis of Turkey Brook data (Reid 

and Frostick, 1986) as a typical UK gravel bed river known to exhibit memory 

stress. For this river, Figure 4.16 clearly shows that near-entrainment bedload 

data typically fall lower than the Shields reference threshold, rather tending to 

that of Parker and Shvidchenko’s reference values. This lends support to the 

laboratory-based findings of the present thesis. Thus, given that the typical 

transport of Turkey Brook calculates around 2-3 tonnes of sediment a day 

(derived by present researcher from Reid and Frostick, 1986); it follows that (i) 

if memory effects are implicit in this measurement, current modelling practice 

would lead to a 20-fold of over-prediction of bedload transport in this river; or 

(ii) if this measurement masks memory effects due to event-scale or averaging 

measurements, then the under-prediction will be of a similar order of 

magnitude. This issue is expanded upon  further in analysis of bedload prediction 

in Chapter 6, as its importance to  predictions of scour, erosion or deposition are 

crucial to accurate pre-emptive river management and intervention strategy 

design. 

 

 
Figure 4.16: Gravel bedload transports in Turkey Brook (observed load) in low 

flow shear stress within the threshold limit of Shields (1936), Parker et al. 

(1982a) and Shvidchenko et al. (2001). 
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4.7.6 Memory in bed: need for a correction factor to bedload 
functions 

Thus, when taken as a whole, the earlier discussions of Section 4.7 generally 

conclude that memory effects are well-demonstrated with a degree of certainty 

and significance appropriate to including a memory “correction” into existing 

entrainment and bedload transport formulae. 

Almost all bedload transport formulae whether for uniform or graded sediment 

include non-dimensional critical shear stress in their functions. Hence, a generic 

form of a bedload transport formula (Chapter 3 by Parker, ASCE, 2007) can be 

given by: 

),/,( *50
**

eib RDDTq       Equation 4.11    

 

In which Tb is the dimensionless bedload transport function. It is obvious from 

the above formula that to address effect of memory stress in predicting bedload, 

several parameter adjustments are possible to account for the varying degree of 

memory response on a bed’s stability, threshold motion and disproportionate 

fractional response. Thus, at this stage of the research, it appears possible to 

parameterise memory effect within one or more of the following terms: i) the 

reference shear stress,
* , ii) the hiding function via the relative size term 

Di/D50, and/or iii) the shear Reynolds number, Re*, which in effect corresponds to 

the non-dimensional roughness height (Zanke, 2003) as able to account for 

structural changes on bed. This conclusion underpins the approach discussed and 

executed in the detailed framework for memory stress correction of bedload 

transport provided in Chapter 6. 

4.8 Key outcomes 

The memory stress of unimodal mixture of sediment subjected to unidirectional 

sub-threshold flow has been modelled; the mixture comprised two sand classes 

and six gravel classes with median grain size (D50) of 4.8mm and sorting 

coefficient (g) of 1.65. Flume experiments have been conducted in beds without 

memory (baseline experiments) and with memory so as to quantify the effect on 
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entrainment threshold, on the transporting ability of the flow and size selective 

transport. Memory condition experiments included 10, 30, 60, 120 and 240 

minute memory stress durations. 

Key outcomes from the above experiments are presented below: 

 Memory stress duration increased the stability of the bed, delayed the 

entrainment threshold of sediment movement, and thus reduced the 

subsequently transported sediment volume. 

 Entrainment threshold has increased an average up to 19% for the median 

grain size (D50) using Parker et al. (1982a) reference based transport (
*q

=10-5); using the alternative Shvidchenko et al. (2001) reference based 

approach (
*q =10-4), the increase is 11%. This distinction is expected as 

Shvidchenko et al. reference transport corresponds to a higher shear 

stress than that of Parker et al., and memory effect was observed to 

weaken with rising shear stress at higher transport rates (see Figure 4.5). 

 Due to rise in entrainment threshold, subsequent transport decreased by 

up to 80%; the longer the memory time scale the higher the reduction.  

 Size selective transport was observed as the key transporting mechanism. 

All end fractions suffered relatively less mobility than the middle 

fractions. The finest fractions reduced availability for transport by up to 

95% due to memory; this was most pronounced for the longest memory 

experiments (240 minutes). The larger fractions were found biased 

towards equal mobility of transport; their transport reduced between 10 - 

40% due to memory. This supports the notion of fines being most 

responsive to memory effects. 

 Effect of memory stress on the transporting ability of flow was found to 

prevail mainly in low transport condition of 
*q  between 1x10-6 to 1x10-1 

for a Shields parameter range between 0.02 and 0.06. It therefore 

indicates that use of the Shields threshold condition (of 0.06) is 
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inappropriate to assess memory effect as it is too high relative to the 

domain where memory effect dominates. 

 Memory effects were found to vary non-linearly over the low flow 

transport range; this has been embedded in a family of mathematical 

descriptors using rising “exponents” of the function to quantify degree of 

non-linearity of transport to shear stress, whilst changes in the structure 

of the bed due to memory are described within in a lumped “coefficient”.  

Response on the coefficient due to memory stress was observed more 

reactive than on the exponents. For memory time scale SH_10 to 240, the 

exponents vary approximately between 17 and 21, which is about a 1.3x 

rise relative to baseline; while the coefficients show a rise of eleven 

orders of magnitude relative to baseline. This clearly shows that memory 

effects strongly relate to bed structure; this is certain for two reasons: i) 

analogous to this many bedload formulae include effect of form roughness 

and granular scale roughness in the coefficient term in the bedlaod vs. 

shear stress power law (Meyer-Peter and Muller, 1948; Smart, 1984 and 

Wu et al. 2000a); ii) because applied bed shear stress is same in all 

experiments, and bedload is a measured variable, while this coefficient is 

the major unknown parameter; thus even if we would have considered 

same exponent as in baseline (baseline and memory exponent differ 

maximum only by a factor 1.3), the coefficients must have to adjust in 

the bedload vs. shear stress power law to match the measured bedload in 

different memory experiments. And worth mentioning that similar 

magnitude of coefficient was noted by Paintal (1971). 
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Chapter 5: Physical Modelling Results: Bimodal 
sediment 

5.1 Introduction 

Given that in graded sediments of gravel the river bed consists of either 

unimodal (Chapter 4) sediment or bimodal sediment (Kondolf, 1988), Chapter 5 

presents results from bimodal sediment experiments with memory in the bed. 

The presence of two modes of particle size complicates the mechanics 

underpinning sediment stability/instability and the prediction of transport of 

sediment; this is predominantly due to the hiding and exposure of the finer and 

coarser particles respectively (Klingeman and Emmett, 1982; Ferguson and 

Ashworth, 1989; Kuhnle, 1993a; Wilcock, 1993; Powell, 1998; Wilcock, 2001). 

Thus, it is uncertain as to whether the memory effects observed in unimodal 

beds (Chapter 4) will be found to be equivalent in bimodal sediment systems. 

 

Two objectives are researched within the present Chapter. Firstly, do ‘memory’ 

effects exist within the transport of heterogeneous sediment, and comparing 

bedload transport data specifically for bimodal sediment with that of others 

(Kuhnle, 1994; Wilcock et al., 2001; Almedeiji et al., 2006; Ockelford, 2011). 

Secondly, to improve the predictive performances of bimodal sediment 

entrainment/transport formulae (Ashida and Michiue, 1972; Bagnold, 1980; 

Parker, 1990a; Kuhnle, 1992; Wilcock, 1998; Wu et al., 2000a; Hunziker et al., 

2002; Wilcock et al., 2003; Powell et al., 2001, 2003), the data are used to 

mathematically describe any effects of memory. 

 

The present Chapter adopts a near-identical  format to Chapter 4, providing 

novel laboratory data for bimodal bed to determine: (i) if the entrainment 

threshold of bimodal beds can be quantitatively measured as responsive to 

‘memory’ effects; (ii) if a straightforward mathematical descriptor can be 

developed to describe the relationship between memory period and adjusted 

threshold; (iii) if memory effects can be included in general graded sediment 

transport functions; (iv) if the memory response is distinct from that observed in 

the unimodal bed. 
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5.2 Matrix of bimodal experiment 

Following the methods and procedures outlines in Chapters 3-4, distinction in 

the methodology of the present Chapter is specifically in terms of the sediment 

mixture used and some minor, well-justified, adaptations in data collection. 

These distinctions are provided below: 

Firstly, the bimodal sediment mixture deliberately employed the same median 

grain size (D50 = 4.8 mm) as of the unimodal mixture (Chapter 4).  However, the 

mixture contains a greater proportion of sand fractions (15%, Di<2mm) than in 

the unimodal mixture (7.5%) and higher proportion of materials for grain classes 

smaller than the median class (47%, Di/D50 <1) than in the unimodal mixture 

(30%). Due to the above differences in the sediment distribution, geometric 

standard deviation became larger to 1.93 compared with that of unimodal 

mixture (1.65), leading to relatively weaker sorting in the bimodal than in the 

unimodal mixture. 

Secondly, the initial bedload sample was taken at a discharge step one 

increment higher on the rising stepped flow sequence ( 025.0*   and discharge = 

8.75 l/s) compared with that used in Chapter 4 (Q=7.5 l/s) for unimodal mixture. 

This reflects visual observations that sediments were harder to be moved in the 

bimodal mixture than in the unimodal. Although the number of flow steps differs 

from unimodal data, direct comparison of sediment transport is still 

straightforward as the ‘missing step’ can correctly be ascribed a zero transport 

value for the bimodal bed. Volumetric and non-dimensional forms of bedload 

transport data are analysed in line with the procedure outlined in Chapter 4 and 

specific to comparing both baseline (non-memoried) and memory adjusted 

entrainment thresholds with the work of an identical set of previous researchers 

(Shields, 1936; Paintal, 1971; Meyer-Peter and Muller, 1948; Einstein, 1950; 

Vanoni, 1964; Taylor and Vanoni, 1972; Luque et al., 1976; Haynes and Pender 

2007; Ockelford, 2011). 

With the exception of bimodal (BM-) prefixes to experiment coding, all 

nomenclature and other experimental variables used (Table 5.1) have been kept 

consistent with those of Chapter 4. 
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Table 5.1 Matrix of experiments in baseline and memory stress condition in 

bimodal sediment mixtures 

Experiment 
Identification 
Code 

Median grain 
size (D50) 
(mm) 

Experimental 
condition 

Memory stress 
Run duration 
of 
experiment 
(min) 

Magnitude: % 
of baseline 

*
50c  

Exposure 
duration 
(min) 

BM_B_0 4.8 Baseline - 0 0+64 

BM_SH_10 4.8 
Memory 
experiment 

60 10 10+64 

BM_SH_30 4.8 
Memory 
experiment 

60 30 30+64 

BM_SH_60 4.8 
Memory 
experiment 

60 60 60+64 

BM_SH_120 4.8 
Memory 
experiment 

60 120 120+64 

BM_SH_240 4.8 
Memory 
experiment 

60 240 240+64 

 

5.3 Sediment and bedload transport analysis of bimodal 
experiments: parameters and variables 

Similar to Chapter 4, an identical set of measured and derived variables are 

presented, analysed and discussed with the help of graphs, rating curves and 

tabular data. Discharge and bedload are directly measured variables; shear 

stress is a derived variable (Chapters 2). Both bedload and shear stress have 

been non-dimensionalised (see Chapters 2 and 4) to transform the dataset to a 

more generic type, so that they can be compared and contrasted with similar 

datasets from other researchers. 

5.4 Bedload sediment transport 

As the degree of dependence and non-linearity of bedload is different for 

discharge and bed shear stress (Chapter 4), presentation of both correlations has 

merit, and helps to underpin and quantify the true extent of memory effect on 

bedload transport and bed stability. 
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5.4.1 Bedload vs. discharge relationship 

The response of bedload transport to memory duration, as a function of 

discharge, is shown in Figure 5.1. Bedload transport ( bq ) is within the range 

from 1x10-8 to 1 x10-5 m2/s. Baseline runs show higher bedload rates at each 

discharge point, compared with memory runs which systematically show lower 

transport rates at discharges upto 17.5 l/s; only 10 minutes memory run shows 

earlier convergence with baseline at lower discharge around 15 l/s. This implies 

that for the same discharge the effect of memory yields a lower capacity 

(ability) of the system to transport sediment; this implicitly indicates that the 

memory bed has become more resistant to entrain sediment due to the 

application of memory (Table 5.2). 
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Figure 5.1: Discharge and bedload 
sediment rating curve from 
baseline and stress history 
experiments (10, 30, 60, 120 and 
240 minutes memory duration); 
bedload data are averaged over a 

time period of 360 seconds. 
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From Figure 5.1, two important points of interest are noted: 

Firstly, the memory effect is most pronounced at lower discharges; for 

discharges ≤ 10 l/s bedload is approximately an order of magnitude less in runs 

with memory applied. However, at increasing discharges, the effect of memory 

gradually weakens until bedload tends to equivalence with baseline data at the 

highest discharges from 16 to 18.75 l/s. This suggests that memory effects are 

significant only at near-entrainment flows, possibly at partial transport 

conditions. Once flows have increased significantly so as to promote general 

transport and full mobility conditions, the bed has overcome memory effects to 

revert to ‘normal’ transport rates. 

Secondly, the duration of memory applied appears influential in the magnitude 

and persistence of reduced bedload rates, compared to baseline. From Figure 

5.1 it is clearly evident that the offset between baseline trendline and SH_10 

and SH_30 data is relatively small and progressively converges to baseline 

~15l/s. Yet, for SH_60 and SH_120, the offset remains over a wider range of 

discharges (up to 17.5l/s), more than an order of a magnitude different in 

bedload to baseline data. Thus, it can be concluded that the duration of memory 

is influential over the degree of reduction and general persistence of bedload 

transport response. 

It is worth noting that the BM_SH_240 experiment does show memory response, 

but the data fall outwith the general hierarchy of bed stability increasing with 

rising memory time scales. For purpose of completeness, the result from this 

experiment has been presented in relevant figures. However, clarified here are 

possible reasons and uncertainties involved in this experiment. Specifically, 

inconsistencies in temperature control during this particular experiment warrant 

attention. The flume room is subject to air temperature fluctuations, which, 

during the summer of 2013 (July and September), varied diurnally by up 20oC in 

extreme cases, and 10oC in general (UK Met office, 

http://www.metoffice.gov.uk/climate/uk/es/print.html). This extreme was 

recorded for a four day period when the 240 minute experiment was conducted. 

This is considered likely responsible for excessive drying of the bed material 

between runs, such that the initial screed is unlikely to be well replicated 

http://www.metoffice.gov.uk/climate/uk/es/print.html
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compared to other runs. And, for such a long run (for an experiment started at 

9am, sample collection started at about 2pm, when summer day temperature 

rises to the peak), rising water temperatures may affect turbulence variation 

and viscosity. Whilst water temperature changes would moderate those of the 

surrounding air, it is notable that Taylor (1971) researched that increases in 

temperature do increase sediment transport significantly, by up to a five-fold 

increase in sediment load for 15oC rise. This makes sense, as in low flow, 

turbulent bursts are the main driver for dislodging sediment from bed and any 

increase in turbulent intensity per unit area on the bed would increase sediment 

load. This is particularly critical in low Reynolds numbers, such as the shear 

Reynolds number in present experiment between 150-300 (Blinco and 

Partheniades, 1971). Thus, it is concluded that the extreme air temperature 

changes erroneously inflated the BM_SH_240 minute bedload data; hence it is 

omitted from further analysis in this Chapter. 

Quantitative comparison becomes more meaningful where comparison was made 

against a representative transport rate (minimum and mean transport rate).In 

comparing minimum transport data, the memory effect seems very similar; i.e. 

comparison of the shortest (SH_10) and longest (SH_120) memory experiment 

indicates similar response, respectively 93% and 99% reduction in bedload 

transport due to these memory scenarios.  This strongly indicates memory  

Table 5.2 Bimodal sediment experiments: volumetric sediment transport from 

baseline and memory experiments 

Experiment 
Identification 
Code 

Bedload transport: bq  (m2/s) Bedload transport:  bq   (m2/s) 

minimum 

% reduction of 

bq  relative 

to baseline(1) 

Mean(2) 

% reduction of  

bq  relative to 

baseline 

BM_B_0 4.35E-07 - 2.71E-06 - 

BM_SH_10 3.23E-08 93 1.98E-06 27 

BM_SH_30 6.37E-08 85 1.42E-06 48 

BM_SH_60 1.18E-08 97 6.18E-07 77 

BM_SH_120 4.98E-09 99 7.42E-08 97 

Note: 
1) corresponding discharge to minimum bedload is 10 l/s (very first data point at discharge 

8.75 l/s was ignored from each memory time scale 

2) mean bedload is the arithmetic mean of all bedload between discharge 10 and 16.25 l/s 
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influence at near-threshold flow, but such effects make little distinction among 

the memory time scales. Thus, a logical alternative statistic is also provided in 

quantification of the memory effect against the mean transport over a range of 

low discharges. This shows a very distinct and hierarchical effect of memory 

time scales, progressively reducing bedload by 27-97% with increasing memory of 

SH_10-120. In short, these latter statistics appear more representative, as they 

minimise noise captured at individual data points (such as for the minimum) and 

indicate memory to be highly significant in stabilising a bimodal bed against 

entrainment. 

In line with Chapter 4, an alternative, but simpler presentation of memory 

effect is provided via the discrepancy ratio plot (Figure 5.2). The approach is 

simply the ratio of baseline load to each memory experiment load (i.e., 

memorybbaselineb qq ,, / ), and is expected to be more than unity due to memory, 

and approaches unity when the baseline and memory experiments converge 

towards similar loads. Thus, this more readily indicates memory hierarchy of 

response with increased memory timescales, with clear distinction at 

timeframes >SH_30. Whilst the discrepancy factor of SH_60 and SH_120 runs may 

seem excessively high (>50), this is a function of a non-linear relationship; for 

example, a 50% reduction in bedload would give a discrepancy ratio of 2, a 70% 

reduction would yield a value of 3.3, a 90% reduction would give a value of 10 

and, a 99% reduction would yield 100. In support, data in the present study are 

similar to those recorded in other bimodal stress history research (Church et al., 

1998; Ockelford, 2011; Section 5.6.2). 

Figure 5.2 also shows a possible tendency in all runs for memory effects to be 

erased at high discharges (i.e. between 15 and 18.75 l/s) with bedload rates 

reverting to baseline equivalence at these discharges. The regression relations of 

the two pronounced memory time scales of SH_60 and SH_120 are shown in Eq. 

5.1 and 5.2; such relations (of satisfactory R2 value) are applicable for simpler 

analysis for predicting transport in memory condition or in baseline, and 

assessing when the memory effect starts to disappear. 

65.0,26.214)(ln55.73 2

60_,

,
 RwhereQ

q

q

SHb

baselineb   Equation 5.1   
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639.0,25.393)(ln5.131 2

120_,

,
 RwhereQ

q

q

SHb

baselineb   Equation 5.2 

 

 

Figure 5.2: Discrepancy ratio in bedload transport as a function of discharge (Q) 

between baseline and memory experiments of BM_SH_10, 30, 60 and 120. 

5.4.2 Integrated bedload transport 

Cumulative sediment volume over the steps of rising discharges (Figure 5.3) and 

the derivative variable of this parameter (Figure 5.4) are analysed in line with 

the rationale presented in Section 4.5.2. In particular, focus is placed on the 

derivative variable in Figure 5.4, which more explicitly quantifies the growth and 

decay of the memory effect. 

The overall effect of memory over the rising flow steps is distinctly hierarchical 

in the cumulative load of transport (Figure 5.3). Relative to baseline, the 

reduction in bedload transports is 5, 42, 54 and 65% for memory durations of 

SH_10, 30, 60 and 120; a note of caution is added here in that Figure 5.3 

statistics reflect the cumulative (total) reduction over all discharge steps, while 

the percentage reduction is against the mean transport over the range of low 

steps between 10 and 16.25 l/s (also see texts in note 2 of Table 5.2). This 

cumulative effect due to the varying slope of the curves (Figure 5.3 and Figure 
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5.4) is an effective way of quantifying that memory effect is neither a constant 

nor is it a linear variation over low flow discharges; it persists dynamically and 

non-linearly over the range of low flow discharges before gradually diminishing 

at higher discharges. 

 

Figure 5.3: Integrated sediment volume from baseline and memory experiments 

in bimodal mixture from baseline, 10, 30, 60,120 and 240 minutes memory 

duration. 

 



  172 
 

172 
 

As noted in Chapter 4, the non-linear response of integrated bedload is relatively 

difficult to examine as depicted in Figure 5.3. However, SH_30, 60 and 120 all 

indicate a change in gradient ~50minutes into the rising limb. This is more 

explicitly demonstrated in the derivative parameter (rate of change of sediment 

load) in Figure 5.4, which is a trendline plot of 4-point moving average of the 

actual rate of change. In Chapter 4 the maxima of these data were described as 

a “trigger point”, possibly representative of the discharge at which the bed’s 

memory effects start to lose their significance and be over-written towards the 

baseline / normal transport conditions.  In the present bimodal data set, a 

similar maxima is observed (Figure 5.4). The longer the duration of memory, the 

longer the lower incremental rate of transports persist; thus, maxima are 

delayed. Specifically, in SH_10 minute duration memory experiment, the effect 

diminishes earlier around at the 40th minute of the experimenting time; while 

for SH_30, SH_60 and SH_120 minute memory experiments, the effect diminishes 

later around 45th, 50th and ~60th minute of the experimenting time respectively. 

This suggests that the trigger point is indistinct (Figure 5.4), rather covering a 

small range of discharges Q= 16 to 18.75 l/s commensurate with 50-60 minutes 

of rising limb flows. 

 

 

Figure 5.4: Progressive development of memory in flume bed in baseline and 

memory stress experiment in bimodal mixtures shown in incremental change in 
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bedload transport rate; smaller incremental rate means less transport of volume 

between successive time steps. 

In summary of the findings of the bedload vs. discharge relationship it is 

highlighted that: i) bed stabilisation was found to be a function of applied flow 

memory time scales, with bedload reducing hierarchically from 27 to 97% with 

SH_10 to 120 minutes of applied memory; ii)  cumulative bedload analysis 

section indicated up to a 65% reduction in cumulative bedload volume; iii) for 

SH_10 and SH_30, the discharge 16 l/s seems to act as trigger point when 

memory starts to disappear; while for SH_60 and SH_120 experiments, the effect 

seems to sustain longer until higher discharges up to Q=18.75 l/s; iv) the 

difference in percentage reduction of bedload between mean (or minimum in ) 

and cumulative transport underlines the fact/mechanism that memory induces a 

non-linear effect on the stability of bed and its subsequent transport of 

sediment at low discharges. 

5.4.3 Bedload vs. boundary shear stress relationship 

In the same way as in Section 4.5.3, a more generic parameter in sediment 

transport and entrainment threshold is the bed shear stress, rather than project-

specific discharges. Thus, the objective of this section is to demonstrate the 

effect of memory on the shear stress to bedload relationship. However, the 

comparison methodology presented in Chapter 4 cannot be employed in the 

current Chapter. This is because the reduction in bedload due to memory is far 

more significant in bimodal beds (Figure 5.5) than unimodal beds (Figure 4.5); 

thus, using the mean baseline bedload transport ‘reference’ approach of 

Chapter 4, leads to comparison of data at ‘high’ bedload values where the 

memory effects are being erased and baseline-memory data beginning to 

converge. Therefore, comparing the effect of memory on bed shear stress at the 

mean transport level of baseline data in the bimodal bed will not provide a fair 

judgement about the effect of memory. This led to the comparison/evaluation 

method being revised in the present Chapter to quantify the memory effect as 

more representative of values overall. In short, this now calculates the mean 

and median transport for each memory experiment as the reference, then used 

for comparison with the baseline data (i.e. rather than the other way around, 

Chapter 4).  Using Figure 5.3, Table 5.3 is generated for direct comparison of 
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the percentage difference in shear stress for a given reference sediment 

transport (mean and median of the memory data) due to memory. Following the 

same approach, a revised calculation for unimodal load has been carried out, 

which will allow direct comparison between the two sediment grades; this has 

been presented and discussed in Section 5.6.2. 

 

 

 

Figure 5.5: Bed shear stress in bimodal mixture from baseline and stress history 

experiments (10, 30, 60, 120and 240 minute memory duration. 
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Using an example for discussion, the shear stresses corresponding to the mean 

and median transport from the memory condition of 120 minute are respectively 

3.7 N/m2 and 3.25 N/m2. For the reason outlined above, the mean is slightly 

skewed towards the higher values of shear stress, and thus higher value than 

median. The corresponding shear stresses in the baseline experiment at the 

same transport levels (mean and median transports of memory experiment) are 

3.0 N/m2 and 2.3 N/m2. This leads to respectively a 23% and 46% increase of 

shear stress in memory experiment relative to the baseline condition for 

transporting the same volume of sediment. This clearly demonstrates the degree 

of dependency and sensitivity on the choice of methods of determining the 

relative effect with baseline. Based on mean transport, the effect of memory is 

hierarchical, ranging between 7 and 23% increase in bed shear stress for 

transporting same volume of transport as in baseline. Whereas based on median 

transport, the memory effect is also  

Table 5.3: Bimodal sediment experiments – different magnitudes of shear stress 

for transporting the same sediment load in baseline and memory experiments; 

mean and median bedload in each memory experiment has been used as 

reference transports, and for that transport, the difference in shear stresses has 

been used to quantify memory effect 

Experiment 
Identification 
Code 

Shear stress corresponding to 
Mean sediment load from 
memory experiment 

Shear stress corresponding to 
Median sediment load from 
memory experiment 

Shear stress: 
Memory* 
(baseline),  
(N/m2) 

% increase in 
shear stress 

Shear stress: 
Memory 
(baseline),  
(N/m2) 

% increase in 
shear stress 

BM_B_0 - - - - 

BM_SH_10 3.4 (3.17) 7 3.21 (3.0) 7 

BM_SH_30 3.3 (3.1) 6 3.22 (2.95) 9 

BM_SH_60 3.5 (3.1) 13 3.38 (2.7) 25 

BM_SH_120 3.7 (3.0) 23 3.35 (2.3) 46 

 
Note: *i) the numbers outside brackets are from memory experiments, and those 

inside brackets are from baseline experiments  

 

 

hierarchical, but significantly higher; now from 7 to 46%. The mean transport is 

generated at a higher shear stress, while the median transport represents a 
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lower flow stage. Therefore, the comparison above confirms and provides a 

quantified measure that the effect of memory is much stronger at low flow 

stages, and thus indicates that determining entrainment threshold around low 

flow transport according to the definition of reference transport does not 

quantify the true extent of memory effect on river bed stability. This supports 

the earlier finding that the memory effect is a non-linear function, and should 

not be addressed with a constant value on the entrainment threshold. Rather it 

should either be included in standard bedload transport functions which are 

generally represented by a power law in most of the existing bedload transport 

formulae (MPM, 1948; Paintal, 1971; Engelund-Hansen, 1967; Ashida and 

Michiue, 1972; Ackers and White, 1973; Hunziker and Jaeggi, 2002; Parker, 

1990a; Powell et al., 2001, 2003) or included in a correction factor with a non-

linear function. 

A summary of this section yields: (i) memory effect on river bed stability and 

bedload transport is a non-linear process i.e. the memory effect is higher at low 

flow stages, and gradually diminishes at higher flow stages, ii) due to greater 

memory effects in bimodal sediment, the analysis methodology required 

adjustment towards a more generic approach to reference values based on 

memory data, rather than baseline data; iii) based upon mean and median 

transport references, bed shear stress may increase up to 23% or 46%, 

respectively; iv) because of the non-linear variation of memory effect on river 

bed stability, the determination of the memory effect on entrainment threshold 

by any reference transport approach will not quantify the true extent of memory 

effect on bedload transport at low flow stages. 

5.4.4 Non-dimensional analysis of sediment transport 
relationship 

Bed shear stress and bedload transport have been non-dimensionalised using the 

same approach as in Chapter 4, by using Eq. 2.7 – 2.9 in Chapter 2. Entrainment 

threshold in baseline and memory experiments have been determined via the 

reference transport approach using reference values of Parker et al. (1982a) and 

Shvidchenko et al. (2001), see Figure 5.6, More elaboration on their derivation 

and application/use in quantifying memory effect can be found in Chapter 2 and 

4; output data for the non-dimensionalised parameters are provided in Table 
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5.4. It is important to note that the Shields’ (1936) reference value (tested in 

Chapter 4) cannot be applied to the bimodal data set, as the measured transport 

rates are significantly lower than the Shields’ reference value; this is to be 

expected, given that Shields’ data were designed for more general transport in 

non-memoried near-uniform beds and even the unimodal data of Chapter 4 

concluded that Shields’ reference was too high to be of merit in memory 

experiments. 

 

 
Figure 5.6: Reference transport of Parker et al. (1982a) and Shvidchenko et al. 

(2001) superimposed on the volumetric transport vs. shear stress rating curves of 

bimodal experiments (dimensional shears stress obtained from x-axis for each 

experiment corresponding to reference transports of each author non-

dimensionalised using Eq. 2.8-9). Note: The rise of the first two transport data 

points in 30 minute memory time scale relative to the 10 minute may indicate whether 

it is due to temperature variation; within such short time, significant temperature 

variation was not expected, and thus the rise on those two data points only due to 

temperature is probably unlikely.  More-over, memory time scale can lead to 
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development of several processes as described in Section 2.5 and 2.6. Thus, it is 

challenging to pinpoint specific causes of sampling inconsistency at a  particular and/or 

discrete data points; keeping this in mind, the majority of the analysis in this thesis 

has been done against representative values, such as “mean” and “cumulative” load. 

From Table 5.4, the entrainment threshold from the baseline of the bimodal 

mixtures compares well with the entrainment threshold of the original values of 

Parker et al. (1982a) (0.029) and Shvidchenko et al. (2001) (0.034). The 

similarity in the entrainment threshold of D50 between the two mixtures 

(unimodal and bimodal, for unimodal, see Chapter 4) is consistent and re-

assuring with the assumption made in literature that median grain size (D50) is a 

good choice of the representative size for a sediment mixture in gravel beds 

(Parker et al., 1982a; Wilcock and Southard, 1989; ASCE, 2007). The similarity of 

the entrainment threshold of the two mixtures also enhances confidence in the 

baseline data, and enhances the credibility of quantification of memory effect, 

which has been determined relative to the baseline condition. 

Table 5.4: Bimodal sediment mixtures: entrainment threshold of median grain 

size (D50) from baseline and memory experiments 

Experiment 
Identification 
Code 

Shields parameter 
*

50c according to reference transports criteria of: 

Parker et al. (1982a):  

*q =1x10-5 

Shvidchenko et al. (2001):  

*q =1x10-4 

*

50c  
% increase relative 
to baseline 

*

50c  
% increase relative 
to baseline 

BM_B_0 0.026 - 0.030 - 

BM_SH_10 0.031 19 0.037 23 

BM_SH_30 0.029 11.5 0.037 23 

BM_SH_60 0.035 35 0.040 34 

BM_SH_120 0.038 46 0.045 49 

Note:  
1) Minor extrapolation of rating curve needed in case of Parker reference number based on 

eye-ball estimation using three nearest data points;  

2) Parker et al.’s reference transport value of comparison is 0.029; Shvidchenko et al.’s is 

0.034  

3) Entrainment threshold using Shields’ reference transport has not been derived as his 

reference transport is too high and outside the data range in the present set of 

experiments 
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Specific review of Table 5.4 in light of memory effects indicates that, according 

to Parker’s reference transport, the increase of entrainment threshold due to 

different memory time scales (SH_10, 30, 60 and 120) ranges between 21 to 49%. 

These magnitudes are generally hierarchical according to the duration of 

memory time scales; i.e. the longest duration memory time scale (SH_120) 

induced the highest increment in entrainment threshold. However, SH_30 is 

anomalous to the memory hierarchy; this is not due to fact that the experiment 

itself is wrong, rather a reflection of the relatively higher transport rates of this 

particular memory bed (Figure 5.6) showing the risk and limitation of 

determining entrainment threshold using a reference transport approach based 

on transecting a trendline at a discrete location. In Table 5.3, where 

dimensional shear stress values using more representative transport condition 

(mean and median) have been compared with memory, the SH_30 experiment 

there showed good hierarchical effect, and is not an anomaly at all against 

comparison with median values in hierarchical merit. Further, this approach of 

analysis using sediment rating curves (e.g., Figures 5.5 and 5.6) is enough to 

draw notable inconsistency in sediment transport, where 10% deviation in shear 

stress can cause 100% change in transport. Chapter 4 has already discussed this 

limitation and sensitivity, lending weight to examining the memory effect via 

quantification against mean transport and shear stress (Table 5.2 and 5.3). 

Interestingly, according to Shvidchenko et al.’s reference transport, almost 

similar (to Parker et al.) range of memory effects have been calculated, 

between 23 and 49% increase in entrainment threshold. Using this approach, 

magnitudes are perfectly hierarchical according to the memory duration. It is 

worth a comment that the similarity of this approach outputs to those of Parker 

et al.’s is a little surprising. Shvidchenko et al.’s reference transport (10-4) 

represents a relatively higher transport on the sediment vs. shear stress rating 

curve than Parker et al.’s (10-5); the above reference transports of Parker et al. 

and Shvidchenko et al. are superimposed on the volumetric transports vs. shear 

stress curve shown above  in Figure 5.6; thus, Parker et al.’s approach would be 

expected to reflect greater memory effects near entrainment than Shvidchenko 

et al.’s approach which lies closer to the mean/median transport and data 

convergence with baseline (Figure 5.6). This raises two issues: (i) which 

approach is advisable, and; (ii) whether the bedload sampling resolution is too 



  180 
 

180 
 

coarse to account for small variations in the bedload transport to capturing 

differences between the two approaches. 

 

In addressing these points, firstly, analysis of the flow steps indicates that 

Parker et al.’s and Shvidchenko et al.’s reference transport levels lie in discrete 

discharge steps in the present experiment; this validates the use of the present 

methodology for appropriate resolution of data capture. Secondly, in debating 

which method is advisable the following discussion is important. Given the 

observations in previous sections that memory has a non-linear effect on river 

bed stability over low flow transport, Shvidchenko’s reference transport lies 

closer to mean or median transport of the memory experiments and is both more 

representative of the ‘overall’ memory response of the bed and less sensitive to 

the near-threshold fluctuations in first motion of sediment. Although Parker et 

al.’s reference value represents the maximum sensitivity of the bed to memory, 

such very low transport may be impractical to sample hence extrapolation of 

research dataset would be required (introducing wider uncertainty into memory 

corrections/analysis). Further, to employ Parker et al.’s reference value, 

capturing the data at the lowest flow is highly sensitive to the operation of the 

sediment trap, as the first operation of the trap in each run tends to generate 

external disturbances (water/air bubble, sudden drop of sediment etc.), less 

evident in subsequent operations. Thus, at this juncture in the thesis, there is 

increasing support for use of Shvidchenko’s reference transport rate in memory 

experiments. 
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Figure 5.7: Family of mathematical functions (see equations in Table 5.5) of non-

dimensional bed shear stress versus non-dimensional transports from baseline 

experiment and memory conditions in bimodal mixtures. 

The non-dimensionalised parameters of the sediment load and bed shear stress 

in Figure 5.7 were subsequently used to form mathematical functions (power 

functions) to represent the effect of memory time scales. These proposed 

functions are similar to the bedload power functions of Paintal (1971) and Parker 

(1990a), which work without reference to a single entrainment threshold value 

in their functions. The power functions for the baseline and the memory 

experiments are presented in Table 5.5 and the trendlines in Figure 5.7. The co-

efficient matrix, and the exponents in further recursive relations show excellent 

correlation (R2 >0.9) and distinct hierarchy according to memory time scales (see 

Figure 5.8 and Figure 5.9 and Eq. 5.9 and 5.10); i.e. the exponents range from 

12 (baseline) to 25 (SH_120). That said, the exponent range with memory (SH_10 

to SH_120) is restricted to 21-25. Disruption to the hierarchy by SH_30 appears 

reflective of the higher transport values associated with the lower applied shear 

stresses of the SH_30 specific experiments (See Figure 5.6); this may relate to 

high temperature sensitivity due to the time of year that these experiments 

were undertaken (see Section 5.4.1); rise in the ambient water temperature 

would lower viscosity resulting into higher velocity (shear stress) at the same 
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discharge, and thus SH_30 generated higher (or similar) sediment load as of 

SH_10. Worth mentioning here that the family of power laws (Table 5.5) are 

valid for low shear stresses around entrainment threshold (Paintal, 1971), and 

thus higher the exponents, lower would be the sediment load. As a results, the 

fall out of SH_30 in the hierarchy, ambient temperature could be one key 

reason. 

 

Table 5.5: Mathematical functions for sediment transport proposed for low 

transports around incipient motion in bimodal sediment mixtures in baseline and 

memory stress condition 

Experimental 
condition 

Memory 
stress 
duration 
(min) 

Sediment rating Equation: 
*q  ~ c

b)( *  

BM_B_0 0 
12*16* )(1077.1 xq        Equation 5.3 

BM_SH_10 10 
8.23*33* )(1066.5 xq     Equation 5.4 

BM_SH_30 30 
9.20*29* )(1017.2 xq     Equation 5.5 

BM_SH_60 60 
2.24*33* )(1084.5 xq      Equation 5.6 

BM_SH_120 120 
5.25*35* )(1006.1 xq       Equation 5.7 

BM_SH_240 240  
95.20*28* )(1086.1 xq      Equation 5.8 

 

The mathematical functions (Eq. 5.3 to 5.7) clearly indicate that a longer 

memory time scale has higher exponent, with minor exceptions of BM_SH_30. 

Similarly, the coefficients are also larger in the longer memory time scales, 

again with the same BM_SH_30 exception. Therefore, following the pattern in 

the coefficient and the exponent matrix, recursive mathematical functions are 

possible to form which can replace the set of equations in 5.3-7. The recursive 

form of the regressions are presented in Eq. 5.9 and 5.10 for the coefficient and 

the exponent respectively, and help eliminate noise from the SH_30 outlier so as 

to be used in an improved generic form of transport equation (Eq. 5.11). 

Depending on the memory time scale, the coefficient “C” and exponent “b” can 

be worked out using Eq. 5.9 and 5.10, and bedload transport can be predicted 

using Eq. 5.11. As both the coefficient and the exponent both lead to good 
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regression relations, it is useful to analyse which parameter is more responsive 

to memory; this is of particular merit given that the range of increase due to 

memory in the bimodal exponent is very similar to that of the unimodal (Section 

4.5.4). It is also critical to our process-based understanding of memory effects as 

the coefficient mainly represents the effect of bed friction and bed structure, 

whilst the exponent is dependent on the applied shear stress. Although the 

appropriate analysis is presented herein, a wider discussion is presented in 

Section 5.6.4. Thus, mathematically, the following is relevant: 

The equation for the coefficient matrix is: 

50.425 )(105 TxC     Equation 5.9    

 

where C represents the coefficient in the power form of the equations 5.3-5.7, 

and T is memory time scale in minute. 

The equation for the exponent matrix is: 

0789.0)(59.17 Tb     Equation 5.10    

 

where b represents the exponent in the power form of the equations 5.3-5.7. 

Thus, the general form of the transport equation (replacing Equations 5.3 to 5.7) 

is: 

bCq )( **       Equation 5.11    

 

When plotted graphically, the following Figures are generated for the coefficient 

(Figure 5.8) and exponent (Figure 5.9): 
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Figure 5.8: Correlation of the coefficient matrix with memory time scales of the 

mathematical functions (Eq. 5.3 to 5.7) for bimodal sediment transport. 

 

 

Figure 5.9: Correlation of the exponents with memory time scales of the 

mathematical functions (Eq. 5.3 to 5.7) for bimodal sediment transport. 

Figure 5.8 and Figure 5.9 provide an important solution as to how to develop a 

generic correction factor for memory effects. In short, the curves can be read in 

two different ways to estimate the exponent and coefficient of a sediment 

rating equation: (i) if the timescale of memory in a river system is constant, or 

known for the specific event to be modelled, then a single value can be read 

from the curve; if the timescale is in excess of the dataset then extrapolation of 

the curve may be required; (ii) if the timescale of memory in the system is 
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variable, then the curve can read within the upper and lower bounds of the 

memory timescales to get a range of exponent/coefficient values which can be 

used as uncertainty bounds for a modelling domain. The importance of this 

outcome should not be understated, as it is the first mathematical solution for 

correcting sediment transport models for memory effects. 

Thus, from the section above, these key findings are noted: i) entrainment 

threshold of the median grain size in the baseline experiment matched well with 

the reference transport values of Parker and Shvidchenko; this provides 

confidence in the methodology applied herein; ii) memory time scales have 

significant and hierarchical influence on the non-dimensional shear stress (
* ) in 

low flow transport conditions with 
*  increasing by 21 to 49%; this delays 

transport and lowers values of 
* ; iii) rising exponents of the family of 

mathematical functions have taken the form of power law (similar to Paintal, 

1971 and Parker, 1990a) to adequately account for the different memory effects 

in a manner which can significantly improve bedload prediction in gravel bed 

mixture; iv) plotting separately the exponent and coefficients against memory 

timescale, suggests that the granular scale structures (embedded in the 

coefficient term) are of greater importance/sensitivity to memory than the non-

linearity represented by the exponent; v) the trendlines fitted to the exponent 

and coefficient plots against memory timescale are highly appropriate to 

estimating and including memory in generic sediment transport modelling. 

Overall, this section of the thesis has brought novel and important knowledge 

gains to sediment transport research and are the focus of the discussion section 

of Chapter 5. 

5.5 Fractional transport 

Size selective, equal mobility and size independence transport have often been 

referred in this section; thus, definition of these terminologies are worth 

presenting (they have previously mathematically expressed with pi/Fi term in 

Section 4.6). Size selective transport: due to relative sizes, when effect of 

hiding and exposure are present, the transport is referred as size selective; here 

a finer particle suffering hiding effect will require higher shear stress its mobility 

than its uniform size, and a coarser particle if suffering exposure effect will 
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require a lower shear stress for its mobility than its uniform size. Equal mobility 

transport: have been referred as transport at extreme hiding condition; thus, 

the hiding and exposure effects counterbalance the mass differences of the 

larger and smaller particles, and both (or all) size classes tends to mobilise at 

same shear stress (Parker et al., 1982a later referred his Oak Creek equal 

mobility as an approximation of “near equal mobility”). Size independence 

transport: this is referred as transport in a mixture if different size classes 

behave as if they are independent of their neighbouring sizes, and thus in the 

mixture a smaller grain requires a lower shear stress like their uniform size, and 

similarly a larger grain requires a larger shear stress than their uniform size for 

their mobility. Thus, transport of a mixture can become bias towards size 

independence. (For detail reference, please see Chapter14, MIT 

OpenCourseWare). 

   
In a similar manner to Chapter 4, the fractional transport is assessed using pi/Fi 

ratios (See Figure 5.10). Both baseline and memory experiments indicate 

approximate equal mobility of transport (pi/Fi ~1) for all fractions, except the 

two end fractions (i.e. the finest and the largest). These end fraction responses 

do indicate the presence of hiding and exposure effects (hiding for finer 

fractions and size independence of larger fractions) in the bimodal bed, which 

curtail the entrainment potential of the finer and the larger fractions.. 

Interestingly, the over-representation (pi/Fi > 1) of two modes of the distribution 

correlates with a dominance of these grain sizes in the mixture; this relative 

“instability” of the fraction may relate to reduced hiding potential of these 

fractions given that neighbouring grains are more likely of equivalent or similar 

dimension to the grain in question. Also, the D50 fraction shows near equal 

mobility of transport; according to existing hiding functions (Ashida and Michiue, 

1972 and Parker, 1982a), equal and size independence mobility of median size 

class is the same point (see Figure 2.8), which although very rare in natural 

condition (ASCE, 2007), however seems to have realised here, which may be due 

to stronger hiding effect by the finer classes. 
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The selectivity in transport for all fractions finer than the median class (D50) 

clearly demonstrates strong hierarchical hiding effects due to memory in bed. 

Specifically, the strongest effect is seen for the smallest grain size after the 

longest duration of memory was applied (Figure 5.10). This seems to strongly 

affirm that memory-induced stability is largely a function of a disproportional 

response by finer grains. This is likely due to hiding of the finer fractions due to 

vertical winnowing (for finer fractions with pi/Fi <1) which will  

 

Figure 5.10: Normalised fractional transport rates pi/Fi vs. relative grain size 

Di/D50 in bimodal mixtures showing size selectivity in transport for finer grain 

classes, equal mobility transport bias for middle part of the classes. 

have increased their entrainment threshold (a similarity towards extreme hiding 

and a bias of the fines towards equal mobility transport, which is fairly true for 

all finer fractions except the smallest fraction), and thus, reduced their 

volumetric transport (Figure 5.11). On the other hand, the larger fractions in the 

mixture (Di/D50 > 1) tend towards equal mobility transport with weaker memory 

response (Figure 5.10). The logarithmic scale of Figure 5.10 does to some extent 

mask the degree of memory hierarchy; however, it is still present and shows that 

increases in memory duration do lead to a preference of selective entrainment 

of coarser particles. It is unclear whether this is a result of increased exposure 

of coarser grains in response to the hiding of fines, or whether only coarser 
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fractions are available for transport if fines are effectively “lost” to the surface 

due to vertical winnowing, sieving etc. to the subsurface. 

 

 
Figure 5.11: Fractional transport vs. relative particle size Di/D50 in bimodal 

mixture showing strong size selectivity in transporting sediment for finer grain 

classes. 

 

Although the pi/Fi analysis is preferable in fractional analysis, as it indicates 

availability-corrected entrainment, Figure 5.11 and Figure 5.12 provide raw 

fractional data analysis. This explicitly shows two findings. Firstly, Figure 5.11 

shows that only the finest fraction (Di =1-1.4mm) shows a response to SH_10 

minutes of applied memory; hence supporting the notion that fines are most 

memory-responsive. Secondly, Figure 5.12 provides a quantified percent 

reduction of transport for each fraction; this shows that for long memory runs 

(SH_120) all fractions indicate transport reductions between 50 and 95%. The 

SH_30 and SH_60 experiments also show hierarchical reduction of fractional 

transport on either side of the median grain class showing reductions of 34-66% 

and 47-75% respectively. 
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Figure 5.12: Percent reduction relative to baseline in fractional transport vs. 

relative particle size Di/D50 showing strong size selectivity in transporting 

sediment for finer grain classes. 

In summary, the key findings are: i) bimodal mixtures demonstrated size 

selectivity in the fractional transport of grain classes finer than the median size, 

likely due to hiding and vertical winnowing; ii) median and larger fractions 

showed bias towards near equal mobility transport (pi/Fi between 0.7 to 2) being 

the effect of extreme exposure with weaker memory effects in these fractions; 

while the largest fraction showed size independence bias as if a uniform 

sediment of largest size requiring highest shear stress, and thus showing reduced 

transport; this is like less exposure for a larger (largest) grain class, may be an 

effect of tighter packing due to screeding; iii) the longest memory time scale 

induced the highest reduction in the fractional transport, up to 95% in the finest 

fractions, and 75% in the largest fractions. 

5.6 Discussion of results 

Bimodal sediment mixtures are common in graded bed rivers. The entrainment 

threshold of individual fractions (as well the median) is of particular importance 
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to entrainment and transport due to the grade modality; other parameters in a 

sediment distribution such as standard deviation and skewness in distribution 

have been observed to have little influence on the entrainment threshold of the 

grain classes (Rakoczi, 1975; Wilcock and Southard, 1988). Hence, the focus and 

distinction of grain mixtures in this thesis has been placed solely on comparison 

of bimodal (Chapter 5) to unimodal (Chapter 4) distributions of equivalent grain 

size, in light of their response to memoried conditions. 

The objectives of this discussion are as follows: i) to discuss the magnitude and 

process controls of  memory on bimodal bed stability, entrainment and bedload 

transport with respect to previous relevant research; ii) to compare and contrast 

the memory response of bimodal to unimodal beds, including process-based 

explanation; iii) review the non-dimensional analysis presented to make 

recommendation towards methodology appropriate to memory effect inclusion 

in sediment transport prediction and modelling. 

5.6.1 Influence of memory on entrainment threshold and bed 
shear stress  

5.6.1.1 Review of baseline 
*
50c  data:  

The non-memoried bed 
*
50c  in present thesis is found to be considerably lower 

than that of the uniform size sediment in the Shields curve (Figure 5.13); this is 

in line with previous memory stress research by Haynes and Pender (2007) and 

Ockelford (2011). Specific data show Shields values to be 1.66 times higher than 

data of the present thesis; 1.61 times that relative to Ockelford (2011); and, 

1.35 times that of Haynes and Pender (2007). Wider literature is also agreeable 

with the present thesis, with Shields’  up to 1.8 times higher than that of 

other bimodal beds researched (Figure 5.13). This is as expected from review of 

the hiding function theories of Section 2.5 (Einstein, 1950; Egiazaroff, 1965; 

Ashida and Michiue, 1972; Parker et al., 1982a, Parker and Klingeman, 1982; 

Komar, 1987; Ashworth and Ferguson, 1989; Kuhnle, 1992; Wilcock, 1993), and 

Section 4.7  has presented in detail the underpinning processes of relative grain 

size, hiding, exposure and protrusion which lead to these effects. 

*
50c
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Figure 5.13: Non-dimensional critical shear stress 
*
50c  for median size class from 

baseline experiment and from other researches in bimodal gravel sediment 

mixture (BOMC 
*
50c  calculated by present author taking bed shear stress for D50 

from Wilcock 1993, median size obtained from Wilcock 2001; 
*
50c  for Haynes and 

Pender 2007, and Ockelford 2011 also calculated by present author by using 

their original data; other 
*
50c  in the graph was adopted from MIT 

OpenCourseWare, chapter 14). 

 

5.6.1.2 Review of memory stress effect on shear stress 

Results from the present bimodal mixtures show a stronger response of 

entrainment threshold compared with the previous research on stress history by 

Ockelford (2011) and presented in Figure 5.14 and Figure 5.15. For example, 

whilst the present thesis observed an increase of entrainment threshold of 34% 

for SH_60, Ockelford notes only a 9% increase for the same memory period. This 

may be reasonably attributed to one or more of the following reasons: 
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Figure 5.14: Bimodal bed entrainment threshold from for median grain class: this 

thesis and Ockelford (2011, higher width-depth ratio dataset from a 1.8m wide 

flume, referred as Kelvine Flume relative to the Shields flume of 0.3 mi width, 

see Figure 5.15). 

 

 

Figure 5.15: Bimodal bed entrainment threshold for median grain class: this 

thesis and Ockelford (2011, lower width-depth ratio dataset from a 0.3m wide 

flume, referred as Shields Flume, relative to the 1.8m wide Kelvine flume, see 

Figure 5.14). 
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Firstly, the present research adopted the most practical way of assessing 

entrainment threshold by collecting bedload samples (Fenton and Abbott, 1977), 

and then applying the reference transport approach by assessing several 

definitions of reference transport values (Shields, 1936; Parker et al., 1982a; 

Shvidchenko et al., 2001). This approach has certain advantages, in that use of a 

stepped discharge hydrograph provides data gained from rating curves to assess 

the maximum memory stress effect on the rating curve. The alternative visual 

approach (Yalin, 1972) was used by Ockelford (2011) which restricted her 

analysis of entrainment threshold to a certain (single) discharge step of the 

hydrograph. Given that the Yalin count invariably requires multiple particles to 

be in motion to define threshold, it is likely that this approach calculates 

entrainment at a relatively higher discharge step than Parker et al. (1982a) 

reference transport where the present thesis has shown memory gains less 

significant. 

Secondly, it therefore follows that Ockelford’s baseline and memory data points  

(
*
50c ) are relatively closely spaced (0.032 to 0.036 in Kelvine Flume in Figure 

5.14 and 0.031 to 0.034 in Shields Flume in Figure 5.15), compared with those in 

the present thesis in the respective two Figures. Whilst specific discharge data 

of her flow steps are unavailable, the closely spaced
*
50c  values (of baseline and 

memory in both of the higher and lower width-depth ratio flumes) may be 

indicative of coarser resolution in Ockelford’s discharge step, thus contributing 

to a less notable memory response. To exemplify, if the baseline and memory 

visual entrainment thresholds both fell inside one discharge step, then subtle 

distinctions in threshold may be masked; this has knock-on effects to data 

accuracy in particular where averages of repeat runs are employed, as in 

Ockelford’s study. Such data resolution is important in low flow steps, because 

the shear stress to sediment mobility relationship is well-known to be highly 

sensitive and non-linear at low shear stresses (Bunte et al., 2004; Recking, 

2010). 

Thirdly, when compared to Ockelford’s sediments, the present thesis has a 

greater proportion of fines in the first mode (20%, rather than 15% by 

Ockelford). Given that both studies propose a positive relationship between finer 

grain response and memory timescales, it is therefore logical that the greater 
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proportion of fines in the present mixture results in stronger hiding effects and 

associate stability gains for the bed as a whole. Assessing such sensitivity in the 

proportional contents of the fines was a deliberate incorporation within 

experimental design of the present thesis. 

Finally, Ockelford (2011) used a longer bedding in time (30 minutes) compared 

with present thesis (3 minutes). Although bedding in flow is very low, it can also 

contribute to memory stress development. Thus, Ockelford’s memory response 

on entrainment threshold might have been masked by longer bedding in time 

leading to dissipated memory response compared with the present thesis for the 

bimodal bed (as in Figures 5.14 and 5.15). 

5.6.1.3 Memory response on the threshold of individual grain classes 

Threshold values for individual size classes, (using Ashida and Michiue, 1972, Eq. 

2.33-34) indicate important issues related to hiding and exposure (Figure 5.16). 

In the non-memoried bed, three finer grain classes suffered a varying degree of 

hiding effect as their threshold values rose higher than Shields uniform size 

values; the remaining five coarser fractions suffered a varying degree of 

exposure effect as their threshold values fell to lower than their unisize values, 

implicitly indicating that the coarser fractions might have formed more tighter 

packing with better angle of repose (hence more resistant to entrainment). The 

underpinning processes seem to be tightly placed sediments of non-uniform 

sizes, and having lower Manning’s n (lower resistance to flow) meaning a 

smoother/cemented bed (Wu, 2007).  And thus, in memory experiments, the 

particles are harder to be entrained and the threshold shear stresses ( *
ci ) for all 

size classes are higher than those in the baseline experiment. 
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Figure 5.16: Bimodal bed entrainment threshold of median and other grain 

classes from baseline and memory experiments (Reynolds number used in the 

abscissa is referred as Particle Reynolds (Rep) number defined by Brownlie 

(1981); /)])1[(( 5050 DgDsRep  ), where s is specific sediment density used as 

2.65. 

However, when memory is applied to the bed, the 
*
50c  value progressively 

increases towards that of Shields’ value (Figure 5.16) with increasing memory 

timescales. This reflects the increased stability of the bimodal bed and time-

dependent resistance to entrainment for the median size class (Section 5.5). 

Further review of Figure 5.16 shows that as the memory effect becomes 

stronger, this exposure and hiding mechanism changes such that a greater 

number of fractions are affected by hiding (absolute and relative entrainment 

for each size class is shown in Table 5.6 and Figure 5.17). Similarly, the coarser 

fractions, settling to a smoother and tighter bed, loses their preferential 

exposure to flow to be entrained easily due to memory (Section 5.5). The 

strengthening of these processes due to memory are unsurprising, given earlier 

data in this thesis. 
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Table 5.6: Bimodal sediment mixture: threshold shear stress for individual size 

classes:  

  
Di (mm) 

  
Di/D50 

BM_Base BM_SH10 BM_SH30 BM_SH60 BM_SH120 

*
ci  

*
ci  

*
ci  

*
ci  

*
ci  

1.2 0.25 0.101 0.123 0.124 0.136 0.151 

1.7 0.35 0.071 0.087 0.088 0.096 0.106 

2.4 0.50 0.051 0.063 0.063 0.069 0.076 

3.4 0.71 0.038 0.047 0.047 0.052 0.057 

4.8 1.00 0.030 0.037 0.037 0.040 0.045 

6.8 1.42 0.024 0.029 0.030 0.032 0.036 

9.6 2.00 0.020 0.024 0.024 0.026 0.029 

13.6 2.83 0.016 0.020 0.020 0.022 0.024 

  

 

 

Figure 5.17: Relative entrainment threshold of all size classes vs relative size 

(Di/D50) 
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5.6.1.4 Effect of modality on memory-based processes  

From the basic data presented in Chapters 4 and 5 (Tables 4.5 and 5.4), it 

transpires that the memory response at entrainment threshold of the bimodal 

bed is higher than that of the unimodal bed (Figure 5.18). Specifically, 

entrainment threshold (determined using Shvidchenko’s (2001) reference) in 

bimodal beds (Table 5.4) increases from 23 to 49% over time scales SH_10 to 

SH_120, while for the same memory time scales the increase is 3 to 8.5% in the 

unimodal bed (Table 4.5). However, due to the sensitivity and uncertainty of 

exact threshold and other reasons noted in Section 5.4.3, the scope of analysis 

was widened to assess data against both the mean and median transport. To 

make the comparison consistent between unimodal and bimodal datasets, the 

unimodal data has been revised adopting the approach described in Section 

5.4.3 and presented in Table 5.7 and Table 5.8. It is evident that both beds 

exhibit similar orders of magnitude of response after short memory timeframes 

of ~10 minutes; this is likely reflective of the equivalent availability of fines on 

the surface for sorting and restructuring. For longer memory timeframes, the 

unimodal bed illustrates only weak hierarchical memory effects, yet the bimodal 

bed clearly shows time-dependent strengthening of memory-related stability. 

This is likely reflective of the larger proportion of available fines for progressive 

development of hiding and associated surface restructuring processes discussed 

in detail Section 4.7. Thus, distinction between grades is very strongly evidenced 

in both the entrainment threshold and the statistical analysis of the subsequent 

transporting conditions (median and mean data). 

 

 



  198 
 

198 
 

 

 

Figure 5.18: Bimodal and unimodal bed: comparison of entrainment threshold for 

median grain class in different memory time scales. 

Table 5.7: Bimodal and unimodal experiments – different magnitudes of shear 

stress with reference to “Median” transport in respective memory experiment 

Experiment 
Identification 
Code 

Bimodal bed: 
Reference: “Median” sediment load from 
memory experiment 

Unimodal bed: 
Reference: “Median” 
sediment load from memory 
experiment 

Shear stress: 
SH (baseline),  
(N/m2) 

% increase in 
shear stress 

Bed shear 
stress 

% increase 
in shear 
stress 

Baseline - - - - 

SH_10 3.21 (3.0) 7 3.15 (3.0) 5 

SH_30 3.22 (2.95) 9 3.16 (3.01) 5 

SH_60 3.38 (2.7) 25 3.17 (3.0) 6 

SH_120 3.35 (2.3) 46 3.18 (3.02) 5 
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Table 5.8: Bimodal and unimodal experiments – different magnitudes of shear 

stress with reference to “Mean” transport in respective memory experiment 

Experiment 
Identification 
Code 

Bimodal bed: 
Reference: “Mean” sediment load from 
memory experiment 

Unimodal bed: 
Reference: “Mean” sediment 
load from memory 
experiment 

Shear stress: 
SH (baseline),  
(N/m2) 

% increase in 
shear stress 

Bed shear 
stress 

% increase 
in shear 
stress 

Baseline - - - - 

SH_10 3.4 (3.17) 7 3.34 (3.16) 6 

SH_30 3.3 (3.1) 6 3.34 (3.17) 5 

SH_60 3.5 (3.1) 13 3.33 (3.2) 4 

SH_120 3.7 (3.0) 23 3.24 (3.13) 3.5 

 
 

5.6.2 Role of memory on bedload transport and river bed stability 

Section 5.4.4 presented data on the variability of bedload collected over several 

steps of increasing discharges around the incipient motion (this is not the same 

as the deterministic threshold analysis of Section 5.6.1.4) via analysis of  

“mean”, “minimum” and “total/cumulative” load indicators. Comparison using 

“mean” and “minimum” data  indicates that the memory effect varies non-

linearly with increasing applied discharge. Effects are at a maximum at the 

lowest discharge of the longest memory run (93-99% reduction in bedload), but 

progressively reduces as flow steps increase in discharge (hence the mean data 

indicate only a 27 to 97% reduction in load due to memory). 

The alternative analysis  using “total” load (referred to as cumulative load over 

the stability test period) showed much weaker memory effects (5 to 65% 

reduction in load), due to dilution by higher discharges where memory effects 

are low or erased. However, previous memory stress research by Monteith and 

Pender (2005) and Haynes and Pender (2007) adopted hybrid visual-transport 

methodology yielding analysis most similar to the “total” load approach of the 

present research. Whilst Ockelford (2011) used a similar method, her stability 

test period was truncated earlier (i.e., at entrainment of the median size 

fraction) than in the present thesis; thus, the author’s stability test results are 

likely to include memory effect from a flow stage while memory effect still 

strongly persists, and thus the author’s data set are better compared (fairly) 
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with the “mean” bedload data measured in the present thesis. Figure 5.19 

therefore compares mean data. 

 

 
Figure 5.19: Bimodal bed bedload transport from baseline and memory stress 

experiments: this thesis, Monteith and Pender (2005) and Ockelford (2011); 

Ockelford’s data taken from Figure 4-5 of her thesis, and Monteith and Pender 

(2005) data taken from Table 3. 

Using Figure 5.19 it is clear that the general trend and slope of the line of 

Ockelford (2011) is equivalent to that of the data collected in the present thesis. 

The notable offset of Ockelford’s data to higher bedload is a facet of her use of 

the visual approach (discussed in Chapter 2) for the median grain size. 
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Figure 5.20: Bimodal bed reduction of bedload transport in memory 

experiments: this thesis, Monteith and Pender (2005) and Ockelford (2011). 

 
As Monteith and Pender (2005) assessed “residual” memory effect from their 

dataset at 19.1/ *
50

* c , their reduction is expected to be lower but 

approximately parallel to trends of both the present research and those of 

Ockelford. This is clear in Figure 5.20. Thus, the importance of a benchmarked 

methodological framework for memory studies is highlighted, with Sections 5.6.1 

and 5.6.2 clearly demonstrating that the set-up of Chapter 3 appears most 

appropriate to detailed analysis of both entrainment and transport statistics. 

5.6.3 Grade dependent memory response on bedload and bed 
stability 

From data presented in Section 5.4 and 5.5, the bimodal bed showed more 

memory response (bedload reduction of 27-97%) than the unimodal bed (14-30%). 

This is supported by Ockelford’s (2011) data, and was justified  due to the higher 

proportions of fines in her bimodal bed (47% <D50) than in the unimodal (30%) 

creating stronger hiding effects and stronger bed structuring. 
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Figure 5.21: Bimodal and unimodal bed: bedload transport in baseline and 

memory experiments: this thesis and Ockelford (2011). 

 
The simplistic approach in the discrepancy ratio plot in Figure 4.2 and Figure 5.2 

clearly shows that  reduction rates of the “mean” transport from the present 

thesis’ bimodal bed (Figure 5.2) are  closely comparable with those of Ockelford 

(derived from Fig. 4-5 in her thesis). In Figure 5.2, discrepancy ratios around 

mean transport rates (which is between discharge 12 and 14 l/s) is 

approximately 3-15 for the memory time scales 10-60 minutes, while the 

discrepancy ratios of Ockelford for her bimodal bed in the same memory time 

scales are approximately 2-12; given the high sensitivity of bedload at low flow 

transport, the comparison of these reduction rates (i.e., discrepancy ratios) 

between the two studies are fairly similar, which is also clearly seen in the slope 

of the lines for bimodal beds (Figure 5.21).  Although Ockelford captures higher 

bedload both in her baseline and memory experiments, probably due to 

methodological difference (she applied Yalin’s (1972) visual approach to 

determine entrainment threshold and memory effect); this outcome on the 

similarity of discrepancy ratios, and rate of decrease of sediment load in 

memory experiments is found to enhance the confidence of the regression laws 
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applied later in this thesis to develop memory correction approaches in Chapter 

6, and used to develop Eq. 6.1 and 6.2. 

5.6.4 Normalised transport and shear stress: influence on 
mathematical functions of bedload 

The implication of memory response encapsulated in the power functions (Eq. 

5.3 to 5.7) of the non-dimensional parameters of shear stress and bed load is 

worth discussing. This is primarily important due to the fact that the variation of 

the exponent due to memory obtained in bimodal bed is not much different to 

that of the unimodal bed; i.e. 20.9-25.5 and 17.3-21.5 respectively. Particular 

note is given to the finding that the variation of this exponent across memory 

time scales seems to be similar in range (+4) for both beds. Yet, as it has already 

been established that the bimodal bed has a significantly higher response both 

on bed shear stress and bedload transport, the similarity in “exponent” variation 

between the two beds must have been compensated in the coefficient terms, 

and thus the coefficient terms must be better understood. 

Whilst the exponent term represents the dependency of transport on the applied 

force, the coefficient term accounts for the effect of many factors such as grain 

friction, bedform friction, bed compaction, sediment shapes, sediment and 

water density and many other terms (Chapter 2 and ASCE, 2007). Whilst it is 

certain that both the exponent and coefficient contribute to memory response, 

the insensitivity to grade of the memory-induced variation of the exponent 

raises the question as to  which parameter is more dominant in contributing to 

memory response. Via two matrices of datasets for the two sediment mixtures 

(Figure 5.22 and Figure 5.23), both parameters illustrate non-linear 

relationships, yet it is the coefficient which seems more sensitive. 
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Figure 5.22: Dependence (regression law) of the coefficient of bedload formulae 

(Eq. 5.3 to 5.7) on memory time scales. 

From Figures 5.22-23, the exponent increases by a maximum factor of 2.13, 

while similar comparison between the coefficient reveals extremely high 

increase of the coefficient, by an order of 1019. Therefore, memory effects 

appear to be largely controlled by changes in structure of the bed due to the 

factors associated with the coefficient term. This is re-examined in the 

mathematical formulae developed in Chapter 6 for the prediction of bedload 

with memory stress correction. 

 

Figure 5.23: Dependence (regression law) of the exponent of bedload formulae 

(Eq. 5.3 to 5.7) on memory time scales. 
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5.6.5 Fractional transport in response to memory in bed 

Reviewing the general literature suggests that higher fractions of sand content in 

gravel mixtures will enhance the mobility of the sediment (Jackson and Beschta, 

1984; Ikeda and Iseya, 1988; Wilcock, 1988). This is in contrary to the 

observations of fractional and total load in the bimodal mixtures of the present 

thesis, in particular, for memoried beds where the total transport reduced by 

95%, yet, whereas sand (or finer fractions) contents were increased in the 

bimodal mixtures (35% fractions are finer in bimodal than the first mode; in 

unimodal it is 17% of the mixture), and mobility of the mixtures, particularly for 

the larger fractions reduced significantly than the unimodal (see previous 

section, and also Figure 5.10 to Figure 5.12). This is also in contrary to the 

observation of Ockelford (2011), who noted that it was the sand fraction (in 

bimodal bed), which determines the overall stability of the bed. In case of 

bimodal in the present thesis, it seems that these are the coarse fractions and 

their size independent transports, which would determine the overall mobility of 

bimodal bed. 

5.7 Key outcomes 

The memory of sub-threshold shear stress in beds with bimodal mixtures has 

been physically modelled. The same median size (D50=4.8mm) and same number 

of fractions have been used as in the unimodal mixture  of Chapter 4; however, 

a higher fine proportion (47%) is present (compared with unimodal mixture 30%) 

such that a higher sorting coefficient (g) of 1.93 is employed; this is specific to 

assessing the sensitivity of fines to memory stress. For the five memory time 

scales (SH_10, 30, 60, 120 and 240 minutes) experimented upon, the key 

outcomes from the above experiments are: 

 Bimodal beds are more sensitive to memory stress than unimodal 

mixtures; threshold motion rises upto 49% in bimodal bed, while the rise is 

9% in unimodal bed. 

 Bimodal bed memory stress increases entrainment threshold up to 49% for 

the median grain size (D50) both in Parker’s reference based transport (
*q
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=10-5) and in Shvidchenko’s reference based approach (
*q =10-4); there is a 

direct relationship between memory duration and higher entrainment 

threshold. 

 Due to rise in entrainment threshold, “mean” transports over the low flow 

range decreased up to 97%; longer memory time scales yield greater 

reductions in transported sediment volume. 

 Size selective transport was observed as key transporting mechanism; 

both finer and coarser end fractions suffered a similar degree of memory 

effect, particularly with longer memory time scales; i.e. the mobility of 

finer fractions reduced by up to +98%, while that for the coarser fractions 

reduced by up to +90% in SH_120. 

 The effect of memory stress on transport was found to be sensitive at 
*q  

values between 1x10-7 to 1x10-1 and for a Shields parameter range 

between 0.02 to 0.06. Therefore, use of the traditional Shields threshold 

condition (0.06) is inappropriate to assess memory effect as it is too high 

relative to the domain where memory effect operates. 

 The memory effect can be adequately embedded in a family of 

mathematical descriptors using rising “exponents” for non-linearity of 

transport to shear stress, and changes in the structure by a lumped 

“coefficient” (in a manner akin to that used in Chapter 4).  The response 

of both the exponent and the coefficient is more sensitive in bimodal beds 

than in unimodal beds. For SH_10 to SH_120, the exponents rise from 21 

to 25.5; while the coefficients rise by an order of 6x1018 relative to 

baseline. This supports data in Chapter 4 suggesting that memory is a 

structural process response. 



207 
 

207 
 

Chapter 6: Mathematical prediction of bedload 
transport: a framework for memory stress 
correction  

6.1 Introduction 

The scope of improving mathematical formulae for bedload transport prediction 

to account for memory stress is investigated in this Chapter. Section 2.5 has 

presented unambiguous evidence regarding the unsatisfactory performance of a 

plethora of existing bedload transport formulae in the literature, and Chapters 4 

and 5 have clearly proven the significance of memory effect control over the 

entrainment and transport of sediment. Thus, incorporation of the additional 

stability effect of memory duration into existing graded sediment transport 

formulae is a logical consideration and can be reasonably performed via 

modification of coefficients, terms and/or parameters in existing formulae. As 

this thesis’ focus is experimental analysis of memory effects (with the wealth of 

data collected and analysed), the present Chapter’s aim is to provide only a 

first-stage analysis of memory-modified formulae approaches, as appropriate to 

ascertaining the future merit of this research direction. 

 

6.2 Introducing frame work for memory stress correction 

Whilst a wide range of existing sediment transport formulae have been reviewed 

in the present thesis to unravel the predictability of the formulae, the evidence 

of memory data from the laboratory has been simultaneously analysed from 

Chapters 4 and 5 and previous memory experiments (Haynes and Pender, 2007; 

Ockelford, 2011). From this, two intuitive and evidence-based approaches to 

inclusion of memory effects in transport formulae have been deduced. 

 

Firstly, modification of the hiding function exponent (m): this exponent 

controls the size selectivity of transports in graded sediment transport formulae 

(Ashida and Michiue, 1972; Wu et al. 2000a; Powell et al. 2003; ASCE 2007- 

chapter 3); therefore modification of m in graded sediment transport formulae 

would account for the increase in size selectivity of entrainment due to memory 

effects (Chapter 4 and 5; Haynes and Pender, 2007; Ockelford, 2009; Ockelford 

and Haynes, 2013). In summary, higher values of m induces size selectivity of 
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transport with the extreme value m=1 providing perfect equal mobility transport 

and m=0 providing size independence transport; thus, memory will likely adjust 

the value of m upwards from the original non-memoried value (Parker et al., 

1982a, Parker and Klingeman, 1982; Wu et al., 2000a). However, it is important 

to note caution in how this adjustment is made. Most formulae focus upon the 

threshold motion of median grain size ( *
50c , D50); hence, if memory is directly 

implemented it assumes a constant scaling of the transport of each fraction. 

Using existing data sets, including the present thesis’, calibration of these 

memory-adjusted hiding functions can be undertaken. 

 

Secondly, scaling of the roughness term in bedload functions can be justified.  

Direct evidence from measured data sets of memoried beds by Ockelford and 

Haynes (2013) clearly shows spatial heterogeneity of sediment bed packing, 

typically characterised by regions of increasing vertical roughness, and 

horizontal roughness at granular scale characterised by Hurst scaling components 

in both streamwise and lateral direction (Ockelford, 2011); Ockelford (2011) 

found Hurst scaling components to decrease over all memory durations in 

unimodal and bimodal bed indicating increasing bed complexity and confirming 

re-structuring of bed under sub-threshold memory stress. More recently, Mao et 

al. (2011) also clearly found particle rearrangement under different hydrograph 

shapes (equivalent to unsteady memory effects). Thus, this scaling function in 

graded sediment transport formulae can account for granular scale roughness 

(typically defined by An) to account for memory effects, in a manner whereby 

memory would increase An as the roughness scale develops over time. This 

parameter (An), expressed in Eq. 6.4, has been historically used by well cited 

researchers representing granular scale roughness to parameterise loose or 

tighter packing of planar bed (Strickler, 1923; Meyer-Peter and Mueller, 1948; Li 

and Liu, 1963; Zhang and Xie, 1993; Patel and Ranga Raju, 1996; Wu and Wang, 

1999).  

 

The next step is to decide upon a graded formula to use as a framework for 

revision and development appropriate to these initial memory incorporation 

tests. Chapter 2 provides the range of literature (Ashida and Michiue, 1972; 

Parker et al., 1982a; Wu et al., 2000a, Powell et al., 2001, 2003; Hunziker and 

Jaeggi, 2002; Wilcock and Crowe, 2003) which has been reviewed in the present 
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thesis. From this Wu et al. (2000a) has been selected for the following reasons: 

(i) it is a generally accepted, widely used and recently developed formula for 

graded beds developed by making use of the plethora of earlier research 

available in the literature; (ii) the hiding function is clearly defined by the 

exponent m; (iii) despite use of ,*
50c individual grain class information is 

explicitly recognised via the fractional i term; (iv) the roughness term An is 

straightforward to embed; (v) his formula uses τ*
c50 = 0.03, which is similar to 

values obtained in the present thesis and wider memory experiments from 

Haynes and Pender (2007), Ockelford (2011) and other field studies (Parker et al. 

1982a, Parker et al., 2003) such as to hold good applicability to studies with 

focus upon low flow conditions; (vi) direct collaboration with the author of the 

formula was possible. Whilst the full derivations of Wu et al.’s formula can be 

found in the citation Wu (2007), a précis appropriate herein is provided below of 

the key elements modified in the present memory approach. Specifically, 

determination of the threshold motion of an individual grain class is given 

through the hiding function of Wu (2007) as in following equation: 
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    Equation 6.1 

 

In which ci  is critical shear stress for grain class i; Di is grain diameter of size 

class i; *
50c is critical shear stress (non-dimensional) for median size class, Pei 

and Phi are respectively the exposure and hiding probabilities for grain class i. In 

a non-uniform mixture, Pei Phi for coarse fractions, and Pei   Phi for finer 

fractions. In uniform sediment, Pei =Phi =0.5. Detail derivation of Pei and Phi can 

be found in Wu (2007), and briefly presented in Section 6.3.2. The strength and 

weakness of the hiding and exposure parameter is further discussed in Section 

6.3.2. However, it is noted above that use of *
50c  must be specifically 

manipulated as specific to incorporating memory time scales, hence Eq. 6.2 is 

derived as: 

b
memoryc TC )(*

_50      Equation 6.2   
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In which, T is memory timescale, and C is coefficient and b is exponent in the 

power relation; both C and b are functional to memory stress timescale. Non-

dimensional bedload ( *
iq ) for fractional class (i) is then calculated from Eq. 6.3 

and 6.5: 

2.2
2/3* 1)/(00053.0 










ci

b
i nnq




   Equation 6.3 

 

In which, ci  is bed shear stress for grain class i and, specifically, n and n  are 

Manning’s roughness coefficients for skin (grain) and bedform respectively; 

bbb    where SRbb    is bed shear stress divided into skin (grain) shear 

stress ( b  ) and bedform shear stress ( b  ). Einstein (1942) suggested division of 

hydraulic radius Rb into two parts: bR  for skin friction and bR   for form friction. 

Thus, SRbb    and SRbb   . These relations through assumption of equal 

velocity provide: nSRU
b

/2/13/2  , nSRU
b

 /2/13/2
, nSRU

b
 /2/13/2
. 

This leads to: 
2/3)/( nnRR bb    and 

2/3)/( nnRR bb  . From the above 

relations, now total Manning’s roughness can be transformed into 

2/32/32/3 )()()( nnn  , also see Wu (2007) for detail derivation. Hence, 

Manning’s roughness coefficient at the grain scale is related to bed material size 

by the relation: 

nADn /)( 6/1
50      Equation 6.4 

 

These equations provide the avenue for use of An as a memory adjustment factor 

in the present thesis. An affects the grain roughness, and thus mobility of 

transport. 
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As different values of An have been observed by scientists in developing bedload 

formula, using this term as a variable appears appropriate in accounting for 

time-dependent memory effect development. For example, An values between 

17 and 20 are commonplace for loosely packed beds (e.g., Strickler, 1923; Li and 

Liu, 1963; Zhang and Xie, 1993; Wu and Wang, 1999); yet in more tightly packed 

beds higher values of An between 24 and 26 are documented (e.g., Meyer-Peter 

and Muller, 1948; Patel and Ranga Raju, 1996). Thus, Wu’s function in Eq. 6.3 

can be re-arranged to the form in Eq. 6.5 below. The correction factor 

representing packing arrangement (i.e. the compactness of bed) for additional 

stability due to memory stress is to be accounted in the co-efficient term as in 

Eq. 6.5 so as to scale the threshold motion for individual grain classes; this, in 

turn, scales the ability of the available shear stress for sediment mobility 

through the term cib  / . Hence, 

2.2
2/36/1

50
* 1}/){(00053.0 










ci

b
nbi nADq




 Equation 6.5 

 

Detailed data and parameter input for model run in each approach are 

presented and discussed further in Section 6.3, yet the above equations provide 

the overall framework within which the research of this Chapter is undertaken. 

 

6.3 Prediction of transport with memory stress 

6.3.1 Memory incorporation via hiding function scaling (m) 

Key data inputs for the Wu et al. (2000a) model, using both of the approaches 

mentioned in the preceding Section, include: *
50c , median grain size, size of 

each grain class, fractional proportions for each grain class, Manning’s roughness 

coefficient, and total available shear stress; while the variables remain the 

same, their values vary according to whether the unimodal or bimodal size 

distribution is being analysed. The output process is two stage: firstly, the model 

calculates the threshold motion for each grain class; secondly, the model 

predicts the non-dimensional bedload transports for each grain class, whose 

summation provides the total bedload transport for grain classes. The prediction 
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was made over the full hydrograph; however, the comparison of predicted load 

with observed load was carried out against the integrated load over the 

hydrograph as the memory effects in Chapter 4 and 5 were quantified and 

discussed against this parameter. 

 

Using the hiding function framework to account for memory (Section 6.2), the 

key inputs for each memory scale model run are presented in Table 6.1 (for both 

unimodal and bimodal bed); it is important to note that in this approach, two 

dependent variables, *
50c  and exponent “m”, are updated in each memory 

scale run to include the memory effect (shown in blue shaded data values), 

while all the other variables (inputs) remain constant in all model runs. The 

detailed calculation sheet for model run is presented in Appendix C (Table C.11; 

same excel sheet is used for calculating bedlaod by varying An). 

 

Table 6.1: Key inputs in the runs of Wu’s (2007) model for the unimodal and 

bimodal beds of this thesis, as appropriate to implementing memory stress 

through a hiding function framework. Blue shaded inputs are the only varying 

variables in each memory time scale run (detailed calculation sheet is presented 

in Appendix C). Grain sizes are shown in mm, but must be converted to metres 

for model runs. No data are provided or analysed for bimodal SH240 due to 

outlier status ascertained in Chapter 5. The Manning’s n value is the same for all 

memory timescales, as calculated from velocity under uniform flow assumptions. 

Shear stress is the same for all memory timeframes, as described in Table 4.2. 

The An value of 20 (similar to non-memoried bed) is used for all memory time 

scale in this approach because memory stress bed stability is incorporated 

through increasing *
50c and varying the exponent “m” (therefore An=20 

eliminates implementing double effect of memory); or in other words, the effect 

of memory on roughness (or An) increasing entrainment threshold values have 

directly been used from the observed values in this thesis (values in row 3-

uniodal; row 4-bimodal) 
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Variables 
Memory time scale in minutes 

Comment 
10 30 60 120 240 

50
*
50 Dforc   

0.034 0.035 0.036 0.035 0.036 
Unimodal: Table 
4.5 Chapter 4) 

0.036 0.037 0.040 0.045 -  
Bimodal: Table 
5.4 Chapter 5) 

D50 (mm) 4.8  - 

Fractional size 
class (Di) (mm) 

1.2 1.7 2.4 3.3 4.7 6.7
 9.5 13.4 

Same in both 
grades of bed 

Fractional contents 
(Fi) (-) for eight 
size classes 

0.025 0.05 0.075 0.15 0.4 0.15
 0.1 0.05 

Unimodal: Table 
3.2, Chapter 3 

0.05 0.1 0.2 0.12 0.08 0.31
 0.1 0.04 

Bimodal: Table 
3.2, Chapter 3 

Manning’s n (m-

1/3.s) 
0.02 - 

Shear stress (N/m2) 
See Figure 4.5 and 5.5 (same for all runs) and 
Appendix D  

- 

Hiding function 
exponent “m” (-)  

Variable 0.4 to 1.0  
 

- 

Grain scale 
roughness (An) 
(m1/2. s-1) 

20  - 

 

The two approaches employed for calibration of predicting load are referred as 

scaling process; one is scaling by varying the hiding function exponent (Eq. 6.1), 

and the other is varying the An in Eq. 6.5. Use of scaling in prediction of bedload 

is a common practice in sediment transport (van Rijn, 1984) due to the empirical 

nature of bedload formulae. The use of n, n’ and An should all be considered as 

scaling the predicted value. Now as in Table 6.1, n=0.017, and n’= (D50/20)1/6, 

which is 0.02 may apparently look inconsistent. However, there was a basis for 

choosing them as a start point of the calibration process. n=0.017 was initially 

obtained by using Manning’s uniform flow formula (see Table C.11, in last row), 

while it is expected that the roughness (n) should also adjust due to memory 

(Ockelford, 2011). Similarly, n’= 0.02 (with An=20) is applied in literature for 

non-memoried bed (Wu, 2007). So, in the calibration processes, these two values 

n=0.017 and n’=0.02 were used as starting point in both approaches of 

calibration. Use of An between 18 to 25 in Tables 6.5 and 6.6 with n=0.017 may 

look contradicting for the An values of 18. 19, and 20; same is true for the case 

of Turkey Brook for all An values smaller than 20. However, in all cases, n=0.017 

has been consistently used, whether An is greater than 20 or smaller than 20. 

Therefore, use of n=0.017, and varying use of n’ by varying the An values should 

be considered as a numerical art of scaling rather than an inconsistency.  

Further to note about n = n’ in case of planar bed (when n”= 0 as there is no 

bedform). Apparently in a planar bed, we often refer n=n’; however, practically 
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in a river bed (planar), the total roughness may not be equivalent to individual 

grain roughness (n’); Professor Weiming Wu (The Clarkson University) expressed 

this view during a meeting with him that no matter whether a river bed is 

planar; due to particle interaction, total roughness is always different than grain 

scale roughness. Therefore if n value is changed from 0.017 to 0.02, then it will 

need to be done for all An values smaller than 20; this will rather make the 

scaling process more inconsistent, and then prediction will not be comparable 

with like for like. While use of n=0.017 in all cases rather made the prediction 

method more consistent. 

 

Predicted load has been evaluated against an “Efficiency Factor - EF”, which is 

the ratio of predicted and observed bedload. In several organised researches, 

the EF for different sediment transport formulae were evaluated (White et al., 

1975; Yang, 1976; Alonso, 1980; ASCE, 1982, and Yang and Huang, 2001); they 

considered the EF values between 0.5 and 2.0 as satisfactory standard for the 

sediment transport formulae they considered in their evaluation. In the present 

thesis, the above EF range was considered as reference for satisfactory 

prediction for the Wu et al. (2000a) model. Given the extreme sensitivity of 

bedload transport in low flows (Bunte et al., 2004), some authors further relaxed 

this EF range between 0.1 and 10 (e.g., Recking, 2010). 

Predicted bedload with memory effects for both unimodal and bimodal data is 

presented in the Table 6.2 and Table 6.3.  The EF values in Tables 6.2 and 6.3 

clearly show that memory effects can be predicted satisfactorily by adjusting 

the hiding function exponent “m”; with evidence supporting use of “m” values 

within the range of 0.2 to 0.6 and a weak suggestion of higher m values for 

longer memory durations. This shift towards equal mobility transport after 

longer memory timeframes appears appropriately reflective of improved packing 

arrangements and hiding within the bed fractions. 
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Table 6.2: Unimodal bed: Efficiency Factor (EF) of predicted load (hiding 

function framework, m). Blue shaded cells are within the acceptable range of 

prediction 

Experiment 
Identification Code 

Efficiency (EF) range for predicted load:  
qb_Predicted /qb_Observed load 

m=0.2 m=0.4 m=0.6 m=0.8 m=1 

UM_SH_10 0.78 0.54 0.42 0.39 0.60 

UM_SH_30 0.65 0.50 0.33 0.30 0.44 

UM_SH_60 - 0.25 0.17 0.14 0.21 

UM_SH_120 0.55 0.36 0.26 0.21 0.31 

UM_SH_240 0.39 0.56 0.39 0.31 0.41 

 

Table 6.3: Bimodal bed: Efficiency Factor (EF) of predicted load (hiding function 

framework, m). Blue shaded cells are within the acceptable range of prediction 

 
Experiment 
Identification 
Code 

Efficiency (EF) range for predicted load:  
qb_Predicted /qb_Observed load 

m=0.2 m=0.4 m=0.6 m=0.8 m=1 

BM_SH_10 0.9 0.6 0.3 0.2 0.2 

BM_SH_30 1.3 0.7 0.4 0.2 0.2 

BM_SH_60 2.0 1.1 0.6 0.3 0.1 

BM_SH_120 2.4 1.30 0.61 0.19 0.002 

 

In the unimodal bed, m=0.2 predicts bedload above the 50% EF limit (Table 6.2) 

for memory time scales 10 to 120 minutes; the 240 minute memory time scale 

seems to require a higher m value (0.4). In the bimodal bed, only the shortest 

memory time scale of 10 minutes appears successful at the smaller m value of 

0.2; although 30 and 60 minutes memory time scales are also within the 

efficiency range (EF values below 2), these two long memory times scales 

together with 120 minutes memory require higher m values (0.4 to 0.6) to 

achieve a better EF values, and extrapolation for estimating 240 minute memory 

time scale would tend towards a higher m value →   0.6 in bimodal experiments. 

Whilst all bimodal data are predicted well by this approach, the 60 minute 

memoried bed of the unimodal data fails to be corrected effectively using this 

approach; review of Chapter 4 does not raise any definitive rationale for this. 
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More detailed evaluation of the data used to generate the EF of Table 6.2 and  

does, however, show that almost 100% data points of the memoried bed are 

possible to predict within the EF range. Given that prediction and performance 

evaluation in the current low flows of the present thesis is more challenging 

than in previous higher flow research which benchmarked the acceptable EF 

range, the use of m = 0.2-0.6 is therefore considered generally satisfactory as a 

method of accounting for memory effects as reflective of the associated 

enhanced selective transport. That said, this approach performs better for 

bimodal beds than unimodal beds and probably does not robustly present a 

generally applicable “graded” bed correction method. Also, as the distribution 

range of m values for a specific grade of bed are very small, this method appears 

only weakly sensitive to memory description. 

A final point worthy of note is that from Table 6.2 and Table 6.3 it is obvious 

that high exponent values, say from 0.8 to 1.0 which are meant to provide bias 

towards equal mobility transport (Chapter 2, Section 2.5), provide the worst 

prediction in both beds (particularly in the bimodal mixture). As such, the many 

field studies where m values have been observed above 0.6 (Parker et al., 

1982a; Ashworth and Ferguson, 1989; Kuhnle, 1992; Ashworth et al, 1992) differ 

with the calibrated m values applied in predicting bedload of the present thesis. 

Therefore, should the values from literature be erroneously assumed for memory 

bed, would yield a bedload under-prediction of 10 to 100 times for the 60 to 120 

minute memory timescale data herein.  Thus, the importance of low value m use 

in the present thesis (towards size selectivity) is most appropriate and strongly 

advocated for memory research. That said, it is important to conclude that even 

with using low m values the memory and grade specific trends in m are less 

sensitive than expected; such weakness in this mathematical approach therefore 

is the focus of Section 6.3.2. 

6.3.2 Weakness of hiding function approach (m) for predicting 
sediment transport 

In all graded transport formulae, the initial motion of each size class is 

determined using the hiding function (Chapter 2). Outwith the present thesis, 
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none of these functions explicitly include temporal water-working (although 

their effect might be unknowing in-built due to the data used). The hiding 

functions represent only an initial and constant state of bed structure; for 

example, in Wu’s formula (hiding) Phi and (exposure) Pei remain constant in a 

given distribution irrespective of any applied temporal scale effect on the bed, 

such as memory stress. In the case of water working of bed prior to sediment 

motion, while the distribution in the bulk mix remains same, the hiding and 

exposure can change substantially due to changes in bed structure (Ockelford, 

2011; Mao et al., 2011) and leads to different degrees of (im)mobility of 

fractions from beds of equivalent distribution (discussed in Chapters 4 and 5); 

this is schematically shown in Figure 6.1. The equations for calculating hiding 

(Phi) and exposure (Pei) probabilities are presented in Eq. 6.6 and 6.7 (see Wu, 

2007). According to Eq.6.6 and 6.7 (or other hiding functions discussed in 

Chapter 2 in Section 2.5), the hiding and exposure probabilities (Phi and Pei) will 

be same for both beds as the size distribution is same in the two beds, and thus 

will calculate same set of entrainment threshold for individual size classes for 

these two scenarios. Thus, the variation of the exponent “m” in Eq. 6.1 has been 

investigated to explore the sensitivity of predicted transport to its value. 

ji
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    Equation 6.6 
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    Equation 6.7 

 

In Eq. 6.6 and 6.7, Di and Dj are grain size for size class i and j, fj is fractional 

proportion for grain class j; and N is total number of grain classes. 
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Figure 6.1: Two beds of invariant distribution of sediment, but different bed 

structure, yield same hiding and exposure according to Eq. 6.6 and 6.7 (and 

other hiding function equations in chapter 2: Eq. 2.28-2.34). 

 

6.3.3 Memory incorporation via roughness scaling (An) 

To overcome one of the weaknesses of using the hiding function scaling (m), the 

roughness scaling approach is better appropriate to considering a fractional 

(individual grain size) response to memory. Specifically, the roughness 

parameter is related to grain scale roughness (n’ in Eq. 6.3) and, therefore, An, 

once it is related to grain size in Eq. 6.4 and 6.5. By modifying the parameter An 

in Eq. 6.5 to reflect improved packing arrangement due to memory (i.e. an 

increase in the value of An), a prediction of bedload has been made. The key 

inputs for each simulation in this framework for Wu’s model are presented in  

 

Table 6.4 indicating that only the An value is dependent upon memory time 

scale; the rest of the variables are common to all calculations. The detailed 

calculation sheet for the model run is presented in Appendix C (Table C.11). 

Analysis has used the same EF evaluation methodology as that used in Section 

6.3.1, with data provided in Table 6.5 and Table 6.6. 

 

 

Flow 

Di 

Dj 
a) 

Flow 

Di 

Dj 
b) 
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Table 6.4: Key inputs in runs of Wu’s et al. (2000) model for unimodal and 

bimodal bed of this thesis as appropriate to the roughness length framework (An) 

approach; scaling of the roughness parameter is the only variable input in this 

approach as shown in blue shaded row; other variables are same in all runs, such 

as: *
50c , D50; Manning’s n; hiding function exponent; grain size used in the 

prediction requires conversion to metres (detailed calculation sheet presented in 

Appendix C) 

Variables 
Memory time scale in minutes 

Comment 
10 30 60 120 240 

50
*
50 Dforc   03.0*

50 c   

Same value in 
both grade of bed 

D50 (mm) 4.8  - 

Fractional size 
class (Di) (mm) 

1.2 1.7 2.4 3.3 4.7 6.7
 9.5 13.4 

Same in both 
grades of bed 

Fractional contents 
(Fi) (-) for eight 
size classes 

0.025 0.05 0.075 0.15 0.4 0.15
 0.1 0.05 

Unimodal: Table 
3.2, Chapter 3 

0.05 0.1 0.2 0.12 0.08 0.31
 0.1 0.04 

Bimodal: Table 
3.2, Chapter 3 

Manning’s n (m-

1/3.s) 
0.017  

- 

Shear stress, τ 
(N/m2) 

See Table 4.2 (same for all runs) 
Table 4.2 

Hiding function 
exponent “m” (-)   

m=0.6 
m=06 is used as calibrated value by Wu (2007) 
for non-memoried bed  
 

- 

Grain scale 
roughness (An) 
(m1/2. s-1) 

An: 18 to 25 is varied for each memory 
experiment 

 
 

- 

 

Representing memory in terms of roughness length scale Eq. 6.4 and 6.5 and 

Tables 6.5-6 indicates sensitivity in An value, within a fairly tightly distributed 

range; between 18 and 22 for unimodal bed for memory timescales 10 to 240 

minutes, and 19 and 25 for bimodal bed for memory timescales 10 to 120 

minutes. The dependence of memory time scales with An values looks 

systematic, and also distinct between the two grades of bed. Between the two 

grades of sediment bed, the values shift by (approximately) a value of one for 

each memory time scale in the bimodal bed, possibly suggesting an appropriate 

method (and resolution) for mathematically quantifying/representing memory 

effects in this bed. The increases of An values with memory time scale are 

logical and in line with the improved hiding and compaction suggested by the 
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direct measurements during prolonged memory experiments by Ockelford and 

Haynes (2013). Results in Tables 6.5-6 show that 10 minutes memory timescale 

in both grades have An values 18 and 19 respectively; these values are similar to 

non-memoried bed values of An as stated in the wider literature (e.g., Strickler, 

1923; Li and Liu, 1963; Zhang and Xie, 1993 and Wu and Wang, 1999). 

Table 6.5: Unimodal bed: this thesis: Efficiency Factor (EF) of predicted load for 

different roughness scale with varying values of An 

Experiment 
Identificatio
n Code 

Efficiency (E) range for predicted load:  
qb_Predicted /qb_Observed load 

An= 
18 

19 20 21 22 23 24 25 

UM_SH_10 0.95 0.65 0.43 0.29 0.18 0.12 0.07 0.04 

UM_SH_30 2.35 1.57 1.03 0.65 0.41 0.25 0.15 0.09 

UM_SH_60 1.93 1.28 0.83 0.53 0.33 0.20 0.12 0.07 

UM_SH_120 3.06 2.03 1.33 0.84 0.52 0.31 0.18 0.11 

UM_SH_240 4.14 2.75 1.79 1.14 0.70 0.42 0.25 0.15 

 
 

Table 6.6: Bimodal bed: this thesis: Efficiency Factor (EF) of predicted load for 

different roughness scale with varying values of An 

Experiment 
Identification 
Code 

Efficiency (E) range: Predicted /Observed load 

An= 
18 

19 20 21 22 23 24 25  

BM_SH_10 1.5 1.1 0.8 0.5 0.4 0.3 0.2 0.1 

BM_SH_30 2.1 1.5 1.1 0.8 0.5 0.4 0.25 0.2 

BM_SH_60 4.6 3.3 2.3 1.6 1.1 0.8 0.5 0.4 

BM_SH_120 8.3 5.9 4.2 2.9 2.1 1.4 1.0 0.7 

 
Table 6.5 and Table 6.6 illustrate that for bimodal beds the An values are more 

sensitive to memory stress time scales than unimodal bed; again, this supports 

the entrainment and bedload data of Chapters 4 and 5 in that the higher An 

values are an indication of a more stable and compact structured bed developing 

faster in bimodal sediment. With prolonged memory timeframes, values increase 

to 22 in unimodal and to 25 in bimodal bed; whilst these values are in line with 

the more compacted bed An values cited by Meyer-Peter and Muller (1948) and 

Patel and Ranga Raju (1996), the strongest support comes from validation (in 

next section) of previous memory researchers (Table 6.7); all of their memory 

bedload (see Section 6.3.4 on validation) requires to apply An values upto 22 for 
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satisfactory EF validation for 40 minutes memory time scales. Worthy of note is 

that Ockelford’s “EF” indicates to require higher An values than those of the 

present thesis; this can be a facet of memory per se (which is unlikely due to the 

similarity in rate of change to the present study), but it is likely a cumulative 

effect of her different screeding and water-working process in her flume set-up. 

In particular, her analysis uses total bedload collected over the memory and 

stepped hydrograph period such that need of higher An values likely reflects 

overall water working of this cumulative timeframe (rather than just the 

memory period analysed here) representing a far more compact structure. 

6.3.4 Validation of roughness scaling (An) model with other 
memory stress datasets 

Two other memory stress transport datasets are available from Haynes and 

Pender (2007) and Ockelford (2011). As the bimodal bed was found more 

responsive for calibration of memory stress transport in scaling of the roughness 

parameter approach, these calibrated An values obtained in the present thesis 

has been applied to validate the other two bimodal datasets. It is now obvious 

from the calibration of the present thesis dataset that by adjusting An values, it 

is possible to calibrate sediment transport in a manner accounting for memory 

stress. Therefore, rather than undertaking separate calibration of other sets of 

data, it is more logical and robust to establish if the calibrated values (An) of the 

present thesis can be used to validate other memory stress datasets. 

 

From Ockelford (2011), transport data for four memory time scales (10, 20, 40 

and 60 minutes) are available for validation. From Haynes and Pender (2007), 

two memory time scales (30 and 60 minutes have been chosen for validation); 

although this latter study had two longer memory time scales (1440 and 5760 

minutes); these fall outwith the range of calibration of the present thesis’ 

dataset and are inappropriate for use herein. From both studies, the transport 

and shear stress from all five memory time scales are presented in Table 6.7. 

 

Calibrated An values have been extracted from the different “Efficiency Factor” 

from Table 6.6 corresponding to the memory time scales of Haynes and Pender 

(2007), and Ockelford (2011). For example, for 60 minute memory time scale, 

the appropriate EF should be at An=22; the An values for other memory time 
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scales were deduced in a similar manner; see Table 6.6; then model validation 

runs were carried for the set of An values together with the respective physical 

data input of Table 6.4. Using this approach, the validated “EF” values are 

presented in Table 6.7. 

 

Table 6.7: Validated bedload of memory dataset of Haynes and Pender (2007) 

and Ockelford (2011) in transport prediction by roughness scaling approach. For 

Ockelford’s data (*) denotes a recognised outlier for the 60 minute memory 

experiment of her raw dataset 

 
 
Overall, the EF data in Table 6.7 can be considered reasonably satisfactory in 

using the An approach for memory correction for both previous research studies, 

with data showing EF values of 0.56 – 2.40 (Ockelford’s thesis notes 60 minute 

memory data as an outlier). This Section, whilst simplistic in approach and 

analysis, therefore concludes that satisfactory “EF” values are possible to 

achieve in graded beds, with consistent and strongly correlated grade 

dependent, and memory dependent An values. 

However, the sensitivity to An values also demonstrates a range of uncertainty of 

under prediction for Ockelford’s dataset, 2011 and Haynes and Pender, 2007 

dataset in case of using inappropriate parameter values; this implicitly reflects 

the heterogeneity of structural changes a bed can undergo, yet also highlights 

the importance of parameter selection/estimation. Whilst this issue is explicitly 

teased out for discussion in Section 6.4, an example scenario warrants attention 

here. For example, in the unimodal bed erroneous use of a non-memoried An 

value (i.e. between 18 -20) for memoried beds of 60 to 240 minutes would lead 

Researchers 
Memory 
time scale 
(min) 

Bed shear 
(N/m2) 

Total obs. 
Bedload 
(m3) (see 
note) 

Predicted 
load (m3) 

An: 
taken from 
calibrated 
Model (This 
thesis) 

“EF” 

Ockelford (2011): 
bimodal bed (D50: 
4.8mm) 

10 2.45 7.88E-04 1.74E-03 19 2.40 

20 2.5 7.76E-04 1.56E-03 20 2.00 

40 2.52 4.34E-04 1.15E-04 21 1.66 

60* 2.65 3.77E-05 1.12E-03 22 18.50 

Haynes and 
Pender (2007): 
bimodal bed 
(D50=4.8mm) 

30 3.54 6.98E-06 6.80E-6 20.2 0.98 

60 3.54 6.91E-06 3.87E-6 22 0.56 
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to bedload being over predicted 4-9 fold. Similarly, the converse is true in that 

erroneous use of high An values for a non-memoried would lead to bedload 

under-prediction. The response of An values for bimodal beds is higher than 

unimodal beds (for 30, 60 and 120 minutes memory time scales, see Figure 6.2), 

hence shows even greater sensitivity to such over/under-prediction of bedload. 

 

 
Figure 6.2: Range of An values from bedload prediction of unimodal and bimodal 

memory bed. 

6.3.5 Testing the roughness scale frame work against field data of 
memory stress  

Whilst Sections 6.3.3  and 6.3.4 have clearly demonstrated the viability of use of 

an An modified Wu et al. (2000a) bedload equation for incorporation of memory 

effects into laboratory-based data sets, there is merit in testing the viability of 

this approach in more complex field scenarios. Although long term bedload data 

appropriate to memory based analysis are rare, the Turkey Brook data (Reid and 

Frostick, 1986) of nine flood events (Chapter 2; Table 2.1) appears appropriate 

for trials. The data clearly show a relationship between memory and 

entrainment threshold being delayed to higher shear stress. Thus, this Section is 
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dedicated to testing the An based memory correction of Wu et al. (2000a) for 

predicting bedload in Turkey Brook. This compares and contrasts the measured 

bedload with the Wu’s model predictions “with” and “without” An based 

memory correction. 

 

 

Figure 6.3: Range of grain scale roughness parameter value (An) used in Turkey 

Brook obtained by calibration of observed bedload in Wu et al. (2000a) model. 

 

The distribution of calibrated An values required for the modelling of Turkey 

Brook transport regime reflects transport condition of both memoried and non-

memoried bed (see Figure 6.3). For a satisfactory EF range, calibrated An values 

range were found approximately between 15.5 and 30. The lower values are 

representative of condition of transports where either the is memory erased 

away or for flood events of non-memoried bed (See Table 2.1 in chapter 2; and 

Appendix C for each flood event). The lower An values range between 15.5 and 

20, which are very similar to the condition of non-memoried bed of laboratory 

data calibration and validation (Section 6.3.4). The higher An values representing 

memory condition range between 20 and 30. For higher memory in bed 

(representative of stronger bed packing and higher bed stability), the An values 

were categorically high, upto 30 as already mentioned above (all data in 

Appendix C); the relation of An on memory time scale is simplified with a linear 

relation in Figure 6.4. The sensitive transition of memoried bed is the gradual 
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erasing of memory and converging of transport condition towards non-memoried 

bed; then the An values slided towards non-memoried values, similar to the 

three memory stress laboratory data set; this sliding of the An values is more 

clearly clarified for two flood events, see Section 6.4; this adaptation time scale 

from memory to non-memory is further discussed in next section (Section 6.4). 

 

 

Figure 6.4: Turkey Brook dataset: roughness parameter An obtained for three 

flood events which experienced higher memory stress in bed; shown above 

relative to a less memory (or non-memoried) flood event, whose An value is 

around 20, similar to laboratory based research. 
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Figure 6.5: Predicted bedload transports in functions of graded sediment in 

“with” and “without” memory stress condition. 
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However, whereas the choice of appropriate model for application to low flows 

specific to the laboratory based data of Section 6.3.1 was limited to Wu et al. 

(2000a), the higher and more varied flows of Turkey Brook remove such 

constraint of model selection. As such, Wu’s model (with and without An based 

memory correction) is also compared with other widely used non-memoried 

graded functions appropriate to the flow and sediment characteristics of Turkey 

Brook including: Ashida and Michiue (1972), Parker (1990a), Powell et al. (2001, 

2003), Hunziker-Jaeggi (2002) and Wilcock-Crowe (2003). For each sediment 

transport formula, default parameter values (such as threshold shear stress, 

hiding function exponent, calibration parameter if there is any) were used 

without any change in the prediction; which is referred in Column 1 row 2 of 

Table 6.8 as “Graded sediment: original functions”; the objective was to demonstrate 

the predictive performance of these transport formulae for Turkey Brook. As it is known 

that Turkey Brook was affected by memory stress, then memory correction was imposed 

applying An which is different than the value Wu et al. (2000a) recommended for 

general application in his original formula; here the calibrated An values were obtained 

to match the EF range between 0.5 and 2.0. The summary of predicted bedload and 

their comparison against observed Turkey Brook data is presented in Figure 6.5 

and analysed using the EF approach in Table 6.8.  

 

Based on Figure 6.5, Wilcock-Crowe (2003), Parker (1990a), Powell et al. (2003) 

and Wu et al. (2000a) all suggest general similarity of bedload prediction. 

However, this prediction unequivocally improves visually for the An based 

memory correction approach of Wu; there is a fundamental difference between 

this memory correction with practices of calibration in research and industries 

for controlling over or under prediction; in the present thesis, it was emphasised 

(in Section 6.4) that once the memory stress erases, the An needs to adapted to 

normal transporting condition. Whereas in usual practice in industries, it often 

controlled by calibration parameter, such as roughness factor, and the 

parameter remains same even when the memory effect (or other unknown 

control) has disappeared (Barry et al., 2008; Muller et al., 2008 and  Nitsche et 

al., 2011).  

 

Quantifying this improvement using the EF data in Table 6.8 shows Wu’s memory 

corrected function is able to predict 100% of the predicted data points with the 
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range of accepted EF. This is a clear advantage over the non-corrected formulae 

of Wu et al. (2000a) and other alternative models where only 2-18% of data 

fitted Turkey Brook’s measured load. As such, the benefit of memory inclusion 

using an An based correction is demonstrated as a reasonable avenue for future 

research for both laboratory and field approaches. 

 

Table 6.8: Efficiency Factor (EF) comparison of predicted bedload in functions of 

graded sediment with a correction factor for “with” and “without” memory 

stress condition 

Sediment 
type 

Functions 

Total 
data 
number 

Efficiency Factor (EE) range 
(Predicted /Observed load) : number 
of datasets in % 

0> – 0.5 0.5 – 2.0 2.0 – 20 >20 

Graded 
sediment: 
original 
functions 

Parker 166 36 15 20 25 

A-M (Ashida and Michiue)  83 6 3 13 26 

W-C (Wilcock and Crowe) 166 13 18 38 27 

P-R-L (Powel et al.) 166 15 12 30 40 

H-J (Hunziker and Jaeggi) 81 0 2 11 33 

Wu (Wu et al.) 166 4 12 40 41 

Graded 
sediment: 
with 
memory 
correction 

Wu – with 
correction factor 
for memory stress 
 
 

166 0 100 0 
 
0 
 

 

6.4 Discussion on predicted bedload 

It is very clear from the evidence provided in this Chapter that none of the 

existing graded sediment formula, with the standard/recommended range of 

calibration parameters principally applicable for non-memoried bed, predict 

bedload adequately for memoried beds (Figure 6.5). Specifically, they suffer 

bedload over-prediction systematically for high discharges, yet individual 

equations show different sensitivity in bedload estimates for low flows. From the 

data provided, and rationale given in Section 6.1, development of Wu’s equation 

for incorporation of memory effects does appear valid. Section 6.3 therefore 

appropriately concludes that memory effects can be incorporated via the 

roughness parameter An; this provides appropriate resolution to differentiate the 

responses to memory of both grade and time (as employed in the present 

thesis). 
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Detailed examination of the data from the present thesis and wider memory 

research of Haynes and Pender (2007), Ockelford (2011) and Turkey Brook field 

data (Reid and Frostick, 1986) strongly indicate smaller An values, typically of 

value range 16-18, for non-memoried beds in the laboratory, and up to 20 for 

the field data reported. This is supported by wider literature (Section 6.2) 

pertaining  to loose beds; this reflects a lack of water-working of the structure, 

either due to laboratory set-up of artificial beds or where floods occur in quick 

succession to preclude ‘recovery’ of the bed to a more stable 

arrangement/structure. Conversely, for memoried bed, evaluated data suggest a 

range of An values generally between 19 and 25 in laboratory-based runs, and up 

to 30 for field data. There is a direct positive correlation between An values and 

memory timeframe; this appears to be a strong correlation of near-linear (field; 

Figure 6.5) or power relationship (laboratory; Figure 6.2). As such, there appears 

scope for using this type of relationship, i.e. where memory timeframe is known, 

to estimate the An values to be used in memory-corrected bedload equations. 

This is an important finding and, whilst the objectives of this thesis have been 

met, certainly warrants attention and review by future research. 

 

The use of the An value approach to memory correction is clearly grade specific. 

In summary, the bimodal bed in the present thesis, and that of Haynes and 

Pender (2007), exhibits a stronger response of An values to increased memory 

duration, culminating in higher An values for a given memory duration. For the 

bimodal bed, the value range is 18-25 with increasing memory to 240 minutes in 

the present thesis, whilst only 18-23 for the equivalent unimodal beds. Because 

this scaling of the granular scale roughness by An offers varying magnitude of 

roughness, but from the bed of same sediment distribution, and thus, this 

supports the use of An values as reflective of bed restructuring to a more stable 

arrangement with higher resistance to entrainment, with a stronger bimodal 

process response (Chapter 5). Although the value range is very close in two beds, 

the subtle distinction is important as there is high sensitivity of the prediction of 

bedload to small changes in An (Section 6.3.4). As such, the sensitivity to An 

becomes an important point for extended discussion of its intended use, and 

forms the focus of the remainder of this discussion. 
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The sensitivity and applicability of an An correction approach to memory effects 

on bedload are worthy of discussion, particularly for two reasons: i) the 

sensitivity of bedload estimates to initial An value selection as specific to known 

inter-flood/antecedent memory duration, and ii) the progressive removal of 

memory effects, and hence related reduction of An, during a flood / transporting 

event.  Whilst an introduction to the former problem is noted in Section 6.3.4, 

for clarity of discussion both issues have been discussed herein with reference to 

two flood events of the Turkey Brook data set. 

 

Firstly, Table 6.8 has indicated the importance of correcting (increasing) the An 

value to account for memory effects. Also, calibrated An values in Table 6.5 and 

Table 6.6 indicate a method for calibration and selection of An values based on 

memory duration for the correction of bedload estimates. However, both failure 

to undertake the correction, or erroneous selection of the An value (even by a 

value of ±1) has important bearing on the total load. Consider the hydrograph as 

shown in Figure 6.7, this hydrograph had memory stress of 125 days in the bed 

(see Table 2.1 in Chapter 2) and had a duration of approximately 7 hours. 

According to the measured bedload, the total mass of sediment during this flood 

event is 945kg (Reid and Frostick, 1986) under this hydrograph. The implication 

of model prediction relative to this hydrograph is discussed below. Based on the 

analysis performed in this thesis, an An value of 25 can be correctly applied to 

Wu’s memory modified approach to correct the bedload to that observed. Had 

the memory correction not been applied, and a lower value such as An = 20 used, 

then bedload would be dramatically over predicted, such that memory-related 

enhanced bed resistance would be ignored and bedload estimates would be 20 

fold higher than that observed. Also, incorrect selection of the An value (Figure 

6.6) would lead to notable errors of many tonnes. Where modelling is used for 

river engineering or management practices, such sensitivity may mean a 

significant difference to river siltation and erosion and thus may multiply 

uncertainties in flood risk assessment, planning and design of sediment and flow 

control structures. 
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Figure 6.6: Sensitivity to grain scale roughness parameter (An) of prediction of 

transports in graded sediment bed is quantified here. 

 

Secondly, the other implication is that during higher flow events sediment 

transport will increase and the memory of the bed will be progressively erased 

during the high flow event. In such an unsteady flow, the An values would 

therefore gradually reduce until the bed converges to a general transport 

condition where An values tend to those of a non-memoried condition. The 

memory erasing effect and timescale is shown in Figures 6.7-8 for two flood 

events of Turkey Brook; calibration of the An values has been undertaken against 

measured bedload (Reid and Frostick, 1986). As both flood events shown in 

Figure 6.8 experienced memory stress, the initial An values are 25 and 30. Over 

the flood duration, these values gradually reduce towards the values of non-

memoried bed of An values of 18-20. In both flood events (Figure 6.8), the 

erasing time scale is about 2-3 hours to reach a value of An = 20. However, a 

period of 4 hours is required for the beds to reach a constant An value. The 

sliding scale of An over this early period of a flood event is important to bedload 

estimates, as erroneous use of the initial value of e.g., An = 25 (10th December 

1978 event; Figure 6.7) as a constant over this 4 hour timeframe would have led 

to a total load many times higher than that measured; on average ~15 times 

higher than the observed data. This issue raises a further research question, as 

Sensitivity to grain scale roughness parameter (An) of 
prediction of transport in graded sediment 
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to whether this 4 hour timeframe of memory erasing is fixed (and hence 

predictable). This appears unlikely, as the antecedent memory period between 

floods will vary and produce memory effects greater or less in the beds created. 

This is supported, to some degree, by comparison of Turkey Brook data with the 

laboratory data collected within this thesis; whilst the field data indicates 4 

hours for memory erasing, the laboratory data was 40-55 minutes (Chapter 4 and 

5). This is intuitive, in that the applied antecedent memory duration in the 

laboratory was only a few hours, whereas the field study had memory durations 

of weeks/months to produce a more resistant bed which took longer to break 

up. It would also be logical in explanation that, as memory effects stem from 

particle rearrangement / structure, the field beds were of wider grade and 

stronger bimodality; this would likely lead to Turkey Brook having longer 

timeframes for the erasing of memory (due to larger grains being present, which  

 

 
 
Figure 6.7: Time scale of erasing of memory stress: An values shown gradually 

adapting from memory condition towards non-memory condition (from Turkey 

Brook bedload validation model). 

 

would require higher shear stresses for entrainment during the hydrograph rising 

limb). As such, the issue of memory erasing does appear to have mileage, in its 
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own right, regarding the sliding scale of An values to be applied during a flood or 

high flow event. 

 

 

Figure 6.8: Time scale of erasing of memory stress: shown with gradual 

adaptation of grain scale roughness (An) from memory condition towards non-

memory condition (from two flood events with higher memory stress in Turkey 

Brook bedload validation model). 

 

6.5 Key outcomes 

This Chapter has presented the first mathematical framework for accounting for 

memory effects on graded sediment transport. Based on Wu et al. (2000a) 

graded sediment transport formula (as appropriate to the low flow experiments 

of the present thesis), two novel approaches to its modification for memory 

were assessed. Firstly, a modified hiding function (m); secondly, a roughness 

length scaling (An). These approaches were tested against the flume data of 

Chapters 4 and 5, and the pros and cons of both approaches have been discussed 

at length. Preference towards the An based correction method has been justified 

and trialled in more detail against the wider memory data sets of Reid and 

Frostick (1986), Haynes and Pender (2007) and Ockelford (2011). Whilst the 

novelty of this Chapter’s research dictates that it should be considered a “first 

approach”, it clearly shows strong rationale in memory correction and provides 
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an appropriate methodology and framework for testing, calibration and 

validation. 

 

Key outcomes from the above mathematically modelling are presented below: 

 Use of a hiding function scaling for memory correction (m) appears 

limited in sensitivity to memory timeframe and grade effects. As such, the 

roughness length scaling (An) is advocated. This directly scales the total 

available shear stress (Eq. 6.5) and is sensitive to both memory timeframe 

and grade. Predicted bedload by scaling with the An values matches quite 

well with measured bedload; otherwise the prediction, e.g., for 120 

minutes memory time scale, would have been 8 times higher than the 

observed load. More encouraging is that An values calibrated against 

several memory time scales of the laboratory data set of this thesis 

satisfactorily validated two other laboratory data set.  

 

 Non-memoried beds appear adequately represented by An values of 18-20, 

in line with wider literature specific to loosely packed beds. As memory 

duration increases, the An value rises, representing an increase in packing 

density, imbrication and bed structure, and indicate a smoother compact 

bed with less roughness (lower value of n’). This does indicate the grain 

scale friction in planar bed is not solely dependent on the grain size, it is 

also dependent on the structure of the bed. Flume and field based 

evaluation of the range of An to be used for memory correction suggest up 

to a value of An = 30 may be appropriate. 

 

 Caution is noted regarding the strong sensitivity of estimated bedload to 

the choice of An employed in Wu’s equation. Failure to use a memory 

correction, or inappropriate use of An value may mean more than 20 fold 

variation of predicted load with measurement. 

 

 During a high flow, sediment transporting event, it is essential that the An 

value is modified as appropriate to recognising the erasing of memory 

from the bed surface. Analysis of field and laboratory data indicates that 

this may take between 1-4 hours, depending on the type of bed and the 

antecedent memory timeframe. 
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Chapter 7: Conclusion and recommendation  

7.1 Summary of key outcomes 

This research thesis has distinctly quantified the effect of “memory stress” on 

sediment entrainment/transport in low flows. A large, flume-derived and novel 

time series of data on bed shear stress, total load and fraction load has been 

presented and analysed using a reference-transport based methodology, so as to 

quantify memory stress effects from 0-240 minute durations in unimodal and 

bimodal beds. Output data clearly illustrate that increased durations of applied 

memory stress increase the stability of the bed. This both delays the 

entrainment of sediment to higher shear stresses (up to 47%) and reduces the 

volume of subsequent sediment transport (up to 97%). Novel mathematical 

relations for predicting bedload after a range of memory stress durations have 

been determined and used to derive a correction factor as appropriate for use in 

existing graded sediment formulae.  Key conclusions are provided below: 

 

 A reference-based transport approach, employing a stepped discharge 

hydrograph, i.e. covering a range of shear stresses around the 

entrainment threshold (2.00-3.90 N/m2) has been developed and 

employed specific to advancing memory stress research. This approach 

has been robustly defended against poorer alternative methodologies in 

the literature, and is proven essential to the development of the 

mathematical memory stress correction framework for use in existing 

sediment transport equations. 

 Using Shvidchenko’s (2000) reference based approach, the critical bed 

shear stress of entrainment threshold increases by up to 47% in bimodal 

beds, after 120 minutes of applied memory. However, the non-linear 

relationship between bed shear stress and bedload transport, yields 

greater sensitivity of bedload response to memory stress. Hence, the 

transported sediment volume decreases by up to 97% for the same applied 

memory stress timeframe. This order of magnitude response is generally 

supportive of earlier memory stress research and clearly shows memory 

stress control and significance over sediment transport processes. 
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 A size selective response of fractions to memory stress is shown, with end 

fractions most affected. For example, reduced mobility of the finer 

fractions was up to 95% in unimodal and 98% in bimodal bed, whilst the 

coarsest fractions stabilised by up to 40% (unimodal) and 90% (bimodal). 

This is in agreement with the detailed bed structure work of Ockelford 

and Haynes (2013) and indicates that memory stress increases the 

selectivity of transport in a graded bed. 

 Memory stress effects are greatest at shear stresses close to the 

entrainment threshold (Shields number ~ 0.03 in this study). As the shear 

stress applied and associated transport increases, the influence of 

memory stress over bedload transport reduces. The effect of memory 

stress becomes insignificant at Shields number 0.05--0.06 where the 

transporting ability converges for memory and non-memoried beds. 

However, as the data show memoried beds to have lower cumulative 

transported loads (than non-memoried beds), memory effects do not have 

a legacy and are not ‘erased’ by over-compensation of subsequent 

bedload at higher shear stresses; this strengthens the case for long-term 

influence of memory on transported loads. 

 The relationship between applied memory stress duration and delayed 

entrainment / reduced transport is non-linear. Short duration memory 

time scales were found more responsive, due to the loose packing 

structure permitting active rearrangement. At longer memory timescales, 

the rate of change gradually slows due to development of a stronger 

packing arrangement with less flexibility for continued restructuring. 

Memory influence in low transport regimes was found prevalent for 1x10-6 

< 
*q < 1x10-1). Review of the flume data generated herein does, however, 

indicate that use of the Shields entrainment threshold and reference 

transport approach (
*q = 10-2, and *

c =0.06), which is most commonly 

applied for assessment of bedload transport, is too high a value and 

inappropriate for capturing the smaller 
*q  values specific to the longer 

timeframe memory results. Therefore, for assessing memory effect on 

bedload transport, the reference transport of Shvidchenko et al. (2001, 
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*q = 10-4) and Parker et al. (1982a, 
*q = 10-5) appear more appropriate 

threshold conditions. 

 Bed shear stress and bedload have been non-dimensionalised to form a 

generic bedload transport relation as the power function 
bCq )( **  . 

Non-memoried beds yield exponent values equivalent to those available in 

the present day literature and practice; i.e., 12 < b > 16.2 (e.g., Paintal, 

1971; Parker, 1990a). However, memoried beds indicate that both the 

exponent “b” and the coefficient “C” show sensitivity to memory 

timescale. The exponent (which is dependent on applied time average 

shear stress) increases with applied memory duration, rising from b = 16.2 

to 21.5 for unimodal beds, and b = 12.0 to 25.5 for bimodal beds. Whilst 

the exponent increased due to memory stress by a factor of up to ~2, the 

coefficient (which parameterises the effect of structural changes on the 

bed) showed much higher sensitivity to memory timescales, increasing by 

nineteen orders of magnitude (1019). This appears to be the first time that 

a set of non-dimensional bedload and shear stress equations have been 

analysed for relevance to memory. 

 Correction factors have been proposed to include the effect of memory 

stress in Wu’s graded sediment formula (Wu et al., 2000a) for improving 

the prediction of sediment transport; selection of this recent and widely 

accepted/adopted formula in current sediment transport research was 

specific to collaboration with the original authors and essential access to 

raw data. Two approaches have been developed and tested as appropriate 

to a memory-modified Wu’s formula: i) by scaling the general power form 

of the hiding function, m, and ii) by scaling the roughness coefficient 

term, An, able to mirror the bed’s structural development at the grain 

scale. Predicted data are calibrated and validated against present and 

past memory stress bedload datasets. Results show that it is almost 

impossible to make a useful prediction unless a memory correction is 

employed. Without memory correction, transport is severely over 

predicted in both of the above frameworks. However, with the use of 

memory correction approaches 100% of predicted results fall within the 
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accepted EF tolerance. Scaling of the roughness parameter (An) was found 

the more efficient method of accounting for memory correction. Here, 

the non-memoried bed yields An values between 17 and 19, while 

memoried beds increase this up to 30; the longer the memory time scale, 

the higher is the value of this parameter. 

 

 The results of the memory study are consistent with over prediction of 

bedload transport by past researchers. Incorporation of memory is a 

possible means of correcting bedload transport calculations. 

7.2 Recommendations 

Given the applicability of the memory stress issue to all mobile-bed channels 

subjected to variable flow, future physical and mathematical modelling studies 

demand more variability and universality than could be tested in the present 

thesis. As such, the following future research priorities are identified from the 

key outcomes of the present thesis: 

 

1. More detailed analysis of the significance of memory stress to hiding 

functions. All hiding functions are developed using relative size (Di/D50) effect; 

this is a crucial factor in representing and interpreting grain-scale structure, 

packing and tendency towards a particular transport mode (equal mobility versus 

selective transport). The regression of the available power functions (Chapter 2) 

showed wide range of exponent values from 0.33 to 1.0.  However, 

mathematical modelling in Chapter 6 has clearly demonstrated that the effect of 

memory stress is implicit to the value of this hiding function. This brings 

significant difference to predictions of total load, particularly for the end 

fractions, and also brings universality of application of the function. As such, 

review of existing research for hiding function relationship to memory may help 

explain the range of values found in the literature. Similarly, future research is 

recommended (laboratory and field) to establish conclusively variability in the 

hiding function with temporal scaling. 

 
2. Expanding research to validate the proposed bedload formula of memory 

stress. The empirical relations for unimodal and bimodal bed (Chapter 4 and 5) 

proposed in the present thesis are based on one experimental set-up (i.e. a 
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single bed slope, restricted grain size range, and a limited range of flows). 

Although the relation was transformed to a generic form by using non-

dimensional parameters of bedload and shear stress, it is recommended to 

validate the relation via experiments encompassing a broader suite of set-up 

variables.  In defence of this suggestion, the slope in natural gravel bed rivers 

varies by several order of magnitudes; e.g., Clearwater River of Idaho has a 

slope of 0.00048 (Emmett, 1976) yet Great Eggleshope of England has a slope of 

0.01 (Carling and Reader, 1982). More-over, the proposed formula is for total 

bedload; given that the memory response is extremely sensitive to the end 

fractions, it might be challenging to expand the formula for each size fraction, 

but worth analysis via future research. 

 

3. Effect of memory stress on transports in unsteady flow. Existing knowledge on 

memory stress is largely derived from steady-constant discharge (Haynes and 

Pender 2007) and quasi-steady constant stepped discharge (Peidra 2010; 

Ockelford, 2011 and present thesis), whereas natural flow is unsteady. Even 

magnitude variation in baseflow is sufficient to cause fluctuating turbulent 

intensity, hence such unsteadiness within the memory period itself will lead to 

sensitivity of packing density (Papanicolaou et al., 2002). Therefore, memory 

stress research should be expanded to unsteady flow conditions in a manner 

similar to that explored most recently by Mao (2012). 

 
4. Climate change scenarios and associated modelling should be considered 

appropriate to choices and selection of memory timescales tested/modelled. In 

the UKCIP climate change scenarios, the summer will increasingly become drier 

whilst winter will become wetter. This will affect the baseflow and the duration 

between flood events in UK perennial rivers, which are considered the main 

drivers of memory stress development. Hence, this hydrological change may 

increase the stability of summer beds, delaying and reducing bedload transport 

rates; the opposite will be true for winter beds. If such memory forecasting can 

be embedded within sediment transport modelling, then sediment-related risk 

predictions (e.g., flood and erosion risk management) may become more robust 

and more widely employed. 
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5. The memory effect and initial motion data requires evaluation at higher 

Reynolds Numbers. Initial motion data at high Reynolds number (Re* ) in rough 

turbulent flow are still scarce (Chapter 2); existing laboratory research on 

memory stress was carried out for similar gravel size range as that used in the 

present thesis; i.e. Re* values between 100 and 300. However, the field data set 

of Reid and Frostick (1986) is in the range of Re* between 1400 and 4000. Whilst 

difficult to produce in some flume set-ups, the rarity of datasets specific to 

higher Reynolds numbers will strengthen the knowledgebase of memory effects, 

incipient motion and generally improve sediment transport prediction. 

 
6. Memory stress correction with a focus on further validation for a wider range 

of formulae is required. Herein, the focus has been placed upon Wu’s (Wu et al., 

2000a) formulae. Although robust rationale is provided specific to this thesis, it 

is acknowledged that a range of formulae should be tested for both the proposed 

memory modification approach and further development of this framework.
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Appendices 
 

Appendix A: Unimodal sediment bed experimental programme in 
baseline and memory stress 
 

Table A.1: List of unimodal bed experiments 

Sediment bed: Unimodal 

Median size (D50), mm  4.8 

Size classes (Di), mm 
1.2 1.7 2.4 3.3 4.7 6.7
 9.5 13.4 

Fractional proportions 
(Fi) 

0.025 0.05 0.075 0.15 0.4 0.15
 0.1 0.05 

Sorting parameter (g) 1.65 

Flume length, working 
section (m) 

7.0 

Flume width (m) 0.3 

Flume slope 0.005 

Sediment slot width (m)  0.15 

     

Experiment type Exp. No. 
Bedding 
in time 
(min) 

Memory 
stress time 
scale (min) 

Stability 
period 
(min) 

Pump flow calibration and 
uniform flow set-up 

1 3 - - 

2 3 - - 

3 3 - - 

4 3 - - 

Pump flow and uniform 
flow verification, and 
primary runs for calculating 
baseline threshold motion 
to determine memory 
stress flow magnitude 

5 3 - - 

6 3 - - 

7 3 - - 

8 3 - - 

9 3 - - 

Baseline experiment 

10 3 0 64 
14 3 0 64 
15 3 0 64 
21 3 0 64 
24 3 0 64 
27 3 0 64 
32 3 0 64 
45 3 0 64 

Memory experiment: 10 
min. time scale 

13 3 10 64 

30 3 10 64 

31 3 10 64 

Memory experiment: 30 
min. time scale 

11 3 30 64 

17 3 30 64 

20 3 30 64 

Memory experiment: 60 
min. time scale 

16 3 60 64 

19 3 60 64 

44 3 60 64 

Memory experiment: 120 
min. time scale 

18 3 120 64 

22 3 120 64 

23 3 120 64 

43 3 120 64 

Memory experiment: 240 
min. time scale 

26 3 240 64 

28 3 240 64 

29 3 240 64 

42 3 240 64 
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Appendix B: Bimodal sediment bed experimental programme in 
baseline and memory stress 
 

Table B.1: List of bimodal bed experiments 

Sediment bed: Bimodal 

Median size (D50), mm  4.8 

Size classes (Di), mm 
1.2 1.7 2.4 3.3 4.7 6.7
 9.5 13.4 

Fractional proportions 
(Fi) 

0.05 0.1 0.2 0.12 0.08 0.31
 0.1 0.04 

Sorting parameter (g) 1.93 

Flume length, working 
section (m) 

7.0 

Flume width (m) 0.3 

Flume slope 0.005 

Sediment slot width (m)  0.15 

     

Experiment type Exp. No. 
Bedding 
in time 
(min) 

Memory 
stress time 
scale (min) 

Stability 
period 
(min) 

Pump flow calibration and 
uniform flow set-up 

45 3 - - 

46 3 - - 

47 3 - - 

48 3 - - 

Pump flow and uniform 
flow verification, and 
primary runs for calculating 
baseline threshold motion 
to determine memory 
stress flow magnitude 

49 3 - - 

50 3 - - 

51 3 - - 

52 3 - - 

Baseline experiment 

53 3 0 64 

54 3 0 64 

57 3 0 64 

66 3 0 64 

69 3 0 64 

73 3 0 64 

Memory experiment: 10 
min. time scale 

58 3 10 64 

68 3 10 64 

81 3 10 64 

82 3 10  

Memory experiment: 30 
min. time scale 

56 3 30 64 

59 3 30 64 

71 3 30 64 

72 3 30 64 

79 3 30 64 

Memory experiment: 60 
min. time scale 

60 3 60 64 

67 3 60 64 

75 3 60 64 

80 3 60 64 

83 3 60 64 

Memory experiment: 120 
min. time scale 

74 3 120 64 

76 3 120 64 

82 3 120 64 

77 3 120 64 

Memory experiment: 240 
min. time scale 

78 3 240 64 

84 3 240 64 

85 3 240 64 
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Appendix C: Prediction of bed load for memory affected transports: calculation sheets 
 
 
 

Turkey Brook parameters and prediction sheet 
 

Parameter definitions for Kazi Hassan 
1) Professor Gary Parker was helping in the computation in person in his office in Illinois 
2) Professor Weiming Wu was helping in his Office in Mississippi for calculation with his formula  

 
Calculation sheet for Ashida and Michiue (1972), Powell et al. (2003), Hanziker and Jaggei (2002), Wilcock and Crowe 
(2003) are presented below. 
 
Parker’s formula – his developed program was used, and available in Parker (1990b);  
 

Table C.1: Turkey Brook grain statistics 

Ds50 surface median size       D50 substrate median size   

Dsm 
surface arithmetic 
mean size       Dm 

substrate arithmetic mean 
size   

Dsg 
surface geometric 
mean size       Dg 

substrate geometric mean 
size   

sigs 
surface geometric 
standard deviation       sigsub 

substrate geometric mean 
standard deviation   

 
You will find surface statistics for surface material with sand removed as well 
 

                

                

  
Raw Grain Size 
Distribution Surface             

psi Size mm   % Finer 
Fraction 
in surf 

For computing 
statistics     

  256   100         
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7.5   181.02   0.0000 0.0000 0.0000 0.0000 

  128   100         

6.5   90.51   0.0420 3.8014 0.2730 0.2206 

  64   95.8         

5.5   45.25   0.2320 10.4991 1.2760 0.3873 

  32   72.6         

4.5   22.63   0.4100 9.2772 1.8450 0.0350 

  16   31.6         

3.5   11.31   0.1840 2.0817 0.6440 0.0922 

  8   13.2         

2.5   5.66   0.0570 0.3224 0.1425 0.1663 

  4   7.5         

1.5   2.83   0.0240 0.0679 0.0360 0.1760 

  2   5.1         

0.5   1.41   0.0170 0.0240 0.0085 0.2337 

  1   3.4         

-0.5   0.71   0.0340 0.0240 -0.0170 0.7536 

  0.5   0         

-1.5   0.35   0.0000 0.0000 0.0000 0.0000 

  0.25   0         

              2.0647 

        1.0000   4.2080 1.4369 

  Ds50   21.84   Dsg mm 18.481   

  Dsm 26.0979       sigs 2.707 

  Fr sand 0.051           

  Fr gravel 0.949           

                

 
 
 
 
 



246 
 

246 
 

 
 
 
 
 
 
 

Table C.2: Turkey Brook grain statistics 

  
Raw GSD 
Substrate   

For computing statistics 
  

  % Finer fi       

  100.000         

    0.000 0.000 0.000 0.000 

  100.000         

    0.000 0.000 0.000 0.000 

  100.000         

    0.122 5.521 0.671 0.475 

  87.800         

    0.377 8.531 1.697 0.357 

  50.100         

    0.238 2.693 0.833 0.000 

  26.300         

    0.105 0.594 0.263 0.111 

  15.800         

    0.054 0.153 0.081 0.222 

  10.400         

    0.035 0.049 0.017 0.318 

  6.933         

    0.069 0.049 -0.035 1.124 

  0.000         

    0.000 0.000 0.000   

  0.000         



247 
 

247 
 

          2.607 

    1.000   3.527 1.615 

median, geom 
mean D50 15.953 Dg 11.525   

arith mean Dm 17.589   sigsub 3.062 

fraction sand Fr Sand 0.104       

            

Substrate 
statistics           

 
 
 
 

  
Table C.3: Turkey Brook Grain Size Distribution Surface Gravel Only 
  

psi Size mm   % Finer Fi     

  256   100.00       

7.5   181.02   0.000 0 0 

  128   100.00       

6.5   90.51   0.044 0.199399 0.187245 

  64   95.57       

5.5   45.25   0.244 0.931987 0.273081 

  32   71.13       

4.5   22.63   0.432 1.347583 0.001399 

  16   27.92       

3.5   11.31   0.194 0.470376 0.172451 

  8   8.54       

2.5   5.66   0.060 0.104082 0.226777 

  4   2.53       

1.5   2.83   0.025 0.026294 0.219056 

  2   0.00       

              



248 
 

248 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

          3.079721 1.080008 

    geom mean   Dsg 21.75233 1.039234 

    geom std dev   sigg 2.055136   

    median   Ds50 22.80022   

    
Surface statistics without 
sand 

        

Table C.4: Turkey Brook GSD 

Size mm Surface 
Surface 
Gravel   

256 100 100   

128 100 100   

64 95.8 95.57428872   

32 72.6 71.12750263   

16 31.6 27.92413066   

8 13.2 8.535300316   

4 7.5 2.528977871   

2 5.1 0   

1 3.4     

0.5 0     

0.25 0     
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Table C.5: Definitions of key parameters in graded sediment transport formula 

Assume   R 1.65 

Submerged 
specific 
gravity of 
sediment 

    

              

qi 
gravel bedload transport rate, ith 
grain size range, m^2/s 

          

pGi 
fraction of gravel bedload in the ith 
grain size range 

          

qG 
gravel transport rate summed over all 
grain sizes, m^2/s 

          

DGg geometric mean size of gravel           

ustar shear velocity m/s           

              

 
 
 

  
Table C.6: Ashida-Michiue uses full surface grain size distribution, surface arithmetic mean size Dsm 
  

  Dsm 26.0978971 mm     ustar 0.140648407 m/s     

  tsscm 0.05 
critical Shields 
number               

                      

  Di Di/Dsm taussi tausci qstari Fi qi pGi     

7.5 181.019336 6.9361656 0.006751 0.018193826 0 0 0 0 0 0 

6.5 90.50966799 3.4680828 0.013503 0.024714583 0 0.042 0 0 0 0 

5.5 45.254834 1.7340414 0.027005 0.035490096 0 0.232 0 0 0 0 

4.5 22.627417 0.8670207 0.054011 0.055222674 0 0.41 0 0 0 0 

3.5 11.3137085 0.43351035 0.108022 0.09749604 0.002938763 0.184 2.61798E-06 0.6834794 2.392177779 0.115063617 

2.5 5.656854249 0.21675518 0.216044 0.194459025 0.008744176 0.057 8.53164E-07 0.2227367 0.556841857 0.077454642 
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1.5 2.828427125 0.10837759 0.432087 0.38891805 0.024732266 0.024 3.59227E-07 0.0937839 0.140675838 0.237004246 

0.5 1.414213562 0.05418879 0.864175 0.7778361 0.069953411 0 0       

-0.5 0.707106781 0.0270944 1.72835 1.5556722 0.197858126 0 0       

-1.5 0.353553391 0.0135472 3.4567 3.1113444 0.559627291 0 0       

                1     

          qT m^2/s   3.83037E-06     0.429522506 

          qG m^2/s   3.83037E-06   3.089695474 0.655379665 

          fr gravel   1 DGg 8.513164297 1.57503039 
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Table C.7: Powell, Reid and Laronne uses surface distribution with gravel removed         

Ds50 here refers to the median size of the surface material with gravel removed         

  Ds50 22.8002164                 

  tssc50 0.03 
Critical Shields 
number               

          ustar 0.085646799 m/s       

  Di Di/Ds50 tssci Fi tssi phii Wsi qi m^2/s pGi   

  181.019336 7.93936922 0.006476 0 0.002503481 0.386602572 0 0 0 0 

  90.50966799 3.96968461 0.010815 0.042 0.005006963 0.462948347 0 0 0 0 

  45.254834 1.9848423 0.018064 0.232 0.010013925 0.554370787 0 0 0 0 

  22.627417 0.99242115 0.030169 0.41 0.020027851 0.663847212 0 0 0 0 

  11.3137085 0.49621058 0.050388 0.184 0.040055701 0.7949429 0 0 0 0 

  5.656854249 0.24810529 0.084157 0.057 0.080111402 0.951927194 0 0 0 0 

  2.828427125 0.12405264 0.140557 0.024 0.160222804 1.139912543 0.000890535 
8.296E-

10 1 1.5 

  1.414213562                   

  0.707106781                   

  0.353553391                   

                      

                  1   

              qG m^2/s 
8.296E-

10   1.5 

              fr gravel 1 DGg 2.828427125 
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Table C.8: Hunziker-Jaeggi uses arithmetic mean size of surface Dsm and arithmetic mean size of substrate Dsubm 

  

            ustar 0.241264071 m/s   

  Dsm 26.0978971 mm     tausm 0.137792899     

  Dsubm 17.5890455 mm     tauscm 0.043895514     

            alpha -0.08494357     

phii Di Di/Dsm Fi   qstari qi m^2/s pGi     

7.5 181.019336 6.9361656 0   0.010079584 0 0 0 0 

6.5 90.50966799 3.4680828 0.042   0.026099474 0.000120088 0.052853784 0.3435496 0.203809972 

5.5 45.254834 1.7340414 0.232   0.067580423 0.000607271 0.26727537 1.4700145 0.248222269 

4.5 22.627417 0.8670207 0.41   0.17498872 0.000982478 0.432413224 1.9458595 0.000569853 

3.5 11.3137085 0.43351035 0.184   0.453105364 0.000403646 0.177654859 0.621792 0.190787478 

2.5 5.656854249 0.21675518 0.057   1.17324403 0.000114473 0.050382333 0.1259558 0.208911673 

1.5 2.828427125 0.10837759 0.024   3.037928179 4.41248E-05 0.019420429 0.0291306 0.179039472 

0.5 1.414213562 0.05418879 0   7.866230205 0       

-0.5 0.707106781 0.0270944 0   20.36834776 0       

-1.5 0.353553391 0.0135472 0   52.740586 0       

                  1.031340717 

          qT m^2/s 0.002272081   4.5363021 1.015549466 

          qG m^2/s 0.002272081 DGg 23.204008 2.021672722 

          fr gravel 1       
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Table C.9: Wilcock-Crowe uses surface median size Ds50 and fraction sand in surface Frsand         

                      

  Ds50 21.8381765 mm surface   ustar 0.085646799 m/s     

  Frsand 0.051       tsrs50 0.02736586       

            taustar50 0.020751665       

                      

phii Di Di/Ds50 b fi Wstari Fi qi m^2/s pGi     

7.5 181.019336 8.28912324 0.689224 0.176516664 6.72998E-09 0 0 0 0 0 

6.5 90.50966799 4.14456162 0.644236 0.303418499 3.91234E-07 0.042 6.37773E-13 3.242E-05 0.000210707 0.00033032 

5.5 45.254834 2.07228081 0.44111 0.54986405 3.38093E-05 0.232 3.04442E-10 0.015474 0.085107147 0.07436057 

4.5 22.627417 1.0361404 0.266389 0.751167007 0.000350869 0.41 5.58354E-09 0.2837972 1.277087233 0.40333667 

3.5 11.3137085 0.5180702 0.188031 0.858119379 0.000952202 0.184 6.80029E-09 0.3456416 1.209745744 0.01276126 

2.5 5.656854249 0.2590351 0.154745 0.934595428 0.001806336 0.057 3.99626E-09 0.20312 0.507799967 0.13256146 
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1.5 2.828427125 0.12951755 0.139754 1.009019132 0.003208978 0.024 2.98922E-09 0.1519348 0.227902149 0.4965733 

0.5 1.414213562 0.06475878 0.132676 1.090323604 0.005738348 0 0       

-0.5 0.707106781 0.03237939 0.12924 1.181345486 0.010470037 0 0       

-1.5 0.353553391 0.01618969 0.127548 1.283076014 0.019454235 0 0       

                      

            qT m^2/s 1.96744E-08   3.307852947   

            qG m^2/s 1.96744E-08 DGg 9.902912874 sgg 

            fr gravel 1       
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Table C.10: Wu et al. (2000a) formula with Turkey Brook Data 

   

  Theta_c 0.03   tau_b 16 

tau_b and 
tau-b' is 
same         

  m 0.6 -0.6               

  n 0.030   
n' and n 
is same   1.65 Submerged specific gravity of sediment 

  
D50 
(mm) 16       An 25       

psi 

Di (or 
Dk) 

Fraction Pbk Pek 
Sum 

(Pbk+Pek) 
n' 21.5 tau_ck phibk qb*k 

  (mm)                   

7.5 181.019 0.000 0.119 0.881 1 0.020 8.822 26.466 0 0 

6.5 90.510 0.042 0.205 0.795 1 0.020 8.822 19.517 0 0 

5.5 45.255 0.232 0.326 0.674 1 0.020 8.822 14.222 0 0 

4.5 22.627 0.410 0.471 0.529 1 0.020 8.822 10.241 0 0 

3.5 11.314 0.184 0.616 0.384 1 0.020 8.822 7.294 #NUM! 0 

2.5 5.657 0.057 0.740 0.260 1 0.020 8.822 5.147 #NUM! 0 

1.5 2.828 0.024 0.833 0.167 1 0.020 8.822 3.605 0.000523984 
7.6094E-

09 

0.5 1.414 0.017 0.897 0.103 1 0.020 8.822 2.519 0.004526215 
1.6461E-

08 

-0.5 0.707 0.034 0.939 0.061 1 0.020 8.822 1.772 0.018051017 
4.6421E-

08 
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-1.5 0.354 0.000 0.965 0.035 1 0.020 8.822 1.265 0.052885285 0 

                      

                  qT (m2/s) 
7.0491E-

08 

                  qG (m2/s) 
7.6094E-

09 

 
 

Table C.11:  Wu et al. (2000a) formula applicable for laboratory data set of Haynes and Pender (2007), and Ockelford (2011) and this thesis; fractional contents and other 
input data need to vary according to author while applying this calculation sheet 
   

  Theta_c 0.03   tau_b 3.540 

tau_b and 
tau-b' is 
same         

  m 0.6 -0.6               

  n 0.017       An 21       

  D50 (mm) 4.8 Hiding and exposure function           

  
Di (or Dk) Fraction Pbk Pek 

Sum 
(Pbk+Pek) 

n' taub_prime tau_ck phibk qb*k 

  181.019336 0 0.026 0.974 1 0.020 3.540 10.113 0 0 

  90.50966799 0 0.051 0.949 1 0.020 3.540 7.620 0 0 

  45.254834 0 0.096 0.904 1 0.020 3.540 5.714 0 0 

  22.627417 0 0.170 0.830 1 0.020 3.540 4.252 0 0 

  13.38656042 0.04 
0.251 0.749 1 

0.020 3.540 3.378 0.000343616 
8.5633E-

08 

  9.465727653 0.1 
0.316 0.684 1 

0.020 3.540 2.892 0.001178023 
4.364E-

07 

  6.693280212 0.31 
0.388 0.612 1 

0.020 3.540 2.470 0.002913028 
1.9891E-

06 

  4.732863826 0.08 
0.464 0.536 1 

0.020 3.540 2.106 0.006106444 
6.3983E-

07 

  3.346640106 0.12 
0.541 0.459 1 

0.020 3.540 1.794 0.011576808 
1.0819E-

06 



258 
 

258 
 

  2.366431913 0.15 
0.616 0.384 1 

0.020 3.540 1.527 0.020492134 
1.4234E-

06 

  1.673320053 0.1 
0.687 0.313 1 

0.020 3.540 1.302 0.034476134 
9.4927E-

07 

  1.183215957 0.1 
0.750 0.250 1 

0.020 3.540 1.112 0.055741555 
9.1259E-

07 

                      

                      

                  qT (m2/s) 
7.5182E-

06 

  
V = 1/n * 
R^2/3* S^1/2               qG (m2/s) 

7.5182E-
06 
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Predicted sediment load from five functions of graded mix against field data of observed bedload 
 
 

Table C.12:  Predicted sediment load from five functions of graded mix against field data of 
observed bedload 
  

Note: * Weiming Wu formula, but with no effect of An as n and n' considered equal 
 

** Weiming WU formula, but An value obtained through calibration of individual flood events of Turkey Brook 

Depth (m) 
ustar, 
m/s 

Observed 
discharge 

(m3/s) 

Observed 
load (m2/s) 

Predicted load (m2/s)       

Ashida-
Michiue 

Powell, 
Reid and 
Laronne 

Hunziker-
Jaegg 

Wilcock-
Crowe 

Weiming Wu* 
Weiming 

Wu** 
An 

values 

0.62 0.24 5.186 1.20755E-06 3.51E-03 3.60E-03 2.27E-03 1.39E-03 2.03E-03 1.18E-06 30.35 

0.63 0.24 5.303 3.81132E-06 3.48E-03 3.58E-03 2.26E-03 1.38E-03 2.01E-03 4.04E-06 28 

0.55 0.21 3.953 5.73585E-06 1.68E-03 1.89E-03 1.32E-03 6.83E-04 1.03E-03 6.72E-06 25.5 

0.44 0.19 2.437 2.15094E-06 6.96E-04 9.14E-04 7.25E-04 3.19E-04 5.08E-04 2.25E-06 25.5 

0.31 0.15 1.173 8.03774E-06 4.26E-05 1.53E-04 1.36E-04 5.69E-05 1.07E-04 9.07E-06 20 

0.30 0.14 1.122 8.86792E-06 3.83E-06 6.38E-05 2.40E-05 2.62E-05 5.41E-05 8.61E-06 19 

0.27 0.12 0.891 3.24528E-06 0.00E+00 4.12E-06 0.00E+00 2.61E-06 7.91E-06 2.75E-06 17.8 

0.26 0.11 0.826 2.03774E-06 0.00E+00 2.99E-06 0.00E+00 2.30E-06 6.39E-06 2.42E-06 17.7 

0.24 0.11 0.725 3.13208E-06 0.00E+00 7.91E-07 0.00E+00 8.26E-07 2.63E-06 3.35E-06 16.6 

0.23 0.10 0.678 9.81132E-07 0.00E+00 3.08E-07 0.00E+00 4.05E-07 1.51E-06 9.09E-07 17.3 

0.22 0.10 0.624 2.64151E-07 0.00E+00 4.25E-07 0.00E+00 4.89E-07 1.80E-06 2.83E-07 18.5 

0.21 0.10 0.562 2.26E-07 0.00E+00 2.03E-07 0.00E+00 2.91E-07 1.23E-06 2.51E-07 18.2 

0.20 0.10 0.501 1.50943E-07 0.00E+00 1.24E-07 0.00E+00 2.13E-07 9.59E-07 1.72E-07 18.3 

0.19 0.10 0.473 1.88679E-07 0.00E+00 7.07E-08 0.00E+00 1.45E-07 7.32E-07 0 18 

0.16 0.14 0.376 1.50943E-06 3.28E-06 6.11E-05 2.02E-05 2.52E-05 5.24E-05     

0.18 0.15 0.465 6.75472E-06 5.40E-05 1.72E-04 1.55E-04 6.32E-05 1.18E-04     

0.20 0.16 0.541 0.000004 1.36E-04 2.91E-04 2.68E-04 1.03E-04 1.82E-04     

0.22 0.17 0.614 3.0566E-06 2.02E-04 3.74E-04 3.39E-04 1.31E-04 2.27E-04     

0.25 0.18 0.797 2.90566E-06 4.12E-04 6.14E-04 5.20E-04 2.13E-04 3.51E-04     

0.30 0.18 1.101 3.39623E-06 4.72E-04 6.79E-04 5.66E-04 2.36E-04 3.85E-04     

0.37 0.19 1.669 0.000004 7.59E-04 9.79E-04 7.67E-04 3.42E-04 5.42E-04     
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0.40 0.18 1.982 2.83019E-06 4.83E-04 6.90E-04 5.74E-04 2.40E-04 3.91E-04     

0.42 0.16 2.569 2.26415E-06 1.22E-04 2.71E-04 2.51E-04 9.66E-05 1.72E-04     

0.43 0.15 2.607 7.01887E-06 2.02E-05 1.11E-04 8.73E-05 4.27E-05 8.31E-05     

0.44 0.13 1.982 2.49057E-06 0.00E+00 2.03E-05 0.00E+00 1.01E-05 2.34E-05     

0.45 0.13 1.623 3.77358E-06 0.00E+00 1.54E-05 0.00E+00 7.97E-06 1.92E-05     

0.45 0.12 1.326 3.96226E-06 0.00E+00 1.24E-05 0.00E+00 6.65E-06 1.66E-05     

0.46 0.13 1.144 1.73585E-06 0.00E+00 1.76E-05 0.00E+00 8.93E-06 2.12E-05     

0.48 0.13 1.053 1.96226E-06 0.00E+00 2.80E-05 0.00E+00 1.32E-05 2.95E-05     

0.44 0.12 0.973 5.66038E-07 0.00E+00 1.20E-05 0.00E+00 6.46E-06 1.62E-05     

0.40 0.12 0.885 4.5283E-07 0.00E+00 6.69E-06 0.00E+00 3.96E-06 1.09E-05     

0.36 0.11 0.792 1.13208E-07 0.00E+00 2.08E-06 0.00E+00 1.67E-06 5.01E-06     

0.33 0.11 0.771 1.13208E-07 0.00E+00 1.47E-06 0.00E+00 1.23E-06 3.95E-06     

0.30 0.11 0.72 2.26415E-07 0.00E+00 1.01E-06 0.00E+00 8.84E-07 3.08E-06     

0.28 0.11 0.678 3.39623E-07 0.00E+00 7.85E-07 0.00E+00 8.20E-07 2.61E-06     

0.165 0.14 0.397 6.03774E-07 4.92E-06 6.89E-05 3.11E-05 2.80E-05 5.74E-05 6.26E-07 22 

0.178 0.15 0.446 1.16981E-06 5.77E-05 1.78E-04 1.62E-04 6.52E-05 1.21E-04 1.27E-06 22.5 

0.216 0.17 0.609 4.90566E-07 2.45E-04 4.26E-04 3.80E-04 1.49E-04 2.54E-04 6.23E-07 25 

0.25 0.18 0.786 4.9434E-06 3.40E-04 5.34E-04 4.62E-04 1.86E-04 3.10E-04 5.4E-06 22.7 

0.287 0.16 1.012 5.0566E-06 9.77E-05 2.38E-04 2.20E-04 8.53E-05 1.54E-04 4.77E-06 21.4 

0.329 0.14 1.318 4.67925E-06 2.90E-06 5.91E-05 1.75E-05 2.45E-05 5.11E-05 5.04E-06 19.5 

0.418 0.11 2.152 1.39623E-06 0.00E+00 9.22E-07 0.00E+00 9.43E-07 2.90E-06 1.38E-06 17.5 

0.549 0.12 3.935 6.15094E-06 0.00E+00 1.05E-05 0.00E+00 5.79E-06 1.48E-05 6.93E-06 17.6 

0.616 0.12 5.108 1.92453E-06 0.00E+00 1.30E-05 0.00E+00 6.93E-06 1.71E-05 1.97E-06 19 

0.648 0.14 5.751 4.18868E-06 1.54E-06 5.12E-05 7.17E-06 2.17E-05 4.59E-05 4.34E-06 19.5 

0.618 0.14 5.147 2.67925E-06 4.66E-07 4.27E-05 0.00E+00 1.85E-05 4.01E-05 3.26E-06 19.6 

0.519 0.14 3.452 1.50943E-06 2.13E-06 5.49E-05 1.18E-05 2.30E-05 4.83E-05 1.8E-06 20.5 

0.456 0.16 2.594 3.43396E-06 6.01E-05 1.81E-04 1.65E-04 6.64E-05 1.23E-04 3.94E-06 21.2 

0.407 0.14 2.034 3.81132E-06 6.13E-06 7.41E-05 3.84E-05 2.98E-05 6.06E-05 4E-06 20 

0.38 0.13 1.763 2.56604E-06 0.00E+00 1.93E-05 0.00E+00 9.63E-06 2.26E-05 2.77E-06 19 

0.356 0.12 1.543 9.81132E-07 0.00E+00 1.32E-05 0.00E+00 6.99E-06 1.72E-05 9.52E-07 19.8 

0.338 0.11 1.39 1.16981E-06 0.00E+00 7.98E-07 0.00E+00 8.32E-07 2.64E-06 1.15E-06 17.6 

0.314 0.11 1.212 2.18868E-06 0.00E+00 1.33E-06 0.00E+00 1.13E-06 3.70E-06 2.38E-06 17.2 
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0.3 0.11 1.103 1.50943E-07 0.00E+00 1.39E-06 0.00E+00 1.17E-06 3.81E-06 1.6E-07 19.8 

0.28 0.11 0.908 7.54717E-08 0.00E+00 7.31E-07 0.00E+00 7.71E-07 2.50E-06 7.93E-08 20.1 

0.17 0.11 0.423 7.54717E-08 0.00E+00 2.47E-06 0.00E+00 1.94E-06 5.62E-06 7.75E-08 21 

0.18 0.12 0.465 2.26415E-07 0.00E+00 4.11E-06 0.00E+00 2.61E-06 7.89E-06 2.36E-07 20.2 

0.18 0.12 0.469 3.01887E-06 0.00E+00 7.29E-06 0.00E+00 4.26E-06 1.15E-05 3.44E-06 18 

0.18 0.12 0.465 1.69811E-06 0.00E+00 7.96E-06 0.00E+00 4.58E-06 1.22E-05 1.62E-06 18.8 

0.18 0.12 0.462 5.28302E-07 0.00E+00 7.47E-06 0.00E+00 4.34E-06 1.17E-05 5.95E-07 19.8 

0.18 0.12 0.446 3.77358E-07 0.00E+00 4.02E-06 0.00E+00 2.56E-06 7.79E-06 3.55E-07 19.8 

0.17 0.11 0.397 7.92453E-07 0.00E+00 3.33E-06 0.00E+00 2.54E-06 6.87E-06 8.76E-07 18.8 

0.16 0.11 0.38 2.45283E-06 0.00E+00 2.00E-06 0.00E+00 1.62E-06 4.88E-06 2.35E-06 17.4 

0.16 0.11 0.373 1.43396E-06 0.00E+00 2.78E-06 0.00E+00 2.16E-06 6.08E-06 1.67E-06 18 

0.15 0.11 0.359 1.50943E-07 0.00E+00 1.48E-06 0.00E+00 1.24E-06 3.97E-06 1.66E-07 19.8 

0.15 0.11 0.346 1.88679E-07 0.00E+00 1.29E-06 0.00E+00 1.10E-06 3.62E-06 2.03E-07 19.5 

0.15 0.11 0.33 7.54717E-08 0.00E+00 1.31E-06 0.00E+00 1.11E-06 3.66E-06 7.96E-08 20.5 

0.14 0.11 0.32 3.39623E-07 0.00E+00 1.02E-06 0.00E+00 8.91E-07 3.09E-06 3.68E-07 18.8 

0.14 0.10 0.314 1.16981E-06 0.00E+00 4.21E-07 0.00E+00 4.85E-07 1.79E-06 1.08E-06 17.3 

0.14 0.10 0.317 7.92453E-07 0.00E+00 2.16E-07 0.00E+00 3.06E-07 1.26E-06 7.45E-07 17.3 

0.14 0.10 0.324 1.09434E-06 0.00E+00 3.40E-07 0.00E+00 4.38E-07 1.59E-06 1.07E-06 17.2 

0.15 0.11 0.33 7.92453E-07 0.00E+00 7.69E-07 0.00E+00 8.05E-07 2.58E-06 7.39E-07 18 

0.16 0.11 0.38 7.54717E-08 0.00E+00 1.05E-06 0.00E+00 9.12E-07 3.15E-06 6.74E-08 20.5 

0.18 0.11 0.469 1.0566E-06 0.00E+00 9.00E-07 0.00E+00 9.24E-07 2.85E-06 1.01E-06 17.8 

0.21 0.11 0.581 2.26415E-06 0.00E+00 9.80E-07 0.00E+00 9.95E-07 3.02E-06 2.28E-06 17 

0.22 0.12 0.638 1.13208E-07 0.00E+00 4.67E-06 0.00E+00 2.91E-06 8.59E-06 1.25E-07 21 

0.24 0.13 0.704 3.25E-06 0.00E+00 2.71E-05 0.00E+00 1.28E-05 2.88E-05 3.21E-06 19 

0.24 0.14 0.715 3.58491E-06 2.51E-07 4.02E-05 0.00E+00 1.76E-05 3.84E-05 3.67E-06 19.2 

0.23 0.14 0.694 3.50943E-06 7.18E-06 7.80E-05 4.39E-05 3.12E-05 6.31E-05 4E-06 19.8 

0.22 0.14 0.629 2.33962E-06 7.02E-06 7.75E-05 4.31E-05 3.10E-05 6.28E-05 2.42E-06 20.5 

0.22 0.14 0.603 3.16981E-06 1.26E-06 4.93E-05 4.96E-06 2.10E-05 4.46E-05 2.98E-06 19.7 

0.21 0.13 0.581 2.30189E-06 0.00E+00 1.45E-05 0.00E+00 7.57E-06 1.84E-05 2.24E-06 18.9 

0.20 0.12 0.536 2.49057E-06 0.00E+00 4.31E-06 0.00E+00 2.72E-06 8.16E-06 2.37E-06 17.9 

0.19 0.11 0.494 1.73585E-06 0.00E+00 2.71E-06 0.00E+00 2.11E-06 5.97E-06 1.8E-06 17.9 

0.18 0.12 0.458 1.28302E-06 0.00E+00 3.89E-06 0.00E+00 2.49E-06 7.62E-06 1.3E-06 18.5 



262 
 

262 
 

0.18 0.12 0.446 9.43396E-07 0.00E+00 4.43E-06 0.00E+00 2.79E-06 8.31E-06 8.83E-07 19 

0.17 0.11 0.412 1.77358E-06 0.00E+00 2.19E-06 0.00E+00 1.75E-06 5.18E-06 1.73E-06 17.8 

0.16 0.11 0.38 1.32075E-06 0.00E+00 8.25E-07 0.00E+00 8.56E-07 2.70E-06 1.43E-06 17.4 

0.15 0.10 0.35 1.0566E-06 0.00E+00 2.89E-07 0.00E+00 3.85E-07 1.47E-06 1.09E-06 17.1 

0.15 0.10 0.336 3.77358E-07 0.00E+00 1.61E-07 0.00E+00 2.58E-07 1.09E-06 4.45E-07 17.6 

0.14 0.10 0.324 3.77358E-07 0.00E+00 6.39E-08 0.00E+00 1.36E-07 6.99E-07 3.87E-07 17.3 

0.14 0.10 0.311 4.90566E-07 0.00E+00 1.25E-07 0.00E+00 2.14E-07 9.62E-07 5.5E-07 17.3 

0.14 0.09 0.302 2.64151E-06 0.00E+00 4.36E-08 0.00E+00 1.07E-07 5.85E-07 2.43E-06 15.5 

0.13 0.09 0.293 1.50943E-07 0.00E+00 4.48E-08 0.00E+00 1.09E-07 5.92E-07 1.63E-07 17.9 

0.13 0.09 0.284 1.50943E-07 0.00E+00 1.10E-08 0.00E+00 5.06E-08 3.27E-07 1.63E-07 17.4 

0.13 0.09 0.276 2.26415E-07 0.00E+00 5.85E-09 0.00E+00 3.81E-08 2.62E-07 2.08E-07 17 

0.12 0.09 0.268 4.5283E-07 0.00E+00 1.46E-09 0.00E+00 2.31E-08 1.81E-07 5.04E-07 16 

0.12 0.08 0.257 6.03774E-07 0.00E+00 4.26E-10 0.00E+00 1.67E-08 1.45E-07 6.59E-07 15.6 

  0.15 0.363 1.50943E-07 1.93E-05 1.10E-04 8.51E-05 4.21E-05 8.21E-05     

  0.14 0.38 8.30189E-07 5.59E-06 7.18E-05 3.53E-05 2.90E-05 5.92E-05     

  0.15 0.422 7.54717E-07 3.91E-05 1.47E-04 1.29E-04 5.48E-05 1.04E-04     

  0.15 0.462 1.32075E-06 5.74E-05 1.77E-04 1.61E-04 6.50E-05 1.21E-04     

  0.16 0.515 1.09434E-06 1.11E-04 2.56E-04 2.38E-04 9.16E-05 1.64E-04     

  0.16 0.572 1.50943E-06 1.15E-04 2.62E-04 2.43E-04 9.36E-05 1.67E-04     

  0.16 0.595 3.77358E-06 6.35E-05 1.87E-04 1.71E-04 6.82E-05 1.26E-04     

  0.15 0.619 7.88679E-06 2.03E-05 1.12E-04 8.77E-05 4.28E-05 8.33E-05     

  0.14 0.814 1.76604E-05 3.28E-06 6.11E-05 2.02E-05 2.52E-05 5.24E-05     

  0.14 1.166 1.63774E-05 3.20E-06 6.07E-05 1.97E-05 2.51E-05 5.21E-05     

  0.15 1.491 9.84906E-06 5.33E-05 1.71E-04 1.54E-04 6.28E-05 1.17E-04     

  0.16 1.552 4.90566E-07 1.40E-04 2.97E-04 2.73E-04 1.05E-04 1.85E-04     

  0.17 1.491 7.92453E-07 2.13E-04 3.87E-04 3.49E-04 1.36E-04 2.33E-04     

  0.17 1.448 3.39623E-06 2.18E-04 3.94E-04 3.54E-04 1.38E-04 2.37E-04     

  0.17 1.382 2.60377E-06 2.06E-04 3.79E-04 3.42E-04 1.33E-04 2.29E-04     

  0.17 1.302 2.33962E-06 1.68E-04 3.32E-04 3.04E-04 1.17E-04 2.04E-04     

  0.16 1.217 1.84906E-06 1.23E-04 2.73E-04 2.53E-04 9.73E-05 1.73E-04     

  0.15 1.122 1.43396E-06 4.96E-05 1.65E-04 1.48E-04 6.08E-05 1.14E-04     

  0.15 1.067 1.4717E-06 3.84E-05 1.46E-04 1.28E-04 5.44E-05 1.03E-04     
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  0.15 0.973 7.54717E-07 2.78E-05 1.27E-04 1.06E-04 4.79E-05 9.20E-05     

  0.15 0.967 6.41509E-07 4.15E-05 1.51E-04 1.33E-04 5.62E-05 1.06E-04     

  0.15 0.973 1.4717E-06 3.14E-05 1.33E-04 1.13E-04 5.02E-05 9.59E-05     

  0.15 1.006 1.50943E-07 5.43E-05 1.72E-04 1.56E-04 6.34E-05 1.18E-04     

  0.16 1.019 1.50943E-06 1.15E-04 2.62E-04 2.43E-04 9.35E-05 1.67E-04     

  0.17 1.033 1.39623E-06 1.98E-04 3.69E-04 3.34E-04 1.30E-04 2.24E-04     

  0.17 1.188 7.54717E-07 2.78E-04 4.64E-04 4.09E-04 1.62E-04 2.73E-04     

  0.16 1.24 7.16981E-07 1.06E-04 2.49E-04 2.31E-04 8.93E-05 1.60E-04     

  0.15 1.217 2.98113E-06 2.07E-05 1.12E-04 8.88E-05 4.31E-05 8.38E-05     

  0.12 0.257 2.26415E-06 0.00E+00 5.68E-06 0.00E+00 3.45E-06 9.79E-06     

  0.15 0.629 0.000006 3.48E-05 1.39E-04 1.21E-04 5.23E-05 9.95E-05     

  0.17 2.996 5.0566E-06 2.34E-04 4.13E-04 3.70E-04 1.45E-04 2.47E-04     

  0.17 5.772 4.83019E-06 2.02E-04 3.74E-04 3.38E-04 1.31E-04 2.26E-04     

  0.15 6.179 4.33962E-06 1.71E-05 1.05E-04 7.91E-05 4.05E-05 7.92E-05     

  0.17 5.05 2.15094E-06 3.08E-04 4.99E-04 4.35E-04 1.74E-04 2.91E-04     

  0.16 2.669 8.30189E-06 1.23E-04 2.74E-04 2.53E-04 9.75E-05 1.73E-04     

  0.14 1.605 1.7283E-05 6.27E-06 7.47E-05 3.92E-05 3.00E-05 6.10E-05     

  0.12 1.195 7.92453E-06 0.00E+00 4.37E-06 0.00E+00 2.75E-06 8.23E-06     

  0.18 0.98 1.4717E-06 4.24E-04 6.27E-04 5.29E-04 2.18E-04 3.58E-04     

  0.18 0.967 1.64906E-05 4.21E-04 6.23E-04 5.26E-04 2.16E-04 3.56E-04     

  0.17 0.935 1.10943E-05 1.94E-04 3.65E-04 3.31E-04 1.28E-04 2.21E-04     

  0.16 0.879 7.73585E-06 7.40E-05 2.03E-04 1.87E-04 7.36E-05 1.35E-04     

  0.15 0.769 2.30189E-06 1.38E-05 9.69E-05 6.92E-05 3.78E-05 7.46E-05     

  0.14 0.663 0 1.67E-06 5.21E-05 8.21E-06 2.20E-05 4.65E-05     

  0.14 0.563 2.56604E-06 2.48E-07 4.01E-05 0.00E+00 1.76E-05 3.83E-05     

  0.12 0.454 0.000002 0.00E+00 8.42E-06 0.00E+00 4.81E-06 1.27E-05     

  0.12 0.446 7.54717E-07 0.00E+00 4.02E-06 0.00E+00 2.56E-06 7.79E-06     

  0.10 0.408 1.50943E-06 0.00E+00 3.01E-07 0.00E+00 3.97E-07 1.49E-06     

  0.10 0.387 0 0.00E+00 1.87E-07 0.00E+00 2.74E-07 1.18E-06     

  0.09 0.363 4.5283E-07 0.00E+00 1.40E-08 0.00E+00 5.70E-08 3.60E-07     

  0.09 0.353 6.03774E-07 0.00E+00 1.90E-08 0.00E+00 6.68E-08 4.08E-07     

  0.09 0.353 4.15094E-07 0.00E+00 1.90E-08 0.00E+00 6.68E-08 4.08E-07     
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  0.09 0.311 1.13208E-07 0.00E+00 3.36E-08 0.00E+00 9.17E-08 5.21E-07     

  0.14 0.49 1.39623E-06 2.54E-06 5.72E-05 1.49E-05 2.38E-05 4.99E-05     

  0.15 0.629 1.16981E-06 2.60E-05 1.23E-04 1.02E-04 4.68E-05 9.01E-05     

  0.16 0.82 2.45283E-06 8.65E-05 2.21E-04 2.05E-04 7.99E-05 1.45E-04     

  0.17 1.039 6.83019E-06 2.03E-04 3.75E-04 3.39E-04 1.32E-04 2.27E-04     

  0.17 1.248 1.65283E-05 1.92E-04 3.62E-04 3.29E-04 1.27E-04 2.20E-04     

  0.16 1.961 1.90943E-05 1.44E-04 3.01E-04 2.77E-04 1.07E-04 1.88E-04     

  0.14 3.19 1.51698E-05 5.53E-06 7.15E-05 3.49E-05 2.89E-05 5.91E-05     

  0.14 5.793 6.60377E-06 2.92E-06 5.92E-05 1.77E-05 2.46E-05 5.12E-05     

  0.16 7.891 6.49057E-06 8.01E-05 2.12E-04 1.96E-04 7.67E-05 1.40E-04     

  0.16 9.771 0 8.05E-05 2.12E-04 1.96E-04 7.69E-05 1.40E-04     

  0.12 13.842 1.50943E-07 0.00E+00 5.03E-06 0.00E+00 3.10E-06 9.03E-06     

  0.16 0.967 3.09434E-06 8.55E-05 2.20E-04 2.04E-04 7.94E-05 1.44E-04     

  0.14 0.731 1.12075E-05 9.28E-06 8.48E-05 5.32E-05 3.36E-05 6.73E-05     

  0.12 0.581 7.20755E-06 0.00E+00 9.32E-06 0.00E+00 5.23E-06 1.36E-05     

  0.10 0.536 0.000002 0.00E+00 3.15E-07 0.00E+00 4.13E-07 1.53E-06     

  0.09 0.494 9.0566E-07 0.00E+00 2.93E-08 0.00E+00 8.48E-08 4.91E-07     

  0.09 0.416 0 0.00E+00 1.83E-08 0.00E+00 6.55E-08 4.02E-07     

  0.09 0.383 0 0.00E+00 3.45E-09 0.00E+00 3.09E-08 2.23E-07     

  0.08 0.383 2.07547E-06 0.00E+00 3.21E-10 0.00E+00 1.57E-08 1.39E-07     

  0.08 0.343 0 0.00E+00 1.84E-12 0.00E+00 8.16E-09 8.77E-08     

  0.11 0.284 6.03774E-07 0.00E+00 1.02E-06 0.00E+00 8.93E-07 3.10E-06     

  0.09 0.262 1.50943E-07 0.00E+00 8.30E-10 0.00E+00 1.97E-08 1.62E-07     
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Appendix D:  
 
Experimental data on bedload transport from Unimodal and bimodal bed experiments in 
different memory time scales 

 
 

 
 

 
 
 

Q (l/s) 
Tao 

(N/m2) 

Baseline UM_SH_10 UM_SH_30 UM_SH_60 UM_SH_120 UM_SH_240 

bedload 
(m3/s/m) 

bedload 
(m3/s/m) 

bedload 
(m3/s/m) 

bedload 
(m3/s/m) 

bedload 
(m3/s/m) 

bedload 
(m3/s/m) 

7.5 2.36 3.44E-08 9.78E-08 5.67E-09 6.18E-08 1.38E-08 4.17E-09 

8.75 2.55 1.06E-07 7.31E-08 1.12E-08 8.25E-08 3.78E-08 3.89E-08 

10 2.74 2.44E-07 1.73E-07 1.19E-07 2.93E-07 3.85E-08 8.32E-08 

11.25 2.93 6.63E-07 4.16E-07 4.79E-07 7.08E-07 3.32E-07 3.68E-07 

12.5 3.03 1.71E-06 6.42E-07 1.24E-06 1.77E-06 1.87E-06 8.66E-07 

13.75 3.23 3.84E-06 1.98E-06 1.69E-06 3.59E-06 4.44E-06 1.74E-06 

15 3.41 5.18E-06 3.77E-06 4.41E-06 6.69E-06 7.05E-06 2.22E-06 

16.25 3.58 8.28E-06 6.42E-06 6.13E-06 1.05E-05 9.13E-06 4.25E-06 

17.5 3.74 9.88E-06 8.32E-06 9.52E-06 1.72E-05 1.30E-05 6.38E-06 

18.75 3.86 1.00E-05 8.31E-06 1.29E-05 4.13E-06 1.13E-05 6.48E-06 

Q (l/s) 
Tao 
(N/m2) 

Cumulative sediment load (m3/m); at each step, load is integrated over 6 minutes period, and 
cumulative load is sum of all steps) 

Baseline UM_SH_10 UM_SH_30 UM_SH_60 UM_SH_120 UM_SH_240 

7.5 2.36 1.2E-05 3.5E-05 2.0E-06 2.2E-05 1.9E-06 1.5E-06 

8.75 2.55 5.1E-05 6.2E-05 6.1E-06 5.2E-05 1.4E-05 1.6E-05 

10 2.74 1.4E-04 1.2E-04 4.9E-05 1.6E-04 4.9E-05 4.5E-05 

11.25 2.93 3.8E-04 2.7E-04 2.2E-04 4.1E-04 1.9E-04 1.8E-04 

12.5 3.03 9.9E-04 5.0E-04 6.7E-04 1.1E-03 6.6E-04 4.9E-04 

13.75 3.23 2.4E-03 1.2E-03 1.3E-03 2.3E-03 1.6E-03 1.1E-03 

15 3.41 4.2E-03 2.6E-03 2.9E-03 4.8E-03 2.8E-03 1.9E-03 

16.25 3.58 7.2E-03 4.9E-03 5.1E-03 8.5E-03 5.3E-03 3.4E-03 

17.5 3.74 1.1E-02 7.9E-03 8.5E-03 1.5E-02 7.6E-03 5.7E-03 

18.75 3.86 1.4E-02 1.1E-02 1.3E-02 1.6E-02 1.1E-02 8.1E-03 

Size 
Class 
Range 
(mm) 

Size 
class 
mean 
(mm) 

Di/D50 
Fractional sediment load (m3/m); at each step, load is integrated over 6 minutes 
period, and cumulative load is sum of all steps) 

Baseline UM_SH_10 UM_SH_30 UM_SH_60 UM_SH_120 UM_SH_240 

1 - 1.4 1.2 0.25 1.07E-05 7.79E-06 3.96E-06 4.63E-06 2.38E-06 1.71E-06 

1.4 - 2 1.7 0.35 8.45E-05 5.89E-05 4.81E-05 4.75E-05 1.48E-05 5.42E-06 

2- 2.8 2.4 0.50 5.88E-04 3.72E-04 4.62E-04 4.64E-04 3.13E-04 9.22E-05 

2.8 - 4 3.4 0.71 2.51E-03 1.53E-03 2.13E-03 2.37E-03 2.07E-03 1.15E-03 

4 - 5.6 4.8 1.00 8.68E-03 6.06E-03 7.38E-03 7.93E-03 6.35E-03 5.61E-03 

5.6 - 8 6.8 1.42 2.84E-03 1.91E-03 2.19E-03 2.56E-03 2.10E-03 2.09E-03 

8 - 11.2 9.6 2.00 1.34E-03 8.27E-04 8.58E-04 1.13E-03 7.85E-04 1.11E-03 

11.2 - 
16 13.6 2.83 1.87E-04 1.11E-04 8.81E-05 2.00E-04 4.84E-05 1.87E-04 



266 
 

266 
 

 
 

 
 
 

 
 
 

 

  

Q (l/s) Tao (N/m2) 

Baseline BM_SH_10 BM_SH_30 BM_SH_60 BM_SH_120 BM_SH_240 

bedload 
(m3/s/m) 

bedload 
(m3/s/m) 

bedload 
(m3/s/m) 

bedload 
(m3/s/m) 

bedload 
(m3/s/m) 

bedload 
(m3/s/m) 

8.75 2.55 3.22E-07 2.25E-08 6.45E-08 - 2.11E-08 ,- 

10 2.74 4.35E-07 3.23E-08 6.37E-08 1.18E-08 4.98E-09 4.36E-08 

11.25 2.93 4.72E-07 2.57E-07 1.93E-07 3.47E-08 1.01E-08 9.64E-08 

12.5 3.03 1.34E-06 4.82E-07 2.23E-07 9.10E-08 1.55E-08 3.89E-07 

13.75 3.23 4.44E-06 9.42E-07 7.91E-07 1.85E-07 3.30E-08 3.41E-07 

15 3.41 4.92E-06 3.22E-06 2.97E-06 5.17E-07 6.54E-08 2.08E-06 

16.25 3.58 4.66E-06 6.93E-06 4.27E-06 2.87E-06 3.16E-07 4.84E-06 

17.5 3.74 4.84E-06 8.02E-06 4.72E-06 5.36E-06 1.41E-06 7.81E-06 

18.75 3.86 3.03E-06 7.97E-06 1.13E-06 2.09E-06 6.80E-06 6.31E-06 

Q (l/s) 
Tao 

(N/m2) 

Cumulative sediment load (m3/m); at each step, load is integrated over 6 minutes 
period, and cumulative load is sum of all steps) 

Baseline BM_SH_10 BM_SH_30 BM_SH_60 BM_SH_120 BM_SH_240 

8.75 2.55 1.2E-04 0.0E+00 2.3E-05 0.0E+00 7.6E-06 0.0E+00 

10 2.74 2.7E-04 9.8E-06 4.6E-05 4.2E-06 9.4E-06 1.6E-05 

11.25 2.93 4.4E-04 1.7E-05 1.2E-04 1.7E-05 1.3E-05 5.0E-05 

12.5 3.03 9.3E-04 3.2E-05 2.0E-04 5.0E-05 1.9E-05 1.9E-04 

13.75 3.23 2.5E-03 1.4E-03 4.8E-04 1.2E-04 3.0E-05 3.1E-04 

15 3.41 4.3E-03 3.3E-03 1.5E-03 3.0E-04 5.4E-05 1.1E-03 

16.25 3.58 6.0E-03 5.0E-03 3.1E-03 1.3E-03 1.7E-04 2.8E-03 

17.5 3.74 7.7E-03 6.7E-03 4.8E-03 3.3E-03 6.8E-04 5.6E-03 

18.75 3.86 8.8E-03 8.3E-03 5.2E-03 4.0E-03 3.1E-03 7.9E-03 

Size Class 
(mm) 

Size class 
mean 
(mm) 

Di/D50 

Fractional sediment load (m3/m); at each step, load is integrated over 6 
minutes period, and cumulative load is sum of all steps) 

Baseline BM_SH_10 BM_SH_30 
BM_SH_
60 

BM_SH_
120 

BM_SH_24
0 

1 - 1.4 1.2 0.25 2.56E-04 1.56E-04 9.34E-05 6.29E-05 5.67E-06 1.60E-04 

1.4 - 2 1.7 0.35 1.28E-03 1.15E-03 6.54E-04 5.74E-04 1.83E-04 1.23E-03 

2- 2.8 2.4 0.50 1.98E-03 2.34E-03 8.86E-04 7.64E-04 5.00E-04 1.77E-03 

2.8 - 4 3.4 0.71 9.00E-04 1.08E-03 4.40E-04 3.74E-04 3.13E-04 7.68E-04 

4 - 5.6 4.8 1.00 9.80E-04 1.28E-03 5.23E-04 4.67E-04 5.03E-04 9.67E-04 

5.6 - 8 6.8 1.42 2.75E-03 3.49E-03 1.82E-03 1.47E-03 1.45E-03 2.57E-03 

8 - 11.2 9.6 2.00 5.18E-04 4.96E-04 3.19E-04 2.74E-04 1.60E-04 3.55E-04 

11.2 - 16 13.6 2.83 9.81E-05 2.87E-05 3.32E-05 2.66E-05 8.17E-06 4.70E-05 
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