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Abstract 

In the last decade, miniaturised “lab-on-a-chip” (LOC) devices have attracted significant 

interest in academia and industry. LOC sensors for electrochemical analysis now commonly 

reach picomolar in sensitivities, using only microliter-sized samples. One of the major 

drawbacks of this platform is the diffusion layer that appears as a limiting factor for the 

sensitivity level. In this thesis, a new technique was developed to enhance the sensitivity of 

electroanalytical sensors by increasing the mass transfer in the medium. The final device 

design was to be used for early detection of cancer diseases which causes bleeding in the 

digestive system. The diagnostic device was proposed to give reliable and repeatable results 

by additional modifications on its design. 

The sensitivity enhanced-sensor model was achieved by combining the surface acoustic wave 

(SAW) technology with the electroanalytical sensing platform. The technique was practically 

tested on a diagnostic device model and a biosensing platform. 

A novel, substrate (TMB) based label-free Hb sensing method is developed and tested. 

Moreover, the technique was further developed by changing the sensing process. Instead of 

forming the sensitive layer on the electrodes it was localised on polystyrene wells by a rapid 

one-step process. 

Results showed that the use of acoustic streaming, generated by SAW, increases the current 

flow and improves the sensitivity of amperometric sensors by a factor of 6 while only 

requiring microliter scale sample volumes. The heating and streaming induced by the SAW 

removes the small random contributions made by the natural convection and temperature 

variation which complicate the measurements. Therefore, the method offers stabilised 

conditions for more reliable and repeatable measurements. 

The label-free detection technique proved to be giving relevant data, according to the 

hemoglobin concentration. It has fewer steps than ELISA and has only one antibody. 

Therefore, it is quick and the cross-reactivity of the second antibody is eliminated from the 

system.  The additional modifications made on the technique decreased the time to prepare 

the sensing platform because the passivation steps (i.e., pegylation), prior to structuring a 

sensitive layer were ignored. This avoidance also increased the reliability and repeatability of 

the measurements. 
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particle resides in the confocal volume. With knowledge of the volume dimensions, information 
on the speed of the fluid flow can be determined. Moreover, the function provides information 
about the concentration of the material in the sample. ..................................................................................... 80 

Figure 3. 24  FCS results obtained at the height of 110 µm in a 3ul droplet located on a coverslip 
substrate. The produced sound waves were travelling through the surface of the piezoelectric 
material and coupling to the glass slide through a gel interface. The frequency applied to the 
SFIDT was 11.7 MHz and the input power was varied; 0 W (red), 0.05W (purple), 0.08W (green), 
0.13 W (turquoise) and 0.2W (blue). Left: Measured auto-correlation functions for 100 nm 
fluorescent microspheres driven by fluid flow. Right: The flow velocities (square) calculated from 
the τ-flow values obtained from the fitted auto-correlation function. A curve (solid line), varying 
according to the power                             , is fitted on the experimental 
data. ........................................................................................................................................................................................... 81 

Figure 3. 25  FCS results obtained in a 3ul droplet, at different heights; 100 µm (blue), 200 µm (purple), 
300 µm (green) and 400 µm (red). Left: Measured auto-correlation functions for 100 nm 
fluorescent microspheres driven by fluid flow. Right: The flow velocities (square) calculated from 
the τ-flow values obtained from the fitted auto-correlation function. The frequency of the signal 
applied on SAW IDT was 11.7 MHz, and the input power was 0.13 W. ...................................................... 82 

Figure 3. 26  SAW induced streaming measurements on droplets in different volumes (from 1 to 10 µl). 
The velocity reached to maximum level, 13.8 (+/- 3.7) mm/s, when the droplet size was around 8 
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µl. The SAW streaming performed with a fixed frequency (9.2 MHz) and power (0.16 W). The 
centre of the droplets were localised 5 mm away from the SAW transducer. Error bars presents 
the standard deviation obtain from the average speeds measured in three tests. ................................ 83 

Figure 3. 27  The graphic shows the SAW (9.2 MHz, 0.16 W) induced flow pattern inside a 3 μl droplet. 
µ-PIV measurements give the 2D velocity profile at 200 µm high from the substrate surface. 
Asymmetric excitation of the droplet created an angular momentum. The streaming was reached 
up to 3.5 mm/s thanks to the vortex created by SAW streaming radiated from the 29 finger 
SFIDT. ....................................................................................................................................................................................... 84 

Figure 3. 28  Speed measurements obtained at various heights (66, 206, 346, 486, 626, 766 µm) inside 
a 3 µl droplet. The vortex was obtained thanks to the SAW (0.16 W and 9.2 MHz) beam radiating 
from the side of the droplet. The error bars represent the standard deviation obtained from three 
independent experiments at each height level. ..................................................................................................... 84 

Figure 3. 29  Velocity graph obtained by the velocity patterns received from µ-PIV measurements. SAW 
induction into the sensing chamber was performed at various powers; 0.5W (diamond), 0.79W 
(square), 1W (triangle), 1.26W (circle) and 1,59W (star). The graphic presents the observed 
horizontal velocities at different radius inside the cylindrical PDMS chamber. ..................................... 86 

Figure 3. 30  Rotational flow velocity graph: measured inside the PDMS chamber at five different SAW 
power using a µ-PIV system. The data are fitted well with a Hill function model (Vmax = 
258.37396, k = 0.60792 n = 3.91659). The inset shows an example streaming pattern observed at 
0.5 W SAW power. The height of the measurement plane was 366µm from the surface. The 
physical depth of the focus of the µPIV system was 16.27µm. ....................................................................... 86 

Figure 4. 1  Image of several "SAW enhanced electroanalysis platforms" fabricated on the same 
substrate (128˚ Y-cut X-propagating 3 inch transparent LiNbO3, c=3996 ms−1). Metal structures 
were obtained by lifting the UV patterned S1818 layer (scale bar, 10mm). ............................................ 89 

Figure 4. 2  Transport of ferrocyanide toward the electrode surface and the oxidation of ferrocyanide 
to ferricyanide (Fe(CN)6

3-) following the transport of ferricyanide away from the surface. ............ 91 
Figure 4. 3  Concentration gradients of ferrocyanide (Red) and ferricyanide (blue) on the electrode 

surface. The first graph depicts the stabilised concentrations, at the distances from the electrode 
surface, before the application of potential (t=0). After applying the potential, the concentration 
of ferrocyanide drops to zero at the electrode surface, and it starts to diffuse toward the 
electrode. The longer the potential is applied, the thicker the diffusion layer through which the 
diffusion process continues. The extent of the diffusions layer, at the time "t3" is presented with 
the dashed red line. ............................................................................................................................................................ 91 

Figure 4. 4  Schematic of a rotating disc electrode (RDE) mechanism (Arrows indicate the direction of 
fluid). The flow created by the rotation drags fresh material towards the surface of the electrode 
to react. .................................................................................................................................................................................... 94 

Figure 4. 6  The energy distribution of molecules, depending on the temperature variation. Increasing 
the temperature, from T1 to T2, prepares more molecules with enough energy to react. This extra 
fraction of molecules is represented by the green shaded area in the graph. Therefore, more 
molecules can overcome the activation energy (Ea). This increases the reaction rate. ...................... 97 

Figure 4. 7  Image and schematic of the superstrate based electrochemical sensor chip. The system is 
designed to perform analyses in sample droplets. The microchip comprises of a sensing platform 
and a SAW platform. The superstrate design is obtained by coupling two separate systems. A 
water-based gel interface (approximately 50-μm thick) was used for the attachment of sensing 
platform on to the primary substrate (SAW platform) [45]. Three μl of water-based gel layer (KY 
Jelly; Johnson and John- son) was spread manually between two layers. ................................................. 98 

Figure 4. 8  Top: Image (scale bar, 2mm) of the substrate based design (SAW enhanced electroanalysis 
platform). Both the sensing system and the SAW device were fabricated on the same LiNbO3 

wafer. Circular sensor model consisted of a reference electrode (RE), working electrode (WE), 
and counter electrode (CE).  A PDMS cube (W: 4.5 mm, L: 4.5 mm, H: 3.5 mm), with hole in it (1.7 
mm radius), was coupled to the sensor (first from the top) as the sample chamber. Bottom: 
Schematic representation of a close-up on the SAW radiation into the PDMS chamber. SAW was 
performed at 12 MHz frequency. Propagated waves were radiating from the left side of the 
chamber.  Longitudinal pressure waves inside the liquid were creating the streaming effect 
[47][109]. (The depiction is not to scale.) ................................................................................................................ 99 

Figure 4. 9  Comparison of CV (at 0.1 V/s scan rate between -0.4 and 0.6 V) results without (square) 
and with SAW (solid line) streaming. The concentration of the ferrocyanide solutions was 20 mM 
(in 100 mM KCl). The area of the straight electrodes used in the system was 0.19 mm2

. The 
streaming for the hydrodynamic mode was obtained by the propagating mechanical waves 
obtained at the frequency of 11.73 MHz with 4 W of power. Enhanced mass transport rates 
helped to improve the amount of material which was being included in the electrochemical 
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reaction during the application of triangle CV voltage. Thus, the diffusive peak current was 
increased from 12.1 μA to 43.2 μA. .......................................................................................................................... 101 

Figure 4. 10  Comparison of steady state currents obtained from voltammetry results in the absence 
(black square) and presence (red circle) of SAW (11.73 MHz) streaming. The superstrate based 
platform with a hydrophilic droplet trap was used in the test. The sample solution contained 20 
mM ferrocyanide and 100 mM KCl. RF power of the SAW signal was increased from 0 W to 3.98 
W. ............................................................................................................................................................................................. 102 

Figure 4. 11  CV measurements performed in SU8 electroanalytical chambers with and without SAW 
enhancement. Voltammograms obtained from 10 mM ferrocyanide sample (in 100 mM KCl 
containing water). The voltage applied (scan rate: 0.1 V/s) during the CV tests was between -0.4 
V and 0.6 V vs. a pseudo gold reference electrode. Applied power levels of the SAW (11.73 MHz) 
propagation were; 0 W (black square), 0.8 W (red circle), 2.51 W (blue up triangle) and 4 W (pink 
down triangle). The area of the straight electrodes used in the system was 0.13 mm2. .................. 103 

Figure 4. 12  Diffusive peak current values obtained from ferrocyanide solution at different 
concentrations; 5 mM (square), 10 mM (circle), 20 mM (up triangle) and 40 mM (down triangle), 
in KCl (100mM). CV measurements performed in SU8 electroanalytical chambers (see in previous 
figure). The voltage applied (scan rate: 0.1 V/s) during the CV tests was between -0.4 V and 0.6 V 
vs. a pseudo gold reference electrode. The power of the applied sine wave was increased from 0 
to 4 W while the frequency was kept at 11.73 MHz. ........................................................................................ 104 

Figure 4. 13  Diffusive peak current variation according to the applied three different SAW power; 0 W 
(blue square), 0.8 W (red circle), 4 W (green triangle). CV measurements performed in SU8 
electroanalytical chambers (see in previous figure) potassium ferrocyanide solutions. The 
concentration of the potassium ferrocyanide solutions were; 5, 10, 20, and 40mM. The voltage 
applied (scan rate: 0.1 V/s) during the CV tests was between -0.4 V and 0.6 V vs. a pseudo gold 
reference electrode. The power of the applied sine wave was increased from 0 to 4 W while the 
frequency was kept at 11.73 MHz. ............................................................................................................................ 105 

Figure 4. 14  Amperometric tests for the frequency optimisation of the substrate based SAW platform 
(see in Figure 4. 8). Various SAW frequencies (half filled circle) were applied on 5 mM potassium 
ferrocyanide aqueous KCl (100 mM) solution (square). The frequency scanning process of a 
slanted SAW transducer can be seen in Figure 3. 9. A different SAW frequency, between 6 and 17 
MHz, was applied on the slanted SAW transducer for each tests period. The potential (0.2 V) was 
applied to the three electrode sensing system for 3 seconds for each experiment. Highest current 
enhancement is obtained at 12 MHz. ...................................................................................................................... 107 

Figure 4. 15  Voltammetric graphs of 10 mM ferrocyanide in 100 mM KCl in the absence and the 
presence of SAW streaming. Applied SAW powers were 0 W (square), 0.25 W (circle), 0.8 W 
(triangle), 1.6 W (diamond). The Hydrodynamic effect induced by the 1.6 W SAW power 
increased the limited current from 17.91 µA to 32.31 µA. All the measurements were conducted 
between -0.3 V and 0.4 V potential ranges vs. gold reference electrode. The scan rate was 0.1 V/s. 
Prior to replacement of the new sample, the electrodes were washed firstly with water and then 
with the following sample with SAW propagation (1.6 W). Then the actual test sample was being 
filled into the sensing chamber for measurement. ............................................................................................ 108 

Figure 4. 16  Diffusive peak current values obtained from the CV measurements made with the 
substrate based device. Measurements were performed on 20 µl samples which included four 
different potassium ferrocyanide concentrations (5, 10, 20, 40mM) in a 100mM KCl supporting 
electrolyte buffer. The electrode system was comprised of three circular gold electrodes with the 
surface area of 0.663mm2. The experiments were continued at various SAW powers from 0 to 1.6 
W. ............................................................................................................................................................................................. 109 

Figure 4. 17  Diffusive peak current variation according to the tested four different ferrocyanide 
concentrations (5, 10, 20, 40 mM) in a 100mM KCl supporting electrolyte buffer. The graph 
presents the results obtained without SAW streaming (square) and with SAW streaming at two 
RF power 0.5 W (Up triangle) and 1.6 W (Right triangle). ............................................................................ 110 

Figure 4. 18  Chronoamperometry tests inside the PDMS chamber. These results present the current 
enhancements obtained due to the SAW induced streaming in a PDMS sensing chamber. The 
experiment series were made on a substrate based device platform. Measurements were 
performed on 20 µl samples at four different potassium ferrocyanide concentrations (5, 10, 20, 
40 mM) in a 100mM KCl supporting electrolyte buffer. The electrode system was comprised of 
three circular gold electrodes with a surface area of 0.663 mm2. Amperometric measurements 
were performed at 0.2 V potential for 20 seconds. After the first tests had been carried out while 
the SAW transducer was off, experiments were continued at various SAW powers (0.25, 0.53, 0.8, 
1, 1.26, 1.6 W). Prior to the introduction of a new sample, the electrodes were washed firstly with 
water and then with the following sample with SAW propagation (1.6 W). Then the actual test 
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sample was filled into the sensing chamber for measurement. Results show that the SAW induced 
amperometry can be used for enhancing the sensitivity of electroanalytical systems. ................... 111 

Figure 4. 19  Steady-state currents obtained from chronoamperometry measurements. The graphic 
presents triple test results achieved by four different  ferrocyanide concentrations (5, 10, 20, 40 
mM) in a 100mM KCl supporting electrolyte buffer solution at various SAW powers; 0, 0.25, 0.5, 
0.8, 1, 1.26, 1.6 W. Increased SAW power resulted in higher current values due to the enhanced 
ion transfer towards the electrode surface. ......................................................................................................... 112 

Figure 4. 20  Currents measured at steady state during the amperometric tests. The graph shows how 
the measured current changed when increasing the ferrocyanide concentration, in the stationary 
case (Black) and in two separate, 0.53 (Green) and 1.58W (Blue), SAW induced hydrodynamic 
cases. ...................................................................................................................................................................................... 113 

Figure 4. 21  The effect of increased shear stress on hydrodynamic amperometry measurements. This 
graphics demonstrates the change in SAW induced hydrodynamic effect, on amperometry 
measurements, when the fluid sample touches to the top of the chamber cover. Two sets of 
measurements were performed, with a same amount of sample (20 µl), in two different cases. In 
the first case, the height of the PDMS chamber was 3.5 mm (black square) and it was reduced to 2 
mm (red circle) in the following case. Outcomes showed that the hydrodynamic effect in the 
short chamber was lower comparing to the high chamber which had an air gap between the 
cover and the sample. SAW transmission from sample to the surrounding rigid surfaces and the 
shear stress was increased because of the increased liquid-rigid surface interface. The 
amperometric current was decreased due to the decayed acoustic streaming. .................................. 114 

Figure 4. 22  Koutecky–Levich plot for different molarities of ferrocyanide; 5 mM (square), 10 mM 
(circle), 20 mM (triangle) and 40 mM (diamond). The values are obtained from the amperometry 
tests performed at 0.2 V potential.  Rotation values obtained from the PIV measurements at 
different SAW power were used for the plotting. .............................................................................................. 115 

Figure 4. 23  The amperometric steady state achievement time graph at stationary (diamond) and 
hydrodynamic modes (triangle). Inset: The amperometry graph of 10mM solution presents how 
the timings were defined in stagnant (square) and hydrodynamic (circle) solutions. 
Measurements performed on four different ferrocyanide solutions (5, 10, 20, 40 mM in 100mM 
KCl) for 60 seconds while the external mixing was active and for 130 seconds in the stationary 
mode. The fluid streaming was activated by the propagation of SAW at 12 MHz frequency and 
1.6W of power. Hydrodynamic mode measurements enabled the rapid establishment of the 
steady state diffusion limited current. Acoustic mixing effect inside the reaction chamber was 
decreased the time for steady state case from 10-14 to 0.2-0.5 seconds. This offers a faster 
determination of the substance concentration in the sample. ..................................................................... 116 

Figure 4. 24  Amperometric graphs, presenting the noise absorption of PDMS walls. SAW streaming 
was applied, by SIDT transducer, at three different frequencies (12 MHz, 13 MHz and 14 MHz) on 
5 mM ferrocyanide (with 100mM KCl) samples. The potential (0.2 V) was applied to the three 
electrode sensing system for 3 seconds for each experiment. First test series was performed on a 
5 µl droplet pinned on the electrode surface (vertical bars). The second experiment carried out 
on the same system however the sample was 20 µl and most importantly located inside a PDMS 
chamber (square). ............................................................................................................................................................ 118 

Figure 4. 25  Experimental setup for the measurement of the temperature variation on the SAW 
induced system. An IR (FLIR E60bx) camera was used to observe the temperature variation 
inside the droplet and PDMS chamber. .................................................................................................................. 120 

Figure 4. 26  SAW induced heating in the droplet (5 µl sample - black square symbol) and PDMS 
chamber (20 µl sample - red circle symbol). Measurements performed in the substrate based 
design. PDMS chamber created more heat generation than the droplet-based system................... 120 

Figure 4. 27  The effect of temperature variation on CV analysis. The voltage applied (scan rate: 0.1 
V/s) during the CV tests was between -0.4 V and 0.6 V vs. a pseudo gold reference electrode. The 
voltammogram obtained at 26.6 ˚C (solid line) presented a lower current flow comparing to the 
one performed at 32.9 ˚C (dashed line). This was received due to the increased amount of 
energised molecules in the second solution. Therefore, more molecules were able to pass through 
the reaction process. More reaction created more electron flow. Any other parameters of the CV 
tests were the same apart from the temperature variation. The 5 µl sample contained 10 mM 
potassium ferrocyanide and 100 mM KCl. The device was a single piece design without any 
additional superstrate attachment. .......................................................................................................................... 122 

Figure 4. 28  The effect of heat variation on CV measurements. The graphic presents the enhancement 
of the diffusive peak current due to the increasing temperature. The measurements were 
performed on the circular electrode system fabricated on glass slides. The voltage range applied 
(scan rate: 0.1 V/s) during the CV tests was between -0.4 V and 0.6 V vs. a pseudo gold reference 
electrode. The temperature of the system was controlled via a hot plate.  The heating effect 
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presented an enhancement of the diffusive peak current of voltammetry measurements. An IR 
(FLIR E60bx) camera was used to observe the temperature variation inside the droplet............. 123 

Figure 4. 30 Amperometric curves obtained at different acoustic streaming speeds. Applied SAW 
powers, in the presented plot, were 0 W (square), 0.25 W (circle), 0.8 W (up triangle) and 1.6 W 
(down triangle). ................................................................................................................................................................ 124 

Figure 4. 31  The effect of temperature increment in SAW induced hydrodynamic amperometry. 
Measurements were performed with the substrate based system on 10 mM ferrocyanide 
solution. The first graph (circle) was obtained by varying the temperature of the system via a hot 
plate. The second graph (square) was obtained by running amperometric measurements while 
the SAW propagation was activated. SAW was produced at 12 MHz with varying power values (0 
µA to 1. 6 W). The error bars represent the standard deviation of three experiments. Induction of 
SAW streaming, at 1.58 W, increases the stationery mode current from 4.14 to 22.42 µA. The 
enhancement lead by the heating, induced by SAW radiation, comprises 5 % of the total 
enhancement created by SAW streaming. ............................................................................................................ 125 

Figure 4. 32  Amperometric test results present the effect of direct SAW interference on the 
measurements. Various SAW frequencies (half filled circle) ranging from 10 MHz to 15 MHz (1 
W) were applied to two different samples; 5 mM Potassium ferrocyanide (with 100 mM KCl) 
(square) and 100 mM KCl (up triangle). The amperometric voltage (0.2 V) was applied for 3 
seconds in each experiment. ....................................................................................................................................... 127 

Figure 4. 33  Amperometric test results presenting the effect of direct SAW interference on the 
measurements. Various SAW frequencies (half filled circle) ranging from 10 MHz to 15 MHz (1 
W) were applied to three different samples; 100 mM KCl (up triangle), pure water (down 
triangle) and dry chamber (diamond). Measurements performed in the dry chamber also 
presented a current flow because of the charging effect of the mechanical waves on the sensing 
electrodes. ........................................................................................................................................................................... 128 

Figure 5. 1  Final electroanalytical system setup. A signal (triangle or a constant signal) is produced by 
the LabVIEW interface and a data acquisition device (NI DAQpad-6015), and sent to the sensing 
chamber via the potentiostat circuit. Signal output is obtained back from the sensor by the 
potentiostat and sent to the PC through the DAQpad. Finally, the results are observed on the 
LabVIEW interface screen. ........................................................................................................................................... 132 

Figure 5. 2  Voltammograms (scan rate: 50mV/s) obtained from the batch condition Hb 
electroanalytical tests. The inset presents the oxidative currents obtained at 0.2 V. Measurements 
were performed on different Hb concentrations; 5 mg/ml (down triangle), 0.5 mg/ml (up 
triangle), 0.05mg/ml (circle) and 0 mg /ml (square) mixed with the TMB system (including 
10mM KCl as the supporting electrolyte) ............................................................................................................. 135 

Figure 5. 3  Absorbance measurement (400 nm) conducted on TMB - Hb interaction in the absence 
(Left) and the existence (Right) of antibody (15 mM). The batch condition tests were performed 
by mixing different Hb molarities (1, 0.46, 2.3, 46 µM) with the same amount (volume) of the 
TMB-H2O2 substrate system. ....................................................................................................................................... 136 

Figure 5. 4  Voltammogram obtained during PPy growth on the gold electrode surface. Twelve scan CV 
performed with 0.05 V/s scan rate between 0 V and 0.8 V (vs. Ag/AgCl reference electrode). The 
chemical solution was comprised of 50mM NaCl and 150mM Pyrrole. .................................................. 137 

Figure 5. 5  Top Left: Depiction of lollypop shaped electrodes (10nm Ti, 10nm Pt, 60nm Au) fabricated 
on a 1 mm thick glass slide by photolithography. Top-middle & Top-right: Images of electrodes 
before and after the polymerisation process. Bottom: shows the surface structure (2D), on the 
polymerised electrode, obtained by profilometry measurements (DEKTAK, Veto Instruments 
Ltd). ........................................................................................................................................................................................ 138 

Figure 5. 6  Atomic force microscopy scan obtained from the polymerised electrode surface. The 
depiction (right side) presents the production mechanism of the circular (donut shaped) PPy 
structures [143]. (Scale bar in image at top is 10 µm) .................................................................................... 139 

Figure 5. 7  CV graphs performed by two different working electrodes; a bare gold electrode and a 
polymerised electrode. CV performed with 0.05 V/s scan rate between -0.2 V and 0.8 V (vs. 
Ag/AgCl reference electrode). The chemical solution was comprised 10 mM potassium 
ferrocyanide and 10 mM KCl. ...................................................................................................................................... 140 

Figure 5. 8  The schematic of streptavidin - biotin based binding. The gold surfaces functionalized with 
11-MUA solution (under nitrogen atmosphere) were exposed to streptavidin solution. Finally, 
biotin labelled latex beads were applied to the functionalised surfaces. ................................................ 141 

Figure 5. 9  Schematic of amine-based binding. The electrode surfaces functionalised with 11-
mercaptoundecanoic acid (11-MUA) solution (under nitrogen atmosphere) were exposed to 
amine modified latex beads (1 µm in diameter) solution (with EDC and NHS in it) for 2 hours. 141 

Figure 5. 10  Binding tests via laser microscopy. Microscope image (5x) of the bare gold electrode (a). 
Biotin modified fluorescent latex beads immobilised on the electrode surface (b). Amine modified 
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fluorescent latex immobilised on gold electrode (c). Biotin beads were bonded via the interaction 
between streptavidin-biotin which was immobilised on 11-mercaptoundecanoic acid (11-MUA) 
modified the gold surface. A microscope image obtained from PDMS wall showing that some 
beads stacked on the scratches appeared due to drilling process (d). (Scale bars 0.3mm) ........... 142 

Figure 5. 11  The schematic of the anti-human Hb immobilisation on gold electrodes, and Hb 
entrapment. Firstly two types of the self-assembled monolayer, MUA and MPA, is formed on the 
gold surfaces. Biotinylated antibodies are immobilised on the streptavidin attached SAM layer. 
The Hb included in the sample is captured by the bio-functionalised electrode surface. ............... 144 

Figure 5. 12  CV results obtained at different Hb concentrations. The reaction was stopped by the 
adding 5 µl stop solution (1 M H2SO4). Applied voltage range was from -0.4V to 0.4 V vs. pseudo 
gold electrode (scan rate: 0.03 V/s).  The inset shows the diffusive peak variation according to 
the Hb concentration variation. ................................................................................................................................. 145 

Figure 5. 13  Schematic of the antibody immobilisation on polystyrene wells, and label-free Hb 
measurement processes. Both optical and chemical measurements can be performed with the 
final product obtained from the substrate (TMB). ............................................................................................ 146 

Figure 5. 14  Optical density measurements, between 300 nm and 700nm wavelength. Spectrum 
results obtained from the Hb solution (blue- up triangle), Hb+TMB (black- square), 
Hb+TMB+Stop solution (red- circle) and blank samples (pink-down triangle). ................................. 147 

Figure 5. 15  Optical density measurements (630 nm) of substrate (TMB) samples incubated in wells 
exposed to different Hb concentrations (4, 2, 1, 0.5, 0.25 mg/ml). ........................................................... 148 

Figure 5. 16  Top: Schematic of the complete system setup which composes a potentiostat (CHI760C), a 
three-electrode sensing system (with a 3µl sample pipetted onto it), a slanted SAW IDT (10nm Ti, 
100nm Gold), an amplifier (Mini-Circuits ZHL-5W-1, 5-500 MHz with a 3 A, 24 V DC power 
supply) and a function generator (Agilent Technologies MXG Signal Generator N5181A). Bottom: 
Schematic of the diagnostic device design.  It includes an electrochemical sensing device coupled 
on a SAW platform on LiNbO3 piezoelectric material. ..................................................................................... 149 

Figure 5. 18  The voltammograms obtained in the absence and the presence of SAW (10.5MHz, 1W) 
streaming. The sample solutions were comprised of 1 µl TMB-H2O2 substrate system (with 100 
mM KCl), 1 µl HRP solution (0.008 fm in PBS) and 1 µl stopping solution (1 M H2SO4). ................. 151 

Figure 5. 19  SAW enhanced diffusive peak currents obtained from CV measurements on different 
reporting enzyme concentrations (5 fM, 0.2 fM and 0.008 fM HRP). Reduction (green up triangle) 
and oxidation (black square) peak currents are increased to higher values (blue down triangle 
and red circle) thanks to the SAW (10.5MHz, 1W) induced streaming in the samples. ................... 152 

Figure 5. 20  Instrumental system setup includes a potentiostat circuit (ASIC or the average scale 
circuit design), a function generator, an oscilloscope and an electrochemical cell. The 
electrochemical cell consists of a sample chamber and a three electrode sensing system 
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and the function generator. The ASIC was previously developed at the Glasgow University, is 
connected on to test board. ......................................................................................................................................... 153 

Figure 5. 21  Three operational amplifier potentiostatic circuit. This control circuitry is used to monitor 
the current flow through the working electrode. The circuit includes single voltage supply and 
op-amps (LM358). Electrode connections are made as presented in the depiction. ......................... 153 

Figure 5. 22  Peak currents of voltammograms obtained via three different instrumental setups; a 
commercial electrochemical analyzer/ workstation (orange- circle), an average scale circuit 
design (blue- triangle) and an ASIC circuit design (red- square). Cyclic voltammograms were 
obtained from a 10mM ferrocyanide redox system at various scan rates. The solution was also 
included 0.1 M Potassium Chloride (KCl) as a supporting electrolyte. The size of the sensing 
electrodes used with the electrochemical workstation were different from the other tests. ....... 154 

Figure 5. 23  Schematic of the LabVIEW controlled electroanalytical system setup. A function signal 
(triangle or a constant signal) is produced by the LabVIEW interface and a data acquisition device 
(NI DAQpad-6015), and sent to the sensing chamber via the potentiostat. Signal output is 
obtained back from the sensor (chemical cell) by the potentiostat and sent to the PC through the 
DAQpad. Finally, the results are observed on the LabVIEW interface screen. ..................................... 155 

Figure 6. 1  A very first attempt to obtain a SAW enhanced electroanalytical LOC system with micro-
scale sensing electrodes. The working frequency of the SAW IDT of the design was 115 MHz. The 
system had a three electrode sensing system on it. All metal patterns (20 nm Ti and 100 nm Au) 
were fabricated on a LiNbO3 substrate (128˚ Y-cut X-propagating c=3996ms−1). The channels 
and the chambers of the LOC were fabricated on a PDMS layer. The sample was flowing between 
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Abbreviations 
 
Ab  Antibody 

AFM  Atomic force microscopy 

anti-Hb  anti-haemoglobin 

APTES  3-aminopropyltriethoxysilane 

BAW  Bulk acoustic wave 

CAD  Computer aided designs 

CE  Counter electrode 

CMOS  Complementary metal oxide semiconductor 

CV  Cyclic voltammetry 

Da  Damköhler number 

DEP  Dielectrophoresis 

EDC  1-ethyl-3-(3-dimethylaminopropyl)carbodiimide  

ELISA  Enzyme-linked immunosorbent assay  

EWOD  Electrowetting on dielectric 

FCS  Fluorescent correlation spectroscopy 

FIA  Flaw injection analysis 

FIDT  Focused (targetted) IDT 

GI  Gastrointestinal 

HRP  Horseradish peroxidase  
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IDT  Interdigitated transducers 

IR  Infrared 

K-L  Koutecky Levich 

LDV  Laser Doppler Vibrometry 

LOC  Lab-on-a-chip 

LOR  Lift off resist 

M/ S   Mark to space ratio 

MEMS  Micro-electro-mechanical-systems 

MES  2-(N-morpholino)ethanesulfonic acid  

PBS  Phosphate buffered saline 

PDMS  polydimethylsiloxane  

PCR  polymerase chain reaction  

PFDT  1H,1H,2H,2H-perfluorodecanethiol 

POC  Point of care 

PPy  polypyrrole 

RBC  Red blood cell 

RDE  Rotating disc electrode 

RE  Reference electrode 

Re  Reynolds number 

SAM  Self assembled layer 
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SAW  Surface acoustic wave 

SFIDT  Slanted finger interdigitated transducer 

SPR  Surface plasmon resonance 

SPUDT  Single phase unidirectional transducers 

SW  Surface wave 

TMB  3,3’,5,5’-Tetramethylbenzidine 

UV  Ultraviolet 

WE  Working electrode 

11-MUA 11-mercaptoundecanoic acid  
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1. Introduction 

1.1. Cancer Diseases  

Cancer is a very unfortunate disease; at least 12.6 million people are diagnosed with cancer 

every year and more than 7.5 million people lose their life because of it [1]. For a more 

efficient and simpler treatment, the early diagnosis has a crucial role. Otherwise, the 

problematic location can convert into a worse case, or even the diseases can spread to the 

other parts of body [2].   

 

Figure 1. 1: Parts of the body where gastrointestinal cancer tumours can form [3]. 

Different types of cancers show different symptoms. Occult bleeding is one of the symptoms 

of the cancers in gastrointestinal (GI) system. Patients may not notice a small amount of 

bleedings in the stool or urine. However, a test device can detect it at very early stages. 

Finding cancer in the body earlier makes a significant difference [4]. The removal of 

precancerous growths and to start the treatment at early stages can be done by periodic body 

screenings [5]. Therefore, the necessity of diagnostic devices which has the ability for early 

diagnosis of cancer and other types of illnesses is enormous. 

1.2. Lab-on-a-chip for Point-of-Care Diagnostics 

Biosensors comprise biological components, which can be an antibody, an enzyme or a 

membrane, to have a sensitivity for a particular analyte [6][7]. In 1962, the first biosensor, an 
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enzyme-based sensor, was developed by Clark and Lyons [8][9]. Updike and Hicks designed a 

modified version of the sensitive system in 1967 [10]. It was able to measure the background 

current by a secondary electrode (enzyme free) and giving differential results [9].  

Generally, diagnosis of a disease is not based on a single sensing process alone. It often 

requires various complicated preparation steps performed in laboratory environments with 

specific instruments. Since moving bench sized instruments is not a possible option, in most 

cases samples are needed to be transferred into the labs.  The sample transfer and delays due 

to limited numbers of equipment in laboratories appear as all disadvantages for the classic 

laboratory centralised diagnostics.  

 

Figure 1. 2  Components of a basic biosensor that includes a bio-receptor, a transducer and a 

processor. Bio-receptor can be a biological system such as cells, tissues, whole organisms or biological 

species such as protein, enzyme and antibody. The physical change obtained by the bio-receptor is 

measured as an electric signal.  

Miniaturisation and integration of complicated laboratory functions in small chips (lab-on-a-

chip) eliminate the requirement of central laboratories. This also enables the point-of-care 

(POC) diagnostics which give substantial advantages for early and cheap diagnostics. Design 

and fabrication process of lab-on-a-chip (LOC) device is a challenging and expensive process. 

However, a well-designed LOC can cost less than a regular lab test process by mass 

production. POC diagnostic leads to conduct the tests at any location without transferring the 

samples to a laboratory. Therefore, the measurements can give more reliable results since it 

is done with fresh samples. Another advantage of the POC is the simplicity to use. Thus, the 

concept reduces the number of required operators for the analytical process. In some cases, 

people may run the tests at home as well. 
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1.3. Electro-analytical spectroscopy 

Electro-analysis is a standard technique that is concerned with the electron transfer to/ from 

chemicals [11]. Measured electrical values (current and potential) can give information about 

physicochemical parameters such as reaction rate and concentration. This technique has 

various advantages over other analytical measurement techniques. It can give each oxidation 

step during the entire reaction instead of a single analytical result of a final product.  

There are various analytical methods requiring optical transparency to operate such as 

colorimetric analysis [12] and fluorescent imaging [13]. However, electroanalytical sensors 

can work in turbid environments and can give sensitive results. It is easy to fit into LOC 

applications since the equipment can be miniaturized via micro or nanofabrication 

techniques [14].   Moreover, it can present excellent sensitivity with small sample volumes 

[15]. 

1.3.1. Measurement  Methods 

The current flow during the electrochemical reaction is obtained from the solution electrode 

interface [16]. The electron transfer, during the reduction or oxidation of the electroactive 

analyte, may be detected by the equipment used for electrochemical measurements. This 

happens while the non-equilibrium system moves towards the equilibrium case. 

Electroanalytical methods are mainly split into two classes: amperometry and voltammetry. 

Voltammetry is an electrochemical process to obtain an analytical result according to the rate 

of chemical reaction and to have a current graph vs. applied potential. The current flow is 

obtained by the polarisation of a working electrode which is promoted by the applied 

potential. Amperometry method is performed at a fixed potential to obtain a current flow 

proportional to the concentration. 

Cyclic voltammetry (CV) is a very versatile electrochemical technique allows examination of 

redox couples, provides quick information for the transport properties, electron transfer 

kinetics and rates of systems [17][18]. The CV method is also used for electro-polymerisation 

to obtain sensitive sensors by the entrapment of bio-sensitive molecules [19]. During the CV 

process a triangle waveform, within certain limits, is applied to the sample. Measured current 

contains various data about the sample such as quantity of a particular analyte, impedance 

[20] or the thickness of a  polymer layer [21].  

Specifically, electrochemical sensors are mostly based on amperometric measurements in 

which the current flow caused by an imposed voltage is monitored. The fixed potential is 
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applied via an electrodes system. The observed current is plotted as a function of time [22]. 

Chronoamperometry, which is a voltammetry at a fixed potential, is the current measurement 

as a function time [23]. The electrons flow between the electrodes and the electroactive 

molecules as a function of the molecule concentration.  

As an important instrument of electrochemistry experiments, the potentiostat has two 

primary roles. Firstly, it accurately controls the potential difference between working 

electrode (WE) and counter electrode (CE) [22]. Secondly, it measures the current flow 

between WE and CE and ensures that no current passes through the RE. 

 

Figure 1. 3  A basic depiction of a potentiostat and an electrochemical cell with three electrodes. The 

system controls the potential difference between working electrode (WE) and counter electrode (CE). 

Secondly, it measures the current flow between WE and CE and ensures that no current passes 

through the RE. 

As it is shown in Figure 1. 3 the potentiostat contains a voltage source which is manipulated 

by the voltage follower presented as “V” in the figure. The result obtained from the sample 

according to the input voltage is measured by an ampere meter (A) in a format that is 

relevant to the current flowing through the sample. 

1.3.2. Hydrodynamic effect 

The mass transfer, which is the movement of material from one location to another in the 

liquid, has a significant effect on the dynamics of the electrochemical reaction. There are 

three types of mass transfer [24]: migration, diffusion and convection. The slowest step in 

electrochemistry defines the rate of the reaction. Therefore, the speed of the reaction can be 

controlled by the rate of fresh material brought to the electrode surface (e.g. convection) by 

mass transport or by the kinetics of electron transfer [17].  

Application of external convection can significantly increase the mass transferring rates. This 

results in higher current flows and rapid establishment of the steady state of the system. 

Therefore, both the sensitivity and the sensing time of the sensors are  improved [22]. There 
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are different hydrodynamic techniques such as, rotating disc electrode (RDE) [25][26], 

channel electrode [27], sonochemistry [28][29] and electrode heating [30]. Combining more 

than one hydrodynamic techniques can also create additional enhancements [31]. 

1.4. Surface acoustic wave 

Microfluidic systems enable highly specific biology, chemistry and medicine analysis by 

referring to a set of technologies those are capable of manipulating the small amount of 

liquids in miniaturized designs [32][33][34]. Microfluidic devices require tiny space, 

consume a tiny amount of sample and hence produce less waste. Moreover, the reaction 

conditions can be controlled precisely, and the experimental results can be obtained in 

seconds instead of hours or days. However, this micro designs causes manipulation 

difficulties such as capillary effect which forces the sample to be dragged along the channel.  

The regime of microfluidic systems is entirely different from those moving through large 

channels because of very effective interactions between the fluids and surrounding surfaces 

[35].  This different behavior mechanism is due to the increased effect of wettability, surface 

tension, adhesion, viscosity and other parameters of samples and surfaces. For example, a 

hydrophobic surface portion can block the liquid motion inside a microfluidic channel.  

Various types of micro-devices were developed to overcome difficulties of fluid manipulation 

within microfluidic systems. Such as micro-pumps, micro-mixers, micro-heaters, etc.  Some of 

the most promising micro-pump applications proposed with electro & magneto-

hydrodynamic techniques. Micro-mixer solutions are categorized as active and passive 

mixers. Active mixers, require external energy to operate such as dielectrophoresis, 

magnetohydrodynamics [36], pressure, temperature, and acoustic techniques [37]. SAW 

included microfluidic approach appears as a very promising solution, in between other 

applications used for the construction of different microfluidic devices, due to its simplicity, 

the ease of construction and planar integration [32]. 

SAW was first studied by Lord Rayleigh in 1885 [38][39], and it is named as Rayleigh waves. 

SAW is a type of mechanical wave propagated along the surface of a solid material [40]. They 

are produced by localised physical effects and also by piezoelectric transduction at various 

scales. SAW transducers are widely used in modern signal processing as filters due to their 

high sensitivity, fast response, stability and small size [40], and according to estimations 

several millions of SAW devices are produced yearly [39].  

In the last two decades, SAW devices, are started to be used outside of communications and 

signal processing: as temperature [41], stress [42], chemical sensors [43] and biosensor [44], 
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micro-heater [45]. Travelling SAW can couple its momentum and energy into a liquid, on its 

path, and induce streaming. The scientific researches proved that the energy anticipated by 

the SAW is large enough to induce acoustic fluid streaming to obtain further results [46]. 

Therefore, they were used for microfluidic actuation, such as  pumping [47], micro-mixing 

[12], droplet manipulation [48], centrifugation [49] and atomization [50]. 

1.4.1. Piezoelectricity 

The materials which can convert electrical energy to mechanical energy and vice versa are 

named as piezoelectric. Piezoelectricity was first theorised by Charles Coloumb in 1817 when 

he suggested that some materials may generate electrical charge under physical pressure 

[51]. The first actual discovery of piezoelectricity was made by French scientists Curie 

brothers in 1880 [52]. Micro-electro-mechanical-systems (MEMS) including acoustic wave 

applications are often used piezoelectric materials [41].  

 

Figure 1. 4  Orientation of dipoles before (a) and after (b) the application of a DC electric field. The 

potential application is reoriented the dipoles. The reorientation also makes a shape change on the 

piezoelectric material. 

A polarisation effect on the surface of a piezoelectric material is obtained (Figure 1. 4), by the 

separation of positive and negative charges, when a mechanical stress is imposed [53]. Thus, 

an electrical field due to the voltage difference can be obtained. The piezoelectricity is a 

reciprocal phenomenon since it is possible to obtain an inverse piezoelectric effect. Applying 

a voltage on the material can create physical deformation on the surface (Figure 1. 5). An 

acoustic perturbation is obtained when an appropriate voltage is applied via the metal 

transducers fabricated on the piezoelectric substrate surface. Continuous application of 

sinusoidal electric signal creates synchronised mechanical displacements on the surface 

which depends on the amount area affected by the polarisation. Additionally, the distance 

between the expanded and contracted surface is directly proportional to the peak to peak 

voltage value of the applied electrical signal. 
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Figure 1. 5  Application of a compressive or tensile stress changes the relaxed shape of a piezoelectric 

material and generates an electric field. Conversely, a dimensional change is obtained when an electric 

field is applied to the piezoelectric material (converse piezoelectric effect) 

1.4.2. SAW transducers 

Surface Acoustic Waves (SAW) can be generated on piezoelectric substrate (such as       ) 

by comb shaped interlocked metallic patterns [54]. Application of electrical field across a 

piezoelectric material results an elastic deformation because of the converse piezoelectric 

effect (Figure 1. 5) [49]. As presented in Error! Reference source not found., the resonance 

frequency of a SAW device is based on two parameters; the finger spacing (d) and the 

acoustic velocity of the substrate (  ) [55]. 
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Figure 1. 6  Schematic of a SAW transducer fabricated on a piezoelectric substrate. The device 

resonates at a specific frequency and generates SAW (Rayleigh wave) in both directions. The finger 

spacing defines the resonance frequency. 

 

  
   

 
 

   

  
    

                                                        Equation 1 

 

1.4.3. Wave modes in piezoelectric materials 

Acoustic waves in piezoelectric materials are divided into two main groups; the bulk acoustic 

wave (BAW), which travels through the substrate, and the surface acoustic wave (SAW), 

which propagates on the surface of piezoelectric material [56]. Rayleigh wave, which is a type 

of SAW, is comprised of longitudinal (compressional) waves and shear waves in z and y 

directions as presented in Figure 1. 7. Moreover, electrostatic wave travels along with the 

propagating mechanical wave [57][58].  In this research the use of "SAW" specifically 

indicates Rayleigh waves as similar to most of the SAW based microfluidic research reports 

[59]. Another commonly used acoustic device concept is flexural plate wave resonators which 

generate Lamb waves (Figure 1. 8) [33]. This wave mode can be used for sensing or fluid 

pumping applications [60].  
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Figure 1. 7  Representation of a SAW combining longitudinal (a), z-polarised shear (b) and y-polarised 

shear wave (c). Travelling direction of all acoustic waves is in the x direction. The x-y plane represents 

the surface of the piezoelectric substrate where the SAW transducer is fabricated. z-direction 

represents the motion that is vertical to the surface.  
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Figure 1. 8  Depiction of two wave modes; Rayleigh (SAW) wave (Top) and Lamb wave (Bottom). Lab 

waves are also referred as plate waves [61] since they can be generated on plates with free boundaries.  

 

1.4.4. SAW in droplet-based application 

The liquid converts the mechanical energy into leaky waves on the surface and, pressure 

waves and temperature in the liquid [62][63]. As presented in Figure 1. 9 (a), the mixing 

obtained in a droplet, due to acoustic pressure gradients, is the first activity to observe during 

SAW propagation. The flow patterns in the droplet appear in different shapes according to 

the point of the SAW induction into the droplet. When the SAW radiated from the right side of 

the droplet, circulation direction occurs in an anti-clockwise direction (Figure 1. 9 a-I). 

However, when the SAW beam hits from the middle of the droplet, it creates two separate 

horizontal vortexes from the top view as parallel to wave direction (Figure 1. 9 a-II). While 

the left portion has flow pattern on anti-clockwise the right part of the droplet has a 

clockwise circulation in it [64].  
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Figure 1. 9  Different behaviours can be obtained from a SAW platform by increasing the applied 

SAW power. A SAW induced droplet/ liquid sample can be mixed, pushed, jetted or atomized. These 

options enable the production of various LOC devices based on SAW technology. 

When the RF power reaches critical values the droplet, positioned in front of the SAW path, 

starts to move. Strong acoustic streaming creates an inertial force and drives the droplet, 

however, the mixing effect inside the droplet continues during the motion. This is used for 

sample collecting/ dispensing and pumping applications [46]. After increasing SAW power to 

a secondary critical level, the liquid is jetted into the air [46][65]. Finally, if the power is 

further increased, the droplet atomise due to the strong capillary waves appearing at the air- 

liquid interface [60]. SAW actuated atomization was used in inhalers for rapid generation of 

protein aerosols [60]. The critical values depend on the IDT design (such as finger shapes, 

number of fingers), fabrication quality, surface hydrophobicity under the mass of the sample 

and properties of the sample (viscosity, volume, density).  

Fouling and clogging, in large or micro-scale applications, is a common issue in chemical and 

biological processes. SAW driven applications help to minimize those problems. Rapid 

surface displacements on the surface, due to the travelling SAW, apply a mechanical force 

onto the coating materials and remove them. This helps to obtain repeatable results from 

analytical systems. Acoustic treatment also increases the lifetime of the sensing devices by 

cleaning the measurement chambers and critical sensing surfaces. 
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1.4.5. SAW induced mixing 

Mixing of two or more substances is an important step of various chemical or biochemical 

processes, such as protein folding [36] and enzyme reactions [14]. However, it is a delicate 

and challenging task in micro scale volumes [46][58][66] since the Reynolds number is 

relatively small (<1)  in microfluidic systems [67]. This is caused by the small surface to 

volume ratio and the viscosity dominated inertia [32]. Thus, the hydrodynamic behaviour of 

micro-volume liquids makes mixing difficult and slow.  Extending the length of mixing 

microchannel is one of the proposed schemes to promote mixing in passive devices [66]. 

However Chan and Yang claims that an effective mixing cannot be obtained in channels with 

the two-dimensional flow, it requires repeating stretching and folding of fluid layers by a 

chaotic advection mechanism [36]. Electrowetting on dielectric (EWOD) [14], 

dielectrophoresis (DEP) [68] and acoustics [69] are some of the common micro mixing 

schemes. Electrowetting technique generates flow advection, by merging and splitting 

droplets, to enhance mixing of droplets or other microfluidic systems [36].  

SAW induced streaming application is a promising alternative method for rapid mixing in 

microfluidic platforms [70]. The internal flow obtained due to the acoustic effect creates a 

stirring inside the liquid. While the stirring efficiency is directly related to the size of the 

droplet, the stirring speed is controlled by the RF power applied on the IDTs [46]. A better 

mixing can be obtained by keeping the SAW wavelength smaller than the droplet diameter 

and increasing the RF power [33]. Figure 1. 10 presents a few depictions about the SAW 

interaction with a droplet pipetted on the surface of a substrate and a superstrate.  
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Figure 1. 10  Scheme of acoustic wave propagation from a slanted IDT into a droplet. SAW beam 

resulting rotational flow (top and side views) is depicted. Acoustic radiation is presented in two 

different cases. First, when the droplet is on the same plane with SAW device. Second, when the 

droplet is pinned on a glass slide, which is coupled to the SAW platform with a gel interface. The 

waveform in the second case is converted from Rayleigh wave to Lamb wave. Note: The drawings are 

not drawn to the scale.  

1.5. Motivation and objectives 

GI system cancers kill more than half a million people every year. Cancer cells can be carried 

to different parts of the body through blood vessels. At the distant stage, cancer has spread 

around the human body, organs and tissues. However, early detection, before that stage, can 

save many lives by enabling timely and high-quality treatments.  

GI system cancer diseases may cause occult bleeding such as cancer in the oesophagus, 

stomach and duodenum. However, it is mostly not possible to notice a small bleeding in the 

stool before a critical stage. Therefore, development of highly sensitive diagnostic platforms 

is a need for increasing the survival rate. Moreover, the miniaturisation of the sensing devices 

is one of the most important targets of the researchers. Smaller and easy to operate devices, 
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which can be used by people at home, can lead to higher cancer screening rates. Size 

decrement can enable mass fabrication of the devices and decrease the production costs. 

Thus, the prevalence rate of cancer screening among low-income and hard-to-reach 

communities can be increased. 

There are existing methods for monitoring blood in the stool by the concept of using the anti-

haemoglobin (anti-Hb) antibodies in a sandwich enzyme-linked immunosorbent assay 

(ELISA). Those techniques can be readily implemented on an electrochemical platform. The 

electrochemical sensors have proven their ability to work in different environments with 

high sensitivity levels. Moreover, their sensitivity can be further enhanced by removing the 

limitations created by the diffusion rates of the electrochemical systems. Sonochemistry and 

rotating disc electrode (RDE) methods are commonly employed for such purposes by the 

researchers.   

The goal of the Ph.D. was to develop a highly sensitive electroanalytical diagnostic method. 

Such system would work on haemoglobin sensor application for early diagnosis of cancers 

with bleeding symptoms. The digital monitoring technique was targeted to be simple to use, 

reliable and fast. The LOC design would provide simplicity by reducing the amount of bench 

sized instruments required for tests. The SAW technology, which is commonly used for 

microfluidic applications, was adapted in the electroanalytical sensing platform to enhance 

both sensitivity and the speed of the test process. Additionally SAW can increase the 

reliability of the immunoassay measurements by removing the wrongly occurred bio-

molecule bindings.  

First measurement series were performed on a model solution system. A three electrode 

sensing platform was modified by the addition of SAW platform. This gives a similar mixing 

characteristic to an ultrasound coupled RDE method. The device concept developed through 

experimental investigations on the SAW device, chamber fabrication and the SAW coupling 

methods. Secondary tests series were performed by an ELISA using the anti-haemoglobin 

(anti-Hb) antibodies. The mechanical waves created significant improvements in the 

sensitivity of the electroanalytical method. As a final stage, the aim of the thesis was extended 

to mediator based label-free Hb detection method. Experiments performed in stagnant 

solution cases presented promising quantifiable results. 
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2. Materials and methods 

 

Figure 2. 1  Surface scanning of a microfabricated three electrode system using a Veeco Dektak 6M 

height profilometer. This device was used to examine the parameters, such as height and surface 

roughness, of fabricated structures. The structure could be a patterned photoresist or a metal 

electrode. Therefore, the examination can be done at any stage during the fabrication process. (Scale 

bar 3 mm) 

This chapter includes all the experimental microfabrication (SAW devices, sensing electrodes 

and hydrophobic patterns), their characterisation methods and electroanalytical test 

techniques used in the research. 

2.1. Microfabrication 

 

Figure 2. 2  Two glass substrates, fixed on the chuck, after the metallisation (20 nm Ti  and 100nm Au) 

process. At the following stage, the samples were immersed in hot acetone for the lift-off process. 

This part includes the photolithography and metal lift-off based protocols developed for the 

experimental investigations. The fabrication procedures are explained in detail. The depiction 
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(Figure 2. 3) presents the photolithography process used to obtain empty patterns 

surrounded with removable photoresist and the lift of process after the metallisation. Three 

main methods were investigated to decide which to use for the fabrication process through 

the research. 

 

Figure 2. 3  Depiction of a microfabrication process. It includes the patterning of a photoresist (S1818) 

layer by the development stage after the UV exposure, metallisation process and the lift-off step.  

2.1.1. Mask 

The mask is a crucial part of the photolithography process. Two types of masks were used in 

this research: acetate and glass plate masks. The patterns were designed by L-EDIT (Tanner 

EDA), and the mask was obtained from JD-photo (http://www.jdphoto.co.uk/).  

2.1.2. SAW actuator 

The SAW device is composed of interdigitated electrodes located on a piezoelectric material. 

The IDTs were microfabricated via photolithography and metal patterning techniques. 

However, three different resist coating techniques were tested to obtain the best 
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photolithography recipe. The methods were applied to three different samples at the same 

time. The surface of the S1818 layer on the first sample was hardened by a predevelopment 

process to obtain undercuts. The second sample was directly coated with an S1818 layer 

without any previous or post process. The surface of the third sample was spin-coated with a 

lift-off resist (LOR) before the S1818 spin-coating. 

The photolithography process started with cleaning the piezoelectric substrates (128° Y-cut 

X-propagating 3 inch LiNbO3) in acetone bath (5-minute sonication). All three samples were 

rinsed with flowing water for 2 minutes and blow-dried with N2.  Then they were treated in 

O2 Plasma for 3 min at 100 W. Only the third wafer was spin-coated with 0.5 µm thick LOR 

(30 s at 4000 rpm) and baked on a hot plate at 115 °C for 3 minutes. Following that, all the 

samples were spin-coated with ~1.9 µm thick S1818 photoresist (30 s at 4000 rpm) and 

baked on a hot plate at 95 °C for 3 minutes. The two-dimensional profile of a developed 

S1818 pattern is presented in Figure 2. 4. Only the first sample was soaked in a 1:1 (v:v) 

dilution of Microposit developer and water for 2 minutes and rinsed under flowing water for 

30 seconds. The pattern on the mask was transferred into the photoresist layer by ultraviolet 

light (UV) exposure for 5 s (MA-6, SUSS Micro Tec AG) and development using a 1:1 (v:v) 

dilution of Microposit developer and water (first sample: 4 minutes, second sample 1.5 

minutes and third sample: 1 minute). Photoresist particle residues after lift-off were removed 

by rinsing the samples under flowing water for 5 minutes. After blow-drying all the samples 

were treated in O2 Plasma again for 2 min at 60 W. A 20 nm titanium adhesion layer and a 

100 nm of gold layer were evaporated on their surfaces prior to the lift-off in acetone (at 45 

°C) for 2 hours. The third sample was additionally soaked in 1165 stripper solution (at 50 °C 

for 15 minutes) to remove the LOR layer (Figure 2. 10). Finally, all unwanted parts of the 

metal layer were removed by lifting off the photoresist layer underneath, and the IDT fingers 

were obtained. 
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Figure 2. 4  Surface profile of an S1818-photoresist pattern (grey area), on a LiNbO3 substrate, after 

the development stage is presented. The measurement determined using a Veeco Dektak 6M height 

profilometer. A 20 nm titanium adhesion layer and a 100 nm of gold layer (yellow area) were 

evaporated on this pattern. The metal layer is presented above the grey colored image as a scetch. Ater 

the final process, lift-off in acetone (at 45 °C) for 2 hours, the photoresist layer was removed and the 

metal structures localised directly on the substrate surface were obtained.  
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Figure 2. 5  Electrode fabrication results obtained via first (c), second (d) and third (e) fabrication 

methods. Microscope images are the fabricated fingers. Results show that the LOR (third) method 

gives sharper corners than the other two techniques. Therefore, the result is more identical to the 

pattern on the mask (b). The white scale bars represent 240 µm and the black scale bar represents 2.5 

mm distances on relevant images. 
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Figure 2. 6  Comparison of three different fabrication techniques (first: a, second: b, third: c) via light 

microscope images. The circular and straight structures on the mask pattern (d) has varying sizes (5, 

10, 20, 40, 80 and 120 µm). The experimental fabrication process of the alignment mark shows that the 

first (predevelopment included) technique can give metal patterns with a higher resolution (10- 20 

µm). 

Additional marks added at the corners of the design pattern used for aligning the masks. They 

also helped to fabricate secondary designs at precise locations on the previously fabricated 

structures. 

Results obtained from three different fabrication recipes are presented in Figure 2. 5 and 

Figure 2. 6. Outcomes show that the third protocol gives sharper corners and more identical 

shapes with the actual mask pattern. However, the minimum size of the fabricated structure 

was not lower than the edges of metal features are not as straight as the first method. 

Figure 2. 8 presents the minimum structure sizes which could be obtained with three 

different methods. The first method gave the smallest features, 10 wide fingers and circles 

with 10 µm radiuses. The results obtained from the second technique were not as good as the 

first method (20 wide metal fingers). The third technique gave the largest structures. The 

low-resolution issue was due to the relatively large undercut obtained with LOR (see Figure 

2. 8). The problem can be solved by using a thinner LOR, such as LOR1A. Another 

disadvantage of the LOR included protocol is the additional steps which take extra time to 

fabricate. 
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The fabrication tests on the glass gave the same results with the LOR based technique. 

Overall, the first method, including a pre-development process, was chosen as the protocol to 

be used for the micro-fabrication process through the research.  

2.1.3. Sensing electrodes 

Different types of electrodes were designed and fabricated for electroanalytical tests. 

Previously explained three different microfabrication protocols gave similar results for the 

fabrication of circular shaped electrodes (Figure 2. 7). Fabrication on different substrates 

(Glass and LiNbO3) gave similar results. 

 

Figure 2. 7  Sensing electrode (a) fabrication results with first (b), second (c) and third (d) techniques. 

This electrode has a reference electrode (RE), the counter electrode (CE) and five different working 

electrodes (WE-1,2,3,4,5) to perform five different measurements in the same solution. Images were 

obtained via a light microscope. (Scale bar 0.5 mm) 
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Figure 2. 8  The photoresist (S1818) patterns (dark coloured areas) obtained after the development 

stage. The undercut shown in the image (Left) appears due to the LOR layer under the photoresist. 

When LOR is not used, no undercut appears as shown (Right). (Scale bars 125 µm) 

 

 

Figure 2. 9  A depiction of the undercut profile of S1818/ LOR layer. The length of the overhanging 

LOR layer is defined as the undercut length. The depiction presents the case shown in the previous 

image. 

 



  41 
 

 

Figure 2. 10  Lift-off images of the substrate patterned via the third (LOR) method. Lift-off with 

acetone can remove only the S1818 layer with the gold layer on it. However, the Stripper-1165 removes 

the remaining LOR layer (at the bottom), and the actual metal (gold) pattern is obtained. (Scale bar 

0.25 mm) 

LOR included method did not give straight and smooth edges. The reason can be the large 

undercut lengths (Figure 2. 8 and Figure 2. 9). Therefore, the technique requires further 

investigations to obtain shorter undercuts. Lollypop shaped electrodes (Figure 2. 11) and 

various three electrode designs (Figure 2. 12) were fabricated for experimental 

investigations via the first method. The electrodes were used for electroanalytical (cyclic 

voltammetry / amperometry) tests of the ferrocyanide-ferricyanide redox couple. Also, 

thickness characterization tests of polymer (polypyrrole) chains immobilized on electrode 

surfaces were performed with the use of lollypop electrodes. 

 

    

Figure 2. 11  Lollypop electrode mask (Left). The radius of the circle was defined as 1 mm.  Schematic 

of the fabricated electrodes, on a glass slide (Right). The lollypop electrodes fabricated by this design 

were used for cyclic voltammetry tests of the ferrocyanide-ferricyanide redox couple. Also, the 

electrodes were used for thickness characterisation of polypyrrole polymer chains immobilized on 

electrode surfaces. (Yellow scale bar 2 mm) 
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Figure 2. 12  Three-electrode design used for cyclic voltammetry experiments. Both the electrode width 

and the distance between electrodes were defined as 20 µm. The length of the straight parts of the 

electrodes was 100 µm. The images were obtained with a Nikon light microscope. (Grey scale bar 1.5 

mm, white scale bar 100 µm) 

 

 



  43 
 

Connection pad resistivity 

 

Figure 2. 13  electrodes fabricated by sputtering 10nm Ti and 100nm Au. The three electrode system 

with thin (100 µm) connection pads was (Left) replaced with a new design (Right) due to the resistivity 

problem. The resistivity values between the electrodes and the connection pads (1 and 2) were, 52.2 

and 32.5 ohm. (Scale bar 3 mm) 

The fabricated electrodes did not work consistently during the electroanalytical tests. 

Investigations showed that the current flowing through the pads were very tiny due to the 

highly resistive connection pads. Therefore, the applied voltage was not being efficiently 

transferred into the electrochemical cell. In order to solve the problem, the width of the 

connection lines was increased up to 1000 µm from 100 µm. This modification decreased the 

resistivity down to 5 and 7.7 ohm, and the electrochemical analyser started to give 

quantitative results from the sample solutions.  

2.1.4. Sample holding features 

The wetting effect and the electric charge on the gold surface drag the fluid along the 

electrode connection pads. Moreover, the SAW radiation creates more water spread due to 

the powerful pressure waves [71]. Different methods (droplet traps and chambers) were 

applied to keep the shape of the samples during the electroanalytical measurements. Fixing 

the area of the electrode, covered with the electroanalytical sample, is relatively important to 

obtain quantifiable data.   
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Hydrophobic patterns 

Hydrophobic patterns are commonly used in various types of applications for different 

purposes such as droplet pinning [72][73] and droplet handling [74]. Two different 

hydrophobic materials were tested in this work: Teflon (Du Pont, 6% (w/w) solids contents, 

Teflon AF 601S2 - Du Pont) and trichlorosilane (trichloro(1H,1H,2H,2H-perfluorooctyl)silane 

- Aldrich).  

Teflon patterning 

Teflon coating creates highly hydrophobic surfaces due to its low surface energy [75]. The 

method is applied in bio patterning applications (i.e. neural cell) [75][76], droplet 

manipulation in microfluidic chips [49], digital microfluidic devices [77] and a SAW induced 

microfluidic motor for fluid trapping under the disc rotor [78].  

Teflon patterning process (Figure 2. 14) was started by wafer (1mm thick glass slide and 

LiNbO3) cleaning, in acetone bath (5-minute sonication). The substrates were rinsed in 

flowing water for 2 minutes, blow-dried with N2 and treated in O2 Plasma (3 min at 100 W). 

They were spin-coated with ~1.9 µm thick S1818 photoresist (30 s at 4000 rpm) and baked 

on a hot plate at 95 °C for 3 minutes. The pattern (circle with 1.5mm radius) on the mask was 

transferred into the photoresist layer by ultraviolet light (UV) exposure for 5 s (MA-6, SUSS 

Micro Tec AG) and development, using a 1:1 (v:v) dilution of Microposit developer and water 

(1.5 minutes) and rinsed under flowing water for 5 minutes to clean the lifted photoresist 

particles. After blow-drying, all the samples were treated in O2 Plasma again for 2 min at 60 

W. The first Teflon layer was created by spin-coating 0.2 % (w:w) Teflon AF solution at 3000 

rpm (reaching to 3000 rpm in 25 seconds) for 1 minute. The second hydrophobic layer was 

obtained by spin coating 1.2 % (w:w) Teflon AF solution with the same parameters. Teflon AF 

solutions were obtained by dilution with a perfluorinated solvent (CAS 86508-42-1, Larodan 

Fine Chemicals AB). In order to convert the Teflon layer into a permanent form, the samples 

were baked at 150˚C for 8 minutes. However, the hard baking step caused two problems. 

Firstly, the LiNbO3 substrate broke into pieces after removing it from hot-plate to a watch 

glass, because the piezoelectric material is not durable against temperature changes. The 

second problem was the photoresist, underneath the Teflon, which also became a permanent 

(pink coloured) structure. Sonication of the glass slide in acetone could not remove the 

photoresist, and caused micro scale cracks on the Teflon surface. After 5 minutes sonication, 

the entire Teflon layer on the surface lifted off from the surface of the glass substrate. This 

case shows that the Teflon coated substrates should not be sonicated.  
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Figure 2. 14  Schematic presentation of Teflon AF patterning. The photoresist (S1818) layer was 

patterned via photolithography technique. First Teflon AF layer was created by spin-coating the 0.2 % 

(w:w) Teflon AF solution at 3000 rpm (reaches 3000 rpm in 25 seconds) for 1 minute. The second layer 

was obtained by spin coating 1.2 % (w:w) Teflon AF solution with the same parameters. However, the 

proposed final Teflon AF pattern could not be achieved (d) because the acetone did not lift-off the hard 

baked S1818 layer (c). 

An LOR coating stage was added to the protocol to solve the lift-off problem (Figure 2. 15). 

The substrate (glass) was spin coated with 200 nm thick LOR1A (1 minute at 2000 rpm) and 

baked at 150 °C for 20 minutes before the S1818 spin-coating. After following the same stages 

with the previous recipe, the lift-off process was performed with Shipley Remover 1165 on 

Teflon AF coated surface. However, the unwanted parts did not come off because the Teflon 

layer was thicker than the LOR layer and did not allow the remover solution to reach the LOR. 

This problem was solved by increasing the speed of the Teflon spin coating process from 

2000 to 4000 rpm that decreased the Teflon thickness down to 150 nm. Finally, the 

hydrophilic trap was obtained after removing the photoresist layer from the substrate 

surface. After the unwanted Teflon AF sections had been lifted off, the substrate was washed 

in a bath of isopropanol then water, and was blow-dried. 



  46 
 

 

Figure 2. 15  Depiction of LOR included Teflon AF patterning process. LOR coating prior to the S1818 

coating process enabled the removal of unwanted Teflon parts. Finally, the Teflon surrounded 

hydrophilic sample traps were obtained (d). 

The Teflon based droplet traps were used in SAW induced voltammetry tests. Teflon is an 

active hydrophobic material. However, it has a limited adhesion on substrates since the 

attachment is not based on a chemical bond [79]. The hydrophobic layer was not stayed on 

the surface after the first SAW induced electroanalytical test. Therefore, this method does not 

suit for the SAW induced electroanalytical measurements. 

Hydrophobic silane patterning 

Same steps in the device fabrication process were followed until the development stage of the 

S1818 layer. The samples kept in a solution consisting trichloro(1H,1H,2H,2H-

peruorooctyl)silane (Aldrich) and heptane (30µl:50 ml) for 10 min then removed into a 

beaker filled with acetone (50 ⁰C for 3 minutes). Rinsed samples (under flowing water for 3 

minutes) were ready to be used. The droplet traps fabricated on glass, LiNbO3, silicone 

substrates by silanised patterns could still stay on the surface even after 30 experiments 
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performed in the chamber. However, the electrodes were not coated with a hydrophobic 

layer because, the trichlorosilane does not bind on the gold surfaces (Figure 2. 16). Therefore, 

the sample spread along the gold areas during the electroanalytical measurements due to the 

charge difference between the sample and the electrode. Moreover, SAW increases the 

spreading effect. This problem was minimised by using circular shaped electrodes which had 

thin connection lines (100 µm wide) to the cable connection pads (Figure 2. 16).  

 

 

Figure 2. 16  Schematic of the three electrode designs with hydrophilic traps. The traps were made by 

surrounding a specific area with hydrophobic silane layer. Left: straight electrodes, Right: circular 

electrodes. (Scale bar 1.5 mm) 

The method was revised (Figure 2. 17), by adding a gold modification stage, to make its 

surface hydrophobic. The substrate (glass) was spin coated with 200 nm thick LOR1A (1 

minute at 2000 rpm) and baked at 150 °C for 20 minutes. A thin (5000 nm) SU8 (SU8-3005) 

layer was spin coated and patterned, via photolithography, to secure the hydrophilic trap 

area. The glass surface was functionalised with the hydrophobic silane as explained 

previously. Secondly the gold surfaces were functionalised with 10 mM hydrophobic 

thiol;1H,1H,2H,2H-perfluorodecanethiol (PFDT) in ethanol for 8 hours. Finally, the sacrificial 

resist layer was lifted off by keeping the substrate in 1165 LOR stripper at 50 °C for 10 hours.  
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Figure 2. 17  Depiction of the hydrophilic trap fabrication. The substrate was LORA thin SU8 layer is 

used for hydrophobic layer patterning. The substrate (glass) was spin coated with 200 nm thick 

LOR1A (1 minute at 2000 rpm). A thin (5000 nm) SU8 (SU8-3005) layer was spin coated and 

patterned, via photolithography, to secure the hydrophilic trap area. The glass surface was 

functionalised with the hydrophobic silane. Secondly the gold surfaces were functionalised with a 

hydrophobic thiol;1H,1H,2H,2H-perfluorodecanethiol (PFDT) in ethanol for 8 hours. Finally, the 

sacrificial resist layer was lifted off by immersing into LOR stripper solution. 
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Figure 2. 18  A three electrode system with and without a water droplet (three µl), pinned on it. The 

droplet is surrounded with a hydrophobic silane pattern on glass surfaces and a hydrophobic thiol on 

the gold surface. The hydrophobic patterns keep the shape of the droplet constant. However, this 

method is not very practical since it requires two separate coating steps for each material surface. 

(Scale bars 0.3 mm) 

This modified method is capable of structuring hydrophobic layer both on glass and gold 

surface (Figure 2. 18). However, the fabrication process is complicated and requiring long 

time periods. Another disadvantage is the LOR baking stage at 150 °C since it breaks the 

piezoelectric substrate.  

SU8 chamber 

One of the techniques for a sample trap fabrication was using a thin layer of SU8 (SU8-3005) 

negative photoresist as a sample chamber. SU8 was used instead of the hydrophobic saline. 

The droplet spreading problem was solved with the use of SU8 since it was also able to bond 

to gold surfaces.   

 

Figure 2. 19 Schematic of a droplet trap (surrounding the electrodes) made with as SU8 negative 

photoresist pattern.  The height of the pattern was 5 µm. 

A glass substrate (with a three-electrode system on it) was cleaned in acetone sonication for 

5 minutes. Plasma treated samples were 5000 µm SU8 spin-coated at 4000 rpm for 30 

seconds and soft baked at 95 °C for 5minutes. The circular pattern was transferred on the 

resist via UV exposure (30 seconds). Samples were prebaked at 65 °C for 1 minute, and post 

baked at 95 °C for 3 minutes then they were developed in Microposit EC Developer for 1 
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minute and rinsed with IPA for 10 seconds. The SU8 structures were ready for experiments 

after hard baking at 180 °C for 20 minutes.   

      

Figure 2. 20  SU8 bonding on a gold surface. Images are taken after the development stage. Due to the 

insufficient exposure time (5 s) the SU8 did not bond on the glass surface. (Scale bars 0.5 mm) 

Figure 2. 20 shows that only the non-transparent parts remained after a short (5 seconds) UV 

exposure. This shows that the SU8 adhesion on gold was even better than glass. A well 

defined circular SU8 pattern (Figure 2. 22) was obtained after 5 seconds exposure time was 

increased to 30 seconds.  

 

Figure 2. 21  Depiction of the trap fabrication with a hard baked SU8 pattern. The circular pattern 

was transferred on the resist via UV exposure (30 seconds). The sample was developed in Microposit 

EC Developer for 1 minute and rinsed with IPA for 10 seconds. 

 

Developed SU8 
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Figure 2. 22  The SU8 pattern around the three electrode sensing system (Left) after the fabrication. 

Surface profile (Left) determined using a Dektak profilometer shows the height of the chamber (5 µm). 

(Scale bar 0.5 mm) 

Hard-baked SU8 remains on the surface permanently and repels the water. Therefore, the 

droplet stays in the surrounded circular area. The disadvantage of this method is the hard 

baking stage (180 °C). The technique cannot be used on a SAW platform since the high 

temperature can easily break the LiNbO3 substrate.     

PDMS Chamber 

Polydimethylsiloxane (PDMS) is commonly used for channel fabrication in microfluidic 

applications [47]. This chapter explains the fabrication and bonding stages of a PDSM 

chamber on sensing platforms. 

 

Figure 2. 23  Image of a PDMS chamber bonded on a piezoelectric substrate. The chamber is used to 

hold the sample on the sensing electrodes during the SAW induced fluid streaming. (Scale bar 1.5 mm) 

The PDMS reaction chamber was prepared by mixing elastomer (Sylgard 184) with a curing 

agent (Sylgard 184), at a 1 to 10 weight ratio and then poured onto a solid hydrophobic 

surface. Following the degassing under vacuum, the PDMS was cured at 65 oC for 2 hours and 

peeled from the surface. A hole with 1.75 mm radius was drilled through the PDMS cube (W: 

6mm, L: 6mm, H: 4mm) to form a sample chamber. Both the PDMS cube and LiNbO3 substrate 
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was treated with O2 plasma technique [47][80] (Gala Instruments Plasmaprep 5) for 1 

minute (at 80W) to facilitate bonding to each other. 

Using a PDMS structure as a sample chamber has various advantages. The process does not 

lead to any problem with the existing devices (SAW IDTs and sensing electrodes) on the 

wafer since the chamber is fabricated separately. Binding on a LiNbO3 substrate surface does 

not require treatments at high temperatures and does not risk the fragile wafer. Moreover, 

the chamber can be covered from the top. Thus, the closed chamber stops the evaporation 

caused by the SAW streaming. 
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2.2. Characterisation 

2.2.1. Hydrophobicity analysis 

 

Figure 2. 24  Contact angle measurements on 3 µl Water droplet pinned on a Teflon AF coated glass 

surface (a), a 5000 nm thick SU8 coated glass surface (b),  a hydrophobic silane coated glass surface 

(c), a hydrophobic silane coated LiNbO3 surface (d), an SU8 surrounded hydrophilic trap on glass 

(72.5 ˚) (e) a silane covered trap on LiNbO3 (f). (Scale bar 0.8 mm) 

The water repelling properties of the materials used for the trap fabrication are examined. 

Contact angle measurements given in Figure 2. 24 shows that the best hydrophobicity was 

obtained on Teflon. SU8 can be used for trap fabrication due to its water repelling properties.  

Results also show that hydrophobic silane coating on LiNbO3 gives higher contact angle than a 

glass surface. Increasing the sample volumes leads to smaller contact angles (Figure 2. 25) 

due to increased mass on the surface.  
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Figure 2. 25 Contact angles measured on different droplet sizes pipetted on a hydrophobic silane 

coated glass surface. Increasing droplet volumes caused a decrease on the contact angle between the 

droplet and the droplet. (The error bars obtained from 4 measurements) 

2.2.2. SAW actuator 

A way to examine the SAW devices is obtaining the scattering characteristics (S-parameters). 

The parameters are influenced by the frequency of the applied signal and the impedance of 

the load. The measurements, performed by a network analyzer, give information about the 

reflected (S11) and transmitted (S21) power characteristics of the load. 

SAW devices, fabricated via three different techniques (see in microfabrication section), are 

tested by an Agilent Technologies (E5071C ENA Series) network analyzer. S11 scattering 

results (Figure 2. 26) shows that the SAW device fabricated via the first fabrication method, 

which has an additional predevelopment step before the UV exposure, gives a higher 

electrical to mechanical energy conversion ratio than the other devices. This was a result of 

the fabrication of wider electrode fingers. The LOR based technique gives the lowest values 

since the sizes were smaller than others. This difference does not necessarily mean 

significant performance enhancements between the actuators. 
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Figure 2. 26  S11 scattering analyses of the SAW devices fabricated via three different methods (see in 

microfabrication section). The most efficient transducer is fabricated by the 1st technique. However, 

the less effective device is the one fabricated by the 3rd technique (LOR based) because LOR method 

gives smaller electrode widths.  

SAW devices designed in this research were also tested by a Doppler vibrometry device 

(Polytec UHF-120 Vibrometer). SAW propagation measured in front of the resonator device 

gives a 3D graph of the generated wave pattern. This data can be used to obtain the speed of 

the sound wave on a particular material. Also, it can provide the amplitude of surface 

displacement due to the travelling mechanical waves. High-resolution surface displacement 

measurements require several hours of measurement time depending on the area of scan and 

the wavelength of the SAW. However, there is a faster way to recognise the travelling SAW 

beam. SAWs create a temperature effect proportional to the frequency and the voltage (peak 

to peak) of applied RF signal. There are two primary heat sources in SAW systems interfaced 

with liquids, namely the absorption of the heat created by the motion of crystal atoms [33] in 

the substrate (or superstrate), and the interaction between the SAW and the liquid as 

longitudinal waves propagating in the liquid are dampened through the viscosity of the fluid 

[46]. Higher viscosity leads to more energy dissipation due to the increased viscous friction 

[81]. A viscous water-based gel was used in the systems in order to obtain a larger 

temperature scale. This enabled to measure the SAW related heat variation with a relatively 

high definition, as a proxy for the acoustic power obtained. The exact location of the SAW 

beam generated by a slanted design can be measured rapidly with this method. Moreover, it 

helps to make fine adjustments in the SAW frequency to obtain optimum electrical energy to 

mechanical energy conversion rate from the transducers. However, direct observation of 
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individual waves via the vibrometry device gives further details about the characteristics of 

the design. 

 

Figure 2. 27  SAW beam observation technique via thermal observation. The measurement was 

conducted with an IR Camera (Fluke Ti25) on a glass cover slide. It was coupled with a water based 

gel in front of the 43 fingers slanted transducer. The frequency of the applied SAW signal was 11 MHz 

(0.5 W). (Scale bar 1.5 mm) 

 

2.2.3. SAW induced streaming 

SAW induced fluid streaming characterisations was conducted with two different systems. 

They were a fluorescent correlation spectroscopy (FCS) system and a micro-particle image 

velocimetry (µ-PIV) setup. The volume of the micro-scale sample was relatively large in 

comparison to the FCS detection volume (approximately 1 fl). Therefore, µ-PIV was used as 

the primary speed monitoring system in this study.  

The high frame rate (3000 frames per second at 1024 by 1024 pixels resolution- Photron APX 

RS) µ -PIV system (TSI) consists a high repetition rate laser (10mJ at 1 kHz) for illumination 

of the red dyed fluorescent particles. The high-resolution stereo µ-PIV System was used to 

observe the flow pattern inside droplets and samples in chambers to measure the velocity of 

the flow [82]. Red dyed fluorescent particles (3 µm, Fluoro-Max Aqueous Fluorescent 

particles, No: R0300), at a concentration of 4 x 106 particles/ml, are used as flow tracers. The 

particles behave similarly to the flow of the fluid. Therefore, the particle visualization can 

give relevant data about the flow patterns and characteristics. It should be noted that the 

velocities measured by the µ-PIV system gives only 2D (horizontal) information.  

http://www.fishersci.com/ecomm/servlet/fsproductdetail?position=content&tab=Items&productId=10898266&fromSearch=1&highlightProductsItemsFlag=Y&catlogId=29104&storeId=10652&langId=-1&searchType=PROD
http://www.fishersci.com/ecomm/servlet/fsproductdetail?position=content&tab=Items&productId=10898266&fromSearch=1&highlightProductsItemsFlag=Y&catlogId=29104&storeId=10652&langId=-1&searchType=PROD
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The transducers were re-fabricated on a transparent LiNbO3 substrate [49] since the 

microscope of the PIV system was inverted. Therefore, the optical sample monitoring could 

be performed through the substrate. 

 

 

Figure 2. 28  Image of the µ -PIV system (Top) and the experimental setup of the SAW platform. The 

43 finger SAW device was microfabricated on a transparent piezoelectric substrate (LiNbO3) 

2.2.4. Surface examination 

Surface scanning is an effective way for the investigation of surface treatments. In this 

research, the surface examinations were firstly made via microscopes. Two-dimensional 

surface profile measurements and three-dimensional topographical measurements were also 

performed when more detailed data was needed. 

Surface measurements during microfabrication procedure were determined using a height 

profilometer (Veeco Dektak 6M). The examinations on electro-polymerised surfaces were 

conducted by an atomic force microscopy (AFM) system (NanoWizard II AFM - JPK 

Instruments AG, Germany). AFM provides three-dimensional detailed (nm scale) data about 

the surface topography.  

2.3. Electroanalytical analysis 

Electroanalytical measurements (cyclic voltammetry and amperometry) were performed on 

model solutions including potassium ferrocyanide (K4[Fe(CN)6],  Sigma-Aldrich) at varying 
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concentrations (5 mM, 10 mM, 20 mM and 40 mM). The samples also included 100 mM KCl as 

a supporting electrolyte for the system.   

 

Figure 2. 29  Schematic of the SAW enhanced hydrodynamic electroanalytical system. The complete 

system setup composes a potentiostat (CHI760C), a three-electrode sensing system (with a 3µl sample 

pipetted onto it), a slanted SAW IDT (10nm Ti, 100nm Gold), an amplifier (Mini-Circuits ZHL-5W-1, 

5-500 MHz with a 3 A, 24 V DC power supply) and a function generator (Agilent Technologies MXG 

Signal Generator N5181A).Travelling acoustic wave is radiated into the sample and created extra fluid 

motion.  Electroanalytical measurements were performed on the sample in the absence and the 

presence of hydrodynamic effect. 

Cyclic voltammetry and amperometry tests were performed for quantitative measurements 

and also for electro- polymerisation tests on gold surfaces with a CHI 760C Series 

Electrochemical Workstation. The quantitative tests were also performed in hydrodynamic 

conditions. This effect was provided by the SAW induced fluid streaming. The schematic 

representation of the hydrodynamic system setup is given in Figure 2. 29. Hydrodynamic 

electrochemistry systems include an external convection effect in addition to the diffusion of 

the system. This external convection increases the mass transfer in the medium and improves 

the reaction rate [17]. The SAW-enhanced hydrodynamic voltammetry microchip comprises 

a three electrode sensing part and a SAW transducer. Hydrodynamic chemistry tests were 

performed with microliter scale droplet solutions. The same system setup (Figure 2. 29) was 

also used for quantitative electroanalytical bioassays.  
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3. Surface acoustic wave actuator designs and fluid 

streaming 

3.1. Introduction 

SAW devices are commonly used as passive filters in electronic equipment [83]. However, in 

recent years SAW technology has attracted a significant interest as physical actuator devices. 

There have been various publications concerning micro fluid manipulation [37], heating [45] 

and mass transport enhancement in electroanalysis [84]. Varying requirements of different 

applications led to the creation of various interdigitated transducer (IDT) designs, such as 

slanted [45], focused [85] and single phase unidirectional transducers (SPUDT) [12].  

 

Figure 3. 1  The image of a LiNbO3 substrate pasted on a heat-sink with a heat-compound material. 

The substrate has electroanalytical sensors, and various types of SAW transducers microfabricated on 

it using photolithography. Three electrode sensors were used for the investigation of SAW induced 

hydrodynamic electroanalytical analysis (see chapter "SAW induced electroanalysis" for details). 

(Scale bar 2.3 cm) 

This work is focused on the enhancement of the efficiency of SAW actuated mixing platforms 

and their characterisation. Various SAW IDT designs and system setups were experimentally 

investigated via different techniques such as surface displacement and thermal 

measurements. The actuator design combinations were also used for SAW induced 

(hydrodynamic) electroanalytical measurements in the following work (see details in the 

next chapter "SAW induced electroanalysis"). 
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3.2. SAW device designs and characterizations 

3.2.1. Straight design 

Straight SAW IDT (Figure 3. 2) is one of the most common types of designs used in 

microfluidic applications. All the parameters of the model are kept same all over the device. 

Those parameters are the pitch distance, finger width and mark to space ratio that is kept as 

equal.  

  

Figure 3. 2  Image of straight SAW IDTs fabricated on a LiNbO3 (128˚ Y-cut X-propagating LiNbO3, c 

= 3996 ms
−1

) substrate. The devices were designed to work at 5 MHz (λ= 800 µm). The LiNbO3 

substrate was coupled on a heat sink with a thermal compound in order to avoid breaking due to 

overheating. (Scale bar 30 mm) 

 



  61 
 

 

Figure 3. 3  Resonance performance of the SAW transducer. The graphic shows the magnitude of the 

S11-parameter obtained with an Agilent Technologies E5071C ENA series network analyzer. The S11-

parameter gives information of the refection coefficient. The resonance occurs at 4.7 MHz on the 

device. The transducer can also resonate at a few harmonic frequencies such as 6.5 MHz and 9.38 

MHz. 

The SAW devices were fabricated onto a 127.680 Y-X cut LiNbO3 substrate, as previously 

described [45]. Briefly, using standard UV photolithography, IDTs were obtained by the lift-

off of 10 nm of titanium adhesion layer and 100nm of gold. The SAW devices were firstly 

tested with S11 reflection tests with an Agilent Technologies E5071C ENA series network 

analyzer. The analyser sends signals between a range of frequencies and compares it with the 

reflected signal. The comparison starts to present difference when a signal at the resonance 

frequency is sent to the SAW transducer. The electrical energy gets converted to mechanical 

energy, therefore, the reflected signal decays. This gives the down peaks as shown in the 

Figure 3. 3. 

The purposed resonance frequency of the straight design was 5 MHz. However, the scattering 

(S11) analyses (Figure 3. 3) showed that the resonance occurred at 4.7 MHz in that particular 

device. The reason for the frequency shift was the transition errors first from the digital 

design on a PC to a mask and from the acetate mask to the actual metal pattern on the 

substrate. Moreover, Figure 3. 3 showed that the transducer was also capable of resonating at 

a few other frequencies such as 6.5 MHz and 9.38 MHz.   

A three-electrode system, fabricated on a 1 mm thick glass slide, was coupled on the systems 

for electroanalytical test purposes. 3 µl water based gel (KY Jelly; Johnson and Johnson) 
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bonded the two platforms to each other. The temperature generated on the sample droplet 

which was pinned on the superstrate was investigated. Thermal measurements were made at 

a harmonic resonation frequency (9.38 MHz) at varying SAW powers from 0 to 4 W by an IR 

camera (Fluke Ti25). Figure 3. 5 presents the temperature increment from 27.72˚C to 39 ˚C.  

 

Figure 3. 4  IR image of the ultrasensitive electrochemical sensor chip (9.38 MHz, 0.05W). Thermal 

measurements were performed by an IR camera (Fluke Ti25). The left side of the image shows the 

SAW platform. The right side is the electrochemical sensing part which is attached on the SAW 

platform with a thin gel layer. Cable connections were made via silver paste bonding. There is a 

droplet on the tips of the electrodes.  
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Figure 3. 5  Temperature change inside the droplet during the SAW streaming at 9.38 MHz. Powers 

applied to the SAW IDT were 0, 0.8, 2.5 and 4 W. The measurements were performed on the device 

explained in the previous figure. 

 

3.2.2. Slanted finger design 

Slanted (or tapered) finger IDTs (SFIDT) are commonly used in various microfluidic 

applications due to their powerful wave position manoeuvring capabilities. Changing the 

frequency enables to shift the position of the SAW beam horizontally (Figure 3. 9). These 

types of devices are used for droplet manipulation [40], mixing [84], manoeuvrable 

propulsion (swimming) on water [86] and cell patterning [87] applications.  

The SAW induced fluid streaming experiments, included in this work, were carried out using 

two different SFIDTs. Scattering (S11) analysis of the first, 29 finger (black line), and second, 

43 finger (Red solid line), SFIDTs are presented in Figure 3. 6. 
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Figure 3. 6  Scattering (S11) analysis of the first, 29 finger (black line), and second, 43 finger (Red solid 

line), SFIDTs. The frequency working range of the fists SFIDT was between 8 - 12 MHz and the 

working frequency range of the second device was between 7.6-16.6 MHz. 

 

 

Figure 3. 7  Left: The setup for surface displacement measurements on the SAW platform (43 finger 

SFIDT). The vibrometry tests were conducted by a Laser Doppler vibrometry (Polytec UHF 120 

Vibrometer) device. Right: Total displacements obtained in front of the resonator at three different 

resonation frequencies (10 MHz, 12 MHz and 14 MHz). 
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Figure 3. 8  SAW induced temperature variation on the glass cover slide, coupled with gel in front of 

the 43 finger SFIDT, was measured with an IR Camera (Fluke Ti25). The resonator device was able to 

shift the location of the SAW beam, along its 1cm length of aperture distance. The manipulation was 

being made by varying the applied SAW frequency between 7.6MHz and 16.6MHz. The period (λ) of 

the design varied from 520 µm (on the left-hand side of the device) to 240 µm (on the right-hand side of 

the drop). This method was commonly used, for the characterisation of SAW devices, during the entire 

research.  

Figure 3. 9 presents the working characteristics of the SFITD (43 fingers) device. The results 

show how the varying SAW frequencies change the position of the SAW beam. The calculated 

locations of the SAW paths are found in agreement with the surface displacement and 

thermal measurements as shown in the graph in Figure 3. 9.  

 

Figure 3. 9  Working characteristics of the 43 finger SFIDT. Left to right: Electroanalytical sensor 

(three electrode system), the SFIDT SAW device, surface displacement pattern due to the SAW 

propagation and the graph of the working frequency range of the SAW transducer. The graph 

contains a simulation and two experimental test results of the SAW device. Two experimental data 

were obtained via Laser Doppler vibrometry and IR Camera (Fluke Ti25) measurements.   
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3.2.3. Step IDT design 

A complex actuator, Step-IDT device (Figure 3. 11), was designed for more efficient mixing 

applications. The device included three different finger series that were able to resonate at 

three different frequencies: 7.9 MHz, 9.6 MHz, and 11.5 MHz. The design works in a similar 

fashion with the SFIDT. However, the resonating parts of the fingers can be specified much 

more accurately. Therefore, the widths of the SAW beams can be defined precisely just by 

arranging the lengths of straight patterns.  

 

Figure 3. 10  Scattering (S11) results obtained from Step IDT by a network analyser device (Agilent 

Technologies, E5071C 9kHz-3Ghz ENA Series). Each of three finger series resonated at a different 

frequency. 

The resonating parts of the SFIDT devices are limited and depends on the period (λ) variation 

and the length of the slanted fingers. This method can enhance the efficiency of SAW 

generation by actuating larger portions of piezoelectric crystal located under the straight 

fingers. More acoustic energy enables to obtain a more powerful mixing or cell patterning 

method than the SFITD method. Moreover, the working frequencies can be specified more 

precisely as shown in scattering (S11) analysis presented in Figure 3. 10.  
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Figure 3. 11  Propagating mechanical wave patterns obtained from three different finger series of the 

Step-IDT device. Each SAW beam obtained at different frequencies (7.9 MHz, 9.6 MHZ, 11.5 MHz). 

This design enables to control the rotation direction in the sample precisely when the sample is pinned 

on the circular sensors. (Scale bar 2 mm) 
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3.2.4. Focused multiple IDT design 

Maximum physical energy transition into the sample is one of the most prior targets in 

microfluidic applications. On SAW platforms, using a targeted IDT (FIDT) design [88] or a 

phononic lattice structure [60] are the ways of obtaining an adequate acoustic energy 

transmission. Targeted devices consist of circular/ curved finger design to concentrate the 

acoustic energy on a particular focus point. They have proven their efficiency [59] in various 

applications such as jetting [89] and particle separation [90].  

This part explains a multi-actuator design which was designed to perform multiple mixing on 

four separate sensing systems. Each circular finger set was designed to work at a different 

frequency. The transducers were focused on sensing electrodes which were located at 

various positions. Thus, the design gives the freedom to choose any of the transducers at any 

time. It is also possible to activate more than one finger set at a time. For this, the applied 

signal must be the sum of signals, defined by four resonance frequencies. The frequencies of 

the transducers were 10 MHz (λ 1 = 400 µm) for FIDT-1, 11 MHz (λ 2 = 364 µm) for FIDT-2, 

12 MHz (λ 3 = 333 µm) for FIDT-3 and 13 MHz (λ 4 = 308 µm) for FIDT-4.  

The IDTs were first investigated by thermal monitoring. Some of the acoustic energy is 

dissipated as heat when travelling from one medium to another such as solid to liquid. This 

heat, generated in the fluid, is proportional to the viscosity of the liquid. A water-based gel, a 

viscous liquid, was used in the thermal investigation test. It was manually spread  between a 

thin glass slide and the substrate. Thermal images helped to define the absolute resonance 

frequency of the FIDTs.  

Finally the instant surface displacement due to the travelling mechanical waves, were 

investigated. The result showed that the actual resonance frequencies of FIDTs were lower 

than the calculated values. This was caused due to printing accuracy error, a disadvantage of 

acetate mask, and the errors due to the photolithography process. However, each FIDT of the 

complex design managed to produce mechanical wave propagation towards the sensing 

electrodes. 
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Figure 3. 12  Image of the multiple FIDT design. The design was comprised of four FIDT transducer 

device with different pitch distances (λ1 = 400 µm, λ 2 = 364 µm, λ 3 = 333 µm, λ 4 = 308 µm). Each FIDT 

series was positioned towards a different direction (+ 45 °) with a three electrode sensing at the front. 

(Scale bar 3mm) 

 

 

Figure 3. 13  Thermal tests performed for the definition of exact working frequencies of  FIDT 

transducers. The working frequencies of FIDT-3 and FIDT-4 were measured as 11.47 MHz and 12. 6 

MHz. The performances of SAW devices were investigated via thermal imaging using an IR camera 

(Fluke-Ti25).  
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Figure 3. 14  Instant surface displacements created by travelling mechanical waves. Measurements 

were performed with a Polytec UHF 120 vibrometer. The power of the applied signal was 0.032 W. 

(Measurement areas are not to scale) 

 

3.2.5. Wide finger design 

A dedicated SAW IDT model was used for testing the effect of M/S (finger width / space) ratio 

[91] on the efficiency of electrical energy to mechanical energy conversion. The 65 finger 

straight IDT design, presented in Figure 3. 15, was comprised of 7 different finger series with 

different M/S ratios. The width of the electrode sets varied linearly from 20 µm to 140 µm 

while maintaining the pitch distance (2d).  
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The transducer was fabricated as described previously [40] by lift-off using standard 

photolithographic techniques. The S1818 resist was used for defining the device pattern on a 

128˚ Y-cut X-propagating 3 inch LiNbO3 (c=3996 ms−1) substrate. Metal layers of 10 nm 

titanium and 100 nm gold were deposited by e-beam evaporation and lifted off in acetone. 

The LiNbO3 substrate was pasted on a heat sink with a thermal compound. 

 

Figure 3. 15  The SAW device and three electrode sensing systems were fabricated on a LiNbO3 (128˚ 

Y-cut X-propagating LiNbO3, c = 3996 ms
−1

) substrate (Left). PVC chambers (1.25 mm radius, 200 µm 

thick) were attached on sensing electrodes (Top right) (Scale bars, 2.5 mm). All the transducer series 

had the same pitch (2d), 160 µm (Middle, bottom right). 

The resonance frequency of the device was characterised using a network analyser (Agilent 

Technologies, E5071C 9kHz-3Ghz ENA Series). The resonant frequency of the transducer was 

measured to be 12.24 MHz via S11 scattering analyses as shown in Figure 3. 16. Moreover, the 

reactance measured at the resonance frequency was very close to zero. This improved the 

power transfer from the RF signal source to the resonators. 

Surface displacement measurement of SAW propagation was performed in front of the SAW 

device, directly on the substrate surface, by a Polytec UHF-120 Vibrometer.  

An infrared camera (Fluke Ti25) was used for monitoring the temperature variation created 

due to the absorption of mechanical waves by a water-based gel layer. The temperature 

observations were made on a thin (0.2 mm thick, 2 mm wide and 17.5 mm long) glass 

superstrate which was coupled in front of the resonator. Coupling was made with manual 
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application of 2 µl water based gel (KY Jelly; Johnson and Johnson) between the thin glass 

and LiNbO3 substrates. 

 

Figure 3. 16  Scattering (S11) analyses of the SAW transducer, with and without coupling on a heat-

sink. The LiNbO3 substrate was coupled on a heat sink with a thermal compound in order to avoid 

breaking due to overheating. Coupling on a heat sink decreased the energy conversion from 24 dB to 

15 dB ratio. This happened because of the mechanical absorption characteristics of the thermal 

compound.  

Electroanalytical measurements were performed with the three-electrode sensors localised 

in front of the SAW device (Figure 3. 15), as described previously [84]. All the electrodes 

(working, reference and counter electrodes) were fabricated at the same time, through the 

same process and on the same substrate as the SAW transducer. A redox sample was used as 

a model (5 mM ferrocyanide and 100 mM KCl). 4 µl sample droplets were dispensed into a 

circular chamber made out of PVC (Figure 3. 15 - top right). Cyclic voltammetry (CV) 

measurements were performed with a potentiostat (CHI 760C- CHI Instruments): voltage 

range between -0.3V and 0.5 V (vs. gold reference electrode), scan rate 0.1 V/s.  
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Surface displacement measurements 

The averaged total surface displacement measurements are presented in Figure 3. 17, 

showing that the average surface displacement, created by the 7th finger series (M/S=7), 

was 52.5 % higher comparing to equal finger - space design (M/S = 1).  

The instant wave pattern of the travelling SAWs (containing phase information), are 

presented in Figure 3. 18. This result showed that the wide finger structures can produce 

SAWs within the same phase and wavelength with the classical design (M/S=1).  
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Figure 3. 17  Schematic of the SAW device design (top), comprised of different interdigitated electrode 

series, and the corresponding vibrometry measurements (middle) (Horizontal scale bar, 2.5 mm). The 

surface displacement measurement was made in front of the device. The dimensions of the rectangular 

area were 1.9 mm and 17.5 mm. (Bottom) Average (circle), minimum (up triangle) and maximum 

(down triangle) total displacement values. M/S ratios (bar graph) of the finger series were varying 

from 1:7 (0.143) to 7:1. The SAW frequency was fixed at 12.24 MHz with 0.032 W applied power. 

Wide finger series with the ratio of 7:1 (M/S) presented 85 pm higher surface displacement in 

comparison to the classical finger design (M/S =1).  
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Figure 3. 18  Top: Instant vertical surface displacements immediately in front of the SAW device 

(Horizontal scale bar, 2.5 mm). The dimensions of the scanned area were 1.9 mm and 17.5 mm. 

Bottom: Cross section profiles of mechanical waves produced by 1st finger set (dashed black line), 4th 

finger set (dotted blue line) and 7th finger set (dashed red line), corresponding to the location marked 

on the top image.   
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SAW induced heating 

 

Figure 3. 19  Thermal images obtained from the SAW system and its graphical analysis. A thin cover 

glass (0.2 mm thick, 2 mm wide and 17.5 mm long) was coupled in front of the SAW IDT with a gel 

layer (KY Jelly; Johnson and Johnson). IR camera measurements were performed at 12.24 MHz with 

a power of 0.79 W. 

SAWs create a heat as proportional to the frequency and the voltage (peak to peak) of applied 

RF signal (see details in Characterisation section in Material and Method chapter). This 

enables to measure the SAW related heat variation with a relatively high definition, as a 

proxy for the acoustic power obtained. A viscous water-based gel was used in the system in 

order to get a larger temperature scale (28 ˚C to 31 ˚C). 
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Thermal measurements (Figure 3. 19) showed that the average temperature in front of the 

widest (M/S ratio= 7) electrode structure was increased to 30 +/- 0.5 ˚C while the 

temperature in front of the equal finger-space design (M/S ratio=1) was 29˚C. The rise of the 

M/S ratio from 1 to 7 enabled a 20 % enhancement in temperature, compared to the starting 

temperature (24 ˚C) of the observation region.  

Monitoring SAW streaming via electroanalysis 

To illustrate the potential impact of applying this technique in a biosensing application, we 

performed cyclic voltammetry (CV) experiments, using three different M/S sets (1/3, 1, and 

3). The frequency of the applied RF signal, on the SAW device, was 12.24 MHz and its power 

was fixed to 0.79 W. The fluid motion induced by SAW enabled to increase the diffusion 

limited current from 8.3 µA to 34 µA for M/S =3, an 85 % increase in signal (Figure 3. 20). 

Higher current flows created by wider electrodes were due to the faster streaming rates 

within the fluid sample. In biosensing, this increase directly correlates with sensitivity gains, 

which has immediate benefits in diagnostic applications for detecting infections earlier for 

example. 
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Figure 3. 20  Diffusive peak current plot (filled square) as a function of electrode dimensions 

(metallisation ratio). The inset shows the CV results performed at 0.1V/s scan rate between -0.3 and 0.5 

V. The first voltammetric test was performed in the absence of SAW streaming (empty square). 

Following tests were made in front of three different, SAW propagating, finger sets; 2nd set with 0.333 

M/S ratio (down triangle), 4th set with an equal M/S ratio (circle) and 6th set with 3 M/S ratio (up 

triangle). The applied SAW signal was at 12.24 MHz and its power was fixed to 0.79W. The 

concentration of the ferrocyanide solutions was 5 mM (in 100 mM KCl). The area of the straight 

electrodes used in the system was 0.19 mm
2
. Enhanced mass transport rates helped to improve the 

amount of material which was being included in the electrochemical reaction during the application of 

triangle CV voltage. The fluid motion induced by SAW enabled to increase the diffusion limited 

current from 8.3 µA to 34 µA for M/S =3, an 85 % increase in signal. 

This part explained a method to enhance the efficiency of SAW transducers in biosensing 

applications. Electrical energy to mechanical energy conversion ratio was improved without 

using any external impedance matching circuit or increasing the applied voltage (peak to 

peak). The results show that increasing the M/S ratio led to improvements in SAW 

generation. The enhancement stems from the wider area coverage of the electrodes, which 

interacts with a larger area of the piezoelectric substrate, causing displacement of a larger 

volume of the piezoelectric crystal. The photolithography based fabrication process may 

require a precisely specified mask for very closely (less than 10 µm) positioned electrode 

structures.  
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3.3. SAW induced fluid streaming 

 

Figure 3. 21  Depiction of the superstrate based system setup. SAW induced streaming applications 

were conducted on a glass slide (1 mm) coupled on SAW platform. The slanted resonator was capable 

of working from 8 to 12 MHz. The fluid rotation speed in the droplet is controlled by the applied SAW 

power. 

 

Figure 3. 22  Depiction of fluid streaming in a PDMS chamber via SAW excitation. The working 

frequency range of the SAW generator was from 7.6 to 16.6 MHz. The mixing chamber is located on 

the same substrate surface with the SAW transducer to decrease the power loses. 

Fluid streaming experiments were conducted with two different setups. Firstly, 3 µl droplets 

were analysed on a superstrate based system (Figure 3. 21). A trap (radius: 1.5 mm) 

fabricated on the glass slide controlled the circular shape of the droplets. The trap was 

fabricated by the hydrophilic/hydrophobic interface pinning method [73].  The second setup 

was free from any superstrate and included a PDMS (radius: 1.75 mm) chamber for sample 

handling. The working frequency range of the SFIDT was between 7.6 MHz and 16.6 MHz.  
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3.3.1. Fluorescence correlation spectroscopy 

measurements 

 

Figure 3. 23  a) Schematic diagram of FCS measurements on a SAW based microfluidic platform. The 

dynamically active sample was illuminated by the focused laser beam through a 40x, 1.2 numerical 

aperture (NA) water immersion objective lens, and then the resultant fluorescent photons were 

detected by a hybrid photomultiplier tube (PMT) with single photon precision. b) The confocal volume 

where intensity fluctuations are measured with 100 nm fluorescent microspheres driven by fluid flow. 

c) Graph of detected fluorescence fluctuations within the confocal volume. The duration of the 

fluctuations provides information on the average time a particle resides in the confocal volume. With 

knowledge of the volume dimensions, information on the speed of the fluid flow can be determined. 

Moreover, the function provides information about the concentration of the material in the sample. 

As mentioned above, SAW induction into a fluid sample leads to streaming at different 

speeds, depending on various parameters such as SAW power and measurement location in 

the sample. In this section,  fluorescence correlation spectroscopy (FCS)  [92] was used to 

measure streaming velocities on the superstrate based acoustic mixing platform (Figure 3. 

21). A 170 µm thick coverslip was used due to the short working distance of the high NA lens. 

The coverslip was attached on the SAW platform via a gel interface. SAW was applied to a 3ul 

droplet at varying powers ranging from 0.05 to 0.2 W. The auto-correlation function, G (τ), 

(Equation 2) was fit to the curves shown in Figure 3. 24 (left) providing the flow time,      . 

From this the flow velocity could be determined from the relationship shown in Equation 2. 

In Equation 3,    is the lateral radius of the confocal volume determined with a nM solution 

of a small diffusing fluorescence molecule in water, as outlined in [93], and V is the measured 

velocity. The velocities obtained from the fitted auto-correlation function (Figure 3. 24- left) 

gave the results shown in Figure 3. 25 (right).  
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Equation 2 

      
  

 
 

Equation 3 

A secondary FCS measurement series performed at different heights inside a 3µl droplet. The 

SAW power (0.125 W) and the frequency (11.7 MHz) was fixed. Velocity values obtained 

from FCS measurements performed at four different heights in the droplet are presented in 

Figure 3. 25.  

 

Figure 3. 24  FCS results obtained at the height of 110 µm in a 3ul droplet located on a coverslip 

substrate. The produced sound waves were travelling through the surface of the piezoelectric material 

and coupling to the glass slide through a gel interface. The frequency applied to the SFIDT was 11.7 

MHz and the input power was varied; 0 W (red), 0.05W (purple), 0.08W (green), 0.13 W (turquoise) 

and 0.2W (blue). Left: Measured auto-correlation functions for 100 nm fluorescent microspheres 

driven by fluid flow. Right: The flow velocities (square) calculated from the τ-flow values obtained 

from the fitted auto-correlation function. A curve (solid line), varying according to the power     
                          , is fitted on the experimental data. 
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Figure 3. 25  FCS results obtained in a 3ul droplet, at different heights; 100 µm (blue), 200 µm 

(purple), 300 µm (green) and 400 µm (red). Left: Measured auto-correlation functions for 100 nm 

fluorescent microspheres driven by fluid flow. Right: The flow velocities (square) calculated from the 

τ-flow values obtained from the fitted auto-correlation function. The frequency of the signal applied on 

SAW IDT was 11.7 MHz, and the input power was 0.13 W.  

It has been demonstrated that FCS can be used to measure SAW induced streaming velocities. 

However, the volume of the micro-scale sample was relatively large in comparison to the FCS 

detection volume (approximately 1 fl). Meanwhile the streaming pattern and the speed are 

not always even in the volume of the droplet. Therefore the FCS technique requires multiple 

measurements, at different locations of the sample. Also, FCS provides no information on 

directionality with respect to the SAW induced fluid streaming. This long experimental 

process must be repeated after each SAW streaming test. Moreover, it can also be difficult to 

obtain quantitative data on high power (over 0.5 W) SAW streaming due to evaporation led 

by the acoustic heating. Consequently, FCS measurements in SAW actuated droplet cannot 

provide relevant results. Increasing the humidity of the surrounding environment may be 

used to decrease evaporation. 

3.3.2. Particle image velocimetry (PIV) measurements 

SAW induced streaming was characterised by the micro particle image velocimetry (µ-PIV) 

method [94]. The µ-PIV device consisted of a Nikon eclipse TE2000 microscope, a high frame 

rate camera (3000 frames per second at 1024 by 1024 pixels resolution- Photron APX RS), a 

laser source (10 mJ at 1 kHz) for illumination of the red dyed fluorescent particles and a laser 

pulse synchronizer. The SFIDT transducer was re-fabricated on a transparent 

       substrate because the microscope of the µ-PIV system was inverted; therefore, it was 

required to observe the droplet from the bottom of the substrate. It should be noted that the 

velocities measured by the µ-PIV system gives only 2D (horizontal) information. 
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Measurements were performed in 3 µl water droplet samples which contained fluorescent 

particles (Fluoro-Max Dyed Red Aqueous  Fluorescent particles, R0300 – Thermo Scientific) 

at a concentration of 4.106 particles/ml. 

 

Figure 3. 26  SAW induced streaming measurements on droplets in different volumes (from 1 to 10 µl). 

The velocity reached to the maximum level, 13.8 (+/- 3.7) mm/s, when the droplet size was around 8 µl. 

The SAW streaming performed with a fixed frequency (9.2 MHz) and power (0.16 W). The centre of 

the droplets were localised 5 mm away from the SAW transducer. Error bars presents the standard 

deviation obtained from the average speeds measured in three tests. 

SAW induced mixing process presents different situations, according to the size of the 

droplet. The velocity change due to the volume variation of the droplet is explained in this 

part. Results, given in Figure 3. 26, reveal that the velocity of the streaming reached the 

maximum, 13.8 (+/- 3.7) mm/s when the droplet size was around 8 µl. Various physical 

parameters can affect the streaming velocity or the efficiency. The combination of SAW 

radiation angle, acoustic beam excitation point, attenuation length, and the height of the 

droplet are highly influential parameters on the velocity obtained in the droplet. Inertial 

forces of the system resists towards the flow direction, therefore, cause speed decreases. For 

example, the flow velocity decreases as the height of the sample decreases, due to the 

increased shear forces [95]. In the opposite case, when the droplet volume is larger, the 

viscous forces decrease however various types of motions happen on the droplet such as 

jumping [96], vibration (squeeze release action) [97] and capillary waves [46] on the droplet 

surface. This energy absorbing actions cause acoustic energy loss. Therefore, an optimum 

sample volume can be defined for any particular setup, to obtain an efficient acoustic 

streaming. 



  84 
 

 

Figure 3. 27  The graphic shows the SAW (9.2 MHz, 0.16 W) induced flow pattern inside a 3 μl droplet. 

µ-PIV measurements give the 2D velocity profile at 200 µm high from the substrate surface. 

Asymmetric excitation of the droplet created an angular momentum. The streaming was reached up to 

3.5 mm/s thanks to the vortex created by SAW streaming radiated from the 29 finger SFIDT.  

 

Figure 3. 28  Speed measurements obtained at various heights (66, 206, 346, 486, 626, 766 µm) inside a 

3 µl droplet. The vortex was obtained thanks to the SAW (0.16 W and 9.2 MHz) beam radiating from 

the side of the droplet. The error bars represent the standard deviation obtained from three 

independent experiments at each height level. 
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Figure 2. 17 exhibits the observed velocities, via the µ-PIV device, at different heights. 

Maximum speed, 6.11 mm/s (± 0.64 mm/s), was obtained at the middle height (~350 µm). 

The plot in Figure 2. 17 was the product of averages velocities obtained from the flow 

patterns. Figure 3. 27 gives an example of a flow pattern obtained at  200 µm height.  

The µ-PIV technique managed to reveal quantitative data at various experiments since it was 

able to capture the velocity data by a single step in a short time (~4 seconds). This capability 

was an advantage over the FCS technique. However, the vibration of the droplet was creating 

an additional motion, in the line between the centre and the outer chamber, in addition to the 

rotational motion. The extra movement was making the flow difficult to quantify. This effect 

also created noise problems in electroanalytical experiments (for further details see the 

electroanalytical measurements performed in the superstrate based system in the following 

chapter).  

Rotational flow velocity in a PDMS chamber 

A substrate based system (Figure 3. 22) was designed, and tested (via µ-PIV method), in 

order to achieve the issues faced during the optical monitoring and electroanalytical 

measurements (see details in "SAW induced electroanalysis" chapter). The addition of a 

closed PDMS chamber into the actuation platform enabled the avoidance of the vibration and 

the evaporation of the sample. The capillary waves on the surface and the general vibration of 

the sample (droplet) were minimised by the surrounding PDMS structure.  

The µ-PIV measurements were performed on 20μl samples at five different SAW powers; 0.5, 

0.79, 1, 1.26, 1.59 W. The fluid sample included fluorescent beads (Fluoro-Max Dyed Red 

Aqueous Fluorescent particles, R0300 – Thermo Scientific) at a concentration of 4.106 

particles/ml. 

Figure 3. 29 illustrates the azimuthal velocity data obtained inside the PDMS chamber. Ring-

shaped regions at different distances/radiuses from the centre of the vortex were analysed 

individually for each SAW power level. The velocity was at the highest levels in the middle 

ring areas. Moreover, the velocity decayed towards the closer regions to the chamber walls. 

This was caused by the friction effect of the wall surface. The shear forces resisted towards 

the fluid motion. Additionally the SAW beam was less efficient at the sides of the chamber due 

to the cubic shape of the PDMS layer. The PDMS/ Substrate interface was larger, therefore, 

absorbing more  acoustic energy, at the sides of the chamber.  
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Figure 3. 29  Velocity graph obtained by the velocity patterns received from µ-PIV measurements. 

SAW induction into the sensing chamber was performed at various powers; 0.5W (diamond), 0.79W 

(square), 1W (triangle), 1.26W (circle) and 1,59W (star). The graphic presents the observed horizontal 

velocities at different radius inside the cylindrical PDMS chamber. 

 

Figure 3. 30  Rotational flow velocity graph: measured inside the PDMS chamber at five different 

SAW power using a µ-PIV system. The data are fitted well with a Hill function model (Vmax = 

258.37396, k = 0.60792 n = 3.91659). The inset shows an example streaming pattern observed at 0.5 W 

SAW power. The height of the measurement plane was 366µm from the surface. The physical depth of 

the focus of the µPIV system was 16.27µm. 
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Rotational velocity (ω) of the fluid streaming inside a PDMS chamber is presented in Figure 3. 

30. The flow velocity in the chamber was precisely controlled by the applied SAW power. This 

relationship was obtained from the µ-PIV velocity data to be used for Koutecky-Levich plots 

in the next chapter ("SAW induced electroanalysis" section). An example of azimuthal fluid 

velocity patterns, obtained at 12 MHz and 0.5 W of SAW power, is presented in Figure 3. 30.  

Switching to a substrate based system from the superstrate based system compensated the 

power loss led by the PDMS chamber because the acoustic coupling through the gel layer was 

decreasing the mechanical energy. Running the mixing tests in a covered PDMS chamber 

blocked the evaporation and vibration problems. These achievements enabled to capture 

repeatable µ-PIV data. Moreover, the noise effect in electroanalytical measurements was 

decreased thanks to the contribution made by PDMS chamber.    

3.4. Conclusion 

This chapter focused on the enhancement of SAW streaming efficiency and its monitoring. 

Various types of SAW transducer and mixing platforms were tested. Characterisations of the 

systems were performed by scattering (S11) analysis, thermal observations, surface 

displacement measurements and streaming velocity measurements.  

Experimental investigations were started with a basic straight IDT design which presented 

powerful characteristics due to the collectively resonating large electrode structures. At the 

following stage, it was replaced with an SFIDT transducer to obtain a controllable angular 

momentum in the fluid samples. This new case enabled the system to give similar 

characteristic with the rotating disc electrode application which is a standard technique in 

the hydrodynamic electrochemistry analysis (see "SAW induced electroanalysis" chapter for 

details). The design was further developed by extra modifications such as making the system 

one piece rigid design by removing the superstrate and using a PDMS chamber instead of a 

hydrophilic trap. The direct handling of the sample on the surface of substrate increased the 

efficiency due to the avoidance of the loss created by the gel interface. Meanwhile, the system 

started to present more stabilised characteristics.  

Despite the advantages, the SFIDT designs have a draw back. The width of the SAW beam is 

constrained due to the characteristics of the slanted fingers. At a particular frequency, only a 

tiny portion of the metal pattern can create travelling waves. However, the step IDT 

combined the advantages of the straight and the slanted designs. Increasing the amount of 

straight finger series, with various resonance frequencies, can easily increase the precision of 
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beam shift. Additionally, the width of the SAW beam can be controlled, according to the 

requirements of a particular microfluidic platform, by ranging the finger lengths.  

Moreover, the wide finger tests results showed that the increased M/S ratio enhances the 

performance of the transducers without requiring any other equipment such as an 

impedance matching circuit.  The method can be used to obtain a more efficient mixer, pump 

or heater applications in Lab-on-a-Chip devices. It can also improve the cell patterning 

applications performed with SAW resonators. Importantly, the design modification based 

performance enhancement does not cause any cost increment. 

 

  



  89 
 

4. Saw induced electroanalysis 

4.1. Introduction 

 

Figure 4. 1  Image of several "SAW enhanced electroanalysis platforms" fabricated on the same 

substrate (128˚ Y-cut X-propagating 3 inch transparent LiNbO3, c=3996 ms
−1

). Metal structures were 

obtained by lifting the UV patterned S1818 layer (scale bar, 10mm).   

Within lab-on-a-chip (LOC) systems, electrochemical sensors have been shown to reach pico-

molar sensitivities[98][99], using only microliter-sized samples, enabling them to have a 

significant impact in clinical practice (e.g. heavy metal [100], and melamine sensors [99]) . 

The ability of electrochemical sensors to operate in turbid environments has enabled them to 

perform in applications outside the reach of optical techniques. This characteristic has 

demonstrated potential in healthcare applications, such as point-of-care diagnostics (e.g. 

glucose sensing [101]).  

 Although miniaturisation has enabled the use of small (pin-prick sized) volumes of 

samples, thus providing the potential for low costs (e.g. reduced reagents and device 

fabrication cost) and non-invasive sampling, it puts pressure on the performances achievable. 

In the case of electrochemical sensors, the diffusion layer, localised on electrode surfaces, 

limits the amount of electron flow. Hydrodynamic techniques create an external convection 

effect to increase significantly the mass transferring rates to reduce the size of the diffusion 

layer. This results in higher currents and the rapid establishment of the steady state of the 

system. Therefore, both the sensitivity and the sensing time of the sensors are improved [22], 

as is the case in techniques such as rotating disc electrode (RDE) [102][103][25][26], channel 

electrode [27], sonochemistry [28][29] and dropping mercury electrode [104]. Further 

enhancements were also obtained by the application of the different hydrodynamic technique 
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combinations on electroanalysis platforms [31], up to 1.5 times in signal.  However, most of 

these techniques have had limited applications in LOC systems, mostly due their complexity, 

which also requires bulky equipment and large volumes of sample (e.g. high-speed RDE 

[105]).  

 Recently, surface acoustic waves (SAW), nanometres mechanical deformations 

travelling at the surface of devices at ultrasonic frequencies, have shown potential in enabling 

advanced liquid sample manipulation, thus enhancing conventional sensing systems [42][96] 

[121][85][48][107]. Rayleigh waves, a particular type of SAW, are most commonly excited by 

interdigitated transducers (IDTs) localised on a piezoelectric material [45][108]. SAWs 

become leaky when they reach a liquid sample. This produces longitudinal pressure waves 

and creates streaming [47][109]. The effective radiation’s depth depends on the fluid 

viscosity and the acoustic energy.  

 The application of SAW enables the non-contact actuation of fluids, as the waves 

refract into the liquid as longitudinal waves, imparting energy to the fluid. This results in 

devices that are simple, reliable and easy to fabricate and operate [33], especially when 

compared to systems where convection is enabled via moving parts[105][31]. For example, 

when used in combination with a Surface Plasmon Resonance (SPR) sensor, SAW allowed 

efficient mixing that resulted in faster and more sensitive assays [110][111]. Additionally 

nanometre SAW actuation of the surface along with acoustic streaming recirculation showed 

the ability to reduce non-specific binding in biosensing applications[112].   

 Here we show that the use of acoustic streaming, generated by SAW, enables to 

enhance the sensitivity of an amperometric sensor by a factor of 6, while only requiring 

microliter sample volumes on a low-cost system (Figure 4. 1).  

4.1.1. Theory 

Application of the electrical potential creates a concentration difference between the 

electrode surface and the bulk solution. This drives fresh material from the bulk solution 

towards the electrode surface via diffusion. However, the rate of the mass motion becomes 

the limiting factor of the system. In addition to the diffusion, the mass transfer in a fluid 

system is driven by two other effects; electro- migration and convection [113]. The diffusion 

becomes more efficient in such systems with low Reynolds and high Damkohler numbers 

[114]. The application of SAW streaming on solid-liquid interfaces can cope with mass 

transfer issues of the systems. The streaming, created via mechanical waves, increases the 

motion of fresh analyte towards the area of interest. Therefore, the reaction rate can be 
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increased by the application of SAW effect. Figure 4. 2 depicts the mechanism of model 

system's, potassium ferrocyanide (K4 [Fe(CN)6]•3H2O), reaction. 

 

Figure 4. 2  Transport of ferrocyanide toward the electrode surface and the oxidation of ferrocyanide 

to ferricyanide (Fe(CN)6
3-

) following the transport of ferricyanide away from the surface.  

 

 

Figure 4. 3  Concentration gradients of ferrocyanide (Red) and ferricyanide (blue) on the electrode 

surface. The first graph depicts the stabilised concentrations, at the distances from the electrode 

surface, before the application of potential (t=0). After applying the potential, the concentration of 

ferrocyanide drops to zero at the electrode surface, and it starts to diffuse toward the electrode. The 

longer the potential is applied, the thicker the diffusion layer through which the diffusion process 

continues. The extent of the diffusions layer, at the time "t3" is presented with the dashed red line. 
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4.1.2. Damköhler Number 

Damköhler Number (Da) is the ratio between the chemical reaction rate and the mass 

transport rate (Deen, 1998). If the number decreases, that means the chemical reaction 

characteristics becomes the dominant parameter and controls the reaction [114]. In this 

work, SAW streaming was applied to a chemical cell to decrease the Damköhler number by 

increasing the mass transport rate.   

   
                               

                            
 

       
                                   

                                      
        

  

  
 

 

Equation 4 

 

4.1.3. Streaming at low Reynolds numbers 

Microfluidic systems are governed by more active inertial forces than what we are used to. 

Surface effects such as wettability, surface tension, adhesion, and others become more 

predominant. This occurs due to the relatively small ratio between the volume of the liquid 

and the area of the solid surface. The physical explanation of this behaviour is explained by 

Reynolds number (Equation 5). It is a parameter presenting the ratio between inertial forces 

and viscose forces [32]. Microfluidic systems operate under a strong influence of surface 

effects. This increases the viscose forces and presents low Reynolds numbers. Moreover, the 

microfluidic systems are very limited by the diffusion due to the laminar flow regime. Lack of 

turbulence flow puts enormous adverse effects on the chemical reaction rates. 

   
   
 

  
                

              
 Equation 5 

 

Reynolds formula is explained via the Equation 5 where   is the density,   is the velocity of 

the flow,   is the length,   is the dynamic viscosity of the fluid. 

4.1.4. Hydrodynamic Electroanalysis 

Compared to quiescent (i.e. in absence of fluid flow) electrochemistry, hydrodynamic 

electrochemistry has the advantage of significantly enhancing the rates of mass transfer 

towards the electrodes; with a resulting higher current flow that increases the accuracy of the 

measurements. Moreover, the fluid motion decreases the time duration required for the 
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establishment of the steady state of the mass transport system. These enhancements increase 

both the speed of measurement [22] and the sensor sensitivity. There are two ways of 

creating convection in electrochemical cells. First, to move the electrode and second, to move 

the liquid. Both motions enhance the rate of mass transfer and change the behaviour of the 

system. There are different techniques for the hydrodynamic analysis of electrochemical 

cells, such as rotating disc electrode (RDE) [102][103][25][26], channel electrode [27], 

sonochemistry [28] [29] and dropping mercury electrode [104]. 

The leading scientist and the establisher of hydrodynamic electrochemistry are Levich, 

Veniamin (Benjamin) Grigorievich. He is the developer of the well known Levich equation, 

describing the diffusion (transport limited) current at the surface of a rotating disk electrode 

[115].  

Further enhancements can be obtained by the application of the different hydrodynamic 

technique combinations on electroanalysis platforms. Lorimer et al. has reported a maximum 

average increase of some 1.5-fold by the application of ultrasound to the rotating disc 

electrode in an aqueous solution of potassium ferrocyanide and potassium chloride as the 

electrolyte [31]. Also, researchers at the University of Sherbrooke incorporated SPR sensor 

with a SAW platform. Their findings proved that the concept works faster and more gave 

sensitive assays in SPR based biosensors [70]. Hydrodynamic electroanalysis can also be used 

for other measurement purposes such as the velocity of the microfluidic stream. In the 

University of Berkeley Tsao et al. benefited from electrochemical detection technique 

(diffusion limited cell current) for the quantification of fluid mixing in their Flexural-plate-

wave devices, caused by both standing and travelling flexural waves, in 1991 [116]. The 

electrochemical cell was comprised of two electrodes, a working electrode (WE) and a 

counter electrode (CE), a DC voltage source, and an ampere meter. One of the most noticeable 

results of the research was; the current enhancement obtained by standing wave was bigger 

than the travelling waves because of the greater mixing effect induced by many localised 

narrow flow cycles. They got 80 % current enhancement by the application of standing waves 

on the system (and 30% with travelling wave). Monash University researchers combined 

SAW platform with a drop scale chemical reactor. Consequently, the application of travelling 

mechanical waves was significantly increased the speed of the chemical synthesis [117]. 

This paper will be explaining the results obtained by the combination of two platforms; SAW 

based resonator system and an electrochemical sensing system. A similar fluid motion with 

the well known RDE technique was obtained inside the chamber, thanks to the specially 

designed device combination.   
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Flow Injection Analysis 

This method is based on the motion of the fluid on the surface of the sensing area. The liquid 

sample is forced to flow through the channel. The sensing area is embedded in the walls of 

the channel. Numerous electrochemical applications can benefit from the incorporation of an 

FIA system[118]. Flow-induced amperometry is an electroanalytical technique benefited 

from an FIA attachment [119].  

Rotating Disc Electrode 

 

Figure 4. 4  Schematic of a rotating disc electrode (RDE) mechanism (Arrows indicate the direction of 

fluid). The flow created by the rotation drags fresh material towards the surface of the electrode to 

react. 

 

Figure 4. 5  Increasing rotation rates enhance the reaction rate and, therefore, the diffusion limited 

(Levich) current, presented by sigmoidal waves (Left). The Levich current values are measured and 

plotted against the square root of the angular velocity. This produces the Levich plot. The chemical 

reaction rate constant defines the upper limit of the current flow. The lower limit of the current flow is 

defined by the diffusion rate at the stagnant case. 

Rotating disc electrode (RDE) is a standard method used for electroanalytical applications 

[120]. Increased rotation rate helps to improve the current flowing through the interface 
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between the electrode and the liquid. The circular motion of the electrode increases the mass 

transfer rate in the surrounding environment of the electrode [120]. Therefore the angular 

speed (ω) can tune the thickness of the diffusion layer.  

ω =  2 π f Equation 6 

     

where f is the revolution per second (RPM). This formula is used for the conversion of 

rotational speed to the angular velocity (ω).  

Relationship between the diffusion layer and the rotation rate is described by this equation; 

                           Equation 7 

     

where   is the diffusion coefficient of the material used and V is the kinematic viscosity of the 

electrolyte. The kinematic viscosity is the ratio of viscosity to the density of the fluid. It is 

measured in stokes (cm2 sec-1).  

The Levich Equation is written as; 

where F is the Faraday constant, A is the electrode area and C0 is the analyte concentration. 

According to the Levich equation, IL changes as proportional to the square root of the angular 

velocity. Increasing rotational velocity creates more current flow through the electrode [11]. 

This makes the system more sensitive and rapid, comparing to a stationary system.   

Koutecky Levich  

The reciprocal current in a real electrochemical system is based on the mass transfer and the 

charge transfer rates. This can be presented as shown below. 

                               Equation 8 
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 Equation 9 

 

In the equation,    represents the charge transfer resistance since the current must flow 

accross the electrolyte-electrode interface. The    represents the mass transfer resistance 

since the current must flow through the diffusion layer.  The Koutecky-Levich equation is 

based on the combination of Equation 8 and Equation 9. Unlike the Levich equation, this 

equation can be used when the kinetics contribute to the current flow.  

 

 
 

 

  

 
 

                            

 Equation 10 

 

Ik represents the kinetic rate limited current; 

        Equation 11 

 

where the kinetic rate constant is presented by k, which is dependent on the applied potential 

through the electrodes and the concentration (C) of the analyte. If the angular speed goes to 

infinity, the diffusion becomes very fast. Therefore, the diffusion layer disappears, and the 

diffusion limited current becomes zero. The system starts to be controlled purely by the 

reaction rate [115][11]. This method enables to obtain the current in the absence of diffusion 

control. When the system is controlled by the electron transfer rate constant, the current flow 

would be    (Equation 11). 

Heated electrodes 

Chemical reactions are highly influenced by the temperature changes. It is a scientific fact 

that the average kinetic energy of the molecules increases by the increased temperature. 

According to the equation of Arrhenius [115], the molecules start to move faster. Therefore 

the amount of molecules, with minimum energy to react, increase [121]. This enhances the 

sensitivity of the detection systems by increasing the frequency of the molecule collisions 

[11] and creates a similar effect with mechanical stirring [30].  
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Figure 4. 6  The energy distribution of molecules, depending on the temperature variation. Increasing 

the temperature, from T1 to T2, prepares more molecules with enough energy to react. This extra 

fraction of molecules is represented by the green shaded area in the graph. Therefore, more molecules 

can overcome the activation energy (Ea). This increases the reaction rate. 

4.2. Device Concepts 

The SAW-enhanced hydrodynamic voltammetry microchip comprises of a sensing platform 

and a SAW platform. Fabrication of both devices was made by metal deposition (10nm Ti 

Adhesion layer / 100nm Au) and lifting off the photoresist (S1818). While the sensing 

electrodes were fabricated on glass slides (1 mm thick), SAW devices were fabricated on the 

piezoelectric substrates (LiNbO3).  

4.2.1. Superstrate based concept 

The superstrate based design was obtained by coupling the two separate systems. A water-

based gel interface (approximately 50-μm thick) was used for the attachment of sensing 

platform on to the primary substrate (SAW platform) [45]. Three μl water-based gel layer 

(KY Jelly; Johnson and Johnson) was spread manually between the LiNbO3 layers.  

 Superstrate aspect is promising for the future disposable sensor designs. This has the 

potential to save the cost by enabling to reuse the SAW device with new sensors. Coupling of 

travelling mechanical waves through the gel interface is explained in the previous chapter.   
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Figure 4. 7  Image and schematic of the superstrate based electrochemical sensor chip. The system is 

designed to perform analyses in sample droplets. The microchip comprises of a sensing platform and a 

SAW platform. The superstrate design is obtained by coupling two separate systems. A water-based 

gel interface (approximately 50-μm thick) was used for the attachment of sensing platform on to the 

primary substrate (SAW platform) [45]. Three μl of water-based gel layer (KY Jelly; Johnson and 

John- son) was spread manually between two layers.  

SAW, propagated from the SIDT, causes a mixing effect inside the droplet. When SAW 

interacts with a side of the droplet, it creates a rotational momentum. This leads a fluid 

motion similar to an RDE system. Details of the SAW induced mixing are explained in the 

previous chapter. 

4.2.2. Substrate based concept 

Single substrate based design was obtained by the fabrication of both systems, the sensing 

electrodes and the SAW platform, on the same substrate (128˚ Y-cut X-propagating LiNbO3) 
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at the same time. The same fabrication process was followed with the superstrate based 

system.  

 

Figure 4. 8  Top: Image (scale bar, 2mm) of the substrate based design (SAW enhanced electroanalysis 

platform). Both the sensing system and the SAW device were fabricated on the same LiNbO3 wafer. 

Circular sensor model consisted of a reference electrode (RE), working electrode (WE), and counter 

electrode (CE).  A PDMS cube (W: 4.5 mm, L: 4.5 mm, H: 3.5 mm), with hole in it (1.7 mm radius), 

was coupled to the sensor (first from the top) as the sample chamber. Bottom: Schematic 

representation of a close-up on the SAW radiation into the PDMS chamber. SAW was performed at 12 

MHz frequency. Propagated waves were radiating from the left side of the chamber.  

Longitudinal pressure waves inside the liquid were creating the streaming effect [47][109]. (The 

depiction is not to scale.) 

4.3. Results and evaluation 

RDE formulas presented previously can be used to explain our SAW induced hydrodynamic 

electro- analysis since our design has similar flow characteristics inside the sample. Those 

statements were proved with the experimental CV results (voltammograms). Increased RF 

power was causing faster fluid streaming and so higher current flows. This hydrodynamic 

method is also able to perform fast stationary mode voltammetry measurements on the 
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micro scale samples due to the rapid establishment of the stationary case during the voltage 

sweep (Figure 4. 9).   

Electrolyte solutions of 5, 10, 20 and 40 mM Potassium ferrocyanide (K4[Fe(CN)6]•3H2O) 

with 100 mM KCl, purchased from Sigma-Aldrich, in RO water were the model samples used 

in this work. Experiments were performed with a 5µl sessile droplet in droplet traps and 20 

µl samples in PDMS chamber. 

Cyclic voltammetry (CV) and chronoamperometry were utilised as two detection techniques. 

CV studies were carried out by applying a voltage scan at a fixed scan rate (0.1 V/s), to the 

working electrode (vs. Au- pseudo reference electrode). Chronoamperometry measurements, 

where the current is recorded as a function of time, were done at a fixed potential (0.2 V) for 

20 seconds.   

Firstly, stationary mode (while the SAW device was off) CV and chronoamperometry 

measurements were performed for various concentrations of ferrocyanide. Secondly, SAW 

was generated, and the induced hydrodynamic measurements were carried out. The power of 

the RF signal applied on IDTs was varied from 0 to 4 W, and the frequency was 12MHz. Figure 

4. 9, Figure 4. 10 and Figure 4. 11 present the comparative data obtained at both stationary 

and SAW induced hydrodynamic mode. Each test was performed three times. 

Mainly two different system setups were used; a superstrate and a substrate based platforms. 

Samples were held in droplet traps on the first one and in closed PDMS chambers on the 

second setup, which was the final design. The top of the chamber was always covered with a 

piece of the glass slide, (1 mm thick, 10 mm width, and 10 mm length). Closing the chamber 

helped to limit evaporation. This was keeping the concentration constant in the liquid. The 

surface of the glass cover was coated with a PVC tape to implement a rougher surface, 

comparing to the surface of the glass. This made the cover less adhesive to the PDMS. Thus, 

the removal of the cover became simple when the sample in the chamber was needed to be 

replaced. 

4.3.1. Measurements on the superstrate platform 

SAW induced voltammetry within hydrophilic traps 

A sample of potassium ferrocyanide (20mM) with potassium chloride (100 mM) was pinned 

on the glass surface using a hydrophilic droplet trap (1.75 mm radius). The trap was 

fabricated by photolithography as explained in the methods chapter (Chapter 2). The sample 
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droplets were trapped thanks to the surrounding hydrophobic layer of 

trichloro(1H,1H,2H,2H-perfluorooctyl)silane  (FOTS, Aldrich).  

 

Figure 4. 9  Comparison of CV (at 0.1 V/s scan rate between -0.4 and 0.6 V) results without (square) 

and with SAW (solid line) streaming. The concentration of the ferrocyanide solutions was 20 mM (in 

100 mM KCl). The area of the straight electrodes used in the system was 0.19 mm
2

. The streaming for 

the hydrodynamic mode was obtained by the propagating mechanical waves obtained at the frequency 

of 11.73 MHz with 4 W of power. Enhanced mass transport rates helped to improve the amount of 

material which was being included in the electrochemical reaction during the application of triangle 

CV voltage. Thus, the diffusive peak current was increased from 12.1 μA to 43.2 μA. 

Figure 4. 9 shows that the SAW streaming (11.73 MHz with 3.98 W) enhanced the diffusive 

peak current from 12.1 μA to 43.2 μA. The reaction rate was enhanced thanks to the 

increased mass transport. 

The result (Figure 4. 9) was affected by the noise due to the vibrations, induced by the 

acoustic streaming. It was creating a pressure variation on the diffusion layer on the 

electrode due to the general motion (squeezing and releasing) of the droplet. Moreover, the 

area of the electrode in contact with the sample was varying over time due to the same effect. 

However, the most significant reason for the problem was attributed to the lack of ability of 

the silane to bind on gold surfaces. Therefore, the gold surface was not coated with the self-

assembled hydrophobic layer. This was allowing an additional current variation due to the 

changing contact area between the sample and electrodes.  
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Figure 4. 10 presents the steady-state current values of voltammograms obtained in 

stationary and hydrodynamic modes. Applied SAW power was varied from 0 W to 4 W. 

Changing from a complete stationary mode to hydrodynamic mode with maximum SAW 

power, increased the steady-state output current (averaged) from 8.6 (+/- 0.87) μA to 45.64 

(+/- 4.54) μA (Figure 4. 10). 

 

Figure 4. 10  Comparison of steady state currents obtained from voltammetry results in the absence 

(black square) and presence (red circle) of SAW (11.73 MHz) streaming. The superstrate based 

platform with a hydrophilic droplet trap was used in the test. The sample solution contained 20 mM 

ferrocyanide and 100 mM KCl. RF power of the SAW signal was increased from 0 W to 3.98 W. 

SAW induced voltammetry within SU8 traps 

This section explains the application of the same technique on different ferrocyanide 

concentrations (5 mM, 10 mM, 20 mM and 40 mM) in aqueous KCl (100 mM) solutions. 

Importantly, the droplet trap used previously was changed in here to a chamber with SU8 

walls. 5 µm thick SU8 layer, surrounding the droplet, was used instead of trichlorosilane. This 

solved the problem of sample spreading on the electrodes.  

SAW was produced at 11.73 MHz frequency. CV measurements were performed at different 

RF powers ranging from 0 to 4 W same as the previous experiments. 
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Figure 4. 11  CV measurements performed in SU8 electroanalytical chambers with and without SAW 

enhancement. Voltammograms obtained from 10 mM ferrocyanide sample (in 100 mM KCl containing 

water). The voltage applied (scan rate: 0.1 V/s) during the CV tests was between -0.4 V and 0.6 V vs. a 

pseudo gold reference electrode. Applied power levels of the SAW (11.73 MHz) propagation were; 0 W 

(black square), 0.8 W (red circle), 2.51 W (blue up triangle) and 4 W (pink down triangle). The area of 

the straight electrodes used in the system was 0.13 mm
2
. 
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Figure 4. 12  Diffusive peak current values obtained from ferrocyanide solution at different 

concentrations; 5 mM (square), 10 mM (circle), 20 mM (up triangle) and 40 mM (down triangle), in 

KCl (100mM). CV measurements are performed in SU8 electroanalytical chambers (see in previous 

figure). The voltage applied (scan rate: 0.1 V/s) during the CV tests was between -0.4 V and 0.6 V vs. a 

pseudo gold reference electrode. The power of the applied sine wave was increased from 0 to 4 W while 

the frequency was kept at 11.73 MHz.  
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Figure 4. 13  Diffusive peak current variation according to the applied three different SAW power; 0 

W (blue square), 0.8 W (red circle), 4 W (green triangle). CV measurements performed in SU8 

electroanalytical chambers (see previous figure) potassium ferrocyanide solutions. The concentration 

of the potassium ferrocyanide solutions were; 5, 10, 20, and 40mM. The voltage applied (scan rate: 0.1 

V/s) during the CV tests was between -0.4 V and 0.6 V vs. a pseudo gold reference electrode. The 

power of the applied sine wave was increased from 0 to 4 W while the frequency was kept at 11.73 

MHz. 

As it is presented in Figure 4. 12 and Figure 4. 13, SAW induced mass transport increased the 

output current significantly over a range of different concentrations. For example, the current 

obtained from 40 mM sample was increased from 16.42 µA to 47.04 µA. This corresponds to a 

~3 times enhancement of the current value. 

Previous CV measurements, performed in the hydrophilic trap (trichloro-silane), were 

noisier (Figure 4. 9). Changing the droplet handling method to an SU8 chamber led to a noise 

decrement in CV measurements (Figure 4. 11). However, the current enhancement ratio 

decreased to 300 % (from 380 %) as a drawback of this solution. The thickness (~5 µm) and 

the characteristics of the photoresist layer resulted in the decrement in current enhancement. 

The layer was absorbing a portion of acoustic energy and converting it to heat. Thus, only the 

remaining part of the mechanical energy was reaching the liquid medium, and the streaming 

efficiency was decreased.  
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4.3.2. Measurements on the substrate platform  

The device, which is mentioned above (substrate based concept), used in this part has no 

coupled superstrate platform. Both the ultrasound mixer (SAW platform) and the sensing 

platform were fabricated on the same LiNbO3 substrate. The electrode system was comprised 

of three circular gold electrodes with the surface area of 0.663 mm2. The design did not 

include any gel interface. This kept it free from the inconsistencies caused by the drying gel 

interface.  

Most importantly, a PDMS chamber was added to the system in order to obtain more noise 

decrease by constraining the sample, thanks to the increased interface area between the fluid 

and the rigid walls. The PDMS structure coupled on the surface is capable of absorbing 

acoustic energy as SU8 layer did previously. However, the superstrate free, one-piece design 

was efficient enough to compensate the power loss caused by the PDMS walls.  

SAW frequency optimisation  

The design was able to work at various SAW frequencies between 7.6 MHz and 16.6 MHz. 

However, a series of experiments were performed to define an efficient frequency. The 

frequency determined can induce an efficient forced convection on the sensor to obtain high 

current enhancements.  

The effective frequency of the device is highly related to the position of the sensing electrode. 

The frequency variation on the slanted IDT design changes the resonating parts of the finger 

series and thereby shifts the position of the SAW beam. A detailed evaluation of the slanted 

transducer is given in the previous chapter (slanted design). The alignment of the beam with 

the fluid chamber is achieved by changing the frequency of the RF signal. Thus, the 

enhancement of mass motion can be maximised by characterising the frequency. The 

achievement of the streaming maximisation can be monitored via electroanalytical tests or 

optical observation methods. 
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Figure 4. 14  Amperometric tests for the frequency optimisation of the substrate based SAW platform 

(see in Figure 4. 8). Various SAW frequencies (half filled circle) were applied on 5 mM potassium 

ferrocyanide aqueous KCl (100 mM) solution (square). The frequency scanning process of a slanted 

SAW transducer can be seen in Figure 3. 9. A different SAW frequency, between 6 and 17 MHz, was 

applied on the slanted SAW transducer for each tests period. The potential (0.2 V) was applied to the 

three electrode sensing system for 3 seconds for each experiment. Highest current enhancement is 

obtained at 12 MHz. 

Results, presented in Figure 4. 14, demonstrate that 12 MHz was one of the most efficient 

frequencies to obtain an optimum current enhancement rate because the acoustic streaming 

rate was the best in between the other tested frequencies. This was a result of the 

combination of two main parameters. The first parameter is the amount of acoustic energy 

produced by the fingers. It is directly related to the conversion rate from electricity to 

mechanical energy. The quality of finger pattern and the electrical impedance matching, 

between the SAW device and the RF signal generator, both have a significant impact on the 

transformation rate. The second parameter is the transmission of acoustic energy into the 

sensing chamber through the PDMS walls. The alignment of SAW beam towards the sample 

location and the radiation rate into the sensing chamber are the important controlling factors 

of the transmission rate. 

Moreover, the SAW beam at 12 MHz was inducing from the side of the droplet/chamber and 

creating a vortex inside the liquid sample.   
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SAW induced voltammetry 

The vortex formation inside the sensing chamber creates a similar mass transport scheme as 

that of the RDE technique. Therefore, the RDE formulas explained previously can be used to 

describe the hydrodynamic electroanalysis of the design. According to the Equation 7 the 

diffusion layer on the rotating disc electrodes decreases due to the increasing rotating 

(vortex) effect in the sample. The Levich equation (Equation 8) states that the increment of 

diffusion limited current is linked to the increased rotation rate. These statements were in 

agreement with the experimental CV results (voltammograms) in Figure 4. 15. Increased RF 

power caused faster fluid streaming and so higher current levels. 

 

Figure 4. 15  Voltammetric graphs of 10 mM ferrocyanide in 100 mM KCl in the absence and the 

presence of SAW streaming. Applied SAW powers were 0 W (square), 0.25 W (circle), 0.8 W 

(triangle), 1.6 W (diamond). The Hydrodynamic effect induced by the 1.6 W SAW power increased the 

limited current from 17.91 µA to 32.31 µA. All the measurements were conducted between -0.3 V and 

0.4 V potential ranges vs. gold reference electrode. The scan rate was 0.1 V/s. Prior to the replacement 

of the new sample, the electrodes were washed firstly with water and then with the following sample 

with SAW propagation (1.6 W). Then the actual test sample was being filled into the sensing chamber 

for measurement. 

This hydrodynamic method is also able to perform fast stationary mode voltammetry 

measurements on the micro scale samples due to the rapid establishment of the stationary 

case during the voltage sweep. 
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Figure 4. 16  Diffusive peak current values obtained from the CV measurements made with the 

substrate based device. Measurements were performed on 20 µl samples which included four different 

potassium ferrocyanide concentrations (5, 10, 20, 40mM) in a 100mM KCl supporting electrolyte 

buffer. The electrode system was comprised of three circular gold electrodes with the surface area of 

0.663mm
2
. The experiments were continued at various SAW powers from 0 to 1.6 W. 
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Figure 4. 17  Diffusive peak current variation according to the tested four different ferrocyanide 

concentrations (5, 10, 20, 40 mM) in a 100mM KCl supporting electrolyte buffer. The graph presents 

the results obtained without SAW streaming (square) and with SAW streaming at two RF power 0.5 

W (Up triangle) and 1.6 W (Right triangle).  

CV tests were made with the substrate based device. Measurements were performed on 20 µl 

samples with four different ferrocyanide concentrations (5, 10, 20, 40mM) in a 100mM KCl 

supporting electrolyte buffer. The experiments were carried out at various SAW powers (0, 

0.25, 0.53, 0.8, 1, 1.26, 1.6 W). 

SAW induced diffusive peak current measurements presented significant achievements. The 

average increment of the electron flow was obtained as 91%. The results are capable of being 

enhanced to higher levels by making further developments in substrate based design. 

SAW induced amperometry  

Amperometry, voltammetry at a fixed potential, is the current measurement as dependent on 

a parameter, such as concentration or time [23]. This section explains the amperometric 

measurements, performed for the assessment of potassium ferrocyanide samples (5, 10, 20 

and 40mM) in 100 mM KCl. Ferrocyanide samples were analysed with chronoamperometry 

tests in stationary and SAW induced hydrodynamic modes. As presented in Figure 4. 18, the 
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chronoamperometry result obtained in the PDMS chamber was increased by the SAW 

induced fluid streaming.  

 

Figure 4. 18  Chronoamperometry tests inside the PDMS chamber. These results present the current 

enhancements obtained due to the SAW induced streaming in a PDMS sensing chamber. The 

experiment series were made on a substrate based device platform. Measurements were performed on 

20 µl samples at four different potassium ferrocyanide concentrations (5, 10, 20, 40 mM) in a 100mM 

KCl supporting electrolyte buffer. The electrode system was comprised of three circular gold 

electrodes with a surface area of 0.663 mm
2
. Amperometric measurements were performed at 0.2 V 

potential for 20 seconds. After the first tests had been carried out while the SAW transducer was off, 

experiments were continued at various SAW powers (0.25, 0.53, 0.8, 1, 1.26, 1.6 W). Prior to the 

introduction of a new sample, the electrodes were washed firstly with water and then with the 

following sample with SAW propagation (1.6 W). Then the actual test sample was filled into the 

sensing chamber for measurement. Results show that the SAW induced amperometry can be used for 

enhancing the sensitivity of electroanalytical systems. 
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Figure 4. 19  Steady-state currents obtained from chronoamperometry measurements. The graphic 

presents triple test results achieved by four different  ferrocyanide concentrations (5, 10, 20, 40 mM) in 

a 100mM KCl supporting electrolyte buffer solution at various SAW powers; 0, 0.25, 0.5, 0.8, 1, 1.26, 

1.6 W. Increased SAW power resulted in higher current values due to the enhanced ion transfer 

towards the electrode surface. 
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Figure 4. 20  Currents measured at steady state during the amperometric tests. The graph shows how 

the measured current changed when increasing the ferrocyanide concentration, in the stationary case 

(Black) and in two separate, 0.53 (Green) and 1.58W (Blue), SAW induced hydrodynamic cases.   

Figure 4. 19 illustrates the chronoamperometry tests performed on different ferrocyanide 

solution at varying RF powers applied to SAW transducer. Increasing SAW power causes 

larger surface displacements on the vertical (z) axis. Therefore, the fastest fluid streaming is 

obtained with the maximum SAW power. When the maximum external convection with the 

highest SAW streaming (1.6 W) was present the current obtained from 5mM ferrocyanide 

solution was ~6 times greater than the current in the stagnant solution.   
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Roof effect on SAW streaming 

 

Figure 4. 21  The effect of increased shear stress on hydrodynamic amperometry measurements. This 

graphics demonstrates the change in SAW induced the hydrodynamic effect, on amperometry 

measurements when the fluid sample touches to the top of the chamber cover. Two sets of 

measurements were performed, with a same amount of sample (20 µl), in two different cases. In the 

first case, the height of the PDMS chamber was 3.5 mm (black square), and it was reduced to 2 mm 

(red circle) in the following case. Outcomes showed that the hydrodynamic effect in the short chamber 

was lower comparing to the high chamber which had an air gap between the cover and the sample. 

SAW transmission from sample to the surrounding rigid surfaces and the shear stress was increased 

because of the increased liquid-rigid surface interface. The amperometric current was decreased due 

to the decayed acoustic streaming. 

Amperometric measurements performed with the same amount of sample (20 µl) in two 

different cases. The height of the PDMS chamber was 3.5 mm in the first case, and it was 

reduced to 2 mm in the following case. Therefore, the sample in the second case was 

physically in contact with the cover of the chamber while it was not in the first instance. 

Experimental results (Figure 4. 21) showed that the amperometric current was stabilising at 

a higher value when the sample was not touching to the cover. Decreased mixing effect 

caused a current difference between first (9.3 µA at 0.8 W) and second (6.9 µA at 0.8 W) 

cases. Therefore, the enhancement of the mass transport rate was lower. This showed that a 

liquid sample can be mixed faster by reducing the area of the interface between the fluid and 

the rigid surface.  

The fluid speed was decreased due to two main effects created by increased liquid-solid 

interface area. First, the rigid surfaces (PDMS walls and glass cover) severely attenuate the 
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acoustic energy radiated into the liquid. Therefore, the mixing efficiency was decreased. 

Second, the total shear stress was increased, again due to the increased interface area. This 

was creating a higher resistance to the fluid motion. Those were the reasons for less efficient 

acoustic streaming in the short chamber test. 

Koutecky - Levich Plot 

Koutecky-Levich (K-L) plot, which is obtained by plotting I-1 vs. ω -1/2 [103], includes both the 

kinetically controlled current and the mass transfer limited current [22]. It also enables to 

obtain the current in the absence of diffusion control. Since the kinetics of the redox system 

used in the experiment was faster, the system was mass transfer limited. Therefore the 

kinetic transfer limited current (Ik) was tiny comparing to diffusion limited current (Id). 

 

Figure 4. 22  Koutecky–Levich plot for different molarities of ferrocyanide; 5 mM (square), 10 mM 

(circle), 20 mM (triangle) and 40 mM (diamond). The values are obtained from the amperometry tests 

performed at 0.2 V potential.  Rotation values obtained from the PIV measurements at different SAW 

power were used for the plotting. 

The oxidation of potassium ferrocyanide was recorded at various SAW streaming speeds via 

amperometric measurements (Figure 4. 18). In this part, the diffusion limited current 

measurements were further analysed by K-L plots. As shown in Figure 4. 22 the fit lines of the 

K-L plots for various molarities present the expected parallelism and the linear relationship. 

This indicates that the SAW streaming technique in electroanalytical systems can be used as 

the conventional RDE technique. 

5mM 

10mM 

20mM 

40mM 
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Fast steady state achievement 

The application of travelling mechanical waves on the sensing platform helped to control the 

diffusion characteristics of the system. For example, shorter times were needed to reach 

steady state current when the SAW propagation was activated in the system. As it is 

presented in Figure 4. 23, the timings to reach steady state in non-actuated solutions for 

different concentrations were between 10 and 14 seconds, however when the hydrodynamic 

effect was activated, the time durations were decreased to smaller values between 0.2 and 0.5 

second. So the average timing was decreased down to 35 times smaller values. 

 

Figure 4. 23  The amperometric steady state achievement time graph at stationary (diamond) and 

hydrodynamic modes (triangle). Inset: The amperometry graph of 10mM solution presents how the 

timings were defined in stagnant (square) and hydrodynamic (circle) solutions. Measurements 

performed on four different ferrocyanide solutions (5, 10, 20, 40 mM in 100mM KCl) for 60 seconds 

while the external mixing was active and for 130 seconds in the stationary mode. The fluid streaming 

was activated by the propagation of SAW at 12 MHz frequency and 1.6W of power. Hydrodynamic 

mode measurements enabled the rapid establishment of the steady state diffusion limited current. 

Acoustic mixing effect inside the reaction chamber was decreased the time for steady state case from 

10-14 to 0.2-0.5 seconds. This offers a faster determination of the substance concentration in the 

sample.  

The induction of SAW streaming into the sensing chamber changed the timing characteristics 

of amperometry measurements. As it is presented in Figure 4. 23, increasing molarities 

caused a decrease in the steady state reaching times, in stagnant solution. On the contrary, 

T5mM 

T5mM-SAW 

T40mM 

T40mM-SAW 
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the higher molarities (T40mM-SAW) taking more time than the low molarities (T5mM-SAW) to 

achieve the steady state in SAW induced hydrodynamic cases. However, there was an 

opposite behaviour in stagnant case. 

4.3.3. Additional effects of SAW on electroanalysis 

Until this section, the complete effect of SAW streaming in the sample during electrochemical 

measurements was investigated in CV and amperometry measurements. In here the focus is 

directed on the differentiation of hydrodynamic effect of acoustic wave propagation from the 

other factors created by SAW. Some of those are also capable of influencing the rate of 

electrochemical reactions, therefore, the analytical measurements.  

The following sections will explain different aspects about SAW on electroanalytical 

measurements such as noise, sample heating and direct electrical charging created by 

travelling acoustic waves on a piezoelectric material. 
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SAW induced noise 

 

Figure 4. 24  Amperometric graphs, presenting the noise absorption of PDMS walls. SAW streaming 

was applied, by SIDT transducer, at three different frequencies (12 MHz, 13 MHz and 14 MHz) on 5 

mM ferrocyanide (with 100mM KCl) samples. The potential (0.2 V) was applied to the three electrode 

sensing system for 3 seconds for each experiment. First test series was performed on a 5 µl droplet 

pinned on the electrode surface (vertical bars). The second experiment carried out on the same system 

however the sample was 20 µl and most importantly located inside a PDMS chamber (square).  

Ultrasound application on electroanalytical systems mostly creates a noise problem [122]. In 

this section two series of measurements performed, in order to characterise the noise in a 

SAW induced electroanalytical system. Figure 4. 24 shows three different SAW frequencies 

(12 MHz, 13MHz and 14 MHz) applied on 5mM potassium ferrocyanide (with 100mM KCl) 

samples for each test series. The amperometry voltage (0.2 V) was applied for 3 seconds. 

First test series was performed on a 5 µl droplet pinned on the electrode surface. The second 

experiment carried out on the same system however the 20 µl sample was located in a PDMS 

chamber. 

Results in Figure 4. 24 show that the PDMS chamber is capable of absorbing the noise, in 

current measurement, created by SAW because the squeeze/release and vibration type 

motion do not occur inside the encapsulated chamber. Therefore, the local fluctuations of the 

current density decrease. However, using a PDMS chamber in the system causes a decrease 

also in electroanalytical measurements. This may happen due to two main reasons. Firstly, 
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the PDMS walls absorb a portion of SAW and reduce the amount of longitudinal pressure 

waves radiated into the chamber. Secondly, the increment of the interface area (between the 

solid surface and the liquid) means more frictional forces against the fluid motion. Therefore, 

the enhancement of the mass transfer decreases as a result of slowing streaming velocity.    

SAW induced heating 

Here we focused on the temperature change inside the droplet, during the SAW induction, 

and how it affects the diffusion limited current of the system. Travelling acoustic waves 

create a heat proportional to the frequency and the voltage (peak to peak) of the applied RF 

signal. It is well known that the temperature on the surface rises as proportional to the wave 

amplitude [123]. There are two primary heat sources in SAW systems, interfaced with liquids, 

namely the absorption of the heat created by the motion of crystal atoms [33] in the substrate 

(or superstrate), and the interaction between the SAW and the liquid as longitudinal waves 

propagating in the liquid are dampened through the viscosity of the fluid [46]. Higher 

viscosity leads to more energy dissipation due to the increased viscous friction [81]. 

Temperature variation in the electrochemical analysis can cause significant changes on the 

reaction rate. The temperature variation creates a convectional mass motion. This makes a 

minor contribution to the forced convection caused by the SAW streaming. Additionally the 

viscosity decreases with increasing temperature as shown in                           Equation 12 

(Arrhenius equation). More importantly, the diffusion coefficient also increases by the 

heating effect and the decreased viscosity as presented in                                                    Equation 

13 and                                                    Equation 14 (Stokes-Einstein Equation). Increased viscosity 

creates more current flow in the system (Equation 8). Consequently, the sensitivity of the 

analytical system improves.  

    
                                                  Equation 12 

   
                                                   Equation 13 

    

                                                    Equation 14 
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Figure 4. 25  The experimental setup for the measurement of the temperature variation on the SAW 

induced system. An IR (FLIR E60bx) camera was used to observe the temperature variation inside the 

droplet and PDMS chamber. 

 

Figure 4. 26  SAW induced heating in the droplet (5 µl sample - black square symbol) and PDMS 

chamber (20 µl sample - red circle symbol). Measurements performed in the substrate based design. 

PDMS chamber created more heat generation than the droplet-based system. 
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The temperature changes, in two different device concepts, were observed via an IR camera 

(FLIR E60bx). The temperature graphs in Figure 4. 26 presents the temperature variation 

due to the increased SAW (12 MHz) power. The sample contained 10 mM potassium 

ferrocyanide and 100 mM KCl. Both devices were comprised of a single part without any 

additional superstrate attachment. However, the second one had a PDMS chamber bonded to 

it.  

Each experiment performed with fresh samples. Each time the IR camera measurements 

performed after 10 seconds of SAW streaming. This enabled to obtain a stabilised 

temperature for each test.  

In the first system, SAW power was changed from 0 to 4 W. This increased the temperature of 

the droplet (5 µl) from 23.7 °C to 39.8 °C. When the SAW power was 1.6 W, the temperature 

of the droplet was increased to 28.7 °C. However, the temperature of the PDMS system led to 

32.4 % higher temperature values by increasing up to 31.1 °C. Results showed that the PDMS 

chamber in front of the SAW beam causes a faster temperature enhancement comparing to 

PDMS free design. This case is led by the SAW absorption of the PDMS [50][58]. Additionally, 

the heat release on the PDMS system does not happen as fast as a single standing droplet.  

The next section will present the test results about temperature influence on the reaction 

rate. The practical work was made to differentiate the SAW induced heating effect from the 

hydrodynamical effect on the chemical reaction of ferrocyanide. 

Heating effect on CV 

In this section, the influence of temperature variation during CV measurements is explained 

through experimental investigation. The tests were performed on 10mM ferrocyanide 

containing droplet samples. The applied voltage range was between -0.4 V and 0.6 V. The 

scan rate of the triangle voltage was 0.1 V.  Heat induction, provided by a hot plate, presented 

significant improvements on diffusive peak currents. The variation of temperature values to 

higher levels was increasing the amount of high energy collision of the molecules. Moreover, 

the diffusion was increasing due to the increased kinetic energy of the particles. This was 

dragging more fresh material to the electrode surface. Due to those two primary reasons the 

rate of the reaction, therefore, the current flow was increasing (Figure 4. 27 and Figure 4. 28). 

A problem with the droplet-based system was the evaporation due to the heat generation of 

the SAW system. This was changing (increasing) the original concentration of the sample and 

causing extra current flow. Additionally, the measured current values were not consistent. 
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This fluctuation problem was also the result of the evaporation. However, the new design 

with a chamber solved this problem in the following experiments.  

 

Figure 4. 27  The effect of temperature variation on CV analysis. The voltage applied (scan rate: 0.1 

V/s) during the CV tests was between -0.4 V and 0.6 V vs. a pseudo gold reference electrode. The 

voltammogram obtained at 26.6 ˚C (solid line) presented a lower current flow comparing to the one 

performed at 32.9 ˚C (dashed line). This was received due to the increased amount of energised 

molecules in the second solution. Therefore, more molecules were able to pass through the reaction 

process. More reaction created more electron flow. Any other parameters of the CV tests were the 

same apart from the temperature variation. The 5 µl sample contained 10 mM potassium ferrocyanide 

and 100 mM KCl. The device was a single piece design without any additional superstrate attachment. 
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Figure 4. 28  The effect of heat variation on CV measurements. The graphic presents the enhancement 

of the diffusive peak current due to the increasing temperature. The measurements were performed on 

the circular electrode system fabricated on glass slides. The voltage range applied (scan rate: 0.1 V/s) 

during the CV tests was between -0.4 V and 0.6 V vs. a pseudo gold reference electrode. The 

temperature of the system was controlled via a hot plate.  The heating effect presented an enhancement 

of the diffusive peak current of voltammetry measurements. An IR (FLIR E60bx) camera was used to 

observe the temperature variation inside the droplet. 

Temperature effect of SAW on PDMS containing system 

 

Figure 4. 29  The experimental setup for running amperometric measurements at different 

temperatures. 
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Figure 4. 30 Amperometric curves obtained at different acoustic streaming speeds. Applied SAW 

powers, in the presented plot, were 0 W (square), 0.25 W (circle), 0.8 W (up triangle) and 1.6 W (down 

triangle). 
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Figure 4. 31  The effect of temperature increment in SAW induced hydrodynamic amperometry. 

Measurements were performed with the substrate based system on 10 mM ferrocyanide solution. The 

first graph (circle) was obtained by varying the temperature of the system via a hot plate. The second 

graph (square) was obtained by running amperometric measurements while the SAW propagation was 

activated. SAW was produced at 12 MHz with varying power values (0 µA to 1. 6 W). The error bars 

represent the standard deviation of three experiments. Induction of SAW streaming, at 1.58 W, 

increases the stationery mode current from 4.14 to 22.42 µA. The enhancement lead by the heating, 

induced by SAW radiation, comprises 5 % of the total enhancement created by SAW streaming. 

This section describes the effect of temperature in SAW induced hydrodynamic amperometry 

performed with the latest design. Figure 4. 31 shows the amperometric measurements 

obtained from the 10 mM potassium ferrocyanide solution. The latest design, with a PDMS 

chamber, was used for the amperometric measurements. The first graph (circle) was 

obtained by varying the temperature of the system. The temperature changes were 

controlled via the utilization of a hot plate. The second graph was obtained by running 

amperometric measurements while the SAW propagation was activated. Increasing power 

values created higher current values and also higher temperatures in the chamber.   

The usage of an enclosed chamber in the electroanalytical system produced a significant 

improvement in the system. As a drawback, the temperature increment was faster (Figure 4. 

26) due to the SAW absorbing PDMS layer. However, it did not cause any problem in the 

measurement because, the evaporation of the sample was significantly minimised thanks to 

the cover of the chamber. The enclosed chamber enabled the rapid establishment of a humid 
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environment inside the small air gap (13.5 mm3), between the sample and the cover of the 

chamber. Therefore, the concentration of the sample was kept at the same level.   

Most importantly, the data presented in Figure 4. 31 give a clear perspective about the details 

of the observed current enhancement in SAW induced design. The results show that the 

induction of SAW into the amperometric chamber created significant current improvements. 

Applied maximum SAW power (1.58 W) caused more than six times current improvement. 

The enhancement was due to the streaming effect and the heating effect of the SAW 

propagation. Both the collusion (kinetic) energy and the diffusion rate enhancements of the 

molecules were created by the heating effect of the SAW. However the current enhancement, 

produced by the heating effect of 1.58 W SAW power, only comprised the 4.84 % of the total 

current enhancement. Moreover, this percentage was lower at SAW application with less 

power. For example, the ratio was only 1.34% during the SAW induction at 0.25 W. Therefore 

the substantial amount (more than 95 %) of the obtained current enhancement was due to 

the hydrodynamic effect created by the SAW streaming. 
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SAW induced charge interference 

 

Figure 4. 32  Amperometric test results present the effect of direct SAW interference on the 

measurements. Various SAW frequencies (half filled circle) ranging from 10 MHz to 15 MHz (1 W) 

were applied to two different samples; 5 mM Potassium ferrocyanide (with 100 mM KCl) (square) and 

100 mM KCl (up triangle). The amperometric voltage (0.2 V) was applied for 3 seconds in each 

experiment. 
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Figure 4. 33  Amperometric test results presenting the effect of direct SAW interference on the 

measurements. Various SAW frequencies (half filled circle) ranging from 10 MHz to 15 MHz (1 W) 

were applied to three different samples; 100 mM KCl (up triangle), pure water (down triangle) and 

dry chamber (diamond). Measurements performed in the dry chamber also presented a current flow 

because of the charging effect of the mechanical waves on the sensing electrodes. 

Piezoelectric materials are capable of converting electrical energy into mechanical energy or 

vice versa. On a piezoelectric substrate, a propagating elastic wave will be accompanied by an 

electric field. This has the potential to create interference on electroanalytical measurements, 

by directly interacting with the three electrode sensing platform. This section focuses on the 

effect of direct interference of the SAW on the electroanalytical tests.  

Amperometric measurements were performed with the PDMS chamber based sensor design. 

The power of the SAW propagating from the slanted IDT design was 1 W. The first test series 

was conducted on 5 mM Ferrocyanide (in 100 mM KCl) samples. Secondly, the samples 

containing only the supporting electrolyte (100 mM KCl) were tested. Comparison of those 

two results (Figure 4. 32) show that the current enhancement is not only obtained due to the 

SAW enhanced reaction properties of the ferrocyanide molecules, because the second graph 

proves that the SAW was still increasing the current flow while there was only KCl solution in 

the chamber.  

Amperometry tests on pure water (Figure 4. 32) presented a further step to explain the 

direct SAW interference. Removal of the KCl from the sample caused a decrease in the current 
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due to the decreased ion level in the liquid system. Moreover, the SAW induced streaming 

was still increasing the amount of electron flow in the system.  

The empty PDMS chamber measurements during the SAW propagation at varying 

frequencies are presented in Figure 4. 33. The current value at 12 MHz was improved by 0.16 

µA. This enhancement is comprised less than 2% of the current enhancement in 5 mM 

potassium ferrocyanide measurements. This result indicates that the SAW induced current 

enhancement was not purely obtained due to the enhanced electrochemical characteristics of 

the molecules. Because the three electrode sensing platform was also working like a SAW 

receiver and converting mechanical energy back into the electrical current form. However, 

the presence of a liquid sample in the reaction chamber decreases that effect. The liquid 

converts the mechanical wave energy into leaky waves on the surface, pressure waves and 

temperature in the fluid. Further details can be found in the introduction chapter. Therefore, 

the direct interference of the remaining leaky waves on the surface is not expected to create a 

considerable interference on the measured signal.  

SAW induced RF Interference 

As an additional test, the system was checked for RF interference, propagated from the SAW 

device. Amperometric measurements were performed via a separate three-electrode system. 

The sensing platform was located on the heat sink of the SAW platform. They were aligned 

same as the PDMS based sensing platform, but the substrates were ~2 mm apart from each 

other. This was needed to block any SAW coupling between the resonator platform and the 

sensing platform. Therefore, the signal measured by the sensor would only be created by the 

electrical field induced by the SAW device. The amperometric test was performed at the 

entire working frequency of the slanted IDT at the maximum SAW power (1.58 W). However, 

no signal was observed due to the interference of the RF. This meant the design was not 

affected by the RF signal interference. 

4.4. Discussion 

The experiments mentioned above were performed via two main device designs; superstrate 

based (half disposable) device (Figure 4. 7) and the substrate based design (Figure 4. 8). The 

sensor part of the first design was capable of being detached from the SAW platform and 

disposed. Therefore, the SAW device can be used for new experiments by the attachment of 

new sensing electrodes. This advantage put the first design, one step forward in terms of the 

fabrication costs. However, the coupling compound between the sensing and SAW platforms 

was drying and becoming more viscous over time. This was decreasing the SAW coupling 
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characteristics of the system. Moreover, the gel was creating more heat, due to the absorption 

of the SAWs, and the heat accelerated the drying process. Therefore, the attached electrodes 

are required to be used around three hours time at room temperature. Otherwise the 

streaming of the sample, located on the superstrate, starts to lose its power, and the 

enhancement of current flow begins to decay. The coupling of the superstrate on SAW 

platforms needs further research to present more repeatable and steady characteristics. On 

the other hand, the substrate based device displayed steady and repeatable streaming 

characteristics of the sample. 

Using a closed PDMS chamber, instead of a droplet trap, for the sample handling eliminated 

the evaporation problem. Acoustic energy attenuation was a drawback of the PDMS walls. 

However, the contribution of the chamber on noise decrement was a more vital issue.  

The heat generation appeared as another problem of the PDMS based system. The SAW 

radiation through a PDMS layer creates more temperature increment comparing to the direct 

radiation into a droplet. The heat increases the energy level of the molecules and creates an 

extra convection. Therefore, 5 % of the diffusion limited current was induced by the heat 

conducted by SAW radiation into the chamber. However, the heat does not cause an adverse 

effect on quantitative data measurement as long as the temperature is kept at the same level. 

This can be done by keeping the SAW parameters, frequency and power, at same values.  

The energy absorption and the heat generation problems of the PDMS chamber can be solved 

by various ways. For example, using SAW tunnels at the bottom of the PDMS layer can 

increase the SAW radiation into the chamber. SAW tunnels are the structures opened on the 

walls of the sample chambers. End of the tunnel is closed in order to prevent the liquid 

leakage. The structures are made to decrease the thickness of the chamber walls at specific 

locations. This enables to decrease the acoustic energy absorption on the walls. Another 

solution can be performing further research on the chamber material and its bonding 

process. Thus, a new sample chamber, with better acoustic wave transmission characteristics, 

can be developed. 

The evaluations of experimental results showed that the SAW on an electroanalytical sensing 

platform may have a very minor and negligible direct interference during the measurements. 

Therefore, the receiver like working problem of the electrodes was not an issue for the 

system. 
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4.5. Conclusion 

SAW induced electrochemical measurements offered improvements in the magnitude of 

diffusion limited current. This new technique is capable of being replaced with conventional 

hydrodynamic analysis methods. Additionally, it can be applied to chemical and biochemical 

sensor applications. Since the streaming rate directly increases the current, it is advantageous 

to use the highest possible SAW power to enhance the sensitivity of the system depending 

upon the sensitivity requirement. Another advantage of this method is small (µ) scale sample 

requirement. 

Piezoelectric devices are commonly used for various purposes in harsh environment 

conditions. Thus, the SAW induced electro- analysis device has potential to be modified for 

severe circumstances. In comparison with conventional techniques, this new hydrodynamic 

electro-analysis method has no moving components which improves its solidity and 

significantly reduces the breaking/failing probability. The mono-block design also prevents 

the tendency of deterioration with use. So the system can keep working for a longer time 

without any performance loss due to the friction affect in between moving parts. 

Streaming effect provided by SAW has the advantage of being very manoeuvrable, thanks to 

the unique transducer designs. Therefore, precise arrangements for the streaming direction 

and velocity can be done easily according to the requirement of the analysis or sensing 

application.  

For sensitive measurements, direct SAW interference on sensing electrode system can be 

completely removed with some minor design improvements such as moving the sensing 

electrodes out of the SAW beam path. So the acoustic waves will only interact with the sample 

solution but not with the sensing electrodes.  

The design is well-suited to cost effective lab-on-a-chip applications since the electrochemical 

sensing unit can be fabricated on a separate disposable substrate (superstrate) and coupled 

on the primary substrate. However, this requires further research about the coupling process 

and the materials used. 

Overall, we envision that this moving part free and reliable microfluidic technique can not 

only be utilized to study electro-analysis but also as a means to perform more sensitive and 

automated assays. 
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5. Label-free haemoglobin detection and system 

instrumentation 

5.1. Introduction 

This chapter explains the experimental work conducted on a label-free haemoglobin (Hb) 

sensing system and the instrumentation prepared for the future system designs. Usually, less 

than 50 mg Hb in a mg of stool is not visible [124].  However, more than 2 mg/gr Hb in an 

adult stool can be caused by gastrointestinal carcinoid tumours [124]. Bowel cancer is one of 

the four most common causes of cancer deaths in the world [125][126]. Periodic faecal occult 

blood test (FOBT) checks can enable the early detection of blood in the stool. This can lead to 

early and successful treatments and save lives.  

 

Figure 5. 1  Final electroanalytical system setup. A signal (triangle or a constant signal) is produced by 

the LabVIEW interface and a data acquisition device (NI DAQpad-6015), and sent to the sensing 

chamber via the potentiostat circuit. Signal output is obtained back from the sensor by the potentiostat 

and sent to the PC through the DAQpad. Finally, the results are observed on the LabVIEW interface 

screen. 

The label-free method investigated in this work has the potential to give reliable 

measurements by avoiding the use of a secondary antibody. This approach requires a simpler 

protocol, which has fewer processing steps than traditional immunoassays. Therefore, these 

assays are suitable candidates for miniaturisation onto microfluidic Lab-on-a-Chip devices. 
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Moreover, the sensitivity of the system can be enhanced by the acoustically enhanced mass 

transfer rates in electroanalytical tests. This provision was supported by the results obtained 

in a model bio-analytical system. SAW enhanced biosensing applications have several 

advantages. Acoustic wave induced streaming phenomenon reduces cost and waste during 

ELISA tests. This benefit can be helpful on various biosensing techniques such as 

electrochemical impedance measurement, cyclic voltammetry (CV), amperometry, 

fluorescent method, surface plasmon resonance (SPR). SAW induced streaming also has a 

positive effect on the avoidance of non-specific binding issues.  

The electroanalytical systems require potentiostat devices to operate. As a part of this work, a 

potentiostat circuit and its controlling interface are designed to control the system without 

using bulky commercial devices. The LabVIEW based flexible software design can also be 

modified to be used for rapid analytical processes and the synchronised control of the 

acoustic mixing platform. Therefore, the final complex design will have the ability to control 

the acoustically enhanced electroanalytical system fully and provide rapid analytical results. 

5.2. Biosensing- label free Hb detection 

Various studies have been carried out to obtain highly sensitive and fast responsive H2O2 

sensors [127][128][129][130][131]. Moreover, highly sensitive and quick H2O2 sensors based 

on the direct electron transfer Hb, due to its peroxidase activity, are reported [132][133]. The 

direct electron transfer happens between Hb and the electrode due to the intrinsic 

peroxidase like the activity of Hb. Thereby the Hb to catalyse the reduction of H2O2 [132] 

[134]. Furthermore, the reaction system can be used in an opposite way for Hb detection by 

the addition of a mediator in the Hb - H2O2 reaction mechanism. The technique is a "label 

free" assay since it does not require any secondary antibody or enzyme labels. It is based on 

simple protocols due to its few processing steps. This also makes it very suitable for 

miniaturised Lab-on-a-Chip applications. The method developed here can detect Hb in turbid 

solutions such as bowel fluid, thanks to the electrochemical sensing platform. The results 

obtained from the investigation of this label-free detection technique is explained in this 

section.   

The electroanalytical assays need to be conducted by an electron passing mediator. Benzidine 

is widely used for direct Hb detection in plasma and urine since 1923 [135][136][137]. But, it 

was defined as a carcinogenic material. However, TMB (3,3’,5,5’-Tetramethylbenzidine) has 

is found as a safe derivative of  benzidine [137]. TMB, which is the most commonly used 

chromogen for HRP detection, does not get into direct reaction with H2O2. Therefore, TMB 



  134 
 
was used as a mediator in Hb detection experiments. The samples also included KCl (100 

mM) as a supporting electrolyte for electroanalytical tests.  

5.2.1. Electroanalytical tests in batch conditions 

The feasibility of electroanalytical Hb recognition by using TMB as a mediator is investigated. 

The technique does not require any secondary Ab or an antigen with a recognition label 

attached on them. As a first stage, the label-free immunoassay was examined by CV without 

any Ab immobilisation on the surfaces. 20 µl sample solutions, included TMB - H2O2 system 

(T 8665, Sigma- Aldrich) and varying Hb concentrations (5, 0.5, 0.05 and 0 mg/ml), were 

tested in a PDMS reaction chamber after 1 hour incubation. The samples also included 10 mM 

KCl as supporting electrolyte. The working mechanism of the label-free method is shown 

below. 

                        

                                

                    

A three-electrode (10 nm Ti and 100 nm Gold) sensing system was microfabricated on a 

1mm thick glass slide. The voltage applied (scan rate: 0.05 V/s) during CV test was between -

0.2 V and 0.5 V vs. a pseudo gold reference electrode. Top of the chamber was covered with a 

thin glass in order to block the evaporation. Excess protein builds up on the electrodes that 

could decrease the sensitivity were cleaned with bleach after each experiment. The sample in 

the chamber remained from the last experiments was removed. Then the sensing chamber 

was kept as filled with 30 µl of bleach for one minute and it was diluted with water for five 

times. Following test was started after the chamber was emptied and dried with N2 blow. The 

filling and washing process was performed with pipettes. 
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Figure 5. 2  Voltammograms (scan rate: 50mV/s) obtained from the batch condition Hb 

electroanalytical tests. The inset presents the oxidative currents obtained at 0.2 V. Measurements were 

performed on different Hb concentrations; 5 mg/ml (down triangle), 0.5 mg/ml (up triangle), 

0.05mg/ml (circle) and 0 mg /ml (square) mixed with the TMB system (including 10mM KCl as the 

supporting electrolyte) 

Voltammograms presented in Figure 5. 2 shows that TMB can give relevant data about the 

amount of Hb existing in the chamber. The label-free technique has fewer steps than a 

sandwich type electrochemical immunoassay [138] and has only one antibody (this 

particular test series did not include any antibody). Therefore, the technique is rapid and 

more reliable since the cross-reactivity of the second antibody is eliminated from the system.  

5.2.2. Antibody effect on Hb - TMB interaction 

The oxidation of TMB changes its transparent colour to blue [139]. This enables TMB to be 

used in optical measurements via colorimetric observations. Hb and anti-haemoglobin (anti-

Hb) binding can block the reactive sides of Hb molecules and decrease the reaction rate or 

stop the reaction completely. Therefore, the colour change characteristics can be changed. In 

this section, the effect of Ab on TMB-Hb reaction was tested via optical monitoring method. 

Experiments were performed in batch conditions without any antibody immobilisation 

process.  
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Figure 5. 3  Absorbance measurement (400 nm) conducted on TMB - Hb interaction in the absence 

(Left) and the existence (Right) of antibody (15 mM). The batch condition tests were performed by 

mixing different Hb molarities (1, 0.46, 2.3, 46 µM) with the same amount (volume) of the TMB-H2O2 

substrate system. 

Figure 5. 3 show that the existence of Ab decreases the efficiency of Hb to oxidise TMB. This 

can decrease the sensitivity level during the measurements, but it does not completely block 

the reaction between Hb and TMB as shown in Figure 5. 3- Right graph.  

 

5.2.3. Bio-receptor entrapment methods 

Polymerisation 

There are various methods to form a sensitive layer (proteins) on the electrodes or in the 

polystyrene wells such as using artificial entrapment (polymer or gel) membranes 

[140][141] and self-assembled layers [142]. A part of this chapter covers the application of 

polypyrrole (PPy) chains on the electrode surfaces. During the polymerization process, NaCl 

was used as the supporting analyte in the solution (50mM NaCl, 150mM Pyrrole). As shown 

in Figure 5. 4, the voltage range of the CV was between 0 V and 0.8 V. This was defined by the 

characteristics of pyrrole monomer in a separate test. Voltammetry was performed 12 times 

(scans) at 0.05 V scan rate. Two-dimensional surface profile measurements (measured with 

Veeco Dektak 6M height profiler) and atomic force microscope (AFM) based surface 
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topography scans (NanoWizard II atomic force microscope - JPK Instruments AG, Germany) 

enabled the investigation of the polymerised surface and the electropolymerization ratio. 

Figure 5. 5 shows that the thickness of the electrode was increased from 80 nm to 198 nm 

after 12 times CV scan in pyrrole solution. Each CV scan produced 9.8 nm thick PPy film on 

the surface of the gold electrodes (3.14 mm2). 

 

Figure 5. 4  Voltammogram obtained during PPy growth on the gold electrode surface. Twelve scan 

CV performed with 0.05 V/s scan rate between 0 V and 0.8 V (vs. Ag/AgCl reference electrode). The 

chemical solution was comprised of 50mM NaCl and 150mM Pyrrole. 
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Figure 5. 5  Top Left: Depiction of lollypop shaped electrodes (10nm Ti, 10nm Pt, 60nm Au) fabricated 

on a 1 mm thick glass slide by photolithography. Top-middle & Top-right: Images of electrodes before 

and after the polymerisation process. Bottom: shows the surface structure (2D), on the polymerised 

electrode, obtained by profilometry measurements (DEKTAK, Veto Instruments Ltd).  
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Figure 5. 6  Atomic force microscopy scan obtained from the polymerised electrode surface. The 

depiction (right side) presents the production mechanism of the circular (donut shaped) PPy structures 

[143]. (Scale bar in image at top is 10 µm) 

Figure 5. 6 presents AFM measurements obtained from the polymer surface. The image was 

obtained after the 12th cycle of polymerisation. Circular (donut shaped) structures appeared 

randomly on the PPy film. These features may be structured by the release of gas bubbles 

(Cl2) trapped in the region between the substrate and the film [143].   



  140 
 

 

Figure 5. 7  CV graphs performed by two different working electrodes; a bare gold electrode and a 

polymerised electrode. CV performed with 0.05 V/s scan rate between -0.2 V and 0.8 V (vs. Ag/AgCl 

reference electrode). The chemical solution was comprised 10 mM potassium ferrocyanide and 10 mM 

KCl. 

Electroanalytical characteristics of the electrodes before and after the PPy film coating were 

investigated (Figure 5. 7). The PPy modification led to more background current flow due to 

the increased surface area of the electrode. Therefore, it can be possible to obtain more 

sensitive systems by obtaining rough surfaces made of conductive polymer layers.  

SAM binding test with fluorescent beads 

In this section the binding efficiency of two different methods, for antibody entrapment, were 

experimentally compared. First, biotin labelled bead (1.0 µm, yellow-green fluorescent, Life 

Technologies) binding on streptavidin attached SAM layer and second, the binding of amine-

modified beads (1.0 µm, yellow-green fluorescent, Life Technologies) on SAM layer were 

tested. The SAM used in both systems was 11-mercaptoundecanoic acid (11-MUA). Binding 

rates were tested by observing the entrapped fluorescent beads via a microscope (Carl Zeiss 

Axio Observer Z1). 
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Figure 5. 8  The schematic of streptavidin - biotin based binding. The gold surfaces functionalized with 

11-MUA solution (under nitrogen atmosphere) were exposed to streptavidin solution. Finally, biotin 

labelled latex beads were applied to the functionalised surfaces. 

 

Figure 5. 9  Schematic of amine-based binding. The electrode surfaces functionalised with 11-

mercaptoundecanoic acid (11-MUA) solution (under nitrogen atmosphere) were exposed to amine 

modified latex beads (1 µm in diameter) solution (with EDC and NHS in it) for 2 hours.   

Firstly, both samples were cleaned by acetone sonication (5 m), water rinse (2min) and 

nitrogen drying. The surfaces were activated by oxygen plasma (60 W, 90 seconds) and, 

functionalised with ethanolic 11-MUA (20mM) solution, under a nitrogen atmosphere (2 

hours). The substrates were washed with ethanol then water and dried under a nitrogen 

stream.  After this point the first sample with the SAM layer was modified by applying the 

streptavidin solution (10 µl Streptavidin, 10 mg EDC and 5 mg NHS in 1 ml MES buffer) at 38 

˚C for 2 hours. Its surface washed by 5-minute sonication in 10 % Tween 20 (Polyethylene 

glycol sorbitan monolaurate- Aldrich) PBS solution and dried with nitrogen. Biotin labelled 
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latex beads (100 µl in 1 ml PBS) were applied on the surface for 2 hours. Finally, the sample 

was sonicated in 10 % Tween 20-PBS solution (5min), sonicated in PBS (5 minutes) and 

dried with nitrogen. The second sample, with 11-MUA on its surface, was treated with an MES 

(1 ml) solution containing EDC (10 mg), NHS (5 mg) and amine-modified latex beads for 2 

hours. Lastly, the sample was washed in the same way as the first sample. Then both samples 

were ready for investigation. 

 

 

Figure 5. 10  Binding tests via laser microscopy. Microscope image (5x) of the bare gold electrode (a). 

Biotin modified fluorescent latex beads immobilised on the electrode surface (b). Amine modified 

fluorescent latex immobilised on gold electrode (c). Biotin beads were bonded via the interaction 

between streptavidin-biotin which was immobilised on 11-mercaptoundecanoic acid (11-MUA) 

modified the gold surface. A microscope image obtained from PDMS wall showing that some beads 

stacked on the scratches appeared due to drilling process (d). (Scale bars 0.3mm) 

Images of fluorescent beads (Figure 5. 10), immobilised on electrodes, were obtained with a 

ZEISS microscope (Observer Z1). Results showed that streptavidin - biotin based binding, 

which is also defined as the strongest covalent bond [144], resulted in an improved binding 

ratio than amine binding. Images are also showing some non-specifically bonded latex beads 

on the glass surface. This can be cancelled by adding PEGylation process, as the first step, for 

the passivation of the glass surfaces around the gold electrodes. 

a b 

c d 
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5.2.4. CV tests on functionalised electrodes 

The antibody immobilisation process on the electrodes was conducted by a streptavidin -

biotin binding method due to the results obtained in the comparison process explained 

above. The sensing electrode (Figure 5. 10-a) was surrounded by a PDMS chamber. 

Therefore, the electrode area to be used during the immunoassay process was fixed. 

Moreover, handling the sample in a closed chamber gives better performances in SAW 

induced hydrodynamic systems because the noise and the evaporation issues are avoided 

(see details in "SAW induced electroanalysis" chapter). Therefore, the PDMS chamber 

attached design can also operate in a SAW enhanced hydrodynamic setup (However, no SAW 

applied in this particular test series). The depiction of the antibody immobilisation process is 

shown in Figure 5. 11. 

Oxygen plasma (100W for 50 seconds) treated PDMS and glass surfaces were modified with a 

silane monolayer containing poly(ethylene glycol) (PEG) groups (Aldrich) [145]. PEG (2-

[methoxy(polyethyleneoxy)propyl]trichlorosilane) is used to decrease the nonspecific 

binding and adsorption of proteins by glass surfaces and PDMS walls [146][147]. This 

process is essential especially for the batch condition tests, to obtain clean surfaces for new 

experiments. Toluene, which is the universal solvent for PEG-silanisation, was replaced by 

ethanol since the PDMS chamber was already coupled on the surface via plasma technique 

[67]. This revision was done to avoid the swelling effect of PDMS by toluene [148]. After the 

passivation of the glass surface, the samples were immersed in a mixture of COOH- 

terminated self-assembled monolayers (SAMs), 11-mercaptoundecanoic acid and 3-

mercaptopropionic acid ((MUA/MPA) 1/10 (v/v)) in 20 mM ethanolic solution, for 6 hours. 

The SAM layer was further modified by immersing the samples into streptavidin solution for 

2 hours (at 37 °C). The solution was comprised of streptavidin (10 µl), NHS (5 mg) and EDAC 

(10 mg). After sterilisation with 70 % ethanol for 15 minutes they were exposed to 

biotinylated antibody solution (Biotin-conjugated chicken anti-human haemoglobin, Gallus 

Immunotech Inc.) in PBS buffer, with the ratio of 1/10 (v/v), for one hour at room 

temperature. The chambers were washed with PBS by five times dilution. These chambers 

were then blocked by non-specific protein - protein interaction by adding blocking solution, 

casein in PBS (0.5% - w/v), for 45 minutes. 

Bio-functionalised sensing electrodes were exposed to different antibody concentrations (0, 

0.25, 1, 4 mg/ml in PBS) for 2 hours. The chambers were washed with 0.1 % tween20 (in 

PBS), rinsed three times with PBS and dried with N2. Chambers were filled with 20 µl 

substrate system solution (TMB-H2O2 system, 100mM KCl, 9:1 v/v) for 1 hour. The reaction 
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was stopped by the adding 5 µl stop solution (1 M H2SO4). Voltammetric measurements were 

performed between -0.4 V and 0.4 V (scan rate: 0.03 V/s).  

 

Figure 5. 11  The schematic of the anti-human Hb immobilisation on gold electrodes, and Hb 

entrapment. Firstly two types of the self-assembled monolayer, MUA and MPA, is formed on the gold 

surfaces. Biotinylated antibodies are immobilised on the streptavidin attached SAM layer. The Hb 

included in the sample is captured by the bio-functionalised electrode surface.  

Result voltammograms (Figure 5. 12) show that the label free Hb detection technique, based 

on the TMB-Hb interaction, can give quantitative results.  The anti-Hb layer, used for the 

detection of Hb, did not block the reactivity of Hb, and the technique worked. Moreover, the 

application of stopping solution increases the reliability of the measurements since the 

reactions in each chamber are terminated at the same time.   
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Figure 5. 12  CV results obtained at different Hb concentrations. The reaction was stopped by the 

adding 5 µl stop solution (1 M H2SO4). Applied voltage range was from -0.4V to 0.4 V vs. pseudo gold 

electrode (scan rate: 0.03 V/s).  The inset shows the diffusive peak variation according to the Hb 

concentration variation.  

5.2.5. Colorimetric tests on polystyrene wells 

This section explains the optical results obtained after a modification made on the sensing 

method. This revision made the system relatively less complicated, and more reliable 

comparing to the previous one that was based on the functionalisation of the electrode 

surface. In the new method, the sensitive layer is formed on the polystyrene wells which has 

no other material pattern (i.e., metal) on it. No passivation process was required on the 

surface of wells. The final product (yellow coloured TMB) is easier to analyse optically easier 

than the previous method since the chamber is completely transparent, and there is no light 

absorbing pattern on it. Then the amperometric and/or voltammetric tests can still be 

performed, by removing a portion of the product solution, in a separate electroanalytical 

sensing chamber.  



  146 
 

 

Figure 5. 13  Schematic of the antibody immobilisation on polystyrene wells, and label-free Hb 

measurement processes. Both optical and chemical measurements can be performed with the final 

product obtained from the substrate (TMB). 

A rapid technique was applied for the antibody immobilisation in polystyrene microtiter 

plates [149]. The polystyrene wells were exposed to the mixture (1:1 - v/v) of antibody (Anti-

human haemoglobin, 8µg/ml in PBS) and 3-aminopropyltriethoxysilane (APTES) solutions 

(10 µl/ml in water) for 30 minutes at room temperature. Unbound parts were blocked by 

300 μl of 1% (w/v) BSA in PBS for 30 min at 37°C. The wells were exposed to 300 μl of Hb 

solutions (4, 2, 1, 0.5, 0.25, 0 mg/ml) for 1 hour and washed five times with 300 μl PBS. Then 

300 μl mediator, TMB- H2O2 system (3,3′,5,5′-Tetramethylbenzidine- Sigma-Aldrich), was 

applied to the wells for 20 minutes. Half the sample (150 µl) was placed in another chamber, 

and its reaction was stopped by 50 µl of stop solution (1 M H2SO4). 
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Figure 5. 14 presents the spectrum analysis obtained from the label free Hb detection method 

at different steps. Measurements were performed on Hb solution (4 mg/ml) before the 

washing step, substrate system (after 20 minutes incubation in the antibody immobilised 

chamber) before the stop solution, substrate system after the addition of stop solution and a 

blank well. Spectrum results show that the optical density measurements can be performed 

at 450 nm [149] for stopped solutions and 380 or 650 nm for substrate without stop solution. 

Absorption values obtained from different Hb concentrations are presented in Figure 5. 15.    

 

Figure 5. 14  Optical density measurements, between 300 nm and 700nm wavelength. Spectrum results 

obtained from the Hb solution (blue- up triangle), Hb+TMB (black- square), Hb+TMB+Stop solution 

(red- circle) and blank samples (pink-down triangle).  
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Figure 5. 15  Optical density measurements (630 nm) of substrate (TMB) samples incubated in wells 

exposed to different Hb concentrations (4, 2, 1, 0.5, 0.25 mg/ml).   

Consequently, the results showed that the rapid immobilisation method works for antibody 

entrapment on polystyrene surfaces. This technique requires fewer steps in comparison to 

the previously performed antibody immobilisation on gold electrodes. The biosensitive area 

is larger than the previous method since it is not limited only to the electrode area. No surface 

passivation is required prior the immobilisation process. Moreover, the same electrode can 

be used more than once. Therefore running the assay in polystyrene chambers and 

conducting electroanalytical tests in a separate chamber is a faster, more sensitive and 

repeatable technique in comparison to previous one.  

5.3. SAW enhanced assay 

Enzymes are powerful tools to obtain bio-analytical sensors due to their ability to recognise 

specifically their own substrate [150]. Oxidoreductase enzymes that perform oxidation-

reduction reactions are commonly used in biochemical sensing applications [19]. The most 

widely used oxidoreductase enzyme is horseradish peroxidase (HRP), and TMB is the most 

popular substrate for HRP based immunosensors. The working mechanism of the HRP - TMB 

system is shown below. 
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This part of the research presents the sensitivity enhancements in an electrochemical 

immunoassay led by the surface acoustic wave (SAW) induced streaming. Experiments were 

performed in batch conditions without any sensitive layer immobilisation process. SAW is a 

mechanical oscillation, travelling on a surface of a solid material [107] (see the details in 

introduction chapter). As shown in Figure 5. 16, the acoustic waves are generated in the SAW 

platform (Gold IDTs on LiNbO3 substrate) and transmitted to the glass (0.2 mm) based 

disposable sensing platform, through a water-based coupling gel (KY). Radiation of the 

acoustic wave creates a fluid streaming inside the droplet. 

 

Figure 5. 16  Top: Schematic of the complete system setup which composes a potentiostat (CHI760C), a 

three-electrode sensing system (with a 3µl sample pipetted onto it), a slanted SAW IDT (10nm Ti, 

100nm Gold), an amplifier (Mini-Circuits ZHL-5W-1, 5-500 MHz with a 3 A, 24 V DC power supply) 

and a function generator (Agilent Technologies MXG Signal Generator N5181A). Bottom: Schematic 

of the diagnostic device design.  It includes an electrochemical sensing device coupled on a SAW 

platform on LiNbO3 piezoelectric material.  

The 43 finger SFIDT's working range was between 7.6 MHz and 16.6 MHz.  The SAW induced 

streaming effect in the sample was obtained at 10.5 MHz frequency. The aperture of the 
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travelling acoustic beam was obtained as 1.1 mm by an ultra-high-frequency vibrometer 

(Polytec UHF-120).  

The three-electrode sensing platform (10nm Ti, 100nm Gold) was fabricated on a 0.2 mm 

thick coverslip. The area of the straight electrodes used in the system was 0.19 mm2.  Droplet 

shape was kept as circular with PVC tape (0.1 mm thick) surrounding a circular region (1.5 

mm radius) around the electrodes. SAW actuated hydrodynamic electrochemistry results 

were obtained with a CHI760C electrochemical analyzer. 

 

Figure 5. 17  CV results obtained from the substrate system (TMB- T8665 substrate system - Sigma). 

The red graph is the voltammogram of the solution (TMB Substrate including 100 mM KCl and 

0.25fM HRP), and the blue graph is the voltammogram after the addition of the stop solution (1M 

H2SO4).  

Electroanalytical (CV) measurements performed on 3 µl sample droplets pipetted onto the 

sensing electrodes (Figure 5. 16). The sample solutions included 1 µl TMB-H2O2 substrate 

system (with 100 mM KCl), 1 µl HRP solution (5 fm, 0.2 fm and 0.008 fm in PBS) and 1 µl 

stopping solution (1 M H2SO4). The enzymatic reaction, between HRP and TMB, was stopped 

by the addition of H2SO4 solution after 15 minutes incubation. Figure 5. 17 presents the two 

peaks (before the stopping solution) and the one peak (after the stopping solution) 

voltammograms. The reaction of TMB-HRP system is known as a two-step oxidation process. 

First oxidation of the transparent TMB is made by HRP, which creates blue colour, and the 

last oxidation that is carried by a stopping solution converts the TMB colour to yellow [151]. 
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Figure 5. 18  The voltammograms obtained in the absence and the presence of SAW (10.5MHz, 1W) 

streaming. The sample solutions were comprised of 1 µl TMB-H2O2 substrate system (with 100 mM 

KCl), 1 µl HRP solution (0.008 fm in PBS) and 1 µl stopping solution (1 M H2SO4). 

Figure 5. 19 shows the diffusive peak currents obtained from the voltammograms measured 

on various HRP concentrations in the absence and presence of SAW streaming. Results show 

that the acoustic streaming creates 16.8 % (+/- 0.3) average signal enhancement on both 

oxidation and reduction peak currents. Application of higher SAW powers can increase the 

diffusion limited peak currents further, by dragging more fresh material towards the 

electrode surface. However, increased SAW power generates more heat and leads to the 

evaporation of the sample. Therefore, the system requires a closed chamber in order to avoid 

the evaporation problem.  
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Figure 5. 19  SAW enhanced diffusive peak currents obtained from CV measurements on different 

reporting enzyme concentrations (5 fM, 0.2 fM and 0.008 fM HRP). Reduction (green up triangle) and 

oxidation (black square) peak currents are increased to higher values (blue down triangle and red 

circle) thanks to the SAW (10.5MHz, 1W) induced streaming in the samples.  

5.4. Instrumentation 

All the electroanalytical measurements in the experimental research period were performed 

by a commercial electrochemical analyzer (CHI 760C). However, two extra custom made 

potentiostat circuits were tested separately on a potassium ferrocyanide redox model. As 

shown in Figure 5. 20, they were a standard scale circuit and an application-specific 

integrated circuit (ASIC) (designed by Dr. Sandeep Manjunath). The target was to decrease 

the amount of equipment and their size. Additionally the new designs would be suitable to be 

programmed for specific measurements, to obtain rapid analytical results from multiple 

measurements.   
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Figure 5. 20  Instrumental system setup includes a potentiostat circuit (ASIC or the average scale 

circuit design), a function generator, an oscilloscope and an electrochemical cell. The electrochemical 

cell consists of a sample chamber and a three electrode sensing system connected to the potentiostat. 

The function generator provides an electrical signal required for the electroanalytical test (CV or 

amperometry).  Potentiostat follows the voltage applied to the sample and corrects it. Final results 

observed via an oscilloscope connected to the potentiostat and the function generator. The ASIC was 

previously developed at the Glasgow University, is connected on to test board. 

 

 

Figure 5. 21  Three operational amplifier potentiostatic circuit. This control circuitry is used to 

monitor the current flow through the working electrode. The circuit includes single voltage supply and 

op-amps (LM358). Electrode connections are made as presented in the depiction. 

The custom design circuits were tested via CV technique. According to the requirements of 

CV, the square root of the peak currents, of a reversible redox system, changes as 

proportional to the square root of the sweep rate. Figure 5. 22, presents the peak currents of 

Potential control amp. 

Voltage follower amp. 

Current follower amp. 
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the voltammograms obtained from the following three setups; a commercial device, custom 

made potentiostat and the potentiostat designed in ASIC format. The results show that the 

peak current values change as proportional to the square root of the scan rate. Therefore, 

both setups with custom made circuits can be used for the electroanalytical measurements. 

 

Figure 5. 22  Peak currents of voltammograms obtained via three different instrumental setups; a 

commercial electrochemical analyzer/ workstation (orange- circle), an average scale circuit design 

(blue- triangle) and an ASIC circuit design (red- square). Cyclic voltammograms were obtained from a 

10mM ferrocyanide redox system at various scan rates. The solution was also included 0.1 M 

Potassium Chloride (KCl) as a supporting electrolyte. The size of the sensing electrodes used with the 

electrochemical workstation were different from the other tests. 

 

5.4.1. LabVIEW based system control 

In the following stage, a potentiostat controller interface was designed on the LabVIEW 

platform. This graphic based program enables the design of user-friendly interfaces to 

control the hardware through a data acquisition device. After the interface had been involved 

in the system, the entire setup was changed to the case shown in Figure 5. 23.  
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Figure 5. 23  Schematic of the LabVIEW controlled electroanalytical system setup. A function signal 

(triangle or a constant signal) is produced by the LabVIEW interface and a data acquisition device (NI 

DAQpad-6015), and sent to the sensing chamber via the potentiostat. Signal output is obtained back 

from the sensor (chemical cell) by the potentiostat and sent to the PC through the DAQpad. Finally, 

the results are observed on the LabVIEW interface screen.  
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Figure 5. 24  The block diagram of the LabVIEW based program. The main parts of the design are a 

signal generator, analogue signal output blocks, analogue signal input blocks, signal averaging block, 

graphical screens and data storage parts.  
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Figure 5. 25  Front panel of potentiostat controller. Changeable variables at front panel are minimum, 

maximum values, signal type, signal limits, scan rate, delta V which is the resolution of  function, 

sweep segments, timeout which limits the running time of the block design, averaging time and data 

saving parts. 
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The LabVIEW based controller is capable of producing a functional signal according to the 

variables defined by the user, apply it to physical circuits and get the resulting signal back 

from the system. Those significant variables that can be adjusted from the front panel are; 

minimum value, maximum value, signal type, signal voltage limits (min and max), scan rate, 

delta V (resolution of function signal), sweep segment number, timeout (limits the running 

time of the block design), averaging time and data saving section. In order to prevent errors 

caused by wrongly entered voltage parameters, the signal generation part is capable of 

differentiating the randomly introduced limits as minimum and maximum. In addition, the 

user can view other relevant values from the front panel such as the frequency, cycle time of 

the signal, sample rate, measured input buffer size and proposed signal from the produced 

function graph. Direct and averaged versions of measured signals according to the time and 

XY graph, which gives the cyclic voltammograms, are presented in the front panel of the 

LabVIEW program. The additional graph screen, under the parameter block, shows the 

measured input signal and the bias voltage of the circuit.   

5.5. Conclusion 

This chapter covers the experimental work conducted to develop an acoustically enhanced 

Hb sensing system. A novel, substrate (TMB) based label-free Hb sensing method is tested. 

The technique proved to be giving relevant data, according to the Hb concentration. The 

label-free method has fewer steps than ELISA and has only one antibody. Therefore, it is 

quick and the cross-reactivity of the second antibody is eliminated from the system.  

Moreover, the technique was further developed by changing the sensation process. Instead of 

the forming the sensitive layer on the electrodes it was localised on polystyrene wells by a 

one-step rapid process. This modification of the technique decreased the time to prepare the 

sensing platform because the passivation steps (i.e., pegylation), prior to structuring a 

sensitive layer were ignored. This avoidance also increased the reliability and repeatability of 

the measurements. Optical measurements performed on the samples proved that the 

modified method also can give quantitative results. The method also enables us to run 

experiments on the same system including the same electrodes. This reduces the cost of the 

device and most importantly improves the repeatability of the measurements. 

SAW application can decrease the incubation time. Therefore, it would be possible to obtain 

more current flow relevant to the Hb concentration in the sample. Additionally, the 

sensitivity of the system is expected to be enhanced by the acoustic streaming. SAW 

enhanced biosensing measurements on a model bio-recognition system, based on the 

oxidation of TMB by HRP reporting enzymes, delivered promising signal enhancements. This 
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increment allows more sensitivity enhancements to be obtained due to the decreased 

thickness of diffusion layer on the sensing electrodes.  

A software program and a custom potentiostat circuit were developed to obtain a fully 

controllable (via a PC) electroanalytical system. The LabVIEW based system could conduct 

amperometric and voltammetric measurement. The advantage of the design was its flexibility 

to be modified according to requirements of a particular analytical sensing platform.  
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6. Conclusion and future work 

6.1. General conclusion 

The work conducted in this Ph.D. research is primarily based on three stages. Development of 

a SAW actuated micro-mixing platform and its adaptation on a three electrode sensing 

system. The developed system was tested through electroanalytical experiments. At the final 

stage, the device was used in assays, and a label-free Hb detection mechanism was tested in 

stagnant case. Consequently, a new microfluidic platform for enhanced sensitivity on 

electroanalytical methods was developed using the SAW technology. The platform provides 

simplicity for use and enables the samples to be analysed on low-cost LOC devices. 

6.1.1. SAW device 

The SAW actuator was one of the main focus points of the thesis. Various SAW devices were 

designed and tested. Adaptation of a  slanted SAW device presented highly controllable and 

efficient mixing characteristics in sample chambers. This design enabled the system to give 

similar characteristic with the rotating disc electrode application which is a standard 

technique in the hydrodynamic electrochemistry analysis. 

Further investigations were conducted for the enhancement of SAW transducers efficiency. 

The use of wide fingers showed that the increased M/S ratio enhances the performance of the 

transducers without requiring any additional equipment or increasing the applied power on 

the system. More importantly, the enhancement was obtained without requiring any extra 

cost for the system setup or the fabrication process. 

6.1.2. SAW enhanced electroanalysis 

The hydrodynamic effect obtained by the SAW generator platform led to increments on 

diffusion-limited currents measured via CV and amperometry analysis. The enhancement on 

the sensitivity level was reached up to 600 %. The moving part free system does not need 

bulky equipment to get a fluid motion on the surface of the electrode. The design is well-

suited for cost-effective lab-on-a-chip applications since the electrochemical sensing unit can 

be fabricated on a separate disposable substrate (superstrate) and coupled on the primary 

substrate. However, this needs further research to obtain a coupling method which can give 

consistent characteristics on SAW transition.  
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6.1.3. SAW enhanced Assay 

A novel, a substrate (TMB) based label-free Hb sensing method is developed. The technique 

gave relevant data, according to the Hb concentration. The elimination of the secondary 

antibody from the system removed the possible cross-reactivity effects from the sensing 

mechanism. Moreover, the label-free technique was further developed by modifying the 

device preparation protocol. Therefore, the time to prepare the sensing platform was 

decreased. Simplification of the device also increased the reliability and repeatability of the 

measurements. Additionally, the modified method enabled the sensing device to be used for 

more than one sample tests. This reduced the cost of the device and most importantly 

improved the repeatability of the measurements.  

SAW enhanced biosensing measurements on a model bio-recognition system, based on the 

oxidation of TMB by HRP reporting enzymes, delivered promising signal enhancements. This 

showed that the technique can be applied to a broad range of electroanalytical ASSAYs for 

further sensitivity achievements. 

6.2. Future plan 

SAW is a technology being used for various purposes in LOC designs. Application of 

mechanical waves in electroanalytical sensors may be a separate research area in 

electrochemistry based LOC researchers and attract the attention of researchers.   

6.2.1. SAW transducer 

Various SAW devices have been developed and tested for filtering applications in electronic 

systems. However, still different types of researches can be performed on the SAW device 

design for more active microfluidic manipulations. The result showed that wider electrodes 

are capable o generating more powerful mechanical waves without requiring any impedance 

matching circuit. Even the amount of gold sputtered on the piezoelectric wafer during the 

fabrication process does not need to change to obtain this enhancement. This method will be 

applied in future works such as micromixer and droplet manipulation development 

researches. 
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6.2.2. SAW actuated sensing device 

 

Figure 6. 1  A very first attempt to obtain a SAW enhanced electroanalytical LOC system with micro-

scale sensing electrodes. The working frequency of the SAW IDT of the design was 115 MHz. The 

system had a three electrode sensing system on it. All metal patterns (20 nm Ti and 100 nm Au) were 

fabricated on a LiNbO3 substrate (128˚ Y-cut X-propagating c=3996ms−1). The channels and the 

chambers of the LOC were fabricated on a PDMS layer. The sample was flowing between the 

substrate and the PDMS layer. 

The next generation SAW actuator design is planned to have a further improved streaming 

efficiency with a micro-scale sensing platform. This will create more sensitivity enhancement 

and decrease both the size of the device and the fabrication costs. The result of a first attempt 

to obtain such a device is presented in Figure 6. 1. The system was covered with a PDMS layer 

including micro-channels and SAW tunnels. These tunnels enable SAW to induce inside the 

micro-scale chambers through the PDM layer. 

The micro-scale sensing chamber will be able to have a streaming effect with a tiny SAW 

power. However, the miniaturisation has also adverse effects on the streaming efficiency due 

to the increased surface tension in microscale channels and chambers. The mixing platform is 

proposed to be further developed in order to compensate such issues and make the device 

more efficient. The acoustic actuator platform will be designed as unidirectional focused IDT. 

Therefore, the SAW propagation will be only in a single direction. A targeted finger design 

will induce a concentrated dragging effect into the chamber. However, the PDMS bonding on 

the surface is needed to be very strong since the SAW power can be very dense and high at 

particular points of the device. 
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The SAW enhanced electroanalysis method could be used for different sensing applications in 

different areas such as chemistry and agriculture. Therefore, the next stage will be testing the 

final device concept with particular sensing experiments. 

6.2.3. Label-free Hb detection 

The Hb recognition experiments performed in the research were the preliminary work. 

Further experimental investigations will be performed on the well plate based label-free Hb 

sensing method. Electroanalytical measurements (voltammetric and amperometric) will be 

conducted, after the optical measurements are completed, on various Hb concentration levels 

(down to 1 ng/ml). The acoustic mixing will be applied to the electroanalytical sensing 

chamber to enhance the sensitivity by increasing the mass transfer in the media. SAW and the 

sensing platforms will be fabricated on the same substrate in order to maximise the efficiency 

of acoustic streaming. Additionally, an extra sensitivity enhancement is expected on the Hb 

sensitivity by inducing another SAW mixing in the first chamber where the sensitive layer is 

formed. This will increase the binding efficiency (Hb - Anti Hb) and decrease the nonspecific 

binding effects on the sensitive layer. Therefore, the false positive result ratio of the sensor is 

also expected to decrease. 

6.2.4. Controller interface 

As the next step, the software will be developed to gather different data series, comprised of 

voltammetric or amperometric graphs, and analyse explicitly defined parts of the result 

graphs. The software will be able to detect the background currents in order to obtain 

diffusive peak currents from voltammograms. These features will enable the system to 

perform rapid electroanalytical analysis on different chemical or biochemical systems.   

The LabVIEW based controller block of the system will be modified to control the SAW 

platform. The SAW signal, usually generated by a separate signal generator, will be provided 

by the control unit that comprises a PC and a data acquisition device. Therefore the settings 

of the signal will be controlled via the LabVIEW interface, and this will synchronise the 

acoustic mixing platform directly with the sensing platform.  
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