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Abstract

Slow light is the study of the dramatic change in the velocity of light as it travels

through certain media. This thesis focuses on slowing caused by transmitting light

through a ruby crystal. When ruby experiences spatial or temporal modulation

from a laser beam, the velocity of the light is greatly changed from its speed in a

vacuum. The underlying mechanism for slow light in ruby is not fully understood

and is, therefore, the subject of much debate.

In this thesis, I examine many experimental parameters and their e↵ects on slow

light in ruby. First, I investigate the delay of images with both bright and dark

regions through a spatial modulation of the ruby. I then turn to a temporal

modulation of the ruby to answer the question of whether light can be delayed

beyond the input pulse, the answer to which has the potential to di↵erentiate

between two proposed models for the mechanism that causes slow light in ruby.

I return to the spatial domain to study the e↵ect of spatial intensity distribution on

the slow-light e↵ect in ruby. I show that beams carrying orbital angular momentum

rotate by an amount determined by the spatial feature of the beam profile. I

present experimental evidence supporting a complicated mechanism of slow light

in ruby, which informs the ongoing debate on the cause of slow light in ruby and

provides direction for applications dependent upon the preservation of complex

patterns in slow-light media.
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Chapter 1

Slow Light Introduction

Slow light is the study of the dramatic change in the velocity of light as it travels

through certain media. In this chapter, I present the important concepts, methods

for creating, and applications of slow light.

1.1 Overview

1.1.1 Refractive Index

When light passes from a vacuum into a medium, it slows down. Di↵erent mate-

rials slow down the velocity of light by di↵erent amounts. The refractive index of

a material is the measure of how much slower light travels through that material

than it would through a vacuum. This commonly-discussed refractive index is

usually denoted n. This n is often referred to as the phase refractive index, and

for clarity, it will henceforth be called n

�

. The need for clarity arises with the

realisation that there is also a group refractive index, n
g

, often simply called the

group index. The group index determines how quickly the peak or envelope of a

light wave travels through a medium, whereas the phase refractive index is the

measure of how fast wavefronts of constant phase, also called phasefronts, travel.

1
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The group delay, ⌧
g

measures how long a pulse is delayed by a medium. It is

relatively simple to measure by comparing the arrival time of reference and delayed

pulses, and it is used to calculate n

g

from the simple relation ⌧

g

= Ln

g

/c, where

L is the length of the material and c is the speed of light in a vacuum. The group

delay ⌧

g

is a straightforward time delay, but often a more useful measurement

to report is the fractional delay. Dividing ⌧

g

by the width of the pulse, usually

measured as the full width at half of the maximum height (FWHM), results in a

delay proportional to the pulse width.

1.1.2 Phase Velocity

The phase velocity, v
�

, is understood to be the velocity of points of constant phase

in monochromatic light. For a plane wave

E(z, t) = Ae

i� + C, (1.1)

A and C are constants, and � = kz�!t is the phase of the light, where k = n

�

!/c,

! is the frequency, z is the propagation distance, and t is time. Because n

�

is

wavelength-dependent, k is rewritten as

k(!) =
n

�

(!)!

c

, (1.2)

which accounts for dispersion. For the pulse to travel without distortion, the

change in the z-component must correspond to the change in time, k(!)�z = !�t.

Dividing this through by �z gives

k(!) =
!�t

�z

=
!

v

�

. (1.3)

Therefore, solving for the phase velocity in Eq. (1.3) and combining it with

Eq. (1.2) to eliminate k(!) results in the definition of the phase velocity being

v

�

=
!

k(!)
=

c

n

�

(!)
. (1.4)
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1.1.3 Group Velocity

A pulse can be composed of many individual monochromatic waves with varying

frequencies. Each monochromatic wave will have a phase velocity, as described

above. The sum of the phases must be constant, � = kz�!t = n�(!)!
c

z�!t, for all

values of z for the pulse to travel without distortion. In other words, ��/�! = 0.

The group velocity, v
g

, describes the velocity with which the envelope of a light

wave travels through a medium. It can be derived from the group refractive index

through

v

g

=
c

n

g

, (1.5)

where by definition

n

g

= n

�

(!) + !

�n

�

(!)

�!

, (1.6)

which arises from setting the derivative of � with respect to ! equal to zero. The

group velocity can be used to calculate z, the distance traveled by the pulse, by

simply multiplying it with time elapsed, z = v

g

t. A thorough derivation of these

equations is found in [2].

1.1.4 Transit Time and Types of Slow Light

The study of slow light includes the study of any case where the e↵ective velocity

of light greatly varies from the speed of light in a vacuum. The e↵ective velocity

can be faster than c, much slower than c, or even negative, making the time it

takes to pass through the medium vary greatly from the time it would take to

travel that distance in a vacuum.

The amount of time it takes for light to pass through a medium is the transit time,

T = L/v

g

, where L is the length of the medium through which the light is passing.

When the n
g

of a material is very large, it is called a slow-light material, meaning

the transit time of light through that material is very large. Because n

g

>> n

�

,

v

g

<< v

�

and v

g

<< c. The study of slow light also includes the cases where

v

g

> c, v
g

= 0, and even v

g

< 0. When v

g

> c, called fast light, the transit time
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through the medium is very small, because n

g

of the medium is between 0 and 1.

Although v

g

is greater than the speed of light, there is no superluminal information

transfer, which means that fast light follows causality and special relativity, as will

be discussed in Section 1.2.3.

Backwards light occurs when both n

g

and v

g

are less than 0, resulting in a negative

transit time. In this situation, the peak of the pulse appears to leave the material

before entering it, with the pulse peak traveling backwards through the medium.

However, the energy and information carried by the pulse always move forwards.

This mechanism occurs through pulse reshaping that amplifies the leading edge

and attenuates the original peak of the pulse. In stopped light, v
g

is zero, as its

name suggests. This is often achieved by manipulating the medium through which

the light pulse is passing to temporarily store the pulse before retrieving it. All of

these mechanisms for dramatically changing the speed of light will be discussed in

more detail below.

1.2 Early Research and Observation

1.2.1 Slow Light

The experimental study of slow light really began to take o↵ in the late 1960’s

and early 1970’s [3–6]. A subset of these studies focussed on weak Gaussian pulses

passing through an amplifying or absorbing medium. Garrett and McCumber [7]

proposed a theory in 1970 that a weak Gaussian pulse experiences a negligible

distortion to the pulse width when passing through many exponential absorption

or gain lengths. Garrett and McCumber also proposed that the pulse peak travels

at v

g

. In 1982, Chu and Wong experimentally tested Garrett and McCumber’s

theory with picosecond laser pulses in a GaP:N crystal, where the frequency was

tuned through the absorption resonance. Chu and Wong measured positive as well

as negative values of v
g

without significant pulse distortion [8]. Group velocity is

a robust concept, with the peak of the pulse travelling at v

g

, even when v

g

> c
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or v
g

< 0. Katz and Alfano [9] noted that the pulse shapes are distorted through

the measurement process, although this does not negate the importance and per-

sistence of the concept of group velocity. A follow-up numerical simulation study

in 1985 [10] showed that the pulses were experiencing ringing in addition to the

pulse compression reported by Katz and Alfano. The same numerical simulation

study also examined fast light using absorption resonance in millimetre waves in

a molecular absorber.

Atomic vapours were very commonly used in some of the early slow light exper-

iments [11–14]. Xiao et al. used hot rubidium vapour in a Doppler-free electro-

magnetically induced transparency (EIT) experiment [11]. In this experiment,

v

g

= c/13.2 m/s was indirectly determined by measuring the phase shift of the

wave passing through the rubidium vapour. The same year, Kasapi et al. used

nanosecond pulses passing through a lead vapour cell with a coupling field under

EIT conditions that showed a further reduction of the group velocity to v
g

= c/165

m/s [12]. A few years later, Kash et al. used hot rubidium atoms that were driven

coherently by a narrow EIT resonance [14]. In order to achieve the narrow EIT

resonance, a group of researchers slowed light to an incredible 17 m/s by using

EIT in a laser-cooled sodium atomic vapour at 450 nK [13]. This experiment was

the first to slow light so dramatically, and it ignited the scientific community’s

interest in and curiosity about slow light.

1.2.2 Stopped Light

Hau and colleagues expanded the work that allowed them to slow light to 17 m/s in

order to completely stop the light for a short time [15]. They achieved this through

control of the coupling field in their EIT experiment, by recognising that the probe

beam can only propagate when the coupling beam is also on (see section 1.5 for

more details on EIT). Their method involved keeping the coupling beam on while

the probe pulse enters the medium and quickly switching o↵ the coupling beam

before the probe pulse can leave the medium. When the coupling beam is turned

back on, the probe pulse exits the medium. This is made possible by the fact that
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the phase and amplitude information from the probe beam is stored coherently in

the medium, so that when the coupling beam turns on again, the coupling field

scatters coherently from the medium to recreate the probe pulse. It has been

claimed just to be a semantic di↵erence whether the light is being stopped or

being turned into material degree of freedom, and then that degree of freedom is

turned back into an optical field when the coupling beam is turned on again [2].

This stopped light can be thought of as an optical memory, albeit one where the

memories decay with time, due to the eventual decoherence experienced by EIT

media [16].

1.2.3 Fast Light

Fast light can be separated into two categories, that with v

g

> c and that with

v

g

< 0. The first is where the light appears to travel through the material faster

than it would through a vacuum. The second is also known as backwards light,

and when the group velocity is negative, the pulse appears to leave the material

before entering it.

In 1914, Brillouin wrote a paper discussing the distinction between group velocity

and front velocity, as well as discussing the implications of that distinction on

special relativity [17]. However, it wasn’t until the 1960’s that much work was

done researching fast light. Icsevgi and Lamb, apparently unaware of the work

done by Brillouin, theorised that intense laser pulses in a laser amplifier would

create fast light [18], a theory that is consistent with the work of Brillouin. Their

work expanded Brillouin’s to also include nonlinear optical media. They described

Brillouin’s front velocity as having compact support, which is to say the amplitude

of the pulse is nonzero over a finite range of times. This velocity cannot be greater

than the speed of light. On the other hand, they described Brillouin’s group

velocity as having infinite support, that is the pulse is nonzero for all times and

can propagate with an e↵ective velocity (specifically the group velocity, v
g

) greater

than the speed of light. In agreement with Brillouin, they stated that there is no

violation of causality where fast light is concerned, as the pulse exists at all times.
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The pulse has leading and trailing edges that extend, theoretically, infinitely, and

all parts of the pulse contain the information needed to reconstruct the pulse shape,

which allows for the pulse to be reconstructed beyond the medium before the peak

of the pulse has entered the medium. Basov et al. [19] used optical saturation of

an amplifier, which is made of a group of inverted atoms, to experimentally create

fast light in 1966, where the high intensity of the pulse caused a nonlinear e↵ect.

In the subsequent decades, many advances have been made in the area of fast

light research. Chu and Wong [8] observed a large anomalous dispersion in 1982

that was accompanied, however, by a large absorption. In an attempt to reduce

the absorption but retain the fast light, Bolda et al. [20] used a nearby gain line

to create a region with a negative group velocity. Instead of tuning near one

gain line, Steinberg and Chiao [21] suggested tuning between a pair of Raman

gain lines in order to create a transparency, similar to EIT, although the sign of

the dispersion in this case is opposite of that in EIT, which is why the group

velocity is negative. Wang et al. experimentally realised Steinberg and Chiao’s

theory, resulting in a v

g

= �c/310, where the pulse was advanced by 62 ns with

only negligible amounts of pulse reshaping [22]. An alternate method of reducing

absorption while achieving superluminal propagation was discussed in 1996 by

Chiao et al. who proposed using the collective emissions from a system of inverted

two-level atoms [23], in a method similar to superfluorescence, a pulse of the stored

energy from atoms that initially undergo spontaneous emission before becoming

coupled in phase by the radiation field [24].

In 1981, Sherman and Oughstun wrote an algorithm for the propagation of a short

pulse through a dispersive system with loss [25]. Diener showed in 1996 [26] that

the part of the pulse traveling superluminally could be mathematically calculated

by extending the extreme leading edge of the pulse within the future “light cone.”

When an observer experiences an event happening at a position in space and time,

the future light cone describes every position in space that could be a↵ected by that

event as time progresses forwards (or backwards for the past light cone). When

considering a simplified two dimensional space, the region potentially a↵ected by

the event at any position in time is a circle with a radius that grows at a rate
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space (x)

ti
m

e

future time cone

event
space (y)

Figure 1.1: Light cone showing the region in XY space, as time progresses on
the vertical axis, that can be a↵ected by an event at the red point position in

spacetime.

proportional to the speed of light in a vacuum, as shown in Fig. 1.1. Anything

outside the light cone cannot be a↵ected by the event, as the information from the

event cannot travel to that position quickly enough. However, because the signal

is analytically continued without deviating from the signal within the light cone,

the superluminal light does not contain new information, and therefore causality

is not broken. The group velocity is once again shown to not carry information,

which has an upper limit of the speed of light in a vacuum.

Akulshin et al. used a two-level atomic system for electromagnetically induced

absorption, EIA, [27] (as opposed to transparency, in the more common EIT).

Through EIA, they created very large anomalous dispersion, and from the mea-

sured dispersion, they inferred a v

g

of �c/23000, although this negative group

velocity was accompanied by a large absorption.

In 2000, Segev et al. posited that a superluminal signal would have a very low

signal-to-noise ratio [28]. The following year, Kuzmich et al. [29] defined the

“signal velocity” to be a measure of the signal-to-noise velocity, allowing for useful

descriptions of pulse propagation involving only a few photons.



9

1.3 Structural Slow Light

Slow-light systems can generally be broken down into two main categories: mate-

rial slow-light systems, presented in Section 1.4 and structural slow-light systems.

Structural slow light systems depend upon the spatially-varying (often periodic)

refractive index changes in the system. A review of periodic structures for creat-

ing slow light can be found in [30], and a couple of the most common ones are

presented below.

1.3.1 Optical Fibers

Optical fibres can contain a grating with a refractive index change in one direction

(one dimensional structural slow light systems). The refractive index changes

usually occur in a sinusoidal manner. Erbium-doped optical fibres have been

used for both slow and superluminal light propagation [31, 32]. Optical fibres are

especially useful for understanding light propagation through a material with a

negative group velocity, as the intensity of the pulse can be measured at multiple

positions through the fibre. By measuring throughout the length of the fibre, the

researchers could prove that the peak of the pulse travels backwards through the

fibre, although the energy always moves forward [31].

1.3.2 Photonic Crystals

Photonic crystals depend on the repetitive (periodic) changes in the refractive in-

dex of a dielectric or other highly nonlinear material. When the refractive index

changes along two directions, it is called a planar photonic crystal waveguide. Pho-

tonic crystals can, however, be made in one, two, or three dimensions. Examples

of photonic crystals in one and two dimensions are shown in Fig. 1.2. A common

example of a periodic structure for slow light is a dielectric material with air holes

in a rectangular lattice pattern. As light passes from the dielectric to the air and

back, it experiences the periodic modulation of the refractive index required for a
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Figure 1.2: Fibre Bragg grating, waveguide Bragg grating, and planar pho-
tonic crystal waveguides. Dark and light regions indicate positions of high and
low refractive indices in the first two cases. In the planar photonic crystal,
regions of low refractive indices arise from the air holes created in the crystal.

structural slow-light system. Materials like this permit or prohibit light of certain

wavelengths depending upon the spacing of the air holes, with groups of forbidden

wavelengths known as photonic band gaps (PBG).

Photonic crystals are often used in slow-light systems [33–36] and are one type of

resonator that can be used to make coupled-resonator optical waveguides (CROWs),

also often called coupled-cavity waveguides (CCWs). In coupled resonators, the

light couples into the first resonator with a high quality factor (Q factor), which

is a measure of how much energy is stored versus how much is lost. A resonator

with a high Q factor has very low damping. From the first resonator, the light

couples weakly into a second high-Q resonator. It continues coupling weakly into

the subsequent resonators until the light has passed through the system. However,

because it resonates at each resonator, the group velocity is very low. Aside from

CROWs in photonic crystals, CROWs can also be created in evanescently coupled

Fabry-Pérot resonators [37] and coupled ring resonators [38].

1.3.3 Other Types of Structural Slow Light

Other types of structural slow light systems include metamaterials (engineered

substances that are made of structures smaller than the wavelength of the light

they are designed to slow) [39] and semiconductor nanostructures [40].
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1.4 Material Slow Light

Material slow-light systems are those that function because of the frequency-

dependent refractive index of the material through which the light propagates

[41], as opposed to the spatially-varying refractive index that causes structural

slow light. Many material slow-light systems rely on materials with strong non-

linear properties, and some of these systems and their underlying principles are

described below.

1.4.1 The Kramers-Kronig Relation

The Kramers-Kronig relation describes the link between the intensity absorption

coe�cient, ↵, and the phase index:

n

�

(!) = 1 +
c

⇡

P

Z +1

0

↵(f)

f

2 � !

2
df, (1.7)

where P is the Cauchy principal value, ! is the frequency of the light, and c is the

speed of light in a vacuum [42]. The phase index is calculated over all frequencies,

f . In the case of slow light, a narrow absorption band is created from hole burning

at or near the resonant response of a nonlinear medium. The narrow absorption

band gives rise to a large dispersion in n

�

(!). Using n

�

(!) to calculate the group

index, n
g

, from Eq. (1.6) leads to a large n
g

when the dispersion in n

�

(!) is large.

These relations are shown in Fig. 1.3. In turn, for large n

g

, the simple definition

of v
g

= c/n

g

gives a small group velocity, v
g

, which is the basis of material slow

light.

As a pulse enters a material, its power density and peak electric field remain

constant, and it experiences spatial compression [43]. The intensity of the pulse

remains constant, as the increase in energy density, u, upon compression is coun-

teracted by the decrease in velocity, as I = uv

g

, where I is the intensity of the

pulse [2].
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Figure 1.3: (left) A narrow absorption band, leads to a large dispersion in
n
�

, which in turn gives rise to a very large n
g

. (right) A wider absorption band
causes a much smaller dispersion in n

�

, and therefore a small n
g

.

1.4.2 Optical Interactions with Atoms

Optical interactions with atoms are often described using either a two- or a three-

level model. In a two-level model, the ground state (|1i) and excited state (|2i) are

separated by the photon energy E = ~!, where ! is the frequency of the light and

~ is Planck’s constant divided by 2⇡. Therefore, light of frequency ! is resonant

with the transition from |1i to |2i, and the possibility of a transition to any other

energy level is negligibly small and can be ignored.

A three-state model includes two light fields of di↵erent frequencies, one that is

resonant to the transition from |1i to |3i and the other that is resonant to the

|2i to |3i transition. Often dipole selection rules eliminate the possibility of a

transition from |1i to |2i.

Figure 1.4 shows (a) two-level and (b) three-level models.
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Figure 1.4: Models of the energy levels in (a) two- and (b) three-level systems.
The coupling beam is resonant between levels |2i and |3i. The probe beam is

resonant between levels |1i and |3i.

1.4.3 Electromagnetically Induced Transparency

Electromagnetically induced transparency occurs when a spectral hole is created

in a region of absorption. A coupling beam (DC field) is used to prepare a medium

such that there is a separation of the upper state (|3i) into hyperfine states (|3i+✏

and |3i � ✏). When a probe beam resonant with the upper state |3i is added into

the system, it is unable to couple with the hyperfine states, so the probe beam

experiences extremely low absorption at the frequency of the pump beam, creating

an absorption spectrum that varies widely across a short frequency region. Both

the states with couplings and the absorption profiles are shown in Fig. 1.5. This

sharp absorption profile leads to large dispersion and therefore a large group index

through the Kramers-Kronig relation, as described earlier. EIT also results in an

increase in the material’s optical nonlinearity that occurs alongside, but is not

caused by, slow light.

EIT needs to be conducted in an environment that preserves quantum coher-

ence, as EIT depends on quantum interferences. This means the experiments are

conducted with materials at cryogenic temperatures or vapours at low pressure.

Despite the complexity of the experimental requirement for EIT, it has been a pop-

ular method for creating slow light, due to the extreme degree of slowing possible.

Hau et al. performed EIT with Bose-Einstein condensates to slow light to 17 me-

ters per second in an experiment that greatly increased the scientific community’s
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Figure 1.5: Models of the (top) energy levels and (bottom) absorption profiles
with (a) the coupling beam o↵ and (b) the coupling beam on.

interest in slow light research, as mentioned earlier [13].

1.4.4 Stimulated Brillouin and Raman Scattering

Stimulated Brillouin scattering (SBS) and stimulated Raman scattering (SRS)

occur when pump light of frequency ! is scattered o↵ of a vibrational wave with

frequency !

v

(see [44] for a review of SBS and SRS). A field is created at the Stokes

frequency, !
S

, corresponding to the di↵erence between the pump and vibrational

wave frequencies:

!

S

= ! � !

v

. (1.8)

When a probe field is added at the Stokes frequency, it will gain energy from the

scattered field (at the same energy). That gain line converts the material in the
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region to a slow-light medium through the Kramers-Kronig relation of a strongly

dispersive material over a short frequency range [16].

Stimulated Brillouin scattering occurs in a medium that changes in density when

an optical field is applied to it. This change in density, an electrostrictive e↵ect,

results in a change in the refractive index. The beating of the pump and probe

fields travels through the material, causing a moving modulation of the density

as a pressure or acoustic wave. The probe wave scatters o↵ of this acoustic wave

at the probe frequency. The enhanced probe field then feeds back to increase the

acoustic wave, creating a positive feedback system.

Stimulated Raman scattering occurs when the di↵erence in frequency between

the pump and probe fields causes a beating that excites molecular vibrations at

frequency !

v

. Energy from the pump field is scattered at the Stokes frequency,

!

S

, which in turn causes a gain in the probe field. Meanwhile, in the presence of

the pump beam, the excess of molecules in the ground state can also be excited

by light at a frequency called the anti-Stokes frequency, !
a

= !+!

v

. Unlike SBS,

SRS can be seen in any system that can be excited vibrationally, including atoms

and crystals, as well as molecules. For SBS, the vibrational wave has frequencies

up to the gigahertz region, whereas SRS has frequencies raining up to the terahertz

region [16].

Many experiments have been conducted where SBS [45–47] and SRS [48] have

been used to create slow (or fast) light.

1.4.5 Coherent Population Oscillations

Coherent population oscillations (CPO) is another method of creating material

slow light [49–57]. In coherent population oscillations, the atoms in a saturable

absorber are excited by intense, modulated laser light. This coherent light excites

the atoms to the upper state. The atoms coherently de-excite, creating an oscilla-

tion of the atoms between the upper and lower states. CPO can be modelled as a

two-level system, with a coupling (pump) beam (!
c

) and probe beam (frequency
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of !
p

= !

c

+ �) at the same transition. The two beams at this transition causes a

cycling of the population between the excited and ground states at the beat fre-

quency of !
p

� !

c

= �. The hole in the absorption is centred at a frequency of !
c

and is very narrow, leading to a large change in absorption over a short frequency

range, which gives the large dispersion and therefore high group refractive index

necessary for slow light. CPO uses narrow linewidths, although the linewidth is

limited to 1/T1 of its atomic transition [16].

CPO can be conducted in crystals [58, 59] and many other experimental setups

[55, 60].

While CPO usually relies on coupling and probe lasers, in 2003 Bigelow et al. showed

that a single intense beam could be used to created slow light, without the need

for separate coupling and probe lasers [58]. A benefit of this method is that one

does not need to laser frequency lock, as the “pump” and “probe” lasers are the

same, so even if the frequency drifts slightly, the medium is prepared at the exact

same frequency as the probing light.

Coherent population oscillations in ruby has some drawbacks, when compared to

other slow light methods, including the high power needed to create the slow-light

e↵ect. Ruby also has a very high absorption, as shown later in Tables 2.1 and

2.2. This method becomes impractical for many low-power situations, including

single-photon experiments. However, there are also many benefits to CPO in ruby,

including a relatively simple setup. No large vacuum or cooling system is needed;

this experiment can be done in a simple tabletop setup. CPO in ruby also does

not require any temperature or frequency stabilisation, as mentioned earlier.

Observations of CPO-based slow light in ruby has been the subject of much debate

[61–64]. Several researchers [1, 63, 65, 66] have claimed that a CPO model of n
g

-

based slow light is not required to explain the results presented by Bigelow et al.

[58]. Instead, Zapasskii et al. [65] claim that saturable absorption from the ruby

could explain the observed e↵ects. As I have discovered, the e↵ects of slow light

in ruby are not fully explained by either CPO or saturable absorption. Both my
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observations of the e↵ects of slow light in ruby and the two previously-considered

models will be discussed in detail in Chapters 2 and 3.

CPO-based slow light has been observed in alexandrite as well [59]. Whereas ruby

only experiences decreases in absorption over narrow frequency bandwidths, in

alexandrite there are short frequency bandwidths over which the material expe-

riences greatly increased absorption as well as frequency bandwidths over which

it experiences greatly decreased absorption. These increased absorption areas al-

low for superluminal propagation velocities, fast light, as well as greatly decreased

propagation velocities, slow light.

1.5 Applications

Slow light has already begun to have applications in many areas. I describe a few

of the important applications below.

1.5.1 Optical Delay Lines and Optical Processing

One application for slow light is in optical delay lines [67, 68]. For example, instead

of needing to reflect a signal back and forth across the lab to delay it the necessary

amount of time (a distance that could be quite large) one could instead pass the

light through a slow-light system to achieve the same time delay of the signal.

This would especially be useful in an optical communication system that might

need to be quite compact.

Tuneable optical delay lines that can store and bu↵er light pulses could aid in

compensation from jitter caused by random processes, such as vibrations, nonlin-

earities or changes in temperature of the transmission medium. Other uses for

optical delay lines include optical coherence tomography (OCT), ultrafast pulse

metrology, and other optical signal processing [69, 70].
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Optical systems are currently used to send signals. However, when optical sig-

nals reach their destination, they have to be converted to electronic signals in

order to be processed, as current technology cannot store the signals in a man-

ner necessary for processing. After the signals are processed electronically, they

are converted back to optical signals and are sent o↵ again. However, there are

two benefits to be gained from conducting the entire process optically, with op-

tical bu↵ers and routers. Firstly, removing the conversion to electronic signals

and back (called OEO conversion) would reduce the required energy, making the

system more energy-e�cient. Secondly, a problem faced by the current system is

that the electronic processing can only handle one packet of information at a time.

When two packets of information reach a port at the same time, one is dropped

while the other is processed. The dropped packet then has to be retransmitted, a

process that increases the network latency [16]. If this process were occurring in

an all-optical system with slow-light capacities, one packet could simply be stored

until the first one was processed. This would eliminate the need for packets to be

retransmitted, increasing the speed of the network.

1.5.2 Interferometry

An interferometer compares two path lengths by combining the output from the

two paths. The fringe pattern measured from the superposition of the beams

traveling along each path gives information about the relative phases of the two

beams, and thus the optical path length di↵erence (OPD). A change in frequency

changes the measured OPD, and adding a slow-light medium into one arm of an

interferometer will magnify the change in path length by a factor of the group

index [71].

In recent years, there has been a growing interest in the use of slow-light mate-

rials to increase the spectral sensitivity of interferometers [71–73]. The spectral

sensitivity of an interferometer is equal to the change in phase between the arms

of the interferometer per change in input frequency and is proportional to Ln

g

,

where L is the length of the slow-light material. Adding a fast-light material to
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an interferometer would broaden the cavity linewidth and decrease its sensitivity

to frequency changes, and conversely, a slow-light material in an interferometer

would narrow the cavity linewidth and increase its sensitivity [16]. Due to the

potential for increased sensitivity, slow light has been suggested for use in Fourier

transform interferometry [74] and interferometric rotation sensing [75, 76]. Using

ruby as a self-pumped, slow-light material is suggested to increase the sensitivity

of a Sagnac interferometer by up to a factor of one million, due to its large n

g

.

By moving a ruby window longitudinally along the path of the propagating light,

I have begun to show signs of heightened sensitivity to path length in a Sagnac

interferometer. See Appendix A for more details.

1.5.3 Enhanced Photon Drag

When light passes through a moving material, it is dragged by that material. This

was shown for the longitudinal [77] and transverse [78] motion of the material over

100 and 50 years ago, respectively. Measurement of the rotation of the polarisation

state by the moving material [79] followed a few years after the observation the

transverse photon drag measurement. However, detecting the rotational dragging

of an image proved much more di�cult. The polarisation of light is una↵ected

by vertical and horizontal displacements of the light, making it easier to measure

under conditions where the position of the beam is not stable, such as when it is

passing through a rotating medium. A small amount of image rotation, on the

other hand, becomes extremely di�cult to measure when the position of the beam

is not stable.

The degree of rotation expected when a laser beam is passing through a rotating

material can be calculated through an equation originally proposed by Fermi in

1923 [80]. Fermi’s equation calculated dragging of plane waves without dispersion.

That equation was later refined by Player to include dispersion [81], resulting in

the definition of the degree of rotation per unit length of the material, �, as:
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where n
g

and n

�

are the group and phase refractive indices as defined earlier, ⌦ is

the rotational frequency of the material, and c is the speed of light in a vacuum.

Multiplying Eq. (1.9) by L, the length of the material through which the light

travels, results in a value for the total angle by which the light is rotated, �✓

image

,

as:
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n

�
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c

. (1.10)

Passing an image through a 30 cm-long BK7 glass bar with a refractive index of

n

�

= 1.5168 that is spinning with a rotation speed on the order of a few hundred

meters per second, the calculated angle or rotation would still be less than a

microradian. Such a small rotation becomes di�cult to detect, especially when

there is image wobble introduced by the rotation of the medium and the machinery

noise.

The longer the light spends in the material, the larger of an angle it can be dragged

through before exiting the material. To enhance the amount of dragging experi-

enced by the light, one could change a few experimental factors. To determine

which factors could be manipulated to increase the rotation angle, one need only

refer to Eq. (1.10). First, one could use a longer material. However, the length of

the material would need to be increased by a factor of 104 to get a rotation an-

gle on the order of 1 degree. Trying to rotate a glass bar 3000 meters long would

prove impractical, experimentally. Similarly, one could increase the rotation speed.

However, a similar problem would arise, with the increase in rotary speed needed

to result in an observable dragging angle outside practical experimental conditions.

As it quickly becomes apparent that neither the length nor the rotary speed of

the material could feasibly be increased enough to enhance the photon drag to an

observable level, attention shifted to the refractive indices of the material. If one
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could greatly enhance the first factor in Eq. (1.10), the angle of rotation could be

enhanced to a large enough degree to be observeable.

It was recognised by Franke-Arnold et al. that a slow-light material like ruby

would have a group refractive index large enough to cause a dragging angle that

could be observed directly [61]. The group refractive index of ruby depends on

many factors, including the intensity and the modulation rate of the incident light.

Through careful control of those factors, Franke-Arnold et al. were able to observe

photon drag by eye, with an angle of rotation of approximately 5 degrees. Because

the group index of ruby can be so large, the experiment was conducted with a ruby

that was only 100 mm long and rotated with speeds only up to ±30 Hz [61].

By observing the rotation angle of the incident beam to be approximately 5 de-

grees at a rotation speed of 30 Hz, an e↵ective group index can be calculated as

approximately 1.4⇥ 106, which gives an e↵ective group velocity of approximately

200 m/s.

1.6 Conclusions

In recent years, slow light has become the focus of much research due to its poten-

tial for changing the e↵ective velocity of light. This ability leads to many potential

applications in areas of optical delay lines, optical processing, interferometry, and

enhanced photon drag, some of which have already begun to be realised. While

some methods of creating slow light are well known, others are still in the process

of being understood. The great potential of slow-light systems makes this an area

of rich possibility for researchers.



Chapter 2

Slow Darkness

2.1 Introduction

Slow light is a general term applied to systems that exhibit a greatly reduced group

velocity for the propagation of optical signals [13, 82]. Underlying mechanisms

that can be used to create slow light range from traditional optical delay lines to

structural or material optical resonances, as outlined in Chapter 1 and described in

[41, 83–85]. Common to many of these mechanisms are narrow-frequency optical

features, which give rise to extremely high dispersion and hence a large group index

of the material [86]. For example, one experimentally realisable class of systems is

that in which intense laser light induces a coherent oscillation of the ground state

population of a dopant in a solid-state medium of the type often encountered

in laser amplifiers [31, 32, 66, 87]. As the intensity increases, the absorption of

the medium saturates, forming a narrow spectral feature that, via the Kramers-

Kronig relation, gives a modification of the group index [82]. In materials with long

upper-state lifetimes, such as ruby or alexandrite, the velocity of a transmitted

laser pulse can be reduced by a factor of one million, to only hundreds of meters

per second [58, 59]. While other slow-light mechanisms require both pump and

probe beams, Bigelow et al. realised in 2003 that the same e↵ect could be observed

22
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Figure 2.1: Distortion of an incident pulse passing through a slow-light
medium. Part a shows a single pulse passing through the slow-light medium.
(a) Optical bleaching and (c) large group index e↵ects are indistinguishable for
small delay of a single pulse, typical of most experimental conditions. To dis-
tinguish the two cases, one can pass a pulse with an imprinted zero through the
slow-light medium. Optical bleaching and pulse reshaping would never cause
the position of the dark region to shift, although it may become brighter due to
fluorescence from the saturable absorber (b), an e↵ect that is in agreement with
[1]. However, large group index would cause the position of the dark region to
be maintained but shifted (d). By imprinting an intensity zero in the pulse,
I can determine which mechanism is causing the apparent slowing of the light

through the ruby, even with a small delay.

when illuminating ruby with a single, high-intensity laser. This simple approach

is called self-pumped slow light.

Broadly speaking, within a saturable absorber, one may identify two distinct mech-

anisms of pulse delay. The first possible mechanism arises from pulse reshaping

through optical bleaching. In the case of optical bleaching, the bright incoming

pulse becomes a weaker outgoing pulse, with the peak position being dependent

on the di↵ering absorption experienced by the leading and trailing edges of the
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pulse. As the medium absorbs energy from the leading edge of the peak, it be-

comes saturated, resulting in a decreased absorption of the trailing edge of the

pulse. Reference [1] correctly identified that the resulting distortion of the pulse

leads to a time delay of the peak as well as a change in the amplitude of the pulse.

Such a time delay may be interpreted as evidence of slow light. The second possi-

ble mechanism of the pulse delay arises from the rapid change of the phase index

n

�

near the vicinity of a narrow absorption feature through the Kramers-Kronig

relation. Since the width of the coherent population oscillation is of the order of

kHz in ruby [82], the induced high dispersion can give rise to extremely large group

indices of the order of 106. In both possible causes, the extent of the saturation,

and hence of the slow-light e↵ect, depends strongly upon the incident intensity

[58, 87]. When the input is a single pulse and with a small delay, as expected

for most experimental conditions, the two e↵ects are practically indistinguishable

from each other, as shown schematically in Fig. 2.1 a and c. If, however, the input

beam includes an intensity zero imprinted in the centre of the pulse, the two cases

can be distinguished. If the slow-light e↵ect arises purely from broadband optical

bleaching, the region of zero intensity may become brighter from fluorescence but

will not be shifted (see Fig. 2.1 b). Additionally, with fluorescence removed, the

region of zero intensity could not become brighter from optical bleaching alone. In

contrast to optical bleaching, if the slow-light e↵ect stems from a narrow absorp-

tion and the resulting dispersion and high group index via the Kramers-Kronig

relation as described in Chapter 1, the light will be delayed such that the beam

retains its structure, shifting both the high-intensity and dark regions. The di↵er-

ence between the two cases can be seen by comparing Fig. 2.1 b and d.

As described in Chapter 1, it was recently shown that slow-light e↵ects could

be observed in the spatial domain [61]. The transverse movement of an optical

medium is known to laterally displace a transmitted light beam [78]. Although

predicted many years ago, such photon drag e↵ects are usually very small and

di�cult to observe. In addition to lateral displacement, a spinning medium was

also shown to cause a rotation of the polarisation state [79], termed the mechanical
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Figure 2.2: Image of the elliptical beam while the ruby is spinning clockwise
at 1 Hz, 5 Hz, and 10 Hz.

Faraday e↵ect [88]. Through the equivalence of spin and orbital angular momen-

tum, the rotation of the medium a↵ects both the polarisation and the transmitted

image [89, 90], which is discussed in greater detail in Chapter 5. This image ro-

tation, �✓

image

, is given by Eq. (1.10). Since n

g

is of order unity for ordinary

materials, an image rotation caused by a spinning medium is on the order of a

few microradians. It was shown that the increase in propagation time of light in

a slow-light medium leads to a large increase in the rotation [61]. Specifically, it

was observed that transmission through a spinning ruby window would rotate an

elliptical beam profile by many degrees, a demonstration of slow light-enhanced

rotary photon drag. However, in that experiment, the simple rotation of a bright

line could not distinguish between optical bleaching and an increase in the group

index arising from the dispersion, as shown in Fig. 2.1 a and c.

2.2 Initial Image Rotation

Before investigating whether dark regions of a beam are rotated, I first looked at

the intensity and speed dependence of an elliptical beam formed from an elongated

gaussian laser beam. An elliptical beam with a very elongated shape is rotated at

three di↵erent speeds to show the e↵ect of rotation speed on the angle of dragging

experienced by the image (see Fig. 2.2). The image is rotated in an S-shape, due

to the varying intensity across the length of the image.
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a b

Figure 2.3: Largest recorded image drag between (a) anticlockwise and (b)
clockwise rotations of the ruby was measured to be ⇡ 55�.

I also recorded the largest measured rotary drag between clockwise and anticlock-

wise rotations of the ruby for a simple elliptical image as ⇡ 55�, as shown in

Fig. 2.3. Due to the strong absorption of the incident beam illuminating the ruby,

these rotations, while very large, do not separate the e↵ects of the two proposed

models.

2.3 Experimental Motivation and Methods

To determine whether the rotation of the elliptical beam profile [61] arises from

optical bleaching or an increase in n

g

that arises from the dispersion, I study

an intensity null in the centre of a high-intensity pulse. This experiment was

motivated by the realisation that it is easy to create an intensity null in the

spatial domain. To create this null, I introduced a ⇡-radian phase step into the

Gaussian beam cross section, which creates a black line across the beam in a close

approximation of an HG0,1 mode. As this beam is a close approximation to a

solution to the paraxial wave equation, it is stable upon propagation. Given that

the slow-light e↵ect, and thus rotary photon drag, is dependent on self-pumping at

high intensity, the question then posed is whether a spinning medium can rotate

the orientation of a structured beam containing both bright and dark regions.

As shown in Fig. 2.4, I used a 3 W beam from a Laser Quantum Opus solid state,

diode-pumped laser. The initial beam diameter was approximately 2 mm. The



27

Camera

Motor

Ruby
Spherical lens

Quarter wave-plate

Coverslip

532 nm laser

Cylindrical telescoping lenses

Figure 2.4: Experimental procedure. A beam of 3 W, 532 nm light is bisected
by a coverslip with a thickness chosen so as to create a ⇡-radian phase shift
between the two halves of the beam. The entire beam then passes through a
quarter waveplate and two cylindrical telescoping lenses before being focused
on a ruby window. The ruby is spun to ⇡ ±20 rotations per second (rps), and

the light leaving the ruby is imaged onto a camera.

linearly polarised 532 nm light was passed through a quarter waveplate to create

circularly polarised light. Using circularly polarised light ensures rotational sym-

metry, which is important as ruby is birefringent. This beam was then expanded

through 40 mm and 60 mm focal-length cylindrical lenses, resulting in a collimated,

elliptical beam. The beam entered the ruby as an elongated spot, as modelled in

Fig. 2.5a. Figure 2.5b shows the unwrapped annular intensity distributions at

di↵erent radial distances from the centre of the modelled elliptical beam in a. A

spherical lens with a focal length of 60 mm focused the elliptical beam onto the

front face of a 6 mm-thick standard laser ruby crystal window, along the window’s

rotational axis. When pumped with 532 nm light, the ruby acts as a slow-light

medium, and thus as the light passes through the ruby window, its group velocity

is e↵ectively slowed to tens of meters per second.

A Parker Hannifin, SY-series stepper motor with a built-in ViX250IM controller

has encoders that allow us to accurately control the rotation rate of the ruby. A



28

r =

r =

(arb.)

(arb.)

Figure 2.5: (a) Modelled intensity profile of an elliptical beam. (b) Unwrapped
annular intensity distributions of a measured around the origin as indicated by
the black circle on a, where r is the radial distance from the origin in a. (c)
Modelled intensity profile of an elliptical beam with a black region through the
centre. (d) Unwrapped annular intensity distributions of c measured around
the origin as indicated by the black circle on c, where r is the radial distance

from the origin in c.

toothed drive belt and pulley couple the motor to the ruby mount in a 1:1 gear

arrangement. The motor has encoders that spin the ruby window about its axis up

to ⇡ ±20 rps. Software control of both rotation rate and direction was straightfor-

ward to implement using a standard desktop PC computer interface and a National

Instruments LabVIEW Virtual Instrument. The magnitude of the image rotation

is dependent upon the angular frequency at which the ruby spins [61]. Below

±10 rps, there is a near-linear dependence on angular frequency, as described in

Eq. (1.10). Above ±10 rps, the dependence levels out asymptotically with little

noticeable increase in e↵ect as the angular speed is increased, as a consequence of

the 20 ms upper-state lifetime of the ruby and the corresponding relaxation time

of 3 ms, which limit its response [61]. The beam was imaged from the back face

of the ruby onto a Dalsa Genie CCD array and recorded for subsequent analysis
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using another National Instruments LabVIEW Virtual Instrument.

Alignment was critical in this experiment, with the sensitivity of the slow-light ef-

fect being so great that any slight misalignments of the telescoping lens or the final

focusing lens before the ruby would completely eliminate the e↵ect. The intensity

of the light illuminating the ruby was also extremely important in determining the

group velocity, and therefore the rotation angle, of the light transmitted through

the ruby, as discussed by Franke-Arnold et al. [61] and later in Chapter 5. Another

experimental di�culty arose from the flatness of the faces of the ruby crystal. Be-

cause the light was passing through a rotating medium, if the faces of the ruby

deviated at all from parallel to each other (and perpendicular to the direction of

the propagation of the laser beam) the resulting image would travel in a circle as

the ruby spun. Any small rotary deflection made the image very hard to capture

and even harder to analyse. Aligning a laser ruby crystal that had end flatness

below manufacturing specifications would not guarantee a still image.

In order to introduce the black line into the elliptical beam, I mounted a glass cov-

erslip onto a tilt stage and inserted it halfway into the output beam of the laser, as

shown in Fig. 2.4. The tilt stage allowed us to adjust the orientation and therefore

the thickness of the glass through which the light is travelling. At the correct

tilt angle, the di↵erence in path lengths caused a ⇡-radian phase discontinuity

between the two halves of the beam, as shown in Fig. 2.6. This phase disconti-

nuity created a line of darkness, with a contrast limited only by scattering and

crosstalk between pixels, in an otherwise high-intensity beam. Figure 2.5c shows

the modelled beam profile once the coverslip is tilted to the correct angle to give

a ⇡-radian phase discontinuity between the two halves of the beam. Figure 2.5d

shows the unwrapped annular intensity profile for the beam with the discontinuity

down the centre. I estimated that the intensity of the incident beam exceeded the

saturation intensity or the ruby by a factor of 4 or 5. By contrast, as measured

from the camera image, the dark line (which is ideally of zero intensity but may

be subject to experimental imperfection) is at least an order of magnitude darker

than this.
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Figure 2.6: Images of the beam profile when a microscope coverslip is inserted
halfway into the beam. The coverslip can be tilted so (a, b) there is no phase
shift or (c, d) there is a ⇡-radian phase shift between the two halves of the
beam. Figures a and c are taken before the ruby and use a shear plate to show
the interference pattern for the coverslip set to two di↵erent thicknesses. These
images show that tilting the coverslip does create a ⇡-radian phase shift between
the two halves. Figures b and d show the corresponding intensity profiles after

the ruby. Note the creation of an intensity null in d.

2.4 Results

Images of the light beam transmitted by the ruby were recorded, and representative

images from the results are shown in Fig. 2.7. As the direction of the rotation of

the ruby window was changed, one can see that the central portion of the elliptical

beam became rotated about 5.0± 0.2 degrees, preserving the structure such that

the dark region was also rotated through a similar angle. From Eq. (1.10), a

rotation of 5.0 ± 0.2 degrees implies an e↵ective n

g

of 3.6 ⇥ 107 ± 0.9, which

corresponds to a group velocity of v
g

= 8.3 ± 0.3 m/s. It is also evident from

Fig. 2.7 that the rotation angle is radially dependent, specifically that positions of



31

Stopped -7 rps +7 rps -13 rps +13 rps -19 rps +19 rps 

a 

b 

W
ith

ou
t d

isc
on

tin
ui

ty
 

W
ith

 d
isc

on
tin

ui
ty

 

Figure 2.7: Images of the beam (a) without the phase discontinuity and (b)
with the phase discontinuity when the ruby is spinning from -19 rps to +19 rps.
The rotation of the elliptical beam increases with speed to a maximum rotation
angle of ⇡ 5� between clockwise and anticlockwise rotations for both the case

without and with the discontinuity.

the beam at larger radii are rotated less. As the Gaussian intensity of the beam

becomes elongated in the vertical direction, the positions of the beam at larger

radii have less intensity. The intensity dependence of the group index results in

an S-shape of both the transmitted beam and the phase discontinuity.

In order to better observe the motion of the black region, it is useful to overlay two

images taken while the ruby is spinning in opposite directions. Figure 2.8b shows

two images of the beam while the ruby was stopped, overlaid on top of each other.

One set of images was artificially coloured blue, and the other set of images was

artificially coloured red. Where the two beams overlap, the image is white. As

is seen in Fig. 2.8b, while stopped, the two beams are almost entirely overlapped,

leaving a mostly white image. However in Figs. 2.8a and c, the positions of

the black lines in either direction can be seen. In a, the blue image was taken

while the ruby was spinning clockwise and the red while the ruby was spinning

anticlockwise. The positions of the black lines for the two images can be seen, and

they are spatially separated, with a region of white between them, meaning the

black line while rotating in the clockwise direction is entirely beyond the position
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a b c

Figure 2.8: Two images overlaid to show the rotation of the black region. One
image is artificially coloured blue and the other red. Overlapping regions of the
two images are shown in white. (b) The two images overlaid while the ruby was
stopped in both cases. (a) The two images overlaid while the ruby is spinning
anticlockwise for the red image and clockwise for the blue image. (c) The two
images overlaid while the ruby is spinning in the opposite direction from a.

of the black line while rotating anticlockwise. Depending on the focusing before

and imaging after the ruby, the shape of the image can change quite dramatically,

as seen by comparing Figs. 2.7 and 2.8. Optimising both allows for the observation

of the largest image rotation.

To investigate the rotation, I analysed intensity-averaged images of the beam when

the ruby was removed, rotating clockwise, and rotating anticlockwise to eliminate

the e↵ects of vibrations from the motor. For each case, I extracted an annulus

at the radius with the most rotation. I then performed a polar to Cartesian

coordinate transformation to unwrap the annulus into a straight strip (Fig. 2.9a).

The intensities for each x-position of the strip were summed, and the resulting

intensity distribution was plotted (Fig. 2.9b). The dips around 90 and 270 degrees

are the locations of the phase discontinuity for the three cases. The enlarged

regions of Fig. 2.9b show an increase in intensity in previously dark regions and

a reduction in intensity in previously light regions. The movement of the dark

region outside of the position where it is located when the ruby is removed implies

that the slow-light phenomenon cannot be described by a simple model of optical

bleaching and pulse reshaping. Upon transmission through the ruby, much of the

initial intensity is absorbed. Di↵erential absorption across the beam when the

ruby is spinning in each direction could potentially appear as if the image were

being rotated, without any actual image drag. When the ruby is removed, the
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intensities measured across the beam are the highest possible intensities at each

location. Therefore, an increase in intensity at any position upon transmission

through a spinning ruby as compared to the intensities with the ruby removed

could be attributed to a slow light-enhanced photon drag e↵ect.

For clarity, Fig. 2.10 shows only the removed intensity and the anticlockwise spin-

ning traces. The enlarged region, centred on 270�, shows the increase in intensity

(shown with red dashed arrow) when the ruby is spinning (blue) as compared to

when the ruby is removed (olive). The increase in intensity allows us to separate

the two possible causes of slow light in ruby, as an optical bleaching (saturable

absorption alone) e↵ect would never increase the intensity at any location when

fluorescence is removed.

2.5 Discussion

I have found that passing an image through a spinning, self-pumped, slow-light

medium rotated the bright and dark regions by the same amount and that light

in the output cross section was azimuthally displaced to positions where the input

beam was dark. Such displacements cannot be explained solely by optical bleach-

ing, since such e↵ects cannot lead to a shift in a region of darkness. As such,

rather than optical bleaching, it appears that narrow band absorption, and the

associated change in group refractive index, are responsible for the observed slow-

ing. These results further the understanding of the mechanisms that cause slow

light and pave the way for applications dependent on the preservation of complex

patterns in slow-light media.

2.6 Alternate Methods

I also investigated the simpler possibility of creating the black line through the use

of a thin wire placed through the centre of the beam. A comparison was performed
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Figure 2.9: Intensity profiles. A strip of the beam profile at the radius with the
greatest photon drag is unwrapped in a when the ruby is spinning anticlockwise
(blue), spinning clockwise (pink), and removed (olive). The intensity of each
of those strips is plotted in b. The blue and pink curves show the position of
the region of darkness while spinning anticlockwise and clockwise, respectively,
to be outside the position of the dark region when the ruby is removed (and
therefore not spinning). One observation in this figure is the movement of the
dark line causing there to be light in the clockwise and anticlockwise cases
where there had been darkness in the stopped case, which could be explained
by fluorescence from the saturable absorber. However, the region of darkness is
preserved through the rotation to a position that had previously been bright.
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Figure 2.10: Intensity as a function of azimuthal position. The stopped trace
(olive) has an intensity dip at approximately 270�, whereas in the spinning case
(blue), the intensity dip has moved to approximately 265� and the intensity at

270� has increased.

between this method and the method using a coverslip as described above, both

in round beams.

Figure 2.11 shows a comparison between rotation of the black region when created

by the wire and the coverslip, both in a round beam. As discussed later in chapter

5, the shape of the bright beam (and specifically the amount of intensity modu-

lation the material experiences) has a large e↵ect on the degree of rotation of an

image. The round beam, being almost entirely bright with very little modulation

(caused by alternating regions of darkness and light) only at the region of the

black line, results in a very small angle of rotation. However, evidence of rotation

is observable in both cases.

There are two reasons that I ultimately settled on using the glass coverslip to create

a discontinuity for the black line. First, the wire simply blocks the light, casting

a simple shadow. Shadows aren’t necessarily stable upon propagation. In other

words, just because light is blocked by an object, creating a dark region in the

shape of that object directly behind it, the region will not necessarily remain dark

in all z-positions (where the beam is traveling along the z-axis). Di↵raction from

the wire causes changing light patterns from the near-field to the far-field, resulting

in intensities (and phases) that di↵er when examined at di↵erent z-positions. On
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Figure 2.11: Images of the beam with (top row) the wire and (bottom row)
the coverslip when the ruby is spinning at -19 rps, stopped and spinning at +19
rps. The dotted white line shows the position of the black line when the ruby

is stopped as a reference.

the other hand, the beam shape created using a coverslip to generate a phase

discontinuity is stable upon propagation, as it approximates an HG0,1 mode, as

described earlier.

The second reason that I chose the coverslip over the wire has to do with the width

of the dark region. As seen in Fig. 2.11, when the ruby is stopped in the wire case,

the dark shadow from the wire is very wide. In the rotating cases, although some

rotation of the dark line can be seen, the rotation arises more from a brightening

(filling-in) of the previously dark regions, but the region of darkness does not

move outside of its original position. The combination of these results being taken

without a dichroic filter and with only the wire causing a shadow raises doubts

that this is actual energy transport. Conversely, the dark region caused by the

phase discontinuity from the coverslip is significantly thinner, and the dark region

when the ruby is rotating appears to be outside of the dark region when the ruby

is stopped.
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Figure 2.12: Image of the elliptical beam while the coverslip creates a ⇡-
radian phase di↵erence between the two halves of the beam and the ruby spins
anticlockwise. Fringes can be seen on the left and right sides of the image,
caused by interference from multiple reflections of the light in the coverslip.

One drawback to using the coverslip is that the thickness of the glass coverslip

caused some interference fringes that were not present when the wire was used.

However, when the back face of the ruby was imaged correctly, this problem be-

came negligible. An example of interference fringes from the coverslip can be seen

in Fig. 2.12. When imaged more carefully, as in Fig. 2.7, the fringes were not

visible, and the image was much cleaner.

2.7 Rotating Complicated Patterns

In addition to the very careful experiment focused on di↵erentiating between the

two models of slow light, I also studied the rotation of more complicated patterns.

I did this two ways. The first method used the glass coverslip. However, instead

of putting one edge of the coverslip halfway through the beam, I placed the corner

of the coverslip into the beam. I then tilted the coverslip to the correct thickness

to achieve the ⇡-radian phase discontinuity along both edges of the coverslip. Fig-

ure 2.13 shows the resulting images while the ruby was (a) rotating anticlockwise,

(b) stopped, and (c) rotating clockwise with the corner of the coverslip inserted

into the beam. The main challenge with this idea was trying to get both edges

of the coverslip aligned for the correct ⇡-radian phase di↵erence. Because the
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a b c

Figure 2.13: Rotation of pattern made by the corner of a glass microscope
coverslip when the ruby is (b) still and rotating (a) anticlockwise and (c) clock-

wise.

Figure 2.14: Rotation of pattern made by a metal mask when the ruby is
rotating (a) anticlockwise and (b) clockwise. Red vertical lines are added for

reference.

two edges were connected as part of the same coverslip, they could not be in-

dependently adjusted. Very careful alignment resulted in the results presented in

Fig. 2.13, but even then I could not ascertain that both sides had the correct phase

discontinuity. As can be seen in Fig. 2.13, in a the top edge of the figure seems to

rotate more, whereas in c the bottom edge seems to rotate more. This seems to

imply that the two di↵erent edges are slightly misaligned with each other, giving

an uneven image rotation as a result.

In order to observe the reaction of even more complex patterns to slow light-

enhanced rotation, I used simple metal masks to block parts of the beam in order
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to illuminate the rotating ruby. Figure 2.14 shows one such pattern. A clear

rotation can be seen between an image taken while the ruby was rotating (a)

anticlockwise and (b) clockwise. Due to the sharp edges from the mask, the image

had ragged edges, and (as with the wire-based black line in the elliptical beam) the

shape could not be used to di↵erentiate between the two slow-light models. Other

examples of patterns created with metal masks can be found in Appendix B, with

varying degrees of detectable rotations.

2.8 Fluorescence

I investigated the possible e↵ects of fluorescence on this experiment by purposefully

misaligning the focusing lens immediately before the ruby. This misalignment

meant that necessary focusing and power to achieve the slow-light e↵ect were

not met. Therefore, the rotation of the coherent green light was too small to be

measured. With an unrotated green coherent image, I removed all filtering and

instead measured the fluorescent light from the ruby. This was easily distinguished

from the coherent transmitted light because the coherent transmitted light is green,

whereas the fluorescence from the ruby is red. I recorded the red fluorescent light

and immediately saw a large rotation and blurring. This makes intuitive sense, as

ruby atoms that are excited by the intense green laser light will release light for

an amount of time dependent on the upper-state lifetime of the ruby. As ruby has

a long upper-state lifetime, the atoms continue to fluoresce as they rotate away

from the initially illuminated position, decreasing in intensity as the fluorescence

subsides. This results in a blurring of the initial image.

I also applied a simple model to the data to test my understanding of this e↵ect.

I rotated an image of the pattern recorded when the ruby was stationary by a

series of small angles. I then summed all rotated frames, with each weighted

by an exponentially decaying amplitude, i.e. images that were rotated farther

had less intensity. The degree of blur in the resulting image could be adjusted

by changing the rate of the exponential intensity drop o↵. As can be seen from
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Figure 2.15: Images in the shape of UG are shown for the (a) green coher-
ent light, (b-d) red fluorescent light, and (e-g) simulated fluorescence. The
z-position of the focus lens was purposefully misaligned, such that the coherent
light was not slowed. Therefore, the transmitted green coherent light (shown
in a) was unchanged by the rotation of the ruby. Images b and e show the red
fluorescence while the ruby was not rotating. Images c and d show the fluores-
cence at medium and high speeds, respectively, which gave increasing amounts
of blurring. For processing, the image in e was changed to an intensity image,
rather than a colour one. The intensity image in e was artificially rotated by
a LabVIEW program, giving more image rotation and blurring with increasing

numbers of iterations in f and g.

Fig. 2.15, I was able to reproduce the observed blurring e↵ect with a decay time

of approximately 4 ms, which corresponds to the upper state lifetime of the ruby.

When the fluorescence was removed by a dichroic filter and the coherent green

light was observed, there was no blurring and no discernible rotation of the image.

The comparison between the observed blurring, the model blurring, and the green

(non-fluorescent) image is shown in Fig. 2.15.

These results reinforced my understanding of how important it was to remove the

fluorescence when using rotary photon drag to learn about the nature of slow light

in this experiment.
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2.9 Absorption Study

Another factor that was manipulated to maximise the slow-light e↵ect was the

orientation of the ruby. Ruby is birefringent, leading to di↵erent interactions when

the light is polarised parallel to the two orientations of the ruby. There was a larger

slow-light e↵ect when the light was polarised parallel to one of the two orientations,

which I will call orientation A. When the light is polarised parallel to orientation

A, the slow-light e↵ect is greatest, but the absorption is also largest. When the

light is polarised perpendicular to orientation A (which I will call orientation B),

the slow-light e↵ect and absorption are both minimised. I took a more careful

look at the absorption to learn more about the saturation of the ruby.

The absorption of the ruby was measured at the two orientations, A and B. The

absorptions listed below were measured when transmitting 532 nm light through

the 90 mm-long ruby. The pre-ruby measurements were taken immediately before

the lens that focused the beam onto the ruby, and the post-ruby measurements

were taken immediately following the ruby. Both measurements were taken when

the beam diameter was approximately 2 mm. The strong interaction orientation

(orientation A) is designated as the orientation of the ruby at which the light

experienced the greatest absorption and the greatest slowing (the slowest v
g

), as

stated before. Similarly, the weak interaction orientation (orientation B) is at 90�

to orientation A and is the position with the smallest absorption and the least

slowing (the fastest v
g

).

The relationship between the incident and transmitted light is roughly linear with a

positive slope for both orientations of the ruby, i.e. as a greater intensity is incident

on the ruby, more intensity is transmitted in both orientations. However, while

the percentage of transmitted light in orientation B (weak interaction) is mostly

constant with a very slight upward trend with increasing intensity, the percentage

of transmitted light in orientation A (strong interaction) has a downward trend

with increasing incident power (see Fig. 2.16).
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Table 2.1: Ruby Absorption, Orientation A

Pre Ruby (W) Post Ruby (W) Percent Transmitted
0.504 4.82E-06 9.56E-04
0.7483 6.99E-06 9.34E-04
1.01 8.95E-06 8.86E-04
1.246 1.06E-05 8.53E-04
1.504 1.25E-05 8.32E-04
1.749 1.41E-05 8.04E-04
2.001 1.57E-05 7.83E-04
2.505 1.91E-05 7.60E-04
3.008 2.21E-05 7.33E-04
3.502 2.49E-05 7.10E-04
4.001 2.76E-05 6.91E-04
4.506 3.05E-05 6.77E-04
4.999 3.32E-05 6.64E-04

Table 2.2: Ruby Absorption, Orientation B

Pre Ruby (W) Post Ruby (W) Percent Transmitted
0.5 9.81E-06 1.96E-03
0.752 1.49E-05 1.98E-03
1.001 1.98E-05 1.98E-03
1.249 2.47E-05 1.98E-03
1.497 2.95E-05 1.97E-03
1.755 3.45E-05 1.97E-03
2.003 3.98E-05 1.99E-03
2.508 4.95E-05 1.97E-03
2.997 5.91E-05 1.97E-03
3.504 6.96E-05 1.99E-03
4.007 7.97E-05 1.99E-03
4.504 8.93E-05 1.98E-03
4.999 9.98E-05 2.00E-03

In the strong interaction case, the higher the incident intensity, the less (relative)

transmission there is. Although this is on a very small scale, a clear downward

trend can be observed. As the amount of light absorbed does not level o↵ in

this power range, this implies that the ruby is not saturated. If the ruby were

saturated, the percentage of incident light that was transmitted would level o↵ or

even increase, as the ruby would be unable to absorb additional incident intensity.
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Figure 2.16: Percentage of transmitted intensity plotted against incident in-
tensity for two orientations of the ruby. Yellow squares show the percentage of
transmitted intensity when the ruby is turned to the orientation with the weak-
est interaction between the laser light and the ruby crystal. Blue circles show
the transmission percentage for the orientation with the strongest interaction

between the laser light and the ruby crystal.

2.10 Conclusions

Through careful examination of slow-light enhanced rotary photon drag, I have

observed photon drag of an image containing both bright and dark regions, where

bright and dark regions rotated by the same amount. Light was azimuthally

dragged to regions that had previously been dark. The observed movement of

the bright and dark regions could not be explained by saturable absorption alone,

since such e↵ects cannot lead to an increase in energy without fluorescence. The

observed e↵ects could, however, be explained by narrow band absorption and a

change in group refractive index.

Whether created by either the shadow of a wire or a ⇡-radian phase discontinuity,

the dark region shows signs of movement. However, the phase discontinuity pro-

vides clearer results, as explained previously. I also found that the slow-light e↵ect

is stronger when the ruby is illuminated by an elliptical beam rather than a round
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one, because the elliptical beam causes a stronger modulation of the ruby. The

e↵ect of beam shape on the slow-light e↵ect is studied in more detail in Chapter 5.

I have shown the importance of eliminating fluorescence when studying slow light

in ruby, because the illumination from fluorescence can mask the actual slow-light

e↵ect. With fluorescence present, any observed dragging could not confidently be

ascribed to the e↵ects of slow light in ruby. I confirmed the ability of fluorescence

to mask the desired e↵ect with a simple model. When fluorescence is removed and

other experimental parameters are carefully controlled, the measured rotation can

be studied to learn about the e↵ects of slow light in ruby.

Due to power limitations of the laser used in this experiment, the ruby was not

fully saturated. This leaves open the question of whether a more powerful laser

that could fully saturate the ruby would increase the slow-light e↵ect and therefore

the rotation angle. Future work should be done in this area to fully understand

the exact relationship between laser power and the slow-light e↵ect in ruby.



Chapter 3

Delaying Energy Beyond the

Input Pulse

3.1 Introduction

When a pulsed light beam propagates through ruby, it is delayed by a slow-light

mechanism. The debate about whether light is slowed in ruby through a simple

saturable absorption mechanism or a more complicated mechanism involving the

strongly varying absorption over a short frequency range [1, 62–65] has been dis-

cussed in Chapters 1 and 2. Chapter 2 focused on the use of photon drag to infer

the e↵ective group velocity while a light propagates through ruby. However, in this

chapter, I simplify the experimental procedure to directly investigate the slowing

of light. To do this, I move away from the spatial domain, wherein the modulation

of the ruby occurs through the rotary movement of the ruby itself. In the spatial

domain, a patterned beam is incident on the ruby. Whenever a position on the

ruby rotates into and then out of a bright area of the stationary beam, the ruby

atoms at that position experience an intensity modulation. Leaving the spatial

domain, I move into a temporal modulation, where the intensity of the laser beam

is modulated and the ruby is stationary. By directly measuring the arrival time

of a pulsed signal, one can remove the experimental dependence on rotary photon

45
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drag (which was used to infer the e↵ective group velocity of the light, as described

in Chapter 2) and distinguish between the two main proposed mechanisms with

less ambiguity. To do so, I investigate the trailing edge of a square-wave pulsed

laser beam propagating through ruby. The observation of the creation of a tail at

the trailing edge of the pulse provides evidence for a complicated model of slow

light in ruby that requires more than pulse reshaping.

3.2 Slow Light in the Time Domain

As discussed previously, one possible mechanism for creating slow light that has

lead to some debate is coherent population oscillation (CPO). One example of CPO

occurs when intense green laser light propagates through ruby, causing the atoms

in the ruby to be excited coherently. The CPO method requires only a single

laser beam [58], as opposed to more complicated methods with co- or counter-

propagating pump and probe lasers [57].

A debate has grown around di↵erent proposed mechanisms by which light is slowed

in ruby [1, 61–65, 87]. Following the initial claims of CPO in ruby in 2003 [58],

an alternate explanation for the observations in [58] was proposed in 2006 [1, 65],

where the apparent slowing of an intense pulse of laser light was explained by the

pulse reshaping brought about by a saturable absorber. Early demonstrations of

slow light in ruby (see [58, 61]) could not di↵erentiate between the two proposed

mechanisms. I conducted a study in the spatial domain in an attempt to di↵er-

entiate between the two mechanisms, as described in Chapter 2. In that work, I

introduced a line of darkness into a bright image that was slowed, and hence az-

imuthally displaced, in its propagation through a rotating ruby rod. A Comment

was published stating that the results in that study were simply due to saturable

absorption [63]. Although we disagreed about the mechanism causing the obser-

vations in Chapter 2, the authors of that Comment, my collaborators, and I all

agreed that the observation of a pronounced tail on the trailing edge of the trans-

mitted pulse cannot be explained solely by the e↵ects of a time-varying absorber
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acting upon the incident pulse. The Comment recognised that the region of dark-

ness could be produced cleanly in the time domain through the use of a chopper

to completely modulate the intensity of the pulse. In their attempt to conduct

that experiment quickly, Kozlov et al. did not observe slow light [63]. I base this

experiment on Kozlov et al.’s experimental setup, although slight di↵erences in

my setup allowed me to achieve di↵erent results from those they presented.

My work [91] demonstrated that the delaying of transmitted laser intensity into

the trailing edge of a pulse (tail) could only be caused by a temporal slowing of

light, not by a time-varying (saturable) absorption. In the absence of fluorescence,

an absorber can only decrease the intensity of light present at a given moment in

time. Therefore, detecting more intensity in the tail, as compared to the tail of a

reference pulse, provides strong evidence that the pulse delay in ruby is caused by

a mechanism more complicated than that of time-varying (saturable) absorption

alone. The di↵erent delays of individual Fourier components of the pulse signal

explain the pulse distortion that occurs upon transmission through the medium

and must be accounted for by any model that attempts to describe the e↵ects of

slow light in ruby.

I first reproduced the results presented by Bigelow et al. in 2003 [58]. By comparing

the sinusoidal signal in a reference arm to the identical signal passed through a

slow-light medium, in this case ruby, I can measure the delay of the signal due to

the slow-light medium. As was determined by Bigelow et al. , the slow-light e↵ect

is strongest when the signal is modulated at lower frequencies. Increasing the

frequency of the sinusoidally-modulated signal decreases the slowing experienced

by the signal. This is shown in Fig. 3.1, where slow-light e↵ect increases as the

the frequency decreases. The two signals become increasingly separated when one

is delayed by a greater amount.

After verifying the expected behaviour of the sinusoidally-modulated signal, I

turned to a square wave-modulated signal, where the sharp turn-o↵ is used to

investigate whether energy can be delayed beyond the input pulse by transmission

through ruby.
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a

decreasing frequency (increasing delay)

b c

Figure 3.1: Signals from reference and ruby arms are shown on an oscilloscope.
The frequency of the sinusoidal modulation of the signals decreases from a

to c, and the ruby signal becomes more delayed as the modulation frequency
decreases. In c, the two signals are vertically displaced from each other by a

small amount for clearer viewing of the relative delay between them.

3.3 Methods and Materials

As shown in Fig. 3.2, I produced 4 W of intense 532 nm laser light within a single

longitudinal mode. The initial beam diameter was approximately 4 mm. This

collimated laser beam was focussed onto a mechanical chopper by a 160 mm focal-

length lens. Rotation of the mechanical chopper caused a square-wave intensity

modulation of the laser beam. The modulated laser beam was recollimated with

a second 160 mm focal-length lens before passing through a beamsplitter. Half of

the incident light was reflected onto a 60 mm focal-length lens that focussed the

light through a dichroic bandpass filter onto a photodiode. The signal measured

with this photodiode is designated as the reference signal. The remaining laser

light was transmitted through the beamsplitter and a spherical lens with a focal

length of 50 mm, which focused the beam onto the front face of a 90 mm-long

standard laser ruby crystal rod. The optical axis was collinear to the rod’s z axis.

A 60 mm focal-length lens focussed the light through a dichroic bandpass filter

and a 400 µm pinhole onto a second photodiode. The bandpass filter and pinhole

ensured that only 532 nm light is measured, eliminating virtually all incoherent

fluorescent light from the ruby. The intensity signals from both photodiodes were

collected using a high speed data acquisition device that is controlled by a National

Instruments LabVIEW Virtual Instrument, allowing for easy measurement of the

intensities of the two signals.
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Figure 3.2: Intense 532 nm laser light was focussed onto an optical chopper
(OC) and then recollimated by 160 mm focal-length lenses. The light was
then split by a beamsplitter (BS), sending some of the light to be focussed by
a 60 mm focal-length lens onto photodiode (PD1). The remaining light was
focused onto the front surface of a 90-mm-long ruby rod with a 50 mm focal-
length spherical lens. The light transmitted through the ruby was measured by
a second photodiode (PD2) after a spatial filter comprised of a 60 mm focal-
length lens and a 400 µm pinhole (PH). Dichroic bandpass filters (DF) were

placed before both photodiodes.

3.4 Results

Figure 3.3 shows the reference and transmitted signals for measurements taken

(a) without or (b) with the ruby rod in place. Both a and b are plotted on

identical semi-log scales and show signals averaged to reduce noise. The change in

intensity of the transmitted (beige) signal from a to b is solely due to the addition

of the ruby. The region of particular interest is immediately following the bright

to dark transition and is shown enlarged in c. When the ruby is added into the

system, some of the energy is delayed, increasing the intensity of the trailing edge

of the pulse (tail) of the transmitted signal, as highlighted by Fig. 3.3c. This

increase in the intensity in, and hence delay of optical energy into, the tail of the

pulse, indicates that the slow-light mechanism in ruby is more complicated than

described by a simple time-dependent (saturable) absorber.

I investigated various potential systematic errors. I use identical equipment in both

the reference and ruby arms, including detectors, amplifiers, and gain settings. I

tested all equipment in both data collection arms, and two data acquisition devices
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Figure 3.3: Time evolution of the reference and transmitted signals shown
on semi-log plots. (a) When the ruby was removed, the transmitted (beige,
dotted) and reference (green, solid) signals have the same intensity profiles.
(b) When the ruby was added, the overall intensity of the transmitted signal
(beige, dotted) decreases, although the intensity at the trailing edge of the pulse
increases above that of the reference signal (green, solid). The region of interest
in b is shown in detail in c. For times greater than that marked by the dashed
vertical line in c, the intensity of the transmitted signal is greater than that
of the reference pulse. Dark signals taken with the laser o↵ are shown for the
reference (pink, large dashes) and transmitted (blue, dash dots) arms in a, b,

and c.

were used, with multiple channels tested on each. For all of these variables, I

observed the same trend; adding the ruby delays energy from the pulse, causing

an increase in intensity in the tail of the pulse. Other experimental parameters

were also investigated. I replaced the 90-mm-long ruby with a 6-mm-long ruby,

which also showed an increase in the energy in the tail of the ruby pulse, albeit to a

smaller degree. The existence of a pronounced tail of the ruby pulse is observable

for both linearly and circularly polarised light.

After investigating the falling edge of the square wave pulse, I investigated how the

system would react to a very narrow dark region in the centre of the high-intensity

pulse, similar to the black line down the centre of the pulse in Chapter 2. As seen

in Fig. 3.5, energy was delayed into the narrow dark region in the same manner

as it was delayed at the falling edge of the main pulse.
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Figure 3.4: In an ideal slow-light medium, a square-top pulse would simply
be delayed (shifted) in time, as shown in the insert in d. In contrast, the
results I observe are shown for a square wave with a modulation of (a) 7 Hz,
(b) 16 Hz, and (c) 28 Hz. Unlike Fig. 3.3, all pulse shapes in this figure have
been normalised to have the same peak intensity, to illustrate the di↵erence in
pulse shapes between the reference and transmitted signals. Part d shows all
three traces overlaid temporally, where the falling edge of each reference pulse

is aligned.
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Figure 3.5: Trace of square wave pulse with thin “black line” embedded in the
brightest part of the signal. Energy is delayed into the black line in the same
way it is delayed into the trailing edge of the pulse, as shown in the regions

circled in red.
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3.5 Pulse Distortion and Harmonic Components

One might expect the delayed pulse to look exactly like the reference pulse with

a simple shift in time, �t, as illustrated by the insert in Fig. 3.4d. However, the

time delay of a signal depends on the Fourier components of which the intensity

signal is comprised. As stated previously, Bigelow et al. [58] reported that laser

beams modulated with sine waves of di↵erent frequencies have di↵erent time delays

through ruby. More specifically, the higher the frequency of the sine wave, the

smaller the time delay the signal experienced, a fact that I verified (see Fig. 3.1).

By taking the Fourier transform of the square-wave intensity signal, one can see the

sinusoidal waves of many di↵erent frequencies that form the Fourier components

of this signal. Measuring the di↵erence in phase of the Fourier components of

the reference and ruby signals allows us to observe the time delays as a function

of frequency of the Fourier components. As shown in Fig. 3.6, the time delay of

the Fourier components follow the same exponential decay trend with increasing

component frequency, regardless of the modulation frequency of the square wave.

Lower frequencies are delayed more than higher frequencies, which makes it evident

that the square wave will be distorted when delayed by a slow-light medium.

Figure 3.4 depicts the observed shape of the delayed square wave, as measured

under the same conditions as the data presented in Figs. 3.3 and 3.6.

Figure 3.6 shows that the delays of individual Fourier components are indepen-

dent of the modulation frequency of the signal. In other words, the shape of the

tail should be independent of the modulation frequency of the pulse. Represen-

tative pulse traces taken at 7 Hz, 16 Hz, and 28 Hz modulations are shown in

Fig. 3.4a-c. Figure 3.4d overlays the three traces so that the end of the traces

coincide temporally. As can be seen in Fig. 3.4d, although the three pulses have

di↵erent modulation frequencies, the traces have tails with the same shape, which

is consistent with the delays of Fourier components all following the same trend

in Fig. 3.6.
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Figure 3.6: Time delay plotted against the frequency of the Fourier component
for square-wave signals of di↵erent modulation frequencies. The delays of the
Fourier components from the 7 Hz-modulated square wave are marked with
large filled diamonds. The trace of a corresponding 7 Hz-modulated pulse is
shown in Fig. 3.4a. Delays of Fourier components from square waves modulated
at di↵erent frequencies all follow the same curve. Because di↵erent frequency
components experience di↵erent time delays, the square wave is distorted upon

transmission through ruby, resulting in the transmitted traces in Fig. 3.4.

3.6 Conclusions

I fit the tail of both the ruby and the reference pulses to exponential decays to

find the decay time of each. The reference tail has a decay time of approximately

⌧ = 0.1 ms, probably arising from the finite bandwidth of the detector and the

associated electronics. By contrast, when the ruby is in place, the tail has a decay

time of approximately ⌧ = 3.0 ms. This increased decay time resembles the upper

state lifetime of the trap level in ruby, which is approximately 3.4 ms at room

temperature [92].

Through careful control of the experimental parameters, I have shown the existence

of a pronounced tail on the trailing edge of the transmitted signal, due to the light

pulse being slowed as it propagates through the ruby, which is not compatible with

a simple model of pulse delay in a time-varying (saturable) absorber. Instead,

this experimental evidence supports a more complicated model of slow light in

ruby that results in a delay of the transmitted optical energy and a distortion of

the pulse shape, as individual Fourier components of the signals are delayed by

di↵erent amounts.



Chapter 4

Orbital Angular Momentum

Introduction

4.1 Historical Introduction

For more than a century, scientists have known that light carries momentum. In

1909, Poynting stated that circularly polarised light should have angular momen-

tum of �~ per photon, where ~ is Plank’s constant (h) divided by 2⇡ and � = ±1

for right- and left-circularly polarised light respectively [93]. This angular momen-

tum became known as spin angular momentum (SAM). Poynting reasoned that

the e↵ects of SAM were very small and would be extremely di�cult to detect ex-

perimentally, but in 1936 Beth performed an experiment in which he could observe

the physical e↵ects of SAM. Beth suspended a waveplate from a quartz fiber, and

as the circularly polarised light passed through the waveplate, the handedness of

the light was switched. The quartz fiber gave a low friction suspension so that the

angular momentum transferred from the light to the waveplate by the reversal of

the handedness of the circular polarisation caused the waveplate to deflect [94].

While the physical e↵ects of angular momentum can be di�cult (although not im-

possible) to see, it is simple to determine the interactions between light and atoms.

The angular momentum of an atom is changed by ±~ when it emits a circularly

54
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polarised photon [95], however a higher order transition, such as a quadrupole

transition, results in an angular momentum transfer of a higher integer multiple

of ~. Circularly polarised light, and thus SAM, alone cannot account for this;

therefore another type of angular momentum is required. In 1932, Darwin (the

grandson of the famous evolutionary scientist) described how a photon emitted a

short distance from the centre of mass of an atom would provide the additional an-

gular momentum needed for higher order transitions [96]. This angular momentum

eventually become known as orbital angular momentum (OAM).

In 1992, Allen et al. released a seminal article that described OAM as a natural

property of light beams with helical phase fronts and noted that these beams

could be generated quite easily in the laboratory [95]. Orbital angular momentum-

carrying beams often take the form of (but are not limited to) Laguerre-Gaussian

(LG) beams, with amplitude distributions, LG
pl

described as

LG

pl

=
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where r is the radius, w(z) = w(0)[(z2 + z

2
R
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R

]1/2 with w(0) as the beam waist,

z

R

as the Rayleigh range, and (2p + |l| + 1) tan�1(z/z
R

) as the Gouy phase [97].

L

|l|
p

is a Laguerre polynomial that is a result of

L

|l|
p

(x) = (�1)|l|
d

|l|

dx

|l|Lp+|l|(x), (4.2)

where l is the azimuthal index resulting in OAM of L = l~ per photon, as seen

in Fig. 4.1, and p is the number of radial nodes in the intensity distribution. The

simplest OAM beam has a phase in the transverse plane of �(✓) = l✓, where ✓ is the

angular coordinate and l is any integer. Allen et al. derived that all light beams

with helical phasefronts described by e

il✓ have an OAM of l~ per photon [95].

The skew angle of the Poynting vector is � = l/k0r. This leads to an azimuthal
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component of linear momentum of

p =
~k0l�
2⇡r

(4.3)

per photon, where � is the wavelength of light and k0 = 1/� is the wavenumber

[98]. Multiplying the linear momentum by the radius vector, gives an angular

momentum of l~ per photon [99]. In a similar geometrical argument to that

presented above, SAM can be shown to be ~ per photon. The circular path of

the circumference � has a radius of �/2⇡, and a linear momentum of ~k0 acting

around a circle of this circumference results in an angular momentum of ~.

One ubiquitous feature of beams with helical phase fronts is that they have a phase

singularity running down their centre, which is an intensity null surrounded by a

2⇡l phase change [100]. The mathematical similarity between helically phased

beams and superfluid vortices led to these phase singularities being named optical

vortices [101]. These optical vortices do not carry any angular momentum them-

selves, as they are points of zero energy; all angular momentum in the beam comes

from the field surrounding the singularity.

In the 1970s, there were two important developments in the study of phase singu-

larities. First, Nye and Berry investigated phase singularities in ultrasound waves

in order to model radio wave echoes o↵ arctic ice sheets [102]. Second, Vaughan

and Willets created a phase singularity in a laser beam by combining high-order

Hermite-Gaussian modes [103], which are the solutions the paraxial wave equa-

tion in Cartesian coordinates. The handedness of these singularity-carrying beams

was studied by breaking the cylindrical symmetry of an output beam of a laser

[104] and through the recognition of a bistable helical phase [105, 106]. These de-

velopments culminated in the realisation of the importance of Laguerre-Gaussian

modes, which are the solutions of the paraxial wave equation in cylindrical coordi-

nates, as described by D’Alessandro and Oppo [107]. Helical phase fronts are not

unique to Laguerre-Gaussian beams; Bessel beams [108], Mathieu beams [109],

and Ince-Gaussian beams [110] also have helical phase fronts. All beams with
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Figure 4.1: Helical phase fronts interfered with plane waves result in spiral
fringes, shown here for l = 0 through l = +3.

helical phase fronts give rise to spiral interference fringes when interfered with a

plane wave [111–113], shown in Fig. 4.1.

Orbital angular momentum can lead to quite simple descriptions of situations that

are rotationally symmetric or contain singularities. One instance where OAM is

useful in understanding a broad concept is in the angular uncertainty relationship.

Similar to the more widely recognised Heisenberg uncertainty relationship, an

uncertainty relationship for angular momentum can be described quite simply. If

a beam did not have an angular restriction from an aperture, the full cyclic nature

of the azimuthal phase could be observed and would result in a single-valued

OAM state with no uncertainty in its value. However, light restricted to a certain

azimuthal range by an aperture is described by a spread of OAM states. The
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relation between the width of the aperture and the spread of OAM values has been

studied extensively [114–116] and is an example of an uncertainty relationship. For

apertures of width �✓, the spread in OAM states, �L, is described by the angular

uncertainty relationship:

�✓�L � 1

2
~|1� 2⇡P (✓)|, (4.4)

where P (✓) is the angular probability density of the boundary of the angular range

and takes the periodicity of the angle into account [117]. For a narrow Gaussian

aperture, this relationship simplifies to �✓�L > ~/2.

4.2 Creating Beams with Orbital Angular Mo-

mentum

There are many ways to create beams that have orbital angular momentum. One of

the earliest methods of creating OAM-carrying beams is to use a pair of cylindrical

lenses that transform a Hermite-Gaussian beam to a Laguerre-Gaussian beam.

This kind of mode transformation was the method used by Allen et al. in 1992

[95]. Hermite-Gaussian and Laguerre-Gaussian modes are both complete sets,

which means that a mode of either set can be described as a superposition of

modes of the other. As the beam is focused in the cylindrical lens pair, it acquires

an additional Gouy phase determined by the orientation and mode indices of the

HG mode used, which will cause the HG mode to rephase into a specific LG mode

[118]. There are two varieties of cylindrical lens mode converters, both of which are

shown in Fig. 4.2; a ⇡/2 converter will transform HG modes into LG modes when

there’s a beam waist midway between the cylindrical lenses, whereas a ⇡ converter

will transform any mode of collimated light into its own mirror image. In this

way, a ⇡ converter is optically equivalent to a Dove prism [119]. These ⇡/2 and ⇡

mode-converters are mathematically analogous to polarisation-converting quarter-

wave plates and half-wave plates, respectively. Figure 4.3 shows the e↵ects of ⇡/2

and ⇡ mode converters and their similarities to quarter- and half-wave plates.
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Figure 4.2: (left) ⇡/2 converters switch between HG and LG modes, whereas
(right) ⇡ converters switch modes to their mirror images.
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Figure 4.3: The e↵ects of (top) wave plates and (bottom) mode converters.
Quarter-wave plates convert from linear to circular polarisation in an analogous
way to how ⇡/2 mode converters convert HG modes to LG mods. Half-wave
plates reverse the direction of the polarisation analogously to how ⇡ mode con-

verters (or dove prisms) switch the direction of the OAM.
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Figure 4.4: A plane wave gains a helical phase front when shone through a
spiral phase plate.

Instead of using cylindrical lenses to convert between HG and LG modes, spiral

phase plates can be used to change plane waves into helically phased waves. Spiral

phase plates are transmissive plates that increase in thickness with azimuthal angle

with a discontinuity step of one wavelength, such that an incoming plane wave exits

the plate with a helical phase front. An example of this is shown in Fig. 4.4. The

required step height, s, of a spiral phase plate for light with a wavelength of � is

s =
l�

(n
�

� 1)
, (4.5)

where n

�

is the refractive index of the medium from which the plate is made.

Applying Snell’s law leads to the angular change in the transmitted ray, or skew

angle, being � = l/k0r, as stated previously.

The required level of precision of the spiral phase plate’s thickness is very di�cult

to obtain for light beams, and so to circumvent these di�culties, Beijersbergen

et al. placed a spiral phase plate in a fluid bath. The temperature of the bath

was tuned to achieve the proper index of refraction and thus the di↵erence in

thickness, or step height, for a certain wavelength [120]. More recently, micro
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forked diffraction grating

+1

0th

Figure 4.5: Plane waves gain a helical phase front when shone through a
forked di↵raction grating, resulting in 1st and -1st order di↵racted beams. The

1st order di↵racted beam is shown here with l = +1.

fabrication techniques have allowed for direct construction of millimeter wave [121]

and optical spiral phase plates [122, 123]. However, individual physical spiral phase

plates have to be constructed for each wavelength of light being investigated, due

to the relation of the wavelength to the necessary thickness of the spiral phase

plate.

Holographic alternatives to physical spiral phase plates are created through the

use of di↵ractive optical elements (DOE’s). Holograms can be used to shape a

beam’s intensity or phase. The advantage of phase-only holograms is that nearly

all the incident light can be directed with the desired phase profile into the first

di↵racted order. By adding the desired phase profile modulo 2⇡ to a linear phase

ramp, any phase profile can be generated in the first di↵racted order, shown in

Fig. 4.5. In the case of a helical beam, this hologram is a di↵raction grating

with an l-pronged dislocation at the centre [124–126], seen in Fig. 4.5. Spatial

light modulators (SLMs) have been developed and refined over the past decade

and have greatly increased the ease with which holograms can be implemented.

Spatial light modulators use liquid crystal controlled by a video interface on a

computer to act as holograms that can be easily changed in real time. SLMs

have become widely used due to the ease of creating and changing the displayed

hologram using grayscale images, the circumvention of the manufacturing problems

associated with making spiral phase plates, and their ability to work for a wide

range of wavelengths within the visible spectrum.
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As an alternative to di↵ractive optics, OAM-carrying beams can be made with

Q-plates, which are birefringent liquid crystal plates with spatially varying opti-

cal axes[127]. Q-plates have an azimuthal spatial dependence and thus are able

to transform between spin and orbital angular momenta by taking a circularly

polarised beam and adding an azimuthally-dependent phase that gives the trans-

mitted beam a helical phase. This process also makes Q-plates useful for creating

entanglement between spin and orbital angular momentum [128].

Phase singularities can also occur naturally, without the use of spiral phase plates,

DOE’s, or Q-plates. Simply interfering three or more plane wave components of

similar intensity results in many vortices in any field cross-section [129, 130]. A

common example of this is laser speckle, where each black speck is an optical

vortex [131].

While the previously-described methods of obtaining helically phased beams all

use spatially coherent light, spatial and temporal coherence are not fundamental

requirements for creating OAM. The description of a helical phasefront implies a

coherence of phase across the beam, however, it is possible to illuminate a spiral

phase plate or forked di↵raction grating with a spatially incoherent source. If

light rays are projected through the centre of a spiral phase plate at small radii,

as shown in Fig. 4.6, incoherent vortices are generated in the far field; their time-

averaged intensity is not zero [132]. Therefore, a vortex beam can be used to

determine spatial coherence. A vortex beam with zero on-axis intensity implies

spatial coherence, whereas nonzero on-axis intensity indicates spatial incoherence.

One can see by comparing the energy, momentum, and angular momentum of a

photon that linear momentum per unit energy is inversely proportional to phase

velocity and that angular momentum is inversely proportional to frequency. These

relationships are not exclusive to light waves but do in fact apply to all forms of

waves. It follows, then, that orbital angular momentum is not only a property of

light. Early rotational Doppler shift studies were conducted at millimeter wave

frequencies, as experiments at these wavelengths were easier to align [114, 121].

Radio waves carrying OAM have also been proposed for applications in astronomy
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Figure 4.6: A spiral phase plate illuminated by incoherent light produces an
incoherent vortex in the far field.

and radio frequency communications, using arrays of antennae for detection [133].

Coherent arrays of detectors or emitters act on longer wavelengths much like a

spatial light modulator does for optical frequencies. A cyclical particle accelerator

along with the correct di↵ractive optics results in an X-ray vortex, which could be

used for determining molecular structure in x-ray di↵raction [134]. Orbital angular

momentum can also be created in electron beams. Putting a spiral phase plate into

an electron microscope can increase edge detection in low-contrast imaging [135],

which has led to a new holographic reconstruction technique in a transmission

electron microscope (TEM) [136].

4.3 Micro-Manipulation Through the Use of OAM

Orbital angular momentum has been observed in several experiments and has

even become a method of manipulating physical objects. One way of using the

orbital angular momentum of light to manipulate particles was discovered through

the development of optical tweezers. Optical tweezers use highly focused laser

radiation to trap and move micron-sized dielectric particles [137], which are often

made of silica or polystyrene. Introducing OAM-carrying beams with the use of
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dc

Figure 4.7: Di↵erent rotating conditions for spin and orbital angular momen-
tum. (a) SAM makes the particle spin about its own axis, whereas (b) OAM
orbits the particle about the beam axis. (c) For a beam much smaller than the
particle, SAM and OAM will both make the particle spin in the same way. (d)

For a large beam, OAM will make the particle orbit the beam.

SLMs allows us to expand the functionality of optical tweezers, enabling them

to act as optical spanners [138]. Optical spanners work in a very similar way

to optical tweezers, with the added cability to rotate the trapped object. For

example, for a beam with l = 1 and � = ±1, when the sign of the SAM is positive,

the particle will spin. When the sign of the SAM is negative, the particle will stop

[139]. If the centre of mass of the particle is on the beam axis, then SAM and

OAM will both spin the particle about its axis, although they can be in the same

or in opposite directions. If the centre of mass is o↵-axis, SAM and OAM will act

di↵erently, with the SAM spinning the particle about its own axis and the OAM

spinning the particle in an orbit [140]. Spin angular momentum is intrinsic, as its

rotation is independent of the choice of axis used to calculate it. Orbital angular

momentum is said to be quasi-intrinsic when the centre of mass is on-axis, because

in that case it spins about both its axis and the beam axis, which happen to be

the same. However, when the centre of mass is o↵-axis, it is said to be extrinsic,

or dependent upon the axis about which it is calculated [140]. These situations

are illustrated in Fig. 4.7.

As the phase of an OAM-carrying beam changes with the spatial position in the
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beam, mechanical e↵ects of SAM and OAM depend on the size of the beam with

respect to the size of the particle. If the beam size is larger than the particle size,

then a beam carrying SAM will make the particle spin about its own axis and one

carrying OAM will make the particle rotate around the beam. If the beam size is

much smaller than the particle size, SAM and OAM will both make the particle

spin the same way, as a rotation around a beam of that size does not move the

particle and instead just spins it as if the beam were the rotation axis, also shown

in Fig. 4.7.

When light with SAM and/or OAM is spinning a particle of radius r, the light can

exert a maximum torque of the order ~k0r on the particle[141]. This torque can

be used to create micromachines for the manipulation of particles. The sign of the

total angular momentum (spin angular momentum and orbital angular momentum

combined) determines the direction of the particle’s rotation [142]. One benefit

of using angular momentum as a micromachine is that the “axle” is optical and

hence will never wear out. One of the most common type of micromachines is

the micropump, which can be made by an array of beams with OAM that causes

a circulation of microparticles. The fluid flows through the array and carries

other particles with it [143]. Another way to design a micropump using angular

momentum is to transfer SAM to two birefringent particles to spin them in opposite

directions. This leads to a flow along the channel between them[144].

Spin angular momentum and orbital angular momentum interact with cold atoms

in distinct ways. Circular polarisation and SAM play a role in atomic selection

rules, whereas OAM does not, as a helical phase front is locally indistinguishable

from an inclined phase front. However, absorption of a photon from a plane wave

by a gas will lead to isotropic spontaneous emission with the atoms or molecules

recoiling away from the incident light. For a helically phased beam with a force

acting at any distance from the beam axis, there will be a torque continually

acting on the centre of mass of the atom such that the repeated recoil will guide

the atom in a spiral [145]. As the atoms travel around the beam axis, this torque

is seen as a manifestation of the rotational Doppler shift [116], described later.

The annular intensity of a helically phased beam with the region of darkness in
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the centre allows for blue-detuned atom trapping, where there is a force attracting

the particles to the centre of the beam [146]. This blue-detuned atom trapping

acts in a similar fashion to optical tweezers for low index particles.

4.4 Beam Transformations

Spin and orbital angular momentum are usually separable, as they are typically

independent when traveling through a transparent, homogeneous medium with no

spatially dependent optical properties. However, transfer of spin angular momen-

tum to orbital angular momentum can happen in such a medium if a Gaussian

beam [147] or a circularly polarised vortex beam [148] is tightly focused through a

high numerical-aperture lens. This occurs in the optical spanners described above.

Although SAM and OAM can interchange in this way, the mechanisms for trans-

ferring SAM and OAM are not the same. Spin angular momentum a↵ects particles

that are birefringent. Birefringent materials change circular polarisation to linear

polarisation, causing the SAM to change and therefore the birefringent particle

to spin [149]. Birefringence does not a↵ect helical phase fronts and thus does not

interact with the orbital angular momentum at all. Astigmatism, however, does

change the helical phase front, which means that it a↵ects the orbital angular

momentum of the beam, while leaving polarisation and spin angular momentum

unchanged.

There are two basic types of transformations. The first type of transformation is

a coordinate transformation, which is equivalent to a rotation of the state about

the optical axis and results in no change in angular momentum. For polarisa-

tion, this type of rotation about the optical axis could arise from optical activity,

Faraday-type e↵ects, or a phase di↵erence between the circularly polarised states.

Optically active materials do not alter the OAM state of the transmitted light

[150, 151]. Image rotation is the equivalent transformation for an OAM-carrying

beam to that of optical activity for an SAM-carrying beam[152]. This second type

of transformation is a rephasing of linear states. This rephasing of the linear states
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does change the angular momentum, which for polarisation comes from birefrin-

gence. For orbital angular momentum, the rotation of the state manifests as a

rotation about the optical axis of the mode or the superposition of modes. This

rotation corresponds to a changing in phase between positive and negative OAM

states. The equivalence between the rotation of polarisation and the rotation of

an image has been used recently to investigate photon drag [61].

Photon drag was studied in depth experimentally by Jones in the 1970s. He called

it Fresnel or aether drag, and he showed that light passing through a moving

medium would be dragged either longitudinally or transversely by the medium

[78]. In addition, he showed that the polarisation of light through a spinning disk

could be rotated by a small angle, �✓

pol

, which is defined as

�✓

pol

=

✓
n

g

� 1

n

�

◆
⌦L

c

, (4.6)

where ⌦ is the angular velocity of the medium, L is its length, and n

g

and n

�

are,

respectively, the group and phase refractive indices of the light in the medium [79].

Recent experimental work by Franke-Arnold et al. has shown that a spinning disk

drags the image through the same rotation angle as the polarisation [61],

�✓

pol

= �✓

image

, (4.7)

where �✓

image

is defined in Eq. (1.10) In other words, photon drag has the same

e↵ect on spin and orbital angular momenta. The equivalent rotation of polarisation

and image is shown in Fig. 4.8.

As mentioned above, Hermite-Gaussian modes and Laguerre-Gaussian modes are

both complete sets, and any mode in one set can be made by a superposition

of modes in the other set. Polarisation is a useful analogy for the transforma-

tion between HG and LG modes. A Poincaré sphere shows how right- and left-

circularly polarised states can be combined to form linearly-polarised states, as

seen in Fig. 4.9. Any two-dimensional space can be described by an analogous

Bloch sphere [153, 154]. A generalised two-state system in the OAM basis, |ai,
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Figure 4.8: Equivalent dragging of (top) polarisation and (bottom) transmit-
ted image through a rotating medium.

Figure 4.9: (left) Poincaré sphere for polarisation and (right) the analogous
Bloch sphere for OAM.

can be written:

|ai = cos

✓
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2

◆
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◆
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where a = (sin (✓
a

) cos (�
a

), sin (✓
a

) sin (�
a

), cos (✓
a

)) is a vector with longitude

0  �

a

 2⇡ and latitude 0  ✓

a

 ⇡. On the Bloch sphere, the longitudinal

position, �, gives the orientation of the mode superposition. Figure 4.9 shows

both the Poincaré sphere for polarisation and the analogous Bloch sphere for

orbital angular momentum.

It is well known that light emitted from a moving source undergoes a frequency

shift, a concept known as the Doppler shift. This e↵ect was seen by Garetz in

the 1970s for rotation between a detector and a source of circularly polarised
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light. Garetz showed this e↵ect by spinning one half-wave plate with respect

to another half-wave plate, showing that the polarisation state was rotated at

twice the rotational speed of the waveplate, and measuring the corresponding

frequency shift [155, 156]. There is a similar e↵ect for a helically phased beam.

The single rotation of a helically phased beam changes the field by l cycles and

the frequency by �! = l⌦[157], and this can be easily implemented by rotating

Dove prisms or cylindrical lenses [114]. When light has both spin and orbital

angular momentum, a single rotation of the beam about the beam axis changes

the phase by J = (l + �) cycles and the frequency by �! = J⌦ [158], where J is

the total angular momentum of light. The beam cross-section has a J-fold rotation

symmetry. Spin angular momentum and orbital angular momentum act similarly

when being rotated about the beam axis, so the total angular momentum is the

important parameter.

4.5 Measuring Beams with Orbital Angular Mo-

mentum

I have discussed how to create a beam having nonzero orbital angular momentum,

how to observe the physical e↵ects of OAM, how to manipulate OAM, and how

to transform between di↵erent modes and between SAM and OAM. I have yet to

discuss how to measure OAM. Sometimes it is not enough to simply know that a

beam has a helical phase front; there are situations where one wants to quantify the

OAM. There are many ways to measure OAM. First is through the use of forked

di↵raction gratings. As I have discussed previously, to generate an OAM-carrying

beam, one can use the collimated output of a single mode fiber to illuminate a

forked di↵raction grating and get a vortex beam in the far field [124], as shown in

Fig 4.5. If instead, one wants to measure a beam with OAM, this process can be

reversed. A vortex beam incident on a forked grating will result in a fundamental

Gaussian beam only if the OAM of the incoming beam is opposite to that of the

di↵raction grating. By scanning the di↵raction grating through all possible OAM
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Figure 4.10: A vortex beam with a helical phase structure is incident upon
a forked di↵raction grating. When the OAM value of the vortex beam and the
di↵raction grating are l and �l respectively, the resulting beam will be Gaussian
and will successfully couple into a single mode fibre (SMF). An example of this

process is shown here for a vortex beam of l = +1.

states and detecting which state corresponds to a detected photon after a single

mode fiber, the mode of the incident photon can be deduced [159]. An example

of this where the vortex beam carries OAM of l = +1 is shown in Fig. 4.10. This

method works with low levels of light down to single photons. However, when

working with single photons, the e�ciency of the detection system is only 1/N ,

where N is the number of states to be assessed, and so for e↵ective detection of

the OAM mode, many photons must be prepared in the same state.

Another method for measuring OAM is to interfere the unknown helically-phased

beam with a plane wave. The resulting fringes are spiral in nature, and the number

of forked fringes matches the l of the beam [111], shown in Fig. 4.1. Interference

can be used to determine OAM for a di↵raction pattern from any aperture as

well. For single and double slits, there is a displacement due to the helical phase

front that is perpendicular to the slit direction and leads to a sharp bend in the

otherwise straight fringes. The direction of the bend depends on the handedness

of the helicity [159, 160]. More complicated di↵raction patterns can also be used

to measure OAM. One interesting case is when an LG beam is di↵racted through

a triangular aperture. The result is an array of (l+1)(l+2)/2 spots in a triangular

configuration, set at a right angle to the aperture’s orientation, with the sign of

l determining the direction of the orientation [161]. All of these interferometric

methods allow for the measure of both the magnitude and the sign of the OAM.
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However, these approaches require many photons, and thus cannot measure the l

of single photons.

The rotational frequency shift that was discussed previously can also be used to

measure orbital angular momentum, where each value of l results in a frequency

sideband [158]. However, in low light it is di�cult to measure both the frequency

and the beam rotation. If a fixed rotation is used, a static, l-dependent phase

shift is created [162]. Dove prisms can be used to make an image rotate, and

this has been built into Mach-Zehnder [163] and Sagnac [164] interferometers.

This rotational frequency shift method can be used to measure the orbital angular

momentum or the total angular momentum [165]. This method requires N � 1

interferometers to measure N states, which limits this technique to measuring a

small number of states.

A recently-developed method for measuring OAM is through the use of mode

sorters. The azimuthal position of the input beam is transformed into a transverse

position in the output beam [166, 167]. This takes a helically phased beam and

turns it into a transverse phase gradient. The reformatting introduces a phase

aberration, but it can be corrected in the output plane. Spatial light modulators

have been used to create a system that both reformats the image and also corrects

the phase. A lens then focuses the input modes to separate lateral positions,

where they can be detected using a detector array [168]. This method is less

technically demanding than interferometric approaches and can measure the l of

single photons [169], and although not perfect, it is more e�cient than other

common techniques.

4.6 Orbital Angular Momentum in Classical Imag-

ing

Orbital angular momentum measurement methods can be used in imaging by plac-

ing a forked hologram in the Fourier plane of the object [126, 170]. This technique
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is especially useful for contrast enhancement in optical microscopy. When the

phase mask corresponds to a spiral phase plate, the point spread function of the

microscope is changed into a helically phased ring, and the phase edges appear as

bright lines, a process that is referred to as unidirectional edge enhancement. This

technique has been used at the single-photon level in ghost imaging [171], which I

will describe later. Varying the technique slightly results in spiral interferometry,

where spiral fringes replace the common circular fringes. This allows for the recov-

ery of information that is usually lost by the up/down degeneracy of traditional

interferometric techniques. Beyond forked holograms, the same technique can be

used in phase contrast and dark field microscopy, or even in combinations of dif-

ferent techniques simultaneously. A spatial light modulator can be used instead

of having separate phase masks for each imaging modality[172].

Apart from being used in a microscope, orbital angular momentum can also be

exploited in telescopes for the detection of o↵-axis light. The phase discontinuity

caused by a spiral phase plate placed within a telescope blocks on-axis light and

allows for fainter o↵-axis light to be detected [173]. This has proven interesting

to astronomers, who hope to attenuate bright stars in order to look for nearby

planets whose light would otherwise be eclipsed by the star [174, 175].

4.7 Orbital Angular Momentum in Nonlinear and

Quantum Optics

Optical vortices in nonlinear materials are often studied within a Kerr medium. A

Kerr medium is one in which the refractive index changes with the intensity of the

incident light [176], a third-order nonlinear interaction. If the increase in intensity

increases the refractive index, the transmitted beam will self-focus. Conversely, if

the increase in intensity decreases the refractive index, the transmitted beam will

self-defocus as it passes through the medium. In this situation, a beam carrying

OAM, which has an annular intensity, will create a path of high refractive-index

material that can guide a second beam through the Kerr medium [177].
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Another category of nonlinear processes is second-order nonlinear interactions,

where two low-frequency waves, !1 and !2, exchange energy with !3, a higher

frequency wave [176]. Energy conservation requires the frequencies to be related

by !1 + !2 = !3 and momentum conservation requires the momenta to be related

by k1+k2 = k3, where k1, k2, and k3 are the momentum vectors of the three waves

and |k| = !n(!)/c. The conservation of momentum is much more complicated

than energy conservation, because the refractive index, n(w) is a function of the

frequency, w. The various approaches to modify n(!) include temperature and

angle tuning of the crystal, and these lead to di↵erent phase matching conditions.

For example, type I phase matching is where the medium is such that the refractive

indices of all three waves are the same.

A specific example of second-order nonlinear interactions is parametric down con-

version, where the energy from one high-frequency wave is transferred to two

lower-frequency waves. This process is only partially constrained in that the fre-

quencies of !1 and !2 can vary, so long as they sum to give !3, the frequency

of the starting wave [178]. The two emitted beams are each spatially incoherent,

whilst being phase conjugate with respect to each other, leading to quantum en-

tanglement of the spatial modes [163, 179]. The measurement of one photon in a

particular basis collapses the two-photon state and, because of entanglement, im-

mediately gives knowledge about the same basis for the other photon, regardless

of the photons’ spatial separation.

Orbital angular momentum can be used for the encoding of both classical and

quantum information [161]. OAM is potentially useful in quantum cryptography,

as it gives access to an unbounded number of states, in contrast to the two states

associated with SAM, thus greatly increasing the amount of information that can

be transmitted on each photon [180, 181]. Other quantum phenomena explored

with OAM-carrying light include hyperentanglement, multiple variables including

OAM are entangled simultaneously [182], and hybrid entanglement, where there

is entanglement between OAM and a di↵erent variable [183, 184].
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Orbital angular momentum can be used in various tests of quantum mechanics.

As discussed earlier, a Poincaré sphere equivalent exists for OAM, and by drawing

direct analogy with polarisation, it is possible to formulate a Bell-type argument

for OAM that discounts the local hidden-variable theory[185]. Violation of the

Bell inequality has been shown for the case where the phase filter is nonlocal with

respect to the object [171]. In a di↵erent type of test of quantum mechanics using

wedge-shaped apertures and forked holograms, it has also been shown that the

EPR paradox also applies to OAM and angular position [186].

With possibilities for carrying an unbounded state space, OAM presents itself as

an extremely useful tool to increase information capacity in quantum information.

However, a drawback to using OAM is that the decomposition of an OAM-carrying

beam into its eigenstates depends on both its transverse and angular alignment.

Because it is an extended beam, the phase fronts and the OAM spectrum are

sensitive to atmospheric turbulence [186–188]. Despite these sensitivities, OAM

multiplexing has recently been shown to result in very high data rates [189].

4.8 Conclusions

Orbital angular momentum has helped scientists think di↵erently about light and

has led to a number of discoveries both on the microscopic and macroscopic level. It

has proven useful for applications in micromanipulation, imaging, and communica-

tion systems. Knowledge and study of OAM has increased with the development

of spatial light modulators, which have allowed increased control over both the

phase and intensity of light. Orbital angular momentum has also allowed for new

demonstrations of quantum entanglement, and the multi-dimensional OAM basis

set has led to higher numbers of states for encoding of information. A question

that arises is whether information encoded in an OAM basis set would be sta-

ble under transformations. After establishing that both bright and dark regions

of an image can experience slow-light e↵ects (see Chapter 2), I investigate how
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an OAM-carrying beam would experience slow-light e↵ects and what parameters

would a↵ect the amount by which OAM-carrying beams were slowed.



Chapter 5

Rotating Orbital Angular

Momentum

5.1 Introduction

Much of the work in this thesis has involved the rotation of images. Another path

to understanding how an image is rotated is by considering orbital angular mo-

mentum (OAM). When linearly polarised light is transmitted through a spinning

window, the plane of polarisation is rotated. This rotation arises through a phase

change that is applied to the circularly polarised states corresponding to the spin

angular momentum (SAM). Here I show an analogous e↵ect for OAM, where a

di↵erential phase between the positive and negative modes (±`) is observed as a

rotation of the transmitted image. For normal materials, this rotation is on the

order of a micro radian, but by using a slow-light medium, I show a rotation of a

few degrees. I also note that, within the bounds of these experimental parameters,

this rotation angle does not exceed the scale of the spatial features in the beam

profile.

76
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5.2 Magnetic and Mechanical Faraday E↵ects

The magnetic Faraday e↵ect is a well-known phenomenon that occurs when a

light beam passes through a medium subject to a magnetic field, and it has been

studied for over a century [88, 190, 191]. The component of the magnetic field in

the direction of the light propagation causes a rotation of the polarisation state

of the light. This magneto-optical e↵ect has a mechanical analogy, known as the

mechanical Faraday e↵ect, where the rotation of a medium causes a rotation of the

polarisation state of the light passing through it, as discussed in previous chapters

and in [89, 90, 152]. Polarisation rotation through the mechanical Faraday e↵ect

was first observed by Jones in 1976 [79]. In the mechanical Faraday e↵ect, the

rotation of linear polarisation arises from a phase shift between the right- and left-

circularly polarised light that is superimposed to create linearly polarised light.

Polarisation can be represented visually on a Poincaré sphere, as seen in Fig. 4.9a,

and is associated with a spin angular momentum of ±~ per photon.

5.3 Creating Orbital Angular Momentum States

As discussed in Chapter 4, in addition to SAM, light carries another form of an-

gular momentum, which is known as orbital angular momentum and has been

studied in detail for the last 20 years [95, 176]. Beams carrying OAM, such as

Laguerre-Guassian (LG) beams, have a Poynting vector with an azimuthal com-

ponent that corresponds to phase fronts with a helical structure [95], rather than

plane waves. Helical phase fronts can be described by exp(i`�) and carry OAM of

±`~ per photon, where ` is an integer and � is the angular coordinate.

The superposition of right- and left-handed circularly polarised light creates lin-

early polarised light with an orientation determined by the relative phase between

the two beams. In a similar way, the superposition of two LG beams with ±` gives

rise to a petal pattern with 2` petals. Interfering positive ` and negative (` + 1)

LG beams results in 2`+ 1 petals, allowing for the creation of odd petal patterns
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Figure 5.1: Petal patterns created by a superposition of ±` beams. The
second and fourth lines have a phase shift, i, between the +` and �` beams,

causing a 45 degree rotation of the petal pattern.

as well as even ones. A change in the relative phase between the LG beams causes

a rotation of the petal pattern. Analogous to the Poincaré sphere for polarisation

is a Bloch sphere, which can be constructed for OAM using LG beams with ±`

as the polar states [153]. A Bloch sphere for LG beams with ` = ±1 is shown

in Fig. 4.9b. In Fig. 4.9, the states lying along the equator are Hermite-Gaussian

(HG) states with orientations dependent on the relative phase of the ±` polar

states. Figure 5.1 shows the superposition of ` = ±1 and ` = ±2 resulting in

two and four petals respectively, with phase shifts being introduced to show the

rotation of the petal pattern in the second and fourth cases. The mechanical Fara-

day e↵ect, which is related to SAM and rotates the polarisation state of the light,

therefore also rotates the image and is related to OAM.
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5.4 Photon Drag and Slow Light

As discussed earlier, when light enters a translating medium, it is dragged by

that medium. By applying well-known formulas for transverse drag in a rotating

medium, Padgett et al. [90] predicted the angle through which an image should be

rotated and found that the polarisation state and the image are dragged through

the same angle, which implies some equivalence between SAM and OAM.

Making this reasonable but unproven assumption that SAM and OAM are subject

to the same phase change, one can see that the image is dragged by the moving

medium through an angle �✓

image

, as defined in Eq. (1.10). [81, 90]. In most

media, the speed of light is much larger than ⌦Ln
g

; the transit time of light

through the medium (T = L/v

g

) is then very short, which leads to a small angle

of dragging. To increase the angle of rotation, one can increase the transit time of

the light through the medium. As there is a physical limit to the experimentally

realistic length and rotational speed of the medium, the practical method for

increasing transit time is to use a slow-light medium. When the light passes

through a slow-light medium, the transit time increases such that there is a large

angle of dragging [58, 59, 61]. The rotation of polarisation was measured in 1976

by Jones [79]. However image rotation proved much harder to detect, with the first

observation of image rotation occurring 35 years later by using the enhancing e↵ect

of a rotating slow-light medium [61], as discussed in Chapter 1. Slow light is a

complicated phenomenon whose mechanism has been the subject of much debate.

Whereas previous research has investigated questions about general rotational drag

[62, 114, 192], this chapter investigates the rotation of specific superpositions of

LG beams by a rotating medium.

5.5 Methods and Materials

In order to examine the e↵ect of a rotating medium on an OAM-carrying beam,

an 18 W single-mode Verdi laser creates a beam of intense 532 nm laser light
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Figure 5.2: 532 nm light passes through two spherical lenses to be expanded
before arriving at the spatial light modulator (SLM). The beam is then focused
onto the front face of a ruby window, which is spun about its axis by a motor.
The light is imaged from the back of the ruby onto a screen and then captured
by a camera. Petal patterns are made from superpositions of LG beams with
di↵erent l values while the ruby window spins at ±19 Hz. Patterns shown in the
inset are (from left to right) 2 petals from l = ±1; 3 petals from l = (+1,�2);

4 petals from l = ±2; and 5 petals from l = (+2,�3).

with an initial diameter of approximately 4 mm. The beam is expanded by two

spherical lenses with focal lengths of 20 mm and 80 mm, and the expanded beam

is incident upon a Hamamatsu spatial light modulator (SLM). The SLM creates

the desired pattern with careful control of both the phase and intensity of the

light. In this experiment, the SLM creates petal patterns from the superposition

of two opposite handed LG modes, as shown in Fig. 5.1 for 2 and 4 petals, where

the number of petals (N) is given by the di↵erence in the azimuthal mode index

of the two beams. In order to interact evenly with the birefringent ruby crystal as

it spins, the beam passes through a �/4 waveplate to create circularly polarised

light. The beam is focused down onto the front face of a standard laser ruby

crystal (diameter = 10 mm, length = 90 mm) by a 300 mm focal length spherical

lens, as shown in Fig. 5.2.

A stepper motor couples to the ruby mount, and the motor spins the ruby window

about its axis up to ⇡ ±20 rotations per second. A handheld tachometer found

the accuracy of the motor rotation to be 0.05% on the rotation rate in Hz, which

causes negligible errors in our experiments, and I use a standard desktop computer
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to control both the direction and rate of rotation of the ruby. The light is imaged

from the back face of the ruby onto a screen, and a camera collects the image

to display on a monitor. I use standard National Instruments IMAQ pattern

matching software to compare the image under clockwise rotation to that obtained

from anticlockwise. This experiment contained the same experimental di�culties

described in Chapter 2, including intensity requirement, alignment sensitivity, and

image deflection from non-parallel ends of the ruby.

In addition to the IMAQ pattern matching software, I wrote two kinds of pattern

matching software. The first would take the template image and rotate it in small

increments until it matched the live image pattern, reporting this angle as the ro-

tation angle. This method was relatively accurate, although slightly less accurate

than the IMAQ pattern matching software when tested as described below. In the

second method, I unwrapped an annular section of the image and measured the

intensity of each column of the unwrapped image, as shown in Fig. 2.9. The inten-

sities were plotted and the intensity patterns were matched to sinusoidal signals.

As the image rotates, the phase of the sinusoidal figure shifts. By comparing the

phase shift, we can deduce the rotation of the image. The experimental results

from the second pattern matching software I wrote showed less accurate rotation

measurements than other pattern matching softwares tested, and it was therefore

discarded.

The built-in National Instruments LabVIEW IMAQ pattern matching software

was correct to within 0.1�. I determined this by feeding the programme a static

image and then rotating the image manually by a certain angle. By telling the

programme to rotate a static image by a certain angle and comparing that angle to

the measured rotation given by the pattern matching software, I could determine

the accuracy of the software. For example, when rotating the image by 0, 1, 5,

10, 15, 20, and -20 degrees, the LabVIEW pattern matching software measured

rotations of 0, 1.03, 5.07, 10.04, 15.09, 20.05, and -20.03 degrees respectively.

The angles of rotation determined by the pattern matching software were slightly

a↵ected by the di↵erence in rotation between brighter and dimmer regions of the
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Figure 5.3: Image of pattern with 4 petals, shown rotating (a) anticlockwise
and (b) clockwise. A red X is overlaid on the images to show the orientation
of the pattern. (c) Images in a and b are added to show the angle between the

orientation of the images while rotating in di↵erent directions.

image. The slow-light e↵ect is dependent upon intensity [62], resulting in an S-

shaped bending of an elliptical image created from a stretched gaussian beam

as shown in Chapter 2. As the bright regions of the OAM pattern experience

more slowing, and therefore more rotation, than the dimmer regions, the rotations

measured by the pattern matching software may be slight overestimates, if the

reported angle is assumed to be the rotation of the complete pattern, not the

rotation of the centre of mass of the intensity.

5.6 Results and Discussion

All these reported results relate to intensity patterns formed from the superposition

of two beams with OAM indices `1 and `2, resulting in rotationally symmetric
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Figure 5.4: Normalised peak intensity of petal patterns with N = 2 through
8 petals with constant input laser power.

patterns with N = |`1| + |`2| petals, i.e. with N -fold symmetry. In all cases,

I report the rotation angle, which is measured by the di↵erence in orientation

obtained between clockwise and anticlockwise rotation of the ruby through which

the pattern is transmitted.

Because the petal patterns vary in size depending on the value of N , the peak

intensity in each pattern varies for constant input laser power, as shown in Fig. 5.4.

Intensity has a large e↵ect on the slow-light interaction. Figure 5.5 illustrates the

general e↵ect of increasing power on images with di↵erent petal numbers. (Data

shown in Fig. 5.5 was taken to highlight the need for constant intensities between

petal patterns, and as it was collected in one data run, error bars cannot be added.)

To overcome the problem of di↵ering peak intensities for patterns with di↵erent

numbers of petals, the laser power was adjusted between patterns such that the

peak intensity was held constant. The laser power was set to 3.90 W, 4.30 W,

4.68 W, and 5.16 W, for N =2, 3, 4, and 5, respectively, to result in constant

peak intensities in all four patterns in Fig. 5.6, where the rotation angle of the

petal patterns is plotted as a function of rotation speed for various numbers of

petals. The experiment was conducted multiple times, resulting in independent
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Figure 5.5: Rotation angle of petal patterns with N = 2, 4, 6, and 8 petals
as a function of input laser power while rotated at a constant speed.

measurements that were averaged to achieve the most accurate rotation angles.

Errors were calculated by measuring the standard deviation between independent

data collections at each point and are shown in Figs. 5.6 and 5.8. Errors are

not constant, due to the minor image distortion upon rotation that a↵ected some

points more than others.

Firstly, I note that in all cases an increase in N reduces the rotation angle of the

pattern. Secondly, I note that the linear increase in the rotation angle with speed

holds only up to a certain point, after which the angle tends to saturate, and that

this saturation occurs at lower speeds for higher N . Neither of these trends is in

simple agreement with the Jones expression that, by contrast, predicts that the

rotation angle increases linearly with rotational speed and should be unchanged

by the symmetry of the pattern. For any given setup, Jones assumes a constant

n

g

, but in this slow-light system, n
g

is a complicated function of the experimental

parameters, as described below.

These two deviations from the behaviour described by the Jones’s equation (Eq. (1.10))

can be understood in terms of the nature of the slow-light e↵ect. In the original
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Figure 5.6: Rotation angle of petal patterns with N = 2 through 5 petals as
a function of rotational speed while held at constant peak intensity. Patterns
with di↵erent N saturate at di↵erent rotational speeds. Error bars represent

the standard deviations of independent data runs.

slow-light experiments in ruby, the slowing of the light was manifest by the time

delay in the sinusoidally modulated intensity of a beam of light [58]. The slowing

was largest when the modulation frequency was small compared to the ⇡ 4 mil-

lisecond upper-state lifetime of the ruby. I note that, in this rotational case, the

ruby is also subject to a modulated intensity at a frequency equal to the rotation

rate of the medium multiplied by the number of petals in the beam. That is to

say, each time a given part of the ruby crystal rotates into the position of a bright

petal, it will be subject to a high optical intensity, which results in an intensity

modulation that depends upon both the rotational frequency of the ruby and N ,

the petal number. For example, when the ruby is rotating at 10 Hz and is illu-

minated by a N = 2 pattern, each atom in the ruby will experience a fluctuation

in the optical intensity at 20 Hz. I note that the change in the rotation speed

at which the saturation occurs is consistent with this N -dependent modulation

frequency, namely that the saturation frequency scales with the reciprocal of the

number of petals. Whereas N = 2 saturates at ⇡ 20 Hz, N = 3 saturates at ⇡ 13
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Figure 5.7: Images of N =2 through 5 for unsaturated (low rotational fre-
quency, first column) and saturated (high rotational frequency, second column)
modulation frequencies with the ruby spinning anticlockwise (ACW) and clock-

wise (CW).

Hz, N = 4 at ⇡ 10 Hz, and N = 5 at ⇡ 8 Hz, resulting in a modulation frequency

of approximately 40 Hz for all four cases. Representative images are shown in

Fig. 5.7 for N = 2 through 5 in both the unsaturated (low frequency) and sat-

urated (high frequency) modulation while the ruby is rotating anticlockwise and

clockwise.

As seen in Fig. 5.6, at a given rotational speed and peak intensity, patterns with

more petals rotate through a smaller angle than patterns with fewer petals. Instead

of plotting the angle through which the pattern is rotated, I instead plot the

fraction of a petal rotated as a function of speed. Figure 5.8 shows that all of

the patterns rotate less than 0.15 petals, where a rotation of 1.0 petal would

rotate the pattern by 360deg./N , resulting in an identical pattern. The reason

for investigating the fraction of a petal rotated by any given pattern is that if
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Figure 5.8: Fraction of a petal rotated by N = 2 through 5 petals as a function
of rotational speed while held at constant peak intensity. Error bars represent

the standard deviations of independent data runs.

patterns are simply rotated by a fixed amount, rather than a fraction of a petal,

increasing the numbers of petals enough could overcome the reduction in overall

rotation angle, allowing for a pattern with many petals to rotate by a complete 1.0

petal. However, my observations appear to imply that increasing the number of

petals will not result in a pattern where a petal can be completely rotated into an

area of darkness, which would correspond to a rotation of 0.5 petals. Irrespective

of the number of petals or rotation speed, the maximum rotation observed in

this experimental configuration is less than the 0.5 petal distance characterised by

the spatial structure of the beam. Further work should be conducted to determine

whether the restriction on the image rotation is due to an experimental parameter,

such as the di↵ering image size between petal patterns, which a↵ects the peak

intensity of the pattern, or the nature of slow light in ruby.
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5.7 Summary and Conclusions

Theories on slow light in ruby are highly contentious [63, 64], falling primarily

into two models. The first model describes the phenomenon entirely through

simple pulse reshaping and states that slow light is not required to explain the

observed e↵ects [65]. The second model describes slow light in ruby as group

index-dependent process, where the degree of slowing is a complicated function of

the functional form of the light field [82]. The observations herein may be used

to inform the debate on slow light in ruby, as any successful model would need to

account for the results of this experiment. The key features of this work are that

the slow-light e↵ect saturates with the modulation frequency, which is a product

of the spatial feature of the beam profile and the rotation frequency, and that no

petal pattern can rotate through a full spatial feature of the beam profile. These

results also show some evidence that all petal patterns rotate through the same

angle at low frequencies (see the low frequency region of Fig. 5.8).

I have shown the rotation of OAM-carrying beams that is analogous to the po-

larisation rotation related to SAM. The rotation of OAM-carrying beams appears

to be limited to a fraction of a petal, implying an inability to rotate a petal pat-

tern by the angular extent of a petal, regardless of the number of petals in the

beam. These results highlight the complicated nature of slow light in the mechan-

ical Faraday e↵ect for OAM-carrying beams and provide experimental evidence

against which theories of slow light in ruby can be measured.



Chapter 6

Conclusions and Future Work

Slow light has become the focus of much research due to its potential for dra-

matically changing the e↵ective velocity of light. While being able to control the

velocity of light has many potential applications, some of which have already begun

to be realised, the mechanism by which light is slowed in ruby is not well under-

stood. I have conducted careful experimental work to inform our understanding

of slow light in ruby and provide direction for further uses of this phenomenon.

When passing an image through a spinning, self-pumped ruby, I observed rotations

of the bright and dark regions by the same amount. Positions where the input

beam was dark became bright in the output cross section due to azimuthally

dragged light. The observed movement of the bright and dark regions could not be

explained by optical bleaching alone, since such e↵ects cannot lead to an increase

in energy. Such e↵ects could, however, be explained by narrow band absorption

and the associated change in group refractive index. The dark region shows signs

of movement when created by either the shadow of a wire or a ⇡-radian phase

discontinuity, but use of the phase discontinuity leads to more conclusive and

definitive results. The slow-light e↵ect is stronger when the ruby is illuminated by

an elliptical beam rather than a round one, as the elliptical beam causes a stronger

modulation of the ruby.
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It is important to eliminate fluorescence when studying slow light in ruby. The

illumination from fluorescence can mask the actual slow-light e↵ect. With fluo-

rescence present, any observed dragging could not confidently be ascribed to the

e↵ects of slow light in ruby, as I confirmed through a simple model. With flu-

orescence removed and other experimental parameters precisely controlled, the

measured dragging can be studied to learn about the e↵ects of slow light in ruby.

In the experimental work in Chapter 2, the level of laser power used in the ex-

periment does not fully saturate the ruby, due to power limitations of the laser.

This leaves open the question of whether a more powerful laser that could satu-

rate the ruby would increase the slow-light e↵ect and therefore the rotation angle.

Future work should be done in this area to fully understand the exact relationship

between laser power and the slow-light e↵ect in ruby.

All of the work conducted with a rotating ruby relied upon spatial modulation

of the ruby. However, the slow-light e↵ect can also be created in a temporal

domain by illuminating a stationary ruby with a temporally modulated signal.

Investigating slow light in ruby in the temporal domain was useful when examining

a very sharp drop in intensity of the modulating beam. I carefully controlled the

experimental parameters to show the existence of a pronounced tail on the trailing

edge of the transmitted signal due to the light pulse being slowed as it propagates

through the ruby.

Light being delayed beyond the input pulse cuto↵ is not compatible with a sim-

ple model of pulse delay in a time-varying (saturable) absorber. Instead, my

experimental evidence supports a more complicated model of slow light in ruby

that results in a delay of the transmitted optical energy. The results from this

temporally-modulated experiment support the results of my spatially-modulated

experiment described above. A distortion of the pulse shape of the temporally-

modulated signal shows that individual Fourier components of the square-wave

modulated signal are delayed by di↵erent amounts when transmitted through ruby,

a result that supports early investigations of sine-wave modulated signal delays in

ruby.
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After establishing that both bright and dark regions of an image can experience

slow-light e↵ects and that these e↵ects arise from a mechanism more complicated

than simple saturable absorber, I went on to investigate how a more complicated

beam would experience slow-light e↵ects. I briefly studied the rotation of com-

plicated patterns created from simple metal masks. However, to more precisely

understand how the shape of the pattern a↵ects rotation, I then examined the

slow light-enhanced rotation of beams carrying orbital angular momentum.

By studying the rotation of orbital angular momentum-carrying beams, I observed

that the slow-light e↵ect saturates with the modulation frequency, which is a

product of the spatial feature of the beam profile and the rotation frequency. The

rotation of orbital angular momentum-carrying beams appears to be limited to a

fraction of a petal, implying an inability to rotate a petal pattern by the angular

extent of a full petal, regardless of the number of petals in the beam. The degree

of slowing is therefore seen to be a complicated function of the form of the light

field, an e↵ect not predicted by previously suggested theories.

The experimental observations made in this thesis may be used to inform the

debate on slow light in ruby. These results highlight the complex nature of slow

light and provide experimental evidence against which theories of slow light in ruby

can be measured. The results presented in this thesis further the understanding of

the mechanisms that cause slow light and pave the way for applications dependent

on the preservation of complex patterns in slow-light media.

There is still much exciting work to be done in this area, which would both help

us gain a deeper understanding of slow light in ruby and provide possible new

applications. One possible application that should be investigated is the use of

ruby as a slow-light medium to increase the sensitivity of an interferometer. A

brief section containing my initial work on a slow light-enhanced interferometer

is included in Appendix B. The largest challenge with the slow light-enhanced

interferometer experiment is the experimental sensitivity to alignment. If the

alignment issues were solved, this could potentially become an application with

many uses.
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Another interesting experiment to conduct following my work with ruby would be

to investigate rotary image drag in alexandrite. Ruby acts as a slow-light medium

when modulated at low frequencies, but at high frequencies, the slow-light e↵ect

disappears. Alexandrite also acts as a slow-light medium when modulated at low

frequencies. However, when modulated at high frequencies, alexandrite becomes a

fast-light medium. Recreating the rotary photon drag experiment with alexandrite

would then, theoretically, allow for an observation of the image rotation in the

opposite direction from that in which the bar would be rotating.

Finally, as my thesis focused on learning about the variables that a↵ect slow light

in ruby and attempting to di↵erentiate between proposed mechanisms, there is

now much information available for a future project to create a complete theory

for how ruby slows the e↵ective velocity of the light by such a large amount.



Appendix A

Slow Light Interferometer

A suggested experimental setup for increasing the sensitivity of a Sagnac interfer-

ometer is as follows. As shown in Fig. A.1, 3 W of linearly polarised 532 nm light

passes through a nonpolarising beamsplitter. The light travels in both directions

around a Sagnac interferometer. In one arm of the interferometer, a spherical 50

mm lens focuses the light into a 4-mm-thick ruby window from each direction. The

lenses and ruby are mounted on a moveable stage. When pumped with 532 nm

light, the ruby acts as a slow-light medium, and thus as the light passes through

the ruby window, its group velocity is e↵ectively slowed to hundreds of meters

per second. The ruby and lenses are propelled along the stage, moving longitudi-

nally along the path of the propagating light. The interference pattern from the

recombined clockwise and counterclockwise light is collected on a CCD array and

recorded for subsequent analysis.

The larger the velocity of the stage, the longer the light traveling in the same

direction as the ruby spends in the ruby. Conversely, the light traveling in the

opposite direction of the stage spends a shorter time in the ruby the faster the

stage is travelling. Thus, a large velocity will maximise the di↵erence in the two

e↵ective path lengths, resulting in a large change in the relative phases. A shift

in the relative phases results in a change in the interference fringes, which can be

observed and measured on a CCD.
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Figure A.1: A 3 W beam of 532 nm light passes in both directions around a
Sagnac interferometer. The light is focused on a ruby window, which moves lon-
gitudinally along one arm of the interferometer. Light passing clockwise through
the interferometer spends less time in the ruby than light passing counterclock-
wise through the interferometer. The interference pattern of the recombined
light is imaged onto a camera. Red (633 nm) laser light follows the same path

as the 532 nm light and is viewed on the same camera.

A large velocity would create a large di↵erence between the two path lengths

and thus between the phases of the two beams. However, if that velocity were

constant, there would be a constant di↵erence between the phases. A constant

phase di↵erence would just look like a stationary fringe pattern. Therefore, I

investigate the period when the stage is accelerating. The faster the velocity

changes, the more quickly the fringes move. By recording high speed video, the

movement of fringes could be tracked even when they are shifting quickly.

As deflection and misalignment can easily obscure the desired results in this ex-

periment, a large acceleration is critical. The faster the acceleration, the faster

the fringes would move, allowing for the a large fringe movement to be captured
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over a shorter amount of time. Greater acceleration would therefore reduce the

amount of displacement experienced by the fringes due to misalignment.

Because the slow-light e↵ect only occurs when green light interacts with the ruby,

a red (633 nm) laser beam could be coupled into the interferometer as well. As

the red light would not be slowed by the ruby, the red fringes could be used as

a control against which the motion of the green fringes can be compared. As the

green and red fringes would both be a↵ected in the same way by the motion of

the ruby, that motion could be corrected for in the green fringes, leaving only the

change in fringes due to the slow-light e↵ect.

I explored a few initial methods of moving the ruby along the arm of the interfer-

ometer. The first method I investigated involved connecting the stage containing

the lenses and ruby to rails and a strong spring. The stage was pulled back and

then released, and the fringes were recorded as the stage was pulled along the rails

by the spring. This method provided a large acceleration, its greatest benefit.

However, this method also had a major drawback. The alignment of the interfer-

ometer is crucial. The interferometer has to be aligned such that the laser in both

directions travels along exactly the same path as the ruby on the rails. As the

ruby moves along the rails, even the slightest misalignment will disrupt the fringes

to a large enough degree to render the desired e↵ect unmeasurable. The use of

a spring resulted in a large acceleration, however in addition to the di�culty in

alignment, the spring did not pull the stage evenly, causing a misalignment of the

stage as it moved along the rails. The alignment problems, both from aligning the

interferometer and from the uneven pulling of the stage, were great enough that

this method was discarded.

In an attempt to achieve a large acceleration, the stage with the ruby and lenses

was then mounted vertically. The entire interferometer was placed on end, so that

the ruby would fall along one arm of the interferometer simply under the force of

gravity.
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The main flaw with the experimental setup where the ruby falls with an acceler-

ation due to gravity is that the ruby travels a long distance, where even a slight

misalignment would result in a large deflection of the fringes. One potential solu-

tion for reducing the misalignment of the system involves the use of a piezoelectric

material. A piezoelectric material is a specific type of electrostrictive material, a

material that will compress with the application of electrical current. Piezoelectric

materials will also, inversely, generate an electrical current when subjected to an

applied force. By applying an alternating current, the piezoelectric material could

be driven in a resonant way, resulting in a very fast compression/relaxation cycle.

In order to reach the acceleration needed, the piezoelectric material would need to

be driven at a very high frequency, as the distance over which it would be moving

is very small.

To determine how fast the ruby would need to travel to measure a fringe movement,

I consider that when the ruby is accelerating, the fringes will shift as the path

lengths change. Ideally, the fringes would move by one wavelength, that is one

maxima will shift to the position of the next maxima. To calculate the required

speed, I use the following equation:

�� =
v

r

Ln

g

n

�

c�

. (A.1)

In Eq. A.1, �� is the change in phase due to the path length di↵erence, v
r

and

L are the velocity and length of the ruby, and n

g

and n

�

are the group and phase

indices of the ruby. Rearranging Eq. A.1 for the velocity of the ruby gives

v

r

=
��c�

Ln

g

n

�

, (A.2)

and by substituting in Eq. 1.5, the result is

v

r

=
��v

g

�

Ln

�

. (A.3)
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A fringe movement of one wavelength would occur when �� = 2⇡. Under the

correct experimental parameters, ruby has an expected n

g

⇡ 105 resulting in

v

g

⇡ 3000. Calculations using � = 532nm, L = 4 ⇥ 10�3m and n

�

= 1.5 show

that the ruby would have to reach a velocity of approximately 1.67 m/s to see a

fringe movement of one wavelength. For comparison, with a piece of glass in one

arm of the interferometer instead of ruby, in order to see a fringe movement of one

wavelength, the glass would have to travel at approximately 1.1 ⇥ 105 m/s. At

1.67 m/s, a glass bar would only cause a displacement of approximately 0.015%

of a fringe.

Initial experimental work was conducted, and a video of the recombined light from

the interferometer was recorded, with representative images from the video taken

with the dropping method shown in Fig. A.2.

In initial experimental results, both the red and green fringes experience some

wobbling due to the motion of the stage. However, as can be seen in Fig. A.2,

there is a marked increase in movement of the green fringes with comparison to

the red, with the green fringes shifting by approximately 0.7 wavelengths, which

agrees with my calculation that the stage in this experiment reached a maximum

velocity of just above 1 m/s. It has been shown experimentally that the conditions

required for slowing light are quite specific, and alignment of the lenses focusing

into the ruby is very sensitive [58]. If misaligned, the light does not experience a

strong slow-light e↵ect. By maximising the experimental conditions required for

a stronger slow-light e↵ect, i.e. much slower propagation of the 532 nm laser light

through the ruby, the sensitivity of the spectrometer could be increased even more.

In other experiments (see Chapter 2) I have reached e↵ective group velocities of

approximately 8.3 m/s. If one was able to achieve that large of a slow-light e↵ect

with this setup, the sensitivity could be increased by about 99.7 percent. With

current velocity limits, this would still be an increase from 0.7 fringe wavelength

movements to over 200 fringe wavelength movements. In the future, a high-speed

camera could be used to track the position of the ruby and calculate its exact

speed.
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a

b

c

Figure A.2: Fringe positions (a) while the ruby was stationary, (b) while the
ruby was accelerating, and (c) while the ruby was moving at its highest velocity.
Green fringes are seen to shift by approximately 0.7 fringes, while red fringes
do not. Red and green reference lines are added in all three images at the same

position and orientation to show the relative movement of the fringes.

The main drawbacks to this experiment has been the sensitivity of the alignment

for the slow-light e↵ect to occur and the potential for misalignment while the ruby

is moving. These results are preliminary, and further work on this topic would

have to be conducted to eliminate all sources of possible error before any decisive

claims could be made about the exact e↵ect of the slow-light material on the

interferometric sensitivity.



Appendix B

Additional Rotated Patterns

a b

Figure B.1: Rotation of pattern of an E made by a metal mask. Images shown
were taken when the ruby was rotating (a) anticlockwise and (b) clockwise.

a b

Figure B.2: Rotation of pattern made by a metal mask. Images shown were
taken when the ruby was rotating (a) anticlockwise and (b) clockwise.
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a b

Figure B.3: Rotation of a square pattern made by a metal mask. Images
shown were taken when the ruby was rotating (a) anticlockwise and (b) clock-

wise.

a b

Figure B.4: Rotation of a pattern of horizontal lines made by a metal mask.
Images shown were taken when the ruby was rotating (a) anticlockwise and (b)

clockwise.
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a b

Figure B.5: Rotation of a pattern of vertical lines made by a metal mask.
Images shown were taken when the ruby was rotating (a) anticlockwise and (b)

clockwise.
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[181] G Molina-Terriza, A Vaziri, J Řeháček, Z Hradil, and A Zeilinger. Triggered

qutrits for quantum communication protocols. Physical Review Letters, 92

(16):167903, 2004.



Bibliography 121

[182] Julio T Barreiro, Nathan K Langford, Nicholas A Peters, and Paul G Kwiat.

Generation of hyperentangled photon pairs. Physical Review Letters, 95(26):

260501, December 2005.

[183] E Nagali, F. Sciarrino, F D Martini, L Marrucci, B Piccirillo, E Karimi, and

E Santamato. Quantum information transfer from spin to orbital angular

momentum of photons. Physical Review Letters, 103:013601, 2009.

[184] Ebrahim Karimi, Jonathan Leach, Sergei Slussarenko, Bruno Piccirillo,

Lorenzo Marrucci, Lixiang Chen, Weilong She, Sonja Franke-Arnold, Miles

Padgett, and Enrico Santamato. Spin-orbit hybrid entanglement of photons

and quantum contextuality. Physical Review A, 82(2):02215, August 2010.

[185] Jonathan Leach, Barry Jack, J Romero, Monika Ritsch-Marte, Robert W

Boyd, A K Jha, Stephen M Barnett, Sonja Franke-Arnold, and Miles J

Padgett. Violation of a bell inequality in two-dimensional orbital angular

momentum state-spaces. Optics Express, 17(10):8287–8293, 2009.

[186] Jonathan Leach, Barry Jack, J Romero, A K Jha, A M Yao, Sonja Franke-

Arnold, D G Ireland, Robert W Boyd, Stephen M Barnett, and Miles J

Padgett. Quantum correlations in optical angle-orbital angular momentum

variables. Science, 329(5992):662–665, August 2010.

[187] J Romero, Jonathan Leach, Barry Jack, Mark R Dennis, Sonja Franke-

Arnold, Stephen M Barnett, and Miles Padgett. Entangled optical vortex

links. Physical Review Letters, 106(10):100407, March 2011.

[188] V. D. Salakhutdinov, E R Eliel, and W Lö✏er. Full-field quantum correla-
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