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Abstract

Gluon splitting to b b̄ is shown to be an important process which is currently not well
modelled by Monte Carlo event generators. In order to understand the g → b b̄ process in
Monte Carlo generation, Pythia 8 and Sherpa are compared in terms of their production
methods of b b̄ pairs, and the parton shower approximation of gluon splitting is compared
to its matrix element calculation using Sherpa. The parton shower in Sherpa shows
reasonable agreement with the matrix element, but large differences are seen between the
predictions of Pythia 8 and Sherpa, particularly in their b b̄ pair production through the
parton shower. In order to compare the generators to data, a non-prompt di-J/ψ sample is
prepared via a four-dimensional simultaneous binned-fit to data collected by the ATLAS
detector in the Large Hadron Collider at CERN. The Monte Carlo result distributions
are then smeared based on B → J/ψ correlation functions derived from the analysis of a
Pythia 8B J/ψ sample. The generator and collider samples are then compared in terms
of the distribution of the angular separations between J/ψ pairs. It is found that of the
two generators: Pythia 8 shows the best agreement with the data, and Sherpa primarily
disagrees in the region of low angular-separation, where parton shower production is seen
to dominate.
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1 Introduction

1.1 Background and motivation

The hadronic collisions which occur at high-energy particle colliders, such as the Large Hadron
Collider (LHC) at CERN, invariably produce large quantities of hadronic final states resulting
from quark-pair production through quantum chromodynamic (QCD) interactions. In perturb-
ative QCD (pQCD1), gluons are regarded as being responsible for the dominant mode of QCD
interactions, corresponding to the generators of the theory. If a gluon has enough energy it can
split to form a pair of bottom quarks providing a background process for Higgs boson searches
in the H → b b̄ channel. Because of this, it is important to make sure that the properties
of the g → b b̄ process are well modelled by Monte Carlo event generators in order that this
background might be correctly accounted for in such searches. The g → b b̄ process also has a
considerable contribution in W/Z + b b̄.

Studies [1, 2] by the two multipurpose detectors at the LHC, ATLAS [3] and CMS [4],
investigating associated production of Z bosons with b quarks indicate that there are discrep-
ancies between collider data and Monte Carlo predictions, particularly when the b quarks have
a narrow separation as shown in Figure 1.

The LHC has recently undergone upgrades to perform at higher luminosities and centre-of-
mass energies. As data taking begins it is expected that there will be large quantities of gluons
produced in the collisions which are highly boosted (have a high energy or momentum relative
to the detector’s rest frame). The large boost will mean that if they split, their products will
have a narrow angular separation, placing them in the low ∆R region. Given the importance
of Monte Carlo data in high-energy particle-physics analysis it is essential that the generators
used accurately reflect the real data.

Because of the small angles involved in the problem, it is difficult to construct an analysis
using jets. In the ATLAS study jets are used and, as shown in Figure 1a, resolution of ∆Rb,b

only extends down to 0.5. The CMS detector’s inner tracker has a high enough resolution that
it is able to reconstruct b hadron vertices via an inclusive vertex finding technique, and using
these as proxies to b quarks extends sensitivity down to ∆RB,B = 0, as shown in Figure 1b.

The study presented in this thesis makes use of the full 2012
√
s = 8 TeV ATLAS dataset

and uses non-prompt, i.e. produced by a b hadron, J/ψs as proxies to b hadrons, which are
in turn used as proxies to b quarks. The angular variables of di-J/ψ events are analysed and
compared to the leading-order predictions of two Monte Carlo generators: Pythia 8 [5, 6] and
Sherpa [7, 8, 9, 10]. J/ψs are chosen because of the clean dimuon signal they can produce
in the ATLAS detector. Additionally, an in depth investigation into the characteristics of the
production mechanisms for b-quark pairs in Monte Carlo is presented.

1An approach to QCD calculations utilising perturbative techniques applicable over short distances or at
high energy, where the strong coupling constant is small
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(a) ATLAS: ∆Rb,b distribution for the hardest two b jets
produced in association with a Z boson compared to several
Monte Carlo predictions. Data selected from 2011

√
s =

7 TeV ATLAS dataset. Plot taken from Ref. [1]

(b) CMS: ∆RB,B distribution for b-hadron pairs produced in
association with a Z boson compared to several Monte Carlo
predictions. Data selected from 2011

√
s = 7 TeV CMS data-

set. Plot taken from Ref. [2]

Figure 1
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1.2 Thesis overview

Initially, the currently accepted model for particle interactions, the Standard Model, is described
and followed by a series of descriptions and definitions of various particle-physics variables, tools,
and instruments (Sections 2 and 3).

Next, the production channels for b b̄ pairs in Monte Carlo generators are investigated with
a focus on generator comparison (Section 4).

In Section 5 Sherpa’s parton shower approximation of g → b b̄ is compared to the explicitly
calculated matrix-element for the process by forcing the simulation into a phase-space-enhanced
region.

In order to compare the Monte Carlo results, which use the angular variables of b hadrons,
to the J/ψ data, the investigation in Section 6 tests the suitability of J/ψs as b-hadron proxies
and derives B → J/ψ correlation functions which are used later to smear the Monte Carlo
distributions to account for the B → J/ψ decay.

The non-prompt di-J/ψ comparison sample is prepared in Section 7 using a four-dimensional
simultaneous binned-fit to reweight an ATLAS data sample according to the probability of a
given event containing two non-prompt J/ψs.

Comparison takes place in Section 8 where Monte Carlo samples for inclusive production
of b b̄ pairs are analysed and smeared using the correlation functions derived in Section 6 and
then compared to the non-prompt di-J/ψ sample distributions.

The thesis then concludes with a short summary of the investigation in Section 9.

1.3 Notes

In this investigation, b hadrons are used as proxies to b quarks and no attempt is made to
extrapolate angular distributions back to parton level as this would involve modelling heavy-
quark fragmentation and hadronisation which is beyond the scope of this thesis.

Preparation of the di-J/ψ comparison sample made great use of the fit constructed and
developed by Dr Gavin Hesketh and Dr Josh McFayden of University College London; their
work, and the work of others will be explicitly noted when discussed in the write up.

A lot of code for data preparation and analysis was written by the author for this investiga-
tion and parts of this, as well as the exact runcards used for the Monte Carlo sample generation
are available on request at giles.c.strong@gmail.com.

2 The Standard Model

The Standard Model (SM) is a SU(3)C ×SU(2)L×U(1)Y gauge theory2 developed to describe
the interactions between fundamental particles [11]. The Lagrangian density for this theory
according to Glashow-Weinberg-Salam is given in Equation 2.1 [12]:

LSM = LQCD +LEW = LW +LB +
∑
`

L` +∑
`

LY (`) + L(q) + LY (q) + LΦ +LQCD +..., (2.1)

where “...” are gauge-fixing and ghost terms, LQCD and LEW are the Lagrangian densities
for the QCD and electroweak (EW) sectors respectively, the remaining terms are explained in
Table 1 below.

2The unitary group U(n) is the group of all n× n unitary-matrices, and the special unitary group SU(n) is
the group of all n× n unitary-matrices with determinant one
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LW Kinetic-energy terms for weak bosons
LB Kinetic-energy terms for the electromagnetic boson∑

`L` Lepton kinematics and EW interactions∑
`LY (`) Yukawa mass-terms for leptons

L(q) Quark kinematics and EW interactions
LY (q) Yukawa mass-terms for quarks
LΦ Higgs-boson kinematics and EW interactions

Table 1: Summary of terms contributing to the EW sector [12].

As can be seen in Equation 2.1, the Standard Model consists of two main parts: QCD, which
describes the interactions caused by the strong force, and the EW sector, which describes the
interactions caused by the weak and electromagnetic forces.

QCD has the greatest influence on the effects investigated in this thesis, however, for com-
pleteness, the EW sector will also be described.

2.1 Electroweak sector

The Glashow-Weinberg-Salam model for EW interactions takes the form of a SU(2)L × U(1)Y
gauge theory and follows the Lagrangian density shown in Equation 2.2:

LEW = LW +LB +
∑
`

L` +
∑
`

LY (`) + L(q) + LY (q) + LΦ, (2.2)

which consists of several sectors described in Table 1.

2.1.1 Electroweak gauge bosons

There are four gauge bosons in the EW sector: the W+ and W− bosons, which mediate charge-
current interactions; and the Z and γ bosons, which mediate neutral-current interactions. The
W and Z bosons propagate the weak force, and the photon, (γ), propagates the electromagnetic
force. They are all vector bosons having spin 1.

Whilst the photon is massless, the experimental results indicate that weak bosons are
massive and current measurements are: MW = 80.385 GeV and MZ = 91.1876 GeV [13]. The
presence of massive gauge bosons initially led to problems as the addition of mass terms caused
the Lagrangian density to become non-gauge-invariant meaning that the physical results of us-
ing it depended on the choice of gauge, (redundant degrees of freedom, such as choice of inertial
frame). The suggested solution “fixing” this was via spontaneous symmetry-breaking (SSB)
through the Higgs-Kibble-Guralnik-Hagen-Brout-Englert mechanism (the Higgs mechanism)
[14, 15, 16].

2.1.2 The Higgs mechanism

The Higgs mechanism involves specifying the vacuum state with a scalar, (spin-0), field φ. The
mass term for a scalar field is −µ2φφ∗ [12] and for −µ2 < 0 the vacuum state is no longer
located at φ = 0 but occupies a set of degenerate minima in a circle about φ = 0.

φ can be rewritten in terms of two scalar fields: the massive Higgs field, corresponding to
radial excitations around the circle of minima, and the massless Goldstone fields, corresponding
to excitations along the circle of minima. Picking a specific vacuum state from the set of
degenerate minima causes spontaneous symmetry breaking and by working in the unitary gauge
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it can be seen that the Goldstone fields are “eaten” by the W and Z bosons, allowing them
to acquire mass without violating gauge invariance [12]. The vacuum state is chosen such that
the photon remains massless.

The presence of SSB in the SM also allows quarks and leptons to have mass terms through
the Yukawa interaction without violating gauge invariance [12].

The Higgs boson couples to particles according to their mass, with a stronger coupling to
heavier particles [11]; this means that it can also self-couple.

A particle with a mass of 126 GeV corresponding to a SM Higgs boson was recently dis-
covered with a significance level of 5.9 σ at the LHC [17].

2.1.3 Leptons

Leptons are spin-1/2 elementary particles with a lepton number of +1 and can be represented
as a chiral weak isospin doublet:

χfL =

(
νf
ef

)
L

,

where νf are electrically-neutral particles known as neutrinos, and ef are the charged leptons,
which carry an electric charge of −1e, where e is the charge of the electron, which is the
lightest charged-lepton. The f indicates the generation, and three generations have so far been
discovered [13]. Transformations between charged leptons and neutrinos are known as charge-
current interactions and are mediated by the W+ and W− bosons. Observations show that the
W bosons only couple to left-handed fermions (spin opposite to momentum) hence the L in the
chiral doublet [11].

Scatterings of leptons, and creation and annihilation of lepton-antilepton3 pairs are known
as neutral-current interactions and are mediated by the photon and the Z boson, though
the photon couples to electric charge and so only the Z boson can mediate neutral-current
interactions involving neutrinos.

The second-generation charged-lepton is known as the muon (µ) and it is used in this
investigation to detect the decays of J/ψ particles. It has a mass of 105.658 371 5 MeV and a
mean lifetime of 2.196 981 1 µs [13].

A lepton of generation f carries a generation number of +1f . In all EW interactions in the
lepton sector, lepton number and lepton generation number must be conserved.

2.1.4 Quarks

All quarks are of spin 1/2 and carry a baryon number of + 1/3. Quarks have two types: up-type
and down-type. Up-type quarks carry an electrical charge (Q) of + 2/3 and an isospin (I3) of
+ 1/2. Down-type quarks have opposite isospin and Q = − 1/3 [13]. Antiquarks carry charge,
baryon number, and isospin opposite to their quark counterparts, but are of the same mass and
spin. The two types of quarks can be represented as an isospin doublet:

χfL =

(
Uf
D′f

)
,

where f denotes the generation number of the quark, and D′f has been rotated in flavour-space:

D′f =
∑
f ′

Vff ′Df ′ ,

3Antileptons, the antiparticle to leptons, are of the same mass and spin as their corresponding particle, but
carry opposite charge, lepton number, and lepton generation number
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Quark Charge [e/3] Generation Mass [MeV]

Up 2 1 2.3
Down -1 1 4.8
Charm 2 2 1275
Strange -1 2 95
Top 2 3 173 210
Bottom -1 3 4180

Table 2: Summary of quark properties [13].

where V is the Cabbibo-Kobayashi-Maskawa (CKM) matrix:

VCKM =

 |Vud| = 1− λ2

2
|Vus| = λ |Vub| = Aλ3φ

|Vcd| = −λ |Vcs| = 1− λ2

2
|Vcb| = Aλ2

|Vtd| = Aλ3 (1− φ) |Vts| = −Aλ2 |Vtb| = 1

+ O(λ4),

where φ = ρ− iη, λ = 0.22537, A = 0.814, ρ = 0.117, and η = 0.353 [13].
Currently three generations have been confirmed, resulting in six quark flavours. The prop-

erties of these are summarised in Table 2. In this thesis quark flavours are sometimes abbrevi-
ated to just the first letter, e.g. b quark, and uud.

In the EW sector quarks undergo interactions with all four EW bosons conserving charge
(electric and colour) but not necessarily flavour and indeed it is the EW interactions which
allow the rotations in flavour space mentioned above.

2.2 Quantum chromodynamics

QCD is a non-Abelian SU(Nc) gauge theory whose interactions are described by the Lagrangian
density shown in Equation 2.3 [18]:

LQCD = ψ̄ (i��∂ −m)ψ − 1

4

(
∂µA

a
ν − ∂νAaµ

)2
+ gAaµψ̄γ

µT aψ

−gfabc (∂µA
a
ν)A

µbAνc − 1

4
g2
(
f eabAaµA

b
ν

) (
f ecdAµcAνd

)
, (2.3)

where g is the gluon coupling-constant, fabc and T a are the structure constants and generators
of the group respectively, the matter fields ψ are referred to as quarks, and the gluon fields
(Aaµ) act as propagators for the strong nuclear force between quarks,

Nc is the number of colours in QCD. Colour charge was introduced to explain the detection
of the ∆++ baryon, a double-charged, spin-3/2 particle consisting of three up quarks. The
quantum numbers of the up quarks would all have to be equal for this particle to exist, however
this would violate Fermi-Dirac statistics which require that non-integer-spin particles (fermions)
do not exist in the same state. To resolve this issue, an additional quantum number, colour
charge, was assigned to quarks by Han and Nambu, and Greenberg, in 1965 [18]. Experimental
results [13] suggest that Nc = 3 resulting in N2

c − 1 = 8 generators of the form Ta = λa/2,
where a ∈ {1, 2, 3, 4, 5, 6, 7, 8}, and λa are the Gell-Mann λ matrices. The generators of SU(3)
satisfy the Lie algebra: [Ta, Tb] = ifabcTc [12]
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1√
2

(
rb̄+ br̄

) −i√
2

(
rb̄+ br̄

)
1√
2

(rḡ + gr̄) −i√
2

(rḡ + gr̄)
1√
2

(
gb̄+ bḡ

) −i√
2

(
gb̄+ bḡ

)
1√
2

(
rr̄ − bb̄

)
1√
6

(
rr̄ + bb̄− 2gḡ

)
Table 3: SU(3)’s eight possible gluons in colour-octet representation [19].

2.2.1 Quarks

The quark fields in QCD can be formed, according to colour charge, into triplets of the form:

ψ(x̃) =

 ψRed(x̃)
ψGreen(x̃)
ψBlue(x̃)

 .

Requiring LQCD to be invariant under local SU(3) gauge-transformations means that ψ(x̃)
must transform as shown by:

ψ(x̃)→ U(x̃)ψ(x̃) = eiT
aαa(x̃)ψ(x̃) .

2.2.2 Gluons

The gauge fields Aµ in SU(Nc) are built from linear combinations of the generators of SU(Nc)

and the gluon fields: Aµ =
∑N2

c−1
a AaµTa. So for Nc = 3 there are eight possible gluons. Each

of these gluons carries a unique combination of colour and anticolour added in a quantum
superposition, e.g. red-antiblue + blue-antired. A full listing of the possible gluon states as
a colour octet is shown in Table 3. If QCD were formed using the group U(Nc) then there
could also exist a colour singlet state for gluons: 1/

√
3
(
rr̄ + bb̄+ gḡ

)
. This state is colourless

and would allow for long-range gluon interaction, however since it is observed that there are
no long-range gluon interactions, QCD is chosen to be formed using SU(Nc) which does not
contain the colour singlet state for gluons.

Unlike photons, which couple to electric charge, but are themselves uncharged, gluons,
carrying colour charge, can self-couple as evidenced by the terms

−gfabc (∂µA
a
ν)A

µbAνc − 1

4
g2
(
f eabAaµA

b
ν

) (
f ecdAµcAνd

)
in Equation 2.3. These allow for 3- and 4-point interactions between gluons. Since both quarks
and gluons can radiate gluons, the presence of a parton (collective name for quarks and gluons)
quickly leads to a parton shower in which radiated gluons subsequently radiate more gluons or
produce quarks pairs. Parton showers will be discussed further in Section 3.7.4.

Interactions between quarks and gluons must conserve charge (both electric and colour) and
flavour.

In terms of fundamental properties, gluons appear in the theory as massless and have spin
1 so follow bosonic statistics.

2.2.3 Hadrons

QCD exhibits a property called colour confinement, which prevents the existence of isolated
colour-charged particles. The current understanding is that, unlike an electric field between
a pair of particles, the strength of which diminishes with distance, the gluon field’s strength
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Particle Constituents Charge Mass [MeV] Mean Lifetime [ps]

B+ ub̄ +1 5279.26 1.638
B0 db̄ 0 5279.58 1.519
B0
s sb̄ 0 5366.77 1.512

B+
c cb̄ +1 6275.6 0.452

Table 4: Summary of B meson properties [13].

between a quark pair remains constant with distance [18] and so more energy must be put in to
separate the pair further. This continues until enough energy has been put into the system that
another quark pair can be formed to bind to the previous quark pair at a smaller separation.

The lack of isolated quarks results in the formation of particles called hadrons which con-
sist of: mesons (two quarks in a bound state) and baryons (three quarks in a bound state).
Perhaps the most well-known baryons are the proton and neutron, consisting of uud, and udd,
respectively.

Mesons, as stated earlier, are a bound state of two quarks, and are categorised into flavour
families according to the heaviest quark in the pair. The family of primary importance in this
investigation are the B mesons, which contain a bottom quark bound to either an up, down,
strange, or charm quark [13]. Their properties are summarised in Table 4.

Another two-quark particle of importance in this investigation is the J/ψ, a form of char-
monium, consisting of a bound state of charm and anticharm quarks (cc̄). The J/ψ has a mass
of 3.096 916 GeV [13] and a mean lifetime of 7.2× 10−9 ps. Of particular use is its high branch-
ing fraction (relative probability for a certain decay to occur) to a pair of muons of 5.961%
[13], since, as will be seen in Section 3.6, the ATLAS experiment has detectors and algorithms
available which are geared towards the identification of muons.

3 Definitions

3.1 Natural units

Natural units will be used in this thesis. These are defined by setting c, the speed of light
in vacuo, and ~, the reduced Planck constant, to be equal to one. Kinematic properties of
particles can then be quoted in terms of electron volts (eV).

In this scheme mass, energy, and momentum are measured in eV, length and time in eV−1,
force in eV2, and velocity, angular momentum, and charge are dimensionless. Whilst cross
section can be measured in terms of eV−2, it is more common to use the units of barns (b).

3.2 Coordinate system and common variables

The ATLAS detector operates on a three-dimensional Cartesian coordinate system, the origin
of which is defined to be at the interaction point. The z-axis points along to the beam axis,
the x-axis points perpendicular to the beam axis towards the centre of the LHC ring, and the
y-axis points perpendicularly-upwards [3].

Spherical coordinates are also used, with φ being an azimuthal angle measured in the plane
perpendicular to the beam axis, and θ being the angle from the beam axis.

Pseudorapidity, η, defined as:

η = − ln tan

(
θ

2

)
, (3.1)
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it is a purely geometrical measure of position from the beam axis in the bounds of ±∞, with
0 being perpendicular to the beam axis, and ∞ being directly along the beam axis [3].

Similar to pseudorapidity is rapidity, y, defined as:

y =
1

2
ln
E + pz
E − pz

, (3.2)

which takes into account the particle’s energy [3].
The measure ∆R used in this thesis is the separation of two points in η − φ space:

∆R =

√
(∆η)2 + (∆φ)2. (3.3)

A common kinematic variable used in particle physics analysis is transverse momentum,
(p⊥), which is the momentum of a particle in the plane transverse to the beam axis. Particles
with a high p⊥ are referred to as ‘hard’ and those with a low p⊥ as ‘soft’. The momentum of
a particle is calculated using p = γm0v, where m0 is the particle’s rest mass, v is its velocity,
and γ is its Lorentz factor defined as:

γ =
1√

1− v2/c2
,

where c is the speed of light in vacuo: 299 792 458 m s−1.

3.3 Pseudoproper time

The pseudoproper lifetime, τ , of a particle p is defined as:

τ =
LxyMp

p⊥,pc
, (3.4)

where Lxy is the separation in the transverse plane between the primary interaction vertex and
the decay vertex of the particle, i.e. its total transverse decay-length [20].

It is a powerful tool for determining where a J/ψ was produced: as their mean lifetime is
very short (7.2× 10−9 ps), if τJ/ψ is close to 0, then it is likely to be prompt (produced in the
primary interaction), however, if τJ/ψ is higher then it is likely to be non-prompt (produced by
the decay of an intermediate particle).

Negative values for τ are expected and accepted. They are caused by the finite resolution
of the detector, which can sometimes lead to the J/ψ momentum vector being constructed in
an opposite direction to the vector between the two vertices [21].

3.4 Luminosity

For particle colliders, instantaneous luminosity (L) is the number of interactions per unit time
and can be calculated using:

L = const.× intensity× focusing =
fγ

4πεn
N2kb

F (β∗)

β∗
, (3.5)

where N is the number of particles per bunch, kb is the number of bunches, F and β∗ account
for the fact that the beams do not collide head on but at an angle, εn is the beam emittance4,
f is the revolution frequency of the particles, and γ is the Lorentz gamma factor [22, 23]. In
CGS units [L] = cm−2s−1, however L can also be expressed in terms of b−1s−1.

4A measure of the spread of particles in position-momentum space.
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The amount of data collected by a detector can be expressed in terms of integrated lumin-
osity by integrating over the runtime, T , of the experiment:

Lint =

∫ T

0

L dt.

This is normally expressed in inverse-barns (b−1). Due to the inverse nature of the unit,
measurements with lower SI prefixes (e.g. inverse femto-barn, fb−1) indicate a larger integrated
luminosity than measurements with higher prefixes (e.g. inverse micro-barn, µb−1).

3.5 The Large Hadron Collider

The LHC is a ring accelerator based at CERN which began operation in 2008. In normal
operation it collides proton beams, but it also has the capacity to collide lead ions. Its
design specifications are to collide bunches of 7 TeV protons at a centre-of-mass energy (

√
s)

of 14 TeV, with around 1.15× 1011 protons per bunch. The peak instantaneous luminosity will
be 1.0× 1034 cm−2s−1 [24].

The above specifications are the LHC’s design specifications but these are being reached in
two stages, and the specifications for the data taken during 2012, which this thesis uses, are:
4 TeV proton beams at

√
s = 8 TeV, with around (1.6 to 1.7)× 1011 protons/bunch and a peak

instantaneous luminosity of 7.7× 1033 cm−2s−1 [22].

3.5.1 Pile-up

As mentioned above, the LHC collides bunches of protons rather than single protons; this is to
increase the chance of a collision occurring when the beams are crossed, but it also means that
there can be multiple collisions occurring in the same beam crossing involving separated pairs
of protons.

Whilst it doesn’t matter which particular pair produces the interaction of interest, it is
important to make sure that the final states being used in analysis all came from the same
initial interaction. The presence of final states in the detector which came from other proton-
proton interactions is referred to as pile-up.

The effect of pile-up can be partially removed by examining the vertex separation of particle
tracks; if two particles have a large separation then it is likely that they came from different
hadronic collisions. For jets (described in Section 3.8), techniques involving the jet vertex
fraction (probability that a jet originated from a particular vertex) or the jet areas may be
used [25]. Further removal of pile-up requires accounting for detector effects, which will often
introduce large systematic uncertainties on results.

3.6 The ATLAS detector

The ATLAS (A Toroidal Lhc ApparatuS) detector [3] is a large multipurpose detector used in
conjunction with the LHC. Detection is performed in three main areas: the inner detector, the
calorimeters, and the muon spectrometer. A three-stage trigger system is used to accept or
reject events. ATLAS also has a forward detector which is used to monitor beam luminosity
and collect data for heavy-ion collisions. Figure 2 shows the overall layout of the detector.

3.6.1 Inner detector

The inner detector (ID), as shown in Figure 3, consists of three main sections: the semiconductor
tracker (SCT), the transition-radiation tracker (TRT), and the pixel detectors. The central
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Figure 2: Layout of ATLAS detector. Image from Ref. [3]

solenoid creates a 2 T magnetic field across the ID [3] which causes the paths of electrically-
charged particles to be curved. The direction of curvature allows the charge of the particle to be
known, and the amount of curvature allows for their charge-momentum ratio to be calculated.

Precision trackers The SCT and pixel detectors are classed as precision trackers and to-
gether provide coverage of |η| < 2.5. They both consist of barrel and end-cap sections with
the barrel section arranged in concentric cylinders about the beam, and the end-cap sections
arranged in discs in the transverse plane. The pixel detectors offer the highest granularity
with intrinsic accuracies of: 10 µm (R− φ), 115 µm (z) in the barrel region and 10 µm (R− φ),
115 µm (R) in the end-cap region, with three pixel layer being crossed by a typical track [3].
The intrinsic accuracies of the SCT are: 17 µm (R− φ), 580 µm (z) in the barrel region and
17 µm (R− φ), 580 µm (R) in the end-cap region with four space points being crossed by a
typical track [3].

Transition-radiation tracker Whilst only measuring (R − φ) to an intrinsic accuracy of
130 µm the TRT provides the highest amount of track hits at an average of 36 per track [3]. It
consists of straws filled with a xenon-based gas mixture [3] arranged parallel to the beam in its
barrel region, and in radial disks in its end-cap region with a total coverage of |η| ≤ 2.

3.6.2 Calorimeters

Figure 4 shows the layout of the ATLAS calorimetry section which consists of electromagnetic
(EM) and hadronic calorimeters. Calorimeters are designed to measure EM and hadronic
showers, however in order to measure any missing energy (which can signal neutrinos or exotic
physics), it is required that the showers lose the majority of their energy in their respective
calorimeter. To this end, absorber plates are used to reduce the amount of particles which
escape from the calorimeter.

Electromagnetic calorimeter The electromagnetic calorimeter (ECal) is designed to provide
high-precision measurements of electrons and photons over a large η range using liquid argon
interspaced with lead absorption plates. Its barrel section covers the range |η| < 1.475 and its
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Figure 3: Layout of ATLAS inner detector. Image from Ref. [3]

end-cap region covers 1.375 < η < 3.2. The thickness of the absorber plates varies according
to η as does the granularity of the detector with |η| < 2.5 having the highest granularity. A
presampling detector is used in the region |η| < 1.8 to correct for energy losses upstream by
electron and photons [3].

Hadronic calorimeter The hadronic calorimeter (HCal) is made up of the tile calorimeter,
the hadronic end-cap calorimeter (HEC), and the forward calorimeter.

The tile calorimeter covers the eta range |η| < 1.7, and consists of steel absorber plates and
scintillating tiles which provide a readout to photomultiplier tubes [3].

The HEC sits behind the end-cap ECal and uses the same cryostats for its own liquid argon
active material which, combined with copper absorption plates, it uses to cover 1.5 < |η| < 3.2,
slightly overlapping with both the tile calorimeter and the FCal [3].

The FCal covers 3.1 < |η| < 4.9 and is a dual-purpose calorimeter, using copper plates
in its innermost part to measure EM showers, and tungsten plates in the outermost layers to
measure hadronic showers. It again uses liquid argon as an active medium. [3]

3.6.3 Muon spectrometer

The muon spectrometer (MS), shown in Figure 5, is the outermost area of detection the ATLAS
detector offers. Using three air-core toroid magnets [3] it bends the paths of muons escaping
from the HCal through four different types of muon chambers. The MS is divided up into three
sections: the barrel region (0 < |η| < 1.4), the transition region (1.4 < |η| < 1.6), and the
end-cap region (1.6 < |η| < 2.7) [3].

Muon chambers Monitored drift tubes are used over most of the MS (|η| < 2.7), with
cathode strip chambers being used at larger pseudorapidities (2.0 < |η| < 2.7), [3].

For |η| < 1.05, resistive plate chambers are used and for 1.05 < |η| < 2.7 thin gap chambers
are used [3]. These two chamber types are used in the ATLAS trigger system, however triggering
only takes place in the region: |η| < 2.4 [3].
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Figure 4: Layout of ATLAS calorimeters. Image from Ref. [3]

Figure 5: Layout of ATLAS muon spectrometer. Image from Ref. [3]
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3.6.4 Trigger system

As mentioned in Section 3.5, the LHC, running at its design specifications, will reach a bunch-
crossing rate of 40 MHz and recording all of the data for all of these events each second would be
non-trivial. However a lot of these events will be uninteresting, either because there is nothing
special going on or because the event does contain an interesting process, but it is obscured
by contamination from other processes. Instead, a trigger system is used to decide at runtime
which events to record, and afterwards which to pass into storage for further analysis.

For data taking in 2012 the ATLAS detector used a three-part trigger system consisting
of the level 1 trigger (L1), the level 2 trigger (L2), and the event filter (EF). The aim of this
system is to reduce the event rate to a more manageable 200 Hz [26].

Level 1 trigger The L1 trigger is a hardware-based trigger which makes use of fast, custom
electronics to lower the event rate to 75 kHz nominal, 50 kHz 2012 [27]. It does this by identi-
fying regions of interest (RoIs) in the event from course-granularity data from the calorimeters,
muon chambers, and the forward detectors [27].

High-Level trigger The L2 trigger and the EF are often grouped together as the high-level
trigger (HLT). The HLT is a software-based trigger system run in a processor farm consisting
of, in 2010, 800 nodes for L2 and EF usage, and 300 nodes purely for EF usage, each node
consisting of an eight-core processor running at a modal speed of 2.4 GHz [26].

The L2 trigger starts from the RoIs identified by the L1 trigger and examines these at full
granularity, along with tracking information from the ID, through various algorithms to see if
the event really does contain features of interest. If the L2 trigger decides to keep the event,
then the rest of the event data is requested and stored to be passed to the EF.

The EF has access to the full event record and enough CPU time to run more-advanced
algorithms to identify signal in the event.

3.7 Monte Carlo simulation

3.7.1 General principle

Monte Carlo (MC) generators use stochastic methods to simulate particle collisions and in-
teractions according to particle theory. They are an important tool in particle physics with
a variety of uses such as: calculating the quantity of background5 in a measurement, tuning
analysis algorithms such as top taggers, and in designing particle detectors.

The self-interacting nature of QCD means that the calculation of QCD processes is more
computationally intensive than QED processes, however QCD can be approximated using per-
turbation theory (pQCD). This can only be used to describe partons with high momenta, and
so once momentum drops below a certain level, empirical models have to be employed. Colour
confinement, described in Section 2.2.3, requires that the partons are bound into hadrons, some
of which may be unstable.

The hadronic cross section (σ) can be thought of as the probability that an interaction will
occur, and consists of the sum of the cross sections of all the possible scattering subprocesses.
The cross section of the scattering subprocess ab → n, in which partons a and b scatter to
produce final state n, can be calculated by Monte Carlo generators using factorisation formulas

5Results from processes which are not considered signal.
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of the form:

σab→n =

∫ 1

0

dxa

∫ 1

0

dxb

∫
dΦn f

h1
a (xa, µF ) fh2b (xb, µF )

× 1

2ŝ
|Mab→n|2(Φn;µF , µR) , (3.6)

where: xj is the light-cone6 momentum fraction of parton j; µF and µR are the factorisation and
renormalisation scales respectively; Φn is the final-state phase-space; ŝ = xaxbs is the parton
flux (s is the squared centre-of-mass energy of the incoming hadrons); |Mab→n|2(Φn;µF , µR) is
the square of the matrix element (effectively the sum over all possible Feynman diagrams for
the process ab→ n); fhij (xj, µF ) is the parton density function (PDF) of hadron i [28].

The Monte Carlo simulation of an event is therefore split into four main sections: PDF
sampling, the matrix element, the parton shower, and hadronisation.

3.7.2 Parton density function

Hadrons are defined by the two or three quarks which carry the majority of their momentum
(their ‘valence quarks’), however other partons such as sea quarks (virtual quark pairs) and
gluons also carry some fraction of the total momentum of the hadron [18]. The fractions of
momentum carried by the different partons in a hadron are summarised as parton density
functions (PDFs), which give the probability density of finding a given parton with a fraction x
of the total momentum of the hadron at an energy scale Q [29]. Since pQCD can only describe
partons and the LHC collides protons, PDFs are used to provide the parton input to the Monte
Carlo simulation.

3.7.3 The matrix element

The matrix element (ME) is the analytic calculation in pQCD of a specified process (the hard
process), such as: gluon gluon → quark anti-quark (g g → q q̄) with the gluons being sampled
from the PDF. As mentioned in Section 2.2, partons carry colour charge and so can radiate
gluons, or form quark pairs, so the process could easily become g g → q q̄ g or g g → q q̄ q q̄,
where the incoming or outgoing partons radiate gluons. The cross sections of these processes
would be calculated using pQCD and Monte Carlo integration over the phase space.

The ME calculations may be performed at leading order (LO) using tree-level7 MEs, or
at higher orders, such as next-to-leading order (NLO), by including the contribution of loop
corrections8. One could expect to continue to NNLO and so forth, increasing the accuracy of
the simulation by including greater numbers of loop corrections, however the associated work
in calculating these corrections causes the simulation time to increase dramatically.

3.7.4 The parton shower

Instead of explicitly calculating the ME to higher and higher orders and suffering the associated
increase in runtime, modelling methods are used to approximate the calculation.

In a process labelled “the parton shower” (PS), the hard process in the ME is dressed
with emitted partons and probabilistic functions are used to determine the evolution of these

6Coordinate system which transforms easily along the collision axis
7ME only includes contributions from the set of simplest Feynman diagrams for a process
8Process in which a particle either emits and subsequently reabsorbs another particle, or splits into a particle-

antiparticle pair which subsequently annihilate to reform the original particle
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Process Function

q → q g Pqq(z) = CF
1+z2

1−z

q → g q Pgq(z) = CF
1+(1−z)2

z

g → g g Pgg(z) = CA
z4+1+(1−z)4

z(1−z)
g → q q̄ Pqg(z) = TR

(
z2 + (1− z)2)

Table 5: Summary of spin-averaged light-parton splitting functions. CF = N2
c−1

2Nc
, CA = Nc, and

TR is defined to be 1/2. Here, z is the energy fraction of the emitted parton with respect to the
initial parton: Ej/Ei [28].

extra partons through further splittings to light partons. For each parton, a random number
is generated in the range [0, 1] and Equation 3.7,

∆i

(
X2, x2

)
= exp

(
−αs

2π

∫ X2

x2

dk2

k2

∫ 1−X2
0/k

2

X2
0/k

2

dz Pji(z)

)
, (3.7)

is set equal to this and solved for x2. If x2 is greater than X2
0 (a cutoff value which determines

the point at which branchings become resolvable as two distinct partons instead of one) then a
branching is generated at a scale of x2 and evolution continues on the branching products. If,
however, x2 ≤ X2

0 then evolution of that parton ceases [28].
∆i(X

2, x2) in Equation 3.7 is the probability of no branching between x2 and X2, where X2

is the maximum value of variable x2. The Sudakov form factor, ∆i(X
2, X2

0 ), where X2
0 is the

lowest value of x2, is the probability of no branching at all.
Pji(z), where i, j ∈ {g, q, q̄}, are the splitting functions defined in Table 5, and z is the

energy fraction of parton j with respect to parton i. x in ∆i(X
2, x2) is the evolution variable

for the parton shower, such as transverse momentum or virtuality. In the collinear limit (where
θ, the angle between branching products, equals zero) all possible choices of z and x give the
same result; it is only once θ increases that the differences in variable choice become apparent
[28]. There is no a priori prescription for which variables to use and different PS models vary
in their variable choice and their X2

0 cutoff value.

3.7.5 Matrix element and parton shower combination

The ME and PS methods are both viable ways of simulating the evolution of particles, however
each has its own advantages and disadvantages: The ME method is well suited for simulating
hard, separated partons, but becomes difficult to calculate in the cases of high multiplicity or
soft, collinear partons; The PS method, instead, describes soft, collinear partons well, and does
not become overly complex as the number of partons is increased [28].

Contemporary Monte Carlo generators use both methods by combining their simulations
through matching or merging procedures. When generating LO MEs with fixed partonic final-
state multiplicities, such as 2 → 2 or 2 → 3 MEs, in Pythia 8 and Sherpa, this matching
takes the form of the addition of a PS which takes the kinematics of the ME partons as a
starting condition.

Sherpa, however, is able to generate MEs with a variable number of final-state partons,
e.g. 2 → 2 + {2} where {2} indicates that upto two extra partons may generated by the
ME. Including more of the partonic evolution within the ME improves the accuracy of the
simulation as it allows the hard, wide-angle splittings, which the PS simulates poorly, to be
explicitly calculated in pQCD. Attaching a PS to these kinds of MEs, however, requires a
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merging technique to account for the possibility of over- or under-counting regions of phase
space and to resolve inherent differences in the nature of each methods’ simulation; the fact
that the ME produces the probability of at least n final states, whereas the PS produces the
probability of exactly n final states [28]. In Sherpa this is performed by the algorithm detailed
in Ref. [30], in which the emission phase-space is divided into two domains, one for the ME
and the other for the PS, with the cut defined by the “jet criterion”. The PS is then truncated
such that it can only emit within its assigned phase-space domain.

When generating NLO MEs, a more advanced form of ME+PS matching is required, two
such schemes are MC@NLO [31] and Powheg [32]. Currently, the most advanced forms
of simulation involve the merging of NLO MEs with varying final-state parton multiplicity,
and their subsequent matching to a PS in approaches such as MEPS@NLO [33], which is
implemented in Sherpa.

3.7.6 Hadronisation

Once the PS finishes, the particles are passed to the hadronisation stage of simulation. This
is a non-perturbative process which is modelled according to observations of QCD [34]. There
are two models which are commonly adopted: the string model, based on observations in
lattice QCD9 where the gluon field between partons collapses into a thin tube; and the cluster
model, based on the observation of pre-confinement where groups of partons can be formed
into clusters with no net colour-charge [34]. The hadronisation stage serves to bind the partons
into colourless particles (hadrons), thereby reconciling the simulation with the observed lack of
free colour-charge.

Particles exiting the hadronisation stage and their subsequent decay products are the final
states one can observe in a detector.

3.7.7 Light partons

Light partons are partons which are approximated in Monte Carlo generators to be massless in
the ME. In Pythia 8 these are normally gluons and u, d, and s quarks. In Sherpa the c and
b quarks are normally included in the massless approximation, however in order to allow for
accurate comparison with Pythia 8 these have been explicitly set to be treated as massive.

The term heavy flavour (HF), is used to refer to c, b, and t quarks, which are treated as
massive in the ME by the generators.

Once the generators move into the PS phase, all quarks are treated as massive.

3.7.8 Multi-parton interactions

The composite nature of the hadrons collided by accelerators, such as the LHC at CERN, mean
that in a collision the signal process can be accompanied by softer interactions resulting from
the underlying event (UE). The primary production mode of the UE is multi-parton interaction
(MPI), in which other partons in the colliding hadrons interact with one another and produce
final states which can become mixed in with the signal process’s final states. It doesn’t matter
if the signal one is looking for comes from one of these softer interactions, provided the signal
only comes from one interaction and is not a mixture of MPI.

The effect of MPI is difficult to remove as the interactions take place at an experimentally
indistinguishable distance from the signal process; however, by simulating MPI in Monte Carlo
generation, one can see how the addition of MPI affects ones measurements, and including MPI
in simulation allows for more accurate comparison with collider data. This is done in Pythia 8

9A non-perturbative approach to QCD calculations based on discretising space-time.
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and Sherpa by including a number of 2 → 2 QCD MEs, with options to restrict the possible
outgoing flavours.

3.8 Jet clustering

Jets are an important tool in the study of hadronic collisions such as those which take place at
the LHC. They are a collection of final state particles from a collision which have been grouped
together to be treated as a single object with its own kinematic and geometric variables: p⊥,
E⊥, et cetera. There are numerous jet algorithms which dictate the way in which the final
states are clustered into jets, but they can be divided into two categories: cone and sequential
recombination.

Cone algorithms are possibly the most intuitive means of defining a jet: a circle is drawn in
(η − φ) space and any particles within the circle are clustered into a jet. Cone algorithms vary
in how they choose where to centre the circles and how they deal with overlapping cones, but
in general they are infrared and collinear (IRC) unsafe10. This means that the way in which
they cluster particles can be greatly changed by the addition of soft or collinear particles, which
makes them undesirable for theoretical application where calculations rely on perturbation the-
ory. Their näıve clustering method does, however, give them well defined boundaries meaning
that their shape is resilient to the effects of soft radiation such as that resulting from the under-
lying event. This property of soft-resilience made them an attractive choice for experimental
application.

Sequential recombination algorithms can be generalised using Equations 3.8 and 3.9,

dij = min(k2p
t,i , k

2p
t,j)

∆R2
ij

R2
, (3.8)

di = k2p
t,i , (3.9)

in which kt,i and kt,j are the transverse momenta of two objects i and j, ∆Rij is the separation
of the two objects in (η − φ) space, and R is the radius parameter of the algorithm [35]. For
each iteration, dij and di are calculated for each object and each pair of objects. The minimum
value of dij and di is then found and if it is a member of dij then that pair of objects are
combined into a single object, if instead it is a member of di then that object is defined as
a jet and is removed from consideration when calculating subsequent dij and di values. This
continues until all particles have been clustered or some stop condition is met.

The value of p in Equations 3.8 and 3.9 determines the amount of weight the algorithm
places on the transverse momentum of the objects when clustering: For p = 0 objects are
clustered in order of closest pairs (the Cambridge/Aachen algorithm); for p = 1 objects are
clustered in order of closest, softest pairs (the kt algorithm).

Sequential recombination has the advantage that it is inherently IRC-safe; since all possible
object pairs are considered at any stage, collinear particles will combined together early, and
soft radiation will be clustered with other particles rather than seeding their own jet. For p ≥ 0
they do, however, feature soft-adaptable boundaries meaning that soft radiation can cause their
shapes to become irregular, which made that less useful in experiments.

The anti-kt algorithm, defined by setting p = −1, was introduced in 2008 by Cacciari,
Salam, and Soyez [35]. This algorithm clusters in order of closest, hardest pairs giving it a
soft-resilient boundary whilst retaining IRC-safety. Since it desirable for both theoretical and
experimental application, it has been adopted by both ATLAS and CMS as their main standard
jet algorithm.

10Some clustering algorithms such as SISCone are designed to be IRC-safe cone algorithms
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4 b b̄ pair production in Monte Carlo

4.1 Methods of heavy-flavour production

Production of heavy-flavour quarks can take place in the the ME or the PS of an event simu-
lation. Direct production in the ME would require a hard process of the form P P → b b̄ X,
where P is a parton (light or heavy - see Section 3.7.7) and X are any other products of the
hard process, such as extra light-partons (p). A fully-light ME can still lead to heavy-flavour
production in its subsequent PS: if a radiated gluon has enough virtuality then it can split to
a b b̄ pair.

It can be expected that ME production will result in a large angle between the quarks as
momentum conservation means that with no initial state radiation (ISR), the outgoing partons
from a 2 → 2 ME must be back-to-back in the transverse plane of the laboratory rest-frame.
If, however, the incoming partons are able to radiate, or the ME is able to emit extra light-
partons, then the outgoing partons do not necessarily have to be back-to-back. As mentioned
in Section 3.7, the ME production method is an explicit calculation of the process, so it can be
expected that the two generators will not show a large difference in their results due to there
only being one correct way to calculate the ME.

For massless partons, the gluon-splitting function Pqg, in Table 5, shows maxima at z = 0
and 1, so it can be expected that majority of massless quarks would be produced in the low-
angle region. b quarks, however, are treated are massive and Pythia 8 and Sherpa employ
different methods to model massive splittings: Pythia 8 uses ME information to apply process-
dependant corrections to massive splittings [36], where as Sherpa uses generalised forms of
the splitting functions to account for parton mass-effects [37].

In current theoretical particle physics there is no a priori way of choosing the correct
evolution variable for the PS approximation as there are several variables and which would
be a reasonable choice; all choices give the same result if calculated using an infinite series,
but differences arise when only using a finite number of perturbation terms. In some cases
the choice of variable can be supported by showing that it provides a good approximation
when using explicitly-calculated higher-order perturbation terms, or if other choices produce
nonsensical results, such as negative cross-sections. It can therefore be expected that the varying
choices of scale and the different modelling methods of massive partons used by the generators
should lead to noticeable deviations in their PS production.

Including extra light-partons as outgoing particles from the ME reduces the amount of
approximation in the event generation, and so reduces the effect of PS scale choice. To this end,
samples of the form LO+{Ne} will also be generated, where LO is the leading order production
process (ME or PS) and {Ne} indicates the maximum number of extra light-partons exiting
the explicitly calculated ME. Since a PS provides probabilities for any number of splittings,
both the LO+{0} and LO+{Ne} samples require a PS to correct them to all orders, however
if the results of the LO+{Ne} samples are the same as those for LO+{0}, then the PS for the
LO+{0} sample must be providing a good approximation to the splittings which are calculated
explicitly in the LO+{Ne} samples.

4.2 Monte Carlo samples

Monte Carlo production was divided into two main categories: ME and PS. The titles refer
to where the b-quark production primarily takes place. Two generators were used to produce
LO samples: Sherpa and Pythia 8. Sherpa was also used to create samples with extra
possible outgoing light partons in the ME. The number of possible extra partons is indicated
in the summary tables in the braces in the sample name and following the 93 in the process
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description, e.g. 93{1}, where 93 is Sherpa’s light-parton container, p. When generating these
samples, CKKW (the jet criterion for Sherpa’s merging algorithm) was set to

√
20/ECM.

All production, except where noted, was performed using the MSTW2008lo68cl nf4 PDF
[38], which uses a fixed-flavour scheme to prevent the sampling of b and t quarks for incoming
partons in MEs. When using Sherpa, c and b quarks were set to be massive such that they
were not included in its 93 light-parton container and the number of EW interactions in the
ME was set to zero to ensure the propagators were partons. The minimum p⊥ for outgoing
particles (p̂⊥,min) for the ME was set to 10 GeV and the colliding beams were set to 4 TeV
protons. MPI simulation was performed by the generators’ in-built handlers, with Amisic [39]
being selected for Sherpa. In both cases the MPI was set to produce 2→ 2 QCD interactions.

4.2.1 Matrix-element production

The ME samples were designed such that b quarks were primarily produced in the ME of the
simulation and used the process of p p → b b̄, with additional outgoing light partons in the
extra-parton samples. Where MPI was simulated, indicated by “MPI” in the sample name, the
handler was set to be able to produce HF quarks in the ME of the MPI.

The ME samples are summarised in the Table 6.

4.2.2 Parton-shower production

The PS samples were designed such that b quarks were primarily produced in the PS of the
simulation and used the process of p p → p p, with additional outgoing light partons in
the extra-parton samples. The processes switched on in Pythia 8 were, from the HardQCD

processes: gg2gg (g g → g g), gg2qqbar (g g → q q̄, only light quarks exiting), qg2qg

(q g → q g), qq2qq (q q′ → q q′, q q̄′ → q q̄′, and q̄ q̄′ → q̄ q̄′, where outgoing and incoming
flavours are equal and q and q′ may be equal), qqbar2gg (q q̄ → g g), qqbar2qqbarNew

(q q̄ → q′ q̄′, incoming HF allowed but only light quarks exiting). This collection of processes
is hereafter referred to as HardQCD:Light. Note that the qg2qg and qq2qq processes would
usually be able to have outgoing b quarks, however the fixed-flavour PDF used for generation
here prevents this. The fixed-flavour PDF also prevents initial state b quarks for the qqbar2gg

and qqbar2qqbarNew processes. A justification for these restrictions follows in Section 4.5.
Where MPI was simulated, indicated by “MPI” in the sample name, the handler was set to be
unable to produce new quark flavours in its ME, but was able to in the subsequent showering
of the MPI ME. This ensured that b quarks were only generated through gluon splitting in
parton showering.

The PS samples are summarised in the Table 7.

4.3 Sherpa and Pythia 8 analyses

Analysis of the Sherpa and Pythia 8 MC samples was performed using Rivet [40]. b hadrons
(denoted “B”) were used as proxies for the b quarks in order to relate the results to post-
hadronisation particles, which can be measured in a particle detector. This also allowed the
same analysis code to be used with both generators; Sherpa and Pythia 8 differ in their
population of the event record and a separate analysis would be required for each if pre-
hadronisation particles were used. The b hadrons were found using the HeavyHadrons projection
in the range: −2.5 ≤ η ≤ 2.5. In order for an event to be accepted, at least two b hadrons
had to be found with p⊥,B ≥ 10 GeV. When more than two b hadrons were found, the hardest
two were used. The angular and kinematic properties of the selected b-hadron pairs are then
plotted.
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Sample Name Process σ [nb]

Sherpa ME LO 93 93→ 5 − 5 16 828± 4
Sherpa ME LO+MPI 93 93→ 5 − 5 16 829± 3
Sherpa ME LO+{1} 93 93→ 5 − 5 93{1} 17 097± 3
Sherpa ME LO+{1}+MPI 93 93→ 5 − 5 93{1} 17 097± 5
Sherpa ME LO+{2} 93 93→ 5 − 5 93{2} 17 133± 3
Sherpa ME LO+{2}+MPI 93 93→ 5 − 5 93{2} 17 132.4± 4.7
Pythia 8 ME LO HardQCD:hardbbbar 16 371± 2
Pythia 8 ME LO+MPI HardQCD:hardbbbar 16 365± 2

Table 6: Summary of ME sample production. 93 and 5 indicate light partons and b quarks re-
spectively. 1× 107 events were generated for all samples except for Sherpa ME LO+{2}+MPI,
where 9 999 982 events were generated.

Sample Name Process σ [nb]

Sherpa PS LO 93 93→ 93 93 5 209 900± 600
Sherpa PS LO+MPI 93 93→ 93 93 5 212 000± 1000
Sherpa PS LO+{1} 93 93→ 93 93 93{1} 5 216 200± 700
Sherpa PS LO+{1}+MPI 93 93→ 93 93 93{1} 5 216 000± 1000
Sherpa PS LO+{2} 93 93→ 93 93 93{2} 5 218 000± 1000
Sherpa PS LO+{2}+MPI 93 93→ 93 93 93{2} 5 218 000± 1000
Pythia 8 PS LO HardQCD:Light 5 135 700± 500
Pythia 8 PS LO+MPI HardQCD:Light 5 137 300± 600

Table 7: Summary of PS sample production. 93 indicates light partons. 1× 107 events were
generated for all samples.
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4.4 Accounting for ∆R phase space

The measure ∆R is calculated using:

∆R =

√
(∆η)2 + (∆φ)2.

The phase-space measure, Φ, of a state is the probability of a system being found in that
state. Because ∆φ is bound between 0 and π but ∆η can be anywhere between 0 and ∞,
the phase-space measure for ∆R forms a peak at ∆R = π. The shape of Φ∆R is shown in
Figure 6. A varying Φ means that even for a uniform distribution of ∆φ and ∆η, ∆R will be
uneven displaying a peak at ∆R = π. To avoid confusing shapes in the ∆R distribution caused
by underlying physics with those due to the phase-space measure, each entry in the ∆R plots
will be weighted by Φ−1

∆R. The equations for Φ∆R used in this investigation and Figure 6 were
derived and created by Andy Buckley.
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Figure 6: Figure (a) shows the growth of Φ∆R as a function of ∆R. Figure (b) shows pictorially
the evolution of Φ∆R: The grey lines indicate the possible combinations of ∆φ and ∆η values
required to produce a given ∆R. The length of each line is the phase space for that ∆R, Φ∆R.
The arc-length can be seen to increase linearly with ∆R upto ∆R = π, after which the upper
bound of π on ∆φ begins to reduce the phase space available to produce higher ∆R values. Plot
credits: Buckley.

4.5 Justification for fixed-flavour scheme

In an initial investigation, the CTEQ6L1 PDF [41] was used which meant that the qg2qg and
qq2qq processes in Pythia 8’s PS production were able to have outgoing b quarks if there
were b quarks in the incoming partons. As this was found to occur in 1.8% of events11, it was
assumed that their presence would have a negligible effect, however it was later found that, due
to the very low acceptance of events in PS production, these events were likely to be accepted
when they occurred. By placing a cut on events with incoming b-quarks Figure 7 was created.
As can be seen, including events with incoming b-quarks increases acceptance by about 60 %,
with the additional events being mostly in the high-angle region (particularly noticeable in the
∆φB,B distribution (Figure 7b)).

11Measurement taken from searching through HepMC output of 10 000 events.
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Further investigation of ∆φB,B revealed that for ∆φB,B ≥ π/2 about 70 % of events were
generated though flavour excitation12 of the form: p b→ p b. As shown in Figure 8, Pythia 8
would generate a b b̄ quark pair from gluon splitting in backwards evolution from the ME and
the hard scattering of one of the b-quarks is likely to be what causes the large angle between
the b hadrons.

This is gluon splitting, however this section focuses on accurate comparison between MC
generators for HF production. The Sherpa run card could have been set to include the same
b-quarks processes as Pythia 8 by including the following processes: b b̄ → p p, b p → b p,
b̄ p → b̄ p, b b̄ → b b̄, b b → b b, and b̄ b̄ → b̄ b̄. However the b quarks in Sherpa must
be treated as massive in order to prevent its MPI handler from generating them at ME level,
and so the b quarks produced by including these processes would also be massive in the ME,
whereas Pythia 8 treats them as massless.

For the sake of accurate generator comparison in this section, it was decided to restrict
the presence of b quarks in the ME for the PS production samples, but rather than using an
analysis-based cut, production was moved to use a fixed-flavour PDF, where the number of
active flavours was less than five (MSTW2008lo68cl nf4 ). This prevented the sampling of b
quarks from the PDF which meant that the production cross sections of the samples would be
correct. In order to accurately compare the generator predictions to collider data, the restriction
on initial-state b quarks must be removed as these extra processes will contribute to the final
prediction. The restriction on initial-state b quarks will be removed in Section 8 where the MC
results are compared to collider data.

12Process in which a HF quark, either sampled from the PDF or created in the initial state shower, is scattered
by a light parton in the hard process through virtual gluon exchange in either the t or u channel
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Figure 7: Plots showing the effect of including initial-state b-quarks in ME for PS produc-
tion. The “no cut” results are normalised to one, and the “with cut” results are normalised to
fwith cut/fno cut to show the decrease in acceptance from their corresponding “with-cut” sample.
Samples were created with CTEQ6L1 PDF. The cut prevents acceptance of an event if it has a
b quark as an incoming parton to its ME.
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Figure 8: Diagram showing the evolution of one of the Pythia 8 events from the PS production
sample where ∆φB,B ≥ π/2. The hard process, indicated by the white circle, is b g → b g, where
the b quark is created in gluon splitting during backwards evolution from the ME. Image credit:
author.

4.6 Results and discussion

4.6.1 LO production

The results of the LO+{0} sample analysis are presented here as plots of ∆R, ∆η,∆φ,mB,B, p⊥B
and ηB for b-hadron pairs in ME production using the LO process: p p → b b̄, and PS pro-
duction using the LO process: p p → p p. The non-MPI results are normalised to one, and
the results with MPI are normalised to fMPI/fNMPI, where fMPI and fNMPI are the fraction of
events accepted from the sample with MPI and without MPI, respectively; they are scaled to
show the increase in acceptance MPI causes. The error bars and yellow error bands show the
statistical uncertainty on bin fills.

ME production As was expected, the left-hand-side plots in Figures 9, 10, and 11 show
that ME production of HF in Sherpa and Pythia 8 produces similar shapes for all plotted
variables.

The effect of MPI differs significantly between the generators: for Pythia 8 the results
with and without MPI almost overlap, whereas for Sherpa the addition of MPI causes an
acceptance increase of (44.0± 0.2) %. The process used for ME production of b quarks ensures
that there will be at least two b hadrons after hadronisation13 so there are two ways in which
the addition of MPI can increase acceptance:

1. One or both of the hard-process b hadrons are outside the η range required by the analysis,
but the MPI produces enough b hadrons which are in the η range resulting in the event
being accepted.

2. One or both of the hard-process b hadrons fail the p⊥ cut required by the analysis, but the
MPI produces enough b hadrons pass the p⊥ cut resulting in the event being accepted.

13Whilst a bound state of the two b quarks, (bottomonium), could in theory be formed, the b quarks would
have to exit the hard process at a very small angle which is extremely unlikely due to momentum conservation,
(see Section 4.1)
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(a) ME Production.
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(b) PS Production.

Figure 9: Comparison of ∆ηB,B for ME and PS b-quark pair-production. PS production can
be seen to produce closer b-hadron pairs. MPI addition has a much greater effect in Sherpa
than it does in Pythia 8, particularly in ME production. As expected, both generators produce
similar results for ME production (see Section 4.1). Normalisation for the plots is detailed in
Section 4.6.1. Error bars and bands show the statistical uncertainty on bin fills.
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(b) PS Production.

Figure 10: Comparison of ∆φB,B for ME and PS b-quark pair-production. Both generators,
again, produce similar results for ME production, but show a very large difference in PS produc-
tion; Pythia 8’s distribution is very flat in ∆φ. MPI addition is again seen to have a much
greater effect in Sherpa than in Pythia 8.
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Figure 11: Comparison of ∆RB,B for ME and PS b-quark pair-production taking into account
the phase space Φ (∆R). The plots are the combination of the ∆φ and ∆η distributions and, as
expected, ME production is seen to be centred around back-to-back production. PS production
can be seen to produce closer b-hadron pairs.

Sample Name ME Acceptance Fraction PS Acceptance Fraction

Sherpa LO 0.1099± 0.0001 0.000 181± 0.000 004
Sherpa LO+MPI 0.1583± 0.0001 0.000 236± 0.000 005
Sherpa LO+{1} 0.116 93± 0.000 06 0.000 197± 0.000 004
Sherpa LO+{1}+MPI 0.1652± 0.0001 0.000 253± 0.000 006
Sherpa LO+{2} 0.117 70± 0.000 09 0.000 196± 0.000 004
Sherpa LO+{2}+MPI 0.1662± 0.0001 0.000 246± 0.000 005
Pythia 8 LO 0.2687± 0.0001 0.000 424± 0.000 005
Pythia 8 LO+MPI 0.283 31± 0.0001 0.000 44± 0.000 008

Table 8: Fraction of events accepted by analysis for ME and PS production samples.

The addition of MPI in the Pythia 8 sample causes an acceptance increase of (5.42± 0.06) %,
which is not as significant as that seen in Sherpa. This lack of increase could be due to two
factors which are not necessarily mutually exclusive:

1. The MPI ME tends to produce very low p⊥ partons.

2. The outgoing partons from the MPI ME are normally at high pseudorapidities.

As expected, the Figure 11a shows a peak around ∆R = π meaning that the b hadrons are
normally produced back to back, with some deviation from this configuration due to ISR or
the PS.

Without MPI, the acceptance fractions of the generators show a large difference, with Py-
thia 8’s fraction being (144.6± 0.3) % greater than Sherpa’s. This suggests that Pythia 8
normally produces b hadrons which are at lower |η| values, or are at p⊥s higher than those
of Sherpa. Figures 13a and 14a show that the generators’ η distributions are approximately
equal, but that Pythia 8 does produce more b-hadrons with p⊥s just above the cut threshold
than Sherpa.
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PS production The plots for PS production of b quarks, and in particular Figure 10b,
show that the two generators differ greatly. Pythia 8’s results show a very slight linear
decrease with ∆φ and a moderate exponential decay slope in ∆η which peaks towards ∆η = 0.
Sherpa’s results, on the other hand, show a strong peak towards ∆η = 0 and ∆φ = 0 which
decays exponentially towards higher angles. As can be seen in Figure 11b, both generators
produce b-hadron pairs deviating from the zero-angle configuration, but Pythia 8, due to it
slow dependence on ∆φ, extends farther out to higher ∆R values than Sherpa does.

The two generators also show a large difference in the mass (Figure 12b) of the b-hadron
pairs which are accepted with Sherpa’s pairs peaking in the range 10 GeV to 20 GeV and
Pythia 8’s mass distribution being smeared out to higher masses.

The addition of MPI here causes even less of an acceptance increase for Pythia 8, of
(3± 3) % (cf. (5.42± 0.06) % for ME production). The acceptance increase for Sherpa is also
lower at (30± 4) % (cf. (44.0± 0.2) % for ME production). The ways in which the addition
of MPI can increase are the same as those listed in Section 4.6.1, however not all events are
guaranteed to contain a b b̄ pair, hence the very low acceptance fractions.

The generators also differ greatly in their acceptance fraction for their non-MPI samples
with Pythia 8’s acceptance fraction being larger than Sherpa’s by (134± 6) %, which is a
similar figure to the difference seen in ME production ((144.6± 0.3) %). Figures 14b and 13b
show that the accepted b-hadrons from both generators are produced with an approximately
equal η and p⊥ distributions, so for Pythia 8 to have such high acceptance fractions must
mean that it’s g → b b̄ splitting fraction is higher than Sherpa’s.
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Figure 14: Comparison of ηB for ME and PS b-quark pair-production. No great deviation can
be seen between the two generators’ distribution shapes.
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(b) PS Production.

Figure 12: Comparison of mB,B for ME and PS b-quark pair-production. The ME production
distribution is seen to peak at a higher mass than the PS production distribution. This is due
to the back-to-back configuration of ME production shown in Figure 11, where the momenta of
the outgoing products cancel meaning that more of the energy of the system is transferred into
mass. NB: The distributions “switch on” at around 10 GeV due to the minimum mass of a two
b-hadron system.

Sherpa LO ME
Sherpa LO ME + MPI

Py8 LO ME
Py8 LO ME + MPI

10−3

10−2

10−11 N
d

N
d

p ⊥
B

10 1

0.6

0.8

1

1.2

1.4

p⊥ B/GeV

M
C

/S
H

E
R

PA
L

O

(a) ME Production.

Sherpa LO PS
Sherpa LO PS + MPI

Py8 LO PS
Py8 LO PS + MPI10−3

10−2

10−11 N
d

N
d

p ⊥
B

10 1

0.6

0.8

1

1.2

1.4

p⊥ B/GeV

M
C

/S
H

E
R

PA
L

O

(b) PS Production.

Figure 13: Comparison of p⊥B for ME and PS b-quark pair-production. Sherpa is seen to
produce a slightly higher proportion of harder b-hadrons than Pythia 8 in ME production, and
approximately the same proportion in PS production.
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Acceptance-ratio comparison From Table 9 it can be seen that for both generators show
approximately the same production ratios of about two thirds ME to one third PS. The addition
of MPI serves to slightly shift the ratio towards ME production for both generators.

Sample Set Acceptance Ratio
[ME : PS]

Sherpa LO 0.662± 0.006 : 0.338± 0.009
Sherpa LO+MPI 0.684± 0.005 : 0.316± 0.007
Sherpa LO+{1} 0.660± 0.005 : 0.340± 0.008
Sherpa LO+{1}+MPI 0.681± 0.005 : 0.319± 0.007
Sherpa LO+{2} 0.663± 0.009 : 0.337± 0.009
Sherpa LO+{2}+MPI 0.690± 0.005 : 0.310± 0.007
Pythia 8 LO 0.669± 0.003 : 0.331± 0.004
Pythia 8 LO+MPI 0.673± 0.006 : 0.327± 0.009

Table 9: Acceptance ratios for ME and PS production results. The acceptance ratio is the
normalised ratio of a sample’s production cross section times its acceptance fraction, i.e. it
describes the relative contributions from the ME and PS production methods.

4.6.2 LO production with extra partons

The results of the LO+{Ne} sample analysis are presented in Figures 15 to 20 as plots of
∆R, ∆η,∆φ,mB,B, p⊥B and ηB for b-hadron pairs in ME production using the LO process:
p p→ b b̄ p{Ne}, and PS production using the LO process: p p→ p p p{Ne}, where Ne is the
maximum number of extra light-partons exiting the ME. The non-MPI results are normalised
to one, and the results with MPI are normalised to fMPI/fNMPI, where fMPI and fNMPI are the
fraction of events accepted from the sample with MPI and without MPI, respectively; they are
scaled to show the increase in acceptance MPI causes. The error bars and yellow error bands
show the statistical uncertainty on bin fills.

ME production As can be seen in the extra-parton angular-distribution plots, there is a
small deviation from LO+{0} to LO+{1}, and only a very slight deviation from this to LO+{2}.
This deviation appears to be in favour of lower values of ∆φ leading to a bump above LO+{0}
in ∆R between 0.5 and 2.2. This is particularly noticeable in Figure 17a. It is possible that
production in this region is due to the b b̄ pair recoiling against a hard light parton. The
mB,B distribution in Figure 18a shows no significant deviation, nor does the η distribution
in Figure 20a. The p⊥ distribution in Figure 19a, shows agreement between the samples up
to around 20 GeV, after which the LO+{Ne} samples show increased production of higher-p⊥
b-hadrons.

As can be seen in Table 10, the LO+{Ne} samples offer slight deviations, in the range (5
to 7.1) %, for event acceptance.

The lack of significant deviation between LO+{0} and LO+{Ne} indicates that Sherpa’s
PS produces a good approximation to the higher-order ME calculation, however the higher-
order MEs are necessary to provide the increased lower-angle production seen in the ∆φ and
∆R plots.
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Figure 15: Comparison of ∆ηB,B for ME and PS b-quark pair-production.
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Figure 16: Comparison of ∆φB,B for ME and PS b-quark pair-production.
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Figure 17: Comparison of ∆RB,B for ME and PS b-quark pair-production taking into account
the phase space Φ (∆R).

PS production From the extra-parton plots for PS production it can be seen that the
LO+{Ne} distributions offer no significant deviations in terms of distribution shapes from the
LO+{0} distributions. Again, this indicates that Sherpa’s PS does a good job of approxim-
ating the higher-order ME calculation.

The acceptance deviations shown in Table 10 do suggest that the extra-parton samples have
a higher acceptance, up to (9± 4) % for LO+{1}, however the large associated uncertainty of
these deviations mean that larger samples would need to be run in order to pin down exactly how
much of an effect the addition of extra partons has on event acceptance. As this investigation
is primarily interested in the shape of the variable distributions, the difference in acceptance
will not be investigated further at the moment.

Acceptance-Ratio Comparison No large deviation can be seen either in the acceptance
ratios shown in Table 9.

Sample Set Percentage Deviation [%]
ME PS

Sherpa LO+{1} 6.4± 0.1 9± 4
Sherpa LO+{1}+MPI 4.4± 0.1 7± 3
Sherpa LO+{2} 7.1± 0.1 8± 4
Sherpa LO+{2}+MPI 5.0± 0.1 4± 3

Table 10: Percentage deviation in acceptance of LO+{Ne} from LO+{0} for ME and PS pro-
duction.
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(a) ME Production.
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Figure 18: Comparison of mB,B for ME and PS b-quark pair-production.
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Figure 19: Comparison of p⊥B for ME and PS b-quark pair-production.
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Figure 20: Comparison of ηB for ME and PS b-quark pair-production.

4.7 Conclusion

In summary it can be seen that:

• The two generators approximately agree in their cross section for the samples.

• The addition of extra light-partons in Sherpa causes no significant change to the PS-
production variable-distribution shapes, indicating that LO p p→ p p MEs are sufficient
for simulating HF production in Sherpa’s PS.

• The addition of extra light-partons in Sherpa causes a slight change to the ME-production
variable-distribution shapes, indicating that LO+{Ne} MEs are required for complete
simulation of HF production in Sherpa’s ME.

• In Pythia 8 at least, the inclusion of flavour excitation processes has a large effect on
both the shape of the angular distributions, and the fractional acceptance.

• The two generators show large differences in their modelling of PS production.

• The addition of MPI has a much larger effect in Sherpa than it does in Pythia 8, whose
acceptance increase is very small for ME production.

• Pythia 8’s PS production has a much larger acceptance that Sherpa’s suggesting than
Pythia 8 has a higher g → b b̄ branching ratio than Sherpa.

• PS production is seen to primarily take place at low ∆R.

• ME production is seen to primarily take place around ∆R = π.

Since the generators show such large differences in their predictions it is necessary to compare
their results to real data to determine how well they are modelling the g → b b̄ process. This
requires the addition of the initial-state b-quark processes which were excluded in this section.
Since the investigation will focus on comparison to data, the difference between the generators’
treatment of the b quark’s mass will not be an issue.
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The PS is seen to provide a significant contribution to the overall production of b quarks
and, since the PS uses approximations rather than explicit calculations, it is important to make
sure that PS modelling is being done accurately. This can be tested by comparing it to the
explicit calculation of g → b b̄ in the ME.

5 Comparison of parton shower and matrix-element mod-

els for gluon splitting

5.1 Motivation

As was seen in Section 4 the PS plays an important role in the production of heavy-flavour
quarks in Monte Carlo generators. It is, however, an approximation, as discussed in Section 3.7.
Section 4.6.2 showed that using higher-order MEs resulted in very little deviation from the base
2→ 2 MEs, indicating that the PS performs well at approximating the interactions included in
the higher-order MEs, however the majority of these interactions would have been light-parton
radiation. This section will investigate just how well gluon splitting is modelled in the PS
by comparing results of PS gluon splitting to gluon splitting in the ME, which is calculated
explicitly. There are two main reasons why it could be expected that the PS and ME results
might differ: 1) There is no a priori choice for the correct scale for the PS; 2) Gluon splitting is
approximated in the same way as gluon radiation, however due to differences in colour-coherence
considerations for the two processes, it is possible that using the same approximation could be
incorrect.

5.2 Sample

Because MC generators simulate events by generating a hard process (a sum of Feynman
diagrams) in the ME, rather than by calculating a single Feynman diagram, it is impossible to
explicitly choose the gluon splitting diagrams (Figures 21a and 21b) for the process p p→ b b̄, as
opposed to the other possible diagrams (Figures 21c and 21d). What can be done, however, is to
force the system into a configuration in which gluon splitting become kinematically favourable.

The ME sample used the process p p→ b b̄ p with the intention of selecting events in which
the b b̄ pair recoils against the outgoing p as demonstrated in Figure 22 (note that only the
s-channel diagram is shown here, but the selection is equally valid for the t and u channels).
In this situation, the g → b b̄ is calculated in the ME.

The PS sample is somewhat easier as any production of a b b̄ pair must have come from
gluon splitting for a fully light ME of the form: p p → p p. However, in order to make sure
that the samples are comparable, the analysis of the PS sample will also require the b system
to be balanced by a p. As was seen in Section 4, the acceptance efficiency of the PS sample is
very low, and placing extra requirements on the event will reduce this even further. Because
of this a very large number of events will need to be run in order to make the analysis results
statistically useful.

Again, b hadrons are used as proxies to the b quarks. Owing to limitations in Pythia 8’s
generation options, this investigation will only make use of Sherpa. Generation used the
MSTW2008lo68cl PDF [42]. Beams were set to collide 4 TeV protons. b and c quarks were
set to be massive, excluding them from Sherpa’s 93 light parton container. The number of
EW interactions in the ME was set to zero. In order to increase the selection efficiency for the
ME sample, a weak bias is used in the generation which requires that the pair of outgoing b
quarks have a maximum separation of 2π/3. For both samples p̂⊥,min for the light partons was
set to 10 GeV, and for the ME sample p̂⊥,min for the b quarks was set to 5 GeV; as the two b
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quarks outgoing b quarks will be recoiling against a light-parton, their p⊥s should sum to the
p⊥ of the outgoing light parton. No MPI simulation was performed for either sample. A total
of 4 999 992 and 1 000 000 164 events were produced for the ME and PS samples, respectively.

5.3 Analysis

In order to select events in which a b b̄ pair recoils against a light parton, the analysis will look
for a momentum balance between final states. This must be done using jets since light partons
are likely to seed their own PSs, and the b quarks will fragment during hadronisation. This
thesis assumes that b hadrons are good proxies to b quarks only for angular variables; the other
products of the b quarks’ fragmentations will carry some momentum, which must be accounted
for in order to find balanced systems.

The analysis first requires two b hadrons in the range |η| ≤ 2.5 with p⊥ ≥ 5 GeV, selecting
the hardest two if a greater number are found. Jets are then formed using the anti-k⊥ algorithm
for R = 0.4 (single jet) and R = 0.8 (fat jet), with the following requirements on the minimum
jet momenta: |p| ≥ 20 GeV (single jet), 40 GeV (fat jet).

Since a range of system momenta will be examined, the angles between b quarks, and the
radii of the jets they and the light parton produce, are likely to vary. Hence the analysis looks
for several different jet-combinations and requires at least one of following three cases to be
found:

• Each b hadron is contained (∆RB,jet ≤ R) in its own single jet and the summed momentum
of the two jets is balanced by a 3rd single jet.

• Each b hadron is contained in its own single jet and the summed momentum of the two
jets is balanced by a fat jet.

• Both b hadrons are contained (∆RB1,jet ≤ R & ∆RB2,jet ≤ R) in a fat jet whose mo-
mentum is balanced by a single jet.

Momentum balance requires that:
|pbb + pp|
|pp|

≤ 0.1,

where pbb is the momentum vector of the b system (the two b jets or the single b fat-jet) and pp
is the momentum vector of the p jet.

If multiple jet-configurations are found which meet these criteria then the configuration with
the closest momentum balance between the b system and the p jet is selected.

Having selected the best jet-configuration, the kinematic and geometric properties of the b
hadrons are plotted in a plot set determined by |pbb|. The plots sets are divided thusly:

• Bin 0: 40 ≤ |pbb| < 60 [GeV]

• Bin 1: 60 ≤ |pbb| < 80 [GeV]

• Bin 2: 80 ≤ |pbb| < 100 [GeV]

• Bin 3: 100 ≤ |pbb| < 120 [GeV]

• Bin 4: 120 ≤ |pbb| [GeV]
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5.4 Results and discussion

Figure 23 details the population of each of the |pbb| bins. Geometric and kinematic distributions
are shown in Figure 24 and Figure 25 respectively.

Figure 24 shows that the PS does a good job of approximating the ME results, peaking in
the same bins as the ME results and following the same shape as the ME distributions. There
are a few slight differences, however, as the PS distributions tend to underestimate the tail
areas (particularly noticeable in the ∆φ plot in Figure 24b) and instead overproduce in the
low-angle or peak regions. These differences propagate through to the ∆R plot (Figure 24c),
where although both ME and PS distribution peak in the same bin, the PS distributions still
underestimate the tail areas.

Figure 25b (p⊥B) shows good agreement between the PS and ME results for all |pbb| bins.
The shape of the |pbb| distributions for the PS and ME results are also seen to be very similar
in Figure 25c.

Figure 25a shows that the mass distributions of the b hadron pairs do differ slightly, with the
PS overestimating the production of low mass pairs. It does, however, follow the same trend
with |pbb| as the ME results: as |pbb| increases, the distribution shifts to higher-mass pairs.
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Figure 23: Unnormalised bin-population for ME and PS results. The bin numbers correspond
to the list shown in Section 5.3.
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Figure 24: Angular distributions for the ME and PS results for all bins. The bin numbers
correspond to the list shown in Section 5.3. All plots are normalised to one.
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Figure 25: Kinematic distributions for the ME and PS results for all bins. The bin numbers
correspond to the list shown in Section 5.3. All plots are normalised to one.
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5.5 Conclusion

The PS approximation for gluon splitting to b-quark pairs shows a clear tendency to under-
estimate high-angle production, where the analytical calculation of the ME shows that there
should be a significant tail distribution. The PS results do, however, peak at generally the same
point as the ME distributions for all three angles, and show momenta distributions which are
very similar the ME results.

By altering the scales for the PS simulation, the results could be tuned to show a better
match to the ME results, however that is beyond the scope of this thesis, and the PS as it
stands is good enough for the investigation being performed here.

6 Using J/ψs as b-hadron proxies

6.1 Motivation

The colour confinement property of QCD means that the b quarks will be bound into b had-
rons, however as can be seen in Table 4, the longest b hadron mean lifetime is 1.641 ps. The
hadronic calorimeter in the ATLAS detector begins at a radius of 2.28 m [3], so the b hadrons
will decay before reaching the calorimeter, preventing them from directly providing accurate
measurements of the b quarks. Another intermediary is required.

As mentioned in Section 3.6.3, ATLAS’s muon spectrometers provide accurate measure-
ments for muons escaping the inner parts of the detector, and is able to reconstruct them
efficiently down to around p⊥ = 2.5 GeV [43]. Muons can provide a good means for detecting a
signal, especially if the signal is a process which produces two muons, as the tracking informa-
tion provided by the ID can be used to see if the two muons can be constrained to a common
production-vertex. The channel is also very clean since the absorber plates in the calorimeters
are designed to prevent other particles from escaping the detector. b hadrons, however, are
highly unlikely to decay directly to two muons (ΓB→µ+µ−+anything/Γ < 3.2× 10−4 % at 90 %
confidence limit for a B±/B0/B0

s/b-baryon admixture [13]).
As mentioned in Section 2.2.3, the J/ψ particle does have a relatively large branching-

fraction to dimuon of 5.961% [13], and the b hadrons are able to decay to J/ψs, (ΓB→J/ψ+anything/Γ
= 1.16 % for a B±/B0/B0

s/b-baryon admixture [13]).
The process b → B → J/ψ → µ+µ− has been measured in previous investigations by

ATLAS [44], CMS [45], and LHCb [46], and so can provide a signal which can be detected and
measured to a high enough precision in the ATLAS detector, but presents two problems: J/ψs
can also be produced in the initial collision, and the production cross-section (σ(pp → bX →
J/ψX) ·BR(J/ψ → µ+µ−)) is very small:

ATLAS : 23.0± 0.6(stat.)± 2.8(syst.)± 0.8(lumi.)± 0.2(spin) nb

for p⊥J/ψ > 7 GeV, |yJ/ψ| < 2.4 [44],

CMS : 26.0± 1.4(stat.)± 1.6(syst.)± 2.9(lumi.) nb

for 6.5 < p⊥J/ψ < 30 [GeV], |yJ/ψ| < 2.4 [45].

The first problem can be overcome by careful analysis of the J/ψ decay vertex’s displacement
from the primary vertex and will be discussed in detail in Section 7.

Expanding on the second problem: extending the MC analyses from Section 4 to requiring
both b hadrons to decay to J/ψs would cause a reduction in acceptance of at least 99.99%
which, for a statistically precise result, would require a very long processing time. The fraction
MJ/ψ/MB is in the range 0.5 to 0.6 so it is likely that the J/ψ will be the heaviest of the b
hadron’s decay products and that its direction is unlikely to be largely different from that of
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the parent b hadron. Since the investigation is primarily interested in the angular variables of
the g → b b̄ process, if it can be shown that ∆RB,J/ψ is small, then MC results can be compared
to real data collected by the ATLAS detector without requiring B → J/ψ decays in the MC
data.

The problem of low J/ψ production still exists, but Pythia 8 has been modified to be able
to force the decays of hadrons along specified decay chains. This section will use this modified
version, called Pythia 8B, to investigate how well the J/ψs can be used as proxies to the b
hadrons.

6.2 Pythia 8B sample

The ATLAS Monte Carlo sample Pythia8B AU2 CTEQ6L1 pp Jpsimu0mu0, produced in Py-
thia 8B for the MC12 Production Campaign, was used. This dataset consists of four million
events of inclusive proton-proton→ J/ψ → µµ production. The sample used the LO CTEQ6L1
PDF with beams set to collide 4 TeV protons. The cross section was (1.805± 0.003)× 104 nb.

6.3 Pythia 8B analysis

The Pythia 8B sample was analysed using Rivet via version 19.1.1.1 of ATLAS’s Athena
framework. The analysis again looked for b hadrons using Rivet’s HeavyHadrons projection in
the range −2.5 ≤ η ≤ 2.5, requiring p⊥,B ≥ 1 GeV. The decay chain of any b hadrons found is
then scanned for J/ψs and if one is found then that particle pair is accepted. The kinematic and
geometric properties of the pair are then plotted with particular focus on the path deviation of
the child J/ψ from the parent b hadron.

6.4 Results

2095 J/ψ b-hadron pairs were selected by the analysis. These pairs were then binned according
to the p⊥ of the parent b hadrons and within each bin gamma-functions were fitted to the dis-
tribution of data points for the angular variables (∆RB,J/ψ, ∆φB,J/ψ, and ∆ηB,J/ψ) and Gaussian
functions were fitted to the distributions of J/ψ p⊥. Fitting was performed using RooFit [47],
which was set to account for the statistical uncertainty of the data points. Figure 26 shows
examples of these fits.

The mean (µ) values of the fitted functions were then plotted as a function of the central
values of the b hadron p⊥ bins. The y-axis error bar for each point was set to the standard
deviation (σ) of the fitted function within that bin. Next, power-law functions were fitted to
the mean angular-variable distributions and a linear function was fitted to the mean J/ψ p⊥
distribution. Fitting took place three times per variable to the values of: µ, µ− σ, and µ+ σ.
These three fitted functions together allow the mean and standard deviation of distributions to
be determined at any point, which will be used in Section 8.4 to construct B → J/ψ smearing
distributions. Fitting again used RooFit, set to account for the statistical uncertainty on
points and the systematic uncertainty on the mean values resulting from fitting to the binned
distributions. The results of the mean-value fitting are summarised in Table 11 and the fitted
plots are shown in Figure 27.

45



)φ∆,η∆(,BψJ/R∆
0 0.5 1 1.5 2 2.5 3 3.5

E
ve

nt
s 

/ (
 0

.0
7 

)

0

2

4

6

8

10

(a) Distribution of ∆RJ/ψ,B for 10.5 ≤ p⊥B <
10.75 [GeV]. Distribution is fitted to with a
gamma function, shown in red.

/GeV
ψT J/

p
0 5 10 15 20 25 30 35

E
ve

nt
s 

/ (
 0

.3
5 

)

0

2

4

6

8

10

12

14

16

18

(b) Distribution of p⊥J/ψ for 4.25 ≤ p⊥B < 4.5
[GeV]. Distribution is fitted to with a Gaussian
function, shown in red.

Figure 26: Two examples of the distribution fitting which took place within each p⊥B bin. y-axis
Error bars are the statistical uncertainty on each point.

〈
∆RJ/ψ,B

〉
= (1.452.38

0.54) p
(−1.00−1.03

−0.90)
⊥B〈

∆φJ/ψ,B
〉

= (1.172.17
0.19) p

(−1.13−1.14
−1.04)

⊥B〈
∆ηJ/ψ,B

〉
= (0.781.57

0.06) p
(−0.92−0.98

−0.45)
⊥B〈

p⊥J/ψ
〉

= (0.630.72
0.53) p⊥B +

(
0.090.55

−0.38

)
Table 11: Equations for the lines of best fit to the B → J/ψ correlation data. Parameters are
shown in the form

(
abc
)
, where a, b, and c are for the fits to the mean values, mean+standard

deviation values, and mean-standard deviation values, respectively. Parameters are shown to
two decimal places, but will be used at six significant figures.
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Figure 27: Angular and p⊥ correlations between J/ψs and their parent b-hadrons. The solid lines
are the fit to the mean values and the dotted lines are the fit to the mean±standard deviation
values. The y-axis error bars indicate the standard deviation of the functions fitted to the
distribution of points within each b hadron p⊥ bin.

6.5 Discussion and conclusion

As can be seen in Figure 27, the performance of J/ψs as proxies to b hadrons has a large
dependence on the p⊥ of the parent b-hadron. For very soft b-hadrons, the child J/ψ is normally
emitted at a large angle to the original direction of travel of the b hadron, however as the b
hadron’s p⊥ increases, the deviation of the J/ψ’s flight path decreases rapidly, and for b-hadron
p⊥s greater than 3.7 GeV the mean ∆RJ/ψ,B is less than 0.4, i.e. within a standard ATLAS jet.
This indicates that J/ψs may be used as good proxies to b hadrons even down to reasonably
low p⊥B values.

The angular equations in Table 11 can be used to construct distributions to smear di-B
angular measurements allowing them to be compared to di-J/ψ angular measurements, and
the p⊥ relationship equation can be used to calculate any necessary p⊥ cuts on the J/ψs or
b hadrons to ensure that the system is in a region where the J/ψs are good proxies to the b
hadrons.

It would be useful to be able to run a similar investigation in Sherpa by forcing its b hadron
decays, however, as this functionality is currently unavailable, the correlation functions derived
here will used with both Pythia 8 and Sherpa data in Section 8.

At the time of investigation, only single J/ψ Pythia 8B samples were available, however
it would be of use to analyse a di-J/ψ sample to see if there was any correlation between the
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mean separation between a J/ψ and its parent b hadron and the angle between the parent b
hadrons. It will be assumed for the remainder of this thesis that there is no direct correlation.

7 Di-J/ψ sample investigation

7.1 Analysis plan

As was shown in Section 6, J/ψs can be used as good proxies to b hadrons. However, as
was mentioned in Section 6.1, J/ψs can be produced in either the initial collision (prompt) or
through the decay of b hadrons (non-prompt). It is therefore necessary to find some way of
preparing a data sample whose distributions reflect the contributions from non-prompt J/ψs.

To do this a di-J/ψ sample is used and a model consisting of functions corresponding to the
various prompt and non-prompt contributions is fitted to the mass and pseudoproper lifetime
of each J/ψ in the data events. The sample is collected in the di-muon channel (J/ψ → µ+µ−)
and fitting takes place to the properties of each reconstructed di-muon vertex. Fitting to the
mass allows for the selection of J/ψs as opposed to some background particle, and fitting to the
pseudoproper lifetime allows for discrimination between prompt and non-prompt particles.

Two forms of fitting are used: an inclusive fit, which uses all available data, and a binned
fit, where data is divided into bins according to geometric variables. The inclusive fit forms an
initial investigation to verify the applicability of the fitting functions and so uses much rougher
event selection than the final binned fit method uses.

Having fitted to the data, the probability of a given event containing two non-prompt J/ψs
can be calculated. By weighting the di-J/ψ variable distributions by these probabilities, the
distributions can be altered to reflect the contributions from J/ψs which originated from the
decays of b hadrons.

This section of the thesis builds upon fitting code written and developed by Gavin Hesketh
and Josh McFayden of University College London (the UCL researchers). In order to give
credit where it is due, work done by the author and that done by the UCL researchers will be
explicitly specified. All discussions and conclusions in this section are the words of the author.

7.2 Di-J/ψ sample

The di-J/ψ sample was selected from the 2012
√
s = 8 TeV ATLAS data for proton-proton col-

lisions. The initial pre-trigger sample corresponded to an integrated luminosity of 20.2814 fb−1.
The following event requirements were then applied by Kostas Karakostas [48]:

• Di-muons selected according to the DiMu algorithm:

– Event contains a µ+µ− pair, where at least one muon is “combined”14.

– Muon pair is in the mass range (2.2 to 4.0) GeV.

– Muon-pair fits to a common vertex with χ2 < 10 000 using VKalVert [49].

• Event must contain at least two di-muons.

• Di-muons are ordered by p⊥ and the hardest two selected.

• Di-muon pair must fit to a common vertex with χ2 < 10 000 using VKalVert.

14Detected in both the ID and the MS
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The ntuple sample, flat v7 user.kara.data12 8TeV.allBPhys r1v1.DiJpsi.repo3.v9.root, cre-
ated by Karakostas consists of 228 071 events. Each event contains two particles which are the
reconstructed J/ψ vertices. These are referred to in this section as: the J/ψs, the J/ψ candid-
ates, or the particles. Ideally they are J/ψs, however in order to determine whether they really
are J/ψs or some background particle, and whether they are prompt or non-prompt, a fit is
used. The vertices are labelled as J/ψ1 and J/ψ2 and are ordered by vertex p⊥, with J/ψ1 being
the hardest.

Since the inclusive fit and binned fit use differing event selections, further cuts to the data
sample (mass, lifetime, muon and trigger requirements et cetera), will be described in each
fit’s write-up section. Following the event selection described in Ref. [44], no further χ2 cuts
are directly applied to the quality of the di-muon and di-J/ψ vertices, however the trigger
requirements applied in event selection for the binned fit do require higher-quality vertices. The
χ2 of a vertex fit functions as a usual χ2 for small values, but at larger values is a monotonic
function of the fit quality [49].

7.3 Inclusive fit

Initially, a four dimensional inclusive fit was performed in which functions were simultaneously
fitted to the J/ψ mass and pseudoproper lifetime (τ) for each J/ψ in the event.

7.3.1 Additional cuts

Being an initial investigation, the sample for the inclusive fit underwent very few cuts beyond
the initial requirements in Section 7.2, and no account of muon reconstruction efficiency was
made.

Mass and pseudoproper-lifetime cuts Data for the fit was required to pass the following
cuts on both J/ψs in the event:

• 2.6 ≤ mJ/ψ ≤ 3.5 [GeV]

• −0.5 ≤ τJ/ψ ≤ 2.0 [ps]

The values for these cuts were chosen by the UCL researchers and applying them reduced
the sample from 228 071 events to 31 668 events.

Pile-up removal As mentioned in Section 3.5.1, the data sample is likely to contain contri-
butions from pile-up, where there are multiple hard interactions within a single bunch crossing.
Looking at the z-axis separation of the J/ψs gives an indication of which events are the product
of pile-up. Figure 28 shows the ∆z distribution for the J/ψ pairs before and after the mass and
pseudoproper-lifetime cuts described above.

Looking at Figure 28b, it can been seen that there is a clear deviation around ∆z = 15 mm,
this is where the signal data begins. Figure 28a shows that the mass and pseudoproper-lifetime
cuts to a good job of reducing the the fraction of pile-up events in the sample, but a sizeable
proportion still remains. Placing a cut requiring that ∆z(J/ψ1, J/ψ2) ≤ 15 mm should remove
a lot of the pile-up contribution in the sample. By fitting a linear function to ∆z in the
region ∆z ≥ 15 mm, extrapolating it back to ∆z = 0 mm, and integrating over the range
0 mm ≤ ∆z ≤ 15 mm, it was estimated that 6 % of remaining events passing the ∆z cut were
due to pile-up.

The investigation of pile-up contamination in the sample was performed by the author, who
also chose the ∆z cut value. Applying this cut on top of mass and pseudoproper-lifetime cuts
further reduced the sample to 25 299 events.
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Figure 28: Figure (a) shows ∆z(J/ψ1, J/ψ2) before and after the cuts, where the distributions
are normalised to one. Figure (b) shows ∆z(J/ψ1, J/ψ2) distribution for ∆z > 10 mm after
mass and pseudoproper-lifetime cuts. It should be emphasised that, although approximately two
thirds of events in the region 10 mm ≤ ∆z ≤ 15 mm appear to be due to pile-up, the overall
fraction of events shown in Figure (b) is small compared to the total number of events, and
pile-up is estimated to account for just 6 % of remaining events below ∆z = 15 mm.

7.3.2 The fit

The fit, and associated fitting and plotting code used in this sub-subsection was written and
developed by the UCL researchers. The fit consists of models similar to those used in Ref. [44]
with some changes to the functions used.

Mass fit The mass distribution will contain contributions from prompt and non-prompt J/ψs
(signal) and background. The signal region is fitted with a Gaussian and a Crystal Ball function,
whilst the background is modelled with an exponential.

Pseudoproper-lifetime fit The fitting to pseudoproper lifetime uses a resolution model,
which takes the form of two Gaussian functions with a shared mean. The signal in the τ
distribution are non-prompt J/ψs, which is fitted with a single-sided decay function convolved
with the resolution model. The background consists of prompt J/ψs, modelled by the resolution
model itself, and other background particles, modelled by a symmetric double-sided decay
function convolved with the resolution model.

Fitting With two possibilities for each J/ψ according to their mass, and three possibilities
according to their pseudoproper lifetime, each event can be categorised into one of thirty six
possible states. The probability density functions (PDFs) of these states are fitted simultan-
eously to the data by altering the defining variables of the functions which contribute to the
mass and pseudoproper-lifetime distributions described above, and then normalising the PDFs
to the number of data points in the sample. This is done using RooFit.

Fitting results Figure 29 shows the results of fitting to the mass of candidate J/ψs, and
Figure 30 shows the results of fitting to their pseudoproper lifetime. From these figures it can
be seen that the functions used appear to fit well to the data.
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(b) Inclusive fit to the mass of particle 2.

Figure 29: Results of inclusive fit to particles’ masses. “J/ψ” is a Gaussian and “Background”
is an exponential.
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particle 1.
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(b) Inclusive fit to the pseudoproper lifetime of
particle 2.

Figure 30: Results of inclusive fit to particles’ pseudoproper lifetimes. “Non-prompt is a single-
sided decay convolved with a double Gaussian, “Prompt” is a double Gaussian, and “Back-
ground” is a single-sided decay convolved with a double Gaussian.
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7.3.3 Data reweighting

The work detailed in this sub-subsection, and associated code, was performed, written, and
developed by the author, except for the construction and fitting of the variant fits in the
systematic uncertainty investigation, which was adapted by the author from the fitting code
written by the UCL researchers. The variant fits were based on work found in Ref. [44].

Having built up distributions for the components which make up the overall distributions
for the data, it is now possible to extract the probability that a given event contains two non-
prompt J/ψs by sampling the PDFs at the points corresponding to the mass and pseudoproper
lifetime of the two J/ψ candidates in the event. By weighting events in the data sample by
this probability, the contributions from events which do not contain two non-prompt J/ψs
are suppressed and the distributions shift towards those of a pure non-prompt di-J/ψ sample.
The advantage of using reweighting rather than cutting to get the required events is that it
avoids selection inefficiencies: as mentioned in Section 3.3, finite detector resolution leads to
a systematic uncertainty in pseudoproper lifetime, so placing a cut at τJ/ψ > 0 ps would still
allow through some prompt J/ψs, but placing a higher cut would remove some non-prompt
J/ψs; similarly in mass, the J/ψs are found in the peaked region, but it is unclear where exactly
this begins and ends.

Probability extraction Each event contains two candidate particles; by sampling the signal
and background PDFs at the mass and pseudoproper lifetime of each candidate, the probability
that both of the particles are non-prompt J/ψs may be calculated using:

PNPJ/ψ,NPJ/ψ(m1,m2, τ1, τ2) =
Mass Signal1(m1)

Mass Signal1(m1) + Mass Bkg.1(m1)

× Mass Signal2(m2)

Mass Signal2(m2) + Mass Bkg.2(m2)

× τ Signal1(τ1)

τ Signal1(τ1) + τ Bkg.1(τ1)

× τ Signal2(τ2)

τ Signal2(τ2) + τ Bkg.2(τ2)
, (7.1)

where Mass Signalα and τ Signalα are the PDFs for the signal contributions to the mass and
pseudoproper-lifetime distributions, respectively, for candidate α. Mass Bkg.α and τ Bkg.α are
the corresponding background PDFs.

Reweighting results Figure 31 shows the angular distributions for the cut di-J/ψ sample
before and after reweighting. The reweighted distributions have been filled with weight equal
to the probability of the event containing two non-prompt J/ψs according to the inclusive fit.
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(c) ∆R(J/ψ1, J/ψ2) before and after reweighting. Distri-
butions account for phase space.

Figure 31: Angular distributions for the cut di-J/ψ sample before and after reweighting to the
probability of the events containing two non-prompt J/ψs. All distributions are normalised to
one. In all cases the effect of weighting the sample serves to shift the distributions to higher
separations. This is most noticeable in ∆R and ∆φ, where the zero peak is decreased in favour
of the π peak. This indicates that non-prompt J/ψs have a higher likelihood to be produced in a
back-to-back scenario than prompt J/ψs or the background in the sample.
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Systematic uncertainties The model described in Section 7.3.2 is just one of many possible
ways of constructing distributions to fit the data. By using different functions in the fit, slightly
different results may be obtained. The deviation of these variant fits from the default fit can
be taken as the systematic uncertainty on the default fit.

The following five variant fits were used:

1. The double Gaussian resolution model in the τ fit is replaced by a single Gaussian resol-
ution model.

2. The exponential background function in the mass fit is replaced with a 1st-order polyno-
mial.

3. The mass range for data is increased to (2.2 to 4.0) GeV, in order to have a better
understanding of the background in the mass fit. This variation had up to 67 036 events
available for fitting.

4. The symmetric double-sided decay function in the τ fit is allowed to be asymmetric (have
different positive and negative slopes).

5. The symmetric double-sided decay function in the τ fit is replaced with two asymmetric
double-sided decay functions whose positive slopes are the same, but whose negative
slopes may differ.

In order to calculate the systematic uncertainties on the reweighted variable distributions,
the distributions were weighted according to each of the variant fits in turn and the quadrature
sum of the deviations above and below the default-reweighted distributions were calculated.

Figure 32 shows the reweighted distributions along with their systematic uncertainties due
to the fit.
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Figure 32: Angular distributions for the cut di-J/ψ sample after reweighting to the probability
of the events containing two non-prompt J/ψs. All distributions are normalised to one.The
systematic uncertainty on the distributions according to the inclusive fit are shown as the dotted
lines. It can be seen that the uncertainties are largest in the in the first bin of each distribution,
but overall are not large. This indicates that the default fit is robust and models the data well.
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7.3.4 Discussion

It can be seen in Figures 29 and 30 that the functions used in the fit sum together to match
the data distributions well.

Figure 31 shows that the unweighted distribution is highly peaked towards zero in ∆η and
∆R, with ∆φ displaying a peak towards zero and a slightly lower one at π. Weighting the data
according to the probability of the events containing two non-prompt J/ψs causes a reduction
of the zero peaks in the ∆R and ∆φ distributions and an enhancement of their π peaks. The
reweighted ∆η distribution again features a reduced zero-peak but the enhancement here is in
the range: 0.5 ≤ ∆η ≤ 3. The reweighting suggests that the production of non-prompt J/ψs
can be expected to take place primarily at low angles, but not as low as either the production
of prompt J/ψs or whatever background was in the sample. There is also an increased fraction
where the J/ψs are produced in a back-to-back scenario.

Figure 32 indicates that there are multiple ways of constructing the fit which are very similar
to each other. This suggests that the method of fitting and extracting probabilities is stable
and doesn’t require that the form of the fit is exactly correct.

7.3.5 Conclusion

In summary:

• Multiple fits can be constructed which match the data distribution well.

• The sample data can be reweighted according to the probability of its events containing
two non-prompt J/ψs

• Production of non-prompt J/ψ pairs takes place primarily at low angles, but a small
proportion are produced back-to-back.

Comparing the angular distributions of the reweighted data to those of the MC samples in
Section 4 suggests that PS production of b quarks contributes the most to non-prompt J/ψs
production, but that some ME production is also necessary.

The inclusive fit makes the assumption that the kinematics of the data sample are inde-
pendent of the geometric variables. In order to account for any changes in kinematics, the UCL
researchers moved to a binned fit, where the data is divided into multiple bins according to
each variable and fitting takes place to the data in each bin.

7.4 Binned fit

The binned fit is, again, a four dimensional simultaneous fit to the masses and pseudoproper
lifetimes of both J/ψs in the events, however, unlike the inclusive fit where all the data were
used in a single fit, the data here are binned according to each variable ∆R, ∆φ, and ∆η and
the fit performed once to the data in each bin.

7.4.1 Additional cuts

The requirements for event acceptance for the binned-fit sample were more stringent than those
for the inclusive, requiring events to pass certain triggers and p⊥ cuts on the J/ψs and muons.

Mass and pseudoproper-lifetime cuts Data for the fit was required to pass the following
cuts on both J/ψs in the event:

• 2.6 ≤ mJ/ψ ≤ 3.5 [GeV]

56



• −2 ≤ τJ/ψ ≤ 4 [ps]

The values for these cuts were chosen by the UCL researchers and applying them reduced
the sample from 228 071 events to 63 426 events.

J/ψ p⊥ cut The results of the binned fit will be compared to Monte Carlo data, which will
use a b- hadron p⊥ cut of 10 GeV. In order to make sure that the two data samples occupied
the same phase-space region, a p⊥ cut of 6.339 678 8 GeV was applied to both J/ψ candidates.
This value was calculated using:

p⊥J/ψ = 0.625452p⊥B + 0.0851588,

the B → J/ψ p⊥ correlation function derived in Section 6. This cut was chosen by the author,
and applying it reduced the sample from to 29 572 events.

Trigger requirements Events in the data sample were required to pass at least one of the
following high-level event-filter triggers:

• EF 2mu4T Jpsimumu (For event numbers below 206 956)

• EF 2mu4T Jpsimumu L2StarB (For event numbers 206 956 and above)

• EF 3mu4T

The choice of triggers was made by the UCL researchers and requiring them reduced the
sample to 13 932 events.

Muon requirements All four muons in the events were required to pass the following cuts:

• |ηµ| ≤ 2.5

• p⊥µ > 2.5 GeV

Additionally, at least one J/ψ per event was required to have both its muons with p⊥µ >
4 GeV, have both its muons be combined, and pass either EF 2mu4T Jpsimumu (for event num-
bers below 206956) or EF 2mu4T Jpsimumu L2StarB (for event numbers 206956 and above).

These cuts were again chosen by the UCL researchers and applying them reduced the sample
to 10 071 events.

Pile-up removal Figure 33 shows the ∆z distribution for the J/ψ pairs before and after the
cuts described above.

Figure 33b shows that the contribution from pile-up begins to dominate around ∆z =
20 mm. Figure 33a shows that again the cuts heavily reduce the fraction of pile-up events in
the sample. A cut requiring ∆z(J/ψ1, J/ψ2) ≤ 20 mm will be used. By fitting a linear function
to ∆z in the region ∆z ≥ 20 mm, extrapolating it back to ∆z = 0 mm, and integrating over
the range 0 mm ≤ ∆z ≤ 20 mm, it was estimated that 5 % of remaining events passing the ∆z
cut were due to pile-up.

The investigation of pile-up contamination in the sample was performed by the author, who
also chose the ∆z cut value. Applying it reduced the sample to 8835 events.
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Figure 33: Figure (a) shows ∆z(J/ψ1, J/ψ2) before and after the cuts, where the distributions
are normalised to one. Figure (b) shows ∆z(J/ψ1, J/ψ2) distribution for ∆z > 10 mm after the
cuts.

7.4.2 The fit

The fit, and associated fitting and plotting code used in this sub-subsection was written and
developed by the UCL researchers. The fit again consists of models similar to those used in
[44], however the fitting functions were revised for the binned fit with the background being
split into three components: prompt, prompt DS, and non-prompt SS, where SS and DS refer
to the decay function in the pseudoproper-lifetime fit (SS - Single-Sided, DS - Double-Sided).
Each background component has its own mass fit.

Mass fit The mass distribution again consists of contributions from prompt and non-prompt
J/ψs, modelled by a Gaussian and Crystal Ball function, and the three background components,
each modelled by a Chebychev polynomial.

Pseudoproper-lifetime fit Again, a double Gaussian resolution model is used for the pseudo-
proper lifetime fit and all the component functions are convolved with this. The non-prompt
J/ψs and the non-prompt SS background are both modelled with single-sided decay functions,
the prompt J/ψs and prompt background are both delta functions, and the prompt DS back-
ground is a double-sided decay function.

Data weighting In order to correct for selection inefficiencies, the sample was weighted
according to the muon reconstruction efficiencies of the event, and according to the trigger
weight. Because there is currently no weight map for the EF 2mu4T Jpsimumu trigger, the
EF 2mu4T Jpsimumu L2StarB weight map was used for all events.

Binning The distribution of each variable (∆R, ∆φ, and ∆η) was divided up into bins with
the aim of having a higher bin density around higher gradient regions. This was, however,
not always possible due to the much lower statistics available for fitting. The final values for
bin edges used here were decided on by the author, but were adapted from previous values
determined by the UCL researchers.
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Fitting The five possible states for each particle in an event are:

• Non-prompt J/ψ

• Prompt J/ψ

• Prompt background

• Prompt DS background

• Non-prompt SS background

There are then twenty five possible states for an event. As with the inclusive fit, the sum of
the PDFs of these states is fitted to the data using RooFit.

Since fitting in each bin of a variable offers much lower statistics than fitting inclusively,
RooFit had to be coaxed into convergence. This was done via a three stage fitting process:
First, two two-dimensional fits were performed inclusively to the mass and pseudoproper lifetime
of each particle. The result of this initial fit is used to set the shapes of the J/ψ mass peak,
the background mass distributions, and the pseudoproper-lifetime resolution model. The two-
dimensional fits are then performed in each bin of the variable and the results of these are
used to set the position of the J/ψ mass peak and the shapes of the signal and background
pseudoproper-lifetime distributions. At this point the only remaining floating parameters are
the normalisations of the shapes. These are set by a four dimensional simultaneous fit in each
variable bin.

7.4.3 Data reweighting

The code for the probability extraction and determination of uncertainties used here was written
by the author, but was based on methods and suggestions supplied by the UCL researchers.

Probability extraction Determination of the probability of a given event containing two
non-prompt J/ψs again used:

PNPJ/ψ,NPJ/ψ(m1,m2, τ1, τ2) =
Mass Signal1(m1)

Mass Signal1(m1) + Mass Bkg.1(m1)

× Mass Signal2(m2)

Mass Signal2(m2) + Mass Bkg.2(m2)

× τ Signal1(τ1)

τ Signal1(τ1) + τ Bkg.1(τ1)

× τ Signal2(τ2)

τ Signal2(τ2) + τ Bkg.2(τ2)
, (7.2)

where Mass Signalα and τ Signalα are the PDFs for the signal contributions to the mass and
pseudoproper-lifetime distributions, respectively, for candidate α. Mass Bkg.α and τ Bkg.α are
the corresponding background PDFs.

Reweighting results Multiplying the weight of each event by the probability of it containing
two non-prompt J/ψs, normalising the distributions, and comparing them to the un-reweighted
distributions gave rise to Figure 34.
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Figure 34: Angular distributions for the cut di-J/ψ sample before and after weighting with the
probability of the events containing two non-prompt J/ψs. All distributions are normalised to
one. Reweighting the sample causes a dramatic shift in the distributions to higher separations.
This is most noticeable in ∆R and ∆φ, where the peaks close to zero are decreased in favour
of the peaks around π. Reduction of the peak close to zero in the ∆φ distribution is to the
point that the distribution becomes flat upto around 1.3. The reweighted results indicate that
non-prompt J/ψs have a higher likelihood to be produced in a back-to-back scenario than prompt
J/ψs or the background in the sample.
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Systematic uncertainties To account for the large reduction in the number of degrees
of freedom the final four-dimensional fit has, it was repeatedly rerun in each bin, each time
allowing one of the previously fixed parameters to be floating. The data distributions were then
reweighted according to each of these variant models and the deviations from the original fit
summed in quadrature to build upper and lower error bounds on the reweighted fit. RooFit’s
uncertainty on the non-prompt J/ψ PDF fraction in each bin was also added in quadrature to
the bounds.

Figure 35 shows the reweighted distributions along with their uncertainty bounds. The
fit-uncertainty contributions are the uncertainties on the final four-dimensional fit, and the
variation-uncertainty contributions are the quadrature-summed deviations of the variant models
from the original fit.
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Figure 35: Angular distributions for the cut di-J/ψ sample after reweighting to the probability
of the events containing two non-prompt J/ψs. All distributions are normalised to one. The
uncertainty on the distributions according to the binned fit are shown as the red dotted lines,
with the sources which contribute to the total uncertainty shown in blue and purple. It can
be seen that the uncertainties can be quite large, reaching about 50 % in the 6th bin of the ∆φ
distribution.
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7.4.4 Discussion

Figure 34 shows that, as with the inclusive-fit-reweighted distributions in Figure 31, the re-
weighting causes a reduction of the peaks close to zero in the ∆R and ∆φ distributions and an
enhancement of their peaks around π . The reweighted ∆η distribution again features a reduced
peak near zero and the enhancement here is in the same range as it was in the inclusive fit:
0.5 ≤ ∆η ≤ 2.75. In contrast to the inclusive-fit-reweighted distributions, the suppression of
low-angle production here is much more extreme, to the point that ∆φ is flat upto around 1.3,
and the first two ∆η bins are moved below the value of the third bin. The reweighting again
suggests that the production of non-prompt J/ψs can be expected to take place primarily at
low ∆R, but not as low as either the production of prompt J/ψs or whatever background was in
the sample. There is also an increased fraction where the J/ψs are produced in a back-to-back
scenario.

Figure 35 indicates that binned-fit reweighting can carry some large uncertainties (up to
50 % in the sixth bin of Figure 35b), but are generally at acceptable levels. It can be seen that
in most cases, the greatest contribution to these uncertainties is the uncertainty on the final
four-dimensional fit, due to the extremely small data sample available for fitting, however the
variation uncertainty also contributes a non-negligible amount.

7.4.5 Conclusion

The uncertainties on the reweighted variable distributions make it unusable for precision meas-
urements, it should, however, be applicable for shape comparison to Monte Carlo-generated
distributions which will give an indication of the agreement between the particle physics mod-
els and collider data.

As was discussed in Section 7.4.4, the size of uncertainties are primarily due to the low
statistics available in the sample. The requirements for the sample were quite high as the decay
chain b → B → J/ψ → µ+µ− has a very low branching ratio, as was discussed in Section 6.1.
By relaxing the requirements on the sample to require a signal of the form J/ψ + X, where
X is some other particle, the sample statistics could be increased at the cost of lower signal
discrimination from the more complex backgrounds which would accompany relaxation. Indeed,
it is in this direction that the UCL researchers have proceeded.

8 Di-J/ψ data comparison to Monte Carlo

8.1 Outline

Having prepared variable distributions corresponding to non-prompt J/ψs in Section 7, and
investigated Monte Carlo production of b b̄ pairs in Section 4 it only remains to compare MC-
generated samples to the di-J/ψ data. However, since the analysis of MC samples will be using
the properties of b hadrons and the LHC data uses J/ψs, the B → J/ψ correlation functions
derived in Section 6 will be used to move the samples into the same phase-space region and
then smear the MC result distributions to simulate the decay of the b hadrons to J/ψs.

8.2 Monte Carlo samples

To allow for accurate comparison with the di-J/ψ data, the MC samples were designed to be as
inclusive as possible for heavy-flavour production; the processes included are a combination of
the ME and PS processes from Section 4, as well as the flavour excitation and other processes
which were excluded from the sample runcards in Section 4. MPI simulation was included in
all samples.
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Sample Name σ [nb] Size [events]

Sherpa+{0} 6 002 000± 2000 1× 107

Sherpa+{1} 6 011 000± 2000 1× 107

Sherpa+{2} 6 011 000± 1000 1× 107

Pythia 8 5 075 000± 1000 1× 107

Table 12: Production cross sections and sample sizes for MC comparisson data.

Sample Name Fractional Acceptance

Sherpa+{0} 0.000 859± 0.000 008
Sherpa+{1} 0.000 89± 0.000 01
Sherpa+{2} 0.000 893± 0.000 006
Pythia 8 0.002 03± 0.000 01

Table 13: Fractional acceptance of events by analysis of MC comparison data.

The processes included are: p p→ b b̄, b b̄→ b b̄, b b→ b b, b̄ b̄→ b̄ b̄, p p→ p p, b b̄→ p p,
p b → p b, and p b̄ → p b̄. Sherpa was also used to produce samples with possible extra
outgoing light-partons. These are indicated by {Ne} in the sample names, where Ne is the
maximum number of extra light-partons. Again, CKKW was set to

√
20/ECM.

The same general settings were used as for the production in Section 4, though production
was performed using the MSTW2008lo68cl PDF. When using Sherpa, c and b quarks were
set to be massive such that they were not included in its 93 light-parton container and the
number of EW interactions in the ME was set to zero to ensure the propagators were partons.
p̂⊥,min for the ME was set to 10 GeV and the colliding beams were set to 4 TeV protons. MPI
simulation was performed by the generators’ in-built handlers, with Amisic being selected for
Sherpa. In both cases the MPI was set to produce 2 → 2 QCD interactions, and allowed to
produce b quarks.

Details of the generation of the samples are given in Table 12

8.3 Monte Carlo analysis

As was discussed in Section 6, the branching ratio of B → J/ψ is very small, and requiring
a pair of B → J/ψ processes in the analysis would severely reduce acceptance. Instead, the
analysis here will simply require a pair of b hadrons and the correlation functions derived in
Section 6 will be used to smear the b hadron distributions such that they are comparable to
the di-J/ψ distributions.

The Rivet analysis used here differs slightly to that used in Section 4: two b hadrons are
required to be found in the range |η| ≤ 2.5, with p⊥ ≥ 10 GeV, but rather than plotting directly
with the analysis, the properties of the hardest two b hadrons in each event are written out to
be read in by the smearing program later.

The fractional acceptance for each sample is detailed in Table 13.

8.4 Monte Carlo data smearing

Section 6 showed that the spread of the mean deviation (∆RB,J/ψ) could be modelled by gamma
distributions, and assumed that the shape of ∆RB,J/ψ was symmetric about the direction of the
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(a) (b)

Figure 36: Figure (a) illustrates the geometry of the di-B → di-J/ψ decay. The centre cones
indicate the mean position of J/ψs relative to their parent b hadron. Figure (b) shows the
B → J/ψ smearing in one dimension. The smearing consists of a double-gamma distribution
which forms the PDF for a J/ψ’s position relative to its parent b hadron. The final smearing
applied to ∆RB,B will be the sum of two such smearings; one for each B → J/ψ decay.

b hadron. Since the smearing will be applied to ∆RB1,B2 , it should consist of the sum of two
double-gamma distributions with means equal to:

∆RB1,B2 ±
〈
∆RBi,J/ψi

〉
,

where i = 1, 2. Figure 36 illustrates the smear on the B → J/ψ decays.
The construction and application of a di-B→di-J/ψ smearing distribution is as follows:

The parameters of the double-gamma distributions are derived by sampling the correlation
functions derived in Section 6, shown again in Figure 37 and Table 14. For each b hadron, the
mean function is sampled to provide

〈
∆RBi,J/ψi

〉
and the mean±standard deviation functions

are sampled to provide the standard deviation of its double-gamma distribution (the largest
standard deviation is selected). An offset is used to move each double-gamma distribution such
that they are centred around ∆RB1,B2 . Each double-gamma distribution is normalised to one,
so that total area of the smeared distribution is two; there are two J/ψs and both must exist
somewhere. Similar smearings are constructed for the ∆φ and ∆η distributions.

〈
∆RJ/ψ,B

〉
= (1.452.38

0.54) p
(−1.00−1.03

−0.90)
⊥B〈

∆φJ/ψ,B
〉

= (1.172.17
0.19) p

(−1.13−1.14
−1.04)

⊥B〈
∆ηJ/ψ,B

〉
= (0.781.57

0.06) p
(−0.92−0.98

−0.45)
⊥B

Table 14: Equations for the B → J/ψ angular correlation functions. Parameters are shown in
the form

(
abc
)
, where a, b, and c are for the fits to the mean values, mean+standard deviation

values, and mean-standard deviation values, respectively. Parameters are shown to two decimal
places, but are used at six significant figures.

65



/GeV
T B

p
4 5 6 7 8 9 10 11 12

,B
ψ

J/η
∆

M
ea

n 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

(a) Mean ∆ηJ/ψ,B as a function of p⊥B.

/GeV
T B

p
4 5 6 7 8 9 10 11 12

,B
ψ

J/φ
∆

M
ea

n 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

(b) Mean ∆φJ/ψ,B as a function of p⊥B.

/GeV
T B

p
4 5 6 7 8 9 10 11 12

)φ,η(
,B

ψ
J/

R
∆

M
ea

n 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(c) Mean ∆RJ/ψ,B as a function of p⊥B.

Figure 37: Angular correlations between J/ψs and their parent b-hadrons. The solid lines are
the fit to the mean values and the dotted lines are the fit to the mean±standard deviation
values. The y-axis error bars indicate the standard deviation of the gamma functions fitted to
the distribution of points within each b hadron p⊥ bin.

Next, each bin of the histogram for each variable distribution is filled according to the area
of the smear distribution which falls in each bin times the weight of the event:

A(x)i,i+1 = Wj

∫ xi+1

xi

S(x) dx, (8.1)

where A(x) is the fill area for the bin with edges at xi and xi+1, Wj is the weight of event
j, and S(x) is the smearing function for angular variable x. A(x) is calculated by finding the
difference in the smearing distribution’s cumulative distribution function values at xi and xi+1.

When populating the ∆φ distributions, the smear distributions are reflected at ∆φ = 0|π
to account for the bounded nature of the variable. For the ∆R and ∆η distributions, reflection
takes place at ∆x = 0.

In order to account for phase space when filling the ∆R distribution, the mean of the smear-
weighted phase space is calculated within each bin and used to divide the event-weighted area
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for each bin fill:

Φ(∆R)i,i+1 =

∫ ∆Ri+1

∆Ri
S(∆R) Φ(∆R) d(∆R)∫ ∆Ri+1

∆Ri
S(∆R) d(∆R)

, (8.2)

A(∆R)i,i+1 =
Wj

Φ(∆R)i,i+1

∫ ∆Ri+1

∆Ri

S(∆R) d(∆R) , (8.3)

where Φ(∆R)i,i+1 is the smear-weighted phase space between ∆Ri and ∆Ri+1.

The method used for calculating Φ(∆R)i,i+1 involves numerical integration (Composite
Simpson’s Rule) and Monte Carlo integration (Vegas algorithm). In order to prevent the
runtime for the smearing code becoming prohibitively long, filling of a ∆R bin only takes place
if the smear area within that bin is greater than 1× 10−10. The calculation of the mean phase
space takes place after the smear had been reflected at ∆R = 0.

The binning for the histograms was the same as that used in the di-J/ψ data distributions.
The effect of applying the smearing can be seen in Figure 38.

8.5 Results

Figure 39 shows the MC distributions, after the di-B→ di-J/ψ smearing is applied, compared
to the binned-fit-reweighted di-J/ψ data. The uncertainty bars on the MC distributions are
purely statistical and do not take into account any systematic uncertainty due to the smearing.
The uncertainty on the di-J/ψ distributions are those calculated in Section 7.4.3.
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Figure 38: MC data before (B,B) and after (J/ψ, J/ψ) B → J/ψ smearing is applied. All
distributions are normalised to one.
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Figure 39: Smeared MC data compared to binned-fit-reweighted di-J/ψ data. All distributions
are normalised to one.
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8.6 Discussion

The generators show a large difference in the production cross section for their samples. Table 12
shows that σSHERPA+{0} is greater than σPythia by (18.27± 0.05) %. This is different to the case
in Section 4 where both generators produced at similar cross sections. It is possible that this
was caused by the change in PDF, but it could also be due to the difference in mass treatment
of HF in backwards evolution from the ME. Pythia 8 continues to have a larger acceptance
fraction than Sherpa, by (136± 2) %.

Figure 38 shows that the application of the B → J/ψ smearings does not have a large effect
on the shape of MC data distribution. This is due to the bin widths being relatively large
compared to the mean deviations used in the construction of the smears.

Figure 39 shows that Pythia 8 demonstrates better agreement with the data than Sherpa.
In the low-angle region (0 ≤ ∆x ≤ 1.2 x ∈ {R, φ, η}) Sherpa is seen to consistently be

too peaked towards zero in all three angles, whereas Pythia 8 follows the data much more
closely (particularly visible for ∆φ in Figure 39b), with the exception of the first two ∆η
bins (Figure 39a). Section 4 showed that production in the low-angle region is almost entirely
through the PS, so the differences here are most likely due to scale choice and varying treatment
of HF quarks.

In the medium-angle region (1.2 ≤ ∆x ≤ 2.1 x ∈ {R, φ}) Sherpa severely underestimates
the data as both PS and ME production in this region is negligible, however Pythia 8’s PS
distribution extends much farther out, and its ME distribution begins at a lower angle than
Sherpa’s allowing it to be consistent with the data.

At high-angle (2.1 ≤ ∆x x ∈ {R, φ}), where ME production dominates, the results are
varied: The ∆R distributions in Figure 39c show better agreement between Pythia 8 and
the data, with Sherpa underestimating production close to π. Sherpa’s underestimation is
perhaps due to normalisation, however its sixth bin shows levels approximately equal to those
of its fifth bin, unlike the data and Pythia 8’s distributions where the sixth bin does show
a decrease, so Sherpa would still show a slight difference in shape to the data even if its
normalisation were adjusted. The ∆φ distributions, however, show Sherpa to have better
agreement with the data than Pythia 8, from ∆φ = 2.1 onwards. Figure 10a showed that this
point was where ME production in Sherpa began and that the slope of Sherpa’s distribution
was much steeper that Pythia 8’s. This difference in steepness is reflected in Figure 39b,
where Pythia 8 overestimates bins seven and eight, and underestimates bin nine. Sherpa,
however, only overestimates bin eight. Since Pythia 8 and SHERPA LO+MPI use the same
ME, differences between the generator distributions at high-angle are likely due to scale choice,
event-kinematics calculation, or MPI simulation. As was seen in Section 4, Pythia 8’s PS
causes a non-negligible amount of HF production in the high-∆φ region, so this could also be
contributing to the difference in shape.

8.7 Conclusion

Of the two generators, Pythia 8 was seen to offer the best agreement with the data. The main
source of Sherpa’s disagreement with the data appeared to be due to its PS modelling.

The peaked nature of Sherpa’s low angle ∆φ distribution appears to be inconsistent with
the collider data and Pythia 8’s modelling, both of which show an approximately flat dis-
tribution at low angle. It is possible that this inconsistency is due to inadequate modelling
by Sherpa’s PS and it could be the subject for further investigation to alter its settings and
scale choice to see whether better agreement might be reached. A new PS [50] was recently
implemented for Sherpa which may also offer improvement in Sherpa’s agreement with the
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data, however as it is not yet15 enabled as the default shower, it has not been tested in this
investigation.

It would be useful to build a smearing function for the Sherpa results based on B → J/ψ
correlation functions derived from Sherpa data, however, as mentioned in Section 6.5, forced
decays of b hadrons is currently not available in Sherpa.

In order to quantify agreement between the MC results and the data it would be necessary
calculate the systematic uncertainty on the MC results which arises due to the application of
the smearing function. Calculation of this would require using other generators to build up the
B → J/ψ correlation functions to see how much they varied.

9 Conclusion

Section 4 showed that two popular, state-of-the-art Monte Carlo event generators Sherpa
and Pythia 8 showed very large differences in their simulation of b b̄ pair production. The
differences were found to be particularly prominent in production through the parton shower.
Section 4 also identified regions where production through parton shower or matrix element
can be expected to dominate.

The accuracy of Sherpa’s parton shower approximation of gluon splitting was investigated
in Section 5 where it was seen that it does a reasonable job compared to the explicitly calculated
matrix element, but still has room for improvement.

Since the Monte Carlo generators had shown very different predictions it was necessary to
compare them to data. Section 6 showed that J/ψs were a viable proxy to the b hadrons used
in the previous sections, and the ATLAS detector, described in Section 3.6, with its powerful
machinery available for the analysis of high-energy particle collisions, was an ideal instrument
to collect the required data.

In Section 7 a sample of non-prompt di-J/ψs was prepared by reweighting a di-J/ψ sample16

of
√
s = 8 TeV LHC data according to probabilities extracted from a binned fit17 to the data. It

was found that the reweighted data carried uncertainties large enough to make it unsuitable for
precision measurements but still usable for qualitative comparison to Monte Carlo results. It
was suggested that the uncertainties could be reduced by relaxing the data selection to J/ψ+X.

The comparison was constructed in Section 8 where inclusive samples of b b̄ production were
generated in Sherpa and Pythia 8, and the angular distributions of b hadrons were extracted.
In order to account for the missing B → J/ψ decays in the Monte Carlo samples, a smearing
function was constructed based on correlation functions derived in Section 6 and applied to
the Monte Carlo distributions. It was found that Pythia 8 showed the best agreement with
the data, and that Sherpa’s disagreement was primarily in the low and medium angles. Since
this is where production is primarily through the parton shower, it was suggested that further
investigation of Sherpa’s scale choices and splitting functions could be a way in which data
agreement might be improved. It was also noted that in order to quantitatively determine
agreement it would be necessary to determine the systematic uncertainty on the smearing
function, which would most likely require constructing it using multiple generators to measure
how much it varies.

Only two of a plethora of Monte Carlo generators were employed in this thesis, however
the investigation could easily be extended to include results from other generators, such as
Herwig++ [51] or MadGraph [52]. Additionally, dependence on parton density function

15Latest version at time of writing is 2.2.0
16Original data sample prepared by Dr Kostas Karakostas of the National Technical University of Athens
17The fits used were written and developed by Dr Gavin Hesketh and Dr Josh McFayden of University College

London
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could be tested by rerunning the investigations with other PDFs such as ones by the CTEQ or
NNPDF groups.
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Software details

Software Version References Use/Notes

Sherpa 2.1.1 [7] MC generation
Catani-Seymour shower - [8] Included in Sherpa
Amegic++ - [9] Included in Sherpa
Comix - [10] Included in Sherpa
Pythia 8 8.186 [6] MC generation

[5]
Rivet 2.1.2 [40] MC analysis
Yoda 1.1.0 & 1.3.0 [53] Plot creation
FastJet 3.0.6 [54] Jet clustering

[55]
Root 5.34/11 [56] Di-J/ψ analysis and plot creation
RooFit 3.58 [47] Data fitting
Athena 19.1.1.1 - Running Rivet over Pythia 8B data
Lhapdf 6.1.3 [57] PDF data for MC generation
MCViz 2013-04-25 [58] Creation of Figure 8
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